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  第1章　进程与线程
 
只要是计算机科班出身的技术人员，肯定都学过现代操作系统课程。一般在操作系统的书中都会有这样的定义：
 
简单来说，进程就是在操作系统中运行的程序，是操作系统资源管理的最小单位。一个进程可以管理多个线程，线程相对轻量，可以共享进程地址空间。
 
我在很多次面试的时候，向求职者提问过进程和线程在Linux中到底有什么区别，不只是科班出身的应届生，连工作多年的老手，也有很多回答不准确。传统的教育缺乏实践环节，而计算机恰恰是一个实践性很强的学科，假如只是知道一个概念，却不知道它具体在代码中的表现形式以及背后的实现原理，那么知道与不知道这个概念又有何分别呢？
 
那么，线程和进程到底有什么区别呢？既然进程可以管理线程，是否说明进程就特别牛呢？另外，搞出这些概念到底要解决什么问题，是否还具有副作用呢？本章将对这些问题一一解答。
1.1　进程和线程的概念
 
我觉得不管做什么工作，都需要搞明白所面临工作的过去、现在和未来。我认为不懂历史的程序员肯定写不出好代码。因为不知道这个技术被创造出来到底意味着什么，也无法理解未来这个技术要向哪里发展，仅仅是解决当下的问题，修修补补，做一天和尚撞一天钟，仅此而已。下面我们就介绍进程的历史。
1.1.1　进程的历史
 
计算机发明出来是做逻辑运算的，但是当初计算机都是大型机，造价昂贵，只有有钱的政府机构、著名大学的数据中心才会有，一般人接触不到。大家要想用，要去专门的机房。悲催的是，那时候代码还是机器码，直接穿孔把程序输入到纸带上面，然后再拿去机房排队。那时候的计算机也没什么进程管理之类的概念，它只知道根据纸带里的二进制数据进行逻辑运算，一个人的纸带输入完了，就接着读取下一个人的纸带，要是程序有bug，不好意思，只有等到全部运算结束之后才能得到结果，然后回家慢慢改。
 
为了改进这种排队等候的低效率问题，就有人发明了批处理系统。以前只能一个一个提交程序，现在好了，可以多人一起提交，计算机会集中处理，至于什么时候处理完，回家慢慢等吧。或者你可以多写几种可能，集中让计算机处理，总有一个结果是好的。
 
懒人总会推动科技进步，为了提升效率，机器码就被汇编语言替代了，从而再也不用一串串二进制数字来写代码了。便于记忆的英文指令会极大提升效率。然后，进程管理这样的概念也被提出来了，为什么要提呢？因为当程序在运算的时候，不能一直占用着CPU资源，有可能此时还会进行写磁盘数据、读取网络设备数据等，这时候完全可以把CPU的计算资源让给其他进程，直到数据读写准备就绪后再切换回来。所以，进程管理的出现也标志着现代操作系统的进步。那么既然进程是运行中的程序，那么，到底什么是程序呢？运行和不运行又有什么区别呢？
 
先说程序，既然程序是人写的，那么最终肯定会生成可执行文件，保存在磁盘里，而且这个文件可能会很大，有时候不一定是一个文件，可能会有多个文件，甚至文件夹，其包含图片、音频等各种数据。然而，CPU做逻辑运算的每条指令是从内存中读取的，所以运行中的程序可以理解为内存中的代码指令和运行相关的数据被CPU读写并计算的过程。我们都知道内存的大小是有限的，所以很可能装不下磁盘中的整个程序。因此内存中运行的是当下需要运行的部分程序数据，等运算完就会继续读取后面一部分磁盘数据到内存，并继续进行运算。
 
一个进程在运行的过程中，不可能一直占据着CPU进行逻辑运算，中间很可能在进行磁盘I/O或者网络I/O，为了充分利用CPU运算资源，有人设计了线程的概念。我认为线程最大的特点就是和创建它的进程共享地址空间（关于地址空间的概念大家可以在第3章了解更多）。这时候有人就会认为，要提升CPU的利用率，开多个进程也可以达到，但是开多个进程的话，进程间通信又是个麻烦的事情，毕竟进程之间地址空间是独立的，没法像线程那样做到数据的共享，需要通过其他的手段来解决，比如管道等。图1-1描述了进程和线程的区别。
 
 
 [image: ] 


图1-1　进程和线程的区别
1.1.2　线程的不同玩法
 
针对线程现在又有很多玩法，有内核线程、用户级线程，还有协程。下面简单介绍这些概念。
 
一般操作系统都会分为内核态和用户态，用户态线程之间的地址空间是隔离的，而在内核态，所有线程都共享同一内核地址空间。有时候，需要在内核态用多个线程进行一些计算工作，如异步回调场景的模型，就可以基于多个内核线程进行模拟，比如AIO机制，假如硬件不提供某种中断机制的话，那么就只能通过线程自己去后台模拟了，图1-2说明了有中断机制的写磁盘后回调和没有中断机制的写磁盘后线程模拟异步回调。
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图1-2　两种异步回调场景
 
在用户态，大多数场景下业务逻辑不需要一直占用CPU资源，这时候就有了用户线程的用武之地。
 
不管是用户线程还是内核线程，都和进程一样，均由操作系统的调度器来统一调度（至少在Linux中是这样子）。所以假如开辟太多线程，系统调度的开销会很大，另外，线程本身的数据结构需要占用内存，频繁创建和销毁线程会加大系统的压力。线程池就是在这样的场景下提出的，图1-3说明了常见的线程池实现方案，线程池可以在初始化的时候批量创建线程，然后用户后续通过队列等方式提交业务逻辑，线程池中的线程进行逻辑的消费工作，这样就可以在操作的过程中降低线程创建和销毁的开销，但是调度的开销还是存在的。
 
在多核场景下，如果是I/O密集型场景，就算开多个线程来处理，也未必能提升CPU的利用率，反而会增加线程切换的开销。另外，多线程之间假如存在临界区或者共享数据，那么同步的开销也是不可忽视的。协程恰恰就是用来解决该问题的。协程是轻量级线程，在一个用户线程上可以跑多个协程，这样就可以提升单核的利用率。在实际场景下，假如CPU有N个核，就只要开N+1个线程，然后在这些线程上面跑协程就行了。但是，协程不像进程或者线程，可以让系统负责相关的调度工作，协程是处于一个线程当中的，系统是无感知的，所以需要在该线程中阻塞某个协程的话，就需要手工进行调度。假如需要设计一套通用的解决方案，那么就需要一番精心的设计。图1-4是一种简单的用户线程上的协程解决方案。
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图1-3　线程池实现原理
 
 
 [image: ] 


图1-4　协程的实现方案
 
要在用户线程上实现协程是一件很难受的事情，原理类似于调度器根据条件的改变不停地调用各个协程的callback机制，但是前提是大家都在一个用户线程下。要注意，一旦有一个协程阻塞，其他协程也都不能运行了。因此要处理好协程。
 
下面我们来看一段PHP代码，通过生产者-消费者程序来模拟实现协程的例子：
 


import time



def consumer()            //  消费者

    r = ''

    while True:

        n = yield r       //  yield条件

        if not n:

            return

        print('[CONSUMER] Consuming %s...' % n)

        time.sleep(1)

        r = '200 OK'



def produce(c):           //  生产者

    c.next()

    n = 0

    while n < 5:

        n = n + 1

        print('[PRODUCER] Producing %s...' % n)

        r = c.send(n)

        print('[PRODUCER] Consumer return: %s' % r)

    c.close()



if __name__=='__main__':

    c = consumer()

    produce(c)


 
执行结果：
 


[PRODUCER] Producing 1...

[CONSUMER] Consuming 1...

[PRODUCER] Consumer return: 200 OK

[PRODUCER] Producing 2...

[CONSUMER] Consuming 2...

[PRODUCER] Consumer return: 200 OK

[PRODUCER] Producing 3...

[CONSUMER] Consuming 3...

[PRODUCER] Consumer return: 200 OK

[PRODUCER] Producing 4...

[CONSUMER] Consuming 4...

[PRODUCER] Consumer return: 200 OK

[PRODUCER] Producing 5...

[CONSUMER] Consuming 5...

[PRODUCER] Consumer return: 200 OK


 
以上代码中，produce（生产者）会依次生产5份数据n，并且发送给consumer（消费者），只有消费者执行完之后，生产者才会再次生产数据。可以把produce和cosumer理解为两个协程，其中关键点是通过yield关键字来控制消费者，命令yield r会暂停消费者直到r被传递过来为止。
 
[image: ]注意　关于yield关键字，可以参考PHP手册：http://php.net/manual/zh/language.generators.syntax.php生成器函数的核心是yield关键字。它最简单的调用形式看起来像一个return声明，不同之处在于普通return会返回值并终止函数的执行，而yield会返回一个值给循环调用此生成器的代码，并且只是暂停执行生成器函数。
 
最后我们进行一下总结，多进程的出现是为了提升CPU的利用率，特别是I/O密集型运算，不管是多核还是单核，开多个进程必然能有效提升CPU的利用率。而多线程则可以共享同一进程地址空间上的资源，为了降低线程创建和销毁的开销，又出现了线程池的概念，最后，为了提升用户线程的最大利用效率，又提出了协程的概念。
1.2　Linux对进程和线程的实现
 
通过上一节的介绍，大家应该大致了解了进程和线程在操作系统中的概念和玩法，那么对应到具体的Linux系统中，是否就如上面描述的那样呢？下面来分析Linux中对进程和线程的实现。为了便于理解，首先通过图1-5来简单介绍Linux进程相关的知识结构。
 
从图中可以发现，进程和线程（包括内核线程）的创建，都是通过系统调用来触发的，而它们最终都会调用do_fork函数，系统调用通过libc这样的库函数封装后提供给应用层调用，进程创建后会产生一个task_struct结构，schedule函数会通过时钟中断来触发调度。后面会进行具体的分析。
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图1-5　Linux进程相关的知识结构
1.2.1　Linux中的进程实现
 
Linux进程的创建是通过系统调用fork和vfork来实现的，参考内核源码/linux-4.5.2/kernel/fork.c：
 


fork:

SYSCALL_DEFINE0(fork)

{

…

    return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);

…

}



vfork:



SYSCALL_DEFINE0(vfork)

{

    return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,

        0, NULL, NULL, 0);

}


 
[image: ]注意　fork和vfork最终都调用do_fork函数，只是传入的clone_flags参数不同而已，参见表1-1。
 
表1-1　clone_flags的参数及说明

 
 [image: ]

 
因为进程创建的核心就是do_fork函数，所以来看一下它的相关参数：
 


long _do_fork(unsigned long clone_flags,

    unsigned long stack_start,

    unsigned long stack_size,

    int __user *parent_tidptr,

    int __user *child_tidptr,

    unsigned long tls)


 
其中：
 
·clone_flags：创建子进程相关的参数，决定了父子进程之间共享的资源种类。
 
·stack_start：进程栈开始地址。
 
·stack_size：进程栈空间大小。
 
·parent_tidptr：父进程的pid。
 
·child_tidptr：子进程的pid。
 
·tls：线程局部存储空间的地址，tls指thread local Storage。
 
图1-6为do_fork函数的整个执行流程，在这个执行过程当中，比较关键的是调用copy_process函数，成功后创建子进程，然后在后面就可以获取到pid。另外，我们在这里也发现了fork和vfork的一个区别，vfork场景下父进程会先休眠，等唤醒子进程后，再唤醒父进程。大家可以想一想，这样做的好处是什么呢？我个人认为在vfork场景下，子进程被创建出来时，是和父进程共享地址空间的（这个后面介绍copy_process步骤的时候可以进行验证），并且它是只读的，只有执行exec创建新的内存程序映象时才会拷贝父进程的数据创建新的地址空间，假如这个时候父进程还在运行，就有可能产生脏数据或者发生死锁。在还没完全让子进程运行起来的时候，让其父进程休息是个比较好的办法。
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图1-6　do_fork函数执行流程
 
现在已经知道了创建子进程的时候，copy_process这个步骤很重要，所以，我用图1-7总结了其主要的执行流程，这段代码非常长，大家可以自己阅读源码，这里只捡重点的讲。copy_process先一模一样地拷贝一份父进程的task_struct结构，并通过一些简单的配置来初始化，设置好调度策略优先级等参数之后，一系列的拷贝函数就会开始执行，这些函数会根据clone_flags中的参数进行相应的工作。
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图1-7　copy_process执行流程
 
主要参数说明如下：
 
1）copy_semundo（clone_flags，p）；　拷贝系统安全相关的数据给子进程，如果clone_flags设置了CLONE_SYSVSEM，则复制父进程的sysvsem.undo_list到子进程；否则子进程的tsk->sysvsem.undo_list为NULL。
 
2）copy_files（clone_flags，p）；　如果clone_flags设置了CLONE_FILES，则父子进程共享相同的文件句柄；否则将父进程文件句柄拷贝给子进程。
 
3）copy_fs（clone_flags，p）；　如果clone_flags设置了CLONE_FS，则父子进程共享相同的文件系统结构体对象；否则调用copy_fs_struct拷贝一份新的fs_struct结构体，但是指向的还是进程0创建出来的fs，并且文件系统资源是共享的。
 
4）copy_sighand（clone_flags，p）；　如果clone_flags设置了CLONE_SIGHAND，则增加父进程的sighand引用计数；否则（创建的必定是子进程）将父进程的sighand_struct复制到子进程中。
 
5）copy_signal（clone_flags，p）；　如果clone_flags设置了CLONE_THREAD（是线程），则增加父进程的sighand引用计数；否则（创建的必定是子进程）将父进程的sighand_struct复制到子进程中。
 
6）copy_mm（clone_flags，p）；　如果clone_flags设置了CLONE_VM，则将子进程的mm指针和active_mm指针都指向父进程的mm指针所指结构；否则将父进程的mm_struct结构复制到子进程中，然后修改当中属于子进程而有别于父进程的信息（如页目录）。
 
7）copy_io（clone_flags，p）；　如果clone_flags设置了CLONE_IO，则子进程的tsk->io_context为current->io_context；否则给子进程创建一份新的io_context。
 
8）copy_thread_tls（clone_flags，stack_start，stack_size，p，tls）；　其中需要重点关注copy_mm和copy_thread_tls这两个步骤，copy_mm进行内存地址空间的拷贝，copy_thread_tls进行栈的分配。
 
1.写时复制
 
copy_mm的主要工作就是进行子进程内存地址空间的拷贝，在copy_mm函数中，假如clone_flags参数中包含CLONE_VM，则父子进程共享同一地址空间；否则会为子进程新创建一份地址空间，代码如下：
 


if (clone_flags & CLONE_VM) {       //  vfork 场景下，父子进程共享虚拟地址空间

    atomic_inc(&oldmm->mm_users);

    mm = oldmm;

    goto good_mm;

}



retval = -ENOMEM;

mm = dup_mm(tsk);

if (!mm)

    goto fail_nomem;


 
dup_mm函数虽然给进程创建了一个新的内存地址空间（关于进程地址空间的概念会在第3章再进行深入分析），但在复制过程中会通过copy_pte_range调用copy_one_pte函数进行是否启用写时复制的处理，代码如下：
 


if (is_cow_mapping(vm_flags)) {

    ptep_set_wrprotect(src_mm, addr, src_pte);

    pte = pte_wrprotect(pte);

}


 
如果采用的是写时复制（Copy On Write），若将父子页均置为写保护，即会产生缺页异常。缺页异常最终会调用do_page_fault，do_page_fault进而调用handle_mm_fault。一般所有的缺页异常均会调用handle_mm_fault的核心代码如下：
 


pud = pud_alloc(mm, pgd, address);

if (!pud)

    return VM_FAULT_OOM;

pmd = pmd_alloc(mm, pud, address);

if (!pmd)

    return VM_FAULT_OOM;

pte = pte_alloc_map(mm, pmd, address);

if (!pte)

    return VM_FAULT_OOM;


 
handle_mm_fault最终会调用handle_pte_fault，其主要代码如下：
 


if (flags & FAULT_FLAG_WRITE) {

    if (!pte_write(entry))

        return do_wp_page(mm, vma, address,

            pte, pmd, ptl, entry);

    entry = pte_mkdirty(entry);

}


 
即在缺页异常中，如果遇到写保护，则会调用do_wp_page，这里面会处理上面所说的写时复制中父子进程区分的问题。
 
最后通过图1-8来说明fork和vfork在地址空间分配上的区别。
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图1-8　fork和vfork的区别
 
2.进程栈的分配
 
copy_process中另一个比较重要的函数就是copy_thread_tls，在创建子进程的过程中，进程的内核栈空间是随进程同时分配的，结构如图1-9所示。代码如下：
 


struct pt_regs *childregs = task_pt_regs(p);

    p->thread.sp = (unsigned long) childregs;

    p->thread.sp0 = (unsigned long) (childregs+1);


 
其中，task_pt_regs（p）的代码如下：
 


#define task_pt_regs(task)                                                \

({                                                                        \

    unsigned long __ptr = (unsigned long)task_stack_page(task);           \

    __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;                   \

    ((struct pt_regs *)__ptr) - 1;                                        \

})


 
childregs=task_pt_regs（p）；实际上就是childregs=（（struct pt_regs*）（THREAD_SIZE+（unsigned long）p））-1；，也就是说，childregs指向的地方是：子进程的栈顶再减去一个sizeof（struct pt_regs）的大小。
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图1-9　进程的内核栈空间分配
1.2.2　进程创建之后
 
通过上面的分析我们知道，不管是fork还是vfork，创建一个进程最终都是通过do_fork函数来实现的。
 
在进程刚刚创建完成之后，子进程和父进程执行的代码是相同的，并且子进程从父进程代码的fork返回处开始执行，这个代码可以参考copy_thread_tls函数的实现：
 


childregs->ax = 0;

p->thread.ip = (unsigned long) ret_from_fork;


 
同时可以发现，上面代码返回的pid为0。
 
假如创建出来的子进程只是和父进程做一样的事情，那能做的事情就很有限了，所以Linux另外提供了一个系统调用execve，该调用可以替换掉内存当中的现有程序，以达到执行新逻辑的目的。execve的实现在/linux-4.5.2/fs/exec.c文件中，下面简单来分析它的实现，该系统调用声明为：
 


SYSCALL_DEFINE3(execve,

    const char __user *, filename,

    const char __user *const __user *, argv,

    const char __user *const __user *, envp)

{

    return do_execve(getname(filename), argv, envp);

}


 
execve通过do_execve函数最终调用了do_execveat_common，下面是其流程的说明：
 
1）file=do_open_execat（fd，filename，flags）；打开可执行文件。
 
2）初始化用于在加载二进制可执行文件时存储与其相关的所有信息的linux_binprm数据结构：bprm_mm_init（bprm）；，其中会初始化一份新的mm_struct给该进程使用。
 
3）prepare_binprm（bprm）；从文件inode中获取信息填充binprm结构，检查权限，读取最初的128个字节（BINPRM_BUF_SIZE）。
 
4）将运行所需的参数和环境变量收集到bprm中：
 


retval = copy_strings_kernel(1, &bprm->filename, bprm);

if (retval < 0)

    goto out;



bprm->exec = bprm->p;

retval = copy_strings(bprm->envc, envp, bprm);

if (retval < 0)

    goto out;



retval = copy_strings(bprm->argc, argv, bprm);

if (retval < 0)

goto out;


 
5）retval=exec_binprm（bprm）；该过程调用search_binary_handler加载可执行文件。
 
[image: ]注意　Linux可执行文件的装载和运行必须遵循ELF（Executable and Linkable Format）格式的规范，关于可运行程序的装载是个独立的话题，这里不再进行展开。大家有兴趣可以阅读《程序员的自我修养：链接、装载与库》。
1.2.3　内核线程和进程的区别
 
前面我们介绍了内核线程的概念，现在来分析Linux对内核线程的实现，在Linux中，创建内核线程可以通过create_kthread来实现，其代码如下：
 


static void create_kthread(struct kthread_create_info *create)

{

    int pid;



...

    pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);

...

}


 
kernel_thread也会和fork一样最终调用_do_fork函数，所以该函数的实现在/linux-4.5.2/kernel/fork.c文件中：
 


pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)

{

    return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,

        (unsigned long)arg, NULL, NULL, 0);

}


 
通过这个函数可以创建内核线程，运行一个指定函数fn。
 
但是这个fn是如何运行的呢？为什么do_fork函数的stack_start和stack_size参数变成了fn和arg呢？
 
继续往下看，因为我们知道do_fork函数最终会调用copy_thread_tls。在内核线程的情况下，代码如下：
 


if (unlikely(p->flags & PF_KTHREAD)) {

    //   内核线程

    memset(childregs, 0, sizeof(struct pt_regs));

    p->thread.ip = (unsigned long) ret_from_kernel_thread;

    task_user_gs(p) = __KERNEL_STACK_CANARY;

    childregs->ds = __USER_DS;

    childregs->es = __USER_DS;

    childregs->fs = __KERNEL_PERCPU;

    childregs->bx = sp; //   函数

    childregs->bp = arg;//   传参

    childregs->orig_ax = -1;

    childregs->cs = __KERNEL_CS | get_kernel_rpl();

    childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;

    p->thread.io_bitmap_ptr = NULL;

    return 0;

}


 
这里把ip设置成了ret_from_kernel_thread，函数指针传递给了bx寄存器，参数传递给了bp寄存器。
 
然后继续来看ret_from_kernel_thread做了些什么：
 


ENTRY(ret_from_kernel_thread)

    pushl %eax

    call  schedule_tail

    GET_THREAD_INFO(%ebp)

    popl  %eax

    pushl $0x0202                              //   重置内核eflags寄存器

    popfl

    movl  PT_EBP(%esp), %eax

    call  *PT_EBX(%esp)                        //  这里就是调用fn的过程

    movl  $0, PT_EAX(%esp)

…

    movl    %esp, %eax

    call    syscall_return_slowpath

    jmp     restore_all

ENDPROC(ret_from_kernel_thread)


 
通过对内核线程的分析可以发现，内核线程的地址空间和父进程是共享的（CLONE_VM），它也没有自己的栈，和整个内核共用同一个栈，另外，可以自己指定回调函数，允许线程创建后执行自己定义好的业务逻辑。可以通过ps-fax命令来观察内核线程，下面显示了执行ps-fax命令的结果，在[]号中的进程即为内核线程：
 


chenke@chenke1818:~$ ps -fax

    PID TTY      STAT   TIME COMMAND

        2 ?        S      0:34 [kthreadd]

        3 ?        S   1276:07        \_ [ksoftirqd/0]

        5 ?        S<     0:00        \_ [kworker/0:0H]

        6 ?        S      2:38        \_ [kworker/u4:0]

        7 ?        S    396:12        \_ [rcu_sched]

        8 ?        S      0:00        \_ [rcu_bh]

        9 ?        S     12:51        \_ [migration/0]


1.2.4　用户线程库pthread
 
在libc库函数中，pthread库用于创建用户线程，其代码在libc目录下的nptl中。该函数的声明为：
 


int __pthread_create_2_1 (pthread_t *newthread,

    const pthread_attr_t *attr,

    void *(*start_routine) (void *), void *arg);


 
libc库为了考虑不同系统兼容性问题，里面有一堆条件编译信息，这里忽略了这些信息，就写了简单地调用pthread库创建一个线程来测试：
 


#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

void* test_fn(void* arg)

{

    printf("hello pthread.\n");

    sleep(5);

    return((void *)0);

}

int main(int argc,char **argv)

{

    pthread_t id;

    int ret;

    ret = pthread_create(&id,NULL,test_fn,NULL);

    if(ret != 0)

    {

        printf("create pthread error!\n");

        exit(1);

    }

    printf("in main process.\n");

    pthread_join(id,NULL);

    return 0;

}


 
用gcc命令生成可执行文件后用strace来跟踪系统调用：
 


gcc -g -lpthread -Wall -o test_pthread test_pthread.c

strace ./test_pthread.c

mmap(NULL, 8392704, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_

    STACK,-1, 0) = 0x7fb6ade8a000

brk(0)                                           = 0x93d000

brk(0x95e000)                                    = 0x95e000

mprotect(0x7fb6ade8a000, 4096, PROT_NONE)        = 0

clone(child_stack=0x7fb6ae689ff0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_

    SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_

        CHILD_CLEARTID, parent_tidptr=0x7fb6ae68a9d0, tls=0x7fb6ae68a700,

            child_tidptr=0x7fb6ae68a9d0) = 6186


 
分析上面strace产生的结果，可以得到pthread创建线程的流程，大概如下：
 
1）mmap分配用户空间的栈大小。
 
2）mprotect设置内存页的保护区（大小为4KB），这个页面用于监测栈溢出，如果对这片内存有读写操作，那么将会触发一个SIGSEGV信号。
 
3）通过clone调用创建线程。
 
通过对pthread分析，我们也可以知道用户线程的堆栈可以通过mmap从用户空间自行分配。
 
分析Linux中对进程和线程创建的几个系统调用可发现，创建时最终都会调用do_fork函数，不同之处是传入的参数不同（clone_flags），最终结果就是进程有独立的地址空间和栈，而用户线程可以自己指定用户栈，地址空间和父进程共享，内核线程则只有和内核共享的同一个栈，同一个地址空间。当然不管是进程还是线程，do_fork最终会创建一个task_struct结构。
1.3　进程的调度
 
在一个CPU中，同一时刻最多只能支持有限的进程或者线程同时运行（这取决于CPU核数量），但是在一个运行的操作系统上往往可以运行很多进程，假如运行的进程占据CPU进程时间很长，就有可能让其他进程饿死。为了解决这种问题，操作系统引入了进程调度器来进行进程的切换，目的是轮流让其他进程获取CPU资源。
1.3.1　进程调度机制的架构
 
在每个进程运行完毕时，系统可以进行调度的工作，但是系统不可能总是在进程运行完才调度，不然其他进程估计还没被调度就饿死了。系统还需要一个重要的机制：中断机制，来周期性地触发调度算法进行进程的切换。
 
Linux进程的切换是通过schedule函数来完成的，其主要逻辑由_schedule函数实现：
 


static void __sched notrace __schedule(bool preempt)

{

    //  阶级1

    struct task_struct *prev, *next;

    unsigned long *switch_count;

    struct rq *rq;

    int cpu;

    cpu = smp_processor_id();        　　　//  获取当前CPU的id

    rq = cpu_rq(cpu);

    rcu_note_context_switch();        　　　//  标识当前CPU发生任务切换，通过RCU更新状态

    prev = rq->curr;

    …

    //阶段2

    switch_count = &prev->nivcsw;

    if (!preempt && prev->state) {

        if (unlikely(signal_pending_state(prev->state, prev))) {

            prev->state = TASK_RUNNING;

        } else {

            deactivate_task(rq, prev, DEQUEUE_SLEEP);

            prev->on_rq = 0;

            if (prev->flags & PF_WQ_WORKER) {

                struct task_struct *to_wakeup;

                to_wakeup = wq_worker_sleeping(prev, cpu);

                if (to_wakeup)

                    try_to_wake_up_local(to_wakeup);

            }

        }

        switch_count = &prev->nvcsw;

    }

    //  阶段3

    if (task_on_rq_queued(prev))

        update_rq_clock(rq);

    //  阶段4

    next = pick_next_task(rq, prev); //  选取下一个将要执行的进程

    clear_tsk_need_resched(prev);

    clear_preempt_need_resched();

    rq->clock_skip_update = 0;



    if (likely(prev != next)) {

        rq->nr_switches++;

        rq->curr = next;

        ++*switch_count;

        …

        //  阶段5

        rq = context_switch(rq, prev, next);  //进行进程上下文切换

        cpu = cpu_of(rq);

    } else {

        lockdep_unpin_lock(&rq->lock);

        raw_spin_unlock_irq(&rq->lock);

    }



    balance_callback(rq);

}


 
_schedule执行过程主要分为以下几个阶段：
 
1）关闭内核抢占，初始化一部分变量。获得当前CPU的ID号，并赋值给局部变量CPU。使rq指向CPU对应的运行队列（runqueue）。标识当前CPU发生任务切换，通知RCU更新状态，如果当前CPU处于rcu_read_lock状态，当前进程将会放入rnp->blkd_tasks阻塞队列，并呈现在rnp->gp_tasks链表中。（关于RCU机制，在第2章中介绍）。关闭本地中断，获取所要保护的运行队列（runqueue）的自旋锁（spinlock），为查找可运行进程做准备。
 
2）检查prev的状态。如果不是可运行状态，而且没有在内核态被抢占，就应该从运行队列中删除prev进程。但是，如果它是非阻塞挂起信号，而且状态为TASK_INTER-RUPTIBLE，函数就把该进程的状态设置为TASK_RUNNING，并将它插入到运行队列。
 
3）task_on_rq_queued（prev）将pre进程插入到运行队列的队尾。
 
4）pick_next_task选取下一个将要执行的进程。
 
5）context_switch（rq，prev，next）进行进程上下文切换。
 
通过上述步骤可以发现，调度无非就是找一个已有的进程，然后进行上下文切换，并让它执行而已。
 
[image: ]注意　挑选next进程的过程相对复杂，分析起来也比较麻烦，限于篇幅和时间有限，暂时不介绍具体挑选的调度算法实现，这里仅介绍Linux调度的架构，图1-10是Linux的调度架构图。
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图1-10　调度的架构图
 
Linux调度架构的核心概念如下：
 
1）rq：可运行的队列，每个CPU对应一个，包含自旋锁、进程数量、用于公平调度的CFS信息结构、当前正在运行的进程描述符等。实际的进程队列用红黑树来维护（通过CFS信息结构来访问）。
 
2）cfs_rq：cfs调度的运行队列信息，包含红黑树的根结点、正在运行的进程指针、用于负载均衡的叶子队列等。
 
3）sched_entity：把需要调度的东西抽象成调度实体，调度实体可以是进程、进程组、用户等。这里包含负载权重值、对应红黑树结点、虚拟运行时vruntime等。
 
4）sched_class：把调度策略（算法）抽象成调度类，包含一组通用的调度操作接口，将接口和实现分离。你可以根据这组接口实现不同的调度算法，使得一个Linux调度程序可以有多个不同的调度策略。
1.3.2　进程切换的原理
 
在挑选完next进程之后，就开始准切换到next进程。
 
可以将进程理解为正在利用CPU工作的任务。因为在系统中同时运行的进程有很多，CPU不能仅仅被同一个进程使用，所以，这时候就需要进程切换机制，另外，假如某进程的工作大部分为I/O操作，占用CPU空跑会导致资源浪费，这样的进程需要主动放弃CPU。
 
需要进程切换的场景有以下几种：
 
·该进程分配的CPU时间片用完。
 
·该进程主动放弃CPU（例如IO操作）。
 
·某一进程抢占CPU获得执行机会。
 
Linux并没有使用x86 CPU自带的任务切换机制，而是通过手工的方式实现了切换，切换过程通过以下switch_to宏来定义：
 


#define switch_to(prev, next, last)

do {

    unsigned long ebx, ecx, edx, esi, edi;

    asm volatile("pushfl\n\t"                //  步骤1

        "pushl %%ebp\n\t"                    //  步骤2

        "movl %%esp,%[prev_sp]\n\t"          //  步骤3

        "movl %[next_sp],%%esp\n\t"          //  步骤4

        "movl $1f,%[prev_ip]\n\t"            //  步骤5

        "pushl %[next_ip]\n\t"               //  步骤6

        __switch_canary

        "jmp __switch_to\n"                  //  步骤7

        "1:\t"

        "popl %%ebp\n\t"                     //  从栈恢复EBP

        "popfl\n"                            //  从栈恢复 flags



        //   asm内嵌汇编的输出参数

        [prev_sp] "=m" (prev->thread.sp),

            [prev_ip] "=m" (prev->thread.ip),

            "=a" (last),

            "=b" (ebx), "=c" (ecx), "=d" (edx),

            "=S" (esi), "=D" (edi)

            __switch_canary_oparam

            //   asm内嵌汇编的输入参数

            [next_sp]  "m" (next->thread.sp),

            [next_ip]  "m" (next->thread.ip),

            [prev]     "a" (prev),

            [next]     "d" (next)

            __switch_canary_iparam

        "memory");

} while (0)


 
该切换过程分为以下几个步骤：
 
1）pushfl保存eflags寄存器中的数据到进程本身的堆栈。
 
2）保存堆栈指针ebp寄存器地址。
 
3）把堆栈寄存器esp的地址保存到prev->thread.sp中。
 
4）把next->thread.sp的地址送入到sp寄存器中，这个时候其实已经跑在新的next进程的上下文中了。
 
5）把当前的eip地址保存到prev->thread.ip中。
 
6）pushfl把next->thread.ip的地址压入到当前堆栈中。
 
7）通过jmp__switch_to指令，不管__switch_to做了什么，ret返回地址之前已经被设置成了next->thread.ip的地址，所以将会执行之前在copy_thread_tls中设置的ret_from_fork。
 
通过这个过程，可以了解到在Linux中，我们并没有对TSS进行特殊处理，而是每个CPU持有唯一一份TSS，它的作用也仅仅是在权限级做跃迁的时候保存堆栈上下文，可以通过图1-11理解进程切换机制。
 
[image: ]注意　关于x86架构CPU的任务切换机制，可以参考阅读《Intel开发手册》，可以从Intel官网下载。另外，本人也编写了代码来模拟两个进程切换的过程，供大家参考，便于加深理解：https://github.com/lingqi1818/analysis_linux/tree/master/ch01/test03关于asm内嵌汇编语法可以参考：https://www.ibm.com/developerworks/cn/linux/sdk/assemble/inline/index.html
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图1-11　进程切换原理图
1.3.3　调度中的CPU亲和度
 
我们已经知道，进程创建出来后在内核中的数据结构为task_struct，该结构中有掩码属性cpus_allowed，这个掩码由n位组成，与CPU中的每个逻辑核心一一对应。具有4个核的CPU可以有4位。假如CPU启用了超线程，那么刚才这个CPU就有一个8位的掩码，进程可以运行在掩码位设置为1的CPU上。
 
Linux内核API提供了两个系统调用，让用户可以修改位掩码或查看当前的位掩码：
 
·sched_setaffinity（）：用来修改位掩码。
 
·sched_getaffinity（）：用来查看当前的位掩码。
 
这两个调用实现的仅仅就是修改或者获取cpus_allowed的值。
 
在下次task被唤醒的时候，select_task_rq_fair根据cpu_allowed里的掩码来确定将其置于哪个CPU的运行队列，一个进程在某一时刻只能存在于一个CPU的运行队列里。
 
在Nginx中，就使用了CPU亲和度来完成某些场景的工作：
 


worker_processes     4;

worker_cpu_affinity 0001 0010 0100 1000;


 
上面这个配置说明了4个工作进程中的每一个和一个CPU核挂钩。
 


worker_processes     2;

worker_cpu_affinity 0101 1010;


 
上面这个配置则说明了两个工作进程中的每一个和2个核挂钩。
 
看Nginx的实现，核心函数为ngx_setaffinity：
 


void

ngx_setaffinity(uint64_t cpu_affinity, ngx_log_t *log)

{

    cpu_set_t   mask;

    ngx_uint_t  i;

…

    CPU_ZERO(&mask);

    i = 0;

    do {

        if (cpu_affinity & 1) {

        CPU_SET(i, &mask);

    }

    i++;

    cpu_affinity >>= 1;

} while (cpu_affinity);

if (sched_setaffinity(0, sizeof(cpu_set_t), &mask) == -1) {

    ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,

            "sched_setaffinity() failed");

    }

}


 
这里主要的操作就是sched_setaffinity。
 
再结合Nginx文档中的例子和Nginx的源码来看：
 


worker_processes    4;

worker_cpu_affinity 0001 0010 0100 1000;


 
如果这个内容写入Nginx的配置文件中，然后Nginx启动或者重新加载配置的时候，若worker_process是4，就会启用4个worker，然后把worker_cpu_affinity后面的4个值当作4个cpu affinity mask，分别调用ngx_setaffinity，然后就把4个worker进程分别绑定到CPU0～3上。
1.4　在应用程序中管理进程和线程
 
在了解了Linux对进程和线程的实现之后，我们首要的目的还是要学习如何在实际应用程序开发中使用这些技术，不同的应用程序实现了不同的进程或线程的管理模型，而每一种模型的背后，都体现了作者对业务的理解和场景化的考虑。下面我们介绍两种不同软件的管理模型。
1.4.1　Memcached线程池模型分析
 
Memcached是一款服务器内存管理软件，它主要是由pthread创建的用户工作线程池模型来处理主要逻辑的，图1-12是Memcached的线程模型图。
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图1-12　Memcached线程模型图
 
其主要概念如下：
 
·mthread主线程，主要用于监听socket事件，并建立连接，然后把连接和相应的事件分发到cq连接队列中（每个分线程都拥有一个连接队列）。
 
·cthread分线程，用于从连接队列中获取连接的读写事件，并进行业务逻辑的处理工作。
 
从Memcached的线程池初始化逻辑中我们可以发现，cthread是个线程池，用户可以指定池子的大小：
 


void thread_init(int nthreads, struct event_base *main_base) {

    int         i;

    int         power;



    pthread_mutex_init(&cache_lock, NULL);

    pthread_mutex_init(&stats_lock, NULL);



    pthread_mutex_init(&init_lock, NULL);

    pthread_cond_init(&init_cond, NULL);



    pthread_mutex_init(&cqi_freelist_lock, NULL);

    cqi_freelist = NULL;

    …

    dispatcher_thread.base = main_base;

    dispatcher_thread.thread_id = pthread_self();



    …

    //  在设置完libevent后，创建线程

    for (i = 0; i < nthreads; i++) {

        create_worker(worker_libevent, &threads[i]);

    }



    //  等待，直到所有线程设置完毕并返回

    pthread_mutex_lock(&init_lock);

    wait_for_thread_registration(nthreads);

    pthread_mutex_unlock(&init_lock);

}


 
Memcached在创建工作线程的时候，同样会用pipe调用创建管道，用于和主线程之间的通信。
 
create_worker函数最终通过pthread_create来创建工作线程：
 


static void create_worker(void *(*func)(void *), void *arg) {

    pthread_t       thread;

    pthread_attr_t  attr;

    int             ret;



    pthread_attr_init(&attr);



    if ((ret = pthread_create(&thread, &attr, func, arg)) != 0) {

        fprintf(stderr, "Can't create thread: %s\n",

            strerror(ret));

        exit(1);

    }

}


 
该模型假设在业务逻辑繁忙，并且I/O开销比较大的情况下，多线程模型能提高系统的吞吐率。但缺点是当多线程同时访问同一数据的时候就存在竞争，需要额外的并发解决开销（比如锁）。另外其实Memcached大部分操作都是基于内存的读写，应该速度很快，引入并发反而在竞争中存在效率降低的风险，另外假如系统中线程数量开得太多，那么线程切换的开销也会上升，需要根据实际场景谨慎设置线程池的大小。而Redis的作者认为内存的操作速度是很快的，所以实现了单线程的服务器模型，在下一章介绍并发的时候再详细介绍。
1.4.2　Nginx进程模型分析
 
刚才介绍的Memcached是比较经典的服务器线程池模型，比如老牌静态服务器软件Apache就是采用这样的模型，而Nginx的作者则对该模型进行了改进。
 
Nginx只要创建CPU核心数量相等的工作进程，即可满足高并发、高吞吐量的需求，原因是它的每个工作进程都持有一个基于I/O多路复用的epoll池子（见图1-13），这样每个进程只有在事件被触发的场景下才进行工作，否则就会让出CPU进行其他事件的处理，特别是在upstream的场景下，工作进程可以悠闲地等待后端数据准备好之后再进行工作，CPU的利用率也大大提升。
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图1-13　Nginx工作进程模型
 
在Nginx中master进程通过fork调用派生完子进程后，又通过socketpair创建了管道来进行父子进程之间的通信。
 
通过了解Memcached和Nginx的线程池和工作进程模型，我们发现有多种选择，既多线程与单线程，线程池模型与工作进程模型，选择哪种模型好？答案不是绝对的，需要根据业务场景具体分析后，找到问题的症结在哪里，才能给出具体的答案。
1.5　处理进程和线程的相关工具
 
在了解了Linux进程和线程的实现后，在具体的开发和运维场景下如何驾驭它们呢？下面我们简单介绍几个工具，在Linux下可用于调试、追踪系统调用并进行性能分析。
1.5.1　开发环境调试线程
 
当使用gdb调试C程序的时候，比如Nginx、Nginx的子进程都是fork出来的，所以当开发完并定义模块设置断点调试的时候，默认是无法进入断点的，gdb提供了调试线程的方法。
 
跟踪子进程：
 


(gdb)set follow-fork-mode child


 
跟踪父进程：
 


(gdb)set follow-fork-mode parent


 
设置gdb在fork时询问跟踪哪一个进程：
 


(gdb)set follow-fork-mode ask


 
根据以上方法进行设置之后，我们就可以在相应的线程实现处设置断点并进行跟踪了。
1.5.2　进程崩溃调试方法
 
在C程序崩溃的时候往往会留下coredump文件，供我们分析问题到底出在哪里。下面我们用一个Nginx崩溃的场景来分析如何调试coredump文件。
 
曾经遇到个问题，因为后端领取奖品的接口存在并发操作，有可能会出现超领的情况，但是在分析请求日志的过程中发现，在Tomcat中，出现了2条领取记录，并且已经成功，但是，在Nginx中却只有一条记录。感觉很奇怪，困扰了很久。
 
不过在分析Nginx的error.log的时候，发现了一些蛛丝马迹：
 


[alert] 92648#0: worker process 22459 exited on signal 11


 
原来在被多领取的时候，还发生过Nginx的woker进程退出的情况。signal 11也就是SIGSEGV信号，说明有非法内存访问的情况。
 
那么，为什么会有这样的问题呢？难道编写的Nginx模块中有潜在的bug？于是在Nginx配置中，设置打开coredump的功能：
 


worker_rlimit_core 500m;

working_directory /tmp;


 
然后，用gdb来调试产生的coredump文件：
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发现问题出在get_root_domain函数，但是由于Nginx没有debug信息，无法获取具体文件和行号，查看Nginx官方文档，编译的时候产生debug调试信息可以如下操作：“编译器需要使用正确的参数。假如你使用的是GCC，-g参数，会在代码编译后加入调试信息，另外，你需要禁用编译器优化，通过使用-O0参数，可以让调试器输出容易看懂的信息。”
 
我们可以重新编译Nginx：
 


CFLAGS="-g -O0" ./configure ....


 
然后，重新执行：
 


gdb /usr/sbin/nginx core.23161


 
显示如下：
 


sysop@api-1:~$ gdb /usr/sbin/nginx core.23176

GNU gdb (GDB) 7.4.1-debian

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://  gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.? Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:

<http://  www.gnu.org/software/gdb/bugs/>...

Reading symbols from /usr/sbin/nginx...Reading symbols from /usr/lib/debug/

    usr/sbin/nginx...done.

done.

[New LWP 23176]

Core was generated by `nginx: worker pr'.

Program terminated with signal 11, Segmentation fault.

#0 0x000000000050267c in?get_root_domain?(domain=<error reading variable:

    Cannot access memory at address 0x8>) at src/http/modules/ngx_http_beacon_

        module.c:298


 
get_root_domain代码如下：
 


size_t get_root_domain(u_char **p,ngx_str_t *domain){

*p = domain->data;

int i = domain->len - 1;

ngx_flag_t is_first = 0;

...


 
我们发现domain指针指向的是0x8这个地址，这么低的地址理论上应该是系统保护的地址，不能被程序访问，那么domain是如何来的呢？
 


domain_len = get_root_domain(&domain,&r->headers_in.host->value);


 
返现直接取的是HTTP协议头中的host信息。
 
然后再看了一下当时的错误信息，有一些获取验证码的请求是用httpclient构建的，不是通过浏览器发起的请求，那么host信息必然是空的。所以导致这个空指针的异常。
 
而在当时Nginx的进程退出，正好影响了正常的请求，导致返回的时候没打印日志以及吐数据给客户就挂了。
 
最后程序对这种情况做了兼容，修复了这个诡异的问题。
1.5.3　strace工具
 
strace是Linux提供的一个工具，常用来跟踪进程执行时的系统调用和所接收的信号。比如：
 


[root@lingqi1818 ~]# strace cat /dev/null

execve("/bin/cat", ["cat", "/dev/null"], [/* 27 vars */]) = 0

brk(0)                                  = 0x250d000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

    0x7f1e0c0bf000

access("/etc/ld.so.preload", R_OK)     = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY)         = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=26432, ...}) = 0

mmap(NULL, 26432, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f1e0c0b8000

close(3)                                   = 0

open("/lib64/libc.so.6", O_RDONLY)         = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0000\356\1\0\0\0\0\0"...

    , 832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=1921216, ...}) = 0

mmap(NULL, 3750152, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

    0x7f1e0bb0d000

mprotect(0x7f1e0bc98000, 2093056, PROT_NONE) = 0

mmap(0x7f1e0be97000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_

    DENYWRITE, 3, 0x18a000) = 0x7f1e0be97000

mmap(0x7f1e0be9c000, 18696, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_

    ANONYMOUS, -1, 0) = 0x7f1e0be9c000

close(3)                                   = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

    0x7f1e0c0b7000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

    0x7f1e0c0b6000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

    0x7f1e0c0b5000

arch_prctl(ARCH_SET_FS, 0x7f1e0c0b6700)    = 0

mprotect(0x7f1e0be97000, 16384, PROT_READ) = 0

mprotect(0x7f1e0c0c0000, 4096, PROT_READ)  = 0

munmap(0x7f1e0c0b8000, 26432)              = 0

brk(0)                                     = 0x250d000

brk(0x252e000)                             = 0x252e000

open("/usr/lib/locale/locale-archive", O_RDONLY)        = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=99158720, ...}) = 0

mmap(NULL, 99158720, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f1e05c7c000

close(3)                                   = 0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0

open("/dev/null", O_RDONLY)                = 3

fstat(3, {st_mode=S_IFCHR|0666, st_rdev=makedev(1, 3), ...}) = 0

read(3, "", 32768)                         = 0

close(3)                                   = 0

close(1)                                   = 0

close(2)                                   = 0

exit_group(0)                              = ?


 
以上代码每一行都是一个系统调用，等号左边是系统调用的函数名及其参数，右边是该调用的返回值。
 
strace的具体参数含义可以通过man指令来查询，比如我们常用的-c参数可以统计每一次系统调用所执行的时间、次数和出错的次数等：
 


[root@lingqi1818 ~]# strace -c cat /dev/null

% time     seconds  usecs/call     calls    errors syscall

------ ----------- ----------- --------- --------- ----------------

    0.00    0.000000           0         2           read

    0.00    0.000000           0         4           open

    0.00    0.000000           0         6           close

    0.00    0.000000           0         5           fstat

    0.00    0.000000           0         9           mmap

    0.00    0.000000           0         3           mprotect

    0.00    0.000000           0         1           munmap

    0.00    0.000000           0         3           brk

    0.00    0.000000           0         1         1 access

    0.00    0.000000           0         1           execve

    0.00    0.000000           0         1           arch_prctl

------ ----------- ----------- --------- --------- ----------------

  100.00    0.000000                    36         1 total


1.5.4　SystemTap工具
 
SystemTap是基于kprobe的实现（关于kprobe网上资料较多，大家可以自行研究），其功能非常强大，可以监控内核和用户程序。
 
下面以实际场景为例，来监控运行中程序指定函数的调用参数值。
 


#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

void print(char *p){

     printf("%s.\n",p);

}



void* test_fn(void* arg)

{

    while(1){

    print("hello pthread");



    sleep(5);  }

    return((void *)0);

}



int main(int argc,char **argv)

{

    pthread_t id;

    int ret;

    ret = pthread_create(&id,NULL,test_fn,NULL);

    if(ret != 0)

    {

        printf("create pthread error!\n");

        exit(1);

    }

    printf("in main process.\n");

    pthread_join(id,NULL);

    return 0;

}


 
以上程序每5秒钟会调用一次print，我要是想知道print的输入参数是什么，那么编写SystemTap脚本如下：
 


function myprint:string (val)

%{

char *str = (char *)STAP_ARG_val;

snprintf(STAP_RETVALUE, MAXSTRINGLEN, "%s",str);

%}

probe process(3266).function("print") {printf("%s\n",myprint($p));}


 
运行结果为：
 


stap –g test.stp


 
这样就可以获得监控的结果了，因为我用到了内嵌C来获取字符串的值，所以就需要加上-g参数。
1.5.5　DTrace工具
 
DTrace是Oracle旗下的一款基于Linux的监控程序，它可以基于D语言编写脚本来实现你想要的监控功能，由于功能比较复杂，这里不做过多阐述，大家可以有兴趣到下面的网址了解更多信息：
 
·http://www.oracle.com/technetwork/cn/articles/servers-storage-admin/dtrace-on-linux-1956556-zhs.html
 
·http://docs.oracle.com/cd/E24847_01/html/E22192/toc.html
 
下面的脚本用于监控指定pid下指定的系统调用是否发生：
 


test.d:

pid$1::$2:entry

{

    self->trace = 1;

}



    pid$1::$2:return

    /self->trace/

    {

        self->trace = 0;

    }



        pid$1:::entry,

        pid$1:::return

        /self->trace/

        {

        }


 
然后我们打开Redis进程：
 


localhost:src chenke$ ./redis-server


 
其pid为：
 


chenke  7276  0.0  0.0  2465080  1892 s003  S+  12:32下午  0:00.01 ./redis-

    server *:6379


 
现在进行写入操作：
 


localhost:~ chenke$ telnet localhost 6379

Trying ::1...

Connected to localhost.

