

 NIO与Socket编程技术指南

 	
 第1章 缓冲区的使用

 	
 1.1 NIO概述

 	
 1.2 缓冲区介绍

 	
 1.3 Buffer类的使用

 	
 1.3.1 包装数据与获得容量

 	
 1.3.2 限制获取与设置

 	
 1.3.3 位置获取与设置

 	
 1.3.4 剩余空间大小获取

 	
 1.3.5 使用Buffer mark（）方法处理标记

 	
 1.3.6 知识点细化测试

 	
 1.3.7 判断只读

 	
 1.3.8 直接缓冲区

 	
 1.3.9 还原缓冲区的状态

 	
 1.3.10 对缓冲区进行反转

 	
 1.3.11 判断是否有底层实现的数组

 	
 1.3.12 判断当前位置与限制之间是否有剩余元素

 	
 1.3.13 重绕缓冲区

 	
 1.3.14 获得偏移量

 	
 1.3.15 使用List.toArray（T[]）转成数组类型

 	
 1.4 ByteBuffer类的使用

 	
 1.4.1 创建堆缓冲区与直接缓冲区

 	
 1.4.2 直接缓冲区与非直接缓冲区的运行效率比较

 	
 1.4.3 包装wrap数据的处理

 	
 1.4.4 put（byte b）和get（）方法的使用与position自增特性

 	
 1.4.5 put（byte[]src，int offset，int length）和get（byte[]dst，int offset，intlength）方法的使用

 	
 1.4.6 put（byte[]src）和get（byte[]dst）方法的使用

 	
 1.4.7 put（int index，byte b）和get（int index）方法的使用与position不变

 	
 1.4.8 put（ByteBuffer src）方法的使用

 	
 1.4.9 putType（）和getType（）方法的使用

 	
 1.4.10 slice（）方法的使用与arrayOffSet（）为非0的测试

 	
 1.4.11 转换为CharBuffer字符缓冲区及中文的处理

 	
 1.4.12 转换为其他类型的缓冲区

 	
 1.4.13 设置与获得字节顺序

 	
 1.4.14 创建只读缓冲区

 	
 1.4.15 压缩缓冲区

 	
 1.4.16 比较缓冲区的内容

 	
 1.4.17 复制缓冲区

 	
 1.4.18 对缓冲区进行扩容

 	
 1.5 CharBuffer类的API使用

 	
 1.5.1 重载append（char）/append（CharSequence）/append（CharSequence，start，end）方法的使用

 	
 1.5.2 读取相对于当前位置的给定索引处的字符

 	
 1.5.3 put（String src）、int read（CharBuffer target）和subSequence（int start，int end）方法的使用

