

 智能路由器开发指南

 	
 第1章 智能路由器概述

 	
 第2章 开发环境及编译分析

 	
 第3章 OpenWrt包管理系统

 	
 第4章 OpenWrt配置

 	
 第5章 软件开发

 	
 第6章GDB调试

 	
 第7章 网络基础知识

 	
 第8章 路由器基础软件模块

 	
 第9章 常用软件模块

 	
 第10章 IP路由

 	
 第11章 DNS与DHCP

 	
 第12章 iptables防火墙

 	
 第13章 UCI防火墙

 	
 第14章 UPnP

 	
 第15章 网络测试及分析工具

 	
 欢迎来到异步社区！

 第1章　智能路由器概述

近年来，智能路由器领域越来越火，但这方面的开发资料却很少，并且不成体系。因此，本书针对智能路由器领域的开发进行了详细介绍，也可以用于指导其他智能家庭设备的开发。

接入网络的家庭用户终端越来越多，路由器控制越来越复杂，因此需要一个智能网关来管理家庭的设备。另外，这个智能网关直接连在互联网上，需要隔离家庭网和互联网的连接，因此需要带有防火墙功能。智能路由器就像智能手机一样，其定义并非其字面含义所表现出的那样（可以智能地选择路由），而是其带有可扩展功能，用户自己可以安装软件进行扩充。传统的路由器仅可以升级厂商自己的操作系统版本，且未提供扩展接口。

公共场所无线接入是一个大的需求，因此无线接入市场越来越大。接入费用谁来负担？一个思路是商家提供接入费用，另外一个思路是通过广告来分担接入费用。OpenWrt就是这样一个智能路由器操作系统，它可以提供Web认证等成熟的功能给这类用户进行选择。

OpenWrt是一个针对嵌入式设备的Linux发行版，有非常高的可扩展性，可以非常容易地从零开始构建出全功能的智能路由或服务器设备。

1.1　OpenWrt简介

OpenWrt是一个嵌入式设备的Linux发行版，以GPL许可协议发行。

OpenWrt项目始于2004年1月，其第一个版本采用了LinkSys的源码。在LinkSys的代码收费后，改为采用正式发布的Linux内核来集成，并将OpenWrt完全模块化，不断推出补丁和驱动。OpenWrt的主要特点在于其高扩展性，并且文件系统可写，开发者无需在每一次修改后完全重新编译，只要编译自己的软件包即可，这样就加快了开发的进度。另外OpenWrt提供了SDK，每个运行软件均能够以SDK来进行编译，以软件包形式进行安装和卸载。其主要特点有如下几个。

 	代码里不含第三方开源包，只包含开源包地址链接。

 	编译时自动下载源代码、打补丁来满足指定平台要求，并编译。还可以修改Makefile来下载最新的软件包。

 	使用LuCI作为最终用户管理界面。LuCI以Apache许可协议发布Web管理功能代码。

 	UCI通用配置管理方法。

 	通过脚本来调用iptables来实现防火墙功能，配置保存在UCI文件中。

 	开放和可扩展的OPKG格式安装升级包。

OpenWrt历史

OpenWrt在2004年由迈克·贝克和格里·罗泽马创立，到今天为止已经发展了12个年头了。OpenWrt定期发布版本，发行版本以代码线和日期作为版本号。它的第一个正式版为Kamikaze 7.06，第二个正式版本为Backfire 10.03。

Backfire

2010年4月7日，OpenWrt发布Backfire 10.03正式版。相对上一个稳定版本，其内核升级为Linux 2.6.32，使用了新的Web服务器uhttpd，支持了一些新的平台硬件（如TP-Link TL-WR1043ND等），增加了机器可读的版本信息/etc/openwrt_release。

2011年12月21日，OpenWrt发布了Backfire 10.03.1正式版。期间，OpenWrt发布了6个RC版本。这一版本将内核升级为Linux 2.6.32.16，修正了很多BUG，并增加了对TP-Link、TL-MR3420等的支持。

Attitude Adjustment

2013年4月25日，OpenWrt发布12.09正式版。相对于Backfire版本，Attitude Adjustment将内核更新至Linux 3.3，改进了并行编译支持；使用密文存储密码；各种防火墙功能增强；无线驱动更新及稳定性增强；新平台支持ramips、bcm2708（树莓派）等；发布镜像文件中支持网桥防火墙。

Barrier Breaker

2014年7月31日，OpenWrt发布14.07正式版。相对于Attitude Adjustment版本，内核升级到3.10，增加了原生IPv6支持，文件系统增强；UCI配置增强，支持测试配置和回滚最近工作状态机制，增加配置更改按需触发服务重启机制；网络功能增强，可以支持动态防火墙规则，增加网桥的多播传输到单播传输的转换等。

Chaos Calmer

OpenWrt于2015年9月11日发布15.05正式版。Chaos Calmer中间发布了3个RC版本。相对于 Barrier Breaker，其内核升级到了3.18；网络功能增强，添加了多个3G/4G路由器支持，改进了IPv6等功能增强，增加了自管理网络的支持；各种平台和驱动设备的支持，例如飞思卡尔i.MX23/28系列等各种品牌，增加了树莓派的支持。这个版本在64位平台的VirtualBox下运行还存在问题。

表1-1　OpenWrt最近历史版本

 	 版　　本

 	 内核版本

 	 发布日期

 	 发布代码地址

 	 Kamikaze 8.09.2

 	 2.6.26

 	 2010-01-10

 	 svn://svn.openwrt.org/openwrt/tags/8.09.2

 	 Backfire 10.03

 	 2.6.32

 	 2010-04-07

 	 svn://svn.openwrt.org/openwrt tags/backfire_10.03

 	 Backfire 10.03.1

 	 2.6.32

 	 2011-12-21

 	 svn://svn.openwrt.org/openwrt/tags/backfire_10.03.1

 	 Attitude Adjustment 12.09

 	 3.3.8

 	 2013-04-25

 	 svn://svn.openwrt.org/openwrt/tags/attitude_adjustment_12.09

 	 Barrier Breaker 14.07

 	 3.10

 	 2014-10-02

 	 svn://svn.openwrt.org/openwrt/branches/barrier_breaker -r42625

 	 Chaos Calmer 15.05

 	 3.18

 	 2015-09-11

 	 svn://svn.openwrt.org/openwrt/branches/chaos_calmer -r46767

注1：对于各种硬件平台内核版本可能不一致。因为每个平台的内核版本在独立的文件中定义（target/linux/<平台>/ Makefile:LINUX_VERSION），在Barrier Breaker及以后的发布版中，内核版本定义变量改为KERNEL_PATCHVER。

注2：最新的两个发布版本没有创建标签，需要根据SVN版本号来下载代码。

注3：2016年3月，OpenWrt已经从SVN代码仓库切换到Git代码仓库了，因此不再支持SVN。

1.2　整体功能组件

1.2.1　整体架构

路由器的典型架构划分为管理平面、控制平面和数据转发平面，如图1-1所示。

[image:]

图1-1　OpenWrt架构

管理平面是提供网络管理人员使用UCI、Web、SNMP和TR069等方式来管理路由器，以及执行这些管理功能所需的配置命令等，管理平面提供了控制平面正常运行所需的配置参数。

控制平面用于控制和管理所有网络协议的运行，例如ARP、DHCP、DNS及组播协议的管理和控制。

转发平面用于处理和转发不同网络接口上各种类型的数据，例如进行网络地址转换、路由、ACL等。典型路由器在数据转发平面占用最多的系统资源。转发平面应用控制平面提供的路由信息对数据报文的接收，进行网络地址转换，查找路由表，从出接口发出报文等工作。如果找不到路由，则发送ICMP不可达消息，我们可以使用route命令查看路由转发数据库。路由器的3平面划分仅是逻辑意义上的功能划分，在实际的功能模块并没有完全区分。

OpenWrt是一个基于Linux的智能路由器操作系统。用户可以自定义安装各种应用软件。OpenWrt提供各种功能插件，使用户可以自定义安装来管理路由器；默认内置了一些基础功能。其主要功能可以分为3个部分：网络功能、系统管理功能和状态监控功能。以下各节将分别详细介绍。

1.2.2　网络功能

网络功能是路由器的核心功能，如图1-2所示。“Network”标签高亮显示表示正在使用网络管理功能，下一层标签是静态路由管理。主要包含以下几个功能。

 	网络接口设置和管理。

 	DHCP协议支持，家庭网内作为DHCP服务器，在广域网作为DHCP客户端。

 	主机及DNS功能，可以加快DNS响应和减少广域网DNS流量。

 	静态路由及组播路由功能。

 	便捷的网络问题诊断工具 ping、traceroute和nslookup等。

 	防火墙功能（IPv4网络地址转换、DMZ、报文过滤及防洪水攻击等）。

 	IP带宽控制（QoS）。

 	设备即插即用（UPnP）。

[image:]

图1-2　静态路由管理功能

1.2.3　系统管理

系统管理是路由器除了网络管理之外的其他管理功能，如图1-3所示。系统管理主要包含以下几个功能。

 	主机名称设置、日志服务器设置、NTP（网络时间）和密码设置等。

 	远程安全登录设置（SSH）。

 	软件管理/配置备份等，如图1-3所示。

 	进程启动管理及定时任务管理。

 	系统属性设置。如时区、时间设置及语言设置等。

[image:]

图1-3　软件管理功能

1.2.4　状态监控

状态监控主要用于监控路由器的当前状态，并且只能查看当前的路由器状态。如图1-4所示，“Status”标签高亮显示表示正在使用状态监控功能，下一层标签是“Overview”，用于查看路由器的系统状态和内存占用情况。状态监控主要包含以下几个功能。

 	查看系统固件版本、运行时间、平均负载及内存占用等。

 	网络状态、DHCP用户及无线用户等。

 	防火墙状态统计、路由转发表及ARP表。

 	系统日志和内核启动日志。

 	系统进程负载状态，包括CPU使用率及内存使用率。

[image:]

图1-4　状态监控功能

此外OpenWrt还为开发人员提供了一些开发支撑功能以及代码调试工具等，例如：

 	编译工具链（gcc、binutils和libc）。

 	build固件工具（mksquashfs、mkcramfs）。

 	编译SDK功能，不用完全编译整个系统，即可编译单独模块。

 	可写磁盘分区，便于安装验证功能。

1.3　开源嵌入式操作系统比较

开源嵌入式操作系统，其字面意思有3点，即开放源代码、嵌入式和操作系统，但实质上其流行的关键在于其可扩展性。

开源是指开放源代码，是指软件在开放源代码许可证下发布软件，保障软件用户自由查看软件源代码的权利。这同时也保障了用于修改、复制和再分发的权利，但仍需遵守开源许可协议中的一些约束。开放源代码不仅仅指开放源代码的软件，也是一种软件开发模式。

“许可证”是指授权条款，是指使用、修改、复制和再分发的条款和条件的法律文件。最常见的开源许可证有几种：GNU GPL许可证、Apache许可证等。许可证通常也称为许可协议。

“Apache许可证”是著名非盈利开源组织Apache采用的协议。该协议鼓励代码共享和尊重原作者的著作权，同样允许代码修改、再发布（作为开源或商业软件）。获得该许可证需要满足以下4个条件。

 	需要给代码的用户一份Apache许可协议。

 	如果你修改了代码，需要在被修改的文件中说明。

 	在延伸的代码中（修改和有源代码衍生的代码中）需要带有原来代码中的协议、商标、专利声明和其他原来作者规定需要包含的说明。

 	如果再发布的产品中包含一个Notice文件，则在Notice文件中需要带有Apache 许可证。你可以在Notice文件中增加自己的许可内容，但不可以表现为对Apache许可证构成更改。

Apache许可协议是对商业应用友好的许可。使用者也可以在需要的时候修改代码来满足需要并作为开源或商业产品发布和销售。

GPL是著名的开源软件Linux采用的许可协议。GPL许可证和Apache许可证等鼓励代码重用的许可很不一样。GPL许可证的出发点是代码的开源使用和引用/修改/衍生代码的开源使用，但不允许修改和衍生的代码做为闭源的商业软件发布和销售。这也就是为什么我们能用使用各种商业软件公司发布各种Linux系统以及他们的源代码。

GPL许可证主要有以下两个特点。

 	程序运行不受许可协议的限制。

 	只要在一个软件中使用GPL许可证的产品，则该软件产品发布时也必须采用GPL许可证，即必须同时发布其源代码。这就是所谓的“传染性”。并且在发布任何基于GPL许可的软件时，不能添加任何限制性的条款。

嵌入式系统，是指嵌入到硬件系统内部，为特定应用功能而设计的专用软件系统。与个人计算机的通用操作系统不同，嵌入式系统通常只针对特殊的用途。因此可以对它进行优化，并裁剪到最小。现在通用的硬件系统发展非常迅速，因此出现了在通用硬件系统上的嵌入式操作系统。目前在嵌入式领域广泛使用的操作系统有：Linux、Windows Embedded和VxWorks等。

基于Linux内核也衍生出很多操作系统发行版本。Linux基金会负责Linux内核的开发、发行及维护工作。对于各个基于Linux内核的发行版本来说，可以选择某款Linux内核长期支持版（LFS）作为自己操作系统的内核。如果对主干版本进行修改，可以将修改反馈给上游。等到下次升级内核版本时，就会得到包含自己修改代码的内核了。

相对于专有的闭源操作系统，如Windows和Mac，开源Linux操作系统最大的特点就是其可扩展性非常好。但如果从头开始构建操作系统，则会因为使用者的技术水平、软件包的依赖关系、软件包的版本等出现很多不可预知的兼容性问题。这就要求个人和企业用户在选择操作系统时需要注意根据自己的实际情况来选择，这也是目前使用开源Linux操作系统较为困难的最主要原因。还好有些技术社区组织已经针对某些领域做了一些特殊的定制和优化。例如，针对防火墙的操作系统有IPFire；针对智能路由器领域通常使用的嵌入式操作系统有Tomato和OpenWrt等；针对个人桌面领域操作系统有Ubuntu和Fedora等；针对手机有Android和Firefox OS等。它们均是基于Linux内核的操作系统。

1.3.1　和Android比较

Android是谷歌研发的一款智能终端操作系统，是一种基于Linux的开放源代码的操作系统，主要使用于移动设备 ，如智能手机、平板计算机等，也应用于智能电视等。它由谷歌公司和开放手机联盟领导开发。Android操作系统最初由安迪·鲁宾开发，最初目的是用于数码相机的操作系统。2005年8月谷歌全资收购了Android操作系统。2007年11月，谷歌与84家硬件制造商、软件开发商及电信营运商组建开放手机联盟，共同研发改良Android系统。随后谷歌以Apache开源许可协议的授权方式发布了Android的源代码，Android以JAVA层封装了系统层提供给应用开发者统一的API接口。第一部Android智能手机发布于2008年10月。目前，Android已逐渐扩展到平板计算机及其他领域，如电视、智能手表、数码相机和游戏机等。2015年，Android以85%的市场占有率占据移动操作系统市场之首。表1-2所示为OpenWrt和Android的比较。

Android操作系统已经演化为一个移动设备开发平台，其软件层次大体上分为4层，即操作系统内核、中间层、应用程序框架层和应用程序。应用程序框架层为应用程序开发者提供了功能强大的API，包括图形显示的各种组件，如视图、列表、文本框、按钮以及嵌入式的Web浏览器等。

表1-2　OpenWrt和Android操作系统的比较

 	

 	 Android

 	 OpenWrt

 	 内核

 	 Linux内核

 	 Linux内核

 	 许可协议

 	 Apache2.0

 	 GNU License

 	 使用场景

 	 面向终端用户，手持设备。用户接口采用JAVA提供图形用户界面GUI

 	 服务器、家庭路由器等，用户接口默认为UCI命令行提供，也支持通过Web方式来管理

 	 开发主导模式

 	 由谷歌公司主导开发

 	 由OpenWrt.org社区主导，社区由个人组成，更开放

1.3.2　和其他WRT比较

1．Tomato WRT

Tomato是一种小型的LinkSys的WRT54G是博通路由器的另外一种可选的替换固件。它有一个新的易于使用的GUI，一个新的带宽监控工具，更为先进的服务质量（QoS）和访问限制，使用新的无线功能，如WDS和无线客户端模式，P2P最大连接上的限制，允许你运行自定义脚本或者Telnet、SSH登录到路由器，在做各种各样的事情。例如重新编程的SES/AOSS按钮，添加无线站点调查来查看你的Wi-Fi邻居，等等。Tomato有以下特点。

 	代码压缩包35.4MB，仅提供必要的代码，其他代码需要自己手动下载。

 	在LinkSys提供的源码上仅做少量修改，内核还是采用2.4版本。

 	在编译时需要特别注意设置环境变量，例如：Export LC_ALL=en_US.UTF-8。

 	编译时代码有时间依赖，复制时需要保留时间，使用命令“cp –a”。

 	“www.polarcloud.com/tomato”提供源代码及二进制包，源代码和思科发布的代码相近，仅修改一些必须的代码。编译时需要首先下载思科的代码，并替换相应的文件。

 	代码地址为git://repo.or.cz/tomato.git， 最新版本为Tomato1.28，更新日期为2010-6-29。

它有一些明显缺点，例如仅有发布说明，没有详细修改记录；最近不再更新等。

2．DD-WRT

DD-WRT是一个基于Linux的开源固件，适合各种各样的无线路由器和嵌入式操作系统。其重点在于提供最简单的处理，同时在各种硬件平台的框架内支持大量的功能。它是另外一款路由器代码发行版，从2006年2月开始开发，没有分支稳定版本。代码库包含所有的代码，包含SVN信息共大约18GB。其代码始终在更新，2015年10月也有代码提交。有一个缺点是SVN上包含所有的代码，没有分支及标签，无法区分稳定版本。用在私人用途，DD-WRT是免费的，如果用在商业用途则需要获取软件许可。

表1-3所示为开源路由器各种发行版本的对比。

表1-3　开源路由器各种发行版本对比

 	 路由器

 	 Tomato Wrt

 	 DD-WRT

 	 OpenWrt

 	 网站

 	 www.polarcloud.com/tomato

 	 www.dd-wrt.com

 	 www.openwrt.org

 	 历史

 	 未知

 	 2006年2月开始开发

 	 2004年2月开始，平均两年发布一个稳定版本

 	 代码管理

 	 git://repo.or.cz/tomato.git，仅提供自己修改的代码。仅有一个可用版本

 	 svn://svn.dd-wrt.com/DD-WRT，包含所有的代码，没有分支及标签，无法确定哪个是稳定版本

 	 svn://svn.openwrt.org/openwrt/，diff文件进行提交管理。不同版本使用分支来管理

 	 问题跟踪管理

 	 无

 	 无

 	 采用trac管理缺陷

 	 编译

 	 ●　代码压缩包35.4MB，仅提　 供必要的代码，其他代码　 需要自己手动下载
 ●　在编译时需要特别注意　 设置环境变量，例如：　 Export LC_ALL=en_US. 　 UTF-8
 ●　编译时代码有时间依赖，　 复制时需要保留时间，使　 用命令cp -a

 	 ●　包含所有代码，一次下载完　 成后，编译构建时不用联网

 	 ●　构建时需要联网，编译时根　 据选择自动下载第三方代码
 ●　支持编译SDK

 	 活跃程度

 	 Tomato1.28最后更新日期为2010-06-29

 	 一直在更新，2015-10-6也有提交

 	 一直在更新，2015-10-06也有提交，最新稳定版本为15.05

 	 文档

 	 资料较少

 	 自己网站英文资料较多

 	 中文资料较多

 	 缺点

 	 X86平台不支持，已经不再更新

 	 无法确定稳定版本；商业版本需要获取软件许可

 	 无明显缺点

注1：最后更新日期为2015年10月6日统计。

3．比较结果

OpenWrt相对于其他几个无线路由器操作系统来说，版本管理最为规范，社区最活跃，是最适合选为基础来进一步开发的。当然，OpenWrt也适合初学者来学习。本书中采用了OpenWrt来论述智能路由器的开发过程，非常有利于初学者快速上手。

1.4　参考资料

 	Tomato介绍（http://www.polarcloud.com/tomato [2015-07-12]）。

 	DD-WRT介绍（http://dd-wrt.com/site/content/about [2015-07-12]）。

 	OpenWrt官方网站（https://openwrt.org/）。

 	OpenWrt版本历史（http://wiki.openwrt.org/about/history [2015-10-07]）。

 	GNU通用公共许可证（http://www.copu.org.cn/node/24 [2016-01-23]）。

 	Apache 许可协议（2.0版）（http://www.copu.org.cn/node/366 [2016-01-23]）。

 	5种开源协议的比较（http://www.copu.org.cn/node/25 [2016-01-23]）。

第2章　开发环境及编译分析

如果你想从事智能路由器OpenWrt开发，首先必须掌握如何编译OpenWrt。本章将从搭建环境，到编译代码，再到安装部署运行以及VirtualBox虚拟网络环境的搭建，一步一步地教你如何进入到OpenWrt大门。

OpenWrt是一个针对嵌入式设备的Linux发行版。OpenWrt提供了非常方便的开发环境，使用流行的Linux操作系统Ubuntu即可搭建好编译环境。OpenWrt有非常多的平台适应性，可以运行在ARM/MIPS/X86平台上，因此我们的研发网络部署也可以在虚拟机VirtualBox上运行（这样可以降低研发中的硬件成本），待软件开发成熟后再在实际环境中进行运行。因此最后我们也会讲解VirtualBox的网络环境设置。

2.1　安装编译环境

2.1.1　Ubuntu安装

首先安装Linux操作系统Ubuntu 14.4。个人机器多为Windows 操作系统，为了方便使用及节省硬件资源，我们采用虚拟机VirtualBox来安装编译软件环境。如果是实体机安装Linux操作系统，则可略过安装虚拟机这一步。硬件设备只需要一台连接互联网的计算机。软件从互联网下载。建议使用VirtualBox虚拟机来搭建编译环境及开发调试。

下载和安装VirtualBox和ubuntu 14.04.3。下载地址分别为：

 	http://download.virtualbox.org/virtualbox/5.0.0/VirtualBox-5.0.0-101573-Win.exe

 	http://releases.ubuntu.com/14.04/ubuntu-14.04.3-desktop-i386.iso

VirtualBox是一个跨平台的虚拟化应用程序。这意味着什么？第一，是它可以安装在你已存在的Intel或AMD兼容的机器上，无论是它运行Windows、Mac、Linux还是Solaris操作系统。第二，它可以扩展你已存在的计算机系统的能力，你可以同时运行多个操作系统（在多个虚拟机内部），例如，可以在你的Mac机上运行Windows和Linux，在Linux服务器上运行Windows Server 2008，在Windows系统上运行Linux等等，这些都在你的VirtualBox应用程序中。你可以安装运行很多虚拟机器，唯一的限制是磁盘空间和内存。

虚拟机软件VirtualBox完成安装后，在VirtualBox软件中新建计算机，并分配20GB左右的硬盘空间。然后在虚拟机中安装Ubuntu操作系统。Ubuntu操作系统及编译环境需要5GB左右硬盘空间，OpenWrt编译根据选择软件包的多少不同，编译所需空间大小不同。我这里编译完成需要7.1GB的硬盘空间，一般我们会同时编译至少两个版本进行，因此建议虚拟机预留20GB以上的磁盘空间。

安装增强功能

虚拟机和主机之间如何传递内容和文件？这就需要“安装增强功能”来在虚拟机和宿主机之间共享剪切板和共享文件目录。可在虚拟机软件上进行以下设置。

 	依次单击“设备→安装增强功能”，安装完成后重启生效。

 	依次单击“设备→共享文件夹”，进行共享文件夹设置，这样虚拟机将宿主机的文件目录挂载在自己的根目录下，两个机器可以相互传递文件。

 	依次单击“设备→共享剪切板”，改为双向。这样虚拟机和宿主机之间就可以相互复制粘贴了。

设置完成后在Ubuntu系统下进行自动挂载设置。在/etc/fstab增加如下一行：

　　share　　　　　　/mnt　　　　　 vboxsf　　rw 0　　　 0

这样宿主机的共享目录share就可以挂载在虚拟机的/mnt目录下，虚拟机和宿主机均可以对该目录进行操作。这个就可以将编译完成后的文件从虚拟机中传递出来。

另外一种方式是通过telnet或SSH或串口来登录到Ubuntu上进行控制，使用FTP等工具来进行文件传输。

2.1.2　安装编译工具

Ubuntu采用APT（Advanced Packaging Tool）来管理软件包安装、更新、升级及删除等。APT系统的配置文件为/etc/apt/sources.list和/etc/apt/sources.list.d目录。sources.list文件格式如下：

deb uri distribution [component1] [component2] [...]

首先第一列为类型，可选类型为deb或deb-src，deb表示为二进制安装包；deb-src表示源代码包。第二列为URI地址，例如，为通过HTTP访问的统一资源定位符。第三列用于指定一个发布版，例如，为trusty表示14.4发布版。最后一列为各个组件标识。

设置Ubuntu配置升级及更新路径的文件为/etc/apt/sources.list，修改为国内网易的镜像服务器，这样下载速度会比较快。为了防止修改错误，修改之前应事先进行备份，并增加以下内容（参考http://mirrors.163.com/.help/ubuntu.html）。

deb http://mirrors.163.com/ubuntu/ trusty main restricted universe multiverse

deb http://mirrors.163.com/ubuntu/ trusty-security main restricted universe multiverse

deb http://mirrors.163.com/ubuntu/ trusty-updates main restricted universe multiverse

deb http://mirrors.163.com/ubuntu/ trusty-proposed main restricted universe multiverse

deb http://mirrors.163.com/ubuntu/ trusty-backports main restricted universe multiverse

OpenWrt选择了一种自动化的方式来生成固件：编译环境检查、生成交叉编译链、下载代码包、打补丁、编译及生成固件，一切均从源代码开始，没有隐藏任何细节。我们先来安装代码管理工具Subversion及编译工具。首先输入以下命令进行更新：

sudo apt-get update

这条命令用于更新Ubuntu软件仓库中软件包的索引文件。软件仓库的地址是由/ etc/apt/sources.list文件指定的。更新之后安装编译工具，编译工具安装命令如下：

sudo apt-get install subversion

sudo apt-get install g++ flex patch

sudo apt-get install libncurses5-dev zlib1g-dev

sudo apt-get install git-core

sudo apt-get install libssl-dev

sudo apt-get install gawk

sudo apt-get install xz-util

（1）Subversion 是一个版本管理系统，可以跟踪文件和目录的历史信息，包含4个W（Who、When、Why和What），即谁做了修改、何时做了修改、为什么修改以及修改的内容。它像CVS一样保存数据源的单份复制，称为仓库，仓库包含了项目中文件的所有历史信息。

Subversion允许对源代码进行并行修改及管理，知名的Apache社区就采用Subversion来管理代码，其中最重要的是代码管理客户端工具，缩写为svn。这里我们只用到其下载代码功能。

Subversion采用集中式版本控制系统，其特点是其高可靠性，可用作一种有价值的数据安全的避风港；它的模型使用简单；它支持各种各样的用户和项目需求的能力，包括从小型单人到大型企业的管理需求，因此大多数软件研发公司均采用Subversion作为其代码管理工具。如果个人在Windows平台上使用，推荐采用“VisualSVN Server”作为服务器，其可视化安装及管理非常便于用户使用。

（2）g++是GNU工程的C/C++编译工具，用于将C语言及C++语言编译为动态链接库或二进制可执行程序。它对代码进行预处理、编译、汇编和链接。通过命令选项可以控制整个编译过程。

（3）FLEX（The Fast Lexical Analyzer）一个快速词法分析工具。

（4）patch是将diff文件应用到原始文件的工具，用于在程序开发过程中提交代码，是应用差异文件的工具。这些差异文件由diff程序按行产生。

（5）libncurses5-dev用于屏幕终端控制。这个包中包括运行那些使用ncurses编译的程序所必须的共享库，同样包含开发使用的头文件、静态库和开发使用的链接文件、文档等。

（6）zlib1g-dev是压缩及解压缩开发库。包含头文件、静态库、开发示例和文档等。

（7）git-core是设计用于大型工程的分布式版本管理工具，是另外一种代码管理工具软件。它的每一个仓库都完全保存了整个代码历史，可以脱离网络而使用，首先应用于Linux社区。这里用于下载一些以git管理的软件包。

（8）libssl-dev 是openssl开发库，用于加密解密、计算哈希和数据签名等。

（9）gawk是GNU工程实现的AWK语言工具，是文本模式扫描和处理的工具。

（10）xz-util是xz格式的压缩工具集。它有非常高的压缩比率，并且更快更容易解压缩。

2.1.3　下载代码

OpenWrt社区同时使用Subversion和Git两种工具来管理代码。Subversion管理代码非常灵活，通常会创建tags、branches和trunk共3个目录管理代码。trunk目录用来保存开发的主线，一般最新的功能均在trunk目录提交。 branches目录存放分支，用于功能开发完成之后创建分支、修改BUG及发布版本使用，或者某些功能开发分支。tags目录保存标签复制，一个标签是一个项目在某一时间点的“快照”，用来给发布版本的代码创建快照，以便多数开发人员基于这个版本进行开发修改及测试使用，一般永远不再修改。

OpenWrt也是采用了Subversion的推荐目录配置，除此之外还增加了docs、feeds和packages这3个目录，我们采用svn list命令来查看代码仓库共有6个目录。

zhang@zhang-laptop:~$ svn list svn://svn.openwrt.org/openwrt/

branches/

docs/

feeds/

packages/

tags/

trunk/

（1）分支（branches）用于功能开发完成之后创建分支、修改bug及发布版本使用，或者某些功能开发分支。OpenWrt社区每隔两年左右会创建一个分支用于发布特定版本，最新的代码线分支为chaos_calmer。社区在2015年9月12日发布了15.05版本，但未使用SVN创建标签。最近3个分支信息地址请参见表2-1。

（2）docs保存文档，使用SVN来查看修改历史信息，得出最后修改时间为2007-10-24，现在OpenWrt已经不再使用这个目录。

（3）feeds保存一些额外扩展的软件包，最后修改时间为2012-11-14，也逐渐不再使用，其中代码已转到使用Git仓库来管理。地址为https://github.com/openwrt。

（4）packages保存OpenWrt基础软件包，会被经常用到。最后修改时间为2015-06-01。

（5）标签（tags）下为发布版本代码，最近稳定版本标签有backfire_10.03.1，attitude_adjustment_12.09。以后版本未创建标签。

（6）主干（trunk）始终是最新的代码，OpenWrt社区将最新的代码线命名为“Designated Driver”。最新代码包含实验性质的代码，可能会碰到编译或运行的问题，建议新手不要采用。

注：以上修改时间均为2015年10月12日查询得出，OpenWrt的外围代码已经逐渐转到github提供的Git托管空间上。

表2-1　OpenWrt版本对比表

 	 分支

 	 chaos calmer 15.05(CC)

 	 Barrier Breaker 14.07(BB)

 	 Attitude Adjustment 12.09(AA)

 	 内核

 	 Linux kernel 3.18.21

 	 Linux kernel 3.10

 	 Linux kernel 3.3

 	 SVN代码地址

 	 svn://svn.openwrt.org/openwrt/branches/chaos_calmer

 	 svn://svn.openwrt.org/openwrt/branches/barrier_breaker

 	 svn://svn.openwrt.org/openwrt/branches/attitude_adjustment

 	 Git代码地址

 	 git://git.openwrt.org/15.05/openwrt.git

 	 git://git.openwrt.org/14.07/openwrt.git

 	 git://git.openwrt.org/12.09/openwrt.git

 	 其他主要修改

 	 ●　增加大量的3G/4G调制　 解调器支持

 ●　Netfliter性能增强

 ●　网络栈多核支持

 ●　支持只能队列管理Qos等

 ●　DNSSEC增强支持

 ●　增加自管理网络支持等

 	 ●　增加procd 新的preinit、init、热　 拔插及事件通知机制

 ●　原生IPv6支持

 ●　文件系统增强

 ●　UCI配置增强：支持测试配置和　 回滚最近工作状态机制，增加配置　 更改按需触发服务重启机制

 ●　网络功能增强：例如，支持动态　 防火墙规则，增加网桥的多播传输　 到单播传输的转换，等等

 	 ●　增加并行编译支持

 ●　使用密文密码

 ●　各种防火墙功能增强

 ●　无线驱动更新及稳定　 性增强

 ●　新平台支持：ramips，　 bcm2708 (Raspberry 　 Pi)等等

 ●　发布镜像文件中支持　 网桥防火墙

 	 发布版本

 	 svn://svn.openwrt.org/openwrt/branches/chaos_calmer -r46767

 	 svn://svn.openwrt.org/openwrt/branches/barrier_breaker -r42625

 	 svn://svn.openwrt.org/openwrt/tags/attitude_adjustment_12.09

我们选择“Chaos Calmer”的发布代码进行编译，因此使用目录“cc”下载代码。OpenWrt在2016年3月将代码库由Subversion彻底转换为GIT，因此我们使用git命令来下载代码，下载命令如下所示：

git clone git://git.openwrt.org/15.05/openwrt.git cc

2.1.4　配置及编译

现在代码和编译环境准备好了，我们可以开始配置和编译了。我们进入代码目录cc下进行编译。通常分3步，第1步首先更新和安装所有可选的软件包。

./scripts/feeds update 更新最新的包定义

./scripts/feeds install -a 安装所有的包

feeds命令将安装扩展代码包编译选项。如果不运行该命令，在menuconfig配置时将没有选择这些扩展包的机会。

第2步进行编译配置。输入“make defconfig”，在这里会检查所需的编译工具是否齐备，并生成默认的编译配置文件“.config”。

输入“make menuconfig”后系统将进入配置工具选项菜单来配置编译固件的内容，如图2-1所示。配置选项和Linux内核的编译配置非常相似，使用上下左右箭头按键来在编译选项菜单上导航。按Enter键进入子菜单，连续两次按下Esc键返回上一级菜单，输入问号键将获取帮助信息，顶层配置选项含义如表2-2所示。OpenWrt提供模块化选择编译，每一个模块通常都有3个选项[Y|N|M]可供选择，输入Y该模块将包含在固件中；输入M将作为一个模块来编译，可以后续再进行安装；输入N将不编译该模块。还有一些是单选选项菜单，按空格键进行选择，再次按空格键则取消选择。

另外还有一些高级功能可以输入字符串进行配置。例如下载文件夹路径设置，可以不使用编译系统默认的源代码下载目录dl，输入系统路径“/opt/dl”来设置，这样在很多人使用同一服务器来编译代码时，不用多次下载相同的代码文件。

为了便于开发及调试，我们选择x86平台进行编译，并选择自己所需要的软件包，例如网络开发中最常用的抓包工具TcpDump、代码调试工具GDB和Web管理界面luCI等。

[image:]

图2-1　OpenWrt配置选项菜单

表2-2　OpenWrt配置选项含义

 	 编译配置选项

 	 含　　义

 	 Target System (x86)

 	 目标平台，例如一般Windows系统均为X86系统架构，嵌入式路由器通常有ARM、MIPS系统和博通系统等

 	 Target Images

 	 编译生成物控制，根据目标平台不同选项不同。例如根文件系统格式、内核空间大小和是否生成VirtualBox映像文件等

 	 Global build settings

 	 全局编译设置，例如是否打开内核namespace等

 	 Advanced configuration option (for developers)

 	 针对开发人员的高级配置选项，包含设置下载文件目录、编译log和外部编译工具目录等

 	 Build the OpenWrt SDK

 	 是否生成OpenWrt的软件开发包，这样就可以离开OpenWrt整体环境而进行模块编译和增加功能

 	 Image configuration

 	 固件生成的软件包模块，即是否打开feed.conf中的各个模块

 	 Base system

 	 OpenWrt基本系统。包括OpenWrt的基本文件系统base-files模块、实现DHCP和DNS代理的dnsmasq模块、软件包管理模块opkg、通用库ubox、系统总线ubus和防火墙firewall，等等

 	 Development

 	 开发包，例如调试工具gdb，代码检查和调优工具valgrind等

 	 Firmware

 	 各种硬件平台固件

 	 Kernel modules

 	 内核模块，运行在操作系统内部。例如加密模块、各种USB驱动和netfilter扩展模块等

 	 Languages

 	 不是国际化中的多语言支持模块，而是软件开发语言模块，现在可选的有perl和lua

 	 libraries

 	 一些动态链接库。例如XML语言解析库libxml2，和内核进行通信的 libnfnetlink库，压缩和解压缩算法库zlib，微型数据库libsqlite3等

 	 luCI

 	 OpenWrt管理UI模块，例如动态DNS管理模块luci-app-ddns、防火墙管理模块luci-app-firewall和QOS管理模块luci-app-qos等

 	 Mail

 	 邮件传输客户端模块，例如msmtp软件包

 	 MultiMedia

 	 多媒体模块，例如ffmpeg

 	 Network

 	 网络功能，OpenWrt最具特色的核心模块。例如防火墙、路由、VPN和文件传输等

 	 Sound

 	 音频模块

 	 Utilities

 	 一些不常用的实用工具模块

第3步，输入make命令就可以开始编译。编译时首先从Internet上下载软件模块代码，因为OpenWrt仅有编译及配置指令，各种依赖的代码包在上游网站及代码仓库里面。OpenWrt网站也有第三方的代码包镜像，在上游网站不可用时将使用OpenWrt自己的服务器地址，下载地址为http://downloads.openwrt.org/sources/。 根据下载速度和选择软件包的数量多少，编译所占时间不同，大约需要3小时以上。编译完成后的二进制安装文件在bin/x86下，各种可选软件安装包在packages目录下。

make V=s　可以输出编译过程中每一步的执行动作，出错后显示详细的错误信息。

make -j2 使用2个线程进行并行编译，这样编译速度将大大加快。

编译过程首先检查编译环境，然后编译host工具，再编译编译工具链，最后编译目标平台的各个软件包。编译make进入各个模块进行编译时，首先下载代码压缩包，然后解压缩，并打补丁，再根据设置选项来生成Makefile，最后根据生成的Makefile进行编译和安装。在编译时需要连接互联网，因为OpenWrt采用补丁包方式来管理代码，第三方的代码不放在它自己的代码库中，仅在编译前从第三方服务器下载。

编译过程如图2-2所示，我使用了两个进程来编译，除了下载之外花费3小时左右编译完成。

~/cc$ make -j2

make[1] world

 make[2] tools/install

 make[2] package/cleanup

 make[3] -C tools/patch compile

 make[3] -C tools/sstrip compile

 make[3] -C tools/make-ext4fs compile

 make[3] -C tools/firmware-utils compile

 make[3] -C tools/patch-image compile

 make[3] -C tools/flock compile

 make[3] -C tools/sstrip install

 make[3] -C tools/make-ext4fs install

 make[3] -C tools/firmware-utils install

 make[3] -C tools/patch-image install

 make[3] -C tools/flock install

 make[3] -C tools/patch install

 make[3] -C tools/sed compile

 make[3] -C tools/m4 compile

 make[3] -C tools/xz compile

 make[3] -C tools/yaffs2 compile

 make[3] -C tools/cmake compile

 make[3] -C tools/scons compile

 make[3] -C tools/lzma compile

 make[3] -C tools/sed install

 make[3] -C tools/m4 install

 make[3] -C tools/pkg-config compile

 make[3] -C tools/xz install

 make[3] -C tools/mkimage compile

 make[3] -C tools/yaffs2 install

 make[3] -C tools/scons install

 make[3] -C tools/lzma install

 make[3] -C tools/squashfs4 compile

 make[3] -C tools/autoconf compile

 make[3] -C tools/pkg-config install

 make[3] -C tools/mkimage install

 make[3] -C tools/squashfs4 install

 make[3] -C tools/autoconf install

 make[3] -C tools/automake compile

 make[3] -C tools/missing-macros compile

 make[3] -C tools/automake install

 make[3] -C tools/missing-macros install

 make[3] -C tools/libtool compile

 make[3] -C tools/libtool install

 make[3] -C tools/gmp compile

 make[3] -C tools/libelf compile

 make[3] -C tools/flex compile

 make[3] -C tools/mklibs compile

 make[3] -C tools/e2fsprogs compile

 make[3] -C tools/mm-macros compile

 make[3] -C tools/cmake install

 make[3] -C tools/gengetopt compile

 make[3] -C tools/patchelf compile

 make[3] -C tools/gmp install

 make[3] -C tools/libelf install

 make[3] -C tools/flex install

 make[3] -C tools/mklibs install

 make[3] -C tools/e2fsprogs install

 make[3] -C tools/mm-macros install

 make[3] -C tools/patchelf install

 make[3] -C tools/qemu compile

 make[3] -C tools/mpfr compile

 make[3] -C tools/bison compile

 make[3] -C tools/mtd-utils compile

 make[3] -C tools/gengetopt install

 make[3] -C tools/qemu install

 make[3] -C tools/mpfr install

 make[3] -C tools/mtd-utils install

 make[3] -C tools/mpc compile

 make[3] -C tools/mpc install

 make[3] -C tools/bison install

 make[3] -C tools/findutils compile

 make[3] -C tools/bc compile

 make[3] -C tools/bc install

 make[3] -C tools/findutils install

 make[3] -C tools/quilt compile

 make[3] -C tools/padjffs2 compile

 make[3] -C tools/padjffs2 install

 make[3] -C tools/quilt install

 make[2] toolchain/install

 make[3] -C toolchain/gdb prepare

 make[3] -C toolchain/binutils prepare

 make[3] -C toolchain/gcc/minimal prepare

 make[3] -C toolchain/kernel-headers prepare

 make[3] -C toolchain/uClibc/headers prepare

 make[3] -C toolchain/gcc/initial prepare

 make[3] -C toolchain/gdb compile

 make[3] -C toolchain/binutils compile

 make[3] -C toolchain/kernel-headers compile

 make[3] -C toolchain/uClibc prepare

 make[3] -C toolchain/gcc/final prepare

 make[3] -C toolchain/uClibc/utils prepare

 make[3] -C toolchain/binutils install

 make[3] -C toolchain/gcc/minimal compile

 make[3] -C toolchain/gdb install

 make[3] -C toolchain/gcc/minimal install

 make[3] -C toolchain/kernel-headers install

 make[3] -C toolchain/uClibc/headers compile

 make[3] -C toolchain/uClibc/headers install

 make[3] -C toolchain/gcc/initial compile

 make[3] -C toolchain/gcc/initial install

 make[3] -C toolchain/uClibc compile

 make[3] -C toolchain/uClibc install

 make[3] -C toolchain/gcc/final compile

 make[3] -C toolchain/gcc/final install

 make[3] -C toolchain/uClibc/utils compile

 make[3] -C toolchain/uClibc/utils install

 make[2] target/compile

 make[3] -C target/linux compile

 make[2] package/compile

 make[3] -C package/system/opkg host-compile

 make[3] -C package/libs/toolchain compile

 make[3] -C package/libs/ncurses host-compile

 make[3] -C package/system/usign host-compile

 make[3] -C package/boot/grub2 host-compile

 make[3] -C package/firmware/linux-firmware compile

 make[3] -C package/network/services/dropbear compile

 make[3] -C package/libs/libpcap compile

 make[3] -C package/network/utils/linux-atm compile

 make[3] -C package/network/utils/resolveip compile

 make[3] -C package/libs/ocf-crypto-headers compile

 make[3] -C package/utils/busybox compile

 make[3] -C package/utils/mkelfimage compile

 make[3] -C package/libs/libnl-tiny compile

 make[3] -C package/libs/libjson-c compile

 make[3] -C package/utils/lua compile

 make[3] -C package/libs/lzo compile

 make[3] -C package/libs/zlib compile

 make[3] -C package/libs/ncurses compile

 make[3] -C package/kernel/linux compile

 make[3] -C package/libs/openssl compile

 make[3] -C package/libs/libubox compile

 make[3] -C package/utils/util-linux compile

 make[3] -C package/utils/jsonfilter compile

 make[3] -C package/system/usign compile

 make[3] -C package/boot/grub2 compile

 make[3] -C package/network/utils/iptables compile

 make[3] -C package/network/ipv6/odhcp6c compile

 make[3] -C package/network/services/dnsmasq compile

 make[3] -C package/network/services/ppp compile

 make[3] -C package/system/mtd compile

 make[3] -C package/system/opkg compile

 make[3] -C package/system/ubus compile

 make[3] -C package/system/uci compile

 make[3] -C package/utils/ubi-utils compile

 make[3] -C package/network/config/firewall compile

 make[3] -C package/network/services/odhcpd compile

 make[3] -C package/network/config/netifd compile

 make[3] -C package/system/ubox compile

 make[3] -C package/system/procd compile

 make[3] -C package/system/fstools compile

 make[3] -C package/base-files compile

 make[2] package/install

 make[3] package/preconfig

 make[2] target/install

 make[3] -C target/linux install

 make[2] package/index

图2-2　OpenWrt编译过程

编译生成物位于代码目录下“bin/x86”目录下。如果想单独编译一个模块可以输入以下命令进行编译，以TcpDump模块为例：

 	make package/tcpdump/clean清除编译生成的文件，包含安装包及编译过程生成的临时文件。

 	make package/tcpdump/prepare进行编译准备，包含下载软件代码包、并解压缩和打补丁。

 	make package/tcpdump/configure根据设置选项进行配置并生成Makefile。

 	make package/tcpdump/compile根据生成的Makefile进行编译。

 	make package/tcpdump/install生成安装包。

以上编译命令都可以添加“V=s”来查看详细编译过程。还有很多全局编译命令含义如下：

 	make download下载所有已选择的软件代码压缩包。

 	make clean　删除编译目录。

 	make dirclean除了删除编译目录之外还删除编译工具目录。

 	make printdb 输出所有的编译变量定义。

2.2　编译脚本分析

2.2.1　顶层目录概述

OpenWrt代码有8个固定的顶层目录及6个编译时创建的临时目录，顶层的固定目录含义如表2-3所示。

表2-3　顶层目录含义

 	 目　　录

 	 含　　义

 	 config

 	 编译选项配置文件，包含全局编译设置、开发人员编译设置、目标文件格式设置和内核编译设置等4部分

 	 docs

 	 文档目录

 	 include

 	 包含准备环境脚本、下载补丁脚本、编译Makefile以及编译指令等

 	 package

 	 各种功能的软件包，软件包仅包含Makefile和修改补丁及配置文件。其中Makefile包含源代码真正的地址及MD5值。OpenWrt社区的修改代码以补丁包形式管理，package只保存一些常用的软件包

 	 scripts

 	 包含准备环境脚本、下载补丁脚本、编译Makefile以及编译指令等

 	 target

 	 指的是嵌入式平台，包括特定嵌入式平台的内容

 	 toolchain

 	 编译器和C库等，例如包含编译工具gcc和glibc库

 	 tools

 	 通用命令，用来生成固件的辅助工具，如打补丁工具patch、编译工具make及squashfs等

目录config是编译配置文件目录，是OpenWrt 15.05的新增目录，是将一些编译选项配置文件分类放在这里，包含全局编译设置、开发人员编译设置、目标文件格式设置和内核编译设置等4部分。

目录include和scripts包含各种脚本和Makefile。目录target是指目标嵌入式设备，针对不同的平台有不同的特性代码。针对这些平台特性，“target/linux”目录下按照平台进行目录划分，里面包括了针对各种平台标准内核的补丁及特殊配置等。目录tools和toolchain包含了一些通用命令，用来生成固件、编译器和C语言链接库。目录docs在编译时不需要，用于存放开发文档。目录package则用于存放各种必要的软件包。

编译生成结果会储存在以下3个目录下：“build_dir/host”是一个临时目录，用来储存不依赖于目标平台的工具；“build_dir/toolchain-<arch>”用来储存依赖于指定平台的编译工具链；“staging_dir/toolchain-<arch>”是编译工具链的最终安装位置。通常我们不需要改动编译链目录下的任何东西，除非要更新编译工具版本等。

在OpenWrt固件中，几乎所有东西都是软件包（package），可以编译为以“.ipk”结尾的安装包，这样就可以很方便地安装、升级和卸载了。注意，扩展软件包不是在主分支中维护的，但是可以使用软件包编译扩展机制（feeds）来进行扩展安装。这些包能够扩展基本系统的功能，只需要将它们链接进入主干。之后，这些软件包将会显示在编译配置菜单中。

编译工具链、目标平台的软件包等需要下载的文件都放在dl目录下。目标平台和软件包两部分都需要“build_dir/<arch>”作为编译的临时目录，并且会将目录staging_dir作为编译的临时安装目录，最终的生成文件保存在目录bin下。

目录feeds用于保存扩展软件包，可以使用软件包编译扩展机制来进行扩展安装。这些包能够扩展基本系统的功能，只需要将它们链接进入编译主目录的package目录下。之后，这些软件包将会显示在配置菜单中。编译后生成6个临时目录，其含义如表2-4所示。

表2-4　OpenWrt编译生成目录含义

 	 目　　录

 	 含　　义

 	 dl

 	 下载软件代码包临时目录。编译前，将原始的软件代码包下载到该目录

 	 feeds

 	 扩展软件包目录。将一些不常用的软件包放在其他代码库中，通过feed机制可以自定义下载及配置

 	 bin

 	 编译完成后的最终成果目录。例如安装映像文件及ipk安装包

 	 build_dir

 	 编译中间文件目录。例如生成的.o文件

 	 staging_dir

 	 编译安装目录。文件安装到这里，并由这里的文件生成最终的编译成果

 	 log

 	 如果打开了针对开发人员log选项，则将编译log保存在这个目录下，否则该目录并不会创建

2.2.2　编译脚本

目录scripts为编译工具脚本文件，例如patch-kernel.sh封装了patch命令，在编译时，首先将patches目录下的所有补丁文件打上，并且判断如果打补丁失败将退出编译过程。download.pl为下载源代码的工具脚本，封装下载工具wget的选项以及设置从哪里下载。表2-5所示为典型编译脚本功能。目录include用于保存各种makefile文件。

表2-5　典型编译脚本功能

 	 脚 本 文 件

 	 含　　义

 	 scripts/download.pl

 	 下载编译软件包源代码

 	 scripts/patch-kernel.sh

 	 打补丁脚本，并且判断如果打补丁失败将退出编译过程

 	 scripts/feeds

 	 收集扩展软件包的工具，用于下载和安装编译扩展软件包工具

 	 scripts/diffconfig.sh

 	 收集和默认配置不同之处的工具

 	 scripts/kconfig.pl

 	 处理内核配置

 	 scripts/deptest.sh

 	 自动OpenWrt的软件包依赖项检查

 	 scripts/metadata.pl

 	 检查metadata

 	 scritps/rstrp.sh

 	 丢弃目标文件中的符号，这样就将执行文件和动态库变小

 	 scripts/timestamp.pl

 	 生成文件的时间戳

 	 scripts/ipkg-make-index.sh

 	 生成软件包的ipkg索引，在使用opkg安装软件时使用

 	 scripts/ext-toolchain.sh

 	 工具链

 	 scripts/strip-kmod.sh

 	 删除内核模块的符号信息，使文件变小

2.2.3　下载工具

OpenWrt在构建时首先下载代码，就是使用scripts/download.pl脚本进行下载，使用方法如下：

Syntax: ./download.pl <target dir> <filename> <md5sum> [<mirror> ...]

<target dir>为下载之后的保存位置，下载代码通常均保存在dl目录下。

<filename> 待下载的文件名。

<md5sum>下载内容的MD5，用于校验下载文件是否正确。

<mirror>为可选的参数，是下载文件的镜像地址，可以有多个地址，优先选择第一个，如果下载失败则顺序选择后面的地址。

该程序由Perl语言开发出来，代码并不复杂。代码首先进行初始条件检查，判断参数是否足够，至少需要3个参数分别为下载文件保存位置、下载文件名及下载内容MD5值。 接着从命令行参数中顺序读取数据，并赋值给局部变量，最后判断md5sum或md5工具是否存在，如果不存在提示工具不存在后退出。

紧接着调用localmirrors()函数读取本地的源码镜像地址，我们可以在企业内部创建自己的代码镜像服务器，然后将镜像地址放在“scripts/localmirrors”文件中，这样我们就不用每次编译时都从互联网上去下载了。例如我这里修改如下：

zhang@zhang-laptop:~/cc/scripts$ cat localmirrors

http://192.168.1.106:8080/openwrt/

http://mirror.bjtu.edu.cn/gnu/

紧接着遍历命令行并将代码中的镜像地址加到备选镜像中。最后使用while循环进行下载，如果下载完成就对下载文件的MD5进行对比，如果MD5值一致则退出循环，否则进入下一个镜像地址进行下载。下载成功后调用cleanup()函数来清理临时变量。

这个下载功能最重要的接口是我们可以通过“scripts/localmirrors”文件自定义软件包下载地址，方便开发人员进行设置。

最近有很多iPhone/Android编译工具爆出后门问题，就是因为使用其他第三方镜像地址文件来下载编译工具，但没有对下载的软件内容进行MD5值对比，从而导致编译的应用程序感染后门。OpenWrt的下载检查机制从源头上解决了这类问题。在我开发OpenWrt时也发现了下载的一些内容被感染的问题，但检查机制丢弃了不正确的内容，从下一个的镜像网站上继续下载。

2.2.4　patch-kernel.sh脚本

OpenWrt的代码包中大多均有patches目录。下载代码包完成后进行打补丁，采用的就是patck-kernel.sh脚本。脚本的第一个参数为编译代码目录，第二个为补丁目录，调用脚本形式举例如下。

../scripts/patch-kernel.sh iproute2-3.3.0 ../package/iproute2/patches/

执行流程如下。

（1）首先进行参数赋值，第一个参数为代码目录，第二个参数为补丁目录。

（2）第二步判定代码目录和补丁目录是否存在，如果不存在则提示错误并退出。

（3）遍历补丁文件，根据后缀判断补丁文件类型。

（4）调用patch命令应用补丁。

（5）检查补丁应用是否正确，如果存在“*.rej”文件表示出现错误，返回“1”并退出。

（6）最后检查如果存在应用补丁后的备份文件，则删除备份文件。

2.2.5　编译扩展机制feeds

传统的Linux操作系统在编译某一个软件的时候，会检查其依赖软件及头文件是否存在，如果没有安装，则会报缺少头文件或缺少链接库等错误，编译将退出。这种机制使得开发者在编译一个软件之前，需要查找该软件所需的依赖库及头文件，并手动去安装这些软件。有时候碰到比较娇贵的软件时，嵌套式的安装依赖文件，会使得开发者头昏脑胀。OpenWrt通过引入feeds机制，很好地解决了这个问题。

feeds是OpenWrt开发所需要的软件包套件的工具及更新地址集合，这些软件包通过一个统一的接口地址进行访问。这样用户可以不用关心扩展包的存储位置，可以减少扩展软件包和核心代码部分的耦合。它由两部分组成，即扩展包位置配置文件feeds.conf.default和脚本工具feeds。目前在配置文件中保存最重要的扩展软件包集合有以下4个。

 	‘LuCI’OpenWrt默认的Web浏览器图形用户接口。

 	‘routing’一些额外的基础路由器特性软件，包含动态路由Quagga等。

 	‘telephony’IP电话相关的软件包，例如freeswitch和Asterisk等。

 	‘management’TR069等各种管理软件包。

当我们下载了OpenWrt对应源码之后，进行如下操作：

$> ./scripts/feeds update –a

$> ./scripts/feeds install -a

上述操作，就是利用feeds提供的接口将OpenWrt所需的全部扩展软件包进行下载并安装。在更新时，需要能够访问互联网。在下载之前可以通过查看“feeds.conf.default”文件，来检查哪些文件需要包含在编译环境中。feeds工具用法如下。

zhang@zhang-VirtualBox:~/cc$./scripts/feeds

Usage: ./scripts/feeds <command> [options]

Commands:

 list [options]: List feeds, their content and revisions (if installed)

 Options:

 -n : List of feed names.

 -s : List of feed names and their URL.

 -r <feedname>: List packages of specified feed.

 -d <delimiter>: Use specified delimiter to distinguish rows (default: spaces)

 install [options] <package>: Install a package

 Options:

 -a : Install all packages from all feeds or from the specified feed using the -p option.

 -p <feedname>: Prefer this feed when installing packages.

 -d <y|m|n>: Set default for newly installed packages.

 -f : Install will be forced even if the package exists in core OpenWrt (override)

 search [options] <substring>: Search for a package

 Options:

 -r <feedname>: Only search in this feed

 uninstall -a|<package>: Uninstall a package

 Options:

 -a : Uninstalls all packages.

 update -a|<feedname(s)>: Update packages and lists of feeds in feeds.conf .

 Options:

 -a : Update all feeds listed within feeds.conf. Otherwise the specified feeds will be updated.