Escape character is '^]'.

set a 1

+OK


 
我们来看监控脚本产生的数据如下：
 


dtrace: script 'test.d' matched 33829 probes

    CPU     ID                    FUNCTION:NAME

    0       257241                write:entry

    0       257241                write:entry

    0       257241                write:entry

    0       257241                write:entry

    0       257241                write:entry

    0       257241                write:entry


 
当然，更复杂的功能需要自己研究手册和D语言，而且DTrace的好处是可以监控用户态的程序。
1.6　本章小结
 
进程和线程是计算机发展历史上为解决特定问题而产生的解决方案。本章开头介绍了进程管理的历史，以及实现原理，特别是内核线程、用户线程和协程，只有了解了这些原理，才能更好地编写应用程序。
 
随后介绍了Linux对进程和线程的实现，还介绍了内核对进程和线程的调度机制，调度机制的好坏决定了一个操作系统是否能流畅响应不同用户的实时请求。
 
我们平时使用了很多开源的软件，进程和线程的模型是服务器实现必须要考虑的问题，在了解了原理以及Linux的实现后，再对Memcached和Nginx相关模型进行分析，有助于更好地理解进程和线程。
 
最后，通过对gdb、coredump、strace、SystemTap、DTrace等工具的介绍，有助于我们进行开发调试、故障诊断、监控分析等，建议大家可以多动手实践。
第2章　并发
 
很多程序员在面试的时候经常会被问到线程安全相关的问题，比如什么是线程安全，什么又是线程不安全，假如线程不安全，如何解决才能做到线程安全。这时候，往往会出现五花八门的答案，而且大多数都是本末倒置。很多时候，人们经常会用一些现象来回答问题，比如房价高这个问题，很多时候大家就会归结于某些现象：温州炒房团、丈母娘经济、对比国际大城市房价等。但是，我们需要的是“原理性的解释”，比如影响房价的经济学原理如供需关系、不均衡分布等。
 
再回归到线程安全问题，这是一个非常经典的问题，需要搞懂并发原理，才能搞清楚线程安全。任何事物的发展，都是有因果关系的，就像霍金博士一生孜孜不倦地研究，无非也就是想搞懂人类从哪里来，站在何方，将要去向哪里等大问题。所以针对并发这样的话题，我们学习的思路应该是这样的：
 
·并发到底是什么，如何在系统中产生。
 
·并发会带来什么问题。
 
·如何解决并发带来的问题。
 
我觉得这个思考方式，应该可以用于大部分技术原理的学习和研究了。只有带着正确的问题出发，才有可能得到你想要的答案。下面我们就根据以上3个问题对并发相关的话题进行探讨，在后续的章节中，我还会反复强调这样的思考方式。
 
本章先介绍并发原理，再分析Linux中的并发相关工具，最后介绍开源软件中的并发问题是如何解决的。
2.1　什么是并发
 
首先我们需要搞清楚到底什么是并发，它在系统中又是以何种形式存在的。
2.1.1　并发是如何产生的
 
在操作系统中，一个时间段中有几个程序都处于已启动运行到运行完毕之间，且这几个程序都是在同一个处理器上运行，这种情形叫并发。但是，在任一个时刻只有一个程序在处理器上运行。
 
从这个过程中我们大致可以了解到，并发主要和处理器（CPU）有关，当同时有多个运行中的程序需要占用处理器资源，就形成了并发。图2-1总结了并发的两种场景，第一种场景是多个进程使用同一个处理器内核资源，第二种场景是多个进程使用不同的处理器内核资源。
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图2-1　两种并发场景
2.1.2　并发会带来什么问题
 
针对上面介绍的并发两种场景，会有不同的问题。我们先来分析第一种场景，多个进程同时使用同一个处理器核（core）资源。我们知道一个处理器核在同一时刻只能被一个进程占用，那么，从微观角度讲真正的并发应该不存在，应该不会有任何问题才对呀？很遗憾，事实情况并非如此，为了防止CPU资源被同一个进程长期占用，大部分硬件都会提供时钟中断机制，在中断发生的时候，会进行进程的切换，当前进程会让出CPU，并且让其他进程能获得CPU的机会。因为进程切换的存在，假如共享同一个内存变量，就会存在代码临界区，比如i++操作，就不能保证原子性，如图2-2所示。因为i++其实分为两个步骤：
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图2-2　多个进程同时使用同一个处理器核的情况
 
1）add i
 
2）set i
 
假设i=0，当进程1执行完add i后，就发生了切换。进程2重新开始执行add i，那么2个进程都执行完i++之后，结果i的值还是1。
 
所以，在这种情况下，并发带来的问题就是进程切换造成的代码临界区。
 
我们来分析并发的第二种场景，多个进程同时使用多个CPU核。在这种情况下，会引发两种问题。第一种问题和多个进程使用1个CPU核引发的问题一样，由于先天就是多个核并行执行多个进程的程序，假如共享同一个变量操作，必然会存在代码临界区。
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图2-3　多个进程同时使用多个处理器核的情况
 
第二种问题如图2-3所示，我们可以发现，因为CPU每个核都维护了一个L2 cache（二级缓存），其目的是为了减少与内存之间的交互，提升数据的访问速度。但是这样，就会造成主存中的数据复制存在多份在各自的L2 cache中，导致数据不一致。这就是CPU二级缓存和内存之间的可见性问题。
2.1.3　如何解决并发带来的问题
 
上节分析了并发带来的问题，归根结底就2类：
 
·代码临界区的问题。
 
·主存可见性的问题。
 
下面我们分别来介绍这两类问题的解决方案。
 
先说代码临界区问题。孙子曰：“百战百胜，非善之善者也；不战而屈人之兵，善之善者也。”也就是说最好的战争方式，就是不要发动战争，通过谋略让对手投降。杀敌一千，自损八百，很是划不来。所以，处理代码临界区的问题也是一样，最好的方式就是消除临界区。很多时候，临界区是由于自己考虑不周到，代码编写方式不正确造成的，只要设计得当，是有可能消除的。
 
不过凡事无绝对，假如不能消除临界区，那么我们只能硬着头皮想办法对付了。前面我们分析临界区出现问题是因为多个进程同时进入了临界区，造成了逻辑的混乱。所以，我们可以把临界区作为一个整体，让多个进程串行通过临界区，达到保护临界区的目的。这样的机制我们就叫做同步。同步在技术上一般都是通过锁机制来解决的，后面我们会具体分析Linux中的不同锁实现方式。
 
另外像i++这样的操作，一般都会在硬件级别提供原子操作指令作为解决方案，本章我们也会介绍原子变量的实现方法，一般都会通过cmpxgl这样原子指令来支持。
 
接着来看主存可见性的问题。多个进程依赖同一个内存变量，那么为了保证可见性，可以通过让L2 cache强制失效，都去主存中取数据。有时候编译器为了提升程序执行效率，都会对编译后的代码进行优化，让某些指令在上下文中的结果依赖L2 cache，我们可以通过内存屏障等方式，去除编译器优化，本章后面会具体介绍这种方法。
2.2　操作系统会在哪些场景遇到并发
 
在互联网时代来临之前，内核虽然生来就被设计成支持多用户的，但是很少面临高并发请求考验，多用户的操作很多时候都是人工来进行的，人敲键盘的速度再快也很难达到秒级的。所以，最开始，并发仅仅针对内核级别，给内核加了一把大内核锁（BKL）。一旦某个用户在使用内核，其他用户则无法获取内核资源。
 
但是大内核锁太粗暴了，粒度太大。在互联网应用场景就吃不消了。互联网时代，针对不同的细节场景，开发了不同的内核工具来解决相应的问题。图2-4介绍了Linux内核不同并发场景提供的工具实现。
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图2-4　Linux内核针对不同并发场景的工具实现
 
我把操作系统和并发相关的场景归为4类：
 
1）和CPU相关的原子变量（Atomic）和自旋锁（Spin_lock）。
 
在并发访问的时候，我们需要保证对变量操作的原子性，通过Atomic变量解决该问题。其实自旋锁的使用场景和互斥锁类似，都是为了保护临界区资源，但是自旋锁是在CPU上进行的忙等，所以暂时就把它和原子变量归为一类了。
 
2）围绕代码临界区控制的相关工具有：信号量（Semaphore）、互斥（Mutex）、读写锁（Rw-lock）、抢占（Preempt）。
 
有时候要对多个线程进行精细化控制，就要用到信号量了，下面引用百度百科中的例子：
 
以一个停车场的运作为例。简单起见，假设停车场只有三个车位，一开始三个车位都是空的。这时如果同时来了五辆车，看门人允许其中三辆直接进入，然后放下车拦，剩下的车则必须在入口等待，此后来的车也都不得不在入口处等待。这时，有一辆车离开停车场，看门人得知后，打开车拦，放入外面的一辆进去，如果又离开两辆车，则又可以放入两辆车，如此往复。在这个停车场系统中，车位是公共资源，每辆车好比一个线程，看门人就是起到了信号量的作用。
 
互斥从某种角度来讲，可以理解为池子大小为1的信号量，它和信号量的原理类似，都会让无法获取资源的线程睡眠。
 
很多时候并发的访问往往都是读大于写，为了提高该场景的性能，内核提供了读写锁进行优化访问控制。
 
3）从CPU缓存角度，为优化多核本地访问的性能，内核提供了per-cpu变量。
 
在多核场景，为了解决并发访问内存的问题，经常需要锁住总线，这样效率很低。很多时候并发的最好方案就是没有并发，per-cpu变量的设计正是基于这样的思路。
 
4）从内存角度，为提升多核同时访问内存的效率提供了RCU机制，另外，为了解决内存访问有序性问题，提供了内存屏障（memory barrier）。假如需要多核同时写同一共享数据，要保证不出问题，我能想到的也就是Copy On Write这样的思路，RCU机制就是基于这个思路的实现。
 
程序在运行时内存实际的访问顺序和程序代码编写的访问顺序不一定一致，这就是内存乱序访问。内存乱序访问行为出现的理由是为了提升程序运行时的性能。在并发场景下，这种乱序就具有不确定性，内存屏障就是用来消除这种不确定性，保证并发场景的可靠性。
2.3　Linux中并发工具的实现
 
通过上一节的介绍，我们大概了解了内核中的并发场景，以及Linux提供的相应工具，本节把这些工具的实现简单分析一下。
2.3.1　原子变量
 
原子变量是在并发场景经常使用的工具，很多并发工具都是基于原子变量来实现的，比如自旋锁。原子变量对其进行的读写操作都必须保证原子性，也就是原子操作。
 
1.什么是原子操作
 
对于i++这样的操作，如果要在双核的CPU上每核都执行这条指令，假如现在i=1，那么执行完之后，你希望第一个核执行完之后i被设置为2，第二个核执行完之后i被设置为3。但是，由于i++这样的执行不是原子操作，所以2个核有可能同时取到i的值为1，然后加完之后i最终为2。
 
这种问题是典型的“读-修改-写”场景，避免该场景引发不一致问题就是确保这样的操作在芯片级是原子的。
 
x86在多核环境下，多核竞争数据总线的时候，提供了Lock指令来进行锁总线的操作，在《Intel开发者手册》卷3A，8.1.2.2中说明了Lock指令可以影响的指令集：
 
1）位测试和修改的指令（BTS、BTR和BTC）。
 
2）交换指令（XADD、CMPXCHG和CMPXCHG8B）。
 
3）Lock前缀会自动加在XCHG指令前。
 
4）单操作数逻辑运算指令：INC、DEC、NOT和NEG。
 
5）双操作数的逻辑运算指令：ADD、ADC、SUB、SBB、AND、OR和XOR。
 
2.原子变量（atomic）的实现
 
定义如下：
 


typedef struct {

    int counter;

} atomic_t;


 
add和sub方法：
 


static __always_inline void atomic_add(int i, atomic_t *v)

{

    asm volatile(LOCK_PREFIX "addl %1,%0"

                 : "+m" (v->counter)

                 : "ir" (i));

}



static __always_inline void atomic_sub(int i, atomic_t *v)

{

    asm volatile(LOCK_PREFIX "subl %1,%0"

                 : "+m" (v->counter)

                 : "ir" (i));

}


 
通过之前分析我们知道intel的原子指令保证操作的原子性。并且多核环境下使用lock来锁总线，保证串行访问总线。
 
读取方法为：
 


static __always_inline int atomic_read(const atomic_t *v)

{

    return READ_ONCE((v)->counter);

}


 
在读的时候为了防止脏读，READ_ONCE中加上了volatile去除编译器优化。
2.3.2　自旋锁
 
1.为什么使用自旋锁
 
由于自旋锁（Spin_lock）只是将当前线程不停地执行循环体，而不改变线程的运行状态，所以响应速度更快。但当线程数不断增加时，性能下降明显，因为每个线程都需要执行，占用CPU时间。所以它保护的临界区必须小，且操作过程必须短。很多时候内核资源只锁毫秒级别的时间片段，因此等待自旋锁的释放不会消耗太多CPU的时间。
 
2.自旋锁的实现
 
自旋锁其实是通过一个属性标志来控制访问锁的请求是否能满足，我们先来看一下spinlock的定义：
 


typedef struct spinlock {

    union {

        struct raw_spinlock rlock;



#ifdef CONFIG_DEBUG_LOCK_ALLOC

# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))

        struct {

            u8 __padding[LOCK_PADSIZE];

            struct lockdep_map dep_map;

        };

#endif

    };

} spinlock_t;


 
去除debug的干扰，我们可以看到spinlock的核心成员为：
 


struct raw_spinlock rlock


 
接着看raw_spinlock的结构：
 


typedef struct raw_spinlock {

    arch_spinlock_t raw_lock;

#ifdef CONFIG_GENERIC_LOCKBREAK

    unsigned int break_lock;

#endif

#ifdef CONFIG_DEBUG_SPINLOCK

    unsigned int magic, owner_cpu;

    void *owner;

#endif

#ifdef CONFIG_DEBUG_LOCK_ALLOC

    struct lockdep_map dep_map;

#endif

} raw_spinlock_t;


 
可以看到raw_spinlock最终依赖与体系结构相关的arch_spinlock_t结构，我们以x86为例，该结构如下所示：
 


typedef struct arch_spinlock {

    union {

        __ticketpair_t head_tail;

        struct __raw_tickets {

            __ticket_t head, tail;

        } tickets;

    };

} arch_spinlock_t;


 
其中__ticketpair_t为16位整数，__ticket_t为8位整数。
 
通过spin_lock_init宏可以初始化自旋锁，init的过程可以理解为把head_tail的值设置为1，并且为未锁住的状态。
 
下面是获取锁的过程：
 


static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)

{

    arch_spinlock_t old, new;



    old.tickets = READ_ONCE(lock->tickets);

    if (!__tickets_equal(old.tickets.head, old.tickets.tail))

        return 0;



    new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT);//  tail+1

    new.head_tail &= ~TICKET_SLOWPATH_FLAG;



    // cmpxchg是一个完全内存屏障（full barrier）

    return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;

}


 
其中：
 


static inline int  __tickets_equal(__ticket_t one, __ticket_t two)

{

    return !((one ^ two) & ~TICKET_SLOWPATH_FLAG);

}


 
__tickets_equal的过程one和two先做异或，假如两者一样则返回0，TICKET_SLOW-PATH_FLAG为0，取反后则变为OXFF，那么该函数表明假如one和two相等则返回真；否则返回假。
 
arch_spin_trylock的过程为：
 
1）校验锁的head和tail是否相等，假如不相等，则获取锁失败，返回0。
 
2）给tail+1。
 
3）比较lock->head_tail和old.head_tail的值是否相等，如果相等，则把new.head_tail赋给new.head_tail并且返回1。
 
接着我们来看释放锁的过程：
 


static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)

{

    if (TICKET_SLOWPATH_FLAG &&

        static_key_false(&paravirt_ticketlocks_enabled)) {

        __ticket_t head;

        BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS);

        head = xadd(&lock->tickets.head, TICKET_LOCK_INC);



        if (unlikely(head & TICKET_SLOWPATH_FLAG)) {

            head &= ~TICKET_SLOWPATH_FLAG;

            __ticket_unlock_kick(lock, (head + TICKET_LOCK_INC));

        }

    } else

        __add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);

}


 
这个函数的关键就在于：
 


__add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);


 
解锁的过程就是给__add&lock->tickets.head做+1操作。
 
接下来看判断是否上锁的条件：
 


static inline int arch_spin_is_locked(arch_spinlock_t *lock)

{

    struct __raw_tickets tmp = READ_ONCE(lock->tickets);

    return !__tickets_equal(tmp.tail, tmp.head);

}


 
从上面的函数我们可以知道，其实就是判断tail和head是否相等，假如不相等则说明已经上锁了。
 
最后我们来看一下循环等待获取锁的过程：
 


static __always_inline void arch_spin_lock(arch_spinlock_t *lock)

{

    register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC };

    inc = xadd(&lock->tickets, inc);

    if (likely(inc.head == inc.tail))

        goto out;



    for (;;) {

        unsigned count = SPIN_THRESHOLD;

        do {

            inc.head = READ_ONCE(lock->tickets.head);

            if (__tickets_equal(inc.head, inc.tail))

                goto clear_slowpath;

            cpu_relax();

        } while (--count);

        __ticket_lock_spinning(lock, inc.tail);

    }

clear_slowpath:

    __ticket_check_and_clear_slowpath(lock, inc.head);

out:

    barrier();

}


 
这个过程步骤如下：
 
1）tail++。
 
2）假如tail++之前tail和head相等，则说明现在已经获得了锁，退出。
 
3）假如tail和head不相等，则循环等待，直到相等为止。
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图2-5　获取和释放自旋锁的过程
 
图2-5说明了整个加锁和释放锁的过程，每次上锁都会进行tail++。解锁进行head++，当head==tail的时候，则说明未上锁。
2.3.3　信号量
 
通过前面的介绍，我们已经知道信号量（Sema-phore）用于保护有限数量的临界资源，在操作完共享资源后，需释放信号量，以便另外的进程来获得资源。获得和释放应该成对出现。从操作系统的理论角度讲，信号量实现了一个加锁原语，即让等待者睡眠，直到等待的资源变为空闲。
 
下面我们来分析信号量的实现，其定义如下：
 


struct semaphore {

    raw_spinlock_t      lock;                        //  获取计数器的自旋锁

    unsigned int        count;                       // 计数器

    struct list_head    wait_list;                   // 等待队列

};


 
图2-6描述了信号量获取和释放的原理，即down和up的过程。在down的过程中，假如count>0，则做count-操作；否则执行__down，并且在获取自旋锁的时候保存中断到eflags寄存器，最后再恢复中断。
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图2-6　信号量获取和释放的原理图
 
其中__down的执行过程为：
 
1）先把当前task的waiter放入wait_list队列尾部。
 
2）进入死循环中。
 
3）假如task状态满足signal_pending_state，则跳出循环，并且从等待队列中删除，返回EINTR异常。
 
4）假如等待的超时时间用完了，则跳出循环，并且从等待队列中删除，返回ETIME异常。
 
5）设置task状态为之前传入的TASK_UNINTERRUPTIBLE（该状态只能被wake_up唤醒）。
 
6）释放sem上的lock。
 
7）调用schedule_timeout，直到timout后被唤醒，然后重新申请sem->lock。
 
8）假如waiter.up状态变为true了，则说明到了被up唤醒的状态了，则返回0。
 
在up的过程中，先获取sem->lock，并且保存中断。如果sem->wait_list为空，则直接做sem->count++操作；否则执行__up。
 
其中__up的执行过程为：
 
1）从sem->wait_list队列中找到第一个等待的任务。
 
2）从等待队列中删除该任务。
 
3）把waiter->up设置为true。
 
4）尝试唤醒该进程。
2.3.4　互斥锁
 
互斥锁（Mutex）从功能上来讲和自旋锁类似，都是为了控制同一时刻只能有一个线程进入临界区。从实现上来讲，自旋锁是在CPU上实现忙等，而互斥锁则会让无法进入临界区的线程休眠。从某种角度来讲，互斥锁其实就是退化版的信号量。下面是互斥锁的定义：
 


struct mutex {

    //  1: unlocked, 0: locked, 小于0: locked, 在锁上有等待者

    atomic_t                count;

    spinlock_t              wait_lock;

    struct list_head        wait_list;

…

};


 
可以发现count只有两种状态1和0，1为unlock；0为locked。其他实现都和信号量类似，大家可以结合代码并且参考信号量的实现来自己分析。
2.3.5　读写锁
 
在很多时候，并发访问都是读大于写的场景，假如把读者当做写者一样加锁，那么对性能影响较大。所以读写锁（rw-lock）分别对读者和写者进行了处理，来优化解决该场景下的性能问题。
 
下面我们来看Linux对读写锁的实现，首先来看一下在x86中对其的定义：
 


typedef struct qrwlock {

    atomic_t            cnts;

    arch_spinlock_t     wait_lock;

} arch_rwlock_t;


 
其中原子变量cnts初始化为0，自旋锁wait_lock初始化为未上锁状态。
 
结合图2-7我们来分析其实现原理：
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图2-7　读写锁实现原理
 
获取读锁的过程如下：
 
1）如果cnts低八位的读部分为0，那么就进入下一步；否则获得锁失败。
 
2）对高位的读为+1。
 
3）再进行判断是否写位置为0，如果是则返回1，说明获得了锁。
 
4）如果写锁被别人获得了，那么就把高位减1，并且返回0，获得读锁失败。
 
释放读锁的过程只要把cnts的高位减1即可。
 
获取写锁的过程如下：
 
1）假如cnts为0，则if条件不满足，说明没有读者和写者；否则要是存在读者或者写者，返回0，获取写锁失败。
 
2）把cnts的低八位写标志设置为OXFF。
 
释放写锁则直接把低八位的读标志设置为0。
2.3.6　抢占
 
我们先回顾一下，一个进程什么时候会放弃CPU：
 
·时间片用完后调用schedule函数。
 
·由于IO等原因自己主动调用schedule。
 
·其他情况，当前进程被其他进程替换的时候。
 
那么，加入抢占（preempt）的概念后，当前进程就有可能被替换，假如当你按下键盘的时候，键盘中断程序运行之后会让进程B替换你当前的工作进程A，原因是B进程优先级比较高，这就是抢占。
 
内核要完成抢占必然需要打开本地中断，这两者是不可分割的，如图2-8所示。
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图2-8　用户键盘输入发生抢占
 
下面我们来看Linux中开启抢占的实现：
 


#define preempt_enable() \

do { \

    barrier(); \

    if (unlikely(preempt_count_dec_and_test())) \

        __preempt_schedule(); \

} while (0)


 
假如__preempt_count-1之后还是大于0，那么将会执行：__preempt_schedule（）；
 


asmlinkage __visible void __sched notrace preempt_schedule(void)

{



    if (likely(!preemptible()))

        return;



    preempt_schedule_common();

}





#define preemptible()(preempt_count() == 0 && !irqs_disabled())



static void __sched notrace preempt_schedule_common(void)

{

    do {

        preempt_disable_notrace();

        __schedule(true);

        preempt_enable_no_resched_notrace();

    } while (need_resched());

}


 
preempt_schedule函数检查是否允许本地中断，以及当前进程的preempt_count字段是否为0，如果两个条件都为真，它就调用schedule（）选择另外一个进程来运行。因此，内核抢占可能在结束内核控制路径（通常是一个中断处理程序）时发生，也可能在异常处理程序调用preempt_enable（）重新允许内核抢占时发生。
2.3.7　per-cpu变量
 
目前生产环境的服务器大多数跑的都是SMP（对称多处理器结构），如图2-9所示。因为SMP系统多个核心与内存交互的时候，因为L1 cache的存在，会出现一致性的问题。所以，最好的方式就是每个核自己维护一份变量，自己用自己的，这样就不会出现一致性问题了。
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图2-9　独立L1 cache的SMP处理器架构
 
为了解决这个问题，Linux引入了per-cpu变量，可以在编译时声明，也可以在系统运行时动态生成。
 
首先来感受一下per-cpu变量的使用方法。per-cpu变量在使用之前需要先进行定义，编译期间创建一个per-cpu变量：
 


DEFINE_PER_CPU(int,my_percpu);                         // 声明一个变量

DEFINE_PER_CPU(int[3],my_percpu_array);                // 声明一个数组


 
使用编译时生成的per-cpu变量：
 


ptr = get_cpu_var(my_percpu);

// 使用ptr

put_cpu_var(my_percpu);


 
也可以使用下列宏来访问特定CPU上的per-cpu变量：
 


per_cpu(my_percpu, cpu_id);


 
per-cpu变量导出，供模块使用：
 


EXPORT_PER_CPU_SYMBOL(per_cpu_var);

EXPORT_PER_CPU_SYMBOL_GPL(per_cpu_var);


 
动态分配per-cpu变量：
 


void *alloc_percpu(type);

void *__alloc_percpu(size_t size, size_t align);


 
使用动态生成的per-cpu变量：
 


int cpu;

cpu = get_cpu();

ptr = per_cpu_ptr(my_percpu);

// 使用ptr

put_cpu();


 
接下来我们通过per-cpu变量的初始化过程来分析其实现原理，系统在启动时会调用__init setup_per_cpu_areas为per-cpu变量申请内存空间：
 


void __init setup_per_cpu_areas(void)

{

    unsigned int cpu;

    unsigned long delta;

    int rc;

…

#ifdef CONFIG_X86_64

        atom_size = PMD_SIZE;

#else

        atom_size = PAGE_SIZE;

#endif

        rc = pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,

                    dyn_size, atom_size,

                    pcpu_cpu_distance,

                    pcpu_fc_alloc, pcpu_fc_free);

        …

}

if (rc < 0)

    rc = pcpu_page_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,

            pcpu_fc_alloc, pcpu_fc_free,

            pcpup_populate_pte);

…

/* percpu 区域已初始化并且可以使用 */

delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;

for_each_possible_cpu(cpu) {

    per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];

    per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);

    per_cpu(cpu_number, cpu) = cpu;

    setup_percpu_segment(cpu);

    setup_stack_canary_segment(cpu);

    // 下面进行early init阶段需要初始化的per_cpu数据

#ifdef CONFIG_X86_LOCAL_APIC

        per_cpu(x86_cpu_to_apicid, cpu) =

            early_per_cpu_map(x86_cpu_to_apicid, cpu);

        per_cpu(x86_bios_cpu_apicid, cpu) =

            early_per_cpu_map(x86_bios_cpu_apicid, cpu);

#endif

#ifdef CONFIG_X86_32

        per_cpu(x86_cpu_to_logical_apicid, cpu) =

            early_per_cpu_map(x86_cpu_to_logical_apicid, cpu);

#endif

#ifdef CONFIG_X86_64

        per_cpu(irq_stack_ptr, cpu) =

            per_cpu(irq_stack_union.irq_stack, cpu) +

            IRQ_STACK_SIZE - 64;

#endif

#ifdef CONFIG_NUMA

        per_cpu(x86_cpu_to_node_map, cpu) =

            early_per_cpu_map(x86_cpu_to_node_map, cpu);

…

}


 
其中两个关键步骤为：
 
1）pcpu_page_first_chunk。先分配一块bootmem区间p，作为一级指针，然后为每个CPU分配n个页，依次把指针存放在p中。p[0]..p[n-1]属于cpu0，p[n]-p[2n-1]属于CPU2，依次类推。接着建立一个长度为n×NR_CPUS的虚拟空间（vmalloc_early），并把虚拟空间对应的物理页框设置为p数组指向的pages。然后把每CPU变量__per_cpu_load拷贝至每个CPU自己的虚拟地址空间中。
 
2）将.data.percpu中的数据拷贝到其中，每个CPU各有一份。由于数据从__per_cpu_start处转移到各CPU自己的专有数据区中了，因此存取其中的变量就不能再用原先的值了，比如存取per_cpu__runqueues就不能再用per_cpu__runqueues了，需要做一个偏移量的调整，即需要加上各CPU自己的专有数据区首地址相对于__per_cpu_start的偏移量。在这里也就是__per_cpu_offset[i]，其中CPU i的专有数据区相对于__per_cpu_start的偏移量为__per_cpu_offset[i]。
 
经过这样的处理，.data.percpu这个section在系统初始化后就可以释放了。
 
其中__per_cpu_load被重定向到了.data..percpu区域，和__per_cpu_start位置是一样的：
 


#define PERCPU_SECTION(cacheline)

    . = ALIGN(PAGE_SIZE);

    .data..percpu        : AT(ADDR(.data..percpu) - LOAD_OFFSET) {

        VMLINUX_SYMBOL(__per_cpu_load) = .;

        PERCPU_INPUT(cacheline)

    }


 
图2-10为per-cpu变量的初始化流程，我们可以发现，经过setup_per_cpu_areas函数，per_cpu变量被拷贝到了各自的虚拟地址空间。原来的per_cpu变量区域，即__per_cpu_start和__per_cpu_end区域将会被删除。
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图2-10　per-cpu变量的初始化
2.3.8　RCU机制
 
在Linux中，RCU（Read，Copy，Update）机制用于解决多个CPU同时读写共享数据的场景。它允许多个CPU同时进行写操作，而且不使用锁，其思想类似于copy on write的原理，并且实现垃圾回收器来回收旧数据。
 
使用RCU机制有几个前提条件：
 
·RCU使用在读者多而写者少的情况。RCU和读写锁相似。但RCU的读者占锁没有任何的系统开销。写者与写者之间必须要保持同步，且写者必须要等它之前的读者全部都退出之后才能释放之前的资源。
 
·RCU保护的是指针。这一点尤其重要，因为指针赋值是一条单指令，即一个原子操作，因此更改指针指向没必要考虑它的同步，只需要考虑cache的影响。
 
·读者是可以嵌套的，也就是说rcu_read_lock（）可以嵌套调用。
 
·读者在持有rcu_read_lock（）的时候，不能发生进程上下文切换；否则，因为写者需要要等待读者完成，写者进程也会一直被阻塞。
 
下面是whatisRCU.txt中使用RCU锁的例子：
 


struct foo {

    int a;

    char b;

    long c;

};

DEFINE_SPINLOCK(foo_mutex);



struct foo *gbl_foo;

void foo_update_a(int new_a)

{

    struct foo *new_fp;

    struct foo *old_fp;



    new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);

    spin_lock(&foo_mutex);

    old_fp = gbl_foo;

    *new_fp = *old_fp;

    new_fp->a = new_a;

    rcu_assign_pointer(gbl_foo, new_fp);

    spin_unlock(&foo_mutex);

    synchronize_rcu();

    kfree(old_fp);

}



int foo_get_a(void)

{

    int retval;



    rcu_read_lock();

    retval = rcu_dereference(gbl_foo)->a;

    rcu_read_unlock();

    return retval;

}


 
如上代码中，RCU用于保护全局指针struct foo*gbl_foo.foo_get_a（）用来从RCU保护的结构中取得gbl_foo的值。而foo_update_a（）用来更新被RCU保护的gbl_foo的值。
 
我们再思考一下，为什么要在foo_update_a（）中使用自旋锁foo_mutex呢？
 
假设中间没有使用自旋锁。那foo_update_a（）的代码如下：
 


void foo_update_a(int new_a)

{

    struct foo *new_fp;

    struct foo *old_fp;



    new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);



    old_fp = gbl_foo;

    1:-------------------------

    *new_fp = *old_fp;

    new_fp->a = new_a;

    rcu_assign_pointer(gbl_foo, new_fp);



    synchronize_rcu();

    kfree(old_fp);

}


 
假设A进程在上面代码的----标识处被B进程抢点，B进程也执行了goo_ipdate_a（），等B执行完后，再切换回A进程，此时，A进程所持的old_fd实际上已经被B进程给释放掉了，此后A进程对old_fd的操作都是非法的。
 
RCU API说明
 
我们在上面也看到了几个有关RCU的核心API，它们为别是：
 


rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

rcu_assign_pointer()

rcu_dereference()


 
其中：
 
·rcu_read_lock（）和rcu_read_unlock（）用来保持一个读者的RCU临界区，在该临界区内不允许发生上下文切换。
 
·rcu_dereference（）：读者调用它来获得一个被RCU保护的指针。
 
·rcu_assign_pointer（）：写者使用该函数来为被RCU保护的指针分配一个新的值，这样是为了安全地从写者到读者更改其值，这个函数会返回一个新值。
 
·rcu_dereference：实现也很简单，因为它们本身都是原子操作，因为只是为了cache一致性，插上了内存屏障，可以让其他的读者/写者看到保护指针的最新值。
 
·synchronize_rcu：函数由写者来调用，它将阻塞写者，直到所有读执行单元完成对临界区的访问后，写者才可以继续下一步操作。如果有多个RCU写者调用该函数，它们将在所有读执行单元完成对临界区的访问后全部被唤醒。
 
结合图2-11我们来说明Linux RCU机制的思路：
 
1）对于读操作，可以直接对共享资源进行访问，但前提是需要CPU支持访存操作的原子化，现代CPU对这一点都做了保证。但是RCU的读操作上下文是不可抢占的，所以读访问共享资源时可以采用read_rcu_lock（），该函数的功能是停止抢占。
 
2）对于写操作，思路类似于copy on write，需要将原来的老数据做一次拷贝，然后对其进行修改，之后再用新数据更新老数据，这时采用了rcu_assign_pointer（）宏，在该函数中首先通过内存屏障，然后修改老数据。这个操作完成之后，老数据需要回收，操作线程向系统注册回收方法，等待回收。这个思路可以实现读者与写者之间的并发操作，但是不能解决多个写者之间的同步，所以当存在多个写者时，需要通过锁机制对其进行互斥，也就是在同一时刻只能存在一个写者。
 
3）在RCU机制中存在一个垃圾回收的后台进程，用于回收老数据。回收时间点就是在更新之前的所有读者全部退出时。由此可见，写者在更新之后是需要睡眠等待的，需要等待读者完成操作，如果在这个时刻读者被抢占或者睡眠，那么很可能会导致系统死锁。因为此时写者在等待读者，读者被抢占或者睡眠，如果正在运行的线程需要访问读者和写者已经占用的资源，那么将导致死锁。
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图2-11　Linux RCU机制实现原理
 
那究竟怎么去判断当前的写者已经操作完了呢？我们在之前看到，读者在调用rcu_read_lock的时候会禁止抢占，因此只需要判断所有的CPU都进过了一次上下文切换，就说明所有读者已经退出了。[1]
 
[1] 参考http:// www.ibm.com/developerworks/cn/linux/l-rcu/中对RCU过程有详细描述。
2.3.9　内存屏障
 
程序在运行过程中，对内存访问不一定按照代码编写的顺序来进行。这是因为有两种情况存在：
 
·编译器对代码进行优化。
 
·多CPU架构存在指令乱序访问内存的可能。
 
为解决这两个问题，分别需要通过不同的内存屏障来避免内存乱序。
 
首先我们来看第一种情况，编译器优化。例如有如下场景：
 
线程1执行：
 


while (!condition);

print(x);


 
线程2执行：
 


x = 100;

condition = 1;


 
condition初始值为0，结果线程1打印出来不一定为100，因为编译器优化后，有可能线程2先执行了condition=1；后执行x=100；我们可以在gcc编译的时候加上O2或者O3的选项，就会发生编译器优化。
 
为了消除该场景下编译器优化带来的不确定性，可以使用内存屏障：
 


#define barrier() __asm__ __volatile__("" ::: "memory")

x = 100;

barrier()

condition = 1;


 
另外，可以给变量加上volatile来去除编译器优化：
 


#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))

ACCESS_ONCE(x) = 100;

ACCESS_ONCE(condition) = 1;


 
接着我们来看多CPU运行当中内存访问乱序的问题，图2-12是Intel CPU的P6微架构，目前大部分的Inter CPU都沿用了该架构的思路，其他都是一些小的优化。从图中可以看到，CPU在处理指令的时候，为了提升性能，减少等待内存中的数据，采用了乱序执行引擎。
 
[image: ]注意　很多时候我们并不能保证代码是按照我们书写的顺序来运行的。
 
假设如下代码：
 


volatile int x, y, r1, r2;

void start()

{

    x = y = r1 = r2 = 0;

}

void end()

{

    assert(!(r1 == 0 && r2 == 0));

}

void run1()

{

    x = 1;

    r1 = y;

}

void run2()

{

    y = 1;

    r2 = x;

}
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图2-12　Intel CPU的P6微架构
 
代码执行顺序为：
 
1）start（）
 
2）线程1执行run1（）
 
3）线程2执行run2（）
 
4）调用end（）
 
结果r1或者r2均有可能为0，原因就是乱序执行引擎的存在。要解决这个问题，在Pentium 4微处理器中引入了汇编语言指令lfence、sfence和mfence，它们分别有效地实现读内存barrier、写内存barrier和“读-写”内存barrier：
 


#define mb()     asm volatile("mfence":::"memory")

#define rmb()    asm volatile("lfence":::"memory")

#define wmb()    asm volatile("sfence" ::: "memory")


 
可以这样修改：
 


void run1()

{

x = 1;

mb();

    r1 = y;

}

void run2()

{

y = 1;

mb();

    r2 = x;

}


2.4　常见开源软件中的并发问题分析
 
前一节介绍了Linux中相关并发工具，实际场景中有很多应用，下面我们来对几个开源软件的并发设计进行分析。
2.4.1　Nginx原子性
 
下面我们通过分析Nginx中的原子变量实现，来介绍程序如何能做到保证原子性的。
 
Nginx为了保证原子性设计了atomic函数，atomic的代码如下：
 


static ngx_inline ngx_atomic_uint_t

ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,

ngx_atomic_uint_t set)

{

    u_char res;

    __asm__ volatile (

    NGX_SMP_LOCK

    ” cmpxchgl %3, %1; ”

    ” sete %0; ”

    : “=a” (res) : “m” (*lock), “a” (old), “r” (set) : “cc”, “memory”);

    return res;

}


 
atomic的工作原理如下：
 
1）在多核环境下，NGX_SMP_LOCK其实就是一条lock指令，用于锁住总线。
 
2）cmpxchgl会保证指令同步执行。
 
3）sete根据cmpxchgl执行的结果（eflags中的zf标志位）来设置res的值。
 
其中假如cmpxchgl执行完之后，时间片轮转，这个时候eflags中的值会在堆栈中保持，这是CPU task切换机制所保证的。所以，等时间片切换回来再次执行sete的时候，也不会导致并发问题。
 
至于信号量、互斥锁，最终还得依赖原子性的保证，具体锁实现可以有兴趣自己再去阅读源代码。
 
下面是ngx_spinlock的实现，依赖了原子变量的ngx_atomic_cmp_set：
 


void

ngx_spinlock(ngx_atomic_t *lock, ngx_atomic_int_t value, ngx_uint_t spin)

{



#if (NGX_HAVE_ATOMIC_OPS)

    ngx_uint_t  i, n;

    for ( ;; ) {

        if (*lock == 0 && ngx_atomic_cmp_set(lock, 0, value)) {

            return;

        }

        if (ngx_ncpu > 1) {

            for (n = 1; n < spin; n <<= 1) {

                for (i = 0; i < n; i++) {

                    ngx_cpu_pause();

                }

                if (*lock == 0 && ngx_atomic_cmp_set(lock, 0, value)) {

                    return;

                }

            }

        }

        ngx_sched_yield();

    }

#else

#if (NGX_THREADS)

#error ngx_spinlock() or ngx_atomic_cmp_set() are not defined !

#endif

#endif

}


 
在上面的代码中，Nginx的spinlock主要实现过程如下：
 
1）进入死循环。
 
2）假如可以获得锁，则return。
 
3）循环CPU的个数次来通过ngx_atomic_cmp_set获得锁，假如获得了，则return；否则继续死循环。
2.4.2　Memcached中的互斥锁
 
Memcached也使用了mutex这样的互斥锁，来控制对item的访问，代码如下：
 


void *item_trylock(uint32_t hv) {

    pthread_mutex_t *lock = &item_locks[hv & hashmask(item_lock_hashpower)];

    if (pthread_mutex_trylock(lock) == 0) {

        return lock;

    }

    return NULL;

}


 
[image: ]注意　Memcached的互斥锁粒度比较细，可以看到，针对每个item，都加了一把锁，这样在并发的时候，可以尽量减少冲突，提高性能。
 
Memcached在锁的获得过程中，使用了pthread_mutex_trylock：
 


void item_trylock_unlock(void *lock) {

    mutex_unlock((pthread_mutex_t *) lock);

}



void item_unlock(uint32_t hv) {

    uint8_t *lock_type = pthread_getspecific(item_lock_type_key);

    if (likely(*lock_type == ITEM_LOCK_GRANULAR)) {

        mutex_unlock(&item_locks[hv & hashmask(item_lock_hashpower)]);

    } else {

        mutex_unlock(&item_global_lock);

    }

}


 
Memcached中，锁的释放过程也是同样的道理，首先从item_locks数组中找到锁对象。然后通过mutex_unlock来解锁。
2.4.3　Redis无锁解决方案
 
Redis的服务器程序采用单进程、单线程的模型来处理客户端的请求。对读写等事件的响应是通过对epoll函数的包装来做到的。
 
图2-13是Redis服务器模型原理，整个服务器初始化的过程如下：
 
1）初始化asEventLoop。
 
2）初始化服务器socket监听，并且绑定acceptTcpHandler事件函数，以应对建立客户端连接的请求。
 
3）绑定beforesleep函数到eventLoop，并且调用aeMain来启动epoll主循环。
 
4）主循环响应客户端要求建立连接的请求。
 
5）主循环读取客户端命令，并执行。
 
6）如有数据回写则初始化writeEvent，将数据提交到c-replay队列。主循环需要处理此事件的时候则读取数据写回客户端。
 
因为Redis是单线程的模型，所以，所有的操作都是先来后到串行的，因此，在这个方案中，可以不需要锁，也没有并发的存在，模型假设了所有操作都是基于内存的操作，速度是非常快的。
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图2-13　Redis服务器模型
2.4.4　Linux中惊群问题分析
 
Linux中惊群相关的问题鼎鼎有名，但是在网上搜索相关资料，发现都是只言片语，不是说得很完整，本节对这个问题进行系统的总结。
 
惊群是在多线程或者多进程的场景下，多个线程或者进程在同一条件下睡眠，当唤醒条件发生的时候，会同时唤醒这些睡眠进程或者线程，但是只有一个是可以执行成功的，相当于其他几个进程和线程被唤醒后存在执行开销的浪费。
 
在Linux中，以下场景下会触发惊群：
 
·多个进程或者线程在获取同一把锁的时候睡眠。
 
·多个进程或者线程同时进行accept。
 
·多个进程在同一个epoll上竞争。
 
·多个进程在多个epoll上对于同一个监听的socket进行accept。
 
下面我们分别来举例说明这几个场景，及其解决方案。
 
1.Linux中通用的解决方案
 
Linux提供了一个wake_up_process方法，用于唤醒一个指定的进程，其声明如下：
 


int wake_up_process(struct task_struct *p)


 
那么，假如有一堆的进程同时睡眠的时候，我们如何来维护这些睡眠的进程，并且如何只让其中一个被唤醒呢？
 
Linux通过工作队列的方式来解决这个问题，在进程睡眠之前，会先进行一个特定的操作：
 


prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)

{

    unsigned long flags;

    wait->flags |= WQ_FLAG_EXCLUSIVE;

    spin_lock_irqsave(&q->lock, flags);

    if (list_empty(&wait->task_list))

        __add_wait_queue_tail(q, wait);

    set_current_state(state);

    spin_unlock_irqrestore(&q->lock, flags);

}


 
以上prepare_to_wait_exclusive函数主要是将当前的flags加上了WQ_FLAG_EXCLU-SIVE的标志，然后放入到工作队列的尾部，最后设置相应的状态，例如TASK_INTERR-UPTIBLE表示可以被wake_up唤醒。
 
当我们需要进行唤醒的时候，Linux提供了__wake_up_common方法，来唤醒工作队列中的进程：
 


static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,

            int nr_exclusive, int wake_flags, void *key)

{

    wait_queue_t *curr, *next;

    list_for_each_entry_safe(curr, next, &q->task_list, task_list) {

        unsigned flags = curr->flags;

        if (curr->func(curr, mode, wake_flags, key) &&

                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)

            break;

    }

}


 
上面的__wake_up_common方法会遍历工作队列，寻找flags中含有WQ_FLAG_EXCLUSIVE标志的进程，当nr_exclusive减为0的时候，就会跳出循环，所以只能唤醒nr_exclusive个进程，比如nr_exclusive=1。
 
其中curr->func的回调函数是通过DEFINE_WAIT（wait）宏来定义的：
 


#define DEFINE_WAIT_FUNC(name, function)

    wait_queue_t name = {

        .private      = current,

        .func         = function,

        .task_list    = LIST_HEAD_INIT((name).task_list),

    }

#define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)


 
通过上面的代码可以发现回调函数为autoremove_wake_function：
 


int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void

    *key)

{

    int ret = default_wake_function(wait, mode, sync, key);

    if (ret)

        list_del_init(&wait->task_list);

    return ret;

}



int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,

            void *key)

{

    return try_to_wake_up(curr->private, mode, wake_flags);

}


 
autoremove_wake_function最终通过default_wake_function调用try_to_wake_up来实现唤醒指定的进程。整个流程见图2-14。
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图2-14　Linux进程唤醒流程
 
2.socket accept场景下的惊群及解决方案
 
在Linux中，针对服务器监听的socket进行accept操作，假如没有新的accept事件，那么会进行睡眠。sys_accept调用最终会在TCP层执行inet_csk_accept函数：
 


struct sock *inet_csk_accept(struct sock *sk, int flags, int *err)

{

    struct inet_connection_sock *icsk = inet_csk(sk);

    struct request_sock_queue *queue = &icsk->icsk_accept_queue;

    struct request_sock *req;

    struct sock *newsk;

    int error;

    lock_sock(sk);

...

// 阻塞等待，直到有全连接建立。如果用户设置了等待超时时间，超时后会退出

    error = inet_csk_wait_for_connect(sk, timeo);

...

out:

    release_sock(sk);

...


 
inet_csk_accept在等待accept连接到来的时候，会执行inet_csk_wait_for_connect：
 


static int inet_csk_wait_for_connect(struct sock *sk, long timeo)

{

    struct inet_connection_sock *icsk = inet_csk(sk);

    DEFINE_WAIT(wait);

    ...

    for (;;) {

        prepare_to_wait_exclusive(sk_sleep(sk), &wait,

                        TASK_INTERRUPTIBLE);

        ...

        if (reqsk_queue_empty(&icsk->icsk_accept_queue))

            timeo = schedule_timeout(timeo);

        ...

    }

    ...

}


 
上面的过程看着眼熟吗，prepare_to_wait_exclusive的作用在上一个例子已经介绍过了，这里会把当前的进程通过DEFINE_WAIT（wait）包装成wait_queue_t结构，并且放入到监听socket的等待队列尾部。然后通过schedule_timeout让当前进程睡眠timeo个时间。
 
该进程被唤醒有几种可能：
 
·睡眠timeo后被timer定时器唤醒。
 
·accept事件到来被唤醒。
 
第2种被唤醒的场景是由网络层的代码触发的。以TCP V4协议为例，其执行过程为：tcp_v4_rcv->tcp_v4_do_rcv->tcp_child_process，在tcp_child_process方法中会调用父socket，也就是监听socket的parent->sk_data_ready（parent）方法，在sock_init_data的时候，我们发现，该函数的定义如下：
 


sk->sk_data_ready = sock_def_readable;



sock_def_readable函数实现为：

static void sock_def_readable(struct sock *sk)

{

    struct socket_wq *wq;

    rcu_read_lock();

    wq = rcu_dereference(sk->sk_wq);

    if (skwq_has_sleeper(wq))

        wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |

            POLLRDNORM | POLLRDBAND);

    sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);

    rcu_read_unlock();

}


 
sock_def_readable首先判断是否在等待队列中有睡眠的进程，然后通过wake_up_interruptible_sync_poll进行唤醒。其实现如下：
 


#define wake_up_interruptible_sync_poll(x, m)

    __wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))

void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,

            int nr_exclusive, void *key)

{

    unsigned long flags;

    int wake_flags = 1;

    if (unlikely(!q))

        return;

    if (unlikely(nr_exclusive != 1))

        wake_flags = 0;

    spin_lock_irqsave(&q->lock, flags);

    __wake_up_common(q, mode, nr_exclusive, wake_flags, key);

    spin_unlock_irqrestore(&q->lock, flags);

}


 
最终发现是由__wake_up_common来唤醒的，和前面介绍的是一样的，并且nr_exclusive为1。说明只会唤醒一个，不会发生惊群。
 
那么，在inet_csk_accept的时候，lock_sock（sk）操作为什么不能避免惊群呢？理论上锁住了监听的socket，每次只有一个进程可以accept了呀。事实上，lock_sock（sk）的时候，要是拿不到锁，也会进行睡眠，假如不做特殊处理，也有可能惊群，lock_sock最终调用__lock_sock：
 


static void __lock_sock(struct sock *sk)

    __releases(&sk->sk_lock.slock)

    __acquires(&sk->sk_lock.slock)

{

    DEFINE_WAIT(wait);



    for (;;) {

        prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,

                TASK_UNINTERRUPTIBLE);

        spin_unlock_bh(&sk->sk_lock.slock);

        schedule();

        spin_lock_bh(&sk->sk_lock.slock);

        if (!sock_owned_by_user(sk))

            break;

    }

    finish_wait(&sk->sk_lock.wq, &wait);

}


 
当无法获得上锁条件进行schedule放弃CPU之前，会先进行prepare_to_wait_exclusive，这个动作前面已经解释得很清楚了。所以，假如同时有多个进程在lock_sock阻塞的时候，也仅会被唤醒一个。
 
最后，图2-15描述了accept的整体流程图。
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图2-15　Linux accept的流程
 
3.epoll的惊群解决方案
 
在使用epoll的时候，我们会在注册事件后调用epoll_wait，该系统调用会调用ep_poll方法：
 


static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,

        int maxevents, long timeout)

{

...

// 没有事件，所以需要睡眠。当有事件到来时，睡眠会被ep_poll_callback函数唤醒

// 将current初始化为等待队列项wait后，放入ep→wg这个等待队列中

init_waitqueue_entry(&wait, current);

    __add_wait_queue_exclusive(&ep->wq, &wait);

    for (;;) {

        // 执行ep_poll_callback()唤醒时应当将当前进程唤醒，所以当前进程状态应该为“可唤醒”

         TASK_INTERRUPTIBLE

        set_current_state(TASK_INTERRUPTIBLE)

        // 如果就绪队列不为空(已经有文件的状态就绪）或者超时，则退出循环

        if (ep_events_available(ep) || timed_out)

            break;

        // 如果当前进程接收到信号，则退出循环，返回EINTR错误

        if (signal_pending(current)) {

            res = -EINTR;

            break;

        }

        spin_unlock_irqrestore(&ep->lock, flags);

        // 放弃CPU休眠一段时间

        if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))

            timed_out = 1;

        spin_lock_irqsave(&ep->lock, flags);

    }

    __remove_wait_queue(&ep->wq, &wait);

    __set_current_state(TASK_RUNNING);

}

...


 
我们发现，假如没有事件，需要睡眠，通过__add_wait_queue_exclusive将当前进程放入等待队列的队头中，其实现如下：
 


static inline void

__add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)

{

    wait->flags |= WQ_FLAG_EXCLUSIVE;

    __add_wait_queue(q, wait);

}


 
其中WQ_FLAG_EXCLUSIVE用于赋给flgas，表示该睡眠进程是一个互斥进程。
 
睡眠的当前进程会被回调函数ep_poll_callback唤醒，其实现如下：
 


static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void

    *key)

{

...

wake_up_locked(&ep->wq);

...

}

#define wake_up_locked(x)  __wake_up_locked((x), TASK_NORMAL, 1)

void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)

{

    __wake_up_common(q, mode, nr, 0, NULL);

}


 
ep_poll_callback最终通过__wake_up_common函数来唤醒等待队列中的互斥进程。
 
4.Nginx为什么还有惊群问题
 
我们分析一下Nginx为什么还会有惊群问题呢？Nginx不是已经使用了epoll了吗？epoll上面又已经解决了，为什么还会有这个问题呢？原因是Nginx的master在fork出多个worker进程后，worker进程才创建出多个epoll，所以多个进程假如同时进行epoll_wait，还是有可能会发生惊群问题，因为每个worker都维护了一个进程。
 
worker在循环中，会执行ngx_process_events_and_timers，我们来看它的实现：
 


void

ngx_process_events_and_timers(ngx_cycle_t *cycle)

{

...

if (ngx_use_accept_mutex) {

        if (ngx_accept_disabled > 0) {

            ngx_accept_disabled--;

        } else {

            if (ngx_trylock_accept_mutex(cycle) == NGX_ERROR) {

                return;

            }

            if (ngx_accept_mutex_held) {

                flags |= NGX_POST_EVENTS;

            } else {

                if (timer == NGX_TIMER_INFINITE

                    || timer > ngx_accept_mutex_delay)

                {

                    timer = ngx_accept_mutex_delay;

                }

            }

        }

    }

...


 
上面的代码解释如下：假如ngx_accept_disabled>0，表示现在该woker已经压力很大了，所以不再接受新的处理。否则，会先尝试获取互斥锁，ngx_trylock_accept_mutex。
 
至于ngx_accept_disabled的大小设定，在每次accept事件处理完之后，进行相应的设置：
 


void

ngx_event_accept(ngx_event_t *ev)

{

...

ngx_accept_disabled = ngx_cycle->connection_n / 8

    - ngx_cycle->free_connection_n;

...