 	
 1.5.4 static CharBuffer wrap（CharSequence csq，int start，int end）方法的使用

 	
 1.5.5 获得字符缓冲区的长度

 	
 1.6 小结

 	
 第2章 通道和FileChannel类的使用

 	
 2.1 通道概述

 	
 2.2 通道接口的层次结构

 	
 2.2.1 AsynchronousChannel接口的介绍

 	
 2.2.2 AsynchronousByteChannel接口的介绍

 	
 2.2.3 ReadableByteChannel接口的介绍

 	
 2.2.4 ScatteringByteChannel接口的介绍

 	
 2.2.5 WritableByteChannel接口的介绍

 	
 2.2.6 GatheringByteChannel接口的介绍

 	
 2.2.7 ByteChannel接口的介绍

 	
 2.2.8 SeekableByteChannel接口的介绍

 	
 2.2.9 NetworkChannel接口的介绍

 	
 2.2.10 MulticastChannel接口的介绍

 	
 2.2.11 InterruptibleChannel接口的介绍

 	
 2.3 AbstractInterruptibleChannel类的介绍

 	
 2.4 FileChannel类的使用

 	
 2.4.1 写操作与位置的使用

 	
 2.4.2 读操作

 	
 2.4.3 批量写操作

 	
 2.4.4 批量读操作

 	
 2.4.5 部分批量写操作

 	
 2.4.6 部分批量读操作

 	
 2.4.7 向通道的指定position位置写入数据

 	
 2.4.8 读取通道指定位置的数据

 	
 2.4.9 设置位置与获得大小

 	
 2.4.10 截断缓冲区

 	
 2.4.11 将数据传输到其他可写入字节通道

 	
 2.4.12 将字节从给定可读取字节通道传输到此通道的文件中

 	
 2.4.13 执行锁定操作

 	
 2.4.14 FileLock lock（）方法的使用

 	
 2.4.15 获取通道文件给定区域的锁定

 	
 2.4.16 FileLock tryLock（）方法的使用

 	
 2.4.17 FileLock类的使用

 	
 2.4.18 强制将所有对通道文件的更新写入包含文件的存储设备

 	
 2.4.19 将通道文件区域直接映射到内存

 	
 2.4.20 打开一个文件

 	
 2.4.21 判断当前通道是否打开

 	
 2.5 小结

 	
 第3章 获取网络设备信息

 	
 3.1 NetworkInterface类的常用方法

 	
 3.1.1 获得网络接口的基本信息

 	
 3.1.2 获取MTU大小

 	
 3.1.3 子接口的处理

 	
 3.1.4 获得硬件地址

 	
 3.1.5 获得IP地址

 	
 3.1.6 InterfaceAddress类的使用

 	
 3.1.7 判断是否为点对点设备

 	
 3.1.8 是否支持多播

 	
 3.2 NetworkInterface类的静态方法

 	
 3.2.1 根据索引获得NetworkInterface对象

 	
 3.2.2 根据网络接口名称获得NetworkInterface对象

 	
 3.2.3 根据IP地址获得NetworkInterface对象

 	
 3.3 小结

 	
 第4章 实现Socket通信

 	
 4.1 基于TCP的Socket通信

 	
 4.1.1 验证ServerSocket类的accept（）方法具有阻塞特性

 	
 4.1.2 验证Socket中InputStream类的read（）方法也具有阻塞特性

 	
 4.1.3 客户端向服务端传递字符串

 	
 4.1.4 服务端向客户端传递字符串

 	
 4.1.5 允许多次调用write（）方法进行写入操作

 	
 4.1.6 实现服务端与客户端多次的往来通信

 	
 4.1.7 调用Stream的close（）方法造成Socket关闭

 	
 4.1.8 使用Socket传递PNG图片文件

 	
 4.1.9 TCP连接的3次“握手”过程

 	
 4.1.10 标志位SYN与ACK值的自增特性

 	
 4.1.11 TCP断开连接的4次“挥手”过程

 	
 4.1.12 “握手”的时机与立即传数据的特性

 	
 4.1.13 结合多线程Thread实现通信

 	
 4.1.14 服务端与客户端互传对象以及I/O流顺序问题

 	
 4.2 ServerSocket类的使用

 	
 4.2.1 接受accept与超时Timeout

 	
 4.2.2 构造方法的backlog参数含义

 	
 4.2.3 参数backlog的默认值

 	
 4.2.4 构造方法ServerSocket（int port，int backlog，InetAddress bindAddr）的使用

 	
 4.2.5 绑定到指定的Socket地址

 	
 4.2.6 绑定到指定的Socket地址并设置backlog数量

 	
 4.2.7 获取本地SocketAdress对象以及本地端口

 	
 4.2.8 InetSocketAddress类的使用

 	
 4.2.9 关闭与获取关闭状态

 	
 4.2.10 判断Socket绑定状态

 	
 4.2.11 获得IP地址信息

 	
 4.2.12 Socket选项ReuseAddress

 	
 4.2.13 Socket选项ReceiveBufferSize

 	
 4.3 Socket类的使用

 	
 4.3.1 绑定bind与connect以及端口生成的时机

 	
 4.3.2 连接与超时

 	
 4.3.3 获得远程端口与本地端口

 	
 4.3.4 获得本地InetAddress地址与本地SocketAddress地址

 	
 4.3.5 获得远程InetAddress与远程SocketAddress（）地址

 	
 4.3.6 套接字状态的判断

 	
 4.3.7 开启半读与半写状态

 	
 4.3.8 判断半读半写状态

 	
 4.3.9 Socket选项TcpNoDelay

 	
 4.3.10 Socket选项SendBufferSize

 	
 4.3.11 Socket选项Linger

 	
 4.3.12 Socket选项Timeout

 	
 4.3.13 Socket选项OOBInline

 	
 4.3.14 Socket选项KeepAlive

 	
 4.3.15 Socket选项TrafficClass

 	
 4.4 基于UDP的Socket通信

 	
 4.4.1 使用UDP实现Socket通信

 	
 4.4.2 测试发送超大数据量的包导致数据截断的情况

 	
 4.4.3 Datagram Packet类中常用API的使用

 	
 4.4.4 使用UDP实现单播

 	
 4.4.5 使用UDP实现广播

 	
 4.4.6 使用UDP实现组播

 	
 4.5 小结

 	
 第5章 选择器的使用

 	
 5.1 选择器与I/O多路复用

 	
 5.2 核心类Selector、SelectionKey和Sel-ectableChannel的关系

 	
 5.3 通道类AbstractInterruptibleChannel与接口InterruptibleChannel的介绍

 	
 5.4 通道类SelectableChannel的介绍

 	
 5.5 通道类AbstractSelectableChannel的介绍

 	
 5.6 通道类ServerSocketChannel与接口NetworkChannel的介绍

 	
 5.7 ServerSocketChannel类、Selector和SelectionKey的使用

 	
 5.7.1 获得ServerSocketChannel与ServerSocket socket对象

 	
 5.7.2 执行绑定操作

 	
 5.7.3 执行绑定操作与设置backlog

 	
 5.7.4 阻塞与非阻塞以及accept（）方法的使用效果

 	
 5.7.5 获得Selector对象

 	
 5.7.6 执行注册操作与获得SelectionKey对象

 	
 5.7.7 判断注册的状态

 	
 5.7.8 将通道设置成非阻塞模式再注册到选择器

 	
 5.7.9 使用configureBlocking（false）方法解决异常

 	
 5.7.10 判断打开的状态

 	
 5.7.11 获得阻塞锁对象

 	
 5.7.12 获得支持的SocketOption列表

 	
 5.7.13 获得与设置SocketOption

 	
 5.7.14 获得SocketAddress对象

 	
 5.7.15 阻塞模式的判断

 	
 5.7.16 根据Selector找到对应的SelectionKey

 	
 5.7.17 获得SelectorProvider对象

 	
 5.7.18 通道注册与选择器

 	
 5.7.19 返回此通道所支持的操作

 	
 5.7.20 执行Connect连接操作

 	
 5.7.21 判断此通道上是否正在进行连接操作

 	
 5.7.22 完成套接字通道的连接过程

 	
 5.7.23 类FileChannel中的long transferTo（position，count，WritableByte-Channel）方法的使用

 	
 5.7.24 方法public static SocketChannel open（SocketAddress remote）与Socket-Option的执行顺序

 	
 5.7.25 传输大文件

 	
 5.7.26 验证read和write方法是非阻塞的

 	
 5.8 Selector类的使用

 	
 5.8.1 验证public abstract int select（）方法具有阻塞性

 	
 5.8.2 select（）方法不阻塞的原因和解决办法

 	
 5.8.3 出现重复消费的情况

 	
 5.8.4 使用remove（）方法解决重复消费问题

 	
 5.8.5 验证产生的set1和set2关联的各自对象一直是同一个

 	
 5.8.6 int selector.select（）方法返回值的含义

 	
 5.8.7 从已就绪的键集中获得通道中的数据

 	
 5.8.8 对相同的通道注册不同的相关事件返回同一个SelectionKey

 	
 5.8.9 判断选择器是否为打开状态

 	
 5.8.10 获得SelectorProvider provider对象

 	
 5.8.11 返回此选择器的键集

 	
 5.8.12 public abstract int select（long timeout）方法的使用

 	
 5.8.13 public abstract int selectNow（）方法的使用

 	
 5.8.14 唤醒操作

 	
 5.8.15 测试若干细节

 	
 5.9 SelectionKey类的使用

 	
 5.9.1 判断是否允许连接SelectableChannel对象

 	
 5.9.2 判断是否已准备好进行读取

 	
 5.9.3 判断是否已准备好进行写入

 	
 5.9.4 返回SelectionKey关联的选择器

 	
 5.9.5 在注册操作时传入attachment附件

 	
 5.9.6 设置attachment附件

 	
 5.9.7 获取与设置此键的interest集合

 	
 5.9.8 判断此键是否有效

 	
 5.9.9 获取此键的ready操作集合

 	
 5.9.10 取消操作

 	
 5.10 DatagramChannel类的使用

 	
 5.10.1 使用DatagramChannel类实现UDP通信

 	
 5.10.2 连接操作

 	
 5.10.3 断开连接

 	
 5.10.4 将通道加入组播地址

 	
 5.10.5 将通道加入组播地址且接收指定客户端数据

 	
 5.11 Pipe.SinkChannel和Pipe.SourceChannel类的使用

 	
 5.12 SelectorProvider类的使用

 	
 5.13 小结

 	
 第6章 AIO的使用

 	
 6.1 AsynchronousFileChannel类的使用

 	
 6.1.1 获取此通道文件的独占锁

 	
 6.1.2 获取通道文件给定区域的锁

 	
 6.1.3 实现重叠锁定

 	
 6.1.4 返回此通道文件当前大小与通道打开状态

 	
 6.1.5 CompletionHandler接口的使用

 	
 6.1.6 public void failed（Throwable exc，A attachment）方法调用时机

 	
 6.1.7 执行指定范围的锁定与传入附件及整合接口

 	
 6.1.8 执行锁定与传入附件及整合接口CompletionHandler

 	
 6.1.9 lock（position，size，shared，attachment，CompletionHandler）方法的特点

 	
 6.1.10 读取数据方式1

 	
 6.1.11 读取数据方式2

 	
 6.1.12 写入数据方式1

 	
 6.1.13 写入数据方式2

 	
 6.2 AsynchronousServerSocketChannel和AsynchronousSocketChannel类的使用

 	
 6.2.1 接受方式1

 	
 6.2.2 接受方式2

 	
 6.2.3 重复读与重复写出现异常

 	
 6.2.4 读数据

 	
 6.2.5 写数据

 	
 6.3 同步、异步、阻塞与非阻塞之间的关系

 	
 6.4 小结

 第1章　缓冲区的使用

学习NIO能更加接近架构级的技术体系，对未来的职业发展有非常好的促进作用。

当你看到以上这段文字的时候，笔者要恭喜你，因为你正在往Java高性能、高并发、高吞吐量技术的道路上迈进，也就代表着未来是有可能将自己的职业规划定位在Java高级程序员、Java资深工程师，以及技术经理、技术总监或首席技术官（CTO）这类职位上。这些职位对Java技术的掌握是有一定要求和标准的，至少笔者认为要将自己对技术的关注点从SSH、SSM分离出去，落脚在多线程、并发处理、NIO及Socket技术上，因为这些技术是开发Java高性能服务器必须要掌握的，甚至有些第三方的优秀框架也在使用这些技术。先不说自己开发框架，即使想要读懂第三方框架的源代码，也要掌握上面提到的多线程、并发处理、NIO及Socket这4种核心技术。当你正在进行SSH、SSM这类Web开发工作时，想要往更高的层次发展，笔者的其他两本书《Java多线程编程核心技术》和《Java并发编程：核心方法与框架》，以及本书一定会带给你非常大的帮助，因为这些内容是Java SE技术中的核心，是衡量一个Java程序员是否合格的明显标志。

