

 树莓派3实战指南：手把手教你掌握Raspberry Pi 3与Windows 10 IoT Core项目开发

 	
 第1章　Windows 10 IoT概述

 	
 第2章　Windows 10 IoT支持的硬件

 	
 第3章　认识电子零件与器材

 	
 第4章　Windows 10 IoT Core安装和运行

 	
 第5章　Windows 10 IoT Core开发环境设置——Visual Studio Community 2015

 	
 第6章　Windows 10 IoT Core使用教学

 	
 第7章　Windows 10 IoT Core文字指令

 	
 第8章　我的第一个Visual C#程序

 	
 第9章　C#程序语言

 	
 第10章　我的第一个Windows 10 IoT Code程序

 	
 第11章　GPIO引脚输出控制

 	
 第12章　GPIO引脚输入控制——硬件按键

 	
 第13章　类比数据输出——RGB灯光控制

 	
 第14章　PWM输出——步进马达控制

 	
 第15章　类比数据输入

 	
 第16章　脉冲输入和输出——距离传感器

 	
 第17章　UART序列通信数据传递

 	
 第18章　I2C和SPI数据传递控制——水平纵向

 	
 第19章　蓝牙4.0与IoT——家电控制

 	
 第20章　多个数位输出引脚

 	
 附录A　Windows 10 IoT Core的Arduino程序

 	
 附录B　硬件列表

 第1章
Windows 10 IoT概述

本章将介绍Windows 10 IoT的系统和特色。Windows 10 IoT的执行画面如图1-1所示。

 [image:]
 图1-1　Windows 10 IoT的执行画面

1.1　Windows 10 IoT Core介绍

2014年9月30日，在旧金山的Windows 10技术预览大会上，微软作业系统事业群执行副总Terry Myerson介绍了号称有史以来最完整的作业系统的产品——Windows 10；并且同年的10月7日，在Gartner一场超过3千名CIO参加的研讨会Symposium/ITxpo 2014上，微软执行长Satya Nadella首度披露了Windows 10的战略定位。Satya Nadella表示，Windows 10是微软跨入全新一代Windows作业系统的第一步，而不只是延续Windows 8的下一个版本，IoT需要一个可管理且安全的运作系统，Windows将是能满足该目标的OS，这正是微软的物联网战略。

Windows 10不只是一个PC、平板或手机的作业系统，也是一个能够在任何运算环境中执行的平台。这样的运算平台未来能连接超过两千亿个感测器，Windows 10也将可以在任何尺寸的屏幕上执行，包括可穿戴式设备和物联网设备。

来自云端产品部门的Satya Nadella，从云端高度勾勒出微软战略蓝图，将各种IoT设备和行动设备搜集到的消息和数据，通过一个单一微软作业系统平台串连到微软云端Azure中，存储在Azure的存储云和数据服务云上；再利用运算云和大数据分析等服务来处理，并结合机器学习运算服务和IoT智慧系统服务（intelligent systems services）等来打造一个无所不在的智慧环境。

2015年3月，微软发布了可执行于树莓派2（Raspberry Pi 2）和MinnowBoard Max的物联网作业系统Windows 10 IoT Core，并且针对Arduino提供了微软的开发方案。开发者可到Windows IoT Dev Center选择开发板，再循序下载必要的工具，以开始打造物联网设备。本章节稍后会详细地介绍完整的安装和设置步骤。

最新版的Windows 10 IoT Core需要执行2015年7月29日的版本Windows 10（Build 10240）及Visual Studio 2015的开发PC环境，Windows 10 IoT Core可以免费下载。微软于2015年5月Build大会宣布了专为规模、嵌入式物联网设备打造的轻量型作业系统Windows 10 IoT Core，并指出在有屏幕的设备环境下，Windows 10 IoT Core并不具备Windows shell，开发人员只要撰写通用型Windows App就可以作为设备界面。IoT Core旨在降低开发专业级设备的门槛，并可与多种开放源码语言及Visual Studio等结合使用。为了示范推广Windows 10 IoT Core，微软还提供了相当多的样例程序，提供开发者下载使用，运行效果如图1-2所示。

 [image:]
 图1-2　Window 10 IoT的执行画面

在2016年2月28日树莓派3（Raspberry Pi 3）推出之后，微软的Windows 10 IoT Core也宣布已经同步支持树莓派3，相信更快的硬件，必定让用户有更佳体验。

物联网市场除了微软，其他重量级的作业系统还有Ubuntu在2016年初推出的专为物联网打造的Snappy Ubuntu Core，运行效果如图1-3所示。Google也将于2016年5月公布轻量级Android作业系统，别名为Brillo。

 [image:]
 图1-3　Snappy Ubuntu Core在树莓派2的执行画面

1.2　Windows 10 IoT Core功能和特色

当前支持Windows 10 IoT Core的硬件有：

•　树莓派2；

•　MinnowBoard Max；

•　DragonBoard410C。

第二章将会有每一个硬件的详细的说明，因为硬件的差异，会带来功能上的差异。

正式版Windows 10 IoT Core加入了WiFi及蓝牙支持、强化Python程序语言与Node.js支持，包括新的Express Node.js案例模板。此外，新的通用窗口平台（universal windows platform, UWP）API也让应用程序更容易控制时区及网络连接等系统管理功能。微软强调Windows 10 IoT Core的开放性，除了支持多种开放源码语言，开发人员也可在Github找到IoT的开发样例，以及许多技术文件、函数库及工具，如图1-4所示，并以开放源码的方式公开Python及Node.js的案例系统与runtime支持。

微软也强化了与Arduino社群的合作，使Windows 10及Windows设备更容易和Arduino互通，这意味着在Arduino上制作的设备可以在Windows 10设备上使用，而且开发者也可以用Arduino程序语言直接开发，并在Windows 10 IoT Core执行Arduino程序，详细内容请参考“附录A Windows 10 IoT Core的Arduino程序”。

 [image:]
 图1-4　微软Windows 10的hackster.io样例案例

Windows 10 IoT的主要特色是：只要是开发一个案例，就能在多种执行Windows 10 IoT核心版的设备上，快速创建Windows IoT解决方案原型并加以设置。

整合Visual Studio的开发环境，可通过Windows 10提供的强大工具来快速开发并部署到指定设备。

运用开放式结构，协助将开发者的设备连接到Microsoft Azure。通过运用高级分析服务，Microsoft Azure云端服务，结合IoT的案例，例如Connect-the-Dots案例，网址是https://github.com/Azure/connectthedots，而通过云端的技术，如图1-4所示，就能整合出大数据的威力，如图1-5所示。

微软通过GitHub与其他Maker开发者合作，以分享Windows 10 IoT的案例代码和教学。只要加入GitHub社群即可查看其他人建置的Win 10 IoT的案例项目，这样相互正面激励的协助下，将会对未来发布的SDK产生积极的影响，让开发者拥有更多的资源。

当前官方提供了很多样例，所有IoT Core的研发案例都可整合在hackster.io中，网址为https://microsoft.hackster.io/en-US。

 [image:]
 图1-5　结合云端Azure

第2章
Windows 10 IoT支持的硬件

本章将介绍Windows 10 IoT支持的硬件，如图2-1所示。

 [image:]
 图2-1　Windows 10 IoT支持的硬件

2.1　Windows 10 IoT Core的硬件支持介绍

当前支持Windows 10 IoT Core的硬件有：

•　树莓派2；

•　树莓派3；

•　MinnowBoard Max；

•　DragonBoard 410c。

由硬件规范看来，Windows 10同时支持多个开发板，有32位元ARM结构，也有64位元x86结构，又进一步分为单核或双核。根据开发者首选的结构，以及所期望的价位与性能，相应地选择树莓派2、MinnowBoard Max和DragonBoard 410c甚至Arduino，而本书将以树莓派2为主，并经测试全部兼容树莓派3。

2.2　树莓派2

新的Raspberry Pi 2 Model B在2015年2月2日被发布，并且连续两个月占据美国亚马逊网站的计算机类产品销售第一名，新版的树莓派2使用BCM2836处理器quad core ARMv7，速度是900MHz，现在售价是35美元，如图2-2所示。

树莓派2的硬件参数如下：

•　处理器Broadcom BCM2836 ARMv7 Quad Core Processor，900MHz；

•　内存1GB RAM；

•　GPIO的引脚延续上一版的排法；

•　直持Fully HAT compatible；

•　另有40pin以外的GPIO引脚；

•　网络10/100 Ethernet Port。

 [image:]
 图2-2　树莓派2的外观

因为树莓派2相当普及，所以本书所有的内容是针对树莓派2撰写，树莓派2详细规范如表2-1所示。

 表2-1　树莓派2的硬件

 [image:]

 [image:]

1．新的SoC BCM2836

新的SoC BCM2836特点如下：

•　900MHz quad-core ARM Cortex-A7 CPU，大约有6倍的性能提升；

•　内存容量加大到1GB LPDDR2 SDRAM；

•　舍弃PoP（package-on-package），而是将处理器和内存分别焊接在板子的正反两面；

•　因为采用quad-core ARMv7的处理器，所以会有较高的功耗，即比较耗电。

2．OS的差异

因为树莓派2采用了ARMv7的处理器，因此可执行更多的ARM GNU/Linux版本，例如过去采用ARMv6指令集而不能执行Ubuntu，而现在也可以在树莓派2上运行Snappy Ubuntu Core，甚至可支持Microsoft Windows 10 IoT，并且是免费提供，本书后面会进行详细的介绍。因为使用了ARMv7的处理器，所以树莓派2对Android作业系统的兼容性就好很多。

3．相同的特性

•　Model B+一样的外型与尺寸，所以以前的保护外壳也可以继续使用。

•　Camera的接线、LCE Display的接线和GPIO 40-pin位置也相同。

•　PCB板固定螺丝开孔处相同。

•　USB、Ethernet、A/V、HDMI、micro SD和microUSB位置相同，尺寸也相同。

2.3　树莓派3

新的树莓派3在2016年2月28日被发布，新版的树莓派3使用Broadcom BCM2837处理器，是ARM Cortex-A53 1.2GHz四核心处理器，并且增加了图形处理器GPU部分，为400MHz VideoCore IV，树莓派3也加入了BCM43438芯片，内置有802.11n无线网络与Bluetooth 4.1两个新功能，速度是900MHz、64 bit，并拥有1GB LPDDR2内存，树莓派3的售价为35美元，如图2-3所示。

树莓派3的硬件参数如下：

•　处理器Broadcom BCM2837是ARM Cortex-A53 1.2GHz，900MHz；

•　内存1GB RAM LPDDR2；

•　GPIO的引脚延续前一版的排法；

•　直持Fully HAT compatible；

•　另有40pin以外的GPIO引脚；

•　网络10/100 Ethernet Port。

 [image:]
 图2-3　树莓派3的外观

树莓派3的详细规范如表2-2所示。

 表2-2　树莓派3的硬件

 [image:]

2.4　数莓派硬件GPIO引脚

在数莓派2和数莓派3一共有40个引脚，如图2-4所示，功能如下：

•　电源在引脚1,2,4,17（请注意电源有3.3V和5V两种）；

•　8个接地Ground引脚在6、9、14、20、25这几个引脚；

•　I2C在SDA引脚3和SCL的引脚5；

•　UART部分有一组在TX引脚8和RX的引脚10；

•　SPI（Serial Peripheral Interface）数据通信部分有一组；

•　MISO（master in slave out）的引脚21；

•　MOSI（master out slave in）的引脚19；

•　SCK（serial clock）的引脚23；

•　SS（slave select）没有；

•　17个GPIO引脚。

 [image:]
 图2-4　树莓派2的引脚（兼容树莓派3）

另外GPIO 35用于控制板子上的红色的LED灯，主要代表电源开关，GPIO 47用于控制开发板上的绿色的LED灯，主要代表动作。

2.5　MinnowBoard Max

2014年7月发布的新款MinnowBoard Max是预载Intel Atom 640处理器的MinnowBoard板的第二代产品。MinnowBoard仅售199美元，而新的MinnowBoard Max板不仅拥有更为强大的硬件分配，而且价格也相当吸引人，单核心版的MinnowBoard Max仅以99美元起售。

MinnowBoard其实也是开放硬件，主要是针对规模、低成本的嵌入式应用而设计的，并使用x86结构，在Windows 10未支持前，MinnowBoard用的是Angstrom发行版的Linux。

MinnowBoard上面有1.46GHz Intel Atom E850单核心处理器、1GB内存。用户如果期望更好的硬件性能，还可以选择1.33GHz主频的Atom E3825双核心处理器，搭配2GB内存，MinnowBoard Max的外观如图2-5所示。

 [image:]
 图2-5　MinnowBoard Max的外观

在扩展连接方面，MinnowBoard Max有microSD卡的扩展；作业系统方面支持Android 4.4、Debian Linux和Yocto Project Linux；消耗功率为5～6W。

MinnowBoard Max的作业系统均是于2014年7月份发布，MinnowBoard Max相比于树莓派的优胜之处是具有更强的处理能力和兼容于x86平台且由Intel力捧的物联网硬件设备。

当前有几家厂商在生产销售MinnowBoard MAX，如Arrow和Techno Disti均提供单核版与双核版的Max，生产商推荐售价分别为99美元和129美元，另有4家企业只销售双核版，它们是Allied Electronics、AVNET、Mouser以及Netgate。

MinnowBoard Max的硬件规范如下：

•　MinnowBoard Max使用单核或双核的64位元Atom CPU，所以购买时可以选择单核或双核版本；

•　MinnowBoard Max单核版的内存为1GB，但双核版则为2GB；

•　固件存储方面，MinnnowBoard Max增至8MB；

•　在I/O接口方面，MinnowBoard Max使用26引脚排列的GPIO。

MinnowBoard Max的详细规范如表2-3所示。

 表2-3　MinnowBoard Max的详细规范

 [image:]

MinnowBoard Max的引脚定义如图2-6所示。

 [image:]
 图2-6　MinnowBoard Max的引脚定义

2.6　DragonBoard 410c

2015年6月19日，在Maker Faire 2015深圳会议上，高通产品管理资深副总Jason Bremner宣布DragonBoard 410c当日起上市，该产品采用高通S410处理器，是全球首批同时为开发者、OEM和ODM商所推出的64位元低成本平台，强调通过支持Android、Tizen、Linux、Firefox和Windows 10等系统平台，将控制板缩小到几乎是一张名片尺寸的大小。

该产品型号当中的“c”代表“社区”（community），开发原理主要是移植智慧行动产品技术到万物互联（IoE, internet of everything）的领域，让OEM商和开发者得以开发新的应用和产品。

DragonBoard 410c采用的是高通Snapdragon 410四核心处理器，内置四个ARM Cortex-A53处理核心，每个核心时脉1.2GHz，可支持到64位元，并向下兼容32位元，同时采用高通Adreno 306，400MHz GPU，1GB的LPDDR2/3 533MHz单通道32位元内存，以及8GB的emmc存储空间，基本上就是一个微型手机的概念，支持1300万像素拍摄镜头，内置小波噪音抑制、JPEG解码器等硬件后处理技术和iZat Gen8C定位技术，支持高通VIVE 802.11 b/g/n、WiFi、蓝牙和FM收音机。

DragonBoard 410c本身有一个40针脚的低速连接线，一个60针脚的高速连接线及类比扩充连接线。在I/O界面上，DragonBoard 410c提供HDMI全尺寸Type A接头（1080p HD@30fps）、一个USB 2.0 micro B、2个USB 2.0 Type A和一个micro SD卡插槽，基本上已经可以应付现今如电视、音响、扫地机器人、冰箱、冷气和监控设备等智慧家电，甚至是智慧车、智慧鞋、体感控制、色彩辨识、屏幕调和家用机器人等的开发需求。

在作业系统方面，DragonBoard 410c可以支持Android、Tizen OS、FireFox和Linux等各个系统平台，并且也支持Windows 10 IoT Core版本。

DragonBoard 410c兼容了ARM结构的96Boards高性能开发板平台规范，只要加上附加板模块，不需要额外单独接口，就可以进行外接产品、扩充板与配件等相关扩充应用。除了扩充优势，该410c的技术优势在于适用于多系统平台，是首批支持Windows 10作业系统的低成本ARM平台，并且在多媒体功能应用、CPU性能和集成连接性上均超越了竞争对手，专为支持快速软件研发及商用开发平台等产品原型制作所设计，应用相当广泛，如图2-7所示。

 [image:]
 图2-7　DragonBoard 410c的外观

DragonBoard 410c的功能特色如下。

•　支持的操作系统有Android的5.1、Linux内核3.10、Ubuntu、Windows 10 IoT和联网核心的Linux。

•　CPU是四核ARM Corte A53，每个内核高达1.2GHz，且支持32位和64位。

•　内存/存储器为1GB LPDDR3 533/8GB的eMMC 4.5/SD 3.0（UHS-I）。

•　显示卡为高通的Adreno 306 GPU与高级API，包括OpenGL ES 3.0和OpenCL，DirectX和内容安全支持。

•　硬件视频解码：1080P@30fps的高清视频播放和拍摄，支持H.264（AVC）和720p播放H.265（HEVC）。

•　镜头支持：ISP与图像传感器支持高达13MP。

•　GPS：连接及定位。

•　无线网络连接，支持802.11 b/g/n的2.4GHz。

•　内置蓝牙4.1。

•　QUALCOMM伊扎特定位技术Gen8C。

•　内置无线网络，BT和GPS天线。

•　I/O接口：HDMI全尺寸A型接口，一个micro USB接口（仅设备模式），两个USB 2.0（主机模式），micro SD卡插槽。

•　一个40针脚的低速扩展接口：UART、SPI、I2S、I2C X2、GPIO X12和直流电源。

•　一个60针脚的高速扩展接口：4L MIPI-DSI、USB、I2C X2和2L+4L MIPI-CSI。

•　立体声耳机/线路输出。

•　可使用附加的夹层板与Arduino兼容。

DragonBoard 410c与其他开发板不同的地方有：在引脚上除了一般常见的40引脚，还有一个60高速引脚，以及GPS、蓝牙4.0和无线网络。

DragonBoard 410c的详细规范如表2-4所示。

 表2-4　DragonBoard 410c的详细规范

 [image:]

DragonBoard 410c的引脚定义如图2-8所示。

 [image:]
 图2-8　DragonBoard 410c的引脚定义

2.7　Sharks Cove

Sharks Cove是由微软、因特尔和生产商CircuitCove共同开发的兼容Windows系统，且允许在上面部署各类应用软件和移动设备的驱动，旨在推进更多智能手机、平板计算机和各种SoC嵌入设备在Windows平台上顺畅地执行，并且支持Windows 10作业系统，注意并不是Windows 10 IoT Core系统。

该开发板的尺寸为6in×4in，配备了英特尔的Atom Z3735G处理器，默认主频为1.33GHz，存储为16GB，带有一个USB 2.0端口以及HDMI接口，以及一个MicroSD卡扩展槽，此外还有一个微型USB端口用于供电。由于开发板上没有内置以太网和WiFi，所以需要一个USB WiFi来联网。

299美元的价格不仅包括硬件的成本，而且还附带了Windows 8.1系统。该Windows Driver Kit 8.1系统将搭配有Visual Studio Express和一个免费的MSDN账户，这能极大地降低开发的成本，Sharks Cove的外观如图2-9所示。

 [image:]
 图2-9　Sharks Cove的外观

2.8　Arduino

Arduino是当前市面最受欢迎的控制板，它源自意大利的一个开放源程序的硬件案例平台，该平台包括一块具备I/O功能的电路板以及一套程序开发环境软件，开发者可以用来开发交互产品，例如它可以读入大量的信号，用来控制电源开关和感测器设备的信号，并且可以控制电灯、电机和其他各式各样的周边设备。Arduino也可以开发出与PC相连的周边设备，能与执行在PC上的软件进行通信。Arduino UNO的外观如图2-10所示。

可以自行焊接组装Arduino的硬件电路板，或是购买已经组装好的硬件商品，程序开发软件则可以从网上免费下载并使用。Arduino可以与其他的电子组件做交互，例如可变电阻、各式各样的传感器、遥控器、LED、步进马达等，本书的重点也会放在如何与其他电子组件做结合，以产生新的应用。

因为Arduino是一块开放原始程序的输入/输出的开发板，并且具有类似Java语言的开发环境，这样即使没有电子后台，也能快速上手。

对Arduino程序开发感兴趣的读者，可以参考本书作者的另一本著作《Arduino完全实战》，里面有关于Arduino开发的详细介绍。

Arduino的特色如下：

 [image:]
 图2-10　Arduino UNO的外观

•　Open Source且公布电路图设计，具备程序开发界面。

•　免费下载，也可依需求任意修改。

•　烧入程序容易，只要在计算机上通过USB就能直接烧入程序。

•　可依据官方电路图简化Arduino模块，完成独立运作的微处理控制。

•　可简单地与感测器和各式各样的电子组件连接（如红外线、超音波、热敏电阻、光敏电阻和步进马达等）。

•　支持多样的交互程序，如Flash、Max/MSP、VVVV、PD、C和Processing等，可独立运作成为一个可以与软件通信的界面，例如Android、iPhone和PC等其他交互设备。

•　使用低价格的微处理控制器（ATMEGA8/168/328）。

•　具有USB界面，不需要外接电源就可以通过USB上的电源进行供电，另外提供了5V直流电输入。

Arduino UNO的详细规范如表2-5所示。

 表2-5　Arduino UNO的详细规范

 [image:]

由于硬件限制，使用Arduino有如下两个方法：

（1）开发者使用Arduino程序语言，并且在执行Windows 10 IoT Core的设备上执行该程序语言。

（2）开发者也可以在Windows的环境下直接通过Arduino开发环境开发，并且通过计算机将程序上传到Arduino，完成之后，可以通过UART或网络数据传递方法，将Arduino硬件和其他Windows 10 IoT Core的设备有效地整合在一起。
第3章
认识电子零件与器材

本章将介绍电子学概念、零件与器材，常见的电子零件与器材如图3-1所示。

 [image:]
 图3-1　常见的电子零件与器材

3.1　电压、电流、电阻及其基本关系

本节将会简单地介绍电子学和一些常用的电子学相关专业术语，以及组装成物联网的作品时需要用到的一些基本概念。后面的章节将会介绍物联网需要的一些电子设备和电子零件。

如图3-2所示，去过农村的读者也许知道农夫能利用水流的力量来推动水车磨豆子，而整个电子学的基本概念也可以运用在类似的情况，各位可以把电子的世界想象成水车和水的关系，水的力量就像电流的尺寸，当水流的力量越大，那么水车将推得越快。水车的尺寸也会影响到磨豆子的效果，当水车越大时，就会需要更大的力量来推动，水车也就如电阻的概念一样，而水的来源，如水龙头水库就类似于电池一样；水当然有一天会流光，所以后面的水龙头水库足够大（功率越大）就能进行更持久的动作。

1．电流

电流指电荷的流动，像流水一样，电流的尺寸称为电流强度，是指单位时间内通过导线某一截面的电荷，每秒通过1C（库仑）的电荷量称为1A（安培）。

 [image:]
 图3-2　电压、电流、电阻与功率的关系图

大自然有很多种承载电荷的载子，例如，导电体内可移动的电子、电解液内的离子（手机锂电池）、电浆内的电子和离子。这些载子的移动，形成了电流。有一些效应和电流有关，例如电流的热效应。根据安培定律，电流也会产生磁场，马达、电感和发电机都和此效应有关。

2．电压

电压也称作电势差或电位差，是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量，此概念与水位高低所造成的“水压”的概念相似。

3．直流电源

直流电源可对电池进行充电。在几乎所有的电子系统中，都用直流作电源。例如手机和玩具都是使用直流电的电子产品（一般电池是1.5V电源）。本书介绍的电子产品、树莓派和Arduino均使用5V的直流电源，如图3-3所示。

4．交流电

交流电是指大小和方向均发生周期性变化的电流，在一个周期内的运行平均值为零。不同于方向不随时间发生改变的直流电，交流电的波形通常为正弦曲线。家用的110V电压，便是交流电，如图3-4所示。

 [image:]
 图3-3　直流电源

 [image:]
 图3-4　平均值为110V AC的交流电

5．欧姆定律

电子学最重要一个定律就是欧姆定律。欧姆定律关系为

I=U/R

其中，I是电流，单位是安培A，U是电压，单位是伏特V，R是电阻，单位是欧姆Ω。

3.2　电阻

电阻是电子在导体内流动的阻力，常用R表示，主要用途是降低电流。电阻的外观是如电线一类的物体。低电阻的物体可以有效地传输电流，这类物体称为导体。通常导体是如铜、金和银一类等具有优等导电性质的金属，或者具有次等导电性质的铝。电阻器是具有特定电阻的电路组件。制备电阻器所使用的原料有很多种，具体应该使用哪种原料，要根据指定的电阻、能量耗散、准确度和成本等因素来决定。

电阻的外观如图3-5所示，上面有四个颜色，其中第四个颜色（最右边的）通常是金色或银色，图3-5所示电阻的颜色从左至右依次为红、红、棕、金。

 [image:]
 图3-5　电阻的外观

电阻上面的颜色代表了电阻的尺寸，每个颜色的含义如表3-1所示。

 表3-1　电阻颜色值表

 [image:]

可以用以下的公式计算电阻的尺寸：

（（第一个颜色值×10）+第二个颜色值）×（10的第三个颜色值的次方）+第四个颜色的误差值%

所以图片的电阻，颜色为“红红棕金”，所以号码为2、2、1、5%，其电阻的尺寸，通过公式

（（2×10）+2）×（10的1次方）+5%的误差值

计算之后，也就是220Ω。

3.3　电容

在电路学里，给定电势差后电容器存储电荷的能力，称为电容（capacitance），常用C表示。采用国际单位制，电容的单位是法拉，标记为F。在电路图中常以C表示电容。

电容就像是可以充电的电池，只是容量非常的小，而电容的基本作用就是充电与放电，由基本的充放电作用，可以扩展出许多电路，从而电容器有种种不同的用途，例如：在马达中，用它来产生相移；在照相闪光灯中，用它来产生高能量的瞬间放电；而在电子电路中，不同性质的电容用途有很多，但其作用均来自充电与放电。

电容的外观如图3-6所示，常见的陶瓷电容上面会标有数字，以该图片为例，上面印有104字样。

 [image:]
 图3-6　陶瓷电容的外观

可以用以下的公式计算电容的尺寸：

（前面两个数字）×（10的第三个值的次方）

所以图3-6所示的电容，通过公式

（10）×（10的4次方）

计算之后，也就是10×10000=100000pF=0.1μF。

电容的单位换算如下：

•　μF：10的负6次方法拉（micro）；

•　nF：10的负9次方法拉（nano）；

•　pF：10的负12次方法拉（pico）。

彼此的单位关系如下：

•　1μF=1000nF；

•　1nF=1000pF。

3.4　三用电表

三用电表（multimeter）是一种多用途电子测量仪器，主要用于物理、电气和电子等测量领域。而电流、电压和电阻的测量，一般被视为是万用计的基本功能。万用计能够测量的物理量有：直流电压（DCV）、直流电流（DCmA，DCA）、交流电压（ACV）、电阻（Ω，kΩ，MΩ）和交流电流（ACmA，ACA），如图3-7所示。

由于万用计早期是用于测量电流（可用安培计测量）、电压（可用伏特计测量）和电阻（可用欧姆计测量）这三个物理量，所以电子零件行称该设备为三用电表，也称为多用计、多用电表、万用电表或万用表。指针万用表又称VOM（Volt-Ohm meter，伏特-欧姆测量器）。

当前市面上有指针型和数字型的电表，推荐初学者选购数字型的电表，这样更容易读取测量后的数据。

 [image:]
 图3-7　数字型三用电表的外观

3.5　面包板

免焊万用电路板（solderless breadboard）俗称面包板（breadboard），是电子电路设计和Maker界中常用的设备之一，使用面包板不需要焊接，就能将电子组件连接成电路，易于更换零件且装配过程快速。面包板的外观如图3-8所示。

 [image:]
 图3-8　面包板的外观

面包板之所以好用的原因可以图3-8为例解释。图中数字1的用意是左右横向的接点，底下有一排长条形的磷青铜片组成，所以第一排的50个插孔，彼此都是连接在一起的，所以在这张图片的面包板上，一共有4组横向的设备，通常都是接上电源和接地用的，所以只要间接地接在上面的位置，彼此就会连接在一起。

图片上的2表示上下为一组的单位，也就是上下5个接点为一个单位，彼此也是通过底下的磷青铜片连接在一起，所以在这张图片上的面包板，以上下五个插孔为一个单位，一共有2×72组，越大的面包板，就会提供更多的单位。

使用电路板时，应避免将过粗的接线或零件引脚插入电路板插孔，另外若接线已弯曲，应先用尖嘴钳将其弄直，才可插入电路板插孔。否则插孔容易松弛，从而造成电路板接触不良。
第4章
Windows 10 IoT Core安装和运行

本章将介绍如何下载和安装Windows 10 IoT Core程序和作业系统，并在树莓派2上运行。Windows 10 IoT Core的开机画面如图4-1所示。

 [image:]
 图4-1　Windows 10 IoT Core的开机画面

4.1　安装方法一——使用Dashboard安装Windows 10 IoT Core

使用Dashboard快速安装Windows 10 IoT Core的步骤如下：

1）进入官方网站

打开浏览器，登录到网址https://dev.windows.com/en-us/iot，连接到微软的官方网站，并单击Get started now按钮，如图4-2所示。

 [image:]
 图4-2　单击Get started now按钮

2）单击并下载Windows 10 IoT Dashboard

如图4-3所示，单击Windows 10 IoT Dashboard按钮，即可下载安装程序，等下载完成后，再单击运行该程序，或运行IoT Dashboard进行下一步骤。

 [image:]
 图4-3　单击Windows 10 IoT Dashboard按钮

3）运行Windows 10 IoT Dashboard

如图4-4所示，当运行Windows 10 IoT Dashboard之后，在Setup a new device（设置新的设备）中，选择：

（1）Device type：设备总类，请选Raspbery Pi 2和Windows 10 IoT Core for树莓派2。

（2）Driver：请选择Insert an SD card into your computer把SD卡插入这台计算机中。

（3）I accept the software license terms（我同意软件版权声明）：勾选同意。

（4）一切确定后，就可以单击Download and install按钮进行下载并把文件烧入到SD进行安装。

 [image:]
 图4-4　运行和设置Windows 10 IoT Dashboard

确认之后，Dashboard便会自动下载和烧入程序到Micro SD中，使用时请先备份Micro SD中的数据，因为Micro SD卡会被格式化并安装Windows 10 IoT Core作业系统，完成后，就完成了整个Micro SD卡。

1．运行结果

完成之后，就会出现如图4-5所示的窗口。

 [image:]
 图4-5　运行后的结果

通过文件总管，直接打开Micro SD卡，确认里面有如图4-6所示的文件，这代表烧入成功。

 [image:]
 图4-6　运行后的Micro SD卡文件

完成之后，可以直接跳到第4.5节“在树莓派2运行Windows 10 IoT Core”，准备运行Windows 10 IoT Core，另外也可以继续学习一般正式的安装方法的流程。

2．教学视频

完整的教学视频可以参考4-1-RPI2_Win10_Win10IoT_Dashboard.mp4。

4.2　安装方法二——下载文件和烧入

上一节的方法，能非常快速和容易地把Windows 10 IoT Core烧入到SDK之中，本节要介绍的另一种方法，就是一步步地通过文件的下载，然后使用安装程序完成SD数据的烧入。

4.2.1　下载树莓派2的Windows 10 IoT Core tools

本节将介绍如何下载Windows 10 IoT Core tools软件，步骤如下：

1）进入官方网站

打开浏览器连接到http://ms-iot.github.io/content/en-US/Downloads.htm网页。

2）下载Windows 10 IoT Core

如图4-7所示，在Downloads and tools的网页中，单击Download Windows 10 IoT Core for树莓派2按钮，并开始下载。

 [image:]
 图4-7　打开并下载Windows 10 IoT Core

教学视频

完整的教学视频可以参考4-2-RPI2_Win10_Win10IoT_Download.mp4。

4.2.2　安装树莓派2的Windows 10 IoT Core tools

安装树莓派2的Windows 10 IoT Core tools的步骤如下：

1）打开Windows 10 IoT Core tools

如图4-8所示，下载成功之后打开Windows 10 IoT Core tools。

 [image:]
 图4-8　打开文件Windows 10 IoT Core tools

2）运行Windows 10 IoT Core

如图4-9所示，选中刚刚下载的Windows 10 IoT Core tools（IoT Core RPi）文件，单击并且运行，开始进行安装的动作。

 [image:]
 图4-9　运行Windows 10 IoT Core tools（IoT Core RPi）

3）运行Windows_10_IoT_Core_RPi 2

如图4-10所示，运行后Windows 10 IoT Core tools（IoT Core RPi）会自动产生新的DVD磁盘机，通过文件总管进入新的DVD磁盘机，便会看到Windows_10_IoT_Core_RPi 2文件，请单击并且运行，以进行另一个安装的动作。

4）安装Windows 10 IoT Core For Raspberry Pi 2设置

在Windows 10 IoT Core For Raspberry Pi 2安装程序中，勾选I accept the terms in the License Agreement（我同意合约的内容），单击Install（安装）按钮开始进行安装的动作，如图4-11所示。

5）允许运行安装程序

如图4-12所示，接下来Windows 10作业系统会出现一个警告消息，询问用户是否确定要运行这个应用软件，请单击Yes（确定）按钮到下一个步骤。

6）安装过程

稍等片刻，如图4-13所示，就会自动地将Windows 10 IoT Core For Raspberry Pi 2软件安装到现在的Windows 10作业系统上。