}


 
上面这个值的意思为最大连接数的八分之一减去空闲连接的数量。大于0说明空闲连接的数量都已经少于八分之一了。
 
通过上面代码可以发现，不管是woker的负载平衡，还是惊群问题的解决，都需要满足ngx_use_accept_mutex条件，可以通过修改配置解决，如下所示：
 


events {

accept_mutex on;

}


 
因为Nginx的worker数量本来就有限，与CPU核数相当，所以，打开该锁意义不是很大，另外在高并发场景下，因为惊群锁的存在，吞吐量反而会下降，Nginx在最新版本里也默认是关闭该锁的。
 
只有针对Apache这种多线程模型，而且会fork出成百上千个线程的，这个问题才会严重。我们来看Nginx作者的说法：“操作系统有可能会唤醒等待在accept（）和select（）调用阻塞的所有进程，这会引发惊群问题。在有很多worker的Apache（数百个或者更多）中会引发这个问题，但是假如你使用仅仅只有数个（通常为CPU核数）worker的Nginx，就不会引发这个问题。因此在Nginx中，你在使用select/kqueue/epoll等（除了accept（））来调度进入的连接，可以关闭accept_mutex。”
2.4.5　解决MyCat同步问题
 
MyCat是用Java开发的开源数据库中间件，其服务器采用的是reactor模型（关于I/O模型，我们在I/O的章节中会具体介绍）。图2-16是我整理的MyCat的服务器中心领域模型。
 
这是一个典型的Reactor模型，NIOReactorPool会预先分配N个Reactor工作线程，并且每个Reactor会维护一个selector，当事件就绪后，Reactor就会执行相关事件的回调函数。
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图2-16　MyCat服务器领域模型
 
基于这个思路MyCat中所有的I/O操作都是异步操作，但是我自定义的handler有个同步的过程，没办法，业务就是这么依赖了第三方。我只能这样编写代码：
 


final CountDownLatch Latch=New CountDownLatch(1);

Ctx.executeNaiveSQLSequnceJob(dataNodes,sql,new SQLJobHandler(){private

    List<byte[]>fields;

    ＠Override

    public boolean onRowData(String dataNode,byte[]rowData){String c1=ResultSe

        tUtil,getColumnValAsString(rowData,fields,θ)；

        String c2=ResultSetUtil,getColumnVaLasString(riwData,fields,1)；

        share.seDataNode(c1);

        share.setIndex(c2);

        cacheLock.writeLock().lock();

        try{

            cache.put(bid,share);

            latch.countDown();

            retrurn false;

        }finally{

            cacheLock.writeLock().unlock();

        }

    }

    @Override

    public void onHeader(String dataNode,byte[]header,List<byte[]>fields)

        this.fields=fields;

    }

    @Override

    public void finished(String dataNode,boolean failde){latch.countDown();

    }

});

    try{

        latch.await(5,TimeUnit.SECONDS);

    }catch(InterruptedException e){


 
然后在实际测试过程中，发现偶然会出现线程卡死现象，我们回顾图2-16就发现了问题。因为MyCat的客户端连接（FrontedConnection）和后端MySQL的连接共用一个Reactor的池子，所以有可能会发生前端和后端同时被分配同一个Reactor，那么要是前端没退出，后端必然没法执行，然后互相等待造成死锁。
 
为了解决我的问题，我给前端单独分配了个池子，如下所示：
 


LUCGER.into(using nio network nanater);

NIOReactorPool reactorPool=new NIOReactorPool(BufferPool.LOCAL_BUF_THREAD_

    PREX+"NIOREACTOR",

    processors.length);

NIOReactorPool clientReactorPool=new NIOReactorPool(BufferPool.LOCAL_BUF_

    THREAD_PREX+" CLIENT_NIOREACTOR,"processors.length);

connector=new NIO Connector(BufferPool.LOCAL_BUF_THREAD_PREX+"NIO Connector",

    reactorPool);

((NIOConnector)connector).start();

manager=new NIOAcceptor(BufferPool.LOCAL_BUF_THREAD_PREX+NAME+"Manager",system.

    getBindIp(),system.getManagerPort(),mf,reactorPool);

server=new NIOAcceptor(BufferPoo.LOCAL_BUF_THREAD_PREX+NAME+"Sever",syetem.

    getBindIp(),system.getServerPort(),sf,clientReactorPool);


2.4.6　false-sharing问题解决方案
 
CPU能从本地缓存中取数据就不会从内存中取，而内存中的数据和缓存中的数据一般都是按行读取的，也就是所谓的缓存行，一般为64个字节，当我们操作数据的时候，假如刚好多个变量在同一个缓存行的时候，多线程同时操作就会让之前的缓存行失效，导致程序效率降低。如图2-17所示，两个变量共享了同一个缓存行，从L1～L3cache，只要当X更新时，Y也就被踢出了缓存，反之亦然，重新从内存载入数据。
 
为解决该问题，很多时候只能通过以空间换时间来搞定，比如在X和Y中间添加一个不使用的变量，仅仅用来占据空间，隔开缓存行那么就会把X和Y分割为2个缓存行，各自更新，相互不受影响，就是浪费空间而已。
 
下面我们来看两个具体例子。
 
1.Jetty中的解决方案
 
Jetty在实现BlockingArrayQueue的时候，会加上以下代码：
 


private long _space0;

private long _space1;

private long _space2;

private long _space3;

private long _space4;

private long _space5;

private long _space6;

private long _space7;
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图2-17　False-sharing问题
 
2.Nginx的解决方案
 
在C程序中，Nginx也有类似的实现：
 


typedef union

{

    erts_smp_rwmtx_t rwmtx;

    byte cache_line_align_[ERTS_ALC_CACHE_LINE_ALIGN_SIZE(sizeof(erts_smp_

        rwmtx_t))];

}erts_meta_main_tab_lock_t;

erts_meta_main_tab_lock_t main_tab_lock[16]


 
在下一章介绍内存slab分配器的时候（3.5.2节），着色也是用来解决false sharing的问题。
2.5　本章小结
 
并发一直是计算机工程领域的一个重要话题，有很多书籍和文章，甚至有很多论文专门对此进行过探讨。很多初学者觉得并发很难懂，很麻烦。其实所有的问题归根结底都是由简单的道理组成的，我认为，脱离计算机的底层原理来谈并发都是水中月，镜中花，尤其对初学者来说，会陷入在一堆并发编程的API中难以自拔。
 
本章开篇就阐述了到底什么是并发，并发会引发的问题，这样便于后续更加深入理解并发相关处理。对于应用程序员来讲，不管你是用C或是Java，甚至是Go语言，我们面临的并发问题，操作系统同样面临类似的问题。所以，只有在理解了操作系统的并发场景后，我们才会理解Linux内核的并发工具：atomicspin_lock、semaphore、mutex、读写锁、per-cpu、抢占、内存屏障、RCU机制等。
 
最后，分析了常见开源软件遇到的一些并发解决方案：Nginx的原子性、Memcached的互斥锁、Linux中惊群问题分析、解决Mycat中的同步问题、伪共享问题解决方案等，将这些应用与Linux内核的相关实现对照，就能做到融会贯通。
第3章　内存管理
 
我们知道，在大部分程序运行的时候，几乎都离不开堆（heap）和栈（stack），所有数据结构的分配也都是在堆和栈上进行的，堆和栈都是建立在内存之上的。
 
很多时候，内存几乎对程序员来讲是透明的，你只管使用，而不需要对其背后的管理机制做更加深入的了解，比如以Java为代表的运行在虚拟机上的语言，都有内存管理器来进行垃圾回收的机制。但是不幸的是，很多时候我们还是会遇到一些内存溢出的问题（out-of-memory），真是闻者伤心，听者流泪。这个世界没有无缘无故的伤害，背后肯定是有原因的。
 
从某种角度来讲，操作系统就是内存的加工商，它管理着物理内存，并对它进行一定的规格化加工，然后出售给上层应用，当然它自己有时候也会拿来使用。最后，它还会负责回收不需要的内存。只要我们搞清楚了Linux对内存的管理方法，那么很多问题也就迎刃而解了，其他操作系统只是算法不同，但是思路都是大同小异的。
 
内存在计算机中应该是个比较重要且特殊的器件，重要是因为内存是计算机中不可或缺的部件，是和CPU进行沟通的桥梁，所有的代码都得装载到内存之后才能让CPU通过指令寄存器找到相应地址进行访问。特殊性体现在以下几点：
 
·内存资源是稀缺资源，需要特殊管理和对待。
 
·CPU单独设计了MMU（内存管理单元）与内存进行沟通。
 
·内存空间有限，而操作系统不只运行一个进程，直接进行物理地址寻址肯定会出现地址空间不够的情况，需要专门的方案解决这个问题。
 
·针对内存的管理不仅是MMU，操作系统针对内存又单独进行了很多管理的工作。
 
虽然操作系统已经对内存进行了管理工作，还有很多内存管理的应用程序在用户态对内存进行管理。
 
本章我们将探讨以下问题：
 
1）内存在计算机体系结构中的作用，解决什么问题，如何使用，在使用中会遇到什么问题，为什么需要管理。
 
2）MMU本身对内存有管理机制，操作系统为什么还要在MMU的基础上进行管理。
 
3）内存涉及的地址、线性地址空间、物理地址空间、虚拟地址空间之间是什么关系，如何对应。
 
4）Linux是如何进行内存管理的，整体架构如何，以及伙伴算法、slab分配器、kmalloc、vmalloc、malloc的实现。
 
5）Linux栈内存如何分配，内核栈和线程栈Linux又是如何区分和管理的。
 
6）既然Linux内核已经管理了内存，Memcached、Redis这样的软件为何还要自己管理内存。
3.1　为什么需要内存管理
 
我们已经知道了内存在计算机中重要且特殊的地位，下面我们来分析为什么需要对内存进行管理。
 
首先还是先来研究一下历史。在早期，计算机只能跑单个进程，就算是批处理程序，也是先来后到进行排队。所以，对内存的使用也比较简单，直接把物理地址拿来使用就可以了。
 
当支持多进程的系统出现之后，这种玩法就不适用了，多个进程都在同一个物理地址空间内玩耍，很容易互相影响而导致崩溃。
 
当然，可以简单地把内存平均分成N块，然后每个进程只能使用其中一块。看起来解决了问题，但是每个进程能使用的物理范围就很小了。
 
为了解决这个问题，CPU内存管理单元（MMU）帮我们引入了虚拟地址空间的概念，以32位的系统为例（图3-1），每个进程都可以拥有4G的寻址空间，当在该空间需要物理内存的时候，再通过相应的转换技术和虚拟地址空间进行关联。
 
这样看起来解决了问题，但是仔细思考一下，又会有几个问题：
 
·既然物理内存是所有虚拟地址空间共享的，那么如何分配，如何归还，这些问题都得想办法解决。
 
·每次向物理地址申请的内存大小肯定不一样，多次分配再归还之后，导致内存碎片严重，无法申请到连续空间怎么办？
 
·那么多进程都拥有独立的地址空间，但是物理地址再大还是有限的，难道不会出现物理地址不够，然后进程申请不到引起挂掉的情况？
 
·物理内存都是按照页来组织的，页的粒度虽然可以配置，但是最小也是4K，假如应用程序需要的内存小于4K，那么不是存在浪费吗？如何管理小块内存的申请呢？
 
以上这4个问题肯定不是一个MMU就能搞定的，需要我们在系统层面再抽象一层，单独进行内存管理的相应工作。
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图3-1　进程虚拟地址与物理地址空间映射
 
通过以上分析，参照图3-2，我们可以对Linux内存管理体系结构进行如下分层：
 
·内存管理单元（MMU），通过分段分页的机制，提供虚拟地址到物理地址的映射方法。
 
·段页机制是MMU提供的，Linux是使用者，搞清楚Linux如何进行段页管理很重要。
 
·Linux物理地址管理，因为物理地址空间有限，系统会统一对物理地址进行管理，便于申请和归还。
 
·Linux内核态进程之间共享地址空间，如何进行管理？
 
·Linux用户态进程之间的地址空间是隔离的，如何进行管理？
 
结合这个分层架构，本章后续部分具体分析每部分是怎么做的。
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图3-2　Linux内存管理体系结构
3.2　MMU和地址空间
 
在了解操作系统如何进行内存管理之前，必须首先了解硬件（MMU）提供给我们的内存管理机制是怎样的，管理的边界能到哪里。然后我们才能基于这些基本的认知进行深层次的探讨。MMU是Memory Management Unit的缩写，是CPU的一部分，用来管理内存的控制线路，提供把虚拟地址映射为物理地址的能力。
3.2.1　虚拟地址、线性地址、物理地址
 
在了解了什么是MMU之后，理解虚拟地址、线性地址和物理地址这三个概念尤为重要。在x86体系结构下，CPU对内存的寻址都是通过分段的方式来进行的。在保护模式下对段的概念进行了扩展，一个段可以理解为：
 
基地址+段的界限+类型
 
所以，在保护模式下的偏移就是在这个段中的偏移。
 
下面我们分别来理解3个地址：
 
·虚拟地址：在段中的偏移地址。
 
·线性地址：在某个段中“基地址+偏移地址”得出的地址。
 
·物理地址：在x86中，MMU还提供了分页机制，假如未开启分页机制，那么线性地址就等于物理地址；否则，需要经过分页机制换算后，线性地址才能转换成物理地址。
 
[image: ]注意　保护模式是Intel CPU特有的一种工作模式。目的是在Intel新系列的产品升级到32位以上系统的时候，对老产品工作模式能兼容。所以老的模式又叫作实模式。
 
以Intel的80386为例，当工作在实模式下的时候，CPU最大可用的地址总线为20位（0～19），因为像8086这样的CPU地址总线一共就20条，但是80386却有32条地址总线，假如在实模式下只用20条，那么最大寻址空间只有1MB，若要扩大寻址范围，就要充分利用剩余的地址总线。这个时候A20地址总线（从0开始数第20根）就成为是否可超越1MB寻址的开关。假如在实模式下，A20地址总线是关闭的，在保护模式下则打开，这样在保护模式下我们就可以进行4GB的寻址。
 
保护模式下做IO操作的时候，eflag寄存器（见图3-3）上有2个关键位12和13位为IOPL。只有当CPL≤IOPL的时候才可以进行IO操作。
 
保护模式概括起来3句话：
 
1）突破了1MB的寻址，对实模式的兼容。
 
2）对数据和代码的访问提供了保护机制。
 
3）对IO的操作提供了保护机制。
 
总之，关键是保护二字。
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图3-3　eflag寄存器结构
3.2.2　MMU的内存管理机制
 
MMU对内存的管理主要是分段和分页，下面通过分析几个问题来了解这两个机制。
 
1.段存储在什么地方？
 
因为一个段是由“基地址+段界限+类型”等数据组成，所以段是由全局描述符表（GDT）中的描述符结构来定义的（见图3-4）。
 
[image: ]注意　其中局部描述符表（LDT）和GDT的结构是一样的，一般和GDT表项在一起。
 
 
 [image: ] 


图3-4　全局描述符表（GDT）结构
 
GDT表项的说明如下。
 
1）P：存在（Present）位。
 
·P=1，表示描述符对地址转换是有效的，或者说该描述符所描述的段存在，即在内存中。
 
·P=0，表示描述符对地址转换无效，即该段不存在。使用该描述符进行内存访问时会引起异常。
 
2）DPL：描述符特权级（Descriptor Privilege level），共2位。它规定了所描述段的特权级，用于特权检查，以决定对该段能否访问。
 
3）S：说明描述符的类型。对于存储段描述符而言，S=1，为系统段描述符；S=0，为门描述符。
 
4）TYPE：说明存储段描述符所描述的存储段的具体属性。
 
数据段类型：
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代码段类型：
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系统段类型：
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5）G：段界限粒度（Granularity）位。
 
·G=0表示界限粒度为字节。
 
·G=1表示界限粒度为4K字节。
 
注意，界限粒度只对段界限有效，对段基地址无效，段基地址总以字节为单位。
 
6）D：这是一个很特殊的位，在描述可执行段、向下扩展数据段或由SS寄存器寻址的段（通常是栈段）的三种描述符中的意义各不同。
 
a）在描述可执行段的描述符中，D位决定了指令使用的地址及操作数所默认的大小。
 
·D=1表示默认情况下指令使用32位地址及32位或8位操作数，这样的代码段也称为32位代码段。
 
·D=0表示默认情况下使用16位地址及16位或8位操作数，这样的代码段也称为16位代码段，它不与80286兼容。可以使用地址大小前缀和操作数大小前缀分别改变默认的地址或操作数的大小。
 
b）在向下扩展数据段的描述符中，D位决定段的上部边界。
 
·D=1表示段的上部界限为4GB。
 
·D=0表示段的上部界限为64KB，这是为了与80286兼容。
 
c）在描述符由SS寄存器寻址的段描述符中，D位决定隐式的栈访问指令（如PUSH和POP指令）使用何种栈指针寄存器。
 
·D=1表示使用32位栈指针寄存器ESP。
 
·D=0表示使用16位栈指针寄存器SP，这与80286兼容。
 
7）AVL：软件可利用位。80386对该位的使用未做规定，Intel公司也保证今后开发生产的处理器只要不与80386兼容，就不会对该位的使用做任何定义或规定。
 
上面的描述符定义看起来很复杂，其实主要目标有以下几点：
 
·指定段的起始地址。
 
·确定段的界限（长度）
 
·确定段的属性，是否可读，可写，段的基本粒度单位，表述数据段还是代码段等等。
 
2.段是如何装载的？
 
我们通过图3-5来分析两种装载段的场景。
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图3-5　装载段的场景
 
1）通过lgdt指令，我们把全局描述符表的基地址和界限存入了GDTR寄存器（参见图3-6），假如需要使用指定的某段，那么段寄存器的index可以设置为你想使用段的选择子。
 
[image: ]注意　下面举例来说明一个GDT描述符：
 


gdt:.quad 0x0000000000000000

    .quad 0x00c09a00000007ff    #代码段

    .quad 0x00c09200000007ff    #数据段

    .quad 0x00c0920b80000002    #显存段，界限为2*4k

end_gdt:

    .fill 128,4,0


 
上述代码分别定义了代码段、数据段、显存段。
 
当需要装载GDT的时候，执行如下命令：
 


lgdt lgdt_opcode


 
lgdt_opcode内容定义如下：
 


lgdt_opcode:

    .word (end_gdt-gdt)-1

    .long gdt
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图3-6　GDTR寄存器格式
 
2）假如是多个task切换的场景，可以通过TSS（Task-State Stack）来设置指定ldt的选择子，然后等到切换到该task的时候，ldtr就会装载在tss中设置的LDT选择子TSS格式参见图3-7。
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图3-7　TSS格式
 
[image: ]注意　低权限级向高权限级切换的时候，栈也发生了变化，所以TSS需要把低权限级的栈复制保存起来。以下是TSS数据结构的例子：
 


tss0: .long 0                // 上一个任务链接

      .long krn_stk0, 0x10         // esp0, ss0

      .long 0, 0, 0, 0, 0          // esp1, ss1, esp2, ss2, cr3

      .long 0, 0, 0, 0, 0          // eip, eflags, eax, ecx, edx

      .long 0, 0, 0, 0, 0          // ebx esp, ebp, esi, edi

      .long 0, 0, 0, 0, 0, 0       // es, cs, ss, ds, fs, gs

      .long LDT0_SEL， 0x8000000    /* ldt， trace bitmap 这边bitmap的地址无效，而且

                                    任务也没有IO操作，随便乱写也无所谓，具体设置方

                                    法可以参考INTEL开发手册*/


 
3.分页机制是怎样的？
 
在x86系统中，MMU支持多级的分页模型，分为三种情况：
 
·32位系统，则为2级分页模型。
 
·32位系统开启了物理地址扩展模式（PAE），则为3级分页模型。
 
·64位系统，则为4级分页模型。
 
我们以32位系统为例（见图3-8）来说明分页机制的原理。还是通过问题出发：
 
1）分页机制如何开启？
 
80x86的分页机制由CR0中的PG位开启。如PG=1，开启分页机制，并使用本节要描述的机制，把线性地址转换为物理地址。如PG=0，禁用分页机制，直接把前面段机制产生的线性地址当作物理地址使用。
 
2）线性地址如何组织？
 
32位的线性地址分为三个部分：
 
·22～31位指向页目录表中的某一项，页目录表中每一项存有4字节（32位）的地址，指向页表。所以页目录表的大小是4*2^10=4K。
 
·12～21位指向页表中的某一项，页表的大小和也目录表一样，也是4K。
 
·一个物理页为4K。刚好0～11位指向页表中的偏移，一个页表正好为4K（2^12）。
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图3-8　32位系统分页机制
 
3）页目录表和页表存在哪里？
 
页目录表和页表可以存在内存的任何地方。当分页机制开启之后，需要让CR3寄存器指向页目录表的起始地址，这样整个分页系统就可以正常进行工作了。
 
[image: ]注意　CR0～CR4这几个寄存器是系统内的控制寄存器，与分页机制密切相关，在进程管理及虚拟内存管理中会涉及这几个寄存器，读者要记住CR0、CR2、CR3及CR4这三个寄存器的内容。
 
CR0控制寄存器是一些特殊的寄存器，可以控制CPU的一些重要特性，例如：
 
·第0位是保护允许位（Protected Enable，PE），用于启动保护模式，如果PE=1，则启动保护模式；如果PE=0，则启动实模式。
 
·第1位是监控协处理位（Monitor coprocessor，MP），它与第3位一起决定：当TS=1时操作码WAIT是否产生一个“协处理器不能使用”的出错信号。
 
·第3位是任务转换位（Task Switch，TS），当一个任务转换完成之后，TS=1，就不能使用协处理器。
 
·第2位是模拟协处理器位（Emulate coprocessor，EM），如果EM=1，则不能使用协处理器；如果EM=0，则允许使用协处理器。
 
CR1是未定义的控制寄存器，供将来的处理器使用。
 
CR2是页故障线性地址寄存器，保存最后一次出现页故障的全32位线性地址。
 
CR3是页目录基址寄存器，保存页目录表的物理地址，页目录表总是放在以4K字节为单位的存储器边界上，因此，它的地址的低12位总为0，不起作用，即使写上内容，也不会被理会。
 
CR4在Pentium系列（包括486的后期版本）处理器中才实现，处理的事务包括何时启用虚拟8086模式等。
3.3　Linux中的分段和分页机制
 
在了解了MMU的工作原理之后，我们知道了其核心功能就是分段和分页。下面我们来了解Linux如何利用MMU进行内存管理的。
3.3.1　分段机制
 
上一节我们已经了解了MMU在保护模式下的分段数据主要定义在GDT中，那么我们先来看Linux中的GDT定义：
 


DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {

…

    [GDT_ENTRY_KERNEL_CS]              = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),

    [GDT_ENTRY_KERNEL_DS]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),

    [GDT_ENTRY_DEFAULT_USER_CS]        = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),

    [GDT_ENTRY_DEFAULT_USER_DS]        = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),

…

} };

EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);


 
我们重点关注代码段和数据段：
 


[GDT_ENTRY_KERNEL_CS]                = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),

[GDT_ENTRY_KERNEL_DS]                = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),


 
这里段都是通过GDT_ENTRY_INIT来定义的：
 


struct desc_struct {

    union {

        struct {

            unsigned int a;

            unsigned int b;

        };

        struct {

            u16 limit0;

            u16 base0;

            unsigned base1: 8, type: 4, s: 1, dpl: 2, p: 1;

            unsigned limit: 4, avl: 1, l: 1, d: 1, g: 1, base2: 8;

        };

    };

#define GDT_ENTRY_INIT(flags, base, limit) { { { \

        .a = ((limit) & 0xffff) | (((base) & 0xffff) << 16), \

        .b = (((base) & 0xff0000) >> 16) | (((flags) & 0xf0ff) << 8) | \

            ((limit) & 0xf0000) | ((base) & 0xff000000), \

} } }


 
结合图3-4中GDT结构的描述，我们可以得出如下结论：
 
·内核代码段的flags为0xc09a。
 
·内核数据段的flags为0xc092。
 
·a的二进制为1010说明type位为代码段。
 
·2的二进制位0010说明type位为数据段。
 
·用户数据段为：0xc0f3，f3转换成二进制是11110011，说明是数据段，并且DPL=3。
 
另外我们发现，这些段的基地址都是0，界限为4G。说明Linux只定义了一个段，并没有真正利用分段机制，只是装装样子糊弄一下硬件而已。
3.3.2　分页机制
 
因为Linux中只用了一个段，而且基地址从0开始，那么在程序中使用的虚拟地址就是线性地址了，至于线性地址到物理地址的转换就交给分页机制来完成了。Linux为了兼容32位、64位系统，以及32位PAE扩展的情况，在代码中通过4级分页机制来做兼容（参见图3-9）。
 
下面介绍几个概念：
 
·PGD：页全局目录，对应32位系统中的页目录号。
 
·PUD：页上级目录，一般在64位系统中使用。
 
·PMD：页中间目录，一般在开启PAE功能后使用。
 
·PTE：页表项，对应32位系统中的页号。
 
·OFFSET：对应32位系统中的页面偏移量。
 
[image: ]注意　从Pentiun Pro处理器开始，Intel引入一种叫作物理地址扩展（Physical Address Extension，PAE）的机制。通过设置CR4控制寄存器中的物理地址扩展（PAE）标志，页目录项中的页大小标志PS启用大尺寸页（在PAE启用时为2MB）。
 
假如一个32位的线性地址为0x08147258，换成二制进如下所示：
 


0000100000 0101000111 001001011000


 
在4级分页机制下分别对应如下：
 


PGD = 0000100000

PUD = 0

PMD = 0

PTE = 0101000111

offset = 001001011000


 
这样就很好地兼容了32位系统。
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图3-9　Linux4级别分页机制
 
为了便于后续的计算和操作，Linux又提出了如下三个概念（见图3-10）：
 
·SHIFT
 
·SIZE
 
·MASK
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图3-10　SHIFT、SIZE、MASK概念说明
 
以64位系统的PGD为例子：
 


arch/x86/include/asm/pgtable_64_types.h

#define PGDIR_SHIFT 39

#define PTRS_PER_PGD 512

#define PGDIR_SIZE (_AC(1, UL) << PGDIR_SHIFT)

#define PGDIR_MASK (~(PGDIR_SIZE - 1))


 
比如要计算PGD对应的全局页目录表项的线性地址，计算方法如下：
 


#define pgd_index(address)  (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))

#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))


 
其他关于PUD、PMD、PTE等计算也是大同小异，可以结合代码对比分析。
3.4　Linux的内存管理
 
现在，了解了Linux分段和分页机制以及虚拟地址、线性地址和物理地址转换的知识后，就可以去分析Linux如何进行内存管理了。
 
[image: ]注意　因为在Linux中虚拟地址就是线性地址，所以后面章节统一用线性地址这个概念，不再用虚拟地址这个概念了。
3.4.1　物理内存管理
 
不管线性地址如何扩展，真正的物理内存是有限的，假如我是Linux开发者，肯定会在系统启动之后，先把物理内存统一放到一个地方（比如map）管理和维护起来。
 
在这之前，我们先了解两个概念：UMA和NUMA（如图3-11所示）。
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图3-11　UMA与NUMA
 
我们经常使用的SMP（Symmetric Multi-Processor）多核CPU，将多个处理器与一个集中的存储器和I/O总线相连。所有处理器只能访问同一个物理存储器，因此SMP系统有时也称为一致性存储器访问（UMA）体系结构，一致性意指无论在什么时候，处理器只能为内存的每个数据保持或共享唯一一个数值。很显然，SMP的缺点是可伸缩性有限，因为在存储器和I/O接口达到饱和的时候，增加处理器并不能获得更高的性能。
 
与SMP对应的有AMP架构，不同核之间有主从关系，如一个核控制另外一个核的业务，可以理解为多核系统中控制平面和数据平面。
 
NUMA模式是一种分布式存储器访问方式，处理器可以同时访问不同的存储器地址，大幅度提高了并行性。NUMA模式下，处理器被划分成多个“节点”（node），每个节点被分配了本地存储器空间。所有节点中的处理器都可以访问全部的系统物理存储器，但是访问本节点内的存储器所需要的时间，比访问某些远程节点内的存储器所花的时间要少得多。
 
NUMA系统（尤其是具有超过八个CPU的系统）通常比一致性内存访问系统更加经济且性能更高。一致性内存访问系统必须平等地为所有CPU提供内存，而NUMA系统则能够为直接连接到CPU的内存提供高速互连，同时为与CPU相隔较远的内存提供较为便宜但更高延迟的连接，为能在NUMA系统中有效扩展，操作系统或应用程序必须了解节点拓扑结构，以便使计算过程能够在包含计算数据和代码的内存附近执行。
 
NUMA的主要优点是可伸缩性。NUMA体系结构在设计上已超越了SMP体系结构在伸缩性上的限制。通过SMP，所有的内存访问都传递到相同的共享内存总线。这种方式非常适用于CPU数量相对较少的情况，但不适用于具有几十个甚至几百个CPU的情况，因为这些CPU会相互竞争对共享内存总线的访问。NUMA通过限制任何一条内存总线上的CPU数量并依靠高速互连来连接各个节点，从而缓解了这些瓶颈状况。
 
因为非一致性存储架构的存在，内存可能不是单一的一个节点，为了同时兼容NUMA和UMA架构的处理器，Linux对物理内存的管理组织如图3-12所示。
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图3-12　Linux物理内存管理架构
 
1.pg_data
 
pg_data代表一个存储节点，在NUMA存储结构下可能会存在多个pg_data结构。
 
该结构定义为：
 


typedef struct pglist_data {

    struct zone node_zones[MAX_NR_ZONES];        // 该节点管理的zone，ZONE_DMA、

                                                 // ZONE_NOMAL,和ZONE_HIGHMEM

    struct zonelist node_zonelists[MAX_ZONELISTS];

                                                 // 按分配时的顺序排列的zone列表

    int nr_zones;                                // zone总数

    struct page *node_mem_map;                   // 指向该节点中的第一个页面

int node_id;                                     // 节点id

unsigned long node_start_pfn;                    // 该节点起始物理页框

        unsigned long node_present_pages;        // 该节点总共的物理页面数量

        unsigned long node_spanned_pages;        // 该节点总共的物理页面数量，包含空洞

…

} pg_data_t;


 
2.zone
 
在一个存储节点下包含了ZONE_DMA、ZONE_NOMAL和ZONE_HIGHMEM三个管理区，其中：
 
·ZONE_DMA的范围是0～16M，该区域的物理页面专门供I/O设备的DMA使用。之所以需要单独管理DMA的物理页面，是因为DMA使用物理地址访问内存，不经过MMU，并且需要连续的缓冲区。为了能够提供物理上连续的缓冲区，必须从物理地址空间专门划分一段区域用于DMA。
 
·ZONE_NORMAL的范围是16M～896M，该区域的物理页面是内核能够直接使用的。
 
·ZONE_HIGHMEM的范围是896M～结束，该区域即为高端内存，内核不能直接使用。
 
该结构定义为：
 


struct zone {

    …

#ifdef CONFIG_NUMA

    int node;                                 // 对应的管理节点id

#endif

struct pglist_data     *zone_pgdat;           // 该区域对应的pgdat指针

unsigned long          zone_start_pfn;        // 该区域起始的物理页框

…

    struct free_area   free_area[MAX_ORDER];  // 该区域物理页空闲区域位图，由伙伴系统使用

unsigned long          spanned_pages;         // 该区域中页的总数，但并非所有的都可用，因为有空洞

unsigned long          present_pages;         // 该区域中实际上可用的页数目

…

const char             *name;                 // 保存该内存域的惯用名称，目前有3个选项可用：

                                                    NORMAL、DMA、HIGHMEM

} ____cacheline_internodealigned_in_smp;


 
3.page
 
page代表每一个物理页面，内核用数据结构page描述一个页框的状态信息，所有的页描述符存放在pgdata的node_mem_map数组中，其数组的下标为页框号（pfn）。
 
该结构定义为：
 


struct page {

    unsigned long flags;                        // 这些标志位用于描述页面的状态

atomic_t _count;                                // 页面使用计数器

…

    struct address_space *mapping;              // 物理页映射的线性地址空间

…

};


 
我们再来提个问题，内核如何把这些物理页的信息获取到，并且初始化pg_data这个结构的呢？
 
1）系统会在启动的时候调用detect_memory函数，探测可用内存布局：
 


// 本方法用于检测内存可用大小和可用的区域

// 通过int 0x15 BIOS中断来获取内存参数

int detect_memory(void )

{

    int err = -1;

    if (detect_memory_e820() > 0)

    err = 0;

    if (!detect_memory_e801())

    err = 0;

    if (!detect_memory_88())

    err = 0;

    return err;

}


 
[image: ]注意　探测一个PC机内存的最好方法是通过调用INT 0x15，eax=0xe820来实现。这个功能在2002年以后被所有PC机使用，这是唯一能够探测超过4GB大小内存的方案，当然，也可以认为这个方法是内存的最终检测方法。
 
实际上，这个函数返回一个非排序列表，这个列表包含了那些没有使用的项，并且可能返回存在覆盖的区域。在Linux中每个列表项存放在ES：EDI指定的内存区域中，每个项均有一定的格式：即2个8字节字段，一个2字节字段。我们前面看见了，对于内存探测的实现由函数detect_memory_e820来实现，在这个函数中，使用了一个do...while（）循环来实现，并将所探测的内容写入boot_params.e820_map数组中。
 
e820_map中保存的数据结构为：struct e820entry。该结构用来保存一个物理内存段的地址信息以及类型：
 


struct e820entry {

    __u64 addr;        // 该内存段的起始地址

    __u64 size;        // 该内存段的大小

    __u32 type;        // 该内存段的类型

} __attribute__((packed));


 
2）内核通过start_kernel（）->paging_init（）->free_area_init_node（）这个调用过程做了如下事情：
 
·paging_init：初始化pglist_data，初始化zone，初始化page数据结构。
 
·free_area_init_node：函数将内存节点各个域做相应的初始化，并初始化page数据结构。
3.4.2　进程地址空间管理
 
1.进程地址空间划分
 
我们现在已经知道了Linux如何识别物理内存，并且对它进行管理。但是，我们在程序中直接操作的是线性地址，如何和物理地址进行转换呢？
 
我们在第1章介绍进程的时候就已经知道，每个进程的地址空间是独立的。内核是所有进程共享的，在内核态共享地址空间。
 
我们以32位的x86实现为例（见图3-13），Linux给每个进程分配的线性地址空间都是0～4GB。其中：
 
·0～3GB用于用户态空间使用。
 
·3GB～3GB+896MB映射到物理地址的0～896MB处，作为内核态空间。
 
·3GB+896MB～4GB之间的128MB空间，用于vmalloc保留区域，该区域用于vmalloc、kmap固定地址映射等功能，可以让内核访问高端物理地址空间。
 
·内存的0～8MB之间保存了内核映象。
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图3-13　Liunx进程线性地址空间管理
 
2.进程线性地址相关数据结构
 
进程的地址空间由mm_struct来描述，一个进程只会有一个mm_struct：
 


struct mm_struct {

    struct vm_area_struct *mmap;  // 虚拟地址区间列表

    struct rb_root mm_rb;         // 用于虚拟地址区间查找的红黑树

    …

    pgd_t * pgd;                  // pgd指针

    atomic_t mm_users;            // 访问用户空间的总用户数

    atomic_t mm_count;            // 用户使用计数器

    atomic_long_t nr_ptes;        // 页表页面总数

…

    int map_count;                // 正在被使用的VMA数量

…

    struct list_head mmlist;      // 所有的mm_struct都通过它链接在一起

…

    unsigned long total_vm;       // 所有vma区域加起来的内存综合

…

    unsigned long start_code, end_code, start_data, end_data;

                                  // 代码段起始地址，结束地址，数据段起始地址，结束地址

    unsigned long start_brk, brk, start_stack;

                                  // 堆起始地址，结束地址，栈起始地址

    unsigned long arg_start, arg_end, env_start, env_end;

                                  // 命令行参数起始地址和结束地址，环境变量起始地址和结束地址

…

};


 
在mm_struct中维护了所有虚拟地址空间的虚拟内存区域vm_area_struct：
 


struct vm_area_struct {

    unsigned long vm_start;                        // 该虚拟地址空间区域起始地址

    unsigned long vm_end;                          // 该虚拟地址空间区域结束地址

    struct vm_area_struct *vm_next, *vm_prev;      // 下一块虚拟地址空间区域，上一块虚拟地址

                                                      空间区域

        struct rb_node vm_rb;                      // 虚拟地址空间区域也维护了一颗红黑树

…

        struct mm_struct *vm_mm;                   // 该地址空间所属的mm_struct

        …

};


 
图3-14描述了上述结构之间的关系，要让线性地址空间有效，必须要设置分页机制，mm->pgd指向了cr3寄存器设置的全局页目录表起始地址，mm_struct结构维护了进程下面的线性地址空间区域。
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图3-14　进程虚拟地址空间数据结构
 
[image: ]注意　mm_struct线性地址空间只有用户线程才需使用，内核线程不需要，因为内核态是共享的，不会发生缺页或者访问用户空间。所以内核线程的task_struct->mm为NULL。
 
3.地址相关的重要概念
 
在了解了线性地址空间相关的数据结构之后，我们再通过几个问题来整理几个重要概念，便于后续理解。
 
1）内核线性地址如何找到物理地址？
 
在32位内核中，线性地址为3～4G之间，并且和物理地址0～1G之间是直接对应的。所以内核的线性地址和物理地址的转换关系为：
 


#define __pa(x) ((unsigned long) (x) - PAGE_OFFSET)            // 线性地址转物理地址

#define __va(x) ((void *)((unsigned long) (x) + PAGE_OFFSET))  // 物理地址转线性

                                                                  地址


 
2）内核物理地址如何找到页面（page结构）？
 
在内核中，全局维护了一份物理地址页面数组vmem_map，所以只要获得页号（pfn）就能得到页面结构，下面是一组系统提供的转换页号的宏定义：
 


    pa(kaddr) >> PAGE_SHIFT 计算得到pfn

# define pfn_to_page(pfn)        (vmem_map + (pfn)) // 根据pfn得到page

# define page_to_pfn(page)        ((unsigned long) (page - vmem_map))// page得到pfn

# define __pfn_to_phys(pfn)        PFN_PHYS(pfn)    // 页号转物理地址，可以先通过页号转换成线性

                                                       地址，然后减去PAGE_OFFSET就是物理地

                                                       址了。大家可以自己去代码中验证


 
3）页表什么时候设置？
 
页表的分配分为两个部分：
 
·内核页表，也就是系统在启动中，最后会在paging_init函数中，把ZONE_DMA和ZONE_NORMAL区域的物理页面与线性地址空间的3G～3G+896M进行直接映射。
 
·内核高端地址（比如vmalloc）和用户态地址，都是通过MMU机制修改线性地址和物理地址的映射关系，然后刷新页表缓存来达到目的的。
 
4）为何用TLB？
 
TLB（Translation Lookaside Buffer，转换检测缓冲区）是一个内存管理单元，用于改进虚拟地址到物理地址转换速度的缓存。线性地址到物理地址每次转换都需要通过多级分页机制来转换，开销较大，所以MMU提供了后援缓冲区TLB来缓存这个映射关系，没必要每次都映射了。由于内核的线性地址空间是固定的，映射的物理地址空间也是固定的，没必要每次进程切换都刷新TLB。所以task_struct->active_mm结构就是为此增加的，每次进程切换到内核进程都是用前一个任务的mm来设置active_mm。
 
5）页表缓存的作用是什么？
 
页表的数据缓存到CPU的一级缓存当中，目的是提升性能。
3.5　Linux的内存分配和管理
 
下面我们来讨论内存管理的相关问题，通过前面的分析，我认为内存管理需要考虑以下几个问题：
 
·内存经过频繁申请归还之后，会出现碎片，称为外部碎片，导致没有足够大的连续内存空间，如何解决该问题？
 
·被申请占用的内存块没有有效利用，存在浪费称为内部碎片，如何解决？
 
·每次申请完内存之后是否需要刷新进程页表，是否有性能问题？
 
·内存申请是基于物理地址还是线性地址？
3.5.1　物理内存分配算法
 
我们已经知道，对于物理内存，经过频繁地申请和释放后会产生外部碎片，为了解决该问题，Linux通过伙伴系统来解决外部碎片的问题。
 
假如仅仅解决外部碎片的问题，我们可以考虑内存分配的时候不提供连续的内存，但是在内核我们已经提前分配了DMA和NORMAL区域的页表，假如分配的物理地址不连续，但分配的线性地址总得连续吧？这就牵涉到页表刷新的问题了，在内核态频繁需要使用内存，这个方案对性能影响太大了，不能接受。为了解决这个问题，出现了伙伴系统。
 
下面我们来具体聊聊伙伴系统的实现：
 
从思路上来讲，伙伴系统在申请内存的时候让最小的块满足申请的需求，在归还的时候，尽量让连续的小块内存伙伴合并成大块，降低外部碎片出现的可能性。
 
在Linux中伙伴系统算法的实现方法为：
 
伙伴系统维护了11个块链表，每个块链表分别包含大小为1，2，4，8，16，32，64，128，256，512和1024个连续的物理页。对1024个页的最大请求对应着4MB大小的连续RAM块。每个块的第一个页框的物理地址是该块大小的整数倍。例如，大小为16个页框的块，其起始地址是16×212（212＝4KB，这是一个常规页的大小）的倍数。
 
满足以下条件的两个块称为伙伴：
 
·具有相同的大小。
 
·物理地址是连续的。
 
申请的过程是从最接近大小的链表上找一个空闲块，释放的过程则会触发伙伴（假如找到空闲的伙伴）的合并。
 
下面我们来介绍一下Linux中和伙伴系统相关的数据结构（参见图3-15）。在前文中已经介绍了pg_data作为一个内存节点，在node_mem_map中维护了所有的物理内存页（page），另外在pg_data下维护了所有内存区域node_zones，每个内存区域（zone）中维护了伙伴系统的空闲内存块free_area。
 
 
 [image: ] 


图3-15　Linux伙伴系统数据结构
 
free_area维护了11个链表，链表中存储每个块的起始page，块当中的page通过page的lru指针连接，page当中的private代表了这个块属于哪个链表。
 
此外在pg_data的node_mem_map中保存了连续物理地址的page指针，所以用page-node_mem_map就能计算出该物理页的pfn。
 
现在我们已经知道，在Linux中要使用物理内存（当然，这是在系统启动之后，启动前的事情就不在这里论述了）就得通过伙伴系统。那么在使用伙伴系统时，好歹得先初始化free_area链表吧？
 
前面我们已经知道系统在启动的时候通过start_kernel（）->paging_init（）->free_area_init_node（）来初始化节点、区域、page，在该过程中free_area_init_node（）->free_area_init_core（）->init_currently_empty_zone（）-->zone_init_free_lists（）把free_area的链表初始化为空：
 


static void __meminit zone_init_free_lists(struct zone *zone)

{

    unsigned int order, t;

    for_each_migratetype_order(order, t) {

        INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);

        zone->free_area[order].nr_free = 0;

    }

}


 
然后通过start_kernel（）-->mm_init（）-->mem_init（），负责统计所有可用的低端内存和高端内存，并释放到伙伴系统中，这个过程分为两个部分，详情可以从源码中去寻找：
 
1）通过free_all_bootmem释放低端内存（ZONE_DMA和ZONE_NORMAL）到伙伴系统中去。
 
2）通过set_highmem_pages_init将高端内存（ZONE_HIGHMEM）释放到伙伴系统中去。
 
这两个过程最终都会调用__free_page（）进行释放。
 
下面我们先来分析释放页的过程__free_page（）函数：
 


void __free_pages(struct page *page, unsigned int order)

{

    if (put_page_testzero(page)) {

        if (order == 0)

            free_hot_cold_page(page, false);

        else

            __free_pages_ok(page, order);

    }

}


 
释放流程分为两个部分：
 
·假如order==0，则说明是单页，直接存入per-cpu页高速缓存当中。
 
·否则通过__free_pages_ok释放到伙伴系统中去，其最终调用__free_one_page函数：
 


static inline void __free_one_page(struct page *page,

        unsigned long pfn,

        struct zone *zone, unsigned int order,

        int migratetype)

{

    unsigned long page_idx;

    unsigned long combined_idx;

    unsigned long uninitialized_var(buddy_idx);

    struct page *buddy;

    unsigned int max_order;

    max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);

…

    // 先找到最大块链表中的偏移

    page_idx = pfn & ((1 << MAX_ORDER) - 1);

…

continue_merging:

    while (order < max_order - 1) {                    // 假如order小于max_order-1就有可能进行合并

                                                  （合并本来就是从小变大的过程，最大块当然没法合

                                                 并了）

        buddy_idx = __find_buddy_index(page_idx, order);  // 寻找伙伴在链表中的偏移

        buddy = page + (buddy_idx - page_idx);            // 伙伴之间是连续的，所以通过该方式找到

                                                           page页面

        if (!page_is_buddy(page, buddy, order))           // 假如该伙伴非空闲，则没法合并，跳出

            goto done_merging;

        …

        if (page_is_guard(buddy)) {

            clear_page_guard(zone, buddy, order, migratetype);

        } else {

            list_del(&buddy->lru);                 // 合并之后就要去order+1那层了，把伙伴从现在这层链

                                              表中删掉

            zone->free_area[order].nr_free--;

            rmv_page_order(buddy);

        }

        combined_idx = buddy_idx & page_idx;          // 因为page_idx和buddy_idx仅差异在

                                                          1<<  order位是否为1，那么可以理解为

                                                          combined_idx取page_idx和buddy_

                                                          idx的最小值

        page = page + (combined_idx - page_idx);

        page_idx = combined_idx;

        order++;

    }

    …

done_merging:

    set_page_order(page, order);                          // 合并完成，重新设置块的order

…

    list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);

                                                          // 将新块添加到对应的free_area链表中

out:

    zone->free_area[order].nr_free++;

}


 
其中寻找伙伴的函数__find_buddy_index实现为：
 


static inline unsigned long

__find_buddy_index(unsigned long page_idx, unsigned int order)

{

    return page_idx ^ (1 << order);  // page_idx为2的order次的倍数，2的order以上

                                              的位和1<<order进行异或运算，伙伴在左还是在右取

                                              决于1<<order位是0还是1。假如是0则伙伴在后面；

                                              否则伙伴在前面，因为异或1变成0 了。

}


 
这个内存释放的过程还是很好理解的，在把内存归还给伙伴系统的时候，首先检查这个内存区的伙伴是否是空闲的，如果是则进行合并，转移到更高阶的链表，直到无法合并为止。关键是理解如何寻找伙伴以及找到最后块page的过程，在以上代码中都已经做出了解释。
 
内存归还完毕之后，伙伴系统也就初始化完毕了，下面就可以进入内存的申请过程了，伙伴算法的分配通过alloc_pages->alloc_pages_node->__alloc_pages_node->__alloc_pages->__alloc_pages_nodemask来进行物理内存申请。我们这里仅关心从伙伴系统申请的主要路径，忽略细枝末节的干扰，__alloc_pages_nodemask的关键步骤为get_page_from_freelist：
 


…

/* 从指定的zone开始寻找，直到找到一个拥有足够空间的管理区为止。例如，如果high_zoneidx对应

   的ZONE_HIGHMEM，则遍历顺序为HIGHMEM-->NORMAL-->DMA，如果high_zoneidx对应ZONE_NORMAL，

   则遍历顺序为NORMAL-->DMA*/

for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,

                    ac->nodemask) {

…

    page = buffered_rmqueue(ac->preferred_zone, zone, order,

            gfp_mask, alloc_flags, ac->migratetype);

        …

        return page;

    }

}


 
buffered_rmqueue函数假如申请的是单页则会从per-cpu缓存链表中找一个缓存的热页或者冷页。否则通过__rmqueue函数真正从伙伴系统中申请2的order次个页面，伙伴系统的申请在__rmqueue_smallest中实现：
 


static inline

struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,

                                int migratetype)

{

    unsigned int current_order;

    struct free_area *area;

    struct page *page;



    // 从指定的order一层一层往上寻找合适的块

    for (current_order = order; current_order < MAX_ORDER; ++current_order) {

        area = &(zone->free_area[current_order]);

        page = list_first_entry_or_null(&area->free_list[migratetype],

                    struct page, lru);

        if (!page)

            continue;

        list_del(&page->lru);        // 找到后从该空闲链表中删除

        rmv_page_order(page);

        area->nr_free--;

        expand(zone, page, order, current_order, area, migratetype);

                                            // 假如current_order大于申请的order，则进行expand拆分内存块

        set_pcppage_migratetype(page, migratetype);

        return page;

    }

    return NULL;

}


 
拆分函数expand的实现为：
 


static inline void expand(struct zone *zone, struct page *page,

    int low, int high, struct free_area *area,

    int migratetype)

{

    unsigned long size = 1 << high;



    while (high > low) {

        area--;

        high--;

        size >>= 1;                        // 对半拆分，右移一次相当于除以2

        …

        list_add(&page[size].lru, &area->free_list[migratetype]);

                                                 // 一半拿来使用，另外一半拿来放入area--的链表中

        area->nr_free++;

        set_page_order(&page[size], high);   // 设置不使用的一半order为high--

    }

}


 
这个申请的过程和之前介绍的伙伴系统实现思路是一致的，尽量从满足大小的area链表中申请内存块，假如大小不够则往上层链表查找，由此每上升一次，内存块大小就会扩展两倍，所以假如current_order大于order的时候，必然存在一半的内存浪费，因此通过expand操作进行拆分，另一半存入current_order-1的链表中。
 
最后我们对伙伴系统进行一下总结（如图3-16所示），在系统初始化的时候，会把内存节点各区域（zone）都释放到伙伴系统中，每个区域还维护了per-cpu高速缓存来处理单页的分配，各个区域都通过伙伴算法进行物理内存的分配。
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图3-16　Linux伙伴系统实现
3.5.2　slab分配器
 
我们已经了解到，上一节介绍的伙伴算法是用来解决外部碎片的问题，但是，如果不解决内部碎片的问题，还是会存在大量浪费内存的问题。所以Linux提供了slab分配器来解决内部碎片的问题。slab分配器的概念如下：
 
slab分配器其实也是一种内存预分配的机制，是一种空间换时间的做法，并且其假定从slab分配器中获取的内存都是比页还小的小块内存。
 
关于slab分配器的源码实现较为复杂，牵涉概念也较多，理解起来有些困难，但是只要抓住核心概念，化繁为简，其实也是可以理解的。
 
为了便于理解，我们首先来介绍一下slab分配器相关的概念（见图3-17）。在系统启动后，维护了一个全局的结构struct kmem_cache，在kmem_cache中的list维护了所有的slab缓存列表，关联的全局结构为LIST_HEAD（slab_caches），维护了所有的kmem_cache缓存列表，该列表中的缓存按照对象的大小，从小到大来构建的。
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图3-17　Linux slab分配器核心概念
 
kmem_cache中的kmem_cache_node维护了三个slab链表，分别为：
 
·slabs_full：该链表中的slab已经完全被分配出去了。
 
·slabs_free：该链表中的slab都为空闲可分配状态。
 
·slabs_partial：该链表中的slab部分被分配了出去。
 
其中，slab代表物理地址连续的内存块，由1～N个物理内存页面（page）组成，在一个slab中，可以分配多个object对象。
 
在了解了关于slab分配器的基本概念后，下面我们来分析从缓存到slab的初始化过程。
 
1.创建缓存kmem_cache_create
 
创建代码如下：
 


kmem_cache_create(const char *name, size_t size, size_t align,

    unsigned long flags, void (*ctor)(void *))


 
其中参数如下：
 
·name：缓存名称。
 
·size：缓存中分配的对象大小。
 
·align：对象对齐的大小。
 
·flags：slab相关标志位。
 
·ctor：对象构造函数。
 
kmem_cache_create主要通过create_cache来完成分配：
 


s = create_cache(cache_name, size, size,

    calculate_alignment(flags, align, size),

    flags, ctor, NULL, NULL);


 
下面是create_cache函数的实现：
 


static struct kmem_cache *create_cache(const char *name,

    size_t object_size, size_t size, size_t align,

    unsigned long flags, void (*ctor)(void *),

    struct mem_cgroup *memcg, struct kmem_cache *root_cache)

{

    struct kmem_cache *s;

    int err;

    err = -ENOMEM;

    s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);

    if (!s)

        goto out;

    s->name = name;

    s->object_size = object_size;

    s->size = size;

    s->align = align;

    s->ctor = ctor;

…

    err = __kmem_cache_create(s, flags);

…

    s->refcount = 1;

    list_add(&s->list, &slab_caches);

…

    return s;

…

}


 
create_cache首先通过kmem_cache_zalloc从系统初始化之后确定的kmem_cache为新创建的kmem_cache结构体分配空间，然后进行属性的初始化，其中s->object_size和size传入的时候是同一个值，最后通过__kmem_cache_create进行后续的操作，分为几个部分进行：
 
1）进行对象对齐操作：
 


if (size & (BYTES_PER_WORD - 1)) {

    size += (BYTES_PER_WORD - 1);

    size &= ~(BYTES_PER_WORD - 1);

}

…


 
2）确定slab管理对象存储方式为内置还是外置：
 


if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&

        !(flags & SLAB_NOLEAKTRACE))

        flags |= CFLGS_OFF_SLAB;

    size = ALIGN(size, cachep->align);


 
3）通过calculate_slab_order函数计算slab由几个页面组成，每个slab有多少个对象：
 


static size_t calculate_slab_order(struct kmem_cache *cachep,

            size_t size, size_t align, unsigned long flags)

{

    unsigned long offslab_limit;

    size_t left_over = 0;

    int gfporder;



    for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {

        unsigned int num;

        size_t remainder;

        //  计算每个slab中的对象数量，浪费空间大小，参数如下：

        gfporder: slab大小为2^gfporder个页面

        buffer_size: 对象大小

        align: 对象的对齐方式

        flags: 是外置slab还是内置slab

        remainder: slab中浪费的空间(碎片)是多少

        num: slab中对象个数

        cache_estimate(gfporder, size, align, flags, &remainder, &num);

        if (!num)        // 假如对象数量小于等于0，则进入下一个order继续尝试

            continue;

…

        cachep->num = num;

        cachep->gfporder = gfporder;

        left_over = remainder;

        // 假如slab超过最大页面限制，也跳出循环

        if (gfporder >= slab_max_order)

            break;



        // slab占用页面大小是碎片的8倍以上，说明利用率较高，该order可以接受

        if (left_over * 8 <= (PAGE_SIZE << gfporder))

            break;

    }

    return left_over;// 返回的是slab中的浪费空间大小

}


 
其中cache_estimate的计算过程如下：
 


static void cache_estimate(unsigned long gfporder, size_t buffer_size,

            size_t align, int flags, size_t *left_over,

            unsigned int *num)

{

    int nr_objs;

    size_t mgmt_size;

    size_t slab_size = PAGE_SIZE << gfporder;        // slab大小为2^gfporder个页面

…

    if (flags & CFLGS_OFF_SLAB) {                      // 外置slab情况

        mgmt_size = 0;                                            // 没有管理对象

        nr_objs = slab_size / buffer_size;                    // 对象个数为slab大小除以对象大小

} else {                                                               // 内置slab管理区的场景

        nr_objs = calculate_nr_objs(slab_size, buffer_size,

                sizeof(freelist_idx_t), align);

        mgmt_size = calculate_freelist_size(nr_objs, align); // 管理区就是对齐后的空闲

                                                                链表大小

    }

    *num = nr_objs;// 返回对象数量

    *left_over = slab_size - nr_objs*buffer_size - mgmt_size; // slab大小-所有对

                                                                 象占用空间-管理区

                                                                 （空闲链表）

}


 
calculate_nr_objs计算过程如下：
 


static int calculate_nr_objs(size_t slab_size, size_t buffer_size,

            size_t idx_size, size_t align)

{

    int nr_objs;

    size_t remained_size;

    size_t freelist_size;

    int extra_space = 0;

    ...

    nr_objs = slab_size / (buffer_size + idx_size + extra_space);  // 算上空闲链表

                                                                      中占用的大小

    remained_size = slab_size - nr_objs * buffer_size;

    freelist_size = calculate_freelist_size(nr_objs, align); // 空闲链表对齐后的总长度

    if (remained_size < freelist_size) // 剩余空间比空闲链表需要的小，则减去一个对象的空间

        nr_objs--;

    return nr_objs;

}


 
4）针对slab管理区是否外置，进行相应设置：
 


freelist_size = calculate_freelist_size(cachep->num, cachep->align); // 对齐后的空闲管

                                                                        理区大小

    if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {

                                        // 剩余空间大于管理区，则把外置slab方式转换成内置的

        flags &= ~CFLGS_OFF_SLAB;

        left_over -= freelist_size;

    }

    if (flags & CFLGS_OFF_SLAB) {

        freelist_size = calculate_freelist_size(cachep->num, 0); // 外部管理区不需

                                                                     要对齐


 
5）对前面计算完的结果，设置kmem_cache的相关值：
 


cachep->colour_off = cache_line_size();                            // 着色块大小为cache line的大小

    /* Offset must be a multiple of the alignment. */

    if (cachep->colour_off < cachep->align)

        cachep->colour_off = cachep->align;              // 着色块大小必须是对齐大小的整数倍

    cachep->colour = left_over / cachep->colour_off;     // 计算着色区域包含着色块个数

    cachep->freelist_size = freelist_size;                  // 空闲对象管理区大小

    cachep->flags = flags;

    cachep->allocflags = __GFP_COMP;

    if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))

        cachep->allocflags |= GFP_DMA;

    cachep->size = size;                                    // slab对象大小

    cachep->reciprocal_buffer_size = reciprocal_value(size);



    if (flags & CFLGS_OFF_SLAB) {

        cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);

                                                              // 外置管理区通过kmalloc_slab从kmem_caches中分配一块空间

    }


 
6）setup_cpu_cache进行kmem_cache中的三链节点初始化工作：
 


static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)

{

    if (slab_state >= FULL)

        return enable_cpucache(cachep, gfp);        // cpucache已经初始化完毕

    cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);

                                // 为cachep->cpu_cache分配空间，其为per-cpu变量

    if (!cachep->cpu_cache)

        return 1;

    if (slab_state == DOWN) {

        set_up_node(kmem_cache, CACHE_CACHE);        // 给全局kmem_cache的三链节点分配空间

    } else if (slab_state == PARTIAL) {

        set_up_node(cachep, SIZE_NODE);                // 为cachep的三链节点分配空间

    } else {

        int node;

        for_each_online_node(node) {        // 通过kmalloc给三链节点分配空间并且初始化

            cachep->node[node] = kmalloc_node(

                sizeof(struct kmem_cache_node), gfp, node);

            BUG_ON(!cachep->node[node]);

            kmem_cache_node_init(cachep->node[node]);

        }

    }

    cachep->node[numa_mem_id()]->next_reap =

            jiffies + REAPTIMEOUT_NODE +

            ((unsigned long)cachep) % REAPTIMEOUT_NODE;

    // 进行初始化，目前还没有从伙伴系统中进行空间分配

    cpu_cache_get(cachep)->avail = 0;

    cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;

    cpu_cache_get(cachep)->batchcount = 1;

    cpu_cache_get(cachep)->touched = 0;

    cachep->batchcount = 1;

    cachep->limit = BOOT_CPUCACHE_ENTRIES;

    return 0;

}


 
最开始cachep->node的空间没法从slab分配器中进行分配，因为系统还未初始化，所以通过set_up_node从全局的init_kmem_cache_node中静态分配，然后再通过kmalloc分配后进行替换并且初始化。
 
在了解了kmem_cache的初始化完成之后，我们再来回顾一下kmem_cache的结构：
 


struct kmem_cache {

    struct array_cache __percpu *cpu_cache;// slab分配缓存

    unsigned int batchcount;        // 从slab中批量获取的对象数量，用于放入cpu_cache中

    unsigned int limit;             // 本地高速缓存中空闲对象的数量

    unsigned int shared;            // 是否存在共享CPU高速缓存

    unsigned int size;              // 缓存分配对象大小

    struct reciprocal_value reciprocal_buffer_size;

    unsigned int flags;

    unsigned int num;               // 每个slab中的对象数量

    /* order of pgs per slab (2^n) */

    unsigned int gfporder;

    /* force GFP flags, e.g. GFP_DMA */

    gfp_t allocflags;

    size_t colour;                  // 着色区域数量

    unsigned int colour_off;        // 着色偏移大小

    struct kmem_cache *freelist_cache;

    unsigned int freelist_size;

    void (*ctor)(void *obj);        // 对象构造函数

    const char *name;               // 缓存名称

    struct list_head list;          // kmem_cache缓存链表

    int refcount;

    int object_size;                // 对象大小

    int align;                      // 对齐大小

    ...

    struct kmem_cache_node *node[MAX_NUMNODES];// slab三链节点

};


 
2.slab分配机制
 
在具体分析slab分配机制实现之前，先介绍一下slab分配的思路，便于后续理解：
 
在分配过程中，首先从cpu_cache中获取slab，假如这个array成员里边没有slab，则从cache的slab三链中把内存转给array，如果slab三链也没有slab，那么就让slab三链从伙伴系统中获取物理内存再转给array。
 
从实现上来看，slab分配的入口为slab_alloc，通过slab_alloc->__do_cache_alloc->____cache_alloc来进行分配，下面分析____cache_alloc实现，其主要流程分为以下几步。
 
1）假如缓存中有空闲的对象，则从缓存中获取：
 


if (likely(ac->avail)) {

    ac->touched = 1;

    objp = ac_get_obj(cachep, ac, flags, false);        // 从缓存中寻找空闲对象空间

…


 
其中ac_get_obj的主要逻辑为：
 


objp = ac->entry[--ac->avail];


 
我们可以发现，一直是从最后一个对象开始分配的，这样avail对应的空闲对象是最热的，即最近释放出来的，更有可能驻留在CPU高速缓存中。
 
2）假如无法从缓存中分配对象，则为缓存增加空间：
 


objp = cache_alloc_refill(cachep, flags, force_refill)：

static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,

                                bool force_refill)

{

    int batchcount;

    struct kmem_cache_node *n;

    struct array_cache *ac;

    int node;

    ...

    node = numa_mem_id();        // 取numa本地节点

    if (unlikely(force_refill))        // 假如要强制增长force_refill为true，就执行force_grow

        goto force_grow;

retry:

    ac = cpu_cache_get(cachep);        // 获取本地CPU的缓存

    batchcount = ac->batchcount;

    ...

    n = get_node(cachep, node);        // 针对每个node的slab三链结构

    ...

    // 如果有共享本地高速缓存，则从共享本地高速缓存填充仅用于多核，多个CPU共享的高速缓存（3链

      node中也有高速缓存）

    if (n->shared && transfer_objects(ac, n->shared, batchcount)) {

        n->shared->touched = 1;

        goto alloc_done;

    }

    while (batchcount > 0) {

        struct page *page;

        page = get_first_slab(n);// 从slabs_partial和slabs_free中找可用的slab页面

        if (!page)                // 如果获取不到，那么必须增长了

            goto must_grow;

        ...

        BUG_ON(page->active >= cachep->num);  // active代表已经使用的对象数量，必然不

                                                         能超过num

        // 节省了slab结构体的开销

        while (page->active < cachep->num && batchcount--) {

                                        // 将新找到的slab中的batchcount个对象放入cpu cache中

            ...

            ac_put_obj(cachep, ac, slab_get_obj(cachep, page,

                node));

        }

        list_del(&page->lru);        // 将从中分配对象的slab(此slab可能在partial或free的

                                            链表中)重新加入到合适的列表中

        if (page->active == cachep->num)

            list_add(&page->lru, &n->slabs_full); // 如果没有空闲对象了，那么就把该页

                                                             面加入到full链表中

        else

            list_add(&page->lru, &n->slabs_partial); // 如果该slab中还有空闲对象，

                                                                  则加入partial链表中

    }

must_grow:

    n->free_objects -= ac->avail;

alloc_done:

    …

    if (unlikely(!ac->avail)) {

        int x;

force_grow:

        // partial和free链表中都没有可用的slab了，则必须新分配内存对kmem_cache进行扩充

        x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);

        ac = cpu_cache_get(cachep);

        node = numa_mem_id();

        ...