 -i : Recreate the index only. No feed update from repository is performed.

 clean: Remove downloaded/generated files.

update：下载在feeds.conf或feeds.conf.default文件中的软件包列表并创建索引。-a表示更新所有的软件包。只有更新后才能进行后面的操作。

list：从创建的索引文件“feed.index”中读取列表并显示。只有进行更新之后才能查看列表。

install：安装软件包以及它所依赖的软件包，从feeds目录安装到package目录，即在“package/feeds”目录创建软件包的软链接。只有安装之后，在后面执行“make menuconfig”时，才可以对相关软件包是否编译进行选择。

例如安装luci-app-firewall：

zhang@zhang-laptop:~/openwrt$./scripts/feeds install luci-app-firewall

Installing package 'luci-app-firewall' from luci

Installing package 'luci-base' from luci

Installing package 'luci-lib-nixio' from luci

Installing package 'luci-lib-ip' from luci

search：按照给定的字符串来查找软件包，需要传入一个字符串参数。

uninstall：卸载软件包，但它没有处理依赖关系，仅仅删除本软件包的软链接。

clean：删除update命令下载和生成的索引文件，但不会删除install创建的链接。

feeds代码处理过程是这样的：这个命令首先读取并解析feeds.conf配置文件，然后执行相应的命令，例如install时，将安装应用程序包和它所有直接或间接依赖的所有软件包。安装时将创建一个符号链接，从packages/feeds/$feed_name/$package_name指向feeds/$feed_name/$package_name， 这样在“make menuconfig”时，feeds的软件包就可以被处理到，就可以选择编译了。例如luci-app-firewall指向feeds/luci/applications/luci- app-firewall：

zhang@zhang-laptop:~/openwrt$ ls package/feeds/luci/luci-app-firewall -alht

lrwxrwxrwx 1 zhang zhang 50 2015-07-04 15:17 package/feeds/luci/luci- app-firewall -> ../../../feeds/luci/applications/luci-app-firewall

用一句话来说，编译扩展安装过程就是将feeds目录下的软件包链接到packages/feeds对应目录下。可使用的feeds列表配置为feeds.conf或者feeds.conf.default。优先选择feeds.conf文件，这个文件包含了扩展安装源列表，每一行由3部分组成，包含feed方法、feed 名字和feed源。下面是一个扩展安装源配置文件的例子。

src-git luci https://github.com/openwrt/luci.git;for-15.05

src-git routing https://github.com/openwrt-routing/packages.git;for- 15.05

src-git telephony https://github.com/openwrt/telephony.git;for-15.05

src-gitmanagement https://github.com/openwrt-management/packages.git; for-15.05

我们可以修改该文件使编译时从自己指定的位置进行下载。主要支持feed方法的类型有以下3种。

 	src-cpy通过从数据源路径复制数据。

 	src-git通过使用Git从代码仓库地址下载代码数据。

 	src-svn通过使用SVN从代码仓库地址下载代码数据。

2.3　使用VirtualBox部署

首先将编译完成的安装文件openwrt-x86-generic-combined-ext4.img.gz解压缩，然后将解压后的img文件复制出来并转换为VirtualBox支持的vdi文件。

zhang@zhang-laptop:~/cc/bin/x86$ gunzip openwrt-x86-generic-combined- ext4.img.gz

zhang@zhang-laptop:~/cc/bin/x86$ cp openwrt-x86-generic-combined-ext4. img /mnt/

将img文件转换为Virtualbox支持的vdi文件的转换命令为：

C:\Program Files\Oracle\VirtualBox>VBoxManage.exe convertfromraw -format VDI D:\ubuntu\openwrt-x86-generic-combined-ext4.img d:\ubuntu\ openwrt15.vdi

Converting from raw image file="D:\ubuntu\openwrt-x86-generic-combined- ext4.img"

 to file="d:\ubuntu\openwrt15.vdi"...

Creating dynamic image with size 55050240 bytes (53MB)...

使用VirtualBox来安装OpenWrt时，先在Virtualbox中选择新建虚拟计算机，类型为Linux，版本选择“Linux 2.6/3.x/4.x（32-bit）”，如图2-3所示。

[image:]

图2-3　选择操作系统类型

紧接着选择内存的大小，采用默认设置256MB即可。然后单击“下一步”继续进行设置。如图2-4所示。

最后选择“使用已有的虚拟硬盘文件（U）”。然后在硬盘上选择编译出来的openwrt- x86-generic-combined-ext4.vdi文件或者转换成功的openwrt15.vdi。单击“创建”，这时路由器虚拟计算机就创建完成了。如图2-5所示。

[image:]

图2-4　选择内存大小

[image:]

图2-5　虚拟硬盘选择

创建完成后，选择设置并且设置两个网卡接口，接口类型分别为“网络地址转换”和“Host Only”。如果在之前没有添加虚拟硬盘，可以在“设置→存储→控制器→控制器（IDE）”中添加虚拟硬盘，选择“openwrt15.vdi”即可。这时我们就可以启动OpenWrt了。启动完成后按Enter键即可登录到OpenWrt的终端中。注意某些版本在未启用串口时会启动失败。如图2-6所示，在图形用户界面下的“设置→串口→端口1”，在启用串口选项上打勾，即可成功启动。

[image:]

图2-6　串口设置

通常默认编译安装的OpenWrt路由器固件没有Web管理界面，因此需要我们通过opkg命令进行安装。

opkg update

opkg install luci

/etc/init.d/uhttpd enable

/etc/init.d/uhttpd start

/etc/init.d/firewall stop

默认会不会打开HTTP管理服务？端口为80，并且防火墙会默认打开，通过外网不能访问HTTP管理页面服务。需要将防火墙关闭。

在VirtualBox中的网卡设置中NAT启动tcp端口转发，将主机端口的80端口转到子系统的80端口，这样就可以通过http://127.0.0.1来访问路由器管理页面。

2.4　编译部署出现问题的解决方法

1．虚拟机和Window 10之间不能访问

请查看Window 10的防火墙设置，关闭Windows 10的防火墙来解决这个问题。

2．编译grub2模块出错，提示下载失败

直接使用wget工具或浏览器来下载，如果确实下载不成功，可以替换为之前grub-2.0.0的版本来进行编译。

3．提示opkg编译失败，使用Git下载失败

使用wget直接下载即可。如果下载还失败，可以使用迅雷等下载工具来下载，如果还不行则可以替换为较低的版本来编译。

4．提示cyassl-3.2.0.zip下载失败

使用http://fossies.org/linux/misc/cyassl-3.2.0.zip，下载后放在dl目录下即可。

5．mpc-1.0.2.tar.gz下载失败

建议将北京交通大学的GNU开源镜像加入到下载列表中，这样可以加快下载速度，并且可以在国外网站下载失败时使用国内资源。加入到“scripts/localmirrors”中，或者加入到download.pl每一类的第一行，即分别为第155行及173行。

push @mirrors, "http://mirror.bjtu.edu.cn/gnu/$1";

push @mirrors, "http://mirror.bjtu.edu.cn/gnome/$1";

大部分问题为在特定网络条件下下载资源失败的问题，在其他网络条件下没有该类问题，可以更换其他网络进行下载。

6．启动失败

某些版本的OpenWrt在虚拟机下启动失败，可以将虚拟机“串口1”启用，避免OpenWrt判断串口时失败。

此外，某些系统（如Windows8或Windows10）下的VirtualBox安装15.05不能启动，但安装较低版本12.09和10.3.1可以启动。

2.5　VirtualBox虚拟机网络设置

VirtualBox提供了7种网络接入模式，最常用的网络模式有以下4种。

1．网络地址转换（Network Address Translation，NAT）模式

如果你想使用虚拟机浏览网站、下载文件和查看邮件，这个模式最适合。NAT模式是实现虚拟机上网的最简单的方式。

2．桥接模式

VirtualBox连接你的真实网卡并和真实网卡直接交换数据，这是高级网络需求，例如在虚拟机中直接对外提供服务。相当于一个网卡有两个MAC地址。

3．内部网络模式

这个模式通常用于创建不同的软件虚拟网络，这些网络可以为不同的虚拟机所使用。但这些网络不能被宿主机或外部网络所应用。

4．仅主机网络模式（Host-Only）

这个模式应用于创建包含主机和一组虚拟机之间的网络，不需要主机的物理网卡，而是创建一个虚拟网卡以提供虚拟机和宿主机之间的网络互联。

2.5.1　网络地址转换模式

如果你想使用虚拟机浏览网站、下载文件和查看邮件，这个模式最适合。NAT模式是实现虚拟机上网的最简单的方式，不需要经过特别配置。虚拟机不占用局域网的IP地址，仅分配到连接宿主机的内部地址，如果需要上网就要经过地址转换到宿主机再去访问网络。你可以这样理解：虚拟机就相当于是家庭网络内部的一台计算机，主机就是家庭网络外部的计算机，VirtualBox就是运行中的路由器，虚拟机访问网络的所有数据都通过路由器，家庭网络内的计算机不真实存在于网络中，宿主机与网络中的任何机器都不能查看和访问到虚拟机。这种分割也最大程度地保证了虚拟机的安全。

虚拟机默认可以通过网卡访问到宿主机和网络。网络地址转换模式的最大劣势在于，虚拟机在外部网络不可访问，除非你设置端口转发规则。宿主机无法通过网络访问到虚拟机，是因为虚拟机的IP地址是私有地址，宿主机不会路由到虚拟机中。通过设置端口转发规则，宿主机就可以访问到虚拟机中的服务，例如，宿主机需要访问虚拟机中的HTTP服务，设置为80端口转发，如图2-7所示，就可以将访问宿主机127.0.0.1的请求转发到虚拟机中的80端口上。

[image:]

图2-7　虚拟机端口映射设置

实际上虚拟机分配到的IP地址通常为10.0.2.15，网关地址为10.0.2.2。虚拟机将设置一个默认路由指向下一跳地址为网关地址。NAT方案的特点是，默认情况下，虚拟机即获取到IP地址，可以通过这个IP地址访问宿主机和网络。宿主机经过设置之后也可以访问虚拟机上的服务。

NAT使用受到一些限制，主要有以下3个限制。

（1）ICMP协议限制。一些经常使用的网络调试工具（如ping和traceroute等）使用ICMP发送和接收消息。ICMP支持在VirtualBox已经增加，但其他工具可能不支持。

（2）接收UDP广播不可用。虚拟机为了节省资源不接收广播。

（3）协议例如GRE不支持。TCP及UDP以外的协议不支持。这意味着一些VPN产品（例如微软的PPTP）不能使用。仅使用TCP及UDP的VPN产品可以使用。这个限制不影响标准网络的使用。

2.5.2　桥接网络模式

桥接网络就相当于两个网卡组织为两个交换机接口，虚拟机和宿主机同时接在一个交换机的两个网口上。它就是通过主机网卡，架设了一条桥，直接连入到网络中。因此，它使得虚拟机能被分配到一个网络中独立的IP地址，所有网络功能完全和在网络中的真实机器一样。宿主机通过网卡发送数据给虚拟机，接收数据也通过这个网卡。这意味着你可以设置虚拟机和网络之间的路由或桥接。

通过图形用户接口“设置→网络”，设置“启动网络连接”，从“连接方式”下拉框中选择“桥接网卡”，然后选择自己系统的网卡即可。注意不要选择无线网卡，因为大多数无线网卡无法设置为混杂模式。

该模式存在以下缺点：需要接入网络并分到网络中的IP地址才能相互访问；如果网络中对IP及MAC地址接入有限制，则无法分配到IP地址，不能工作。

2.5.3　内部网络模式

内部网络模式在和外部通信方面和桥接网络模式相似，不过这个外部仅限于同一个主机上连接同一个内部网络的其他虚拟机。虚拟机与宿主机和外网完全断开，只实现虚拟机与虚拟机之间的网络连接模式。

在技术上内部网络模式所能完成的工作，桥接网络也可以完成，但内部网络有安全优势。在桥接网络模式中，所有流量均通过宿主机的物理接口，通过包探测器可以记录所有的网络流量。因此如果你想让自己的数据保密，就不能使用桥接模式。

内部网络在设置时会自动创建，没有也不需要中心配置。每一个内部网络根据名称来区分。一旦有一个以上的活动虚拟网卡具有相同的内部网络ID，VirtualBox支持驱动程序会自动将它们接到同一个网络交换机上。VirtualBox支持驱动程序实现了一个完整的以太网交换机，包含支持广播/组播帧和混杂模式等。通过以下方式进行设置：通过图形用户接口“设置→网络”设置“启动网络连接”，从“连接方式”下拉框中选择“内部网络”。

2.5.4　仅主机网络模式

仅主机（Host-Only）网络模式被认为是桥接网络和内部网络模式的混合体：与桥接网络相似，虚拟机和宿主机可以互相通信，宿主机和它们通过一个物理以太网交换机连接。同样，作为内部网络，不需要存在一个物理网卡；虚拟机无法跟外面世界通信，因为它们没有连接到一个物理网络接口上。

使用这个模式，VirtualBox将在宿主机上创建一个新的软件接口。就像一个本地回环接口一样，VirtualBox在主机中模拟出一张专供虚拟机使用的网桥，所有虚拟机都是连接到该网桥上的。当实体机运行多个虚拟应用程序时，例如一个虚拟机运行Web服务，另外一个运行数据库，两个虚拟机就可以通过仅主机适配器网络相互进行通信，Web服务器再通过网桥对外提供服务，数据库服务器不能被外部访问，数据不会泄露到外部。通过以下方式进行设置：通过图形用户接口“设置→网络”设置“启动网络连接”，从“连接方式”下拉框中选择“仅主机Host-only适配器”。

虚拟机默认分到的IP为192.168.56.101，主机的IP地址为192.168.56.1，两者可以通过IP相互访问。其他虚拟机默认都分到192.168.56.X的IP地址，虚拟机之间通过IP可以相互访问。和主机本身的网卡是否启用没有关系。

2.5.5　网络模式比较

每一种网络模式均有自己的使用场景，对VirtualBox的4种网络设置的比较如表2-6所示。

表2-6　VirtualBox网络设置比较

 	 特　　点

 	 NAT

 	 桥　　接

 	 内 部 网 络

 	 仅　主　机

 	 宿主机和虚拟机是否相互访问

 	 默认不能访问虚拟机

 	 默认可以相互访问，需要网卡外接交换机上认为网卡工作才能相关访问

 	 不能相互访问，彼此不属于同一个网络，无法相互访问

 	 可以相互访问

 	 和其他虚拟机关系

 	 完全相互独立，不能相互访问

 	 同一桥接网卡可以访问

 	 可以相互访问，有一个前提是在设置网络时，两台虚拟机设置同一网络名称

 	 可以相互访问

 	 和其他主机关系

 	 其他主机不能访问

 	 对等关系，可以相互访问

 	 不能相互访问

 	 不能相互访问

2.5.6　组建路由器实验环境

如图2-8所示，将虚拟机1当作智能路由器，安装OpenWrt软件，并创建两个网卡，NAT网卡用于连接互联网，内部网络用于连接家庭网个人计算机。虚拟机2当作家庭PC使用，自动从OpenWrt网关处分配IP地址。这样我们就可以模拟常见的路由器场景，例如上网、防火墙和DNS代理等功能，任何家庭网的数据流量均通过路由器来转发到外部网络。

[image:]

图2-8　家庭路由器验证环境

2.6　参考资料

 	Backfire发布说明（https://forum.openwrt.org/viewtopic.php?id=24177[2014-10-31]）。

 	GNU北京交通大学镜像网站（http://mirror.bjtu.edu.cn/gnu/）。

 	Ubuntu镜像使用帮助（http://mirrors.163.com/.help/ubuntu.html [2015-07-11]）。

 	虚拟机VirtualBox用户手册（http://www.virtualbox.org）。

 	快速词法分析工具（http://www.gnu.org/software/flex/ [2014-12-10]）。

 	subversion（http://subversion.apache.org [2014-12-12]）。

第3章　OpenWrt包管理系统

OPKG（Open/OpenWrt Package）是一个轻量快速的软件包管理系统，是IPKG的克隆，目前已成为开源嵌入式系统领域的事实标准。OPKG常用于路由、交换机等嵌入式设备中，用来管理软件包的下载、安装、升级、卸载和查询等，并处理软件包的依赖关系。功能和桌面Linux操作系统Ubuntu中的apt-get、Redhat中的yum类似。

OPKG 是一个针对根文件系统全功能的软件包管理器。它不仅仅是在独立的目录安装软件，还可以用于安装内核模块和驱动等。OPKG在安装时会自动解决安装软件时的包依赖关系，如果遇见错误，就中止安装。

3.1　工作原理

当执行“opkg update”命令进行软件列表的更新时，OPKG首先会读取配置文件/ etc/opkg.conf，这个文件保存了OPKG的全局配置信息。紧接着，OPKG会根据配置地址位置下载软件包列表文件Packages.gz到/var/opkg-list目录下，这个文件是软件仓库中所有软件列表及其依赖关系的清单，是使用gzip压缩的文件，这样在网络传输时所占用网络流量比较小。其后任何安装命令均需首先读取这两个文件。

软件安装之后的信息会保存在目录/usr/lib/opkg/下面，这里就相当于Windows操作系统中的注册表。它包含状态文件，OPKG通过访问这个状态文件确定该软件是否已安装、安装的版本，以及依赖关系是否满足等，从而可以确定安装软件的版本、文件路径等信息。

OPKG命令执行会读取以下3部分的信息：配置文件、已安装软件包信息和软件仓库的软件包信息。

 	配置文件默认位置为/etc/opkg.conf。

 	已安装软件包状态信息保存在/usr/lib/opkg目录下。

 	软件仓库的软件包信息保存在/var/opkg-lists目录下。

3.2　OPKG命令

3.2.1　命令用法

OPKG必须带有一个子命令，如果不带有子命令，将输出OPKG的详细使用提示信息。首先是提示必须有一个子命令参数，然后是命令格式提示信息，最后是各个子命令和选项信息含义描述。

opkg must have one sub-command argument:

usage: opkg [options...] sub-command [arguments...]

where sub-command is one of:

Package Manipulation:

 update Update list of available packages

 upgrade <pkgs> Upgrade packages

 install <pkgs> Install package(s)

 configure <pkgs> Configure unpacked package(s)

 remove <pkgs|regexp> Remove package(s)

 flag <flag> <pkgs> Flag package(s)

 <flag>=hold|noprune|user|ok|installed|unpacked (one per invocation)

Informational Commands:

 list List available packages

 list-installed List installed packages

 list-upgradable List installed and upgradable packages

 list-changed-conffiles List user modified configuration files

 files <pkg> List files belonging to <pkg>

 search <file|regexp> List package providing <file>

 find <regexp> List packages whose name or description matches <regexp>

 info [pkg|regexp] Display all info for <pkg>

 status [pkg|regexp] Display all status for <pkg>

 download <pkg> Download <pkg> to current directory

 compare-versions <v1> <op> <v2>

 compare versions using <= < > >= = << >>

 print-architecture List installable package architectures

 depends [-A] [pkgname|pat]+

 whatdepends [-A] [pkgname|pat]+

 whatdependsrec [-A] [pkgname|pat]+

 whatrecommends[-A] [pkgname|pat]+

 whatsuggests[-A] [pkgname|pat]+

 whatprovides [-A] [pkgname|pat]+

 whatconflicts [-A] [pkgname|pat]+

 whatreplaces [-A] [pkgname|pat]+

……各种选项描述省略

OPKG的功能主要分两类，一种是软件包的管理命令，另外一种是软件包的查询命令。另外还有很多可以修饰的选项。我们分3节来介绍。

3.2.2　软件包的管理

软件包的管理是OPKG最重要的功能，主要包含更新软件包列表、安装、卸载和升级等功能。

1．opkg update

该命令用于更新可以安装的软件包列表。该命令不需要参数，执行时从服务器地址下载软件包列表文件并存储在/var/opkg-lists/目录下。OPKG在安装或升级时需要读取这个文件，这个文件代表当前仓库中所有可用的软件包。也可以删除该文件来释放存储空间，在安装软件前需要重新获取这个文件。

2．opkg install

该命令用于安装软件包，需要一个参数，传递一个软件包名称。如果软件包之间有依赖关系，会自动下载所有被依赖的软件包，并依次将所有被依赖的软件包安装上。示例3-1所示代码用于安装file软件包，其所依赖的软件包libmagic会自动安装上。

示例3-1：

root@zhang:/#> opkg install file

Installing file (5.11-1) to root...

Downloading http://downloads.openwrt.org/attitude_adjustment/12.09/ x86/generic/packages/file_5.11-1_x86.ipk.

Installing libmagic (5.11-1) to root...

Downloading http://downloads.openwrt.org/attitude_adjustment/12.09/ x86/generic/packages/libmagic_5.11-1_x86.ipk.

Configuring libmagic.

Configuring file.

3．opkg remove

该命令用于卸载软件包，需要一个参数，传递一个软件包名称。需要注意的是，在安装时自动安装的软件包并不会删除，需要自己手动删除，或者在卸载软件包的同时增加(--autoremove)参数将不需要的安装包也删除。示例3-2所示代码用于删除file软件包及不再使用的依赖包。

示例3-2：

root@zhang:/#> opkg remove file --autoremove

Removing package file from root...

libmagic was autoinstalled and is now orphaned, removing.

Removing package libmagic from root...

4．opkg upgrade

该命令用于升级软件包。如果软件包没有安装，该命令执行之后和“opkg install”效果相同。如果升级多个软件包，以空格分隔列在命令之后即可。例如使用opkg upgrade ip wget来升级两个软件包。

对大多数用户来说，不推荐升级软件包。OpenWrt发布后再进行升级大多数情况下是不可能的，这是因为OpenWrt发布之后一般不再更新，除非主干的快照被编译机器人（buildbot）自动更新。如果内核升级了，可能带来升级风险，因为内核可能和原始安装的应用软件不兼容。因此一般只升级应用，即非内核软件包。

3.2.3　查询信息

OPKG查询命令可以在软件仓库中查询，也可以在运行的系统中查询。OPKG提供了软件包的双向查询功能：正向查询，即从软件包来查询所包含的文件列表；也可以反向查询，从系统中所安装的文件查询所属的软件包。

1．opkg list

该命令用于列出所有可使用的软件包，列出内容格式为：

软件包名称 – 版本 – 描述。

描述内容是可以有换行的。如果使用grep命令来查找软件包则需注意，grep是单行匹配，因此使用grep查找的结果并不准确。

2．opkg list-installed

该命令用于列出系统中已经安装的软件包。

3．opkg list-changed-conffiles

该命令用于列出用户修改过的配置文件。

4．opkg files <pkg>

该命令用于列出属于这个软件包（<pkg>）中的所有文件，这个软件包必须已经安装。示例3-3所示代码用于查看ip软件包所包含的文件列表。

示例3-3：

#opkg files ip

Package ip (3.3.0-1) is installed on root and has the following files:

/usr/sbin/ip

/etc/iproute2/rt_tables

5．opkg search <file>

该命令用于列出提供<file>的软件包，注意：需要传递文件的绝对路径。

6．opkg find <regexp>

该命令用于列出软件包名称和<regexp>匹配的软件包。<regexp>是一个正则表达式，可以精确匹配，也可以使用星号来模糊匹配，例如使用“net”或者“net*”，均可以匹配NetCat。

7．opkg info [pkg]

该命令用于显示已安装[pkg]软件包的信息，包含软件包名称、版本、所依赖的软件包名称、安装状态和安装时间等。如果没有指定参数则输出所有已安装软件包的信息。“opkg status”和这个命令功能完全相同。

8．opkg download <pkg>

该命令用于将软件包<pkg>下载到当前目录。

9．opkg print-architecture

该命令用于列出安装包的架构。

10．opkg whatdepends [-A] [pkg]

该命令用于针对已安装的软件包，输出依赖这个软件包的软件包。示例3-4所示代码用于查询依赖libmagic的软件包。

示例3-4：

root@zhang:/#> Opkg whatdepends libmagic

Root set:

 libmagic

What depends on root set

 file 5.11-1 depends on libmagic

3.2.4　选项

OPKG有很多选项可以使用，这里只列出几个最常用的选项。

 	-A：查询所有的软件包，包含未安装的软件包。

 	-d <dest_name>：使用<dest_name>作为软件包的安装根目录。<dest_name>是配置文件中定义的目录名称。

 	-f <conf_file>：指定使用<conf_file>作为opkg的配置文件。如不指定，默认配置文件是/etc/opkg.conf。

 	--nodeps：不按照依赖来安装，只安装软件包自己。这可能会导致缺少依赖文件，导致程序不能执行。

 	--autoremove：卸载软件包时自动卸载不再使用的软件包（在安装时依赖会自动安装上）。

 	--force-reinstall：强制重新安装软件包，在软件包版本未修改时不会再次安装，增加该选项来强制重新安装。

3.3　OPKG配置

OPKG需要一个配置文件来保存全局配置，例如软件从哪里下载、安装到哪里等。

3.3.1　调整软件仓库地址

OPKG配置文件默认是/etc/opkg.conf。内容参考如下。

src/gz attitude_adjustment http://192.168.1.106:8080/openwrt

dest root /

dest ram /tmp

lists_dir ext /var/opkg-lists

option overlay_root /overlay

OPKG可以使用多个仓库，每一个仓库需要一个唯一标识符，即使用它们的逻辑名字。例如：

src/gz attitude_adjustment http://downloads.openwrt.org/attitude_ adjustment/12.09/x86/generic/packages/

src/gz local http://192.168.1.106:8080/openwrt

3.3.2　调整安装目录

OPKG的一个非常有用的特性，是有能力指定任何安装包的安装目录。安装目录在配置文件/etc/opkg.conf中定义。配置文件中目的地址格式是以dest开头，紧跟着目的地址的名称，最后是目录路径，必须从根目录开始。

dest root /

dest ram /tmp

dest usb /opt

安装目录定义之后，目的地址名称就可以在安装命令中引用了。安装时目的地址名称只能引用在/etc/opkg.conf中定义的地址名称，例如“-d ram”表示软件将安装到临时目录/tmp下。安装命令类似如下格式：

opkg install <pkg> -d <目的地址名称>

3.3.3　代理设置

OPKG通过下载软件包来安装，如果你通过HTTP代理服务器来上网，那就不能直接连接到服务器地址，这时就需要设置代理服务器地址。在/etc/opkg.conf中加入以下设置：

option http_proxy http://proxy.example.org:3128/

如果代理服务器需要认证，则需要增加以下认证信息：

option proxy_username xxxxxx

option proxy_password xxxxxx

如果使用busybox的wget命令，这个工具不支持认证功能，下载时将认证失败。可以改为在URL中传递用户名和密码：

option http_proxy http://username:password@proxy.example.org:3128/

3.4　使用举例

3.4.1　安装软件包

假设我们想要安装一个svn工具，可以将路由器中的内容直接提交到代码库中，但我们并没有记清楚这个工具的完整软件名称，我们可以通过命令来查询。首先我们更新可用的软件包列表，然后查询所有带有svn信息的。示例3-5是查询svn软件包。

示例3-5：

root@zhang:~#> opkg update

root@zhang:~#> opkg list |grep svn

libvorbisidec - 1.0.2+svn14261-1 - libvorbisidec is "tremor", a fixed- point implementation of libvorbis. It also has libogg built-in. It is suitable as a replacement for libvorbis and libogg in tremor-aware applications. Tremor is a decoder only.

luci - 0.11+svn9769-1 - Standard OpenWrt set including full admin with ppp support and the default OpenWrt theme

luci-app-ahcp - 0.11+svn9769-1 - LuCI Support for AHCPd

luci-app-commands - 0.11+svn9769-1 - LuCI Shell Command Module

luci-app-ddns - 0.11+svn9769-1 - Dynamic DNS configuration module

luci-app-diag-core - 0.11+svn9769-1 - LuCI Diagnostics Tools (Core)

luci-app-diag-devinfo - 0.11+svn9769-1 - LuCI Diagnostics Tools (Device Info)

#更换关键字来查询

root@zhang:/#> opkg list |grep subversion

subversion-client - 1.6.17-3 - Subversion is a free/open-source version control system. That is, Subversion manages files and directories, and the changes made to them, over time. This allows you to recover older versions of your data, or examine the history of how your data changed. In this regard, many people think of a version control system as a sort of time machine. This package contains the subversion client tools.

#省略其他输出

我们第一次查到的都是带有svn关键字的软件包，这些软件包指的都是在svn仓库中的版本号，并没有svn客户端工具的软件包。我们知道svn的全称为subversion，我们更换关键字来查询。我们查到了subversion-client是一个svn客户端工具，因此我们使用“opkg install subversion-client”命令来选择安装。

也可以通过“opkg find”命令来查找软件包。这个命令需要我们记住想要查找软件包的名称，或者名称的一部分。可以使用星号“”通配符来查找。例如使用“opkg find subversion”。

3.4.2　查询已安装的OPKG软件包文件列表

用户经常想知道某个文件属于哪一个软件包，或者是某个软件包包含哪些文件。这时OPKG查询命令就派上用场了。示例3-6用于查询文件所属的软件包和查询软件包所包含的文件。

示例3-6：

#查询文件所属的软件包

root@zhang:/#>opkg search /usr/bin/netcat

netcat – 0.7.1-2

#查询软件包所包含的文件。

root@zhang:/#> opkg files subversion-client

Package subversion-client (1.6.17-3) is installed on root and has the following files:

/usr/bin/svnsync

/usr/bin/svnversion

/usr/bin/svn

3.4.3　自定义安装目录

在路由器中如果空间不足，我们需要将软件安装到另外的磁盘分区上。例如，将软件安装到USB盘分区中，例如我们安装file、nmap和openvpn软件包。

USB盘的文件系统通常是vfat格式，我们首先安装vfat格式的相关软件包，然后将USB盘挂载到/srv目录下。示例3-7用于安装mount工具并挂载USB磁盘到srv目录下。

示例3-7：

opkg install knod-nsl-cp437

opkg install knod-nsl-iso8859-1

opkg install mount-utils

mkdir /srv -p

mount /dev/sdb1 /srv

然后我们编辑/etc/opkg.conf文件，在文件最后增加一行，内容为“dest usb /srv”。到这里你就可以在外接USB盘中安装软件并执行了，首先更新软件包列表，然后安装软件。示例3-8用于安装nmap软件到USB盘中。

示例3-8：

echo "dest usb /srv">> /etc/opkg.conf

opkg update

opkg install nmap -d usb

在nmap安装完成后，如果执行nmap，并不会找到该命令，还需要设置环境变量PATH。 如果仅是临时设置，可以在终端中使用export命令进行设置。如果要重启也生效就需要在/etc/profile文件中修改。编辑配置文件/etc/profile，将你新增的软件目录加入到PATH环境变量中。示例3-9用于将srv目录增加到命令搜索和动态库搜索的环境变量中。

示例3-9：

export PATH=/bin:/sbin/:/usr/bin/:/usr/sbin:/srv/bin:/srv/sbin:/srv/ usr/bin:/srv/usr/sbin

export LD_LIBRARY_PATH=/srv/lib:/srv/usr/lib

在执行nmap时还提示有错误“nmap: can’t load library ‘libstdc++.so.6”，这时因为动态链接文件库名没有创建成功，只需要将“libstdc++.so.6.0.16”文件改名为“libstdc++. so.6”即可。

在安装openvpn时，如果你的安装包在/etc/init.d目录下有一个启动脚本，但你安装到外接磁盘目录中，你就需要创建一个启动软链接，例如：

ln -s /srv/etc/init.d/openvpn /etc/init.d/openvpn

如果软件因为链接库的问题不能启动，就需要在启动脚本里面增加动态链接库目录。另外你需要解决特定程序的配置文件默认路径问题，需要通过命令行来指定配置文件的路径，也可以增加一个包装脚本。示例3-10就是增加了一个file包装脚本。安装file并使用-m来指定配置文件路径，并在最后通过chmod +x 增加执行权限，这样就可以像以前一样执行file命令了。

示例3-10：

opkg install file –d usb

touch /usr/bin/file

echo "#!/bin/sh" > /usr/bin/file

echo "/srv/usr/bin/file -m /srv/usr/share/misc/magic \"\$@\"" >> /usr/bin/file

chmod +x /usr/bin/file

需要注意以下两点：

[image:] 许多软件包在自定义的位置时不能启动或者即使启动也不能成功执行，因为它在默认位置读取配置文件（如file命令），因此需要在参数中指定配置文件位置，否则将不能找到它自己必须的配置文件。

[image:] 许多软件包在更改了目录之后需要额外的软链接或者修改动态链接库文件名后缀才能使用。

3.5　OPKG包结构

最后我们讲述OpenWrt最重要的软件包文件格式。OPKG安装包（ipk文件）是一个gzip压缩文件，可以用file命令来查看文件格式描述。其实，ipk文件就是一个“tar.gz”文件，我们可以用tar命令来解压缩并查看文件内容，其内容包含两个压缩文件和一个版本文件。我们以TcpDump软件包为例来说明安装包格式，首先使用tar命令来解压缩TcpDump的安装包。命令如下：

$>tar -xzf tcpdump_4.2.1-3_x86.ipk -v

./debian-binary

./data.tar.gz

./control.tar.gz

解压缩完成后生成3个文件，其中debian-binary是一个纯文本文件，包含字符串“2.0”，表示格式为debian2.0格式。data.tar.gz包含“/usr/sbin/tcpdump”文件，在安装时复制到安装目录下。

$>$tar -xzf data.tar.gz -v

./

./usr/

./usr/sbin/

./usr/sbin/tcpdump

control.tar.gz解压缩后发现仅包含一个文件“control”，文件内容包含软件包名称、版本、依赖关系、所属分类、状态、优先级、平台架构和软件描述等。例如，TcpDump可执行程序依赖libc和libpcap库，libc库默认已经安装在系统中，在安装TcpDump时将自动下载并安装libpcap软件包。control文件内容为：

Package: tcpdump

Version: 4.2.1-3

Depends: libc, libpcap

Provides:

Source: feeds/packages/net/tcpdump

Section: net

Status: unknown ok not-installed

Essential: no

Priority: optional

Maintainer: OpenWrt Developers Team <openwrt-devel@openwrt.org>

Architecture: x86

Installed-Size: 304571

Description: Network monitoring and data acquisition tool

控制部分还可以包含一些其他的控制文件。控制部分所有文件的含义，如表3-1所示。

表3-1　OPKG软件包控制文件含义

 	 文　　件

 	 含　　义

 	 control

 	 控制文件，包含软件包名称、版本、依赖关系和所属分类等信息

 	 conffiles

 	 配置文件，内容包含该软件的配置文件列表，一个文件占一行

 	 preinst

 	 安装文件之前执行脚本

 	 postinst

 	 安装文件之后执行脚本，例如安装之后设置用户及启动程序等

 	 prerm

 	 卸载之前执行的脚本，例如卸载之前首先结束运行的程序进程

 	 postrm

 	 卸载之后执行的脚本

3.6　参考资料

 	OPKG包管理器（http://wiki.openwrt.org/doc/techref/opkg）。

 	OPKG概述（http://wiki.openmoko.org/wiki/Opkg）。

 	OPKG网站（http://code.google.com/p/opkg/）。

 	Debian二进制如何打包（http://tldp.org/HOWTO/html_single/Debian-Binary-Package- Building-HOWTO/）。

 	Maximum RPM（http://rpm5.org/docs/max-rpm.html）。

第4章　OpenWrt配置

MVC（Model-View-Control）模式是经典的Web开发编程模式，OpenWrt也采用该设计模式。该设计模式为分层设计，模型层负责数据的持久化操作。OpenWrt的模型层采用统一配置接口（Unified Configuration Interface，UCI）。

UCI的目的在于集中OpenWrt系统的配置。这样每一个开发人员只需学习一次即可，减少了学习成本。这是OpenWrt成功的关键原因之一。它成功地应用于OpenWrt的WhiteRussian之后的系列版本。UCI可以看作OpenWrt系统中最重要系统设置的主要配置接口。通常情况下这些设置对设备的功能运转至关重要，例如网络接口的配置、DHCP和防火墙设置等。本章首先讲述UCI配置及配置接口，接着讲述系统内核设置，最后还会讲述一些非UCI系统配置，这些配置通常不提供用户修改接口，但在系统运行时也是非常重要的。

4.1　UCI简介

4.1.1　文件语法

配置文件由配置节（section）组成，配置节由多个“name/values”选项对组成。每一个配置节都需要有一个类型标识，但不一定需要名称。每一个选项对都有名称和值，写在其所属于的配置节中。语法如下：

config <type> ["<name>"] # Section

 option <name> "<value>" # Option

在UCI的配置文件中通常包含一个或多个配置节，所谓的配置节是带有一个或多个选项的语句。示例4-1所示的是OpenWrt中的一个实际配置文件（/etc/config/system）。

示例4-1：

config system

 option hostname OpenWrt

 option timezone UTC

config timeserver ntp

 list server 0.openwrt.pool.ntp.org

 list server 1.openwrt.pool.ntp.org

 list server 2.openwrt.pool.ntp.org

 list server 3.openwrt.pool.ntp.org

 option enabled 1

 option enable_server 0

“config system”语句定义了一个配置节的开始，配置类型为“system”但没有名称。没有名称标识的配置节称为匿名配置节。选项“option hostname OpenWrt”和“option timezone UTC”两行定义了这个配置节的两个简单配置。类型和选项的含义均由应用程序来决定，类型一般用于应用程序决定如何处理配置节包含的配置选项。如果一个选项是不存在的并且是必需的，那应用程序通常会触发一个异常或者记录一个异常的日志，然后程序退出。通常选项在配置文件中都是使用空格或制表符缩进来标识，但这个并非是语法要求，仅仅是为了增加配置文件的可读性。

“config timeserver ntp”语句定义了另外一个配置节的开始，类型为“timeserver”，名称为“ntp”。在开始带有list关键字的选项，表示有多个值被定义，所有的语句有同一个选项名称“server”。在我们的例子中均为NTP服务器地址，组合为相同顺序的单链表来处理。

option和list用来提高配置文件的可读性，并且在语法上也要求使用关键字来表示配置选项的开始。通常不需要使用引号引上类型标识符或值，引号只在封闭的值包含空格或制表符的情况下需要。它可以合法地使用双引号和单引号。下面是所有的合法UCI文件选项语法示例。

option example value

option 'example' value

option example "value"

option "example" 'value'

option 'example' "value"

option 'example' "some value with space"

下面的例子是错误的UCI文件语法。

option 'example" "value' (引号没有配对)

option example some value with space (带有空格的值缺少引号)

UCI标识符和配置文件的名称只能包含字母a～z、0～9和_。例如连字符（-）是不允许的。选项的值可以包含任何字符，但需要将它们正确地加上引号。

4.1.2　统一配置原理

OpenWrt有很多独立的第三方应用程序，大多数应用程序的软件包维护者已经制作了UCI兼容的配置文件，启动时由UCI配置文件转换为软件包的原始配置文件。这是在运行初始化脚本/etc/init.d/中执行的。在5.３节中会讲述启动机制。因此，当开始执行一个UCI兼容的守护进程初始化脚本时，你应该意识到程序的原始配置文件被覆盖了。例如，在DNS代理服务器dnsmasq进程启动的情况下，文件/var/etc/dnsmasq.conf是从UCI配置文件/etc/config/dhcp生成并覆盖的，是运行/etc/init.d/dnsmasq脚本进行配置文件转换的。因为应用程序的配置文件是启动时通过UCI转换生成的，因此它不需要存储在非易失性存储器中，通常存储在内存中而不是在闪存中，而var目录为其内容在正常运行时不断变化的目录，因此将var目录创建为/tmp目录的一个链接。OpenWrt的大多数配置都基于UCI文件，如果你想在软件原始的配置文件调整设置，可以通过禁用UCI方法来实现。

OpenWrt系统的核心配置分成很多个文件，并且都位于/etc/config目录下。每个文件涉及系统配置的某一部分。你可以用一个文本编辑器修改，或用命令行实用程序UCI编辑配置文件。UCI的配置文件也可通过各种编程API（如shell、Lua和C等）来修改，这也是Web接口例如LuCI修改UCI文件的方式。

无论是通过一个文本编辑器还是命令行工具修改配置文件，在改变一个UCI的配置文件后，受影响的服务或可执行程序必须由init.d进行重启，这样更新UCI配置才会真正生效。许多程序是通过它们的初始化脚本与UCI配置兼容的。init.d将UCI配置转换为它们软件特定的配置文件。init.d首先在该软件预期的位置生成这样的一个配置文件，它通过重新启动可执行程序再次读入配置。注意：如果只是直接启动可执行文件，没有通过init.d调用，将不会将一个UCI配置文件更新到特定程序相应的配置文件位置，在/etc/config/的修改将不会对现有进程有任何影响。

例如，在修改UCI配置文件时，如果你想将局域网网关IP地址从默认地址192.168.1.1修改为192.168.6.1，可以使用vi编辑器修改/etc/config/network。这里我们使用uci命令来修改。

uci set network.lan.ipaddr=192.168.6.1

uci commit network

下一步通过运行以下命令使修改生效。

/etc/init.d/network restart

在这种情况下，你需要使用新的IP地址来登录路由器设备。路由器常用功能配置文件如表4-1所示。所有的UCI配置文件均默认保存在“/etc/config”目录下。

表4-1　常用功能配置文件含义

 	 文 件 路 径

 	 含　　义

 	 /etc/config/dhcp

 	 Dnsmasq软件包配置，包含DHCP和DNS设置

 	 /etc/config/dropbear

 	 SSH服务器选项

 	 /etc/config/firewall

 	 防火墙配置，包含网络地址转换、包过滤和端口转发等

 	 /etc/config/network

 	 网络配置，包含桥接、接口和路由配置

 	 /etc/config/system

 	 系统设置，包含主机名称，网络时间同步等

 	 /etc/config/timeserver

 	 rdate的时间服务列表

 	 /etc/config/luci

 	 基本的LuCI配置

 	 /etc/config/wireless

 	 无线设置和Wi-Fi网络定义

 	 /etc/config/uhttpd

 	 Web服务器选项配置

 	 /etc/config/upnpd

 	 miniupnpd UPnP服务设置

 	 /etc/config/qos

 	 网络服务质量的配置文件定义

4.1.3　UCI工具

在开发调整配置时，可以直接使用vi编辑器修改UCI配置文件。但是UCI统一配置文件的目的就是所有OpenWrt配置可以通过统一接口读取和修改。对于开发人员而言，如果使用awk和grep工具来解析将是非常低效的，UCI实用工具提供了修改和分析UCI文件的脚本编程开发接口。

当使用UCI工具写入配置文件时，配置文件都是整个重写并且不需要确认命令。这意味着在文件中任何多余的注释行和空行均会被删除。如果你有UCI类型的配置文件，想保存自己的注释和空行，那就不应该使用UCI命令行工具来编辑文件。

下面是UCI工具选项的含义和基本使用方法，以及一些如何使用这个非常便利的命令行接口工具的示例。

zhang@zhang-laptop:~$ uci

Usage: uci [<options>] <command> [<arguments>]

Commands:

 batch

 export [<config>]

 import [<config>]

 changes [<config>]

 commit [<config>]

 add <config> <section-type>

 add_list <config>.<section>.<option>=<string>

 del_list <config>.<section>.<option>=<string>

 show [<config>[.<section>[.<option>]]]

 get <config>.<section>[.<option>]

 set <config>.<section>[.<option>]=<value>

 delete <config>[.<section>[[.<option>][=<id>]]]

 rename <config>.<section>[.<option>]=<name>

 revert <config>[.<section>[.<option>]]

 reorder <config>.<section>=<position>

Options:

 -c <path> set the search path for config files (default: /etc/ config)

 -d <str> set the delimiter for list values in uci show

 -f <file> use <file> as input instead of stdin

 -m when importing, merge data into an existing package

 -n name unnamed sections on export (default)

 -N don't name unnamed sections

 -p <path> add a search path for config change files

 -P <path> add a search path for config change files and use as default

 -q quiet mode (don't print error messages)

 -s force strict mode (stop on parser errors, default)

 -S disable strict mode

 -X do not use extended syntax on 'show'

表4-2　UCI命令含义

 	 命　　令

 	 含　　义

 	 add

 	 增加指定配置文件的类型为section-type的匿名区段

 	 add_list

 	 对已存在的list选项增加字符串

 	 commit

 	 对给定的配置文件写入修改，如果没有指定参数则将所有的配置文件写入文件系统。所有的“uci set”“uci add”“uci rename”和“uci delete”命令将配置写入一个临时位置，在运行“uci commit”时写入实际的存储位置

 	 export

 	 导出一个机器可读格式的配置。它是作为操作配置文件的shell脚本而在内部使用，导出配置内容时会在前面加“package”和文件名

 	 import

 	 以UCI语法导入配置文件

 	 changes

 	 列出配置文件分阶段修改的内容，即未使用“uci commit”提交的修改。如果没有指定配置文件，则指所有的配置文件的修改部分

 	 show

 	 显示指定的选项、配置节或配置文件。以精简的方式输出，即key=value的方式输出

 	 get

 	 获取指定区段选项的值

 	 set

 	 设置指定配置节选项的值，或者是增加一个配置节，类型设置为指定的值

 	 delete

 	 删除指定的配置节或选项

 	 rename

 	 对指定的选项或配置节重命名为指定的名字

 	 revert

 	 恢复指定的选项，配置节或配置文件

例如设置值，如果你想更改系统局域网的网关地址，从默认值“192.168.1.1”修改为“192.168.56.11”，示例4-2所示的就是修改路由器系统局域网网关地址的方法。配置文件在/etc/config/network文件中。

示例4-2：

root@OpenWrt:~# uci set network.lan.ipaddr=192.168.56.11

root@OpenWrt:~# uci commit network

root@OpenWrt:~# /etc/init.d/network restart

配置结束后，现在的配置文件已经更新并设置到网卡上了。如果是通过网络登录到OpenWrt上面的，就需要使用新的IP地址连接。

当有多个配置节类型相同或者为匿名配置节时，UCI使用数组数字引用它们。OpenWrt系统默认有3个网卡接口，可以通过network.@interface[0]来引用第一个，通过network.@ interface[1]来引用第二个，通过network.@interface[2]来引用第三个。也可以使用负索引，例如network.@interface[−1]，其中“−1”指的是最后一个，“−2”指的是倒数第二个，等等。这在最后增加新的规则列表时是非常方便的。以network配置文件为例，示例4-3所示的是获取各个网卡名称的方法。

/etc/config/network

config interface 'loopback'

 option ifname 'lo'

 option proto 'static'

 option ipaddr '127.0.0.1'

 option netmask '255.0.0.0'

config interface 'wan'

 option ifname 'eth0'

 option _orig_ifname 'eth0'

 option _orig_bridge 'false'

 option proto 'dhcp’

config interface 'lan'

 option ifname 'eth1'

 option proto 'static'

 option ipaddr '192.168.56.10'

 option netmask '255.255.255.0’

示例4-3：

lo

uci get network.@interface[0].ifname

uci get network.loopback.ifname

eth0

uci get network.@interface[1].ifname

uci get network.@interface[-2].ifname

uci get network.wan.ifname

#eth1

uci get network.@interface[2].ifname

uci get network.@interface[-1].ifname

uci get network.lan.ifname

有些运行中的状态值没有保存在/etc/config目录下，而是保存在/var/state下，这时可以使用“-P”参数来查询当前状态值，查询命令如示例4-4所示。

示例4-4：

root@OpenWrt:~# uci –P/var/state show network.wan

network.wan=interface

network.wan.ifname=eth0

network.wan._orig_ifname=eth0

network.wan._orig_bridge=false

network.wan.proto=dhcp

network.wan.up=1

network.wan.connect_time=7

network.wan.device=eth0

当为链表配置时，操作方法有所不同，示例4-5所示的是操作链表的方法。

示例4-5：

#增加到链表中一个配置项：

root@OpenWrt:~#>uci add_list system.ntp.server='ntp.bjbook.net'

#删除链表中的一个配置项：

root@OpenWrt:~#>uci del_list system.ntp.server='ntp.ntp.org'

#删除链表中的所有配置项：

root@OpenWrt:~#>uci delete system.ntp.server

我们以一个自定义示例来结束本节。我们创建一个helloRoute的配置，里面有3项内容，启动延迟时间、访问URL和用户代理属性，内容如示例4-6所示。

示例4-6：

config system 'globe'

 option agent 'bjbook'

 option url 'www.bjbook.net/openwrt'

 option delay 100

首先通过命令行创建配置文件。像上面的配置一样，如果你想增加一个配置节，大多数人都会想到使用“uci add”命令，但实际上“uci add”仅可以创建匿名配置节，不能完成创建命名配置的目标，要使用“uci set”命令来完成。示例4-7所示的是使用UCI命令来创建自定义配置文件。

示例4-7：

root@OpenWrt:~#>touch /etc/config/hello

uci set hello.globe=system //设置配置节类型为system

#以下3行设置配置节的3个选项

root@OpenWrt:~#>uci set hello.globe.agent=bjbook

root@OpenWrt:~#>uci set hello.globe.url='www.bjbook.net/openwrt'

root@OpenWrt:~#>uci set hello.globe.delay=100

root@OpenWrt:~#>uci commit //提交配置修改

4.1.4　配置脚本

UCI模块提供了一个shell脚本（/lib/config/uci.sh）并封装了UCI命令行工具的功能，这样方便了其他软件包在将UCI配置文件转换为自己格式的配置文件时使用。主要提供的函数在表4-3中。函数名以“uci”开头。在单独导入uci.sh时，uci_load函数并不能执行成功，因为uci_load函数引用了/lib/functions.sh的一些函数定义，因此在使用uci_load函数时需要先导入functions.sh的函数定义。

表4-3　uci.sh常用函数含义

 	 函 数 名 称

 	 含　　义

 	 uci_load

 	 从UCI文件中加载配置并设置到环境变量中，可以通过env命令来查看。该命令需要和functions.sh中的定义共同使用

 	 uci_get

 	 从配置文件中获取值。至少需要一个参数，指明要获取的配置信息。例如获取系统主机名称调用：uci_get system.@system[0].hostname

 	 uci_get_state

 	 指定从/var/state中获取状态值

functions.sh的主要原理是将配置文件中的配置选项设置到环境变量中，然后提供接口函数在环境变量中获取。其中设置到环境变量中调用了uci.sh中的uci_load函数。uci_load函数又调用了functions.sh定义的config()、option()、list()等函数，将配置导入环境变量中。在使用这些函数时，以点开头来将这些函数加载到执行空间中，注意点和执行文件中间有一个空格。例如：

. /lib/functions.sh //装载函数

functions.sh函数含义如表4-4所示。

表4-4　fuctions.sh函数含义

 	 函 数 名 称

 	 含　　义

 	 config

 	 供uci.sh调用，将配置节设置到环境变量中

 	 option

 	 供uci.sh调用，将配置节中的选项设置到环境变量中

 	 list

 	 供uci.sh调用，将配置节中的链表配置设置到环境变量中

 	 config_load

 	 调用uci_load函数来从配置文件中读取配置选项，并设置到环境变量中

 	 config_get

 	 从当前设置环境变量中获取配置值

 	 config_get_bool

 	 从当前设置的环境变量中获取布尔值，并将它进行格式转换，如果为真，转换为1，否则转换为0。因为UCI的布尔值有多种类型均支持。on、true、enabled和1表示真，off、false、disable和0表示假

 	 config_set

 	 将变量设置到环境变量中以便后续读取。注意：仅设置到环境变量中并没有设置到配置文件中

 	 config_foreach

 	 对于未命名的配置进行遍历调用函数。共两个参数，第一个参数为回调函数，第二个参数为配置节类型，这个函数适用于匿名配置节的转换处理

通常的转换执行流程是首先通过调用config_load函数将UCI配置读入当前环境变量中。然后使用config_get等函数进行读取和转换配置。其中config_load函数默认从/etc/ config目录下读取配置，并设置到环境变量中。以config_get函数为例来说明执行流程。config_get函数从环境变量中读取配置值并赋值给变量。这个函数至少要3个参数。

第1个参数为存储返回值的变量。

第2个参数为所要读取的配置节的名称。

第3个参数是所有读取的选项名称。

第4个参数是为默认值，如果配置文件没有该选项则返回该默认值，是一个可选的参数。

示例4-8所示为OpenWrt 12.09的一个实际代码，在启动时，从配置文件中获取主机名称，并设置到内核中。

示例4-8：

 local hostname conloglevel timezone

 config_get hostname "$cfg" hostname 'OpenWrt'

 echo "$hostname" > /proc/sys/kernel/hostname

以“uci_”开头的函数和以“config_”开头的函数大多数功能完全相同，唯一不同的是“uci_get”等函数直接从文件中获取，而“config_get”函数从环境变量中读取。这一点导致两者存在性能差异，“config_get”函数使用“config_load”一次从配置文件中读取设置到环境变量中，以后均不再进行磁盘操作；而“uci_get”每次均从文件中读取。如果调用多次，两者性能差距就会显现，实际测试中两者相差10倍以上。因此在OpenWrt中大多使用以“config_”开头的“config_get”等函数进行配置文件转换。

4.2　UCI API编程接口

UCI不仅提供命令接口供脚本开发者使用，而且提供了C语言调用接口。下面在普通桌面操作系统Ubuntu下来说明API的使用。首先准备UCI编程接口的使用环境。UCI软件依赖Libubox，因此首先编译Libubox。

4.2.1　Libubox

Libubox是OpenWrt的一个必备的基础库，包含大小端转换、链表、MD5等实用工具基础库，采用Cmake来编译。

Cmake是跨平台的产生Makefile的命令行工具，它应用于在脚本文件中配置工程。工程选项设置可以在命令行通过-D选项设置。-i选项可以打开交互提示来进行设置。它是一个跨平台的编译系统生成工具。通过平台独立Cmake的listfiles文件来指定构建过程。这个文件在每一个源码目录树目录下均有一个，文件名为CmakeLists.txt。Libubox和UCI均使用Cmake命令来产生目标平台的构建系统命令。因此我们首先安装Cmake:

$>sudo apt-get install cmake

接着我们编译Libubox，Libubox编译指令如示例4-9所示。

示例4-9：

tar -xzf libubox-2015-06-14-d1c66ef1131d14f0ed197b368d03f71b964e45f8.tar.gz

cd libubox-2015-06-14

cmake -D BUILD_LUA:BOOL=OFF -D BUILD_EXAMPLES:BOLL=OFF .

make;

sudo make install;

注意在Cmake生成Makefile时，后面有一个点，表示在当前目录执行。

生成Makefile时，设置了两个编译开关为OFF，这两个分别是lua和使用示例，我们不进行编译，因此把编译选项关闭。

在进行编译时，编译过程中会输出编译进度百分比。编译完成之后进行安装，安装到系统目录中，需要使用管理员权限并输入密码，因此会加上sudo命令。安装内容包含头文件和动态链接库文件。头文件默认安装在/usr/local/include/libubox目录下，动态链接库libubox.so和libubox.a安装在/usr/local/lib/目录下。

4.2.2　UCI

在Libubox安装完成后即可编译安装UCI软件了。我们同样进入dl目录，将UCI库解压缩并编译安装。命令如示例4-10所示。

示例4-10：

tar -xzf uci-2015-04-09.1.tar.gz

cd uci-2015-04-09

cmake -D BUILD_LUA:BOOL=OFF .

make

sudo make install

sudo ldconfig

UCI库的头文件安装在/usr/local/include目录下，动态链接库安装在/usr/local/lib/ libuci.so，可执行程序为/usr/local/bin/uci。运行ldconfig命令是因为系统还不知道动态链接库已经安装，运行该命令会告诉系统重新加载动态链接库，这样UCI动态链接库就可以使用了。编译时使用以下命令来链接UCI库。

gcc test.c -o test -luci

4.2.3　UCI API接口

UCI接口命名非常规范，统一以小写的uci开头并放在uci.h头文件中。大多数函数的第一个参数均为uci_context的指针变量。这个变量在程序初始化时调用uci_alloc_context函数分配空间并设置初始值。在程序执行结束时调用uci_free_context函数释放空间。

UCI接口有设置函数uci_set，但没有相应的获取函数uci_get，UCI使用uci_lookup_ptr来提供查询功能，如果查到则通过获取ptr变量的值来获取配置的值。5.2节会有一个UCI接口的使用示例。UCI API接口含义如表4-5所示。

表4-5　UCI API接口含义

 	 函　　数

 	 含　　义

 	 uci_alloc_context

 	 分配UCI上下文环境对象

 	 uci_free_context

 	 释放UCI上下文环境对象

 	 uci_load

 	 解析UCI配置文件，并存储到UCI对象中。@name:配置文件名，相对于配置目录。@package:在这个变量中存储装载的配置包

 	 uci_unload

 	 从UCI上下文环境对象中unload配置文件

 	 uci_lookup_ptr

 	 分割字符串并查找。@ptr:查找的结果。@str:待查找的字符串，但str不能为常量，因为将被修改赋值，在ptr变量内部会被使用到，因此str的寿命必须至少和ptr一样长。@extended 是否允许扩展查找

 	 uci_set

 	 设置元素值，如果必要将创建一个元素。更新或创建的元素将存储在ptr-> last中

 	 uci_delete

 	 删除一个元素，配置节或选项

 	 uci_save

 	 保存一个package修改的delta

 	 uci_commit

 	 提交更改package，提交将重新加载整个uci_package

 	 uci_set_confdir

 	 修改UCI配置文件的存储位置，默认为/etc/config

4.3　系统内核设置

OpenWrt也是一个Linux操作系统，因此它和桌面操作系统Ubuntu及Fedora一样，采用sysctl作为系统的内核配置工具。sysctl.conf作为其内核配置文件在启动时进行加载。

4.3.1　sysctl.conf

这个文件是系统启动预加载的内核配置文件，通过sysctl命令读取和设置到系统当中。配置文件语法格式如下：

 # comment

 ; comment

 token = value

以“#”和分号开头的行均为注释行，并忽略空白行，配置值以key=value形式进行设置。例如，设置打开报文转发为net.ipv4.ip_forward=1。

这个文件在OpenWrt源码中保存在packages/base-files/files/etc/sysctl.conf目录下。

表4-6　OpenWrt常见内核配置项含义

 	 配　置　项

 	 含　　义

 	 默　认　值

 	 net.ipv4.ip_forward

 	 是否打开、在接口之间转发报文，表示系统启用接口之间报文转发，这是单机版桌面系统和路由器之间的最大的不同。网卡将接收不属于自己IP的报文并根据路由表进行转发。设置为0表示关闭转发，设置为1表示打开转发

 	 1

 	 net.ipv4.ip_default_ttl

 	 用于发送报文的默认TTL值，介于1和255之间

 	 64

 	 net.ipv4.conf.all.send_redirects

 	 如果为路由器，将发送重定向

 	

 	 net.ipv4.icmp_echo_ignore_all

 	 如果设置为非零值，内核将忽略所有发给自己的ICMP ECHO请求

 	 0

 	 net.ipv4.icmp_echo_ignore_broadcasts

 	 如果为非零值，内核将忽略所有发往广播或组播地址的ICMP ECHO请求

 	 1

 	 net.ipv4.icmp_ignore_bogus_error_responses

 	 对于广播地址的请求响应，记录在log里面。如果设置为1，不再给出警告

 	 1

 	 icmp_ratelimit

 	 限制匹配icmp_ratemask的发送ICMP报文的最大速率，0表示不限制

 	 1000

 	 net.ipv4.tcp_keepalive_time

 	 TCP流的保活时间

 	 120秒

 	 net.ipv4.conf.default.arp_ignore

 	 定义接收到解析本地目标IP地址的ARP请求时的不同的发送响应模式。
 0：回复配置在任何接口上的任何本地目标IP地址
 1：仅回复目标IP配置在报文所进入的接口上的请求
 2：仅回复目标IP是报文所进入的接口的请求，并且发送请求者的IP地址和接口IP在同一子网
 3：不回复本主机配置的IP地址的ARP查询

 	 1

 	 net.ipv4.conf.default.rp_filter

 	 报文反向过滤技术，系统在接收到一个IP包后，检查该IP是不是合乎要求，不合要求的IP包会被系统丢弃。在使用组播功能时，需要将该选项关闭

 	 0

4.3.2　sysctl

sysctl是用于修改运行中的内核参数的命令，所有可用的内核参数均在/proc/sys目录下。运行sysctl需要procfs文件系统支持。可以用sysctl读取和修改内核参数数据。参数以key= value形式进行设置。

-n：查询时输出配置项的值，但不输出配置项。

-e：当碰到不认识的配置项时，忽略错误。

-w：使用这个选项来修改系统设置。

-p：从指定的配置文件中加载配置，如果没有指定则使用默认的配置文件/etc/sysctl. conf。

-a：显示当前所有可用的值。

常用命令举例如下：

/sbin/sysctl -a，显示所有的内核配置；

/sbin/sysctl -n kernel.hostname，查询kernel.hostname的值；

/sbin/sysctl -w kernel.hostname ="zhang"，修改系统主机名称为zhang；

/sbin/sysctl -p /etc/sysctl.conf，加载配置。

内核的参数配置在启动时由sysctl工具加载，默认加载/etc/sysctl.conf。启动之后均可在/proc/sys下查询，例如直接查询是否打开路由转发：

cat /proc/sys/net/ipv4/ip_forward

内核参数也可以通过直接修改/proc/sys下的文件来生效。例如打开路由转发设置，可以执行以下命令：

echo "1" > /proc/sys/net/ipv4/ip_forward

4.4　系统配置

OpenWrt还有一些配置并不是通过UCI配置来实现的，这部分是大多数Linux系统都有的配置，并且用户很少修改，因此并不提供接口给用户修改。

4.4.1　/etc/rc.local

这个文件在系统每次启动时由/etc/rc.d/S95done调用，是一个shell脚本，是在系统开机之后最后会调用到的脚本。也就是说，当有任何想要在开机之后就立即执行的命令时，直接将它写入/etc/rc.local，那么该命令就会在每次启动的时候自动被执行，而不必等我们登录系统再去执行。比如启动时增加域名服务器地址为“8.8.8.8”，则可在/etc/rc.local增加：

echo "nameserver 8.8.8.8" >> /etc/resolv.conf

这样就可以在系统DNS无效时有一个备份的域名服务器来查询。

4.4.2　/etc/profile

/etc/profile为系统的每个登录用户设置环境变量。当用户第一次登录时该文件被执行，此文件首先输出“banner”文件的内容，紧接着为登录用户设置环境变量，并创建一些常用命令的链接，例如more命令链接到less，即执行more命令最终会调用less命令。

#!/bin/sh

[-f /etc/banner] && cat /etc/banner

export PATH=/bin:/sbin:/usr/bin:/usr/sbin

export HOME=$(grep -e "^${USER:-root}:" /etc/passwd | cut -d ":" -f 6)

export HOME=${HOME:-/root}

export PS1='\u@\h:\w\$ '

[-x /bin/more] || alias more=less

[-x /usr/bin/vim] && alias vi=vim || alias vim=vi

[-z "$KSH_VERSION" -o \! -s /etc/mkshrc] || . /etc/mkshrc

[-x /usr/bin/arp] || arp() { cat /proc/net/arp; }

[-x /usr/bin/ldd] || ldd() { LD_TRACE_LOADED_OBJECTS=1 $*; }

上面的代码中共定义了3个环境变量，含义分别如下。

 	PATH：决定了shell命令的查找位置及顺序。

 	HOME：登录用户主目录。

 	PS1：用户命令行提示符。

4.4.3　/etc/shells

shell是外壳的意思，是相对于Linux内核来说的。Linux有多个命令解析外壳程序，shells文件包含系统中所有外壳程序的列表。应用程序使用此文件来确定一个外壳是否有效。每一个外壳程序占用一行，内容为外壳执行程序的绝对路径。

文件内容以“#”开头，表示这行为注释行，如果shells内容错误可能会导致无法登录。OpenWrt采用/bin/ash。

4.4.4　/etc/fstab

这个文件是关于文件系统的静态信息，系统启动时读取并设置。文件fstab包含各种文件系统的描述信息，现在fstab只能通过程序读取，程序不能修改它；创建和维护这个文件的是系统管理员。

每一个文件系统占用一行来描述；一行的每一个域使用空格或制表符来隔开。以“#”开头的是注释行。fstab中的条目顺序也非常重要，因为fsck、mount和umount等命令会依次读取来执行自己的任务。

第1个域是fs_spec，描述特定块设备或远程文件系统被挂载。对于块设备的挂载使用“/dev/cdrom”或“/dev/sdb7”。对于NFS文件系统的挂载有主机和目录，procfs文件系统使用“proc”。

另外一种可以表明文件系统类型（ext4或者swap）的是挂载的UUID或卷标，写成LABEL=<label>或<UUID=UUID>，例如，“LABEL=Boot”或“UUID=3e6be9de-8139-11d1- 9106-a43f08d823a6”。这将使系统具有更好的鲁棒性：添加或删除一个SCSI磁盘时将更改磁盘装置名字，而文件系统卷标不变。

第2个域是fs_file，描述的是文件系统的挂载点。对于交换分区（swap），这个域的取值应当指定为“none”。

第3个域是fs_vfstype，描述的是文件系统的类型。Linux支持大量的文件系统类型，常见的文件系统类型有ext3、ext4、ntfs、proc、swap、tmpfs和vfat等，所有当前支持的文件系统列表在/proc/filesystems中。swap表示分区用于交换，ignore表示这行忽略，用于显示当前未使用的磁盘分区。

第4个域是fs_mntops，描述文件系统的挂载选项（是以逗号分隔的列表选项）。它至少包含挂载类型加上额外的文件系统类型。

对于所有类型的文件系统常见的选项是“noauto”（不要安装在“-a”是给出时，例如，在启动时）、“user”（允许用户挂载）、“owner”（允许设备所有者挂载）和“comment”（例如，使用fstab维护程序）。“owner”和“comment”选项是特定Linux支持的。

第5个域是fs_freq，用于Dump程序，是用于备份使用的。

第6个域是fs_passno，用于检查和修复磁盘的工具fsck程序，在启动时决定检测文件系统的顺序。根文件系统应当设置为1，其他文件系统设置为2。在一个物理设备上将先后进行检查，在不同的设备上如果使用并行能力则同时进行检测。如果第6个域不存在，则返回零，表示不需要检查。

4.4.5　/etc/services

这个文件是互联网网络服务类型列表。这是一个普通的ASCII编码文件，提供了友好的文本名称和互联网服务之间的映射，还包含了端口号和协议类型。每一个网络程序均可以从这个文件得到服务的端口号和协议。C函数库getservent、getservbyname、getservbyport、setservent和endservent支持从这个文件查询。

端口号由IANA组织赋值，当前策略是在使用端口号时同时赋值给TCP和UDP协议。端口号小于1024（低端口号）仅可以被有管理员权限的用户使用。这是服务器的标准实现。这样客户端连接到低端口号是可以信赖的，而不是使用服务器的普通用户运行的欺骗程序。众所周知，端口号由IANA指定并在管理员控制的空间中运行。服务类型的存在并不意味着该服务在当前服务器上运行。该文件每行描述一个服务，形式如下。

 service-name port/protocol [aliases ...]

 	service-name是服务的名称，可以用于查找。它是区分大小写的。

 	port是使用这个服务的端口号（以十进制表示）。

 	protocol是使用的协议类型，匹配protocols文件中的值。通常是TCP或UDP。

 	aliases是一个可选的值，是这个服务另外的名字。同样是区分大小写的。

各个域之间使用空格或者制表符来分割。注释以“#”开头，直到行结尾，并忽略空行。一个示例文件如下。

ftp 21/tcp

ssh 22/tcp

ssh 22/udp

telnet 23/tcp

smtp 25/tcp

time 37/tcp

time 37/udp

whois 43/tcp

domain 53/tcp

domain 53/udp

bootps 67/tcp

bootps 67/udp

bootpc 68/tcp

4.4.6　/etc/protocols

这个文件是协议定义描述文件，是一个普通的ASCII码文本文件，用于描述各种各样的因特网网络协议。这些数字出现在IP报文头中的协议域。每一行使用以下格式：

 protocol number aliases ...