 [image:]
 图4-10　产生新的磁盘机

 [image:]
 图4-11　勾选后单击Install按钮

 [image:]
 图4-12　允许运行安装程序

 [image:]
 图4-13　安装过程

1．运行结果

安装结束之后会出现如图4-14所示的窗口，单击Finish（完成）按钮，完成树莓派2的Windows 10 IoT Core安装程序的工作。

2．教学视频

完整的教学视频可以参考4-3-RPI2_Win10_Win10IoT_install_IoTCoreRPI。

4.2.3　烧录树莓派2的Windows 10 IoT Core到Micro SD卡上

接下来要准备要把Windows 10 IoT的数据烧录到Micro SD卡中，请准备好以下的材料：

•　8GB以上的Micro SD卡（class 10以上）；

•　支持Windows 10的Micro SD读卡机；

 [image:]
 图4-14　完成树莓派2的Windows 10 IoT Core安装程序

•　安装Windows 10的Micro SD读卡机的驱动程序。

步骤如下：

1）格式化Micro SD卡

•　请把Micro SD卡放入读卡机中；

•　如图4-15所示，打开文件总管；

•　选择Micro SD卡，并右击选择Format...；

•　然后在弹出的“Format Removable Disk”中，选择FAT32，并单击Start按钮，开始进行安装的动作。

2）运行Windows IoT Image Helper

如图4-16所示，接来需要打开Windows IoT Image Helper软件，请在Windows 10系统的左下角单击“窗口”的图标，并且输入字母IoT以寻找Windows IoT Image Helper软件，并且打开它。

3）设置烧录数据

在这里要准备SD卡烧录的工作，请在Windows IoT Image Helper软件中设置以下的功能，如图4-17所示。

•　请单击Refresh按钮；

•　在出现的SD之中选择要烧录的目标；

•　请单击Browse按钮，并且指定要烧录的文件，这里把文件路径指定到c:\program Files\Microsoft IoT\FFU\RaspberryPi2\flash.ffu或c:\program File（x86）\Microsoft IoT\FFU\RaspberryPi2\flash.ffu；

•　完成后，请单击Flash按钮，开始把数据烧录到卡片的动作。

 [image:]
 图4-15　格式化为MS-DOS（FAT32）格式

 [image:]
 图4-16　打开Windows IoT Image Helper软件

4）确认

如图4-18所示，在运行时候会弹出一个提示窗口，询问是否确认要运行这个软件，请单击Yes按钮就会开始安装的动作。

5）烧入SD卡

稍等片刻，如图4-19所示，Windows IoT Image Helper软件会弹出一个窗口，并等待状态栏表到百分之百的动作后即可顺利完成烧录到SD卡的动作。

1．运行结果

安装结束之后，便会出现如图4-20所示的窗口，请单击Ok（完成）按钮，这时SD卡已经烧录完毕。

2．教学视频

完整的教学视频可以参考4-4-RPI2_Win10_Win10IoT_BurnToSDCard.mp4。

 [image:]
 图4-17　设置烧录数据

 [image:]
 图4-18　确认

 [image:]
 图4-19　烧入

 [image:]
 图4-20　完成树莓派2Windows 10 IoT Core的SD卡

4.3　在树莓派2运行Windows 10 IoT Core

以上准备就是为了让Windows 10 IoT Core可以顺利地在树莓派2上运行。步骤如下：

1）开机准备

接下来请准备好以下材料，如图4-21所示：

 [image:]
 图4-21　开机准备

•　刚刚烧录好的Micro SD卡（class 10以上）；

•　树莓派2或树莓派3开发板；

•　HDMI线；

•　HDMI的屏幕；

•　网络和网络线；

•　USB鼠标和键盘；

•　USB电源变压器，推荐使用超过2A的电源变压器。

 [image:]
 图4-22　开机

2）开机

•　首先把树莓派2关机；

•　把Micro SD卡放入树莓派2中；

•　连接HDMI线到屏幕上，并且连接树莓派2；

•　接上网络和网络线到树莓派2；

•　把USB鼠标和键盘接到树莓派2；

•　最后确认之后，把USB电源接到树莓派2，如图4-22所示。

1．运行结果

开机之后，屏幕便会出现如图4-23所示的画面，这样就代表已经顺利在树莓派2上引导了Windows 10 IoT Core，而初始化和设置部分，将会在下一章节详细地介绍。

 [image:]
 图4-23　完成

2．教学视频

完整的教学视频可以参考4-5-RPI2_Win10_Win10IoT_RaspberryPi2.mp4。
第5章
Windows 10 IoT Core开发环境设置——Visual Studio Community 2015

本章将介绍如何安装设置Windows 10 IoT Core的开发环境Visual Studio Community 2015并进行开发设置。Visual Studio Community 2015的运行结果如图5-1所示。

 [image:]
 图5-1　Visual Studio Community 2015的运行结果

5.1　作业系统Windows 10的版本确认和升级

整个Windows 10 IoT Core的程序和开发环境只有在Windows 10及以上版本的作业系统之中，才能正确地安装与设置，请将工作用的计算机，最少升级到Windows 10（version 10.0.10240），如图5-2所示，可以到网站https://www.microsoft.com/en-us/software-download/windows10ISO上下载并安装最新的版本。

 [image:]
 图5-2　微软Windows 10的下载和升级

若已经是Windows 10的操作环境，就可通过以下的动作确认PC的作业系统版本，如图5-3所示。

 [image:]
 图5-3　Windows 10 PC版本确认

（1）请单击作业系统左下角的“窗口”图标，并通过键盘输入winver。

（2）在寻找后的结果中单击winver的Run command按钮来运行winver程序。

（3）弹出来的winver程序所显示的版本编号最少要高过于Windows 10（version 10240）的版本编号。

如果作业系统版本低于该版本编号的话，推荐先更新完作业系统之后，再来进行以下的步骤。

5.2　安装Visual Studio Community 2015

因为Windows 10 IoT Core开发程序时需要Visual Studio Community 2015，因此如果Windows 10作业系统的PC上还没有安装任何的Visual Studio Community 2015、Visual Studio Professional 2015和Visual Studio Enterprise 2015的开发工具时，请按照以下步骤完成整个下载和安装动作。完全免费的开发工具，如图5-4所示。

 [image:]
 图5-4　微软Visual Studio官方网站

1）Windows 10操作环境

请注意，在树莓派2安装和设置Windows 10 IoT Core需使用微软的Windows 10操作环境，这里笔者使用的是Windows 10专业版作业系统，如图5-5所示。

2）进入官方网站

有两个方法可以下载：一是通过寻找引擎搜索Visual Studio Community 2015或到微软官方网站https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx下载；二是在Windows 10 IoT的官网上下载，打开浏览器并输入网址https://dev.windows.com/en-us/iot，连接到微软的官方网站，并单击Get started now按钮，如图5-6所示。

 [image:]
 图5-5　Windows 10操作环境

 [image:]
 图5-6　官方网站

3）进入官方网站

在微软的官方网站中显示有三个硬件可以支持，分别是Raspberry Pi 2、MinnowBoard Max、Galileo，单击Raspberry Pi 2下方的Start Now按钮开始进行设置，如图5-7所示。

4）下载Visual Studio Community 2015

如果Windows 10作业系统的PC上还没有安装任何的Visual Studio Community 2015、Visual Studio Professional 2015和Visual Studio Enterprise 2015开发工具，可以在官方网站上单击免费的Visual Studio Community 2015版本，然后单击here按钮，即可进行下载的动作，如图5-8所示。

 [image:]
 图5-7　进入官方网站

 [image:]
 图5-8　下载Visual Studio 2015

5）下载Visual Studio Community 2015并运行

稍等片刻，如图5-9所示，便会顺利下载Visual Studio Community 2015，完成后请单击Run按钮进行安装。

 [image:]
 图5-9　下载Visual Studio Community 2015并运行

6）安装路径

如图5-10所示，安装程序的时候请自行决定安装路径，并且选择Typical for Windows 10 Developers选项，这样可以确保安装上必须的组件，尤其是Universal Windows App Development tools这个组件，完成后，请单击Install按钮到下一步。

 [image:]
 图5-10　安装路径

7）安装

此时会弹出User Account Control（安全询问窗口），请单击Yes按钮到下一步，如图5-11所示。

 [image:]
 图5-11　安全询问窗口

接下来就会出现安装的窗口，稍等片刻就可以完成该步骤，如图5-12所示。

 [image:]
 图5-12　安装过程窗口

1．运行结果

安装过程结束之后，就会出现如图5-13所示的窗口，代表已经顺利地下载和安装了Visual Studio Community 2015软件。

 [image:]
 图5-13　Visual Studio Community 2015安装完成

2．教学视频

完整的教学视频可以参考5-2-RPI2_Win10_1_SettingUpVSCommunity2015。

3．补充说明

另外也推荐使用一段时间之后，定期地回到Visual Studio Community 2015检查是否有新的微软官方版本以供下载和升级。

5.3　设置Visual Studio Community 2015

第一次引导Visual Studio Community 2015时需要进行账号等设置，请按照以下步骤完成整个设置动作。

1）登录

请单击Sign in按钮登录，这是第一次引导Visual Studio Community 2015时需要进行的账号设置，如图5-14所示。

2）输入账号名称

输入邮箱的名称，该名称可以与登录的Windows 10作业系统相同，如果没有的话，可以到微软的网站上新增一组账号口令，最简单的方法就是去登记一组www.hotmail.com的电子信箱，如图5-15所示。

 [image:]
 图5-14　登录

 [image:]
 图5-15　输入账号名称

3）登录模式

接下来窗口会询问登录模式，一般而言如果没有特别的需求就直接单击Microsoft account到下一步，如果读者使用的是学校或公司的计算机，公司应该会有购买账号，那么请单击Work or school account，如图5-16所示。

 [image:]
 图5-16　登录模式

4）填写个人数据

输入基本的个人数据之后，单击Continue按钮，进入下一个步骤，如图5-17所示。

5）创建一个案例

接下来请创建一个案例，以确认Visual Studio 2015的安装是否正确。

•　Project name（案例名称）：请输入一组英文的名称；

•　Project template（案例的样板）：请选择Scrum。

完成后，请单击Create project按钮到下一步，如图5-18所示。

6）案例外观

接下来，请设置该案例的外观。

•　Development Settings（开发者设置）：请选择General做基本设置；

•　Choose your color theme（案例外观的颜色）：请选择Blue做基本设置。

完成后，请单击Start Visual Studio按钮到下一步，如图5-19所示。

 [image:]
 图5-17　填写个人数据

 [image:]
 图5-18　创建一个案例

 [image:]
 图5-19　案例外观

1．运行结果

整个设置结束之后，就会出现如图5-20所示的窗口，代表已经顺利地引导Visual Studio Community 2015。

 [image:]
 图5-20　顺利打开Visual Studio Community 2015

2．教学视频

完整的教学视频可以参考5-3-RPI2_Win10_2_SingIn_VSCommunity2015.mp4。

5.4　确认Visual Studio版本

打开刚刚安装的Visual Studio，并通过下拉式菜单Help→About Microsoft Visual Studio所跳出来的窗口，确定版本编号，如图5-21所示。

•　Visual Studio版本编号需要高过14.0.23107.0 D14Rel；

•　Visual Studio Tools for Universal Windows Apps版本编号需要高过14.0.23121.00 D14OOB。

 [image:]
 图5-21　Visual Studio 2015版本确定

教学视频

完整的教学视频可以参考5-4-RPI2_Win10_3_VSCommunity2015_versionCheck。

5.5　设置和打开Developer Mode

在Windows 10中，如果要进行编译和IoT的行为，需要把Windows 10的Developer Mode（开发者模式）打开，可以通过以下的步骤打开该设置。

1）进入For developers settings窗口

为了进入Developer Mode窗口，请按照以下步骤完成。

（1）请单击Windows 10作业系统左下角的“窗口”图标；

（2）输入Developer；

（3）单击For developers settings运行，如图5-22所示。

2）打开Developer Mode

在这里，单击Developer Mode按钮打开设置，如图5-23所示。

 [image:]
 图5-22　进入For developers settings窗口

 [image:]
 图5-23　打开Developer Mode

3）确认打开Developer Mode

在弹出来的提示消息之中，单击Yes按钮，确认打开开发者模式，如图5-24所示。

 [image:]
 图5-24　确认打开开发者模式

1．运行结果

整个设置结束之后，就会顺利地打开Windows 10作业系统的开发者模式。

2．教学视频

完整的教学视频可以参考5-5-RPI2_Win10_4_VSCommunity2015_setup DeveloperMode.mp4。
第6章
Windows 10 IoT Core使用教学

本章主要介绍Windows 10 IoT Core环境设置的功能和使用方法。Windows 10 IoT Core环境设置如图6-1所示。

 [image:]
 图6-1　Windows 10 IoT Core环境设置

6.1　Windows 10 IoT Core系统

引导结束之后，有两种方法来设置操作系统，做最简单的就是通过鼠标跟键盘直接来控制。

第一次开机的时候，Windows 10 IoT Core系统会提示想要使用的语言，因为后面程序开发的关系，本书还是以英文为主，当然也可以设置为中文，如图6-2所示。

 [image:]
 图6-2　引导后的设置语言

语言设置成功之后，就会进入主画面Device info（设备信息），如图6-3所示，在画面上显示有：

 [image:]
 图6-3　引导后的主画面

•　Device name：设备名称；

•　Network：网络；

•　IP address：网络位置；

•　OS Version：Windows 10 IoT Core的版本；

•　Connected devices：当前连接的设备列表。

如图6-4所示，画面的左上角，有两个选项：第一个按钮是Device info，显示了当前该系统的设置值，即图6-2所示的引导后的主画面；第二个按钮是Tutorial（教学），里面有几个样例的文字教学，其内容与网页上的教学是一样的，本书的后面的章节将会介绍。

 [image:]
 图6-4　Tutorial教学

如图6-5所示，右上角有三个按钮，从由左到右分别是“时间”“设置”和“关机”，并且因为作业系统的关系，所以强烈推荐在关闭设备时，先选择“关机”之后，才拔除电源，以免造成下次不能顺利打开作业系统的后果。

 [image:]
 图6-5　“时间”“设置”和“关机”按钮

单击“设置”按钮后，就可以进入设置页面。如果读者没有在前面设置想要的语言，还是可以在Basic preferences里进行选择和设置，如图6-6所示。

当前繁体中文、简体中文都支持，如图6-7所示。

如图6-8所示，在Network & Wi-Fi的网络设置里可以进行有线网络和无线网络、路由器和口令等网络相关设置。

最后的“关机”中有两个选项，分别是Restart（重新开机）和Shutdown（关机），如图6-9所示。

 [image:]
 图6-6　语言设置

 [image:]
 图6-7　支持繁体中文和简体中文

 [image:]
 图6-8　网络设置

 [image:]
 图6-9　Restart和Shutdown

教学视频

完整的教学视频可以参考6-1-StartWin10IoTCore.mp4。

6.2　通过浏览器连接到Windows 10 IoT Core

在Windows 10 IoT Core的作业系统上，用户可以通过浏览器连接到树莓派2上，并且上传程序和设置相关的数据。请通过以下步骤，进入该设备的网页。

1）开机并记下IP address

如图6-10所示，请先把运行Windows 10 IoT Core的树莓派2开机，并记下画面上显示的网络位置。

 [image:]
 图6-10　开机并记下IP address

2）浏览器

如图6-11所示，可以在该局域网中的任何PC、手机或平板上，通过浏览器连接到实际的网络位置。

 [image:]
 图6-11　浏览器

（1）例如http://192.168.0.155:8080，打开该网页即可以连接到树莓派2的设备上并做设置和处理。请自行调整网络位置，并注意在后面加上：8080。

（2）接下来会弹出询问窗口，输入如下账号和口令：

账号：Administrator；

口令：p@ssw0rd。

注意口令password中的a和o分别用@符号和数字0进行了替换。

（3）完成后，请单击OK按钮，即可顺利使用。

1．运行结果

接下来浏览器会进入树莓派2的Windows 10 IoT Core的网页环境，图6-12显示了Windows 10 IoT Core的版本和硬件环境。

由测试可知，网页的功能可以在Windows、Linux和Mac平台的各大浏览器正常使用，图6-13展示了iOS上的浏览器功能。

2．教学视频

完整的教学视频可以参考6-2-Win10_8_Win10IoT_HTTP.mp4。

 [image:]
 图6-12　进入Windows 10 IoT Core的网页环境

 [image:]
 图6-13　在iPhone 6s Plus手机通过Google Chrome连接

6.3　Windows 10 IoT Core的网页环境功能介绍

Windows 10 IoT Core的网页环境提供了很多功能，例如CPU使用的情况、版本、上传下载、运行程序和文件总管，等等，本节将逐个进行介绍。提醒读者当前的版本网页的部分还是显示英文。

1．Shutdown——关机

如图6-14所示，窗口的右上角的功能分别是Shutdown（关机）、Restart（重新开机）、feedback（意见反馈）和Help（帮助）。

 [image:]
 图6-14　右上角的功能

•　Shutdown：用于关机；

•　Restart：用于重新开启机器；

•　feedback：打开意见反馈的功能；

•　Help：连接Windows 10 IoT的联机教学和帮助的页面。

2．Utilities/Home——工具/主页

1）Device information

如图6-15所示，Device Information（设备信息）显示了Windows 10 IoT Core树莓派的相关数据，尤其是Device Name（设备名称）是用来指定该设备的名称，可以使用网络连接的IP地址，即在浏览器上通过IP地址连接到该设备，同样也可以将Device Name输入到浏览器上面进行连接。例如，http://minwinpc.local:8080/，如图6-15所示。

2）Change your device name

如图6-16所示，当前系统内定的名称是minwinpc，可以在Preference（偏好）中的Change your device name（修改设备名称）进行修改，完成之后单击Save（存储）按钮，就可以更新设备的名称。

3）Change your password

当前系统内定的口令是p@ssw0rd，可以在Preference中的Change your password（修改口令）进行修改，依序输入“旧口令”和两次“新的口令”之后单击Save按钮更新设备的口令。

4）Date and time

可以通过Date and time（日期和时间）选择合适的显示日期和时间的方式。

 [image:]
 图6-15　Utilities工具

 [image:]
 图6-16　通过Device Name连接http://minwinpc.local:8080/

3．Apps——应用程序

1）Installed apps

如图6-17所示，三个功能分别是：

•　Remove（删除）：删除程序；

•　Start（开始）：运行应用程序；

•　Set Default：指定默认的应用程序，引导后就会运行该默认程序。

 [image:]
 图6-17　Apps应用程序

详细的功能请参考第10.3.5节内容。

2）Running apps

通过该列表，可以查看当前正在运行的应用程序，并可以通过左边的X按钮强制关掉该程序。

详细的功能请参考第10.3.4节内容。

3）Install app

通过此功能，可以完成以下四个动作：

•　App package（应用程序安装）：通过此功能，把应用程序安装在这台机器上。

•　Certificate（认证安装）：通过此功能，把认证安装在这台机器上。

•　Dependency（依赖）：上传依赖认证，并安装在这台机器上。

•　Deploy（部署）：通过此功能，把部署认证安装在这台机器上。

4．Processes——处理现况

图6-18显示出每一个应用程序现在正在运行的情况和处理器所占用的比率以及花费的时间。可以通过左边的X按钮直接强制关掉该程序。

5．Performance——运行性能

如图6-19所示，此功能图表显示了出现在Windows 10 IoT Core的硬件情况，包括处理器、内存、GPU图形显示芯片、输入输出和网络所占用的比率和时间。

 [image:]
 图6-18　Windows 10 IoT Core显示CPU使用的情况

 [image:]
 图6-19　Performance

6．Debugging——调试

如图6-20所示，通过这个功能，可以查看每一个应用程序的使用记录，以方便开发者开发程序时使用，在后面章节会介绍如何在程序中把要调试的数据放入这个存储文件中。

7．ETW（Event Tracing for Windows）——触发事件跟踪

如图6-21所示，程序在开发调试的时候，也需要知道用户使用的方法和触控的方式，所以需要把所有用户对应用程序做的所有动作显示出来，方便日后程序开发者调试时使用。

 [image:]
 图6-20　Windows 10 IoT Core的Debugging和下载Kernal的使用记录

 [image:]
 图6-21　实时ETW跟踪

8．Performance tracing——运行效率跟踪

如图6-22所示，可以单独跟踪指定的一个应用程序的运行情况并处理。

 [image:]
 图6-22　Performance tracing

9．Devices——设备

Windows 10 IoT Core的Devices（设备）指明了当前的硬件，如图6-23所示。因为驱动程序的关系，所以并不是每一个硬件接上去都会有反应。在实际使用时，当新的硬件接上去时，必须要在Devices确认，以保证所接到树莓派上面的设备可以正常动作，并保证系统可以正确工作。

 [image:]
 图6-23　Windows 10 IoT Core的设备管理

10．Bluetooth——蓝牙

在图6-24所示的Bluetooth工具页中，Paired devices（已配对的设备）显示出当前已经配对成功的设备，如果还未配对成功的话，可通过Available devices（可用的蓝牙设备）来寻找附近的蓝牙设备，并进行蓝牙配对的功能。

 [image:]
 图6-24　Windows 10 IoT Core的蓝牙配对设置

11．Audio——声音输出

在Audio工具页中，可以设置音量大小，如图6-25所示。

 [image:]
 图6-25　Windows 10 IoT Core的Audio

12．Networking——网络

在Networking工具页中，可以显示当前的网络情况和IP地址，如果是一般的网络线，只要接上RJ45的线，系统就会自动连接，如果硬件有蓝牙设备的话，也会显示出蓝牙设备的位置（Mac address），如图6-26所示。

 [image:]
 图6-26　Windows 10 IoT Core的WiFi和网络设置

无线网络的设置的请参考第6.4节内容，里面有完整的解说和设置的过程。

13．Windows Update——系统升级

如图6-27所示，在Windows Update工具页中，当新的版本发布时，只要单击Check for updates就可以确认是否有新的版本可以使用，并进行安装。

 [image:]
 图6-27　Windows 10 IoT Core的系统升级

6.4　设置WiFi连接

本节将介绍如何设置无线WiFi设备。在设置之前，必须依照前面的章节，顺利地引导系统，且连接硬件线路后，再通过浏览器进入设置网页。步骤如下：

1）挑选合适的USB WiFi

因为Windows 10 IoT Core对USB WiFi设备很挑剔，即使某个设备可以在Rasbian上运行，也不见得一定会在该系统上运行。

笔者当前手上的三个设备，虽然可以在Rasbian上运行，但只有Realtek RTL8188EU的WiFi才能在这两个系统上顺利工作，该设备外观如图6-28所示。

 [image:]
 图6-28　Realtek RTL8188EU硬件

2）设置页面

当把USB WiFi应用到树莓派硬件时，务必要重新开机，这样才能引导驱动程序，保证正常工作。

依照第6.2节内容通过浏览器的方法连接到Networking，如图6-29所示。

 [image:]
 图6-29　Windows 10 IoT Core网页的Networking

（1）如果一切顺利，就会出现如图6-28所示的该WiFi USB设备的名称；

（2）单击Networking按钮寻找附近可以连接的无线网络。

3）选择设备和输入口令

请单击想要连接的无线网络名称，并在Key中输入口令，单击右边的Connect按钮进行连接。

如果需要下次使用时自动连接该设备，则可以勾选Create Profile（auto re-connect）（创建下次自动连接）选项，如图6-30所示。

 [image:]
 图6-30　选择设备和输入口令

1．运行结果

如果一切顺利，就可以成功连上网络，笔者在连接勾选后一段时间，必须要把浏览器重启，才可以在设备前面看到代表成功连接无线网络的“√”，如图6-31所示。

 [image:]
 图6-31　顺利连上无线WiFi

2．教学视频

完整的教学视频可以参考6-4-Win10IoT-WiFi.mp4。

3．补充数据

也可以通过鼠标和键盘直接在树莓派上面设置WiFi。开机后如图6-32所示，通过右上角的“设置”进入设置页面，再进入Network & Wi-Fi，就可以通过Wi-Fi的Refresh选择设备和输入口令。不过根据笔者教学的经验，该方法有时会找不到其他WiFi热点。

 [image:]
 图6-32　设置无线WiFi

6.5　在Windows PC运行PuTTY连接到Windows 10 IoT Core

Windows 10 IoT Core是使用Windows的作业系统，那要如何远程连接到安装Windows 10 IoT Core的树莓派2上呢？Windows 10 IoT Core完全支持SSH，本节将会介绍如何通过软件PuTTY来进行远程连接设置。步骤如下：

1）开机并记下IP address

先把运行Windows 10 IoT Core的树莓派2开机，并记下画面上显示的网络位置。

2）连接到PuTTY官方网站

在Windows XP/7/8/10系统的计算机上通过浏览器连接到官方网站http://www.putty.org/，并且单击here到下载页，如图6-33所示。

3）单击putty.exe并下载

在PuTTY官方网站上单击For Windows Intel x86下面的putty.exe并下载，如图6-34所示。

4）运行PuTTY

完全下载之后，找到已下载的文件，PuTTY软件的本身是绿色软件，即不用特意安装，只要直接双击就可以运行，如图6-35所示。所以最好把下载后的软件复制到合适的路径，以避免下次使用的时候找不到。

 [image:]
 图6-33　连接到PuTTY官方网站

 [image:]
 图6-34　单击putty.exe并下载

 [image:]
 图6-35　运行PuTTY

5）连接设置

输入树莓派2的网络地址，并且确认Port为22以及选择连接类型为SSH，如果一切正确的话，单击Open按钮进行连接，如图6-36所示。

 [image:]
 图6-36　连接设置

6）输入账号和口令

接下来会弹出询问窗口，提示输入账号和口令：

账号：Administrator；

口令：p@ssw0rd。

1．运行结果

稍等片刻，屏幕便会出现如图6-36所示的画面，代表已经顺利通过PuTTY软件连接到树莓派2上的Windows 10 IoT Core，然后就可以通过Windows的Dos来运行和动作，如图6-37所示。

 [image:]
 图6-37　完成

2．教学视频

完整的教学视频可以参考6-5-RPI2_Win10_9_Win10IoT_putty.mp4。

6.6　在Mac、Linux、iOS和Android上运行SSH连接到Windows 10 IoT Core

通过上一节的学习，读者已经知道Windows 10 IoT Core完全支持SSH，本节将会介绍如何在Mac或Linux通过软件Terminal中的SSH程序来进行远程连接设置。步骤如下：

1）打开Terminal.app软件

如图6-38所示，在MAC上通过Finder（文件总管），找到Applications\Utilities\路径下的Terminal.app软件并双击运行。

2）在Terminal上运行SSH

首先在Terminal上运行以下的指令，把IP位置修改为实际的树莓派的网址ssh Administrator@192.168.0.115，如图6-39所示。

 [image:]
 图6-38　打开Terminal.app软件

 [image:]
 图6-39　在Terminal上运行SSH

3）认证钥匙和输入口令

•　如果是第一次运行SSH的话，如图6-40所示，SSH会要求下载认证钥匙，请输入yes，并且按下Enter按键。

•　接下来会询问口令，请输入：p@ssw0rd。

1．运行结果

以上步骤完成之后，屏幕便会出现如图6-41所示的画面，代表已经顺利连接到树莓派2上，并可使用Windows 10 IoT Core，接下来可以使用Dos指令来运行并动作。

 [image:]
 图6-40　认证钥匙和输入口令

 [image:]
 图6-41　完成

2．教学视频

完整的教学视频可以参考6-6-RPI2_Win10_10_Win10IoT_MacSSH.mp4。

3．补充数据

Mac的用户在使用SSH一段时间之后，如果出现WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED！的错误，如图6-42所示。只要在文字模式下，运行

rm -f～/.ssh/known_hosts

指令之后，再次登录即可。

 [image:]
 图6-42　登录错误处理

6.6.1　Android上的SSH

如果想通过Android的智能手机，从远程SSH访问控制的话，可以选择使用JuiceSSH -SSH Client这一款免费的Android SSH APP，该APP使用起来相当地方便，在Android作业系统的平板或智能手机的Android Store上搜索Juice SSH就可以找到，如图6-43所示。

 [image:]
 图6-43　Android智能手机上的JuiceSSH-SSH Client

6.6.2　iOS上的SSH

如果想通过iOS智能手机，从远程SSH访问控制的话，可以选择使用WebSSH这一款免费的APP，使用起来也相当地方便。可以躺在沙发上，通过手机连接到树莓派2进行操作，现在通过手机版iOS的APP Store上即可下载安装和使用WebSSH，如图6-44所示。

 [image:]
 图6-44　iOS智能手机上的WebSSH

6.7　运行PowerShell连接到Windows 10 IoT Core

微软官方推荐使用PowerShell软件作原端连接到Windows 10 IoT Core，所以本节将会介绍如何使用PowerShell顺利连接。步骤如下：

1）搜索Windows PowerShell软件

为了进入Developer Mode窗口，如图6-45所示，请进行以下操作：

（1）单击Windows 10作业系统左下角的“窗口”图标；

（2）输入关键字powershell；

（3）看到Windows PowerShell时，先别急着打开，请接下来看步骤2）。

 [image:]
 图6-45　搜索Windows PowerShell软件

2）选择Run as administrator来运行软件

如图6-46所示，然后在Windows PowerShell上右击，在出现的菜单中选择Run as administrator来运行软件。

 [image:]
 图6-46　选择Run as administrator来运行软件

3）单击Yes按钮

接下来Windows会出现警告窗口，如图6-47所示，单击Yes按钮到下一步骤。

 [image:]
 图6-47　单击Yes按钮

4）引导WinRM

如图6-48所示，接下来就能顺利引导PowerShell，在命令行输入以下的指令用于引导WinRM：

net start WinRM

 [image:]
 图6-48　引导WinRM

5）设置IP位置

接下来在PowerShell中输入以下的指令，如图6-49所示。把IP位置设为实际树莓派2的网络位置，用来取得认证，并且输入Y并按下Enter键到下一步骤。

Set-Item WSMan:\localhost\Client\TrustedHosts -Value 198.168.0.115

 [image:]
 图6-49　设置IP位置

6）取得认证

如图6-50所示，接下来需要取得认证，请在命令行输入以下的指令：

Enter-PSSession -ComputerName 192.168.0.115 -Credential 192.168.0.115\Administrator

 [image:]
 图6-50　取得认证

7）输入口令

•　如图6-51所示，接下来会询问口令，请输入口令：p@ ssw0rd；

•　账号不必修改；

•　完成后，单击OK按钮。

8）顺利连接到树莓派2上

完成后，就会顺利连接到树莓派2上，如图6-52所示。如果有问题的话，请确认IP位置或把PC和树莓派2重新开机后，再试一次。

1．运行结果

顺利连接之后，便会出现如图6-53所示的画面，接下来就可以使用DOS指令操作Windows 10 IoT Core系统。

本节的IP位置可用机器名称来代替，默认名称是minwinpc，但需注意，同一个网域中，如果有两个机器名称一样的话，就不能正确预知应连接到哪一个设备上。

 [image:]
 图6-51　输入口令

 [image:]
 图6-52　顺利连接到树莓派2上

 [image:]
 图6-53　完成

2．教学视频

完整的教学视频可以参考6-7-RPI2_Win10_11_Win10IoT_PowerShell.mp4。

6.8　FTP文件传输通信协议

1．FTP介绍

FTP即File Transfer Protocol（文件传输协议），它是一种获得国际互联网世界普遍采用的通信协议之一，它是在1985年由一组非商业组织的学者们提出的一种开放的协议，也就是规则，以提供给通过网络传送数据应用的计算机软件设计者，这样大家可以依照该标准，独立制作出支持FTP协议的文件传输软件，同时确保互相能够兼容。所以如果想要通过Windows 10 IoT Core上传和下载文件的话，可以使用FTP来完成这样的目的。本节中将介绍如何使用FTP。

文件传输通信协议是用来在国际互联网传输文件的通信协议。人们通常使用FTP提供文件以供其他人下载，不过也可以使用FTP上传网页以创建网站，或将数张相片放在图片共享网站上。

2．在Windows 10 IoT Core上架设FTP Server

在Windows 10 IoT Core设备上的FTP服务器，在开始安装时，就已经自动引导，所以不必特别地安装第三方软件。为了连接到FTP服务器，需要设备的IP地址。IP地址在系统设备引导后，在主画面上就能看到IP地址，或通过ftp://minwinpc.local的设备名称进行引导。

6.9　用计算机FTP登录Windows 10 IoT Core

6.9.1　在Windows计算机使用IE和文件总管连接FTP

在Windows的计算机上面使用FTP是非常容易的，只要打开浏览器并输入IP地址，例如ftp://192.168.0.104。如果询问口令，则请输入账号Administrator和口令p@ssw0rd。

完成之后，就能够在浏览器看到该设备的文件系统，如图6-54所示。通过单击的方法可以切换不同的路径，单击相应文档就能够下载该文件。如果要上传文件和图片的话，就必须通过“文件总管”的方法才能实现该目的。

在Windows计算机上可以通过文件总管来进行FTP的连接，并上传和下载文件，使用方法也非常容易，只需在路径上输入IP地址，例如ftp://192.168.0.104。如果询问口令，则请输入账号Administrator和口令p@ssw0rd。