        // 第一次grow后，通常ac->avail为0，然后会跳转到retry，重新从链表中选择slab，

         然后重新将其添加到ac中

        if (!ac->avail)

            goto retry;

    }

    ac->touched = 1;

    // grow的流程中，由于前面已经retry，所以这里能保证ac中一定有需要的对象。另外没有grow

     的流程也会从这返回，此时ac中也一定是有对象可用的

    return ac_get_obj(cachep, ac, flags, force_refill);

}


 
这个过程中CPU cache优先会从slabs_partial和slabs_free中找可用的slab页面，然后把可用对象放入CPU cache中。假如没有可用对象，那只能通过cache_grow从伙伴系统中进行分配了。
 
[image: ]注意　page->active代表该slab中已经被使用的对象数量，所以它不能大于cachep->num即一个slab中的最大可用对象数量。
 
此外，上述过程中有三个函数比较重要：slab_get_obj、ac_put_obj、cache_grow。
 
slab_get_obj函数的作用是为了从slab中找到可用的对象：
 


static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,

        int nodeid)

{

    void *objp;

    objp = index_to_obj(cachep, page, get_free_obj(page, page->active));

    page->active++;

    ...

    return objp;

}



static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,

        unsigned int idx)

{

    return page->s_mem + cache->size * idx;

}



static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)

{

    return ((freelist_idx_t *)page->freelist)[idx];

}


 
slab_get_obj通过freelist找到可用的对象idx，然后通过index_to_obj计算出相对slab内存开始地址（page->s_mem）的偏移。
 
ac_put_obj是把找到的空闲对象放入到per-CPU缓存列表中：
 


ac->entry[ac->avail++] = objp;


 
cache_grow是从伙伴系统中分配内存给slab：
 


static int cache_grow(struct kmem_cache *cachep,

        gfp_t flags, int nodeid, struct page *page)

{

    void *freelist;

    size_t offset;

    gfp_t local_flags;

    struct kmem_cache_node *n;

    ...

    // 获取指定node对应的slab链表管理对象

    n = get_node(cachep, nodeid);

    ...

    // 着色计算

    offset = n->colour_next;

    n->colour_next++;

    if (n->colour_next >= cachep->colour)

        n->colour_next = 0;

    ...

    offset *= cachep->colour_off;

    ...

    if (!page)

        // 从伙伴系统中分配物理内存页，用于slab，根据cachep->gfporder

        page = kmem_getpages(cachep, local_flags, nodeid);

    if (!page)

        goto failed;

        // 创建slab空闲对象列表，内置方式从page起始地址开始，外置则通过kmallocl来分配

    freelist = alloc_slabmgmt(cachep, page, offset,

            local_flags & ~GFP_CONSTRAINT_MASK, nodeid);

    ...

    // 设置slab与slab缓冲区(kmem_cache)之间的关联

    slab_map_pages(cachep, page, freelist);

    // 调用各slab对象的构造函数(如果有的话)，初始化新slab中的对象。通常都没有。

    cache_init_objs(cachep, page);

    ...

    // 将新分配的slab加入到free链表中

    list_add_tail(&page->lru, &(n->slabs_free));

    ...

    n->free_objects += cachep->num;

    ...

    return 1;

    ...

}


 
通过上面分析，我们可以发现，在新版的内核中已经没有slab结构体，slab的数据都是存在page结构中的，降低了slab结构数据的额外维护，图3-18总结了新版内核中的slab组织形式。
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图3-18　slab的组织形式
 
在cache_grow过程中，着色计算之后的slab倾向于把大小相同的对象放在同一个cache line中，这也是通过空间换时间提升访问速度的解决方案。
 
3.slab通用缓存的初始化
 
这里有个悖论，在slab分配器还没初始化完成的时候，像kmem_cache、kmem_cache_node（三链管理节点）这些结构又是如何初始化的呢？答案是系统一开始是静态分配的，然后再通过kmalloc向伙伴系统中申请内存后进行替换。在start_kernel->mm_init后调用kmem_cache_init：
 


void __init kmem_cache_init(void)

{

    int i;

    ...

    kmem_cache = &kmem_cache_boot;                // 全局静态分配

    ...

    for (i = 0; i < NUM_INIT_LISTS; i++)

        kmem_cache_node_init(&init_kmem_cache_node[i]);

                                                        // 初始化每个节点的三链结构(静态分配)

    ...

    create_boot_cache(kmem_cache, "kmem_cache",

        offsetof(struct kmem_cache, node) +

                    nr_node_ids * sizeof(struct kmem_cache_node *),

                    SLAB_HWCACHE_ALIGN);// 通过kmem_cache_create初始化全局的kmem_

                                                  cache

    list_add(&kmem_cache->list, &slab_caches);

    slab_state = PARTIAL;

    ...

    {

        int nid;



        for_each_online_node(nid) {

          init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);                                                                // 把三链管理节点用kmalloc申请后替换

        ...

        }

    }

    // 通过kmalloc创建8到67108864的26个长度分档的通用cache

    create_kmalloc_caches(ARCH_KMALLOC_FLAGS);

}


3.5.3　内核态内存管理
 
现在我们已经知道了内核对于内存的管理方式，即伙伴系统和slab分配器，下面我们再来介绍内核中两种内存分配的函数。
 
1.连续物理地址的内存分配
 
Linux在slab分配器上提供了kmalloc函数，可以为内核申请连续的内存空间，由于kmalloc是基于slab分配器的，所以比较适合小块内存的申请，图3-19描述了kmalloc与slab分配器以及伙伴系统的关系。
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图3-19　kmalloc与slab分配器和伙伴系统的关系
 
kmalloc函数在实现的时候调用过程为kmalloc->__kmalloc->__do_kmalloc，其中__do_kmalloc的实现主要分为两步：
 
1）通过kmalloc_slab找到一个大小合适的kmem_cache缓存，该缓存在上一节中介绍过，在kmem_cache_init函数中进行初始化。
 
2）通过slab_alloc向slab分配器申请对象内存空间。
 
2.非连续物理地址的内存分配
 
很多时候连续的物理内存地址空间不一定能申请到，而且也不是必须的。Linux提供vmalloc函数来获得连续的线性地址空间，但是其物理内存不一定是连续的。我们可以猜测一下，这样的实现必然是利用了MMU来修改页表搞定的。下面我们通过分析vmalloc的实现来验证一下。
 
vmalloc函数的调用过程为：vmalloc->__vmalloc_node_flags->__vmalloc_node->__vmalloc_node_range，__vmalloc_node_range分为两个步骤：
 
1）__get_vm_area_node分配一个可用的线性地址空间，其核心调用为alloc_vmap_area：
 


static struct vmap_area *alloc_vmap_area(unsigned long size,

                                         unsigned long align,

                                         unsigned long vstart, unsigned long vend,

                                         int node, gfp_t gfp_mask)

{

    struct vmap_area *va;

    struct rb_node *n;

    unsigned long addr;

    int purged = 0;

    struct vmap_area *first;

    ...

        addr = ALIGN(vstart, align);

        if (addr + size < addr)

            goto overflow;

        n = vmap_area_root.rb_node;

        first = NULL;

        while (n) {

            struct vmap_area *tmp;

            tmp = rb_entry(n, struct vmap_area, rb_node);

            if (tmp->va_end >= addr) {        // 该虚拟区域结束地址大于希望分配的开始地址

                first = tmp;

                if (tmp->va_start <= addr)        // 虚拟区域起始地址小于希望分配的开始地

                                                          址，证明找到了这么一块区域

                    break;

                n = n->rb_left;        // 左子树，往小地址空间寻找

            } else

                n = n->rb_right;// 右子树，往大地址空间寻找

        }

        if (!first)                // 找到了一块需要寻找的起始地址落在该区域内

            goto found;

    }

    // 检查该区域内是否有空洞存在

    while (addr + size > first->va_start && addr + size <= vend) {

                                                // 需要分配的结束地址（addr+size）落在该区域内

        if (addr + cached_hole_size < first->va_start)

            cached_hole_size = first->va_start - addr;

        addr = ALIGN(first->va_end, align); // 结束地址+size小于结束地址，表示溢出了

        if (addr + size < addr)

            goto overflow;



            if (list_is_last(&first->list, &vmap_area_list)) // 最后一个区域也没有空洞，

                                                                     那就证明没问题了

            goto found;

        first = list_next_entry(first, list);

    }

found:

    if (addr + size > vend)

        goto overflow;

    // 下面开始赋值了

    va->va_start = addr;

    va->va_end = addr + size;

    va->flags = 0;

    __insert_vmap_area(va);        // 插入红黑树和链表中

    free_vmap_cache = &va->rb_node;

    ...

    return va;



overflow:        // 溢出

    ...

}


 
上述代码就是在VMALLOC_START和VMACLLOC_END的线性地址空间中，寻找一块连续并且“无空洞”的地址空间的过程。通过图3-20再结合之前内核对线性地址空间管理的知识，在32位系统中，进程的线性地址空间3GB～4GB之间是用来映射物理内存0～1GB之间的区域的。在这个区域中。3GB～3GB+896MB直接和物理地址0～896MB映射。而在8MB空隙之后，就是我们用来给VMALLOC映射高端物理内存的VMALLOC_START～VMALLOC_END区域。
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图3-20　vmalloc线性地址空间映射原理
 
2）__vmalloc_area_node为刚才申请的线性地址空间分配物理页面进行页表映射：
 


static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,

                pgprot_t prot, int node)

{

    const int order = 0;

    struct page **pages;

    unsigned int nr_pages, array_size, i;

    const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;

                                                                // 分配的内存页初始化为0

    const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;

    nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;        // 获取总共需要的页数

    array_size = (nr_pages * sizeof(struct page *));        // page结构数组所需要的空间大小

    area->nr_pages = nr_pages;

    if (array_size > PAGE_SIZE) { // page结构数组大于一个页面，则用vmalloc来申请，这

                                           ?里会成为递归

        pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,

                PAGE_KERNEL, node, area->caller);

    } else {

        pages = kmalloc_node(array_size, nested_gfp, node); // 否则通过kmalloc来分配

    }

    area->pages = pages;

    ...

    for (i = 0; i < area->nr_pages; i++) {

        struct page *page;



        // 通过alloc_pages来申请物理页面

        if (node == NUMA_NO_NODE)

            page = alloc_kmem_pages(alloc_mask, order);

        else

            page = alloc_kmem_pages_node(node, alloc_mask, order);

        ...

        area->pages[i] = page;

        ...

    }



    if (map_vm_area(area, prot, pages))        // 利用页表项来建立映射

        goto fail;

    return area->addr;

    ...

}


 
这个过程较为简单，就是通过alloc_pages一页一页申请物理内存，然后和线性地址空间进行映射。
3.5.4　用户态内存申请
 
之前介绍的kmalloc和vmalloc都是针对内核态的内存分配，针对用户态的内核分配，有libc的malloc库，或是其他方法，限于篇幅交给读者自己去做探究。这里我仅介绍malloc实现原理。
 
以32位系统为例，进程线性地址空间的组织形式如图3-21所示。在线性地址空间的底部维护了text、data、bss段，在高端维护了栈地址空间。中间则有heap区域和mmap区域。其中heap区域的start_brk为heap区域的起始，brk则是通过sys_brk系统调用对heap区域的伸缩进行控制，而mmap区域则通过mmap调用随机分配线性地址空间。
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图3-21　进程地址空间组织形式
 
无论是mmap还是sys_brk，最终分配的都是线性地址空间，物理内存都是没有分配的。当进程使用到该区域内存的时候，会发生缺页异常。这时候，异常中断响应程序会调用__do_page_fault->handle_mm_fault->handle_pte_fault->do_fault，最终通过alloc_pages分配物理地址空间。
 
[image: ]注意　malloc有多种实现，有libc的ptmalloc，有jmalloc，有谷歌的tcmalloc等。
3.6　栈内存分配和管理
 
进程的切换、函数的调用通常都要使用到栈（stack），进程的栈一般有两个，分别是内核态栈和用户态栈。其中，用户态栈就是上一节中介绍的线性地址空间中的栈地址空间，用户可以通过mmap来分配。
 
 
 [image: ] 


图3-22　进程内核态栈
 
每个进程都有自己的内核态栈，用于进程在内核代码中执行期间进行内存分配控制，见图3-22。其所在线性地址中的位置由该进程TSS段中ss0和esp0两个字段指定。ss0是进程内核态栈的段选择符，esp0是栈底指针。因此每当进程从用户代码转移进入内核代码中执行时，进程的内核态栈总是空的。进程内核态栈被设置在位于其进程数据结构所在页面的末端，即与进程的任务数据结构（task_struct）放在同一页面内。这是在建立新进程时，fork（）程序在任务TSS段的内核级栈字段（tss.esp0和tss.ss0）中设置的，在前面1.3.2节也已经介绍过。
3.7　内存管理案例分析
 
之前我们分析的是Linux内核对内存的管理方式，下面，我们来分析两个应用程序Memcached和Redis分别是如何来管理内存的。
 
虽然内核本身已经有对内存的分配和管理机制，但是假如动不动就通过内核去分配内存，对系统整体性能影响较大，而且不同的业务场景，对内存的需求也不一样，很容易因频繁申请产生大量碎片。所以，很多时候，我们需要在用户态去管理内存。
3.7.1　Memcached内存管理机制分析
 
Memcached对内存的管理有点类似内核的slab分配器，如图3-23所示。Memcached根据slab内存块的大小，把内存分为不同的slabclass，每个slabclass维护的slab是一样大的，slab在slab_list链表中被管理。每个slab中被格式化成相同大小的chunk，可以用来存储item。
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图3-23　Memcached内存管理结构
 
其中tails和heads队列用来管理被分配出去的针对相应slabclass的item，而被回收回来的item空间由slots来维护。
 
下面是slabclass和item的数据结构：
 


typedef struct {

    unsigned int size;            //  每个item大小

    unsigned int perslab;         //  每个slab中包含多少个item

    void **slots;                 //  空闲的item指针

    unsigned int sl_total;        //  已分配空闲的item 个数

    unsigned int sl_curr;         //  当前空闲的item位置(也就是实际空闲item个数)，从后往前数

    void *end_page_ptr;           //  指向最后一个页面中空闲的item开始位置

    unsigned int end_page_free;   //  最后一个页面，item个数

    unsigned int slabs;           //  实际使用slab个数

    void **slab_list;             //  slab数组指针

    unsigned int list_size;       //  已经分配slab个数

    …

    size_t requested;             //  所有使用内存的大小

} slabclass_t;



typedef struct _stritem {

    struct _stritem *next;// item在slab中存储时，是以双链表的形式存储的,next是后向指针

    struct _stritem *prev;        // prev为前向指针

    struct _stritem *h_next;      // hash桶中元素的链接指针

    rel_time_t      time;         // 最近访问时间

    rel_time_t      exptime;      // 过期时间

    int             nbytes;       // 数据大小

    unsigned short  refcount;     // 引用次数

    uint8_t         nsuffix;

    uint8_t         it_flags;

    uint8_t         slabs_clsid;  // 标记item属于哪个slabclass下

    uint8_t         nkey;         // key的长度

    union {

        uint64_t cas;

        char end;

    } data[];                     // 真实的数据信息

} item;


 
在系统初始化的时候，会通过slabs_init函数为slabclass分配空间：
 


void slabs_init(const size_t limit, const double factor, const bool prealloc) {

    int i = POWER_SMALLEST - 1;

    unsigned int size = sizeof(item) + settings.chunk_size;  // item的大小应该是item

                                                            ?结构+chunk_size

    mem_limit = limit;



    if (prealloc) {

        mem_base = malloc(mem_limit);        // 预分配内存， 先通过malloc来申请

        if (mem_base != NULL) {

            mem_current = mem_base;

            mem_avail = mem_limit;

        ...

    }

    memset(slabclass, 0, sizeof(slabclass));

    // 下面计算每个slabclass中slab的大小，根据factor递增

    while (++i < POWER_LARGEST && size <= settings.item_size_max / factor) {

        // items已经根据n字节对齐

        if (size % CHUNK_ALIGN_BYTES)

            size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);

        slabclass[i].size = size;

        slabclass[i].perslab = settings.item_size_max / slabclass[i].size;

        size *= factor;

        ...

    }

    // 最后一个slabclass中的slab仅有1个chunk，大小为item_size_max

    power_largest = i;

    slabclass[power_largest].size = settings.item_size_max;

    slabclass[power_largest].perslab = 1;

    ...

    if (prealloc) {

        slabs_preallocate(power_largest);

    }

}


 
slabs_init主要用于初始化slabclass的规则（slab中的chunk大小以及每个slab中chunk的个数）。
 
假如内存是预分配的，则会先初始化一下每个slabclass中的slab，该实现较为简单，读者可以自己分析slabs_preallocate函数，其最终会调用do_slabs_alloc->do_slabs_newslab初始化一个slab，然后把该slab挂载到slabclass的slab_list队列中。
 
假如需要对某个item申请内存，则通过do_item_alloc来实现：
 


item *do_item_alloc(char *key, const size_t nkey, const int flags,

            const rel_time_t exptime, const int nbytes,

            const uint32_t cur_hv) {

    uint8_t nsuffix;

    item *it = NULL;

    char suffix[40];

    size_t ntotal = item_make_header(nkey + 1, flags, nbytes, suffix,

         &nsuffix);

    ...

    unsigned int id = slabs_clsid(ntotal);

    ...

    search = tails[id];

    ...

    if (!tried_alloc && (tries == 0 || search == NULL))

        it = slabs_alloc(ntotal, id);

    // 下面代码对item进行初始化

    ...

    it->refcount = 1;

    mutex_unlock(&cache_lock);

    it->next = it->prev = it->h_next = 0;

    it->slabs_clsid = id;



    DEBUG_REFCNT(it, '*');

    it->it_flags = settings.use_cas ? ITEM_CAS : 0;

    it->nkey = nkey;

    it->nbytes = nbytes;

    memcpy(ITEM_key(it), key, nkey);

    it->exptime = exptime;

    memcpy(ITEM_suffix(it), suffix, (size_t)nsuffix);

    it->nsuffix = nsuffix;

    return it;

}


 
在do_item_alloc中，先通过item的总大小找到合适的slabclass，然后再到tails等队列中去找是否有可用的空间，最后，假如没有可用空间了，通过slabs_alloc再申请一块slab挂到slabclass上去（通过do_slabs_alloc）。
 
通过分析可以发现，Memcached的内存分配机制非常类似于内核的slab分配器，也是避免内部碎片的一种解决方案。
3.7.2　Redis内存管理机制分析
 
在Redis中，zmalloc对内存分配函数进行封装，允许按配置使用tcmalloc、jemalloc等库，它们速度快内存使用率高，并支持统计内存使用率。
 
在Redis的zmalloc.c源码中，我们可以看到如下代码：
 


#if defined(USE_TCMALLOC)

#define malloc(size) tc_malloc(size)

#define calloc(count,size) tc_calloc(count,size)

#define realloc(ptr,size) tc_realloc(ptr,size)

#define free(ptr) tc_free(ptr)

#elif defined(USE_JEMALLOC)

#define malloc(size) je_malloc(size)

#define calloc(count,size) je_calloc(count,size)

#define realloc(ptr,size) je_realloc(ptr,size)

#define free(ptr) je_free(ptr)

#endif


 
从上面的代码中我们可以看到，Redis在编译时，会先判断是否使用tcmalloc，如果是，会用tcmalloc对应的函数替换掉标准的libc中的函数实现。然后判断jemalloc是否使用，最后如果都没有使用才会用标准的libc中的内存管理函数。
 
在2.4以上的Redis版本中，jemalloc已经作为源码包的一部分了，所以可以直接使用。而如果你要使用tcmalloc的话，是需要自己安装的。
 
Redis通过info命令就能看到使用的内存分配器了。
 
对于tcmalloc、jemalloc和libc对应的三个内存分配器，它们的性能和碎片率如何呢？下面是一个简单测试结果，使用Redis自带的redis-benchmark写入等量数据进行测试，数据摘自采用不同分配器时Redis info信息。我们可以看到，采用tcmalloc时碎片率是最低的，为1.01，jemalloc为1.02，而libc的分配器碎片率为1.31，如下所示：
 


used_memory:708391440

used_menory_human:675.57M

used_memory_rss:715169792

used_memory_peak:708814040

used_memory_peak_human:675.98M

mem_fragmentation_ratio:1.01

mem_allocator:tcmalloc-1.7

used_memory:708381168

used_menory_human:675.56M

used_memory_rss:723587072

used_memory_peak:708803768

used_memory_peak_human:675.97M

mem_fragmentation_ratio:1.02

mem_allocator:jemalloc-2.2.1

used_memory:869000400

used_menory_human:828.74M

used_memory_rss:1136689152

used_memory_peak:868992208

used_memory_peak_human:828.74M

mem_fragmentation_ratio:1.31

mem_allocator:libc


 
上面的测试数据都是小数据，也就是说单条数据量并不大，下面我们尝试设置benchmark的-d参数，将value值调整为1k大小，则测试结果发生了一些变化：
 


used_memory:830573680

used_memory_human:792.10M

used_memory_rss:849068032

used_memory_peak:831436048

used_memory_peak_human:792.92M

mem_fragmentation_ratio:1.02

mem_allocator:tcmalloc-1.7

used_memory:915911024

used_memory_human:873.48M

used_memory_rss:927047680

used_memory_peak:916773392

used_memory_peak_human:874.30M

mem_fragmentation_ratio:1.01

mem_allocator:jemalloc-2.2.1

used_memory:771963304

used_memory_human:736.20M

used_memory_rss:800583680

used_memory_peak:772784056

used_memory_peak_human:736.98M

mem_fragmentation_ratio:1.04

mem_allocator:libc


 
可以看出，在分配大块内存和小块内存上，几种分配器的碎片率差距还是比较大的。所以在使用Redis的时候，还是尽量用自己真实的数据去做测试，以选择最适合自己数据的分配器。
3.8　本章小结
 
要理解操作系统是如何管理内存的，首先需要了解MMU的内存管理机制，其核心还是分段和分页的机制，其中会涉及几个重要地址：线性地址、物理地址、虚拟地址。
 
本章以内存在体系结构中的作用为切入点，首先介绍了内存在使用中会遇到的问题，为什么需要管理等，然后介绍了MMU以及相关地址空间的核心概念。
 
有了底层硬件层面提供的概念和管理能力后，Linux操作系统就是针对这些能力在上层进行了更加有针对性的建模和封装。开头我们已经提到，内存的管理主要围绕堆和栈来进行。Linux内核对堆的管理核心还是围绕伙伴算法、slab分配器来展开的，并且提供了相关的能力：kmalloc、vmalloc、malloc等。对于栈的管理，我们需要区分内核栈和用户栈。
 
最后，为了便于更加深入理解内存管理，我们还介绍了Memcached和Redis是如何管理内存的。
 
内存管理的话题其实还有另一部分，比如系统启动时，内存分配器还没初始化时，系统是如何来分配管理内存的？malloc有不同实现，细节是怎样的？内存和磁盘之间的交换又是如何实现的？这些问题就交给读者自己去解决了。
第4章　中断机制
 
我们编写的程序在运行的时候，并不会一直占据着CPU资源，比如你需要和外部设备做交互（读写磁盘数据、读写网络接口等），那么你就要主动放弃CPU，当外部设备数据就绪后，就会通过中断机制来通知CPU切换回你刚才运行程序的上下文继续往下执行。
 
另外，即使是CPU密集型运算的程序，系统也并不仅仅给一个进程来运行。为了对系统中所有的进程公平起见，一般会通过时钟中断的机制，定期打断当前在CPU中的进程，以便切换给其他进程以得到公平运行的机会。
 
可以这样说，中断响应的机制对于现代操作系统来讲尤为重要，该机制解放了CPU，对提升系统的利用率起到了非常大的作用。
 
假如没有中断机制，那么所有条件是否满足的判断都需要CPU进行轮询忙等待，这样就会增加系统的开销，浪费CPU的资源。
 
本章通过以下几个问题来分析操作系统的中断机制：
 
1）为什么要引入中断机制，x86系统的中断机制。
 
2）Linux系统如何对中断机制进行封装和实现。
 
3）Linux引入了软中断、tasklet、工作队列等机制是怎样的。
 
4）系统调用、时钟中断、信号处理机制等在Linux中是如何实现的。
4.1　x86系统的中断机制
 
先举个例子来说明中断机制带来的好处。假如你的汽车出了问题，要去4s店维修，工作人员告诉你，今天就可以取车，但是什么时间点不确定。没有中断机制的情况下，你就什么事情都不能干，在4S店刷刷手机，在无聊中干等一天。有了中断机制，工作人员就会说，你现在可以出去干其他事情，等修好了会打电话通知你来取车；这样你就有可能去看一场电影，或者干点别的你想做的任何事情，直到电话响起后，你再确定何时去4S店取车。
 
操作系统中断机制的好处就是让CPU把某些需要轮询等待的空闲时间释放出来，化主动为被动，可以把释放出来的时间用于其他逻辑运算的工作，提升CPU的有效利用率。
 
我们平时工作接触最多的操作系统就是x86架构的系统了，所以先分析一下x86下的中断机制。
4.1.1　x86中断架构
 
x86中断架构如图4-1所示。当我们想通知CPU发生中断的时候，可以通过以下两种方式来进行：
 
·int指令，比如用户自己编写的软件，可以通过int指令来实现中断CPU的目的。
 
·通过与CPU连接的相关芯片（例如8259A）把外部中断的信号传递给CPU，例如8259A芯片连接了磁盘或者键盘，当这些外部设备就绪，需要通知CPU响应的时候，就会发生外部中断。
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图4-1　x86中断机制
 
中断信息注册在内存中的中断向量表中，通过中断向量可以找到相应中断处理的地址，当CPU响应相关中断指令或者信号后，就会执行中断处理程序。
4.1.2　x86在保护模式下的中断
 
现在我们已经了解了x86硬件的中断机制和中断向量的原理。不过，在x86的保护模式中，CPU并非直接访问内存中的中断向量表地址，为了安全，其访问的是中断门数据结构，门的数据也存放在内存中，类似于GDT（全局描述表）或IDT（中断描述表）的描述符。中断门的结构如图4-2所示。
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图4-2　中断门结构
 
在中断门结构中，最核心的就是选择子和偏移量。BYTE 3和BYTE 2组成了16位的段选择子，BYTE 7和BYTE 6保存了偏移量的高16位，BYTE 1和BYTE 0保存了偏移量的低16位，组合起来就是32位的段内偏移量。
 
另外代表属性的BYTE 5和BYTE 4两个字节中的P、DPL、S、TYPE等字段和3.2.2节中的GDT中的字段是一致的。
 
中断门结构中最重要的是保存了程序段的选择子和段内的偏移量，这样就可以找到相应的中断处理程序。门的机制就相当于一个关卡（Gate）做了一道安全检测和拦截。
 
在访问门描述符时要将描述符当作一个数据段来检查访问权限，要求指定门的选择子的RPL≤门描述符DPL，同时当前代码段CPL≤门描述符DPL，就如同访问数据段一样，要求访问数据段的程序的CPL≤待访问的数据段的DPL，同时选择子的RPL≤待访问的数据段或堆栈段的DPL。只有满足了以上条件，CPU才会进一步从调用门描述符中读取目标代码段的选择子和地址偏移，进行下一步的操作。
 
要了解RPL、DPL、CPL等概念，需要了解X86的保护模式。X86的保护模式核心就是提供特权等级概念，以便对代码和数据进行访问的时候进行保护和控制。特权级分为0，1，2，3四级，数字越小权限越高。
 
图4-3是特权级在操作系统中应用。
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图4-3　特权等级
 
这些特权等级，通过三个符号来体现CPL/RPL/DPL：
 
·CPL（Current Privilege Level）是当前进程的权限级别，是当前正在执行的代码所在的段的特权级，存在于CS寄存器的低两位。（个人认为可以看成是段描述符未加载入CS前，该段的DPL，加载入CS后就存入CS的低两位，所以叫CPL，其值就等于原段DPL的值）。
 
·RPL（Request Privilege Level）说明的是进程对段访问的请求权限，是对于段选择子而言的，每个段选择子有自己的RPL，是进程对段访问的请求权限，有点像函数参数。而且RPL对每个段来说不是固定的，两次访问同一段时的RPL可以不同。RPL可能会削弱CPL的作用，例如当前CPL=0的进程要访问一个数据段，把段选择符中的RPL设为3，这样虽然它对该段仍然只有特权为3的访问权限。
 
·DPL（Descriptor Privilege Level）存储在段描述符中，规定访问该段的权限级别，每个段的DPL固定。当进程访问一个段时，需要进程特权级检查，一般要求DPL>=max{CPL，RPL}。
4.2　Linux对中断的支持和实现
 
为了更好地支持上层不同的业务场景，Linux在硬件提供的中断机制之上进行了封装和扩展。下面通过图4-4来介绍Linux内核对中断机制的封装。
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图4-4　Linux内核中的中断机制
 
Linux在启动阶段会通过set_intr_gate来设置中断门和中断向量。开发者可以通过request_irq来给相应的中断向量设置回调函数。当中断发生的时候，会触发通用中断程序common_interrupt并且调用do_IRQ来触发相应中断向量的回调函数。下面着重来分析Linux中断机制中最关键的三个部分。
4.2.1　初始化IRQ中断门
 
为什么IRQ中断可以被响应呢？因为在系统的初始化过程中调用了init_IRQ，通过设置中断门初始化了中断向量（代码详见：/linux-4.15.8/arch/x86/kernel/irqinit.c）：
 


void __init init_IRQ(void)

{

    int i;

    for (i = 0; i < nr_legacy_irqs(); i++)

    per_cpu(vector_irq, 0)[ISA_IRQ_VECTOR(i)] = irq_to_desc(i);

    x86_init.irqs.intr_init();

}


 
通过下面的irqs定义可以发现真正调用的是native_init_IRQ函数：
 


.irqs = {

.pre_vector_init          = init_ISA_irqs,

.intr_init                = native_init_IRQ,

.trap_init                = x86_init_noop,

},


 
在native_init_IRQ函数中，通过set_intr_gate设置中断门并且初始化中断向量，从0x20（FIRST_EXTERNAL_VECTOR）开始到256（NR_VECTORS）：
 


void __init native_init_IRQ(void)

{

    int i;

    …

    for_each_clear_bit_from(i, used_vectors, first_system_vector) {

        set_intr_gate(i, irq_entries_start +

        8 * (i - FIRST_EXTERNAL_VECTOR));

    }

…

}


4.2.2　中断响应流程
 
通过图4-3可以看到，当中断发生的时候，会触发中断处理函数，从irq_entries_start处开始：
 


.align 8

ENTRY(irq_entries_start)

vector=FIRST_EXTERNAL_VECTOR

.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)

pushl        $(~vector+0x80)

vector=vector+1

jmp        common_interrupt

.align        8

.endr

END(irq_entries_start)


 
上面函数的.rept这一行，会重复（FIRST_SYSTEM_VECTOR-FIRST_EXTERNAL_VECTOR）次，根据native_init_IRQ可以理解，当传入的中断号不同，则传入的vector也不同。
 
最终会通过common_interrupt调用do_IRQ函数。
 
do_IRQ在获取中断向量通过handle_irq->generic_handle_irq_desc调用了irq所对应的irq_desc结构的handle_irq：
 


static inline void generic_handle_irq_desc(struct irq_desc *desc)

{

    desc->handle_irq(desc);

}


 
这些标准的回调函数都是irq_flow_handler_t类型：
 


typedef         void (*irq_flow_handler_t)(unsigned int irq,

struct irq_desc *desc);


 
目前的通用中断子系统实现了以下这些标准流控回调函数，这些函数都定义在kernel/irq/chip.c中：
 
·handle_simple_irq用于简易流控处理。
 
·handle_level_irq用于电平触发中断的流控处理。
 
·handle_edge_irq用于边沿触发中断的流控处理。
 
·handle_fasteoi_irq用于需要响应eoi的中断控制器。
 
·handle_percpu_irq用于只在单一CPU响应的中断。
 
·handle_nested_irq用于处理使用线程的嵌套中断。
 
最终会执行用户注册的中断处理程序action。以上几种回调函数，最终都调用了handle_irq_event。
 
handle_irq_event最终调用执行了handle_irq_event_percpu函数：
 


irqreturn_t handle_irq_event_percpu(struct irq_desc *desc)

{

    irqreturn_t retval = IRQ_NONE;

    unsigned int flags = 0, irq = desc->irq_data.irq;

    struct irqaction *action = desc->action;

    while (action) {

    irqreturn_t res;



    …

    res = action->handler(irq, action->dev_id);        // 执行中断的action注册的handler

    …

    retval |= res;

    action = action->next;                             // 获取下一个action事件

    }

    …

return retval;

}


 
handle_irq_event_percpu将中断向量desc注册的action链表中的handler挨个执行一遍。
4.2.3　中断回调handler注册过程
 
在掌握了Linux的中断发生和响应处理机制后，我们发现，中断发生的时候处理最终回调的是在中断向量中注册的action中的handler。那么handler是如何注册上去的呢？
 
内核提供了request_irq函数进行注册自定义handler的功能：
 


request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,

const char *name, void *dev)


 
其调用链为request_irq->request_threaded_irq->__setup_irq，然后把构建出来的action插入到中断向量的action链表中：
 


…

do {

    thread_mask |= old->thread_mask;

    old_ptr = &old->next;

    old = *old_ptr;

} while (old);

shared = 1;

}

…


4.3　Linux加速中断处理的机制
 
在中断发生之后，假如中断处理的回调函数需要很长的时间，那么会对系统性能造成很大的影响，比如中断频繁发生的情况下，后续的中断就会得不到响应。Linux为了解决这个问题提供了几个异步工具来加快中断处理执行的过程，比如软中断、tasklet、工作队列等。
4.3.1　软中断
 
软中断可以在不触发硬件中断机制的情况下，进行中断业务流程的模拟实现，其原理是通过后台异步线程+队列的方式来模拟异步事件回调的机制。
 
软中断的注册函数为：
 


void open_softirq(int nr, void (*action)(struct softirq_action *))

{

softirq_vec[nr].action = action;

}


 
软中断的资源是有限的，内核目前只实现了10种类型的软中断，它们是：
 


enum

{

    HI_SOFTIRQ=0,

    TIMER_SOFTIRQ,

    NET_TX_SOFTIRQ,

    NET_RX_SOFTIRQ,

    BLOCK_SOFTIRQ,

    IRQ_POLL_SOFTIRQ,

    TASKLET_SOFTIRQ,

    SCHED_SOFTIRQ,

    HRTIMER_SOFTIRQ,        // 没有使用，但有时候可以有一些工具依赖它

    RCU_SOFTIRQ,            // 最好的RCU总是放在最后的软中断



    NR_SOFTIRQS

};


 
[image: ]注意　内核的开发者们不建议我们擅自增加软中断的数量，如果需要新的软中断，尽可能把它们实现为基于软中断的tasklet形式。
 
下面通过图4-5来说明软中断的响应流程，在软中断实现中，每个CPU都维护了一个后台响应的进程ksoftirqd：
 


static __init int spawn_ksoftirqd(void)

{

    register_cpu_notifier(&cpu_nfb);

    …

    return 0;

}

early_initcall(spawn_ksoftirqd);



static struct smp_hotplug_thread softirq_threads    = {

    .store                        = &ksoftirqd,

    .thread_should_run            = ksoftirqd_should_run,

    .thread_fn= run_ksoftirqd,

    .thread_comm                  = "ksoftirqd/%u",

};



DECLARE_PER_CPU(struct task_struct *, ksoftirqd);



static inline struct task_struct *this_cpu_ksoftirqd(void)

{

    return this_cpu_read(ksoftirqd);

}
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图4-5　软中断响应流程
 
通过系统初始化时候的守护线程最终调用了run_ksoftirqd，其核心实现为__do_softirq（）函数：
 


static void run_ksoftirqd(unsigned int cpu)

{

    ..

    __do_softirq();

    …

}



asmlinkage __visible void __do_softirq(void)

{

    unsigned long end = jiffies + MAX_SOFTIRQ_TIME;

    unsigned long old_flags = current->flags;

    int max_restart = MAX_SOFTIRQ_RESTART;        // 启动ksoftirqd之前，最大的处理softirq的

                                                   次数，经验值

    struct softirq_action *h;

    bool in_hardirq;

    __u32 pending;

    int softirq_bit;

    …

    // 取得当前被挂起的softirq，同时这里也解释了为什么Linux内核最多支持32个softirq,因为

        pending只有32位

    pending = local_softirq_pending();

    account_irq_enter_time(current);

    __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET);

    in_hardirq = lockdep_softirq_start();

    restart:

    set_softirq_pending(0); // 获取pending的softirq之后，清空所有pending的softirq标志

    local_irq_enable();

    h = softirq_vec;

    while ((softirq_bit = ffs(pending))) { // 从最低位开始，循环右移逐位处理pending的softirq

        unsigned int vec_nr;

        int prev_count;

        h += softirq_bit - 1;

        vec_nr = h - softirq_vec;

        prev_count = preempt_count();

        kstat_incr_softirqs_this_cpu(vec_nr);

        trace_softirq_entry(vec_nr);

        h->action(h);        // 执行softirq的处理函数

        …

}

h++;

pending >>= softirq_bit;        // 循环右移

}

..

local_irq_disable();

pending = local_softirq_pending();

    if (pending) {

    if (time_before(jiffies, end) && !need_resched() &&

    --max_restart)        // 启动ksoftirqd的阈值

    goto restart;

    wakeup_softirqd();        // 启动ksoftirqd去处理softirq,此时说明pending的softirq比

                                    较多，比较频繁，上面的处理过程中，又不断有softirq被pending

    }

    …

}


 
在__do_softirq执行过程中只要在pending中的软中断标志位被设置了，那么就会调用该中断的action函数。
 
最后，软中断处理函数注册后，还需要将该软中断激活才能被执行，激活操作是通过raise_softirq函数来实现，它调用了raise_softirq_irqoff函数：
 


inline void raise_softirq_irqoff(unsigned int nr)

{

    __raise_softirq_irqoff(nr);

    if (!in_interrupt())

    // 假如不在中断当中，那么我们尽快唤醒softirqd进行下半部的处理

    wakeup_softirqd();

}

我们着重关注一下__raise_softirq_irqoff(nr)：

void __raise_softirq_irqoff(unsigned int nr)

{

    trace_softirq_raise(nr);

    or_softirq_pending(1UL << nr);

}



#define or_softirq_pending(x)  (local_softirq_pending() |= (x))


 
__raise_softirq_irqoff把我们的中断号左移之后进行异或操作合并到pending标志位中，便于softirqd线程进行处理。
4.3.2　tasklet
 
在分析软中断的时候，我们已经了解到内核开发者平时不建议我们使用软中断，最好使用tasklet机制，因为其本身也是软中断的一部分。
 
软中断专门实现了TASKLET_SOFTIRQ，其action为：
 


static void tasklet_action(struct softirq_action *a)

{

struct tasklet_struct *list;



local_irq_disable();

list = __this_cpu_read(tasklet_vec.head);

__this_cpu_write(tasklet_vec.head, NULL);

__this_cpu_write(tasklet_vec.tail, this_cpu_ptr(&tasklet_vec.head));

local_irq_enable();



    while (list) {

    struct tasklet_struct *t = list;



    list = list->next;



        if (tasklet_trylock(t)) {

            if (!atomic_read(&t->count)) {

            if (!test_and_clear_bit(TASKLET_STATE_SCHED,

            &t->state))

            BUG();

            t->func(t->data);

            tasklet_unlock(t);

            continue;

            }

        tasklet_unlock(t);

        }



    local_irq_disable();

    t->next = NULL;

    *__this_cpu_read(tasklet_vec.tail) = t;

    __this_cpu_write(tasklet_vec.tail, &(t->next));

    __raise_softirq_irqoff(TASKLET_SOFTIRQ);

    local_irq_enable();

    }

}


 
从tasklet_action实现可以发现，只要tasklet_vec向量队列中有tasklet存在，那么就拿出来执行func函数。
 
tasklet的结构如下：
 


struct tasklet_struct

{

    struct tasklet_struct *next;

    unsigned long state;

    atomic_t count;

    void (*func)(unsigned long);

    unsigned long data;

};


 
并且可以通过下面的宏来定义：
 


#define DECLARE_TASKLET(name, func, data)

struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(0), func, data }


 
我们可以通过调用tasklet_schedule把tasklet提交到tasklet队列中：
 


static inline void tasklet_schedule(struct tasklet_struct *t)

{

    if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))

    __tasklet_schedule(t);

}


 
其实执行的是__tasklet_schedule函数：
 


void __tasklet_schedule(struct tasklet_struct *t)

{

    unsigned long flags;

    local_irq_save(flags);

    t->next = NULL;

    *__this_cpu_read(tasklet_vec.tail) = t;

    __this_cpu_write(tasklet_vec.tail, &(t->next));

    raise_softirq_irqoff(TASKLET_SOFTIRQ);

    local_irq_restore(flags);

}


 
可以发现__tasklet_schedule把tasklet放到了tasklet向量队列的队尾，并且最后通知softirqd线程处理tasklet信号。
 
因为tasklet机制就是基于TASKLET_SOFTIRQ的软中断来实现的，所以只要掌握了软中断机制，tasklet也就很好理解了。
4.3.3　工作队列
 
工作队列类似于应用层代码中线程池概念，我们把work提交到队列，然后由相关的线程从队列中提取work并且执行，其原理如图4-6所示。
 
当我们创建一个工作队列后（wq），它为每个CPU都分配了一个工作队列池（pool_workqueue结构的pool），同时会创建一个工作线程work_thread和该池中的worklist挂钩，来处理提交上来的work。
 
可以通过alloc_workqueue宏来分配一个工作队列：
 


#define alloc_workqueue(fmt, flags, max_active, args...)

__alloc_workqueue_key((fmt), (flags), (max_active),

NULL, NULL, ##args)


 
其参数如下：
 
·name是wq的名称，并且会被当作相应救援线程的名称。
 
·flag和max_active用来控制到底有多少工作项被分配了执行资源，被调度和执行。
 
Flag的几种类型说明：
 
·WQ_UNBOUND：unbound队列中的工作项会被相应的工作者线程池处理，这些线程池管理的工作者不会和任何制定的CPU绑定。这样的话，该队列的行为就相当于是提供了一个简单的执行上下文，而不会做并发管理。未绑定的线程池只要有可能就会试图启动工作项的执行。未绑定的队列牺牲了CPU的相关性，但是有以下用处。
 
·WQ_FREEZABLE：冻结队列因为参与了系统的挂起操作流程，在该队列上的工作项会被排出（**drained**），直到被解冻之前都不会执行新的工作项。
 
·WQ_MEM_RECLAIM：所有有可能运行在内存回收流程中的工作队列都需要设置该标记。这样能够确保即使在内存压力比较大的情况下都能有至少一个执行上下文能够运行。
 
·WQ_HIGHPRI：highpri队列中的工作项会由指定的CPU上的工作者线程池来处理。highpri工作者线程池中的线程具有较高的nice值（用top或ps查看的进程%nice指标）。
 
·WQ_CPU_INTENSIVE：CPU密集型工作队列中的工作项并不会对并发级别产生贡献。换句话说，可以运行的CPU密集型工作项不会阻止相同工作者线程池上的工作项的运行。对于绑定的并且希望独占CPU周期的工作项，这个flag是有用的，因为它们的运行可以被系统进程调度程序调节。虽然CPU密集型的工作项不对并发级别做出贡献，但是它们的执行仍然会被并发管理所调节，因为可以运行的那些非CPU密集型工作项可以延迟CPU密集型工作项的运行。这个标记对于unbound工作队列没有什么意义。
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图4-6　工作队列原理示意图
 
从alloc_workqueue宏代码发现创建工作队列最终调用了__alloc_workqueue_key方法：
 


struct workqueue_struct *__alloc_workqueue_key(const char *fmt,

unsigned int flags,

int max_active,

struct lock_class_key *key,

const char *lock_name, ...)

{

    size_t tbl_size = 0;

    va_list args;

    struct workqueue_struct *wq;

    struct pool_workqueue *pwq;

    …

    if (flags & WQ_UNBOUND)

    tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);        // 等待队列的结构体空间大小，一

                                                                // 共nr_node_ids个

    wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);        // 为workqueue申请内存空间

    if (!wq)

    return NULL;

    if (flags & WQ_UNBOUND) {

    wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);

    if (!wq->unbound_attrs)

    goto err_free_wq;

}

va_start(args, lock_name);

vsnprintf(wq->name, sizeof(wq->name), fmt, args);        // 格式化工作队列的name

va_end(args);

max_active = max_active ?: WQ_DFL_ACTIVE;

max_active = wq_clamp_max_active(max_active, flags, wq->name);

// init wq 下面操作初始化工作队列中的列表

wq->flags = flags;

wq->saved_max_active = max_active;

mutex_init(&wq->mutex);

atomic_set(&wq->nr_pwqs_to_flush, 0);

INIT_LIST_HEAD(&wq->pwqs);

INIT_LIST_HEAD(&wq->flusher_queue);

INIT_LIST_HEAD(&wq->flusher_overflow);

INIT_LIST_HEAD(&wq->maydays);

lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);

INIT_LIST_HEAD(&wq->list);

if (alloc_and_link_pwqs(wq) < 0)

goto err_free_wq;

if (flags & WQ_MEM_RECLAIM) { // WQ_MEM_RECLAIM场景，在内存紧张的时候，分配一个救援线

                                　　　　程来处理work

    struct worker *rescuer;

    rescuer = alloc_worker(NUMA_NO_NODE);

    if (!rescuer)

    goto err_destroy;

    rescuer->rescue_wq = wq;

    rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",

    wq->name);

    if (IS_ERR(rescuer->task)) {

        kfree(rescuer);

        goto err_destroy;

    }

    wq->rescuer = rescuer;

    kthread_bind_mask(rescuer->task, cpu_possible_mask);

    wake_up_process(rescuer->task);

}

…

mutex_lock(&wq_pool_mutex);

mutex_lock(&wq->mutex);

for_each_pwq(pwq, wq)

pwq_adjust_max_active(pwq);        // 遍历调整每个pwq的max_active大小

mutex_unlock(&wq->mutex);

list_add_tail_rcu(&wq->list, &workqueues);

mutex_unlock(&wq_pool_mutex);

return wq;

…

}


 
上面的代码主要初始化了workqueue的结构体，申请内存空间，并且初始化pool_work-queue的max_active，假如是WQ_MEM_RECLAIM场景会创建一个救援线程。
 
接着我们分析任务的提交，先来看提交给指定CPU的workqueue队列，任务会通过queue_work_on函数提交，在任务提交后，都会执行__queue_work方法：
 


static void __queue_work(int cpu, struct workqueue_struct *wq,

struct work_struct *work)

{

    struct pool_workqueue *pwq;

    struct worker_pool *last_pool;

    struct list_head *worklist;

    unsigned int work_flags;

    unsigned int req_cpu = cpu;

    …

    retry:

    if (req_cpu == WORK_CPU_UNBOUND)  // 在不需要绑定CPU的场景下，找一个未被work绑定的CPU

    cpu = wq_select_unbound_cpu(raw_smp_processor_id());



    // 除非work在其他地方执行，否则使用pwq

    if (!(wq->flags & WQ_UNBOUND))

    pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);

    else

    pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));



    // 假如该work之前已经在其他的pool中了，那么会在那边继续运行,pool保证不能重入

    last_pool = get_work_pool(work);

    if (last_pool && last_pool != pwq->pool) {

    struct worker *worker;

    spin_lock(&last_pool->lock);

    worker = find_worker_executing_work(last_pool, work);

    if (worker && worker->current_pwq->wq == wq) {

    pwq = worker->current_pwq;

    …

    insert_work(pwq, work, worklist, work_flags);        // 最后把work插入到工作队列中

    spin_unlock(&pwq->pool->lock);

}


 
最后我们开每个pool都会创建一个work_thread来进行后台队列处理：
 


static struct worker *create_worker(struct worker_pool *pool)

{

struct worker *worker = NULL;

int id = -1;

char id_buf[16];

…

worker = alloc_worker(pool->node);        // 从内存中分配work空间

…

worker->pool = pool;

worker->id = id;

…

worker->task = kthread_create_on_node(worker_thread, worker, pool->node,

    "kworker/%s", id_buf);                // 创建一个work线程

…

set_user_nice(worker->task, pool->attrs->nice);

kthread_bind_mask(worker->task, pool->attrs->cpumask);

worker_attach_to_pool(worker, pool);        // 把worker挂到pool队列中

spin_lock_irq(&pool->lock);

worker->pool->nr_workers++;

worker_enter_idle(worker);

wake_up_process(worker->task);                // 唤醒新创建的work线程

spin_unlock_irq(&pool->lock);

return worker;

…

}


 
create_worker创建的内核进程会在后台一直工作，处理提交的worker。
4.4　系统调用
 
系统调用（syscall）是Linux系统中非常重要的概念，操作系统的核心功能，如进程、内存、I/O、文件系统等，都是以系统调用的方式提供给用户态程序的。常见的Linux系统调用分类可以参考：https://www.ibm.com/developerworks/cn/linux/kernel/syscall/part1/appendix.html。
 
系统调用的实现方式也和中断机制有关，在前面介绍trap_init方法的时候，其中有一行代码：
 


set_system_trap_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);


 
该行注册了系统调用的中断向量：
 


#define IA32_SYSCALL_VECTOR                0x80


 
可以发现系统调用的中断向量号为0x80，我们接着看中断处理函数的实现：
 


ENTRY(entry_INT80_32)

ASM_CLAC

pushl        %eax                       // pt_regs->orig_ax 把系统调用号保存到pt_regs->org_ax中

SAVE_ALL pt_regs_ax=$-ENOSYS            // 在中断发生前夕，要把所有相关寄存器的内容都保存在堆栈

                                           中,这是通过SAVE_ALL宏完成的

movl        %esp, %eax                  // 把esp栈顶放入到eax中，因为eax一般都是作为函数调用

                                           参数的

call do_syscall_32_irqs_on


 
在32位系统中，最终调用了do_syscall_32_irqs_on函数：
 


__always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)

{

    struct thread_info *ti = pt_regs_to_thread_info(regs);

    unsigned int nr = (unsigned int)regs->orig_ax; // 获取系统调用号

    …

    if (likely(nr < IA32_NR_syscalls)) {

        regs->ax = ia32_sys_call_table[nr](                // 执行系统调用的过程

        (unsigned int)regs->bx, (unsigned int)regs->cx,

        (unsigned int)regs->dx, (unsigned int)regs->si,

        (unsigned int)regs->di, (unsigned int)regs->bp);

    }

…

}


 
该函数通过nr系统调用号找到了系统调用表中的响应系统调用函数，并且压入regs栈中的数据，然后执行以下代码：
 


__visible const sys_call_ptr_t ia32_sys_call_table[__NR_syscall_compat_max+1] = {

    [0 ... __NR_syscall_compat_max] = &sys_ni_syscall,

    #include <asm/syscalls_32.h>

};


 
其中sys_call_table数组的初始化使用GCC的扩展语法，语句[0...__NR_syscall_max]=&sys_ni_syscall将数组内容全部初始化为未实现版本，然后包含asm/syscalls_32.h当中逐项初始化的内容进行初始化。
 
asm/syscalls_32.h为编译期间生成的一个头文件，该内容由/include/uapi/asm-generic/unistd.h等头文件共同生成，其内容如下：
 


#include <asm/bitsperlong.h>

…

#define __NR3264_lseek 62

__SC_3264(__NR3264_lseek, sys_llseek, sys_lseek)

#define __NR_read 63

__SYSCALL(__NR_read, sys_read)

#define __NR_write 64

__SYSCALL(__NR_write, sys_write)

#define __NR_readv 65

__SC_COMP(__NR_readv, sys_readv, compat_sys_readv)

#define __NR_writev 66

__SC_COMP(__NR_writev, sys_writev, compat_sys_writev)

…

#endif


 
最后总结系统调用机制如图4-7所示，用户态程序通过0x80号中断进行系统调用，具体调用哪个系统调用函数由eax中的参数决定，然后根据系统调用号查找sys_call_table中的具体函数，并且嵌入内核，执行该函数调用。
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图4-7　系统调用机制
4.5　时钟中断
 
时钟中断对操作系统来讲是个很重要的概念，特别是像Linux这样的分时操作系统，CPU不能被某几个进程独占，所以需要通过对时间片的划分进行切换（参见1.3.2节）。所以，时钟中断是进程实现被动切换的机制。
 
要产生时钟中断，必须通过硬件来完成，一般情况下，CPU都会通过中断控制器连接8259A这样的芯片，来产生频率恒定的时钟中断。
 
跟系统调用一样，时钟中断也是在系统初始化的时候进行初始化的：
 


main(){

    …

    time_init();

    …

    if (late_time_init)

    late_time_init();

}



void __init time_init(void)

{

    late_time_init = x86_late_time_init;

}



static __init void x86_late_time_init(void)

{

    x86_init.timers.timer_init();

    tsc_init();// 初始化时钟频率

}


 
在上面代码中我们发现时钟中断初始化最终调用的方法为：
 


x86_init.timers.timer_init()和tsc_init()


 
tsc_init（）是用来初始化硬件相关的时钟频率，我们不再展开，这里主要来分析一下x86_init.timers.timer_init（）
 


.timers = {

    .setup_percpu_clockev        = setup_boot_APIC_clock,

    .timer_init                  = hpet_time_init,

    .wallclock_init              = x86_init_noop,

},


 
在x86_init中timer的timer_init方法为hpet_time_init，其调用了setup_default_timer_irq：
 


void __init setup_default_timer_irq(void)

{

    if (!nr_legacy_irqs())

    return;

    setup_irq(0, &irq0);

}


 
最后发现时钟中断的注册为IRQ中断0，irqaction为irq0：
 


static struct irqaction irq0  = {

    .handler = timer_interrupt,

    .flags = IRQF_NOBALANCING | IRQF_IRQPOLL | IRQF_TIMER,

    .name = "timer"

};


 
从上面结构体定义发现时钟中断函数为timer_interrupt：
 


static irqreturn_t timer_interrupt(int irq, void *dev_id)

{

    global_clock_event->event_handler(global_clock_event);

    return IRQ_HANDLED;

}


 
至于其具体的event_handler的实现，就不在这里阐述了，读者有兴趣可以自行研究源代码。
4.6　信号处理机制
 
在Linux中，有一种非常常用的机制，用于通知进程触发响应的事件，这就是信号（signal）处理机制。
 
Linux把它包装为系统调用给用户态程序进行使用，信号回调注册可以通过以下两个系统调用来完成。
 
1）sigaction系统调用：
 


COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,

const struct compat_old_sigaction __user *, act,

struct compat_old_sigaction __user *, oact)

{

    struct k_sigaction new_ka, old_ka;

    int ret;

    …

    ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);

    …

    return ret;

}


 
2）signal系统调用：
 


SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)

{

    struct k_sigaction new_sa, old_sa;

    int ret;

    new_sa.sa.sa_handler = handler;

    new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;

    sigemptyset(&new_sa.sa.sa_mask);

    ret = do_sigaction(sig, &new_sa, &old_sa);

    return ret ? ret : (unsigned long)old_sa.sa.sa_handler;