这3个域由空格或制表符分隔，并且空行被忽略。如果一行包含一个“#”，则“#”后的内容部分被忽略。各部分含义如下：

 	“protocol”字段是协议的名称，常见的协议有IP、TCP、UDP、ICMP、IGMP和GRE等。

 	“number”是这个协议的数字号码，将出现在IP报头。用十进制数字表示。

 	“aliases”是协议的选项。

4.5　名词解释

 	统一配置接口（Unified Configuration Interface，UCI），是OpenWrt成功的关键技术之一，已经移植支持数千个软件。它采用纯文本文件来保存配置，并提供命令行和C语言编程调用接口进行管理。

 	配置节（section），是UCI配置的一个独立配置单元。UCI配置文件是由一个或多个配置节组成。配置节有一个配置类型属性，是以“config”开头，并且有一个可选名称。配置节包含一个或多个配置选项语句。

4.6　参考资料

 	UCI系统（http://wiki.openwrt.org/doc/uci [2014-12-13]）。

 	Ipsysctl教程1.0.4（https://www.frozentux.net/ipsysctl-tutorial/ipsysctl-tutorial.html [2015- 01-18]）。

 	sysctl手册。

第5章　软件开发

OpenWrt提供了一个很好的机制来方便用户扩充和实现自己的功能。本章首先以dnsmasq为例介绍了OpenWrt构建系统，接着给出了一个HelloWorld的简易模板供增加软件模块时快速借鉴使用，然后讲述了OpenWrt的软件启动机制，最后介绍了补丁文件的格式以及补丁工具的使用。

5.1　编译构建系统

5.1.1　概述

OpenWrt有一个非常好的构建系统，这样我们就可以非常方便地管理数千个软件包和几十个硬件平台。我们也可以非常方便地移植已有的软件到OpenWrt系统中。如果你看到OpenWrt的典型软件包目录，你会发现目录下一般会有两个文件夹和一个Makefile文件，以dnsmasq软件为例会有以下文件和目录。

 	dnsmasq/Makefile。

 	dnsmasq/files。

 	dnsmasq/patches。

补丁（patches）目录是可选的，典型包含缺陷修改或者用于优化可执行程序大小的补丁文件。files目录也是可选的，它一般用于保存默认配置文件和初始化启动脚本。如果为OpenWrt本身项目所包含的软件模块，因为代码将完全受到自己控制，这时将不会有patches目录存在，而是会有一个src目录，代码直接放在src目录下。5.2节的HelloWorld就将源代码放在了src目录下。

Makefile提供下载、编译、安装以及生成OPKG安装包的功能，这个文件是必须有的。如示例5-1所示，从文件的内容上，你很难看出它是一个Makefile文件——和通常的Makefile不同，OpenWrt没有遵守传统的Makefile格式风格，而是将Makefile写成面向对象格式，这样就简化了多平台移植过程。

示例5-1：dnsmasq/Makefile内容。

#

Copyright (C) 2006-2015 OpenWrt.org

#

This is free software, licensed under the GNU General Public License v2.

See /LICENSE for more information.

#

include $(TOPDIR)/rules.mk

PKG_NAME:=dnsmasq

PKG_VERSION:=2.73

PKG_RELEASE:=1

PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.xz

PKG_SOURCE_URL:=http://thekelleys.org.uk/dnsmasq

PKG_MD5SUM:=b8bfe96d22945c8cf4466826ba9b21bd

PKG_LICENSE:=GPL-2.0

PKG_LICENSE_FILES:=COPYING

PKG_BUILD_DIR:=$(BUILD_DIR)/$(PKG_NAME)-$(BUILD_VARIANT)/$(PKG_NAME)-$(PKG_VERSION)

PKG_INSTALL:=1

PKG_BUILD_PARALLEL:=1

PKG_CONFIG_DEPENDS:=CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_dhcpv6 \

 CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_dnssec \

 CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_auth \

 CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_ipset

include $(INCLUDE_DIR)/package.mk

define Package/dnsmasq/Default

 SECTION:=net

 CATEGORY:=Base system

 TITLE:=DNS and DHCP server

 URL:=http://www.thekelleys.org.uk/dnsmasq/

endef

define Package/dnsmasq

$(call Package/dnsmasq/Default)

 VARIANT:=nodhcpv6

endef

define Package/dnsmasq-dhcpv6

$(call Package/dnsmasq/Default)

 TITLE += (with DHCPv6 support)

 DEPENDS:=@IPV6 +kmod-ipv6

 VARIANT:=dhcpv6

endef

define Package/dnsmasq-full

$(call Package/dnsmasq/Default)

 TITLE += (with DNSSEC, DHCPv6, Auth DNS, IPset enabled by default)

 DEPENDS:=+PACKAGE_dnsmasq_full_dnssec:libnettle \

 +PACKAGE_dnsmasq_full_dhcpv6:kmod-ipv6 \

 +PACKAGE_dnsmasq_full_ipset:kmod-ipt-ipset

 VARIANT:=full

endef

define Package/dnsmasq/description

 It is intended to provide coupled DNS and DHCP service to a LAN.

endef

define Package/dnsmasq-dhcpv6/description

$(call Package/dnsmasq/description)

This is a variant with DHCPv6 support

endef

define Package/dnsmasq-full/description

$(call Package/dnsmasq/description)

This is a fully configurable variant with DHCPv6, DNSSEC, Authroitative DNS and

IPset support enabled by default.

endef

define Package/dnsmasq/conffiles

/etc/config/dhcp

/etc/dnsmasq.conf

endef

define Package/dnsmasq-full/config

 if PACKAGE_dnsmasq-full

 config PACKAGE_dnsmasq_full_dhcpv6

 bool "Build with DHCPv6 support."

 depends on IPV6

 default y

 config PACKAGE_dnsmasq_full_dnssec

 bool "Build with DNSSEC support."

 default y

 config PACKAGE_dnsmasq_full_auth

 bool "Build with the facility to act as an authoritative DNS server."

 default y

 config PACKAGE_dnsmasq_full_ipset

 bool "Build with IPset support."

 default y

 endif

endef

Package/dnsmasq-dhcpv6/conffiles = $(Package/dnsmasq/conffiles)

Package/dnsmasq-full/conffiles = $(Package/dnsmasq/conffiles)

TARGET_CFLAGS += -ffunction-sections -fdata-sections

TARGET_LDFLAGS += -Wl,--gc-sections

COPTS = $(if $(CONFIG_IPV6),,-DNO_IPV6)

ifeq ($(BUILD_VARIANT),nodhcpv6)

 COPTS += -DNO_DHCP6

endif

ifeq ($(BUILD_VARIANT),full)

 COPTS += $(if $(CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_dhcpv6),, -DNO_DHCP6) \

 $(if $(CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_dnssec), -DHAVE_DNSSEC) \

 $(if $(CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_auth),, -DNO_AUTH) \

 $(if $(CONFIG_PACKAGE_dnsmasq_$(BUILD_VARIANT)_ipset),, -DNO_IPSET)

 COPTS += $(if $(CONFIG_LIBNETTLE_MINI),-DNO_GMP,)

else

 COPTS += -DNO_AUTH -DNO_IPSET

endif

MAKE_FLAGS := \

 $(TARGET_CONFIGURE_OPTS) \

 CFLAGS="$(TARGET_CFLAGS)" \

 LDFLAGS="$(TARGET_LDFLAGS)" \

 COPTS="$(COPTS)" \

 PREFIX="/usr"

define Package/dnsmasq/install

 $(INSTALL_DIR) $(1)/usr/sbin

 $(CP) $(PKG_INSTALL_DIR)/usr/sbin/dnsmasq $(1)/usr/sbin/

 $(INSTALL_DIR) $(1)/etc/config

 $(INSTALL_DATA) ./files/dhcp.conf $(1)/etc/config/dhcp

 $(INSTALL_DATA) ./files/dnsmasq.conf $(1)/etc/dnsmasq.conf

 $(INSTALL_DIR) $(1)/etc/init.d

 $(INSTALL_BIN) ./files/dnsmasq.init $(1)/etc/init.d/dnsmasq

 $(INSTALL_DIR) $(1)/etc/hotplug.d/iface

 $(INSTALL_DATA) ./files/dnsmasq.hotplug $(1)/etc/hotplug.d/ iface/25-dnsmasq

endef

Package/dnsmasq-dhcpv6/install = $(Package/dnsmasq/install)

define Package/dnsmasq-full/install

$(call Package/dnsmasq/install,$(1))

ifneq ($(CONFIG_PACKAGE_dnsmasq_full_dnssec),)

 $(INSTALL_DIR) $(1)/usr/share/dnsmasq

 $(INSTALL_DATA) $(PKG_BUILD_DIR)/trust-anchors.conf $(1)/ usr/share/dnsmasq

endif

endef

$(eval $(call BuildPackage,dnsmasq))

$(eval $(call BuildPackage,dnsmasq-dhcpv6))

$(eval $(call BuildPackage,dnsmasq-full))

示例5-1首先是使用“include”指示符来包含顶层目录的rules.mk文件。接着是变量定义，它定义了软件包的基本信息，如名称、版本、下载地址、许可协议和编译目录等信息。在“PKG_*”变量定义完成之后再包含package.mk文件。中间部分是软件包的宏定义和一些编译选项定义。最后是调用BuildPackage。示例5-1中的Makefile没有太多其他逻辑依赖的工作需要去做，所有的一切都是隐藏在被包含的Makefile（include/package.mk及rules.mk）中的。Makefile文件非常抽象，你只需要按照通用的模板定义变量即可。

make程序在处理指示符“include”时，将暂停对当前Makefile文件的读取，而转去依次读取由“include”指示符指定的文件。直到完成所有这些包含文件后再回过头继续读取指示符“include”所在的Makefile文件。rules.mk文件是全局的编译变量定义，在每一个软件包的Makefile文件的第一行均首先包含这个文件。rules.mk文件中经常使用的变量定义有以下几个。

 	INCLUDE_DIR源代码目录下的include目录。

 	BUILD_DIR代码编译的根目录，通常为“build_dir/target-*”目录。

 	TARGET_CFLAGS指定目标平台的C语言编译选项。

 	TARGET_LDFLAGS指定目标平台的编译链接选项。

 	INSTALL_DIR创建目录，并设置目录权限。

 	INSTALL_DATA安装数据文件，即复制并设置权限为0644。

 	INSTALL_CONF安装配置文件，即复制并设置权限为0600。

 	INSTALL_BIN安装可执行程序，即复制并增加执行权限，设置权限表示为0777。

5.1.2　变量定义

OpenWrt预定义了很多变量，这些变量减少了使用者的开发代价，但需要使用者按照语义进行使用。Makefile的常见变量含义如表5-1所示。

表5-1　Makefile变量定义

 	 变　　量

 	 含　　义

 	 示　　例

 	 PKG_NAME

 	 软件包的名称，可以通过menuconfig和ipkg查看到

 	 dnsmasq

 	 PKG_VERSION

 	 上游软件的版本号，为2.73

 	 2.73

 	 PKG_RELEASE

 	 Makefile的版本号

 	 1

 	 PKG_SOURCE

 	 原始的源代码文件名

 	

 	 PKG_SOURCE_URL

 	 用于下载源码的地址（目录）

 	 http://thekelleys.org.uk/dnsmasq

 	 PKG_MD5SUM

 	 软件包的MD5值，用于验证下载的文件是否正确

 	 b8bfe96d22945c8cf4466826ba9b21bd

 	 PKG_LICENSE

 	 这个软件的许可协议，开源软件的许可证以GPL家族最多

 	 GPL-2.0

 	 PKG_LICENSE_FILES

 	 许可协议文件，是指代码目录下的文件名，一般均为COPYING

 	 COPYING

 	 PKG_BUILD_DIR

 	 软件包的编译目录

 	

 	 PKG_INSTALL

 	 设置为1将调用软件包自己的“make install”，安装目录前缀为PKG_INSTALL_ DIR

 	 1

 	 PKG_BUILD_PARALLEL

 	 是否可以并行编译

 	 1

 	 PKG_CONFIG_DEPENDS

 	 编译依赖，指定哪些选项依赖本软件包

 	

 	 PKG_INSTALL_DIR

 	 当调用原始软件包“make install”时的安装目录

 	

 	 PKG_SOURCE_PROTO

 	 用于下载的传输协议（git、svn），如果为压缩包则不用指定

 	

 	 PKG_SOURCE_SUBDIR

 	 下载目录，如果下载传输协议为“svn”或“git”时必须指定。例如："PKG_SOURCE_ SUBDIR:=$(PKG_NAME)-$(PKG_VERSION)"

 	

 	 PKG_SOURCE_VERSION

 	 下载协议为“git”时必须指定，指定的提交哈希点将会被检出

 	

 	 PKG_MAINTAINER

 	 维护者的姓名和邮件地址

 	

 	 PKG_BUILD_DEPENDS

 	 软件包编译依赖，即在这个包编译之前编译，但是在运行时不需要，和DEPENDS有相同的语法

 	

“BuildPackage”是在包含头文件“include/package.mk”中定义的。BuildPackage仅仅需要一个直接参数——要编译的软件包名称。在这个例子中传递了3个软件包名称作为参数，分别为dnsmasq、dnsmasq-dhcpv6和dnsmasq-full。所有其他信息都是从上面的变量定义和宏定义块中获取的。

5.1.3　软件包定义

一些宏定义以“Package/”开头，Package开头的定义用于“make menuconfig”选择及编译生成软件包。另外一些宏定义为“Build/”开头，这些用于代码编译。OpenWrt的每一个软件代码包只有一个Makefile文件。通常编译过程都是一样的，只是中间的编译参数有所不同，因此只有一个全局“Build”定义。但你可以将一个源代码包分割为多个安装包。你可以增加许多软件安装包“Package/”定义来多次调用BuildPackage，这样就可以从单个源代码编译出来多个软件安装包。dnsmasq软件就定义了3种软件安装包，即dnsmasq、dnsmasq-dhcpv6和dnsmasq-full。

软件包定义用于编译前的软件包选择和编译后的IPKG安装包生成。这些设置的参数传递给buildroot进行交叉编译，buildroot是交叉编译环境的统称。这些是在menuconfig和生成的IPKG安装包实体中显示的。在软件包“Package/”定义下你需要给下列变量赋值。软件包Package选项见表5-2。

 	SECTION：软件包的类型，如network、Sound、Utilities或Multimedia 等。

 	CATEGORY：在menuconfig中显示到菜单分类中。

 	TITLE：标题，是软件包的简短描述。

 	URL：软件包的原始网站地址，可以在这里找到该软件。

 	MAINTAINER：维护者的姓名和邮件地址。一般为这个软件包作者的邮件地址。

 	DEPENDS：（可选）依赖项，需要在本软件包之前编译和安装的软件包。

表5-2　软件包Package选项

 	 安装包选项

 	 是否必需

 	 含　　义

 	 Package/<>

 	 是

 	 定义软件包的描述信息，例如网站地址和menuconfig中的菜单分类等

 	 Package/<>/Default

 	 可选

 	 软件包的默认选项

 	 Package/<>/description

 	 是

 	 软件包的详细描述

 	 Package/<>/install

 	 是

 	 复制文件到ipkg目录中，使用$(1)代表ipkg的目录，在源代码中使用相对目录。编译生成的安装文件由$(PKGINSTALL DIR)目录下复制到ipkg的目录下

 	 Package/<>/config

 	 可选

 	 根据软件包的选择对编译选项进行定义

 	 Package/<>/conffiles

 	 可选

 	 定义本软件包的运行配置文件列表，一行一个文件

 	 Package/<>/preinst

 	 可选

 	 这是在安装之前实际执行的脚本，不要忘了包含#!/bin/sh。如果你需要中止安装就返回false

 	 Package/<>/postinst

 	 可选

 	 在安装完成后执行的脚本，例如启动程序。不要忘了包含#!/bin/sh

 	 Package/<>/prerm

 	 可选

 	 在删除之前执行的脚本，例如停止程序的执行。不要忘了包含#!/bin/sh。如果需要中止删除就返回false

 	 Package/<>/postrm

 	 可选

 	 在删除之后执行的脚本，不要忘了包含#!/bin/sh。如果需要中止删除就返回false

注意，在模块移植时请将<>替换为你自己的软件包名称。

5.1.4　构建

这是软件包模块的编译步骤，通常包含准备（Prepare）、配置（Configure）、编译（Compile）和安装（Install）等4步。这部分在构建时都是可选的，因为OpenWrt已经制作了通用的模板，适合大多数模块来编译使用。dnsmasq软件就是采用默认的步骤，但指定了编译选项，例如设置MAKE_FLAGS变量指定编译选项，CONFIGURE_ARGS变量用于指定配置选项。这些变量都在“package-defaults.mk”文件中定义，我们可以在软件包的Makefile中修改它，构建步骤如表5-3所示。

表5-3　软件包构建步骤

 	 Build步骤

 	 是否必需

 	 含　　义

 	 Build/Prepare

 	 可选

 	 一组用于解包及打补丁的命令，也可以不使用

 	 Build/Configure

 	 可选

 	 如果源代码不需要configure来生成Makefile或者是通用的configure脚本，就不需要这部分。否则就需要你自己的命令脚本或者使用"$(call Build/Configure/Default, FOO=bar)"增加额外的参数传递给configure脚本

 	 Build/Compile

 	 可选

 	 编译源代码，在大多数情况下应该不用定义而使用默认值。如果你想传递给make特定的参数，可以使用“$(call Build/Compile/Default, FOO=bar)”

 	 Build/Install

 	 可选

 	 安装编译后的文件，默认是调用make install，如果需要传递指定的参数，使用$(call Build/Install/Default,install install-foo)。注意你需要传递所有的参数，要增加在“install”参数后面，不要忘了“install”参数

 	 Build/InstallDev

 	 可选

 	 例如静态库和头文件等，但是不需要在目标设备上使用

在dnsmasq模块中并没有对Build进行定义，如果在模块移植中需要对Build进行定义，请参考iproute2模块定义（package/network/utils/iproute2/Makefile）。

5.2　HelloWorld

任何一门编程语言都有一个入门HelloWorld程序，本书也提供了一个HelloWorld程序供路由器开发入门使用。我们实现一个在路由器启动后访问指定网站的功能，这样就可以统计路由器的启动次数。网站地址可以在配置文件中进行自定义配置，这个网址通过UCI 编程接口读取配置文件来实现。访问指定网站功能通过命令行工具wget来实现。但如果其他人也使用wget来访问服务器，这样就不能区分是路由器行为还是其他应用软件的行为，因此我们修改了代理字符串来作为我们的自定义字符串，这样就可以和默认的访问行为区分开来。

为了防止某些小区在断电并自动启动后，均立即访问服务器，对服务器产生瞬间流量冲击，因此路由器启动后产生一个随机延迟时间，然后再访问服务器。这个时间可以通过配置文件设置，假如设置为100秒，则访问服务器时间就为1～100秒的随机值。代码实现如示例5-2所示。

示例5-2：

// Copyright (C) 2015 zhangyongzhi

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include "uci.h"

//根据选项来访问服务器。

struct Hello

{

 char agent[50]; // 代理字符串。

 char url[256]; // 访问的url。

 int delay; // 启动后延迟多长时间访问。

};

int getValue(struct uci_context *ctx, char *key, char*value, int n)

{

 char strKey[100];

 struct uci_ptr ptr;

 snprintf(strKey, sizeof(strKey), "hello.globe.%s",key);

 if (uci_lookup_ptr(ctx, &ptr, strKey, true) == UCI_OK)

 {

 printf("%s\n", ptr.o->v.string);

 strncpy(value, ptr.o->v.string, n-1);

 }

 return 0;

}

int read_conf(struct Hello *hello)

{

 struct uci_context *ctx = uci_alloc_context();

 if (!ctx)

 {

 fprintf(stderr, "No memory\n");

 return 1;

 }

 getValue(ctx, "agent", hello->agent, sizeof(hello->agent));

 getValue(ctx, "url", hello->url, sizeof(hello->url));

 char delay[20];

 getValue(ctx, "delay", delay, sizeof(delay));

 hello->delay = atoi(delay);

 uci_free_context(ctx);

 return 0;

}

struct Hello hello;

int main(int argc, char* argv[])

{

/*

 char agent[50] = "openwrt";

 char url[100] = "http://bjbook.net/bk/openwrt";

*/

 //从/etc/config/hello中读取参数

 read_conf(&hello);

 printf("agent=%s\n", hello.agent);

 printf("url=%s\n", hello.url);

 printf("delay=%d\n", hello.delay);

 char cmd[512] = {0};

 snprintf(cmd, sizeof(cmd), "wget --user-agent=%s %s",

 hello.agent, hello.url);

 //system("wget --user-agent=agent-string http://bjbook.net/bk/ openwrt");

 printf("cmd=%s\n", cmd);

 //srand(time(NULL));

 int delay_time = rand() % hello.delay;

 printf("delay_time=%d\n", delay_time);

 sleep(delay_time);

 system(cmd);

 return 0;

}

5.2.1　目录结构

我们创建的目录结构如示例5-3所示。files目录包含配置文件和初始化脚本，hello.conf为配置文件，在安装后放在/etc/config/目录下的hello文件中。hello.init用于控制进程启动的初始化脚本。

示例5-3：

.

|-- files

| |-- hello.conf

| `-- hello.init

|-- Makefile

`-- src

 |-- hello.c

 `-- Makefile

Makefile包含编译及安装指令，控制着代码在OpenWrt环境下的编译和生成安装包。和通常的Makefile不太一样，我们的Makefile像是变量定义及函数，因为我们在OpenWrt工程下编译，这样在针对多平台时是最方便的。src目录保存C语言源代码，我们是自己开发的源代码，因此代码放在src目录下。

5.2.2　Makefile

在package目录下增加一个模块目录hello，然后通过Makefile来控制编译。示例5-4所示为helloworld模块的Makefile。

示例5-4：

include $(TOPDIR)/rules.mk

PKG_NAME:=hello

PKG_RELEASE:=1.0

PKG_BUILD_DIR := $(BUILD_DIR)/$(PKG_NAME)

PKG_CONFIG_DEPENDS :=

include $(INCLUDE_DIR)/package.mk

define Package/hello

 SECTION:=net

 CATEGORY:=Network

 TITLE:=Hello utility

 DEPENDS:=+libuci

 URL:= httt://bjbook.net/openwrt

 MAINTAINER:=zhang <zyz323@163.com>

endef

define Package/hello/description

 This is Route Hello World OpenWrt.

endef

define Build/Prepare

 mkdir -p $(PKG_BUILD_DIR)

 $(CP) ./src/ * $(PKG_BUILD_DIR)/

endef

define Package/hello/install

 $(INSTALL_DIR) $(1)/etc/config

 $(INSTALL_CONF) ./files/hello.conf $(1)/etc/config/hello

 $(INSTALL_DIR) $(1)/etc/init.d

 $(INSTALL_BIN) ./files/hello.init $(1)/etc/init.d/hello

 $(INSTALL_DIR) $(1)/usr/sbin

 $(INSTALL_BIN) $(PKG_BUILD_DIR)/hello $(1)/usr/sbin/hello

endef

$(eval $(call BuildPackage,hello))

示例5-4首先包含rules.mk文件，接着将软件包名称定义为“hello”，并设置版本编号为“1.0”，这样编译出来的软件包将包含字符串“hello_1.0”。

在软件包定义中，我们设置软件包分类为“Network”。我们在编译前进行配置时，可以在网络分类中找到它。

我们设置依赖变量DEPENDS为“+libuci”，因为我们的C语言代码里面调用了UCI的接口函数，否则我们在编译时会遇到“libuci.so”找不到类似的错误信息。依赖是指哪些包必须在这个软件包之前编译和安装。注意，是使用+包名称，“+libuci”表示如果选择本软件包时，libuci软件包也会被自动选择。

“Build/Prepare”定义了如何准备编译本软件包，这里创建了编译目录，然后将代码复制到编译目录下。

“Package/hello/install”定义了如何安装本软件包。共有3个文件需要安装，这里创建了3个目录，然后将3个文件分别复制到各自的目录下。首先将配置文件“hello.conf”复制到配置目录“/etc/config”下，并重命名为hello。接着将启动脚本“hello.init”复制到启动目录“/etc/init.d”下，并重命名为hello，最后将编译生成的可执行程序hello复制到“/usr/sbin”目录下。$(1)表示传入的第一个参数，在安装时，通常为根目录。通常新增一个模块的主要步骤如下。

（1）在package下增加一个目录（例如hello）。

（2）添加src目录和files目录。

（3）src目录存放模块源码。

（4）files存放模块的配置文件及启动脚本等。

（5）在hello下增加Makefile。在Makefile中增加编译脚本和安装脚本。

例如：某公司想了解已售出路由器的使用情况，如路由器的启动次数。我们在每次启动时将访问指定服务器。Agent为第一次启动时生成的随机数和指定的代理固定字符串组合。这样简单修改示例代码的配置文件即可实现。大多数服务器已有记录访问日志功能，只需统计服务器的访问日志即可实现路由器启动次数的统计。

5.2.3　编译

OpenWrt支持编译单个软件包，这样可以非常方便地编译单个软件包来定位问题。输入以下命令进行编译：

make package/hello/build

输入以下命令生成安装包：

make package/hello/install

快速重新进行整个编译过程。这样依次调用clean、compile和install。另外不管软件包的位置在什么地方，都是同样的编译命令。

make package/hello/{clean,compile,install}

编译完成，生成安装文件为bin/x86/packages/helloroute_1.0_x86.ipk。

如果我们要加入平台编译过程中，可以在make menuconfig时选择hello模块，再在隐藏的配置文件“.config”中会增加一项“CONFIG_PACKAGE_hello=y”，这样就可以在编译整个系统时自动编译生成我们的软件模块。

如果遇到编译错误，使用make V=s即可看到详细的编译过程和错误信息。

配置文件的格式在4.1.2节中定义，我们这里只使用C语言程序调用UCI库来获取配置。

特别注意：

 　

 如果运行时遇到libc找不到的错误，是因为编译时的Makefile编写不正确，使用了宿主机的编译指令导致使用宿主机的libc.so.6动态链接库。

5.3　软件启动机制

init进程是所有系统进程的父进程，它被内核调用起来并负责调用所有其他的进程。如果任何进程的父进程退出，init进程将成为它的父进程。但是init进程是如何将其他进程调用起来的呢？

内核启动完成后读取/etc/inittab文件，然后执行inittab中的sysinit所指的脚本。OpenWrt的inittab文件内容如下：

::sysinit:/etc/init.d/rcS S boot

::shutdown:/etc/init.d/rcS K shutdown

::askconsole:/bin/ash --login

内核启动完成后首先调用“/etc/init.d/rcS”，然后再由rcS逐个启动各个软件进程。

如果按照通常的简单做法，我们会将每一个待启动的程序启动命令按行放入rcS文件中，并顺序执行。这种实现方法在软件启动进程列表不变时工作得非常好，如果需要动态修改，则不容易以程序来控制。OpenWrt引入了一个便于控制的启动机制，这种机制是在/etc/rc.d目录下创建每个软件的软链接方式，由rcS脚本在该目录读取启动命令的软链接，然后启动软链接所指向的程序，由于每一个软链接均包含一个数字，这样就可以按照数字顺序读取并进行启动了。

所有软件的启动脚本都放在/etc/init.d/目录下，如果需要随系统启动，将启动脚本链接到/etc/rc.d/S*下即可。

系统启动时将执行/etc/init.d/rcS脚本，并传递两个参数S和boot。S表示软件启动模块，是和K（软件关闭）相对应的；boot则表示首次启动。rcS脚本通过run_scripts函数来启动软件，将每一个以/etc/rc.d/S开头的脚本按照数字顺序传递boot参数并调用。这些启动脚本通常包含start、stop和restart这3个函数。

下面我们通过HelloWorld的初始化脚本来理解软件模块的启动脚本，启动文件是/etc/init.d/hello。文件内容如示例5-5所示。

示例5-5：

#!/bin/sh /etc/rc.common

hello script

Copyright (C) zhangyz OpenWrt.org

START=15

STOP=85

start() {

 echo "start HelloRoute!"

 hello

}

stop() {

 echo "stop HelloRoute!"

 #hello -t

}

EXTRA_COMMANDS="custom"

EXTRA_HELP=" custom Help for the custom command"

custom() {

 echo "custom command"

}

这个初始化脚本是一个shell脚本，包含变量定义和函数定义。这个脚本没有解析自己的命令行参数，这是通过“/etc/rc.common”脚本回调来完成的。第一行是特殊的注释行，表示使用“/etc/rc.common”来提供一些基本函数，包含主函数及默认功能以及检查脚本执行等。

脚本的执行顺序通过START和STOP变量来定义。改变之后再次运行/etc/init.d/hello enable才会再次生效。这将删除以前创建的启动链接，然后再根据新的变量定义创建链接。创建的启动链接保存在“/etc/rc.d”目录下。脚本中最重要的函数是start和stop，这两个函数决定如何启动和停止服务。最后是增加扩展命令custom，仅仅输出扩展命令信息，并没有实际功能。

程序的执行流程由rc.common来控制，下面我们来分析一下rc.common以理解其功能。rc.common提供可利用的命令如表5-4所示。其中定义了start和stop函数，实现为空，供应用软件重新实现，相当于C++语言中的虚函数。enable、disable和enabled函数提供自启动状态的设置和查询。help函数提供命令帮助信息。

表5-4　rc.common函数含义

 	 函　　数

 	 含　　义

 	 start

 	 启动服务。相当于C++语言中的虚函数，通常情况下每一个服务均需重写该函数

 	 stop

 	 关闭服务。相当于C++语言中的虚函数，通常情况下每一个服务均需重写该函数

 	 restart

 	 重启服务。调用stop函数退出进程，然后再调用start函数启动进程

 	 reload

 	 重新读取配置，如果读取配置失败则调用restart函数重启进程

 	 enable

 	 打开服务自启动，即将启动脚本软链接文件放在/etc/rc.d目录下

 	 disable

 	 关闭服务自启动，删除在/etc/rc.d的软链接文件

 	 enabled

 	 提供服务自启动的状态查询

 	 boot

 	 调用start函数

 	 shutdown

 	 调用stop函数

 	 help

 	 输出帮助信息

在这个例子中，这个命令在启动时取代start函数而执行boot函数，如果boot函数没有被重新定义，将执行rc.common中预定义的boot函数，boot函数再次调用start函数。如果你不带参数运行命令，将会自动调用help函数输出帮助信息。

启动和停止命令通常在init序列中执行，在系统启动时rcS仅仅执行在/etc/rc.d目录下的脚本，我们的启动脚本作为软链接放在这里。使用enable或disable命令可以自动完成这些任务。如示例5-6所示，通过调用“enable”命令可安装成功。START=15意味着启动文件将创建软链接“/etc/rc.d/S15hello”来指向“/etc/init.d/hello”，也就是说，它在START=14之后启动，在START=16之前启动。

如果多个初始化脚本有相同的启动优先值，则调用顺序取决于启动脚本名称的字母顺序。另外使用opkg命令安装软件时一般均有执行权限，如果是自己手动新增脚本，不要忘记确认脚本是否有执行权限（通过运行chmod +x /etc/init.d/hello命令来增加执行权限）。

示例5-6：

#通过传递“enable”参数打开自启动功能

root@zhang:/# /etc/init.d/hello enable

示例5-6将在/etc/rc.d目录下创建一个软链接。这些命令在系统启动和关闭时自动执行。这使我们的应用程序作为一个系统服务，在设备上电时启动，关闭时停止。同样，可以通过传递“disable”参数来关闭随系统启动，这将启动软链接移除。当前状态查询传递“enabled”参数，如示例5-7所示。

示例5-7：

root@zhang:/# /etc/init.d/hello enabled

root@zhang:/# echo $?

这个命令将返回是否随系统启动的信息，如果随系统启动，则返回0，否则返回1。返回值通过“$?”变量来查询。

请注意很多守护进程包含在官方发行版中，默认都会创建自启动链接文件。但是否启动成功并提供服务要受到配置文件的控制。例如守护进程cron默认会调用启动脚本，但因为判断没有定时任务的配置，启动进程将结束。因此第一次编辑crontab文件后，不会有实质的定时动作执行，你需要通过“/etc/init.d/cron　start”再次启动定时任务进程。

5.4　补丁生成及应用工具

在开源软件开发中，一般有很多开发人员协作开发，但这些人处于世界各地。这就会遇到代码如何集成到一起的问题。未参与过软件开发的新手通常会认为这不是问题，然后将所有修改文件一块打包为“.tar.gz”的压缩文件，并通过邮件发送给开源社区集成人员。这时开源社区的集成人员一般会直接回复“请看如何提交代码文档”。因为集成人员无法确认你基于哪个版本在何处做了修改，因为软件代码始终在持续修改中。

开源社区使用补丁来进行提交和管理代码，常用的代码管理工具有SVN及Git，但这两个工具均需要安装及配置，比较复杂。并且在20世纪80年代并没有这些现代化的工具，于是就产生了diff/patch工具集，这样就可以脱离手动进行对比和合并代码，极大地提高了集成效率。

5.4.1　补丁

补丁是包含一个源码树的两个不同版本之间的差异文本文件。补丁通过“diff”程序创建。为了正确应用补丁，你需要清楚产生补丁的基础版本和所要更改的源代码的版本。

补丁有时也称为diff文件或patch文件。使用补丁文件的格式通常有两种：“统一格式”和“传统格式”。现在大多数开源项目均使用统一格式，OpenWrt也使用统一格式。统一格式保存了补丁文件的上下文信息，默认保存上下3行，便于开发人员交流使用。以下为统一格式文件包含的信息。

 	“− − −”开头表示原始文件。

 	“+++”开头表示新文件。

 	“@@”表示补丁文件区段的开始，并以“@@”结尾。中间会有4个数字，“–”开头表示原始文件的行号和显示的范围，“+”开头表示在新文件中的行号和范围。

 	开头为“+”，表示该行在原始文件中不存在，在新文件中增加。开头为“−”，表示该行在原始文件中存在，但在新文件中删除了。没有前导“+/−”字符，表示该行在原始文件和新文件中均存在，没有修改，这些用于辅助定位修改行在文件的位置。

我们以“100-fix-dhcp-no-address-warning.patch”补丁来说明文件格式含义，该文件在源码树“package/network/services/dnsmasq/patches”目录下。如图5-1所示。文件中第一行“---a/src/dhcp.c”表示原始文件A，第二行“+++/b/src/dhcp.c”表示被修改后的文件B。第3行表示在补丁文件中有A文件的从第146行开始的7行文本，有B文件的从146行开始的7行文本，并且保存在“void dhcp_packet()”函数中。

第4行到第6行为A、B文件共有的3行代码。第7行仅在A文件中存在，第8行仅在B文件中存在。9～11行为A和B均有的3行代码。

补丁文件的第12行表示另外一个差异块在void dhcp_packet()函数中，补丁文件中有A文件的从第272行开始的11行文本，有B文件从第272行开始的9行文本。补丁文件中的16、17、19和20行在A文件中存在，在B文件中不存在。21和22行在B文件中存在，在A文件中不存在。A和B两个文件均包含18行和23～25行。

[image:]

图5-1　dnsmasq补丁文件100-fix-dhcp-no-address-warning.patch

5.4.2　diff工具

diff是用来比较两个文件或目录的工具。用这个工具，你可以将自己的修改生成一个补丁文件，提交给集成团队进行代码合并。

创建补丁包时，原始文件或目录放在前面，修改后的文件放在后面。使用“diff -up”或者“diff -uprN”来创建补丁包。在创建自己的代码补丁包时，需要确定使用“统一格式”还是使用“传统格式”。Linux和OpenWrt开发社区使用“统一格式”，也就是使用diff工具的“-u”选项。

使用“-p”参数来显示每一个改变的C语言函数，这样生成diff结果补丁包时可读性更好。一般在比较文件时，会在代码包的顶层目录进行比较，这样补丁包包含了目录信息，不用再进入具体的目录来打补丁。

对单个文件创建补丁，以修改dnsmasq中的src/dhcp.c文件为例，会执行以下步骤：

SRCTREE= dnsmasq

MYFILE=src/dhcp.c

cp $SRCTREE a -a #原始文件在a目录下。

cp $SRCTREE b -a #b目录用于修改文件。

vi b/src/dhcp.c # 完成修改。

diff -up a/src/dhcp.c b/src/dhcp.c -up > zhang1.patch

创建多个文件的补丁包时，你需要首先检出一个干净版本代码，即未做任何修改的源码树，再来和自己修改的源码树（未做编译）比较，这种情况下不能在编译目录进行比较，因为编译后会生成一些编译信息文件。比较命令参考如下：

 diff -uprN a b > zhang2.patch

diff [命令行选项] 原始文件目录 新文件目录

diff是按行来比较两个代码文件的工具，至少需要两个参数，原始文件在前，修改后文件放在后面。比较结果将输出到屏幕上，使用重定向符号“>”输出到文件中。以下为几个常用选项参数含义。

 	-p --show-c-function：在每一个更改处显示C函数，方便程序员合并及定位代码。　

 	-u -U NUM　--unified[=NUM]：按统一格式输出，并且在补丁中输出前后NUM行（默认3行）。

 	-N --new-file：对于不存在的文件，认为是空白文件和新增文件，即在补丁文件里面包含新的文件内容。

 	-r --recursive：递归比较子目录，很多文件在不同目录里修改时使用。

5.4.3　patch工具

如何应用补丁？patch工具提供了这样的功能。patch程序读取diff文件，然后将补丁文件中的描述应用在源代码树上。补丁通常应用在源代码目录的父目录上。以Linux内核源代码为例，这意味着包含在补丁文件中的路径包含了补丁文件所在的内核源代码目录（或者其他目录名，如“a/”“b/”），这将不能匹配在本地机器上内核文件的源代码路径，但是查看产生补丁的内核版本非常有用，你应当更改工作目录到内核源代码目录路径，在应用补丁文件时从patch文件中剥去路径的第一个元素（使用patch命令的-p1参数）。应用补丁命令如下：

 patch -p1 < ../patch-x.y.z

恢复先前应用的补丁，使用-R参数来打补丁，即返回到应用补丁之前代码的命令为：

 patch -R -p1 < ../patch-x.y.z

如何将补丁文件传递给“patch”程序？通常有3种不同的方法可以采用。第一种通过标准输入stdin来传递文件给patch程序。例如：

 patch -p1 < path/to/patch-x.y.z

第二种方法是使用-i参数来传递补丁文件名，例如：

 patch -p1 -i path/to/patch-x.y.z

第三种方法是使用管道，将补丁文件输出，然后将输出使用管道定向到patch程序中。例如：

cat path/to/patch-x.y.z | patch -p1

如果补丁文件是使用gzip或bzip2压缩的，在应用补丁前不用解压缩。你可以使用下面的命令：

 zcat path/to/patch-x.y.z.gz | patch -p1

 bzcat path/to/patch-x.y.z.bz2 | patch -p1

patch的另外一个经常使用的参数是-s，这样打补丁时输出会很少，将只有出错信息。这可以防止错误消息淹没在输出中。还有一个常用参数是“--dry-run”，即仅仅输出将要发生的事情且不会做任何实际修改。最后“-verbose”会告诉patch输出当前尽可能多的信息。常用可选参数含义如下。

 	-f：强制打入补丁，不用询问。

 	-p1：略过一层前导目录。

 	-E：打完补丁后，如果文件内容为空，会将其移除。

 	-d：表示在指定目录下执行。

 	-R：这个选项用于删除补丁，如果该补丁是交换了原始和新的文件创建的，那使用该选项就是应用补丁。

 	--dry-run：试打入，输出打入这个补丁之后的结果，但是不做任何真正修改。

 	--verbose：会告诉patch输出当前尽可能多的信息。

打补丁时的常见情况

当使用patch工具应用补丁文件时，它将验证文件的正确性。首先检查文件是不是合法的补丁文件，然后检查匹配补丁文件提供的上下文。如果patch工具遇到了一些问题，它有两种选择：拒绝修改并结束整个过程；或者是找到合并的位置并做微小改变之后应用这个补丁。

一个常见情况是补丁不能精确定位代码行位置，patch工具将试图修正位置。例如，所有的上下文匹配，但是代码行匹配有些微小的位置不同。这些是很可能发生的，例如补丁是在一个文件的中间部分做了修改，但是由于一些其他的原因，文件在开始部分做了增加或减少。在这种情况下仅仅上移或下移一点即可。patch工具将调整行号并应用补丁。

如果应用补丁时，位置有调整将会出现“fuzz”提示，这时你就需要检查程序处理的这一处修改是否正确，大多数情况下都是正确的。但有时合并结果就是错误的，我就曾经遇到过，因为大多数函数的最后3行附近都是一样的，在合并时位置调整到另外的函数中了。如果patch遇到不能用“fuzz”提示来修改，它就会彻底拒绝应用这个修改并保存到“.rej”文件中。然后查看这个文件并分析不能应用的原因。这样你就可以手动按照你的要求来合并代码。

如果patch停止执行并输出了一个“File to patch:”的提示，那就是补丁找不到需要打补丁的文件。最有可能的情况是你忘记指定-p1或者使用了错误的目录。少数时候，你会发现需要使用-p0，而不是-p1，这可能是某位程序员没有按照要求提交补丁文件。

如果执行过程中遇到了类似“Hunk #1 succeeded at 2345 with fuzz 1 (offset 10 lines). ”的消息，这意味着补丁调整了更改的位置（这个例子中移动了10行）。结果是否正确需要进行检查，这种情况出现在你想在产生补丁包的不同版本上应用补丁的时候。

如果出现类似“Hunk #3 FAILED at 3456.”的提示，这意味着补丁不能正确应用，将产生一个更改失败的“.reg”文件，也会有一个没有任何修改原始内容的“.orig”文件，这时你就需要手动合并代码。这种情况一般是由于两个程序员同时修改同一个文件的相同或相近的代码导致的。

如果出现“Reversed (or previously applied) patch detected!　Assume -R? [n]”的提示，那是patch工具探测到已经包含这个补丁的修改。如果是你重新应用这个补丁，选择“n”退出这个过程。如果你是以前应用过这个补丁，现在想还原，但是忘了指定“-R”选项，那就输入“y”来还原代码。这也发生在创建补丁的过程中颠倒了原始目录和修改目录的情况，在这种情况下还原其实是应用补丁。

如果出现类似的一则消息“patch: **** unexpected end of file in patch”或“patch unexpectedly ends in middle of line”，则意味着检测到补丁文件中的错误。无论是在下载过程中损坏了，还是没有解压缩补丁，或者你正在使用一个邮件客户端修改补丁文件。例如将一个长行分成两行，往往这些警告很容易修改，例如连接被分开的两行或者重新进行下载。我曾经遇到一个问题是在提交html格式的帮助文件时，html文件被感染了病毒，在每一个html文件内容后面加上了访问广告网站的链接，这显然是没有认真检查提交的补丁文件内容。

5.5　参考资料

 	如何将你的修改提交给Linux内核社区（https://www.kernel.org/doc/Documentation/SubmittingPatches [2014-10-31]）。

 	如何将你的修改提交给OpenWrt社区（https://dev.openwrt.org/wiki/SubmittingPatches [2014-10-31]）。

 	Init Scripts（http://wiki.openwrt.org/doc/techref/initscripts [2016-02-06]）。

第6章GDB调试

在开发C语言应用程序时，经常会碰到内存使用错误导致的进程崩溃退出，这时我们就需要一个工具来定位发生崩溃的代码所在位置以及当时的程序变量内容和调用先后顺序等，GDB工具就在这种情况下应运而生。本章首先讲述了如何使用GDB启动程序调试，然后讲述了在GDB中如何设置断点以及查看程序的运行状态，最后讲述了使用GDB对运行中程序的执行流程进行修改，这样可以以最快的速度定位问题所在。

6.1　什么是GDB

GDB（GNU Project debugger）是GNU项目开发的针对C/C++语言的代码调试工具，它可以让你看到一个程序执行时里面发生了什么事情，甚至是程序在崩溃时正在执行的语句和状态。

GDB主要有4个功能来帮助你捕捉发生BUG时的状态。

（1）启动应用程序，可以按照调试人员自定义的要求随心所欲地运行程序，例如设置参数和环境变量。

（2）可让被调试的程序在你所指定的调试断点处停住（断点可以是条件表达式）。

（3）当程序停止执行时，可以检查此时程序中所有的状态。

（4）动态改变你的程序。在程序运行中改变变量值和代码执行顺序，这样你就可以尝试修改这个BUG。

被调试程序可以是基于C、C++、Objective-C或Pascal等许多其他语言编写的。这些程序可以和GDB在同一台计算机上（本地）或在不同的计算机上（远程）。GDB可以运行在Linux和Windows等操作系统上。

如果可执行程序增加可调试功能，需要在编译时增加-g选项，然后使用命令“gdb”启动应用程序。常用调试命令含义如表6-1所示。

表6-1　常用GDB命令

 	 命　　令

 	 含　　义

 	 示　　例

 	 break

 	 在指定的位置或函数处设置断点

 	 break main

 	 run

 	 开始执行调试程序

 	 run

 	 bt

 	 查看程序运行栈信息

 	 bt full

 	 continue

 	 在程序中断之后继续执行程序

 	 c

 	 next

 	 单步执行，如果是函数则执行完这个函数

 	 next

 	 step

 	 单步执行，如果是函数则进入函数内部

 	 step

 	 set args

 	 设置启动参数set args

 	 set args abc

 	 print

 	 输出表达式或变量值

 	 print argc

 	 quit

 	 退出程序调试

 	 quit

 	 list

 	 输出现在执行程序停止位置附近的代码

 	 list

 	 help

 	 输出GDB命令的帮助信息

 	 help next

6.2　如何启动程序调试

为了能高效地调试程序，你需要在编译时产生调试信息。调试信息存储在对象文件中，它描述了每一个变量或函数的数据类型，以及源代码行和执行代码的地址之间的关系。

在编译时，指定“-g”选项即可产生调试信息。在把程序交给客户时通常会使用“-O”选项进行编译优化，一些编译器不能同时处理“-g”和“-O”选项，GNU的C/C++编译器支持同时带有两个参数。一般在研发过程中，我们推荐始终使用“-g”参数来编译你的程序，因为你不知道程序何时会出现问题。编译命令参考如下：

g++ -g hello.c -o hello

6.2.1　使用GDB启动程序

最常见的启动GDB的方式是带有一个可执行程序名称的参数，例如：

gdb hello

也可以带两个参数来启动GDB，分别为可执行程序和一个进程崩溃后生成的文件。例如：

gdb hello core

调试正在运行的程序时，则带上进程号，程序进程号使用ps命令来查看。例如：

gdb hello 1234

或者启动后，再使用attach命令来关联上正在运行的待调试进程。使用detach命令来和关联的进程分离。退出GDB使用“quit”命令。启动GDB后，在GDB中并不会将你的进程启动，在GDB中使用run命令带上参数来启动。如果不带参数，将是上一次运行时的参数或者是使用“set args”设置的参数。

set args用于指定程序启动时的参数。如果没有跟着参数将设置参数为空。

show args用于显示程序启动时的参数。

GDB的内部命令是在启动GDB后输入一行字符并跟一个Enter键来执行，命令名的长度没有限制。通常命令名可以跟一个或多个参数，参数含义依赖于这个命令。有些命令不需要任何参数。

如果只记住了命令名的前缀，则输入制表键可以补全命令，如果不能补全则列出所有可选的命令。通常仅输入Enter键是指重复先前执行的命令，但是一些特定的命令不会这样重复执行，例如run命令。

6.2.2　环境变量设置

(gdb)show paths：显示程序的查找路径列表（系统的PATH环境变量）。

(gdb) show environment HOME：显示系统的环境变量，例如这里是显示HOME环境变量。

(gdb)set environment varname [=value]：设置环境变量，这个环境变量仅仅在GDB启动的程序中有效，不会影响到系统的环境变量。例如进行如下设置：

(gdb)set env CONFIG_DIR = /etc/config

使用unset environment varname来取消环境变量设置。

6.2.3　设置日志文件

如何将当前进行调试过程中的GDB输出保存下来？可以通过set logging命令进行设置，这在调试时非常有用，可以记录调试的过程，以供以后来分析。GDB日志文件命令如表6-2所示。

表6-2　GDB日志文件命令

 	 命　　令

 	 含　　义

 	 set logging on

 	 经屏幕输出同时输出到log文件中。默认输出为当前目录下的gdb.txt文件

 	 set logging off

 	 关闭log

 	 set logging file file

 	 默认输出为gdb.txt，这样将当前输出的默认log文件改名

 	 set logging overwrite

 	 默认情况下GDB日志输出是附加到log文件中的。设置为overwrite时，每次均重写一个全新的文件

 	 show logging

 	 输出当前日志的设置

6.2.4　获取帮助

GDB程序内置了丰富的命令使用手册，启动GDB程序后，终端使用help命令可以调出命令使用手册。不带参数的help命令列出命令的分类。GDB将所有命令分为12类。使用命令的分类作为help参数，你可以看到这个分类中所有命令的列表。最常用的几个命令分类有breakpoints、running、stack、status等。

 	breakpoints：断点命令，将程序在特定条件下停止执行。

 	running：运行程序，包含将程序关联到进程、启动进程调试、单步执行、切换执行线程等命令。

 	stack：程序运行栈相关命令，如查看运行栈、在栈中各个栈帧之间切换等。

 	status：状态查询命令，包含info和show命令。

示例6-1所示的是输出stack分类的所有命令列表。使用命令名称作为help参数将显示这个命令的所有文档描述。使用apropos命令来搜索指定关键词相关命令。

示例6-1：

(gdb) help stack

Examining the stack.

The stack is made up of stack frames. Gdb assigns numbers to stack frames

counting from zero for the innermost (currently executing) frame.

At any time gdb identifies one frame as the "selected" frame.

Variable lookups are done with respect to the selected frame.

When the program being debugged stops, gdb selects the innermost frame.

The commands below can be used to select other frames by number or address.

List of commands:

backtrace -- Print backtrace of all stack frames

bt -- Print backtrace of all stack frames

down -- Select and print stack frame called by this one

frame -- Select and print a stack frame

return -- Make selected stack frame return to its caller

select-frame -- Select a stack frame without printing anything

up -- Select and print stack frame that called this one

Type "help" followed by command name for full documentation.

Type "apropos word" to search for commands related to "word".

Command name abbreviations are allowed if unambiguous.