确认后文件总管就会自动连接，连接成功后，可通过文件拖拉的方法上传和下载，调整界面中的路径就可以完成不同路径下的上传和下载，如图6-55所示。

 [image:]
 图6-54　通过IE浏览器连接到Windows 10 IoT Core

 [image:]
 图6-55　通过文件总管连接到Windows 10 IoT Core

视频教学

完整的教学视频可以参考6-9-1-Win10Iot_FTP.mp4。

6.9.2　使用FileZilla FTP软件

本节中将介绍如何使用微软的Windows操作系统和鼎鼎大名的FileZilla FTP Client软件，并且连接到上一节所设置的服务器中进行上传和下载文件。步骤如下：

1）下载FileZilla软件

在Windows计算机上，通过浏览器连接到以下网址，然后下载FileZilla软件，如图6-56所示。

https://filezilla-project.org/download.php?type=client

 [image:]
 图6-56　下载FileZilla软件

2）安装FileZilla软件

下载成功之后，单击安装程序，类似于一般的Windows软件安装方法，一直单击“下一步”按钮即可完成安装，如图6-57所示。

3）选择要连接的File Server

安装结束之后，打开FileZilla软件，如图6-58所示，按照以下的步骤设置好数据就可以连接。

（1）Host：输入FTP Server的IP Address要连接的网络位置；

（2）Username：输入用户名称，一般而言是Administrator；

（3）Password：输入用户口令，一般而言是p@ssw0rd；

（4）确定数据正确后，单击Quickconect按钮；

 [image:]
 图6-57　安装FileZilla软件

 [image:]
 图6-58　设置连接口令

（5）稍等片刻就可以自动连接到FTP服务器上，可以看到图6-58左边的画面是现在使用中的机器上面的文件结构；

（6）右边的画面是FTP服务器上的文件结构。

顺利连接后，可以用鼠标选中并拖拉文件夹或文件，即可进行上传和下载。

视频教学

完整的教学视频可以参考6-9-2-Win10Iot_FTP_FileZilla.mp4。

6.9.3　在Mac计算机使用FTP登录

本节将介绍如何使用Mac的OSX操作系统，并通过FileZilla软件连接到树莓派的FTP的服务器中，进行上传和下载文件。步骤如下：

1）下载FileZilla软件

在Mac计算机上，通过浏览器连接到以下网址，然后下载FileZilla软件，如图6-59所示。

https://filezilla-project.org/download.php?type=client

 [image:]
 图6-59　下载FileZilla软件

2）安装FileZilla软件

下载成功之后，单击安装程序，类似于一般的Mac软件安装方法，一直单击“下一步”按钮，即可完成安装。

3）选择要连接的File Server

安装结束之后，打开FileZilla软件，如图6-60所示，设置好以下的数据就可以连接：

•　Host：输入FTP Server的IP Address要连接的网络位置，也可以用ftp://winminpc.local；

•　Username：输入用户名称，一般而言是Administrator；

•　Password：输入用户口令，一般而言是p@ssw0rd；

•　确定数据正确后，单击Quickconect按钮。

 [image:]
 图6-60　连接FTP

稍等片刻就可以自动连接到FTP服务器上，可以看到图6-60左边的画面是现在使用中的机器上面的文件结构。右边的画面是FTP服务器上的文件结构。顺利连接后，可以用鼠标选中并拖拉文件夹或文件，即可进行上传和下载。

视频教学

完整的教学视频可以参考6-9-3-Win10Iot_FTP_FileZilla-Mac.mp4。

6.9.4　Android和iOS手机FTP连接

因为FTP是非常常见的软件，所以读者可以在其他的不同作业系统和手机或平板上找到对应的软件。

Android上的FTP Client，如图6-61所示。

iOS上的FTP Manager Free，如图6-62所示。

 [image:]
 图6-61　FTP Client

 [image:]
 图6-62　FTP Manager Free

6.9.5　在树莓派的Rasbian中安装FileZilla FTP Client软件

本节将介绍如何在树莓派安装FileZilla FTP Client软件，这样就方便连接到其他的FTP Server服务器上，包括Windows 10 IoT Core的FTP的服务器。步骤如下：

1）下载FileZilla软件

打开树莓派的文字模式Terminal，然后通过以下指令下载FileZilla软件，如图6-63所示。

$ sudo apt-get install filezilla

 [image:]
 图6-63　下载FileZilla软件

2）引导FileZilla软件

下载成功之后，通过以下指令

$ xstart

进入窗口xwindows环境中，并通过下拉式菜单选择Menu\Internet\FileZilla来引导FileZilla软件，如图6-64所示。

3）选择要连接的File Server

打开FileZilla软件，如图6-65所示，按照以下的步骤设置好数据就可以连接：

•　Host：输入FTP Server的IP Address要连接的网络位置；

•　Username：请输入用户名称；

•　Password：请输入用户口令。

确定数据正确后，请单击Quickconect按钮。稍等片刻就可以自动连接到FTP服务器上，图6-64左边的画面是现在使用中的机器上面的文件结构，而右边的画面是FTP服务器上的文件结构。顺利连接后，可以用鼠标选中并拖拉文件夹或文件，即可进行上传和下载。

 [image:]
 图6-64　引导FileZilla软件

 [image:]
 图6-65　连接到FTP

视频教学

关于Rasbian上的FTP连接的完整的教学视频可以参考6-9-5-Win10Iot_FTP_FileZilla-Rasbian.mp4。
第7章
Windows 10 IoT Core文字指令

本章介绍Windows 10 IoT Core的文字指令以及一些特别的指令，帮助读者了解文字模式下的Windows 10 IoT Core控制。通过PuTTY连接到Windows 10 IoT Core文字模式，如图7-1所示。

 [image:]
 图7-1　通过PuTTY连接到Windows 10 IoT Core文字模式

7.1　MS-DOS指令教学

Windows 10 IoT Core可以通过微软的MS-DOS指令进行动作与处理，本节将介绍常用的MS-DOS指令和使用方法。

7.1.1　dir列出文件

dir关键字用于显示某个磁盘指定目录下的全部或部分文件目录和子目录，显示信息包括文件名、扩展名、文件长度、文件创建日期和时间，同时给出所显示文件的总数和所剩下的磁盘空间。

1．语法

dir的语法如下：

dir文件名称[/P][/W][/S]

•　[/P]表示一次显示一页，当文件较多，没办法一页完整显示时，可以通过此指令，并请按任意键继续，用户按键后显示下一屏，重复该过程直至显示完毕。

•　[/W]表示以简洁形式（紧缩格式）显示文件清单，目录中只显示文件名和扩展名。

•　[/S]对于给定的文件名称，显示其在指定目录及指定目录所有下级子目录中的相应位置清单。

•　文件名称中的文件名和扩展名可以使用？和*，而问号？代表其中有一个字是任意的，*则代表全部不限字数，例如全部文件名是*.*且扩展名是*.exe。

•　该命令可以将显示结果送向打印机。不过当前该指令在Windows 10 IoT Core还未支持打印机，所以不能正常使用。

2．使用样例

1）dir *.*

显示当前磁盘当前目录的全部目录清单，如图7-2所示。

 [image:]
 图7-2　显示当前路径的文件

2）dir C:\

显示C盘根目录的目录清单，如图7-3所示。

3）dir\

显示当前盘根目录的清单。

4）dir...

显示当前盘当前目录的上级目录的目录清单。

5）dir.EXE

显示当前盘当前目录下扩展名为.EXE的全部文件清单。

6）dir C:SUB/S

显示C盘当前目录下子目录SUB下的目录清单，及SUB下的所有子目录（包括各级下级子目录）下的目录清单。

 [image:]
 图7-3　显示C:\路径的文件

7）dir.EXE/p

以分屏方式显示当前盘当前目录下扩展名为.EXE的全部文件清单。

8）dir*.*＞PRN

显示当前盘当前目录的全部目录清单同时打印，不过当前该指令在Windows 10 IoT Core还未支持打印机，所以不能正常使用。

3．教学视频

完整的教学视频可以参考7-1-1-dir.mp4。

7.1.2　copy复制

copy关键字用于复制文件。

1．语法

copy[/D][/V][/N][/Y|/-Y][/Z][/A|/B]命令形式

copy source[/A|/B][+source[/A|/B]+...[destination[/A|/B]]

方括号括起来的部分是可选部分，不是必须部分。例如：

copy a.txt b.txt即把a.txt的内容复制到b.txt。

•　/D：允许解密要创建的目的档；

•　/V：验证新文件写入是否正确；

•　/N：复制带有非8dot3名称的文件；

•　/Y|/-Y：开启确认是否要覆盖现有目的文件的提示；

•　/Z：可重新引导模式复制网络的文件；

•　[/A|/B]：表示ASCII文本文件和二进制文件。

2．使用样例

copy a.txt b.txt

复制文件a.txt到b.txt，如图7-4所示。

 [image:]
 图7-4　复制文件a.txt到b.txt

3．教学视频

完整的教学视频可以参考7-1-2-copy.mp4。

4．补充说明

在Windows 10 IoT Core中也有一个类似Xcopy的升级指令sfpcopy.exe，使用方法和功能也很类似。

7.1.3　ren修改文件名

ren关键字用于重新命名文件或目录名称。

1．语法

ren或rename

rename[drive:][path]filename1 filename2

2．使用样例

rename a.txt c.txt

ren a.txt c.txt

修改文件名a.txt为c.txt，如图7-5所示。

 [image:]
 图7-5　修改文件名a.txt为c.txt

3．教学视频

完整的教学视频可以参考7-1-3-rename.mp4。

7.1.4　cd移动路径

cd或cddir用于移动当前的路径位置。

1．语法

cd[/D][driver:][path]

cddir[/D][driver:][path]

显示或移动当前路径位置。

2．使用样例

cd data

移动当前的路径到根目录data，如图7-6所示。

 [image:]
 图7-6　移动当前的路径到根目录data

3．教学视频

完整的教学视频可以参考7-1-4-cd.mp4。

7.1.5　md新建一个目录

md或mkdir用于创建一个目录。

1．语法

md[/D][driver:][path]

mkdir[/D][driver:][path]

新建一个目录。

2．使用样例

mkdir hello

在当前的路径下创建一个hello目录，如图7-7所示。

 [image:]
 图7-7　在当前的路径下创建一个hello目录

3．教学视频

完整的教学视频可以参考7-1-5-mkdir.mp4。

7.1.6　rd删除一个空目录

rd或rmdir用于删除一个空目录。

1．语法

rmdir[/S][/Q][drive:] path

rd[/S][/Q][drive:] path

删除一个空目录。

在使用过程中要注意，这个命令若未加[/S]的参数时，只能够删除空子目录。

•　[/S]：删除目录树，即删除目录及目录下的所有子目录和文件。

•　[/Q]：在进行删除时，取消系统询问是否删除的确认消息。

2．使用样例

rd hello/s

在当前的路径删除一个hello目录，并连同子目录一并删除，如图7-8所示。

3．教学视频

完整的教学视频可以参考7-1-6-rd.mp4。

 [image:]
 图7-8　删除hello目录并连同子目录一并删除

7.1.7　del删除

del或erase用于删除一个或多个文件。

1．语法

erase[/P][/F][/S][/Q][/A[[:] attributes]] names

del[/P][/F][/S][/Q][/A[[:] attributes]] names

删除一个或多个文件。

•　/F：强制删除只读文件。

•　/S：从所有子目录删除指定文件。

•　/Q：删除时无须确认。

•　/A：根据属性选择要删除的文件。

2．使用样例

del/f/s/q/a c:*.bak

删除所有在c盘的*.bak文档。

del/q c:\folder*.bak

删除folder目录内的所有*.bak文件。

del a.txt

删除所有a.txt文件，如图7-9所示。

3．教学视频

完整的教学视频可以参考7-1-7-dir.mp4。

 [image:]
 图7-9　删除所有a.txt文件

7.1.8　xcopy复制文件或子目录

xcopy用于复制文件或子目录，xcopy指令自DOS 3.2时开始提供，以提供一个更快捷且稳定的文件复制模式。传统DOS的内部指令在复制文件时，会利用标准DOS调用把文件逐一由源路径复制到目的路径；但xcopy会先把要复制的内容复制到内存暂存，等内存填满后再写到目的路径。由于磁盘动作减少了，所以复制的速度得以大幅提高。

1．语法

xcopy a.txt b.txt

即把a.txt复制到b.txt。

xcopy test1 test2

即把test1目录复制到test2目录。

2．使用样例

xcopy CrashDump test1

复制所有CrashDump文件到test1，如图7-10所示。

3．教学视频

完整的教学视频可以参考7-1-8-xcopy.mp4。

7.1.9　move移动文件或子目录

move用于移动文件或子目录。

 [image:]
 图7-10　复制所有CrashDump文件到test1

1．语法

move文件名称　新的文件名称

移动文件，也可用于重新命名一个文件或子目录。

2．使用样例

move test1 test2

移动文件test 1的路径到test 2的路径，如图7-11所示。

 [image:]
 图7-11　移动文件test 1的路径到test 2的路径

3．教学视频

完整的教学视频可以参考7-1-9-move.mp4。

7.1.10　path设置运行档的寻找路径

在磁盘中创建树状目录结构，虽然方便了文件的分门别类整理，但是却带来了另一个问题：如何共享各目录中的文件？每当运行外部命令时，首先要找到该文件的目录，指出相应的路径，总是操作繁琐，于是DOS提供了path命令，以解决文件的共享问题。

1．语法

path[;][盘符1][路径1][;][盘符2][路径2][;...]

设置运行档的寻找路径，只对.COM、.EXE及.BAT文件有效。

2．使用样例

path

显示path路径，如图7-12所示。

 [image:]
 图7-12　显示path路径

3．教学视频

完整的教学视频可以参考7-1-10-path.mp4。

7.1.11　其他指令

1．set

set用于显示、设置和删除环境变量，如时间和提示符等。

从Windows 2000起，通过添加/P参数，set命令可以用于接收命令行的输入。

例如：

set/P Choice=Type your text.

echo You typed:"%choice%"

2．ver

ver用于显示当前的DOS版本信息，如图7-13所示。

 [image:]
 图7-13　显示当前的DOS版本信息

3．more

more用于显示文件内容，文件内容可通过命令行参数指定，如图7-14所示。

 [image:]
 图7-14　显示b.txt的内容

例如要显示b.txt的内容，可以使用以下指令：

more b.txt

例如若想操作多笔文件的数据，并且分页显示，可以用以下指定，如图7-15所示。

dir | more

 [image:]
 图7-15　显示当前的路径内容并且分页显示内容

4．format

format用于格式化软盘或硬盘分割（高阶格式化）。

7.2　Windows 10 IoT Core新增指令

7.2.1　setcomputername设置机器名称

由于大家都是用同样的img格式来打开，即机器名称都会是minwinpc，因此推荐把机器名称修改一下，方法如下。

1．语法

setcomputername名称

移动文件，也能用于重新命名一个文件或子目录。

2．使用样例

setcomputername powenko

修改该机器的名称为powenko，如图7-16所示，请读者自行调整机器的名称。

 [image:]
 图7-16　修改机器的名称为powenko

重新开机之后，就会看到机器的名称变为新的名称了，如图7-17所示。

 [image:]
 图7-17　修改前后的机器名称

3．教学视频

完整的教学视频可以参考7-2-1-setcomputername.mp4。

7.2.2　shutdown重新开机和关机

对于Windows 10 IoT Core的机器，强烈推荐关闭电源前先通过shutdown把机器关闭。否则以笔者的经验来看，很容易发生系统不能打开的情况。

1．语法

shutdown

2．使用样例

shutdown/r/t 0

 [image:]
 图7-18　shutdown重新开机

如果远程控制这个机器，并且重新开机的话，可以通过以下的指令达成，如图7-18所示。

shutdown

在实际应用时，可以通过shutdown指令将机器关闭系统后再拔除电源。

3．教学视频

完整的教学视频可以参考7-2-2-shutdown.mp4。

7.2.3　net user新增账号和口令

对于Windows 10 IoT Core的账号和口令，为了安全起见，建议最好调整和修改，否则每个人的账号和口令都是官方所提供的，很容易引发安全问题。

1．语法

新增账户语法如下：

net user"用户名称""口令"/add

为了安全起见，读者可以创建其他的用户账号。

修改口令语法如下：

net user"用户名称""口令"

2．使用样例

net user powenko2 123456/add

完成之后，就会新增一个powenko2账号，而口令就会改为123456，如图7-19所示。请读者依照实际需求自行调整。

net user Administrator 123456

因为大家都是用同样的影像档来打开，内定口令均是p@ssw0rd，如果想要修改Administrator的口令为123456，可以通过指令达成，完成后这个机器的Administrator账号的口令就会改为123456，请读者自行调整，如图7-20所示。

 [image:]
 图7-19　新增一个powenko2账号，口令改为123456

 [image:]
 图7-20　修改管理器口令

3．教学视频

完整的教学视频可以参考7-2-3-net-user.mp4。

7.2.4　Reg修改网络的Port

Windows 10 IoT Core网络连接的Http的Port内定值都是固定的，为了安全起见，如果要修改为其他值的话，可以通过以下指令：

 [image:]

重新开机后，便能取得新的设置。

7.2.5　网络相关指令

Windows 10 IoT Core保留了全部的网络相关设置，包括：

•　ping.exe：用来测量网络的性能；

•　netstat.exe：测试现在的内网和外网的状态和位置，显示连接统计；

•　netsh.exe：网络的shell指令工作环境；

•　ipconfig.exe：管理DNS和DHCP类型ID；

•　nslookup.exe：显示DNS的信息；

•　tracert.exe：跟踪网络连接；

•　arp.exe：解决硬件地址问题；

•　pathping：测试路由器。

使用样例如下：

1）ping www.google.com

测试连接到www.google.com的网络速度，如图7-21所示。

 [image:]
 图7-21　测试连接到www.google.com的网络速度

2）netstat

测试现在的内网和外往的状态和位置，显示连接统计，如图7-22所示。

 [image:]
 图7-22　显示连接统计

3）netsh

用过路由器读者应该知道路由器里面有个指令缩写，sh int，意思是show interface，如图7-23所示。而在Windows 10 IoT Core中也有了类似界面的工具，叫作netsh。

 [image:]
 图7-23　网络的shell指令工作环境

4）nslookup

以上指令用于显示DNS的信息，如图7-24所示。

 [image:]
 图7-24　显示DNS的信息

5）ipconfig/all

以上指令用于查看全部的网络情况，如图7-25所示。

 [image:]
 图7-25　查看全部的网络情况

6）ipconfig/renew

以上指令用于重新整理连接和设置，如图7-26所示。

 [image:]
 图7-26　重新整理连接和设置

教学视频

完整的教学视频可以参考7-2-5-ipconfig.mp4。

7.2.6　IotStartup引导APP的设置

IotStartup指令可以设置Windows 10 IoT Core机器，引导时要运行的程序。

1．语法

IotStartup参数

引导APP的设置关机。

2．使用样例

1）IotStartup list

列出应用。

2）IotStartup list headed

列出的应用的名称，如图7-27所示。

 [image:]
 图7-27　列出的应用的名称

3）IotStartup list headless

列出安装的无头应用程序。

4）IotStartup list[MyApp]

列出指定的头应用程序。

5）IotStartup add headed[MyApp]

添加指定的应用程序。

6）IotStartup remove headed[MyApp]

删除指定的应用程序。

7）IotStartup startup[MyApp]

指定引导时要运行哪一个应用程序。

3．实际案例

设置HelloWorld程序，当启动机器时，便自动运行该程序，指令如下：

iotstartup list HelloWorld

如果已经安装的话，便会看到该程序的相关消息。

添加HelloWorld，指令如下：

iotstartup add headed HelloWorld

然后重新开机便可，下次机器启动后，便会运行HelloWorld应用程序。

那如何修改回系统原本的DefaultApp应用程序呢？只需运行以下指令：

iotstartup add headed IoTCoreDefaultApp

完成后，重新开机就会恢复原本的设置。

4．教学视频

完整的教学视频可以参考7-2-6-IotStartup.mp4。

5．补充数据

如果对其他的指令感兴趣，可以到以下网址参考更多指令和用法：

https://ms-iot.github.io/content/en-US/win10/tools/CommandLineUtils.htm
第8章
我的第一个Visual C#程序

本章介绍Visual Studio 2015开发环境的功能和使用方法，并且编写实际案例以帮助读者理解。Visual C#程序样例运行结果如图8-1所示。

 [image:]
 图8-1　我的第一个Visual C#程序运行结果

8.1　程序语言与C#概述

C#（念作“C sharp”）是Microsoft的程序语言，用于发展在.NET平台上运作的组件式（component-based）Internet应用程序与服务。当前C#有两大开发环境可以使用，一个是Visual Studio.net的开发环境，另外一个是跨平台开发工具mono。

C#拥有C/C++的强大功能以及Visual Basic简单易用的特性，和C++与Java一样均为面向对象（object-oriented）的程序语言。C#的语法95%几乎与C++相同，但C#的语法其实更像Java，确切地说，C#其实是由C/C++、Visual Basic和Java四种语言融合而成的一种语言。

本节将会介绍并撰写第一个C#程序，读者需要了解其流程与动作。

8.2　创建第一个C#程序

请按照以下的步骤，创建第一个C#的应用程序。

1）运行Visual Studio 2015

请通过程序集，选择并运行Visual Studio 2015，如图8-2所示。

 [image:]
 图8-2　运行Visual Studio 2015

2）新增案例

选择下拉式菜单File→New→Project，如图8-3所示。

 [image:]
 图8-3　选择下拉式菜单新增案例

3）选择Visual C#的Console Application

如图8-4所示，通过新增窗口中的选项，进行如下设置：

（1）选择Installed→Templates→Visual C#；

（2）再选择右边的Console Application（主控制台应用程序）；

 [image:]
 图8-4　选择Visual C#的Console Application

（3）通过Name指定文件名，Location指定文件路径，Solution name设置案例名称；

（4）单击OK按钮确认。

指定文件名称和路径时需要注意：

•　Name：这里指定为Hello。

•　Location：存储此案例文件位置。

•　Solution name：指定本案例的名称。

4）修改程序

因为样例程序运行后即刻就离开，所以在此修改该程序，让其运行后显示Hello World，并等待用户按下按键后，便会离开程序，如图8-5所示。

 [image:]
 图8-5　修改后的情形

样例程序：ch08\8-2-HelloWorld\Hello\Program.cs

 [image:]

程序说明：

•　第1行：“//”符号用于注解说明。

•　第11行：程序引导时，第一个运行的函数。

•　第13行：要显示的文字。

namespace、class、static和void称为关键字，所谓关键字是指语法功能的保留字，具有既定特殊的用法，例如class用来声明与定义类型（class）。C#共有83个关键字，将会在下一章节逐一介绍。

程序中的大刮号{}是一成对单位，意思是该项目内所要做的事情和范围。而小括号（），例如Console.ReadKey（）的小括号中间表示参数，留空表示空的参数列，也就是没有参数。

5）运行程序

运行刚刚的应用程序，只要确认选择Debug（调试）模式后，单击Start按钮。Visual Studio就会自动编辑和运行出结果，如图8-6所示。

 [image:]
 图8-6　选择Start来运行程序

1．运行结果

因为在程序中使用了Console.Write的指令，所以运行程序后会将列出的文字显示在此Console中，结果会看到显示的文字Hello World，并等待用户按下按键后关闭程序，如图8-7所示。

 [image:]
 图8-7　我的第一个应用程序

2．教学视频

完整的教学视频可以参考8-2_VisualCSharp_01_HelloWorld.mp4。

8.3　调试

如果要测试程序并设置中断点，只要在代码最前方“淡蓝色”的本地单击，便会出现红色的圆点，这样程序进入调试模式后，当运行到中断点时，就会停下来，如图8-8所示。

 [image:]
 图8-8　单击前面的“淡蓝色”本地来设置程序的调试中断点

同样运行一般程序，确认选择Debug模式，单击Start按钮，Visual Studio就会自动编辑和运行，只要遇到中断点就可以进入调试模式，如图8-9所示。

 [image:]
 图8-9　程序停止在中断点上

在调试模式中，相关变量的数据值可以直接在程序上看到，将鼠标停留在变量上方，就可以即时看到变量的当前值，如图8-10所示。

另外也可以在Visual Studio的左下方Locals中看到所有变量当前的数值，如图8-11所示。

 [image:]
 图8-10　查看变量的当前值

 [image:]
 图8-11　Locals查看变量的当前值

在Visual Studio的右上方的按钮，是调试用途的相关功能，如图8-12所示，从左至右分别是：

 [image:]
 图8-12　调试相关消息和调试相关的按钮选项

（1）暂停；

（2）停止调试模式；

（3）程序重新运行；

（4）更新程序画面；

（5）继续运行；

（6）进入该函数中；

（7）运行下一行指令；

（8）回到上一层的函数。

如果要结束程序并离开调试模式的话，单击“停止调试模式”按钮。

教学视频

完整的教学视频可以参考8-3_VisualCSharp_01_Debug.mp4。

8.4　程序错误的修复方法

写程序难免都会出现bug（错误），除了逻辑上的错误之外，最常发生的是由于打错字而导致编译时出现的错误，从而不能顺利创建出运行档。

最常见的是情形是，在开发程序时，因为程序错误而出现的红线，只要把鼠标转到错误的上方，系统便会提示错误的原因，这里推荐开发者发现错误时尽早修复，如图8-13所示。

另外当程序编译时，如果发生错误，便会出现错误的列表窗口，此时，只要单击错误便会打开并指定出错误的行数和错误的原因，只要了解到错误的原因，就能顺利修复，如图8-14所示。

程序的运行档如果编译成功的话，可以在“案例数据夹的根目录”\“案例数据夹”\...\bin\Debug（或Release，依模式选项而定）找到该运行档，如图8-15所示。

 [image:]
 图8-13　程序错误

 [image:]
 图8-14　调试相关消息

教学视频

完整的教学视频可以参考8-4_VisualCSharp_01_FixError.mp4。

 [image:]
 图8-15　运行档的位置

第9章
C#程序语言

本章将介绍C#程序语言基本概念和OOP面向对象，使用Visual Studio Community 2015开发C#程序语言的样例如图9-1所示。

 [image:]
 图9-1　使用Visual Studio Community 2015开发C#程序语言

9.1　注释的使用方法

在编写程序时，出于帮助团队其他成员理解，或日后维护方便的目的，经常需要使用注释的写法。

1．语法

注释有两种写法：

（1）单一行数注释使用“//”符号。

（2）多行数的注释使用“/”和“*/”符号。

•　使用两个斜线“//”把要写的文字注释，写在这两个斜线之后，例如，//你好。

•　使用/*...*/时…代表的文字称为注释。当编译器遇到注释时会跳过注释文字不做任何编译，因为这些注释是写给开发者看的，计算机无需理会。

2．使用样例

（1）单独一行的文字注释：

//文字注释

（2）多行以上的注释写法：

/*

文字注释

*/

所谓的注释就是在程序中帮助理解的文字，凡是注释文字即单行连续两个斜线之后的文字，或是多行斜线和星号范围间的文字，都不属于程序运行的部分。

9.2　System.Console.Write和System.Console.WriteLine

1．System.Console.Write

1）语法

Namespace: System

打印Console.Write Method（String）

显示字符串到消息窗口中。

其中，String表示要打印的字符串。

2）使用样例

在XCode的Log消息窗口中，打印出How are you的字符串。

Console.WriteLine("How are you");

{0}表示显示后面变量中的第0个数据。

Console.WriteLine("Hi!{0}","Powen");

Console.WriteLine("Pi is{0}",3.1415);

2．System.Console.WriteLine

1）语法

Namespace: System

打印Console.WriteLine Method（String）

显示字符串到消息窗口中，显示完毕之后再调到下一行。

其中，String表示要打印的字符串。

2）使用样例

在Visual C#的消息窗口中，打印出How are you的字符串。

Console.WriteLine("How are you");

{0}是显示，后面的变量中，第0个个数据。

Console.WriteLine("Hi!{0}","Powen");

Console.WriteLine("Pi is{0}",3.1415);

3．实际样例

样例程序：ch09\9-2\ConsoleWrite\Program.cs

 [image:]

在以上程序中，比较特别的是在第18行和19行中是否要将System当作类型变量，由于在第6行中使用了using System的定义，这就是在省掉之后函数后还可以再用System的原因。

 [image:]
 图9-2　运行结果

4．运行结果

本样例运行结果如图9-2所示。

5．教学视频

完整的教学视频可以参考9-2-CSharp_Write.mp。

9.3　数据类型

C#的数据模式基本上和C语言是一样的，C#实值模式有以下几种，可以通过以下内容分析每一个数据模式的差异、实际用法和数据的表示范围。

9.3.1　byte和sbyte

byte关键字代表整数类型，将8个字节合成一个字节（byte），是不带正负号的8位元整数，另外sbyte关键字代表一种带正号的8位元整数，可存储的值如表9-1所示。

 表9-1　byte和sbyte关键字

 [image:]

1．byte

1）语法

byte 变量名=初始值；

数据声明为正整数byte的变量，并使用关键字（keyword）byte。

2）使用样例

byte value1=2;

2．sbyte

1）语法

sbyte 变量名=初始值；

数据声明为正负数sbyte的变量，并使用关键字sbyte。

2）使用样例

sbyte value1=2;

9.3.2　short和ushort

short关键字代表一种整数类型，是带正负号的16位元整数，另外ushort关键字代表带正号的16位元整数，可存储的值如表9-2所示。

 表9-2　short和ushort关键字

 [image:]

1．short

1）语法

short 变量名=初始值；

数据声明为正负数short的变量，并使用关键字short。

2）使用样例

short value1=2;

2．ushort

1）语法

ushort 变量名=初始值；

数据声明为正整数ushort的变量，并使用关键字ushort。

2）使用样例

ushort value2=2;

9.3.3　int

在C#程序中可以通过数据类型的定义来决定变量的数据范围。首先列出常用的几个数据模式，并把数据范围也一并整理如表9-3所示。

 表9-3　int和uint关键字

 [image:]

1．int

1）语法

int 变量名=初始值;

数据声明为有正负数int的变量，并使用关键字int。

2）使用样例

int value1=-2;

2．uint

1）语法

uint 变量名=初始值；

数据声明为正整数uint的变量，并使用关键字uint。

2）使用样例

uint value1=2;

9.3.4　long

长整数long，是有正负号且比int大的整数数据类型。如果只需要整数，可以使用ulong，long一般是64位元，如表9-4所示。

 表9-4　long关键字

 [image:]

1．long

1）语法

long 变量名=初始值；

数据声明为有正负数long的变量，并使用关键字long。

2）使用样例

long value1=-2;

2．ulong

1）语法

ulong 变量名=初始值；

数据声明为纯正整数ulong的变量，并使用关键字ulong。

2）使用样例

ulong value1=2;

9.3.5　float

float关键字代表可存储32位元浮点数值的简单类型。表9-5列出了float类型的精确度和大约范围，占用4个bytes（也就是32bits）。使用浮点数时要注意，输入与存储的值不一定精确，且计算的结果会有误差。所以在使用时如果要求数据百分之百准确，推荐使用int或long。

 表9-5　float关键字

 [image:]

1）语法

float 变量名=初始值；

2）使用样例

float value1=3.4028235E+38f;

float value2=3.1415926f;

由于指派运算符右边的实数常值默认为double，因此请在数字后面使用f或F，来指定初始化float变量。

9.3.6　double

double变量以带符号的IEEE 64位（8字节）双精度浮点数形式存储，取值范围为-1.7×10308～1.7×10308。使用浮点数时要注意，输入与存储的值不一定精确且计算的结果会有误差。如果要求数据百分之百准确，推荐使用int或long。double关键字代表可存储64位元浮点数值的简单类型，表9-6列出了double的精确度和大约范围。

 表9-6　double关键字

 [image:]

1）语法

double 变量名=初始值；

2）使用样例

double value1=3.4028235E+38;

double value2=3.1415926;

9.3.7　decimal

decimal关键字表示128位元的数据类型。decimal类型的精确度较高且范围较小，因此非常适合财务和金融计算。表9-7列出了decimal类型的大概范围和精确度。

 表9-7　decimal关键字

 [image:]

1）语法

decimal 变量名=初始值；

2）使用样例

decimal value1=1200.5m;

如果要将数值实数常值视为decimal处理，请使用后置字符m或M。

9.3.8　bool

bool（布尔）代数只能存储以下两个数据：

•　true（真）；

•　false（假）。

布尔代数只有true和false两个数值，bool关键字是System.Boolean的别名，用于声明存储布尔值true和false的变量。

1）语法

bool 变量名=初始值；

Boolean 变量名=初始值；

2）使用样例

bool value1=true;

bool value2=false;

9.3.9　定义数据类型

下面介绍数据类型的整数和浮点数的处理方法，可通过以下程序来了解实际开发程序时的编写方法。

1．样例程序

样例程序：ch09\9-3-9\datatype\datatype\Program.cs

 [image:]

 [image:]
 图9-3　运行结果

2．运行结果

本样例的运行结果，如图9-3所示。

3．教学视频

完整的教学视频可以参考9-3-9-datatype.mp4。

9.3.10　char

char关键字用于声明.NET Framework使用Unicode字符表示System.Char结构的运行个体。char对象的值为16位元数，注意可以使用Unicode字符，也就是可以记录单个中英字，这是跟其他程序语言相比特别的地方。char关键字的范围如表9-8所示。

 表9-8　char关键字

 [image:]

1）语法

char变量名='初始值';

2）使用样例

 [image:]

9.3.11　string

string（字符串）也是关键字之一。程序中经常需要处理大量的字符串，因此字符串有专门的表示方法，即用双引号注明的内容就是字符串。

1）语法

string变量名="初始值";

2）使用样例

 [image:]