}


 
不管是signal还是sigaction，最终都调用了do_sigaction方法，最终返回旧的action的handler：
 


int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)

{

    struct task_struct *p = current, *t;

    struct k_sigaction *k;

    sigset_t mask;



    if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))

    return -EINVAL;

    k = &p->sighand->action[sig-1];

    spin_lock_irq(&p->sighand->siglock);

    if (oact)

    *oact = *k;        // 保存旧的action



    if (act) {

        sigdelsetmask(&act->sa.sa_mask,

        sigmask(SIGKILL) | sigmask(SIGSTOP));

        *k = *act;                // 设置新的action

        // 对两种handler的特殊处理,忽略SIG_IGN和SIG_DFL信号

        if (sig_handler_ignored(sig_handler(p, sig), sig)) {

            sigemptyset(&mask);

            sigaddset(&mask, sig);

            flush_sigqueue_mask(&mask, &p->signal->shared_pending);

            for_each_thread(p, t)

            flush_sigqueue_mask(&mask, &t->pending);

        }

    }

    spin_unlock_irq(&p->sighand->siglock);

    return 0;

}


 
do_sigaction的实现很简单，先保存旧的action，用于系统调用返回，然后设置新的action。
 
收到信号的进程对各种信号有不同的处理方法，可以分为三类：
 
·类似于中断的处理程序，对于需要处理的信号，进程可以指定处理函数，由该函数来处理。
 
·忽略某个信号，对该信号不做任何处理，就象未发生过一样。
 
·对该信号的处理保留系统的默认值，这种默认操作，对大部分信号的默认操作是使得进程终止。进程通过系统调用signal来指定进程对某个信号的处理行为。
 
系统的默认行为如下所示，signal不同，action的分配也不同：
 


*        +--------------------+------------------+

*        |  POSIX signal      |  default action  |

*        +--------------------+------------------+

*        |  SIGHUP            |  terminate       |

*        |  SIGINT            |  terminate       |

*        |  SIGQUIT           |  coredump        |

*        |  SIGILL            |  coredump        |

*        |  SIGTRAP           |  coredump        |

*        |  SIGABRT/SIGIOT    |  coredump        |

*        |  SIGBUS            |  coredump        |

*        |  SIGFPE            |  coredump        |

*        |  SIGKILL           |  terminate(+)    |

*        |  SIGUSR1           |  terminate       |

*        |  SIGSEGV           |  coredump        |

*        |  SIGUSR2           |  terminate       |

*        |  SIGPIPE           |  terminate       |

*        |  SIGALRM           |  terminate       |

*        |  SIGTERM           |  terminate       |

*        |  SIGCHLD           |  ignore          |

*        |  SIGCONT           |  ignore(*)       |

*        |  SIGSTOP           |  stop(*)(+)      |

*        |  SIGTSTP           |  stop(*)         |

*        |  SIGTTIN           |  stop(*)         |

*        |  SIGTTOU           |  stop(*)         |

*        |  SIGURG            |  ignore          |

*        |  SIGXCPU           |  coredump        |

*        |  SIGXFSZ           |  coredump        |

*        |  SIGVTALRM         |  terminate       |

*        |  SIGPROF           |  terminate       |

*        |  SIGPOLL/SIGIO     |  terminate       |

*        |  SIGSYS/SIGUNUSED  |  coredump        |

*        |  SIGSTKFLT         |  terminate       |

*        |  SIGWINCH          |  ignore          |

*        |  SIGPWR            |  terminate       |

*        |  SIGRTMIN-SIGRTMAX |  terminate       |

*        +--------------------+------------------+

*        |  non-POSIX signal  |  default action  |

*        +--------------------+------------------+

*        |  SIGEMT            |  coredump        |

*        +--------------------+------------------+


 
既然已经可以针对相应信号进行注册action，那么当信号发生的时候，如何来响应信号呢？
 
Linux是通过在进程切换的时候，作为钩子点进行统一处理的。
 
每次进程调度切换之后，都会执行ret_from_work函数：
 


ENTRY(ret_from_fork)

pushl        %eax

call        schedule_tail

GET_THREAD_INFO(%ebp)

popl        %eax

pushl        $0x0202                // 重置内核eflags

popfl



// 当我们执行完fork，我们同样会跟踪子进程返回的系统调用

movl    %esp, %eax

call    syscall_return_slowpath

jmp     restore_all

END(ret_from_fork)


 
其中syscall_return_slowpath的调用链路为：
 


if (cached_flags & _TIF_SIGPENDING)

do_signal(regs);


 
最终do_signal调用handle_signal对信号进行了处理：
 


void do_signal(struct pt_regs *regs)

{

    struct ksignal ksig;

    if (get_signal(&ksig)) {

    handle_signal(&ksig, regs);

    return;

    }

…

}


 
[image: ]注意　我们可以让一个进程产生coredump文件用于调试。首先可以通过ulimit-c unlimited命令不限制corefile文件的大小，然后通过kill-3 pid来通知进程调用coredump。
 
最后我们来简单介绍kill命令的实现，它是通过发送信号的系统调用来实现的，这样的系统调用有很多，最终都会调用__send_signal（）函数：
 


staticint __send_signal(int sig,struct siginfo *info, struct task_struct *t,

int group, int from_ancestor_ns)

{

    struct sigpending *pending;

    struct sigqueue *q;

    int override_rlimit;

    ……

    // 找到需要挂起的队列

    pending = group ? &t->signal->shared_pending : &t->pending;

    ……

    // 分配队列项结构

    q = __sigqueue_alloc(t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,

    override_rlimit);

    if (q) {          // 如果分配成功，将该结构添加到挂起队列，并进行初始化

        list_add_tail(&q->list, &pending->list);

        switch ((unsigned long) info) {

            case (unsigned long) SEND_SIG_NOINFO:

            q->info.si_signo = sig;

            q->info.si_errno = 0;

            q->info.si_code = SI_USER;

            q->info.si_pid = task_tgid_nr_ns(current,

            task_active_pid_ns(t));

            q->info.si_uid = current_uid();

            break;

            case (unsigned long) SEND_SIG_PRIV:

            q->info.si_signo = sig;

            q->info.si_errno = 0;

            q->info.si_code = SI_KERNEL;

            q->info.si_pid = 0;

            q->info.si_uid = 0;

            break;

            default:

            copy_siginfo(&q->info, info);

            if (from_ancestor_ns)

            q->info.si_pid = 0;

            break;

        }

            } else if (!is_si_special(info)) {

            if (sig >= SIGRTMIN && info->si_code != SI_USER)

            return -EAGAIN;

        }



    out_set:

    signalfd_notify(t, sig);                  // 唤醒action中的等待队列

    sigaddset(&pending->signal, sig);  // 设置信号ID位掩码，即上面所说的那个位图

    complete_signal(sig, t, group);           // 试着唤醒执行该信号的进程

    return 0;

}


 
发送信号，即将该信号链接到制定进程的信号挂起队列上，最后试着唤醒执行该信号的进程，这样我们就能理解为什么信号的响应都是在执行ret_from_work的时候进行。
4.7　Nginx信号处理机制
 
很多软件在启动过程中都会注册默认信号处理函数。例如Nginx，在main函数启动的时候就通过ngx_init_signals函数进行了信号处理机制初始化：
 


int ngx_cdecl

main(int argc, char *const *argv)

{

…

if (ngx_init_signals(cycle->log) != NGX_OK) {

        return 1;

    }

…


 
其中ngx_init_signals函数就是将默认的信号处理回调函数注册到相应的信号：
 


ngx_int_t

ngx_init_signals(ngx_log_t *log)

{

    ngx_signal_t      *sig;

    struct sigaction   sa;

    for (sig = signals; sig->signo != 0; sig++) {

        ngx_memzero(&sa, sizeof(struct sigaction));

        if (sig->handler) {

            sa.sa_sigaction = sig->handler;

            sa.sa_flags = SA_SIGINFO;

        } else {

            sa.sa_handler = SIG_IGN;

        }

        sigemptyset(&sa.sa_mask);

    …

    return NGX_OK;

}


 
这些信号相应的默认处理函数也在全局做了定义：
 


ngx_signal_t  signals[] = {

    { ngx_signal_value(NGX_RECONFIGURE_SIGNAL),

        "SIG" ngx_value(NGX_RECONFIGURE_SIGNAL),

        "reload",

        ngx_signal_handler },

    { ngx_signal_value(NGX_REOPEN_SIGNAL),

        "SIG" ngx_value(NGX_REOPEN_SIGNAL),

        "reopen",

        ngx_signal_handler },

    { ngx_signal_value(NGX_NOACCEPT_SIGNAL),

        "SIG" ngx_value(NGX_NOACCEPT_SIGNAL),

        "",

        ngx_signal_handler },

    { ngx_signal_value(NGX_TERMINATE_SIGNAL),

        "SIG" ngx_value(NGX_TERMINATE_SIGNAL),

        "stop",

        ngx_signal_handler },

    { ngx_signal_value(NGX_SHUTDOWN_SIGNAL),

        "SIG" ngx_value(NGX_SHUTDOWN_SIGNAL),

        "quit",

        ngx_signal_handler },

    { ngx_signal_value(NGX_CHANGEBIN_SIGNAL),

        "SIG" ngx_value(NGX_CHANGEBIN_SIGNAL),

        "",

        ngx_signal_handler },

    { SIGALRM, "SIGALRM", "", ngx_signal_handler },

    { SIGINT, "SIGINT", "", ngx_signal_handler },

    { SIGIO, "SIGIO", "", ngx_signal_handler },

    { SIGCHLD, "SIGCHLD", "", ngx_signal_handler },

    { SIGSYS, "SIGSYS, SIG_IGN", "", NULL },

    { SIGPIPE, "SIGPIPE, SIG_IGN", "", NULL },

    { 0, NULL, "", NULL }

};


4.8　本章小结
 
可以这样认为，除了信号处理机制是结合进程切换过程的实现外，本章提到的其他几种机制，都是结合中断机制来展开的。只要使用操作系统，几乎在所有的地方都会用到中断机制，不管写什么程序，都要结合系统调用来展开。
 
很多软件在启动过程中都会注册默认信号处理函数，例如Nginx等，其他软件也有类似的处理，大家有兴趣也可以自己去阅读其他软件源代码。
 
本章的内容是承上启下的，因为进程的切换、信号处理等都需要通过中断机制来实现。另外，和操作系统相关的I/O也和中断机制有很大的关系，有了中断机制，才能建立更加高效的I/O模型，提升系统响应效率。下一章将介绍I/O机制。
第5章　输入输出
 
计算机从诞生之日起就和输入输出（I/O）密不可分，图灵机和冯·诺伊曼体系中输入与输出就是基本概念之一。图灵机是一个计算机的理论模型，本质上是状态机；冯·诺依曼体系是图灵机的实现，包括运算、控制、存储、输入、输出五个部分。冯·诺依曼体系相对之前的计算机最大的创新在于程序和数据的存储，以此实现机器内部编程，如图5-1所示。
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图5-1　冯·诺伊曼计算机体系结构
 
我们平时编写的应用程序除了纯粹的CPU密集型计算外（比如3D渲染等），都和I/O有密不可分的关系，比如数据库查询、缓存查询等，了解Linux对I/O的实现对我们编写出更好的应用程序有很大的帮助。
 
本章介绍的I/O机制，从操作系统层面来讲是广义的I/O架构，主要围绕read/write系统调用，从读写文件到最终转换成block块写入磁盘等设备。
 
本章将介绍以下内容：
 
·I/O在Linux中的生命周期，以及在如下层中完成的任务：vfs、文件系统、页面缓存、block、scsi层等。
 
·I/O相关的调度器，以及不同场景应该选择哪个调度器。
 
·多队列机制。
 
·I/O多路复用实现。
 
·一些开源系统和操作系统中与I/O相关调用的实现。
5.1　I/O在Linux中的生命周期
 
现在我们已经知道输入输出对计算机的重要性，那么下面就介绍Linux的I/O实现，并分析一个I/O是如何产生并且是如何完成使命的。
5.1.1　vfs层
 
要了解I/O的产生，最直观的就是read、write等系统调用。在这里，我们需要注意一个比较重要的概念：对于Linux来讲，一切都是文件，所以进行I/O读写操作的时候，如读写磁盘或其他设备，都会和vfs层挂钩。
 
Linux为了屏蔽底层文件系统和驱动程序等细节，对文件的操作首先通过vfs接口层来转发系统调用的open、read、write、close等请求，如图5-2所示。限于篇幅，下面仅围绕read和write请求来分析读I/O的来龙去脉。
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图5-2　vfs接口层
 
下面是read调用的实现（代码详见：Linux/fs/red_write.c）：
 


SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count)

{

    struct fd f = fdget_pos(fd);                   // 获取当前进程下指定的fd文件句柄

    ssize_t ret = -EBADF;



    if (f.file) {

        loff_t pos = file_pos_read(f.file);        // 获取当前文件已经读取的位置

        ret = vfs_read(f.file, buf, count, &pos);

        if (ret >= 0)

            file_pos_write(f.file, pos);           // 保存最新的读取位置

        fdput_pos(f);                              // 有必要的情况下释放fd中的file结构

    }

    return ret;

}


 
sys_read执行的时候，首先获取当前文件已经读取的位置，然后调用vfs层的vfs_read，在vfs_read中校验文件是否可读，要访问的buf内存块是否可用，文件读取的位置是否越界，权限检测等。然后__vfs_read调用真正的文件系统层进行read操作：
 


ssize_t __vfs_read(struct file *file, char __user *buf, size_t count,

            loff_t *pos)

{

    if (file->f_op->read)

        return file->f_op->read(file, buf, count, pos);

    else if (file->f_op->read_iter)

        return new_sync_read(file, buf, count, pos);

    else

        return -EINVAL;

}


 
在新版本的内核中，vfs_read操作的逻辑在new_sync_read中，因为ext4文件系统注册的是read_iter方法，具体过程我们后面分析，在new_sync_read中最终执行了file->f_op->read_iter，把控制权交给了ext4之类的文件系统。
 
所以可以把vfs理解为是Linux对上层提供的统一文件系统的抽象，底层有不同的实现，比如ext4、proc、sysfs等，这也是Linux一切皆是文件的原因。
5.1.2　文件系统层
 
通过read在vfs层中的执行，我们发现最终会调用具体文件系统的操作。这里我们以ext4文件系统为例，其文件操作函数在/linux-4.5.2/fs/ext4/file.c中注册：
 


const struct file_operations ext4_file_operations = {

    .llseek                = ext4_llseek,

    .read_iter         = generic_file_read_iter,

    .write_iter        = ext4_file_write_iter,

    .unlocked_ioctl        = ext4_ioctl,

#ifdef CONFIG_COMPAT

    .compat_ioctl          = ext4_compat_ioctl,

#endif

    .mmap                  = ext4_file_mmap,

    .open              = ext4_file_open,

    .release           = ext4_release_file,

    .fsync                 = ext4_sync_file,

    .splice_read           = generic_file_splice_read,

    .splice_write          = iter_file_splice_write,

    .fallocate         = ext4_fallocate,

};


 
在ext4_iget初始化inode的时候会进行注册：
 


…

if (S_ISREG(inode->i_mode)) {

        inode->i_op = &ext4_file_inode_operations;

        inode->i_fop = &ext4_file_operations;

        ext4_set_aops(inode);

…


 
然后在vfs_open打开文件的时候调用了do_dentry_open：
 


f->f_op = fops_get(inode->i_fop);


 
至此彻底搞清楚了，ext4的read和write文件最终委托给了：
 


.read_iter = generic_file_read_iter,

.write_iter = ext4_file_write_iter,


 
同理，sys_write的系统调用过程为：sys_write->vfs_write->__vfs_write->new_sync_write，并且在new_sync_write函数中的filp->f_op->write_iter其实就是ext4_file_write_iter。其实现为：
 


static ssize_t

ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)

{

    struct file *file = iocb->ki_filp;

    struct inode *inode = file_inode(iocb->ki_filp); // 获取文件的inode

    struct mutex *aio_mutex = NULL;

    struct blk_plug plug;

    int o_direct = iocb->ki_flags & IOCB_DIRECT;    // IO Driect标志

    int overwrite = 0;

    ssize_t ret;

    /*

     * 未对齐（针对block）的异步IO必须顺序进行

     */

    if (o_direct &&

        ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&

        !is_sync_kiocb(iocb) &&

        (iocb->ki_flags & IOCB_APPEND ||

         ext4_unaligned_aio(inode, from, iocb->ki_pos))) {

        aio_mutex = ext4_aio_mutex(inode);

        mutex_lock(aio_mutex);

        ext4_unwritten_wait(inode);        // 进入等待队列，直到inode的i_unwritten状态                                                        // 变成0（说明前面的一个IO完成了）

    }



    inode_lock(inode);

    ret = generic_write_checks(iocb, from); // 进行写入权限的校验工作

    if (ret <= 0)

        goto out;

    if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { // 非extends类型的文件

        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);



        if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) { // ki_pos必须小于s_bitmap_

                                                                  maxbytes

            ret = -EFBIG;

            goto out;

        }

        iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);// 如果

            读取的大小count(from→count)超过了上限，count变为：sbi->s_bitmap_maxbytes -

            iocb->ki_pos

    }

    iocb->private = &overwrite;

    if (o_direct) {                        // 假如是directIO的情况

        size_t length = iov_iter_count(from);

        loff_t pos = iocb->ki_pos;

        // 初始化plug,blk_plug构建了一个缓存碎片IO的请求队列。用于将顺序请求合并成一个大的请求。

         合并后请求批量从per-task链表移动到设备请求队列，减少了设备请求队列锁竞争，

         从而提高了效率。

        blk_start_plug(&plug);

        // 校验是否进行Direct-IO

        if (ext4_should_dioread_nolock(inode) && !aio_mutex &&

            !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {

            struct ext4_map_blocks map;

            unsigned int blkbits = inode->i_blkbits; // 文件块位数

            int err, len;



            map.m_lblk = pos >> blkbits; // 右移获取起始逻辑块号，总共要读取的块的数量，

                                                    并且对齐

            map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)

                - map.m_lblk;

            len = map.m_len;



            err = ext4_map_blocks(NULL, inode, &map, 0); // 查找逻辑块号和物理块号

                                                                     之间的映射关系，该函数在

                                                                     文件系统中还需要详细追述

            if (err == len && (map.m_flags & EXT4_MAP_MAPPED))// 所有的block已经

                // 初始化，并且为EXT4_MAP_MAPPED状态

                overwrite = 1;

        }

    }

    ret = __generic_file_write_iter(iocb, from); // 把数据写入文件

    inode_unlock(inode);



    if (ret > 0) {

        ssize_t err;

        err = generic_write_sync(file, iocb->ki_pos - ret, ret); // 同步数据到磁盘

        if (err < 0)

        ret = err;

    }

    if (o_direct)

        blk_finish_plug(&plug);

…

    return ret;

}


 
上述过程看起来很长，其实总结出来就以下几步：
 
1）状态、权限校验。
 
2）把数据写入文件。
 
3）同步数据到磁盘。
 
在上述代码中，__generic_file_write_iter可谓承上启下，尤其重要：
 


ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)

{

    struct file *file = iocb->ki_filp;

    struct address_space * mapping = file->f_mapping;

    struct inode         *inode = mapping->host;

    ssize_t                written = 0;

    ssize_t                err;

    ssize_t                status;

    current->backing_dev_info = inode_to_bdi(inode); // 获取设备描述信息

    err = file_remove_privs(file); // 移除SUID

    …

    err = file_update_time(file); // 更新文件时间

    …

    if (iocb->ki_flags & IOCB_DIRECT) {

        loff_t pos, endbyte;

        // 进行directIO

        written = generic_file_direct_write(iocb, from, iocb->ki_pos);

    …

        // 写页面缓存

        status = generic_perform_write(file, from, pos = iocb->ki_pos);

        …

        endbyte = pos + status - 1;

        // 把脏页写入到磁盘

        err = filemap_write_and_wait_range(mapping, pos, endbyte);

        …

    } else {

        // 非DIO场景，直接写Page Cache

        written = generic_perform_write(file, from, iocb->ki_pos);

        if (likely(written > 0))

            iocb->ki_pos += written;

    }

    …

    return written ? written : err;

}


 
以上过程分为页面缓存和DirectIO两种场景，下面分别进行介绍。
 
1.页面缓存
 
我们先来分析上节代码中else部分，写页面缓存（Page Cache）。为了减少块设备层的工作压力，Linux通过局部性原理来使用页面缓存提高性能。
 
下面来分析页面缓存写入过程，其实现是由generic_perform_write完成的，以页为单位进行do..while循环操作，该循环过程为：
 
1）计算在写入页中的offset和写入的字节数：
 


offset = (pos & (PAGE_CACHE_SIZE - 1));             // 计算在该页中的offset

        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,

                        iov_iter_count(i));    // 计算需要写入该页的字节


 
2）调用a_ops->write_begin函数准备该空间中对应index需要的page，我们看ext4的实现ext4_write_begin。其中，关键的一步为grab_cache_page_write_begin，这个步骤用于查找获取一个缓存页或者创建一个缓存页，其执行过程如下：
 


struct page *grab_cache_page_write_begin(struct address_space *mapping,

                    pgoff_t index, unsigned flags)

{

    struct page *page;

    …

    page = pagecache_get_page(mapping, index, fgp_flags,

            mapping_gfp_mask(mapping));

    if (page) // 等待该page writeback完成

        wait_for_stable_page(page);

    return page;

}


 
pagecache_get_page最为关键，它从mapping的基树中查找缓存页，假如不存在，则从伙伴系统中申请一个新页插入，并且添加到LRU链表中：
 


struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,

    int fgp_flags, gfp_t gfp_mask)

{

    struct page *page;

repeat:

    page = find_get_entry(mapping, offset);

    if (radix_tree_exceptional_entry(page)) // 改slot页状态异常

        page = NULL;

    if (!page)

        goto no_page;

…

    if (page && (fgp_flags & FGP_ACCESSED))

        mark_page_accessed(page);

no_page:

    …

        page = __page_cache_alloc(gfp_mask);           // 到伙伴系统中申请新的页面

        if (!page)

            return NULL;

        …

        if (fgp_flags & FGP_ACCESSED)

            __SetPageReferenced(page);

        err = add_to_page_cache_lru(page, mapping, offset,

              gfp_mask & GFP_RECLAIM_MASK);        // 把新的页插入到基树中，并且插入到LRU

                                                       // 链表

        if (unlikely(err)) {

            page_cache_release(page);

            page = NULL;

            if (err == -EEXIST)

                goto repeat;

        }

    }



    return page;

}


 
3）iov_iter_copy_from_user_atomic（page，i，offset，bytes）；把数据从用户缓冲区复制到page中。
 
4）调用a_ops->write_end，ext4_write_end函数首先调用block_write_end函数，其中调用__block_commit_write提交写入的数据，但事实上该提交只是对buff的状态做了处理，并没有其他大的操作。
 
在__block_commit_write中会调用set_buffer_uptodate（bh）；函数，其关键步骤如下：
 
·mark_buffer_dirty（bh）->mark_buffer_dirty->__set_page_dirty，将该页设为脏。
 
·mark_buffer_dirty（bh）->mark_buffer_dirty->__mark_inode_dirty->wb_wakeup_delayed把writeback任务提交到bdi_writeback队列中。
 
其中，把页面标记为脏的原因是因为还未写入到磁盘，数据和磁盘还不一致。
 
上面的write过程把要写的page提交到了bdi_writeback队列中，然后由writeback线程将其真正写到block device上。
 
writeback机制的好处总结起来主要有两点：
 
·加快write（）的响应速度。因为磁盘的读写相对于内存访问是较慢的。如果每个write（）都访问磁盘，势必很慢。将较慢的磁盘访问交给writeback线程，而write（）本身的线程里只在内存里操作数据，将数据交到writeback queue即返回。
 
·便于合并和排序多个write操作，合并（merge）是将多个少量数据的write合并成几个大量数据的write，减少访问磁盘的次数；排序（sort）是将无序的write按照其访问磁盘上的block的顺序排序，减少磁头在磁盘上的移动距离。
 
writeback是文件系统的概念，writeback是指文件（即inode）的部分数据由writeback线程写入磁盘。这里就产生一个问题，一个磁盘上可能有多个文件系统，如sda1上是ext4，sda2上是fat，但其实是在一个硬盘sda上，如果分别由不同的线程对sda1、sda2进行writeback操作的话，上面所说的排序（sort）功能将没有意义，因为可能thread1写了一会儿sda1，thread2又要把磁头移到别的地方去写sda2了。鉴于此，设计writeback机制时，writeback的主体应该是sda，而不是sda1、sda2。这就是backing device的概念。sda是sda1上ext4，sda2上fat的backing device，sda1和sda2的writeback都应该由sda的write-back线程来完成。
 
bdi的全称是backing device info，它代表了一个backing device。每个文件系统在mount的时候，就将它的backing device记录到super->s_bdi中。如果backing device是个block device，那么其inode所在的backing device被记录到super->s_bdev->bd_inode->i_mapping->backing_dev_info中。
 
bdi的初始化通过bdi_init方法完成：
 


int bdi_init(struct backing_dev_info *bdi)

{

    int ret;

    bdi->dev = NULL;

    bdi->min_ratio = 0;

    bdi->max_ratio = 100;

    bdi->max_prop_frac = FPROP_FRAC_BASE;

    INIT_LIST_HEAD(&bdi->bdi_list);

    INIT_LIST_HEAD(&bdi->wb_list);

    init_waitqueue_head(&bdi->wb_waitq);

    ret = cgwb_bdi_init(bdi);

    list_add_tail_rcu(&bdi->wb.bdi_node, &bdi->wb_list);

    return ret;

}


 
其中：
 
·cgwb_bdi_init->wb_init：INIT_DELAYED_WORK（&wb->dwork，wb_workfn）；初始化了一个delayed_work线程来处理writeback请求。
 
·wb_workfn函数用于处理提交给wb线程的work，其中核心为wb_do_writeback->wb_writeback->__writeback_inodes_wb->writeback_sb_inodes->__writeback_single_inode->do_writepages本质是在实际文件系统的格式里找到要写page对应的block位置，构建出相应的buffer head（bh）以及bio，然后调用submit_bio（）来产生一个对block device的write。
 
·bio还只是一个抽象的读写block device的请求，bio要变成实际的block device access还要通过block device driver再排队，并受到ioschduluer的控制。
 
2.DirectIO
 
在一些类似于MySQL这样的应用层数据库软件中，应用层已经实现了数据的缓存功能，这时候在IO读写的时候，再经过页面缓存层反而是一种浪费，所以在Linux中提供了DirectIO的实现。
 
回到__generic_file_write_iter的实现，DirectIO的核心部分由generic_file_direct_write函数完成：
 


ssize_t

generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)

{

    struct file        *file = iocb->ki_filp;

    struct address_space *mapping = file->f_mapping;

    struct inode        *inode = mapping->host;

    ssize_t        written;

    size_t                write_len;

    pgoff_t        end;

    struct iov_iter data;

    write_len = iov_iter_count(from);

    end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;

    // 刷该文件mapping下的脏页

    written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);

…

    // 检查和该direct_IO相关的缓存页是否还存在，如果有就让它失效

    if (mapping->nrpages) {

        written = invalidate_inode_pages2_range(mapping,

                    pos >> PAGE_CACHE_SHIFT, end);

        …

    }



    data = *from;

    // 调用direct_IO方法

    written = mapping->a_ops->direct_IO(iocb, &data, pos);

    //  再次检查direct_IO对应的缓存页是否还存在，如果有就让它失效。

    if (mapping->nrpages) {

        invalidate_inode_pages2_range(mapping,

                        pos >> PAGE_CACHE_SHIFT, end);

    }



    if (written > 0) {

        pos += written;

        iov_iter_advance(from, written);

        if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {

            i_size_write(inode, pos);

            mark_inode_dirty(inode);

        }

        iocb->ki_pos = pos;

    }

out:

    return written;

}


 
DirectIO执行的过程如下：
 
1）首先让文件对应的脏页刷新到块设备层，并且同步等待获取结果。
 
2）检查和这次DirectIO相关的缓存页，如果有就让它失效。
 
3）调用mapping->a_ops->direct_IO（iocb，&data，pos）。
 
4）再次检查和这次DirectIO相关的缓存页，如果有也让它失效。
 
下面，我们再重点关注mapping->a_ops->direct_IO的实现，在ext4文件系统中，a_ops定义如下：
 


static const struct address_space_operations ext4_aops = {

    .readpage                        = ext4_readpage,

    .readpages                       = ext4_readpages,

    .writepage                       = ext4_writepage,

    .writepages                      = ext4_writepages,

    .write_begin                     = ext4_write_begin,

    .write_end                       = ext4_write_end,

    .bmap                            = ext4_bmap,

    .invalidatepage                  = ext4_invalidatepage,

    .releasepage                     = ext4_releasepage,

    .direct_IO                       = ext4_direct_IO,

    .migratepage                     = buffer_migrate_page,

    .is_partially_uptodate           = block_is_partially_uptodate,

    .error_remove_page               = generic_error_remove_page,

};


 
其中，direct_IO方法最终会执行ext4_direct_IO方法。在ext4_direct_IO方法中，我们仅仅关注最后调用的方法：__blockdev_direct_IO->do_blockdev_direct_IO。在direct_IO实现中，有两个结构体扮演了非常重要的角色：struct dio和struct dio_submit。一些关键成员变量的含义如下：
 
·dio_submit.pages_in_io：本次IO共有多少个page。
 
·dio_submit.first_block_in_page：IO操作的第一个块在页面中的偏移量。
 
·dio_submit.final_block_in_request：本次IO请求的最后一个块号。
 
·dio_submit.total_pages：本次IO请求共有多少个page。
 
do_blockdev_direct_IO的一堆准备工作我们忽略不关注，在初始化dio_submit和dio后，进入了do_direct_IO，这里有三个关键步骤：
 
1）dio_get_page将用户态缓冲区转化为page。
 
2）get_more_blocks把对应磁盘的逻辑块号转换成物理块号。
 
3）submit_page_section->dio_bio_submit把dio转换成bio提交到块设备层。
5.1.3　Block层
 
通过directIO和writeback机制最终都会通过submit_bio方法提交bio到block层，下面我们开始分析在block层的流程。
 
submit_bio核心还是调用了generic_make_request来构建block层的IO请求：
 


blk_qc_t generic_make_request(struct bio *bio)

{

    struct bio_list bio_list_on_stack;

    blk_qc_t ret = BLK_QC_T_NONE;

    if (!generic_make_request_checks(bio))

        goto out;

    if (current->bio_list) {

        bio_list_add(current->bio_list, bio);// 把bio添加到当前线程的bio_list中

        goto out;

    }

    …

    bio_list_init(&bio_list_on_stack);

    current->bio_list = &bio_list_on_stack;

    do {

        struct request_queue *q = bdev_get_queue(bio->bi_bdev);

        if (likely(blk_queue_enter(q, false) == 0)) {

            // 将bio合并到某个request中，同时因为增加了一个bio，原本不相邻的两个req uest可能

             变得相邻，从而可以合并成一个request

            ret = q->make_request_fn(q, bio);

            blk_queue_exit(q);

            bio = bio_list_pop(current->bio_list);

        } else {

            struct bio *bio_next = bio_list_pop(current->bio_list);

            bio_io_error(bio);

            bio = bio_next;

        }

    } while (bio);

    current->bio_list = NULL; // 让当前进程bio_list失效

out:

    return ret;

}


 
在generic_make_request实现中请求构建的关键为q->make_request_fn，该函数调用链路为：
 
blk_init_queue（）->blk_init_queue_node（）->blk_init_allocated_queue->blk_queue_make_request（q，lk_queue_bio）；最后被调用执行的回调函数blk_queue_bio的实现如下：
 


static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)

{

    const bool sync = !!(bio->bi_rw & REQ_SYNC);

    struct blk_plug *plug;

    int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;

    struct request *req;

    unsigned int request_count = 0;

…

    blk_queue_split(q, &bio, q->bio_split);

…

    if (!blk_queue_nomerges(q)) {

        // 尝试将bio合并到当前plugged的请求队列中

        if (blk_attempt_plug_merge(q, bio, &request_count, NULL))

            return BLK_QC_T_NONE;

    } else

        request_count = blk_plug_queued_count(q);

    spin_lock_irq(q->queue_lock);

    // elv_merge是核心函数，找到bio前向或者后向合并的请求

    el_ret = elv_merge(q, &req, bio);

    if (el_ret == ELEVATOR_BACK_MERGE) {

        // 进行后向合并操作

        if (bio_attempt_back_merge(q, req, bio)) {

            elv_bio_merged(q, req, bio);

            if (!attempt_back_merge(q, req))

                elv_merged_request(q, req, el_ret);

            goto out_unlock;

        }

    } else if (el_ret == ELEVATOR_FRONT_MERGE) {

        // 进行前向合并操作

        if (bio_attempt_front_merge(q, req, bio)) {

            elv_bio_merged(q, req, bio);

            if (!attempt_front_merge(q, req))

                elv_merged_request(q, req, el_ret);

            goto out_unlock;

        }

    }

// 无法找到对应的请求实现合并

get_rq:

    rw_flags = bio_data_dir(bio);

    if (sync)

    rw_flags |= REQ_SYNC;

    // 获取一个empty request请求

    req = get_request(q, rw_flags, bio, GFP_NOIO);

    if (IS_ERR(req)) {

        bio->bi_error = PTR_ERR(req);

        bio_endio(bio);

        goto out_unlock;

    }

    // 采用bio对request请求进行初始化

    init_request_from_bio(req, bio);

    if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))

        req->cpu = raw_smp_processor_id();

    plug = current->plug;

    if (plug) {

        if (!request_count)

            trace_block_plug(q);

        else {

            if (request_count >= BLK_MAX_REQUEST_COUNT) {

                // 请求数量达到队列上限值，进行unplug操作

                blk_flush_plug_list(plug, false);

                trace_block_plug(q);

            }

        }

        // 将请求加入到队列

        list_add_tail(&req->queuelist, &plug->list);

        blk_account_io_start(req, true);

    } else {

        spin_lock_irq(q->queue_lock);

        // 将request加入到调度器中

        add_acct_request(q, req, where);

        // 调用q->request_fn(q);

        __blk_run_queue(q);

out_unlock:

        spin_unlock_irq(q->queue_lock);

    }

    return BLK_QC_T_NONE;

}


 
总结一下，blk_queue_bio函数的大致处理流程如下：
 
1）调用blk_queue_bounce进行一些特殊处理（如果底层驱动表示它想要将在某个限制之上的页地址回弹到低地址）。
 
2）调用attempt_plug_merge尝试将新的请求同已经plugged的请求进行合并，已经plugged的请求会被保存在current->plug链表中。
 
3）调用elv_merge判断新的bio是否可以同请求队列上已经存在的请求的bio进行合并，如果可以合并就进行合并。这里是否可以合并以及如何合并都取决于所采用的IO调度算法。
 
4）如果无法进行合并，开始创建一个新的请求，调用get_request_wait来获取一个新的请求结构。
 
5）调用init_request_from_bio来使用bio中的数据初始化这个新的请求。
 
6）如果current->plug不空，则表示当前队列是plug的，如果该链表上已经有足够数目的请求，则调用blk_flush_plug_list进行处理（该函数会调用__elv_add_request将请求添加到请求队列，还可能调用queue_unplugged进行实际的请求处理），最后会将新的请求添加到current->plug上并更新统计信息。
 
7）如果current->plug为空，则调用__blk_run_queue直接处理请求，这会调用请求队列上的request_fn，也就是要求驱动必须提供的那个函数来进行请求处理。
 
从其处理逻辑可以看出，这里又对请求进行了一次缓冲，如果current->plug不空，则新的请求都会添加到该链表上，只有请求的数目超过一定的值后才会处理（加入到请求队列中或者更进一步地处理掉）。显然只有这里的处理逻辑是不完善的，假如系统不是很忙，只有很少量的请求需要处理，则这里的处理条件可能很长时间都不能被满足，这时就需要另外一个机制来触发blk_flush_plug_list的动作，这个机制就是schedule，该机制的路径如下：schedule->sched_submit_work->blk_schedule_flush_plug->blk_flush_plug_list。
 
到了这一步，IO的读写已经被提交给了硬件，由驱动所提供的request_fn进行处理。
5.1.4　scsi层
 
在block层的实现中blk_queue_bio最后一步或者用schedule的时候，会执行request_fn，该方法由不同的块设备驱动实现，我们以常见的scsi为例来分析一下。首先搞清楚request_fn是哪里来的，应是在scsi设备分配的时候设置的：
 


struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)

{

    struct request_queue *q;

    q = __scsi_alloc_queue(sdev->host, scsi_request_fn);

    if (!q)

        return NULL;

    blk_queue_prep_rq(q, scsi_prep_fn);

    blk_queue_unprep_rq(q, scsi_unprep_fn);

    blk_queue_softirq_done(q, scsi_softirq_done);

    blk_queue_rq_timed_out(q, scsi_times_out);

    blk_queue_lld_busy(q, scsi_lld_busy);

    return q;

}


 
对应scsi层的request_fn就是scsi_request_fn：
 


static void scsi_request_fn(struct request_queue *q)

    __releases(q->queue_lock)

    __acquires(q->queue_lock)

{

    struct scsi_device *sdev = q->queuedata;

    struct Scsi_Host *shost;

    struct scsi_cmnd *cmd;

    struct request *req;

    shost = sdev->host;

    for (;;) {

        int rtn;

        req = blk_peek_request(q);        // 调用调度层的elevator_dispatch_fn从队列中

                                                  取出最合适的request

        …

        spin_unlock_irq(q->queue_lock);

        cmd = req->special;            // 获取cmd

        …

        cmd->scsi_done = scsi_done;

        rtn = scsi_dispatch_cmd(cmd);     // 把命令发送到host层

        if (rtn) {

            scsi_queue_insert(cmd, rtn);

            spin_lock_irq(q->queue_lock);

            goto out_delay;

        }

        spin_lock_irq(q->queue_lock);

    }

    …

}


 
scsi_request_fn从调用调度层的elevator_dispatch_fn队列中取出最合适的request，然后获取cmd，分发到host层，也就是真正的scsi硬件层。
 
在scsi_dispatch_cmd中，执行了：
 


rtn = host->hostt->queuecommand(host, cmd);// 把命令写入到scsi硬件层


 
我们以QLogic的qla4xxx的host实现来说明：
 


qla4xxx_queuecommand-> qla4xxx_send_command_to_isp-> ha->isp_ops->queue_

    ocb(ha);



void qla4xxx_queue_iocb(struct scsi_qla_host *ha)

{

    writel(ha->request_in, &ha->reg->req_q_in);

    readl(&ha->reg->req_q_in);

}


 
最后通过write命令把数据写入到scsi硬件缓冲区，然后用read读取结果。
 
在scsi层的流程如图5-3所示。
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图5-3　scsi层I/O流程示意图
5.1.5　I/O流程总结
 
首先来总结一下从页面缓存到最终提交到设备的过程（见图5-4）：
 
1）在地址空间构建page并且提交到pageCache中。
 
2）在block层调用__block_commit_write函数提交work到bdi_writeback_queue中。
 
3）每个work对应一个wb_workfn回调函数，会构建bio请求，通过submit_io函数提交到request_queue队列。
 
4）在scsi层通过I/O调度器来调度具体需要执行的request。
 
5）scsi层通过发送具体的CMD到指定的scsi-host层设备。
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图5-4　I/O写入流程图
 
图5-5描述了Linux中I/O的整体架构：
 
Linux很好地贯彻了分层的设计思想，所以I/O的处理暴露给用户的也是从上到下的分层模型：
 
1）在用户态暴露给程序员的是系统调用函数，例如read/write，一般会有标准库，例如用glibc进行封装。
 
2）为了屏蔽底层文件系统的实现细节，操作系统暴露的是标准文件操作接口vfs。
 
3）基于vfs的接口，在Linux中支持不同的文件系统实现，例如ext4文件系统。
 
4）在某些场景下，为了加快I/O的读写速度，还会利用页面缓存来进行加速。
 
5）在Linux中，对文件的I/O读写事件，最终会被转化为block层的一个数据块。
 
6）Linux对I/O的处理需要有个调度的过程，这里会涉及很多调度算法，例如著名的电梯算法。
 
7）Linux把I/O的底层处理交给scsi层来处理，这是一个通用的抽象层。
 
8）对于具体的scsi设备，交给scsi-host层来处理，比如机械硬盘驱动。
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图5-5　Linux的I/O整体架构
5.2　I/O调度器
 
通过block层的分析，我们已经了解了调度是block层的概念，在blk_queue_bio中elv_merge（q，&req，bio）->e->type->ops.elevator_merge_fn（q，req，bio）查找scheduler（调度器）检查是否可以进行合并，如果可以，那么进行合并。
 
其中ops为elevator_ops类型，在Linux中为其定义了一些操作函数接口，这些接口函数由不同的I/O调度算法重载。不同的调度器对这些接口函数分别有不同的实现，表5-1是该数据结构中一些主要字段的意义。
 
表5-1　elevator_ops中的主要字段
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下面我们介绍常见的3种调度器：NOOP、CFQ、Deadline。
 
1.NOOP
 
NOOP调度器十分简单，只拥有一个等待队列，每当来一个新的请求，仅仅是按先来先处理的思路将请求插入到等待队列的尾部。
 
2.CFQ
 
CFQ实现了一种QoS的I/O调度算法。该算法为每一个进程分配一个时间窗口，在该时间窗口内，允许进程发出I/O请求。通过时间窗口在不同进程间的移动，保证了对于所有进程而言都有公平地发出I/O请求的机会。同时CFQ也实现了进程的优先级控制，保证高优先级进程可以获得更长的时间窗口。
 
CFQ适用于系统中存在多任务I/O请求的情况，通过在多进程中轮换，保证了系统I/O请求整体的低延迟。但是，对于只有少数进程存在大量密集的I/O请求的情况，会出现明显的I/O性能下降。
 
3.Deadline
 
Deadline调度算法主要针对I/O请求的延时而设计，每个I/O请求都附加了一个最后执行期限。该算法维护两类队列，一是按照扇区排序的读写请求队列；二是按照过期时间排序的读写请求队列。如果当前没有I/O请求过期，则会按照扇区顺序执行I/O请求；如果发现过期的I/O请求，则会处理按照过期时间排序的队列，直到所有过期请求都发生为止。在处理请求时，该算法会优先考虑读请求。
 
当系统中存在的I/O请求进程数量比较少时，与CFQ算法相比，Deadline算法可以提供较高的I/O吞吐率。
 
Linux系统中可以通过cat/sys/block/.../queue/scheduler进行查看：
 


cat /sys/block/sda/queue/scheduler

noop deadline [cfq]


 
修改磁盘I/O调度算法时，可以使用如下命令格式：echo调度算法>/sys/block/磁盘名/queue/scheduler例如：
 


echo "noop" > /sys/block/sda/queue/scheduler

cat /sys/block/sda/queue/scheduler

[noop] deadline cfq


 
4.机械硬盘和SSD的调度器选择
 
由于机械盘是由机械指针转动来读写数据的，如图5-6所示，所以，数据写入时需要考虑随机指针转动性能的问题。
 
[image: ]注意　如果不是特殊场景，建议把I/O调度器设置为CFQ，这对于通用的服务器也是最好的选择。
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图5-6　机械磁盘示意图
 
固态硬盘（SSD）是基于闪存的数据存储设备，每个数据位保存在由浮栅晶体管制成的闪存单元里。SSD整个都是由电子组件制成的，没有像硬盘那样的移动或者机械的部分，SSD架构如图5-7所示。
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图5-7　SSD架构图
 
默认的I/O调度一般针对磁盘寻址慢的特性做了专门优化，但对于SSD而言，由于访问磁盘不同逻辑扇区的时间几乎是一样的，这个优化就没有什么作用了，反而耗费了CPU时间。Linux系统中，可以用NOOP调度器代替内核默认的CFQ调度器。
5.3　多队列机制
 
在Linux3.19中，block层引入了多队列的机制，每个CPU维护一个队列来提升I/O的处理性能，如图5-8所示。
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图5-8　Linux多队列架构图
 
在Linux中，当使用多队列来提交请求的时候，执行函数为blk_mq_insert_requests，该函数实现了多队列插入request的过程，实现代码如下：
 


static void blk_mq_insert_requests(struct request_queue *q,

                            struct blk_mq_ctx *ctx,

                            struct list_head *list,

                            int depth,

                            bool from_schedule)

{

    struct blk_mq_hw_ctx *hctx;

    struct blk_mq_ctx *current_ctx;

    trace_block_unplug(q, depth, !from_schedule);

    current_ctx = blk_mq_get_ctx(q);        // 获取该CPU的queue_ctx

    if (!cpu_online(ctx->cpu))          // 假如当前ctx对应的CPU不在线，那么设置当前的

                                                // ctx为从这次请求对应的ctx

        ctx = current_ctx;

    hctx = q->mq_ops->map_queue(q, ctx->cpu); // 获取该请求对应的硬件上下文

    spin_lock(&ctx->lock);

    while (!list_empty(list)) {

        struct request *rq;

        rq = list_first_entry(list, struct request, queuelist); // 获取第一个请求

                                                                             ??队列

        list_del_init(&rq->queuelist);        // 删除掉该队列

        rq->mq_ctx = ctx;

        __blk_mq_insert_req_list(hctx, ctx, rq, false);        // 把当前请求队列插入到当前请求

                                                                // 上下文的请求队列的队尾

    }

    blk_mq_hctx_mark_pending(hctx, ctx); // 设置该硬件上下文为pending

    spin_unlock(&ctx->lock);

    blk_mq_run_hw_queue(hctx, from_schedule);

    blk_mq_put_ctx(current_ctx); // 打开该CPU抢占功能

}


 
在多核环境下，多队列机制能显著提升I/O读写的性能。
5.4　I/O多路复用实现
 
Linux在2.6内核之后，引入了epoll系统调用实现多路复用，显著提升了高并发场景下的吞吐量，其最大的功能就是获取事件的时候，无须遍历整个被侦听的描述符集，只要遍历那些被内核I/O事件异步唤醒而加入就绪队列的描述符集合就行了。
 
应用程序一般都会通过libc这样的库函数来使用封装过后的epoll调用，在libc中，封装了三个和epoll相关的系统调用函数：
 


int epoll_create(int size);        // 创建epoll池子

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); // 向epoll中

                                                                                 注册事件

int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int

    timeout);        // 等待就绪事件的到来


 
其实libc的这三个函数，分别调用了Linux提供的三个同名系统调用，下面分别来分析其实现。
 
首先来看epoll_create：
 


SYSCALL_DEFINE1(epoll_create, int, size)

{

…

    return sys_epoll_create1(0);

}



SYSCALL_DEFINE1(epoll_create1, int, flags)

{

    int error, fd;

    struct eventpoll *ep = NULL;

    struct file *file;

    …

    error = ep_alloc(&ep);// 创建eventpoll数据结构

    …

    /*

     * 从fd表中分配一个fd

     */

    fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));

    if (fd < 0) {

        error = fd;

        goto out_free_ep;

    }

    // 创建一个新的文件

    file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,

                 O_RDWR | (flags & O_CLOEXEC));

    if (IS_ERR(file)) {

        error = PTR_ERR(file);

        goto out_free_fd;

    }

    // 把文件和fd以及eventpoll挂钩

    ep->file = file;

    fd_install(fd, file);

    return fd;

    …

}


 
epoll_create创建和初始化了eventpoll结构：
 


struct eventpoll {

…

    wait_queue_head_t wq;       // sys_epoll_wait() 使用的等待队列

    wait_queue_head_t poll_wait;// file->poll()使用的等待队列

    struct list_head rdllist;   // 事件满足条件的链表

    struct rb_root rbr;         // 用于管理所有fd的红黑树（树根）

    struct epitem *ovflist;     // 将事件到达的fd链接起来发送至用户空间

    …

    struct file *file;

    …

};


 
epitem的结构为：
 


struct epitem {

    union {

        struct rb_node rbn;          // 用于主结构管理的红黑树

        struct rcu_head rcu;

    };



    struct list_head rdllink;        // 事件就绪队列

    struct epitem *next;             // 用于主结构体中的链表

    struct epoll_filefd ffd;         // 这个结构体对应的被监听的文件描述符信息

    int nwait;                       // poll操作中事件的个数

    struct list_head pwqlist;        // 双向链表，保存着被监视文件的等待队列，功能类似于select/

                                     // poll中的poll_table

    struct eventpoll *ep;            // 该项属于哪个主结构体（多个epitm从属于一个eventpoll）

struct list_head fllink;             // 双向链表，用来链接被监视的文件描述符对应的structfile。

                                     // 因为file里有f_ep_link,用来保存所有监视这个文件的epoll                                                // 节点

...

    struct epoll_event event;        // 注册的感兴趣的事件,也就是用户空间的epoll_event

};


 
其中eventpoll把epitem组织成了一颗红黑树。
 
在创建完epoll之后，就可以通过epoll_ctl来注册事件：
 


SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,

        struct epoll_event __user *, event)

{

    int error;

    int full_check = 0;

    struct fd f, tf;

    struct eventpoll *ep;

    struct epitem *epi;

    struct epoll_event epds;

    struct eventpoll *tep = NULL;

    error = -EFAULT;

    // 判断参数的合法性，将 __user *event 复制给 epds

    if (ep_op_has_event(op) &&

        copy_from_user(&epds, event, sizeof(struct epoll_event)))

        goto error_return;

    error = -EBADF;

    f = fdget(epfd);        // epoll fd 对应的文件对象

    if (!f.file)

        goto error_return;



    tf = fdget(fd);        // fd 对应的文件对象

    …

    // 在create时存入的（anon_inode_getfd），现在取用

    ep = f.file->private_data;

    …

    // 防止重复添加（在ep的红黑树中查找是否已经存在这个fd）

    epi = ep_find(ep, tf.file, fd);



    error = -EINVAL;

    switch (op) {

    case EPOLL_CTL_ADD:        // 增加监听一个fd

        if (!epi) {

            epds.events |= POLLERR | POLLHUP; //默认包含POLLERR和POLLHUP事件

            error = ep_insert(ep, &epds, tf.file, fd, full_check); //在红黑树中

                                                                    插入这个fd对应的epitm

        } else  // 红黑树中已经存在这个fd

            error = -EEXIST;

    …

}


 
其中关键的一步为ep_insert：
 


static int ep_insert(struct eventpoll *ep, struct epoll_event *event,

            struct file *tfile, int fd, int full_check)

{

    int error, revents, pwake = 0;

    unsigned long flags;

    long user_watches;

    struct epitem *epi;

    struct ep_pqueue epq;

    …

    // 分配一个epitem来保存新加入的fd

    if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))

        return -ENOMEM;

    // 初始化epitem

    INIT_LIST_HEAD(&epi->rdllink);

    INIT_LIST_HEAD(&epi->fllink);

    INIT_LIST_HEAD(&epi->pwqlist);

    epi->ep = ep;

    ep_set_ffd(&epi->ffd, tfile, fd);

    epi->event = *event;

    epi->nwait = 0;

    epi->next = EP_UNACTIVE_PTR;

    …

    epq.epi = epi;

    // 初始化ep_pqueue的poll table,并且设置poll table的回调函数为ep_ptable_queue proc

    init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);

    // 执行epi->ffd.file->f_op->poll

    revents = ep_item_poll(epi, &epq.pt);

    …

    // 将该epi插入到ep的红黑树中

    ep_rbtree_insert(ep, epi);

    …

    // revents & event->events：刚才fop->poll的返回值中标识的事件有用户event关心的事件发生。

    // !ep_is_linked(&epi->rdllink)：epi的ready队列中有数据。ep_is_linked用于判断队

     ?列是否为空。

    // 如果要监视的文件状态已经就绪并且还没有加入到就绪队列中,则将当前的epitem加入到就绪队列中;

    // 如果有进程正在等待该文件的状态就绪,则唤醒一个等待的进程

    if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {

        list_add_tail(&epi->rdllink, &ep->rdllist);

        ep_pm_stay_awake(epi);



                // 如果有进程正在等待文件的状态就绪，也就是调用epoll_wait睡眠的进程正在等待，则

                // 唤醒一个等待进程。

        if (waitqueue_active(&ep->wq))

            wake_up_locked(&ep->wq);

        if (waitqueue_active(&ep->poll_wait))

            pwake++;

    }

    …

}


 
在ep_item_poll中执行了epi->ffd.file->f_op->poll，如果fd是套接字，f_op为socket_file_ops，poll函数是sock_poll（）。如果是TCP套接字的话，进而会调用到tcp_poll（）函数。此处调用poll函数查看当前文件描述符的状态，存储在revents中。在poll的处理函数（tcp_poll（））中，会调用sock_poll_wait（），在sock_poll_wait（）中会调用到epq.pt.qproc指向的函数，也就是ep_ptable_queue_proc（）。
 


// 在文件操作中的poll函数中调用，将epoll的回调函数加入到目标文件的唤醒队列中

// 参数whead是设备的等待队列

static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,

                poll_table *pt)

{

    struct epitem *epi = ep_item_from_epqueue(pt); // 获取pt中的epi字段

    struct eppoll_entry *pwq;

    // 分配一个新的eppoll_entry，用于关联epitem和设备以及ep_poll_callback

    if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {

        init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);

                                        // 初始化pwd->wait队列并且添加ep_poll_callback

        pwq->whead = whead;// pwq->whead指向设备的等待队列

        pwq->base = epi;

        if (epi->event.events & EPOLLEXCLUSIVE)

            add_wait_queue_exclusive(whead, &pwq->wait);

                                        // 把pwd的等待队列加入到设备的等待队列中

        else

            add_wait_queue(whead, &pwq->wait);

        list_add_tail(&pwq->llink, &epi->pwqlist);

        epi->nwait++;

    } else {

        // 当错误发生的时候，我们必须发送信号

        epi->nwait = -1;

    }

}


 
由于ep_ptable_queue_proc函数设置了等待队列的ep_poll_callback回调函数。所以在设备硬件数据到来时，硬件中断处理函数唤醒该等待队列上等待的进程时，会调用唤醒函数ep_poll_callback：
 


static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)

{

    int pwake = 0;

    unsigned long flags;

    struct epitem *epi = ep_item_from_wait(wait);

    struct eventpoll *ep = epi->ep;

    int ewake = 0;

…

    spin_lock_irqsave(&ep->lock, flags);

    // 有非EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE事件

    if (!(epi->event.events & ~EP_PRIVATE_BITS))

        goto out_unlock;



    // 没有注册的感兴趣事件

    if (key && !((unsigned long) key & epi->event.events))

        goto out_unlock;

    if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {

        if (epi->next == EP_UNACTIVE_PTR) {

            epi->next = ep->ovflist;

            ep->ovflist = epi;

            if (epi->ws) {

                __pm_stay_awake(ep->ws);// 唤醒调用epoll_wait()函数时睡眠的进程。

            }



        }

        goto out_unlock;

    }


 
最后就是通过epoll_wait来等待就绪事件的到来：
 


SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,

        int, maxevents, int, timeout)

{

    …

    error = ep_poll(ep, events, maxevents, timeout);

    …

    return error;

}


 
epoll_wait其实调用了ep_poll，下面我们来看ep_poll：
 


static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,

            int maxevents, long timeout)

{

    int res = 0, eavail, timed_out = 0;

    unsigned long flags;

    long slack = 0;

    wait_queue_t wait;

    ktime_t expires, *to = NULL;

    …

    if (!ep_events_available(ep)) {

        init_waitqueue_entry(&wait, current);