6.2.5　命令总结

启动调试命令如表6-3所示

表6-3　启动调试命令

 	 命　　令

 	 含　　义

 	 run

 	 启动调试程序，后面可以加启动参数

 	 attach

 	 关联到正在运行中的进程

 	 set args

 	 设置程序启动时的参数。如果没有跟着参数将设置参数为空

 	 show args

 	 显示启动参数

 	 set environment

 	 设置环境变量，这对已开始执行的程序没有影响

 	 show environment

 	 如果没有参数显示所有的环境变量

 	 unset environment

 	 取消环境变量设置，这对已开始执行的程序没有影响

 	 help

 	 获取帮助，没有参数将输出命令分类列表

 	 apropos

 	 搜索命令帮助

6.3　断点管理

在执行程序调试时，我们经常想让程序在某处停止下来，然后查看程序当时的状态，这就需要设置断点。断点是广义上的程序执行停止点，是指能导致程序停止的任何事情，可以划分为指令断点、观察点和捕获点3种情况。

6.3.1　指令断点管理

指令断点一般简称为断点，设置断点命令为break，可以缩写为b，用来在调试的程序中设置代码执行停止断点，可以设置为文件代码行或者是函数调用处。它有3个可选的参数，命令格式为：

break [LOCATION] [thread THREADNUM] [if CONDITION]

LOCATION可以是代码行号、函数名或者一个带有星号的地址。

如果指定代码行，在所指定的代码行执行前停止。如果指定函数，在函数执行入口处停止。如果指定了地址，则在指定地址处停止。如果没有参数，使用当前选择的栈帧的下一行地址，这在返回到当前的栈帧时非常有用。

THREADNUM是线程号，可以用“info threads”命令来查看线程号。CONDITION是一个布尔表达式。

tbreak用于设置一个临时断点，和“break”命令类似，唯一不同的是它所设置的断点为临时断点，当命中这个断点后将删除断点。

显示断点信息命令为info break [n…]，运行这一命令将输出所有的指令断点、观察点和捕获点。有一个可选的参数，这意味着可以仅输出指定的断点、观察点或捕获点。对于每一个断点，输出内容如图6-1所示。

 (gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x080489c6 in main

 at hello.c:50

图6-1　断点信息

 	断点编号：GDB将指令断点、观察点、捕获点三者统一顺序编号，编号从1开始。

 	类型：是指令断点还是观察点，还是捕获点。

 	部署（Disposition）：当执行到断点以后，是删除断点还是不再运行等。

 	使能状态：断点的使能状态，“y”表示断点启用，“n”表示断点不生效。

 	地址：断点的内存地址。如果断点的地址是未知的，显示“<PENDING>”。

 	位置（What）：断点在程序源代码中的位置，例如文件和行号。

此外，还会显示断点的命中次数。这在调试时非常有用，可以查看代码行的执行次数。在调试时，如果多次中断，我们在下次调试时，可以忽略前面命中的断点。

上面说了如何设置程序的断点。如果你觉得已定义好的断点不会再使用，你可以使用clear、delete这两个命令来进行删除。

clear带有一个可选参数，参数可以为代码行号、函数名和带有星号的地址。如果指定了行号，这一行的所有断点将被清除；如果指定了函数，则函数起始位置的所有断点将被删除；如果指定了地址，则该地址位置的断点均被删除。如果没有参数，则在所选择的栈帧当前位置删除所有断点。delete用于删除断点，如果不指定参数，将删除所有的断点。参数为断点编号或者为断点范围。

比删除断点更好的方法是disable。这样断点将不生效但断点位置等信息得到了保留，你可要在稍后再次启用它。命令格式如下：

disable [breakpoints] [range...]

breakpoints为断点编号。如果什么都不指定，表示使所有的断点不生效。

enable [breakpoints] [range...]

启用所指定的断点，breakpoints为断点编号。以下举例说明用法。

 	(gdb) delete breakpoint 1

该命令将会删除编号为1的断点，如果不带编号参数，将删除所有的断点。

 	(gdb) break hello.c:60

该命令在文件hello.c的60行代码处设置行断点。如果是指定当前文件的代码行，可以不指定文件名。

 	(gdb) break 67 if argc==2

该命令设置了一个条件断点，当argc为2时，执行到67行会触发这个断点。

 	(gdb) disable breakpoint 1

该命令将禁止编号为1的断点，这时断点信息的使能域（Enb）将变为n。

 	(gdb) enable breakpoint 1

该命令将允许编号为1的断点启用，这时断点信息的使能域（Enb）将变为y。

 	(gdb) clear 50

50为源文件的行号，该位置的所有断点将被删除。

6.3.2　观察点管理

观察点是一种特殊的断点，如果表达式修改了值程序执行就停止了。表达式可以是变量，也可以是几个变量组合，有时会叫作数据断点。需要特别的命令来设置，其他对观察点的管理命令和指令断点类似。

 	watch：为表达式设置一个观察点。一旦表达式值发生变化时，马上停止执行程序。

 	rwatch：设置读观察点。当读到表达式的值时，程序停止执行。

 	awatch：设置访问观察点。当表达式读或写时，将停止执行程序。

 	info watchpoints：列出当前设置的所有观察点。格式与内容和查看指令断点的内容相同。

6.3.3　捕获点管理

你可以用捕获点调试某些程序事件（event），例如C++异常、共享库的加载、系统调用和进程启动等。使用catch命令来设置捕获点后，当事件发生时，程序会停止执行。常见的事件有以下一些内容。

 	throw：一个C++抛出的异常。

 	exec：当程序执行exec函数创建进程时。

 	syscall：参数为捕获系统调用它们的名字或编号。如果没有给出参数则每一个系统调用将都被捕获到，例如调用open函数打开文件时。

 	load：加载共享库时。

 	fork：当程序调用fork创建进程时。

另外有tcatch命令，是设置临时捕获点，即这个捕获点被执行到时会自动删除，仅被执行到一次。以下举例说明catch的用法。

 	(gdb) catch syscall open

设置在系统调用open函数时停止执行。

 	(gdb) catch fork

设置在创建新进程时停止执行。

6.3.4　单步调试

当你的程序被停止执行时，你可以用continue命令恢复程序的运行直到程序结束，或下一个断点到来。也可以使用step或next命令单步跟踪程序。

continue [ignore-count]：从断点停止的地方恢复程序执行。命令可以缩写为c。ignore- count则表示忽略这个位置的断点次数。程序继续执行直到遇到下一个断点。

step：继续执行程序直到控制到达不同的源码行，然后停止执行并返回控制到GDB。命令可以缩写为s。如果函数编译带有代码行信息，step命令将进入函数。否则行为和next命令类似。后面可以加一个参数count，加参数表示执行count次step指令，然后再停住，或者其他原因导致停住。

next：同样为单步跟踪，继续执行同一函数的下一行代码，这和step命令相似，但如果有函数调用，它不会进入该函数内部。后面可以加数字N，不加则表示一条一条地执行，加表示一次执行N条命令的行为，然后程序再停止。

finish：继续运行程序直到当前选择的栈帧返回，并输出返回值，命令缩写为fin。

until：执行程序直到大于当前已经执行的代码行，在程序循环时经常会用到它，即循环体如果执行过一次，使用until命令将执行循环体完成之后下一行代码处停止。

以下举例说明。

 	(gdb) next

单步执行，执行后将输出下一行代码。

 	(gdb) finish

结束当前函数执行，或者碰到当前函数断点处停止执行。

6.3.5　命令总结

断点管理命令表如表6-4所示。

表6-4　断点管理命令表

 	 命　　令

 	 含　　义

 	 break

 	 在指定行或函数处设置断点

 	 tbreak

 	 设置临时断点，在命中执行一次后就自动删除该断点

 	 clear

 	 在所选择的栈帧中当前位置删除所有断点

 	 delete breakpoints

 	 删除断点，如果不指定参数将删除所有的断点

 	 disable breakpoints

 	 使断点失效，但仍保存在断点数据库中。例如disable breakpoint 1

 	 enable breakpoints

 	 启用断点。例如：enable breakpoint 1

 	 watch

 	 设置观察点，当表达式的值发生改变时程序停止执行

 	 rwatch

 	 设置读观察点，当表达式的值读取时，程序停止执行

 	 awatch

 	 设置访问观察点，当表达式读或写时，将停止执行程序

 	 step

 	 执行下一行代码，如果遇到函数则进入函数内部

 	 next

 	 执行下一行代码，遇到函数并不进入函数内部

 	 finish

 	 继续运行程序直到当前选择的栈帧返回，并输出返回值，命令缩写为fin

 	 continue

 	 继续程序的执行，直到程序结束或者遇到下一个断点

 	 until

 	 执行直到程序到达大于当前或指定位置。这种遇到循环时非常有用，可以跳出当前的循环

6.4　查看程序运行状态

6.4.1　查看栈帧信息

查看程序调用栈信息，当程序停止时，你第一个关注的是程序停止的代码位置和程序的函数调用路径。当程序执行函数调用时，关于这次调用的信息（包含调用的代码位置、传递的参数、函数的局部变量等信息）均保存到了一段内存当中，这段内存被称为栈帧或桢（Frame）。所有的栈帧组合称为调用栈。

程序执行后将有很多帧，很多GDB命令均假定你选择了其中一个帧。例如你查看一个变量值，这将在你所选的栈帧中输出局部变量的值，有一些命令用于你选择栈帧。当程序停止时，GDB将自动选择当前执行的帧。栈帧编号是一个从0开始的整数，是栈中的层编号。0表示栈顶，main函数所在的层为栈底。

backtrace [full]/[number]

backtrace将输出当前的整个函数调用栈的信息，整个栈的每个帧一行显示。backtrace可以缩写为bt，如果带有“full”限定符，将输出所有局部变量的值。参数number可以是一个正整数或负整数，表示只打印栈顶/栈底n层的栈信息。backtrace输出如示例6-2所示。

示例6-2：

(gdb) backtrace

#0 read_conf (hello=0x804a080 <hello>) at hello.c:31

#1 0x080489e1 in main (argc=1, argv=0xbffff064) at hello.c:57

调用栈的每一行显示包含4部分，包含帧编号、函数名、函数的参数名称和传入的实参、调用的源代码文件名和行号。从示例6-2可以看出，程序在hello.c文件第31行处停止执行，函数的调用顺序信息为：main() --> read_conf()。

frame为选择和输出栈帧。如果没有参数，输出当前选择的栈帧。如果有参数，表示选择这个指定的栈帧。参数可以是栈帧编号或者地址。打印出的信息有：栈帧的层编号、当前的函数名、函数参数值、函数所在文件及行号，以及函数当前执行到的代码行语句。

up：选择和输出栈帧，不带参数表示选择向上移动一层栈帧。可以带有参数来移动多层。

down：不带参数表示选择向下移动一层栈帧。可以带有参数来移动多层。

return：返回到当前栈帧的调用处。

info frame：显示栈帧的所有信息。

示例6-3显示了当前选择栈帧的详细信息，包含栈帧地址、调用函数的地址、被调用栈帧的地址、源代码的编程语言、参数地址和内容等。

示例6-3：

(gdb) info frame

Stack level 0, frame at 0xbfffed80:

 eip = 0x80488c8 in read_conf (hello.c:33); saved eip = 0x80489f5

 called by frame at 0xbfffefd0

 source language c.

 Arglist at 0xbfffed78, args: hello=0x804a080 <hello>

 Locals at 0xbfffed78, Previous frame's sp is 0xbfffed80

 Saved registers:

 ebp at 0xbfffed78, eip at 0xbfffed7c

栈帧的调用关系只能在同一个线程中查看，如果一个程序有多个线程同时执行，我们可以输入thread命令和参数线程编号来在线程之间切换。线程是操作系统能够进行运算调度的最小单元，线程之间共享其父进程中的所有资源，线程也有自己独立的调用栈空间。经常使用的线程命令有查询所有线程命令“info threads”和切换线程命令“thread”。

6.4.2　查看运行中的源程序信息

GDB可以打印调试程序的源代码，由于你在编译时增加了-g参数，调试信息保存在可执行程序中，当你的程序停止执行时，GDB将输出停止位置。这时你就可以开始调试了。使用list等命令来查看当时编译的源代码等。

list如果没有参数，输出当前10行代码或者紧接着上次的代码。“list -”输出当前位置之前的10行代码，注意带有一个中划线作为参数。list命令参数也可以是一个代码行或函数名：如果为代码行，则列出指定行的代码；如果为函数名，则列出函数名附近的代码。示例6-4列出了main函数附近的代码。

示例6-4：

(gdb) list main

47 return 0;

48 }

49

50 struct Hello hello;

51 int main(int argc, char* argv[])

52 {

53 / *

54 char agent[50] = "openwrt";

55 char url[100] = "http://bjbook.net/bk/openwrt";

56

6.4.3　查看运行时数据

使用print命令可以输出执行程序时的运行数据，例如表达式的值，但是需要在你的调用栈环境下，例如全局变量、静态全局变量和局部变量等。可以用print命令和x命令来查看表达式和地址的内容。

print /fmt exp

表示输出表达式的内容。如果局部变量和全局变量名称相同，则默认为输出局部变量的内容，如果需要输出全局变量，则需要增加全局限定符（为双冒号，::）。

如果输出静态全局变量，则需要加文件名限定符print hello.c'::x

如果变量为数组，则需要@字符配合才能输出数组的内容，@的左侧是数组的地址，右侧是数字的长度。如果是静态数组的话，可以直接用print数组名，就可以显示数组中所有数据的内容。例如输出main函数的第argc个参数内容：

(gdb) print *argv@argc

$16 = {0xbffff259 "/home/zhang/book/elk/openwrt/hello/src/hello"}

某些情况下，程序变量的值不能被输出，因为你的程序打开了编译优化功能。这种情况下，需要你在编译时关闭编译优化功能。

你可以使用x来查看内存地址中的值。x命令的语法如下所示：

x /FMT ADDRESS

ADDRESS是一个内存地址。

FMT是格式字符和多少个同样格式的内容连接在一起。

一般来说，GDB会根据变量的类型输出变量的值。但你也可以自定义print的输出格式。例如，你想输出一个整数的十六进制，或是二进制来查看这个整型变量中的位的情况。要做到这样，你可以使用GDB的数据显示格式。

 	x：按十六进制格式显示变量。

 	d：按十进制格式显示变量。

 	u：按十六进制格式显示无符号整型。

 	o：按八进制格式显示变量。

 	t：按二进制格式显示变量。

 	a：按十六进制格式显示变量。

 	c：按字符格式显示变量。

 	f：按浮点数格式显示变量。

程序执行过程中，有一些专用的GDB变量可以用来检查和修改计算机的通用寄存器，GDB提供了目前每一台计算机中实际使用的4个寄存器的标准名字。

 	$pc：程序计数器。

 	$fp：帧指针（当前堆栈帧）。

 	$sp：栈指针。

 	$ps：处理器状态。

6.4.4　命令总结

查看程序运行状态命令总结如表6-5所示。

表6-5　查看程序运行状态命令总结

 	 命　　令

 	 含　　义

 	 backtrace

 	 输出堆栈调用信息

 	 bt full

 	 显示堆栈的详细信息

 	 info frame

 	 显示所选栈帧的所有信息

 	 list

 	 显示源代码，如果没有参数将显示当前位置的10行代码

 	 print

 	 输出变量的内容

 	 x

 	 显示内存地址内容，命令格式为x /FMT ADDRESS

 	 info registers

 	 列出寄存器及内容

 	 frame

 	 选择和输出栈帧信息

 	 up

 	 不带参数表示选择向上移动一层栈帧。可以带有参数来向上移动多层

 	 down

 	 不带参数表示选择向下移动一层栈帧。可以带有参数来向下移动多层

 	 info threads

 	 输出程序中所有的线程。可以带有一个参数仅输出指定线程

 	 thread

 	 在多个线程之间切换。线程编号从1开始，带有一个数字参数来指定要切换的线程

6.5　动态改变——改变程序的执行

利用GDB调试你的程序时，如果你觉得程序运行流程不符合你的期望，或者某个变量的值不是你所期望的，你可根据自己的思路来临时修改程序变量的值，这样就可以修改程序的运行过程来验证是否是这个变量导致的BUG。

 	修改变量的值，通过print或者set命令来修改变量值。

(gdb) print argc=2

 	从不同的地址处执行，当程序在断点处停止时，你可以使用continue命令继续执行，也可以使用jump 指定下一条语句的运行点。参数可以是文件的行号，可以是file:line格式，可以是+num这种偏移量格式。表示着下一条运行语句从哪里开始。

 	signal产生信号，一般用于模拟进程收到信号的处理情况，例如signal 9。

 	强制函数返回，可以通过调用return命令来取消函数的继续执行，去返回到调用处。可以带有一个参数，这个参数用于函数返回值。

 	调用函数，通过call来调用函数，也可以使用print来调用函数。

修改程序命令总结如表6-6所示。

表6-6　修改程序命令总结

 	 命　　令

 	 含　　义

 	 print

 	 输出并修改程序值

 	 set

 	 修改程序值

 	 jump

 	 跳转到指定行或地址来继续执行，最好在同一函数内部跳转

 	 signal

 	 向程序发信号。例如signal 9将发出杀掉进程的信号

 	 return

 	 强制函数返回，不会继续执行函数的剩余代码

 	 call

 	 调用函数，不输出函数返回值

6.6　名词解释

 	断点（breakpoint）：也叫停止点，广义上的断点包含指令断点、观察点（数据断点）和捕获点。

 	观察点（watchpoint）：当表达式的值发生改变时程序停止执行，则这个表达式所处的位置就是一个观察点，也叫数据断点。

 	捕获点（catchpoint）：当执行一个系统动作时，程序停止执行，则这个动作点就是捕获点。

 	栈帧（stack frame）：函数调用栈由栈帧组成，程序执行过程中，每进入一个函数将生成一个栈帧并放在调用栈中，函数执行完成则栈帧出栈并销毁。

 	系统调用：Linux内核提供的接口方法统称为系统调用，是Linux内核和应用程序之间的编程接口。

6.7　参考资料

 	GNU工程调试器（http://www.gnu.org/software/gdb/）。

 	使用GDB来调试（https://sourceware.org/gdb/current/onlinedocs/gdb/ [2014-12-05]）。

 	Linux系统调用列表（http://www.ibm.com/developerworks/cn/linux/kernel/syscall/part1/appendix.html [2014-12-06]）。

 	syscalls-Linux系统调用（http://man7.org/linux/man-pages/man2/syscalls.2.html [2016-07-24]）。

第7章　网络基础知识

本章首先对网络进行概述，比较了OSI开放系统模型和TCP/IP模型；接着从下到上依次讲述了数据链路层标准以太网，这是工业领域使用最多的链路层标准；接着讲述了TCP/IP协议中的IP协议、ICMP协议以及传输层协议；最后以一个综合案例结束本章。

7.1　概述

TCP/IP协议是因特网的核心协议，目前已成为事实上的标准。TCP/IP是一个分层模型，由4个层次构成：数据链路层、网络层、传输层和应用层。每一层有不同的功能。

数据链路层接收和发送物理层数据。

网络层处理数据网络分组及IP寻址等，包括IP协议、ICMP协议和IGMP协议等。

传输层主要为两台主机的应用程序之间提供端到端通信。主要有两个不同用途的传输协议，TCP-传输控制协议，UDP-用户数据报协议。传输控制协议为主机提供可靠的端到端传输，包括将数据分块交给网络层，并且确认收到分组，以及处理超时机制等，应用层不再用特别处理这种确认机制。用户数据报协议则不用建立网络连接，直接将分组数据传输到另一端，并没有确认机制，数据传输的可靠性由上层来保证。

应用层处理上层的用户逻辑细节。

TCP/IP协议层次和OSI互联协议层次的对比如图7-1所示。

[image: 图像说明文字]

图7-1　TCP/IP协议层次和OSI互联协议层次对比

7.1.1　网络设备

集线器（HUB）在物理层上实现局域网的互联，可以实现电气信号的恢复和整形。用于将多台计算机连接在一起，以集线器当作网络的中心。

网桥工作在数据链路层，网桥负责分析目的MAC地址字段是否在对方网络上，并据此决定是否将报文转发到对方网络上。相比集线器，其优点是可以起到过滤作用。交换机（Switch）就是一个多端口网桥。

路由器（Router）是网络层设备，一般用于将两个或多个不同网络连接在一起。例如，将局域网接入到互联网就需要用到路由器。所有访问互联网的流量均经过路由器，这样可以屏蔽底层协议的不同，例如宽带接入常用ADSL协议，但家庭内部为以太网传输。

防火墙（Firewall）是在两个或多个网络之间用于设置安全策略的一个或多个系统的组合。防火墙起到隔离异常访问的作用，仅允许授权的数据通过，从而保护了网络信息不受非授权用户的存取。表7-1所示为常见网络设备的比较。

表7-1　常见网络设备比较

 	 设备名称

 	 工作协议层次

 	 优　　势

 	 劣　　势

 	 集线器

 	 物理层

 	 工作在物理层，性价比高，接入设备可以收到网络上所有报文。现在常用它来调试网络

 	 在接入很多设备时，网络性能会直线下降

 	 交换机

 	 数据链路层

 	 隔离冲突域，每个端口都能达到标称的传输速率，接入后一般不用配置

 	 未隔离广播域

 	 路由器

 	 网络层

 	 隔离广播域和冲突域，用于两个网络互联

 	 一般价格较高，接口较少，且需要手动配置

 	 防火墙

 	 大多为网络层及网络层以上

 	 可以按需隔离两个或多个网络之间的流量

 	 一般配置较复杂

7.1.2　计算机网络分类

局域网是指传输距离有限，传输速度较高，以共享网络资源为目的的网络系统。局域网有以下特点。

（1）地理分布范围有限。一般在企业内部或者一栋大楼里或者家庭内部。

（2）有较高的传输速率，一般为100Mbit/s以上，现在常见为百兆局域网。

（3）一般采用双绞线作为传输介质，在家庭内部通常使用Wi-Fi，在楼宇之间采用光纤。

（4）拓扑结构采用总线型的以太网传输，易于配置和管理。

（5）网络归单一组织所有。

广域网是指覆盖范围广，传输速率低，以数据通信为主要目的的网络系统。广域网有以下特点。

（1）分布范围广。

（2）传输速率低，现在家庭接入广域网的速率大多在4～50Mbit/s之间。

7.2　数据链路层

7.2.1　以太网

以太网是最流行的局域网传输标准，是由施乐公司发明，并由施乐、英特尔和DEC公司组成的联盟发展形成的开放标准。以太网是总线型结构，物理结构采用星状布线。以太网是一种共享传输介质的广播传输技术，就是说网络上所有的设备均能检测到在网络上所有传输的帧。想在网络上传输数据的节点首先监听网络介质是否有数据传输，在检测到线路空闲时，节点开始传输数据并同时监听，确保不会和其他设备传输数据冲突。如果两个节点同时传输数据，监测到冲突后，想要传输数据的节点需要等待一个随机的时间周期才能再次进行传输，这样就减少了再次发生冲突的可能性。

7.2.2　MAC寻址

为了在以太网上传输报文，必须有一个寻址系统，也就是对计算机和网络接口命名的方法。每一个计算机的网卡本身均有一个唯一标识，每一个网络接口都有一个物理地址，这个地址就是MAC地址，这个地址也称为网卡物理地址。MAC地址长度为6个字节，表示为12个十六进制的数字。前6个数字为组织唯一标识符（OUI），是由IEEE组织分配的3个字节数字。剩下的6个数字由组织内部编号，企业组织内部需要保证任意两个网卡的MAC编号不能重复。在实际书写中，常用冒号来分隔每一个字节，Mac地址例如：08:00:27:26:c5:5d。

以太网是一种广播传输技术，网络上的所有节点均能检测到网络介质上传输的帧，但一般只有自身MAC地址和帧目的MAC地址相同才会将内容复制到自己的缓冲区，交给IP层进一步检查IP信息。当网卡工作在混杂模式下时，会将所有侦听到的内容交给上层软件处理，例如TcpDump抓包软件。

并不是所有的MAC地址网卡均能使用，有一些特殊的MAC地址，例如FF:FF:FF:FF: FF:FF是以太网广播地址。还有一段地址01:00:5E:00:00:00-01:00:5E:7F:FF:FF用于以太网组播（在组播部分有详细描述）。

7.2.3　冲突和冲突域

当两个网络节点同时传输数据时就会发生冲突。以太网采用载波侦听及冲突检测回退处理算法来处理冲突，冲突会导致网络传输效率降低，每次发生冲突，所有的传输都要停止一段时间。

以太网的核心思想是使用共享的公共传输介质。它是一种广播性网络，任何节点帧的发送和接收过程都使用载波监听多路访问/冲突检测（CSMA/CD）技术，来分配共享信道的使用。在采用CSMA/CD技术的局域网中，帧的发送和接收过程如下。

（1）计算机节点在准备传输数据时，首先要对信道进行监听。

（2）如果信道是空闲时则发送数据，否则继续监听直到信道空闲。

（3）发送数据帧的同时，还要继续监听信道，如果发生冲突，发送信息的节点就会停止发送，同时发送端需要向通信信道发送阻塞信号，以通知其他节点已发生冲突。当若干节点同时检测到信道空闲并发送数据时，数据传输就会遭到破坏，即发生冲突。冲突检测的过程为发送节点发送数据的同时，将其发送信号与总线上接收到的信号进行比较，如果不一致，则有冲突发生。

（4）冲突发生后，随机延迟一段时间再重发，称为冲突退避。如果冲突经常发生则会导致网络性能的快速下降。

第一层设备(HUB)不会隔离冲突域。二层及以上设备隔离冲突域。因此二层以上设备将大大提高数据传输性能。

7.2.4　广播域

广播是发送到网络中所有节点的数据分组，广播以广播地址来识别，链路层广播地址为FF:FF:FF:FF:FF:FF。在广播时网络中的所有节点均收到该广播报文并做进一步处理。广播域是指能收到广播报文的设备节点集合。

第一层设备（集线器）总是转发报文，不对数据进行过滤，将收到的所有信息转发到另一分段。数据帧只是简单的重新生成和重新定时，因此不隔离广播域。

第二层设备（网桥和交换机）根据MAC地址转发数据帧，因此将网络划分为多个冲突域。如果目标MAC地址不在本冲突域内，将转发数据帧。因此也不隔离广播域。

第三层设备（路由器）不会转发广播报文。路由器为广播域的边界。

7.2.5　ARP协议

ARP（Address Resolution Protocol）协议用于根据主机的IP地址来查询其网卡MAC地址。在以太网中，真正寻址的是MAC地址，但是在主机传输报文时所知道对端的地址是IP地址。如何通过目标IP地址知道对方的MAC地址，这就是ARP协议的目标。ARP协议通过向局域网中的所有主机发送广播来查询目标IP的MAC地址。当目标主机收到查询请求后和本机IP地址比较，如果一致就通过单播响应查询请求，将自己的MAC和IP对应关系发送给请求源主机。

图7-2所示的是一个ARP查询请求。主机A（10.0.2.15）向网络上发起广播查询请求，询问目标IP为10.0.2.2的MAC地址。由于还不知道目标MAC地址，因此目标硬件地址为广播地址FF:FF:FF:FF:FF:FF。当主机B收到ARP查询报文后，和自己IP地址进行比较发现地址相同，则向主机A回送一个单播的ARP响应。主机A收到后就会更新自己的ARP缓存表。以后再次使用时将在缓存中查询。ARP缓存表采用了老化机制，在一段时间内如果缓存表中的某一个MAC没有使用，就会被删除，这样可以大大减少ARP缓存表的长度，加快查询速度。

[image:]

图7-2　ARP广播查询请求

通常操作系统均有一个arp命令可以查询当前所保存的ARP缓存。

7.3　IP协议

网络层协议主要包含IP协议、ICMP协议和IGMP协议，本节主要讲述IP协议。ICMP协议在7.4节讲述，IGMP协议在10.3节讲述。

7.3.1　IP报文格式

网络层协议主要包括两部分：IP和ICMP。所有的UDP和TCP都采用IP数据格式发送报文，以ICMP格式回报错误。IP协议是不可靠的、无连接的网络协议。不可靠是指它不提供端对端或者逐跳的确认机制，不保证数据包成功传输到对端，其可靠性由上层协议来保证。中间路由器如果检测到错误会丢弃报文，然后发送ICMP消息给源发起者。无连接是指IP报文不保存后续报文信息。IP协议报文格式如图7-3所示。图7-4所示为一个实际报文示例。

[image: 图像说明文字]

图7-3　IP协议报文格式

[image:]

图7-4　一个实际的报文示例

版本号占4个比特，用于表示报文的版本号，IPv4类型报文的版本号为4。

IP头长度占4个比特，用于表示IP消息头的4字节倍数长度，最小为5，即5×4字节，IP消息头最小为20字节。

服务类型占8个比特，服务类型提供了服务质量的抽象参数，这些参数用于指导当经过一个数据网络时的实际服务质量参数选择，现在大多数路由器未做实现。

报文总长度字段占16个比特（是包含报文包头和数据的整个报文的字节长度），允许最大报文长度是65535字节（这么大的报文长度在网络上是不可能存在的）。所有主机必须能接收至少为576字节大小的报文。这个尺寸可以承载512字节的数据加上64字节的包头。假定目的主机可以接收大报文，那就推荐主机仅发送大于576字节的报文，大报文可以提高网络数据传输带宽。

标识符占16个比特，发送者用于标识报文，可用于报文分片和组装。

Flag占3个比特，用于分片控制。

分片偏移量占13个比特，用于表示报文所属的分片。

报文生存时间（Time to Live，TTL）占8个比特，这个字段指示报文在网络系统中的最大生存时间。每经过一个路由器，这个值减少处理时间的秒值。如果处理时间小于1，则至少减1，如果这个字段值减少到零，则报文直接丢弃。TTL是报文的最大生存周期，目的是将无法找到目的地的报文丢弃，约束报文的最大生命周期。因为现代路由器的处理速度非常快，这个字段的含义已经演化为经过路由器的跳数。

生存时间是数据包生存时间的上限。它由数据包的发送者设定，在网络上每个点，当数据包被处理的时候，逐渐递减。如果生存时间在数据包到达目的地址前达到0值，数据包就被销毁。生存时间可以看作一个自我销毁时间限制。生存时间由发送者设置成允许数据包在网络系统上存活的最大时间。如果数据包在因特网系统上的时间长于生存时间，则数据包必须被销毁。

在Internet头部被处理的每个节点，该头部必须减小，以反映花在处理数据包上的时间。即使无法获得实际花费时间的本地信息，该头部也必须减1。时间以秒为单位衡量（比如，值1表示1秒）。因此最大生存时间是255秒或者4.25分钟。由于处理数据包的每个模块至少对TTL减1，即使它在小于1秒内处理完数据报，因此TTL只能被当作数据报可以存在的时间上限。

协议号占8个比特，指示IP协议承载的内容类型，有各种各样的协议内容。例如，TCP为0x06，UDP为0x11，ICMP为0x01，等等。

包头校验和占16个比特，包头域中的值发生改变，例如TTL，这个值在处理过程中将重新计算和验证。校验和是16比特数据，是所有报文头的16比特之和，计算时，校验和为0。校验和用于检查报文传输是否正确，如果错误则直接丢弃，并不会发送ICMP差错消息，因为报头校验和只能检测出IP数据报的头部出现了错误，但并不知道头部的源IP地址字段是否正确，如果源地址出现了错误，那么传输ICMP差错报告将没有任何意义。

校验和提供了处理IP数据报使用到的信息被正确传输的确认，数据可能包含错误。如果校验和验证失败了，IP数据报就被检测到错误的实体立即丢弃。

如果IP头部改变，IP头部校验和要重新计算。比如，生存时间的减少，IP选项的增加或者变化，或者由于分片。在IP级别的这个校验和用来防止IP头部的传输错误。

7.3.2　IP地址分类

IP地址长度为32位，以4字节数字来表示。互联网的IP地址分为5类，如图7-5所示，分别为A类地址、B类地址、C类地址、D类地址即组播地址和E类地址为保留地址。E类地址未做进一步的使用规定。前3类地址均为单播地址。

第1类是A类地址，最高位必须是0，然后是7比特的网络编号和24比特的本地地址（主机号）。因为最高位为0，所以总共有128（27）个A类网络地址。

第2类是B类地址，最高的两位是10，紧接着是14比特的网络编号和16比特的本地地址。这样就有16384（214）个B类网络地址。

第3类是C类地址，最高位为110，有21位的网络编号和8位的本地地址，这样就有2097152（221）个C类网络地址。

第4类是D类地址，是用于组播的IP地址，最高的4位是1110，不再区分网络编号和本地地址，这类地址不能用于设置物理接口地址。其他以1111 开头的地址是E类，是保留地址，未做规定，因此一般不使用该类地址。

[image: 图像说明文字]

图7-5　IP地址分类

有一些地址用于固定的用途，其中私有地址（Private address）是保留地址，属于非注册地址，专门为组织机构内部使用。表7-2列出了常见的特殊IP地址块。

表7-2　常见的特殊IP地址块

 	 IP地址块

 	 用　　途

 	 规 范 文 档

 	 10.0.0.0/8

 	 A类内部私有地址

 	 RFC 1918

 	 172.16.0.0/12

 	 B类内部私有地址

 	 RFC 1918

 	 192.168.0.0/16

 	 C类内部私有地址

 	 RFC 1918

 	 127.0.0.0/8

 	 本地回环地址，用于回路测试，不能路由到主机外部

 	 RFC 1122

 	 169.254.0.0/16

 	 自动配置未成功后分配的IP地址

 	 RFC 3927

 	 0.0.0.0/8

 	 表示本地网络，禁止使用

 	 RFC 1122

 	 255.255.255.255

 	 受限广播地址，只在本网络上广播

 	 RFC 1812

 	 net.255

 	 网络广播地址

 	 RFC 1812

另外，路由器不能路由源地址为0和127开头的报文，也不应该路由目的地址为0和127开头的报文。

“127.0.0.0/8”表示本地回环地址。真实的网卡IP地址中不能以十进制“127”作为开头，该类地址中数字127.0.0.1到127.255.255.255用于回路测试。一般采用127.0.0.1代表本机IP地址，用浏览器访问“http://127.0.0.1”就可以测试本机中配置的Web服务器。

网络ID的第一个8位组也不能全置为“0”，全“0”表示本地网络。每一个字节都为0的地址“0.0.0.0”对应于当前主机；IP地址中的每一个字节都为1的IP地址“255.255. 255.255”是当前子网的广播地址；IP地址中凡是以“1111”开头的E类IP地址都保留用于将来和实验使用。

A、B、C类IP是单播地址，报文转发一般是基于目的IP地址。D类（组播地址）报文转发是基于源地址和目标地址组合。

7.3.3　协议功能

IP协议实现了两个基本功能：寻址和分片。寻址是指IP模块在报头中带有地址来传输IP报文到目的地址。传输路径的选择称为路由，这些在路由部分来阐述。分片是指当这些大报文在通过小报文传输网络时，会将大报文分片传输。

IP协议使用4个主要机制来提供服务：服务类型、生存时间、选项和校验和。

服务类型用来指示要求的服务质量。服务类型是一个抽象的整套参数，这些参数指定了组成因特网的网络中提供的服务选择。这个服务指示类型在选路的时候被路由器用来为某一个特定的网络、下一个网络或者下一个网关选择真实的传输参数。服务类型用于IP服务质量选择。服务类型通过一组参数（优先级、延迟、吞吐和可靠性）来指定。这组参数被映射成数据报传输中的特定网络的真实服务参数。在大多数网络中服务类型并没有特别的使用。

生存时间是数据报可以生存的时间上限。它由发送者设置，由经过路由的地方处理。如果报文生存时间为零，则丢弃此数据报。

选项提供了在某些情况下需要或有用的控制功能，但是大多数情况下是不必要的。选项包括时间戳、安全和特殊选路等。

报头校验和用于保证数据的正确传输。如果校验出错，则抛弃整个数据报。IP协议并没有提供可靠传输机制，没有端对端或者逐跳（hop-by-hop）的确认机制。没有数据的错误控制，只有一个头部校验和，没有重传，没有流控。检测到的错误可以通过IP控制消息协议（ICMP）来报告，该协议在IP协议模块中必须实现。

7.4　ICMP

ICMP协议使用IP协议进行传输报文，是一种面向无连接的协议，用于报告传输出错及控制信息。它对于网络传输具有极其重要的意义，因此每一个网络层模块必须实现该协议。

ICMP提供一致标准的出错报告信息。发送的出错报文返回到原始发送数据的设备，发送设备及进程随后可根据ICMP报文确定发生错误的类型，并确定如何才能更好地处理失败的数据包，例如减缓发送、重新发送或者停止发送。ICMP唯一的功能是报告问题，纠正错误的功能由发送方根据实际情况判断处理。

我们在网络管理中经常会使用到ICMP协议，比如我们经常使用ping命令，这个“ping”的过程实际上就是发送ICMP查询报文，并根据接收报文判断网络是否可达的过程。还有“traceroute”命令也是基于ICMP协议的，用来探测网络报文的经过路径。

7.4.1　概述

在Internet系统中，IP协议被用作主机到主机的数据报服务。网络连接设备称为路由器。这些路由器通过网关到网关协议或动态路由协议相互交换用于控制的信息。在数据报传输过程中，可能会遇到一些传输问题，为了报告在数据报传输过程中遇到的错误，网关或目的主机使用ICMP协议来和源主机通信。它使用IP协议作为底层支持，好像它是一个高层协议，但实际上它是网络层的一部分，任何网络层模块的实现必须实现ICMP协议。

ICMP消息在以下几种情况下发送：当数据报不能到达目的地时；当网关已经没有缓存去转发；当网关能够引导主机在更短路由上发送。

IP并非设计为绝对可靠，这些控制消息的目的是当网络出现问题的时候能提供反馈信息，而不是使IP协议变得绝对可靠。而且并不保证数据报或控制信息能够返回。一些数据报仍将在没有任何报告的情况下丢失。如果需要高可靠性，使用IP的高层协议必须实现自己的高可靠性控制处理。

ICMP信息通常报告在处理数据报过程中的错误。若要避免信息无限制地返回，对于ICMP消息不会再有ICMP消息发送，而且ICMP信息只在处理数据报偏移量为0时发送，即数据报的第一个分片报文错误时发送。

7.4.2　报文格式

ICMP消息使用最基本的IP报文头。在IP报文头指明协议为ICMP(0x01)，数据位置的第一个8位是ICMP类型域，这个值决定了其后内容的格式。任何标记“未使用”的域用于以后的扩展，现在必须设置为零，但接收时并不使用（除了计算校验和）。除非明确的单独说明格式，ICMP报文格式如图7-6所示，头域格式含义如下。

（1）类型。一个8位类型字段，表示ICMP数据包类型，现在支持的类型共10种。

（2）代码。一个8位代码域，表示指定类型中的一个功能，如果一个类型中只有一种功能，代码域置为0。

（3）校验和。数据包中ICMP部分的一个16比特检验和，从ICMP消息的ICMP类型开始的16位数据的反码之和计算得出。在计算校验码时，校验和设置为零。这些零在发送时会被计算出的校验和取代。

[image: 图像说明文字]

图7-6　ICMP报文格式

ICMP报文大致可分为3类：差错报文、请求报文和响应报文。具体消息类型如表7-3所示。

表7-3　ICMP消息类型

 	 类型

 	 含义

 	 请求报文

 	 响应报文

 	 差错报文

 	 0

 	 echo响应消息

 	

 	 *

 	

 	 3

 	 目的不可达报文

 	

 	

 	 *

 	 4

 	 源抑制消息

 	

 	

 	 *

 	 5

 	 重定向消息

 	

 	

 	 *

 	 8

 	 echo请求消息

 	 *

 	

 	

 	 11

 	 超时消息

 	

 	

 	 *

 	 12

 	 参数问题消息

 	

 	

 	 *

 	 13

 	 时间戳请求消息

 	 *

 	

 	

 	 14

 	 时间戳响应消息

 	

 	 *

 	

 	 15

 	 信息请求消息

 	 *

 	

 	

 	 16

 	 信息响应消息

 	

 	 *

 	

7.4.3　差错报文

网络出现异常情况时，就需要发送一份差错报文，该报文始终包含源报文的IP首部和产生ICMP差错报文的IP数据报的前8个字节。这样接收ICMP差错报文的主机就会把它与某个特定的协议（根据IP数据报首部中的协议字段来判断）和用户进程（根据包含在IP数据报前8个字节中的TCP或UDP报文首部中的TCP或UDP端口号来判断）联系起来。

以下各种情况即使出错也不会导致产生ICMP差错报文。

（1）ICMP差错报文。

（2）目的地址是广播地址或组播地址。

（3）作为链路层广播的数据报。

（4）不是IP分片的第一片。

（5）源地址不是单个主机的数据报文，也就是说源地址不是零地址、环回地址、广播地址、组播地址或E类地址。

以下针对ICMP差错报文的类型进行分析。

（1）ICMP目的不可达消息。如果路由器因为没有去往目的地址路由而不能转发报文，则路由器必须产生目的不可达消息，是代码域为零（网络不可达）的ICMP消息。如果报文需要转发到的主机，已经转发到最后一跳路由器（主机直连的网络），路由器判断不能到达目的主机，则路由器必须产生代码域为1的目的不可达ICMP消息（主机不可达）。

（2）ICMP重定向消息。网关G1从所连接的网络的一个主机上收到IP报文。网关检查路由表获知下一个路由器G2的地址和目的地址网络X。如果G2和源主机在同一个网络上，那重定向报文将发给主机。重定向消息告知主机发往目的网络X直接发往G2是最短路径。

（3）ICMP超时消息。IP数据包中有一个字段生存时间（Time to live，TTL），生存时间值在每一个机器处理报文时都会减少，直到减到0时该IP数据包被丢弃。此时，路由器将发送一个ICMP超时消息给源主机。

（4）源抑制消息。当主机经过路由器发送数据到另一主机时，如果速度达到路由器或者链路的饱和状态，路由器发出一个ICMP源抑制消息。路由器不应该产生源抑制消息，因为实践表明对减少网络带宽没有价值。

（5）参数问题。如果网关或主机处理报文时发现一个消息头参数问题，在它不能完成处理这个报文时，必须丢弃这个报文。例如，不正确的选项。网关或主机通过参数错误消息通知源主机。这个消息仅用于如果错误引起报文丢弃的情况。

7.4.4　查询报文及响应报文

（1）ICMP ECHO消息。用于进行通信的主机或路由器之间，判断发送数据包是否成功到达对端的消息。可以向对端主机发送ECHO请求消息，接收对端主机回来的ECHO应答消息。

（2）ICMP地址掩码消息。主要用于主机或路由器想要了解该网络中主机数量的情况。可以向那些主机或路由器发送ICMP地址掩码请求消息，然后通过接收ICMP地址掩码应答消息获取子网掩码信息。

（3）ICMP时间戳消息。可以向主机或路由器发送ICMP时间戳请求消息。接收到的数据（时间戳）的消息在回复时再带上另外一个时间戳返回。时间戳是自午夜UT时间的32位毫秒值。现在已经很少使用。

7.4.5　ping

ping是利用ICMP ECHO请求消息，产生一个ECHO响应消息。ping使用ICMP报头，并使用填充字节填满报文。当源主机向目标主机发送了ICMP回显请求数据包后，它期待着目标主机的应答。目标主机在收到一个ICMP回显请求数据报文后，它会交换源、目的主机的IP地址，然后将收到的ICMP回显请求数据报文中的数据部分原封不动地封装在自己的ICMP回显应答数据报文中，然后发回给发送ICMP回显请求的一方。如果校验正确，发送者便认为目标主机的IP层服务正常，也即IP层连接畅通。

示例7-1在终端上 ping 百度的域名，发现访问百度的IP地址延迟仅3.829毫秒，而且丢包率为0%。

示例7-1：

zhang@zhang-laptop:~$ ping baidu.com –t5

PING baidu.com (220.181.57.216) 56(84) bytes of data.

64 bytes from 220.181.57.216: icmp_seq=1 ttl=53 time=3.88 ms

64 bytes from 220.181.57.216: icmp_seq=2 ttl=53 time=3.12 ms

64 bytes from 220.181.57.216: icmp_seq=3 ttl=53 time=4.91 ms

64 bytes from 220.181.57.216: icmp_seq=4 ttl=53 time=3.49 ms

64 bytes from 220.181.57.216: icmp_seq=5 ttl=53 time=3.73 ms

--- baidu.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 20067ms

rtt min/avg/max/mdev = 3.128/3.829/4.910/0.601 ms

当使用ping来诊断和测试网络时，一般通过以下步骤来执行。

（1）首先ping本机IP。判断本地接口是否启动以及工作正常。

（2）其次ping网关地址。根据响应判断局域网工作是否正常，结束时会有最小/平均/最大来回时间统计和报文是否丢失统计。

（3）最后ping目的主机地址。判断本机和目标主机之间的路由是否正确以及目的主机是否工作正常。

7.4.6　TraceRoute

TraceRoute程序用于侦测源主机和目的主机之间所经过的路由情况，可以跟踪路由数据包在IP网络上传输到一个指定主机的路径，参数含义如表7-4所示。它利用IP协议的生存时间（TTL）字段来试图引发网关ICMP超时响应。在每个网关的路径上发送ICMP超时响应到源主机上。源主机发送的报文TTL从1开始逐渐增加，直到收到ICMP回显请求响应消息或达到最大跳数值为止。这意味着已经到达主机或者超过30跳了。默认每一个相同的TTL会发3个探测报文，如果路径不同会都输出。如果在5秒钟没有响应则会以星号（*）显示。

唯一必须的参数是目的主机IP地址。可选参数有探测包长度，默认为60字节。测试中发现很多路由器对于UDP数据如果是TTL原因数据丢包不会发ICMP超时差错消息，而对ICMP请求会返回ICMP超时响应。因此在使用时，建议使用-I参数来指明使用ICMP协议来发起请求。

在Windows下可以使用tracert替代，但不需要指定使用的协议。功能基本相同。

表7-4　traceroute参数含义

 	 参　　数

 	 含　　义

 	 -I　--icmp

 	 使用ICMP ECHO请求来进行traceroute

 	 -T

 	 使用TCP SYN请求来traceroute，使用端口80

 	 -z

 	 两个探测报文之间的最小等待时间（默认为0），在0和10秒之间。如果数字小于10，单位为秒，如果大于10，那数字就是以毫秒为单位

 	 -q nqueries

 	 每一跳发送的探测报文数量。默认是3

 	 -w waittime

 	 设置等待响应消息的时间。默认是5秒

 	 -m

 	 设置最大的跳数，默认为30跳

 	 -n

 	 不解析IP地址为域名

7.5　传输层协议

互联网的传输协议主要有传输控制协议TCP和用户数据报协议UDP两种协议。路由器一般工作在IP层，不处理传输层协议，但智能路由器一般带有防火墙功能，需要处理端口号。因此这里简要介绍端口号。

UDP报文非常简单，仅在IP报文上增加了8字节数据，并且在传输数据之前不需要首先建立连接，远程主机在接收到数据后也不需要确认，因此网络通信开销比较小。图7-7所示为UDP消息的报文格式。

[image: 图像说明文字]

图7-7　UDP报文格式

源端口，是发送者进程使用的端口，占有16比特，因此合法范围为1～65535。

目的端口，是接收者进程使用的端口，和源端口一样占用16比特，一般特权用户使用1～1024，非特权用户使用其他端口。

UDP报文长度， 包含UDP消息包头和数据的总长度。

UDP校验和，用于验证传输数据是否正确。这个字段是可选的，如果字段为0，就不进行校验。

另外一个传输层协议是传输控制协议（TCP），和UDP协议完全相同的部分是使用了源端口号和目的端口号，不同的是提供了可靠的数据传送。传输数据之前需要进行3次握手连接，并在传输的中间过程进行确认。这带来了一些便利，例如保证了数据到达目标地址，如果没有到达将立即重传。但这同时也带来了一些创建网络连接的开销。路由器一般很少处理IP层以上的内容，这里不再详述TCP协议，请参考RFC793。

7.6　综合

通过前面的学习，我们可以回答两个相同网络主机和不同网络主机是如何进行数据传输的了。网络如图7-8所示，当主机A发送一个IP报文时，各个层次及协议是如何进行转换的，如何将报文逐层转到下层报文，然后发往目的地址的？我们来分析主机A（192.168.6.100）要发送报文到主机C（192.168.6.102）上，和主机A发送报文到8.8.8.8这个网络主机上这两个过程。

[image:]

图7-8　组网网络环境图

主机A发送报文到主机C的各层协议模块工作过程，例如在主机A上执行ping 192.168.6.102。

（1）在主机A按照ICMP协议组装ICMP请求报文。在组织ICMP请求完成后，使用IP协议来发送报文。

（2）在IP层发送报文时，首先查看目标地址路由是否可达，如果路由不可达那就退出，并提示“Network is unreachable”等类似的错误。这里的IP地址配置为同一子网，因此路由可达。那就首先查看目标IP的MAC地址是否在本机的缓存上，如果存在，则使用目标MAC将报文直接封装为第二层的帧，再经物理层信号编码发往网络传输介质上。

（3）如果ARP缓存中没有目标IP地址，那就发送ARP广播来请求目标IP的MAC地址。目标MAC地址填写为广播地址FF:FF:FF:FF:FF:FF。ARP数据帧经物理层线路进入交换机端口，交换机通常会进行源MAC地址学习和目的端口查找，如果找不到目标MAC所在的网口，则在除报文源端口外的全部端口广播ARP查询请求。此时主机B和C均收到ARP查询请求，主机B发现目IP地址和本机地址不同，则静悄悄地丢弃，不做进一步处理。主机C收到ARP查询请求后判断和本机IP地址相同，则C响应ARP请求，将主机C的IP地址和MAC地址的对应关系以单播形式回送给主机A。这时交换机可以再次学习到C的MAC地址与端口对应关系，在下次ARP查询和传送数据时就不再对所有端口进行广播。

（4）如果主机A收到主机C的MAC地址的ARP查询响应，那就将目的MAC填写为C的MAC地址，源MAC填写为自己的MAC地址，封装为二层帧数据中交给物理层来发送。当再次进行主机A向主机C发送数据，将直接使用缓存中C的MAC地址进行封装，不再进行MAC地址的ARP广播查询。

（5）如果此时主机C恰好关机，主机A没有收到ARP响应消息，那就提示用户“Request timed out”或“Destination Host Unreachable”等信息。

（6）当主机C收到数据帧之后，首先判断目标MAC地址是否和本机匹配，如果不匹配则静悄悄地丢弃，不做任何处理。如果和本机MAC相同则交给IP层进行处理。IP层收到报文后，首先判断目的IP地址是否和本机IP相同，如果不同则丢弃报文；如果相同则交给上层协议处理，这里交给ICMP协议模块来处理。这样报文便单向处理完成。响应报文和请求报文一样，也是同样的发送及处理过程。

我们再来看看主机A发送报文到主机E的各层协议模块工作过程，这个过程两个节点不在同一个网络上，因此需要经过路由器的处理。例如在主机A上执行ping 8.8.8.8。

（1）如果主机A路由查询判断到达目标主机必须通过下一跳网关地址。那进行ARP查询时，就查询网关地址的MAC地址。路由器将响应ARP请求，将自己的MAC地址和IP发送回来。

（2）如果主机A在进行路由查询时，发现目标主机直接经过网卡设备可以到达，例如主机A的默认路由配置为接口路由，没有配置默认网关地址。那进行ARP查询时，就直接请求目标IP的MAC地址。如果路由器D有ARP代理功能，将会响应ARP请求，并将自己的MAC地址和目标IP对应起来。

（3）主机A收到网关的ARP响应报文后，目标IP地址不变，将目标MAC填写为网关MAC地址，然后将数据帧经过物理网卡发送到链路上。

（4）主机D收到报文后，进行MAC地址检查，如果目标MAC地址和自己的MAC地址匹配，则进一步转到IP层进行处理。IP模块判断目标IP地址不是本机IP地址，如果主机D没有配置为路由器，那就直接丢弃这个报文；如果主机D配置为路由器，则将报文交给IP转发模块进行处理。IP转发模块会将报文TTL减一，并再次进行路由查询过程和ARP查询过程，然后将数据报文转发到离目标地址E更近的一个路由器上。在中间转发的过程中，数据报文的目标IP地址和源IP地址始终不变，源MAC地址和目标MAC地址在每一跳中均根据其物理连接进行修改。

7.7　名词解释

集线器：主要功能是对接收到的信号进行整形放大，以扩大网络的传输距离，同时把所有节点集中在以它为中心的节点上。它工作于OSI参考模型第一层，即物理层。

交换机：同时连通许多对端口，使每一对相互通信的主机都能像独占通信媒体那样，进行无冲突的传输数据。它是基于MAC地址识别和完成以太网数据帧转发的网络设备。它工作于OSI参考模型的第二层，即数据链路层。

路由器：又称网关，是用于连接逻辑上分开的多个网络，可以隔离网络之间的广播数据。它工作在OIS参考模型的第三层，即网络层。

TTL（Time to live）：IP报文的生存时间，每经过一个路由器，TTL至少减1，为零时报文不再转发。

7.8　参考资料

 	因特网协议（http://tools.ietf.org/html/rfc791）。

 	传输控制协议（http://tools.ietf.org/html/rfc793）。

 	ICMP协议（http://tools.ietf.org/html/rfc792）。

 	内部网络地址分配（http://tools.ietf.org/html/rfc1918）。

 	IPv4路由需求规范（http://www.ietf.org/rfc/rfc1812.txt）。

 	IPv4地址的特殊使用定义（http://tools.ietf.org/html/rfc5735）。

 	TCP/IP教程（http://tools.ietf.org/html/rfc1180）。

 	因特网主机规范-通信层（https://svn.tools.ietf.org/html/rfc1122）。

 	INTERNET NUMBERS（http://www.ietf.org/rfc/rfc1166.txt [2015-08-23]）。

 	ASSIGNED NUMBERS（http://www.ietf.org/rfc/rfc1060.txt）。

 	思科网络技术学院教程[M]北京：人民邮电出版社。

 	http://www.daemon.be/maarten/icmpfilter.html

 	软件设计师教程[M]. 北京：清华大学出版社。

第8章　路由器基础软件模块

OpenWrt支持模块化编程，已经支持很多常见的功能，因此只需打开开关即可增加其功能。但有一些通用基础模块必须包含，这些组件在OpenWrt的运转中至关重要，它们是OpenWrt的核心。本章介绍其中5个组件，分别是实用基础库libubox、系统总线ubus、网络接口管理模块netifd、核心工具模块ubox和服务管理模块procd。

8.1　libubox

libubox是在2011年加入OpenWrt的代码库的。它是OpenWrt中的一个核心库，封装了一系列基础实用功能，主要提供事件循环、二进制块格式处理、Linux链表实现和一些JSON辅助处理。它的目的是以动态链接库方式来提供可重用的通用功能，给其他模块提供便利和避免再造轮子。这个软件由许多独立的功能组成，主要划分为3个软件包libubox、jshn和libblobmsg-json。

8.1.1　libubox

libubox软件包是OpenWrt 12.09版本之后增加到新版本中的一个基础库，在Open Wrt 15.07中有很多应用程序是基于libubox开发的，如ubus、netifd和freecwmp等。libubox主要提供以下三部分功能。

（1）提供多种基础通用功能接口，包含链表、平衡二叉树、二进制块处理、key-value链表、MD5等。

（2）提供多种sock接口封装。

（3）提供一套基于事件驱动的机制及任务队列管理功能。

这样带来了一些好处：我们不用关注底层基础功能，可以基于libubox提供的稳定API来进行进一步的功能开发。

utils.h提供简单实用功能，包括字节序转换、位操作、编译器属性包装、连续的内存分配函数、静态数组大小的宏、断言/错误的实用功能和base64编码解码等功能。

blob.h提供二进制数据处理功能。有几种支持的数据类型，并可以创建块数据在socket上发送。整形数字会在libubox库内部转换为网络字节序进行处理。二进制块的处理方法是创建一个TLV（类型-长度-值）链表数据，支持嵌套类型数据，并提供设置和获取数据接口。Blobmsg位于blob.h的上层，提供表格和数组等数据类型的处理。

TLV是用于表示可变长度的数据格式，Type表示数据的类型，Length表示数据的长度，Value存储着数据值。类型和长度的占用空间是固定的，在libubox库中共占用4个字节。Value的长度由Length指定。这样可以存储和传输任何类型的数据，只需预先定义服务器和客户端之间的TLV的类型和长度的空间大小即可。在DHCP协议中也是采用TLV数据类型来传输扩展数据的。

usock.h是一个非常简单的socket对象封装，以避免所有这些套接字接口库复杂调用。可以创建TCP、UDP和UNIX套接字，包含客户端和服务器端、IPv4/IPv6、阻塞/非阻塞等。可以通过usock函数来返回所创建的文件描述符。

uloop.h是提供事件驱动机制接口，是基于epoll接口来实现的。uloop是一个I/O循环调度，将不同的文件描述符添加到轮询中。文件描述符fd的管理由uloop_fd结构来设置。仅需设置fd和事件发生时的回调函数，数据结构的其他部分供内部使用。超时管理部分由uloop_timeout结构来管理，在定时时间到了之后调用回调函数，定时时间单位为毫秒。libubox常用uloop接口函数如表8-1所示。

表8-1　libubox常用uloop接口函数

 	 接 口 名 称

 	 含　　义

 	 uloop_fd_add

 	 将一个新文件描述符增加到事件处理循环中

 	 uloop_fd_delete

 	 从事件处理循环中删除指定的文件描述符

 	 uloop_init

 	 初始化uloop.内部将调用epoll_create函数来创建epoll对象

 	 uloop_run

 	 进入事件处理循环中

 	 uloop_done

 	 反初始化uloop，即释放内部epoll对象，删除内部的超时和process对象

 	 uloop_end

 	 设置uloop内部结束循环标志

 	 uloop_timeout_set

 	 设置定时器超时时间，并增加到链表中

8.1.2　jshn

jshn是封装JSON对象的转换库，用于脚本语言生成JSON对象和将JSON对象数据取出。jshn软件包含两个文件分别为jshn和jshn.sh。工具jshn提供以下两部分功能。

（1）读取JSON格式的字符串，并组合为jsonadd*命令导出到标准输出（stdout）中。

（2）将环境变量中的设置组合为JSON字符串，并输出到标准输出中。

jshn可以通过-r选项来读取JSON格式字符串，并按照类型和名称导出到标准输出中。通过-w选项可以读取环境变量设置来生成JSON对象字符串。

jshn.sh是利用jshn工具对JSON的操作进行的更为便利的封装。这样其他模块可以更方便地进行操作。主要提供以下三部分功能。

（1）将JSON格式的字符串在环境变量中导入和导出。

（2）将配置内容设置到环境变量中。

（3）从环境变量中查询配置设置的值。

jshn.sh定义了大量的函数来对JSON数据进行编程操作。其内部实现是将定义的变量存储在shell空间中，这样可以用函数来操作每一个JSON对象。在操作完成后调用json_dump函数输出所有的内容。在使用jshn.sh中的函数之前，需要使用source命令来执行jshn.sh。source命令是在当前环境下执行的，其设置的环境变量对其后面的命令都有效。source命令和点命令“. ”等效。jshn定义的命令接口含义如表8-2所示。

表8-2　jshn定义的命令接口含义

 	 函 数 命 令

 	 含　　义

 	 json_init

 	 初始化JSON对象

 	 json_add_string

 	 增加字符串数据类型，例如json_add_string name zhang

 	 json_dump

 	 以JSON格式输出所有增加的JSON内容

 	 json_add_int

 	 增加整型数据，例如json_add_int age 36

 	 json_add_boolean

 	 增加布尔类型数据

 	 json_set_namespace

 	 定义命名空间，即定义设置变量的前缀，这样变量就可以区分开来

 	 json_load

 	 将所有内容读入到JSON对象中，并将这些对象设置到环境变量中

 	 json_get_var

 	 从环境变量中读取JSON对象的值，例如json_get_var ifdev device 获取device的值并赋值给ifdev变量

 	 json_get_type

 	 从环境变量中读取指定JSON对象的类型，例如json_get_type iftype device 获取device的类型并赋值给iftype变量

 	 json_get_keys

 	 从环境变量中读取JSON对象的所有名称，例如json_get_keys keys 获取所有的名称并赋值给keys变量

 	 json_get_values

 	 从环境变量中读取JSON对象的所有值，例如json_get_values values 将获取所有的值并赋值给values变量

 	 json_select

 	 选择JSON对象。因为JSON对象会嵌套JSON对象，因此在操作内部嵌套对象时首先选择所操作的JSON对象，例如：
 选择111这个对象进行操作: json_select 111
 选择上一层JSON对象: json_select ..

 	 json_add_object

 	 增加对象，其后的操作均在该对象内部进行操作，该命令不需要参数

 	 json_close_object

 	 完成对象的增加

 	 json_add_array

 	 增加顺序数组，例如json_add_array study，数组的内容后续通过json_add_string来增加

 	 json_close_array

 	 完成顺序数组的增加

 	 json_cleanup

 	 清除jshn所有设置的环境变量

JSON（JavaScript Object Notation）是一个轻量级的数据交换格式，易于人阅读和编写，对程序来说也容易解析和产生。JSON是一个独立于语言的文本格式，使用各种语言都非常方便转换。JSON有以下两种结构。

（1）“名称/值”对集合对象。由顺序无关的“名称/值”对组成，以左花括号开始，以右花括号结束。“名称/值”对之间由逗号分割，每一个名称后面跟着冒号。

（2）有序的列表值，在大多数语言中，是一个数组、向量、链表或序列等。JSON中以数组形式来顺序存储。数组以左中括号开始，以右中括号结束，数据值以逗号分隔。

以下为两种典型结构示例：

{ "action": "ifdown", "interface": "wan" }

{"dns_server": ["58.30.131.33 ", "211.99.143.33"] }

我们以一个实际使用案例来结束本节。示例8-1所示的是从netifd-proto.sh中摘出部分代码组织为一个独立的可执行脚本，该脚本将输出要执行的动作命令和参数。

示例8-1：

source /usr/share/libubox/jshn.sh #导出json_开头的函数，使后续可以调用

json_init #初始化

json_add_init action 2 #增加执行动作

json_add_init signal 9 #增加信号量

json_add_string "interface" "wan" #增加操作的接口

#这时将所有JSON字符串保存到环境变量中。可以使用env命令来查看

json_dump #输出前面设置的所有JSON字符串

{ "action":"2", "signal": "9", "interface":"wan"}

8.2　ubus

OpenWrt提供了一个系统总线ubus，它类似于Linux桌面操作系统的d-Bus，目标是提供系统级的进程间通信（IPC）功能。ubus在设计理念上与d-Bus基本保持一致，提供了系统级总线功能，与d-Bus相比减少了系统内存占用空间，这样可以适应于嵌入式Linux操作系统的低内存和低端CPU性能的特殊环境。

ubus是OpenWrt的RPC工具，是OpenWrt的微系统总线架构，是在2011年加入OpenWrt中的。为了提供各种后台进程和应用程序之间的通信机制，ubus工程被开发出来，它由3部分组成，分别为精灵进程、接口库和实用工具。

这个工程的核心是ubusd精灵进程，它提供了一个总线层，在系统启动时运行，负责进程间的消息路由和传递。其他进程注册到ubusd进程进行消息的发送和接收。这个接口是用Linux文件socket和TLV（类型-长度-值）收发消息来实现的。每一个进程在指定命名空间下注册自己的路径。每一个路径都可以提供带有各种参数的多个函数处理过程，函数处理过程程序可以在完成处理后返回消息。

接口库名称为libubus.so，其他进程可以通过该动态链接库来简化对ubus总线的访问。

实用工具ubus是提供命令行的接口调用工具。可以基于该工具来进行脚本编程，也可以使用ubus来诊断问题。

ubus代码基于LGPL 2.1发布，代码地址为http://git.openwrt.org/project/ubus.git，在OpenWrt 12.09版开始正式使用。

8.2.1　ubusd

/etc/init.d/ubus中提供ubusd进程的启动，在系统进程启动完成之后立即启动。它是在网络进程netifd之前启动的，该进程监听一个文件套接字接口和其他应用程序通信。其他应用程序可基于libubus提供的接口或使用ubus命令行程序来和ubusd进行通信。ubus提供的功能主要有以下4个方面。

（1）提供注册对象和方法供其他实体调用。

（2）调用其他应用程序提供的注册对象的控制接口。

（3）在特定对象上注册监听事件。

（4）向特定对象发送事件消息。

ubus将消息处理抽象为对象（object）和方法（method）的概念。一个对象中包含多个方法。对象和方法都有自己的名字，发送请求方在消息中指定要调用的对象和方法名字即可。

ubus的另外一个概念是订阅（subscriber）。客户端需要向服务器注册收到特定消息时的处理方法。这样当服务器在状态发生改变时会通过ubus总线来通知给客户端。

ubus可用于两个进程之间的通信，进程之间以TLV格式传递消息，用户不用关心消息的实际传输格式。ubus能够以JSON格式和用户进行数据交换。常见的应用场景有以下两种情况。

（1）客户端/服务器模式，即进程A提供一些逻辑较复杂的记忆状态的服务，并且常驻内存中。进程B以命令行工具或函数API形式调用这些服务。

（2）订阅通知模式，即设计模式中的观察者模式。定义了对象间的一种一对多的依赖关系，以便当一个对象的状态发生改变时，所有依赖于它的对象都得到通知并自动更新。即进程A作为服务器，当对象状态改变时通知给它所有的订阅者。

ubus是一个总线型消息服务器，任何消息均通过ubusd进程传递，因此多个进程在相互通信时，均通过ubus收发消息。其原理如图8-1所示。

[image:]

图8-1　ubus消息总线的原理

netifd模块就是通过libubus动态链接库提供的API接口向ubus总线注册了很多对象和方法，这些在netifd一节讲述。libubus提供的接口函数如表8-3所示。

表8-3　libubus常用接口函数含义

 	 函　　数

 	 含　　义

 	 ubus_add_object

 	 将对象加入的ubus空间中，即客户端可以访问对象

 	 ubus_register_subscriber

 	 增加订阅通知

 	 ubus_connect

 	 连接指定的路径，创建并返回路径所代表的ubus上下文

 	 ubus_send_reply

 	 执行完成方法调用后发送响应

 	 ubus_notify

 	 给对象所有的订阅者发送通知

 	 ubus_lookup

 	 查找对象，参数path为对象的路径，如果为空则查找所有的对象。cb为回调函数，对查找结果进行处理

 	 ubus_lookup_id

 	 查找对象的id，并将id参数在指针中返回

 	 ubus_invoke

 	 调用对象的方法

 	 ubus_register_event_handler

 	 注册事件处理句柄

 	 ubus_send_event

 	 发送事件消息

8.2.2　ubus命令行工具

ubus命令行工具也使用libubus提供的API接口来和ubusd服务器交互。这在调试注册的命名空间对象和编写shell脚本时非常有用。ubus调用参数和返回响应都使用非常友好的JSON格式。ubus提供5种命令来进行消息通信，下面所示的代码是不带参数的命令输出。

root@zhang:~# ubus

Usage: ubus [<options>] <command> [arguments...]