在正式开始介绍NIO之前，先简要介绍一下Java SE中的4大核心技术：多线程、并发处理、Socket和NIO。如果你是这些技术的初学者，那么这将帮助你了解这些技术及其用途，以及它们的应用场景。

（1）多线程

可以这样说，高性能的解决方案一定离不开多线程，它可以使1个CPU几乎在同一时间运行更多的任务。在指定的时间单位内运行更多的任务，其实就是大幅度提高运行效率，让软件运行更流畅，处理的数据更多，以提升使用软件时的用户体验。在Java中，使用Thread类来实现多线程功能的处理。在学习多线程时，要注意同步与异步的区别，也就是着重观察synchronized关键字在不同代码结构中的使用效果。另外，多线程的随机性，以及多线程运行乱序的可控制性，这些都是在学习该技术时要着重掌握的。在学习Socket之前，建议先掌握多线程技术，因为使用Socket实现某些功能时是需要借助于多线程的。另外在面试时，多线程方面的知识点是被问及比较多的，可见该技术的重要程度。

推荐笔者的拙作《Java多线程编程核心技术》，封面如图1-1所示。

（2）并发处理

你可以愉快地使用Thread类来学习编写多线程的应用程序，但在真实的软件项目开发中实现一些较复杂的逻辑时，其实并不是那么容易，因为多线程的随机性、不方便控制性和调试麻烦等特性也许会给开发过程带来麻烦，但好在Doug Lea开发的java.util.concurrent并发包提供了绝大多数常用的功能。concurrent并发包是对多线程技术的封装，使用并发包中的类可以大幅度降低多线程代码的复杂度。使用封装好的API就可以实现以前使用几十行甚至上百行才能实现的功能。使用并发包可以限制访问的流量、线程间的数据交流，在同步处理时使用更加方便和高效率的锁（Lock）对象、读写锁对象，以及可以提高运行效率的线程池，支持异步及回调接口，支持计划任务，支持fork-join分治编程，而且还提供了并发集合框架。上述功能都是Doug Lea的贡献。只有真正地接触到concurrent并发包，才能深刻地体会使用Thread类编程的原始性，会让你的解题思路更加广阔。

推荐笔者的拙作《Java并发编程：核心方法与框架》，封面如图1-2所示。

 [image:]

图1-1　Java多线程编程核心技术

 [image:]

图1-2　Java并发编程：核心方法与框架

（3）Socket

高性能服务器的架构设计离不开集群，集群同样离不开Socket。Socket技术可以实现不同计算机间的数据通信，从而实现在集群中的服务器之间进行数据交换，因此，Socket技术是必须要学习的，它也是工作、面试时经常涉及的知识点。即使你是一位Java语言Socket技术的初学者，如果有C++语言学习的经验，那么在学习Socket技术时会觉得得心应手，因为Java语言中的Socket技术其实是封装了操作系统中Socket编程的API，示例代码如下：

JNIEXPORT jobject JNICALL Java_java_net_NetworkInterface_getByIndex0

 (JNIEnv *env, jclass cls, jint index)

{

 netif *ifList, *curr;

 jobject netifObj = NULL;

 // Retained for now to support IPv4 only stack, java.net.preferIPv4Stack

 if (ipv6_available()) {

 return Java_java_net_NetworkInterface_getByIndex0_XP (env, cls, index);

 }

 /* get the list of interfaces */

 if (enumInterfaces(env, &ifList) < 0) {

 return NULL;

 }

 /* search by index */

 curr = ifList;

 while (curr != NULL) {

 if (index == curr->index) {

 break;

 }

 curr = curr->next;

 }

 /* if found create a NetworkInterface */

 if (curr != NULL) {

 netifObj = createNetworkInterface(env, curr, -1, NULL);

 }

 /* release the interface list */

 free_netif(ifList);

 return netifObj;

}

上面的代码片段出自：http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/73a9fef98b93/src/windows/native/java/net/NetworkInterface.c。

从上述代码片段中可以发现，使用Java语言开发Socket软件时，内部调用的还是基于操作系统的Socket的API。

如果没有C++编程经验，就不能学习Java中的Socket技术吗？其实也不是，JDK已经将Socket技术进行了重量级的封装，可以用最简单的代码实现复杂的功能，API接口设计得简洁、有序，因此，即使不懂C++，也能顺利地学习Socket编程。掌握C++语言其实是更有益于学习底层对Socket的封装，研究一些细节问题时会应用到。在常规的学习时，掌握C++语言似乎就没有这么大的帮助了。

Socket技术基于TCP/IP，提前了解一些协议的知识更有利于学习Socket。但是TCP/IP规范非常复杂，我们不可能把该协议的所有细节都掌握，只需要掌握TCP与UDP里常规的内容即可，因为这是Socket技术实现网络通信主要使用的协议。是否有书籍把TCP/UDP的理论知识和Socket编程结合起来？真的有这样的书，推荐《UNIX网络编程（卷1）：套接字联网API》和《UNIX网络编程（卷2）：进程间通信》。这两本书就将TCP/UDP/Socket进行整合并介绍，对TCP和UDP的细节进行文字讲述，并且使用Socket API进行代码的演示，但是演示的代码使用的是C语言实现的，并不是Java，但Java程序员可以以这两本书作为TCP/UDP理论知识的参考。如果你想更加深入、细致地研究TCP/IP编程，这两本书会提供很大帮助。

Socket编程其实就是实现服务端与客户端的数据通信，不管使用任何的编程语言，在实现上基本上都是4个步骤：①建立连接；②请求连接；③回应数据；④结束连接，这4个步骤的流程图如图1-3所示。

 [image:]

图1-3　Socket编程流程图

虽然图1-3中使用C语言实现Socket编程，但同样可以使用Java中的ServerSocket和Socket类来代替并实现网络通信。本书中Socket的所有案例都是在这4个步骤的生命周期中再结合ServerSocket和Socket类产生的。

另外，本书是将NIO与Socket相结合的，在学习NIO之前，必须先学习Socket，因为NIO中的核心通道类都是基于Socket技术的通道类。学习Socket时要着重学习Socket Option特性，因为它会影响程序运行的效率。在网络程序优化时，除了优化代码之外，还要优化Socket Option中的参数。本书将Socket有关类中的API几乎进行了全部讲解，因为笔者不希望只列举常用代码，而其他知识点一带而过或根本不介绍的情况发生。学习技术时就要以“全面覆盖，某点深钻”的方式进行全方位学习，这样在阅读第三方框架的源代码时才不会出现现查API的情况，极大地提高了代码阅读效率，也会对TCP/IP编程有更深的认识。