            // 没有事件，所以需要睡眠。当有事件到来时，睡眠会被ep_poll_callback函数唤醒

        __add_wait_queue_exclusive(&ep->wq, &wait);        // 将current进程放在wait这

                                                                  个等待队列中

        for (;;) {

            // 执行ep_poll_callback()唤醒时应当将当前进程唤醒，所以当前进程状态应该为“可

              唤醒”TASK_INTERRUPTIBLE

            set_current_state(TASK_INTERRUPTIBLE);

            // 如果就绪队列不为空(已经有文件的状态就绪）或者超时，则退出循环。

            if (ep_events_available(ep) || timed_out)

                break;

            // 如果当前进程接收到信号，则退出循环，返回EINTR错误

            if (signal_pending(current)) {

                res = -EINTR;

                break;

            }

            spin_unlock_irqrestore(&ep->lock, flags);

            // 放弃CPU休眠一段时间

            if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))

                timed_out = 1;

            spin_lock_irqsave(&ep->lock, flags);

        }

        __remove_wait_queue(&ep->wq, &wait);

        __set_current_state(TASK_RUNNING);

    }

check_events:

    // 该事件是否值得处理

    eavail = ep_events_available(ep);

    spin_unlock_irqrestore(&ep->lock, flags);

    // 如果没有被信号中断，并且有事件就绪，但是没有获取到事件(有可能被其他进程获取到了)，并且没有超时，

    // 则跳转到fetch_events标签处，重新等待文件状态就绪

    if (!res && eavail &&

        !(res = ep_send_events(ep, events, maxevents)) && !timed_out)

        goto fetch_events;



    return res;

}


 
epoll_wait会循环等待直到关心的事件就绪，其中ep_send_events函数向用户空间发送就绪事件。ep_send_events（）函数将用户传入的内存简单封装到ep_send_events_data结构中，然后调用ep_scan_ready_list（）将就绪队列中的事件传入用户空间的内存。用户空间访问这个结果，进行处理。
 
最后，我们用图5-9回顾一下epoll调用的整体执行流程。
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图5-9　epoll的整体执行流程
5.5　Redis对epoll的封装
 
Redis的作者和Nginx的作者一样，不喜欢引入第三方的库，比如libevent、libev来做事件处理，而是自己封装了epoll，不像Memcachd的I/O模型还得依赖libevent。Redis的I/O模型针对不同系统做了不同的实现，比如Linux中的实现是对epoll的封装，BSD中的实现是对kqueue的封装。针对Linux的实现，我们来看其核心的ae_epoll.c：
 
aeApiState封装了epoll_event：
 


typedef struct aeApiState {

    int epfd;

    struct epoll_event *events;

} aeApiState;


 
aeApiCreate用于调用epoll_create创建epoll：
 


static int aeApiCreate(aeEventLoop *eventLoop) {

    aeApiState *state = zmalloc(sizeof(aeApiState));

    …

    state->epfd = epoll_create(1024); // 1024 是内核设置的默认值

 …

}


 
aeApiAddEvent用于向epoll中注册事件：
 


static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {

    aeApiState *state = eventLoop->apidata;

    struct epoll_event ee;

    …

    ee.data.fd = fd;

    if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;

    return 0;

}


 
aeApiDelEvent用于从epoll中删除事件：
 


static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int delmask) {

    aeApiState *state = eventLoop->apidata;

    struct epoll_event ee;

    int mask = eventLoop->events[fd].mask & (~delmask);

    ee.events = 0;

    if (mask & AE_READABLE) ee.events |= EPOLLIN;

    if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;

    ee.data.u64 = 0; /* avoid valgrind warning */

    ee.data.fd = fd;

    if (mask != AE_NONE) {

        epoll_ctl(state->epfd,EPOLL_CTL_MOD,fd,&ee);

    } else {

        // 注意, Kernel < 2.6.9 EPOLL_CTL_DEL需要一个非空的事件指针

        epoll_ctl(state->epfd,EPOLL_CTL_DEL,fd,&ee);

    }

}


 
aeApiPoll通过调用epoll_wait等待epoll事件就绪：
 


static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {

    aeApiState *state = eventLoop->apidata;

    int retval, numevents = 0;

    retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,

            tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);

    if (retval > 0) {

        int j;

        numevents = retval;

        for (j = 0; j < numevents; j++) {

            int mask = 0;

            struct epoll_event *e = state->events+j;

            if (e->events & EPOLLIN) mask |= AE_READABLE;

            if (e->events & EPOLLOUT) mask |= AE_WRITABLE;

            if (e->events & EPOLLERR) mask |= AE_WRITABLE;

            if (e->events & EPOLLHUP) mask |= AE_WRITABLE;

            eventLoop->fired[j].fd = e->data.fd;

            eventLoop->fired[j].mask = mask;

        }

    }

    return numevents;

}


 
其中：
 
·aeApiCreate：调用epoll_create创建了一个epoll池子。
 
·aeApiAddEvent：调用epoll_ctl向epoll中注册事件。
 
·aeApiPoll：通过调用epoll_wait来获取已经响应的事件。
 
那么这个过程是如何呢？我们来一步一步看server epoll初始化过程：
 
首先在initServer函数执行的时候初始化了epoll：
 


server.el = aeCreateEventLoop(server.maxclients+REDIS_EVENTLOOP_FDSET_INCR);


 
接着设置回调函数：
 


aeSetBeforeSleepProc(server.el,beforeSleep);


 
再来看主循环中的aeMain函数：
 


void aeMain(aeEventLoop *eventLoop) {



  eventLoop->stop = 0;

  while (!eventLoop->stop) {

      if (eventLoop->beforesleep != NULL)

          eventLoop->beforesleep(eventLoop);

      aeProcessEvents(eventLoop, AE_ALL_EVENTS);

  }

}


 
最后循环调用aeProcessEvents来进行事件处理（见图5-10）。
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图5-10　Redis epoll主循和事件的关系
 
可以看到eventLoop会对两类事件进行处理，定时器事件和file事件。
 
最后我们来看aeProcessEvents函数：
 


int aeProcessEvents(aeEventLoop *eventLoop, int flags)

{

    int processed = 0, numevents;

    …

        aeTimeEvent *shortest = NULL;

        struct timeval tv, *tvp;

        if (flags & AE_TIME_EVENTS && !(flags & AE_DONT_WAIT))

            shortest = aeSearchNearestTimer(eventLoop);

        if (shortest) {

            long now_sec, now_ms;

            aeGetTime(&now_sec, &now_ms);

            tvp = &tv;

            tvp->tv_sec = shortest->when_sec - now_sec;

            if (shortest->when_ms < now_ms) {

                tvp->tv_usec = ((shortest->when_ms+1000) - now_ms)*1000;

                tvp->tv_sec --;

            } else {

                tvp->tv_usec = (shortest->when_ms - now_ms)*1000;

            }

            if (tvp->tv_sec < 0) tvp->tv_sec = 0;

            if (tvp->tv_usec < 0) tvp->tv_usec = 0;

        } else {

            // AE_DONT_WAIT标志置位，则设置超时时间为0

            if (flags & AE_DONT_WAIT) {

                tv.tv_sec = tv.tv_usec = 0;

                tvp = &tv;

            } else {

                // 否则会发生阻塞

                tvp = NULL;         // 一直等待

            }

        }



        numevents = aeApiPoll(eventLoop, tvp);

        for (j = 0; j < numevents; j++) {

            aeFileEvent *fe = &eventLoop->events[eventLoop->fired[j].fd];

            int mask = eventLoop->fired[j].mask;

            int fd = eventLoop->fired[j].fd;

            int rfired = 0;

            if (fe->mask & mask & AE_READABLE) {

                rfired = 1;

                fe->rfileProc(eventLoop,fd,fe->clientData,mask);

            }

            if (fe->mask & mask & AE_WRITABLE) {

                if (!rfired || fe->wfileProc != fe->rfileProc)

                    fe->wfileProc(eventLoop,fd,fe->clientData,mask);

            }

            processed++;

        }

    }

    if (flags & AE_TIME_EVENTS)

        processed += processTimeEvents(eventLoop);

    return processed;                 // 返回需要处理的file/time事件数量

}


 
这个函数大致上分为以下几个步骤：
 
1）aeSearchNearestTimer查找是否有要优先处理的定时器任务，如果有就先处理。
 
2）假如没有，则执行aeApiPoll来处理epoll中的就绪事件，而且是无限等待的哦：
 


    if (flags & AE_DONT_WAIT) {

        tv.tv_sec = tv.tv_usec = 0;

        tvp = &tv;

    } else {

        tvp = NULL;

    }


 
3）处理定时器任务。
 
最后我们来看一下Redis的整体事件处理流程（见图5-11），由于Redis本身是单线程的，没有锁的竞争，为了提高处理的吞吐量，Redis把工作的流程拆成了很多步，每步都是通过epoll的机制来回调，这样尽量不让一个请求hold住主线程，让系统的吞吐量得到有效的提升。
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图5-11　Redis的整体事件处理流程图
5.6　Nginx文件异步I/O
 
为了提升对I/O事件的及时响应速度，Linux提供了aio机制，该机制实现了真正的异步I/O响应处理，不像libc的aio是异步线程伪装的。
 
因为Linux的aio对缓存不支持，所以在Nginx中，仅仅对读文件做了aio的支持。
 
aio的使用可以分为以下几个步骤：
 
1）io_setup：初始化异步I/O上下文，类似于epoll_create。
 
2）io_submit：注册异步事件和回调handler。
 
ngx_epoll_module在初始化的时候，会先进行aio的初始化：
 


ngx_epoll_aio_init(ngx_cycle_t *cycle, ngx_epoll_conf_t *epcf)

{

    int                    n;

    struct epoll_event  ee;



#if (NGX_HAVE_SYS_EVENTFD_H)

    ngx_eventfd = eventfd(0, 0);

#else

    ngx_eventfd = syscall(SYS_eventfd, 0);

#endif

…

    n = 1;



    if (ioctl(ngx_eventfd, FIONBIO, &n) == -1) {

        ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno,

                      "ioctl(eventfd, FIONBIO) failed");

        goto failed;

    }



    if (io_setup(epcf->aio_requests, &ngx_aio_ctx) == -1) {

        ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno,

                      "io_setup() failed");

        goto failed;

    }



    ngx_eventfd_event.data = &ngx_eventfd_conn;

    ngx_eventfd_event.handler = ngx_epoll_eventfd_handler;

    ngx_eventfd_event.log = cycle->log;

    ngx_eventfd_event.active = 1;

    ngx_eventfd_conn.fd = ngx_eventfd;

    ngx_eventfd_conn.read = &ngx_eventfd_event;

    ngx_eventfd_conn.log = cycle->log;

    ee.events = EPOLLIN|EPOLLET;

    ee.data.ptr = &ngx_eventfd_conn;



    if (epoll_ctl(ep, EPOLL_CTL_ADD, ngx_eventfd, &ee) != -1) {

        return;

    }

…

}


 
然后Nginx会在读取文件的时候调用ngx_file_aio_read函数进行异步读取：
 


ssize_t

ngx_file_aio_read(ngx_file_t *file, u_char *buf, size_t size, off_t offset,

    ngx_pool_t *pool)

{

    ngx_err_t         err;

    struct iocb      *piocb[1];

    ngx_event_t      *ev;

    ngx_event_aio_t  *aio;

    ...

    aio = file->aio;

    ev = &aio->event;

    ...

    if (ev->complete) {

        ev->active = 0;

        ev->complete = 0;



        if (aio->res >= 0) {

            ngx_set_errno(0);

            return aio->res;

        }



       ...

    }



    ngx_memzero(&aio->aiocb, sizeof(struct iocb));



    aio->aiocb.aio_data = (uint64_t) (uintptr_t) ev;

    aio->aiocb.aio_lio_opcode = IOCB_CMD_PREAD;

    aio->aiocb.aio_fildes = file->fd;

    aio->aiocb.aio_buf = (uint64_t) (uintptr_t) buf;

    aio->aiocb.aio_nbytes = size;

    aio->aiocb.aio_offset = offset;

    aio->aiocb.aio_flags = IOCB_FLAG_RESFD;

    aio->aiocb.aio_resfd = ngx_eventfd;



    ev->handler = ngx_file_aio_event_handler;



    piocb[0] = &aio->aiocb;



    if (io_submit(ngx_aio_ctx, 1, piocb) == 1) {

        ev->active = 1;

        ev->ready = 0;

        ev->complete = 0;



        return NGX_AGAIN;

    }

...

}


5.7　tail指令为何牛
 
因为需要采集线上环境的数据，我开发了一个Java agent程序来采集相关信息。跑了一段时间后发现一个问题，假如采集数据量压力过大的话，会产生该进程占用CPU过高，例如100%以上的情况。
 
首先来看代理程序的伪代码：
 


public void run() {

    try {

    accesslog.seek(accesslog.length());

        int i = 0;

        while (!Thread.currentThread().isInterrupted()) {

            String line = accesslog.readLine();

            if (line != null) {

                try {

                    parseLineAndLog(line);

                } catch (Exception ex) {



                    LOGGER.error("parseLineAndLog log error:", ex);

                }

                try {

                    if (i++ % 100 == 0) {

                        Thread.sleep(100);

                    }

                } catch (InterruptedException e) {

                    e.printStackTrace();

                }

            }

        }

    } catch (IOException e) {

        LOGGER.error("read ngx access log error:", e);

    }

}


 
我们首先通过top-H-p${pid}观察该进程中的具体哪个线程占用CPU比较高。找到后，通过以下指令把pid转换成16进制的数据：
 


awk '{printf("%x",1234)}'


 
然后我们通过如下命令产生线程堆栈信息：
 


jstack ${pid} > stack.log


 
再通过刚才awk的16进制进程号查看，发现jstack中该进程一直在做如下操作：
 


String line = accesslog.readLine();


 
因为上面代码采用的accesslog其实是：
 


this.accesslog = new RandomAccessFile(path, "r");


 
而它的readLine（）方法是不阻塞的，轮询必然导致CPU占用率的提升。
 
那如何解决呢？我使用了tail指令：
 


 Process p = Runtime.getRuntime().exec("tail -n 1 -F " + path);

 br = new BufferedReader(new InputStreamReader(p.getInputStream()));


 
然后在while循环中用br.readline来解决问题。
 
上线后再观察，神奇的事情发生了，CPU占用率始终控制在5%以下。
 
那么一条tail指令为什么能那么神奇呢？我们根据Linus大神的指示：从代码中寻找答案。
 
首先我们找到tail的源码：
 


http:// git.savannah.gnu.org/cgit/coreutils.git/tree/src/tail.c


 
经过一步一步分析后，我们发现，最终会调用tail_forever_inotify函数。
 
在2.6内核之后，Linux提供了inotify功能，内核通过监控文件系统的变更来反向通知用户，这样减少了轮询的开销。我们来看其实现：
 


tail_forever_inotify (int wd, struct File_spec *f, size_t n_files,

                        double sleep_interval)

{

...

f[i].wd = inotify_add_watch (wd, f[i].name, inotify_wd_mask);

...

    if (pid)

        {

            if (writer_is_dead)

                exit (EXIT_SUCCESS);



            writer_is_dead = (kill (pid, 0) != 0 && errno != EPERM);



            struct timeval delay; // 等待文件变化的时间

            if (writer_is_dead)

                delay.tv_sec = delay.tv_usec = 0;

            else

                {

                    delay.tv_sec = (time_t) sleep_interval;

                    delay.tv_usec = 1000000 * (sleep_interval - delay.tv_sec);

                }



                fd_set rfd;

                FD_ZERO (&rfd);

                FD_SET (wd, &rfd);



                int file_change = select (wd + 1, &rfd, NULL, NULL, &delay);



                if (file_change == 0)

                    continue;

                else if (file_change == -1)

                    die (EXIT_FAILURE, errno, _("error monitoring inotify event"));

            }

...

 len = safe_read (wd, evbuf, evlen);

...


 
所以以上步骤主要分为三步：
 
1）注册inotify的watch。
 
2）用select等待watch事件发生。
 
3）用safe_read读取准备好的数据。
5.8　零拷贝技术应用分析
 
在常见的I/O场景中，都是先通过read+write（或send）的方式来完成的，如图5-12所示，read调用先从用户态切换到内核态，然后从文件中读取了数据，存储到内核的缓冲区中，然后再把数据从内核态缓冲区拷贝到用户态，同时从内核态切换到用户态。
 
接着用send写入到指定文件也是类似的过程，这里存在4次上下文切换和4次缓冲区的拷贝。
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图5-12　一次read/send的过程
 
为了优化这个缓冲区拷贝和上下文切换的次数，Linux提供了几种方案，下面分别介绍。
5.8.1　mmap
 
假如仅仅是把数据写入到文件，Linux提供了mmap的方式来共享内存虚拟地址空间，这样只要写共享内存就是写文件，读共享内存就是读文件，减少了缓冲区拷贝的次数。
 
mmap的实现最终通过do_mmap函数来实现：
 


unsigned long do_mmap(struct file *file, unsigned long addr,

            unsigned long len, unsigned long prot,

            unsigned long flags, vm_flags_t vm_flags,

            unsigned long pgoff, unsigned long *populate)

{

    struct mm_struct *mm = current->mm;                        // 当前进程的mm

    …

    if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))

                                                                // 是否隐藏了可执行属性

        if (!(file && path_noexec(&file->f_path)))

            prot |= PROT_EXEC;

    if (!(flags & MAP_FIXED))        // MAP_FIXED没有设置

        addr = round_hint_to_min(addr);        // 判断输入的欲映射的起始地址是否小于最小映射地址，

                                                 ?如果小于，将addr修改为最小地址

    len = PAGE_ALIGN(len);        // 检测len是否越界

    …

    if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)                // 再次检测是否越界

        return -EOVERFLOW;

    if (mm->map_count > sysctl_max_map_count)        // 超过一个进程中对于mmap的最大个数限制

        return -ENOMEM;

    addr = get_unmapped_area(file, addr, len, pgoff, flags);        // 获取没有映射的地址

                                                             (查询mm中空闲的内

                                                               存地址)

    …

    // 设置vm_flags，根据传入的port和flags以及mm自己的flag来设置

    vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |

            mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

    …

    if (file) {

        struct inode *inode = file_inode(file);

        switch (flags & MAP_TYPE) {

        case MAP_SHARED:

            if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))

                                                                // file应该被打开并允许写入

                return -EACCES;

            if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))

                                                                // 不能写入一个只允许写追加的文件

                return -EACCES;

            if (locks_verify_locked(file))                // 文件被强制锁定

                return -EAGAIN;

            vm_flags |= VM_SHARED | VM_MAYSHARE        // 尝试允许其他进程共享

            if (!(file->f_mode & FMODE_WRITE))                // 如果file不允许写,取消共享

                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);

        …

        }

    }



    …

    addr = mmap_region(file, addr, len, vm_flags, pgoff); // 建立从文件到虚存区间的

                                                                     ?映射

    …

    return addr;

}


 
以上过程最重要的两步是：
 
1）get_unmapped_area查询并获取当前进程虚拟地址空间中空闲的没有映射的地址。
 
2）mmap_region建立从文件到虚存区间的映射。
 
最终映射后的关系如图5-13所示。
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图5-13　文件和虚拟地址空间映射后的关系
5.8.2　sendfile
 
假如需要从一个文件读数据，并且写入到另一个文件，mmap的方式还是会存在2次系统调用4次上下文切换，所以Linux又提供了sendfile的调用，1次系统调用搞定（见图5-14）。
 
 
 [image: ] 


图5-14　sendfile调用过程
 
下面我们来分析一下sendfile的实现，sendfile调用最终会调用do_sendfile函数：
 


static ssize_t do_sendfile(int out_fd, int in_fd, loff_t *ppos,

                    size_t count, loff_t max)

{

    file_start_write(out.file);

    retval = do_splice_direct(in.file, &pos, out.file, &out_pos, count, fl);

    file_end_write(out.file);

…

    return retval;

}


 
其中最关键的一行是do_splice_direct：
 


long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,

                loff_t *opos, size_t len, unsigned int flags)

{

    struct splice_desc sd = {

            .len        = len,

        .total_len      = len,

        .flags          = flags,

        .pos            = *ppos,

        .u.file         = out,

        .opos           = opos,

    };

    long ret;



    …

    ret = splice_direct_to_actor(in, &sd, direct_splice_actor);

    if (ret > 0)

        *ppos = sd.pos;

    return ret;

}



ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,

                 splice_direct_actor *actor)

{

    struct pipe_inode_info *pipe;

    long ret, bytes;

    umode_t i_mode;

    size_t len;

    int i, flags, more;

    …

    pipe = current->splice_pipe;

    if (unlikely(!pipe)) {

        pipe = alloc_pipe_info();

        …

        pipe->readers = 1;

        current->splice_pipe = pipe;

    }

    // 进行拼接

    ret = 0;

    bytes = 0;

    len = sd->total_len;

    flags = sd->flags;

     // 不要在输出的时候阻塞，我们需要清空direct pipe

    sd->flags &= ~SPLICE_F_NONBLOCK;

    more = sd->flags & SPLICE_F_MORE;



    while (len) {

        size_t read_len;

        loff_t pos = sd->pos, prev_pos = pos;



        ret = do_splice_to(in, &pos, pipe, len, flags);

        …

        ret = actor(pipe, sd);

        if (unlikely(ret <= 0)) {

            sd->pos = prev_pos;

            goto out_release;

        }



        bytes += ret;

        len -= ret;

        sd->pos = pos;



        if (ret < read_len) {

            sd->pos = prev_pos + ret;

            goto out_release;

        }

    }



done:

    pipe->nrbufs = pipe->curbuf = 0;

    file_accessed(in);

    return bytes;

…

}


 
在上述代码中，总结起来就三个步骤：
 
1）alloc_pipe_info分配pipe对象，pipe其实就是个缓冲区。
 
2）do_splice_to把in文件的数据读入到缓冲区。
 
3）actor把缓冲区的数据读到out文件中。
5.8.3　mmap和sendfile在开源软件中的使用
 
在MongoDB中，使用了操作系统底层提供的内存映射机制，即mmap，数据文件使用mmap映射到内存空间进行管理，内存的管理（哪些数据何时换入/换出）完全交给OS管理。
 
MongoDB对不同操作系统的MemoryMappedFile有不同的实现，我们这里针对Linux操作系统的实现来分析MongoDB中把文件数据映射到进程地址空间的操作：
 


void* MemoryMappedFile::map(const char *filename, unsigned long long &length, int options) {

    setFilename(filename);

    FileAllocator::get()->allocateAsap( filename, length );

    len = length;

    …

    unsigned long long filelen = lseek(fd, 0, SEEK_END);

    …

    lseek( fd, 0, SEEK_SET );

    void * view = mmap(NULL, length, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

    …

    views.push_back( view );

    return view;

}


 
MongoDB通知操作系统去映射所有数据文件到内存，操作系统使用mmap（）系统调用来完成。从这一点看，数据文件，包括所有的docments、collections及其索引，都会被操作系统通过页（page）的方式交换到内存。如果有足够的内存，所有数据文件最终都会加载到内存中。
 
当内存发生了改变，比如一个写操作，产生的变化将会异步刷新到磁盘，但写操作仍是很快的，直接操作内存。数据量可以适应内存大小，从而达到一个理想状况——对磁盘的操作达到最小量。但是如果数据量超出内存，页面访问错误（page faults）将会悄悄上来，那么系统就会频繁访问内存，读写操作要慢很多。最糟糕的状况是数据量远大于内存，读写不稳定，性能急剧下降。
 
Kafka是Apache社区下的消息中间件，在Kafka上，有两个原因可能导致低效：1）太多的网络请求；2）过多的字节拷贝。为了提高效率，Kafka把message分成一组一组的，每次请求会把一组message发给相应的consumer。此外，为了减少字节拷贝，采用了sendfile系统调用。
 
Kafka设计了一种“标准字节消息”，Producer、Broker、Consumer共享这一种消息格式。Kakfa的消息日志在broker端就是一些目录文件，这些日志文件都是MessageSet按照这种“标准字节消息”格式写入磁盘的。
 
维持这种通用的格式对这些操作的优化尤为重要：持久化log块的网络传输。流行的Unix操作系统提供了一种非常高效的途径来实现页面缓存和socket之间的数据传递。在Linux操作系统中，这种方式称作：sendfile系统调用（Java提供了访问这个系统调用的方法：FileChannel.transferTo api）。
 
下面我们来分析在Kafka中的零拷贝流程。
 
首先我们来看kafka的服务端socketServer逻辑：
 


override def run() {

    startupComplete()

    while(isRunning) {

        try {

            // 配置任意一个新的可以用来排队的连接

            configureNewConnections()

            // 注册一个新的请求用来写

            processNewResponses()



            try {

              selector.poll(300)

            } catch {

              case...

            }


 
SocketServer会poll队列，一旦对应的KafkaChannel写操作准备好了，就会调用KafkaChannel的write方法：
 


// KafkaChannel.scala

public Send write() throws IOException {

    if (send != null && send(send))

}

// KafkaChannel.scala

private boolean send(Send send) throws IOException {

    send.writeTo(transportLayer);

    if (send.completed())

        transportLayer.removeInterestOps(SelectionKey.OP_WRITE);

    return send.completed();

}


 
其中write会调用send方法，对应的Send对象其实就是上面我们注册的FetchRes-ponseSend对象。
 
这段代码里实际发送数据的代码是send.writeTo（transportLayer），对应的writeTo方法为：
 


private val sends = new MultiSend(dest, JavaConversions.seqAsJavaList(fetchResponse.

    dataGroupedByTopic.toList.map {

    case(topic, data) => new TopicDataSend(dest, TopicData(topic,data.map{case

        (topicAndPartition, message) => (topicAndPartition.partition, message)}))

    }))

override def writeTo(channel: GatheringByteChannel): Long = {

    …

        written += sends.writeTo(channel)

    …

}


 
这里最后调用了sends的writeTo方法，而sends其实是个MultiSend。MultiSend里有两个东西：
 
·topicAndPartition.partition：分区。
 
·message：FetchResponsePartitionData。还记得这个FetchResponsePartitionData吗？我们的MessageSet就放在了这个对象里。
 
TopicDataSend也包含了sends，该sends包含了PartitionDataSend，而PartitionDataSend则包含了FetchResponsePartitionData。
 
最后进行writeTo的时候，其实是调用了：
 


// partitionData 就是 FetchResponsePartitionData，messages 就是FileMessageSet

val bytesSent = partitionData.messages.writeTo(channel, messagesSentSize, messageSize - messagesSentSize)


 
FileMessageSet也有个writeTo方法，就是我们之前已经提到过的那段代码：
 


def writeTo(destChannel: GatheringByteChannel, writePosition: Long, size: Int): Int = {

    ...

    val bytesTransferred = (destChannel match {

        case tl: TransportLayer => tl.transferFrom(channel, position, count)

        case dc => channel.transferTo(position, count, dc)

    }).toInt

    bytesTransferred

}


 
最后通过tl.transferFrom（channel，position，count）来完成最后的数据发送的。trans-ferFrom其实是Kafka自己封装的一个方法，最终里面调用的也是transerTo：
 


public long transferFrom(FileChannel fileChannel, long position, long count) throws IOException {

    return fileChannel.transferTo(position, count, socketChannel);

}


5.9　本章小结
 
我们编写的应用程序或多或少都会涉及I/O，比如读写数据库、读写网络等，总会遇到很多问题，例如在高并发场景下，如何编写高性能的服务端和客户端程序。对I/O的理解是否深入，关系到写出来的应用对性能的影响程度。
 
从狭义的角度来讲，I/O就是in和out两条输入输出的汇编指令。但是从广义角度讲，I/O可以涉及操作系统整个I/O模型的构建，系统从分层的角度，将数据从写文件开始最终转换成数据块并落入磁盘。从更深入的视角看，会涉及epoll这样的I/O多路复用模型。
 
因此，只有从操作系统的角度来理解I/O，才能真正编写出高性能的应用程序。
第6章　文件系统
 
Linux内核设计，基本上是围绕着“一切皆文件”的思想来展开的。所以，我们能见到的系统调用或者模块功能，都需要使用文件系统。假如没有文件系统，我们就只能直接操作块设备、字符设备等，这需要对外部存储设备运行原理非常了解才行，比如机械盘的结构、不同设备的驱动程序。文件系统的出现给用户屏蔽了这些细节，让我们把精力集中在数据结构组织上，而不用关注硬件的运行原理。
 
本章着重介绍Linux的文件系统，包括以下内容：
 
·Linux文件系统的架构以及文件系统领域模型概念。
 
·Linux文件系统的主要功能：安装、卸载、创建、删除、读写等。
 
·ext4文件系统的相关功能。
 
·TFS小文件系统。
6.1　Linux文件系统架构
 
我们首先围绕文件系统相关的数据结构来介绍文件系统的系统架构。在一个操作系统上，往往会跟多种不同的文件系统打交道，例如上一章提到的sysfs和proc文件系统等。为了让应用程序开发人员友好地使用文件系统，屏蔽底层各类文件系统的细节，Linux通过VFS（虚拟文件系统）抽象层暴露给上层（见图6-1），至于底层是用ext4文件系统还是其他文件系统，甚至网络文件系统，可以有不同的具体实现。
 
下面是VFS层的接口（代码详见：Linux-4.15.8/include/Linux/fs.h）：
 


struct file_operations {

    struct module *owner;

    loff_t (*llseek) (struct file *, loff_t, int);

    ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

    ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

    ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);

    ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);

    int (*iterate) (struct file *, struct dir_context *);

    unsigned int (*poll) (struct file *, struct poll_table_struct *);

    long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

    long (*compat_ioctl) (struct file *, unsigned int, unsigned long);

    int (*mmap) (struct file *, struct vm_area_struct *);

    int (*open) (struct inode *, struct file *);

    int (*flush) (struct file *, fl_owner_t id);

    int (*release) (struct inode *, struct file *);

    int (*fsync) (struct file *, loff_t, loff_t, int datasync);

    int (*aio_fsync) (struct kiocb *, int datasync);

    int (*fasync) (int, struct file *, int);

    int (*lock) (struct file *, int, struct file_lock *);

    ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);

…
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图6-1　VFS接口层
 
下面我们来了解一下Linux文件系统的领域模型，Linux对文件系统主要抽象了如下概念：
 
·超级块（super block）存放已安装文件系统的有关信息。主要保存了文件系统的类型、逻辑块的大小、文件系统挂载的根目录等，其中文件系统的根目录对应了dentry结构。
 
·索引节点（inode）存放关于具体文件的一般信息。每个索引节点对象都有一个索引节点号，这个节点号唯一地标识文件系统中的文件，inode指向数据块，为了解决保存大文件的问题，inode的块指针是由多级指针结构组成的。
 
·文件（file）存放打开文件与进程之间进行交互的有关信息，这类信息仅当进程访问文件期间存在内核内存中。
 
·目录项（dentry）存放目录项（也就是文件的特定名称）与对应文件进行链接的有关信息，如文件的名字和目录项对应的inode。假如dentry是个目录，那么inode的块数据中就保存了目录下所有文件或者子目录的名字。否则inode中的块数据中保存的是文件的数据。
 
下面从进程视角来展开，一个进程保存了fs结构和files结构。其中fs结构对应了用户对应文件系统的根目录和当前目录，都指向了dentry结构。files结构中保存了一个fdtable结构，里面有该进程打开的所有文件句柄fd，fd指向了file文件结构，里面保存了文件对应的dentry项和文件的操作集合files_operations，如图6-2所示。
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图6-2　Linux文件系统领域模型
6.2　文件系统的主要功能
 
了解完文件系统的核心概念之后，我们接着介绍文件系统的主要功能。
 
关于文件读写的部分，在查找获取文件句柄之后，就可以对该文件进行读写了。文件的读写过程已在前一章中介绍，因为block层在文件系统之下，所以已经覆盖了流程，这里不再进行介绍了。下面详细介绍文件系统的安装和文件路径查找。
6.2.1　文件系统的安装
 
虽然我们不知道先有鸡还是先有蛋，但是我们知道要使用文件系统，必然需要初始化，这个初始化安装其实是对超级块（super block）数据结构的初始化。这个工作由mount系统调用完成，sys_mount会最终找到具体文件系统的file_system_type结构，然后执行挂载方法，比如ext4文件系统的挂载方法为ext4_mount：
 


static struct file_system_type ext4_fs_type = {

    .owner           = THIS_MODULE,

    .name            = "ext4",

    .mount           = ext4_mount,

    .kill_sb      = kill_block_super,

    .fs_flags     = FS_REQUIRES_DEV,

};


 
ext4_mount最终调用了mount_bdev，该函数主要完成superblock对象的内存初始化，并且加入到全局superblock链表中：
 


struct dentry *mount_bdev(struct file_system_type *fs_type,

    int flags, const char *dev_name, void *data,

    int (*fill_super)(struct super_block *, void *, int))

{

    struct block_device *bdev;

    struct super_block *s;

    fmode_t mode = FMODE_READ | FMODE_EXCL;

    int error = 0;

    if (!(flags & MS_RDONLY))

        mode |= FMODE_WRITE;

    // 根据设备名字打开块设备

    bdev = blkdev_get_by_path(dev_name, mode, fs_type);

    …

    // 在块设备上查找或者创建一个super_block

    s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,

         bdev);

    …

    if (s->s_root) {

        // 被挂载文件系统的根目录项已经存在

        if ((flags ^ s->s_flags) & MS_RDONLY) {

            deactivate_locked_super(s);

            error = -EBUSY;

            goto error_bdev;

        }

    …

    } else {

        // 文件系统根目录项不存在，通过filler_super函数读取磁盘上的superblock元数据信息，并

            且初始化superblock内存结构

        s->s_mode = mode;

        snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);

        sb_set_blocksize(s, block_size(bdev));

        // 在ext4中传入的是ext4_fill_super

        error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);

        if (error) {

            deactivate_locked_super(s);

            goto error;

        }

        s->s_flags |= MS_ACTIVE;

        bdev->bd_super = s;

    }

    // 返回被挂载文件系统的根目录

        return dget(s->s_root);

…

}


6.2.2　文件路径查找
 
当文件系统安装完之后，假如我们需要读写一个文件，就必须先查找该文件的路径。为什么要有这个概念呢？因为给定某个路径之后，我们需要找到对应的inode，执行这一任务的标准过程就是分析路径名，并把它拆分成一个文件名序列。除了最后一个文件名以外，所有其他的文件名都必定是目录。
 
如果路径名的第一个字符是“/”，例如：/Users/chenke/softs/tfs-2.6.6/build.sh，那么这个路径名是绝对路径，需要从current->fs->root所标识的目录开始搜索。否则，路径名是相对路径，需要从currrent->fs->pwd所标识的目录开始搜索。
 
和查找相关的有两个比较重要的概念，nameidata和path：
 


struct nameidata {

    struct path        path;                        // 查找的路径

    struct qstr        last;                        // 路径名的最后一个分量

    struct path        root;                        // 开始查找的根路径

    struct inode        *inode;                        // 文件或者文件夹的inode

    unsigned int        flags;

    unsigned        seq, m_seq;

    int                last_type;

    unsigned        depth;                        // 符号链接嵌套的当前级别

    int                total_link_count;

    struct saved {

        struct path link;

        struct delayed_call done;

        const char         *name;

        unsigned seq;

    } *stack, internal[EMBEDDED_LEVELS];

    struct filename        *name;

    struct nameidata        *saved;

    struct inode                *link_inode;

    unsigned        root_seq;

    int                dfd;

};





struct path {

    struct vfsmount *mnt;                // 该路径挂载的设备（或者文件系统）

    struct dentry *dentry;               // 路径的dentry结构

};


 
下面我们通过sys_open系统调用来分析文件路径查找的过程，sys_open通过sys_open->do_sys_open->do_filp_open->path_openat的调用，其核心为path_openat函数：
 


static struct file *path_openat(struct nameidata *nd,

            const struct open_flags *op, unsigned flags)

{

    const char *s;

    struct file *file;

    int opened = 0;

    int error;

    // 获取一个未被使用的file结构

    file = get_empty_filp();

    if (IS_ERR(file))

        return file;

    …

    s = path_init(nd, flags);

    if (IS_ERR(s)) {

        put_filp(file);

        return ERR_CAST(s);

    }

    while (!(error = link_path_walk(s, nd)) &&

        (error = do_last(nd, file, op, &opened)) > 0) {

        nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);

        s = trailing_symlink(nd);

        …

    }

    terminate_walk(nd);

out2:

    if (!(opened & FILE_OPENED)) {

        …

        put_filp(file);

    }

    …

    return file;

}


 
path_openat的主要工作就是根据指定的路径一层一层查找，直到找到最终的文件或者文件夹，并且返回文件句柄（file）为止。
 
其主要的步骤如下：
 
1）通过path_init初始化查找的根路径，这里会用到上面介绍的nameidata结构，用来保存查找的临时数据：
 


static const char *path_init(struct nameidata *nd, unsigned flags)

{

    int retval = 0;

    const char *s = nd->name->name;



    nd->last_type = LAST_ROOT; /* 到头了 */

    nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;

    nd->depth = 0;

    if (flags & LOOKUP_ROOT) {        // 直接从根开始搜索

        struct dentry *root = nd->root.dentry; // 根目录dentry

        struct inode *inode = root->d_inode; // 根目录inode

        if (*s) {

            if (!d_can_lookup(root)) // 假如不是普通目录结构，出错

                return ERR_PTR(-ENOTDIR);

            retval = inode_permission(inode, MAY_EXEC); // 文件夹是否有x权限

            if (retval)

                return ERR_PTR(retval);

        }

        nd->path = nd->root;

        nd->inode = inode;

        if (flags & LOOKUP_RCU) {

            rcu_read_lock();

            nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);

            nd->root_seq = nd->seq;

            nd->m_seq = read_seqbegin(&mount_lock);

        } else {

            path_get(&nd->path);

        }

        return s;

    }

    nd->root.mnt = NULL;

    nd->path.mnt = NULL;

    nd->path.dentry = NULL;

    nd->m_seq = read_seqbegin(&mount_lock); // 如果文件名是以'/'开头的

    if (*s == '/') {

        if (flags & LOOKUP_RCU)

            rcu_read_lock();

        set_root(nd);         // 因为有可能chroot已经改变了真正的/，所以需要获取mntget(path->>

                                 ?mnt);dget(path->dentry);

        if (likely(!nd_jump_root(nd))) // 非LOOKUP_JUMPED情况

            return s;

        nd->root.mnt = NULL;

        rcu_read_unlock();

        return ERR_PTR(-ECHILD);

    } else if (nd->dfd == AT_FDCWD) { // 假如是相对路径

        if (flags & LOOKUP_RCU) {

            struct fs_struct *fs = current->fs;

            unsigned seq;

            rcu_read_lock();

            do {

                seq = read_seqcount_begin(&fs->seq);

                nd->path = fs->pwd;

                nd->inode = nd->path.dentry->d_inode;

                nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);

            } while (read_seqcount_retry(&fs->seq, seq));

        } else {

            get_fs_pwd(current->fs, &nd->path); // 从current->fs的当前目录下开始查找

            nd->inode = nd->path.dentry->d_inode;

        }

        return s;

    } else {        // 假如是个文件

        struct fd f = fdget_raw(nd->dfd);

        struct dentry *dentry;

        if (!f.file)

            return ERR_PTR(-EBADF);

        dentry = f.file->f_path.dentry;

        if (*s) {        // 不是个目录

            if (!d_can_lookup(dentry)) {

                fdput(f);

                return ERR_PTR(-ENOTDIR);

            }

        }

        nd->path = f.file->f_path;

        if (flags & LOOKUP_RCU) {

            rcu_read_lock();

            nd->inode = nd->path.dentry->d_inode;

            nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);

        } else {

            path_get(&nd->path);

            nd->inode = nd->path.dentry->d_inode; // 获取文件的inode

        }

        fdput(f);

        return s;

    }

}


 
path_init在执行过程中，主要任务是设置nd结构的path和inode，分成以下4种情况：
 
·假如flag中强制指定从根开始查找，则直接获取根的dentry和inode。
 
·如果文件名是以'/'开头的，则需要判断有没有因为chroot后'/'发生了变化。
 
·如果文件名是相对路径，则从current->fs获取当前工作目录。
 
·假如是个文件，获取该文件的inode。
 
其中dentry和inode之间的关系如图6-3所示，我们从图6-2中已经知道，每个进程都会对应一个fs_struct结构，其中的root就是根路径的dentry，而图6-3则说明了dentry和inode的关系，dentry结构中保存了其inode索引，inode中可以读取dentry数据，dentry结构中的d_subdirs则保存了该目录下的子目录。
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图6-3　dentry和inode的关系（其中的/home/test1和/home/test2之间是硬连接关系）
 
path_init返回之后nd中的path就已经设定为起始路径了，现在可以开始遍历路径了。
 
2）link_path_walk根据path_init之后的nd，从指定的根路径开始一级一级读取节点数据，最终找到指定的文件或者目录：
 


static int link_path_walk(const char *name, struct nameidata *nd)

{

    int err;



    while (*name=='/')         // 跳过'/'

        name++;

    if (!*name)                // 假如后面没东西，则返回0

        return 0;

    for(;;) {

        u64 hash_len;

        int type;

        err = may_lookup(nd);

         …

        hash_len = hash_name(name);

        type = LAST_NORM;

        if (name[0] == '.') switch (hashlen_len(hash_len)) {

            case 2:

                if (name[1] == '.') {                // ..的情况

                    type = LAST_DOTDOT;

                    nd->flags |= LOOKUP_JUMPED;

                }

                break;

            case 1:                                // .的情况

                type = LAST_DOT;

        }

        if (likely(type == LAST_NORM)) {        // 正常情况

            struct dentry *parent = nd->path.dentry;

            nd->flags &= ~LOOKUP_JUMPED;

            if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {

                struct qstr this = { { .hash_len = hash_len }, .name = name };

                err = parent->d_op->d_hash(parent, &this); // 对parent目录进行

                                                                          hash计算

            …

                hash_len = this.hash_len;

                name = this.name;

            }

        }

        nd->last.hash_len = hash_len;

        nd->last.name = name;

        nd->last_type = type;

        name += hashlen_len(hash_len);

        if (!*name)                              // 假如后面没东西了

            goto OK;

        do {

            name++;

        } while (unlikely(*name == '/'));        // 当遇到'/'跳出循环

        if (unlikely(!*name)) {                  // 如果name存在值

OK:

            // 路径名body获取完成

            if (!nd->depth)

                return 0;

            name = nd->stack[nd->depth - 1].name;

            // 追踪 symlink, 完成

            if (!name)

                return 0;

            // 该部分name不为空，则需要处理符号链接

            err = walk_component(nd, WALK_GET | WALK_PUT);

        } else {

            err = walk_component(nd, WALK_GET);

        }

        …

    }

}


 
link_path_work首先在跳过最前面的'/'后（因为在path_init后，我们已经知道了root路径），就进入了for循环进行路径的处理。首先处理了.或者..开头的情况。假如是..则需要跳到父目录，则设置type=LAST_DOTDOT；nd->flags|=LOOKUP_JUMPED；如果是.开头，说明是当前目录，则设置type=LAST_DOT.默认type为LAST_NORM。
 
接着在遍历路径的时候，遇到'/'则跳出，截取出来一个component，这里分为两种情况，假如component的name已经为空了，则说明已经到结尾了，否则，有可能该component为符号链接，那么需要进行处理，传入的flag需要附加WALK_PUT。
 
nd的设置如下：
 


nd->last.hash_len = hash_len;

nd->last.name = name;

nd->last_type = type;


 
下面我们来分析一下对component的处理walk_component：
 


static int walk_component(struct nameidata *nd, int flags)

{

    struct path path;

    struct inode *inode;

    unsigned seq;

    int err;

    if (unlikely(nd->last_type != LAST_NORM)) {

        // 处理目录是'.'和'..’的情况，'.'很好处理，直接跳过就可以了，'..'稍微麻烦，因为

          当前目录有可能是一个装载点，跳到上一级目录就要切换文件系统

        err = handle_dots(nd, nd->last_type);

        if (flags & WALK_PUT)

            put_link(nd);        // 把当前的nd存入dcache中

        return err;

    }

    err = lookup_fast(nd, &path, &inode, &seq);

    if (unlikely(err)) {

        ..

        err = lookup_slow(nd, &path);

        …

    }

    if (flags & WALK_PUT)

        put_link(nd);

    err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);

    …

    path_to_nameidata(&path, nd);

    nd->inode = inode;

    nd->seq = seq;

    return 0;

out_path_put:

    path_to_nameidata(&path, nd);

    return err;

}


 
在walk_component处理过程中，如果传入的nd->lasttype为.或者..则进入handle_dots进行处理：
 


static inline int handle_dots(struct nameidata *nd, int type)

{

    if (type == LAST_DOTDOT) {

        if (!nd->root.mnt)

            set_root(nd);

        if (nd->flags & LOOKUP_RCU) {

            return follow_dotdot_rcu(nd);

        } else

            return follow_dotdot(nd);

    }

    return 0;

}


 
假如是，那么直接返回0，否则..的情况需要进行特殊处理，我们这里仅分析follow_dotdot的情况：
 


static int follow_dotdot(struct nameidata *nd)

{

    while(1) {

        struct dentry *old = nd->path.dentry; 

        if (nd->path.dentry == nd->root.dentry &&

            nd->path.mnt == nd->root.mnt) { // 如果搜索的当前路径和进程的root路径一样，

                                                     那就不能再往上一级查找了

            break;

        }

        if (nd->path.dentry != nd->path.mnt->mnt_root) { // 如果当前的路径不是设备的

                                                                    根路径，则还是同一个设备，

                                                                    获取父目录即可

            nd->path.dentry = dget_parent(nd->path.dentry);

            dput(old);

            if (unlikely(!path_connected(&nd->path)))

                return -ENOENT;

            break;

        }

        if (!follow_up(&nd->path))        // 节点已经到达设备的根路径，假如设备挂在了父设备，

                                                  则先获取父设备

            break;

    }

    follow_mount(&nd->path);                // 从父设备中获取子节点路径

    nd->inode = nd->path.dentry->d_inode;

    return 0;

}


 
follow_dotdot在处理..的时候，分为以下三种情况：
 
·搜索的当前路径和进程的root路径一样，并且当前路径对应的设备和进程root路径对应的设备一样，那么..就无法往上一级目录查找了。
 
·假如当前路径不是路径对应设备挂载树的根，那么通过dget_parent获取上一级目录，即获取dentry->d_parent。
 
·搜索路径节点已经到达设备的根路径，假如设备挂载了父设备，则先通过follow_up获取父设备：
 


int follow_up(struct path *path)

{

    struct mount *mnt = real_mount(path->mnt);

    struct mount *parent;

    struct dentry *mountpoint;

    parent = mnt->mnt_parent;

    mntget(&parent->mnt);

    mountpoint = dget(mnt->mnt_mountpoint);

…

    path->dentry = mountpoint;

    …

    path->mnt = &parent->mnt;

    return 1;

}


 
在获取父设备成功后，通过follow_mount从父设备中获取子节点路径。
 
图6-4描述了文件系统的挂载结构。
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图6-4　文件系统的挂载结构
 
在处理完.和..之后，就通过lookup_fast或者lookup_slow查询当前path的dentry结构，lookup_fast会优先从rcu内存散列表中找到对应的dentry结构，我们这里仅分析lookup_slow：
 


static int lookup_slow(struct nameidata *nd, struct path *path)

{

    struct dentry *dentry, *parent;



    parent = nd->path.dentry;

    …

    dentry = __lookup_hash(&nd->last, parent, nd->flags);

    …

    path->mnt = nd->path.mnt;

    path->dentry = dentry;

    return follow_managed(path, nd);

}


 
其中__lookup_hash最终会通过具体文件系统（比如ext4文件系统）的dir->i_op->lookup（dir，dentry，flags）函数进行查询。
 
walk_component最后一步会通过should_follow_link对符号链接进行处理：
 


static inline int should_follow_link(struct nameidata *nd, struct path *link,

                    int follow,

                    struct inode *inode, unsigned seq)

{

    if (likely(!d_is_symlink(link->dentry)))        // 假如路径不是符号链接

        return 0;

    if (!follow)

        return 0;

    …

    return pick_link(nd, link, inode, seq);

}



static int pick_link(struct nameidata *nd, struct path *link,

            struct inode *inode, unsigned seq)

{

    int error;

    struct saved *last;

    if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {

        path_to_nameidata(link, nd);

        return -ELOOP;

    }

    if (!(nd->flags & LOOKUP_RCU)) {

        if (link->mnt == nd->path.mnt)

            mntget(link->mnt);

    }

    error = nd_alloc_stack(nd);

    …

    last = nd->stack + nd->depth++;

    last->link = *link;

…

    nd->link_inode = inode;

    last->seq = seq;

    return 1;

}


 
为防止链接死循环，经过MAXSYMLINKS最大链接深度判断之后，把path转换成了namei，然后会在上层link_path_walk->get_link中进行真正的获取link的操作：
 


const char * (*get)(struct dentry *, struct inode *,

        struct delayed_call *);

get = inode->i_op->get_link;

if (nd->flags & LOOKUP_RCU) {

    res = get(NULL, inode, &last->done);

    if (res == ERR_PTR(-ECHILD)) {

        if (unlikely(unlazy_walk(nd, NULL, 0)))

            return ERR_PTR(-ECHILD);

        res = get(dentry, inode, &last->done);

    }

} else {

    res = get(dentry, inode, &last->done);

}

if (IS_ERR_OR_NULL(res))

    return res;


 
这个过程依赖文件系统自己实现的inode->i_op->get_link。
 
最后，我们来总结一下文件路径查找的过程：
 
1）通过path_init初始化查找的根路径，把数据保存到nd结构中。
 
2）通过link_path_walk遍历路径，遇到'/'就跳出，通过walk_component处理该component，然后获取路径的inode、dentry、mnt等数据。
6.3　ext4文件系统
 
目前Linux上安装的主要是ext4文件系统，ext4是ext3的改进版，修改了ext3中部分重要的数据结构，而不仅仅像ext3对ext2那样，只是增加了一个日志功能而已。
 
ext4文件系统的主要特性包括以下内容：
 
·支持更大的文件系统和更大的文件。较之ext3目前所支持的最大16TB文件系统和最大2TB文件，ext4分别支持1EB（1048576TB，1EB=1024PB，1PB=1024TB）的文件系统，以及16TB的文件。
 
·无限数量的子目录。ext3目前只支持32000个子目录，而ext4支持无限数量的子目录。
 
·extent tree结构。ext3采用间接块映射，当操作大文件时，效率极其低下。ext4提供了extent tree结构，来解决大文件问题。
 
·多块分配，支持一次调用分配多个数据块。
 
·延迟分配，只有缓存数据脏的时候才写入到磁盘块。
 
·No Journaling模式。ext4允许关闭日志，以便某些有特殊场景提升性能，去除日志开销。
6.3.1　磁盘布局
 
文件系统中最关键的问题就是数据如何在磁盘布局，ext4引入了2种新的布局方式：灵活块、元块组集。
 
1.灵活块（flex_bg）
 
在一个flex_bg中，几个块组在一起组成一个逻辑块组flex_bg。flex_bg的第一个块组中的位图空间和inode表空间扩大为包含了flex_bg中其他块组上位图和inode表。
 
这样做的好处是把元数据都聚集在了BGD0中，另外使大文件的数据尽量连续了。
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图6-5　flex_bg原理图
 
上面的GDT部分用于将来扩展文件系统。
 
2.元块组集（mbg）
 
整个文件系统被分成多个元块组集（meta block groups，mbg），每个元块组集都由一簇“块组”组成（簇的含义：一系列物理地址连续的单元），组成元块组集的块组描述符都存放在一个block中。对于block大小为4K的ext4文件系统，一个元块组集包含64个块组，也就是64G的磁盘空间（128M*64=8G）。元块组集特性将存放在系统第一个块组的元数据分割存放在多个元块组集中。因为ext4支持的是48位block寻址方式，所以最大卷大小为2^48个block，2^48*2^12=2^60B=1EB，而每个组为128M=2^27B，所以有2^60/2^27=2^33个组。
 
元块组集特性的出现使得ext3和ext4的磁盘布局有了一定的变化，以往超级块后紧跟的是变长的GDT块，现在是超级块依然决定是否是3，5，7的幂，而块组描述符集则存储在元块组的第一个、第二个和最后一个块组的开始处。
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图6-6　元块组集特性
 
文件系统创建时，用户可以指定使用这种布局，当文件系统增长而且预留的组描述符块耗尽时，超级块中有一个域s_first_meta_bg用于描述第一个使用元块组的块组。
6.3.2　inode定位
 
当创建文件或者目录的时候，需要创建一个inode，下面我们来分析inode的创建过程：
 


const struct inode_operations ext4_dir_inode_operations = {

    .create                = ext4_create,

...


 
ext4_create->ext4_new_inode_start_handle->__ext4_new_inode，由于该函数过长，只摘录其中一部分：
 


struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,

            umode_t mode, const struct qstr *qstr,

            __u32 goal, uid_t *owner, int handle_type

             unsigned int line_no, int nblocks)

{

…

// load inode bitmap前先检查是否有空闲的inode

if (ext4_free_inodes_count(sb, gdp) == 0) {

    if (++group == ngroups)

        group = 0;

    continue;

}



grp = ext4_get_group_info(sb, group);

if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {

    if (++group == ngroups)

        group = 0;

    continue;

}

brelse(inode_bitmap_bh);

inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);

if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||

    IS_ERR(inode_bitmap_bh)) {

    inode_bitmap_bh = NULL;

    if (++group == ngroups)

        group = 0;

    continue;

}


 
repeat_in_this_group：
 


// 在inode位图中查找ino+1开始的下一个为0的位

ino = ext4_find_next_zero_bit((unsigned long *)

                    inode_bitmap_bh->b_data,

                    EXT4_INODES_PER_GROUP(sb), ino);

// ino >=s_inodes_per_group或者ino+1<s_first_ino则free inode无效

if (ino >= EXT4_INODES_PER_GROUP(sb))

    goto next_group;

if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {

    ext4_error(sb, "reserved inode found cleared - "

            "inode=%lu", ino + 1);

    continue;

}

…

// 更新inode bitmap,若更新失败则重新搜索

        ext4_lock_group(sb, group);

        ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);

        ext4_unlock_group(sb, group);

        ino++;

…

// 更新group中的free_inodes_count

    ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);

…

// 设置inode->ino

    inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);

    inode->i_blocks = 0;

    inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =

                                ext4_current_time(inode);

…

}


 
block定位，可以通过inode->ino计算inode所处的group和block：
 


Group_id=(inode->ino-1)/inodes_per_group

Inode_blkid=first_inode_blk_in_group+ ((inode->ino-1) % inodes_per_group) / (inodes_per_block);

Inode_offset= first_inode_blk_in_group * blk_size+ ((inode->ino-1) % inodes_per_group) * inode_size