Options:

 -s <socket>: Set the unix domain socket to connect to

 -t <timeout>: Set the timeout (in seconds) for a command to complete

 -S: Use simplified output (for scripts)

 -v: More verbose output

Commands:

 - list [<path>] List objects

 - call <path> <method> [<message>] Call an object method

 - listen [<path>...] Listen for events

 - send <type> [<message>] Send an event

- wait_for <object> [<object>...] Wait for multiple objects to appear on ubus

list命令在默认情况下，输出所有注册到ubus RPC服务器的对象。list命令是通过调用ubus_lookup接口函数来列出所有的服务器对象的。返回信息由传入ubus_lookup函数的第三个参数receive_list_result处理，这个参数是一个回调函数，负责将结果输出到屏幕上。

如果使用-v参数，指定对象（命名空间路径）的所有方法和参数将全部输出屏幕中。示例8-2列出了局域网接口对象的所有方法和参数。

示例8-2：

root@zhang:~# ubus list network.interface.lan -v

'network.interface.lan' @02877eac

 "up": { }

 "down": { }

 "status": { }

 "prepare": { }

 "add_device": { "name": "String" }

 "remove_device": { "name": "String" }

 "notify_proto": { }

 "remove": { }

 "set_data": { }

Call命令在指定对象里调用指定的方法并传递消息参数。Call命令首先调用ubus_ lookup_id函数找到指定对象的ID，然后通过ubus_invoke函数调用来请求服务器，返回的结果使用receive_call_result_data来处理。消息格式必须是合法的JSON字符串格式，根据函数签名来传递正确的JSON字符串作为方法参数。例如：

root@zhang:~# ubus call network.device status '{"name":"eth0"}'

listen命令设置一个监听套接字来接收服务器发出的消息。listen命令是通过ubus_register_event_handler函数来注册事件回调处理函数的。示例8-3所示的代码是在一个终端窗口启动监听，在另外一个窗口执行调用down和up方法，然后就会在第一个窗口上观察到对象状态发生改变。

示例8-3：

#在第一个终端执行监听

root@zhang:~# ubus listen

{ "network.interface": { "action": "ifdown", "interface": "wan" } }

{ "network.interface": { "action": "ifup", "interface": "wan" } }

#在另外一个终端执行动作

root@zhang:~#ubus call network.interface.wan down

root@zhang:~#ubus call network.interface.wan up

send命令用于发出一个通知事件，这个事件可以使用listen命令监听到。send命令是通过调用ubus_send_event函数来实现的。命令行的发送数据格式必须为JSON格式，在程序中通过调用blobmsg_add_json_from_string函数转换为ubus的TLV格式。如果有多个监听客户端，多个监听客户端会同时收到事件。发送通知事件通常需要两个参数，第一个参数为指定对象，第二个参数为事件消息内容。示例8-4首先在第一个终端启动监听hello对象的事件消息，然后在第二个终端使用send命令向hello对象发送通知消息。

示例8-4：

root@zhang:~# ubus listen hello

{ "hello": { "book": "openwrt" } }

root@zhang:~# ubus send hello '{ "book": "openwrt" }'

wait_for命令用于等待多个对象注册到ubus中，当等待的对象注册成功后即退出。

8.3　netifd

netifd（network interface daemon）是一个管理网络接口和路由功能的后台进程，是一个使用C语言编写的带有RPC能力的精灵进程，它和内核系统通信采用Netlink接口来操作，采用ubus总线来提供RPC，这样比直接使用Linux内核的管理接口更方便。

Netlink是Linux操作系统内核和用户空间的通信机制，通常用于在内核和用户空间进程之间传输数据。它由针对用户空间的标准socket接口和内核空间的内部API模块组成。RFC 3549对Netlink有详细的介绍。

netifd也提供接口来提供扩展功能。netifd不需要shell脚本就可以设置静态IP配置。对于其他的IP设置（例如PPPoE或DHCP）就需要一系列的shell脚本来处理协议实现。

8.3.1　概述

netifd主要包含设备和接口对象。一个设备代表着一个Linux物理接口或者一个虚拟链路接口，例如eth0或ppp接口。任何需要关注设备状态的对象就注册为设备用户（device_user），当设备状态发生改变时就会通过回调函数来通知设备用户。当最后一个设备用户移除时，设备自己就立即释放。

设备也可以引用其他设备，这是用于管理各种设备，例如网桥或虚拟局域网（Virtual Local Area Network，VLAN）。这样将不用对各种设备进行区别对待，但需要通过热插拔来增加更多的成员接口，这在管理网桥设备时非常有用。

设备类型用结构体struct device_type来保存，这个类似于C++语言的虚基类，定义了一些接口函数而没有实现。在定义实体设备变量时，对设备类型和函数进行赋值，这相当于C++语言的子类。表8-4所示的是各种设备类型。

表8-4　各种设备类型

 	 设 备 类 型

 	 含　　义

 	 simple_device_type

 	 简单设备

 	 bridge_device_type

 	 网桥设备，网桥设备可以包含多个简单设备

 	 tunnel_device_type

 	 隧道设备，例如在以太网上封装GRE报文

 	 macvlan_device_type

 	 一个物理网卡上创建另外一个MAC地址的网卡，即在真实的物理网卡上再虚拟出来一个网卡

 	 vlandev_device_type

 	 一个物理网卡通过VLAN ID来划分为多个网卡

设备的启动和关闭状态通过引用计数来管理。设备可以通过claim_device函数来启用，通过release_device函数来释放。一旦引用计数为零，设备将立即关闭。如果设备没有成功启动，claim_device函数将返回非零值，设备的引用计数不会增加。一个注册的设备可能不能立即可用，一个接口或其他设备也可以关联上它，等待它出现在系统中来支持通过热插拔触发接口。

所有的设备状态通过事件机制通知给设备用户注册的回调函数。表8-5所示的是主要支持的设备事件类型及含义。

表8-5　设备事件类型及含义

 	 事 件 类 型

 	 含　　义

 	 DEV_EVENT_ADD

 	 系统中增加了设备，当设备用户增加到一个存在的设备上时，这个事件立即产生

 	 DEV_EVENT_REMOVE

 	 设备不再可用，或者是移除了设备或者是不可见了。所有的设备用户应当立即移除引用并且清除这个设备的状态

 	 DEV_EVENT_SETUP

 	 设备将要启动，这允许设备用户去应用一些必要的低级别的配置参数，这个事件并不是在所有情况下均被触发

 	 DEV_EVENT_UP

 	 设备已经启动成功

 	 DEV_EVENT_TEARDOWN

 	 设备准备关闭

 	 DEV_EVENT_DOWN:

 	 设备已经关闭

一个接口代表着应用于一个或多个二层设备的三层配置。一个活动的接口必须总是绑定到一个主设备到一个三层设备上。基于一个简化的协议，例如静态配置或DHCP等，默认情况是三层接口点引用一个主设备。更复杂的协议处理（如PPP/PPTP或VPN软件）可以重新映射到其他三层接口上。其他模块（例如防火墙）如果必要时会关注这些接口。一个接口有以下4种状态。

 	IFS_SETUP：协议处理函数正在配置当前接口。

 	IFS_UP：接口完全配置成功。

 	IFS_TEARDOWN：接口正在关闭中。

 	IFS_DOWN：接口已经关闭。

所有的接口均有一个协议处理函数。协议处理函数（例如PPP协议）可以设置一个辅助协议处理函数（例如PPPoE或PPTP）。协议处理函数是在状态改变时提供的回调函数，一个简单情况是直接关联在接口上。协议状态处理函数跟踪结构体interfaceproto_state状态，它依赖于它所控制的实体的状态。协议处理函数响应PROTO_CMD_SETUP和PROTO CMD_TEARDOWN命令，它不会花费很长时间，是通过向主线程发送IFPEV_UP和IFPEV_DOWN来实现的。

如果设置会在非常短的时间内完成，回调函数会处理并立即发送事件消息。如果设置需要花费比较长的时间，应当使用uloop函数来调度异步动作，如果必要则创建进程来执行。

协议处理函数必须在遇到PROTO_CMD_TEARDOWN命令时能中止设置。当执行PROTO_CMD_TEARDOWN命令调用并且设置了force参数时，协议处理函数需要尽可能快地清除而不等待排队任务处理完成。如果有任何子进程，需要杀掉并清除子进程。

简单的协议处理函数可以设置PROTO_FLAG_IMMEDIATE标志。如果协议处理函数可以立即执行所有的动作而不用等待，那就不需要调用IFPRE_UP和IFPRE_DOWN事务，这将引起这些事件直接被核心代码处理。

netifd还包含路由和策略路由（rule）的配置，它读取network中的配置项，并调用Netlink接口写入到内核中。这部分在路由部分来讲述。

netifd有一个init宏定义，这个宏定义是利用gcc编译器的初始化功能，定义了init修饰的函数在main()函数之前执行。__init宏定义如下：

#define __init __attribute__((constructor))

8.3.2　netifd方法

netifd在ubus中注册了一些对象和方法，启动netifd进程之后，就可以通过“ubus list”命令来查看注册的对象。netifd注册了3种对象，分别为network、network.device和network.interface。

root@zhang:~# ubus list

network

network.device

network.interface

network.interface.lan

network.interface.loopback

network.interface.wan

每一个对象都包含有一些方法，而每个ubus方法都注册了一个接口函数来进行处理。network对象全局接口方法如表8-6所示。

表8-6　network对象方法

 	 方　　法

 	 函　　数

 	 含　　义

 	 restart

 	 netifd_handle_restart

 	 整个进程关闭后重新启动

 	 reload

 	 netifd_handle_reload

 	 重新读取配置来初始化网络设备

 	 add_host_route

 	 netifd_add_host_route

 	 增加静态主机路由，是根据当前的路由增加了一个更为具体的路由表项，目的地址为IP地址而不是IP网段。例如：
 ubus call network add_host_route '{"target":"192.168.1. 20", "v6":"false"}'，将增加一个静态主机的接口路由

 	 get_proto_handlers

 	 netifd_get_proto_handlers

 	 获取系统所支持的协议处理函数，该方法不需要参数

network.device是一个二层设备接口，已经向ubus总线注册的方法有3个，如表8-7所示。

表8-7　network.device对象方法

 	 方　　法

 	 函　　数

 	 含　　义

 	 status

 	 netifd_dev_status

 	 获取物理网卡设备的状态，包含统计信息，
 例如ubus call network.device status '{"name":"eth0"}'

 	 set_alias

 	 netifd_handle_alias

 	 设置alias，这个很少用到

 	 set_state

 	 netifd_handle_set_state

 	 设置状态，这个也很少用到

network.interface是一个三层接口，可以包含多个二层网卡设备，如果接口启动则包含IP地址、子网掩码、默认网关和域名服务器地址等信息。它提供的方法如表8-8所示。

表8-8　network.interface对象方法

 	 方　　法

 	 函　　数

 	 含　　义

 	 up

 	 netifd_handle_up

 	 启动接口

 	 down

 	 netifd_handle_down

 	 关闭接口

 	 status

 	 netifd_handle_status

 	 查看接口状态，如果为启动，则包含启动时间、IP地址等

 	 add_device

 	 netifd_iface_handle_device

 	 增加设备

 	 remove_device

 	 netifd_iface_handle_device

 	 删除设备

 	 notify_proto

 	 netifd_iface_notify_proto

 	 调用原型函数，在netifd-proto.sh中会使用到

 	 remove

 	 netifd_iface_remove

 	 删除接口

 	 set_data

 	 netifd_handle_set_data

 	 设置额外的存储数据，可以通过status方法来查看

如果在对象中未指定接口名称，则需要在参数中指定接口名称。例如我们获取lan接口的状态可以通过以下两种方法调用：

ubus call network.interface status '{"interface":"lan"}'

ubus call network.interface.lan

interface对象的notify_proto方法共注册了0～7共8种动作处理函数，分别用于处理各种不同的情况。在netifd-proto.sh中封装为不同的shell命令如表8-9所示。

表8-9　netifd注册的shell命令

 	 编号

 	 shell命令

 	 含　　义

 	 0

 	 proto_init_update

 	 初始化设备及配置

 	 1

 	 proto_run_command

 	 运行获取IP地址命令，例如启动dhcp客户端或者启动ppp拨号

 	 2

 	 proto_kill_command

 	 杀掉协议处理进程，例如杀掉udhcpc进程

 	 3

 	 proto_notify_error

 	 通知发生错误

 	 4

 	 proto_block_restart

 	 设置自动启动标示变量autostart 为false

 	 5

 	 proto_set_available

 	 设置接口的available状态

 	 6

 	 proto_add_host_dependency

 	 增加对端IP地址的路由

 	 7

 	 proto_setup_failed

 	 失败后设置状态

编号为在netifd进程和shell脚本之间的预先定义好的处理动作ID。在netifd-proto.sh中设置，通过ubus消息总线传递到netifd进程中，根据功能编号来进入到相应的处理函数。Shell脚本导出的命令供各种协议处理函数调用。例如DHCP处理过程中会首先调用proto_init_update函数来初始化设备，初始化完成之后会通过proto_run_command命令来启动udhcpc进程获取IP地址等信息。

静态IP配置不需要Shell脚本就可以进行IP配置，其他的设置例如DHCP或PPPoE就需要一系列的Shell脚本来进行设置。每一种的协议处理的脚本都放在/lib/netifd/proto目录下。文件名通常和网络配置文件network中的协议选项关联起来。为了访问网络功能函数，这些脚本通常在文件开头导入一些通用功能的Shell脚本，例如functions.sh脚本和netifd-proto.sh脚本。

协议处理脚本被调用时的工作目录是/lib/netifd/proto/。在协议处理脚本的结尾应当通过调用add_protocol函数来注册自己。协议处理通常至少需要定义两个Shell函数，分别为初始化配置函数和设置函数。我们以DHCP协议为例进行说明。

（1）proto_dhcp_init_config。这个函数负责协议配置的初始化，主要目的是让netifd知道这个协议所拥有的参数。这些参数存储在/etc/config/network配置文件中。

proto_dhcp_init_config() {

 renew_handler=1

 proto_config_add_string 'ipaddr:ipaddr'

 proto_config_add_string 'hostname:hostname'

 proto_config_add_string clientid

 proto_config_add_string vendorid

 proto_config_add_boolean 'broadcast:bool'

 proto_config_add_string 'reqopts:list(string)'

 proto_config_add_string iface6rd

 proto_config_add_string sendopts

 proto_config_add_boolean delegate

 proto_config_add_string zone6rd

 proto_config_add_string zone

 proto_config_add_string mtu6rd

 proto_config_add_string customroutes

}

（2）proto_dhcp_setup。这个函数负责协议的设置，主要目的是实现了实际DHCP协议配置和接口启动。当被调用时，传递两个参数，第一个参数是配置节名称，第二个参数是接口名称。

任何协议处理都必须实现设置函数。这个函数通常是读取配置文件中的参数，然后将参数传递给netifd。DHCP协议在这个函数中组织DHCP参数传递给udhcpc进程。

（3）proto_dhcp_teardown。这个函数负责接口关闭动作，如果协议需要特别的关闭处理，例如杀掉udhcpc进程，调用停止功能等。这个函数在我们使用ifdown命令关闭接口时调用，或者是netifd探测到链路连接失去时调用。这个函数是通常可选的，调用时需要传递一个参数为UCI配置节名称，用于config_get函数调用时获取UCI　 配置。

8.3.3　netifd文件

netifd还包含一些非常方便用户操作的命令，这些命令调用ubus命令来查询netifd进程提供的设备和网络接口管理服务。

 	/sbin/ifup：启动接口。

 	/sbin/ifdown：关闭接口。

 	/sbin/devstatus：获取网卡设备状态。

 	/sbin/ifstatus：获取接口的状态。

ifup和ifdown实际上为一个文件，ifdown是指向ifup的软链接。这两个脚本由同一个文件ifup实现。在执行时会判断执行的文件名称，然后传递相应的参数。如果传递-a选项则表示所有的接口，这两个命令可以传递接口名称，例如lan或wan接口，来控制局域网接口和互联网接口的状态，实际上是通过调用ubus命令来控制的。命令如下：

ubus call network.interface.<lan/wan> <down/up>

devstatus命令需要一个参数，参数传递一个网卡设备名称，devstatus命令将设备名称转换为JSON格式后通过ubus总线传递给netifd，最后调用的命令为：

ubus call network.device status '{ "name": "eth0" }'

ifstatus命令用于获取接口的状态，该命令首先判断是否传递了参数，需要传递接口名称作为参数。接着使用list方法来查看接口对象是否存在。最后通过接口的status方法来获取接口状态，这个方法的签名使用ubus list查看显示没有参数，但在实际调用时必须传递接口名称作为参数才能成功。如果我们查看局域网接口的状态，最后调用的命令为：

 ubus call network.interface status'{"interface": "lan"}'

8.3.4　网络配置

网络功能的配置文件在/etc/config/network中。这个配置文件定义了二层网络设备Device和网络接口Interface、路由和策略路由等配置。网络接口配置根据协议的不同包含的选项不同。常见的协议有静态配置、DHCP及PPPoE等。接口配置协议不同，支持的配置选项不同。协议配置以proto来做区分，如果为static则需要设置IP地址和网络掩码等。DHCP，表示通过动态主机控制协议获取IP信息。PPPoE，表示通过拨号来获取IP。

如果网络服务提供商（ISP）提供固定IP地址，则使用静态配置，另外局域网接口通常为静态配置。静态配置可以设置的选项见表8-10。

表8-10　Interface静态配置选项

 	 名　　称

 	 类　　型

 	 含　　义

 	 ifname

 	 字符串

 	 物理网卡接口名称，例如：“eth0”

 	 type

 	 字符串

 	 网络类型，例如：bridge

 	 proto

 	 字符串

 	 设置为static，表示静态配置

 	 ipaddr

 	 字符串

 	 IP地址

 	 netmask

 	 字符串

 	 网络掩码

 	 dns

 	 字符串

 	 域名服务器地址，例如为8.8.8.8

 	 mtu

 	 数字

 	 设置接口的mtu地址，例如设置为1460

当ISP（网络服务提供商）未提供任何IP网络参数时，选择通过DHCP协议来设置。这种情况下，路由器将从ISP自动获取IP地址。DHCP配置选项如表8-11所示。

表8-11　Interface DHCP常见配置选项

 	 名　　称

 	 类　　型

 	 含　　义

 	 ifname

 	 字符串

 	 设备接口名称，例如为“eth0”

 	 proto

 	 字符串

 	 协议类型为DHCP

 	 hostname

 	 字符串

 	 DHCP请求中的主机名，可以不用设置

 	 vendorid

 	 字符串

 	 DHCP请求中的厂商ID，可以不用设置

 	 ipaddr

 	 IP地址

 	 建议的IP地址，可以不用设置

更常见的是PPPoE，使用用户名和密码进行宽带拨号上网。设置选项如表8-12所示。

表8-12　Interface PPPoE常见配置选项

 	 名　　称

 	 类　　型

 	 含　　义

 	 ifname

 	 字符串

 	 PPPoE所使用物理网卡接口名称，例如eth0

 	 proto

 	 字符串

 	 协议PPPoE，采用点对点拨号连接

 	 username

 	 字符串

 	 PAP或CHAP认证用户名

 	 password

 	 字符串

 	 PAP/CHAP认证密码

 	 demand

 	 数字

 	 指定空闲时间之后将连接关闭，在以时间为单位计费的环境下经常使用

8.4　ubox

ubox在2013年加入OpenWrt的代码库中。它是OpenWrt中的一个核心扩展功能，是OpenWrt的帮助工具箱，现在主要有以下3部分独立功能。

（1）内核模块管理，例如加载内核模块，查看已经加载内核模块等。

（2）日志管理。

（3）UCI配置文件数据类型的验证。

内核模块管理使用kmodloader来管理，并软链接为以下5个不同的Linux命令。

（1）rmmod从Linux内核中移除一个模块。

（2）insmod向Linux内核插入一个模块。

（3）lsmod显示已加载到Linux内核中的模块状态。

（4）modinfo显示一个Linux内核模块的信息，包含模块路径、许可协议和所依赖模块。

（5）modprobe 加载一个内核模块。

日志管理提供了ubus日志服务，可以通过ubus总线来获取和写入日志。logread读取日志，logd来对日志进行管理。

对于其他软件模块来说，主要使用ubox提供的配置文件验证功能，这样带来了一些好处，可以在软件启动之前使用脚本来对UCI配置进行验证，这样可以很好的同其他软件模块进行分工合作。配置验证选项有很多类型和关键字，表8-13列出常用的验证关键字含义。

表8-13　验证常用关键字及其含义

 	 关键字

 	 含　　义

 	 bool

 	 布尔值，合法的取值有"0"、"off"、"false"、"no"、"disabled"、"1"、"on"、"true"、"yes"和"enabled"

 	 cidr

 	 无类别路由选择的缩写，包含cidr4和cidr6，是指IP地址和其掩码长度，IPv4类型通常为255.255.255.255/32格式

 	 cidr4

 	 IPv4类型的IP地址和其子网掩码，格式为255.255.255.255/32

 	 file

 	 文件路径，例如为/etc/config/network

 	 host

 	 主机名称、域名或IP地址

 	 ip4addr

 	 IPv4地址，可以是任何IP地址，不验证IP地址合法性

 	 list

 	 是指一个类型的几个数据列表，中间用空格分开，例如list(port)表示是一个端口列表

 	 netmask4

 	 IPv4地址的网络掩码，例如255.255.255.0

 	 or

 	 表示可以为几种类型的一个，例如or(port, portrange)表示为端口或者端口范围

 	 portrange

 	 端口范围，形式为n-m，中间为短横线，不能为冒号，数字小于65535，并且n≤m

 	 port

 	 端口号数字，合法数字范围为0～65535

 	 range

 	 表示数字所处的范围，例如range(0, 31)表示大于等于0，小于等于31

 	 string

 	 字符串，可以限定字符串长度，例如string(1, 10)限定字符串长度在1到10之间

 	 uinteger

 	 无符号整形数字

提供的配置验证工具为validate_data，它有3种用法，第一种用法是对单个数据类型进行验证，它通常用于在软件启动前直接验证，如果数据类型不正确，将输出错误并退出启动流程。它需要两个参数，第一个参数为数据类型，第二个参数为需要验证的配置值。示例8-5是cron软件包对配置参数进行验证，是否为整形数字，如果不是数字，则输出验证失败并退出。

示例8-5：

loglevel=$(uci_get "system.@system[0].cronloglevel")

[-z "${loglevel}"] || {

 /sbin/validate_data uinteger "${loglevel}" 2>/dev/null

["$?" -eq 0] || {

 echo "validation failed"

 return 1

 }

}

第二种用法是对配置文件的多个数据类型进行验证。它至少需要4个参数，第一个参数为UCI配置文件名，第二个参数为配置节类型，第三个参数配置节的名称，第四个参数为验证的UCI选项、类型和默认值。如果有多个配置选项需要验证，则以空格分开紧跟在第四个参数在后面。示例8-6对网络时间服务器的配置进行验证，该用法必须指定配置节的名称，不能对匿名配置节的内容进行检查。前两行是命令输入，后面是该工具对配置文件检查的结果。可以使用echo $？来获取其返回值，0表示成功，根据返回值是否成功再执行下一步的处理流程。

示例8-6：

/sbin/validate_data system timeserver ntp \

 'server:list(host)' 'enabled:bool:1' 'enable_server:bool:0'

system.ntp.server[0]=0.openwrt.pool.ntp.org validates as list(host) with true

system.ntp.server[1]=1.openwrt.pool.ntp.org validates as list(host) with true

system.ntp.server[2]=2.openwrt.pool.ntp.org validates as list(host) with true

system.ntp.server[3]=3.openwrt.pool.ntp.org validates as list(host) with true

system.npt.enabled=1 validates as bool with true

system.ntp.enable_server=1 validates as bool with true

server='0.openwrt.pool.ntp.org'\ '1.openwrt.pool.ntp.org'\ '2.openwrt.pool.ntp.org ' \ '3.openwrt.pool.ntp.org '; enabled=1; enable_server=1;

第3种用法的参数和第2种用法参数含义和顺序完全相同，但第3个参数为””，表示空字符串，在这种情况下，将生成导入验证服务的命令字符串。例8-3前两行是命令调用，其后是该命令生成的字符串。

示例8-7：

/sbin/validate_data system timeserver " " ntp \

 'timeserver:list(host)' 'enabled:bool:1' 'enable_server:bool:0'

json_add_object; json_add_string "package" "system"; json_add_string "type" "timeserver"; json_add_object "data"; json_add_string "server" "list(host) "; json_add_string "enabled" "bool"; json_add_string "enable_ server" "bool" ; json_close_object; json_close_object;

8.5　procd

通常的嵌入式系统均有一个守护进程，该守护进程监控系统进程的状态，如果某些系统进程异常退出，将再次启动这些进程。procd就是这样一个进程，它是使用C语言编写的，一个新的OpenWrt进程管理服务。它通过init脚本来将进程信息加入到procd的数据库中来管理进程启动，这是通过ubus总线调用来实现，可以防止进程的重复启动调用。

procd的进程管理功能主要包含3个部分。

（1）reload_config，检查配置文件是否发生变化，如果有变化则通知procd进程。

（2）procd，守护进程，接收使用者的请求，增加或删除所管理的进程，并监控进程的状态，如果发现进程退出，则再次启动进程。

（3）procd.sh，提供函数封装procd提供系统总线方法，调用者可以非常便利的使用procd提供的方法。

8.5.1　reload_config

当在命令行执行reload_config时，会对系统中的所有配置文件生成MD5 值，并且和应用程序使用的配置文件MD5值进行比较，如果不同就通过ubus总线通知procd配置文件发生改变，如果应用程序在启动时，向procd注册了配置触发服务，那就将调用reload函数重新读取配置文件，通常是进程退出再启动。如果配置文件没有改变将不会调用，这将节省系统CPU资源。

注意，是配置文件的真实配置内容发生改变之后才会调用，如果增加空行和注释并不会引起配置文件的实质内容改变。另外当系统启动时，会执行reload_config将初始配置文件摘要值保存为/var/run/config.md5文件中。

我们以防火墙的配置文件发生改变为例来说明，当手动执行reload_config时，首先将目录/etc/config目录下的所有文件通过“uci show”命令输出其配置到“/var/run/config.check”目录下，这个命令将过滤配置文件增加空行和注释的情况。

初始系统启动时的配置文件摘要值保存在文件/var/run/config.md5中，我们通过“md5sum –c”命令来从文件中读取MD5值并验证是否和现有的配置文件MD5是否一致，如果不一致则就调用ubus方法通知procd进程配置文件发生改变。

当procd知道配置文件发生改变后，procd就会调用/etc/ini.d/firewall reload来处理配置文件改变，其他配置文件没有改变的进程，系统将不会花费资源进行处理。

最后将现在运行中的配置文件MD5值保存到/var/run/config.md5中。

8.5.2　procd进程

procd进程向ubus总线注册了service和system对象。表8-14是services对象提供的方法，主要有3部分功能，进程的管理、文件触发器（trigger）和配置验证服务（validate）。这些都是通过set方法增加到procd保存的内存数据库中。数据库以服务名称作为其主键。set方法共需要5个参数，第一个参数为被管理的服务进程名称；第二个参数为启动脚本绝对路径；第三个参数为进程实例信息，例如可执行程序路径和进程的启动参数等；第四个参数为触发器；第五个参数为配置验证项。前3个参数是必须要传递的，后面两个参数可选。

表8-14　service对象常用方法

 	 方　　法

 	 含　　义

 	 set

 	 进程如果存在，则修改已经注册的进程信息，如果不存在则增加，最后启动注册的进程

 	 add

 	 增加注册的进程

 	 list

 	 如果不带参数，则列出所有注册的进程和其信息

 	 delete

 	 删除指定服务进程，在结束进程时调用，例如停止防火墙会进行以下调用: ubus call service delete ‘{“name”:”firewall”}’

 	 event

 	 发出事件，例如reload_config就使用该方法来通知配置发生改变

 	 validate

 	 查看所有的验证服务

在删除时使用delete方法，只需要两个参数，第一个参数为服务名称，第二个参数为进程实例名称，可以不指定实例名称。查询时使用list方法，该方法有两个参数，第一个参数为服务名称，第二个参数是布尔值，表示是否输出其详细信息，默认为不输出详细信息。该方法可以不带任何参数，表示查询所有注册的服务信息。

我们使用ubus命令来查看其方法签名：

#ubus list service –v

'service' @d5562053

 "set":{"name":"String","script":"String","instances":"Table", "triggers":"Array","validate":"Array"}

 "add":{"name":"String","script":"String","instances":"Table", "triggers":"Array","validate":"Array"}

 "list":{"name":"String","verbose":"Boolean"}

 "delete":{"name":"String","instance":"String"}

 "update_start":{"name":"String"}

 "update_complete":{"name":"String"}

 "event":{"type":"String","data":"Table"}

 "validate":{"package":"String","type":"String","service":"String"}

 "get_data":{"name":"String","instance":"String","type":"String"}

我们举例来说明其参数用法。

a）增加进程，如果hello进程需要procd来管理，那么我们使用ubus 命令将hello进程加入的procd的内存数据库中。下面命令传递了4个参数，第一个参数设置被管理的服务进程名称为“hello”。第二个参数设置启动脚本绝对路径“/etc/init.d/hello”。第三个参数设置了进程实例信息，实例的启动命令为“/bin/hello”，启动参数为“-f -c bjbook.net”，并设置进程意外退出的重生参数（respawn）为默认值。第四个参数为触发器，收到文件“hello”的“config.change”消息后执行脚本“/ect/init.d/hello”并传递“reload”参数。

ubus call service add '{"name":"hello", "script":"/etc/init.d/hello", \

 "instances":{"instance1":{ "command":["/bin/hello","-f","-c","bjbook.net"], \

 "respawn":[] } }, "triggers": [["config.change", ["if", ["eq", "package", "hello"], ["run_script", "/ect/init.d/hello", "reload"]]]] }'

b）删除进程，参数传递进程的名字即可。

ubus call service delete '{"name":"hello"}'

c）查看注册的进程信息，也可以不指定名称，将输出所有的管理列表。“verbose”为真，表示输出其详细信息。

ubus call service list '{"name":"hello","verbose":true}'

d）发送事件，第一个参数含义为事件类型，现在只支持“config.change”事件消息；第二个参数表示文件“hello”，是指在目录“/etc/config”下的文件。在配置文件发生改变时调用。通知procd进程配置文件hello发生了改变。

ubus call service event '{"type":"config.change","data":{"package":"hello"}}'

procd注册在系统总线上的另外一个对象为system，表8-15为system对象的所有方法。该对象可以供luci来调用，其他模块很少调用，因此不再详述。

表8-15　system对象方法

 	 方　　法

 	 含　　义

 	 board

 	 系统软硬件版本信息，包含4个部分，分别为内核版本、主机名称、系统CPU类型信息和版本信息,版本信息从/etc/openwrt_release文件读出

 	 info

 	 当前系统信息，包含5部分，分别为系统启动时间、系统当前时间、系统负载情况、内存和交换分区占用情况等

 	 upgrade

 	 设置service_update为1

 	 watchdog

 	 设置watchdog信息，还存在问题，例如如果本身为0的情况

 	 signal

 	 向指定pid的进程发信号，是通过kill函数来实现的

 	 nandupgrade

 	 执行升级

8.5.3　procd.sh

使用ubus方法来进行管理时其传递参数复杂并且容易出错，procd.sh将这些参数拼接组织功能封装为函数，每一个需要被procd管理的进程都使用它提供的函数进行注册。这些函数组织为JSON格式的消息然后通过ubus总线向procd进程发送消息。这些函数将不同功能封装为不同的函数，构建特定的JSON消息来表达特定的功能用法，例如procdopen trigger函数创建一个触发器数组，在增加了所有的触发器之后，调用procd_close_trigger函数来结束触发器数组的增加。

procd.sh提供了大量的函数方便应用程序进行注册。我们仅讲述最常用的一些函数。procd.sh提供的API命名非常规范，除了有一个ucivalidate_section函数用于验证UCI配置文件以外，其他所有的函数均是以“procd”开头。

（1）procd_open_instance 开始增加一个服务实例。

（2）procd_set_param 设置服务实例的参数值，通常会有以下几种类型的参数。

 	command: 服务的启动命令行。

 	respawn: 进程意外退出的重启机制及策略，它需要有3个设置值。第一个设置为判断异常失败边界值（threshold），默认为3600秒，如果小于这个时间退出，则会累加重新启动次数，如果大于这个临界值，则将重启次数置0。第二个设置为重启延迟时间（timeout），将在多少秒后启动进程，默认为5秒。第三个设置是总的失败重启次数（retry），是进程永久退出之前的重新启动次数，超过这个次数进程退出之后将不会再启动。默认为5次。也可以不带任何设置，那这些设置都是默认值。

 	env：进程的环境变量。

 	file：配置文件名，比较其文件内容是否改变。

 	netdev：绑定的网络设备（探测ifindex更改）。

 	limits：进程资源限制。

每次只能使用一种类型参数，其后是这个类型参数的值。

（3）procd_close_instance 完成进程实例的增加。

通常以上3个函数在一起使用，示例8-8为rpcd对procd函数的使用，这个示例可以用于大多数应用程序。PROG变量在前面已设置为/bin/rpcd。该示例将最终调用以下命令完成进程的增加：

ubus call service set '{"name":"rpcd", "script":"/etc/init.d/rpcd", "instances": {"instance1":{ "command": ["/bin/rpcd"] } } }'

示例8-8：

 procd_open_instance

 procd_set_param command "$PROG"

 procd_close_instance

（4）procd_add_reload_trigger，增加配置文件触发器，每次配置文件的修改，如果调用了reload_config时，当前实例都被重启。有一个可选的参数为配置文件名称。其实它在内部是调用procd_open_trigger、procd_add_config_trigger和procd_close_trigger这3个函数来增加触发器。

（5）procd_open_validate，打开一个验证数组，是和procd_close_validate函数一起使用。

（6）procd_close_validate，关闭一个验证数组。示例8-9是软件包firewall使用procd来对防火墙配置的触发器和验证。

示例8-9：

procd_add_reload_trigger firewall

procd_open_validate

validate_firewall_redirect

validate_firewall_rule

procd_close_validate

（7）procd_open_service(name, [script])，至少需要一个参数，第一个参数是实例名称，第二个参数是可选参数为启动脚本。该函数仅在在rc.common中调用，用于创建一个新的procd进程服务消息。

（8）procd_close_service，该函数不需要参数，仅在rc.common中调用，完成进程管理服务的增加。

（9）procd_kill，杀掉服务实例（或所有的服务实例）。至少需要一个参数，第一个参数是服务名称，通常为进程名，第二个是可选参数，是进程实例名称，因为可能有多个进程示例，如果不指定所有的实例将被关闭。该函数在rc.common中调用，用户从命令行调用stop函数时会使用该函数杀掉进程。

（10）uci_validate_section，调用validate_data命令注册为验证服务。在配置发生改变后对配置文件的配置项合法性进行校验。验证服务是在进程启动时通过ubus总线注册到procd进程中。输入以下命令，可以看到系统所有注册的验证服务。

ubus call service validate

这些验证服务是在启动脚本中增加验证服务来实现，如示例8-10所示，service_triggers函数是预定义好的回调函数，在每一个增加服务结束后会自动调用，使用者不必关注如何调用。validate_cron_section函数是真正的将验证服务加入procd的验证服务中。它调用uci_validate_section函数，而uci_validate_section函数进一步调用validate_data程序。

示例8-10：

validate_cron_section() {

 uci_validate_section system system "${1}" \

 'cronloglevel:uinteger'

}

service_triggers()

{

 procd_add_validation validate_cron_section

 procd_add_reload_trigger "hello"

}

8.5.4　rc.common

rc.common在1209及之前的版本中并不支持procd启动，在1407版本中增加了专门针对procd的启动。该脚本向前兼容，在软件模块的启动脚本中如果没有定义USE_PROCD变量，则启动流程和之前完全相同，如果定义了USE_PROCD变量，对start、stop和reload函数进行重新定义，在调用这些函数时，将调用start_service、stop_service和reload_service函数等。

表8-16　procd预定义的函数

 	 函　　数

 	 含　　义

 	 start_service

 	 向procd注册并启动服务，是将在services所管理对象里面增加了一项

 	 stop_service

 	 让procd解除注册，并关闭服务, 是将在services中的管理对象删除

 	 service_triggers

 	 配置文件或网络接口改变之后触发服务重新读取配置

 	 service_running

 	 查询服务的状态

 	 reload_service

 	 重启服务，如果定义了该函数，在reload时将调用该函数，否则再次调用start函数

 	 service_started

 	 用于判断进程是否启动成功

如果在自己的启动脚本中定义了USE_PROCD那就调用这些函数。在rc.common中重新定义了start函数，相当于重载了这些函数。

8.5.5　综合示例

如何编写一个procd启动脚本，如示例8-11所示，通常前面两行内容是固定的，第一行表示使用“/etc/rc.common”来解释脚本。第二行内容设置USE_PROCD变量为1，表示使用procd来管理进程。

示例8-11：

#!/bin/sh /etc/rc.common

USE_PROCD=1

START=15

STOP=85

PROG=/bin/hello

validate_hello_section()

{

 uci_validate_section hello system globe \

 'delay:uinteger(1:200)'

}

start_service() {

 echo "start HelloRoute!"

 validate_hello_section || {

 echo "hello validattion failed!"

 return 1

 }

 procd_open_instance

 procd_set_param command "$PROG" –f -w bjbook.net

 procd_set_param respawn

 procd_close_instance

}

service_triggers()

{

 procd_add_reload_trigger "hello"

}

reload_service()

{

 stop

 start

}

PROG变量用来给程序的启动脚本赋值，用于启动应用程序。

validate_hello_section函数验证了配置文件hello中的delay变量否为整形值，并且在合理的（1～200）范围内。

start_service函数负责程序的启动。函数开始处调用了validate_hello_section函数对程序配置文件进行验证，如果验证失败，则进程不启动。在参数验证完成后，首先调用procd_open_instance 函数发起实例增加，接着调用了procd_set_param函数来设置了启动命令和启动参数，再接着设置其进程意外退出的重启机制及策略为默认值，最后调用procd_close_instance函数完成实例的增加。注意procd管理的进程需要运行在前台，即不能调用daemon或类似函数。

service_triggers函数增加触发器，我们增加了对配置文件hello的触发服务。当hello文件发生改变后，如果调用了reload_config命令，将触发调用reload_service函数。

reload_service函数在传递reload参数时进行调用，如果没有该函数，将会调用默认start函数。

在执行该启动脚本时，如果需要对procd脚本进行调试，可以设置PROCD_DEBUG变量为1，这样可以输出向ubus总线调用的参数信息。例如：

PROCD_DEBUG=1 /etc/init.d/hello start

8.6　参考资料

 	JSON对象（ttp://json.org/）。

 	OpenWrt网络配置（http://wiki.openwrt.org/doc/uci/network）。

 	如何编写一个procd初始化脚本（https://wiki.openwrt.org/inbox/procd-init-scripts）。

 	libubox技术（https://wiki.openwrt.org/doc/techref/libubox）。

第9章　常用软件模块

9.1　CWMP

9.1.1　概述

CWMP（CPE WAN Management Protocol）是一个面向终端设备的网管技术规范。这个技术规范提供了对下一代网络中家庭网络设备进行管理配置的通用框架、消息规范、管理方法和数据模型。它由宽带（Broadband）论坛管理和发布，于2004年发布第一版，文件编号为TR-069。CWMP中定义了以下两种基本网络元素。

 	ACS：自动配置服务器（Auto Configuration Server），网络中的管理服务器。

 	CPE：客户端设备（Customer premises equipment），网络中的被管理设备。

CWMP作为一个双向的SOAP/ HTTP的协议，它定义了客户端设备和自动配置服务器之间的通信协议。它包括一个安全的自动配置和其他CPE管理功能控制整体框架。协议支持了不同的互联网接入设备，如调制解调器、路由器、机顶盒和VoIP电话等。标准TR-069协议的自动配置服务器对这些设备进行自动配置和管理。

CWMP是一个基于文本的协议，在设备和自动配置服务器之间传输HTTP文本。在HTTP层面上CPE是客户端，ACS起到HTTP服务器的作用。这意味着控制配置数据的流动是客户端设备的职责。

所有的通信和操作都在配置会话的范围内进行。会话是由设备从一个通知（Inform）消息的传输开始的。ACS服务器在收到通知消息时，开始对CPE调用接口方法进行状态查询和配置。认证对于CPE来说是必不可少的，一般采用摘要认证算法来对CPE进行认证。

大多数的配置和诊断是通过设置和检索设备参数的值来实现的。这些配置都是组织为一个定义良好的层次结构，包括常见或不太常见的所有设备模型。宽带论坛发布的数据模型标准有两种格式，XML包含每一个子元素的详细规范，还有包含人可读细节的PDF文件。TR181包含了大多数设备类型的数据模型定义，设备所支持的管理模型用设备节点Device.DeviceInfo.SupportedDataModel来表示。

每一个定义的对象节点都需要标识出是可修改的还是只读的。这些是通过GetParameter Names方法来获取设备支持配置对象节点报告。设备不应允许标记为只读的任何参数的修改。TR181数据模型的规格和扩展清楚地标识了大多数设备参数的规格。参数的类型和含义在标准TR181中有详细定义。

CWMP 主要应用于电话、有线电视、宽带等家庭接入网络环境。在这些接入网络中，由于用户设备数量很多，并且用户分散，不容易进行设备的管理和维护。采用CWMP协议，可以实现ACS对CPE设备的远程集中管理，解决了CPE设备的管理维护问题，提高了网络的运维效率。

9.1.2　方法和流程

设备的整个管理过程是建立在定义好的一组简单的操作方法上，每个方法都是原子操作。如果设备不能执行一个配置命令那就返回给ACS适当的错误值。设备不应当因为错误中止会话。常用支持的方法见表9-1。

表9-1　TR069的主要交互方法

 	 方　　法

 	 含　　义

 	 SetParameterValues

 	 服务器用来修改CPE的参数

 	 GetParameterValues

 	 用于服务器获取CPE的参数配置值。一次可以获取一个或多个参数

 	 GetParameterNames

 	 用于服务器来发现客户端可以访问的配置参数

 	 Inform

 	 CPE调用服务器的Inform方法来建立和服务器之间的传输会话

 	 AddObject

 	 用于服务器来针对多实例对象来创建新的实例

 	 DeleteObject

 	 服务器删除客户端多实例中的一个实例

为适应终端数量巨大并且地址不固定的特性，TR069定义的交互流程中，管理交互通常都是由CPE发起的，由CPE来“请求”ACS进行管理（见图9-1）。当ACS希望启动对CPE的管理时，协议定义了一个反向触发机制。CPE建立一个用于侦听的HTTP端口，这个端口地址信息在CPE初始连接时上报给ACS，当ACS希望对CPE进行管理时，ACS向该端口建立传输控制协议连接并发送空的POST请求报文，CPE收到该请求报文后随即启动正向的HTTP/HTTPS连接，请求自动配置服务器的管理。交互流程如图9-1所示。

[image: 图像说明文字]

图9-1　TR069交互流程

（1）CPE和ACS建立TCP连接。

（2）SSL初始化进行双向认证。

（3）CPE发送Inform报文，开始建立CWMP连接。Inform报文使用Eventcode字段描述发送Inform报文的原因，通常为“0 BOOTSTRAP”，表示CPE首次启动建立连接。

（4）如果CPE通过ACS的认证，ACS将返回Inform响应报文，连接建立完成。

（5）如果CPE没有别的请求，就会发送一个HTTP Post请求，内容为空，以满足HTTP报文请求/响应报文交互规则（CWMP是基于HTTP协议的，CWMP报文作为HTTP报文的数据部分封装在HTTP报文中）。

（6）ACS查询CPE上设置的轮询通知间隔的值等。

（7）CPE把自身的轮询通知间隔的值返回给ACS。

（8）ACS发现轮询通知间隔的值设置不符合服务器配置，于是发起设置请求，要求将CPE的轮询通知间隔的值设置为1800秒。

（9）设置成功后，CPE发送响应报文。

（10）ACS发送空报文通知CPE没有别的请求了。

（11）CPE关闭连接。

9.1.3　如何配置

OpenWrt通过freecwmp软件包来支持CWMP，但默认并不会对该软件包进行编译，因此编译前需要使用feeds命令来查找和配置cwmp。

./scripts/feeds search cwmp #查找cwmp所支持的软件包

./scripts/feeds install freecwmp-curl #我们选择freecwmp-curl模块

Installing package 'freecwmp'

Installing package 'libfreecwmp'

Installing package 'libmicroxml'

Installing package 'shflags'

Installing package 'curl'

Installing package 'libzstream'

然后在make menuconfig中就会有UTilities --->freecwmp-curl的选择项，输入M选择并保存退出，然后进行编译。编译成功之后将所有的软件包放在服务器上，然后在OpenWrt终端输入以下命令进行安装。

opkg install freecwmp-curl

9.2　SSH服务器

SSH（Secure Shell）是专为远程登录会话和其他网络服务提供安全性的协议。OpenWrt默认采用Dropbear软件来实现SSH协议。它是一个在小内存环境下非常高效的SSH服务器和客户端。

9.2.1　概述

Dropbear是一个开源软件包，是由马特·约翰逊撰写，并且和安全shell兼容的服务器和客户端。它是在低内存和处理器资源情况下对标准的OpenSSH的一个替代品，适合嵌入式操作系统。它是OpenWrt的一个核心组件。

Dropbear实现了SSH协议V2版本。SSH协议是一种在不安全的网络环境中，通过加密和认证机制，实现安全的远程访问以及文件传输等业务的网络安全协议。它使用了第三方的加密算法，但嵌入到Dropbear代码中，终端的部分代码继承自OpenSSH软件。

Dropbear在客户端和服务器都实现了完整的SSH协议V2版。它不支持SSH版本V1的向后兼容性，以节省空间和资源，并避免了在SSH版本V1中固有的安全漏洞。

Dropbear还提供安全远程复制功能，可以在网络上的主机之间进行远程文件复制。它利用SSH协议来传输数据，和SSH登录采用同样的认证和安全，当需要认证时提示输入密码。文件名包含一个用户和主机地址，以表明该文件复制的源地址和目标地址。本地文件名可以明确使用绝对或相对路径名来避免处理文件名含有主机说明符。远程主机之间的复制也是可以的。将目标路由器的配置文件复制下来的命令示例如下：

scp root@192.168.6.1:/etc/config/dropbear /tmp/dropbear

9.2.2　配置

配置文件为/etc/config/dropbear，所有的配置在唯一一个配置节dropbear中。表9-2列出了SSH服务器的主要配置选项。

表9-2　SSH服务器的主要配置选项

 	 名　　称

 	 类　　型

 	 含　　义

 	 PasswordAuth

 	 布尔值

 	 设置为0关闭密码认证。默认为1

 	 RootPasswordAuth

 	 布尔值

 	 设置为0关闭root用户的密码认证。默认为1

 	 Port

 	 数字

 	 监听的端口号，默认为22

 	 BannerFile

 	 字符串

 	 用户认证成功后登录进去的输出内容的文件名

 	 enable

 	 布尔值

 	 是否随系统启动该进程，默认为1

 	 Interface

 	 字符串

 	 指定监听的网卡接口，即只从该接口接收请求

示例9-1所示的是dropbear的默认配置，打开了密码认证功能，并且允许管理员用户登录，设置在TCP端口号22处监听。

示例9-1：

config dropbear

 option PasswordAuth 'on'

 option RootPasswordAuth 'on'

 option Port '22'

option BannerFile '/etc/banner'

9.3　QoS

服务质量（Quality of Service，QoS）就是指网络通信过程中，保障用户业务在带宽、时延、抖动和丢包率等方面获得可预期的服务水平。家庭网内部的QoS主要指保证用户实时交互的业务符合用户的要求。

9.3.1　服务模型

QoS服务模型是指一组实现端到端服务质量保证的方式，QoS服务模型主要有如下3种。

（1）尽力而为服务模型（Best-Effort service）。尽力而为服务模型是一个单一的服务模型，也是最简单的服务模型。对尽力而为服务模型，网络尽最大的可能性来发送报文，但对时延、可靠性等性能不提供任何保证。尽力而为服务模型是Linux网络的缺省服务模型，通过先进先出队列来实现。它适用于绝大多数网络应用，如HTTP、FTP和E-Mail等。

（2）综合服务模型（Integrated service）。综合服务模型，它可以满足多种QoS 需求。该模型使用资源预留协议（RSVP），RSVP运行在从源端到目的端的每个设备上，可以监视每个流，以防止其消耗资源过多。这种体系能够明确区分并保证每一个业务流的服务质量，为网络提供最细粒度化的服务质量区分。但是综合服务模型对设备的要求很高，当网络中的数据流数量很大时，设备的存储和处理能力会遇到很大的压力。综合服务模型可扩展性很差，难以在互联网的核心网络实施。它仅适合在专用网络上实施。

（3）区分服务模型（Differentiated service）。区分服务模型如图9-2所示，是IETF工作组为了克服综合服务模型的可扩展性差而在1998年提出的另一个服务模型，目的是制定一个可扩展性相对较强的方法来保证IP的服务质量。在区分服务模型中，根据服务要求对不同业务的数据进行分类，对报文按类进行优先级标记，然后有差别地提供服务。

[image: 图像说明文字]

图9-2　区分服务模型

OpenWrt采用区分服务模型来提供QoS。区分服务模型是一个多服务模型，它可以满足不同的QoS需求，例如优先保证通过HTTP上网流量，它采用流量分类、流量整形、拥塞管理和拥塞避免机制来进行QoS。

流量分类：采用一定的规则识别符合某类特征的报文，它是对网络业务进行区分服务的前提和基础。一般使用Iptables来根据端口和报文特征进行分类。

流量整形：当流量被整形时，其传输速率是受到控制。整形可以大大降低使用的带宽，这样是为了更好的网络效应。它也被用来平滑流量的突发大流量。流量整形发生在出口处。

调度：通过调度数据包的传输，可以在提高流量的交互性的同时，仍然保证大容量传输的带宽。重新排序也被称为划分优先顺序，并且只发生在出口处。

带宽控制用于QoS时，一般用于保障某一类用户的服务质量，在家庭网内部常用于保障主人的带宽，限制访客的带宽。

OpenWrt采用qos-Script来实现QoS，内部使用Iptables和Tc工具来实现QoS。Iptables工具实现数据报文的分类。Tc工具来实现配置Linux内核中优先级队列。Tc工具在iproute2代码包中。Tc的一个关键的概念是QDISC。QDISC是“queueing discipline”的缩写，是指报文的排队规则，这是理解流量控制的基础。

当内核需要发送一个数据包到一个接口时，它被排入到配置该接口的队列中。紧接着，内核试图从队列获得尽可能多的数据包，把它们交由网络适配器驱动程序来处理。一个最简单的QDISC队列是“PFIFO”，它根本没有特别处理，是一个纯粹的先进先出队列。当网络接口不能瞬间处理完成时，它能存储部分流量。

类别（CLASSES）：一些排队规则可以包含类，这些类又进一步包含了另外的排队规则——流量可以在任何类内部排队规则。当内核试图取出一个数据包时，就可以来自任何一个类的分类排队规则。排队规则可以在特定类别的队列中优先处理某些特定类型的流量。

过滤器用于数据包分类，以确定哪一类数据包将加入队列中。当流量到达带有子类的类时，数据包需要进行分类。各种方法都可以这样做，其中一个是过滤器。附着在类中的所有过滤器被调用，直到其中一个返回一个决定。如果没有判决做出，其他标准可能是可用的。每一个排队规则都是不同的处理。需要注意，过滤器位于排队规则内部，它们不能独立存在。详细内容请参考Tc手册。

9.3.2　QoS配置

在menuconfig时，选择qos-scripts软件包，在Base-file/Qos-scripts中，源代码目录在package/network/config/qos-scripts下，编译后生成的软件包为qos-scripts。在OpenWrt中至少还有其他两个QoS软件包分别为sqm-scripts和wshaper。不能同时安装两个QoS软件包，因为它们均使用了Tc和iptables，并且按照不同的标准进行报文分类。QoS的UCI配置文件为/etc/config/qos，如何进行报文分类才能得到好的性能，这取决于应用程序。通常有两个处理原则。

（1）优先处理小包。例如TCP-ACKs和DNS等。

（2）优先处理用户交互的报文。例如SSH等协议。

QoS-script的默认配置将域名请求和SSH访问作为优先规则。通常域名请求负载非常小，并且用户在上网时的第一步请求动作，用户通常会等待上网请求页面，因此设置为最高优先级。SSH也是同样的原因，用户和服务器之间交互，用户等待服务器的响应。这样将对用户非常友好。QoS配置非常复杂，此处不再讲述。

9.4　uHTTPd服务器

9.4.1　概述

uHTTPd是OpenWrt/LuCI开发者从零开始编写的Web服务器，目的是成为优秀稳定的、适合嵌入式设备的轻量级任务的HTTP服务器，并且和OpenWrt配置框架非常好地集成在一起。它是管理OpenWrt的默认的Web服务器，还提供了现代Web服务器所有的功能。

uHTTPd支持TSL（SSL）、CGI和Lua，是单线程运行但支持多个实例，例如多个监听端口，每一个都有自己的根目录和其他特性。使用TLS（HTTPS支持）时需要安装uhttpd-mod-tls模块。和许多其他的Web服务器一样，它也支持在进程内运行Lua，这样可以加速Lua CGI脚本。注意这依赖于Lua，默认情况下没有这样配置。

uHTTPd是OpenWrt的标准HTTP服务器，但是它默认并不会安装在OpenWrt发行版的系统文件中。因为默认的发行版并不包含Web用户管理界面，通常uHTTPd会作为Web接口LuCI的依赖模块自动安装。如果需要单独安装，可以通过以下命令来实现。

#>opkg update

#>opkg install uhttpd

9.4.2　配置

uHTTPd的配置和OpenWrt用户接口系统UCI完全集成在一起。UCI配置文件是/ etc/config/uhttpd。由于uHTTPd直接依赖这文件，因此当UCI设置提交时没有第二个配置文件需要重新生成。uHTTPd是UCI系统配置的一部分。uHTTPd也提供一个初始化脚本/ etc/init.d/uhttpd来启动或停止服务，或者在系统启动时自动启动。

uHTTPd有两个配置节定义，类型uHTTPd包含了通用的服务器设置，在表9-3中做了详细介绍。cert部分定义了加密连接SSL证书的默认值，在局域网中一般不使用，因此不再介绍。

表9-3　uHTTPd配置项含义

 	 名　　称

 	 类　　型

 	 含　　义

 	 listen_http

 	 字符串

 	 定义服务器的IP和端口。指所监听的非加密的地址和端口。如果仅给出端口号，将同时服务于IPv4和IPv6请求。使用0.0.0.0:80仅绑定在IPv4接口，使用[::]:80仅绑定IPv6

 	 home

 	 目录路径

 	 定义服务器的文档根目录

 	 max_requests

 	 整型数字

 	 最大的并行请求数，如果大于这个值，后续的请求将进入排队队列中

 	 cert

 	 文件路径

 	 用于HTTPS连接的ASN.1/DER证书。在提供HTTS连接时必须提供

 	 key

 	 文件路径

 	 用于HTTPS连接的ASN.1/DER私钥。在提供HTTPS连接时必须提供

 	 cgi_prefix

 	 字符串

 	 定义CGI脚本的相对于根目录的前缀。如果没有该选项，CGI功能将不支持

 	 script_timeout

 	 整型数字

 	 Lua或CGI请求的最大等待时间秒值。如果没有输出产生，则超时后执行就结束了

 	 network_timeout

 	 整型数字

 	 网络活动的最大等待时间，如果指定的秒数内没有网络活动发生，则程序终止，连接关闭

 	 tcp_keepalive

 	 整型数字

 	 tcp心跳检测时间间隔，发现对端已不存在时则关闭连接。设置为0则关闭tcp心跳检测

 	 realm

 	 字符串

 	 基本认证的域值，默认为主机名，是当客户端进行基本认证的提示内容

 	 config

 	 文件路径

 	 用于基本认证的配置文件

最小配置必须包含文档根目录和HTTP监听端口，示例9-2所示为uHTTPd的一个最小配置。在端口80处监听，默认的主目录为“www”。

示例9-2：

config 'uhttpd' 'main'

 option 'listen_http' '80'

 option 'home' '/www'

9.5　SMTP

SMTP（Simple Mail Transfer Protocol）即简单邮件传输协议，它是用于由源地址到目的地址传送邮件的传输协议，由它来控制电子邮件的传输方式。SMTP协议建立在TCP协议之上，它帮助每台计算机在发送或中转信件时找到目的地址。路由器通过SMTP协议所指定的服务器，就可以把电子邮件寄到收信人的服务器上。

邮件的内容格式包含邮件消息头和消息体，消息头和消息体之间由一个空行分隔。

OpenWrt使用sSMTP软件包来支持邮件发送。sSMTP是一个简单的邮件发送客户端，它不需要一个后台进程，不能接收邮件仅可以发送邮件。通过以下命令进行安装。

opkg update

opkg install ssmtp

在安装完成后sSMTP会链接到sendmail，配置文件会安装到以下位置。

/etc/ssmtp/ssmtp.conf

/etc/ssmtp/revaliases

sSMTP并不会默认选择编译，首先将sSMTP软件包从可选仓库中加入到选择列表中。

./scripts/feeds install ssmtp

然后在make nenuconfig时，通过“Mail→ssmtp”进行选择。sSMTP编译脚本位于package/feeds/packages/ssmtp目录下,编译完成后的软件包名称为ssmtp。示例9-3所示的是一个示例邮件内容（msg.txt），包含收件人和抄送收件人，邮件主题为“Hello OpenWrt route”，邮件消息头和邮件内容之间有一个空行，最后是邮件正文。

示例9-3：

To:zyz323@163.com

CC:zyz323@sohu.com

Subject: Hello OpenWrt route

test. Hello Openwrt bjbook.net.