（4）NIO

什么是NIO？百度百科中的解释如图1-4所示：

 [image:]

图1-4　百度百科解释的NIO

大致来讲，NIO相比普通的I/O提供了功能更加强大、处理数据更快的解决方案，它可以大大提高I/O（输入/输出）吞吐量，常用在高性能服务器上。随着互联网的发展，在大多数涉及Java高性能的应用软件中，NIO是必不可少的技术之一。

NIO实现高性能处理的原理是使用较少的线程来处理更多的任务，如图1-5所示。

使用较少的Thread线程，通过Selector选择器来执行不同Channel通道中的任务，执行的任务再结合AIO（异步I/O）就能发挥服务器最大的性能，大大提升软件运行效率。

 [image:]

图1-5　NIO高性能的核心原理图

通过对前面4个核心技术的简单介绍，至少你的思维中不再只是Struts、Spring、Hibernate、MyBatis、SpringMVC、CSS、jQuery、AJAX等这些Java Web技术了，而是需要思考如何组织软件架构、服务器分布、通信优化、高性能处理等这些高级技能，为以后的学习和工作打下坚实的技术基础。

学习NIO能更加接近和了解架构级的技术体系，对未来的职业发展有非常好的辅助作用。
1.1　NIO概述

常规的I/O（如InputStream和OutputStream）存在很大的缺点，就是它们是阻塞的，而NIO解决的就是常规I/O执行效率低的问题。即采用非阻塞高性能运行的方式来避免出现以前“笨拙”的同步I/O带来的低效率问题。NIO在大文件操作上相比常规I/O更加优秀，对常规I/O使用的byte[]或char[]进行封装，采用ByteBuffer类来操作数据，再结合针对File或Socket技术的Channel，采用同步非阻塞技术实现高性能处理。现在主流的高性能服务处理框架Netty正是通过封装了NIO技术来实现的，许多第三方的框架都以Netty框架作为底层再进行封装。可以这样认为，想要成为一个合格的Java服务器程序员，NIO技术是必须要掌握的技能。本书也将NIO技术中核心类的API几乎进行了全部覆盖，以让读者全面地掌握NIO和Socket技术。

本章将介绍NIO技术中的核心要点：缓冲区（Buffer）。缓冲区在NIO的使用中占据了很高的地位，因为数据就是存放到缓冲区中，并对数据进行处理的。例如，进行CURD操作时，都是对缓冲区进行处理，也就是数据处理的正确与否与操作缓冲区的正确与否关系紧密。每种缓冲区都有自己独有的API，这些API提供的功能已经足够在大多数的场景下进行软件设计了。那么，我们就开始详细介绍吧！
1.2　缓冲区介绍

在使用传统的I/O流API时，如InputStream和OutputStream，以及Reader和Writer联合使用时，常常把字节流中的数据放入byte[]字节数组中，或把字符流中的数据放入char[]字符数组中，也可以从byte[]或char[]数组中获取数据来实现功能上的需求，但由于在Java语言中对array数组自身进行操作的API非常少，常用的操作仅仅是length属性和下标[x]了，在JDK中也没有提供更加方便操作数组中数据的API，如果对数组中的数据进行高级处理，需要程序员自己写代码进行实现，处理的方式是比较原始的，这个问题可以使用NIO技术中的缓冲区Buffer类来解决，它提供了很多工具方法，大大提高了程序开发的效率。

Buffer类的声明信息如图1-6所示。

 [image:]

图1-6　Buffer类的声明信息

从Buffer类的Java文档中可以发现，Buffer类是一个抽象类，它具有7个直接子类，分别是ByteBuffer、CharBuffer、DoubleBuffer、FloatBuffer、IntBuffer、LongBuffer、ShortBuffer，也就是缓冲区中存储的数据类型并不像普通I/O流只能存储byte或char数据类型，Buffer类能存储的数据类型是多样的。

[image:]注意　Buffer类没有BooleanBuffer这个子类。

类java.lang.StringBuffer是在lang包下的，而在nio包下并没有提供java.nio.StringBuffer缓冲区，在NIO中存储字符的缓冲区可以使用CharBuffer类。

NIO中的Buffer是一个用于存储基本数据类型值的容器，它以类似于数组有序的方式来存储和组织数据。每个基本数据类型（除去boolean）都有一个子类与之对应。
1.3　Buffer类的使用

在JDK 1.8.0_92版本中，Buffer类的API列表如图1-7所示。

本节会对这些API进行演示和讲解，目的就是让读者全面地掌握NIO核心类—Buffer的使用。

需要注意的是，Buffer.java类是抽象类，并不能直接实例化，而其子类：ByteBuffer、CharBuffer、DoubleBuffer、FloatBuffer、IntBuffer、LongBuffer和ShortBuffer也是抽象类。这7个子类的声明信息如下：

public abstract class ByteBuffer extends Buffer

public abstract class CharBuffer extends Buffer

public abstract class DoubleBuffer extends Buffer

public abstract class FloatBuffer extends Buffer

public abstract class IntBuffer extends Buffer

public abstract class LongBuffer extends Buffer

public abstract class ShortBuffer extends Buffer

 [image:]

图1-7　Buffer类的API列表

抽象类Buffer.java的7个子类也是抽象类，也就意味着ByteBuffer、CharBuffer、DoubleBuffer、FloatBuffer、IntBuffer、LongBuffer和ShortBuffer这些类也不能被直接new实例化。如果不能直接new实例化，那么如何创建这些类的对象呢？使用的方式是将上面7种数据类型的数组包装（wrap）进缓冲区中，此时就需要借助静态方法wrap（）进行实现。wrap（）方法的作用是将数组放入缓冲区中，来构建存储不同数据类型的缓冲区。

[image:]注意　缓冲区为非线程安全的。

下面就要开始介绍Buffer类中全部的API了。虽然Buffer类的7个子类都有与其父类（Buffer类）相同的API，但为了演示代码的简短性，在测试中只使用ByteBuffer或CharBuffer类作为API功能的演示。
1.3.1　包装数据与获得容量

在NIO技术的缓冲区中，存在4个核心技术点，分别是：

·capacity（容量）

·limit（限制）

·position（位置）

·mark（标记）

这4个技术点之间值的大小关系如下：

0≤mark≤position≤limit≤capacity

首先介绍一下缓冲区的capacity，它代表包含元素的数量。缓冲区的capacity不能为负数，并且capacity也不能更改。

int capacity（）方法的作用：返回此缓冲区的容量。

示例代码如下：

public class Test1 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 short[] shortArray = new short[] { 1, 2, 3, 4 };

 int[] intArray = new int[] { 1, 2, 3, 4, 5 };

 long[] longArray = new long[] { 1, 2, 3, 4, 5, 6 };

 float[] floatArray = new float[] { 1, 2, 3, 4, 5, 6, 7 };

 double[] doubleArray = new double[] { 1, 2, 3, 4, 5, 6, 7, 8 };

 char[] charArray = new char[] { 'a', 'b', 'c', 'd' };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 ShortBuffer shortBuffer = ShortBuffer.wrap(shortArray);