另外还有一个特别的常量null，变量指向null就表示该对象变量并没有设置任何数据，如果没有其他的变量指向该对象，该对象就会被资源回收者（garbage collector）进行资源回收，以挪出内存空间给其他程序利用。

9.3.12　文字数据类型

下面将介绍字符和字符串的处理方法，可通过以下程序来了解实际开发程序时的编写方法。

1．样例程序

样例程序：ch09\9-3-12\StringAP\StringAP\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-4所示。

 [image:]
 图9-4　运行结果

3．教学视频

完整的教学视频可以参考8-3-12-string.mp4。

9.4　数学运算

在C#中如何进行数学运算？基本上和其他语言是一样的，可以通过以下的程序，看出其使用用法。

 表9-9　数学运算符号

 [image:]

1．样例程序

样例程序：ch09\9-4\Math\Math\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-5所示。

3．教学视频

完整的教学视频可以参考9-4-Math.mp4。

 [image:]
 图9-5　运行结果

9.5　判断式

9.5.1　逻辑判断

C#语言的逻辑判断与一般的计算机逻辑用法是一样的，计算机内部数据是以0和1来存储的，这种只有0和1两种状态的系统，相当于二进制系统，逻辑运算是数学家布尔（Boolean）根据数位逻辑闸发展出来的，而程序的判断也将会依照判断出的结果，得出不同的响应，逻辑判断的符号如表9-10所示。

 表9-10　逻辑判断

 [image:]

1．样例程序

样例程序：ch09\9-5-1\BoolAndrOr\BoolAndrOr\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-6所示。

 [image:]
 图9-6　运行结果

3．教学视频

完整的教学视频可以参考9-5-1-Boolean.mp4。

9.5.2　if条件判断

流程控制语句是编程的基本语句，通过各种条件判断与循环重复运行语法，可以令程序回应不同的状况而作出不同的响应。if条件判断式的示例如表9-11所示。

 表9-11　if条件判断式

 [image:]

if语句与比较运算符一起用于检测某个条件是否达成，如某输入值是否在特定值之上等。

if语句的语法如下：

 [image:]

本程序测试某变量的值是否大于20。当大于20时，进行一些动作。

换言之，只要if判断式的结果（称之为测试运算式）为真，则运行下一个段行的语句（称之为运行语句）；若为假，则跳过。

1．语法

以下是if…then…else流程控制可能出现的几种语法。

1）方法1

 [image:]

 [image:]

3）方法3

 [image:]

2．样例程序

样例程序：ch09\9-5-1\ifAp\ifAp\Program.cs

 [image:]

程序说明：

•　第6～9行：判断式方法一if…；

•　第11～17行：判断式方法二if…else…；

•　第19～30行：判断式方法三if…else if…else…。

3．运行结果

本样例的运行结果，如图9-7所示。

 [image:]
 图9-7　运行结果

4．教学视频

完整的教学视频可以参考9-5-2-if.mp4。

9.5.3　switch条件判断陈述式

switch是swift提供的条件判断陈述式，它只能比较数值或字符，使用适当的话，可以比if判断式更有效率。if…else if…else多重选择的缺点是需要很多个条件，程序需要进行很多个条件判断；而switch陈述（switch statement）的条件为一个常量（constant）值，程序可自动寻找符合的case。注意switch和case都是关键字。

1．语法

实际的程序编写时常会遇到多种选择情况，使用一连串if-else来表示是一个方法，但是以运行效率来说，需要一一判断效率较慢，所以C#提供了一项特殊的控制结构，让开发者够有效且精简地处理程序。

首先在switch的判断式中放置要取出数值的变量，取出数值之后，程序会开始与case中所设置的数字或字符作比较，如果符合就运行该case中的陈述句，之后离开switch块，如果没有符合的数值或字符，则会运行default后的陈述句，default不一定需要，可按照实际情况省去这个部分。注意：break的意思是离开switch判断式。

语法如下：

 [image:]

C#如何作逻辑判断？通过以下的程序就能看出其使用方法。

2．样例程序

样例程序：ch09\9-5-3\SwitchAp\SwitchAp\Program.cs

 [image:]

3．运行结果

本样例的运行结果，如图9-8所示。

 [image:]
 图9-8　运行结果

4．教学视频

完整的教学视频可以参考9-5-3-switch.mp4。

9.6　循环

循环处理语法是编程的基本语法，通过各种条件判断与循环重复运行语法，可以令程序回应不同的状况而作出不同的响应，C#的循环处理，有以下几种方法。

•　for循环；

•　while循环；

•　do…while循环；

•　break、continue和goto；

•　foreach循环。

9.6.1　for

for循环用于进行重复性的工作，典型的for循环会进行下列三项基本任务：

（1）控制变量初始设置；

（2）循环结束条件判断；

（3）调整控制变量的值。

关键字for构成C#语言中循环的一种，常用于有确定重复次数的循环。

1．语法

for循环语法结构如下：

 [image:]

1）样例1

 [image:]

2）样例2

 [image:]

2．样例程序

以下程序通过循环的方法将同样的输出动作，通过变量i的变化，作出循环的判断，并处理同样的动作。

样例程序：ch09\9-6-1\forAp\forAp\Program.cs

 [image:]

3．运行结果

本样例的运行结果，如图9-9所示，共显示三次内容，到第四次的时候便会离开循环，结束程序。

4．教学视频

完整的教学视频可以参考9-6-1-for.mp4。

9.6.2　goto

在程序中使用goto语句可以强制改变程序运行的步骤，一般而言，goto的指令应尽量少用，否则程序跳转过于频繁会找不到现在程序的运行情况，但是C#语言还是提供了该功能。

 [image:]
 图9-9　for循环的运行结果

1．语法

 [image:]

2．样例程序

通过以下样例可以看到本程序应该会打印出三种水果，但是在程序中因为使用了goto方法，所以输出结果会少掉香蕉（Banana）。

样例程序：ch09\9-6-2\gotoAp\gotoAp\Program.cs

 [image:]

3．运行结果

本样例的运行结果，如图9-10所示。

 [image:]
 图9-10　goto循环的运行结果

4．教学视频

完整的教学视频可以参考9-6-2-goto.mp4。

9.6.3　while

while语法用于重复运行一段程序，当关系操作数的条件为真时，会不断地重复运行while后所列的语句，直到条件变为否定时才停止。在循环中要做的事情之一，是必须要有能改变判断语句的程序，否则while循环将永远不会结束。

1．语法

 [image:]

判断的条件类似于if的写法，如果符合条件就会运行一次，直到运行到不符合判断的条件时离开循环。

2．样例程序

样例程序：ch09\9-6-3\whileAp\whileAp\Program.cs

 [image:]

3．运行结果

本样例的运行结果，如图9-11所示，会显示三次内容，到了第四次的时候，因为变量i等于3，不符合i＜3的判断式，便会离开循环，结束程序。

 [image:]
 图9-11　while循环的运行结果

4．教学视频

完整的教学视频可以参考9-6-3-while.mp4。

9.6.4　do…while

do…while循环语法用于重复运行一段程序，…表示循环程序。while循环会一直进行，直到括号内的判断式为否。while循环和do…while循环最大的差别是：do…while循环语法不管如何都会运行一遍要做的事情，之后再去判断是否再进行下一次，所以说do…while循环语法至少会运行一遍，判断的条件类似于if的写法，如果符合的话就会运行一次，直到进行到不符合判断的条件时，就会离开。

1．语法

 [image:]

2．样例程序

样例程序：ch09\9-6-4\DoWhileAp\DoWhileAp\Program.cs

 [image:]

3．运行结果

本样例的运行结果，如图9-12所示，会显示三次内容，并且当第三次结束时，因为变量i等于3，不符合i＜3的判断条件，便会离开循环，结束程序。

4．补充数据

读者可以试着修改一下程序，如图9-12所示，即使在判断的变量i初始值设置的数字已经比3还大，该程序还是会运行一次，这是因为do…while的判断是先运行动作，然后再判断是否符合再运行一次循环的条件，如图9-13所示。

5．教学视频

完整的教学视频可以参考9-6-4-DoWhile.mp4。

 [image:]
 图9-12　do…while的运行结果

 [image:]
 图9-13　先运行后判断的do…while循环

9.7　数组

9.7.1　一维矩阵array

在程序语言之中，数组是一种常用的数据结构，它可以让代码表现更为简单，开发速度更快，C#语言也像其他的程序语言一样，提供了数组。什么是数组？从定义上来说，数组是一种存储大量同性质的数据的连续的内存空间，只要使用相同的变量名称，便可以连续地访问每一笔数据。由于数组元素的方便性，使得大多数的程序中都可以看到数组的功能。数组是一个带有多个数据且模式相同的元素集合。

1．语法

数据模式[]数组名称；

2．样例程序

在此样例中，读者可以看到通过[]的方法，把相同数据模式的数据被放在了一起。

样例程序：ch09\9-7-1\ArrayAp\ArrayAp\Program.cs

 [image:]

3．运行结果

本样例的运行结果，如图9-14所示。

 [image:]
 图9-14　一维矩阵array的运行结果

4．教学视频

完整的教学视频可以参考9-7-1-Array.mp4。

9.7.2　二维矩阵和多维矩阵

二维矩阵的处理和一维矩阵非常类似，只要把变量[]变为[，]就是二维矩阵，中间用“，”分隔了两个变量，第一个变量设置行数，第二个变量设置列数，本节将通过实例来介绍二维矩阵的处理方法。

1．样例程序

样例程序：ch09\9-7-2\Array2DAp\Array2DAp\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-15所示。

 [image:]
 图9-15　二维数组的运行结果

3．补充数据

对于三维矩阵，只要把变量设为[，，]形式即可，如下所示：

int[,] numbers=new int[2, 3, 2]{{{1,2},{3,4},{5,6}},{{7,8},{9,10},{11,12}}};

4．教学视频

完整的教学视频可以参考9-7-2-Array2D.mp4。

9.7.3　foreach

本节将介绍特别用在矩阵上的循环——foreach。foreach会取得矩阵的内容，并逐一显示每一笔数据，以查看所需的信息。

可以在foreach块内的使用break中断循环，或使用continue跳至循环内的下一个反复运算。foreach循环也可以由goto、return或throw陈述式结束。

1．样例程序

样例程序：ch09\9-7-3\foreach\foreach\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-16所示。

 [image:]
 图9-16　foreach的运行结果

3．教学视频

完整的教学视频可以参考9-7-3-foreach.mp4。

9.7.4　Dictionary

C#有个可以用关键字和值的方法存储数据的类型——Dictionary。是一般的数组只用数字当作取得数据的单位，但在Dictionary可以用名称作为数组的访问单位，并可以通过数据转换为文字，从而存储多样化的数据类型。

1．样例程序

样例程序：ch09\9-7-4\DictionaryAp\DictionaryAp\Program.cs

 [image:]

2．运行结果

通过本样例，可以看出使用Dictionary矩阵定义和取得数据时，可以不用数字来指定，而能够通过文字来设置，并且不必设置笔数大小，本样例的运行结果，如图9-17所示。

 [image:]
 图9-17　Dictionary的运行结果

3．教学视频

完整的教学视频可以参考9-7-4-Dictionary.mp4。

9.8　class类型

9.8.1　创建自己的class类型

在C#中如何添加新的类型？本节将通过以下的步骤，逐步地添加新的类型和函数。

1．主要步骤

1）新增类型

打开程序案例后，在案例上面右击，选择Add→Class...，如图9-18所示。

 [image:]
 图9-18　案例上右击选择Add→Class...

2）设置C#class

选择Visual C# Items→Class，并设置class的名称为Person.cs后，单击Add按钮完成整个新增class的流程，并到下一步，如图9-19所示。

2．样例程序

接下来，打开Person.cs，并修改程序，添加Fun1函数，完成的程序如下。

样例程序：ch09\9-8-1\ClassAp\ClassAp\Person.cs

 [image:]
 图9-19　设置class

 [image:]

程序说明：

•　第10行和第15行：定义Person类型的内容。

•　第11行：void Fun1（）定义函数名称为Fun1，回传值为void，即没有回传值，并且使用public（公开）的方法定义此函数。

样例程序：ch09\9-8-1\ClassAp\ClassAp\ClassA p.cs

 [image:]

3．运行结果

主程序Main声明Person类型并且指到类型变量，通过该类型变量运行Person类型中Fun1函数，并把该函数中的数据打印出来，如图9-20所示。

 [image:]
 图9-20　运行自定义的class类型

4．教学视频

完整的教学视频可以参考9-8-1-class.mp4。

9.8.2　类型函数和参数

C#中针对函数和参数的设计有独特的方法，请读者仔细留意其中的差异。

类型函数和参数的写法如下：

（1）没有参数的写法：void Fun1（）；

（2）带1个参数的写法：void Fun2（int val1,）；

（3）带2个参数的写法：void Fun3（int val1, int val2）；

（4）带2个参数并回传：int Fun4（int val1, int val2）。

1．样例程序

本样例延续上一节的样例继续修改调整。

样例程序：ch09\9-8-2\ClassAp\ClassAp\Person.cs

 [image:]

程序说明：

•　第14行：public void Fun2（String iStr）定义函数名称为Fun2，并将字符串参数iStr，回传值为void，即没有数据回传，该函数为public函数。

•　第22行：public int Fun4（int val1, int val2）定义函数名称为Fun4，将两个整数int参数带入，分别是int val1和int val2，回传值为int。

下面来看Program.cs是如何调用刚刚的函数的，使用的方法如下。

样例程序：ch09\9-8-2\ClassAp\ClassAp\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-21所示。

 [image:]
 图9-21　运行并传入不同的参数

3．教学视频

完整的教学视频可以参考9-8-2-classMethod.mp4。

9.8.3　object类型

C#的object的类型运行时类似于void*，称为C#的消息传递，但可以把object当作万用的类型指标。在C#的统一类型系统中，所有类型（预先定义和用户定义、参考类型和实值类型）都直接或间接地继承自object。可以将任何类型的值指派给object类型的变量。

object可以用在不确定的数据类型上，但在使用上要小心，以免因为数据转换不正确，导致程序死机。

1．样例程序

本样例延续上一节的样例继续修改调整。

样例程序：ch09\9-8-3\ClassAp\ClassAp\Person.cs

 [image:]

在实际使用上，可将object转换成原本的数据类型并使用。

样例程序：ch09\9-8-3\ClassAp\ClassAp\Program.cs

 [image:]

2．运行结果

通过object样例程序可以看到，只要是通过object指向数据类型，并且确认转换之前和之后，使用的是同一种数据类型的话，就可以把数据顺利地作转换，如图9-22所示。

3．教学视频

完整的教学视频可以参考9-8-3-object.mp4。

9.8.4　属性

在C#程序语言中，可以通过get和set的来设置类型的属性和关键字名称，在通过set和get的指定，就能存储和读入使用。这个关键字类似于方法的输入参数，而名称会参考用户机程序，指派给指定属性的值。

 [image:]
 图9-22　运行并返回传object的运行结果

•　get关键字会在捕获属性或索引子项目值的属性或索引子（Indexer）中定义“访问子（Accessor）”方法。

•　set关键字会在指派属性或索引子项目值的属性或索引子中定义“访问子”方法。

1．样例程序

本样例延续上一节的样例继续修改调整，在下列样例中，Person类型中名为Web的属性会使用该方法，将新字符串指派给支持变量WebString。从代码的角度来看，该动作就能指派属性。

样例程序：ch09\9-8-4\ClassAp\ClassAp\Person.cs

 [image:]
 [image:]

使用属性的方法可通过以下程序看到，设置和取得属性的动作，就如同一般类型的变量的方法一样。

样例程序：ch09\9-8-4\ClassAp\ClassAp\Program.cs

 [image:]

2．运行结果

本样例运行的结果，如图9-23所示。

 [image:]
 图9-23　属性的运行结果

3．教学视频

完整的教学视频可以参考9-8-4-property.mp4。

9.8.5　Class类型——继承

面向对象编程的三个主要特性：

•　继承（inheritance）；

•　封装（encapsulation）；

•　多态（polymorphism）。

继承可让您创建新类型（class）以重复使用、扩充和修改其他类型中定义的行为。成员被继承的类型称为基底类型“父类型”（base class），而继承这种成员的类型称为“衍生类型”或称“子类型”（derived class）。子类型只能有一个父类型。

所谓继承是指子类型继承父类型后，就会自动获得父类型的特性。如果子类型继承了一个以上的父类型，则称为Multiple Inheritance（多重继承）。C#为了避开多重继承的复杂性只允许单一继承，即C#只能有一个父类可以继承，不能多重继承。

继承在C#里比较像Java。当需要扩展类型时，只需在定义时放上父类型的名称即可。

在C#中如何继承？可以通过以下的程序看出其方法，把刚刚的程序修改如下。

本样例延续上一节的样例继续修改调整，首先请新加一个Class类型，可以参考第9.8.1节内容，将该类型名称设置为Student，如图9-24所示。

 [image:]
 图9-24　配置Class名称为Student.cs

（1）在案例上右击，选择New File...。

（2）选择Visual C# Items中的Class，单击Next按钮到下一步。

（3）设置Class的名称为Student.cs，单击Add按钮，完成整个新增Class的流程。

1．样例程序

确认新创建的Student类型所继承的是Person类型。

样例程序：ch09\9-8-5\ClassAp\ClassAp\Student.cs

 [image:]

被继承的类型，完全不用修改。

样例程序：ch09\9-8-5\ClassAp\ClassAp\Person.cs

 [image:]

使用的类型方法和之前一样，通过以下程序可以看到，因为继承的关系，Student类型可以直接使用父类型Person的所有公开public函数、变量和属性。

样例程序：ch09\9-8-5\ClassAp\ClassAp\Program.cs

 [image:]

可以看到子类型Student继承之后，可以完全使用父类型的相关的public和protected的函数、变量和属性，另外子类型Student也可以自行设置新的函数、变量和属性，如第8行的StudentID变量。

2．运行结果

本样例的运行结果，如图9-25所示。

 [image:]
 图9-25　因为继承的关系，子类型可以使用父类型的函数

3．教学视频

完整的教学视频可以参考9-8-5-oop.mp4。

4．扩展学习

继承类型只能继承父类型的public和protected的函数、变量和属性，如果在程序中加上以下代码：

value1.WebString="http://www.powenko.com";

程序就会报错，并且提示消息显示不能使用该变量，这是因为WebString是private变量。

在该练习中也可以看出public和private的差异，如图9-26所示。

 [image:]
 图9-26　private变量不能继承

9.8.6　this的用法

C#中同一个类型，如何调用其他的函数和变量？何谓this函数通过this调用本身class的其他的函数，将会发现，有时候即使没有写上this，系统在编译的时候也会自动地指向本身的类型数据，所以在C#中，有没有写上this关键字其实都可以。可以通过本样例学习this的用法。

1．样例程序

延续上一节样例继续修改如下。确认新创建的Student类型所继承的是Person类型。

样例程序：ch09\9-8-6\ClassAp\ClassAp\ClassAp.cs

 [image:]
 [image:]

对主程序来说，和之前样例一模一样。

样例程序：ch09\9-8-6\ClassAp\ClassAp\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-27所示。

3．教学视频

完整的教学视频可以参考9-8-6-this.mp4。

 [image:]
 图9-27　通过this功能调用其他的函数

9.8.7　base调用父类函数——virtual与override

本样例将会说明：在子类型中如何调用父类型；如果函数名称一样的话，父类型与子类型的关系；在C#中如何覆盖和调用父类函数。

1．样例程序

本样例延续上一节的样例继续修改调整。

这里在子类型中新加了两个新函数，特意命名为与父类型的一样，准备作覆盖父类函数的功能，当然也可以取其他的函数名称，以让该子类型拥有自己独特的函数。

样例程序：Lch09\9-8-7\ClassAp\ClassAp\Person.cs

 [image:]
 [image:]

样例程序：ch09\9-8-7\ClassAp\ClassAp\Student.cs

 [image:]

程序说明：

第15行：通过base关键字，来调用父类型的函数，所以可以看到函数因为有base.Info，所以会在运行了父类的Info（）函数后，继续运行下一行的动作。

样例程序：ch09\9-8-7\ClassAp\ClassAp\Program.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-28所示，因为继承和base的关系调用父类的函数，所以就能先运行父类的函数。

 [image:]
 图9-28　因为继承和base的关系调用父类的函数

3．教学视频

完整的教学视频可以参考9-8-7-base.mp4。

4．补充数据

C#程序语言比较特别的地方：被调用的父类函数前面需要加上virtual关键字，而覆盖的子类型的函数，需要在函数前面加上override关键字。

9.8.8　public、protected和private关键字

public、protected和private关键字用于声明类和成员的可见性。

C#语言的public, protected和private特点如下：

1）public

public继承是最常见的继承方式。public成员可以被任何类型使用，在语法上public继承的意义是让子类型直接全部继承父类型，而且子类别可以直接存取父类型中有关于public的信息。

2）private

private成员仅限于本类型使用，其他类型都无法存取和使用，包括子类型。

3）protected

protected成员仅限于本类型和继承的子类型使用，其他类型都无法存取和使用。

1．样例程序

本样例延续上一节的样例继续修改调整，可以通过该样例了解public、protected和private之间的不同。

样例程序：ch09\9-8-8\ClassAp\ClassAp\Person.cs

 [image:]
 [image:]

在子类型中只能使用public和protected变量、函数和属性。

样例程序：ch09\9-8-8\ClassAp\ClassAp\Program.cs

 [image:]

其他使用上只能使用public的变量、函数和属性。

样例程序：ch09\9-8-8\ClassAp\ClassAp\Student.cs

 [image:]

2．运行结果

本样例的运行结果，如图9-29所示。

 [image:]
 图9-29　public、protected和private样例的执行效果

3．教学视频

完整的教学视频可以参考9-8-8-public-protected-private.mp4。
第10章
我的第一个Windows 10 IoT Code程序

本章使用Windows Visual Studio 2015来开发和运行Windows 10 IoT Core的程序。本章完成作品如图10-1所示。

 [image:]
 图10-1　本章完成作品

10.1　开发Windows 10 IoT Core程序

物联网IoT最主要的目的就是控制周边设备，所以本节将会介绍如何运行程序，并且在Windows 10 IoT Core的环境中把程序上传到树莓派2上，然后运行并控制上面的LED灯。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　一个220Ω电阻；

•　面包板；

•　两条接线。

硬件接线如表10-1所示。

 表10-1　树莓派2引脚接线

 [image:]

样例程序中sample\chA\a-14-1.fzz硬件接线设计图，如图10-2所示。

 [image:]
 图10-2　硬件接线

树莓派2的硬件引脚图，如图10-3所示，请小心引脚的号码。

 [image:]
 图10-3　树莓派2的硬件引脚图

1．主要步骤

1）硬件接线和开机

首先把树莓派2关机，并把硬件接线依照图10-1连接后，再将Windows 10 IoT Core开机，并确认树莓派2的网络IP位置。

2）样例程序

可以参考浏览器官方的样例程序，如图10-4所示，网址是http://ms-iot.github.io/content/en-US/win10/samples/Blinky.htm或参考本书的样例Sample\ch09\1\。

 [image:]
 图10-4　样例程序

3）打开样例案例

下载后，选择Blinky\CS\Blinky，打开Visual Studio 2015，如图10-5所示。

4）打开设置程序

在Visual Studio 2015之中的Blink案例中，需要先指定此程序想要烧录的目的路径，右击案例，在出现的选项中选择Properties进行设置，如图10-6所示。

5）设置编译环境

在设置窗口，完成以下的设置，如图10-7所示。设置结束后程序可以在树莓派2上运行。

（1）选择Debugt选项。

（2）设置Configuration为Activie（Debug）及Platform为Activie（ARM），保证调试器是编译ARM的CPU，并可以在ARM运行。

 [image:]
 图10-5　打开样例案例

 [image:]
 图10-6　打开设置程序

 [image:]
 图10-7　设置编译环境

（3）指定Target device为Remote Machine及Remote machine为实际树莓派2的IP位置。

（4）关闭User authentication（用户认证）。

（5）勾选Unistall and then re-install...用于确认安装自己最新的开发程序。

6）运行

接下来，通过Visual Studio的工具栏，进行以下的操作，如图10-8所示。

 [image:]
 图10-8　运行

（1）选择Debug模式。

（2）选择ARM模式。

（3）选择Remote Machine模式，并单击以运行和开始进行安装。

2．运行结果

顺利运行程序后，树莓派2的GPIO所接到的LED灯，每0.5s就闪烁一次，实际硬件如图10-9所示。

树莓派2的屏幕会出现如图10-10所示的画面，每隔0.5s红、白颜色闪烁。

如果要程序停止运行的话，回到PC上的Visual Studio的工作栏，单击红色正方形按钮即可。

3．教学视频

完整的教学视频可以参考10-1-RPI2_Win10_12_Win10IoT_Blink.mp4。

 [image:]
 图10-9　完成

 [image:]
 图10-10　完成

硬件运行的情况可以参考10-1-RPI2_Win10_13_Win10IoT_Blink_Hardware.mp4。

10.2　Windows 10 IoT Core数位输出程序

紧接上一节所看到的在树莓派2控制数位输出开关的IoT物联网的样例程序，本程序可用Visual Studio C++和Visual Studio C#来开发，整个程序逻辑如图10-11所示。

1．样例程序

样例程序：ch010\10-1\Blinky\CS\Program.cs

 [image:]
 图10-11　程序逻辑

 [image:]
 [image:]

程序说明：

•　第19行：软件引导时，第一个调用的函数。

•　第32行：设置GPIO引脚初始化动作。

•　第50行：定时器时间到时所调用的函数。

在不修改硬件接线的情况下，接下来尝试修改以上程序，使得每秒闪烁10次，也就是每0.1s改变GPIO5引脚的状况，同时使得LED灯发生明暗改变。

样例程序：ch10\10-2\Blink\CS\\MainPage.xaml.cs

 [image:]

程序说明：

•　第6行：新增变量，设置计时器时间。

•　第7行：修改屏幕上的文字。

•　第8行：指定计时器时间为0.1s。

2．运行结果

顺利运行程序后，树莓派2的GPIO所接到的LED灯，每0.1s就闪烁一次，实际硬件如图10-12所示。

 [image:]
 图10-12　完成

树莓派2的屏幕会出现如图10-13所示的画面，每0.1s红、白颜色闪烁，并且上面的文字也因为程序的关系而有所不同。

 [image:]
 图10-13　运行的画面

3．教学视频

完整的教学视频可以参考10-2-RPI2_Win10_14_Win10IoT_VS_ModifyCode.mp4。

硬件运行的情况可以参考10-2-PI2_Win10_15_Win10IoT_VS_ModifyCode_Demo.mp4。

10.3　编写Windows 10 IoT Core程序

本节将会从无到有完成一个IoT的案例，主要目的是让读者了解如何创建一个全新的案例并加上IoT的控制功能。

10.3.1　创建新案例并添加IoT函数库

下面介绍如何添加相关函数库和添加UI画面上的控制组件，并运行在Windows环境中。

1．主要步骤

1）打开Visual Studio案例

打开Visual Studio开发环境，可以在程序集里面寻找Visual Studio，如图10-14所示。

2）创建新案例

在Visual Studio开发环境中，选择File→New→Project...创建新案例，如图10-15所示。

 [image:]
 图10-14　打开Visual Studio开发环境

 [image:]
 图10-15　创建新案例

3）创建空白APP案例

在Visual Studio案例中，在Template→Visual C#→Windows→Universal中选择Blank APP（Universal Windows）（空白APP（通用窗口）），创建新一个案例，如图10-16所示。

4）打开添加函数库窗口

在新增的案例中，通过案例窗口，选择“案例名称”→Add→Reference...，为案例添加函数库，如图10-17所示。

 [image:]
 图10-16　创建空白APP案例

 [image:]
 图10-17　打开添加函数库窗口

5）添加IoT的函数库

在添加函数库窗口中，选择Universal Windows→Extensions→Windows IoT Extensions for the UWP，为案例添加IoT的函数库，如图10-18所示。

 [image:]
 图10-18　添加IoT的函数库

6）确认IoT的函数库

完成后就会回到开发案例中，请务必确认案例的函数库中已经通过刚才的步骤正确添加了Windows IoT Extensions for the UWP，如图10-19所示。

 [image:]
 图10-19　确认IoT的函数库

7）修改窗口样式

这里要在程序中添加1个按钮和1个文字组件，并且放在画面的正中间，请在案例中选择MainPage，在XAML之中修改程序已添加组件，如图10-20所示。

 [image:]
 图10-20　修改窗口模式

样例程序：ch10\10-3-1\MyIoTApp\MyIoTApp\MainPage.xaml

 [image:]

程序说明：

•　第11～15行：新添加的程序。

•　第11行和第15行：指定内容摆放的水平位置为中间，（HorizontalAlignment="Center"）且纵向位置为中间（VerticalAlignment="Center"）。

•　第12行：添加文字组件，TextBox组件别名和程序的联系别名（x：Name="HelloMessage"）；显示文字（Text="Hello, World!"）；组件旁边的距离设置（Margin="10"）；只读设置，意思是用户不能输入文字（IsReadOnly="True"）。

•　第13行：添加文字组件，Button组件别名和程序的联系别名（x：Name="ClickMe"）；显示文字（Content="Click Me!"）；按键后调用的函数（Click="ClickMe_Click"）；组件旁边的距离设置（Margin="10"）；水平位置为中间（HorizontalAlignment="Center"）。

8）添加按键按下时的反应函数

在上一步骤中添加了一个按钮，并指定Click="ClickMe_Click"的动作，意思是按下此按键后会调用的函数，所以在此需要添加按键按下时的反应函数ClickMe_Click（），名称没有一定的命名规则。

请在案例中，选择MainPage.xaml.cs并修改程序，添加自定义的按键按下时的反应函数，如图10-21所示。

 [image:]
 图10-21　添加按键按下时的反应函数

样例程序：ch10\10-3-1\MyIoTApp\MainPage.xaml.cs

 [image:]

程序说明：

•　第25～28行：新添加的程序，用来添加按键按下时的反应函数。

•　第25行：因为是处理按键的反应，所以有一定的参数规则，并且不同的UI画面组件的触发函数之中的参数都不一样。

•　第25行：显示新的文字，this指的是此类型，this.HelloMessage指定的是该类型中的HelloMessage组件别名，也就是上一步骤中所设置的文字组件TextBox中指定的组件别名x：Name="HelloMessage"，this.HelloMessage.Text取得或设置该文字组件中的文字。

9）运行程序

接下来请确认机器是x86，并且单击其上绿色三角形Local Machine本机机器，就能够将本程序运行在Windows的环境中，如图10-22所示。

 [image:]
 图10-22　运行程序

2．运行结果

本案例运行的效果如图10-23所示，当前程序可以直接在Windows 10上运行，暂时还不用树莓派。

 [image:]
 图10-23　本案例运行的效果

3．教学视频

完整的教学视频可以参考10-3-1-HelloIoTAPP-UI.mp4。

10.3.2　在树莓派上运行Windows 10 IoT Core程序

本节将会调整程序编译的环境，并将程序送到树莓派2的机器上面运行。

1．主要步骤

1）打开Windows 10 IoT机器

延续上一节，打开Windows 10 IoT机器。

2）设置环境

延续上一节，调整以下设置，如图10-24所示。

（1）选择ARM，这是因为树莓派2的CPU是ARM的核心。

（2）选择旁边运行选项中的向下的三角形按钮。

（3）选择Remote Machine（远处机器）。

3）初次设置

首次选择Remote Machine，系统会跳出设置选项，如果没有跳出的话，请转到下一步骤。在设置中，调整如下，如图10-25所示。

 [image:]
 图10-24　设置值的环境

 [image:]
 图10-25　打开Visual Studio开发环境

（1）输入树莓派2的网络位置，如果不知道的话，请参考Windows 10 IoT机器上的画面，上面有IP Address位置，并确认机器和计算机都在同一个网域之中。

（2）选择universal（通用）。

完成后，单击Select按钮完成设置。

4）确认属性设置

如图10-26所示，在案例窗口中，选择Universal Windows→Properties，以确认属性设置。

5）修改属性设置

如图10-27所示，在属性设置窗口中，进行以下的操作：

（1）选择Debug选项。

（2）选择Activity（Debug）模式及Platform平台为ARM。

（3）选择Remote Machine，并输入IP地置，请以实际树莓派2上的IP位置为准。

（4）删除Use authentication（不用认证）。

（5）勾选Uninstall选项，这样就可先删除掉所安装的应用程序。

（6）再运行一次程序，请确认运行在Debug、ARM和Remote Machine上。

2．运行结果

本案例运行的效果如图10-28所示，单击“运行”按钮后，就能够在Windows 10 IoT的机器上运行本案例，如果有问题，请确认计算机和机器是否在同一个网域之中。由于本节是指定Debug调试，所以方便开发时设置中断点，并进行程序的调试。