在发送邮件之前，我们需要配置邮件账户和服务器信息：

echo "mainhub=smtp.163.com" >> /etc/ssmtp/ssmtp.conf

echo "rewriteDomain=163.com" >> /etc/ssmtp/ssmtp.conf

echo "root:zyz323@163.com:smtp.163.com" >> /etc/ssmtp/revaliases

写好邮件之后我们使用命令来发送邮件，发送命令接口格式如下：

ssmtp [flags] 目的地址 < msg.txt

 	-t：从消息内容中读取目的接收者。

 	-v：详细输出程序执行步骤。

 	-au username：指定SMTP认证用户名

 	-ap password：指定SMTP认证密码　

 	-Cfile：不读取默认配置，使用指定配置文件。

发送邮件示例如下，请替换为实际的账号和密码。

#> ssmtp -f username au username@163.com -ap password -s zyz323@163.com -v < msg.txt

9.6　NTP

NTP（Net Time Protocol）是用于互联网上计算机时间同步的协议。其中有NTP服务器来提供网络时间服务，客户端从服务器获取时间。OpenWrt路由器中内置了一些常用的 NTP时间服务器地址，一旦与因特网连接后，路由器可以自动从时间服务器获取当前时间，然后设置到路由器系统当中。OpenWrt默认支持内置的网络时间服务器，在配置文件/ etc/config/system中设置。该选项用来设置NTP时间服务器的IP地址，可以设置多个网络时间服务器。注意：

 	关闭路由器电源后，没有电池的路由器时间信息会丢失，只有再次开机连上因特网后，路由器才会自动获取GMT 时间。

 	必须先设置系统时间后，路由器的防火墙的时间限定才能生效。

 	另外可以不采用NTP时间，通过date命令来手动设置系统时间。

在调试时我们可以使用date命令手动设置路由器的时间，然后等待路由器进行时间更新。使用date命令也可以来查询当前时间。date命令如果没有指定选项，则默认输出当前时间。设置时需要传递一个-s选项，后面再以引号传递时间字符串。推荐使用“YYYY-MM-DD hh:mm:ss”的格式进行时间设置：

date –s '2015-12-20 00:00:00'

OpenWrt也支持提供NTP服务器，可以控制配置文件来打开和关闭NTP服务器，系统重启后生效。也可以通过调用/etc/init.d/sysntpd restart命令生效。命令设置如下：

uci set system.ntp.enable=1

uci commit system

9.7　PPPoE

PPP在RFC1661中描述，是针对拨号连接的解决方案。PPP是一种分层的协议，物理层用来进行实际的点到点连接。由链路控制层（LCP）发起对链路的建立、配置和测试。在LCP初始化完成后，通过一种或多种网络控制协议来传送特定协议族的通信。PPPoE是指在以太网上进行拨号因特网连接。PPPoE是目前使用最为广泛的广域网协议，因为其具有以下几个特征。

（1）能够控制数据链路的创建。

（2）能够对IP地址进行分配和管理。

（3）采用应用最广泛的以太网介质传输。

（4）能够配置链路并对链路进行质量测试和错误检查。

PPPoE也支持身份验证，身份验证选项用于创建链路的发起方输入信息，用于确保发起方发起连接时拥有管理员的许可。可供选择的验证方式有两种。

（1）PAP（密码验证协议）。以客户端明文方式传递用户名和密码，服务器和本身所存储的密码进行比较验证。

（2）CHAP（握手质询验证协议）。服务器向客户端发送挑战消息，客户端使用密码和挑战消息计算出请求值再次发送给服务器。服务器将请求消息和本地计算出的字符串进行对比，如果符合则身份验证通过，否则拒绝下一步请求。

CHAP密码不在网络中明文传输，因此保证了密码不被泄漏。另外使用了不可预知的，可变随机值来防止回放攻击。

9.7.1　CHAP验证过程

（1）首先由客户端发起连接请求。

（2）服务器收到连接请求后向客户端发送一个CHAP质询消息。CHAP质询消息包含以下内容。

 	质询分组的类型标识符。

 	ID：标识该质询分组的序列号。

 	Random=随机数。

 	质询方的认证名。

服务器保存随机数和ID以便后续计算认证。

（3）客户端收到质询消息，并进行解析。解析完成后将序列号、随机数和口令连接到一起并计算MD5值，这是一个单向MD5哈希值，不能从结果计算出原始值，但可以从MD5值来判断原始值是否正确。这个数值放在请求中当作认证信息发送给服务器。报文包含以下4部分内容。

 	02：CHAP回应分组类型标识符。

 	ID：序列号，从质询分组中复制而来。

 	Hash字符串，随机值和口令的哈希值。

 	设备认证名称。

（4）服务器收到带有认证的连接请求报文后，从序列号找出原始的质询随机数，将序列号、随机数及口令使用MD5算法计算哈希值。将自己计算的哈希值和客户端请求的哈希值进行比较，如果一致则认证通过，否则认证失败。认证成功消息包含以下3部分内容。

 	03：CHAP认证成功消息类型标识符。

 	ID：序列号，是会话的标识，直接从认证请求中复制而来。

 	“Welcome in”：文本消息，表示认证通过。

如果认证失败，则发送认证失败消息，主要包含以下内容。

 	04：CHAP认证失败消息类型标识符。

 	ID：序列号，是会话的标识，直接从认证请求中复制而来。

 	“Authentication failure”：文本消息，表示认证失败。

CHAP认证过程如图9-3所示。

[image:]

图9-3　CHAP认证过程

9.7.2　PPPoE配置

最典型的是用户名和密码，配置文件为/etc/ppp/chap-secrets，由用户名、提供者和密码3部分组成。配置选项在/etc/ppp/options中。在实际配置中使用UCI网络配置文件network，在表8-12中已经进行说明。

9.8　无线基础

9.8.1　什么是无线

无线是使用射频技术，利用无线电波发送与接收数据，无须中断网络即可实现移动办公。IEEE 802.11是无线网络的协议标准，计算机之间的无线通信需要共同遵守IEEE 802.11规则。共同的协议标准是确保不同厂商生产设备实现互通与兼容的基础，到目前为止，IEEE正式发布的无线网络协议标准共有IEEE 802.11、IEEE 802.11a、IEEE 802.11b、IEEE 802.11g、IEEE802.11ac和IEEE802.11ng等。

9.8.2　优点

（1）灵活性。在无线网络信号覆盖的任何地方，对于支持无线客户端的设备而言，在获取相应权限的前提下，都可以随时接入此无线网络，这对于有线网络来说是不可能实现的。

（2）成本和安装。无须布置网线，安装简单。

（3）扩展性。无线网络能够应用于多种拓扑结构的网络中。可以通过简便地改变无线配置，而完成不同的功能。

9.8.3　缺点

（1）性能。无线局域网是依靠无线电波进行传输的，这些电波通过无线发射装置进行发射，而建筑物、车辆、树木和其他障碍物都可能阻碍电磁波的传输，所以会影响网络的性能。

（2）速率。无线信道的传输速率 与有线信道相比要低得多。目前，无线局域网的最大传输速率 为802.11ac标准的1.3G bit/s。

（3）安全性。无线电波不要求建立物理的连接通道，再加上无线信号是发散的。所以传输信号很容易被监听到，这样会造成通信内容被泄露。

9.8.4　安全

无线的安全性必须要慎重考虑，中国推出的无线局域网鉴别和保密基础结构(WAPI)无线网络标准也主要是针对无线局域网的安全性而提出的。具体说来，无线局域网目前所使用的安全机制主要有以下一些。

（1）服务集标示符（Service Set Identifier，SSID）是用于识别无线设备的服务配置标示符，相当于无线接入点（Access Point，AP）的名称。它可以提供最低级别的访问控制功能，用户在连接不提供服务集标示符广播功能的无线路由器时，必须要知晓该无线路由器服务集标示符，否则就无法连接。

（2）有线等效保密（Wired Equivalent Privacy，WEP）协议是无线网络上信息加密的一种标准方法。它一方面用于防止没有正确的有线等效保密密钥的非法用户接入网络，另一方面只允许具有正确的有线等效保密密钥的用户对数据进行加密和解密。

（3）无线保护接入（Wi-Fi Protected Access，WPA）是有线等效保密协议的替代方案，它是由IEEE 802.11i安全规范派生而来，并与其兼容。它可以保护IEEE 802.11的所有版本，而且其安全性比目前广泛采用的有线等效保密技术更好。

9.8.5　认识OpenWrt无线接口

（1）无线接口操作工具（iwconfig）。

ath0 IEEE 802.11ac ESSID:"WIRELESS_0001"

 Mode:Master Frequency:5.745 GHz Access Point: 18:9D:54:10:10:04

 Bit Rate:1.3 Gb/s Tx-Power=23 dBm

 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality=0/94 Signal level=-95 dBm Noise level=-95 dBm

 Rx invalid nwid:107 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

ath1 IEEE 802.11ng ESSID:" WIRELESS_0002"

 Mode:Master Frequency:2.412 GHz Access Point: 18:9D:54:10:10:01

 Bit Rate:216.7 Mb/s Tx-Power=20 dBm

 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality=94/94 Signal level=-96 dBm Noise level=-95 dBm

 Rx invalid nwid:1071 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

（2）无线接口分析。

 两个无线接口：ath0和ath1

 IEEE 802.11ac：使用的MAC层协议，802.11ng为2.4G，802.11ac为5G

 ESSID：接口广播的SSID名称

 Mode：工作模式，Master\mixed

 Frequency：无线接口工作的频率

 Access Point：无线接口的MAC地址

 Bit Rate：比特率，单位为Mbit/s

 Tx-Power：发射功率

 RTS thr：用来解决数据冲突的RTS阀值

 Fragment thr：数据帧分片阀值

 Encryption key：无线密码

 Power Management：电源管理开关

 Link Quality/Signal level/Noise level：链路质量、信号级别、噪声级别

9.8.6　OpenWrt无线配置

（1）配置文件名称：/etc/config/wireless。

（2）配置文件内容如下所示。

config wifi-device 'wifi0'

 option macaddr '18:9D:54:10:10:01'

 option txpower '20'

 option country 'CN'

 option hwmode '11g'

 option channel 'auto'

config wifi-iface

 option device 'wifi0'

 option network 'lan'

 option mode 'ap'

 option ssid 'WIRELESS_0002'

 option key '11111111'

 option encryption 'psk2'

config wifi-device 'wifi1'

 option macaddr '18:9D:54:10:10:04'

 option hwmode '11ac'

 option txpower '21'

 option country 'CN'

 option htmode 'HT20'

 option channel '149'

config wifi-iface

 option device 'wifi1'

 option network 'lan'

 option mode 'ap'

 option ssid 'WIRELESS_0001'

 option encryption 'none+'

（3）配置文件分析。见表9-4。

表9-4　无线网络参数解析

 	 名　　称

 	 类　　型

 	 含　　义

 	 wifi-device

 	 字符串

 	 无线网络物理设备名称

 	 macaddr

 	 字符串

 	 无线网络物理设备的MAC地址

 	 txpower

 	 字符串

 	 设备发射功率，和iwconfig看到的接口发射功率对应

 	 country

 	 字符串

 	 国家编码

 	 hwmode

 	 字符串

 	 设备工作模式，11g代表2.4G，11ac代表5G，和iwconfig看到的接口工作模式对应

 	 channel

 	 字符串

 	 设备工作信道，自动或者1-14 (2.4G)

 	 device

 	 字符串

 	 三层接口和物理接口绑定设置

 	 network

 	 字符串

 	 网络层工作方式，例如："lan"

 	 mode

 	 字符串

 	 接口工作模式，例如："station" "ap"

 	 ssid

 	 字符串

 	 无线网络标识符

 	 key

 	 字符串

 	 无线网络密码

 	 encryption

 	 字符串

 	 无线加密方式，例如："psk2" "wpa-psk"

（4）配置设置。OpenWrt配置使用系统UCI工具进行设置。

例如，设置无线信道时：

 uci set wireless.wifi0.channel='auto'

 将无线配置写入配置文件：

 uci commit

9.9　参考资料

 	CPE广域网管理协议（https://www.broadband-forum.org/technical/download/TR-069.pdf）。

 	TR-069 Device:2.6根对象定义（https://www.broadband-forum.org/cwmp/tr-181-2-10-0.html [2016-03-20]）。

 	TR069在家庭网络中的应用. 唐珂，王民。

 	rfc2475区分服务模型架构. 1998。

 	PPP挑战握手认证协议（CHAP）（http://www.ietf.org/rfc/rfc1994.txt）。

 	Linux高级路由和流量控制（http://lartc.org/）。

 	思科网络技术学院教程（第三版）[M]. 北京：人民邮电出版社。

第10章 IP路由

路由就是把报文从源主机传输到目标主机的过程，报文根据路由表来进行路由。本章首先对路由进行分类，接着讲述了根据目的地址路由，为了更灵活的路由报文而产生了根据源地址的策略路由，最后讲述了D类IP地址的组播路由。

10.1　路由分类

智能路由器上最重要的功能是IP路由。IP报文根据路由表进行路由决策，路由表中的路由项又有各种不同的分类，按目的地址类型不同可划分为单播路由和组播路由。单播路由表中保存了各种路由协议发现的路由。根据路由表项的来源来划分，通常分为以下3类。

（1）接口路由。也称为直连路由，当设置接口IP地址和掩码时会自动增加的路由，是报文通往该接口IP地址所在网络的路由。

（2）静态路由。网络管理员手工配置的路由。当网络结构比较简单时，只需配置静态路由就可以工作，适用于拓扑结构简单并且稳定的小型网络。静态路由不能自动适应网络拓扑结构的变化，当网络发生故障或者拓扑发生变化后，必须再次由网络管理员手工修改配置。

（3）动态路由。动态路由协议发现并设置路由，常见的动态路由协议有RIP、OSPF和IS-IS等。路由表会根据链路状态或网络拓扑结构变化进行动态生成和删除。常见的动态路由软件有Zebra和Quagga等。在智能路由器领域一般只有唯一的互联网出口，因此不会用到动态路由。

根据路由目的地址的不同，路由可划分为以下两类。

（1）网络路由。目的地为网络地址，子网掩码长度小于32位

（2）主机路由。目的地为主机地址，子网掩码长度为32位，通常主机路由的优先级更高。

按路由决策的方式不同，路由可划分为以下两类。

（1）策略路由。也称为源地址路由，根据IP报文源地址、端口、报文长度、优先级等内容灵活地进行路由选择。

（2）普通的目的地址路由。仅根据报文目的地址来选择出接口或者下一跳地址。

另外，根据目的地与该路由器是否直接相连，路由又可划分为以下两类。

（1）直接路由。目的地所在网络与路由器直接相连。

（2）间接路由。目的地所在网络与路由器非直接相连。

还有一个概念是缺省路由，也称默认路由，是指在路由器中没有找到精确匹配路由表项后所使用的路由。如果报文的目的地址在路由表中没有找到匹配的路由，而且还没有默认路由，那么该报文将被丢弃并向报文的源地址发送一个网络地址不可达的ICMP差错报文。智能路由器的默认路由通常是通过DHCP或PPPoE自动获取下一跳地址后，动态生成并写入到路由表中的。

10.2　单播路由

报文的目标地址为A、B、C类地址的路由表项为单播路由。目标IP地址是告诉报文目的主机地址在哪里，而路由是告诉报文如何到达目的地址。网络上的每个路由器独立进行决策，将报文转发到离目的地址更近的路由器上，就这样一步一步地路由到目标主机上。

10.2.1 路由表管理

首先我们来看一下OpenWrt机器的路由表，示例10-1执行“route –n”命令来列出路由表项，-n选项表示列出数字地址形式，而不是主机名或者域名。route命令是用于管理和维护操作系统内核的路由表，主要用于设置到特定主机或网络的静态路由。可以增加、删除及查看路由表等。

示例10-1：

root@zhang:~$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 eth0

10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.56.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

第一行是一个默认路由，这表明如果没有精确匹配路由，就会将IP报文发送到IP地址10.0.2.2上。UG表示一个启用的网关地址。eth0表示出接口地址。

第二行是一个接口路由，表示该接口eth0和10.0.2.0/24网络相连。这在接口配置IP和掩码时会默认自动设置上。如果不设置掩码则默认A类地址为8位掩码，B类地址为16位掩码，C类地址为24位掩码。

第三行也是一个接口路由，为局域网接口的路由项，表示局域网为192.168.56.0网段。eth1表示通过该网卡和局域网网络相连接。路由各个字段含义如表10-1所示。

表10-1 路由表含义

 	 字 段

 	 含 义

 	 Destination

 	 目的网络/主机的IP地址

 	 Gateway

 	 网关地址，即路由的下一跳地址，如果全为零表示没有网关地址

 	 Genmask

 	 网络掩码，以IP地址形式表示，255.255.255.0表示24位掩码

 	 Flags

 	 路由表项标识

 	 Metric

 	 路由优先级

 	 Ref

 	 该路由表项的引用数

 	 Iface

 	 转发报文出接口名称，即符合这条路由的报文将从此接口转发出去

对于给定的路由表项的路由标识通常有以下几种。

 	U：路由表项可以使用。

 	H：路由表项的目标地址是主机地址，即掩码为32位。

 	G：路由表项下一跳为网关。

 	R：动态路由算法生成的。

 	D：该路由通过重定向或者守护进程动态安装的。

 	M：该路由被路由守护进程或重定向报文修改。

 	A：该路由被addrconf安装。

 	C：缓存（cache entry）。

 	!：拒绝路由（reject route）。匹配这一条报文将丢弃。

每当增加一个接口IP时将自动创建一个直连的接口路由。对于通过DHCP获得的IP地址，除了设置直连路由外还可能会设置网关的默认路由。使用ip命令和route命令均可对路由表进行管理，默认路由通过以下两个命令均进行设置。

#>ip route add default via <gw ip> dev eth0

#>route add default gw <gw ip> dev eth0

这两个命令行为完全相同，只是ip命令使用Netlink接口设置到内核中，route命令通过传统的ioctl接口设置到内核中。Linux内核已经不建议使用ioctl接口。

针对目的IP，如何来选择路由表项？路由表中的信息包含了IP层的决策。采用最长匹配算法来匹配，如果有多个匹配则会随机选择一个作为路由。我们可以使用“ip route get”命令来查看匹配的路由。

root@zhang:~$ip route get 8.8.8.8

8.8.8.8 via 10.0.2.2 dev eth0 src 10.0.2.15

 cache

为了系统的稳定性，操作系统将路由功能划分为两部分。

（1）管理平面，也称为控制平面。是指用于路由学习，生成路由表的部分。Linux用户空间的程序就属于管理平面。

（2）转发平面，也称数据平面（Data Plane）。转发平面是指系统中进行数据报文的接收、查找路由表、根据路由表进行决策等的部分。转发平面在Linux内核中。

路由器可以实现转发面和管理平面的相互独立。为了做到控制平面和转发平面的分离，Linux内核构建了一张转发表，专门用于指导数据报文的转发。用户空间的应用层软件形成控制平面的路由表，可能会有多种可选的路由规则，但路由软件系统会计算出一条最佳的路径然后写入内核中。两者之间通过接口（Netlink）来实现相互操作。在小型智能路由器上网络比较单一，路由表项不用动态生成，只有固定的路由表。因此一般不会使用quagga路由软件生成的控制平面的路由表，只有静态路由。在小型智能路由器上可以认为两者完全相同。数据平面保存的路由表，也称为路由转发表（Forwarding Information Base，FIB），用来指导IP报文的转发，转发算法如下。

（1）组织和存储选出的路由表项。

（2）按照LPM（最长掩码匹配）算法提供路由检索接口。

报文的转发过程为：首先网卡接口上接收报文，并查看报文的目的地址：然后根据目的地址来查询转发表；最后按查询到的路径把分组报文转发出去。

在增加静态路由时需注意：在Windows下增加静态路由，必须设置有下一跳地址；在Linux下增加静态路由时，可以仅设置出接口而不设置下一跳地址。

如果增加静态路由时仅设置出接口而不设置下一跳地址，在一些没有开启ARP代理的设备上将会遇到不能连通网络的问题。因为使用出接口地址时，Linux会认为目标地址网络是直连可达的网络，将直接发出ARP请求来查询目标IP地址的MAC地址，如果路由器没有启动ARP代理，就不会发出ARP响应消息，这时Linux就会因为找不到目标MAC地址而转发失败。

如果直接指定网关地址，那ARP请求就直接请求网关地址的MAC地址，然后进行报文转发。

10.2.2 静态路由配置

使用命令行对路由表进行设置时，在重启之后配置均需重新设置。OpenWrt的静态路由配置在配置文件/etc/config/network的route配置节中，在启动过程中netifd模块会读取该配置文件并进行设置。可选的配置选项见表10-2。

表10-2 静态路由配置含义

 	 选 项

 	 类 型

 	 含 义

 	 interface

 	 字符串

 	 三层网络接口名称，例如为“wan”

 	 target

 	 字符串

 	 目的主机IP或目的网络地址

 	 netmask

 	 字符串

 	 如果target为网络地址，在这里需要填写网络掩码，例如为255.255.255.0

 	 gateway

 	 字符串

 	 网关地址，即IP报文的下一跳地址

 	 metric

 	 整型数字

 	 路由的优先级

 	 mtu

 	 整型数字

 	 该路由的IP报文最大传输单元

 	 table

 	 整型数字

 	 路由表，默认为main表，通常不用设置，如果开启策略路由则需要设置

例如局域网还有一个192.168.9.0/24网络，那么我们将增加示例10-2所示的配置，就可以通过网关地址192.168.6.10到达192.168.9.0/24网络。

示例10-2：

config route

 option interface 'lan'

 option target '192.168.9.0

 option network '255.255.255.0

 option gateway '192.168.6.10'

进行重启后，使用route -n命令来查看，路由表增加了以下内容：

192.168.9.0 192.168.6.10 255.255.255.0 UG 0 0 0 br-lan

10.3　策略路由

10.3.1 概述

策略路由提供了一种比基于目的地址进行路由转发更为灵活的数据包路由转发机制。策略路由可以根据IP报文源地址、目的地址、传输端口、报文长度和优先级等内容灵活地进行路由选择。

现有用户网络，常常会出现使用到多个Internet服务提供商（Internet Server Provider，ISP）资源的情形，不同ISP申请到的带宽大小不同；同时，由于在企业用户环境中需要对重点用户资源保证等目的，对这部分用户不能够再依据普通路由表进行转发，需要有选择地进行数据报文的转发控制，因此策略路由技术即能够保证ISP资源的充分利用，又能够很好地满足这种灵活多样的应用。

策略路由处理的优先级高于普通路由，因此在接口收到报文后进行处理时，在策略路由处理完成之后，再进行普通路由决策，转发出的报文将不再进入策略路由处理。在系统设置策略路由后，将对该系统接收到的所有报文进行检查，不符合任何策略路由的数据报文将按照普通的路由转发进行处理，符合路由中某个策略的数据包就按照该策略中定义的路由表进行报文转发。

策略路由通常由两部分组成：匹配策略表和自定义路由表。匹配策略表是由很多条策略组成的，每条匹配策略都有对应的序号，序号越小，该条策略的优先级越高。在策略路由转发过程，报文依策略优先级从高到底依次匹配，只要匹配前面的策略，就执行该策略对应的动作或进入相应的策略路由表，然后退出策略路由的执行。自定义路由表和普通的路由表完全相同，只是其带有特殊的路由表编号，通常使用1～252之间的数字来编号。

10.3.2 配置策略路由

（1）路由表的管理。在单播路由中，我们通常使用route命令来对路由表进行管理，这个命令是主路由表（main）进行操作和管理的。其实Linux系统默认有3个路由表，分别为：

 	本地路由表（local），路由表编号255。本地路由表负责本机IP地址和广播地 址的路由，内核将自动维护这个路由表，如果没有该路由表则任何网络都不能访问。

 	主路由表（main），路由表编号254。通常的单播路由均保存在主路由表中。

 	默认路由表（default），路由表编号253。默认路由表通常没有任何路由表项。

Linux系统可以处理1～231个路由表，路由表名称和编号之间的对应关系由/ etc/iproute2/rt_tables来指定。默认情况下所有的路由均插入到主路由表中，除了内置的3个路由表外，其他的路由表来源于策略路由。可以使用“ip route”命令来管理多个自定义的路由表，使用“table”关键字来指定路由表编号，如果没有指定则将加入到主路由表中。用于管理路由表的命令通常有以下4种。

 	ip route add：增加路由。通常有以下几个参数。

PREFIX (default)：路由的目的前缀，是一个IP地址后跟一个斜线和掩码长度。如果没有掩码，则就是一个主机路由。如果为“default”则为默认路由，表示IP地址0/0，即匹配所有的目标IP地址。

table TABLEID：这条路由所在的表，TABLEID可以是数字或者是配置文件/etc/ iproute2/rt_tables的字符串。如果这个参数忽略，那将加入到主路由表中。

dev NAME：报文输出的网卡设备名称。

via ADDRESS：报文的网关地址，即下一跳地址。

src ADDRESS：发送这个路由报文所使用的源地址。

 	ip route del：删除路由。删除命令和增加路由命令的参数相同，如果指定的路由没找到，则删除失败。

 	ip route list：列出路由表的内容，经常指定路由表名称或编号来查看。

 	ip route get：这个命令用于传递一个IP地址，并列出该目标地址的内核路由，这个路由就是内核实际转发该目标地址报文的路由。

（2）策略表管理。Linux系统匹配策略表的缺省配置如示例10-3所示，即有3条默认的匹配规则，匹配所有的报文依次进入系统的3个默认路由表中进行处理。如果使用策略路由，通常会新增自定义匹配规则。

示例10-3：

root@zhang:/> ip rule

0: from all lookup local

32766: from all lookup main

32767: from all lookup default

匹配策略表默认有3条规则，编号越小，优先级越高。

标号0的匹配规则是优先级最高的规则，所有的报文都要进入本地路由表（local）中进行处理，如果删除，则不能访问任何网络。这个本地表负责本机IP地址和广播地址的路由。

标号32766，匹配所有的报文，使用主表（main）进行路由。这个主表就是普通的单播路由表。

标号32767，匹配所有的报文，使用默认表（default）进行路由。通常这个默认表都是空的。

通常系统中默认匹配策略表不要进行修改。报文按照编号由低到高依次匹配规则，匹配规则后就执行相应的动作。这里首先匹配编号0的规则，然后在本地路由表中进行路由查找，如果报文的目标地址是本机IP或者是广播地址，则会在本地路由表中查找到路由，然后进行路由转发。如果找不到路由则跳出这个本地路由表匹配下一条策略规则。这里是标号32766，将会跳入到主路由表中进行路由查找。主路由表中通常如示例10-1所示，找到一条路由，然后就结束路由过程。如果还没有找到路由，则匹配标号32767的规则，进入默认路由表中进行路由查找。

每条策略是由一个或者多个匹配条件组成的。匹配语句定义了IP报文的匹配规则和对符合匹配规则的IP报文的处理动作。策略路由提供了很多种类型的匹配规则，分别是from、to、tos、fwmark、iif和oif。对于同一条策略，可以配置多个匹配规则。如果在同一条策略中包含多个匹配规则，那么只有同时满足全部匹配规则的IP报文才会执行该策略中指定的动作。

匹配策略表通常使用“ip rule”命令来进行管理。命令格式如下：

ip rule [list | add | del | flush] SELECTOR ACTION

SELECTOR就是选择匹配规则，可以根据报文的以下几个部分进行匹配。

from：根据源地址进行匹配。

to：根据目的地址进行匹配。

iif：选择报文的源设备接口去匹配，如果接口是回环接口，则规则仅匹配本机产生的报文。这意味着你可以创建单独的路由表去处理转发报文和本机产生报文，以此来完全分隔它们。

oif：选择报文发出设备去匹配。发出接口仅仅针对本机产生的报文，这些报文通过绑定本地socket来发送数据。

tos：报文的服务类型。

fwmark：选择防火墙值fwmark去匹配。这个值通常由iptables来设置。

策略路由提供了4种类型的动作语句（ACTION），常用的有两类。第一类用于匹配之后结束策略路由跳转到对应的路由表，通过table关键字来指定。第二类用于控制IP消亡，包括prohibit、reject和unreachable。

策略路由通常由以下三步来实现，首先需要定义一个路由表，这个表用于指定报文转发到目的地址的路由。路由表是一组路由规则组成的，路由表名称默认在/etc/iproute2/rt_ table中定义。

其次，在自定义的路由表中增加匹配后的路由规则，这和普通静态路由相同，由用户或程序来添加。

最后，使用ip rule语句控制报文匹配行为。报文匹配控制是通过在策略表中定义一组ip rule语句而实现的；依序使用每一个规则语句进行报文匹配，匹配后进入相应的路由表；每一个语句都会独立决策，通常不会引用前面或者后面的语句。如果不匹配任何策略，则按普通路由转发。

在OpenWrt 15.05中已经支持UCI方式进行自定义路由表的配置，在/etc/config/network中进行配置，但还不支持策略路由配置。

10.3.3 典型配置举例

假设某公司有两个带宽接入网络，但是外出的带宽还是经常不够用，那么我们就需要保证VIP人士的带宽，这时我们就可以采用策略路由来实现。将VIP计算机的IP地址加入到策略路由中，专走质量稳定并且带宽较大的B路由，其他人员走默认路由A路由。

网络拓扑如图10-1所示，有两条不同的路径接入网络。假设我们接入互联网有固定的静态IP地址：第一个为10.0.2.15，经过网关地址10.0.2.2接入互联网，物理接口为eth0；第二个接入网络的固定静态IP地址为172.16.100.2，经过网关172.16.100.1接入互联网，物理接口为eth1。

[image:]

图10-1 策略路由环境图

现在我们设置VIP主机选择172网段路由接入互联网。其他主机通过10网段路由接入互联网。我们使用ip命令在路由器中创建两条路径，分别路由来自不同IP地址的数据包。在Linux中策略路由优先选择，因此我们将VIP主机进行策略路由，其他主机通过默认路由来实现。

（1）创建策略路由表。在rt_table里面建立新的路由表VIP表，编号为200。这步不是必须的，但为了明确区分路由表而设置，后面使用VIP和200的含义相同。

#>echo "200 vip" >> /etc/iproute2/rt_tables

（2）将B出口的路由加入到自定义路由表VIP中。

#>ip route add default via 172.16.100.1 table vip

#>ip route add 172.16.100.0/24 dev eth1 table vip

（3）配置VIP的源IP地址到VIP路由表中查找。

#>ip rule add from 192.168.6.100/32 table vip

这时VIP主机已经可以通过专用通道访问网络了。我们使用ping命令来验证网络是否连通。但普通主机因为没有默认路由还不能访问网络，我们创建路由如下：

#>ip route add default dev eth0 via 10.0.2.2

注意以下几种情况。

 	在使用ping来进行验证时，如果提示端口不可达（Destination Port Unreachable），一般是因为防火墙禁止转发导致，可以关闭防火墙再进行验证。

 	如果提示主机不可达（Destination Host Unreachable），则通常为路由规则配置不正确，或者目标主机确实不存在导致。

 	如果没有任何提示，则报文可能已经到达目的主机，只是目的主机的响应报文因为没有路由规则而没有发送成功。

10.4　组播路由

10.4.1 组播原理

为了让网络中的多个客户端可以同时接收到相同的报文，例如互联网直播电视，如果采用单播的方式，那么服务器必须同时产生很多份相同的报文来进行发送，并且路由器也需要转发多份完全相同的报文，这增加了服务器主机和路由器的负担。组播路由在这种情况下应运而生。采用组播的方式，源主机只需要发送一份报文到组播地址，加上路由器的组播路由支持，就可以到达每个需要接收的主机上。路由器根据组播路由协议来对组成员和组关系进行维护和生成组播路由。

组播的优势是不论网络中的用户数量有多少，服务器仅发出一个数据流，由网络中的路由器或交换机同时转发多个组播流到每个用户，每个链路仅有一份流量的带宽。可见IP组播能够有效地针对这种直播场景节省网络带宽和资源，管理网络的增容和控制开销，大大减轻发送服务器的负荷，达到发送信息的高效。在单播环境里，如果有100个用户，视频服务器依次传输100个信息流到网络中的用户，假设信息流为1M带宽，则一共需要100M的带宽。服务器网络带宽是一个巨大的瓶颈。而在组播环境下仅占用1M带宽。

组播数据在传输层封装为UDP报文进行传输。在IP层，组播把224.0.0.0～239. 255.255.255的D类地址作为组播目的地址，还有更为具体的分类（见表10-3）。任何一台主机均可以发出目的地址是D类地址的报文。在网络中，如果有其他主机对于某组播组感兴趣，可以申请加入这个组，并设置为接收这个组的报文，而其他不是这个组的成员是无法接收到这个组播组的报文的。

为了使主机能收到组播报文，接口需要在组播地址进行监听，因此主机需要指定组播的MAC地址，在IP地址到链路地址转换过程中，组播使用专用的MAC地址范围，MAC组播地址是由IP组播地址转换过来的。组播MAC地址开始六字节是01-00-5E，例如组播地址为236.0.0.1，转换为二进制取最右边23位，即组播地址为01-00-5E-00-00-01。

IP组播地址使用28位来表示，而以太网组播地址使用23位地址，因此32个IP组播地址映射到同一个MAC地址。组播MAC地址范围如下：

01-00-5E-00-00-00 01-00-5E-7F-FF-FF

实现组播的关键在于路由器支持组播路由，因此需要创建组播路由并按照组播路由表对组播报文进行路由。组播路由表的创建，可以有3种方式。

（1）静态组播路由。

（2）PIM协议

（3）IGMP代理。

PIM和IGMP代理实现了对组员和组之间关系的维护机制，可以明确知道在网络是否有主机对这类组播报文感兴趣，如果没有就不会把报文进行转发，并会通知上游路由器不要再转发这类报文到下游路由器上。静态组播路由需要进行手动设置，不会进行动态维护，只能由管理员设置。

如果所有接口均转发组播路由，那将大大增加网络的负担，因为有些网络没有客户端用户。因此仅有组播路由表项的报文才能转发。组播路由表和普通单播路由表完全不同，是根据源接口、源IP、目的地址及目的接口共同决定的。源接口是上游接口。

和单播路由一样，每当路由器转发组播数据报文时，IP包中的TTL值都会减1。若数据报文的TTL减少到0，则路由器将抛弃该数据报文。这样可以在源主机发出组播报文时设置为较少的值来对组播范围加以控制，例如公司内部局域网内，可以设置组播报文TTL为4，这样组播报文最多跨越3台路由器。

常见永久组播地址及含义见表10-3。

表10-3 常见永久组播地址及含义

 	 组 播 地 址

 	 含 义

 	 224.0.0.0～224.0.0.255

 	 本地网络控制组播组地址。其TTL值应当为1，但路由器不论TTL值为多少，都不应当转发这些组播报文

 	 239.0.0.0～239.255.255.255

 	 管理用途的组播地址。这些地址被分配给每一个组织内部使用，组织内的路由器不能将这些地址的组播报文转发到组织外部。不向在组织外的地址提供路由。参见RFC2365

 	 224.0.0.1

 	 所有主机（包括路由器）均在该地址监听

 	 224.0.0.2

 	 所有的路由器均在该地址监听

 	 239.255.255.250

 	 UPNP组播地址

10.4.2 IGMP原理

互联网组管理协议（IGMP）是一个由主机和路由器之间使用的IPv4相邻网络建立组播，并维护组成员关系的通信协议。IGMP是IP组播的一个组成部分。IGMP可用于一对多的网络应用如直播视频，并允许更高效地利用网络资源，支持这些类型的应用程序。IGMP用于IPv4组播。它是TCP/IP协议族中负责IP组播成员管理的协议，用来在主机和与其直接相邻的路由器之间建立和维护组播组成员关系。

IGMP协议和ICMP协议一样运行在网络层。主机发送请求加入本地路由器所管理的组播组中，而路由器监听这些请求，并定期发送订阅查询。如表10-4所示，通常有4种类型的报文，即组播查询消息报文、离开组播组消息报文、组成员查询消息报文和组成员报告消息报文。

表10-4 常见IGMP组播消息含义

 	 消 息 类 型

 	 目 的 地 址

 	 含 义

 	 组播查询消息

 	 224.0.0.1

 	 所有主机均在该地址监听，组播路由器向该地址发出查询，是否还有组播客户端

 	 离开组播组消息

 	 224.0.0.2

 	 所有的路由器均在该地址监听。主机发出的目的地址为224.0.0.2报文，告诉路由器主机离开了组播组

 	 组成员查询消息

 	 正在查询的组播地址

 	 向组播地址查询是否有组播成员，如果没有组播成员将删除组播路由

 	 组成员报告消息

 	 要加入或已加入的组播地址

 	 报告组播组里还有组播成员存在

10.4.3 IGMP代理

在家庭网的树状网络拓扑中，路由设备上并不需要运行复杂的组播路由协议（如PIM），可以通过在这些设备上配置IGMP Proxying（IGMP代理）功能，使其代理下游主机来发送IGMP报文及维护组成员关系，并基于该关系再次加入上级组播组。在上游设备来看，配置了IGMP 代理功能的设备不再是一个路由设备，而仅是一台主机。

IGMP代理将会主导组播组的创建工作。当有一个用户IGMP请求接收上来时，IGMP代理首先会检查本地的组播组，如果在本地这个组播组已经存在，那么就把该用户IP地址加入到这个组播组的成员列表中，而不需要向上行路由器发送加入消息。如果在本地没有找到相应的组播组，那么IGMP代理就会向上级的路由器发送加入消息，并在本地创建组播组并设置组播路由。在组播成员退出的时候，IGMP代理首先检查该组播组中是否还有其他的组播成员存在，如果还有其他成员那就只是把组播组中申请退出的成员删除；如果是最后一个成员退出它就会通知上级的路由器，并在本地销毁组播组及删除组播路由。创建的组播路由通过ip mroute命令来查看。

#>ip mroute

(10.0.1.1,236.0.0.1) Iif: eth0 Oifs: br-lan

组播路由由4部分组成。源地址是报文的发起者，目标地址为组播地址，是目的主机所要接收的组播报文地址。Iif为报文进入接口，只有从该接口进入的报文才会被转发。Oifs为报文转发出口地址，组播报文从这里转发给目标主机。

IGMP代理中定义了以下两种接口类型。

（1）上行接口。又称代理接口，指IGMP代理设备上运行IGMP代理功能的接口，即朝向组播分发树树根方向的接口。该接口在上行路由器来看是执行IGMP协议的主机行为。

（2）下行接口。指IGMP代理设备上除上行接口外其他运行IGMP协议的接口，即背向组播分发树树根方向的接口。该接口在家庭网内主机来看是执行IGMP协议的路由器行为。

IGMP代理设备上维护着一个组成员关系的数据表，所有下行接口维护的组成员关系记录都存到这个数据表中。上行接口正是依据这个数据表来执行主机行为的，当收到查询报文时根据当前数据表生成状态响应报告报文，或者当数据表变化时主动发送报告或离开报文。而下行接口则执行路由器行为—发送查询报文并根据报告报文维护组成员关系等。

OpenWrt采用igmpproxy软件来支持组播路由。igmpproxy是一个组播路由守护进程，使用IGMP消息来生成动态组播路由表。路由器定义一个上行（upstream）接口，守护进程作为组播客户端；定义一个或多个下行（downstream）接口，服务于目的网络的客户端。igmpproxy仅使用了IGMP信令，因此适用于组播流量仅从一个邻居网络而来，不适合多级扩展。当前仅有IGMPv2支持。

OpenWrt也支持静态组播路由，在smcroute软件包中，但其限制较多，因此不再介绍。

 	下行端口（家庭网内部）完全执行路由器的角色。

 	上行端口执行主机的角色，当用户加入时，发送成员加入报文。成员全部离开时发送离开报文。

10.4.4 IGMP Proxy管理

IGMP Proxy提供配置文件为其管理接口。配置文件保存在/etc/config目录下，文件名为igmpproxy，示例10-4所示为一个实际配置文件。quickleave 打开快速离开模式，在这个模式下代理守护进程一旦收到任何下行接口的离开消息，将立即向上行接口发送离开消息。这个选项在仅有一个客户端时使用。

phyint用来配置接口，必须设置的选项有接口名称和流量传输方向，仅支持一个上行网络接口，支持一个或多个下行网络接口。altnet用来定义可以通过的组播源地址。网络地址是“a.b.c.d/n”的数据格式。默认情况下路由器可以从任何网络地址接收组播数据。如果组播源位于因特网的网络上，这个可以定义哪里的流量将被接收。如果不在其地址范围内将不会转发。这对上行接口尤其有用，可以使用它来限制仅指定源地址的组播流量允许通过。

示例10-4：

config igmpproxy

 option quickleave 1

config phyint

 option network wan

 option direction upstream

 list altnet 0.0.0.0/0

config phyint

 option network lan

 option direction downstream

IGMP代理还支持网络接口的速率限制。如果速率限制设置为0，将没有速率限制。这个设置可选。threshold ttl定义了网络接口的TTL阈值。如果报文的TTL小于设置值将被忽略。这个设置是可选的，默认设置为1。在UCI配置到igmpproxy进程的配置转换过程中，这两个参数设置为默认值。

源代码位于package/igmpproxy下。通过命令opkg install igmpproxy来安装。

当IGMP代理打开时，两个iptables规则将增加到防火墙中并打开转发组播流量。IGMP代理使用的配置文件位于var/tmp/igmpproxy.conf，在启动时由UCI配置转换而来。

10.4.5 验证及调试

首先我们需要组织一个组播工作环境，最小环境需要一台组播服务器和一台组播客户端及OpenWrt路由器本身3个机器，如果用虚拟机则节省了硬件资源。组播服务器地址为10.0.1.1，运行DHCP服务器，OpenWrt的广域网接口启动DHCP并自动获取IP地址。局域网接口设置地址为192.168.1.1，并且为局域网分配IP地址。PC自动获取路由器分配的IP地址。部署图如图10-2所示。

[image:]

图10-2 IGMP代理组播测试网络

在网络环境配置成功后，依次启动组播服务器、组播代理软件及组播客户端。这时在组播客户端就会收到组播服务器的报文。如果没有收到报文，首先检查防火墙策略是否限制了组播转发，可以直接关闭防火墙进行测试。另外igmpproxy支持调试，使用下面选项进行调试。

 	-d：运行在调试模式，输出所有消息在标准出错中（stderr）。

 	-v：输出大量信息，给出两个v将可以看到调试信息。

 	-c：指定配置文件。

如果防火墙的默认策略为拒绝转发时，这时使用组播功能就需要关闭防火墙，或者允许IGMP从wan接口接收并且允许转发组播流量到lan接口，防火墙设置配置如示例10-5所示。

示例10-5：

config rule

 option src wan

 option proto igmp

 option target ACCEPT

config rule

 option src wan

 option proto udp

 option dest lan

 option dest_ip 224.0.0.0/4

 option target ACCEPT

 option family ipv4

10.5　名词解释

 	IGMP：是一个由主机和路由器之间使用的相邻IPv4网络建立组播，并维护组成员关系的通信协议。

 	策略路由：策略路由提供了一种比基于目的地址进行路由转发更为灵活的数据包路由转发机制。它可以根据IP报文源地址、目的地址、传输端口、报文长度和优先级等内容灵活地进行路由选择。

10.6　参考资料

 	Linux高级路由（http://lartc.org/）。

 	IPv4路由规范（http://www.ietf.org/rfc/rfc1812.txt）。

 	https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol）。

 	因特网组管理协议（第二版）（https://tools.ietf.org/html/rfc2236）。

 	注册的IPv4组播地址（http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml）。

第11章　DNS与DHCP

域名系统（Domain Name System，DNS）是因特网的一项基础服务。它作为将域名和IP地址相互映射的一个分布式数据库，能够使人通过域名来更方便地访问互联网中的主机。动态主机配置协议（Dynamic Host Configuration Protocol，DHCP）是局域网的基础服务，DHCP是一种动态地向网络终端主机提供配置参数的协议，能够简化网络的管理。

本章首先讲述了DNS的由来以及DNS基础知识；接着讲述了DHCP基础知识，并介绍了实现DNS代理和DHCP服务器的dnsmasq软件；最后讲述了动态域名更新系统和DNS测试工具的使用。

11.1　主机系统

在主流的操作系统上，均有一个hosts的配置文件，这个配置文件的主要作用是定义IP地址和主机名的映射关系，这个配置可以使用文本编辑器打开并进行编辑。在微软视窗操作系统的位置为C:\Windows\System32\Drivers\etc\hosts，当用户在浏览器中输入所想访问的网址时，系统首先从这个hosts文件中查找域名的IP地址，如果找到就打开IP地址的网页，如果没有找到就向DNS服务器进行查询。

在Linux系统，主机配置文件为/etc/hosts，这是主机名的静态查找表。这个文件是简单的文本文件，用于保存主机名称和IP之间对应关系。其格式为一个IP地址占用一行，每一个主机关联一个IP地址。格式如下所示：

 127.0.0.1 localhost [aliases...]