 IntBuffer intBuffer = IntBuffer.wrap(intArray);

 LongBuffer longBuffer = LongBuffer.wrap(longArray);

 FloatBuffer floatBuffer = FloatBuffer.wrap(floatArray);

 DoubleBuffer doubleBuffer = DoubleBuffer.wrap(doubleArray);

 CharBuffer charBuffer = CharBuffer.wrap(charArray);

 System.out.println("bytebuffer=" + bytebuffer.getClass().getName());

 System.out.println("shortBuffer=" + shortBuffer.getClass().getName());

 System.out.println("intBuffer=" + intBuffer.getClass().getName());

 System.out.println("longBuffer=" + longBuffer.getClass().getName());

 System.out.println("floatBuffer=" + floatBuffer.getClass().getName());

 System.out.println("doubleBuffer=" + doubleBuffer.getClass().getName());

 System.out.println("charBuffer=" + charBuffer.getClass().getName());

 System.out.println();

 System.out.println("bytebuffer.capacity=" + bytebuffer.capacity());

 System.out.println("shortBuffer.capacity=" + shortBuffer.capacity());

 System.out.println("intBuffer.capacity=" + intBuffer.capacity());

 System.out.println("longBuffer.capacity=" + longBuffer.capacity());

 System.out.println("floatBuffer.capacity=" + floatBuffer.capacity());

 System.out.println("doubleBuffer.capacity=" + doubleBuffer.capacity());

 System.out.println("charBuffer.capacity=" + charBuffer.capacity());

}

}

程序运行结果如下：

bytebuffer=java.nio.HeapByteBuffer

shortBuffer=java.nio.HeapShortBuffer

intBuffer=java.nio.HeapIntBuffer

longBuffer=java.nio.HeapLongBuffer

floatBuffer=java.nio.HeapFloatBuffer

doubleBuffer=java.nio.HeapDoubleBuffer

charBuffer=java.nio.HeapCharBuffer

bytebuffer.capacity=3

shortBuffer.capacity=4

intBuffer.capacity=5

longBuffer.capacity=6

floatBuffer.capacity=7

doubleBuffer.capacity=8

charBuffer.capacity=4

由于ByteBuffer、CharBuffer、DoubleBuffer、FloatBuffer、IntBuffer、LongBuffer和ShortBuffer是抽象类，因此wrap（）就相当于创建这些缓冲区的工厂方法，在源代码中创建的流程示例如图1-8所示。

 [image:]

图1-8　创建流程

从源代码中可以发现，通过创建HeapByteBuffer类的实例来实现创建ByteBuffer类的实例。因为ByteBuffer与HeapByteBuffer是父子类的关系，所以在将HeapByteBuffer类的对象赋值给数据类型为ByteBuffer的变量时产生多态关系。

ByteBuffer类缓冲区的技术原理就是使用byte[]数组进行数据的保存，在后续使用指定的API来操作这个数组以达到操作缓冲区的目的，示例代码如图1-9所示。

在HeapByteBuffer类的构造方法中，使用代码super（-1，off，off+len，buf.length，buf，0）调用父类的构造方法将字节数组buf传给父类ByteBuffer，而且子类HeapByteBuffer还重写了父类ByteBuffer中的大部分方法，因此，在调用HeapByteBuffer类的API时，访问的是父类中的buf字节数组变量，在调用API处理buf字节数组中的数据时，执行的是HeapByteBuffer类中重写的方法。

 [image:]

图1-9　HeapByteBuffer类构造方法的流程

从源代码中可以了解到，缓冲区存储的数据还是存储在byte[]字节数组中。使用缓冲区与使用byte[]字节数组的优点在于缓冲区将存储数据的byte[]字节数组内容与相关的信息整合在1个Buffer类中，将数据与缓冲区中的信息进行了整合，并进行了封装，这样便于获得相关的信息及处理数据。

capacity代表着缓冲区的大小，效果如图1-10所示。

 [image:]

图1-10　容量图示

缓冲区中的capacity其实就是buf.length属性值。
1.3.2　限制获取与设置

方法int limit（）的作用：返回此缓冲区的限制。

方法Buffer limit（int newLimit）的作用：设置此缓冲区的限制。

什么是限制呢？缓冲区中的限制代表第一个不应该读取或写入元素的index（索引）。缓冲区的限制（limit）不能为负，并且limit不能大于其capacity。如果position大于新的limit，则将position设置为新的limit。如果mark已定义且大于新的limit，则丢弃该mark。

position和mark这两个知识点在后面的章节有详细的介绍，此处只需要理解“限制（limit）代表第一个不应该读取或写入元素的index，缓冲区的limit不能为负，并且limit不能大于其capacity”即可。

limit的应用示例如图1-11所示。

 [image:]

图1-11　limit应用示例

虽然图1-11中的缓冲区一共有11个位置可以存放数据，但只允许前4个位置存放数据，后面的其他位置不可以存放数据。因此，JDK API DOC中对limit的解释是：代表第一个不应该读取或写入元素的index。下面再用代码进行验证，测试源代码如下：

public class Test2 {

public static void main(String[] args) {

 char[] charArray = new char[] { 'a', 'b', 'c', 'd', 'e' };

 CharBuffer buffer = CharBuffer.wrap(charArray);

 System.out.println("A capacity()=" + buffer.capacity() + " limit()=" +

 buffer.limit());

 buffer.limit(3);

 System.out.println();

 System.out.println("B capacity()=" + buffer.capacity() + " limit()=" +

 buffer.limit());

 buffer.put(0, 'o');// 0

 buffer.put(1, 'p');// 1

 buffer.put(2, 'q');// 2

 buffer.put(3, 'r');// 3--此位置是第一个不可读不可写的索引

 buffer.put(4, 's');// 4

 buffer.put(5, 't');// 5

 buffer.put(6, 'u');// 6

}

}

程序运行后，在第16行出现异常，如图1-12所示。

在A处打印的值是两个5，说明在调用wrap（）方法后，limit的值是capacity+1，因为limit取值范围是从索引0开始，而capacity是从1开始。

Limit使用的场景就是当反复地向缓冲区中存取数据时使用，比如第1次向缓冲区中存储9个数据，分别是A、B、C、D、E、F、G、H、I，如图1-13所示。

 [image:]

图1-12　出现异常

 [image:]

图1-13　第1次存储9个数据

然后读取全部9个数据，完成后再进行第2次向缓冲区中存储数据，第2次只存储4个数据，分别是1、2、3、4，效果如图1-14所示。

 [image:]

图1-14　第2次存储4个数据

当读取时却出现了问题，如果读取全部数据1、2、3、4、E、F、G、H、I时是错误的，所以要结合limit来限制读取的范围，在E处设置limit，从而实现只能读取1、2、3、4这4个正确的数据。
1.3.3　位置获取与设置

方法int position（）的作用：返回此缓冲区的位置。

方法Buffer position（int newPosition）的作用：设置此缓冲区新的位置。

什么是位置呢？它代表“下一个”要读取或写入元素的index（索引），缓冲区的position（位置）不能为负，并且position不能大于其limit。如果mark已定义且大于新的position，则丢弃该mark。

position应用示例如图1-15所示。

 [image:]

图1-15　position应用示例

在图1-13中，position对应的index是3，说明从此位置处开始写入或读取，直到limit结束。

下面用代码来验证position是下一个读取或写入操作的index：

public class Test3 {

public static void main(String[] args) {

 char[] charArray = new char[] { 'a', 'b', 'c', 'd' };