 [image:]
 图10-26　确认属性设置

 [image:]
 图10-27　修改属性设置

 [image:]
 图10-28　本案例运行的效果

3．教学视频

完整的教学视频可以参考10-3-2-HelloIoTAPP-Rpi.mp4。

10.3.3　设置Release版的应用程序

因为上一节的程序是调试案例，所以会带有很多的调试数据，导致运行效果较慢。本节将介绍如何设置Release正式版的应用程序。

1．主要步骤

1）打开Windows 10 IoT机器

延续上一节，打开Windows 10 IoT机器。

2）确认属性设置

同上一节，在案例窗口中选择Universal Windows→Properties，以确认属性设置。

3）修改属性设置

如图10-29所示，在属性设置窗口中，运行以下的操作。

（1）选择Debug选项。

（2）选择Release模式及Platform平台为ARM。

（3）选择Remote Machine并输入IP位置，请以实际树莓派2上的IP位置为准。

（4）删除Use authentication。

（5）勾选Uninstall选项，这样可先删除所安装的应用程序。

（6）再运行一次程序，确认运行在Release、ARM和Remote Machine上。

4）设置值的环境

延续上一节，调整以下设置，如图10-30所示。

（1）选择ARM，这是因为树莓派2的CPU是ARM的核心。

（2）选择旁边运行选项中的向下的三角形按钮。

（3）选择Remote Machine。

2．运行结果

本案例运行的效果和上一节一模一样，在机器上面单击其中的按钮，就能够变换文字，完成后请单击红色正方形的停止按钮，结束程序。

 [image:]
 图10-29　修改属性设置

 [image:]
 图10-30　设置值的环境

3．教学视频

完整的教学视频可以参考10-3-3-HelloIoTAPP-releaseCode.mp4。

10.3.4　通过AppX Manager管理运行、关闭和删除App

本节将介绍如何通过AppX Manager管理运行、关闭和删除App。步骤如下：

1）打开Windows 10 IoT机器

打开Windows 10 IoT机器，顺利安装自己写的应用程序。

2）确认IP位置

在打开的Windows 10 IoT Core数莓派2的主页中获得IP地址，并且通过浏览器连接到该机器上。

1．运行程序

在打开的网页中，选择Apps进入应用程序管理画面AppX Manager。

（1）选择应用程序即…_1.0.0_arm...；

（2）单击Start按钮。

顺利的话，就可以看到该应用程序运行在Windows 10 IoT Core上，如图10-31所示。

 [image:]
 图10-31　运行App程序

2．关闭程序

可以在运行的程序中关闭任何一个程序，只要单击X即可关闭应用程序，如图10-32所示。

 [image:]
 图10-32　关闭应用程序

3．删除程序

可以在已经安装的应用程序中，删除任何一个程序。先选择该程序，并单击Uninstall按钮就能够删除程序，如图10-33所示。

 [image:]
 图10-33　删除应用程序

4．教学视频

完整的教学视频可以参考10-3-4-HelloIoTAPP-APPManager.mp4。

10.3.5　指定引导时运行的应用程序

本节将介绍如何通过AppX Manager管理运行指定的应用程序，并且设置下次引导机器时，首先运行该程序。

首先打开Windows 10 IoT机器，顺利安装自己写的应用程序，在打开的Windows 10 IoT Core数莓派2的主页中，获得IP地址，并且通过浏览器连接到该机器上。

1．运行程序

在打开的网页中，选择Apps进入应用程序管理画面AppX Manager。

（1）选择应用程序也就是“…_1.0.0_arm...”；

（2）单击Set Default按钮。

顺利的话，请单击右上角Reboot按钮重新开机。启动机器后就可以看到该应用程序运行在Windows 10 IoT Core中，如图10-34所示。

 [image:]
 图10-34　运行App程序

2．恢复本设置

若使用一段时间之后想要恢复成原本的设置，即不要运行任何应用程序，请通过以下的步骤完成。在打开的网页中，选择Apps进入应用程序管理画面AppX Manager，如图10-35所示。

（1）选择应用程序IoTCoreDefaultApp_5.0.0.0_arm__…；

（2）单击Set Default按钮。

顺利的话，单击右上角Reboot按钮，下次开机的时候，就会恢复成原本的设置。

 [image:]
 图10-35　恢复原本设置

3．教学视频

完整的教学视频可以参考10-3-4-HelloIoTAPP-APPManager.mp4。
第11章
GPIO引脚输出控制

本章将介绍Windows 10 IoT Core的程序语言如何进行开关的控制和霹雳灯的专题制作。完成后的作品如图11-1所示。

 [image:]
 图11-1　本章完成作品

11.1　数位输出函数

11.1.1　GPIO控制的类型GpioController.GetDefault（）

Windows 10 IoT Core的GPIO的类型中最重要的一个类型是GpioController类型，在程序启动的时候，需要先通过该类型取得系统内定的GPIO控制的类型。

1．函数介绍

GpioController gpio=GpioController.GetDefault();

注意，在定义档的部分需要加上：

using Windows.Devices.Gpio;

2．使用样例

GpioController gpio=GpioController.GetDefault();

11.1.2　指定引脚GpioController OpenPin（）

使用GPIO的数位输出时，需要在程序中通过程序指定的引脚号码进行动作。

1．函数介绍

指定引脚，这里的号码是有含义的，当前树莓派2只有固定的引脚。

GpioController OpenPin（引脚号码）；

树莓派2的硬件引脚如图11-2所示，请小心引脚的号码，当前只有17个号码可以使用，分别是4、27、22、5、6、13、26、18、23、24、25、12、16以及与其他功能共享的17、19、20、21、35、47。

 [image:]
 图11-2　树莓派2的硬件引脚图

2．17个GPIO引脚编号

树莓派2针对Windows 10 IoT Core可以用的17个GPIO引脚编号，如表11-1所示。

推荐先不要用在“备注”字段上有说明的引脚，将来与其他的GPIO类型控制时，会因为引脚共享导致结果错乱。

 表11-1　17个GPIO引脚编号

 [image:]

3．使用样例

指定引脚的方法，可以通过以下指令完成：

GpioController gpio=GpioController.GetDefault();

GpioPin pin5=gpio.OpenPin(5);

11.1.3　引脚动作GpioPin SetDriveMode（pin）

使用GPIO的引脚时，需要先指定该引脚的动作哪一种，是输出还是输入。

1．函数介绍

指定该引脚是数位输出或输入的指令如下：

public void SetDriveMode(GpioPinDriveMode value)

GpioPinDriveMode一共有七种，分别是

•　GpioPinDriveMode.Input，输入；

•　GpioPinDriveMode.Output，输出；

•　GpioPinDriveMode.InputPullDown，输入电位下拉；

•　GpioPinDriveMode.OutputOpenDrain，输出开漏模式；

•　GpioPinDriveMode.OutputOpenDrainPullUp，输出开漏模式上拉；

•　GpioPinDriveMode.OutputOpenSource，将GPIO引脚分配电极开路模式；

•　GpioPinDriveMode.OutputOpenSourcePullDown，将GPIO引脚分配集电极开路模式电阻下拉模式。

2．使用样例

指定引脚GPIO5为输出的写法如下：

 [image:]

SetDriveMode函数用于分配引脚为输入或输出模式，它是一个无返回值的函数，例如设置输出如下：

 [image:]

设置输入如下：

 [image:]

11.1.4　输出电位GpioPin Write（电位）

Write函数的作用是设置引脚输出的电压为高电位3.3V或GND（0V）。该函数也是一个无返回值的函数，函数有两个参数pin和value，pin参数表示所要设置的引脚，value参数表示输出的电压——High（高电平）或Low（低电平）。

1．函数介绍

指定该引脚的电位。

public void Write(GpioPinValue value)

GpioPinValue一共有两种，分别是

•　GpioPinValue.Low，也可以写作0，输出为0V DC。

•　GpioPinValue.high，也可以写作1，输出为3.3V DC。

2．使用样例

指定引脚GPIO5为输出的写法如下：

 [image:]

其他使用方法如下：

 [image:]

11.1.5　专题制作——控制LED灯光程序

物联网IoT最主要的目的就是控制周边设备，本案例将结合上述的函数在Windows 10 IoT Core的环境中进行实际应用，并且依照开发者的指定改变GPIO引脚的动作及控制LED灯的亮和暗，也就是进行数位输出的动作，通过GpioPin Write设置电位高输出3.3V的电压，来显示LED。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　一个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　面包板；

•　两条接线。

硬件接线如表11-2所示。

 表11-2　硬件接线

 [image:]

硬件接线设计如图11-3所示。

 [image:]
 图11-3　硬件接线

1．主要步骤

首先把树莓派2关机，并把硬件接线依照图11-2连接完成再开机，确认树莓派2的网络IP位置，请留意LED的引脚分为长脚和短脚，如图11-4所示，长的引脚请接“+”极，短的引脚请接“-”极也就是接地GND。

 [image:]
 图11-4　LED引脚

本专题将通过指定引脚GPIO 5为输出，并且调整该引脚的电压为高电位，以将LED灯光打开。

 [image:]

2．样例程序

程序运行后就会把GPIO 5的引脚上的LED灯打开。

样例程序：ch011\11-1\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第23行：初始化IoT函数。

•　第22～26行：设置GPIO引脚初始化动作。

3．运行结果

本样例运行之后的硬件结果如图11-5所示，如果正确的话，由于引脚设置为高电位，运行程序后LED灯会亮起。实际硬件如图11-6所示。

 [image:]
 图11-5　运行结果

 [image:]
 图11-6　LED灯控制结果

4．教学视频

完整的教学视频可以参考11-1-gpio_openPin.mp4。

硬件的运行情况可以参考11-1-gpio_openPin-Hardware.mp4。

11.2　使用界面与硬件交互

Windows 10 IoT Core最大的特色是UI使用界面，本节将继续修改程序让用户通过单击画面上的按钮改变LED灯的亮灭情况。

本节延续上一节的样例，通过程序的修改，让用户单击应用程序上的按钮，以打开和关闭LED灯。

首先将程序的GpioPin pin5变量调整为类型的变量，这样按键的反应函数ClickMe_Click（）才能够通过该变量来控制引脚。

硬件准备和接线同上一节。

1．样例程序

样例程序：ch011\11-2\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第7～8行：将变量调整为类型的变量，这样类型内的函数才能够调用和使用该变量。

•　第17～31行：用户单击按钮后，调用反应函数。

本样例通过程序控制GPIO引脚的高电位和低电位，且写在按键反应函数中，这样用户在单击画面上的UI后，就能改变LED灯的开关效果。

2．运行结果

本样例运行之后的结果如图11-7所示。

 [image:]
 图11-7　运行结果

3．教学视频

完整的教学视频可以参考11-2-gpio_openPin_OnOff.mp4。

硬件的运行情况可以参考11-2-gpio_openPin_OnOff-Hardware.mp4。

11.3　专题制作——霹雳灯案例

本节会详细介绍如何通过多个LED灯做出霹雳灯的效果，霹雳灯的效果其实也就是让所有的灯全部都亮起，并且依照时间的指定，让灯光依序熄灭。

请准备4个LED灯，并且每一个LED灯都接上220Ω的电阻，这样可以避免LED灯烧坏。

硬件准备如下：

•　树莓派2开发板；

•　4个LED灯；

•　4个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　面包板；

•　数条接线。

硬件接线如表11-3所示。

 表11-3　硬件接线

 [image:]

硬件接线设计图如图11-8所示。

 [image:]
 图11-8　硬件接线

本专题通过指定4个GPIO引脚GPIO 4、5、6、12为输出，通过计时器定时每0.5s调用一次，并调整每一个引脚的电压，这样就能够调整每一个LED灯。

 [image:]
 图11-9　调整LED灯光

1．样例程序

本程序运行后就会把GPIO 5引脚上的LED灯打开。

样例程序：ch011\11-3\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第16～24行：初始化IoT函数及设置GPIO引脚初始化动作。

•　第26～29行：设置计时器的时间。

•　第31行：计时器时间到时的处理函数。

•　第35～39行：设置每一个LED灯的状态0。

•　第43～47行：设置每一个LED灯的状态1。

•　第51～55行：设置每一个LED灯的状态2。

•　第59～63行：设置每一个LED灯的状态3。

2．运行结果

本样例运行之后的硬件结果如图11-10所示，如果正确的话，由于引脚设置为高电位，运行程序后LED灯会亮起。

 [image:]
 图11-10　运行结果

3．教学视频

完整的教学视频可以参考11-3-gpio_Timer_LEDs.mp4。

硬件的运行情况可以参考11-3-gpio_Timer_LEDs-Hardware.mp4。

Demo展示可以参考11-3-gpio_Timer_LEDs-Hardware-Demo.mp4。

4．扩展学习

霹雳灯的效果有很多种，读者可以自行调整GPIO的效果，以显示不同样子的霹雳灯，例如，全部的灯光只有一个会亮，并且从左到右依序进行切换。

11.4　时间延迟的设计

Windows 10 IoT的编程对延迟的设计跟其他的程序不太一样，以Arduino的程序为例，只要通过delay（1）就能够停止一秒。但是因为Windows 10 IoT的C#语言，因为考虑多路复用的情况，要同时处理画面的UI控制和时间的处理等，因此不可能像Arduino的程序那样停在delay（1）那一行，而不做其他事情。

所以本节将通过计时器，并设置1s引导一次，通过变量记录时间，如果时间到的话，就做出动作反应。

延续上一节的霹雳灯的实验，并改变亮灯的时间，而做出延迟的效果。

硬件和接线同上一节。

1．样例程序

本专题，通过指定4个GPIO引脚GPIO 4，5，6，12为输出，通过计时器定时每1s调用一次，改变Counter变量，而霹雳灯有4个状态，分别延迟了1s、2s、5s和4s，请留意以下程序的延迟处理方法。

程序运行后，就会把GPIO 5的引脚上的LED灯打开。

样例程序：ch011\11-4\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第16～24行：初始化IoT函数及设置GPIO引脚初始化动作。

•　第26～29行：设置计时器的时间。

•　第30行：设置计时器的时间。

•　第31行：计时器时间Counter初始化。

•　第34～41行：设置每一个LED灯的状态0。

•　第42～48行：设置每一个LED灯的状态1。

•　第49～55行：设置每一个LED灯的状态2。

•　第56～62行：设置每一个LED灯的状态3。

延迟如下的情况：

•　霹雳灯状态0，显示1s，当Counter变量为0。

•　霹雳灯状态1，显示2s，当Counter变量为1（0+1）。

•　霹雳灯状态2，显示5s，当Counter变量为3（0+1+2）。

•　霹雳灯状态3，显示4s，当Counter变量为8（0+1+2+5）。

在程序中会看到，counter时间到后才去调整情况，并且延迟的时间会写在下一个状态的counter变量判断式之中，

2．运行结果

本样例运行之后的硬件结果如图11-11所示，如果正确的话，由于计时器的关系，运行程序后就能做出延迟的效果。

 [image:]
 图11-11　运行结果

3．教学视频

完整的教学视频可以参考11-4-gpio_Timer_delay.mp4。

Demo展示可以参考11-4-gpio_Timer_delay-Hardware-Demo.mp4。

4．扩展学习

因为Windows 10 IoT的延迟程序处理起来相当特别，请读者自行调整不同的时间，以改变霹雳灯的效果，加深学习印象。

11.5　专题制作——使用七段式LED数字灯显示IP位置

11.5.1　七段式LED数字灯硬件

相信读者常常在DVD播放器或各种电子产品上都会看到数字LED，通过控制，就可以显示出不同的数字，其外观有不同的尺寸和数目，如图11-12所示。

七段式LED数字灯的原理，是把数字通过8个不同造型的LED固定放在一起，通过把八个引脚（七个数字加上一个点），在Gnd的引脚接地。市面上有两种七段式LED数字灯，一种是如刚才所说的，阳极七段式LED数字灯，另外一种是阴极七段式LED数字灯，也就是正负电位相反。

 [image:]
 图11-12　各种数字号码LED

如果想让七段式LED数字灯的其中一个LED亮的话，如图11-13所示，只需把引脚接正，并把GND接地且加上电阻即可，使用方法类似于一般的LED灯。

 [image:]
 图11-13　七段式LED数字灯显示

针对数字号码LED，不同的厂商会有不同的脚位，并且有些的正负电位是反过来的，所以购买的时候需要留意。以市面上的主流七段式LED数字灯为例，其引脚的原理和编号如图11-14所示，通过a、b、c、d、e、f引脚，并将它们接地，就能够显示所要的数字。

如表11-4所示，把每一个引脚的亮暗做好设置，就能够把数字显示出来。

例如要显示数字号码2的话，就需要将a、b、d、e和g点亮。

 [image:]
 图11-14　单一数字的数字LED灯的原理

 表11-4　引脚亮暗设置

 [image:]

可应用范围：

•　显示数字；

•　显示时钟。

11.5.2　显示单一数字

本节会详细介绍如何在Windows 10 IoT Core中通过程序使七段式LED数字灯显示出数字0。

硬件准备如下：

•　树莓派2开发板；

•　一个七段式LED数字灯；

•　14个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　面包板；

•　数条接线。

硬件接线如表11-5所示。

 表11-5　硬件接线

 [image:]

硬件接线设计如图11-15所示。

 [image:]
 图11-15　硬件接线

1．样例程序

本程序通过指定8个GPIO引脚GPIO 4、5、6、12、13、16、18、23为输出，并且用矩阵决定七段式LED数字灯上面每一个引脚的电位高低，通过调整每一个引脚的电压就能够调整LED灯的亮灭，从而显示想要的数字。

本程序运行后，就会把GPIO 5的引脚的LED灯打开。

样例程序：ch011\11-5-2\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第27～43行：初始化IoT函数并设置GPIO引脚的初始化。

•　第47～65行：七段式LED数字灯显示。

•　第66～73行：设置每一个引脚灯的状态。

2．运行结果

本样例运行之后的硬件结果如图11-16所示，如果正确的话，通过8个引脚的设置，就能改变七段式LED数字灯显示。

 [image:]
 图11-16　运行结果

3．教学视频

完整的教学视频可以参考11-5-2-gpio_7SegLeds.mp4。

硬件的运行情况可以参考11-5-2-gpio_7SegLeds-Hardware.mp4。

11.5.3　计时器——显示现在的秒数

本节继续上一节内容，将详细介绍怎样在Windows 10 IoT Core中通过程序控制七段式LED数字灯显示出所有的数字。

硬件和接线同上一节。

1．样例程序

本程序延续上一节，还是使用七段式LED数字灯，在程序开始时，先通过指定8个GPIO引脚为输出，并且将矩阵事先记录好每一个数字，通过七段式LED数字灯设置每一个引脚的高低电位，显示出每一个数字，并且通过计时器，每一秒钟改变一个数字，从而产生计时器的效果。

样例程序：ch011\11-5-3\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]
 [image:]
 [image:]

程序说明：

•　第37～53行：初始化IoT函数并设置GPIO引脚初始化动作。

•　第61～78行：七段式LED数字灯显示。

•　第79～86行：设置每一个引脚灯的状态。

•　第87～92行：每一秒的变化处理。

2．运行结果

本样例运行之后的硬件结果如图11-17所示，通过8个引脚的设置七段式LED数字灯就能显示数字，并且依照每一秒的触发事件改变上面的LED灯，从而显示出不同的数字，看起来就像是计时器的秒数。

 [image:]
 图11-17　运行结果

3．教学视频

完整的教学视频可以参考11-5-3-gpio_7SegLeds-counter.mp4。

硬件的运行情况可以参考11-5-3-gpio_7SegLeds-counter-Hardware.mp4。

4．扩展学习

七段式LED数字灯的右下脚有个小圆点，用来表示小数点，请读者自行修改程序，让程序也能显示出小数点。

11.5.4　显示机器的网络位置

继续上一节内容，Windows 10 IoT Core每次开机的时候都需要网络，所以在本章节将会介绍如何使用七段式LED数字灯，并显示出该机器网络IP位置的数字。

硬件和接线同上一节。

1．样例程序

延续上一节的程序，机器启动后取得本机器的网络位置并转换为字符串，通过计时器的触发事件，使七段式LED数字灯显示出网络位置的相应数字。

因为机器通常都会有WiFi和网卡等网络设备，这里会获取所有的网络位置并将系统最后抓到的网络位置作为显示的内容。

需要特别留意的是，因为取得的网络位置是字符串IpAddressStr变量，所以通过计时counter变量，依照时间获取字符串中的单个char字符，并通过Display_seg函数显示到七段式LED数字灯上。

样例程序：ch011\11-5-4\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]
 [image:]

程序说明：

•　第38～49/行：取得网络位置。

•　第73～92行：每一秒的变化处理。

2．运行结果

本样例运行之后的硬件结果如图11-18所示，先抓到机器的网络位置，通过8个引脚的设置，就能通过七段式LED数字灯显示出来，并且依照每一秒的触发事件，依序显示网络位置。

 [image:]
 图11-18　运行结果

3．教学视频

完整的教学视频可以参考11-5-4-gpio_7SegLeds-IPAddress.mp4。

硬件的运行情况可以参考11-5-4-gpio_7SegLeds-IPAddress-Hardware.mp4。

4．扩展学习

七段式LED数字灯上面的右下角有个小圆点，用于表示小数点，请读者自行修改程序，让程序也能显示出小数点。
第12章
GPIO引脚输入控制——硬件按键

本章将介绍Windows 10 IoT Core的程序语言如何处理数位输入和读入按钮的动作。本章完成作品如图12-1所示。

 [image:]
 图12-1　本章完成作品

12.1　数位输入读入GpioPin Read

Read函数的作用是读入设备上的指定的引脚电压，有两种回传值，分别是高电位3.3V或Gnd（0V）。

可以读入的引脚与数位输出是一样的，当前只有17个号码可以使用，分别是引脚4、27、22、5、6、13、26、18、23、24、25、12、16和其他功能共享的有引脚17、19、20、21、35、47。

1．语法

读入指定引脚的电位。

public GpioPinValue Read()

Read的回传值共有两种，分别是：

•　GpioPinValue.Low也就是0，输出为0V DC。

•　GpioPinValue.high也就是1，输出为3.3V DC。

2．使用样例

指定引脚GPIO4为输出的写法如下：

 [image:]

12.2　按键种类

市场上有各式各样规格按键，它们的功能和引脚数都有差异，电子材料中常见的按键种类如图12-2所示。

 [image:]
 图12-2　电子材料中常见的按键种类

最简单的电子按键的原理如图12-3所示，就是两个引脚的开关动作，通过用户外力施压把按键往下压，让这上下两个电子接点连接在一起，从而使电流通过，这样就能顺利的把电传送过去，这也是两个引脚一个是正极，另外一个为负极的原因。

 [image:]
 图12-3　按键原理

12.3　专题制作——读入按键输入

12.3.1　读入按键输入函数方法一

而在了解按钮的动作之后，那如何开发相关的应用程序？在本章节将实际通过硬件按键的输入动作，并且调整数位输出LED灯的开和关的动作。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　两个220Ω电阻；

•　一个四引脚的按钮；

•　面包板；

•　数条接线。

硬件接线如表12-1所示。

 表12-1　硬件接线

 [image:]

硬件接线设计如图12-4所示。

 [image:]
 图12-4　硬件接线设计

主要步骤：首先把树莓派2关机，并把硬件接线依照上图连接完成后再开机，并确认使用的四个引脚的按钮，如图12-5所示，上下为一对，彼次互通，所以要留意按钮的引脚是否正确。

 [image:]
 图12-5　四引脚的按钮

1．样例程序

本程序运行后，就会把GPIO 5的引脚上的LED灯打开。

样例程序：ch012\12-3-1\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第16行：指定为输入引脚。

•　第17～24行：读入输入引脚，并作出判断动作。

2．运行结果

本样例运行之后的硬件结果如图12-6所示，运行后会发现一个问题，就是这一个程序，只有在引导的那一瞬间会读入按钮的输入动作，在运行之后不管再如何按下按键，都不会有任何反应，解决的方法请看下一节内容。

 [image:]
 图12-6　运行结果

12.3.2　读入按键输入函数方法二

上一节，因为读入引脚的输入只有在启动的时候才会读入，在运行之后不管在如何按下按钮，都不会有任何反应。而比较的程序撰写的方法是定时地去读入该引脚的输入动作，并作出对应的反应，所以本节样例将通过计时器，定时地读入该引脚的数据并作出对应的动作。

硬件接线同上一节。

1．样例程序

本样例通过定时地读入指定引脚GPIO 5的输入，并依照该引脚的电压作出对另外一个引脚GPIO 4的反应，从而调整LED灯的开关动作。

本程序运行后，就会把GPIO 5的引脚上的LED灯打开。

样例程序：ch012\12-3-2\MyIoTApp\MyIoTApp\MainPage.xaml.cs

 [image:]

程序说明：

•　第18～21行：设置每0.5s引导一次的定时器。

•　第23～33行：读入输入引脚并作出判断动作。

2．运行结果

本样例运行之后的硬件结果如图12-7所示，因为计时器的关系，所以任何时间按下按键都能够打开上面的LED灯，松开按键的时候就会熄灭LED灯。

 [image:]
 图12-7　运行结果

读者在使用按键时应该会感觉到按下按键和LED灯的反应之间会有一点延迟，这是因为程序是每隔0.5s才去检查输入的引脚，修改的方法就是把计时器的引导的时间缩短，这样就会产生比较好的效果。

3．教学视频

完整的教学视频可以参考12-3-1-Gpio-Input.mp4。

硬件的运行情况可以参考12-3-2-Gpio-Input-hardware.mp4。

12.4　切换式开关

一般常见的开关除了按钮式之外还有切换式，这种电子零件切换后会持续地保持该状态，如图12-8所示，常使用在设备的开关或电源的开关。

切换式开关设计原理如图12-9所示，以中间的引脚为主，将其推向右边，就能跟右边的引脚连接在一起，并与左边的引脚断开连接；反之，将其推向左边，就能跟左边的引脚连接在一起，并与右边的引脚断开连接。

 [image:]
 图12-8　切换式开关硬件

 [image:]
 图12-9　切换式开关原理图

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　两个220Ω电阻；

•　一个切换式开关；

•　面包板；

•　数条接线。

硬件接线如表12-2所示。

 表12-2　硬件接线

 [image:]

硬件接线设计如图12-10所示。

 [image:]
 图12-10　硬件接线

1．样例程序

本专题继续使用上一节的样例程序，不必修改调整就能运行，当切换式开关切换的时候，机器就能读入该引脚的电位，并对LED灯光作出调整。

2．运行结果

本样例运行之后的结果如图12-11所示，用户使用切换式开关切换时，因输入的状态改变，因此LED输出即刻会有变化。

 [image:]
 图12-11　运行结果

3．教学视频

完整的教学视频可以参考12-4-Gpio-switch.mp4。

12.5　专题制作——使用水银开关作倾斜检测

数位输入的功能可以运用在很多地方，在电子卖场可以买到很多电子模块，例如瓦斯和火焰等监测模块，都会有数位的输出模块。可以让Windows 10 IoT Core的程序，通过数位输入知道该模块的现在情况。

本节将会使用一个常见的输入电子零件电路开关——水银开关，也称为倾侧开关，这是一种接着正负极的小巧玻璃容器，里面有一小滴水银，玻璃容器中放着惰性气体或直接真空。

 [image:]
 图12-12　水银开关

因为重力的关系，水银开关的水银水珠会在容器中较低的地方流去，如果同时接触到两个引脚的话，便会将电路闭合，打开开关，如图12-12所示。

市面上有很多不同造型的水银开关，容器的形状亦会影响水银水珠接触电极的条件，当不再使用时，应该妥善处理。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　两个220Ω电阻；

•　一个水银开关；

•　面包板；

•　数条接线。

硬件接线如表11-3所示。

 表11-3　硬件接线

 [image:]

硬件接线设计如图12-13所示。

 [image:]
 图12-13　硬件接线设计

1．样例程序

本专题使用上一节的样例程序，不必修改调整就能运行，当水银开关因为设备倾斜的关系改变开关的情况时，机器就能读入该引脚的电位，并对LED灯光作出调整。

2．运行结果

本样例运行之后的结果如图12-14所示，用户把水银开关倾斜，输入的状态改变，从而导致LED的输出有所变化。

 [image:]
 图12-14　运行结果

3．教学视频

完整的教学视频可以参考12-5-Gpio-MercurySwitch.mp4。
第13章
类比数据输出——RGB灯光控制

本章会介绍Windows 10 IoT Core的程序语言，要如何处理类比数据输出，并用RGB LED灯为实例，通过类比输出，调整出各式各样的颜色。本章完成作品如图13-1所示。

 [image:]
 图13-1　本章完成作品

13.1　树莓派的GPIO Analog类比输出

严格上来说，树莓派2没有GPIO Analog的引脚，即在硬件的功能上，没有引脚特定的电压输出设置，如要输出1.1V或0.5V这样的电压，可以通过开发技巧来实现，而这就是接下来将要介绍的重点。

13.2　RGB灯光控制

在了解类比输出之前，本节将会介绍RGB灯光控制，通过实验步骤调整RGB灯光成为真正的全彩控制。

本实验将利用数位输出，通过RGB LED灯显示三个颜色RGB（Red红色、Green绿色和Blue蓝色）。

RGB LED灯是一个混和三种颜色的LED灯，可以发出红色、绿色和蓝色，并且可以依照红绿蓝，根据输出的电压不同，显示不同的亮度，另外还可通过RGB三原色的原理混合出各式各样的颜色，如图13-2所示。

 [image:]
 图13-2　RGB LED的外观和引脚

RGB LED有四个针脚，最长的引脚是共同引脚，如果是共阳极的RGB LED，那共同引脚要接正极；如果是共阴极的RGB LED，则共同引脚要接负极，市面上大多是共阴极的RGB LED灯，不过在选购时，还是需要留意。

以图13-2为例，另外三只引脚分别控制红绿蓝三色，所以由左到右引脚的功能分别为：

•　蓝色；

•　接地；

•　绿色；

•　红色。

硬件准备如下：

•　树莓派2开发板；

•　一个RGB LED灯；

•　一个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　面包板；

•　两条接线。

硬件接线如表13-1所示。

 表13-1　硬件接线

 [image:]

硬件接线设计如图13-3所示。

主要步骤：首先把树莓派2关机，并把硬件接线依照上图连接完成后，再开机。

1．样例程序

样例程序：ch13\13-2\RGBLED\CS\MainPage.xaml。界面设计如图13-4所示。

 [image:]
 图13-3　硬件接线设计

 [image:]
 [image:]

程序说明：

•　第13行：画面上红、绿色和蓝色的圈圈。

•　第14行：文字，用来显示秒数。

•　第15行：滑动组件，用来调整时间的长短，范围为0～1000，调整后会调用程序中的Delay_ValueChanged函数。

•　第16行：文字，用来显示引脚的情况。

 [image:]
 图13-4　界面设计

2．完整程序

本程序会先设置三个引脚来处理RGB LED灯光的引脚，通过计时器，定时调整引脚的数位输出情况，从而调整RGB LED灯光的颜色。

样例程序：ch13\13-2\RGBLED\CS\MainPage.xaml.cs

 [image:]
 [image:]
 [image:]

程序说明：

•　第19～37行：设置数位输出的三个引脚。

•　第43～46行：计时器。

•　第53～74行：计时时间到后，依序调整RGB灯光颜色和屏幕画面。

•　第76行：滑动组件要调用的函数。

•　第79～81行：改变计时器的时间。

3．运行结果

本样例运行之后的硬件结果如图13-5所示，会定时地改变RGB LED灯光的颜色：红色、绿色和蓝色。

 [image:]
 图13-5　运行的实际硬件结果

可以调整画面的滑动组件来改变时间的快慢，运行画面如图13-6所示。

 [image:]
 图13-6　运行画面

4．教学视频

完整的教学视频可以参考13-2-RGBLED.mp4。

硬件的运行情况可以参考13-2-RGBLED-hardware.mp4。

13.3　Analog类比输出

事实上树莓派不能直接输出真正的类比电压，如1.2V或0.8V等特定的电压，那专业的电子产品如何做到？市场上有特别的DAC（digital to analog converter）IC可以实现这样的效果。例如常见的DAC的IC有：

•　DAC0800LCN；

•　DAC08060LCN；

•　DAC0808LCN；

•　TLC7524CD。

另外也可以通过程序的技巧来实现类似的类比输出效果，最常见的方法是通过PWM的技巧。我们会在下一节详细介绍PWM的函数，在此先简单地说明，很多电子硬件如树莓派2事实上是不能真正做出类比输出效果的。

事实上用示波器查看PWM输出的样子，如图13-7所示。可以看到高电压和0V之间的快速转换，在极短的时间重复这样的周期动作，通过时间差比例才会仿真出类比输出这样的效果，所以通过调整这段时间的高低电压的比例，就能达到类似1.2V和0.2V的输出效果。

 [image:]
 图13-7　PWM在示波器上运行的情况

本节通过PWM的方式在引脚上输出一高一低效果，因为速度很快，所以会产生出电压差，PWM可以用这个方法来仿真出类比电压。

可以通过高频率的PWM，并且设置高低电压对应的占空比为0%～100%，输出的电压会在0～3.3V之间，所以公式为3.3V×占空比/100。

本专题将会利用analogWrite函数通过PWM的方式在引脚上输出一高一低的效果，analogWrite常应用在LED亮度控制和电机转速控制等方面。

下面通过改变类比电压，调整LED灯的明亮。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　一个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　面包板；

•　两条接线。

硬件接线如表13-2所示。

 表13-2　硬件接线

 [image:]

硬件接线设计如图13-8所示。

 [image:]
 图13-8　硬件接线设计

如果设备允许，推荐再放一个电容，这样电压更加稳定：

•　1个0.1μF的电容（号码104）；

•　1个3.9kΩ的电阻（橘白红）。

推荐硬件接线设计如图13-9所示。

 [image:]
 图13-9　推荐硬件接线

如果设备许可的话，可以在示波器上看到输出的波形，如图13-10所示，结果更接近实际电压，而不是高低电压的变化。

 [image:]
 图13-10　在示波器上查看加上DAC的波形

1．样例程序

样例程序：ch13\13-4\RGBLED\CS\MainPage.xaml。界面设计如图13-11所示。

 [image:]