6.3.3　碎片问题解决方案
 
ext4在设计上利用了数据局部性原理，不管是机械硬盘还是SSD，这种策略都可以减少磁盘或者块的请求次数，集中处理。ext4提供如下几种预防碎片机制：
 
·延迟写入，先写缓存，等数据脏后才写入磁盘，可以对相近的块集中处理。
 
·尽可能使得一个文件的数据和其inode在相同的块组。
 
·整个卷被分割为大小为128M的组。这样可以最大限度地保证数据局部性。
 
·Prealloc预分配，ext4为每个文件在内存中维护一段预分配空间，用于解决并发分配情况下的碎片问题。
6.3.4　extent tree结构
 
通过前面的章节我们已经知道文件系统的磁盘组织形式，一般是通过直接+多级间接映射的方式来存储逻辑块号到物理块号的映射关系。这种方式在面对大文件的时候效率较为低下，且会浪费很多的间接块用以存储映射关系。
 
extent指的是一段连续的物理磁盘块，ext4文件系统中的extent数据结构的主要作用是索引，即根据逻辑块号查询文件的extent能够定位逻辑块对应的物理块号，extent在文件较小的时候存储在inode的i_data[]中，在文件较大的时候，extent会被组织成一棵B+树（如图6-7所示），每个extent节点由有1个头和多个body组成，假如是非叶子节点，则body为ext4_extend_idx，叶子节点为ext4_extent：
 


struct ext4_extent {

    __le32        ee_block;                  // extent第一个逻辑块

    __le16        ee_len;                    // extent覆盖的块数量

    __le16        ee_start_hi;               // 高16位物理块

    __le32        ee_start_lo;               // 低32位物理块

};



struct ext4_extent_idx {

    __le32        ei_block;                  // 索引所覆盖的文件范围的起始block

    __le32        ei_leaf_lo;                // 下一级extent block的逻辑地址的低32位

    __le16        ei_leaf_hi;                // 下一级extent block的逻辑地址的高16位

    __u16        ei_unused;

};



struct ext4_extent_header {

    __le16        eh_magic;                  // 魔术数，ext4 extent标识0xF30A

    __le16        eh_entries;                // 当前节点中有效entrie的数目

    __le16        eh_max;                    // 当前节点中entry的最大数目

    __le16        eh_depth;                  // 当前节点在树中的深度

    __le32        eh_generation;             // generation of the tree

};


 
ext4创建文件/目录的时候，会初始化一棵extent tree，在__ext4_new_inode函数中调用了ext4_ext_tree_init进行初始化：
 


if (ext4_has_feature_extents(sb)) {

        if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {

            ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);

            ext4_ext_tree_init(handle, inode);

        }

    }

…

…

int ext4_ext_tree_init(handle_t *handle, struct inode *inode)

{

    struct ext4_extent_header *eh;



    eh = ext_inode_hdr(inode);

    eh->eh_depth = 0;

    eh->eh_entries = 0;

    eh->eh_magic = EXT4_EXT_MAGIC;

    eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));

    ext4_mark_inode_dirty(handle, inode);

    return 0;

}
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图6-7　extent tree数据结构
6.4　淘宝TFS小文件系统分析
 
TFS是淘宝开发的解决小文件存储的分布式文件系统。关于它的分布式原理我们这里不做介绍，只介绍它的DataServer中的存储机制如何解决小文件（通常文件大小不超过1MB）的问题。当前SAAS服务井喷，业界出现了很多云存储公司，比如百度网盘、亿方云等，其核心的存储思路都是把逻辑文件系统跑在物理文件系统之上，TFS的小文件系统实现思路有一定参考价值。
 
在TFS中，将大量的小文件（实际用户文件）合并成为一个大文件，这个大文件称为块（block）。TFS以块的方式组织文件的存储。每一个块在整个集群内拥有唯一的编号，这个编号是由NameServer进行分配的，而DataServer上实际存储了该块。在NameServer节点中存储了所有的块的信息，一个块存储于多个DataServer中以保证数据的冗余。对于数据读写请求，均先由NameServer选择合适的DataServer节点返回给客户端，再在对应的DataServer节点上进行数据操作。NameServer需要维护块信息列表，以及块与DataServer之间的映射关系，其存储的元数据结构如图6-8所示。
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图6-8　TFS存储元数据结构图
 
在Server节点上，在挂载目录上会有很多物理块，物理块以文件的形式存在磁盘上，并在Server部署前预先分配，以保证后续的访问速度和减少碎片产生。为了满足这个特性，Server现一般在ext4文件系统上运行。物理块分为主块和扩展块，一般主块的大小会远大于扩展块，使用扩展块是为了满足文件更新操作时文件大小的变化。每个块在文件系统上以“主块+扩展块”的方式存储。每一个块可能对应于多个物理块，其中包括一个主块、多个扩展块。
 
在Server端，每个块可能会由多个实际的物理文件组成：一个主物理块文件，N个扩展物理块文件和一个与该块对应的索引文件。块中的每个小文件会用一个块内唯一的field来标识。Server会在启动的时候把自身所拥有的块和对应的Index加载进来。
6.5　本章小结
 
对于使用Linux的普通开发者来讲，平时会经常对文件进行读写，因为在Linux里一切皆是文件，所以，我们大部分时候对外设的操作、磁盘的读写、网络的读写都是基于文件句柄来进行的。不过，对于普通开发者来讲，我们很少会关注文件系统的底层实现。
 
要了解文件系统的核心概念，首先要了解vfs的超级块、索引节点、文件、目录项等概念，并搞清楚它们之间的关系，然后了解inode的定位、文件内容的读写等。
 
在云计算火热普及的今天，出现了很多围绕文件系统来展开的SAAS服务，比如个人网盘，很多时候网盘存储了大量的小文件，inode就会不够用，这对相关的云计算平台存储架构提出了挑战，本章最后介绍了TFS小文件系统的实现方案，假如需要实现相关的系统，可以借鉴这个思路。
第7章　Linux的进程隔离技术与Docker容器
 
近两年容器技术突然变得很火热，几乎所有开发人员都在学习这个技术。技术人员并不见得一定比女性购物更加理智，有时候，选择一种新技术也仅仅是为了追赶时髦和潮流。
 
从实现的角度来讲，容器技术不是全新的发明，Docker容器只是针对Linux内核提供的基础功能（例如namespace、cgroup）进行了扩展。
 
本章不打算介绍所有与虚拟化相关的技术和实现方案，而是探讨和容器相关的虚拟化技术。主要探讨以下几个内容：
 
1）虚拟化相关的技术原理。
 
2）容器技术经常会用到的Linux内核的相关功能，如namespace、cgroup等实现。
 
3）Docker容器部分的实现分析。
7.1　虚拟化相关技术
 
在容器技术流行之前，为了提升单机的利用率，并且实现进程之间的隔离，比较流行的方式是通过虚拟化的相关技术在一台物理机上运行多个操作系统。下面简单介绍CPU虚拟化技术。
 
一般情况下，我们都是通过软件的方式来模拟多个硬件栈然后再在上面模拟硬件指令，跑多个操作系统。但是这种方法在可靠性、安全性和性能上存在很多问题，所以Intel在它的硬件产品上引入了Intel VT（Virtualization Technology，虚拟化技术），如图7-1所示。Intel VT可以让一个CPU工作起来像多个CPU在并行运行，从而使得在一部计算机内同时运行多个操作系统成为可能。
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图7-1　CPU虚拟化技术原理图
 
Intel CPU提供了：CPU虚拟化、内存虚拟化、I/O虚拟化、图形卡虚拟化、网络虚拟化等功能，本章主要介绍软件相关的虚拟化技术，有兴趣大家可以通过访问：http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualizationtechnology.html来了解Intel VT相关的技术。
 
Linux内核中，内置了KVM模块，主要负责虚拟机的创建、虚拟内存的分配、VCPU寄存器的读写以及VCPU的运行，可以基于Intel VT和AMD-V这两种不同厂商的解决方案来实现。
 
用户如果需要使用KVM虚拟化环境，就需要使用QEMU之类的模拟器，用于模拟虚拟机的用户空间组件，提供I/O设备模型，访问外设的途径，如图7-2所示。
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图7-2　KVM解决方案原理
7.2　Linux进程隔离技术
 
在简单了解了Intel VT的硬件虚拟化技术和Linux的KVM虚拟化解决方案之后，现在着重来了解一下容器隔离的相关技术。
7.2.1　chroot
 
chroot是Linux内核提供的一个系统调用，从安全性的角度考虑，用于限定用户使用的根目录。
 
下面来看chroot系统调用的实现（代码详见：/linux-4.5.2/fs/open.c）：
 


SYSCALL_DEFINE1(chroot, const char __user *, filename)

{

    struct path path;

    int error;

    unsigned int lookup_flags = LOOKUP_FOLLOW | LOOKUP_DIRECTORY;

…

    error = user_path_at(AT_FDCWD, filename, lookup_flags, &path);

                                                        // 从当前目录开始查找获取path

…

    error = inode_permission(path.dentry->d_inode, MAY_EXEC | MAY_CHDIR);

                                                        // 检查inode权限

…

    set_fs_root(current->fs, &path); // 把当前进程的rootfs设置为新的path

    error = 0;

…

    return error;

}


 
从上面的源码可以发现，chroot的逻辑其实非常简单，首先是通过user_path_at函数搜索路径获取该filename的path，然后通过set_fs_root把当前进程的文件系统的root设置为path。
 
set_fs_root方法为：
 


void set_fs_root(struct fs_struct *fs, const struct path *path)

{

    struct path old_root;

    path_get(path);

    spin_lock(&fs->lock);

    write_seqcount_begin(&fs->seq);

    old_root = fs->root;

    fs->root = *path;

    write_seqcount_end(&fs->seq);

    spin_unlock(&fs->lock);

    if (old_root.dentry)

        path_put(&old_root);

}


 
所以，chroot仅仅是在访问文件系统目录的时候，限定了用户的根目录，这是一种障眼法，并不是真正的虚拟化技术，可以发挥的作用也非常有限。
7.2.2　namespace
 
namespace对Linux非常重要，用于实现容器之类的隔离，这样为每个容器创建的进程就可以运行在一个独立的命名空间之中。隔离后每个namespace看上去就像一个单独的Linux系统，如图7-3所示。
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图7-3　namespace对进程的隔离
 
Linux中namespace提供了6种隔离功能，如表7-1所示。
 
表7-1　namespace的隔离功能
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下面先来了解一下进程和namespace之间的关系。一个进程可以属于多个namesapce，在task_struct结构中有一个指向namespace结构体的指针nsproxy：
 


struct nsproxy {

    atomic_t count;

    struct uts_namespace        *uts_ns;        // 运行内核的名称、版本、底层体系结构类型等信息

    struct ipc_namespace        *ipc_ns;        // 所有与进程间通信有关的信息

    struct mnt_namespace        *mnt_ns;        // 已经装载的文件系统的视图

    struct pid_namespace        *pid_ns_for_children;

                                                // 有关进程ID的信息

    struct net                *net_ns;          // 网络相关的命名空间参数



};


 
假如不指定ns，那么默认所有进程在创建的时候，都会指定一个默认的ns：
 


struct nsproxy init_nsproxy        = {

    .count                         = ATOMIC_INIT(1),

    .uts_ns                                = &init_uts_ns,

#if defined(CONFIG_POSIX_MQUEUE) || defined(CONFIG_SYSVIPC)

    .ipc_ns                                = &init_ipc_ns,

#endif

    .mnt_ns                                = NULL,

    .pid_ns_for_children             = &init_pid_ns,

#ifdef CONFIG_NET

    .net_ns                                = &init_net,

#endif

};


 
一般通过fork调用来创建namespace，其执行过程为：
 
do_fork->copy_process->copy_namespaces->create_new_namespaces：
 


static struct nsproxy *create_new_namespaces(unsigned long flags,

    struct task_struct *tsk, struct user_namespace *user_ns,

    struct fs_struct *new_fs)

{

    struct nsproxy *new_nsp;

    int err;

    new_nsp = create_nsproxy();                // 创建一个新的ns

…

    new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, user_ns, new_fs);

    …

    new_nsp->uts_ns = copy_utsname(flags, user_ns, tsk->nsproxy->uts_ns);

    …

    new_nsp->ipc_ns = copy_ipcs(flags, user_ns, tsk->nsproxy->ipc_ns);

    …

    new_nsp->pid_ns_for_children =

        copy_pid_ns(flags, user_ns, tsk->nsproxy->pid_ns_for_children);

    …

    new_nsp->net_ns = copy_net_ns(flags, user_ns, tsk->nsproxy->net_ns);

    …

    return new_nsp;

…

}


 
在上面的代码中可发现，create_new_namespaces函数的主要任务是创建一个新的namespace，将老task的uts、ipc、pid、net、mount等ns复制给新的task。
 
在创建完独立的ns后，以分配pid为例：
 


if (pid != &init_struct_pid) {

    pid = alloc_pid(p->nsproxy->pid_ns_for_children);

…

}


 
pid将会在其独立的ns中进行分配。
7.2.3　cgroup
 
为进程创建了独立的namespace之后，就可以通过cgroup对该namespace中的进程进行相关资源的限制，例如CPU、内存、IO等。
 
cgroups是control groups的缩写，是Linux内核提供的一种可以限制、记录、隔离进程组（process groups）所使用的物理资源（如CPU、内存、IO等）的机制。最初由Google的工程师提出，后来被整合进Linux内核。
 
cgroup目前支持的子系统有以下几种：
 
·blkio——为块设备设定输入/输出限制，比如物理设备（磁盘、固态硬盘、USB等）。
 
·cpu——使用调度程序提供对CPU的cgroup任务访问。
 
·cpuacct——自动生成cgroup中任务所使用的CPU报告。
 
·cpuset——为cgroup中的任务分配独立CPU（在多核系统）和内存节点。
 
·devices——可允许或者拒绝cgroup中的任务访问设备。
 
·freezer——挂起或者恢复cgroup中的任务。
 
·memory——设定cgroup中任务使用的内存限制，并自动生成由那些任务使用的内存资源报告。
 
·net_cls——使用等级识别符（classid）标记网络数据包，可允许Linux流量控制程序（tc）识别从具体cgroup中生成的数据包。
 
·ns——名称空间子系统。
 
下面是一个限制进程使用CPU的例子：
 


mkdir /sys/fs/cgroup/cpuset

mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset


 
创建文件夹后，自动生成的文件如下：
 


total 0

-rw-r--r-- 1 root root 0 Aug 14 15:10 cgroup.clone_children

--w--w--w- 1 root root 0 Aug 14 15:10 cgroup.event_control

-rw-r--r-- 1 root root 0 Aug 14 15:10 cgroup.procs

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.cpu_exclusive

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.cpus

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.mem_exclusive

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.mem_hardwall

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.memory_migrate

-r--r--r-- 1 root root 0 Aug 14 15:10 cpuset.memory_pressure

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.memory_spread_page

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.memory_spread_slab

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.mems

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.sched_load_balance

-rw-r--r-- 1 root root 0 Aug 14 15:10 cpuset.sched_relax_domain_level

-rw-r--r-- 1 root root 0 Aug 14 15:10 notify_on_release

-rw-r--r-- 1 root root 0 Aug 14 15:10 tasks


 
设置task允许使用的CPU为0～1：
 


echo 0-1 > cpuset.cpus


 
添加task到cgroup：
 


echo [pid] >> tasks


 
这样就可以对指定pid的进程限制所用的CPU仅为0和1。
 
cgroup的核心概念如下：
 
·任务（task）。在cgroup中，任务就是系统的一个进程。
 
·控制组（cgroup），cgroups中的资源控制都是以控制组为单位实现的。一个进程可以加入到某个控制组中，也可以从一个进程组迁移到另一个控制组。一个进程组的进程可以使用cgroup以控制组为单位分配的资源，同时受到cgroup以控制组为单位设定的限制。
 
·层级（hierarchy）。控制组可以组织成层级的树状结构，其中子节点控制组继承父控制组的特定属性。
 
·子系统（subsystem）。一个子系统就是一个资源控制器，比如CPU子系统就是控制CPU时间分配的一个控制器。子系统必须附加到一个层级上才能起作用，之后，这个层级上的所有控制组都受到这个子系统的控制。
 
从某种角度上来讲，cgroup的这个结构有点像业务系统中的权限系统，根据图7-4，简单介绍cgroup实现的各数据结构之间的关系：
 
·cgroupfs_root：可以理解为mount操作指定的dir目录。
 
·css_set：提供了与进程相关的cgroups信息。其中cg_links指向一个由struct_cg_cgroup_link连成的链表。Subsys是一个指针数组，存储一组指向cgroup_subsys_state的指针。一个cgroup_subsys_state就是进程与一个特定子系统相关的信息。通过这个指针数组，进程就可以获得相应的cgroups控制信息。
 
·css_set_table：css_set_table保存了所有的css_set，hash函数及key为css_set_hash（css_set->subsys）。
 
·cg_group_link：由于cgroup和css_cet之间是多对多的关系，cg_group_link是用来关联这两者的。
 
·cgroup_subsys：代表cgroup的某个子系统：
 


struct cgroup_subsys {

struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_

    css);

int  (*css_online)(struct cgroup_subsys_state *css);

void (*css_offline)(struct cgroup_subsys_state *css);

void (*css_released)(struct cgroup_subsys_state *css);

void (*css_free)(struct cgroup_subsys_state *css);

void (*css_reset)(struct cgroup_subsys_state *css);

void (*css_e_css_changed)(struct cgroup_subsys_state *css);

int  (*can_attach)(struct cgroup_taskset *tset);

void (*cancel_attach)(struct cgroup_taskset *tset);

void (*attach)(struct cgroup_taskset *tset);

int  (*can_fork)(struct task_struct *task);

void (*cancel_fork)(struct task_struct *task);

void (*fork)(struct task_struct *task);

void (*exit)(struct task_struct *task);

void (*free)(struct task_struct *task);

void (*bind)(struct cgroup_subsys_state *root_css);


 
上面的代码罗列了cgroup_subsys接口的钩子函数。
 
cgroup_subsys_state：代表每个子系统真正的控制结构，图中的cup、cupset、blkio_group等都是它的实现，也就是说，每个子系统对系统资源的限制是通过cgroup_subsys_state的实现来完成的。
 
task和cgroup的关系：css_set->tasks是所有引用该css_set的tasks的list的head，task之间用task->cg_list进行链接，一个cgroupfs_root的所有cgroup_subsys由cgroupfs_root->subsys_list组织，所有的cgroupfs_root通过它的root_list链接到roots这个全局变量头里。
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图7-4　cgroup整体架构
 
[image: ]注意　cgroup是通过标准的VFS接口与上层交互的。
 
每当进行mount或者mkdir时候，目录下面的文件就是通过cgroup创建的，这些文件定义方式如下：
 


static struct file_system_type cgroup_fs_type = {

    .name = "cgroup",

    .mount = cgroup_mount,

    .kill_sb = cgroup_kill_sb,

};


 
下面定义了cgroup的核心接口文件和默认层级：
 


static struct cftype cgroup_dfl_base_files[] = {

    {

        .name = "cgroup.procs",

        .file_offset = offsetof(struct cgroup, procs_file),

        .seq_start = cgroup_pidlist_start,

        .seq_next = cgroup_pidlist_next,

        .seq_stop = cgroup_pidlist_stop,

        .seq_show = cgroup_pidlist_show,

        .private = CGROUP_FILE_PROCS,

        .write = cgroup_procs_write,

    },

    {

        .name = "cgroup.controllers",

        .flags = CFTYPE_ONLY_ON_ROOT,

        .seq_show = cgroup_root_controllers_show,

    },

…


 
子系统也维护了各自的files[]文件，比如cpuset：
 


static struct cftype files[] = {

    {

        .name = "cpus",

        .seq_show = cpuset_common_seq_show,

        .write = cpuset_write_resmask,

        .max_write_len = (100U + 6 * NR_CPUS),

        .private = FILE_CPULIST,

    },

    {

        .name = "mems",

        .seq_show = cpuset_common_seq_show,

        .write = cpuset_write_resmask,

        .max_write_len = (100U + 6 * MAX_NUMNODES),

        .private = FILE_MEMLIST,

    },

    …


 
创建一个新的cgroup也是通过标准的VFS操作来执行的，在cgroup中定义了cgroup文件系统的一些操作：
 


static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {

    .remount_fs                = cgroup_remount,

    .show_options              = cgroup_show_options,

    .mkdir                     = cgroup_mkdir,

    .rmdir                     = cgroup_rmdir,

    .rename                    = cgroup_rename,

};


 
创建cgroup是通过mkdir来进行的：
 


static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,

            umode_t mode)

{

    struct cgroup *parent, *cgrp, *tcgrp;

    struct cgroup_root *root;

    struct cgroup_subsys *ss;

    struct kernfs_node *kn;

    int level, ssid, ret;

    …

    root = parent->root;

    level = parent->level + 1;

    // 为cgroup分配空间

    cgrp = kzalloc(sizeof(*cgrp) +

                sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);

    …

    // 创建目录

    kn = kernfs_create_dir(parent->kn, name, mode, cgrp);

    …

    cgrp->kn = kn;

    …

    // 为cgroup创建cgroup_subsys_state

    for_each_subsys(ss, ssid) {

        if (parent->child_subsys_mask & (1 << ssid)) {

            ret = create_css(cgrp, ss,

                    parent->subtree_control & (1 << ssid));

    …

    }

    …

    if (!cgroup_on_dfl(cgrp)) {

        cgrp->subtree_control = parent->subtree_control;

        cgroup_refresh_child_subsys_mask(cgrp);

    }

    …

}


 
以上过程先为该cgroup所属的每个subsys创建一个cgroup_subsys_state，并初始化。通过该cgroup->subsys[]可以获得该cgroup的所有cgroup_subsys_state，同样通过cgroup_subsys_state->cgroup可以知道该cgroup_subsys_state所属的cgroup。以后cgroup与subsys的group控制体的转换都是通过该结构来完成的。
 
这里并没有建立css_set与该cgroup的关系，因为进行mkdir时，该cgroup还没有附加任何进程，所以也不与css_set有关系。
 
以cgroup.procs文件的写操作为例，从上面的分析可发现对cgroup.procs文件的写操作其实调用的是cgroup_procs_write，而cgroup_procs_write函数其实是对__cgroup_procs_write函数的封装：
 


static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,

                    size_t nbytes, loff_t off, bool threadgroup)

{

    struct task_struct *tsk;

    struct cgroup *cgrp;

    pid_t pid;

    int ret;

    …

        ret = cgroup_attach_task(cgrp, tsk, threadgroup);

    …

    return ret ?: nbytes;

}


 
这个写入的过程最终通过cgroup_attach_task把cgroup下的subsys附加到该task中。
 
如果是多核心的CPU，这个子系统会为cgroup任务分配单独的CPU和内存。
 
这里简单分析对cpuset.cpus文件的操作：
 


static struct cftype files[] = {

    {

        .name = "cpus",

        .seq_show = cpuset_common_seq_show,

        .write = cpuset_write_resmask,

        .max_write_len = (100U + 6 * NR_CPUS),

        .private = FILE_CPULIST,

    },

…


 
在files数组中定义了写操作的函数是cpuset_write_resmask：
 


static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,

                    char *buf, size_t nbytes, loff_t off)

{

    struct cpuset *cs = css_cs(of_css(of));

    struct cpuset *trialcs;

    int retval = -ENODEV;

    …

    switch (of_cft(of)->private) {

    case FILE_CPULIST:

        retval = update_cpumask(cs, trialcs, buf);

        break;

    case FILE_MEMLIST:

        retval = update_nodemask(cs, trialcs, buf);

        break;

…

}


 
针对FILE_CPULIST的场景，由update_cpumask更新CPU对应的mask：
 


static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,

            const char *buf)

{

    int retval;

    …

    cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);

    …

    update_cpumasks_hier(cs, trialcs->cpus_allowed);

    return 0;

}


 
最终的目的就是更新该cgroup下的每个进程的cpus_allowed。
 
然后在下次task被唤醒的时候，select_task_rq_fair选择cpu_allowed里的某一个CPU，可能是负载最低的，来确定它应该置于哪个CPU的运行队列，一个进程在某一时刻只能存在于一个CPU的运行队列里。
7.3　Docker容器的部分实现
 
关于Docker的介绍，相关的文章书籍已经很多了，这里不再过多阐述，这里谈谈我对Docker的理解。当Docker刚刚出现的时候，我对它并不太感兴趣，因为它底层依赖的就是用LXC创建容器，这不是新瓶装旧酒吗？无非用GO语言重新封装，然后加上个镜像管理而已。
 
Docker能火其实是和时机不可分割的，个人理解有以下几点。
 
1.云计算的浪潮推动
 
在物理机计算性能过剩的时代，云计算不再是亚马逊、阿里云这样的云计算厂商需要考虑的问题，很多小公司也要考虑这些问题，例如一些创业型企业，会考虑如何解决同一个物理机上跑多种应用并且相互隔离不受影响的问题等。
 
另外，传统虚拟化技术的实现方案是从上到下的全栈模拟方式，成本和代价都很高，故障运维也很麻烦，假如仅仅是做PAAS或者SAAS服务，就完全可以考虑用容器这样更加轻量级的解决方案来实现。
 
2.DevOps思想的普及
 
传统的运维思路是开发人员在完成开发工作之后，提交代码，后续就交给测试和运维了，至于系统环境的问题，后续维护的问题都和开发没什么太大的关系。
 
而DevOps是一组过程、方法与系统的统称，当企业希望让原本笨重的开发与运维之间的工作移交得流畅无碍，便可借助DevOps来完成。
 
Docker貌似就是为此而生的，因为代码的完成同时也需要让Docker容器启动起来，版本的控制、不同环境配置的隔离等都可以借助镜像管理来完成。
 
3.社区力量的推动
 
最近这两年开源社区的影响力和程序员参与的积极性比以往都高，特别是GitHub的出现和流行，目前Docker的源码也是在GitHub上维护的。
 
其实为了让Docker更加贴近云计算，成为一朵容器云，社区在这方面还是做了很多的工作，比如分布式配置的管理etcd，集群的管理工具Swarm，Google的容器化系统解决方案Kubernetes。可以说，假如没有这些相关配套软件解决方案的出现，Docker也仅仅是个进程级别的虚拟化隔离技术而已，现在Docker不仅仅是Docker自己了，还有一套围绕它运转的生态系统了。
7.3.1　新版Docker架构
 
Docker从1.11版本开始，就把创建、运行、销毁容器的功能交给containerd组件来维护。
 
在Docker更名为Moby之后，其默认容器的维护，还是通过containerd（见图7-5）组建来维护的。
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图7-5　containerd相关服务
 
containerd提供了一个ctr管理命令可以来对containerd进程进行管理，用于开通、关闭容器等。containerd通过grpc协议暴露给调用者，客户端也可以直接通过GRPC协议与其进行通信，其内部子系统主要分为三块（见图7-6）：
 
·Distribution：和Docker Registry打交道，拉取镜像。
 
·Bundle：管理本地磁盘上面镜像的子系统。
 
·Runtime：创建容器、管理容器的子系统。
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图7-6　containerd内部架构
 
[image: ]注意　gRPC是由Google主导开发的RPC框架，使用HTTP/2协议并用ProtoBuf作为序列化工具。其客户端提供Objective-C、Java接口，服务器端则有Java、Golang、C++等接口，从而为移动端（iOS/Android）到服务器端通信提供了一种解决方案。当然在当前的环境下，这种解决方案更热门的方式是RESTFull API接口，该方式需要自己去选择编码方式、服务器架构、自己搭建框架（JSON-RPC）。
7.3.2　containerd的实现
 
下面我们围绕容器的创建分析一下containerd的实现。
 
1.containerd启动
 
和大多数软件一样，containerd也是通过main函数来启动的，其入口为：cmd/containe-rd/main.go：
 


func main() {

    app := cli.NewApp()

    app.Name = "containerd"

    …

    app.Action = func(context *cli.Context) error {

        var (

            start   = time.Now()

            signals = make(chan os.Signal, 2048)

            serverC = make(chan *server.Server)

            ctx     = log.WithModule(gocontext.Background(), "containerd")

            config  = defaultConfig()

        )

        done := handleSignals(ctx, signals, serverC)

        // 启动信号处理hander越快越好，这样我们就不会在启动的时候丢失信号

        signal.Notify(signals, handledSignals...)



        if err := server.LoadConfig(context.GlobalString("config"), config);

            err != nil && !os.IsNotExist(err) {

            return err

        }

        // 应用flags到配置中

        if err := applyFlags(context, config); err != nil {

            return err

        }

        address := config.GRPC.Address

        if address == "" {

            return errors.New("grpc address cannot be empty")

        }

        …

        server, err := server.New(ctx, config)

        …

        serverC <- server

        if config.Debug.Address != "" {

            l, err := sys.GetLocalListener(config.Debug.Address, config.Debug.

                Uid, config.Debug.Gid)

            if err != nil {

                return errors.Wrapf(err, "failed to get listener for debug

                       endpoint")

            }

            serve(log.WithModule(ctx, "debug"), l, server.ServeDebug)

        }

        if config.Metrics.Address != "" {

            l, err := net.Listen("tcp", config.Metrics.Address)

            if err != nil {

                return errors.Wrapf(err, "failed to get listener for metrics

                     endpoint")

            }

            serve(log.WithModule(ctx, "metrics"), l, server.ServeMetrics)

        }



        l, err := sys.GetLocalListener(address, config.GRPC.Uid, config.GRPC.Gid)

        if err != nil {

            return errors.Wrapf(err, "failed to get listener for main endpoint")

        }

        serve(log.WithModule(ctx, "grpc"), l, server.ServeGRPC)



        log.G(ctx).Infof("containerd successfully booted in %fs", time.

               Since(start).Seconds())

        <-done

        return nil

    }

    if err := app.Run(os.Args); err != nil {

        fmt.Fprintf(os.Stderr, "containerd: %s\n", err)

        os.Exit(1)

    }

}


 
这个过程中，最重要就是对app.Action的设置，关键一步就是server.New（ctx，config），containerd服务的初始化工作都在这里面进行：
 


func New(ctx context.Context, config *Config) (*Server, error) {

    …

    if err := os.MkdirAll(config.Root, 0711); err != nil {

        return nil, err

    }

    if err := os.MkdirAll(config.State, 0711); err != nil {

        return nil, err

    }

    if err := apply(ctx, config); err != nil {

        return nil, err

    }

    plugins, err := loadPlugins(config)

    if err != nil {

        return nil, err

    }

    rpc := grpc.NewServer(

        grpc.UnaryInterceptor(interceptor),

        grpc.StreamInterceptor(grpc_prometheus.StreamServerInterceptor),

    )

    var (

        services []plugin.Service

        s        = &Server{

            rpc:    rpc,

            events: events.NewExchange(),

        }

        initialized = make(map[plugin.PluginType]map[string]interface{})

    )

    for _, p := range plugins {

        id := p.URI()

        log.G(ctx).WithField("type", p.Type).Infof("loading plugin %q...", id)



        initContext := plugin.NewContext(

            ctx,

            initialized,

            config.Root,

            config.State,

            id,

        )

        initContext.Events = s.events

        initContext.Address = config.GRPC.Address



        // 装载plugin指定的配置

        if p.Config != nil {

            pluginConfig, err := config.Decode(p.ID, p.Config)

            if err != nil {

                return nil, err

            }

            initContext.Config = pluginConfig

        }

        instance, err := p.Init(initContext)

        …

        if types, ok := initialized[p.Type]; ok {

            types[p.ID] = instance

        } else {

            initialized[p.Type] = map[string]interface{}{

                p.ID: instance,

            }

        }

        // 检测grpc服务是否已经在server中注册

        if service, ok := instance.(plugin.Service); ok {

            services = append(services, service)

        }

    }

    // 服务注册后，所有的plugin需要进行初始化

    for _, service := range services {

        if err := service.Register(rpc); err != nil {

            return nil, err

        }

    }

    return s, nil

}


 
初始化过程中，最重要的是建立了grpc服务，然后把plugin装载初始化为服务后，调用register函数进行注册。其中plugin的接口定义为：
 


type Registration struct {

    Type     PluginType

    ID       string

    Config   interface{}

    Requires []PluginType

    Init     func(*InitContext) (interface{}, error)



    added bool

}


 
plugin的类型分为以下几种：
 


const (

    RuntimePlugin     PluginType = "io.containerd.runtime.v1"

    GRPCPlugin        PluginType = "io.containerd.grpc.v1"

    SnapshotPlugin    PluginType = "io.containerd.snapshotter.v1"

    TaskMonitorPlugin PluginType = "io.containerd.monitor.v1"

    DiffPlugin        PluginType = "io.containerd.differ.v1"

    MetadataPlugin    PluginType = "io.containerd.metadata.v1"

    ContentPlugin     PluginType = "io.containerd.content.v1"

)


 
因为我们现在只对容器服务感兴趣，所以，先来看一下容器服务如何初始化：
 


func init() {

    plugin.Register(&plugin.Registration{

        Type: plugin.GRPCPlugin,

        ID:   "containers",

        Requires: []plugin.PluginType{

            plugin.MetadataPlugin,

        },

        Init: func(ic *plugin.InitContext) (interface{}, error) {

            m, err := ic.Get(plugin.MetadataPlugin)

            if err != nil {

                return nil, err

            }

            return NewService(m.(*bolt.DB), ic.Events), nil

        },

    })

}


 
从containers服务的init方法可见容器相关的接口是通过gRPC协议暴露出去的，我们可以通过其实现的register函数来验证：
 


func (s *Service) Register(server *grpc.Server) error {

    api.RegisterContainersServer(server, s)

    return nil

}


 
容器服务在gRPC协议中注册的接口函数如下：
 


type ContainersServer interface {

    Get(context.Context, *GetContainerRequest) (*GetContainerResponse, error)

    List(context.Context, *ListContainersRequest) (*ListContainersResponse, error)

    Create(context.Context, *CreateContainerRequest) (*CreateContainerResponse, error)

    Update(context.Context, *UpdateContainerRequest) (*UpdateContainerResponse, error)

    Delete(context.Context, *DeleteContainerRequest) (*google_protobuf2.Empty, error)

}


 
以上方法对应gPRC的handler为：
 


var _Containers_serviceDesc = grpc.ServiceDesc{

    ServiceName: "containerd.services.containers.v1.Containers",

    HandlerType: (*ContainersServer)(nil),

    Methods: []grpc.MethodDesc{

        {

            MethodName: "Get",

            Handler:    _Containers_Get_Handler,

        },

        {

            MethodName: "List",

            Handler:    _Containers_List_Handler,

        },

        {

            MethodName: "Create",

            Handler:    _Containers_Create_Handler,

        },

        {

            MethodName: "Update",

            Handler:    _Containers_Update_Handler,

        },

        {

            MethodName: "Delete",

            Handler:    _Containers_Delete_Handler,

        },

    },

    Streams:  []grpc.StreamDesc{},

    Metadata: "github.com/containerd/containerd/api/services/containers/v1/con-

        tainers.proto",

}


 
2.创建并运行容器
 
在containerd服务启动之后，我们就可以通过命令来创建和运行容器。containerd提供了一个ctr命令来与containerd服务进行通信。运行容器的命令ctr run的格式为：
 


ctr run [command options] Image|RootFS ID [COMMAND] [ARG...]


 
例如：
 


ctr run docker.io/library/redis:latest containerd-redis


 
该命令的实现如下：
 


var runCommand = cli.Command{

    Name:      "run",

    Usage:     "run a container",

    ArgsUsage: "Image|RootFS ID [COMMAND] [ARG...]",

    …

    Action: func(context *cli.Context) error {

        var (

            err             error

            checkpointIndex digest.Digest



            ctx, cancel = appContext(context)

            id          = context.Args().Get(1)

            imageRef    = context.Args().First()

            tty         = context.Bool("tty")

        )

        defer cancel()



        if imageRef == "" {

            return errors.New("image ref must be provided")

        }

        if id == "" {

            return errors.New("container id must be provided")

        }

        if raw := context.String("checkpoint"); raw != "" {

            if checkpointIndex, err = digest.Parse(raw); err != nil {

                return err

            }

        }

        client, err := newClient(context)

        if err != nil {

            return err

        }

        container, err := newContainer(ctx, client, context)

        if err != nil {

            return err

        }

        if context.Bool("rm") {

            defer container.Delete(ctx, containerd.WithSnapshotCleanup)

        }

        task, err := newTask(ctx, container, checkpointIndex, tty)

        if err != nil {

            return err

        }

        defer task.Delete(ctx)



        statusC, err := task.Wait(ctx)

        if err != nil {

            return err

        }



        var con console.Console

        if tty {

            con = console.Current()

            defer con.Reset()

            if err := con.SetRaw(); err != nil {

                return err

            }

        }

        if err := task.Start(ctx); err != nil {

            return err

        }

        if tty {

            if err := handleConsoleResize(ctx, task, con); err != nil {

                logrus.WithError(err).Error("console resize")

            }

        } else {

            sigc := forwardAllSignals(ctx, task)

            defer stopCatch(sigc)

        }



        status := <-statusC

        code, _, err := status.Result()

        if err != nil {

            return err

        }



        if _, err := task.Delete(ctx); err != nil {

            return err

        }

        if code != 0 {

            return cli.NewExitError("", int(code))

        }

        return nil

    },

}


 
通过以上代码可以发现run命令的执行主要分为两个步骤：
 
1）newContainer创建新的容器。
 
2）newTask创建容器中运行的任务。
 
容器创建部分我们暂时忽略，这里先研究一下newTask。NewTask创建过程最终会调用/containerd/container.go下的newTask方法：
 


func (c *container) NewTask(ctx context.Context, ioCreate IOCreation, opts ...NewTaskOpts) (Task, error) {

    c.mu.Lock()

    defer c.mu.Unlock()

    i, err := ioCreate(c.c.ID)

    if err != nil {

        return nil, err

    }

    cfg := i.Config()

    request := &tasks.CreateTaskRequest{

        ContainerID: c.c.ID,

        Terminal:    cfg.Terminal,

        Stdin:       cfg.Stdin,

        Stdout:      cfg.Stdout,

        Stderr:      cfg.Stderr,

    }

    …

    t := &task{

        client: c.client,

        io:     i,

        id:     c.ID(),

    }

    if info.Checkpoint != nil {

        …

    } else {

        response, err := c.client.TaskService().Create(ctx, request)

        …

        t.pid = response.Pid

    }

    return t, nil

}


 
在newTask执行过程中，主要通过c.client.Task-Service（）.Create发送grpc请求给containerd进程，进行相应处理。
 
在服务端创建task的过程有点啰嗦，通过图7-7我们直接分析关键部分内容，服务端通过runtime层创建shame进程，然后通过gRPC协议发送create命令给shame进程，shame会通过runc创建task。
 
 
 [image: ] 


图7-7　服务端容器创建和运行流程
 
runc是个独立的工程，集成了libcontainer，下面我们来分析runc create和start过程。
 
首先分析容器创建的过程：
 


var createCommand = cli.Command{

    Name:  "create",

    Usage: "create a container",

    ArgsUsage: `<container-id>

…

    },

    Action: func(context *cli.Context) error {

        if err := checkArgs(context, 1, exactArgs); err != nil {

            return err

        }

        if err := revisePidFile(context); err != nil {

            return err

        }

        spec, err := setupSpec(context)

        if err != nil {

            return err

        }

        status, err := startContainer(context, spec, CT_ACT_CREATE, nil)

        if err != nil {

            return err

        }

        …

        os.Exit(status)

        return nil

    },

}


 
create命令的核心就是startContainer函数，它最终会通过createContainer来创建容器：
 


func createContainer(context *cli.Context, id string, spec *specs.Spec) (libcontainer.Container, error) {

    config, err := specconv.CreateLibcontainerConfig(&specconv.CreateOpts{

        CgroupName:       id,

        UseSystemdCgroup: context.GlobalBool("systemd-cgroup"),

        NoPivotRoot:      context.Bool("no-pivot"),

        NoNewKeyring:     context.Bool("no-new-keyring"),

        Spec:             spec,

        Rootless:         isRootless(),

    })

    if err != nil {

        return nil, err

    }



    factory, err := loadFactory(context)

    if err != nil {

        return nil, err

    }

    return factory.Create(id, config)

}


 
createContainer分为两个步骤：
 
1）loadFactory装载factory：
 


func loadFactory(context *cli.Context) (libcontainer.Factory, error) {

    root := context.GlobalString("root")

    abs, err := filepath.Abs(root)

    if err != nil {

        return nil, err

    }

…

    cgroupManager := libcontainer.Cgroupfs

    …

    return libcontainer.New(abs, cgroupManager, intelRdtManager,

        libcontainer.CriuPath(context.GlobalString("criu")),

        libcontainer.NewuidmapPath(newuidmap),

        libcontainer.NewgidmapPath(newgidmap))

}


 
loadFactory在指定了cgroupManager后，初始化了一个LinuxFactory：
 


func New(root string, options ...func(*LinuxFactory) error) (Factory, error) {

    if root != "" {

        if err := os.MkdirAll(root, 0700); err != nil {

            return nil, newGenericError(err, SystemError)

        }

    }

    l := &LinuxFactory{

        Root:      root,

        InitArgs:  []string{"/proc/self/exe", "init"},

        Validator: validate.New(),

        CriuPath:  "criu",

    }

    Cgroupfs(l)

    for _, opt := range options {

        if opt == nil {

            continue

        }

        if err := opt(l); err != nil {

            return nil, err

        }

    }

    return l, nil

}


 
2）factory.Create这个步骤在验证参数之后，返回了一个libcontainer对象：
 


func (l *LinuxFactory) Create(id string, config *configs.Config) (Container, error) {

    if l.Root == "" {

        return nil, newGenericError(fmt.Errorf("invalid root"), ConfigInvalid)

    }

    if err := l.validateID(id); err != nil {

        return nil, err

    }

    if err := l.Validator.Validate(config); err != nil {

        return nil, newGenericError(err, ConfigInvalid)

    }

    containerRoot := filepath.Join(l.Root, id)

    if _, err := os.Stat(containerRoot); err == nil {

        return nil, newGenericError(fmt.Errorf("container with id exists: %v",

            id), IdInUse)

    } else if !os.IsNotExist(err) {

        return nil, newGenericError(err, SystemError)

    }

    if err := os.MkdirAll(containerRoot, 0711); err != nil {

        return nil, newGenericError(err, SystemError)

    }

    if err := os.Chown(containerRoot, unix.Geteuid(), unix.Getegid()); err != nil {

        return nil, newGenericError(err, SystemError)

    }

    if config.Rootless {

        RootlessCgroups(l)

    }

    c := &linuxContainer{

        id:            id,

        root:          containerRoot,

        config:        config,

        initArgs:      l.InitArgs,

        criuPath:      l.CriuPath,

        newuidmapPath: l.NewuidmapPath,

        newgidmapPath: l.NewgidmapPath,

        cgroupManager: l.NewCgroupsManager(config.Cgroups, nil),

    }

    c.intelRdtManager = nil

    if intelrdt.IsEnabled() && c.config.IntelRdt != nil {

        c.intelRdtManager = l.NewIntelRdtManager(config, id, "")

    }

    c.state = &stoppedState{c: c}

    return c, nil

}


 
在上面的startContainer函数执行过程中，通过createContainer创建完容器后，会初始化一个runner并且运行：
 


func startContainer(context *cli.Context, spec *specs.Spec, action CtAct,

    criuOpts *libcontainer.CriuOpts) (int, error) {

    …

    container, err := createContainer(context, id, spec)

    …

    r := &runner{

        enableSubreaper: !context.Bool("no-subreaper"),

        shouldDestroy:   true,

        container:       container,

        listenFDs:       listenFDs,

        notifySocket:    notifySocket,

        consoleSocket:   context.String("console-socket"),

        detach:          context.Bool("detach"),

        pidFile:         context.String("pid-file"),

        preserveFDs:     context.Int("preserve-fds"),

        action:          action,

        criuOpts:        criuOpts,

    }

    return r.run(spec.Process)

}


 
接着我们来看startContainer最后一步调用的run函数：
 


func (r *runner) run(config *specs.Process) (int, error) {

    …

    process, err := newProcess(*config)

    …

    if len(r.listenFDs) > 0 {

        process.Env = append(process.Env, fmt.Sprintf("LISTEN_FDS=%d", len(r.

            listenFDs)), "LISTEN_PID=1")

        process.ExtraFiles = append(process.ExtraFiles, r.listenFDs...)

    }

    baseFd := 3 + len(process.ExtraFiles)

    for i := baseFd; i < baseFd+r.preserveFDs; i++ {

        process.ExtraFiles = append(process.ExtraFiles, os.NewFile(uintptr(i),

            "PreserveFD:"+strconv.Itoa(i)))

    }

    rootuid, err := r.container.Config().HostRootUID()

    …

    rootgid, err := r.container.Config().HostRootGID()

    …

    var (

        detach = r.detach || (r.action == CT_ACT_CREATE)

    )



    handler := newSignalHandler(r.enableSubreaper, r.notifySocket)

    tty, err := setupIO(process, rootuid, rootgid, config.Terminal, detach,

         r.consoleSocket)

    …

    defer tty.Close()



    switch r.action {

    case CT_ACT_CREATE:

        err = r.container.Start(process)

    case CT_ACT_RESTORE:

        err = r.container.Restore(process, r.criuOpts)

    case CT_ACT_RUN:

        err = r.container.Run(process)

    default:

        panic("Unknown action")

    }

    …

    …

    if r.pidFile != "" {

        if err = createPidFile(r.pidFile, process); err != nil {

            r.terminate(process)

            r.destroy()

            return -1, err

        }

    }

    status, err := handler.forward(process, tty, detach)

    …

    if detach {

        return 0, nil

    }

    r.destroy()

    return status, err

}


 
run函数主要对libcontainer.Process进行初始化，并且做一些I/O、权限等设置，最后因为我们传入的action为CT_ACT_CREATE，所以执行：
 


r.container.Start


 
最后，我们进入容器启动最最关键的start方法：
 


func (c *linuxContainer) start(process *Process, isInit bool) error {

    parent, err := c.newParentProcess(process, isInit)

    if err != nil {

        return newSystemErrorWithCause(err, "creating new parent process")

    }

    if err := parent.start(); err != nil {

        if err := parent.terminate(); err != nil {

            logrus.Warn(err)

        }

        return newSystemErrorWithCause(err, "starting container process")

    }

    …

}


 
容器start有两个关键步骤：
 
1）newParentProcess父进程进行相应的初始化工作，创建管道用于父进程和容器子进程进行通信，创建命令模版，初始化init进程相关数据，例如namespace等数据：
 


func (c *linuxContainer) newParentProcess(p *Process, doInit bool) (parent-

    Process, error) {

    parentPipe, childPipe, err := utils.NewSockPair("init")

    if err != nil {

        return nil, newSystemErrorWithCause(err, "creating new init pipe")

    }

    cmd, err := c.commandTemplate(p, childPipe)

    if err != nil {

        return nil, newSystemErrorWithCause(err, "creating new command

               template")

    }

    if !doInit {

        return c.newSetnsProcess(p, cmd, parentPipe, childPipe)

    }



    // 在没有使用runc的老版本中需要设置fifoFd，这是历史原因，在runc中无需这样做

    if err := c.includeExecFifo(cmd); err != nil {

        return nil, newSystemErrorWithCause(err, "including execfifo in cmd.

             Exec setup")

    }

    return c.newInitProcess(p, cmd, parentPipe, childPipe)

}


 
其中newInitProcess实现如下：
 


func (c *linuxContainer) newInitProcess(p *Process, cmd *exec.Cmd, parentPipe,

    childPipe *os.File) (*initProcess, error) {

    cmd.Env = append(cmd.Env, "_LIBCONTAINER_INITTYPE="+string(initStandard))

    nsMaps := make(map[configs.NamespaceType]string)

    for _, ns := range c.config.Namespaces {

        if ns.Path != "" {

            nsMaps[ns.Type] = ns.Path

        }

    }

    _, sharePidns := nsMaps[configs.NEWPID]

    data, err := c.bootstrapData(c.config.Namespaces.CloneFlags(), nsMaps)

    if err != nil {

        return nil, err

    }

    return &initProcess{

        cmd:             cmd,

        childPipe:       childPipe,

        parentPipe:      parentPipe,

        manager:         c.cgroupManager,

        intelRdtManager: c.intelRdtManager,

        config:          c.newInitConfig(p),

        container:       c,

        process:         p,

        bootstrapData:   data,

        sharePidns:      sharePidns,

    }, nil

}


 
2）parent.start启动子进程并且进行namespace、cgroup等设置，最后发送config信息给子进程：
 


func (p *initProcess) start() error {

    defer p.parentPipe.Close()

    err := p.cmd.Start()

    p.process.ops = p

    p.childPipe.Close()

    if err != nil {

        p.process.ops = nil

        return newSystemErrorWithCause(err, "starting init process command")

    }

    // 在和子进程同步前执行，所以，没有一个子进程可以逃脱cgroup的限制，我们不用担心子进程会获

    // 取root权限，因为我们使用rootless cgroup来管理它

    if err := p.manager.Apply(p.pid()); err != nil {

        return newSystemErrorWithCause(err, "applying cgroup configuration for

            process")

    }

    if p.intelRdtManager != nil {

        if err := p.intelRdtManager.Apply(p.pid()); err != nil {

            return newSystemErrorWithCause(err, "applying Intel RDT configuration

                for process")

        }

    }

    defer func() {

        if err != nil {

            // TODO: should not be the responsibility to call here

            p.manager.Destroy()

            if p.intelRdtManager != nil {

                p.intelRdtManager.Destroy()

            }

        }

    }()



    if _, err := io.Copy(p.parentPipe, p.bootstrapData); err != nil {

        return newSystemErrorWithCause(err, "copying bootstrap data to pipe")

    }



    if err := p.execSetns(); err != nil {

        return newSystemErrorWithCause(err, "running exec setns process for init")

    }

    fds, err := getPipeFds(p.pid())

    if err != nil {

        return newSystemErrorWithCausef(err, "getting pipe fds for pid %d", p.pid())

    }

    p.setExternalDescriptors(fds)

    if err := p.createNetworkInterfaces(); err != nil {

        return newSystemErrorWithCause(err, "creating network interfaces")

    }

    if err := p.sendConfig(); err != nil {

        return newSystemErrorWithCause(err, "sending config to init process")

    }

    var (

        sentRun    bool

        sentResume bool

    )



    ierr := parseSync(p.parentPipe, func(sync *syncT) error {

        switch sync.Type {

        case procReady:

            // 设置rlimit，因为我们丢失了权限，所以必须进行设置，一旦我们进入用户空间，就可

                以增加限制

            if err := setupRlimits(p.config.Rlimits, p.pid()); err != nil {

                return newSystemErrorWithCause(err, "setting rlimits for ready

                    process")

            }

            // 调用prestart hook函数

            if !p.config.Config.Namespaces.Contains(configs.NEWNS) {

                // 在启动hook前设置cgroup,因此启动前的hook可以设置cgroup的权限

                if err := p.manager.Set(p.config.Config); err != nil {

                    return newSystemErrorWithCause(err, "setting cgroup config

                        for ready process")

                }

                if p.intelRdtManager != nil {

                    if err := p.intelRdtManager.Set(p.config.Config); err != nil {

                        return newSystemErrorWithCause(err, "setting Intel RDT

                            config for ready process")

                    }

                }



                if p.config.Config.Hooks != nil {

                    s := configs.HookState{

                        Version: p.container.config.Version,

                        ID:      p.container.id,

                        Pid:     p.pid(),

                        Bundle:  utils.SearchLabels(p.config.Config.Labels, "bundle"),

                    }

                    for i, hook := range p.config.Config.Hooks.Prestart {

                        if err := hook.Run(s); err != nil {

                            return newSystemErrorWithCausef(err, "running

                                     prestart hook %d", i)

                        }

                    }

                }

            }

            // 和子进程进行同步

            if err := writeSync(p.parentPipe, procRun); err != nil {

                return newSystemErrorWithCause(err, "writing syncT 'run'")

            }

            sentRun = true

        case procHooks:

            // 在启动hook前设置cgroup,因此启动前的hook可以设置cgroup的权限

            if err := p.manager.Set(p.config.Config); err != nil {

                return newSystemErrorWithCause(err, "setting cgroup config for

                    procHooks process")

            }

            if p.intelRdtManager != nil {

                if err := p.intelRdtManager.Set(p.config.Config); err != nil {

                    return newSystemErrorWithCause(err, "setting Intel RDT

                           config for procHooks process")

                }

            }

            if p.config.Config.Hooks != nil {

                s := configs.HookState{

                    Version: p.container.config.Version,

                    ID:      p.container.id,

                    Pid:     p.pid(),

                    Bundle:  utils.SearchLabels(p.config.Config.Labels, "bundle"),

                }

                for i, hook := range p.config.Config.Hooks.Prestart {

                    if err := hook.Run(s); err != nil {

                        return newSystemErrorWithCausef(err, "running prestart

                            hook %d", i)

                    }

                }

            }

            // 和子进程进行同步

            if err := writeSync(p.parentPipe, procResume); err != nil {

                return newSystemErrorWithCause(err, "writing syncT 'resume'")

            }

            sentResume = true

        default:

            return newSystemError(fmt.Errorf("invalid JSON payload from child"))

        }



        return nil

    })



    if !sentRun {

        return newSystemErrorWithCause(ierr, "container init")

    }

    if p.config.Config.Namespaces.Contains(configs.NEWNS) && !sentResume {

        return newSystemError(fmt.Errorf("could not synchronise after

               executing prestart hooks with container process"))

    }

    if err := unix.Shutdown(int(p.parentPipe.Fd()), unix.SHUT_WR); err != nil {

        return newSystemErrorWithCause(err, "shutting down init pipe")

    }



    // 在shutdown后一定会结束，所以我们在这里等待子进程的退出

    if ierr != nil {

        p.wait()

        return ierr

    }

    return nil

}


 
在上述代码执行过程中，p.cmd.Start（）会先启动子进程，p.manager.Apply（p.pid（））进行cgroup设置的应用，p.sendConfig（）把需要子进程进行设置的配置发送给子进程，然后通过parseSync/writeSync和子进程进行信息同步。
 
其中子进程通过exec程序并通过参数init执行init命令：
 


var initCommand = cli.Command{

    Name:  "init",

    Usage: `initialize the namespaces and launch the process (do not call it ou-

        tside of runc)`,

    Action: func(context *cli.Context) error {

        factory, _ := libcontainer.New("")

        if err := factory.StartInitialization(); err != nil {

            // 因为错误已经被发送回父进程，因此这里不需要记录，副进程会进行处理

            os.Exit(1)

        }

        panic("libcontainer: container init failed to exec")

    },

}


 
init进程通过factory.StartInitialization进行初始化：
 


func (l *LinuxFactory) StartInitialization() (err error) {

    var (

        pipefd, fifofd int

        consoleSocket  *os.File

        envInitPipe    = os.Getenv("_LIBCONTAINER_INITPIPE")

        envFifoFd      = os.Getenv("_LIBCONTAINER_FIFOFD")

        envConsole     = os.Getenv("_LIBCONTAINER_CONSOLE")

    )



    // 获取INITPIPE.

    pipefd, err = strconv.Atoi(envInitPipe)

    if err != nil {

        return fmt.Errorf("unable to convert _LIBCONTAINER_INITPIPE=%s to int:

            %s", envInitPipe, err)

    }



    var (

        pipe = os.NewFile(uintptr(pipefd), "pipe")

        it   = initType(os.Getenv("_LIBCONTAINER_INITTYPE"))

    )

    defer pipe.Close()



    // 仅仅初始化具有fifofd的进程

    fifofd = -1

    if it == initStandard {

        if fifofd, err = strconv.Atoi(envFifoFd); err != nil {

            return fmt.Errorf("unable to convert _LIBCONTAINER_FIFOFD=%s to

                  int: %s", envFifoFd, err)

        }

    }

…



    i, err := newContainerInit(it, pipe, consoleSocket, fifofd)

    if err != nil {

        return err

    }



    // 假如初始化成功syscall.Exec不会返回

    return i.Init()

}


 
子进程在拿到管道后执行newContainerInit：
 


func newContainerInit(t initType, pipe *os.File, consoleSocket *os.File,

    fifoFd int) (initer, error) {

    var config *initConfig

    if err := json.NewDecoder(pipe).Decode(&config); err != nil {

        return nil, err

    }

    if err := populateProcessEnvironment(config.Env); err != nil {

        return nil, err

    }

    switch t {

    case initSetns:

        return &linuxSetnsInit{

            pipe:          pipe,

            consoleSocket: consoleSocket,

            config:        config,

        }, nil

    case initStandard:

        return &linuxStandardInit{

            pipe:          pipe,

            consoleSocket: consoleSocket,

            parentPid:     unix.Getppid(),

            config:        config,

            fifoFd:        fifoFd,

        }, nil

    }

    return nil, fmt.Errorf("unknown init type %q", t)