 CharBuffer charBuffer = CharBuffer.wrap(charArray);

 System.out.println("A capacity()=" + charBuffer.capacity() + " limit()=" +

 charBuffer.limit() + " position()="

 + charBuffer.position());

 charBuffer.position(2);

 System.out.println("B capacity()=" + charBuffer.capacity() + " limit()=" +

 charBuffer.limit() + " position()="

 + charBuffer.position());

 charBuffer.put("z");

 for (int i = 0; i < charArray.length; i++) {

 System.out.print(charArray[i] + " ");

 }

}

}

程序运行结果如下：

A capacity()=4 limit()=4 position()=0

B capacity()=4 limit()=4 position()=2

a b z d

1.3.4　剩余空间大小获取

方法int remaining（）的作用：返回“当前位置”与limit之间的元素数。

方法remaining（）的应用示例如图1-16所示。

 [image:]

图1-16　方法remaining()应用示例

方法int remaining（）的内部源代码如下：

public final int remaining() {

 return limit - position;

}

示例代码如下：

public class Test4 {

public static void main(String[] args) {

 char[] charArray = new char[] { 'a', 'b', 'c', 'd', 'e' };

 CharBuffer charBuffer = CharBuffer.wrap(charArray);

 System.out.println("A capacity()=" + charBuffer.capacity() + " limit()=" +

 charBuffer.limit() + " position()="

 + charBuffer.position());

 charBuffer.position(2);

 System.out.println("B capacity()=" + charBuffer.capacity() + " limit()=" +

 charBuffer.limit() + " position()="

 + charBuffer.position());

 System.out.println("C remaining()=" + charBuffer.remaining());

}

}

程序运行结果如下：

A capacity()=5 limit()=5 position()=0

B capacity()=5 limit()=5 position()=2

C remaining()=3

1.3.5　使用Buffer mark（）方法处理标记

方法Buffer mark（）的作用：在此缓冲区的位置设置标记。

标记有什么作用呢？缓冲区的标记是一个索引，在调用reset（）方法时，会将缓冲区的position位置重置为该索引。标记（mark）并不是必需的。定义mark时，不能将其定义为负数，并且不能让它大于position。如果定义了mark，则在将position或limit调整为小于该mark的值时，该mark被丢弃，丢弃后mark的值是-1。如果未定义mark，那么调用reset（）方法将导致抛出InvalidMarkException异常。

缓冲区中的mark有些类似于探险或爬山时在关键路口设置“路标”，目的是在原路返回时找到回去的路。

mark的示例代码如下：

public class Test5 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 System.out.println("bytebuffer.capacity=" + bytebuffer.capacity());

 System.out.println();

 bytebuffer.position(1);

 bytebuffer.mark(); // 在位置1设置mark

 System.out.println("bytebuffer.position=" + bytebuffer.position());

 bytebuffer.position(2); // 改变位置

 bytebuffer.reset(); // 位置重置

 System.out.println();

 // 回到位置为1处

 System.out.println("bytebuffer.position=" + bytebuffer.position());

}

}

程序运行结果如下：

bytebuffer.capacity=3

bytebuffer.position=1

bytebuffer.position=1

1.3.6　知识点细化测试

前面介绍了缓冲区4个核心技术点：capacity、limit、position和mark，根据这4个技术点，可以设计出以下7个实验。

1）缓冲区的capacity不能为负数，缓冲区的limit不能为负数，缓冲区的position不能为负数。

2）position不能大于其limit。

3）limit不能大于其capacity。

4）如果定义了mark，则在将position或limit调整为小于该mark的值时，该mark被丢弃。

5）如果未定义mark，那么调用reset（）方法将导致抛出InvalidMarkException异常。

6）如果position大于新的limit，则position的值就是新limit的值。

7）当limit和position值一样时，在指定的position写入数据时会出现异常，因为此位置是被限制的。

1.验证第1条

验证：缓冲区的capacity不能为负数，缓冲区的limit不能为负数，缓冲区的position不能为负数。

首先测试一下“缓冲区的capacity不能为负数”，需要使用allocate（）方法开辟出指定空间大小的缓冲区，示例代码如下：

public class Test1_1 {

public static void main(String[] args) {

 try {

 ByteBuffer bytebuffer = ByteBuffer.allocate(-1);

 } catch (IllegalArgumentException e) {

 System.out.println("ByteBuffer容量capacity大小不能为负数");

 }

}

}

allocate（int capacity）方法分配一个新的缓冲区。

程序运行结果如下：

ByteBuffer容量capacity大小不能为负数

然后测试一下“缓冲区的limit不能为负数”，示例代码如下：

public class Test1_2 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 try {

 bytebuffer = (ByteBuffer) bytebuffer.limit(-1);

 } catch (IllegalArgumentException e) {

 System.out.println("ByteBuffer限制limit大小不能为负数");

 }

}

}

程序运行结果如下：

ByteBuffer限制limit大小不能为负数

最后测试一下“缓冲区的position不能为负数”，示例代码如下：

public class Test1_3 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 try {

 bytebuffer = (ByteBuffer) bytebuffer.position(-1);

 } catch (IllegalArgumentException e) {

 System.out.println("ByteBuffer位置position大小不能为负数");

 }

}

}

程序运行结果如下：

ByteBuffer位置position大小不能为负数

2.验证第2条

验证：position不能大于其limit。

示例代码如下：

public class Test2 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 bytebuffer.limit(2);

 try {

 bytebuffer.position(3);

 } catch (IllegalArgumentException e) {

 System.out.println("ByteBuffer的position位置不能大于其limit限制");

 }

}

}

程序运行结果如下：

ByteBuffer的position位置不能大于其limit限制

3.验证第3条

验证：limit不能大于其capacity。

示例代码如下：

public class Test3 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 try {

 bytebuffer.limit(100);

 } catch (IllegalArgumentException e) {

 System.out.println("ByteBuffer的limit不能大于其capacity容量");

 }

}

}

程序运行结果如下：

ByteBuffer的limit不能大于其capacity容量

4.验证第4条

验证：如果定义了mark，则在将position或limit调整为小于该mark的值时，该mark被丢弃。

在此处将第4条拆分成4点来分别进行验证。

1）如果定义了mark，则在将position调整为不小于该mark的值时，该mark不丢弃。

2）如果定义了mark，则在将position调整为小于该mark的值时，该mark被丢弃。

3）如果定义了mark，则在将limit调整为不小于该mark的值时，该mark不丢弃。

4）如果定义了mark，则在将limit调整为小于该mark的值时，该mark被丢弃。

首先验证一下“如果定义了mark，则在将position调整为不小于该mark的值时，该mark不丢弃”，示例代码如下：

public class Test4_1 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 bytebuffer.position(1);

 bytebuffer.mark();

 System.out.println("bytebuffer在" + bytebuffer.position() + "位置设置

 mark标记");

 bytebuffer.position(2);

 bytebuffer.reset();

 System.out.println();

 System.out.println("bytebuffer回到" + bytebuffer.position() + "位置");

}

}

程序运行结果如下：

bytebuffer在1位置设置mark标记

bytebuffer回到1位置

然后验证一下“如果定义了mark，则在将position调整为小于该mark的值时，该mark将被丢弃”，示例代码如下：

public class Test4_2 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 bytebuffer.position(2);

 bytebuffer.mark();

 bytebuffer.position(1);

 try {

 bytebuffer.reset();