各个域之间用空格或制表字符分开。以“#”开头的文本行为注释行，不做处理。现在主流的现代操作系统中，主机系统表已经很少使用，已经被域名查找机制DNS取代，但它仍广泛地使用在以下5个场景。

（1）启动中。大多数系统都包含名称和地址为本地网络上的信息主机信息表。这是非常有用的，因为在系统启动时DNS解析库还没有装载到内存中。举例如下：

 127.0.0.1 localhost

 192.168.1.1 bjbook.net server

 192.168.1.100 openwrt.bjbook.net openwrt

（2）DNS输入。网络信息服务站点使用主机表作为DNS服务主机数据库的输入，或者使用主机表作为备用配置。

（3）加快域名解析，节省网络流量。hosts文件在主机上配置具有加快域名解析的作用，对于经常访问的网站和主机，我们可以在hosts文件中配置域名和IP的对应关系。由于有了映射关系，当我们访问域名时，可以直接从hosts文件中解析得出，而不用访问网络上的域名服务器，不用消耗网络流量。

（4）屏蔽网站（域名重定向）。屏蔽广告网站，有很多网站带有广告，但广告和网站本身域名不同，因此如果能屏蔽一些众所周知的广告网站域名，这样我们利用hosts把这些广告的网站的域名映射到本机IP或非法目的IP，这样就不会看到这些广告图片了,也不会浪费网络流量。例如：

127.0.0.1 a.com

这样计算机解析域名a.com时，就解析到错误的IP，达到了屏蔽广告网站的目的。

（5）防止DNS污染和DNS劫持。DNS劫持就是攻破了DNS服务器防护，从而获得域名解析记录的控制权，进而修改域名解析的结果。这将导致对原始域名的访问转到另外的IP地址。

DNS污染是因为DNS查询没有任何认证机制，而且DNS查询通常采用的UDP是无连接不可靠的协议，因此DNS的查询非常容易被篡改：通过对UDP端口53上的DNS查询报文进行分析，一旦发现与关键词相匹配的请求则立即伪装成目标域名的解析服务器给查询者返回虚假结果。

如果我们已知服务器的IP地址，就可以在hosts文件中设置正确的IP地址，从而避免DNS劫持和污染。

11.2　DNS基础

主机系统适合小型网络等一些特殊的场景。在因特网中，主机地址非常庞大，并且主机的IP地址经常改变，因此使用域名系统DNS代替主机系统。

DNS可以被视为一种用于TCP/IP应用程序的分布式数据库，它提供主机名字和IP地址间的相互转换。这里提到的分布式是指在因特网上的单个站点不能拥有所有的信息。每个站点（如大学中的系、校园、公司或公司的部门）保留它自己的信息数据库，并运行一个服务器程序供因特网上的其他系统查询。

11.2.1　域名结构

DNS是一个分层级的分布式名称对应系统，采用类似Linux目录树的层级结构，如图11-1所示。其最顶端有一个未命名的根节点，然后其下分为好几个基本类别名称（称为顶层域名），例如com、org、net和gov等3字符域名，还有cn、sg、jp和us等两个字符国家地区域名。每个节点有一个至多63个字符长的标识，域名总长度则不能超过253个字符。命名标识中不区分大写和小写。命名树上任何一个节点的域名就是将从该节点到最高层的域名串连起来，中间使用一个点“.”分隔这些节点。例如，一个完整的域名为www.bjbook.net。域名树中的每个节点必须有一个唯一的名称，但域名树中的不同层级节点可使用相同的标识，只要在不同的父节点下即可。

[image:]

图11-1　域名组成结构

11.2.2　DNS报文格式

DNS采用客户机/服务器模型。DNS 默认使用TCP和UDP端口53。DNS的请求和应答封装在UDP报文中。报文内容格式如图11-2所示。

[image: 图像说明文字]

图11-2　DNS报文格式

DNS请求报文和响应报文格式基本相同，是由固定12字节长的报头和4个长度可变的字段组成的。报文头部的会话标识字段由客户端生成随机值填充并由服务器原样返回。客户端通过该字段来匹配请求和响应。flags部分非常复杂，如果是请求一般为0x0100。如果为响应，通常有两种情况：0x8182表示服务器失败；0x8180表示服务器成功响应。

紧接着的4个2字节字段均为无符号整型数字。对于查询报文，问题数目通常是1，而其他3项则均为0。对于应答报文，问题数目还是1，回答数至少是1。

问题部分中每个问题的格式由3部分顺序组成：查询内容、类型（Type）和类（Class）。类型和类均为固定的两个字节长度。

查询内容长度不定，它是一个或多个标识符的序列。每个标识符以首字节的计数值来说明随后字符串的字节长度，每个名字的最后字节为0表示结束。计数字节的值必须是0～63的数字，因为标识符的最大长度为63。高位字节为二进制11时，用于压缩格式，指向报文的查询字符串位置，字符串位置是从DNS报文头部开始计算的。

DNS报文中最后3个字段分别为回答字段、授权字段和附加信息字段，均采用资源记录（Resource Record，RR）格式。资源记录格式内容顺序包含域名、类型、类、生存时间、数据长度和数据6部分。如图11-3所示。

[image:]

图11-3　查询报文资源格式

域名是记录中资源数据对应的名字。它的格式和前面介绍的查询名字段格式相同。类型和类与问题域内容格式相同。生存时间字段占4个字节，是客户程序保留该资源记录的秒数，这里已转换为15分钟。资源数据长度占两个字节长度。数据部分的格式依赖于类型字段的值，这里的资源数据是4字节的IP地址。

11.2.3　域名解析器原理

用户程序通过解析器与名字服务器交互；用户查询和响应是C语言编程接口的入参和返回值，用户查询一般是调用getaddrinfo函数获取IP地址，Linux操作系统通常不缓存查询结果，每次均调用接口函数进行查询。现在域名解析器动态库已经成为Linux主机操作系统的一部分，供给每一个进程使用。

注意，如果未配置名字服务器，解析器将默认向127.0.0.1发起查询。

图11-4所示为Linux系统的DNS解析实现原理。解析器通常对几个不同的名字服务器进行多个查询，才能回答特定用户的查询，因此用户域名查询可能涉及对几个网络的访问和很长的时间。

[image:]

图11-4　Linux DNS工作原理图

（1）解析库首先查询主机执行流程，查询hosts文件是否有对应域名配置。

（2）如果host文件没有该域名，则在resolv.conf文件中取出第一个域名服务器　 地址。

（3）然后向域名服务器地址发起域名查询请求。

（4）等待查询响应。如果超时，则向下一个域名服务器发起查询。

域名解析器提供因特网域名系统（DNS）的解析C函数库。解析器配置文件名默认为resolv.conf，包含C函数库所需的信息，域名解析时首先读取这个文件。这个文件的可读性非常好，包含一系列的关键词，提供各种类型的解析器信息。常用的配置有nameserver、domain和search。

（1）nameserver。用于配置名字服务器，最多可以设置3个名字服务器，每一行一个。如果有多个名字服务器地址，解析库将按照列表顺序查询。若第一个名字服务器查询超时，再顺序查询下面的名字服务器，直到所有的名字服务器都尝试一遍。如果没有名字服务器地址或者这个配置文件不存在，则默认使用本机（127.0.0.1）作为名字服务器地址。

（2）domain。可以使用相对于本地域名的短名来查询。如果域名没有配置，则返回主机名。

（3）search。search定义域名的搜索列表，当要查询没有域名的主机时，将在由search声明的域中分别顺序进行查找，是只有使用短名时所要附加的域名后缀。domain和search不能共存，如果同时存在，后面出现的将覆盖前面的定义。

11.2.4　域名解析实例

我们模拟各种情况来学习DNS解析器原理，包括没有配置文件、配置多个域名服务器和配置domain的情况。

1．没有/etc/resolv.conf配置文件

解析库默认向本机（127.0.0.1）发起域名查询，因OpenWrt本身带有dnsmasq提供服务，因此可以返回响应。图11-5所示为访问域名时的请求和响应报文。

$#ping haosou.com

[image:]

图11-5　向本机发起请求报文过程

2．配置多个域名服务器地址

resolv.conf配置如下：

nameserver 59.108.61.61

nameserver 219.232.48.61

$#ping 163.com首先向第一个服务器59.108.61.61发起查询163.com的IP地址，如果查不到将使用下一个域名服务器来进行查询。

3．配置有domain

resolv.conf配置如示例11-1所示，这种情况下如果访问完全合格域名，则直接向域名服务器发起查询；如果不是完全合格域名，则首先在hosts文件中进行查找，如果在hosts文件中找不到主机名的IP地址，则再向名字服务器发起查询请求。如果是不带点的字符串，则加上域名后缀向名字服务器发起查询请求，如果中间带有点，则认为是一个域名，将不用加上域名后缀，直接使用该字符串向名字服务器发起请求。

示例11-1：

domain bjbook.net

nameserver 8.8.8.8

（1）执行“ping 163.com”命令，首先在hosts文件中查询主机163.com的IP地址，如果查不到将直接向名字服务器查询163.com的IP地址，找到后向目的IP发起ICMP请求。

（2）执行“ping openwrt”命令，首先在hosts文件中查询主机openwrt的IP地址，如果查不到将拼接域名后缀“bjbook.net”，然后向名字服务器查询openwrt.bjbook.net的IP地址，找到后向目的IP发起ICMP请求。

11.3　DHCP基础

11.3.1　引言

在TCP/IP网络上，每台主机在访问网络及其资源之前，都必须进行基本的网络信息配置，包含IP地址、子网掩码、默认网关和DNS等。在大型网络中，如果每台终端主机的地址都由不同的使用者来分配，那么就很容易出现地址相同的情况。对于经常移动的终端，重新配置可能需要很长时间，并且容易出错，如果IP配置错误将会导致不能访问网络。因此需要一种机制来简化主机IP地址的配置。动态主机配置协议DHCP应运而生。

采用DHCP的好处在于减少了网络管理员和用户的负担。这将可以减少手工配置IP地址导致的地址冲突，以及网关地址或DNS地址错误导致的不能访问网络等问题。

11.3.2　DHCP原理

DHCP服务器拥有一个IP地址池，当任何启用DHCP 的客户机连接到网络时，可从服务器那里租借一个IP地址，不再使用的IP地址自动回收到地址池中，供再次分配使用。

DHCP保证同一时刻的任何IP地址只能分给一个客户机使用。当DHCP客户机重新启动时，应配置为相同的IP地址。在DHCP服务器重启的情况下，也应当给每一个客户机分配相同的IP地址，并且和手动分配的IP地址共存。这要求DHCP服务器对已分配的地址进行保存，并且在客户端不使用时进行回收。

DHCP是一种动态地向网络终端提供配置参数的协议。在终端提出申请之后，DHCP服务器可以向终端提供IP地址及子网掩码、网关和DNS服务器地址等参数。

DHCP协议基于UDP协议，客户端的端口号是68，服务器的端口号是67。

11.3.3　DHCP报文

DHCP的请求和应答封装在UDP报文中。报文内容格式如图11-6所示。

[image: 图像说明文字]

图11-6　DHCP报文格式

“报文类型”字段为1表示请求，为2表示应答。硬件类型字段为1表示以太网，以太网的硬件地址长度为6字节。“跳数”字段由客户端设置为0，如果和DHCP服务器之间有中继器的话将被修改。

“事务ID”字段是一个由客户端设置并由服务器返回的4字节整数。客户机使用它对请求和应答进行匹配。对于每个请求客户端首先将该字段设置为一个随机数。客户端开始进行DHCP请求时，将“秒数”字段设置为一个时间值。服务器能够看到这个时间值，备用服务器在等待时间超过这个时间值后才会响应客户的请求，这意味着备用服务器接管DHCP服务。“flags”是保留值，设置为0。

客户端IP地址字段填0，如果上次成功配置过IP地址，它将写到“客户端IP地址”字段。服务器返回应答时将该客户的IP地址写入“你的IP地址”字段，并将自身IP地址填写到“服务器IP地址”字段。在同一网络中继地址填0。

客户端MAC地址字段填写网卡硬件地址，不足部分填0。服务器主机名字段由服务器来填写，通常为0。引导文件名字段用于填充TFTP下载的文件全路径，通常用于无盘启动工作站。选项字段用于扩展，但实际上有一些选项在终端节点接入互联网时是必须的。这些包含DNS地址、网关地址和子网掩码等。

可选字段部分均以TLV（类型-长度-值）来表示。

子网掩码选项用于指定客户端的子网掩码。子网掩码的类型码为1，长度为4字节。

路由选项指定了客户端子网的下一跳地址。如果有多个，路由器将按照优先顺序排列，一般为路由器自身IP地址。类型码为3，长度为4的倍数。

域名服务器选项用于将名字服务器提供给客户端，并且以优先顺序给出，选项代码为6，最小长度为4个字节，并且是4的倍数。

传输层使用UDP协议，使用两个固定的端口号，服务器使用67，客户端使用68。这样可以非常方便地区分是请求还是响应。

IP层在请求IP地址时采用链路层广播，链路层广播地址为“FF:FF:FF:FF:FF:FF”。网络层目的IP使用广播地址255.255.255.255，源地址采用0.0.0.0，这是因为请求时自身没有IP地址，并且不知道服务器的IP地址。

11.3.4　DHCP工作流程

DHCP通常由客户端发起广播请求，服务器收到请求后在配置文件中查询，如果符合要求则向客户端提供服务。图11-7所示为DHCP配置IP地址的报文流程。

[image: 图像说明文字]

图11-7　DHCP配置IP流程

（1）客户端在以太网上广播“DHCP Discover”报文来发现DHCP服务器。

（2）IP为10.0.2.2的服务器收到广播请求后，向客户端回应请求，发出单播“DHCP Offer”报文，并且目的IP为10.0.2.15。

（3）客户端再次以广播形式发出“DHCP Request”报文。这是因为客户端可能收到多个服务器“DHCP Offer”报文，客户端会根据报文的内容来选择一个给予响应，采用广播形式可以让多个服务器均可收到。

（4）当服务器收到“DHCP Request”报文后，服务器在将客户端的MAC地址同分配的IP地址绑定后，将IP信息（IP、掩码、网关地址和DNS等）发送给客户机。

（5）客户机收到“DHCP ACK”报文后，将IP信息设置到主机系统上。这时IP设置就完成了，客户机就可使用IP来访问网络了。

11.4　dnsmasq

11.4.1　概述

智能路由器服务于家庭和小型企业网络，当多个人同时上网时，客户机经常进行DNS查询，大多查询会是重复的域名，如果有一个DNS缓存代理服务于局域网，这样将减少DNS的因特网存取，加快DNS访问速度和节省网络流量，dnsmasq软件就是在这种情况下应运而生的。

dnsmasq是轻量级DHCP、TFTP和DNS缓存服务器，给小型网络提供DNS和DHCP服务。它的设计目标是轻量级的DNS，并且占用空间小，适用于资源受限的路由器和防火墙，以及智能手机、便携式热点设备等。

dnsmasq接收DNS请求，并从本地缓存中读取，如果缓存不存在就转发到一个真正的递归DNS服务器。它也可以读取/etc/hosts的内容，这样就可以对局域网的主机查询进行DNS查询响应，这些局域网的主机名称不会暴露在全局DNS域中。

DNS子系统提供网络的本地DNS服务器，即只服务于局域网的DNS服务器。转发所有类型的查询请求到上游递归DNS服务器，并且缓存通用记录类型（A、AAAA、CNAME和PTR）。支持的主要特性有以下几方面。

 	本地DNS服务器可以通过读取/etc/hosts来定义，或者通过导入DHCP子系统的名字，或者通过各种各样的用户配置。

 	上行服务器可以各种遍历的配置，包括动态配置。

 	认证DNS模式允许本地DNS名称导出到全球DNS区域。dnsmasq作为这个区域的认证服务器，也可以提供区域传送。

 	从上游服务器DNS响应执行DNSSEC验证，防止欺骗和缓存中毒。

 	指定子域名可以继承自它们的上行DNS服务器，这样使VPN配置更容易。

 	国际化域名支持等。

11.4.2　配置

dnsmasq的配置文件位于/etc/config/dhcp，控制着DNS和DHCP服务选项。默认配置包含一个通用的配置节来指定全局选项，还有一个或多个DHCP来定义动态主机配置服务的网络接口和地址池等。还可以包含多个域名和主机配置，并且提供客户端地址列表来查询。

1．全局配置

表11-1所示的是dnsmasq的所有配置选项。

表11-1　dnsmasq参数含义

 	 名　　称

 	 转换后配置

 	 含 义 描 述

 	 domainneeded

 	 domain-needed

 	 不会转发针对不带点的普通文本的A或AAAA查询请求到上行的域名服务器。如果在/etc/hosts和DHCP中没有该名称将直接返回“not found”

 	 cachesize

 	 cache-size

 	 指定缓存的大小。默认是150

 	 boguspriv

 	 bogus-priv

 	 所有私有查找如果在/etc/hosts没找到，将不转发到上行DNS服务器

 	 filterwin2k

 	 filterwin2k

 	 不转发公共域名不能应答的请求

 	 localise_queries

 	 localise-queries

 	 如果有多个接口，则返回从查询接口来的接口网络的主机IP地址。在同一主机有多个IP地址时非常有用，返回查询网段的IP地址，这样源主机和目标主机通信是将不会跨越路由器

 	 rebind_protection

 	 stop-dns-rebind

 	 上游域名服务器带有私有IP地址范围的响应报文将被丢弃

 	 rebind_localhost

 	 rebind-localhost-ok

 	 允许上游域名服务器的127.0.0.0/8响应，这是采用DNS黑名单时所需的服务，这在绑定保护启用时使用

 	 expandhosts

 	 expand-hosts

 	 在/etc/hosts中的名称增加本地域名部分

 	 nonegcache

 	 no-negcache

 	 在通常情况下，“no such domain”也会缓存，下次查询时不再转发到上游服务器而直接应答，这个选项将禁用“no such domain”返回的缓存

 	 authoritative

 	 dhcp-authoritative

 	 我们是局域网的唯一的DHCP服务器，当收到请求后会立即响应，而不会等待，如果拒绝的话也会很快拒绝

 	 readethers

 	 read-ethers

 	 从/etc/ethers文件中读取静态分配的表项。格式为硬件地址和主机名或IP地址，当收到SIGHUP信号时也会重新读取

 	 resolvfile

 	 resolv-file

 	 指定一个DNS配置文件来读取上游域名服务器的地址，默认是从/etc/resolv.conf文件读取

2．DHCP地址池配置

类型为dhcp的配置节指定了每一个接口的DHCP设置，通常最少有一个服务于局域网接口的dhcp配置设置。

示例11-2：

config dhcp lan

 option interface lan

 option start 100

 option limit 150

 option leasetime 12h

示例11-2指定了DHCP服务器的服务接口“lan”，100是客户端分配的IP地址起点，总共可以分配150个IP地址，即从100～249。12h表示客户端得到的地址租约时间为12小时。DHCP配置参数含义如表11-2所示。

表11-2　DHCP配置参数含义

 	 名　　称

 	 含　　义

 	 interface

 	 表示服务的网络接口，这个接口名称是network中配置的虚拟接口

 	 start

 	 分配IP的起始地址

 	 limit

 	 地址空间范围，默认为150

 	 leasetime

 	 DHCP分配IP地址的租期，start和limit在生成dnsmasq的配置文件时进行组合为dhcp-range

 	 ignore

 	 dnsmasq将忽略从该接口来的请求

3．域名配置

dnsmasq支持自定义主机或者是自定义域名，使用domain配置节来管理自定义域名。我们使用uci命令来增加两条自定义域名记录。首先创建一个类型为domain匿名的配置节，然后设置其名称和IP地址。示例11-3创建了两个匿名配置节，然后使用uci commit命令提交修改。

示例11-3：

root@zhang:/#uci add dhcp domain

root@zhang:/#uci set dhcp.@domain[-1].name="zhang"

root@zhang:/#uci set dhcp.@domain[-1].ip="192.168.6.10"

root@zhang:/#uci add dhcp domain

root@zhang:/#uci set dhcp.@domain[-1].name="bjbook.net"

root@zhang:/#uci set dhcp.@domain[-1].ip="192.168.6.20"

root@zhang:/#uci commit dhcp

记录被写到/etc/config/dhcp文件中，但现在功能并未生效。调用重启dnsmasq进程命令来使dnsmasq读取这些配置更改，命令为/etc/init.d/dnsmasq restart。生效后内容如下：

config domain

 option name `zhang`

 option ip `192.168.6.10`

config domain

 option name `bjbook.net`

 option ip `192.168.6.20`

实际的配置将转换为dnsmasq的配置，配置文件为/var/etc/dnsmasq.conf。

然后在OpenWrt shell 中ping主机名称bjbook.net。这时将访问192.168.6.20这个IP地址，并从192.168.6.20收到响应。这和主机系统的功能完全相同，只是在/etc/hosts文件中只在本机生效，如果加载这里就可以服务于家庭网。domain配置选项见表11-3。

表11-3　domain配置选项

 	 名　　称

 	 类　　型

 	 含　　义

 	 name

 	 字符串

 	 主机的域名，这个域名将不在因特网上查询

 	 ip

 	 IP地址

 	 域名对应的IP地址

4．主机配置

DHCP在分配IP时，选择一个未使用的IP地址进行分配。假定有一个服务器，也是通过DHCP进行IP分配的，这样每次重启后分配的IP地址可能发生改变，这在访问服务器时还需查看其IP地址。根据MAC地址分配固定IP地址可以解决这个问题。在DHCP配置文件中使用host来配置。如示例11-4所示。

示例11-4：

config host

 option ip '192.168.6.120'

 option mac ' 08:00:27:9d:89:e7'

 option name 'buildServer'

通过uci命令进行增加：

root@zhang:/#uci add dhcp host

root@zhang:/#uci set dhcp.@host[-1].ip = "192.168.6.120"

root@zhang:/#uci set dhcp.@host[-1].mac=" 08:00:27:9d:89:e7"

root@zhang:/#uci set dhcp.@host[-1].name="buildServer"

root@zhang:/#uci commit dhcp

这将增加固定的IP地址192.168.6.120。然后重启DHCP服务器，这时MAC地址为“08:00:27:9d:89:e7”的计算机再次获取的IP地址将设置为固定IP地址192.168.6.120，主机名称设置为buildServer。固定主机配置选项如表11-4所示。

表11-4　指定固定IP的host配置选项

 	 名　　称

 	 类　　型

 	 含　　义

 	 ip

 	 字符串

 	 客户端所获得的IP地址

 	 mac

 	 字符串

 	 主机的网卡MAC地址

 	 name

 	 字符串

 	 DHCP客户端所获取到的主机名称，是否使用由客户端决策

5．DHCP客户端信息

DHCP还有一个功能是记录客户端列表。客户端列表显示当前所有通过DHCP服务器获得IP地址主机的相关信息，包括客户端主机名称、MAC地址、所获得的IP地址及IP地址的有效期。表11-5列出了所有保存字段的含义，我们可以通过/tmp/dhcp.leases文件来查看所有通过DHCP服务器获得IP地址的计算机信息。

表11-5　DHCP分配的客户端信息

 	 类　　别

 	 含　　义

 	 有效时间（租期）

 	 指客户端计算机获得IP地址的有效时间，是指从1970年开始的一个秒值，到这个时间之后地址将失效，客户端软件会在租期到期前自动续约

 	 MAC地址

 	 获得IP地址的客户端计算机的MAC地址

 	 IP地址

 	 DHCP服务器分配给客户端计算机的IP地址

 	 客户端名称

 	 显示获得IP地址的客户端计算机的主机名称

11.5　动态DNS

11.5.1　DDNS原理

利用DNS可以将域名解析为IP地址，从而实现使用域名来访问网络中的主机。但是DNS仅仅提供了域名和IP地址之间的静态对应关系，当主机的IP地址发生变化时，DNS服务器没有动态地更新域名和IP地址的对应关系，此时如果仍然使用域名访问该主机，则通过域名解析得到的IP地址是错误的，从而将导致访问失败。

动态域名系统（Dynamic Domain Name System，DDNS）用来动态更新DNS服务器上域名和IP地址之间的对应关系，从而保证通过域名解析到正确的主机IP地址。

DDNS采用客户端/服务器模型，由两部分组成，分别为DDNS客户端和DDNS服务器。

DDNS客户端：需要动态更新域名和IP地址对应关系的设备软件。因特网用户通常通过域名访问提供应用层服务的服务器，如HTTP、FTP服务器。为了保证IP地址变化时，仍然可以通过域名访问这些服务器，当服务器的IP地址发生变化时，它们将作为DDNS客户端，向DDNS服务器发送更新域名和IP地址对应关系的DDNS更新请求。

DDNS服务器：负责通知DNS服务器动态更新域名和IP地址之间的对应关系。接收到DDNS客户端的更新请求后，DDNS服务器通知DNS服务器重新建立域名和IP地址之间的对应关系。从而保证即使DDNS客户端的IP地址改变，网络用户仍然可以通过同样的域名访问DDNS客户端主机提供的网络服务。

11.5.2　DDNS配置

OpenWrt通过Ez-Ipupdate软件来支持DDNS，常用的DDNS配置在表11-6中做了详细说明。通过以下命令来安装DDNS客户端。

opkg update

opkg install ez-ipupdate

表11-6　DDNS详细配置

 	 名　　称

 	 类　　型

 	 含　　义

 	 enabled

 	 布尔值

 	 是否启动DDNS客户端

 	 interface

 	 接口名称

 	 设置该DDNS所绑定的接口，DDNS更新的域名所对应的IP地址为该接口的主IP地址

 	 service

 	 字符串

 	 服务类型，支持很多种DDNS更新协议，我们使用gnudip

 	 username

 	 字符串

 	 设置DDNS服务器的认证用户名

 	 password

 	 字符串

 	 设置DDNS服务器的认证密码

 	 hostname

 	 字符串

 	 绑定的域名后缀，一般为服务提供商域名

11.5.3　DNS更新协议及算法

我们采用Ez-Ipupdate客户端和GnuDIP服务器来讲述DDNS更新认证算法。GnuDIP实际上有两个更新协议，原始更新协议采用客户端到服务器的直接TCP连接；另外一种则适配原始协议到HTTP协议。HTTP协议对于一些动态DNS更新客户端实现起来更方便。

这两个协议均不能通过嗅探抓包软件找出明文密码，也不能使用捕获的报文来重放欺骗更新服务器，即可以防止重放攻击。Ez-Ipupdate向GnuDIP更新的流程如图11-8所示。

（1）客户端首先向服务器发起TCP连接请求，端口默认为3495，GnuDIP服务器可以修改为其他端口。

（2）一旦TCP连接建立，服务器将首先发送一个随机产生的10字符长度的字符串，我们称之为sessionKey。

（3）客户端收到并读取服务器的认证字符串。然后使用下列算法来对密码和nonce进行哈希。

hashed_password=F(password, sessionKey)

F(password, sessionKey)=MD5(MD5(password)+"."+sessionKey)

MD5函数使用MD5算法对密码计算摘要值，然后将摘要值（二进制）转换为十六进制（使用字符0～9和小写字母a～f）的字符串，字符串长度从16字节变为32字节。

 	首先计算出密码摘要值，并转换为十六进制数字。

 	auth拼接一个点“.”再拼接一个认证字符串sessionKey（这个是服务器传输过来的值）。

 	然后对整个拼接的字符串计算MD5摘要值，并转换为十六进制数字，我们称之为认证字符串“hashed_password”。

 	将用户名、认证字符串、域名及地址组成认证信息向动态域名更新服务器GnuDIP发起请求，消息组成格式如下：

user_name:hashed_password:domain:0:address

（4）GnuDIP服务器收到请求后采用同样的算法计算认证字符串，并将计算结果和请求的认证字符串进行比较，如果相同，则认证通过，更新域名和IP地址的对应关系，并向客户端发送更新成功消息；如果不相同，则认证失败，发送更新失败消息。

[image:]

图11-8　DDNS动态更新域名IP时序图

注册消息的响应有以下两种情况。

 	1：表示登录出现错误，通常是密码错误。

 	0：更新成功。

IP地址将注册为子域名user_name.domain。假设服务器域名为bjbook.net，那注册的子域名将是user_name.bjbook.net。除了注册消息之外，DDNS客户端和服务器之间还有两种消息，分别为下线消息和查询消息。下线消息格式为：

user_name:hashed_password:domain:1

当前注册到username.domain的IP地址将被删除，这是下线请求，正式域名user name.domain将不再关联任何IP地址。这条消息的响应有以下两种情况。

 	1：表示登录出现错误，通常是密码不正确导致。

 	2：成功下线。

查询消息格式为：

user_name:hashed_password:domain:2

客户端请求服务器确定客户端正在使用的IP地址，并注册到正式域名user_name. domain上。这时IP地址将返回到客户端。这条消息的响应有以下两种情况。

 	返回“1”，表示登录出现错误，通常是密码不正确导致。

 	返回“0:address”表示成功地更新到提供的IP地址上。

11.6　DNS测试工具

11.6.1　nslookup

“nslookup”是一个命令行域名查询工具，有两种工作模式：交互式和非交互式。交互方式用于向域名服务器查询各种主机和域名信息并输出。非交互模式仅向服务器查询请求的信息。

非交互式模式用于查询主机名或主机IP地址为第一个参数，可选的第二个参数为域名服务器IP地址。其他选项参数以“-”开始。例如，我们可以查询一个恶意域名，并把它的IP地址加入到防火墙黑名单中。

（1）查询域名IP地址。例如：

$>nslookup openwrt.org

（2）指定域名服务器来查询域名IP地址。例如：

$>nslookup openwrt.org 8.8.8.8

（3）查询IP地址的域名，即进行反向查询。例如：

$>nslookup 8.8.8.8

11.6.2　dig

dig是另一款域名查询工具，其功能非常强大，并且可以指定源IP地址，这在主机上有多个接口及IP地址时非常有用。其最基本的用法如下：

#>dig @server baidu.com

@后面表示DNS服务器地址。

#>dig -b 192.168.1.100 baidu.com

“-b”表示指定源IP，在系统有多个接口地址时使用。

dig提供了大量的查询选项和输出结果显示选项。一些查询选项会设置查询报头的标志位，有些是设置超时和重试策略，还有些是控制屏幕输出。dig的查询选项和其他软件不同，采用“+”开头的标识符来表示。

dig还有很多选项可以定制查询和输出。例如+short可以简化输出。默认dig会输出DNS报头信息，包含查询问题个数和回答问题个数等信息。输出如示例11-5所示。

示例11-5：

zhang@zhang-VirtualBox:~$ dig @8.8.8.8 baidu.com

; <<>> DiG 9.9.5-3ubuntu0.1-Ubuntu <<>> @8.8.8.8 baidu.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65069

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;baidu.com. IN A

;; ANSWER SECTION:

baidu.com. 588 IN A 220.181.57.217

baidu.com. 588 IN A 111.13.101.208

baidu.com. 588 IN A 123.125.114.144

baidu.com. 588 IN A 180.149.132.47

;; Query time: 81 msec

;; SERVER: 8.8.8.8#53(8.8.8.8)

;; WHEN: Sat Nov 14 19:57:07 CST 2015

;; MSG SIZE rcvd: 102

dig在进行域名查询时，如果第一个域名服务器无响应，将在1秒后向第二个DNS地址发起请求。在这点上它和nslookup不同，nslookup需要等待5秒之后再向第二个域名服务器发起查询请求。

11.7　参考资料

 	RFC1034（DOMAIN NAMES-CONCEPTS AND FACILITIES）。

 	RFC1035（域名-规范和实现）。

 	dnsmasq概述（http://dnsmasq.org/）。

 	RFC2132（DHCP选项和BOOTP扩展）。

 	<TCP/IP详解>第14章DNS：域名系统。

 	DNS和DHCP配置（http://wiki.openwrt.org/doc/uci/dhcp [2015-11-14]）。

 	GnuDIP（http://gnudip2.sourceforge.net/ [2016-3-26]）。

第12章 iptables防火墙

欢迎你来到防火墙一章。如果你第一次接触防火墙，这章将帮助你理解防火墙如何工作及如何管理防火墙。防火墙技术并不像屠呦呦的诺贝尔医学科学奖那么技术高深，但还需要你去学习理解并遵从指导，否则结果可能和你的预期完全不同。

iptables 是用来设置、维护和检查Linux内核的防火墙IP报文过滤规则和网络地址转换规则的。本章首先讲述iptables的表和处理目标，接着讲述报文在netfilter中的处理流程和规则匹配，最后讲述iptables的实际利用。下一章讲述OpenWrt中的防火墙实现。

12.1　防火墙概述

“防火墙”（Firewall）术语来自建筑设计领域，是指用来起分割作用的墙，当某一部分着火时可以减缓或保护其他部分免受火灾影响。在计算机网络中，防火墙是在两个或多个网络之间用于设置安全策略的一个或多个系统的组合。防火墙起到隔离异常访问的作用，仅允许可靠的流量通过，从而保护了家庭和企业内部网络信息的安全。图12-1所示的是一个典型的防火墙部署结构。

Linux防火墙通常包含两部分，分别为iptables和netfilter。iptables是Linux管理防火墙规则的命令行工具，处于用户空间。netfilter执行报文过滤，处于Linux内核空间。有时候也会用iptables来统称Linux防火墙。

iptables是一个报文状态检测防火墙，这意味着防火墙内部存储每一个连接的信息，并且可以将每一个报文关联到它所属的连接。这个信息非常有用，它用于自动打开响应报文的传输路径，因此在创建防火墙规则时，通常没有必要创建相反方向的防火墙规则，防火墙将自动计算出这个规则。

[image:]

图12-1 典型防火墙部署结构

12.2　iptables中的表

iptables是用C语言实现的，最新版本是1.4.21，并以GNU许可协议发布。它实际上包含两部分，内核netfilter和用户空间工具iptables。管理员通过iptables工具集和内核打交道，将防火墙规则写入内核中。内核netfilter执行报文过滤规则。iptables根据功能划分不同的表来处理不同的功能逻辑，当前包含5个表，分别为 filter、nat、mangle、raw和security。

12.2.1 filter（过滤表）

filter是iptables的默认表，主要用于报文过滤，在这里根据报文的内容对报文进行丢弃或者接收。它包含有3个内置规则链。

 	INPUT输入链，处理目标地址为本机IP地址的报文。

 	OUTPUT输出链，处理本机IP地址产生的报文。

 	FORWARD转发链，处理经过本机路由的报文。

这样每一个IP报文只经过这3个内置链中的一个，便于进行数据报文匹配和处理。这里是真正实现防火墙处理的地方。注意：

 	经过本机转发的报文经过FORWARD链，不经过IPPUT链和OUTPUT链。

 	本机产生的报文经过OUTPUT链，其他的链不经过。

 	去往主机的报文经过该主机的INPUT链，其他的链不经过。

12.2.2 nat（网络地址转换表）

nat用来完成源/目的地址和端口的转换，当一个报文在创建一个新的连接时进入该表。它也有3个内置规则链。

 	PREROUTING：用于修改到来的报文，只用来做网络地址转换。

 	OUTPUT：用于修改本机产生的并且在路由处理之前的报文。

 	POSTROUTING：用于修改准备出去的报文的地方。

通过目的地址转换，你可以将服务器放在防火墙后面，并使用私有IP地址。一些协议通过nat转换有困难（例如FTP或SIP），连接跟踪将打开这些协议的数据/媒体流路径。nat表不能用于报文过滤和报文修改，因为每一个连接流仅有一次机会进入该表中的规则链。

网络地址转换在路由功能前后都可能发生，源地址转换是在数据包通过路由之后在POSTROUTING规则链进行地址转换。目的地址转换是在路由之前，在PREROUTING规则链进行地址转换。

12.2.3 mangle（修改表）

这个表主要用来进行报文修改，有5个内置规则链。

 	PREROUTING：针对到来的报文，在路由之前修改的地方。

 	INPUT：针对目的地址为网关本身的报文。

 	FORWARD：针对通过网关路由转发的报文。

 	POSTROUTING：将要发送出去的报文的地方。

 	OUTPUT：本机产生报文在路由之前修改的地方。

通常使用该表进行报文修改，以便进行QoS和策略路由。通常每一个报文都进入该表，但不使用它来做报文过滤。

12.2.4 raw（原始表）

这个表很少被用到，主要用于配置连接跟踪相关内容，在ip_conntrack之前调用。它提供了两个内置规则链。

 	PREPROUTING：到达本机的报文。

 	OUTPUT：本机进程产生的报文。

这里是能够在连接跟踪生效前处理报文的地方，你可以标记符合某种条件的报文不被连接跟踪处理。一般很少使用。

此外，还有security表，这个表用于安全Linux的防火墙规则，是iptables最近的新增表，在实际项目中还很少用到。

12.3　处理目标

防火墙规则检测报文的特征是否符合规则，如果匹配，就进入规则的处理目标（TARGET）中。如果报文不匹配则进入该规则链的下一条规则进行检测。就这样逐条规则进行比较，直到整个规则链比较完成。规则的处理目标可以是用户定义的自定义链名，也可以是系统内置的4种处理方式。

 	ACCEPT（接收）：表示让这个报文通过。

 	DROP（丢弃）：表示将这个报文丢弃。

 	QUEUE（入队）：表示把这个报文传递到用户空间的队列中。

 	RETURN（返回）：表示停止这条规则链的匹配，返回到调用这个规则链的上一条规则链的规则处执行。如果到达了一个内建的规则链的末端，或者遇到内置链的规则目标是RETURN，报文的命运将由规则链指定的默认目标处理方式决定。

还有其他扩展的目标处理方式，例如REJECT、DNAT、SNAT、MASQUERADE、LOG和REDIRECT等，将在下面各节依次讲述。

12.3.1 REJECT（拒绝）

REJECT和DROP一样丢弃报文，但REJECT的不同之处在于同时还向发送者返回一个ICMP错误消息。这样发送者将知道报文被丢弃，如果发送端检测到返回的错误信息，将不再尝试发送报文，这样可以在特定条件下减少发送端重发报文。例如禁止访问主机上80端口的服务，访问者将收到端口不可达的ICMP消息。

#>iptables -A IPNUT -p tcp --dport 80 -j REJECT

DROP和REJECT含义的比较

DROP和REJECT报文，许多人选择丢弃报文，因为其安全优势超过拒绝，因为这样暴露给攻击者的信息较少，然而在调试网络问题时会遇到困难，应用程序也不知所措。

如果报文被REJECT，路由器将响应一个ICMP目的端口不可达消息，这样连接将立即失败。这意味着每一个试图连接特定端口都会有ICMP响应报文产生。如果有大量的访问或攻击，这样做会有大量的ICMP消息产生，导致占用所有的带宽而合法的连接不可用（DOS）。

当使用DROP时，客户端不知道报文被丢弃，会继续使用重传机制来发送报文，直到连接超时。具体行为依赖于客户端软件的实现，这将导致程序挂起等待超时，然后才会继续执行。因此两者各有利弊，它们各自的特点如下所示。

DROP

 	信息暴露较少。

 	攻击面减少。

 	客户软件可能无法很好地处理它（程序挂起直到连接超时）。

 	可能使网络调试复杂化（报文丢弃，不清楚导致问题出现的原因，可能是路由器的问题，或者报文丢失）。

REJECT

 	暴露了防火墙的IP地址信息（例如流量被实际阻挡的IP）。

 	客户端软件能立即从拒绝连接尝试中恢复过来。

 	网络调试更容易（路由和防火墙问题可以清晰地区分出来）。

12.3.2 DNAT（目的网络地址转换）

当你的局域网内的多个服务器需要对互联网的机器提供服务时，你就会用到这个目标处理方式。这个目标是用来实现目的网络地址转换的，就是重写报文的目的IP地址。如果一个报文被匹配了，那么和它属于同一个流的所有报文都会被自动转换，然后就可以被路由到正确的主机或网络。这个处理目标仅可以用在nat表中的PREROUTING 和OUTPUT链以及被这些链调用的自定义链中。例如将访问路由器的80端口的流量重定向到192.168.6.100上：

#>iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT --to-destination 192.168.6.100

这样Web服务器就可以搭建在局域网的主机（192.168.6.100）上对外提供服务。对外仅有路由器的IP地址暴露给用户，也节省了IP资源。处理流程如下。

（1）报文进入防火墙之后，将目标地址修改为192.168.6.100，然后离开防火墙到达HTTP服务器。

（2）HTTP服务器处理完成后，将源地址改为目标地址，使用自身IP作为源地址发送报文。

（3）防火墙收到响应报文后将报文的源地址转换为防火墙的出接口地址，然后返回给请求方。整个通信流程完成。

12.3.3 SNAT（源网络地址转换）

这是另外一种网络地址转换方式，仅仅在nat表的POSTROUTING和INPUT链，以及和被这些链调用的自定义链中可以使用。它指定报文的源地址将被修改，它至少需要一个参数-源地址，报文的源地址将被指定地址替换。此连接的后续报文并不进入该规则中，连接中的报文源IP均被自动替换。设置参考命令如下：

#>iptables -t nat -A POSTROUTING –s 192.168.6.0/24 –o eth0 \

 -j SNAT --to-source 10.0.2.15

这个目标处理方式经常用于仅有少量固定IP地址上网的情形，局域网的私有地址在访问因特网时，源地址被路由器外网地址替换。

12.3.4 MASQUERADE（伪装）

MASQUERADE是最常用的处理目标，因为大多数情况下，路由器并没有一个固定的IP地址。我们的路由器是通过PPPoE拨号上网或者是通过DHCP自动分配的IP地址。这个处理目标和SNAT处理目标作用是一样的，区别就是它不需要指定源地址。MASQUERADE是被专门设计用于那些动态获取IP地址的连接，比如拨号上网、DHCP连接等。如果你有固定的IP地址，还是用SNAT处理目标，这样可以节省计算资源。

注意，MASQUERADE只能用于nat表的 POSTROUTING链。例如，局域网来自192.168.6.0网络的报文通过MASQUERADE进行源地址转换：

#>iptables -t nat -A POSTROUTING –s 192.168.6.0/24 –o eth0 -j MASQUERADE

12.3.5 LOG

为匹配的报文开启内核记录。当在规则中设置了这一选项后，Linux内核会通过printk函数打印一些关于匹配包的信息，然后通过syslog机制记录在日志文件中。该处理目标并非最终目标，处理完成后，报文还会接着进入下一条规则继续匹配。有以下几个选项可以设置。

 	--log-level：日志级别。

 	--log-prefix：prefix在记录log信息前加上的特定前缀：最多14个字母长，用来和日志中其他信息区别。

 	--log-tcp-sequence：记录TCP序列号。

 	--log-tcp-options：记录TCP报文头部的选项。

 	--log-ip-options：记录IP报文头部的选项。

12.3.6 REDIRECT

只适用于nat表的PREROUTING和OUTPUT链，以及它们调用的用户自定义链。它修改报文的目标IP地址来发送报文到机器自身（本地生成的报文被设置为地址127.0.0.1）。经常用于HTTP代理，例如将80端口的HTTP请求重定向到SQUID的3128端口。它包含一个选项：

--to-ports []

指定使用的目的端口或端口范围。不指定的话，目标端口不会被修改。只能用于指定了TCP或UDP的规则。

注意，iptables中的所有表都是小写字母表示，内置规则链均大写字母表示，所有处理目标均以大写字母表示。

12.4　报文处理流程

iptables有5个表，每一个表中又有几个不同的链，不同的表中有相同名称的规则链，但这些规则链处理的任务是不同的。报文按照预定的流程来顺序进入到各个规则链中，报文处理流程如图12-2所示。同一名称规则链根据表的先后顺序进入，进入顺序依次是raw、mangle、filter和nat。

[image:]

图12-2 报文在IPTABLES的链表处理流程

报文从网络来的，首先进入到PREROUTING链中进行处理，再对目标IP地址进行判断，如果目标IP地址和本机相同就会把报文转到INPUT链，再转到应用程序。如果报文的IP地址和本机不同，则是转发报文，进入FORWARD链，再经过POSTROUTING链发出报文。如图12-3所示。

[image:]

图12-3 网络报文处理流程

（1）首先网卡从网络上收到IP报文。

（2）报文进入raw表的PREROUTING链。这里能够在连接跟踪生效前对报文进行处理，你可以标记某种类型的报文不被连接跟踪处理。一般很少使用。

（3）报文进入到连接跟踪处理。这里是收到报文进行连接跟踪处理的位置。

（4）报文进入到mangle表的PREROUTING链。这里是报文进入网关之后、路由之前修改报文的地方。

（5）报文进入到nat表的PREROUTING链。在这里我们做目的地址转换（DNAT）。这里不能用于报文过滤，因为每一个连接数据流仅第一个报文进入到这里。

（6）进行路由决策，因为前面的mangle和nat表可能修改了报文的IP地址信息。如果目标地址为网关，则直接进入到INPUT链中，如果和本机地址不同，则是进入路由转发，跳到第9步的转发表中。

（7）报文进入到mangle表的INPUT链。这里是报文进入网关时修改报文的地方，在这里做报文过滤是不被推荐的，因为它可能有副作用。通常也很少修改报文。

（8）报文进入到filter表的INPUT链。这里是对收到报文做过滤的地方，然后将报文转到应用程序。

（9）对于转发报文进入到mangle表的FORWARD链。这里是对转发报文进行修改的地方。

（10）报文进入到filter表中的FORWARD链，对转发报文进行过滤。这里是唯一适合对转发报文过滤的地方。所有的转发报文均经过这个规则链。

（11）报文进入到mangle表的POSTROUTING链。这条链可能被两种报文遍历，一种是转发的报文，另外就是本机产生的报文。这个链通常很少使用。

（12）报文进入到nat表的POSTROUTING链。在这里我们做源地址转换（SNAT）。这里不能用于报文过滤，因为每一个数据流仅有第一个报文进入到这里。

（13）最后经过网卡发送报文。

如果应用程序发送报文则在netfilter中是另外的处理流程，如图12-4所示。报文则首先通过OUTPUT链，然后经过POSTROUTING链再发送报文。网络报文在各个表中的规则链中流动，按照raw、mangle、filter和nat表的顺序依次进行匹配。

[image:]

图12-4 本机产生报文处理流程

（1）首先本地进程产生报文，并进行路由选择，选择源IP地址及出接口设备。如果没有找到路由将直接返回失败。

（2）进入raw表OUTPUT链。这里是能够在连接跟踪生效前处理报文的地方，你可以标记某种类型的报文不被连接跟踪处理。一般很少使用。

（3）连接跟踪。这里是本地发出报文进行连接跟踪处理的位置。

（4）进入到mangle表的OUTPUT链。这里是我们修改报文的地方。不推荐在这里做报文过滤，因为它可能有副作用。

（5）进入到nat表OUTPUT链。这里对于本机发送的报文做目的地址转换（DNAT）。不能用于过滤，因为每一个数据流仅第一个报文进入到这里。

（6）进入路由决策。因为前面的mangle和nat表可能修改了报文的IP地址信息。

（7）进入到filter表的OUTPUT链。对本机发出报文做过滤的地方。

（8）进入到mangle表的POSTROUTING链。这条链可能被两种报文遍历，一种是转发的报文，另外就是本机产生的报文。

（9）进入到nat表的POSTROUTING链。在这里我们做源地址转换（SNAT）。这里不能用于报文过滤，因为每一个数据流仅有第一个报文进入到这里。

（10）在网卡接口上发出报文，报文离开主机。

12.5　报文规则匹配

防火墙规则用于匹配报文，有多种匹配报文特征的方法，常见的有根据数据链路层、IP层及传输层特征进行匹配，甚至可以根据应用层特征进行匹配，例如用户、域名以及内容匹配等。

MAC地址过滤用于匹配报文以太网卡的物理地址。必须是XX:XX:XX:XX:XX:XX这样的格式。它只对来自以太网设备并进入PREROUTING、FORWORD和INPUT链的报文有效。注意：MAC地址过滤只对源MAC地址有效。格式为：-m mac --mac-source [!] address。如下面所示的规则将丢弃来自指定MAC的报文。

#>iptables -I INPUT -m mac --mac-source 28:D2:44:15:D5:A4 -j DROP

IP层匹配常用的有协议、源IP地址和目标IP地址，经常和传输层的端口一起使用。

-p用于匹配IP层报头所指定的传输层协议。常见的协议为TCP、UDP、IGMP、ICMP或者ALL，等等。也可以是一个数字，数字代表的协议在文件/etc/protocols描述。数字零表示所有协议。例如禁止UDP 5060报文通过命令如下：

#>iptables -A FORWARD -p UDP --m udp dport 5060 -j DROP

-s和-d用于匹配IP报文的源和目标IP地址。IP地址可以是网络地址、主机名或具体的IP地址。如果是主机名，在插入到内核之前将被解析为IP地址。网络掩码长度是指IP地址左边“1”的个数。例如24表示255.255.255.0。例如禁止192.168.1.0网段访问本机的设置命令如下：

#>iptables -A INPUT -s 192.168.1.0/24 -j DROP

owner模块用于匹配报文发起者，用于本机进程产生的报文，一般为用户或用户组ID。这些规则仅可以在OUTPUT和POSTROUTING链中使用。转发的报文不会匹配到任何的用户信息，内核线程产生的报文也没有所有者，例如ICMP信息。这在一些严格限制仅限定用户进程可以通过的场合使用，每一个进程一个用户，这样可以非常方便地对进程加以区分。

例如，允许1002用户进程的报文通过：

#>iptables -I OUTPUT -m owner --uid-owner 1002 -j ACCEPT

接口匹配模块提供了根据报文的出入接口来匹配的方法，如果不限定接口，规则将匹配所有的网卡接口网络。可以通过以下方法来设置匹配接口。

 	-i [name]：这是报文经由该接口接收的流入接口名称，报文通过该网卡接口接收（在规则链INPUT、FORWORD和PREROUTING 中进入的报文）。

 	-o [name]：这是报文经由该接口发出的流出接口名称，报文通过网卡该口发送（在规则链FORWARD、OUTPUT和 POSTROUTING中送出的报文）。

当在接口名称前使用“!”修饰后，指的是不为该接口的报文，如果接口名后面加上“+”，则所有以此接口名开头的接口都会被匹配。如果不指定这个选项，那么将匹配任意网卡接口的报文。

conntrack连接跟踪是有状态防火墙的核心机制，用于存取这个报文的连接跟踪状态来计算匹配返回的报文。state是连接跟踪的子集，用于存取连接跟踪的报文状态。可选的状态列表如下。

 	NEW：这个报文开始新的连接，是连接建立的第一个报文。例如TCP连接的第一个请求报文。

 	ESTABLISHED：连接建立，这个报文关联的连接已经在双方向看到报文。

 	RELATED：这个报文开始新的连接，但是关联到一个已存在的连接上，例如一个FTP数据传输或者一个ICMP错误。

 	UNTRACKED：这个报文没有连接跟踪，如果你在raw表中使用-j CT -notrack进行了设置。

 	INVALID：这个报文没有关联到已知的连接。例如收到不属于已有连接的ICMP错误信息。

可以和任何网络协议一起来使用iptables连接跟踪的状态功能，状态功能支持TCP、UDP和ICMP协议。下面的例子使用连接跟踪来只转发与已建立连接相关的分组报文，这种情况通常是禁止转发广域网的直接发起请求报文，这样就可以只用加入一条规则来允许局域网指定协议可以通过。

#>iptables -A FORWARD -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables还支持很多扩展模块，例如connlimit，用于限制并行连接数等（请参考iptables帮助手册）。

12.6　管理防火墙规则

iptables工具提供了管理防火墙规则的功能，以下将介绍增加、删除、查看规则功能如何使用。

iptables [-t table] {-A|-C|-D} chain rule-specification

rule-specification = [matches...] [target]

match = -m matchname [per-match-options]

target = -j targetname [per-target-options]

一个防火墙规则包含报文匹配规则和处理目标，处理目标在12.3节已经讲述，匹配规则用于检测报文是否符合该规则标准。一般根据报文的IP特征进行匹配，典型根据报文协议、IP地址和端口进行匹配，在12.5节已经讲述。iptables提供了以下命令来管理防火墙规则。

 	-A --append：将防火墙规则增加到所选规则链的末尾。

 	-D --delete：在指定的规则链中删除规则。可以通过指定规则号来删除，也可以通过规则匹配来删除。规则编号是指规则在规则链中的顺序号，顺序号从1开始增加。

注意：

 　

 规则在规则链中的规则编号不是固定的，如果删除前面的规则，则后面的规则自动往前移动。

 	-I，--insert chain [rulenum] rule-specification：插入到规则链中的指定位置，如果不指定插入位置，则插入到规则链的第一个位置处。

 	-L，--list [chain]：查看防火墙规则，如果没有指明规则链，则所有的规则链均显示出来。

所有的iptables命令，如果没有指定防火墙表就使用默认的filter表，所以查看网络地址转换规则使用iptables -t nat -n -L，注意经常使用的-n选项，是为了避免长时间的DNS解析。

iptables -F清空所选的规则链中的规则。如果没有指定链，则清空指定表中的所有链的规则。如果什么都没有指定，就清空默认表所有的链规则。当然也可以一条一条地删除，但用这个命令会比较方便。例如清空filter表中INPUT链的规则。

iptables -t filter -F INPUT

（1）默认策略的设置。每一条内置链的策略都是用来处理那些在相应的规则链中没有被规则匹配的报文。也就是说，如果有一个报文没有被规则集中的任何规则匹配，那默认策略就会命中，执行默认策略的行为。

一般有两种策略行为，默认通过（ACCEPT）和默认丢弃（DROP），在白名单模式会使用默认丢弃，在黑名单模式下会默认通过。设置命令形式如下：

iptables [-P {chain} {policy}]

例如设置输入链为默认拒绝：#>iptables -P INPUT DROP。

（2）自定义规则链的创建。对于复杂规则，我们通常会创建自定义规则链来进行匹配，并把自定义规则链加入到已有的规则链中，这样我们在删除及加载时非常方便。自定义规则链设置命令如下：

#>iptables -N UDP_FILTER

（3）清空整个防火墙。通常在进行防火墙配置前，需要将以前的规则全部删除，因此我们清空整个防火墙。

#>iptables -F

#>iptables -t nat -F

#>iptables -t mangle –F

（4）一个典型路由器的配置。如果我们没有使用其他的额外的工具，我们手动进行配置一个典型路由器防火墙如示例12-1所示。从局域网发起的流量均可以通过，从互联网发起的主动流量不能通过，从互联网来的被动报文也允许通过，因为这是局域网主机请求的响应报文。所有局域网的请求转发后均进行网络地址转换，将源地址改为路由器地址。

示例12-1：

 WAN=eth0

 LAN=eth1

 iptables -t filter -P FORWARD DROP #所有转发流量均默认禁止。

#局域网发起的连接进行转发

 iptables -t filter -A FORWARD -i $LAN -j ACCEPT

#对所有符合连接跟踪状态的报文进行转发。

 iptables -t filter -A FORWARD -m state --state RELATED, ESTABLISHED -j ACCEPT

#所有去往互联网的流量均进行地址伪装，即源地址改为路由器地址。

 iptables -t nat -A -o $WAN -j MASQUERADE

如果我们需要停止防火墙，我们可以逐条删除规则，也可以直接清空规则，并设置其默认策略，示例12-2将停止防火墙。

示例12-2：

#恢复内置链默认策略

iptables -t filter -P FORWARD ACCEPT

iptables -t filter -P INPUT ACCEPT

#以下命令清空表中所有的规则

iptables -F

iptables -t nat -F

iptables -t mangle –F

iptables -t raw -F

12.7　其他工具集

iptables提供了两个很有用的工具用来处理大规则集：iptables-save和iptables-restore，它们把规则存入一个与标准脚本代码只有细微差别的特殊格式的文件中，或从中恢复规则。

iptables-save：导出iptables规则到标准输出（即屏幕）中，我们使用shell的重定向命令可以将规则写入文件中。内容格式和iptables类似但稍有不同，这个格式便于程序解析。

iptables-restore：用于加载导出的防火墙规则，使用标准输入的内容来导入，一般都是通过shell提供的重定向从文件中读取规则之后来向内核导入规则。

一般的iptables一次仅执行一条指令，如果对于很大的规则集也采用iptables来设置，那就需要反复在内核和用户空间进行通信，这样将浪费很多的CPU时间，而这两个命令通过一次调用就可以装载和保存整个规则集，这样节省了大量的时间。

12.8　小结

开源领域有很多防火墙都是基于iptables/netfilter来实现的，例如arno防火墙、UFW防火墙和UCI防火墙。OpenWrt采用UCI防火墙是一个功能比较强大的防火墙。如果是静态配置也可以选择arno防火墙, 作为桌面终端用户可以选择ufw防火墙。

12.9　参考资料

 	Iptables指南（https://www.frozentux.net/iptables-tutorial/cn/iptables-tutorial-cn-1.1.19.html [2015-08-15]）。

 	Iptables手册（http://linux.die.net/man/8/iptables [2016-7-24]）。

 	drop和reject比较（http://www.chiark.greenend.org.uk/%7Epeterb/network/drop-vs-reject）。

 	Arno防火墙（http://rocky.eld.leidenuniv.nl/html/）。

 	UFW防火墙（https://help.ubuntu.com/community/UFW）。

第13章　UCI防火墙

如果直接使用iptables命令，不便于管理。OpenWrt采用UCI配置来管理防火墙规则，这样将便于用户使用命令或Web接口来管理。另外加入UCI配置层可以分离路由器控制层和转发层。

本章首先讲述了UCI防火墙的基本配置，接着使用UCI配置来对黑白名单和家长控制进行管理，最后讲述了防火墙的管理和如何调试防火墙。

13.1　概述

OpenWrt使用Netfilter来实现报文过滤、网络地址转换和报文修改。UCI防火墙封装了Netfilter的配置接口，抽象了防火墙系统特征来提供简单的配置模型，适合大多数场景。UCI配置还提供了扩展接口，用户自己需要特殊iptables命令时也可直接配置。

防火墙的核心是防火墙规则，所有的规则在一起就是规则集。这些规则允许或拒绝某些主机去访问另外一个网络的主机。通过组合这些规则，就可以创建非常复杂的强大规则集。但是手动维护这些规则集将非常困难，因此OpenWrt定义了安全域（Zone）的概念，可以减少管理的负担。

UCI防火墙映射一个或多个接口在一起为一个安全域，这样可以简化配置模型。安全域是一个相同规则的区域，一个安全域根据接口来划分，可以包含一个或多个接口。可以同时定义多个接口的默认规则，以及接口之间的转发规则，还有前两步未覆盖到的其他规则。安全域也用于配置网络地址转换、端口转发规则、重定向等。

安全域必须映射到一个或多个接口，并最终映射到多个物理接口设备，因此安全域不能用于指定子网和按照iptables规则来操作物理设备接口。当接口的子网包含另外一个网关时，可以用来达到目的地不属于自己的子网网络。通常转发是在局域网和广域网之间的接口完成，因此使用路由器作为局域网和因特网之间的边缘网关。UCI的防火墙默认配置提供了这样的一个共同设置。典型智能路由器设置为两个安全域，wan-连接互联网，lan-连接局域网。

Netfilter系统是数据包通过各个规则的链式处理过滤器。第一个规则如果没有匹配，则继续下一个规则匹配，直到数据报文命中ACCEPT、DROP或REJECT之一。如果直到最后一个仍未匹配，默认规则最后生效，具体的规则首先起作用。OpenWrt的防火墙规则也是如此，在配置文件中，默认规则在最前面，但最后生效，同级别的规则按照配置文件顺序先后生效。

13.2　防火墙配置

路由器的最小防火墙配置通常有一个缺省（defaults）部分、至少两个安全域（局域网和广域网）和一个转发——允许数据从局域网到广域网。

这一节的内容是对防火墙配置文件中定义的配置节的详细描述。防火墙配置文件位于/ etc/config/firewall中。UCI配置文件没有区分类型，但防火墙模块解析处理过程需要区分类型，因此配置文件的配置项需要填入指定类型的值，主要有字符串、布尔值、整型值、MAC地址和IP地址等类型。

13.2.1　Defaults

Defaults配置节定义了不属于特定区域的全局防火墙设置。配置类型为“defaults”，表13-1所示的是这个配置节的主要定义选项。

表13-1　defaults配置节选项含义

 	 名　　称

 	 类　　型

 	 含 义 描 述

 	 input

 	 字符串

 	 设置过滤表的INPUT链的策略，默认为REJECT

 	 output

 	 字符串

 	 设置过滤表的OUTPUT链的策略，默认为REJECT

 	 forward

 	 字符串

 	 设置过滤表的FORWARD链的策略，默认为REJECT

 	 syn_flood

 	 布尔值

 	 启动SYN洪水攻击保护，默认不启用

 	 disable_ipv6

 	 布尔值

 	 关闭IPv6防火墙，默认打开

13.2.2　Zones-安全域

一个安全域根据接口来划分，可以包含一个或多个接口，在源和目的地之间进行转发、生成规则和重定向。输出的流量伪装是每一个安全域的基础控制。注意伪装是对即将报文离开的接口进行定义，是将报文的源IP地址转换为路由器的出口IP地址。

INPUT规则用于匹配流量从这个安全域的接口到达路由器本身，即目的地址为路由器IP地址的流量。OUTPUT规则用于处理从路由器自己产生的报文并通过安全域的接口，即作用于源地址为路由器地址的报文。FORWARD规则用于处理从一个安全域到另外一个安全域的报文，即经过路由器来转发的报文。

安全域的配置节类型为“zone”，其主要选项在表13-2中有详细描述。

表13-2　zone配置节选项含义

 	 名　　称

 	 类　　型

 	 含 义 描 述

 	 name

 	 字符串

 	 定义安全域的名称

 	 network

 	 链表

 	 安全域的接口列表

 	 input

 	 字符串

 	 进入安全域报文的默认策略（ACCEPT、REJECT或DROP），默认为DROP

 	 forward

 	 字符串

 	 转发流量的默认安全策略（ACCEPT、REJECT或DROP），默认为DROP

 	 output

 	 字符串

 	 该安全域发出报文的默认策略（ACCEPT、REJECT或DROP），默认为DROP

 	 masq

 	 布尔值

 	 该安全域流量是否进行地址伪装，即是否进行地址转换，典型情况下wan域均启用该设置

 	 mtu_fix

 	 布尔值

 	 对于所有的外出流量固定其最大分片大小值

13.2.3　转发

转发部分控制安全域之间的数据流量，可以使MSS（最大分片大小）为特定的方向。一个转发规则仅代表一个方向。允许两个区域之间的双向流量，这需要两个转发规则，src和dest部分颠倒过来即可，转发配置节的类型为“forwarding”。主要选项在表13-3中描述。

表13-3　forwarding配置节选项含义

 	 名　　称

 	 类　　型

 	 描　　述

 	 src

 	 安全域名称

 	 指定流量的源区域，必须指向一个已经定义的安全域的名称

 	 dest

 	 安全域名称

 	 指定流量的目的区域，必须指向一个已经定义的安全域的名称

 	 family

 	 字符串

 	 协议家族（ipv4、ipv6或者any），默认值为any，用于产生iptables规则

iptables规则生成该部分依靠需要连接跟踪工作来生成状态匹配。在src和dest安全域至少需要有一个连接跟踪通过MASQ或连接跟踪选项启用。如果没有启用连接跟踪机制，那报文只能单向通过，返回的报文将被拒绝。示例13-1表示允许局域网到广域网的报文转发。

示例13-1：

config forwarding

 option src 'lan'

 option dest 'wan'