}


 
我们这里初始化条件为initStandard，则执行standard_init_linux.go中的init方法：
 


func (l *linuxStandardInit) Init() error {

    …



    if err := setupNetwork(l.config); err != nil {

        return err

    }

    if err := setupRoute(l.config.Config); err != nil {

        return err

    }



    label.Init()

    …

    if err := syscall.Exec(name, l.config.Args[0:], os.Environ()); err != nil {

        return newSystemErrorWithCause(err, "exec user process")

    }

    return nil

}


 
以上代码根据父进程发送过来的config，进行了网络、路由等配置，最后通过exec系统调用执行用户指定的程序。
 
最后，我们总结一下容器创建过程中父子进程的通信过程（见图7-8），runc进程通过startContainer通过libcontainer创建容器，子进程fork出来的时候会设置好namespace、cgroup等，然后父进程通过sendconfig发送配置给子进程，子进程进行相应设置，最后执行完用户指定程序后通知父进程。
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图7-8　runc容器创建父子进程通信过程
 
其中namespace的设置是在newInitProcess函数执行的时候，用bootstrapData通过netlink通知内核设置的。
7.4　本章小结
 
我记得有位大牛说过，一个软件最核心的代码也就那么十几二十行，大部分代码都是用于工程组织和封装。其实容器技术也如此，抛开DevOps的思想实践不说（比如Docker镜像的相关应用），Docker容器相关代码无非就是对Linux的namespace、cgroup等技术的封装，只要掌握了核心代码，其他问题也将会迎刃而解。授人以鱼不如授人以渔，本章并没有花费全部精力去解释Docker方方面面的实现（如容器、隔离、集群管理、镜像等），而是以容器隔离的相关技术作为切入点进行分析，我相信所有的软件都可以用类似思路去分析，掌握核心技术，以不变应万变。
第8章　Linux网络层数据流分析
 
计算机网络是个庞大且复杂的话题，这不是一本书就可以说清楚的。然而，在互联网极大普及的今天，很少有应用程序不与网络打交道，我还是抱着授人以渔的思想，尝试介绍Linux在网络层面的整体架构，这样在解决具体问题的时候，才可以有针对性地进行分析。
 
本章不打算从头到尾来解释Linux网络从物理层到应用层的所有实现。关于理论方面的知识，可以单独学习Andrew的《计算机网络》，Steven的《TCP/IP详解卷1》，在实现方面，可以参考《深入理解Linux网络技术内幕》。
 
本章主要介绍Linux网络层数据的整体流转架构，包括如下内容：
 
·分析数据在网络层的流转过程。
 
·socket接口层的实现。
 
·netfilter和lvs的关系。
 
·一些常用的网络相关的系统参数。
 
·Nginx服务器监听socket初始化过程。
8.1　数据在网络层的流转
 
在大多数情况下，我们接触到的网络都是基于TCP/IP协议栈的实现，TCP/IP协议是一个分层的网络模型（见图8-1）。所以，Linux内核对网络层的实现也是围绕这个分层模型展开的。
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图8-1　TCP/IP网络模型的基本结构
8.1.1　sk_buff结构
 
sk_buff结构是Linux实现的在网络各层中流转的数据结构，这个结构相对较为复杂，我们这里略去细节，仅为说明流程进行简单介绍（代码详见：/Linux-4.5.2/include/Linux/skbuff.h）。
 


struct sk_buff {

    union {

        struct {

        // 内核维护了一个sk_buff_head链表，next代表该skb的下一个元素，prev代表上一个元素

            struct sk_buff        *next;

            struct sk_buff        *prev;

        …

        struct sock               *sk;         // L4层对应的socket结构

        struct net_device         *dev;        // sbk相关联的网络设备

        …

    unsigned int          len,                 // 整个缓冲区大小，包括head

    data_len;                                  // 只包括数据的大小

        __u16             mac_len,             // mac报头大小

    hdr_len;

    …

    __be16                protocol;            // 当前层的协议

    __u16                 transport_header;

    __u16                 network_header;

    __u16                 mac_header;

    …

    sk_buff_data_t        tail;

    sk_buff_data_t        end;

    unsigned char         *head,*data;

    unsigned int          truesize;            // 缓冲区总大小，包括skb自己

    atomic_t              users;

};


 
其中tail、end、head、data的关系如图8-2所示。
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图8-2　tail、end、head、data指针
 
数据往上一层传输之后，data指针就指向当前层报头的尾端，也就是上一层报头的开始。
8.1.2　数据流转过程
 
在了解了Linux网络中传输的数据结构skb之后，我们来看各层的处理流程（如图8-3所示），我们以接收数据为例，网卡首先获取网络中的数据，然后经过网卡驱动解析数据，封装成链路层的数据帧给L2层，L2层经过处理之后（比如bridge网桥），假如数据还在本机内，则传送给L3层，L3层经过处理（route路由），假如数据还在本机内，则交给L4层，最后交给用户态程序。同理，发送数据的过程反过来类推即可。
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图8-3　Linux对网络数据的收发流程
 
下面，我们自底向上对每一层内核的处理过程进行分析。
 
首先，我们先搞明白Linux如何响应网卡的请求，在系统启动的时候，会注册响应网络读写事件的软中断。
 


static int __init net_dev_init(void)

{

    …

    open_softirq(NET_TX_SOFTIRQ, net_tx_action);

    open_softirq(NET_RX_SOFTIRQ, net_rx_action);

    …

}


 
其中net_tx_action用于响应传输数据，net_rx_action用于响应接收数据。
 
我们先来分析一下net_rx_action：
 


static void net_rx_action(struct softirq_action *h)

{

    struct softnet_data *sd = this_cpu_ptr(&softnet_data);

    unsigned long time_limit = jiffies + 2;

    int budget = netdev_budget;

    LIST_HEAD(list);

    LIST_HEAD(repoll);



    local_irq_disable();

    list_splice_init(&sd->poll_list, &list);

    local_irq_enable();



    for (;;) {

        struct napi_struct *n;

        …

        n = list_first_entry(&list, struct napi_struct, poll_list);

        budget -= napi_poll(n, &repoll);

    …

    }

    local_irq_disable();

    list_splice_tail_init(&sd->poll_list, &list);

    list_splice_tail(&repoll, &list);

    list_splice(&list, &sd->poll_list);

    if (!list_empty(&sd->poll_list))

        __raise_softirq_irqoff(NET_RX_SOFTIRQ);

    net_rps_action_and_irq_enable(sd);

}


 
net_rx_action对于当前CPU对应poll_list队列中的所有dev，调用dev->poll方法。该方法是由对应dev的驱动程序实现的，用于接收及处理报文。
 
net_rx_action每次运行都有一定的限度，并不一定要将所有报文都处理完。在处理完一定数量的报文配额、或处理过程超过一定时间后，net_rx_action便会返回。返回前触发一次NET_RX_SOFTIRQ软中断，等待下一次中断到来的时候继续被调度。
 
从net_rx_action的实现我们可以发现，Linux对于网络数据的接收是中断+轮询的方式，网卡驱动通过实现poll方法进行轮询，结合软中断的过程。这是为了更好地提升性能，否则所有数据收发都依赖中断的方式，那么CPU将会在不停的中断响应当中忙死。
 
至于网卡驱动的实现，这里就不再进行分析了，有兴趣大家可以自己去研究一下网卡驱动，一般网卡驱动实现poll函数之后，会解析出skb结构，然后调用netif_receive_skb函数把数据交给网络协议栈。
 
在分析netif_receive_skb的实现之前，我们先来了解一下Linux对不同协议的抽象：
 


struct packet_type {

    __be16              type; // 协议类型

    struct net_device   *dev;

    // 协议处理函数

    int                 (*func) (struct sk_buff *,

                            struct net_device *,

                            struct packet_type *,

                            struct net_device *);

    bool                (*id_match)(struct packet_type *ptype,

                                struct sock *sk);

    void                *af_packet_priv;

    struct list_head    list;

};


 
每种协议都有一个packet_type来描述，其中，最主要的3个属性为type、dev、func，分别代表协议的类型，注册的设备以及协议处理函数。
 
netif_receive_skb最终会调用__netif_receive_skb_core函数，下面我们分析其执行过程：
 


static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)

{

    struct packet_type *ptype, *pt_prev;

    rx_handler_func_t *rx_handler;

    struct net_device *orig_dev;

    bool deliver_exact = false;

    int ret = NET_RX_DROP;

    __be16 type;

    …

    orig_dev = skb->dev;



    skb_reset_network_header(skb);        // 重制skb头，现在skb指向ip头

    …

    // 遍历全局ptype_all，做相应协议处理，例如tcpdump或raw socket

    list_for_each_entry_rcu(ptype, &ptype_all, list)

        if (pt_prev)

            ret = deliver_skb(skb, pt_prev, orig_dev);

        pt_prev = ptype;

    }

    // 遍历设备上注册的ptype_all进行处理

    list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {

        if (pt_prev)

            ret = deliver_skb(skb, pt_prev, orig_dev);

        pt_prev = ptype;

    }



    …

    type = skb->protocol;                // 获取协议类型



    if (likely(!deliver_exact)) {        // 根据全局定义的协议进行报文处理

        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,

                        &ptype_base[ntohs(type) &

                            PTYPE_HASH_MASK]);

    }

    // 根据设备特定的协议进行报文处理

    deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,

                    &orig_dev->ptype_specific);

    // 如果设备发生变化，那么还需要针对新设备的注册协议进行处理

    if (unlikely(skb->dev != orig_dev)) {

        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,

                        &skb->dev->ptype_specific);

    }



    // 处理最后一个未处理的packet_type

    if (pt_prev) {

        if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))

            goto drop;

        else

            ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);

    } else {

drop:

        atomic_long_inc(&skb->dev->rx_dropped);

        kfree_skb(skb);

        ret = NET_RX_DROP;

    }



out:

    return ret;

}


 
在数据包处理过程中，首先会看ptype_all中是否有注册的协议处理函数，如果有则调用相应的处理函数，然后再到ptype_base中寻找进行处理。
 
其中ptype_all为一个双向链表，ptype_base是一个哈希表，其哈希函数以协议标识符为参数，内核通常利用该哈希表判断应当接收传入的网络数据报的协议。
 
ptype_all中一般注册的都是抓包程序、raw socket等，ptype_base则为TCP/IP协议栈，如ip、arp等。
 
以IPv4协议为例，其注册的func为ip_rcv：
 


static struct packet_type ip_packet_type __read_mostly = {

    .type = cpu_to_be16(ETH_P_IP),

    .func = ip_rcv,

};


 
当包交到网络层之后，我们先放一放。下面再分析一下包的发送过程。
 
当我们用上层协议构建好报文之后，就可以调用dev_queue_xmit函数进行数据的发送。
 
dev_queue_xmit函数会将数据提交到设备的队列中，dev->qdisc指向一个队列的实例，里面包含了队列本身以及操作队列的方法（enqueue、dequeue、requeue）。
 
然后通过调用qdisc_restart把数据从队列中取出，提交给驱动程序的dev->hard_start_xmit方法进行发送。
 
这里省略了dev_queue_xmit相关的源码，大家可以自己阅读分析。
 
假如驱动发送数据成功后，就会发生中断，最后通过我们之前注册软中断程序NET_TX_SOFTIRQ进行响应，执行net_rx_action函数，至于net_rx_action的实现就留给读者自己分析了。
8.2　socket接口层的实现
 
在了解了Linux网络层数据传输的过程后，再来分析一下常用的sokcet接口层，sokcet层一般用于构建TCP层的连接，进行数据的读写。在Linux一切皆文件的思想下，socket的读写也是对文件的读写。我们先来看一下进程和socket的关系（见图8-4），在进程结构（task_struct）中维护了所有打开的文件句柄files，其中的fd_array字段对应一个file结构，file中的f_inode对应的是socket_alloc中的vfs_inode。
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图8-4　进程和socket的关系
8.2.1　socket系统初始化
 
在Linux上socket实现了类似的文件系统：
 


static struct file_system_type sock_fs_type = {

    .name =        "sockfs",

    .mount =        sockfs_mount,

    .kill_sb =      kill_anon_super,

};


 
其中，mount函数指针定义了如何挂载文件系统，而kill_sb函数指针定义了如何删除该超级块。
 
对sockfs_mount超级块的操作进行注册（主要进行inode的分配和销毁）：
 


static const struct super_operations sockfs_ops = {

    .alloc_inode          = sock_alloc_inode,

    .destroy_inode        = sock_destroy_inode,

    .statfs               = simple_statfs?

};


 
对socket文件读写则注册为：
 


static const struct file_operations socket_file_ops = {

    .owner =        THIS_MODULE,

    .llseek =        no_llseek,

    .read_iter =           sock_read_iter,

    .write_iter =          sock_write_iter,

    .poll =                sock_poll,

    .unlocked_ioctl =      sock_ioctl,

#ifdef CONFIG_COMPAT

    .compat_ioctl = compat_sock_ioctl,

#endif

    .mmap =                sock_mmap,

    .release =       sock_close,

    .fasync =        sock_fasync,

    .sendpage =            sock_sendpage,

    .splice_write = generic_splice_sendpage,

    .splice_read =         sock_splice_read,

};


 
系统在启动阶段，会进行socket子系统的初始化：
 


core_initcall(sock_init);

static int __init sock_init(void)

{

    int err;

    …

    skb_init();                // 初始化skb数据包slab缓存

    init_inodecache();         // 创建一块用于socket相关的inode缓存；后面创建inode、释放

                                // inode会使用到

    err = register_filesystem(&sock_fs_type); // 将socket文件系统注册到内核中

    …

    sock_mnt = kern_mount(&sock_fs_type); // 挂载socket fs

    …

}


 
socket_init主要对socket文件系统进行注册和挂载。
8.2.2　socket创建
 
Linux通过提供sys_socket系统调用来创建socket，通过对socket的创建，初始化了进程和socket文件句柄的上下文：
 


SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)

{

    int retval;

    struct socket *sock;

    int flags;

    ...

    retval = sock_create(family, type, protocol, &sock);

    if (retval < 0)



    retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));

    …

    return retval;

}


 
通过sys_socket系统调用发现，socket创建过程主要分为两个步骤：
 
1）通过sock_create->__sock_create->sock_alloc分配socket结构。
 
2）进程通过sock_map_fd让sock_alloc_file申请file结构后，让socket和该文件进行关联。
 
因为sock_create执行过程比较长，这里省略了代码，通过图8-5，可以了解sock_create执行之后发生的事情。
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图8-5　sock_create执行过程
 
sock_create通过3个步骤来完成：
 
1）通过alloc_inode调用socket_fs的sock_alloc_inode，创建了vfs_inode结构。
 
2）通过AF_INET协议族的inet_create函数创建TCP的sock对象，并且和socket对象挂钩。
 
3）TCP协议（tcp_prot）结构的init方法初始化sock对象。
 
其中协议族对象需要实现net_proto_family接口，协议对象需要实现proto接口：
 


static const struct net_proto_family inet_family_ops = {

    .family = PF_INET,

    .create = inet_create,

    .owner        = THIS_MODULE,

};



struct proto tcp_prot = {

    .name                              = "TCP",

    .owner                             = THIS_MODULE,

    .close                   = tcp_close,

    .connect                 = tcp_v4_connect,

    .disconnect              = tcp_disconnect,

    .accept                            = inet_csk_accept,

    .ioctl                   = tcp_ioctl,

    .init                    = tcp_v4_init_sock,

    .destroy                 = tcp_v4_destroy_sock,

    .shutdown                = tcp_shutdown,

    .setsockopt              = tcp_setsockopt,

    .getsockopt                        = tcp_getsockopt,

    .recvmsg                 = tcp_recvmsg,

    .sendmsg                 = tcp_sendmsg,

    .sendpage                = tcp_sendpage,

    .backlog_rcv                       = tcp_v4_do_rcv,

    .release_cb              = tcp_release_cb,

    .hash                    = inet_hash,

    .unhash                            = inet_unhash,

    .get_port                = inet_csk_get_port,

    .enter_memory_pressure                = tcp_enter_memory_pressure,

    .stream_memory_free               = tcp_stream_memory_free,

    .sockets_allocated                = &tcp_sockets_allocated,

    .orphan_count                     = &tcp_orphan_count,

    .memory_allocated                 = &tcp_memory_allocated,

    .memory_pressure                  = &tcp_memory_pressure,

    .sysctl_mem                       = sysctl_tcp_mem,

    .sysctl_wmem                      = sysctl_tcp_wmem,

    .sysctl_rmem                      = sysctl_tcp_rmem,

    .max_header                       = MAX_TCP_HEADER,

    .obj_size                 = sizeof(struct tcp_sock),

    .slab_flags               = SLAB_DESTROY_BY_RCU,

    .twsk_prot                = &tcp_timewait_sock_ops,

    .rsk_prot                 = &tcp_request_sock_ops,

    .h.hashinfo               = &tcp_hashinfo,

    .no_autobind                       = true,

#ifdef CONFIG_COMPAT

    .compat_setsockopt                 = compat_tcp_setsockopt,

    .compat_getsockopt                 = compat_tcp_getsockopt,

#endif

    .diag_destroy                      = tcp_abort,

};


8.2.3　socket绑定
 
在socket创建之后，还需要对其与指定的地址和端口进行绑定才能使用，Linux提供一个sys_bind系统调用来实现该功能：
 


SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)

{

    struct socket *sock;

    struct sockaddr_storage address;

    int err, fput_needed;

    // 根据fd获取对应的soket结构

    sock = sockfd_lookup_light(fd, &err, &fput_needed);

    if (sock) {

        // 将用户空间的地址拷贝到内核空间

        err = move_addr_to_kernel(umyaddr, addrlen, &address);

        if (err >= 0) {

            err = security_socket_bind(sock,

                            (struct sockaddr *)&address,

                            addrlen);

            if (!err)

                // 根据指定协议域及socket类型进行bind

                err = sock->ops->bind(sock,

                                (struct sockaddr *)

                                &address, addrlen);

        }

        fput_light(sock->file, fput_needed);

    }

    return err;

}


 
sys_bind的核心操作为sock->ops->bind，以inet_stream_ops为例，bind函数为inet_bind：
 


const struct proto_ops inet_stream_ops = {

    …

    .bind                   = inet_bind,

    …

};


 
inet_bind的主要步骤分为：
 
1）地址类型检测：
 


 if (!net->ipv4.sysctl_ip_nonlocal_bind &&

    !(inet->freebind || inet->transparent) &&

    addr->sin_addr.s_addr != htonl(INADDR_ANY) &&

    chk_addr_ret != RTN_LOCAL &&

    chk_addr_ret != RTN_MULTICAST &&

    chk_addr_ret != RTN_BROADCAST)

    goto out;


 
2）端口范围检测：
 


snum = ntohs(addr->sin_port);

    err = -EACCES;

    if (snum && snum < PROT_SOCK &&

        !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))

        goto out;


 
3）设置源地址和接收地址：
 


inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;

    if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)

        inet->inet_saddr = 0;


 
4）检查端口是否被占用：
 


if ((snum || !inet->bind_address_no_port) &&

        sk->sk_prot->get_port(sk, snum)) {

        inet->inet_saddr = inet->inet_rcv_saddr = 0;

        err = -EADDRINUSE;

        goto out_release_sock;

    }


 
5）初始化目标地址和端口：
 


inet->inet_sport = htons(inet->inet_num);

    inet->inet_daddr = 0;

    inet->inet_dport = 0;


8.2.4　socket监听
 
在socket经过sys_bind之后，就可以进行监听操作，Linux提供一个sys_listen系统调用来执行该动作。
 


SYSCALL_DEFINE2(listen, int, fd, int, backlog)

{

    struct socket *sock;

    int err, fput_needed;

    int somaxconn;

    // 根据文件描述符取得socket对象

    sock = sockfd_lookup_light(fd, &err, &fput_needed);

    if (sock) {

        // 根据系统中的设置调整参数backlog

        somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;

        if ((unsigned int)backlog > somaxconn)

            backlog = somaxconn;

        err = security_socket_listen(sock, backlog);

        if (!err)

            // 调用特定协议簇的listen函数

            err = sock->ops->listen(sock, backlog);

        fput_light(sock->file, fput_needed);

    }

    return err;

}


 
sys_listen通过sock->ops->listen来调用特定协议簇的listen函数，我们仍旧以AF_INTET的inet_listen来分析执行过程：
 


int inet_listen(struct socket *sock, int backlog)

{

    struct sock *sk = sock->sk;

    unsigned char old_state;

    int err;

    …

    // 假如状态不是SS_UNCONNECTED或者类型不是SOCK_STREAM则退出

    if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)

        goto out;

    old_state = sk->sk_state;

    // 这里检查sock的状态是否是TCP_CLOSE或TCP_LISTEN

    if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))

        goto out;

    // 当sock的状态不是TCP_LISTEN时，进行监听初始化初始化

    if (old_state != TCP_LISTEN) {

        …

        err = inet_csk_listen_start(sk, backlog);

        …

    }

    // 设置sock的最大并发连接请求数

    sk->sk_max_ack_backlog = backlog;

    …

    return err;

}


 
inet_listen在inet_csk_listen_start中初始化了连接等待队列，并且设置sock的状态为TCP_LISTEN，最后将当前socket在inet_hashinfo中进行哈希处理，在socket的哈希表结构inet_hashinfo中，其成员listening_hash[INET_LHTABLE_SIZE]用于存放处于TCP_LISTEN状态的sock当socket通过listen（）调用完成等待连接队列的初始化后，需要将当前sock放到该结构中。
8.2.5　socket接受连接
 
在socket处于监听状态之后，Linux通过sys_accept函数来接受新客户端连接的到来：
 


SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,

    int __user *, upeer_addrlen, int, flags)

{

    struct socket *sock, *newsock;

    struct file *newfile;

    int err, len, newfd, fput_needed;

    struct sockaddr_storage address;

    …

    // 根据server_fd获取服务端的socket结构

    sock = sockfd_lookup_light(fd, &err, &fput_needed);

    …

    // 给客户端分配一个新的socket结构

    newsock = sock_alloc();

    …

    // 把服务端的socket类型和ops赋给客户端的socket

    newsock->type = sock->type;

    newsock->ops = sock->ops;

    __module_get(newsock->ops->owner);

    // 获取一个未使用的fd句柄

    newfd = get_unused_fd_flags(flags);

    …

    // 分配一个新的file结构

    newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);

    …

    err = security_socket_accept(sock, newsock);

    …

    // 调用对应协议簇的accept函数

    err = sock->ops->accept(sock, newsock, sock->file->f_flags);

    …

    if (upeer_sockaddr) {

        if (newsock->ops->getname(newsock, (struct sockaddr *)&address,

                    &len, 2) < 0) {

            err = -ECONNABORTED;

            goto out_fd;

        }

        // 拷贝地址到用户态

        err = move_addr_to_user(&address,

                    len, upeer_sockaddr, upeer_addrlen);

        …

    }

    // 把新创建的fd和file关联

    fd_install(newfd, newfile);

    err = newfd;

out_put:

    fput_light(sock->file, fput_needed);

out:

    return err;

out_fd:

    fput(newfile);

    put_unused_fd(newfd);

    goto out_put;

}


 
sys_accept的关键就是给客户端分配socket结构，然后执行服务端socket的accept操作，再把客户端的socket与新分配的file及文件句柄fd关联。下面我们仍旧以af_net的inet_accept函数来分析accpet：
 


int inet_accept(struct socket *sock, struct socket *newsock, int flags)

{

    struct sock *sk1 = sock->sk;

    int err = -EINVAL;

    // 如果使用的是TCP，则sk_prot为tcp_prot，accept为inet_csk_accept()获取新连接的sock

    struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err);

    …

    WARN_ON(!((1 << sk2->sk_state) &

        (TCPF_ESTABLISHED | TCPF_SYN_RECV |

        TCPF_CLOSE_WAIT | TCPF_CLOSE)));

    // 把sock和socket嫁接起来，让它们能相互索引

    sock_graft(sk2, newsock);

    // 把新socket的状态设为已连接

    newsock->state = SS_CONNECTED;

    err = 0;

    release_sock(sk2);

do_err:

    return err;

}



static inline void sock_graft(struct sock *sk, struct socket *parent)

{

    write_lock_bh(&sk->sk_callback_lock);

    sk->sk_wq = parent->wq;        //设置sock的等待队列为socket的等待队列

    // 相互嫁接

    parentsk ->= sk;

    sk_set_socket(sk, parent);

    security_sock_graft(sk, parent);

    write_unlock_bh(&sk->sk_callback_lock);

}


 
inet_accept通过调用具体协议层（例如TCP）的accept来获取sock结构，然后和scoket结构关联起来，并且把socket状态设置为已连接。
 
最后以TCP层的accept实现inet_csk_accept来说明新的sock结构是如何获取的：
 


struct sock *inet_csk_accept(struct sock *sk, int flags, int *err)

{

    struct inet_connection_sock *icsk = inet_csk(sk);

    struct request_sock_queue *queue = &icsk->icsk_accept_queue;

    struct request_sock *req;

    struct sock *newsk;

    …

    error = -EINVAL;

    // socket必须处于监听状态

    if (sk->sk_state != TCP_LISTEN)

        goto out_err;

    // 发现有ESTABLISHED状态的连接请求块

    if (reqsk_queue_empty(queue)) {

        // 获取等待超时时间，如果是非阻塞则为0

        long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);

        // 如果是非阻塞的，则直接退出

        error = -EAGAIN;

        if (!timeo)

            goto out_err;

        // 阻塞等待，直到有全连接。如果用户有设置等待超时时间，超时后会退出

        error = inet_csk_wait_for_connect(sk, timeo);

        …

    }

     // 获取新连接的sock，释放连接控制块

    req = reqsk_queue_remove(queue, sk);

    newsk = req->sk;

…

out:

    release_sock(sk);

    if (req)

        reqsk_put(req);

    return newsk;

…

}


 
在TCP层的accept主要还是等待获取可用并且状态为ESTABLISHED连接的过程，假如有则从backlog队列（全连接队列）中取出一个ESTABLISHED状态的连接请求块，返回它所对应的连接sock。同时更新backlog队列的全连接数，通过reqsk_queue_remove释放取出的连接控制块：
 


static inline struct request_sock *reqsk_queue_remove(struct request_sock_

    queue *queue, struct sock *parent)

{

    struct request_sock *req;



    spin_lock_bh(&queue->rskq_lock);

    req = queue->rskq_accept_head;              // 第一个ESTABLISHED状态的连接请求块

    if (req) {

        sk_acceptq_removed(parent);                // 当前backlog队列的全连接数减一

        queue->rskq_accept_head = req->dl_next;

        if (queue->rskq_accept_head == NULL)

            queue->rskq_accept_tail = NULL;

    }

    spin_unlock_bh(&queue->rskq_lock);

    return req;

}


8.2.6　新连接的到来
 
通过分析sys_accept函数可以发现，新连接是从backlog队列中取出来的，那么队列中的数据又是谁放进去的呢？
 
在开头通过分析Linux网络层数据流转过程可以发现，数据从网卡进来后，最终会调用ip_rcv函数，在该函数处理过程中，假如数据应该在本机内部，那么会通过ip_rcv_finish->dst_input->ip_local_deliver在本机内处理数据：
 


int ip_local_deliver(struct sk_buff *skb)

{

…

    struct net *net = dev_net(skb->dev);

    if (ip_is_fragment(ip_hdr(skb))) {

        if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))

            return 0;

    }

    return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,

                net, NULL, skb, skb->dev, NULL,

                ip_local_deliver_finish);

}


 
其中ip_local_deliver_finish->ipprot->handler（skb）->tcp_v4_rcv->tcp_v4_do_rcv->tcp_rcv_state_process->icsk->icsk_af_ops->conn_request（sk，skb）->tcp_v4_conn_request->tcp_conn_request->inet_csk_reqsk_queue_add：
 


struct sock *inet_csk_reqsk_queue_add(struct sock *sk,

                    struct request_sock *req,

                    struct sock *child)

{

    struct request_sock_queue *queue = &csk_accept_queuecsk_accept_queue;



    spin_lock(&queue->rskq_lock);

    if (unlikely(sk->sk_state != TCP_LISTEN)) {

        inet_child_forget(sk, req, child);

        child = NULL;

    } else {

        req->sk = child;

        req->dl_next = NULL;

        if (queue->rskq_accept_head == NULL)

            queue->rskq_accept_head = req;

        else

            queue->rskq_accept_tail->dl_next = req;

        queue->rskq_accept_tail = req;

        sk_acceptq_added(sk);

    }

    spin_unlock(&queue->rskq_lock);

    return child;

}


 
所以，经过从网卡到IP层再到TCP层的数据流转，最终通过inet_csk_reqsk_queue_add把新的sock放入到了csk_accept_queuecsk_accept_queue队列中。
 
知道了如何将socket放入到request队列后，再来看一下前面设置的backlog大小有什么用，通过ip_local_deliver_finish->ipprot->handler（skb）->tcp_v4_rcv->tcp_check_req->inet_csk（sk）->icsk_af_ops->syn_recv_sock（sk，skb，req，NULL，req，&own_req）->tcp_v4_syn_recv_sock->sk_acceptq_is_full来判断新建立的连接是否有可能被创建出来：
 


static inline bool sk_acceptq_is_full(const struct sock *sk)

{

    return sk->sk_ack_backlog > sk->sk_max_ack_backlog;

}


 
在了解了服务端创建socket，并且进行绑定和监听之后，大家一定会问，客户端是如何进行connect操作的呢？连接建立后，数据的读写又是如何进行的呢？限于篇幅，这块工作就交给大家自己完成了，因为整个数据流转的过程已经分析过了，所以都可以依样画葫芦进行分析。
 
另外，需要说明的是，连接数据的流程和数据读取的流程是类似的，仅仅状态不同而已，对IP层来讲，业务的数据和连接建立的数据都是一样的。客户端建立连接Linux通过提供一个sys_connect操作来完成的，其最终会通过TCP层的tcp_v4_connect把sync数据包通过netfilter的output阶段发送出去。
8.2.7　socket整体流程
 
最后我们通过图8-6总结一下整个TCP协议簇下socket的总体流程。
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图8-6　socket流程
 
从图中我们可以发现，TCP本身是一个面向连接的协议，服务端在启动的时候，步骤大致如下：
 
1）首先通过sys_socket创建监听套接字，并且通过sys_bind绑定设备，然后使用sys_lsten进行监听。
 
2）客户端也会通过sys_socket创建套接字，然后通过sys_connect创建同服务器的连接。
 
3）服务器最后通过sys_accept来接受客户端的请求，建立连接。
 
以上过程就是TCP建立连接的三次握手过程。在连接建立之后，客户端和服务器都可以通过sys_recvmg和sys_endmsg来互相收发数据，数据最终会经过Linux的netfilter层进行过滤和转发。
8.3　netfilter和lvs
 
通过上一节的介绍我们已经知道，在网络中收发数据最后都会经过netfilter层，本节我们继续分析netfilter层的具体逻辑。另外，很多网络软件都是在netfilter层设置hook点来过滤网络包，比如lvs，本节也会简单介绍。
8.3.1　netfilter
 
Linux在网络层提供了一套包过滤机制，即netfilter，它在整个网络流程的关键点上提供了一些hook点，便于程序员挂上特殊的钩子处理函数进行包处理的工作来实现特殊场景下的功能，比如NAT。
 
我们在分析accept等待新的连接到来的时候，就接触过ip_local_deliver函数，其中的NF_HOOK就是netfilter的hook点。一个数据包通过netfilter的流程如图8-7所示。netfilter的架构就是在整个网络流程的若干位置放置了一些检测点（hook），而在每个检测点上登记了一些处理函数进行处理（如包过滤、NAT等，甚至可以是用户自定义的功能）。
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图8-7　数据包经过netfilter hook点的流程
 
图中的hook点介绍如下：
 
·NF_IP_PRE_ROUTING：刚刚进入网络层的数据包通过此点（刚刚进行完版本号、校验和等检测），进行目的地址转换。
 
·NF_IP_LOCAL_IN：经路由查找后，送往本机的通过此检查点，INPUT包过滤在此点进行。
 
·NF_IP_FORWARD：要转发的包通过此检测点，FORWORD包过滤在此点进行。
 
·NF_IP_LOCAL_OUT：本机进程发出的包通过此检测点，OUTPUT包过滤在此点进行。
 
·NF_IP_POST_ROUTING：所有马上便要通过网络设备出去的包通过此检测点，进行源地址转换功能（包括地址伪装）在此点进行。
 
那么，Linux如何来使用这些hook点呢？
 
在IP层代码中，有一些带有NF_HOOK宏的语句，例如：
 


NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,

                net, NULL, skb, skb->dev, rt->dst.dev,

                ip_forward_finish);


 
我们接着来看NF_HOOK的实现：
 


static inline int

NF_HOOK(uint8_t pf, unsigned int hook, struct net *net, struct sock *sk,

    struct sk_buff *skb,

    struct net_device *in, struct net_device *out,

    int (*okfn)(struct net *, struct sock *, struct sk_buff *))

{

    return NF_HOOK_THRESH(pf, hook, net, sk, skb, in, out, okfn, INT_MIN);

}


 
NF_HOOK里其实调用的是NF_HOOK_THRESH：
 


static inline int

NF_HOOK_THRESH(uint8_t pf, unsigned int hook, struct net *net, struct sock

    *sk,

        struct sk_buff *skb, struct net_device *in,

        struct net_device *out,

        int (*okfn)(struct net *, struct sock *, struct sk_buff *),

        int thresh)

{

    int ret = nf_hook_thresh(pf, hook, net, sk, skb, in, out, okfn, thresh);

    if (ret == 1)

        ret = okfn(net, sk, skb);

    return ret;

}


 
NF_HOOK_THRESH宏调用了nf_hook_thresh函数：
 


static inline int nf_hook_thresh(u_int8_t pf, unsigned int hook,

                struct net *net,

                struct sock *sk,

                struct sk_buff *skb,

                struct net_device *indev,

                struct net_device *outdev,

                int (*okfn)(struct net *, struct sock *, struct sk_buff *),

                int thresh)

{

    struct list_head *hook_list = &net->nf.hooks[pf][hook];



    if (nf_hook_list_active(hook_list, pf, hook)) {

        struct nf_hook_state state;



        nf_hook_state_init(&state, hook_list, hook, thresh,

                    pf, indev, outdev, sk, net, okfn);

        return nf_hook_slow(skb, &state);

    }

    return 1;

}


 
nf_hook_thresh在拿到hook链表之后，调用nf_hook_slow：
 


int nf_hook_slow(struct sk_buff *skb, struct nf_hook_state *state)

{

    struct nf_hook_ops *elem;

    unsigned int verdict;

    int ret = 0;

…

    elem = list_entry_rcu(state->hook_list, struct nf_hook_ops, list);

next_hook:

    verdict = nf_iterate(state->hook_list, skb, state, &elem);

    if (verdict == NF_ACCEPT || verdict == NF_STOP) {

        ret = 1;

    } else if ((verdict & NF_VERDICT_MASK) == NF_DROP) {

        kfree_skb(skb);

        ret = NF_DROP_GETERR(verdict);

        if (ret == 0)

            ret = -EPERM;

    } else if ((verdict & NF_VERDICT_MASK) == NF_QUEUE) {

        int err = nf_queue(skb, elem, state,

                    verdict >> NF_VERDICT_QBITS);

        if (err < 0) {

            if (err == -ESRCH &&

                (verdict & NF_VERDICT_FLAG_QUEUE_BYPASS))

                goto next_hook;

            kfree_skb(skb);

        }

    }

    …

    return ret;

}


 
在nf_hook_slow中遍历了注册的hook函数并在nf_iterate中进行调用：
 


unsigned int nf_iterate(struct list_head *head,

            struct sk_buff *skb,

            struct nf_hook_state *state,

            struct nf_hook_ops **elemp)

{

    unsigned int verdict;

    …

    list_for_each_entry_continue_rcu((*elemp), head, list) {

        if (state->thresh > (*elemp)->priority)

            continue;

repeat:

        verdict = (*elemp)->hook((*elemp)->priv, skb, state);

        …

            if (verdict != NF_REPEAT)

                return verdict;

            goto repeat;

        }

    }

    return NF_ACCEPT;

}


8.3.2　lvs
 
lvs是章文嵩博士在十几年前开发的基于Linux的网络负载平衡模块，主要思路就是基于netfilter的实现，所以只有掌握了netfilter的核心概念才能搞明白lvs的原理。具体来说，lvs是基于netfilter hook点的注册来实现的，下面为lvs的hook点注册实现：
 


static struct nf_hook_ops ip_vs_ops[] __read_mostly = {

    // 包过滤之后，为VS/NAT转换源地址

    {

        .hook                = ip_vs_reply4,

        .pf                  = NFPROTO_IPV4,

        .hooknum             = NF_INET_LOCAL_IN,

        .priority            = NF_IP_PRI_NAT_SRC - 2,

    },

    // 在包过滤中，通过VS/DR、 VS/TUN 或VS/NAT（转换目标地址），可以给IPVS应用过滤规则

    {

        .hook                = ip_vs_remote_request4,

        .pf                  = NFPROTO_IPV4,

        .hooknum             = NF_INET_LOCAL_IN,

        .priority            = NF_IP_PRI_NAT_SRC - 1,

    },

    // 在ip_vs_in前,给VS/NAT转换源地址

    {

        .hook                = ip_vs_local_reply4,

        .pf                  = NFPROTO_IPV4,

        .hooknum             = NF_INET_LOCAL_OUT,

        .priority            = NF_IP_PRI_NAT_DST + 1,

    },

    // mangle后, 调度和转发本地请求

    {

        .hook                = ip_vs_local_request4,

        .pf                  = NFPROTO_IPV4,

        .hooknum             = NF_INET_LOCAL_OUT,

        .priority            = NF_IP_PRI_NAT_DST + 2,

    },

    // 在包过滤后（但在ip_vs_out_icmp前），为IPVS进入的连接抓获目标地址为0.0.0.0/0的

     ?icmp包

    {

        .hook                = ip_vs_forward_icmp,

        .pf                  = NFPROTO_IPV4,

        .hooknum             = NF_INET_FORWARD,

        .priority            = 99,

    },

    // 在包过滤之后，给VS/NAT 转换源地址

    {

        .hook                = ip_vs_reply4,

        .pf                  = NFPROTO_IPV4,

        .hooknum             = NF_INET_FORWARD,

        .priority            = 100,

    },

#ifdef CONFIG_IP_VS_IPV6

    // 在包过滤之后

    {

        .hook                = ip_vs_reply6,

        .pf                  = NFPROTO_IPV6,

        .hooknum             = NF_INET_LOCAL_IN,

        .priority            = NF_IP6_PRI_NAT_SRC - 2,

    },

    // 在包过滤中，通过VS/DR、 VS/TUN 或VS/NAT（转换目标地址），可以给IPVS应用过滤规则

    {

        .hook                = ip_vs_remote_request6,

        .pf                  = NFPROTO_IPV6,

        .hooknum             = NF_INET_LOCAL_IN,

        .priority            = NF_IP6_PRI_NAT_SRC - 1,

    },

    // 在ip_vs_in前,为VS/NAT转换源地址

    {

        .hook                = ip_vs_local_reply6,

        .pf                  = NFPROTO_IPV6,

        .hooknum             = NF_INET_LOCAL_OUT,

        .priority            = NF_IP6_PRI_NAT_DST + 1,

    },

    // 在mangle后，调度和转发本地请求

    {

        .hook                = ip_vs_local_request6,

        .pf                  = NFPROTO_IPV6,

        .hooknum             = NF_INET_LOCAL_OUT,

        .priority            = NF_IP6_PRI_NAT_DST + 2,

    },

    // 在包过滤后（但在ip_vs_out_icmp前），为IPVS进入的连接抓获目标地址为0.0.0.0/0的

      icmp包

    {

        .hook                = ip_vs_forward_icmp_v6,

        .pf                  = NFPROTO_IPV6,

        .hooknum             = NF_INET_FORWARD,

        .priority            = 99,

    },

    // 在包过滤后，给VS/NAT转换源地址

    {

        .hook                = ip_vs_reply6,

        .pf                  = NFPROTO_IPV6,

        .hooknum             = NF_INET_FORWARD,

        .priority            = 100,

    },

#endif

};


 
至于如何来修改数据包达到负载平衡的过程，限于篇幅就不在这里展开了，有兴趣的话可以自己阅读上面的hook函数，需要花点时间才能研究透的。
8.4　网络相关的一些参数
 
我们在编写网络应用或进行系统调优时，会遇到不少相关参数。下面介绍一些在开发过程中会经常遇到的网络相关的参数。
8.4.1　Java socket相关的参数
 
1.TCP_NODELAY
 
如果开启该选项，说白了就是把多个小包组合成一个大包发送，在某些场景下可以减少TCP包头发送量，减少网络流量。
 
2.SO_REUSEADDR
 
可以使多个Socket对象绑定在同一个端口上。
 
3.SO_LINGER
 
这个socket选项可以影响close方法的行为。在默认情况下，当调用close方法后，将立即返回；如果这时仍然有未被送出的数据包，那么这些数据包将被丢弃。如果将linger参数设为一个正整数n时（n的值最大是65535），在调用close方法后，将最多被阻塞n秒。在这n秒内，系统尽量将未送出的数据包发送出去；如果超过了n秒还有未发送的数据包，这些数据包将全部被丢弃；而close方法会立即返回。如果将linger设为0，和关闭SO_LINGER选项的作用是一样的。
 
如果底层的socket实现不支持SO_LINGER，都会抛出SocketException异常。当给linger参数传递负数值时，setSoLinger还会抛出一个IllegalArgumentException异常。可以通过getSoLinger方法得到延迟关闭的时间，如果返回-1，则表明SO_LINGER是关闭的。例如，下面的代码将延迟关闭的时间设为1分钟：
 


if(socket.getSoLinger() == -1) socket.setSoLinger(true, 60);


 
4.SO_TIMEOUT
 
连接的读写超时时间。
 
5.SO_KEEPALIVE
 
如果将这个socket选项打开，客户端socket每间隔一段时间（大约两个小时）就会利用空闲的连接向服务器发送一个数据包。这个数据包并没有其他的作用，只是为了检测一下服务器是否仍处于活动状态。如果服务器未响应这个数据包，在大约11分钟后，客户端socket再发送一个数据包，如果在12分钟内，服务器还没响应，那么客户端socket将关闭。如果将socket选项关闭，客户端socket在服务器无效的情况下可能长时间不会关闭。
 
6.SO_OOBINLINE
 
如果这个socket选项打开，可以通过socket类的sendUrgentData方法向服务器发送一个单字节的数据。这个单字节数据并不经过输出缓冲区，而是立即发出。虽然在客户端并不是使用OutputStream向服务器发送数据，但在服务端程序中这个单字节的数据是和其他的普通数据混在一起的。因此，在服务端程序中并不知道客户端的数据是由OutputStream还是由sendUrgentData发过来的。
 
7.SO_RCVBUF
 
在默认情况下，输入流的接收缓冲区是8096个字节（8KB）。这个值是Java所建议的输入缓冲区的大小。如果这个默认值不能满足要求，可以用setReceiveBufferSize方法来重新设置缓冲区的大小。但最好不要将输入缓冲区设得太小，否则会导致传输数据过于频繁，从而降低网络传输的效率。
 
如果底层的socket实现不支持SO_RCVBUF选项，这两个方法将会抛出SocketException异常。必须将size设为正整数，否则setReceiveBufferSize方法将抛出IllegalArgumentException异常。
 
8.SO_SNDBUF
 
在默认情况下，输出流的发送缓冲区是8096个字节（8K）。这个值是Java建议的输出缓冲区的大小。如果这个默认值不能满足要求，可以用setSendBufferSize方法来重新设置缓冲区的大小。但最好不要将输出缓冲区设得太小，否则会导致传输数据过于频繁，从而降低网络传输的效率。
 
如果底层的socket实现不支持SO_SENDBUF选项，这两个方法将会抛出异常Socket-Exception。必须将size设为正整数，否则setSendBufferedSize方法将抛出异常Illegal-Argument-Exception。
 
TCP连接的sync超时时间设置：
 


socket.connect(new InetSocketAddress(host, port), timeout);


 
这里的timeout如果不设置，默认为0，将会永久等待下去。
8.4.2　Linux TCP相关队列
 
TCP相关的参数都可以通过/etc/sysctl.conf文件或者sysctl-a命令来查看，比较常用的参数有以下几个：
 
·sysctl -w net.core.somaxconn=4096##监听队列长度。
 
·ss–lt ##可以查看指定端口的监听队列长度。
 
·sysctl -w net.core.netdev_max_backlog=16384##backlog队列的长度。
 
·sysctl -w net.ipv4.tcp_max_syn_backlog=8192##sync队列的长度。
 
·sysctl -w net.ipv4.tcp_syncookies=1##当出现SYN等待队列溢出时，启用cookies来处理，可防范少量SYN攻击，默认为0，表示关闭。
 
·sysctl -w net.ipv4.ip_local_port_range="102465535"##表示向外连接的端口范围。
 
·sysctl -w net.ipv4.tcp_tw_recycle=1##快速回收，复用time_wait状态的连接。
 
·sysctl -w net.ipv4.tcp_congestion_control=cubic##TCP拥塞控制算法。
 
下面是一组设置TCP缓冲区大小的参数：
 
·sysctl -w net.core.rmem_max=16777216
 
·sysctl -w net.core.wmem_max=16777216
 
·sysctl -w net.ipv4.tcp_rmem="40968738016777216"
 
·sysctl -w net.ipv4.tcp_wmem="40961638416777216"
 
下面是有关TCP超时时间的参数：
 
·sysctl -w net.ipv4.tcp_keepalive_time=7200##keepalive心跳包，默认2小时发送一次
 
·sysctl -w net.ipv4.tcp_fin_timeout=60##在一个tcp会话过程中，在会话结束时，A首先向B发送一个fin包，在获得B的ack确认包后，A就进入FIN WAIT2状态等待B的fin包然后给B发ack确认包。这个参数就是用来设置A进入FIN WAIT2状态等待对方fin包的超时时间。如果时间到了仍未收到对方的fin包就主动释放该会话。参数值为整数，单位为秒，默认为180秒。
 
最后，我们一定要牢记TCP连接的状态流转图（见图8-8）：
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图8-8　TCP连接状态图
8.5　Nginx服务器监听socket初始化过程
 
本节通过分析Nginx服务器监听socket的初始化流程，进一步加深理解应用程序如何调用Linux提供的socket调用来监听网络事件。
 
本章前面已经对Linux socket相关的系统调用实现做了分析。服务端建立socket监听的过程在图8-6中已经描述得比较清楚了，服务器建立socket监听必然会调用sys_socket、sys_bind、sys_listen。
 
接下来我们通过图8-9来分析一下Nginx的启动初始化过程，通常socket监听都会在初始化的过程中建立。
 
Nginx的启动过程说明如下：
 
1）调用ngx_get_options解析命令参数。
 
2）调用ngx_time_init初始化并更新时间，如全局变量ngx_cached_time。
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图8-9　Nginx启动流程
 
3）调用ngx_log_init初始化日志，如初始化全局变量ngx_prefix，打开日志文件ngx_log_file.fd。
 
4）清零全局变量ngx_cycle，并为ngx_cycle.pool创建大小为1024KB的内存池。
 
5）调用ngx_save_argv保存命令行参数至全局变量ngx_os_argv、ngx_argc、ngx_argv中。
 
6）调用ngx_process_options初始化ngx_cycle的prefix、conf_prefix、conf_file、conf_param等字段。
 
7）调用ngx_os_init初始化系统相关变量，如内存页面大小ngx_pagesize、ngx_cache-line_size、最大连接数ngx_max_sockets等。
 
8）调用ngx_crc32_table_init初始化CRC表（后续的CRC校验通过查表进行，效率高）；
 
9）调用ngx_add_inherited_sockets继承sockets：
 
a）解析环境变量NGINX_VAR=“NGINX”中的sockets，并保存至ngx_cycle.listening数组；
 
b）设置ngx_inherited=1。
 
c）调用ngx_set_inherited_sockets逐一对ngx_cycle.listening数组中的sockets进行设置。
 
10）初始化每个module的index，并计算ngx_max_module。
 
11）调用ngx_init_cycle进行初始化，该过程主要对ngx_cycle结构进行。
 
12）若有信号，则进入ngx_signal_process处理。
 
13）调用ngx_init_signals初始化信号；主要完成信号处理程序的注册。
 
14）若无继承sockets，且设置了守护进程标识，则调用ngx_daemon创建守护进程。
 
15）调用ngx_create_pidfile创建进程记录文件；（非NGX_PROCESS_MASTER=1进程，不创建该文件）。
 
16）进入进程主循环。
 
a）若为NGX_PROCESS_SINGLE=1模式，则调用ngx_single_process_cycle进入进程循环。
 
b）否则为master-worker模式，调用ngx_master_process_cycle进入进程循环。
 
在main函数执行过程中，有一个非常重要的函数ngx_init_cycle，该函数在这个阶段做了什么呢？下面分析ngx_init_cycle的初始化过程：
 
1）更新timezone和time。
 
2）创建内存池。
 
3）给cycle指针分配内存。
 
4）保存安装路径、配置文件、启动参数等。
 
5）初始化打开文件句柄。
 
6）初始化共享内存。
 
7）初始化连接队列。
 
8）保存hostname。
 
9）调用各NGX_CORE_MODULE的create_conf方法。
 
10）解析配置文件。
 
11）调用各NGX_CORE_MODULE的init_conf方法。
 
12）打开新的文件句柄。
 
13）创建共享内存。
 
14）处理监听socket。
 
15）创建socket进行监听。
 
16）调用各模块的init_module。
 
通过对ngx_init_cycle的分析，我们知道了Nginx的socket监听是在这一步创建的。
 
在创建监听之前，我们首先要搞明白，Nginx的监听配置是从哪里来的，一般我们会做以下服务器配置：
 


server {

    server_name api.test.cn;

    listen 127.0.0.1:8080;

}


 
通过这个配置可以发现，用于设置监听socket的指令主要有两个：server_name和listen。server_name指令用于实现虚拟主机的功能，会设置每个server块的虚拟主机名，在处理请求时根据请求行中的host来转发请求；而listen用于设置监听socket的信息。
 
Nginx需要先进行配置文件的解析工作：对于server_name和listen的配置解析，都是通过ngx_http_core_module.c模块来完成。
 
其中，解析server_name和listen的回调函数定义如下：
 


    …

{ ngx_string("listen"),

    NGX_HTTP_SRV_CONF|NGX_CONF_1MORE,

    ngx_http_core_listen,

    NGX_HTTP_SRV_CONF_OFFSET,

    0,

    NULL },



{ ngx_string("server_name"),

    NGX_HTTP_SRV_CONF|NGX_CONF_1MORE,

    ngx_http_core_server_name,

    NGX_HTTP_SRV_CONF_OFFSET,

    0,

    NULL },

    …


 
ngx_http_core_server_name函数将server_name指令指定的虚拟主机名添加到ngx_http_core_srv_conf_t的server_names数组中。ngx_http_core_listen函数主要解析listen指令中的socket配置选项，并最后调用ngx_http_add_listen函数添加监听socket的信息。配置结构如图8-10所示。
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图8-10　Nginx listen配置结构
 
Nginx配置之后就会针对配置的值进行初始化，主要针对ngx_cycle_t中的listening数组中的ngx_listening_t结构，该逻辑会在ngx_init_cycle中进行init_conf操作时调用http模块的ngx_http_block函数，并最终通过ngx_http_optimize_servers函数完成ngx_listening_t初始化。
 
ngx_init_cycle接下来执行真正的打开socket并且进行监听的工作，该过程交给ngx_open_listening_sockets函数来完成：
 


ngx_int_t

ngx_open_listening_sockets(ngx_cycle_t *cycle)

{

…

    for (tries = 5; tries; tries--) {

        failed = 0;

        // 遍历所有的listening socket

        ls = cycle->listening.elts;

        for (i = 0; i < cycle->listening.nelts; i++) {

            if (ls[i].ignore) {

                continue;

            }

            // 已经从cycle处继承该socket，不需重新打开

            if (ls[i].fd != -1) {

                continue;

            }

            …

            // 新建一个socket，socket(地址结构的协议族，socket类型为tcp或udp)

            s = ngx_socket(ls[i].sockaddr->sa_family, ls[i].type, 0);

            …

            if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR,

                           (const void *) &reuseaddr, sizeof(int))

                == -1)

            {

                ngx_log_error(NGX_LOG_EMERG, log, ngx_socket_errno,

                              "setsockopt(SO_REUSEADDR) %V failed",

                              &ls[i].addr_text);



                if (ngx_close_socket(s) == -1) {

                    ngx_log_error(NGX_LOG_EMERG, log, ngx_socket_errno,

                                  ngx_close_socket_n " %V failed",

                                  &ls[i].addr_text);

                }

                return NGX_ERROR;

            }



            …



            if (!(ngx_event_flags & NGX_USE_AIO_EVENT)) {

                // 设置socket为非阻塞

                if (ngx_nonblocking(s) == -1) {

                    ngx_log_error(NGX_LOG_EMERG, log, ngx_socket_errno,

                                  ngx_nonblocking_n " %V failed",

                                  &ls[i].addr_text);



                    if (ngx_close_socket(s) == -1) {

                        ngx_log_error(NGX_LOG_EMERG, log, ngx_socket_errno,

                                      ngx_close_socket_n " %V failed",

                                      &ls[i].addr_text);

                    }

                    return NGX_ERROR;

                }

            }

            …

            // 将socket绑定到要监听的地址

            if (bind(s, ls[i].sockaddr, ls[i].socklen) == -1) {

                err = ngx_socket_errno;

                if (err == NGX_EADDRINUSE && ngx_test_config) {

                    continue;

                }

                …

                if (ngx_close_socket(s) == -1) {

                    ngx_log_error(NGX_LOG_EMERG, log, ngx_socket_errno,

                                  ngx_close_socket_n " %V failed",

                                  &ls[i].addr_text);

                }



                …

                failed = 1;

                continue;

            }



            …



            // 设置socket为监听状态

            if (listen(s, ls[i].backlog) == -1) {

                ngx_log_error(NGX_LOG_EMERG, log, ngx_socket_errno,

                              "listen() to %V, backlog %d failed",

                              &ls[i].addr_text, ls[i].backlog);

                if (ngx_close_socket(s) == -1) {

                    ngx_log_error(NGX_LOG_EMERG, log, ngx_socket_errno,

                                  ngx_close_socket_n " %V failed",

                                  &ls[i].addr_text);

                }

                return NGX_ERROR;

            }

            ls[i].listen = 1;

            ls[i].fd = s;

        }



…

        ngx_msleep(500);

    }

    …

    return NGX_OK;

}


 
从上面函数执行过程可以发现，Nginx设置监听socket和一般服务器设置socket一样，通过调用socket、bind和listen来实现的。
8.6　本章小结
 
计算机网络世界博大精深，仅RFC文档就有一大堆，一个人研究不过来，而且，不管如何研究，总要将其应用到开发中，而Linux的网络模块就是对相关协议的实现，是学习网络技术的最好范本。本章主要围绕数据如何在Linux网络层运转的整体架构来分析，便于大家在日后研究细节的时候有切入点，有助于网络层面的定制开发工作。
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