程序说明：

•　第13行：画面上红色、绿色和蓝色的圈圈。

•　第14行：文字，用来显示秒数。

•　第15行：滑动组件，用来调整时间的长短，范围为0～100，调整后会调用程序中的Delay_ValueChanged函数。

•　第16行：文字，用来显示引脚的情况。

 [image:]
 图13-11　界面设计

2．完整程序

首先创建一个PWM类型，通过thread路复用的方法，调用无限循环，并依照指定的时间调整高电压的时间和低电压的时间。

样例程序：ch13\13-4\RGBLED\RGBLED\CS\PWM.cs

 [image:]
 [image:]

程序说明：

•　第17～21行：设置高电压和整个PWM周期的时间和引脚。

•　第24行：运行和引导路复用。

•　第38～42行：由现在的时间加上要等待的时间。

•　第43行：获取现在时间，并判断是大于等待时间。

在主程序指定引脚并调用PWM类型，用户可以通过UI画面上的滑动组件调整PWM的高电压的时间。

样例程序：ch13\13-4\RGBLED\RGBLED\CS\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第12～21行：设置数位输出的引脚。

•　第25～27行：调用PWM函数。

•　第33行：滑动组件会调用的函数。

•　第37行：调整PWM的时间。

3．运行结果

本样例运行之后的硬件结果如图13-12所示，可以调整画面的滑动组件来改变PWM时间的快慢，即时间差，这时就能看到LED灯的明亮度的变化。

 [image:]
 图13-12　实际运行结果

当调整滑动组件时就能看到LED灯的明亮度的调整，实际硬件运行结果如图13-13所示。

这时可以用三用电表测量引脚的输出电压，电压计算方法是3.3V×（高低电压的比例/100），使用方法如下：

（1）把三用电表转到20V DC（V-）的位置；

（2）把三用电表红色探针接在LED的正极（长脚），并把黑色探针接在LED灯的接地（短脚）。

 [image:]
 图13-13　实际硬件运行结果

可以看到三用电表上的数字，显示了当前输出的电压，如图13-14所示为0.75V直流电。

 [image:]
 图13-14　实际硬件量测结果

4．教学视频

完整的教学视频可以参考13-2-PWM.mp4。

硬件的运行情况可以参考13-2-PWM2-and-Hardware.mp4。

13.4　RGB LED灯——全彩颜色的控制

第13.2节中只能控制LED灯的三个颜色，本节将实现控制每个颜色的明亮度，做出全彩的功能。如何让红绿蓝三色能显示不同的亮度呢？可以通过类比输出，调整红绿蓝三色的明暗度，以让用户任意设置想要的各种颜色。

硬件准备如下：

•　树莓派2开发板；

•　一个RGB LED灯；

•　一个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　面包板；

•　两条接线。

硬件接线如表13-3所示。

 表13-3　硬件接线

 [image:]

硬件接线设计如图13-15所示。

 [image:]
 图13-15　硬件接线设计

主要步骤：首先把树莓派2关机，并把硬件接线依照上图连接完成后再开机。

1．样例程序

为了让用户可以自行调整颜色，这里把界面调整成三个滑动组件，可以分别调整红色、绿色和蓝色三个颜色，并把范围调整为0～255，以符合全彩颜色的计算方法即#000000～#FFFFFF的颜色定义规范。

样例程序：ch13\13-5\RGBLED\RGBLED\CS\MainPage.xaml。界面设计如图13-16所示。

 [image:]

程序说明：

•　第13行：画面上的红色、绿色和蓝色的圈圈。

•　第14行：文字，用来显示秒数。

•　第15行：滑动组件用来调整红色引脚的时间长短，范围为0～255，调整后会调用程序中的ValueChanged_R函数。

•　第16行：滑动组件用来调整绿色引脚的时间长短，范围为0～255，调整后会调用程序中的ValueChanged_G函数。

•　第17行：滑动组件用来调整蓝色引脚的时间长短，范围为0～255，调整后会调用程序中的ValueChanged_B函数。

•　第16行：文字，用来显示引脚的情况。

 [image:]
 图13-16　界面设计

2．完整程序

本程序会先设置三个引脚来处理RGB LED灯光的引脚，并且通过上一节所设计的PWM类型调整计时器，定时地调整引脚的输出情况，从而仿真出类比输出的效果，最终调整RGB LED灯光的颜色。

样例程序：ch13\13-5\RGBLED\RGBLED\CS\MainPage.xaml.cs

 [image:]
 [image:]
 [image:]

程序说明：

•　第12～24行：设置数位输出的三个引脚。

•　第30～38行：PWM的初始化和设置。

•　第43～57行：滑动组件调用的函数，并存储明亮度的变量，然后设置RGB灯。

•　第61～63行：调整数位输出的值。

3．运行结果

本样例运行之后的硬件结果如图13-17所示，用户可以通过界面调整引脚的输出，让类比输出改变RGB LED灯光的红色、绿色和蓝色的明暗，从而整合出各种颜色。

 [image:]
 图13-17　运行画面

实际硬件上的RGB LED灯不仅能显示红色、绿色和蓝色，通过类比输出混色调整，能够产生各种颜色效果，如图13-18所示。

4．教学视频

完整的教学视频可以参考13-4-RGB-Final.mp4。

硬件的运行情况可以参考13-4-RGB-Final-Hardware.mp4。

 [image:]
 图13-18　实际硬件的运行结果

第14章
PWM输出——步进马达控制

本章会介绍Windows 10 IoT Core的程序语言如何处理PWM输出，并用来控制步进马达。本章完成作品如图14-1所示。

 [image:]
 图14-1　本章完成作品

14.1　Windows 10 IoT Core的PWM脉冲宽度调制

PWM（pulse width modulation，脉冲宽度调制）是将信号编码于脉波宽度上的一种技术，利用微处理器的数位输出，此技术以数位方式来仿真类比信号是非常有效的，它广泛应用在数据传输上。因数位信号只存在高低电位的变化，相较于类比信号，不容易受到噪声干扰。

PWM方式是通过对一系列脉冲的宽度进行调配来有效地获得所需要的波形和电压，脉波宽度在整个周期所占的比例称为工作周期（duty cycle），是指位于逻辑高电压（logic high level）的波型在整个周期中所占的比例。

脉冲宽度调制是一种类比时间高低控制方式。广泛应用在测量、通信及功率控制变换上最常见的应用有上一章提到的仿真类比输出、LED亮度控制、电机转速控制和控制步进马达等。

如果设置PWM是500Hz，如图14-2所示，该图说明通过PWM输出信息后就会作出类比输出的信号。

 [image:]
 图14-2　类比转成PWM

PWM的一个优点是从处理器到被控系统信号都是数位形式的，无需进行转换，让信号保持为数位形式可将数据稳定，这也是在某些时候将PWM用于通信的主要原因。从仿真信号转向PWM可以极大地延长通信距离。在接收端，通过适当的RC或LC网络可以滤除调制高频方波并将信号撤销为仿真形式。PWM控制技术一直是变频技术的核心技术之一。1964年A.Schonung和H.stemmler首先提出把这项通信技术应用到交流传动中。最初采用仿真电路完成三角调制波和参考正弦波比较而产生正弦脉宽调制SPWM信号，以控制功率器件的开关开始，当前则采用全数字化方案。

PWM频率的计算法：通过计算在某时间t内事件重复发生的次数n，就可以获得该重复事件发生的频率，公式为

f=n/t

例如，若某事件在2s内发生了10次，则频率f为5Hz：

f=10/2

14.2　PWM函数

1．函数介绍

严格来说，不管是软件还是硬件，Windows 10 IoT Core的IoT指令中并没有PWM的功能，在此笔者特地写了一组PWM的类型函数来完成此目的，该类型的函数有：

 [image:]

该函数实际运行原理时是通过自定义的高电位和低电位的频率。

•　Pin：引脚号码；

•　HighDuring：高电位的时间，单位是ms；

•　During：一个PWM波形的时间，单位是ms。

注意During时间一定要比HighDuring大。

 [image:]

该函数用于引导PWM，并且持续运行。

2．样例程序

设置引脚4的1000ms中有100ms为高电位，900ms为低电位。

部分样例程序：ch14\14-2\PWM-A\CS\MainPage.xaml.cs

 [image:]

另外为了符合比较熟悉Arduino的开发者的习惯，这里特意使用了相同的函数名称，作出相同的PWM的动作。

 [image:]

该函数实际运行时是通过自定义的频率。

•　Pin：引脚号码；

•　frequency：频率，单位是Hz。

 [image:]

用于程序引导PWM时。

dc:工作周期，范围为0.0～100.0，表示高电压的时间在该频率中的占比。

设置引脚4的频率为0.5Hz，也就是运行一个周期要耗时2s，并且50%是高电压，另外50%是低电压。

部分样例程序：ch14\14-2\PWM-B\CS\MainPage.xaml.cs

 [image:]
 [image:]

如图14-3所示，通过PWM start（dc）函数指定dc参数值在0到100之间，所以PWM start（100）就是100%均为高电压，也就造成3.3V的输出效果；如果GPIO.start（100/2），则会造成1.65V的输出效果。不过就类比输出而言，应尽量让Hz时间越大越好，以树莓派2为例，最少要100Hz以上才会有效果。

 [image:]
 图14-3　类比转成PWM

 [image:]

程序中即时改变frequency频率，单位是Hz。

frequency：频率，单位是Hz。

设置引脚4的频率为100Hz，由100%都是高电压变换到频率为20Hz。

 [image:]

dc:工作周期，范围在0.0到100.0之间，意思是高电压的时间在该频率中的占比。

程序中即时改变工作周期，范围在0.0到100.0之间。

设置引脚4的频率为0.5Hz，由50%都是高电压，变换频率为1Hz（25%是高电压，75%是低电压）。

部分样例程序：ch14\14-2\PWM-C\CS\MainPage.xaml.cs

 [image:]

3．完整程序

而完整的PWM.cs的程序说明如下：

样例程序：ch14\14-2\PWM-C\CS\PWM.cs

 [image:]
 [image:]

程序说明：

•　第13～14行：设置整个PWM周期的时间和引脚。

•　第18行：设置和计算高电压的时间。

•　第31～33行：设置高电压和整个PWM周期的时间和引脚。

•　第38行：运行和引导路复用。

•　第55行：由现在的时间加上要等待的时间。

•　第56行：获取现在时间，并判断是大于等待时间。

4．运行结果

本样例运行之后的硬件结果如图14-4所示，依照程序的设置，调整LED灯的明亮和时间，硬件接线同第13.4节。

程序的界面如图14-5所示。

 [image:]
 图14-4　PWM运行效果

 [image:]
 图14-5　PWM样例程序运行界面

5．教学视频

硬件的运行情况针对三个程序共有三段，分别参考14-2-PWM-A.mp4、14-2-PWM-B.mp4和14-2-PWM-C.mp4。

14.3　Servo步进马达

 [image:]
 图14-6　TOWER PRO MG996R Servo步进马达

Servo步进马达是一个非常重要的一个组件，它的特别之处在于可以控制马达的选转角度，步进马达是脉冲马达的一种，它具有如齿轮状突起（小齿）相锲合的定子和转子，可藉由切换流向定子线圈中的电流从而以一定角度逐步转动。步进马达的特征是采用开环（open loop）控制方式处理，不需要运转量检知器（sensor）或编码器，且切换电流触发器的是脉波信号，不需要位置检出和速度检出的回授设备，所以步进马达可正确地依比例追随脉波信号而转动，从而能达成精确的位置和速度控制且稳定性佳，如图14-6所示。

当前市面上有各式各样的Servo步进马达，常见的如表14-1所示。

 表14-1　常见的Servo步进马达

 [image:]

在马达系统中最常用的马达不外乎是步进马达和伺服马达，其中，步进马达主要可分为2相、5相和微步进系统，伺服马达则主要分为DC伺服和AC伺服两种，RC SERVO为多数规模机器人最主要的驱动器，它的体积小、重量轻并且可提供精确的旋转角度与足够的扭力，当前市面上知名的国产品牌的有祥仪、广营和栗研等，日、韩系则有Kondo、Hitec所生产的RC SERVO，其中大部分是通过PWM来控制。

市面上的RC SERVO控制界面可分为以下几种：PWM、RS232、RS485和I2 C，其中PWM控制是一种受欢迎的控制方式，本实验也会用PWM来控制SERVO步进马达。

一般SERVO步进马达是利用duty cycle high的宽度来控制RC SERVO的旋转角度，举例来说，KONO KRS-788HV这个SERVO所接受的duty cycle high宽度介于700～2300μs之间，因此用户必须提供此范围的PWM信号才能使其动作，如图14-7所示。

 [image:]
 图14-7　改变duty cycle high宽度来控制RC SERVO角度示意图

•　1ms的高电压，将马达转到9点钟左边的方向。

•　1.5ms的高电压，将马达转到12点钟上面的方向。

•　2ms的高电压，将马达转到3点钟右边的方向。

以KRS-788HV为例，给予1500μs（1.5ms）的PWM信号，它会转到90°处（因为1500μs宽度为中间值，KRS-788HV的可动角度为0°～180°，所以对应到中间位置）。在通过改变PWM duty cycle控制RC SERVO角度方面，不同的RC SERVO生产商会有不同的PWM与旋转角度范围（一般是180°或270°），所以在控制之前，最好先仔细阅读SERVO步进马达使用手册，不同的SERVO步进马达会有不同的情况。有的是角度的限制，有的是转速的设置。挑选SERVO步进马达时，重点要看扭力和转速，以免扭力太小，不能旋转起期望的设备。

可应用范围如下：

•　遥控汽车；

•　机械手臂；

•　机器人。

14.4　使用PWM控制Servo步进马达旋转角度

本节通过控制Servo步进马达旋转角度，来学习Windows 10 IoT Core与Servo步进马达的交互。用户可通过UI界面来控制Servo步进马达的角度。

硬件准备如下：

•　树莓派2开发板；

•　一个Servo步进马达；

•　面包板；

•　两条接线。

本实验用TOWER PRO MG90金属齿轮，它有2.8公斤大扭力服务器，只要4.8V电压就可以转动，如图14-8所示。

 [image:]
 图14-8　TOWER PRO MG90 Servo步进马达的外型

厂家编号如下：

•　型号编号：MG90S；

•　产品尺寸：23mm×12.2mm×29mm。

•　产品净重：14g。

•　产品扭矩：2.4kg/cm（4.8v）2.8kg/cm（6v）。

•　工作电压：4.8～6V。

•　工作温度：0℃～55℃。

•　动作死区：5μs。

•　工作模式：类比（金属齿轮）。

一般以PWM信号控制的RC SERVO的外连接线如图14-8所示，白线为PWM信号线，红线为电源线，黑线为地线，用户通常会通过微处理器连接SERVO控制器来提供PWM信号及电源。

此设备的三个引脚分别是

•　VCC电源：线的颜色为红色。

•　GND接地：线的颜色为黑色或棕色。

•　Pulse脉冲：用于控制角度，线的颜色为橘色或黄色。

硬件接线如表14-2所示。

 表14-2　硬件接线

 [image:]

硬件接线设计如图14-9所示。

 [image:]
 图14-9　硬件接线图

1．样例程序

样例程序：ch14\14-3\ServoMotor\CS\MainPage.xaml。界面设计如图14-10所示。

 [image:]

 [image:]
 图14-10　界面设计

程序说明：

•　第13行：画面上的圈圈。

•　第14行：文字，用于显示滑动组件的移动情况。

•　第15行：滑动组件，用于调整时间的长短，范围为0～100，调整后会调用程序中的ValueChanged函数。

•　第16行：文字，用于显示引脚的情况。

该程序中的重点就是马达要如何设置转速，以TOWER PRO MG90金属齿轮Servo Motor步进马达为例，一个PWM的波通常为20ms：

•　0ms的高电压，将马达转到9点钟左边的方向。

•　1ms的高电压，将马达转到12点钟上面的方向。

•　2.5ms的高电压，将马达转到3点钟右边的方向。

样例程序：ch14\14-3\ServoMotor\CS\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第12～21行：设置数位输出的引脚。

•　第25～27行：调用PWM函数。

•　第33行：滑动组件会调用的函数。

•　第33行：调整Servo步进马达的高电压时间，这里马达高电压的范围为0～2.5ms，请依照实际的步进马达调整。

2．运行结果

运行后，用户可以通过画面上的滑动组件来调整PWM的高电压的时间，从而调整Servo Motor步进马达，如图14-11所示。

 [image:]
 图14-11　运行结果

实际运行的硬件结果如图14-12所示。调整高电压的时间，就能改变步进马达的选转角度。

3．教学视频

完整的教学视频可以参考14-2-ServoMotor.mp4。

硬件的运行情况可以参考14-2-ServoMotor-Hardware.mp4。

4．补充数据

依照经验，当通过树莓派2连接三个以上的马达时，这些马达的扭力就会不够，并且导致树莓派2不正常地突然关机，这是因为马达需要的用电量比较大。解决的方法是：树莓派2的电源使用时接上电流较高的变电器（如3A以上）就可以解决该问题；并且接12个以上的马达，可以用3A 5V DC的变电器直接接在马达的电源和接地上（一般Android手机用的USB充电插头都是0.5A 5V的变压器）。

 [image:]
 图14-12　硬件结果

第15章
类比数据输入

本章会介绍Windows 10 IoT Core的程序语言如何处理数位输入和读入按钮的动作。本章完成作品如图15-1所示。

 [image:]
 图15-1　本章完成作品

15.1　类比数据读入

Windows 10 IoT Core和树莓派2当前在软件和硬件的功能上，都无法直接读入类比数据，但是可以通过IC来完成该功能。

本节实验将介绍读入类比数据，市面上很多设备都需要使用类比输入并读入类比数据，例如：可变电阻的电阻值（如图15-2所示）、二氧化碳检测器、瓦斯监测传感器和光敏电阻等。在物联网中，通过硬件读入类比输入的技巧是非常重要和常见的需求。

 [image:]
 图15-2　可变电阻

15.2　数位输入IC

树莓派2不能直接读入真正的类比电压，如1.2V或0.8V等，那还有什么方法可以实现这样的功能？

可以用其他方法来解决这个问题：通过ADC（analog to digital converters，类比转数位）的IC来读入类比数据，并通过IC转换成8bit的数位数据。常见的ADC IC有：

•　ADC0804：有八个引脚的数位输出，如图15-3所示。

•　MCP3008：只有四个引脚的数位输出。

•　AD7705：有两组类比输入的引脚。

 [image:]
 图15-3　ADC IC的外观

市面上的ADC IC都是通过SPI的方法与IC沟通，SPI的原理和使用方式将会在16章详细说明，本章的类比数据读入，将会通过IC ADC0804来完成，其引脚功能如图15-4所示。请留意该IC上的上面有个半圆弧状的凹洞，以方便用户分辨方向和引脚位置。

 [image:]
 图15-4　引脚功能图

引脚菜单如表15-1所示。

 表15-1　引脚菜单

 [image:]

ICADC0804的使用方法和硬件接线方法如图15-5所示。

 [image:]
 图15-5　ADC0804的使用方式

15.3　实验——ADC0804类比输入和二进制LED灯

因为使用IC ADC0804的接线很复杂，所以在此把案例的动作分两节介绍。本节将使用IC ADC0804来做类比输入的读入，并且把输出的8个数位引脚，通过LED灯来显示，这样8个LED灯就会像是1个位元（8个字符）的LED数字灯。测试ADC0804是否接得正确，需要通过读入可变电阻的类比数据数据，并且通过LED灯把它显示出来，这样就是一个标准的读入类比数据的一个硬件。当然在网络上也可以找到现成的ADC0804模块电路板。

硬件准备如下：

•　8个LED灯；

•　一个10kΩ电阻，颜色为棕、黑、橙，最后一色环为金或银；

•　一个IC是ADC0804；

•　一个150pF的电容，号码是151；

•　面包板；

•　数条接线；

•　电池两个；

•　一个可变电阻。

硬件接线如表15-2所示。

 表15-2　硬件接线

 [image:]

 [image:]

本实验不需树莓派的软件，是单纯的硬件实验，请在没有接上电源和电池的情况下，依照图15-5所示连接硬件线路。理论上LED灯要接电阻来防止烧坏，如果时间允许，最好这样做；这里因为线路已经很复杂了，省略该接线。读者也可购买质量好的LED灯，避免烧坏，另外这个IC的电源是5V或3.3V。

硬件接线设计图ch15\ch15-3\15-3.fzz，如图15-6所示。

 [image:]
 图15-6　硬件接线

本实验不需树莓派2和Windows计算机，只是单纯的电子硬件线路，请先确定线路一切正常，再接上5V或3.3V的电池（两个AA的电池）。

本实验的目的是用户通过调整可变电阻。就可以看到8个LED灯显示二进制的电阻的数据。

如果没有电池的话，也可以用树莓派2的GPIO上的Pin2 5V和Pin6 GND来代替。

教学视频

因为硬件线路非常的复杂，所以如果实验有问题的话，可以参考教学视频15-3-ADC0804-Analog-to-Digital-IC.mp4，查看哪个引脚没有接好。

通过ADC0804的IC读入可变电阻，就会把数据通过8个LED灯显示出来，如图15-7所示。

 [image:]
 图15-7　实际硬件结果

如果在面包板上测试成功的话，推荐到电子材料行购买电路板，利用焊枪和锡把这个ADC0804做成一个模块，从而省掉以后再次接线的步骤，如图15-8所示。

 [image:]
 图15-8　自制ADC0804电子模块

另外对焊枪不熟悉者，也可以用胶带把面包板固定，仅把电源、接地、数位输出和类比输入的接线用较长的线拉出来。

15.4　通过ADC0804读入类比数据

第一个实验顺利的话，接下来将可以进行第二个实验，即把这八条数位数据接到树莓派的板子上，再通过程序来读入数据并且把它显示在计算机屏幕上。

硬件准备如下：

删除第一个实验硬件中的电池和LED灯，并使用树莓派2来供电和读取数据。

•　树莓派2开发板；

•　一个可变电阻；

•　一个10kΩ电阻，颜色为棕、黑、橙，最后一色环为金或银；

•　一个IC是ADC0804；

•　一个150pF的电容，号码是151；

•　面包板；

•　数条接线。

首先把上一个ADC0804实验的连线接好，关机后拔掉电源，并把上一个实验的电池拔掉。

依照表15-3所示的硬件接线，接上树莓派的硬件线路。本实验改变了LED灯上面的8条接线，接到了树莓派的GPIO上面。

 表15-3　硬件接线

 [image:]

实际硬件接线如图15-9所示。

1．样例程序

样例程序：ch15\15-4\analogin\MyIoTApp\MainPage.xaml。界面设计如图15-10所示。

 [image:]
 图15-9　实际硬件接线

 [image:]

程序说明：

•　第11行：文字，用于显示读入类比的数据值。

•　第12行：文字，用于显示8个引脚的位置。

•　第13行：按钮，单击后就会结束程序。

请留意本程序是通过IO ADC0804将类比数据转换成8bit的数位数据，再通过本程序读入8个类比输入的数据，通过二进制计算转换成十进制显示在文字组件上。

 [image:]
 图15-10　界面设计

样例程序：ch15\15-4\analogin\MyIoTApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第11～27行：设置8个数位输入的引脚。

•　第28～31行：设置计时器。

•　第37～48行：读入8个数位输入的情况，并将8bit的二进制数据转换为十进制显示在画面上。

•　第50～58行：取得特定引脚的数位输入情况。

2．运行结果

本样例运行之后的结果如图15-11所示，用户可以通过调整可变电阻，看到画面上的数值的变化，数字会在0～255之间，也就是8bit表示的范围内。

 [image:]
 图15-11　硬件结果

实际运行的硬件结果如图15-12所示。

 [image:]
 图15-12　硬件结果

3．教学视频

教学视频和硬件的运行情况可以参考15-4-AnanlogInput.mp4，视频中可以看到如何通过C#去读入可变电阻的值。

4．补充说明

如果担心一下子占用了8个GPIO的引脚后没有其他的引脚可以使用的话，以下几个方法可以调整：

（1）把低位元的引脚放弃，如果不要求输入数据的精准程度的话；

（2）还可以通过74HC595这一类的IC，从而能够让树莓派的三个GPIO的引脚控制八个引脚。

另外本程序也可以有更好的调整，即换算电压，可以通过将读进来的数字除以总范围，也就是255，再乘上电压值5V即可。

例如，读到数字是120，那电压值就是（120/255）×5，即2.39V，实际可以用三用电表验证。

15.5　实验——小夜灯和光敏电阻

光敏电阻是一种特殊的电阻，它的电阻和光线的强弱有直接关系，简称光电阻，又名光管道，如图15-13所示。光线越强，光敏电阻产生的自由电子也就越多，电阻就会越小。所以本实验需要用到太阳光或电灯，当有光线照射时，电阻内原本处于稳定状态的电子受到激发成为自由电子，使得光敏电阻的阻值变小。

光电流=亮电流-暗电流

•　暗电阻：电阻在完全没有光线照射的状态下（室温）的电阻值为暗电阻（当电阻值稳定不变时，例如1kMΩ），与暗电阻相对应的电流为暗电流。

•　亮电阻：电阻在充足光线照射的状态下（室温）的电阻值为亮电阻（当电阻值稳定不变时，例如1Ω），与亮电阻相对应的电流为亮电流。

•　光电流=亮电流-暗电流成立的条件有很多变化，可运用在不同的使用情况来打开电路和闭合电路。

 [image:]
 图15-13　光敏电阻的外型

相信读者一定都见过晚上会自动亮起来的小夜灯，那是如何设计的呢？本实验将介绍如何通过光敏电阻来了解天是否暗了或照明的明暗度。

硬件准备如下：

•　树莓派开发板；

•　一个LED灯；

•　一个光敏电阻（如果没有的话可用可变电阻代替）；

•　一个10kΩ电阻；

•　一个220Ω电阻；

•　面包板；

•　接线。

首先把上一个ADC0804实验的接线接好，关机后拔除电源，并把上一个实验的电池先取出。

依照表15-4和表15-5所示的硬件接线，接上树莓派的硬件线路。这里改变了LED灯上面的8条接线，接到了树莓派的GPIO上面。

 表15-4　树莓派和ADC0804硬件接线

 [image:]

 表15-5　树莓派和光敏电阻硬件接线

 [image:]

硬件接线设计如图15-14所示。

1．样例程序

请使用上一节的样例程序。

2．运行结果

本程序每0.5s会读入光敏电阻的电阻值，通过ADC0804的IC读入8bit的数据并显示出来，所以可以在画面上看到光敏电阻的电阻值，如图15-15所示。

3．教学视频

教学视频和硬件的运行情况可以参考15-5-Photoresistance.mp4，从视频中可以看到如何通过C#去读入光敏电阻的值。

 [image:]
 图15-14　光敏电阻的硬件接线图

 [image:]
 图15-15　光敏电阻所读入的运行结果

第16章
脉冲输入和输出——距离传感器

本章会介绍Windows 10 IoT Core的程序语言如何处理脉冲Pulse输入和输出的方法。本章完成作品如图16-1所示。

 [image:]
 图16-1　本章完成作品

16.1　脉冲

脉冲（pulse）是相对于连续信号在整个信号周期内短时间发生变化的信号，例如某信号的大部分周期内为低电压，出现一个高电压时，就产生了一个脉冲信号。

电压或电流的波形像心电图上的脉搏跳动的波形，现在听到的电源脉冲和声脉冲等又作何解释呢——脉冲的原意被扩为隔一段相同的时间发出的波等机械形式，学术上把脉冲定义为在短时间内突变，随后又迅速返回其初始值的物理量。

从脉冲的定义不难看出脉冲有间隔性的特征，因此可以把脉冲作为一种信号。脉冲信号的定义由此产生：相对于连续信号在整个信号周期内短时间发生的信号，大部分信号周期内没有信号，就像人的脉搏一样。脉冲信号现在一般指数字信号，它的一个周期内有一半时间（甚至更长时间）有信号。计算器内的信号就是脉冲信号，又称数字信号。

脉冲函数分为输出和输入，输出时可以指定某一个高电压的时间或是某低电压的时间。脉冲输入指的是用于读入设置的引脚脉冲的时间长度的函数，脉冲可以是高或低，只要发生电压由低变高或由高变低，都算作脉冲。该函数所返回的数值，单位为ms。

16.2　脉冲输出处理

严格上，Windows 10 IoT Core的IoT指令中没有脉冲的功能，在此笔者特地写了一组脉冲的类型函数来完成此目的。

物联网IoT最主要的目的就是控制周边设备，本案例将结合上述函数在Windows 10 IoT Core环境中进行实际应用，并依照开发者的指定改变GPIO引脚的动作，通过脉冲指定输出时间，控制LED灯的亮和暗，也就是作出脉冲Pulse输出的动作。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　一个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　面包板；

•　数条接线。

硬件接线如表16-1所示。

 表16-1　硬件接线

 [image:]

硬件接线设计如图16-2所示。

 [image:]
 图16-2　硬件接线设计

主要步骤：首先把树莓派2关机，并把硬件接线依照上图连接完成后再开机，并确认树莓派2的网络IP位置和LED的引脚。

1．样例程序

样例程序：ch16\16-2\16-2-A\PulseApp\PulseApp\MainPage.xaml。界面设计如图16-3所示。

 [image:]

 [image:]
 图16-3　界面设计

程序说明：

第14行：文字，用于显示文字消息。

本专题将使用计时器，通过指定引脚GPIO 4为输出，调整该引脚的脉冲电压为高电位，从而将LED灯光打开。

为了让读者了解脉冲的写法，在此通过三个程序来说明脉冲输出的原理。

2．程序版本A

样例程序：ch16\16-2\16-2-A\PulseApp\PulseApp\MainPage.xaml.cs

 [image:]

程序说明：

•　第13行：通知已发生事件等待的路复用。

•　第16行：设置高电位。

•　第18行：指定等待的时间，即发出脉冲的信号。

•　第19行：改变电位，即结束脉冲的信号。

本程序运行的结果如图16-4所示，程序会在第14～21行一直循环，不能显示画面和进行其他的动作。

程序A和样例的运行教学可以参考16-2-A-Pulse.mp4。

 [image:]
 图16-4　运行结果

3．程序版本B

因为程序版本A不能显示和离开程序，所以在版本B进行了修改。

样例程序：ch16\16-2\16-2-B\PulseApp\PulseApp\MainPage.xaml.cs

 [image:]

程序说明：

第13行：发出路复用的动作，并且在后台的情况下，运行第16行的函数。

程序B运行的结果会比程序A好很多，因为程序B在第13行通过路复用的动作先离开程序，并在路复用的情况下一直无限循环程序。

程序B和样例的运行教学可以参考16-2-B-PulseThread.mp4。

4．程序版本C

接着版本B，而在版本C中，新增一个类型Pulse，通过类型的方法处理相关的脉冲输出的函数。

样例程序：ch16\16-2\16-2-C\PulseApp\PulseApp\Pulse.cs

 [image:]

程序说明：

•　第10行：发出指定的电压。

•　第11行：等待，脉冲时间。

•　第12行：发出相反的电压。

使用Pulse.cs的方法如下。

样例程序：ch16\16-2\16-2-A\PulseApp\PulseApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

第19行：运行调用脉冲输出，并且设置该脉冲为高电压，运行5000ms。

程序C运行的效果最好，并且会发出一个高电压的脉冲并运行5000ms，程序C的运行效果和教学可以参考16-2-C-PulseThread-class.mp4。

16.3　实验——读入按下按键的时间

本节将会使用一个按钮，通过引脚作用到树莓派2上，然后在程序中读入脉冲输入来查脉冲的改变，并回传出时间，从而测量用户按下和放开按钮的时间，作出短按和长按的判断。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　两个220Ω电阻；

•　一个四引脚的按钮；

•　面包板；

•　数条接线。

硬件接线如表16-2所示。

 表16-2　硬件接线

 [image:]

硬件接线设计如图16-5所示。

 [image:]
 图16-5　硬件接线

主要步骤：首先把树莓派2关机，并把硬件接线依照图16-5连接完成后再开机。

1．样例程序

样例程序：ch16\16-3\PulseApp\PulseApp\MainPage.xaml

 [image:]

程序说明：

第11行：文字，用于显示脉冲输入的时间。

程序界面的外观与图16-3一样。

在类型Pulse中，将新增一个PulseInput函数用于读入脉冲的时间并回传。

样例程序：ch16\16-3\PulseApp\PulseApp\Pulse.cs

 [image:]

程序说明：

•　第17行：读入脉冲输入函数，并回传脉冲时间。

•　第27行：等待脉冲输入。

•　第28行：计算等待的时间。

PulseInput函数的逻辑是先判断和等待相反的电压，直到遇到要检测的脉冲电压时，开始计算时间，并在无穷循环中，等待脉冲电压的变换，把整个时间计算后回传。

样例程序：ch16\16-3\PulseApp\PulseApp\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第14～18行：数入输出引脚设置。

•　第20行：路复用处理。

•　第22～25行：计时器处理。

•　第31～32行：调用脉冲函数。

•　第38行：计算和显示时间。

该程序的特别之处是：在RunAsync路复用的处理中，不能直接进行画面UI处理，这也是为什么会有计时器Timer_Tick函数的原因，定时地显示变量的数据在画面UI上。