 } catch (InvalidMarkException e) {

 System.out.println("bytebuffer的mark标记无效");

 }

}

}

程序运行结果如下：

bytebuffer的mark标记无效

接着验证一下“如果定义了mark，则在将limit调整为不小于该mark的值时，该mark不丢弃”，示例代码如下：

public class Test4_3 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer byteBuffer = ByteBuffer.wrap(byteArray);

 System.out.println("A byteBuffer position=" + byteBuffer.position() +

 " limit=" + byteBuffer.limit());

 System.out.println();

 byteBuffer.position(2);

 byteBuffer.mark();

 System.out.println("B byteBuffer position=" + byteBuffer.position() +

 " limit=" + byteBuffer.limit());

 byteBuffer.position(3);

 byteBuffer.limit(3);

 System.out.println();

 System.out.println("C byteBuffer position=" + byteBuffer.position() +

 " limit=" + byteBuffer.limit());

 byteBuffer.reset();

 System.out.println();

 System.out.println("D byteBuffer position=" + byteBuffer.position() +

 " limit=" + byteBuffer.limit());

}

}

程序运行结果如下：

A byteBuffer position=0 limit=3

B byteBuffer position=2 limit=3

C byteBuffer position=3 limit=3

D byteBuffer position=2 limit=3

最后验证一下“如果定义了mark，则在将limit调整为小于该mark的值时，该mark被丢弃”，示例代码如下：

public class Test4_4 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer byteBuffer = ByteBuffer.wrap(byteArray);

 System.out.println("A byteBuffer position=" + byteBuffer.position() +

 " limit=" + byteBuffer.limit());

 System.out.println();

 byteBuffer.position(2);

 byteBuffer.mark();

 System.out.println("B byteBuffer position=" + byteBuffer.position() +

 " limit=" + byteBuffer.limit());

 byteBuffer.limit(1);

 System.out.println();

 System.out.println("C byteBuffer position=" + byteBuffer.position() +

 " limit=" + byteBuffer.limit());

 System.out.println();

 try {

 byteBuffer.reset();

 } catch (InvalidMarkException e) {

 System.out.println("byteBuffer mark丢失");

 }

}

}

程序运行结果如下：

A byteBuffer position=0 limit=3

B byteBuffer position=2 limit=3

C byteBuffer position=1 limit=1

byteBuffer mark丢失

总结：limit和position不能小于mark，如果小于则mark丢弃。

5.验证第5条

验证：如果未定义mark，那么调用reset（）方法将导致抛出InvalidMarkException异常。

示例代码如下：

public class Test5 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 try {

 bytebuffer.reset();

 } catch (InvalidMarkException e) {

 System.out.println("bytebuffer的mark标记无效");

 }

}

}

程序运行结果如下：

bytebuffer的mark标记无效

6.验证第6条

验证：如果position大于新的limit，则position的值就是新limit的值。

示例代码如下：

public class Test6 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 bytebuffer.position(3);

 System.out.println("bytebuffer limit(2)之前的位置：" + bytebuffer.position());

 bytebuffer.limit(2);

 System.out.println();

 System.out.println("bytebuffer limit(2)之后的位置：" + bytebuffer.position());

}

}

程序运行结果如下：

bytebuffer limit(2)之前的位置：3

bytebuffer limit(2)之后的位置：2

7.验证第7条

验证：当limit和position值一样时，在指定的position写入数据时会出现异常，因为此位置是被限制的。

示例代码如下：

public class Test7 {

public static void main(String[] args) {

 char[] charArray = new char[] { 'a', 'b', 'c', 'd' };

 CharBuffer charBuffer = CharBuffer.wrap(charArray);

 System.out.println("A capacity()=" + charBuffer.capacity() + " limit()=" +

 charBuffer.limit() + " position()="

 + charBuffer.position());

 System.out.println();

 charBuffer.position(1);

 charBuffer.limit(1);

 charBuffer.put("z");

}

}

程序运行结果如下：

A capacity()=4 limit()=4 position()=0

Exception in thread "main" java.nio.BufferOverflowException

 at java.nio.CharBuffer.put(CharBuffer.java:922)

 at java.nio.CharBuffer.put(CharBuffer.java:950)

 at BufferAPITest.Details.Test7.main(Test7.java:15)

1.3.7　判断只读

boolean isReadOnly（）方法的作用：告知此缓冲区是否为只读缓冲区。

示例代码如下：

public class Test6 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 short[] shortArray = new short[] { 1, 2, 3, 4 };

 int[] intArray = new int[] { 1, 2, 3, 4, 5 };

 long[] longArray = new long[] { 1, 2, 3, 4, 5, 6 };

 float[] floatArray = new float[] { 1, 2, 3, 4, 5, 6, 7 };

 double[] doubleArray = new double[] { 1, 2, 3, 4, 5, 6, 7, 8 };

 char[] charArray = new char[] { 'a', 'b', 'c', 'd' };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 ShortBuffer shortBuffer = ShortBuffer.wrap(shortArray);

 IntBuffer intBuffer = IntBuffer.wrap(intArray);

 LongBuffer longBuffer = LongBuffer.wrap(longArray);

 FloatBuffer floatBuffer = FloatBuffer.wrap(floatArray);

 DoubleBuffer doubleBuffer = DoubleBuffer.wrap(doubleArray);

 CharBuffer charBuffer = CharBuffer.wrap(charArray);

 System.out.println("bytebuffer.isReadOnly=" + bytebuffer.isReadOnly());

 System.out.println("shortBuffer.isReadOnly=" + shortBuffer.isReadOnly());

 System.out.println("intBuffer.isReadOnly=" + intBuffer.isReadOnly());

 System.out.println("longBuffer.isReadOnly=" + longBuffer.isReadOnly());

 System.out.println("floatBuffer.isReadOnly=" + floatBuffer.isReadOnly());

 System.out.println("doubleBuffer.isReadOnly=" + doubleBuffer.isReadOnly());

 System.out.println("charBuffer.isReadOnly=" + charBuffer.isReadOnly());

}

}

程序运行结果如下：

bytebuffer.isReadOnly=false

shortBuffer.isReadOnly=false

intBuffer.isReadOnly=false

longBuffer.isReadOnly=false

floatBuffer.isReadOnly=false

doubleBuffer.isReadOnly=false

charBuffer.isReadOnly=false

1.3.8　直接缓冲区

boolean isDirect（）方法的作用：判断此缓冲区是否为直接缓冲区。那什么是“直接缓冲区”呢？先来看看使用非直接缓冲区操作数据的流程，如图1-17所示。

在图1-17中可以发现，通过ByteBuffer向硬盘存取数据时是需要将数据暂存在JVM的中间缓冲区，如果有频繁操作数据的情况发生，则在每次操作时都会将数据暂存在JVM的中间缓冲区，再交给ByteBuffer处理，这样做就大大降低软件对数据的吞吐量，提高内存占有率，造成软件运行效率降低，这就是非直接缓冲区保存数据的过程，所以非直接缓冲区的这个弊端就由直接缓冲区解决了。

使用直接缓冲区操作数据的过程如图1-18所示。

 [image:]

图1-17　使用非直接缓冲区保存数据的过程

 [image:]