13.2.4　重定向

目的地址转换（DNAT）定义在重定向配置节。在指定源安全域的所有进入的报文如果匹配给定的规则将重定向到指定的内部主机上。

重定向也叫“端口转发”或“端口映射”。端口访问可以以“start:stop”来指定，例如8080:8090，语法和iptables类似。技术上来说，端口映射是目的地址转换的另一个术语，报文发送到防火墙并被转换为一个新的目的地址，这个处理过程完全由防火墙自动完成。对于设置这个规则，需要新老目的地址，并且可以选择源地址或者其他约束条件进行匹配。重定向配置类型为“redirect”。配置选项在表13-4中详细描述。

表13-4　redirect配置节选项含义

 	 名　　称

 	 类　　型

 	 含 义 描 述

 	 src

 	 安全域名称

 	 指定流量的源安全域。必须指向已经定义的区域，典型的端口转发通常是wan

 	 src_ip

 	 IP地址

 	 匹配从指定源IP地址的报文

 	 src_dip

 	 IP地址

 	 对于DNAT来说，匹配指定目的地址的报文；对SNAT来说，重写源地址为指定的地址

 	 src_mac

 	 MAC地址

 	 对于流入报文，匹配指定的MAC地址

 	 src_port

 	 端口号

 	 匹配指定源端口或范围的流入报文

 	 src_dport

 	 端口号

 	 报文的原始目标端口

 	 proto

 	 协议名称或数字

 	 匹配指定的协议

 	 dest

 	 安全域名称

 	 指出流量的目的安全域，必须是一个已定义的安全域的名称。对于DNAT这个必须为lan域

 	 dest_ip

 	 IP地址

 	 对于DNAT，将重定向到指定的内部主机，对于SNAT，匹配给定地址的流量

 	 dest_port

 	 端口号或范围

 	 对于DNAT来说，重定向匹配的报文到内部主机的指定端口。对于SNAT来说，匹配的报文将直接重定向到指定的端口

示例13-2将转发从wan接口的HTTP请求报文到IP地址为192.168.1.100、端口为80的Web服务器上，没有指定转换后端口号，那就是目的端口不变。

示例13-2：

config redirect

 option src wan

 option src_dport 80

 option proto tcp

 option dest lan

 option dest_ip 192.168.1.100

13.2.5　规则

规则（rule）用于定义基本的接受或拒绝规则来允许或限制你访问指定主机或端口。真正的防火墙规则在这里进行设置。规则定义如下。

 	如果src和dest均指定，规则作用于转发流量。

 	如果仅指定了src，规则匹配流入本机的流量，即目的地址为防火墙的报文。

 	如果仅指定了dest，规则匹配本机作为源地址的流量。

 	如果src和dest均没有给出，则默认作用于本机作为源地址的流量。

端口范围使用start:stop，例如8080:8090。这和iptables的语法完全一致。规则的配置类型为“rule”，防火墙规则中如果指定了时间，则需要路由器的时间准确，否则和自己的期望将完全不同。具体的配置选项在表13-5中详细描述。

表13-5　rule配置节选项含义

 	 名　　称

 	 类　　型

 	 描　　述

 	 name

 	 字符串

 	 规则的名称

 	 src

 	 安全域名称

 	 指定报文的来源，必须指向一个存在的安全域的名称

 	 src_ip

 	 IP地址

 	 匹配指定的源IP地址

 	 src_mac

 	 MAC地址

 	 匹配指定的源MAC地址报文，注意没有目的MAC地址匹配

 	 src_port

 	 端口或端口范围

 	 匹配指定的源端口或端口范围的报文。在协议号指定的情况下使用

 	 proto

 	 协议名称或协议数字

 	 匹配指定的协议报文。可以是UDP、TCP、TCPUDP、ICMP、GRE、IGMP或者ALL。或者为代表这些协议的数字协议编号，编号含义来自文件/etc/protocols，数字零和ALL等价

 	 dest

 	 安全域名称

 	 指定流量的目的安全域。必须是一个已经存在的安全域名称。或者是*表示任何安全域。如果指定了表示这个规则用于转发链，否则作用于INPUT链

 	 dest_ip

 	 IP地址

 	 匹配指定的目的IP地址报文，如果没有配置dest域，这条规则将当作INPUT规则

 	 dest_port

 	 端口或端口范围

 	 匹配给定的目的端口或端口范围

 	 target

 	 字符串

 	 匹配报文之后的行为（ACCEPT、REJECT、DROP、MARK或NOTRACK）

 	 weekdays

 	 星期列表

 	 可以指定周一到周日的任何一天，可以组合起来，中间用空格隔开，例如：mon tue wed thu fri

默认的防火墙配置是接受所有的局域网流量，但是阻断所有的WAN入口主动流量，除了当前NAT或连接的被动流量。如果要打开服务的端口，可以像示例13-3一样增加规则。示例13-3配置将允许互联网上的主机通过SSH协议访问路由器。

示例13-3：

config rule

 option src wan

 option dest_port 22

 option target ACCEPT

 option proto tcp

示例13-4用于阻止局域网主机到广域网主机121.42.62.172的全部连接。源主机将收到目标端口不可达的ICMP消息。这就是把这个IP地址加入了访问黑名单，不允许访问。

示例13-4：

config rule

 option src lan

 option dest wan

 option dest_ip 121.42.62.172

 option target REJECT

示例13-5用于创建一个输出规则，阻止从路由器ping IP为8.8.8.8的主机。这个规则没有src字段，因此仅匹配从路由器发出的报文。

示例13-5：

config rule

 option dest wan

 option dest_ip 8.8.8.8

 option proto icmp

 option target REJECT

示例13-6用于限制从局域网到广域网的目的端口为1024～65535的报文转发。

示例13-6：

config rule

 option src lan

 option dest wan

 option dest_port 1024-65535

 option proto tcpudp

 option target REJECT

13.2.6　include

include用于包含自定义的防火墙规则。在防火墙配置中可以指定一条或多条include配置节。类型为“include”，仅有一个必须的参数是包含的文件路径，所有的可选参数如表13-6所示。

表13-6　include配置节选项含义

 	 名　　称

 	 类　　型

 	 描　　述

 	 path

 	 文件名

 	 指定自定义规则的路径，默认值为/etc/firewall.user

 	 enabled

 	 布尔值

 	 为1表示启用，为0表示不使用，即可以不用删除规则定义，就可以这条规则不起作用，默认为启用

 	 type

 	 字符串

 	 指定include的类型，“script”表示是传统的shell脚本，“restore”表示是iptables-restore格式的文本

 	 family

 	 字符串

 	 指定这个包含规则的IP地址家族（IPv4、IPv6或者any）

 	 reload

 	 布尔值

 	 指定规则在重新加载时是否需要被再次调用，这仅在注入到内部规则时需要再次调用，因为内部防火墙规则链先被删除，然后再次创建

包括类型的脚本可以包含任意的命令，例如高级的iptables规则或流量整形所需的tc命令。由于自定义iptables规则要比一般的更具体，所以必须确保使用“-I”来插入而不是一个“-A”来附加到最后，这样自定义规则将出现在默认规则的前面。

13.3　常见用法

13.3.1　MAC地址黑白名单

MAC地址过滤是家用路由器的一个常见功能，它可以防止未授权的MAC地址访问路由器和通过路由器访问网络。例如网络上有恶意用户，可以通过MAC地址限制指定恶意用户主机连接到路由器，即使他拥有路由器的密码。

OpenWrt没有单独的MAC接入控制模块，但可以通过设置防火墙规则来实现。MAC 地址是计算机网卡的物理地址，它就像是网卡的身份证，在网络中进行通信时对网卡的识别都是通过这个地址进行的。通常一个计算机仅有一个网卡，那这个网卡就可以代表这个计算机，限制这个MAC地址即可控制计算机能否接入网络，从而有效控制了网络用户的上网权限。通常有两种方式来控制：白名单和黑名单。

（1）黑名单是指在名单内的设备不能接入网络。例如小孩的计算机不能访问。

（2）白名单是指名单内的设备可以接入网络，其他设备均不能访问。

示例13-7：

config rule

 option src lan

 option dest wan

 option src_mac 08:00:27:00:58:AA

 option target DROP

config rule

 option src lan

 option src_mac 08:00:27:00:58:AA

 option target DROP

示例13-7用于阻止指定客户端连接到因特网，第一个规则禁止黑名单访问网络，第二个规则阻止从客户端连接路由器。这样该机器就不能通过该OpenWrt路由器访问任何资源。

如果以自定义规则来实现黑名单，则使用如下4条规则进行设置：

iptables -N MAC_FILTER

iptables -I INPUT -j MAC_FILTER

iptables -I FORWARD -j MAC_FILTER

iptables -A MAC_FILTER -m mac --mac-source 08:00:27:00:58:AA　-j DROP

第一行首先定义了自定义链MAC_FILTER，然后紧接着将IPNUT链的报文转到MAC_FILTER，由它将匹配目标地址为路由器IP的报文。第三行规则将FORWARD链转到MAC_FILTER自定义链中，这个将匹配经过路由器转发的流量。最后一个规则将源MAC地址的规则加入到MAC_FILTER链中。通常防火墙是默认允许局域网报文通过的，因此可以仅设置拒绝通过的MAC即可。

例如，某企业想要保证仅授权用户可以连接Wi-Fi。因为通常Wi-Fi的连接密码只有一个，如果多个人访问，经常会导致密码透露给非授权用户。白名单技术就在这时派上用场，将授权用户的MAC地址增加到防火墙中，这样即使Wi-Fi连接密码泄露，非授权用户也不能通过无线路由器访问网络。如果要设置白名单模式，则需要在规则的最后增加一个默认拒绝规则。

13.3.2　家长控制

OpenWrt没有专门的家长控制模块，我们可以在防火墙功能中实现设置。例如，禁止小孩在周一到周五上网，通过设置小孩专用的计算机MAC来禁止访问任何网络。示例13-8用于禁止指定MAC周一到周五将报文转发到互联网，weekdays用来表示一周中的第几天。

示例13-8：

config rule

 option src lan

 option dest wan

 option src_mac 28:D2:44:15:D5:A4

 option weekdays 'mon tue wed thu fri'

 option target REJECT

在企业也是同样的情况，有些公司在工作的时间会禁止使用互联网，或者是根据公司管理策略仅能访问一些授权的网站。这些策略最难的部分在于管理政策中哪些允许哪些不允许，这通常很难做出决定。在技术上使用防火墙来实现，UCI配置只能从IP层进行限制，因此如果限制访问域名，需要转换为IP地址。

示例13-9：

config rule

 option src lan

 option dest wan

 option src_mac 28:D2:44:15:D5:A4

 option target ACCEPT

config rule

 option src lan

 option dest wan

 option src_ip 192.168.1.0/24

 option start_time 9:00

 option stop_time 18:00

 option weekdays 'mon tue wed thu fri'

 option target REJECT

示例13-9所示的配置实现了周一到周五的工作时间内禁止局域网用户访问网络，并允许来自你自己MAC主机的网络访问。

13.4　防火墙管理及调试

13.4.1　管理防火墙

OpenWrt 12.09的防火墙模块脚本目录为 /lib/firewall，管理脚本为/bin/fw：

/sbin/fw –help

/sbin/fw <command> <family> <table> <chain> <target> { <rules> }

在配置修改之后，通过执行/etc/init.d/firewall restart 生效；调用/etc/init.d/firewall stop将删除所有自定义的规则，并设置所有标准的规则链为接受（ACCEPT）。手动启动防火墙执行/etc/init.d/firewall start。

（1）永久停用防火墙。防火墙可以通过执行/etc/init.d/firewall disable 永久禁用，需要重启生效。注意：禁用不会删除已生效的规则。使用enable可重新激活使用防火墙。

（2）停用防火墙。运行/etc/init.d/firewall stop以删除所有规则和设置默认策略为接受。重启防火墙，运行/ etc/init.d/firewall start。

（3）删除规则。如果你增加了一个错误的规则，你可以通过以下方式删除。首先，错误的命令规则可以通过以下命令找出索引：

iptables -L -t raw --line-numbers

现在进行删除。例如删除OUTPUT链的第三条规则，可执行以下命令：

iptables -t raw -D OUTPUT 3

（4）调试产生的规则集。观察通过防火墙程序产生的iptables命令是非常有用的，跟踪防火墙重启的iptables错误，或者验证特定UCI配置规则的结果及作用。

为了看到执行过程中的规则，运行fw命令之前将FW_TRACE环境变量设置为1。FW_TRACE变量使用在/lib/firewall/fw.sh中，判断是否定义，如果已经定义，将输出执行的每条规则：

FW_TRACE=1 fw reload

将执行输出重定向到一个文件中供以后分析，使用以下命令：

FW_TRACE=1 fw reload 2>/tmp/iptables.log

在OpenWrt 15.05版本中防火墙使用C语言来重新实现，编译安装后为fw3，使用“-d”选项来进行输出iptables命令。还有另外一个命令也支持输出防火墙规则：

fw3 print

13.4.2　测试防火墙

防火墙规则配置越多，它就越复杂。在正式使用之前，首先需要对配置进行测试。在配置修改完成后，需要调用以下命令来重启防火墙：

/etc/init.d/firewall restart

对于目标进行测试可以有非常方便的目标地址测试，但是如果有黑名单或者时间　 控制，就比较麻烦。测试时间需要你改变路由器系统时间进行测试，或者等待足够长的时间。

对于网络是否正常，可以使用ping命令进行进行测试。对于端口是否开放，可以用NetCat工具进行验证，NetCat请参考在“测试工具”中描述的技术。

13.5　名词解释

 	安全域，是指相同安全等级的区域，由一个或多个接口组成，通常具有相同防火墙规则。

 	黑名单，是指不能通过的用户名单，名单以外的用户都能通过。

 	白名单，是指能通过的用户名单，名单之外的用户都不能通过。

 	家长控制，是指家长限制孩子使用计算机网络的时间以及仅能访问限定的网络资源。

13.6　参考资料

 	OpenWrt防火墙配置（http://wiki.openwrt.org/doc/uci/firewall [2016-7-24]）。

 	UFW防火墙（https://help.ubuntu.com/community/UFW [2016-7-24]）。

 	Iptable手册（http://Linux.die.net/man/8/iptables [2016-7-24]）。

 	OpenWrt网络配置（http://wiki.openwrt.org/doc/uci/network [2016-7-24]）。

第14章 UPnP

14.1　UPnP简介

14.1.1 起源

通用即插即用（Universal Plug and Play，UPnP）是一种分布式、开放的网络架构，此标准由微软公司于1999年提出，由非盈利的通用即插即用论坛（UPnP Forum）负责体系架构和标准的维护和更新升级，此标准现已开放。

14.1.2 概述

UPnP主要用于智能设备、无线设备、个人计算机之间的互联互通。此协议在使用过程中不需要任何驱动，可以在各种操作系统上运行。凡是可以连接局域网的场所都可以利用UPnP协议实现设备的互联互通，比如家庭、办公室、娱乐场所等地方。

UPnP在即插即用的基础上进行了扩展，对家庭或企业中智能设备的联网过程进行了简化。当符合UPnP协议和技术的设备以物理形式连接到局域网之后，它们可以通过网络自动彼此连接在一起，而且连接过程不需要用户参与，更不需要有任何其他软件服务和设备支持。

UPnP规范是基于TCP/IP协议，针对设备彼此间通信而开发和定制的高层协议。UPnP最大的愿景就是希望任何设备一旦接入网络，所有在该网络上的设备马上就能知道新设备加入，这些设备彼此之间能互相沟通，在不需要任何设置的情况下，可以直接使用或控制设备，体现完全的即插即用特性。UPnP技术使用标准的、不依赖于特定的设备驱动程序。 UPnP设备可以自动配置网络地址，宣告它们在某个局域网子网的存在性，以及互相交换双方的设备描述信息和服务描述信息。UPnP也推动了因特网技术的发展，包括IP、TCP、UDP、HTTP、SSDP和XML等技术。该协议是说明性的，利用XML进行表述和HTTP进行传输。这也是UPnP被称为通用即插即用的原因所在。

14.2　UPnP架构

14.2.1 UPnP协议术语

1．UUID

通用唯一识别码（Universally Unique Identifier），用来区别局域网、分布式系统中的不同设备终端，让它们有唯一的被识别的标识，其格式为xxxxxxxx-xxxx-xxxx- xxxxxxxxxxxxxxxx，分别表示当前日期（8）-时间（4）-时钟序列（4）-全局唯一的IEEE机器识别号(16)。在有物理网卡的情况下，机器识别码就是物理网卡MAC地址，如果没有物理网卡则以其他方式获得，但是要全局唯一。

2．UDN

单一设备名（Unique Device Name，UDN），基于UUID，用来标识一个设备。在不同的时间，对于同一个设备UDN是唯一的。

3．URI

Web上可用的各种资源，比如文档、图像、视频片段、语音和图片等，由一个通用资源标识符（Universal Resource Identifier，URI）进行定位。URI一般由3个部分组成：访问资源的命名机制、存放资源的主机名和资源自身的名称，使用路径表示。例如下面的URI，它表示了当前的HTML 4.0规范：http://www.domain.com.cn/html/html40/。它表示一个可通过HTTP协议访问的资源，资源位于主机www.domain.com.cn上，通过路径“/html/html40”访问。

4．URL

统一资源定位符是因特网上用来描述信息资源的字符串，主要用在各种因特网客户程序和服务器程序上。采用URL可以用一种统一的格式来描述各种信息资源，包括文件、服务器的地址和目录等。

5．URN

统一资源名称用来唯一标识一个实体，但是无法给出实体的具体位置。它用于标识持久性的因特网资源。URN可以提供一种机制，用于查找和检索定义特定命名空间的文件。尽管普通的URL可以提供类似的功能，但是在这方面，URN更加强大并且更容易管理，因为URN可以引用多个URL。

14.2.2 UPnP组件

UPnP服务系统是由支持UPnP的网络和符合UPnP规范的设备共同构成，整个系统由设备（Device）、服务（Service）和控制点（Control Point）3个部分所构成。

1．设备

这里的设备是指符合UPnP协议规范的设备。一个UPnP设备可以看成一个包含服务并嵌套了常规设备和服务的容器。例如，一个具有UPnP功能的路由器设备可以包含IP层数据包转发服务、服务质量（Quality of Service，QoS）服务等。也就是说，UPnP设备不能仅仅理解为硬件意义上的设备，而应当包括服务功能。不同种类的UPnP设备将关联不同的设置、服务和嵌入设备以及嵌入服务。如路由设备和交换设备，它们的服务就不可能定义成一样的。

2．服务

设备执行用户请求的过程，根据请求目的和业务的不同，可划分成不同的业务单位，每个单位就称为一个服务。每一个服务，对外都表现为具体的行为和模式，而行为和模式又可以用状态和变量值进行描述。一个设备也可以被定义多个服务。不论是设备的定义信息还是服务的描述信息，都保存在一个XML文件中，这个文件也是UPnP协议构成的一部分。当设备建立和使用服务的时候，XML文件可以与它们进行关联。XML文件中还有一个很关键的状态表，状态表可进一步分为“服务状态表”和“事件状态表”。在整个UPnP设备运行的全过程中，状态表贯穿始终，当设备状态改变的时候，例如发生参数变化或状态刷新的时候，立即就在“状态表”中反映出来。如控制服务器在接收到设置时间的行为请求时，就立即执行请求并给出响应，同时更新状态表中的有关状态数据。相应地，事件服务器负责向对此事件感兴趣的设备公布所发生的状态改变。例如，当办公区域温度达到一定值后，事件服务器产生相应温度超标事件并向温度报警器发送温度超标报警，以便及时处理，恢复温度正常。

3．控制点

在UPnP网络中，用户请求设备执行的控制全部是通过控制点实现的，控制点首先是一个有能力控制别的设备的控制者，还要具有在网络中“发现”控制目标的能力。在发现控制目标之后，控制点应当作出如下反馈：

 	取得设备的描述信息并得到所关联的服务列表。

 	取得相关服务的描述。

 	调用控制服务行为。

 	确定服务的事件“源”，不论何时，只要服务状态发生改变，事件服务器会立即向控制点发送一个事件信息。

14.3　UPnP协议

UPnP协议栈图示如图14-1所示。

[image:]

图14-1 UPnP协议栈图示

UPnP是一个多层协议构成的框架体系，每一层都以相邻的下层为基础，同时又是相邻上层的基础，直至达到应用层为止。该图的最下面是就是IP和TCP这两层，负责设备的网络层地址服务以及可达性，TCP用来建立传输层的服务。

第三层是HTTP、HTTPU和HTTPMU层，这一层属于传输协议层。传输的内容都是经过“封装”后，存放在特定的XML文件中的。对应的SSDP、GENA、SOAP指的是保存在XML文件中的数据格式。到这一层，已经解决了UPnP设备的IP地址和传输信息问题。

第四层是UPnP设备体系定义，仅仅是一个抽象的、公用的设备模型。任何UPnP设备都必须使用这一层。

第五层是UPnP论坛的各个专业委员会的设备定义层。在这个论坛中，不同电器设备由不同的专业委员会定义，例如，电视委员会只负责定义网络电视设备部分，空调器委员会只负责定义网络空调设备部分，依此类推。所有的不同类型的设备都被定义成一个专门的架构或者模板，供建立设备的时候使用。进入这一层，设备已经被指定了明确用途。当然，这些都必须遵守标准化的规范。从目前看，UPnP已经可以支持大部分的设备，从计算机、计算机外设、移动设备到家用消费类电子设备等，无所不包，随着这个体系的普及，将可能有更多的厂家承认这一标准，最终，可能演变为公认的行业标准。

处于UPnP协议最顶端的是应用层，它是由UPnP设备制造厂商定义的部分。包括设备、服务相关的描述信息，应用层的信息由设备制造厂商来提供，这部分一般有设备厂商提供的、对设备控制和操作的底层代码等。

14.4　UPnP工作流程

14.4.1 寻址

在因特网上的每个设备都有唯一的地址标识，UPnP设备也不例外。地址是整个UPnP系统工作的基础条件，每个设备都应当是动态主机配置协议的客户端。当设备首次与网络建立连接后，利用DHCP服务，使设备得到一个IP地址。这个IP地址可以是DHCP系统指定的，也可以是由设备选择的。当局域网内没有提供DHCP服务时，UPnP设备按照协议规定会从169.254.0.0/16地址范围获取一个局域网内唯一的IP地址。设备还可以使用域名，这就需要域名解析服务来处理和转换域名和IP地址的对应关系。

14.4.2 发现

 	有控制请求，在当前的网络中查找有无对应的可用设备。

 	某一设备接入网络、取得IP地址之后，就开始向网络“广播”自己已经进入网络，即寻找控制请求。

UPnP发现设备用到的协议是简单服务发现协议（Simple Service Discovery Protocol，SSDP），说明设备是怎样向网络通知或者撤销自己可以提供的服务，控制点（Control Pointer）是如何搜索设备以及设备是如何回应搜索的。

SSDP格式套用HTTP1.1的部分消息头字段，但是和HTTP不同，SSDP是采用UDP传输的，而且SSDP没有消息体，就是说SSDP只有信头而没有信件内容。SSDP第一个要填充的字段是起始行，说明这是个什么类型的消息。比如填“NOTIFY HTTP/1.1/r/n”，就说明这个SSDP消息是个通知消息，一般设备加入网络或者离开网络都要通知，更新自己的服务后也要通知一下。别的设备看见这个消息的起始行就知道有设备状态变了，自己就打开这个消息看一下有没有需要更新的。如果填“NOTIFY HTTP/1.1/r/n”，就要填LOCATION字段，填一个描述URL，控制点可以通过这个地址来取得设备的详细信息。填“M-SEARCH * HTTP/1.1/r/n”就是要搜索了；响应别人的搜索就填“HTTP/1.1 200 OK/r/n”。

SSDP第二个要填充的字段是目的地址HOST。比如填上“HOST: 239.255.255.250:1900”，就是组播（multicast）搜索，这里239.255.255.250是组播地址，就是说这条消息会发给网络里面该组地址的设备，1900是SSDP协议的端口号。如果HOST地址是特定地址，那这就是单播（unicast）。响应不填这个字段，它会在ST字段里面填响应地址(respone address)，就是发来搜索信息的设备地址，响应消息的话还会发送一个包含自己地址URL的字段。响应的意思就是跟发现者说：我好像是你要找的人，我的地址是XXXX，详细情况请联系我。响应以UDP单播的形式进行。

14.4.3 描述

控制点想要得到一个符合UPnP规范的设备的更详细信息时，就需要向这个设备发布的统一资源定位符来要。返回来的东西一般是扩展性标记语言（Extensible Markup Language，XML），描述分为两部分：一个是设备描述，是UPnP设备的物理描述，就是说这个设备是什么；另一个是这个设备提供的服务列表以及服务描述，就是设备对应的服务描述了，就是设备可以提供哪些服务。这些设备和设备提供的服务的描述格式也是有要求的，开发商也可以自定义，只要符合UPnP Forum的规范。比如一个路由器设备，有三层转发、点对点功能和QoS功能，那么这个路由器设备就是一个根设备（root device），它下属有三层转发、点对点功能和QoS功能这些从设备。路由器的设备描述XML中会有一个设备列表，列出三层转发、点对点功能、QoS这些子设备的基本信息及这些设备描述的URL，以及设备的呈现URL，这个URL在本地会加载一个网页，在这个网页上可以操作设备及其他拥有的服务。还会有一个服务列表，里面列出路由器设备可调用的服务基本信息及服务描述URL。服务通过访问服务描述URL可以取得服务描述XML，里面会详细介绍服务的信息，包括干什么用的，属于哪个设备，有哪些功能，每个功能调用都需要哪些参数，以及如何调用此OpenWrt-IGD功能等。

14.4.4 控制

在UPnP设备描述部分，设备描述信息里还有关于如何控制设备的描述，有一个控制URL，这个URL用来告诉控制点可以向这个URL发送不同的控制消息以便用来控制这个设备，当控制点向设备发出控制时，设备会返回一个信息反馈。这种控制点和设备之间的沟通信息按照简单对象访问协议(SOAP)的格式来写。SOAP通过HTTP来传，现在的版本是1.1，叫作SOAP 1.1 UPnP描述文件。这个描述把控制/反馈信息分成3种，分别是UPnP控制请求、UPnP控制响应和UPnP 控制错误响应。SOAP协议有消息头和消息体，消息里面就可以写功能调用了。这里可能还需要传参数，比如想播放一个视频，要把视频的URL传过去，设备收到后要给予响应，表示能不能执行调用，出错的话会返回一个错误代码。

14.4.5 事件

在服务进行的整个时间内，只要变量值发生了变化或者模式的状态发生了改变，就产生了一个事件，该事件的服务提供者（某设备的某个服务）会把该事件向整个网络进行多播。而且，控制点也可以事先向事件服务器订阅事件信息，就像RSS订阅一样，保证将该控制点感兴趣的事件及时准确地单播传送过来。

订阅事件通常是控制点向发布者发送订阅消息，控制点也可以向消息发布者发送更新订阅消息、退订消息等请求。消息发布者向消息订阅者推送订阅。事件的订阅和推送这块用的通信协议是通用事件通知框架（General Event Notification Architecture，GENA），通过HTTP/TCP/IP传送。GENA的格式详细请参阅UPnP-arch-DeviceArchitecture-v1.1，下面列出订阅过程供参考。

（1）订阅。发布者发送订阅消息主要包含事件URL和服务标识ID号，这两个可以在设备服务描述信息中找到，以及寄送地址。还会包含一个订阅期限。

（2）成功订阅。发布者收到订阅信息，如果同意订阅的话就会为每个新发布者生成一个唯一的发布者标识并记录发布者的有效时间。还会记录一个顺序增长事件关键字用来保证事件确实推送到订阅者那里。比如说有个新事件，关键字是6，然后把这个事件推送给某个订阅者那里，订阅者那里记录的事件关键字是4，现在收到的事件关键字是6，他就知道他没收到关键字为5的事件，这样他就向发布者索要漏收的事件，从而保证双方变量值或状态的一致。

（3）首次推送。订阅者同意订阅之后还会向发布者发送一组初始变量或状态值，进行首次同步。

（4）续订。订阅者必须在订阅到期前发送续订请求进行消息续订。

（5）订阅到期。订阅到期后发布者会把订阅者的信息删除，订阅者又回到订阅前的状态。

（6）退订。订阅者发送取消订阅信息将会取消订阅。订阅者因非正常退出网络的话，则不会退订直到订阅到期。

（7）订阅操作失败信息。当订阅、续订和退订不能被发布者接收或者出现错误时，发布者会发送一个错误代码。

关于多播/组播和单播。事件的组播采用UDP/IP，它和SSDP一样，就是端口号变成了7900。图14-1所示的是几个协议的所处层的位置，可以清楚地看到它们之间的差别。首先关于IP多播，由于TCP只适用于一对一的通信，所以只存在UDP多播，多播的重点是提高网络效率，将同一数据包发送给尽可能多的可能未知的计算机。像这种对网内所有设备的频繁消息通知采用多播是为了减小网络负担。SSDP也是一样，但是SSDP和多播这种采用UDP方式的协议存在一个问题，就是可靠性不够。解决的办法就是多次通知，但是一般不会超过3次，以免增加网络负担，否则就得不偿失了。像SSDP的话会采用定期广播宣告的方式，使用各种各样原因而没收到宣告的控制点重新获得设备宣告信息，同时也解决了UDP丢包的问题。前面在寻址的时候用到的DHCP用的是UDP广播。当一个新的设备加入网络时，它想要得到一个个IP，但又不知道DHCP服务器的IP地址，所以它就在网内广播，用255.255.255.255地址来通知所有计算机。DHCP服务器收到请求后会为它申请并返回一个IP地址。

14.4.6 表达

只要得到了设备的URL，就可以取得该设备表达的URL，取得该设备表达的HTML，然后可以将此HTML纳入控制点的本地浏览器上。这部分还包括与用户对话的界面，以及与用户进行会话的处理。因此设备表达可以理解成遥控器。这部分定义描述界面、规范界面以及传输界面内容。远程界面是供控制点用户使用的，控制点用户通过远程界面完成设备描述的获取、控制设备、订阅收取设备事件等。

14.5　UPnP应用之IGD

14.5.1 IGD框架

家庭路由器是一个家庭局域网和互联网之间的网络互联设备，路由器作为专门独立的设备实现一组UPnP设备和对家庭网PC提供服务。通常这个服务模型也针对小型企业网络。通常这些服务仅针对家庭网内的设备开放，在家庭网外通常不允许使用这些服务。图14-2所示的是因特网网关设备（Internet Gateway Device，IGD）在网络中的部署结构。

控制点和UPnP设备进行通信并控制UPnP设备和服务，是用户请求和设备、服务之间的桥梁。控制点可以发起对设备和服务的查询，从而得到设备和服务的属性。。

LAN设备是路由器上一个物理局域网接口的虚拟LAN设备，家庭局域网通向互联网的入口，和WAN设备共同组成了因特网网关设备，是家庭内部侧的网络接口，所有关于因特网的业务请求都必须首先经过LAN设备向WAN设备进行转发，请求对应的响应也必须最后到达LAN设备。

[image: 图像说明文字]

图14-2 IGD网络结构

WAN设备是路由器上一个物理接口的虚拟WAN接口设备，互联网的对外接口，具有物理接口的任何属性配置，一个WAN设备至少以一种方式连接到互联网。

IGD设备和服务结构如图14-3所示。

[image:]

图14-3 IGD设备和服务结构

WAN连接服务提供WAN口连接互联网的服务，连接方式可以为IP或者PPP方式。对于不同的连接方式，有相应的连接属性和管理方式。比如IP连接，具备IP三层接口的IP地址、掩码等属性。

WAN IPv6防火墙提供IPv6防火墙的相关配置、设备的接入规则、数据的转发策略等服务。

LAN主机配置管理提供局域网主机配置管理服务、局域网工作的网段地址、局域网提供的动态地址配置协议的IP地址池、地址有效期等配置。

14.5.2 端口映射在IGD中的应用

计算机提供的服务是以TCP/IP协议族的传输层端口进行区别的，例如Web服务使用80端口、FTP服务使用21端口等。当IGD的局域网设备访问同一台服务器的不同端口服务时，就需要设置端口映射。根据方向的不同可以分为局域网到广域网和广域网到局域网的端口映射。

当路由器同时有多个WAN口服务，每个WAN口具有不同属性的服务，这些服务可以体现在不同的运营商，需要根据不同的家庭局域网客户请求来选择对应与此局域网客户端的互联网接口服务。使用地址映射功能可以将家庭局域网内的某个客户端的请求转到指定的WAN口服务接口，并使用该WAN口服务进行数据处理。

当在局域网内提供某种Web服务，并想让广域网的用户可以访问自己局域网的Web服务时，可以建立广域网到局域网的端口映射。这种情况下，广域网的用户通过访问自己的公网IP服务时，就相当于访问了自己局域网的Web服务。

IGD设置端口映射示意图、IGD设置端口映射流程分别如图14-4和图14-5所示。设置端口映射参数描述则见表14-1。

[image:]

图14-4 IGD设置端口映射示意图

表14-1 设置端口映射参数描述

 	 参 数

 	 含 义

 	 NewRemoteHost

 	 要访问的目的IP地址

 	 NewExternalPort

 	 数据包从设备出去时使用的端口

 	 NewProtocol

 	 数据包匹配的协议类型

 	 NewInternalPort

 	 数据包进入设备时使用的端口

 	 NewInternalClient

 	 数据包进入设备时的源IP地址

 	 NewEnabled

 	 此映射是否被启用

 	 NewPortMappingDescription

 	 此端口映射描述

 	 NewLeaseDuration

 	 映射生效时间

NewLeaseDuration取值为1～604800秒

如果NewLeaseDuration为0，那么默认按照604800处理

NewExternalPort和NewInternalPort大于等于1024

NewInternalClient是控制点(CP)的IP地址

[image:]

图14-5 IGD设置端口映射流程图

（1）设备宣告。UPnP设备向本网络广播地址239.255.255.250的1900端口广播自己的属性：

NOTIFY * HTTP/1.1HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age=10

LOCATION:http://IPADDRESS:PORT/.xml

NT: urn:schemas-UPnP-org:device:InternetGatewayDevice:1

NTS: ssdp:alive

SERVER: OS/1.0 UPnP/1.0 product/1.1

USN: uuid: 设备UUID

（2）设备发现。控制点向本网络广播地址239.255.255.250的1900端口广播自己搜索的设备或者服务属性，由控制点发起设备搜索动作：

SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900

MAN: "ssdp:discover"

MX: 6

ST: urn:schemas-UPnP-org:service:WANIPConnection:1

（3）设备发现响应。设备对控制点发出发现请求的响应：

HTTP/1.1 200 OK

CACHE-CONTROL: max-age = 7200 响应有效期

LOCATION: http://192.168.0.1:8081/IGDdescription.xml 设备描述文件路径

SERVER: OS/1.0 UPnP/1.0 product/1.1

ST: WANIPConnection 搜索目标

NTS: ssdp:alive

USN: 设备UUID

（4）获取设备描述文件。控制点向http://192.168.0.1:8081/IGDdescription.xml发起获取设备描述文件请求并得到设备描述文件内容。

（5）解析设备描述文件。控制点解析IGDdescription.xml文件，解析到WANDevice设备、WANConnection子设备以及WANIPConnection服务。

（6）添加端口映射请求。控制点向WANIPConnection服务发送AddPortMapping动作，用来添加端口映射，所需参数见表14-1。

14.6　参考资料

 	《UPnP-arch-DeviceArchitecture-v2.0-20150220.pdf》。

 	《UPnP-gw-InternetGatewayDevice-v2-Device-20101210.pdf》。

 	《UPnP-gw-WANConnectionDevice-v2-Device-20100910.pdf》。

 	《UPnP-gw-WANDevice-v2-Device-20100910.pdf》。

 	《UPnP-gw-WANIPConnection-v2-Service-20100910.pdf》。

第15章　网络测试及分析工具

15.1　NetCat

NetCat是一个是用于TCP/UDP连接和监听的Linux工具，是网络传输及调试领域的“瑞士军刀”，比喻其功能强大。NetCat既可以作为客户端，也可以作为服务器，它可以是一个功能丰富的网络调试和开发工具，也可以自由组织报文进行测试。例如OpenSIPS软件使用NetCat工具进行功能测试。

NetCat可以打开TCP连接，发送UDP报文，监听在TCP和UDP端口，以及TCP端口扫描，而且脚本对用户友好，错误消息输出到屏幕上。

NetCat最简单的使用方法是作为TCP客户/服务器模型的服务器来使用，它能够监听任意指定的端口，并将客户端的请求内容输出到标准输出（即屏幕）中，还可以将输入发送到客户端。命令如下：

netcat -l 8080

现在NetCat将在8080端口监听来接受客户端的连接。我们在另外一个窗口来启动客户端打开连接：

netcat 127.0.0.1 8080

这将建立和NetCat服务器的TCP连接，服务器的IP为127.0.0.1，端口为8080，这时你从命令行终端中输入的任何内容都会被发送到指定的目的主机（127.0.0.1）上，任何通过连接返回来的信息都被输出到标准输出上。这个连接会一直持续下去，至到连接两端的程序关闭连接。其实NetCat本身进行网络传输时并不关心自己是以“客户端”模式还是“服务器”模式运行，因为不管是哪种模式它都会来回运送全部数据。区别在于服务器模式需要首先启动，等待客户机的连接。主要支持功能如下：

 	支持客户端和服务器。

 	支持连出和连入，TCP和UDP以及任意源和目的端口。

 	内建端口扫描功能，带有随机数发生器。

 	支持设定tos等。

注意：

 　

 有两个版本的NetCat工具，功能有少许差异。OpenWrt使用的是GNU/NetCat0.7.1对应ubuntu下的nc.traditional版。另外一个是OpenBSD/NetCat，没有最重要远程执行命令的“-e”选项。

在make menuconfig时，选择NetWork => NetCat，即可编译出来NetCat软件包。

NetCat的工作原理就是从网络的一端读入数据，然后输出到网络的另一端，它可以使用TCP或UDP协议。它的名字起源于“cat”，cat软件的功能是读出文件的内容，然后将文件内容输出到屏幕上。加上net，就是它可以从文件或网络的一端读取数据，原封不动地将数据发送到另外一台主机或文件中。NetCat经常缩写为nc，我们下面来举例说明几种常见用法。

（1）作为客户端。这是最简单的使用方式，例如输入“nc www.baidu.com 80”在提示内容输入以下内容，然后再输入两个回车，百度即会对请求做出响应。百度的响应码为302，表示这里没有内容，暂时转移到别处了。如示例15-1所示。

示例15-1：

#>nc www.baidu.com 80

GET / HTTP/1.1

HTTP/1.1 302 Moved Temporarily

Date: Tue, 19 Jan 2016 12:06:41 GMT

Content-Type: text/html

Content-Length: 215

Connection: Keep-Alive

Location: http://www.baidu.com/search/error.html

Server: BWS/1.1

X-UA-Compatible: IE=Edge,chrome=1

BDPAGETYPE: 3

Set-Cookie: BDSVRTM=0; path=/

<html>

<head><title>302 Found</title></head>

<body bgcolor="white">

<center><h1>302 Found</h1></center>

<hr><center>pr-nginx_1-0-258_BRANCH Branch

Time : Mon Jan 18 21:04:41 CST 2016</center>

</body>

</html>

（2）作为服务器。如示例15-2所示，启动netcat命令netcat -l -p 8080，这里“-l”参数指明NetCat处于监听模式，“-p”指定源端口号。假设这台主机IP地址为192.168.6.1，然后从客户端的火狐浏览器输入http://192.168.6.1:8080。这样浏览器将会将HTTP请求发往NetCat所监听的8080端口，NetCat会收到浏览器的请求，并全部输出到屏幕上。在防火墙测试时，可以在服务器启动任意端口来测试防火墙是否生效。

示例15-2：

#>netcat –l –p 8080

GET / HTTP/1.1

Host: 192.168.6.1:8080

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:35.0) Gecko/20100101 Firefox/35.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/ *;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

（3）使用NetCat进行文件传输。如果研发设备机器上没有ftp/scp等文件传输工具，那如何将设备中的日志文件复制出来，以及可执行程序复制进去？可以使用NetCat来传输文件，如示例15-3所示，研发机器A启动服务器进程，并将aa.pcap文件传递到NC标准输入中，另外的机器B执行客户端命令连接服务器，并将命令的标准输出写到文件bb.pcap中，执行完成之后将自动退出进程。传输完成后使用MD5sum工具计算传输文件的MD5码是否一致，如果一致表示传送成功。

示例15-3：

研发测试机Alice， IP 192.168.6.10

#>nc -l -p 8899 < aa.pcap

另外一机器Bob执行命令

#>nc 192.168.6.10 8899 > bb.pcap

（4）使用NetCat来进行端口扫描。端口扫描是探测主机服务的流行方法，经常使用的软件是nmap。NetCat也支持端口扫描。在NetCat的命令行中，使用“-z”来指定端口扫描。首先指定选项参数，接着是主机或IP地址，最后是服务器端口。端口可以是一些服务名、端口号或者是一个端口范围（例如N-M）。如示例15-4所示，对本机端口进行扫描，发现打开的端口有3个，分别为22端口启动SSH登录协议、53端口启动DNS代理服务、80端口启动HTTP服务。

示例15-4：

#>nc -v -z -r -i 1 127.0.0.1 20-100

localhost [127.0.0.1] 22 open

localhost [127.0.0.1] 80 (www) open

localhost [127.0.0.1] 53 (domain) open

以上命令用来扫描目标主机的20～100（两端包含）端口，“-v”显示详细信息，如不指定将不会在屏幕输出中报告打开的端口；“-z”表示仅连接不发送任何数据；“-i”用以指明连接多个端口时，两个端口建立连接的时间间隔。通常情况下，扫描按从低到高的顺序依次扫描指定的端口，使用“-r”参数可以让NetCat在指定的端口范围内无序地扫描端口，这样可以防止某些防火墙发现端口扫描。

UDP报文传输时不创建连接，因此NetCat不能判断UDP服务扫描是否成功，也就是说它不能用于UDP端口扫描。

（5）使用NetCat来进行UDP报文传输。例如开源的SIP服务器项目OpenSIPS使用NetCat进行模拟客户端进行测试。在它的测试脚本11.sh中，包含有如示例15-5所示的命令脚本。

示例15-5：

register a user

cat register.sip | nc -q 1 -u localhost 5060 > /dev/null

该命令将当前目录的文本文件register.sip文件输出，并使用管道符号“|”将内容作为NC的标准输入。“-q 1”表示发送完成后等待1秒后退出。“-u”表示指定使用UDP协议来发送报文。localhost表示目标地址为127.0.0.1，5060为OpenSIPS服务器使用的UDP监听端口，最后将标准输出重定向到“/dev/null”中。整个命令就是向服务器发起SIP注册请求。

（6）使用NetCat来提供网络登录服务。NetCat的强大之处，是可以启动程序来提供远程登录的服务，这样可以提供任何远程操控服务。其主要原理为将远程输入内容通过管道定向到shell进程，然后shell进程的输出发送到远程机器上。如示例15-6所示，在TCP端口1234处监听，客户端即可通过NetCat登录到服务器上。

示例15-6：

#路由器执行命令：

#>nc –l –p 1234 –e /bin/sh

#客户端主机执行命令，这样将连接的服务器，这时可以执行服务器任何命令。

#>nc 192.168.6.1 1234

以下为主要选项：

 	-l：监听模式，通过该选项NetCat将在自己的端口处监听。NetCat以服务器模式运行，任何客户端软件均可连接到该服务器上。需要使用“-p”指定绑定端口。

 	-u：默认使用TCP，使用该选项将使用UDP来通信。

 	-p：指定通信源端口号。OpenBSD版作为服务器不需要使用“-p”指定。作为客户端可以不指定源端口，但一些特殊场景，例如在测试防火墙对源端口的处理时，经常会指定源端口。

 	-s source_ip_address：指定用于发送报文的源IP地址，在主机有多个接口地址时使用。

 	-e, --exec=PROGRAM：在连接成功后执行程序。

 	-z：指定NC扫描打开的服务，但并不发送任何数据。必须指定服务器地址和端口号或端口号范围，扫描的结果以程序返回值形式查看，如果需要扫描的详细信息需要增加“-v”选项。

 	-q seconds：在输入结束后等待指定的时间后退出，如果为负值则永远不退出。

 	-T tos：设置报文的tos标识。

更多命令选项请参考NetCat用户手册。

15.2　TcpDump

在进行网络应用程序开发时，如果多人合作开大型软件包括服务器端和客户端软件，并运行在特定网络上，经常会遇到一些网络上的问题，这些可能是服务器、客户端或者真正的网络线路问题，经常会相互争论到底是哪一部分出了问题。程序员通常会自信地怀疑对方的功能出了问题。

例如我曾经遇到的一个问题是防火墙上报访问URL地址到日志服务器，经常会有少量报文丢失情况。这时抓包软件TcpDump就派上了用场。TcpDump简单来说就是输出网络上的数据报文。可以根据使用者的选择来对网络上的数据报文进行截获并进行分析。可以根据网络协议、物理接口、IP地址和端口号等各种条件进行过滤，还可以对捕获报文大小进行控制，等等。

15.2.1　抓取报文

最简单的开始捕获报文的方法是直接使用TcpDump并指定捕获的网卡名称即可。

tcpdump -i eth0

可以使用组合键Ctrl+C来结束运行中的捕获程序。另外如果设置了触发停止的条件，捕获达到条件时会自动停止，例如设置到达指定数量的数据包来停止捕获。TcpDump的可视化输出功能有限，通常是捕获报文并保存下来，然后使用图形用户界面软件wireshark来分析。使用“-w”选项来指定文件名即可将报文保存下来。例如以下命令：

tcpdump -i eth0 -s 1500 -w aaa0326.cap

这个命令将捕获网卡eth0端口的所有报文，报文最大长度为1500字节，并保存为aaa0326. cap文件。

TcpDump有很多参数来控制在哪里捕获、如何捕获，以及捕获文件如何保存处理等选项，表15-1列出了TcpDump的常用选项。

表15-1　TcpDump的常用选项

 	 选　　项

 	 含　　义

 	 -i <interface>

 	 指定监听的物理网卡接口

 	 -s

 	 指定每个报文中截取的数据长度

 	 -w <filename>

 	 把原始报文保存到文件中

 	 -c

 	 当收到指定报文个数后退出，可当作软件执行结束的条件

 	 -n

 	 不要将IP地址和端口号进行转换，进行转换会耗费CPU时间

 	 -G <rotate_seconds>

 	 每隔指定的时间，将捕获的报文循环保存为新文件

 	 -D

 	 输出TcpDump可以捕获的接口列表，包含接口编号和接口名称

 	 -v

 	 当解析和打印时，输出详细的信息，例如报文的生存时间TTL、ID等IP报文选项

最常用的选项是“-i”，它被用来指定监听网卡物理接口，因为现代计算机通常有多个接口设备，如果不指定接口，TcpDump将在系统的所有接口列表中寻找编号最小的、已经配置为启动的接口（回环接口除外）。接口可以指定为“any”，表示捕获所有接口的报文。捕获所有接口设备的报文时不能捕获到混杂模式的报文。例如路由器通常至少有两个接口，eth0连接互联网，eth1连接局域网，如果你想捕获到达互联网的数据，你可以指定eth0接口。

常用的选项还有“-s”，用于指定从每个报文中截取指定字节的数据，而不是缺省的68字节。如果你仅仅对报头感兴趣，就可以不使用该选项，指定为0说明不限制报文长度，而是捕获整个报文。一般以太网接口的MTU值为1500，因此指定长度为1500即可。

通常我们不在命令行进行分析，因为其输出格式有限，我们将抓包保存下来使用wireshark来分析，这时就用到“-w”选项，直接将原始报文保存到文件中，如果文件参数为“-”，就写到标准输出中。

每隔指定的时间将捕获的报文循环保存为新文件，这个需要使用“-G”选项。这一参数需要和“-w”参数配合使用，并指定时间格式才能循环保存为文件，否则将覆盖之前捕获的文件。常用的时间格式有以下几种。

 	%d：每月中的第几天，十进制数字从01到31。

 	%H：表示当前的小时时间，十进制数字从00到23。

 	%M：表示当前的分钟时间，十进制数字从00到59。

 	%S：表示当前的秒时间，十进制的00到60。

“-p”禁止本命令把接口修改为混杂模式。这样将仅抓取和本机通信的报文。注意接口有可能因其他原因而处于混杂模式。

“-r”从文件中读取报文（文件是由“-w”选项抓包创建的）。

例1　tcpdump -i eth0 -s 1500 -G 60 -w　zhang%H%M%S.pcap

这个命令指定抓取eth0接口的报文，每一个报文长度限制在1500字节以内。指定每间隔60秒时间就保存一个文件。文件名称格式为zhang开头，紧接着是抓取报文的开始时间时分秒，这样可以保存下来便于分析。

例2　tcpdump -i eth0　-n –vv -c 500

这个命令抓取eth0接口的全部报文并输出到屏幕中，不进行地址到域名的转换，并在抓取报文到达500个之后退出。通常会在命令行中加上“-n”选项，这样将减少TcpDump的域名查询的输出对分析的干扰。

15.2.2　匹配规则

在抓包的过程中，如果不指定匹配规则，网络流量比较大时经常有一些无关的报文也被抓取下来，这样报文占用空间比较大，在智能路由器这样的嵌入式平台存储空间经常不足，因此需要能仅抓取指定规则条件的报文。TcpDump支持根据匹配规则来抓取报文。这些匹配规则就是一些组合起来的表达式，只有符合表达式要求的报文才会被抓取到。

表达式由一个或多个基本元素加上连接符组成，这些基本元素也称原语，是指不可分割的最小单元。基本元素由一个ID和一个或多个修饰符组成，有3种不同类型的修饰符。

第1种是类型修饰符，共4个类型修饰符，分别为host、net、port和portrange。host修饰符用于指定需要捕获报文的主机或IP地址。net修饰符用于指定需要捕获报文的子网。port和portrange这两个修饰符则分别用于指定端口和端口范围，这两个修饰符是指传输层协议TCP和UDP的端口号。

第2种是传输方向修饰符，包括src和dst。如果没有指明方向则任何方向均匹配。例如dst 8.8.8.8表示匹配目的地址为8.8.8.8。如果你想匹配离开指定机器的报文，可以使用src限定符，例如src 192.168.6.100，如果不指定类型，则是指host类型。传输方向修饰符不仅可以修饰地址，也可以用来修饰传输端口。下面例子是仅捕获目标端口为80的报文。

tcpdump -i eth0 'dst port 80' –v

如果我们为服务器，有很多用户访问，那我们可以限定仅捕获指定源IP的报文。例如我们是一个VOIP服务器，我们可以使用以下命令抓取报文：

tcpdump -i eth0 'port 5060 and src 192.168.6.100 ' -v

第3种是协议修饰符，可以基于特定协议来进行过滤，可以是IP、ARP、RARP、ICMP、TCP和UDP等协议类型，例如tcp port 21、udp port 5060等。

另外这些原语可以使用and、or和not来进行集合运算组合。集合运算符含义如下。

 	and：也可以写为“&&”，取两个集合的交集。

 	or：也可以写为“||”，取两个集合的并集。

 	not：也可以写为“!”，所修饰的集合取补集。

所有的报文集合是全集，可以进行交、并和补集运算。在多个层次的集合运算时，可以使用小括号来分隔其集合运算符的结合关系。

例如“host bjbook.net and port http”，表示满足两者的交集，即符合主机bibook.net的流量并且端口为80的报文。这些所有关键字可以组合起来构成强大的组合条件来满足各种匹配规则的需要，表15-2列出了一些常用的表达式。

表15-2　TcpDump报文过滤表达式

 	 表　达　式

 	 含　　义

 	 host bjbook.net

 	 捕获和主机bjbook.net交互的数据包，包含到达和来源的报文

 	 net 191.0.0.0/24

 	 捕获指定网段191.0.0.0/24范围内的数据包

 	 port 20

 	 捕获指定端口20的数据包，指定TCP或UDP协议端口匹配，端口号可以是数字也可以是一个名称，这个名称在/etc/services文件中和端口号数字相对应，例如port http则匹配80端口的所有流量，包括TCP和UDP 80端口的流量

 	 portrange 8000-8080

 	 捕获端口范围8000～8080的数据包

 	 dst port 80

 	 捕获目的端口为80的报文，包含UDP和TCP报文，dst指明报文的方向，也可以修饰主机名和IP地址

 	 src 192.168.6.100

 	 捕获源IP为192.168.6.100的报文，src也可以修饰传输层端口号

 	 ip multicast

 	 IPv4组播报文，即目标地址为组播地址的报文

 	 arp

 	 只捕获ARP协议报文，不包含IP报文

 	 ip

 	 捕获IP协议报文，不包含ARP等协议报文

 	 tcp

 	 指定TCP协议

 	 udp

 	 指定UDP协议

 	 udp port 53

 	 指定UDP协议并且端口为53，即是DNS协议的报文

 	 port 5060 or port 53

 	 指定端口为5060或端口为53的报文，这在使用IP电话时经常用到

 	 not host bjbook.net

 	 所有非主机bjbook.net的报文

 	 port 5060 and (host 192.168.6. 100 or 192.168.6.102)

 	 端口5060的报文，并且满足IP地址是192.168.6.100或192.168.6.102，使用括号来改变结合的优先级

例1　tcpdump udp and port 53 -v

只抓取UDP端口53的报文，即只捕获DNS协议报文，然后输出到标准输出终端中。

例2　tcpdump -i eth0 -s0 -w zhang.pcap host 10.0.2.15

在网卡eth0上抓取报文，报文的IP地址是10.0.2.15，并且不限制报文长度，将报文的全部内容保存下来到zhang.pcap这个文件中。

15.2.3　使用举例

通常我们在路由器上使用TcpDump抓取报文，将报文传输下来后使用图形软件wireshark来分析报文。在路由器上使用需要安装TcpDump软件，我们使用以下命令来安装：

opkg update

opkg install tcpdump

例如我曾经碰到一个问题是，在系统启动时，ARP协议来请求目标IP地址的MAC地址，但这个IP地址并非和本地机器同网段，这在网关机器带有ARP代理情况下工作正常，但是如果下一跳路由器没有ARP代理，就会因为没有目标IP的MAC响应而通信失败。我们在启动时就可以仅抓取ARP协议、TFTP协议、DNS协议及ICMP协议。

tcpdump -i eth0 -w aaa.pcap port 59 or port 53 or port 80 or arp or icmp

该命令将抓取TFTP协议、DNS协议、HTTP协议、ARP协议和ICMP协议的报文。

15.3　参考资料

 	OpenSIPS（http://opensips.org/pub/opensips/2.1.2/opensips-2.1.2.tar.gz [2016-01-19]）。

 	你应该知道的UNIX工具系列（NetCat http://www.catonmat.net/blog/unix-utilities-netcat/）。

 	TcpDump手册（http://www.tcpdump.org/manpages/tcpdump.1.html [2016-7-20]）。

 	PCAP-FILTER使用手册（http://www.tcpdump.org/manpages/pcap-filter.7.html [2016- 7-20]）。

欢迎来到异步社区！

异步社区的来历

异步社区(www.epubit.com.cn)是人民邮电出版社旗下IT专业图书旗舰社区，于2015年8月上线运营。

异步社区依托于人民邮电出版社20余年的IT专业优质出版资源和编辑策划团队，打造传统出版与电子出版和自出版结合、纸质书与电子书结合、传统印刷与POD按需印刷结合的出版平台，提供最新技术资讯，为作者和读者打造交流互动的平台。

[image: 图像说明文字]

社区里都有什么？

购买图书

我们出版的图书涵盖主流IT技术，在编程语言、Web技术、数据科学等领域有众多经典畅销图书。社区现已上线图书1000余种，电子书400多种，部分新书实现纸书、电子书同步出版。我们还会定期发布新书书讯。

下载资源

社区内提供随书附赠的资源，如书中的案例或程序源代码。

另外，社区还提供了大量的免费电子书，只要注册成为社区用户就可以免费下载。

与作译者互动

很多图书的作译者已经入驻社区，您可以关注他们，咨询技术问题；可以阅读不断更新的技术文章，听作译者和编辑畅聊好书背后有趣的故事；还可以参与社区的作者访谈栏目，向您关注的作者提出采访题目。

灵活优惠的购书

您可以方便地下单购买纸质图书或电子图书，纸质图书直接从人民邮电出版社书库发货，电子书提供多种阅读格式。

对于重磅新书，社区提供预售和新书首发服务，用户可以第一时间买到心仪的新书。

用户帐户中的积分可以用于购书优惠。100积分=1元，购买图书时，在[image: 图像说明文字]里填入可使用的积分数值，即可扣减相应金额。

特别优惠

 购买本电子书的读者专享异步社区优惠券。 使用方法：注册成为社区用户，在下单购书时输入“57AWG”，然后点击“使用优惠码”，即可享受电子书8折优惠（本优惠券只可使用一次）。

纸电图书组合购买

社区独家提供纸质图书和电子书组合购买方式，价格优惠，一次购买，多种阅读选择。

[image: 图像说明文字]

社区里还可以做什么？

提交勘误

您可以在图书页面下方提交勘误，每条勘误被确认后可以获得100积分。热心勘误的读者还有机会参与书稿的审校和翻译工作。

写作

社区提供基于Markdown的写作环境，喜欢写作的您可以在此一试身手，在社区里分享您的技术心得和读书体会，更可以体验自出版的乐趣，轻松实现出版的梦想。

如果成为社区认证作译者，还可以享受异步社区提供的作者专享特色服务。

会议活动早知道

您可以掌握IT圈的技术会议资讯，更有机会免费获赠大会门票。

加入异步

扫描任意二维码都能找到我们：

[image: 图像说明文字]

异步社区

[image: 图像说明文字]

微信订阅号

[image: 图像说明文字]

微信服务号

[image: 图像说明文字]

官方微博

[image: 图像说明文字]

QQ群：368449889

社区网址：www.epubit.com.cn

官方微信：异步社区

官方微博：@人邮异步社区，@人民邮电出版社-信息技术分社

投稿&咨询：contact@epubit.com.cn

EPUB/cover.jpg
SEEEEEEA GBI

EES RS

4% OpenWrt

7 OpenWrt i 5— R, 16

OpenWr 7

[g g ARMLIE

FOSTS & TELECOM PRESS

EPUB/cover.xhtml
[image: Cover]