2．运行结果

运行后，用户可以按下按键一段时间，程序能通过脉冲取得按下的时间，并通过画面显示时间，如图16-6所示。实际硬件运行情况如图16-7所示。

 [image:]
 图16-6　运行结果

 [image:]
 图16-7　实际硬件运行情况

3．教学视频

教学视频和硬件的运行情况可以参考16-3-PulseInput.mp4。从视频中可以看到如何通过C#去读入用户按下的时间。

16.4　超声波距离传感器

当前市面上有各式各样的距离感测器，本节介绍的距离感测器发出人类听不到超波（ultrasoud），通过碰到物体后再接收，计算出感测器与物体的距离。超声波距离传感器可以提供非常精确的非接触远距离测量，只要把传感器面向物体，就可以通过声音的反弹得知距离，本实验的传感器，可以测量距离约为2cm（0.8in）～3m（3.3yd），市面上的设备因为测量距离的大小不同价格也不相同。

图16-8展示了超声波距离传感器的工作原理，它发射超声波（远高于人类的听觉范围），并且接收到反弹的时间来求得距离，回波脉冲宽度可以很容易地计算出来目标的距离。

16.4.1　超声波距离传感器——三引脚

1．硬件规范

当前市面上有各式各样的距离感测器，本实验使用3引脚的超声波距离传感器Parallax PING）））Ultrasonic Sensor，如图16-9所示，来完成尺寸量测器，首先需了解Parallax PING）））超声波距离传感器的工作原理，如图16-8所示。

 [image:]
 图16-8　超声波距离检测传感器的动作原理

 [image:]
 图16-9　超声波距离传感器

一般而言超声波距离传感器有3脚的和4脚的，本实验先介绍3脚的，下一个实验再使用4脚的超声波距离传感器。3脚的接线如表16-3所示。

 表16-3　3脚的接线

 [image:]

本实验使用的Parallax的超声波距离传感器动作方法的原理如图16-8所示。

传感器得到的数据再换算73.746ms/in，如果换算成厘米的话是340m/s或29cm/ms，因为从超声波的送出到碰到对象后反弹被接收的距离是传感器到目标物距离的2倍，所以需要除以2，以得到传感器与障碍物之间的距离。

详细的距离传感器的数据，可以参考http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf。

2．使用样例

 [image:]

16.4.2　超声波距离传感器——四引脚

本实验使用4引脚的超声波距离传感器来实现倒车系统的警告器，如果靠太近的话，LED灯就亮起以发生警告。

4引脚的超声波距离传感器的工作原理，如图16-10所示。

 [image:]
 图16-10　4引脚的超声波距离传感器

3脚的超声波距离传感器在上一节已经介绍过了，本节介绍4引脚的超声波距传感器。不同之处是3脚的SIG信号的输入输出在同一个引脚，4脚的传感器就把它分成两个引脚，一个是输入Trig，作触发事件，另一个是输出作回传距离的引脚。4引脚的接线如表16-4所示。

 表16-4　4引脚的接线

 [image:]

得到的数据也是一样的算法，请参考上一节的验算法，此处不再赘述。

使用样例

 [image:]

16.5　实验——判断距离

本节将使用按钮，通过引脚作用到树莓派2上，然后在程序中读入脉冲输入来查看脉冲的改变，并回传时间，这样就可以测量用户按下和放开的时间，这样就可以进行短按和长按的判断。

硬件准备如下：

•　树莓派2开发板；

•　一个LED灯；

•　两个220Ω电阻；

•　一个四引脚的按钮；

•　面包板；

•　数条接线；

•　四引脚的超声波距离检测传感器。

硬件接线如表16-5所示。

 表16-5　硬件接线

 [image:]

硬件接线设计如图16-11所示。

 [image:]
 图16-11　硬件接线

主要步骤：首先把树莓派2关机，并将硬件接线依照图16-11连接后再开机。

1．样例程序

样例程序：ch16\16-5\PulseApp\PulseApp\MainPage.xaml

 [image:]

程序说明：

第11行：文字，用于显示脉冲输入的时间。

程序界面的外观与图16-3一样。

在下面程序中，类型脉冲中，将新增一个PulseInput函数用于读入脉波的时间，并回传。

样例程序：ch16\16-5\PulseApp\PulseApp\Pulse.cs

 [image:]

程序说明：

•　第17行：读入脉冲输入函数，并回传脉冲时间。

•　第27行：等待脉冲输入。

•　第28行：计算等待的时间。

PulseInput函数的逻辑是先判断和等待相反的电压，直到遇到要检测的脉冲电压时，就计算时间，并在无穷循环中等待该脉冲电压变换，再把整个时间计算后回传。

样例程序：ch16\16-5\PulseApp\PulseApp\MainPage.xaml.cs

 [image:]

程序说明：

•　第14～18行：输入输出引脚设置。

•　第20行：路复用处理。

•　第22～25行：计时器处理。

•　第31～33行：调用脉冲函数，发出4脚的超声波距离传感器所需的脉冲。

•　第39行：计算显示距离和显示时间。

2．运行结果

运行后就可以通过超声波距离传感器取得设计与周边的距离，并在画面上显示距离，如图16-12所示。

 [image:]
 图16-12　运行结果

而实际的运行的硬件如图16-13所示。

 [image:]
 图16-13　实际硬件

3．教学视频

教学视频和硬件的运行情况可以参考16-5-Pulse_UltraSound.mp4。从视频中可以看到如何通过C#去读入超声波距离传感器所检测的数据，并显示在画面上。
第17章
UART序列通信数据传递

本章会介绍如何完成UART序列通信数据传递，并与其他设备通信。本章完成作品如图17-1所示。

 [image:]
 图17-1　本章完成作品

17.1　UART序列通信数据传递

UART（universal asynchronous receiver/transmitter，通用异步接收/发送）是一种通用型异步双向传输和接收器，也就是双向通信，可以实现全双工传输和接收。在物联网设备中，UART是非常常见的传递数据的方法，UART通常用在与其他通信界面（如EIARS-232）的连接上，也能用于和PC计算机及周边设备等进行数据传递，例如传感器模块、蓝牙模块、网络模块、Arduino、树莓派和其他设备。

PC计算机也有UART设备，最常见的就是COM1，也有人称为RS-232，该设备引脚，可以作UART的数据传递的引脚，通过该方法，计算机就可以和其他使用RS-232C接口的串行设备通信了。

接下来会介绍一个常见的数据传输技术，该技术可以在不同的机器之间实现数据传递，普遍应用在电子业界，例如，树莓派可以用该技术和Arduino、PC等其他硬件通信。后面的章节将介绍如何实现。

首先将接收到的数据转换为数位的串行数据来传输。数据从一个低位初始化位开始，后面是7个或8个数据。当接收器发现开始有数据变化时，它就知道数据准备发送，并尝试与发送器的频率同步。简单来说，通过一条线把一整串数据转换成bit，并在每秒钟依照事先双方约定的速度，通过数位电压的高低，把数据传递到对方。其过程为：CPU先把准备写入串行设备的数据放到UART寄存器中，再通过FIFO（first input first output，先入先出）传送到串行设备，在传递数据之前，需要先约定双方的传递数据的速度和方法。

UART还提供以下功能：将由计算器内部传送过来的并行数据转换为输出的串行数据流；将计算器外部到达的串行数据转换为字符串，供计算器内部使用并行数据的器件使用；在输出的串行数据流中加入奇偶校正的数据，并对从外部接收的数据流进行奇偶校正。

树莓派2当前只有1个号码可以使用UART0，如图17-2所示，分别是：

•　Pin 8-UART0 TX传送数据的引脚；

•　Pin 10-UART0 RX接收数据的引脚。

 [image:]
 图17-2　树莓派2的UART0硬件引脚图

也可以在市面购买USB转TTL的设备，它也可作为UART来传递，后面的专题会有详细的介绍。

17.2　UART相关函数

17.2.1　取得可用设备GetDeviceSelector

开始使用UART前，需要先找到该设备，因为机器上有可以接上USB的UART设备，所以在使用之前，需要通过程序指定的UART号码，进行动作。

语法如下：

取得机器上的可用设备AQS名称：

public static string GetDeviceSelector(string portName)

回传值字符串，会回传可用设备的AQS名称。

参数portName的输入值，在Windows 10 IoT可以指定为：

•　UART0，使用树莓派2上的Pin 8和Pin 10引脚。

•　也可以不指定，这样会取得所有的UART设备。

17.2.2　取得设备详细数据FindAllAsync和FromIdAsync

同GetDeviceSelector函数一样，UART开始使用前，找到设备后，需要取得该设备的详细数据，此时需要FindAllAsync和FromIdAsync。

1．语法

通过指定ID可以取得该设备。

 [image:]

回传值字符串，会回传可用设备的SerialDevice的函数，将用于设置UART传递的参数。

参数deviceId的输入值，通过指定ID可以取得该设备。

2．使用样例

寻找UART0设备的写法如下：

 [image:]

3．UART版本确认

请注意版本最少为以下的版本，不然会找不到硬件上的UART设备：

•　Windows 10 IoT Core：版本10.0.10586.0；

•　Visual Studio：Visual Studio 2015 update 1；

•　Windows SDK：version 10586。

Windows 10作业系统可以通过系统软件Check for updates打开Update & security窗口，单击Check for updates升级版本，如图17-3所示。

 [image:]
 图17-3　升级Windows版本

而Visual Studio的版本升级可以通过最新的Visual Studio，可以在https://dev.windows.com/en-us/downloads取得并安装，如图17-4所示。如果软件发现安装的是较旧的版本，会自动询问是否要更新版本，选择Update即可。如果升级有误，请删除旧版本并重新安装。

4．Package.appxmanifest设置

另外，还需要在Package.appxmanifest中，加上以下的设置：

 [image:]
 图17-4　升级到Visual Studio 2015 update 1版本

 [image:]

修改的方法如图17-5所示，右击Package.appxmanifest，选择Open With...选项。

在Open With...的窗口中，选择XML（Text）Editor文字编辑器打开该文件，如图17-6所示。

注意该设置要放在＜/Package＞之前，如图17-7所示。

17.2.3　设置UART设备传输速度SerialDevice类型

进行UART动作之前，需要将双方的传输方法设置一致，在Windows Visual C#程序语言中，可以通过SerialDevice类型指定传输的速度等相关数据。

 [image:]
 图17-5　在Package.appxmanifest中选择Open With...

 [image:]
 图17-6　在Open With...窗口中选择XML（Text）Editor

 [image:]
 图17-7　添加Package.appxmanifest对UART的设置

1．语法

设置UART设备的类型。

 [image:]

因为参数众多，请通过以下实际样例学习。

2．使用样例

设置序列通信设备速度和参数：

 [image:]

之前提到在UART传递数据之前，需要先约定双方的传递数据的速度和方法，以上程序中所使用的设置值是：

•　传输速度Speed（baud rate，波特率）：9600bps（bit/s，每秒传输的bit数量）；

•　传输位元Bits：8；

•　Parity：None；

•　Flow Control：None；

•　Stop Bits：1。

一般而言，传输速度有2400bps、9600bps和115200bps等，数字越大也就传递越快。

17.2.4　UART数据的输出DataWriter

UART最重要的动作就是传送数据，在设置设备和双方的传输方法后，就能够通过DataWriter传递数据。

1．语法

DataWriter类型将数据写入输出数据流。

public uint WriteString(string value)

value为要送出的字符串。

另外也可以通过WriteBytes传递byte[]的字符。

2．使用样例

设置序列通信设备速度和参数后，就能够通过DataWriter送出数据，以下是通过WriteString函数，送出字符串Hello world！。

 [image:]

17.2.5　UART读入数据DataReader

UART在接收数据的时候，在设置设备和双方的传输方法后，就能够通过DataReader接收数据。

1．语法

DataReader的类型将数据读入。

public string ReadString(uint codeUnitCount)

codeUnitCount为读取数据的长度，回传值为读入的字符串。

2．使用样例

设置序列通信设备速度和参数后，就能够通过DataReader读取数据，以下程序通过ReadString函数，读入UART中的数据并转成字符串。

 [image:]

17.2.6　使用Async和Await设计异步程序

可以使用异步编程，避免发生性能瓶颈并增强应用程序的整体响应性。不过，异步应用程序的传统技术可能很复杂，因而难以撰写、侦错和维护。

在Visual Studio 2012之后，推出了简单的方法，也就是异步编程，充分运用了.NET Framework 4.5和Windows运行阶段中的异步支持。编译器会帮助开发人员处理困难的异步程序，而所使用的应用程序仍保有类似同步代码的逻辑结构。因此，开发者可以轻松拥有异步编程的所有优点。

1．Async异步程序

对于应用程序而言，异步可能需要花费比较长的时间，例如访问网络数据等。该类型的动作速度有时会变慢或延迟。如果这类活动在同步处理序中遭到封锁，整个应用程序就必须等候。在异步处理程序中，应用程序可以继续处理其他工作，直到网络数据完成后，继续将工作完成。

2．await等待数据回传

调用Async异步的程序，可以查看是否需要等待回传数据，如果不用的话，就同一般的调用函数的方法一样；但是如果需要等待数据回传才成继续运行的话，可以通过await关键字来处理，如下面的样例程序。

 [image:]

17.3　UART序列通信数据传递

在了解UART序列通信数据传递的相关函数之后，如何实际开发相关的UART应用程序？本节将通过硬件UART接线，将开发传递文字数据的案例。

硬件准备如下：

•　两个树莓派2开发板（一个也可以）；

•　数条接线。

如果条件允许的话，请准备两个树莓派2，实验成功会看到设备之间互相传递数据，会比较形象。

两个设备的硬件接线如表17-1所示。

 表17-1　两个设备的硬件接线

 [image:]

两个树莓派的硬件接线设计如图17-8所示。

 [image:]
 图17-8　两个树莓派的硬件接线设计

如果因为预算的关系，只能用一台树莓派2，可以在机器上把自己的RX连接到TX引脚上，从程序开发的角度来说是一样的，意思就是自己传送数据给自己。

一个设备的硬件接线设计如图17-9所示。

 [image:]
 图17-9　一个树莓派2的硬件接线

主要步骤：首先把树莓派2关机，并把硬件接线依照上图连接完成后再开机。请再次确认版本是否符合要求，不然会因为版本过于老旧，导致程序不能正常运行。

1．样例程序

本程序运行后，就会通过UART把字符串数据传递出去。

样例程序：ch17\17-3\UART\UART\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第19行：寻找UART0设备。

•　第20行：找到选择的序列通信设备。

•　第21行：指定SerialDevice SerialPort变量到选择的设备上。

•　第23～28行：设置序列通信设备速度和参数，双方的机器需要保持一致，不然会发生数据错误。

•　第30～33行：UART送出字符串。

•　第36～40行：UART读入字符串。

2．运行结果

本样例运行之后的硬件结果如图17-10所示，运行后会发现一个问题，就是该程序只有引导的一瞬间才会读入和送出UART的数据，后面就不会有任何反应，解决的方法请看下一节。

 [image:]
 图17-10　运行结果

3．教学视频

完整的教学视频可以参考17-3-UART.mp4。

硬件的运行情况可以参考17-3-UART-Hardware.mp4。

17.4　UART传递数据编程

上一节的程序虽然已经介绍了UART序列通信数据传递的相关函数，但是在程序一开始运行时就马上接收和送出数据，之后就不会作出反应，所以需要把相关的函数放在合适的位置，本样例将修改如下：

•　通过送出按钮，将输入框的数据送出；

•　创建一个新的路复用，持续地接收数据。

硬件和接线准备同上一节。

主要步骤：首先把树莓派2关机，并按上一节的硬件接线图完成相关线路的连接再开机。

1．样例程序

本程序运行后，在输入框输入数据并单击按钮后，就会通过UART把字符串数据传递出去，并在路复用中一直持续等待接收数据并显示在画面上。

首先调整画面，增加两个文字框（TextBox）和一个按钮（Button），通过Visual Studio单击MainPage.xaml，并通过以下程序添加相关UI组件。

样例程序：ch17\17-4\UART\UART\MainPage.xaml。界面设计如图17-10所示。

 [image:]

单击按钮之后，便会调用sendTextButton_Click函数。

样例程序：ch17\17-4\UART\UART\MainPage.xaml.cs

 [image:]
 图17-11　程序画面调整

 [image:]
 [image:]

程序说明：

•　第16～28行：设置序列通信设备速度和参数。

•　第36～43行：UART读入字符串，注意此处通过无限循环，一直等待输入数据。

•　第44行：用户单击UI上的按钮时的处理函数。

•　第50～65行：UART送出字符串。

2．运行结果

本样例运行之后的硬件结果如图17-12所示，此时能够顺利地在输入框中输入文字并按下按钮后通过UART送出文字，在路复用的情况下，通过无限循环等待UART数据读入，并显示在画面上。

 [image:]
 图17-12　运行结果

3．教学视频

完整的教学视频可以参考17-4-UART-Task.mp4。

硬件的运行情况可以参考17-4-UART-Task-Hardware.mp4。

17.5　寻找该机器上所有的UART设备

延续上一节的程序，虽然已经顺利地通过UART的方法接收和传递文字数据，但是如果一个机器上有多个UART设备的话该如何处理？并且Visual C#如何通过同一个程序在计算机和树莓派上运行？本样例将延续上一节样例，并修改如下：

•　列出所有可用的UART设备。

•　用户选择设备后按下连接的按钮，才选定该UART设备。

硬件和接线准备同上一节。

主要步骤：首先把树莓派2关机，并按上一节的硬件接线图完成相关线路连接再开机。

1．样例程序

本程序运行后，除了完成上一节的功能外，主要是把所有UART设备先在ListBox列表，让用户选择，选择后再连接。用户在输入框输入数据并单击按钮后，就会通过UART把字符串数据传递出去，在路复用中一直持续等待接收数据，并显示在画面上。

首先调整画面，增加两个文字框、一个列表（ListBox）和3个按钮，通过Visual Studio，单击MainPage.xaml，并通过以下程序添加相关的UI组件，因为画面的定义XAML文件大，所以列出重点说明。

样例程序：ch17\17-5\SerialSample\CS\MainPage.xaml。界面设计如图16-13所示。

 [image:]

程序说明：

•　第2～9行：定义列表ListBox的组件。

•　第11行：单击Connect连接该UART设备的按钮。

•　第12行：单击Disconnect关闭该UART设备的按钮。

•　第14行：输出的文字，用户可以在TextBox中输入文字。

•　第16行：读入的数据，通过UART读入后的文字在TextBox显示。

 [image:]
 图17-13　程序画面调整

•　第17行：UART送出字符串的按钮。

单击Connect按钮之后，便会调用comPortInput_Click函数，作连接该UART设备的动作。

样例程序：ch17\17-5\SerialSample\CS\MainPage.xaml.cs

 [image:]
 [image:]
 [image:]
 [image:]

程序说明：

•　第16～29行：取得所有的UART设备。

•　第30～56行：连接用户选择的UART设备。

2．运行结果

本样例运行之后的硬件结果如图17-14所示，列出了所有的可用UART设备，连接后就可以进行UART通信。

 [image:]
 图17-14　运行结果

本程序也能在PC上运行，运行结果如图17-15所示。

 [image:]
 图17-15　程序在PC上运行的结果

3．教学视频

完整的教学视频可以参考17-5-UART-selection.mp4。

硬件的运行情况可以参考17-5-UART-selection-Hardware.mp4。

PC的运行部分可以参考17-5-UART-selection-x86.mp4。

17.6　Windows 10 IoT Core与PC上串口作数据传递

17.6.1　计算机的UART串口介绍

本节介绍Windows 10 IoT Core如何和PC作UART的数据传递，需要借用个人计算机的串口。

何谓计算机端的UART？就台式计算机而言，Com1、Com 2、Print Port，其实就是使用UART来作传递数据的接口，如图17-16所示。

 [image:]
 图17-16　台式计算机的Com Port接口

严格来说，图17-16所示的是RS232的界面，Com1 Port和Com 2 Port是计算机内部对外连接位置的一种叫法，RS232是一种界面，我们常提到的USB、1394也是另外一种界面，只是大部分的计算机都把Com1默认成RS232的界面而已，而且现在的作业系统都会自动检测Com Port是否被使用，只要把线插进去，就会对应到正确的Com Port。

一般RS232分为两种：

（1）9个引脚的RS232，例如鼠标，如图17-17所示。

（2）25个引脚的RS232，例如打印机，如图17-18所示。

 [image:]
 图17-17　9个引脚的RS232

 [image:]
 图17-18　25个引脚的RS232

1．9个引脚的RS232

9个引脚的RS232如图17-17所示，引脚定义如表17-1所示。

 表17-1　DB-9引脚定义

 [image:]

个人计算机所使用RS232通信界面的异步串行端口能将平行格式的数据转换成一系列循序的数据，以便于计算机与计算机或计算机与外设之间通信，通常个人计算机上用串行端口连接的外设有串行打印机、鼠标和外部调制解调器等。串行端口和平行端口两者最大的不同点在于其传递数据的方式：如果采用平行连接的方式，则数据以字节为单位同时由平行端口传送出去；若采用串行端口，则数据会转换成连续的数据位元，然后依序由端口送出，接收端收集这些数据后再将其合成为原来的字节。RS232用作序列传输的控制芯片称为UART，一般使用INS 8250或其兼容芯片。RS232共定义了25个传输使用的信号，但PC只使用其中的9个信号，所以虽然外接的D型转接器分为9-PIN和25-PIN两种，可是后者也仅使用了9个信号而已，剩下的则保留未用。各信号线在数据传输时的实际作用如表17-2所示。

 表17-2　各信号线在数据传输时的实际作用

 [image:]

2．25个引脚的RS232

25个引脚的RS232如图17-18所示，引脚定义如表17-3所示。

 表17-3　DB-25引脚定义

 [image:]

 [image:]

DB-25共有4条数据线、11条控制线、3条时序线及7条备用线，常用的只有引脚1到引脚8和引脚20、22这10个引脚。厂商为了节省成本，甚至只有连接以上10引脚，其他的15引脚都没有接线。以广泛使用的RS232为例，作为与计算机的通信界面，可以作出收/发端的数据信号是相对于“地”的电压，如果传输线闲置时，传输信号（TD）的电压将是负的，在传输当中，电压将是正负变化的。

传送端驱动器正电压范围为+5～+15V，负电压范围为-5～-15V之间。接收端工作电压范围为+3～+12V和-3～-12V。由于传送电位与接收电位仅有2～3V的电位差，其抑制共模噪声的能力明显不足，所以传送距离受到极大的限制，其最大传输距离约为15m，最高速率为20Kbps。

因为树莓派板子所送出的信号电压在0～3.3V之间，所以严格来讲，树莓派所送出来的信号标准称为TTL（transistor-transistor logic）。

3．USB转Com1转换器

如果读者使用的笔记计算机上没有Com Port，可以考虑用USB转Com的转接头，携带也方便，如图17-19所示。

 [image:]
 图17-19　USB转Com的转接头

4．RS232 to TTL/CMOS转换器

因为树莓派板子所送出的信号是TTL，但是计算机是RS232，所以需要进行电压转换，读者可以购买RS232转TTL的转换器，非常便宜且使用也很方便，如图17-20所示。

 [image:]
 图17-20　硬件RS232 to TTL/CMOS转换器

5．自制RS232 to TTL/CMOS转换器

如果想要自制转换器的话，可使用晶体管。

需要的材料如下：

•　R1=1kΩ；

•　R2=4.7kΩ；

•　R3=10kΩ；

•　R4=10kΩ；

•　R5=1kΩ；

•　D1=1N4148；

•　Q1=BC557；

•　Q2=BC547；

•　P1=Port DB9。

硬件接线如图17-21所示。

 [image:]
 图17-21　硬件RS232转TTL/CMOS的硬件线路图

推荐：现在市面上也有USB接头，可直接转成TTL的线。

硬件准备如下：

•　树莓派2开发板；

•　数条接线；

•　PC一台；

•　USB转T LL转换器。

硬件接线如表17-5所示。

 表17-5　硬件接线

 [image:]

硬件接线设计如图17-22所示。

1．样例程序

本专题的程序沿用第17.5节的样例程序，并且运行在Windows 10 IoT Core的树莓派2上面。

 [image:]
 图17-22　通过RS232转TTL的板子连接到计算机的Com Port上

2．实际硬件

本专题的实际硬件接线图如17-23所示。

 [image:]
 图17-23　实际硬件接线

17.6.2　Windows软件——Hyper Terminal的使用

在计算机上如何使用第三方软件来读入和送出数据，可以使用Hyper Terminal软件，或其他熟悉的软件。

因为Windows 10已经把Hyper Terminal删除，所以请到网址http://www.hilgraeve.com/hyperterminal/下载免费的试用版本并进行安装即可，如图17-24所示。

Windows上的Hyper Terminal的安装和使用的主要步骤如下：

 [image:]
 图17-24　下载安装Hyper Terminal

1）确认Com Port编号

首先确认是否已经把硬件接好，并连接到计算机上。可以到Windows→系统→Device Manager→Ports（COM & LPT），看到Usb-Serial Comm Port使用的是COM 23，注意你的Com Port号码，如果使用的是台式计算机，也请确定连接的Com Port号码，应该是Com1和Com 2，请以实际情况为准，如图17-25所示。

 [image:]
 图17-25　确定连接的Com Port号码

2）运行Hyper Terminal软件

现在需要把Windows中的Hyper Terminal软件打开，在程序集Accessories→Communications中找到Hyper Terminal软件。运行Hyper Terminal软件之后，暂时给它设置一个名称，如图17-26所示。

 [image:]
 图17-26　设置名称

3）设置Com Port

接下来Hyper Terminal软件会询问要连接的Com Port，在进行该动作之前，请确定设备已经连接到计算机上，并且依照步骤1），确定连接的Com Port是一个，如图17-27所示。

 [image:]
 图17-27　设置Com Port

4）设置Com Port传输速度

接下来就要设置双方的传输速度，这里因为上一节的Windows 10 IoT Core程序的关系，要设置一样的传输速度，如图17-28所示，设置如下：

•　Bits per second：9600，每秒传输速度。

•　Data Bits：8，每次传递的字符数。

•　Parity：None。

•　Stop Bits：1，停止码。

•　Flow Control：None。

然后单击OK确定。

 [image:]
 图17-28　设置Com Port传输速度

5）运行程序

请先确认树莓派2已经运行上一节的程序并连接到UART0设备，接下来双方就能传递数据了。

树莓派2在Windows 10 IoT Core上运行UART程序，而PC端通过Hyper Terminal运行UART的动作，并且接收数据，如图17-29所示。

1．教学视频

完整的视频教学可以参考17-6-UART-PC.mp4，通过视频可以了解如何通过UART Com Port与PC进行数据传递。

 [image:]
 图17-29　显示树莓派传过来的UART数据

2．调试经验

如果不能顺利接收到数据的话，可以把接线的RX和TX的线对调再尝试，应该就会成功。

17.6.3　通过UART程序传递数据

相信读者已经在计算机上接收到信号了，但是如何通过自己写的程序，来完成PC与Windows 10 IoT Core设备的数据传递？请依照本节的介绍，利用C#程序完成。

硬件和接线准备同上一节。

通过UART程序来传递数据的主要步骤如下：

1）运行程序

首先把树莓派2关机，并按上一节的硬件接线图完成相关线路连接，再开机。之后再运行第17.5节的程序，将该程序运行在Windows 10 IoT Core的设备中。

2）请在PC端运行相同的程序

现在在PC上同样运行第17.5节的程序，请在Windows 10的环境中运行，注意设置为x86和Local Machine就能将该程序运行在Windows 10的PC中，如图17-30所示。

3）确认Windows 10 IoT Core的程序

再次确认Windows 10 IoT Core正在运行相同的程序，如果没有的话，可以通过网页到Apps→App Manager（应用程序管理器）设置，如图17-31所示，通过以下的方法运行该程序：

（1）在Installed apps中选择程序；

（2）单击Start运行程序；

（3）确认运行的程序名称为SerialSample。

4）选择Windows 10 IoT Core的UART接口

在PC环境中确认连接的是USB转TTL的设备，并选择Connect连接，Windows 10 IoT Core的设备也一样地连接到UART0的接口上，如图17-32所示。

 [image:]
 图17-30　设置x86和Local Machine

 [image:]
 图17-31　确认Windows 10 IoT Core的程序

1．运行情况

在Windows 10 IoT Core和PC上运行同样的程序，连接后就能互相传递字符串，如图17-33所示。

 [image:]
 图17-32　连接UART设备

 [image:]
 图17-33　就会看到的彼此传过来的UART数据

2．教学视频

完整的视频教学可以参考17-7-UART-PC-Porgram.mp4，通过视频可以了解如何通过UART Com Port与PC进行数据传递。

3．调试经验

如果不能顺利接收到数据的话，请确认连接的UART是否被其他设备占用。

17.6.4　在Linux设备上通过UART传递数据——Install Minicom

Minicom是一个规模的工具，它可以在Linux上通过Serial Port送数据到其他的设备上。

Install Minicom安装测试的主要步骤如下：

1）更新安装程序

在安装的时候首先要通过以下命令更新apt-get：

$ sudo apt-get update

$ sudo apt-get upgrade

2）安装Minicom

安装方法如图17-34所示，命令如下：

$ sudo apt-get install minicom

 [image:]
 图17-34　安装Minicom

3）连接

想连接到其他设备时，可以通过以下的指令，如图17-35所示。

$ minicom-b 115200-o-D/dev/ttyAMA0

1．运行情况

通过Windows的Hyper Terminal或在树莓派2通过自己写的UART程序通信，就会进行数据传递的动作。

离开时，请先按下Ctrl+A，紧接着按下Z键，就会出现Minicom的选单，这时按下X，就会询问是否要离开，选择Yes即可，如图17-36所示。

 [image:]
 图17-35　运行Minicom

 [image:]
 图17-36　离开Minicom

2．扩充UART

如果觉得树莓派2只有一组UART不够用，希望能扩充的话，可以把USB转TTL接在树莓派的USB槽，Windows 10 IoT Core能分辨出来就能够使用，如图17-37所示。

3．补充说明

如果想要在两个作业系统Linux和Windows 10 IoT Core进行数据UART传递，可以在Windows的环境中，使用本章所撰写的程序；而Linux（Rasbian）的程序，可以通过Python程序撰写，详细方法请参考笔者的另一本书籍《Raspberry Pi最佳入门与实战应用》，里面有详细的介绍。

 [image:]
 图17-37　通过USB转TTL来扩充UART

第18章
I2C和SPI数据传递控制——水平纵向

本章会介绍Windows 10 IoT的程序语言如何处理I2C和SPI的数据模式，并且完成读入水平纵向传感器。本章完成作品如图18-1所示。

 [image:]
 图18-1　本章完成作品

18.1　I2C介绍

I2C（inter-integrated circuit）的另一个名称为Bus，称作集成电路总线，它是一种串行通信总线，使用内送流量备援容错机制从结构，由飞利浦公司在1980年为了让主机板、嵌入式系统或手机连接低速外围设备而研发。I2C的正确读法为I-squared-C，而I-two-C则是另一种错误但被广泛使用的读法。

I2C只使用两条双向线路，分别是：

•　SDA串行数据；

•　SCL串行时脉。

利用SCL串行时脉电位上拉，告知对方读取现在的SDA串行数据，然后存放在暂存器中，再等待下一个比特的数据，这样一次一个比特的方法，将数据传递过去。

I2C允许相当大的工作电压范围，但大多采用电压+3.3V或+5V。I2C的参考设计使用一个7位元长度的地址空间但保留了16个地址，所以一组总线最多可和112个节点通信。

常见的I2C总线依传输速率分为数种模式：

•　标准模式（100Kbps）；

•　低速模式（10Kbps）。

树莓派2和Windows 10 IoT Core所指定的I2C的引脚，如图18-2所示：

•　引脚Pin 3-I2C1 SDA串行数据；

•　引脚Pin 5-I2C1 SCL串行时脉。

 [image:]
 图18-2　I2C引脚的位置

18.2　I2C函数

1．函数介绍

Windows 10 IoT Core的IoT指令提供了一组I2C类型，对应的引脚为Pin 3（SDA）和Pin 4（SCL），I2C类型的函数有如下几个。

 [image:]

作用：取得I2C1引脚，并且取得该设备。

 [image:]

作用：等待I2C1设备初始化。

 [image:]

作用：指定设备位置为0x40。

 [image:]

作用：创建I2cDevice设备，并指定I2C总线。

 [image:]

作用：使用I2C1引脚，并送出数据。

2．使用样例

设置I2C的引脚，并将数据写到指定位置（位置为0x40）的I2C设备。

部分样例程序：Ch18-3/i2c/MainPage.xaml.cs

 [image:]

18.3　ADXL345三轴重力加速度/倾斜角度模块

ADXL345数字三轴重力加速度/倾斜角度模块用于检测左右、前后的倾斜角度，相信读者在智能手机上都曾看过这样的功能，均是通过该模块来实现的。本节将介绍如何在Windows 10 IoT Core上，通过I2C函数取得相关的数据。

硬件准备如下：

•　树莓派2开发板；

•　一个ADXL345模块；

•　面包板；

•　两条接线。

硬件规范如下：

厂家编号为ADXL345。

ADXL345是一款小巧纤薄的超低功耗三轴加速度计，可以对测量范围高达±16 g的加速度进行高分辨率（13位）的测量。数位输出数据为16位元二进制，可通过SPI（3线或4线）或I2C数位界面访问。

ADXL345非常适合移动设备应用。它可以在倾斜检测应用中测量静态重力加速度，还可以测量运动或冲击导致的动态加速度。其高分辨率（3.9mg/LSB），能够测量不到1.0°的倾斜角度变化。使用ADXL345等数位输出加速度计时，无需进行模数转换，从而可以节省系统成本和电路板。

该器件提供多种特殊检测功能：活动和非活动检测功能通过比较任意轴上的加速度与用户设置的阈值来检测有无运动发生；敲击检测功能可以检测任意方向的单振和双振动作；自由落体检测功能可以检测器件是否正在掉落。这些功能可以独立映射到两个中断输出引脚中的一个。

集成式内存管理系统采用一个32级先进先出（FIFO）缓冲器，可用于存储数据，从而将主机处理器负荷降至最低，并降低整体系统功耗。

低功耗模式支持基于运动的智慧电源管理，从而可以极低的功耗进行阈值感测和运动加速度测量。ADXL345采用3mm×5mm×1mm、14引脚规模超薄塑胶封装，如图18-3所示。

 [image:]
 图18-3　ADXL345数字三轴重力加速度/倾斜角度模块的外型

此设备的引脚依照顺序分别是：

•　GND接地；

•　VCC电源；

•　CS；

•　INT1；

•　INT2；

•　SD0；

•　SDA；

•　SCL。

硬件接线如表18-1所示。

 表18-1　硬件接线

 [image:]

硬件接线设计如图18-4所示。

 [image:]
 图18-4　ADXL345硬件接线

主要步骤：首先把树莓派2关机，并将硬件接线依照上图接线完成后，再开机。

1．样例程序

样例程序：ch18\18-3\I2CAccelerometer\CS\MainPage.xaml。界面外观如图18-5所示。

 [image:]

程序说明：

•　第11，15行：状态。

•　第12～14行：显示硬件的X、Y和Z的情况。

2．完整程序

本程序运行后，就会通过I2C与硬件够通信后，把取得的数据显示在画面上。

样例程序：ch18\18-3\I2CAccelerometer\CS\MainPage.xaml.cs

 [image:]
 图18-5　界面外观

 [image:]
 [image:]
 [image:]

程序说明：

•　第90行：读入找X、Y和Z的硬件数据。

•　第65～89行：定时读入ADXL345设备。

3．运行结果

本程序的运行结果，如图18-6所示。

 [image:]
 图18-6　运行结果

4．视频教学

硬件的运行情况可以参考18-3-i2c.mp4。

18.4　SPI介绍

SPI（serial peripheral interface）是由摩托罗拉公司提出的一种同步串行外部设备——界面总线，它可以使MCU与各种外设以串行方式进行通信以及交换信息，总线采用3根或4根数据线进行数据传输，常用的是4根线，即两条控制线（选择目标对象的CS和时脉SCLK）以及两条数据信号线数据输入SDI和数据输出SDO。

SPI是一种高速、全双工、同步的通信总线。在摩托罗拉公司的SPI技术规范中，数据信号线SDI称为MISO（master-in-slave-out，主入从出），数据信号线SDO称为MOSI（master-out-slave-in，主出从入），控制信号线CS称为SS（slave-select，从属选择），SCLK称为SCK（serial-clock，串行时钟）。在SPI通信中，数据是同步进行发送和接收的。数据传输的时钟基于来自主处理器产生的时钟脉冲，摩托罗拉公司没有定义任何传输速度的规定。

SPI是以主从方式工作的（master/slave），它允许一个主设备和多个从设备进行通信，主设备通过不同的SS/CS信号线选择不同的从设备进行通信。当主设备选中某一个从设备后，MISO和MOSI用于串行数据的接收和发送，SCK提供串行通信时脉，上升就发送，下降就接收。在实际应用中，未选中的从设备的MOSI信号线需处于高阻状态，否则会影响主设备与选中从设备间的正常通信。

序列周边接口（serial peripheral interface bus，SPI）又称串行外设接口，每个设备有4根线：

•　SS/CS选择周边设备；

•　MOSI主机送出信号；

•　MISO主机接收信号；

•　CLK时脉。

其中，SS（slave select）用于主机（master）选择要通信的周边设备（slave）、每个不同设备单独连接一根专用线，信号高表示不启用，信号低表示启用。

另外三根线功能如下，可以与多个设备共享，主机应保证通过SS专线只选择一个设备。

MOSI主机发送、周边设备接收。

MISO主机接收、周边设备发送。

CLK时钟/时脉信号。

树莓派2和树莓派3对SPI的引脚，如图18-7所示：

 [image:]
 图18-7　SPI引脚的位置

•　引脚Pin 19-SPI0 MOSI；

•　引脚Pin 21-SPI0 MISO；

•　引脚Pin 23-SPI0 SCLK；

•　引脚Pin 24-SPI0 CS0；

•　引脚Pin 26-SPI0 CS1。

18.5　SPI函数

1．函数介绍

Windows 10 IoT Core的IoT指令提供了一组SPI类型。和对应的SPI引脚，SPI类型的函数有以下几个。

 [image:]

作用：取得SPI0引脚，并且取得该设备。

 [image:]

作用：等待SPI设备初始化。

 [image:]

作用：设置SPI为0。

 [image:]

作用：创建SPI0设备，并指定SPI总线。

 [image:]

作用：使用SPI0引脚，并送出数据。

2．使用样例

设置SPI0的引脚，并将数据送出的SPI设备。

 [image:]

程序说明：

•　第5行：取得设备SPI0硬件数据。

•　第6行：等待SPI0设备初始化。

•　第9行：等待SPI0连接。

•　第12行：送出数据。
第19章
蓝牙4.0与IoT——家电控制

本章会介绍Windows 10 IoT的程序语言如何通过蓝牙4.0的方法与智能手机连接并控制110V家电。本章完成作品如图19-1所示。

 [image:]
 图19-1　本章完成作品

19.1　显示所有的iBeacon设备

 [image:]
 图19-2　iBeacon Logo

本节会通过笔者所参与设计的iFrogLab公司的F-60 UART蓝牙设备模块和树莓派结合成为一个iBeacon设备，如图19-2所示，并且可以通过手机寻找并了解该设备的远近距离。

什么是iBeacon? iBeacon是苹果公司提出的“可以让附近手持电子设备检测到的一种新的低功耗、低成本信号传送器”，硬件技术是用蓝牙4.0低功耗蓝牙（BLE）的规范来扩展出来。

iBeacon协议的一个应用是可以用在室内定位系统的协议。这种技术可以使一个智能手机或其他设备在一个iBeacon基站的感应范围内运行相应的命令，帮助智能手机使用一个或多个iBeacon确定智能手机的使用者了解他们大概位置的一个应用程序。

另外一个应用是在一个iBeacon基站的帮助下，智能手机的软件能大概找到它和该iBeacon基站的相对位置。iBeacon能让手机收到附近售卖商品的通知，或让消费者使用手机当作钱包或信用卡在销售点机器上完成支付。

在新款的智慧型手机设备中，还有一个很大的特色是运行蓝牙4.0的功能，它提供无线数据传输和寻找蓝牙4.0的iBeacon功能，这样的设计可以让开发者设计手机周边设备，也就是物联网相关设备的研发。从2013年起已经陆续看到手机周边的设备出现，如智能手表、用手机开电灯和用手机开门等的物联网的应用。

本节介绍通过树莓派2或3和iFrogLab蓝牙4.0模块，设计一整组的智能家电的设备，让玩家可以用手机控制家里电器开关，也就达到现在很多厂家主推的用手机就可以智能地控制家电的功能。

硬件准备如下：

•　树莓派2开发板；

•　一个拥有蓝牙4.0功能的Android或iOS手机；

•　一个iFrogLab公司的F-60 UART蓝牙设备模块或iFrogLab蓝牙4.0 BLE iBeacon钥匙环，如图19-3所示；

•　面包板；

•　数条接线。

 [image:]
 图19-3　iFrogLab公司的F-60 UART蓝牙设备模块

iFrogLab蓝牙4.0 BLE iBeacon钥匙环里面有电池，单击之后，就会发出iBeacon的信号，如图19-4所示。

 [image:]
 图19-4　iFrogLab蓝牙4.0 BLE iBeacon钥匙环

iFrogLab F-60的引脚如图19-5所示，功能分别是

（1）3.3V电源，接到树莓派的3.3V；

（2）接地，请接到树莓派的GND；

（3）RX数据接收的引脚；

（4）TX数据送出的引脚。

 [image:]
 图19-5　iFrogLab F-60的引脚

引脚接线如表19-1所示。

注意树莓派的GPIO有两种电源，分别是5V和3.3V直流电源，请把iFrog F-60 UART蓝牙4.0模块接到5V直流电源。

•　一个树莓派或Arduino或可以提供直流3.3直流电的电池。

•　iFrogLab F-60 UART蓝牙4.0模块。

•　数条接线。

 表19-1　引脚接线

 [image:]

硬件接线设计如图19-6所示。

 [image:]
 图19-6　树莓派和F-60硬件接线设计图

实际的硬件的接线图，如图19-7所示。

 [image:]
 图19-7　实际硬件接线

Arduino只需要把F-60硬件的电源接在开发板上的5V和GND就可，如图19-8所示。如果没有树莓派或Arduino的话，也可以用电池3.3V引导，如图19-9所示。

 [image:]
 图19-8　接上Arduino硬件接线

 [image:]
 图19-9　接上电池

1．App

Android用户可通过以下地址，更新安装软件：

https://play.google.com/store/apps/details?id=com.looptek.guidedtour

这个软件是iFrogLab在Google Maket上的App，如图19-10所示，用于展示如何使用标准iBeacons来发现附近的标准iBeacon硬件，并且列出信号强弱，范围大约30为英尺，可以用于开发和测试iBeacon功能。

配书资源19-1-iFrogLabBLE_iBeacon里面有Android和iOS的原始程序，运行安装后，也就可以在Android和iPhone或iPad上使用。如果对Android感兴趣的话，可以参考笔者出版的《Android 6.0》，书中有详细说明；iOS可以参考笔者出版的《iOS实战指南》。

 [image:]
 图19-10　iFrogLab iBeacon的Android App下载QRCode位置

2．运行效果

本程序需要有实际的iOS或Android设备，并且支持蓝牙4.0的功能和iFrogLab的蓝牙iBeacon设备，当程序运行后，就会开始寻找附近的蓝牙iBeacon设备，注意iFrogLab的F-60设备有3分钟的休眠设计，即不会发出蓝牙信号，把F-60的电源重新接上，就会再度自动引导，当然也可以在树莓派写GPIO程序，每3分钟关闭该引脚并再度打开。

3．运行结果

样例程序的运行结果，如图19-11所示。APP引导的时候，单击“寻找”的按钮，就会开始运行和寻找附近的蓝牙BLE或iBeacon设备。

 [image:]
 图19-11　样例运行结果

4．补充数据

iFrogLab iBeancon和其他的Android和iOS完整的原始程序，可以到iFrogLab官网购买F-60硬件就能免费取得。

5．教学视频

详细的Android版的运行结果和教学视频可以参考19-1-iBeacon-Androidmp4。

iOS版的运行结果和教学视频可以参考19-1-iBeacon-iOS.mp4。

19.2　iOS传送和接收数据给Windows 10 IoT Core设备

本节将会介绍如何在Windows 10 IoT Core中通过树莓派2通过蓝牙4.0与iOS或Android设备传递数据和文字。

硬件准备如下：

•　树莓派2开发板；

•　一个拥有蓝牙4.0功能的Android或iOS手机；

•　一个iFrogLab公司的F-60 UART蓝牙设备模块；

•　面包板；

•　数条接线。

硬件线路如表19-2所示。

 表19-2　硬件线路

 [image:]

如果有问题的话，可以尝试把RX和TX的线对调。

硬件接线设计如图19-12所示。

本程序需要有实际的iOS或Android设备，并且支持蓝牙4.0的功能和iFrogLab的蓝牙iBeacon设备，注意3分钟自动休眠的动作。

Android用户可通过以下指令，更新安装UART数据传递软件App：https://play.google.com/store/apps/details?id=com.looptek.ifroglabbt_ap。

该软件是iFrogLab在Google Maket上的App，如图19-13所示。原始程序在光盘ch19/ch19-2-UART/MyBTBLEUart可以找到。可以使用该App来发现附近的标准BLE硬件，联机后，就能够传递数据了。

书中光盘ch19/ch19-2-UART里面有Android和iOS的原始程序，运行安装后，也就可以在Android和iPhone或iPad上使用。如果对Android感兴趣的话，可以参考笔者出版的《Android实战指南》；iOS则可以参考笔者出版的《iOS实战指南》。

 [image:]
 图19-12　树莓派2和iFrogLab的F-60硬件接线设计图

 [image:]
 图19-13　iFrogLab iBeacon的Android App下载QRCode位置

1．样例程序

Windows 10 IoT Core设备的程序将沿用第17.4节的样例程序修改，主要差别是在送出的UART的字符串中的最后多了一个跳行“\n”，这样iFrogLab才会将字符串送出。

部分样例程序：ch19\19-2\UART\UART\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第16～28行：设置序列通信设备速度和参数。

•　第36～43行：UART读入字符串，注意此处通过无限循环一直等待输入数据。

•　第44行：用户单击UI上的按钮时的处理函数。

•　第50～65行：UART送出字符串。

2．运行结果

请注意，本案例需要手机和树莓派2设备同时运行，单击连接并成功后，就可以顺利地把iOS或Android设备和运行Windows 10 IoT Core的树莓派2通过蓝牙BLE 4.0连接，并且传递文字数据，如图19-14所示。

Windows 10 IoT Core也能够通过蓝牙4.0将数据回传给Android智能手机设备，注意送到蓝牙4.0设备的数据传递速度，是9600bps，如图19-15所示。

iOS方面，也可以利用此应用程序和Windows 10 IoT Core的设备互传数据，如图19-16所示。

 [image:]
 图19-14　树莓派2与Android的运行情况

 [image:]
 图19-15　树莓派2送出数据到Android的运行情况

 [image:]
 图19-16　树莓派2与iOS的运行情况

3．教学视频

详细的Android版的运行结果和教学视频可以参考19-2-Uart-Android.mp4。

iOS版的运行结果和教学视频可以参考19-2-Uart-iOS.mp4。

4．补充数据

如果要了解如何在树莓派上运行并和iOS或Android连接传递数据的话，可以参考笔者的另一本书籍《Raspberry Pi 2最佳入门与实战应用》。

19.3　智能手机控制LED

本节将会介绍如何使用iOS或Android设备在Windows 10 IoT Core环境中通过蓝牙4.0把树莓派2上的LED灯打开和关闭。

硬件准备如下：

•　树莓派2开发板；

•　一个拥有蓝牙4.0功能的Android或iOS手机；

•　一个iFrogLab公司的F-60 UART蓝牙设备模块；

•　面包板；

•　数条接线；

•　3个LED灯；

•　3个220Ω电阻，颜色为红、红、棕，最后一色环为金或银。

硬件线路如表19-3所示。

 表19-3　硬件线路

 [image:]

如果有问题的话，可以尝试把RX和TX的线对调。

硬件接线设计图ch19\19-3\19-3.fzz，如图19-17所示。

Android的用户可通过以下网址更新安装UART数据传递软件App：https://play.google.com/store/apps/details?id=com.powehnko.ifroglabbt_ap_pins。

该软件是iFrogLab在Google Maket上的App，原始程序在光盘ch19/19-3-LEDs/iFrogLabbt_ap_pins中可以找到。可以使用该App发现附近的标准BLE硬件，联机后，就能够控制引脚。iFrogLab iBeacon的Android App下载QRCode位置如图19-18所示。

 [image:]
 图19-17　树莓派2和iFrogLab的F-60硬件接线设计图

书中光盘ch19/19-3-LEDs里面有Android和iOS的原始程序，运行安装后，也就可以在Android和iPhone或iPad上使用。

 [image:]
 图19-18　iFrogLab iBeacon的Android App下载QRCode位置

1．样例程序

Windows 10 IoT Core设备的程序将沿用上一节的样例，先设置GPIO的引脚，判断字符串，并控制相对应的引脚动作。

部分样例程序：ch19\19-3\UART\UART\MainPage.xaml.cs

 [image:]
 [image:]

程序说明：

•　第14～23行：设置GPIO的输出引脚。

•　第35行：这里使用100ms，用意在UART读入字符串，速度加快，不然会感觉到送出数据后约等一秒才会有反应。

•　第54～61行：依照读入的UART字符串，判断字符串，并设置GPIO引脚。

2．运行结果

请注意，本案例需要手机和树莓派2设备同时运行，单击连接并成功后，就可以顺利地把iOS或Android设备和运行Windows 10 IoT Core的树莓派2，通过蓝牙BLE 4.0连接，可以控制引脚的开关和上面的LED开关，如图19-19所示为在iOS上测试的情况，在Android上测试的情况如图19-20所示。

 [image:]
 图19-19　和iOS连接控制设备上的LED灯

 [image:]
 图19-20　和Android连接控制设备上的LED灯

3．教学视频

详细的Android版的运行结果和教学视频可以参考19-3-LEDs-Android.mp4。

iOS版的运行结果和教学视频可以参考19-3-LEDs-iOS.mp4。

19.4　智能手机控制家电开关——继电器

19.4.1　继电器

110V继电器的实验，继电器是通过小的直流电来控制交流电的开关，可以在市面上看到各式各样的继电器，与控制不同的AC与DC的继电器，这里会介绍专门对家电控制的110V交流电的继电器。继电器是一种电子控制器件，它具有控制系统（又称输入回路）和被控制系统（又称输出回路），通常应用于自动控制电路中，它实际上是用较小的电流去控制较大电流的一种自动开关，通过下面的实验，就可以看到用Arduino 5V DC的电力，通过继电器的控制开关，达到110V AC的开关动作。

对继电器进行分类有：

•　电磁式继电器；

•　感应式继电器；

•　电动式继电器；

•　电子式继电器；

•　热继电器；

•　光继电器。

常见的继电器外观如图19-21所示，分别是电子式继电器、电磁式继电器和另一种电子式继电器。

购买继电器的时候一定要注意看上面的标志，因为不同继电器的控制系统和被控制系统都不一样，所以在购买和设计之前，必须要决定好控制系统的电压和被控制系统的电压，而电压又分为AC和DC的差异，所以在挑选继电器的时候要特别注意。

 [image:]
 图19-21　各种继电器的外观

可应用范围：

•　家电控制；

•　马达控制；

•　电灯控制；

•　远程遥控。

19.4.2　智能手机控制继电器

本节将会介绍如何使用iOS或Android设备，在Windows 10 IoT Core环境中通过蓝牙4.0利用树莓派2上的继电器把家里的电灯打开或关闭。

硬件准备如下：

•　树莓派2开发板；

•　一个拥有蓝牙4.0功能的Android或iOS手机；

•　一个iFrogLab公司的F-60 UART蓝牙设备模块；

•　面包板；

•　数条接线；

•　两个LED灯；

•　3个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　一个5V DC控制110～220 AC的继电器。

硬件接线如表19-4所示。

 表19-4　硬件接线

 [image:]

 [image:]

本样例延续上一章的样例程序，只是把其中一个LED灯换作继电器，如果有问题的话，可以尝试把RX和TX的线对调。

请依照图19-22把树莓派2、iFrogLab的F-60和继电器硬件用接线连接起来，因为本实验会用到110～220V的室内电源，危险性较高，所以推荐在把室内电源接到继电器之前，最好有保险丝的电源线和开关，进行整个连接的动作时尽量把电源移除，并且在连接的地方用绝缘胶带捆住，然后再控制室内家电，推荐使用低耗电的设备做测试，如LED的小台灯，并且推荐在做该实验时，先请有电器、电子、电机相关后台经验的朋友协助，以免发生断路和爆炸等意外。

 [image:]
 图19-22　树莓派2、iFrogLab的F-60和继电器硬件接线设计图

1．样例程序

本节的App程序和上一节是一样的。

2．运行结果

注意，本案例需要手机和树莓派2设备同时运行，单击连接并成功后，就可以顺利地把iOS或Android设备和运行Windows 10 IoT Core的树莓派2通过蓝牙BLE 4.0连接，可以控制引脚的开关和上面的继电器，而继电器所连接的家电，如电灯，就会做出相对应的开或关的动作，如图19-23所示为在Android上测试的情况，而在iOS上测试的情况如图19-24所示。

 [image:]
 图19-23　和Android连接并控制设备上的继电器

 [image:]
 图19-24　和iOS连接并控制设备上继电器

3．教学视频

详细的Android版的运行结果和教学视频可以参考19-4-relay-Android.mp4。

iOS版的运行结果和教学视频可以参考19-4-relay-iOS.mp4。
第20章
多个数位输出引脚

本章会介绍Windows 10 IoT Core的程序语言如何使用74HC595。本章完成作品如图20-1所示。

 [image:]
 图20-1　本章完成作品

20.1　扩展出多个引脚——74HC595

笔者参与的多个案例之中，最常出现的问题是Windows 10 IoT Core和树莓派2上面的引脚有限，需要拓展增加引脚的数量。

树莓派2有17个GPIO数位输出的引脚，但有时还是不够，这时就可以通过74HC595这一类的IC，如图20-2所示。它能够让树莓派2的三个引脚控制八个引脚，当然也可以再使用多个74HC595来控制更多的引脚。

74HC595以使用序列数据的方法使用三个引脚，来控制IC上的8个引脚的输出，处理方法是：

（1）设置引脚14序列数据输入（serial data input）1个bit的数据；

 [image:]
 图20-2　74HC595引脚

（2）使用引脚11SSH_CP SRCLK设置一个由低到高的脉冲，把数据放在寄存器；

（3）上面的步骤共进行8次，也就是指定74HC595输出的8个引脚；

（4）使用引脚12 ST_CP RCLK设置一个由低到高的脉冲，这样IC就会把寄存器的8 bit对应到Q0～Q7引脚的输出。

74HC595的引脚及说明如表20-1所示。

74HC595的使用方法和硬件接线方法，如图20-3所示。

如果要控制更多引脚，如16个引脚，也可以参考STP16C596这个IC，或者使用多个74HC595做串接，如图20-4所示。

 表20-1　引脚菜单

 [image:]

 [image:]
 图20-3　74HC595使用方法

 [image:]
 图20-4　使用两个74HC595串接

20.2　实验——74HC595

在了解74HC595之后，如何开发相关的应用程序？本节将通过硬件按键的输入动作，使用三个引脚接到74HC595上，控制8个数位输出LED灯的开和关。

硬件准备如下：

•　树莓派2开发板；

•　8个LED灯；

•　8个220Ω电阻，颜色为红、红、棕，最后一色环为金或银；

•　一个IC是74HC595；

•　一个150pF的电容，号码是151；

•　面包板；

•　数条接线。

硬件接线如表20-2所示。

 表20-2　硬件接线

 [image:]

LED灯在接地之前，推荐先接上220Ω电阻，这样可以避免LED灯烧坏。

硬件接线设计如图20-5所示。

 [image:]
 图20-5　硬件接线图

1．样例程序

本实验的界面设计并没有特别处理，请注意本程序把要控制的8个引脚，先转成二进制的方法，通过指定1个bit，载送出一个脉波，然后把8个bit全部送出后，再通过ST_CP的RCLK的送出一个脉波，从而能够控制8个引脚。

样例程序：ch20\20-1\App\App\MainPage.xaml.cs

 [image:]
 [image:]
 [image:]

程序说明：

•　第13～19行：设置3个数位输出的引脚。

•　第31～36行：效果一，依照数组显示byte[] LED，逐个读入并送出。

•　第37～44行：效果二，通过SIPO（0xff）设置全亮，通过SIPO（0x00）设置全灭，重复运行三次。

•　第47～53行：效果三，依照数组显示byte[] LED，从最后开始读入并送出。

•　第54～60行：指定的1byte逐比特地读入，并设置PulseSRCLK重复8次。

2．运行结果

运行后，用户可以通过74HC595的3个引脚控制8个引脚，运行时就会看到8个LED灯，依照程序的指定做出变化，如图20-6所示。

 [image:]
 图20-6　运行结果

3．教学视频

完整的教学视频可以参考ch20-1-74HC595.mp4。

硬件运行情况可以参考ch20-1-74HC595-Hardware.mp4。
附录A
Windows 10 IoT Core的Arduino程序

本章使用Windows Visual Studio 2015来开发和运行Windows 10 IoT Core的Arduino程序。完成作品如图A-1所示。

 [image:]
 图A-1　本章完成作品

A.1　安装Windows IoT Core Project Templates

Windows 10 IoT Core可以让熟悉Arduino程序语言的开发者利用原本的Arduino程序语言在Windows 10 IoT Core设备上运行，即把Arduino的程序运行在树莓派2上。

步骤如下：

1）进入案例样板官方网站

打开浏览器，输入网址https://visualstudiogallery.msdn.microsoft.com/55b357e1-a533-43ad-82a5-a88ac4b01dec连接到微软的Windows IoT Core Project Templates案例样板官方网站，如果觉得网址过长不容易输入，也可以通过搜索网站搜索关键字Windows IoT Core Project Templates，就能够找到案例样板官方网站，单击Download（下载）按钮，如图A-2所示。

 [image:]
 图A-2　单击Download按钮

2）下载和安装

请依照如图A-3所示的步骤下载和安装Windows IoT Core Project Templates案例样板：

 [image:]
 图A-3　安装Windows IoT Core Project Templates

（1）单击和运行刚刚下载的WindowsIoTCoreTemplates.vsix。

（2）等待初始化。

（3）在安全窗口中，单击Yes按钮。

（4）在VSIX Installer窗口中，勾选安装该样板在Visual Studio 2015中，并单击Install按钮。

（5）安装完成后，单击Close按钮。

教学视频

完整的安装设置的教学视频可以参考a-1-installArduino.mp4。

A.2　设置Windows 10 IoT Core

如果要在Windows 10 IoT Core中运行Arduino程序语言，需要将设备设置为Lightning Setup（闪电设置），请依照以下的步骤处理。

1）打开Windows 10 IoT Core设备

请依照一般的方法，将安装过Windows 10 IoT Core的Mirco SD卡，放入设备，将树莓派2或树莓派3开机，确认该设备的IP位置，如图A-4所示。

 [image:]
 图A-4　开机并记下IP address网络位置

2）通过浏览器连接到Windows 10 IoT Core

可以在该局域网中，利用PC、手机或平板上的浏览器连接到实际的网络位置。设置步骤可参照图A-5。

（1）例如，http://192.168.0.112:8080连上该网页，即是连接到树莓派2的设备请自行调整网络位置，注意在后面加上：8080。

（2）接下来会弹出询问窗口，输入账号和口令，请输入：

 [image:]
 图A-5　浏览器连接到Windows 10 IoT Core

账号：Administrator；

口令：p@ssw0rd。

请注意password的a和o，分别用@和数字0进行了代替。

（3）完成后，单击OK按钮，即可使用。

3）设置Direct Memory Mapped Driver

下面设置为Direct Memory Mapped Driver（内存对应驱动模式），如图A-6所示。

（1）单击设备Devices。

（2）在Default Controller Driver（定义控制驱动）中选择Direct Memory Mapped Driver。

（3）单击Update Driver（更新驱动程序）。

4）确认并重新开机

完成前面步骤后，Windows 10 IoT Core会询问是否要重新开机？请单击OK按钮，如图A-7所示，重新开机后才能正常使用。

教学视频

完整的安装设置的教学视频可以参考a-2-Lightning SetupGuide.mp4。

 [image:]
 图A-6　设置为Direct Memory Mapped Driver

 [image:]
 图A-7　确认并重新开机

A.3　创建和运行Arduino程序案例

本节将会从无到有完成一个Arduino程序案例，并在树莓派2上运行Arduino程序。可控制树莓派2的GPIO 5引脚，使LED灯闪烁。

硬件准备如下：

•　一个树莓派3或树莓派2开发板；

•　一个LED灯；

•　一个220Ω电阻；

•　面包板；

•　两条接线。

硬件接线如表A-1所示。

 表A-1　硬件接线

 [image:]

样例程序中ch0a\a-3.fzz硬件接线设计如图A-8所示。

 [image:]
 图A-8　硬件接线设计

树莓派3或树莓派2的硬件引脚如图A-9所示，请注意引脚的号码。

 [image:]
 图A-9　树莓派2的硬件引脚图

主要步骤如下：

1）硬件接线和开机

首先将树莓派2关机，并依照图A-8完成硬件接线，再通过Windows 10 IoT Core开机，确认树莓派2的网络IP位置并完成Direct Memory Mapped Driver设置。

2）打开Visual Studio案例

打开Visual Studio开发环境，可以在“程序集”窗口里搜索Visual Studio，如图A-10所示。

 [image:]
 图A-10　打开Visual Studio开发环境

3）创建新案例

在Visual Studio开发环境中，选择File→New→Project...，创建新案例，如图A-11所示。

4）选择Arduino Wiring Application for Windows IoT Core案例

在Visual Studio案例中，进行如下操作，如图A-12所示。

（1）选择Template→Visual C++→Windows→Windows IoT Core。

（2）选择Arduino Wiring Application for Windows IoT Core，创建一个新案例。

 [image:]
 图A-11　创建新案例

（3）设置案例名称和路径。

（4）单击OK按钮确认。

 [image:]
 图A-12　选择Arduino Wiring Application for Windows IoT Core案例

5）打开案例属性

选择创建的案例并右击，选择Properties（属性），如图A-13所示。

6）属性设置

如果要将程序运行在树莓派2上的话，请在属性设置中修改以下设置，如图A-14所示。

（1）选择Debug。

（2）设置机器为树莓派2的ARM CPU。

（3）指定Configuration Properties。

（4）请在Machine Name（机器名）输入树莓派2现在的IP网络位置。

（5）设置Authentication Type（身份验证类型）为Universal。

 [image:]
 图A-13　打开案例属性

 [image:]
 图A-14　属性设置

设置完成后，单击OK按钮确认。

1．界面设计

因为选择Arduino Wiring Application for Windows IoT Core不能显示画面，所以无须处理界面设计。

2．样例程序

本专题将使用计时器指定引脚GPIO 5为输出，并设置引脚的电压为高电位，等待一段时间后，再设置为低电位。这样就会看到LED灯闪烁的状态。

在创建样板案例时，就已经创建了ino文件，只需写好LED灯闪烁的程序。

部分样例程序：ch0a\ArduinoWiringApplication1\ArduinoWiringApplication1.ino

 [image:]

程序说明

•　第1行：Arduino启动后首先调用的函数。

•　第6行：该函数会重复并持续地运行。

本样例是使用Arduino程序语言在树莓派2上开发IoT物联网应用的样例程序，而该程序采用Visual Studio开发，整个程序运行逻辑如图A-15所示。

 [image:]
 图A-15　Arduino程序逻辑

3．设置

如果要在树莓派2上运行本案例，需设置Debug、ARM和Remote Machine，并单击绿色三角形按钮或按下F5键，如图A-16所示。

 [image:]
 图A-16　运行程序

4．运行结果

运行后，就能看到硬件上的GPIO5的LED灯光，会每隔1秒进行亮暗交替，并且持续闪烁，如图A-17所示。

 [image:]
 图A-17　实际硬件运行情况

注意：当Arduino程序运行的时候，Windows 10 IoT Core的画面并没有变化，如图A-18

所示。

5．教学视频

教学视频和硬件的运行效果可以参考a-3-ArduinoProject.mp4，视频中可以看到Arduino程序撰写方法，以及如何在树莓派2上运行。

6．补充数据

下面介绍如何在Visual Studio中撰写Arduino程序，并将该程序运行在使用Windows 10 IoT Core的树莓派2上。可以使用Arduino的官方程序语言和函数库进行开发。

如果想进一步学习Arduino程序语言的话，可以参考笔者的另外一本书《Arduino交互设计专题与实战，深入Arduino的全方位指南》，里面有对Arduino程序语言的更详细的介绍。

 [image:]
 图A-18　Windows 10 IoT Core画面

7．引脚定义

树莓派2的引脚定义部分跟Arduino程序有些不同，Arduino的引脚定义使用的是数字，但如果要用在树莓派2的话，引脚定义如表A-2所示，引脚定义图如图A-19所示。

 表A-2　引脚定义

 [image:]

 [image:]

 [image:]
 图A-19　引脚定义图

附录B
硬件列表

为了方便网络管理人员学习本课程，必须使用Windows 10计算机的学习环境，并安装以下的软件：

（1）PuTTY；

（2）Windows 10作业系统（10.0.10240之后的版本），可从以下网址下载：

https://www.microsoft.com/en-us/software-download/windows10ISO

（3）Windows Visual Studio，可从以下网址下载：

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

（4）FileZilla FTP，可从以下网址下载：

https://filezilla-project.org/download.php?type=client

硬件部分，最少需要如下几个：

•　树莓派2或树莓派3；

•　16G以上兼容树莓派2和树莓派3的Micro SD卡；

•　可读Micro SD卡的读卡机；

•　Micro USB线，也就是Android手机充电线；

•　USB变压器5V DC 2A以上，也就是Android手机充电器；

•　HDMI线；

•　可接HDMI的屏幕；

•　网络线和网络；

•　USB鼠标；

•　USB键盘；

•　USB无线网络USB WiFi（选配）。

进行硬件实验时，最少需要以下的电子零件：

•　LED灯8个；

•　4脚的按钮1个；

•　220Ω电阻8个；

•　面包板1个；

•　面包板的接线（公对母）数条。

本书所用的硬件材料如表B-1所示。

 表B-1　硬件材料

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

EPUB/cover.jpg
SOBSIR, ANTKRCANGRTADE , HSREMEMOAHES
RS, WIS, AE=RREE IR

OB 100K

WEESRAIDIS

n*uumé

The Practical Developing Guide for Raspberry Pi 3
o Leam Raspbery Pi 3 & Windows 10107 Core Projcts Sephy Sip

P EEIR 3L Ak

FRFHRERE
Raspberry Pi 35Windows 10 loT CoreIE %

Sigron

HEZSE

EPUB/cover.xhtml
[image: Cover]