图1-18　使用直接缓冲区保存数据的过程

如果使用直接缓冲区来实现两端数据交互，则直接在内核空间中就进行了处理，无须JVM创建新的缓冲区，这样就减少了在JVM中创建中间缓冲区的步骤，增加了程序运行效率。

示例代码如下：

public class Test7_1{

public static void main（String[]args）{

ByteBuffer byteBuffer=ByteBuffer.allocateDirect（100）；

System.out.println（byteBuffer.isDirect（））；

}

}

打印结果如下：

true

成功创建出直接缓冲区。
1.3.9　还原缓冲区的状态

final Buffer clear（）方法的作用：还原缓冲区到初始的状态，包含将位置设置为0，将限制设置为容量，并丢弃标记，即“一切为默认”。

clear（）方法的内部源代码如下：

public final Buffer clear() {

 position = 0;

 limit = capacity;

 mark = -1;

 return this;

}

clear（）方法的主要使用场景是在对缓冲区存储数据之前调用此方法。例如：

buf.clear(); // 准备开始向缓冲区中写数据了，缓冲区的状态要通过clear()进行还原

in.read(buf); // 从in开始读数据，将数据写入buf中

需要注意的是，clear（）方法“不能真正清除”缓冲区中的数据，虽然从名称来看它似乎能够这样做，这样命名是因为它在多数情况下确实有清除数据的作用，那么怎么“清除”数据呢？例如，调用代码“buf.clear（）；”后将缓冲区的状态进行还原，包含将position（位置）归0，再执行写入新数据的代码，将最新版的数据由索引位置0开始覆盖，这样就将缓冲区中的旧值用新值覆盖了，相当于数据被清除了。

示例代码如下：

public class Test8 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 bytebuffer.position(2);

 bytebuffer.limit(3);

 bytebuffer.mark();

 bytebuffer.clear();

 System.out.println("bytebuffer.position=" + bytebuffer.position());

 System.out.println();

 System.out.println("bytebuffer.limit=" + bytebuffer.limit());

 System.out.println();

 try {

 bytebuffer.reset();

 } catch (java.nio.InvalidMarkException e) {

 System.out.println("bytebuffer mark丢失");

 }

}

}

程序运行结果如下：

bytebuffer.position=0

bytebuffer.limit=3

bytebuffer mark丢失

1.3.10　对缓冲区进行反转

final Buffer flip（）方法的作用：反转此缓冲区。首先将限制设置为当前位置，然后将位置设置为0。如果已定义了标记，则丢弃该标记。

flip（）方法的通俗解释是“缩小limit的范围，类似于String.subString（0，endIndex）方法”。

flip（）方法的内部源代码如下：

public final Buffer flip() {

 limit = position;

 position = 0;

 mark = -1;

 return this;

}

当向缓冲区中存储数据，然后再从缓冲区中读取这些数据时，就是使用flip（）方法的最佳时机，示例代码如下：

A—buf.allocate(10)；

B—buf.put(8)；

C—首先向buf写入数据，此步骤是重点操作；

D—buf.flip()；

E—然后从buf读出数据，此步骤是重点操作。

当执行A处代码时，缓冲区出现10个空的位置，索引形式如下：

0 1 2 3 4 5 6 7 8 9

当执行B处代码时，position为0的位置存入数字8，然后position自动变成1，因为put（）方法会将position进行自增，这时缓冲区中的数据如下：

0 1 2 3 4 5 6 7 8 9

8

当执行C处代码时，假设要写入的数据数组为{11，22，33，44，55}，将这5个数字在position是1的位置依次存入buf中，完成后的缓冲区中的数据如下：

0 1 2 3 4 5 6 7 8 9

8 11 22 33 44 55

这时position的值是6，下一步要将缓冲区中的数据读取出来时，有效的数据应该是：

8 11 22 33 44 55

因为位置6～7～8～9中存储的值是无效的，所以调用D处代码flip（）后将position的值6作为limit的值，而position被重新赋值为0，有效数据的范围为：

0 1 2 3 4 5

8 11 22 33 44 55

最后执行E处代码，将这些有效的数据读取出来。

final Buffer flip（）方法常用在向缓冲区中写入一些数据后，下一步读取缓冲区中的数据之前，以改变limit与position的值。

方法flip会改变position和limit的值，示例代码如下：

public class Test11 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 bytebuffer.position(2);

 bytebuffer.mark();

 bytebuffer.flip();

 System.out.println("bytebuffer.position=" + bytebuffer.position());

 System.out.println();

 System.out.println("bytebuffer.limit=" + bytebuffer.limit());

 System.out.println();

 try {

 bytebuffer.reset();

 } catch (java.nio.InvalidMarkException e) {

 System.out.println("bytebuffer mark丢失");

 }

}

}

程序运行结果如下：

bytebuffer.position=0

bytebuffer.limit=2

bytebuffer mark丢失

final Buffer flip（）方法常用在向缓冲区中写入一些数据后，下一步读取缓冲区中的数据之前调用，以改变limit与position的值，示例代码如下：

public class Test11_1 {

public static void main(String[] args) {

 CharBuffer charBuffer = CharBuffer.allocate(20);

 System.out.println("A position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 一共写入14个字

 charBuffer.put("我是中国人我在中华人民共和国");

 System.out.println("B position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 charBuffer.position(0);// 位置position还原成0

 System.out.println("C position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 下面for语句的打印效果是“国”字后面有6个空格，这6个空格是无效的数据

 // 应该只打印前14个字符，后6个字符不再读取

 for (int i = 0; i < charBuffer.limit(); i++) {

 System.out.print(charBuffer.get());

 }

 System.out.println();

 // 上面的代码是错误读取数据的代码

 // 下面的代码是正确读取数据的代码

 System.out.println("D position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 还原缓冲区的状态

 charBuffer.clear();

 System.out.println("E position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 继续写入

 charBuffer.put("我是美国人");

 System.out.println("F position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 设置for循环结束的位置，也就是新的limit值

 charBuffer.limit(charBuffer.position());

 charBuffer.position(0);

 System.out.println("G position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 for (int i = 0; i < charBuffer.limit(); i++) {

 System.out.print(charBuffer.get());

 }

}

}

程序运行结果如下：

A position=0 limit=20

B position=14 limit=20

C position=0 limit=20

我是中国人我在中华人民共和国空格空格空格空格空格空格

D position=20 limit=20

E position=0 limit=20

F position=5 limit=20

G position=0 limit=5

我是美国人

上面的程序在读取数据时都要执行以下代码：

charBuffer.limit(charBuffer.position());

charBuffer.position(0);

这样会显得比较烦琐，可以使用flip（）方法，示例代码如下：

public class Test11_2 {

public static void main(String[] args) {

 CharBuffer charBuffer = CharBuffer.allocate(20);

 System.out.println("A position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 一共写入14个字

 charBuffer.put("我是中国人我在中华人民共和国");

 System.out.println("B position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 charBuffer.position(0);// 位置position还原成0

 System.out.println("C position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 下面for语句的打印效果是“国”字后面有6个空格，这6个空格是无效的数据

 // 应该只打印前14个字符，后6个字符不再读取

 for (int i = 0; i < charBuffer.limit(); i++) {

 System.out.print(charBuffer.get());

 }

 System.out.println();

 // 上面的代码是错误读取数据的代码

 // 下面的代码是正确读取数据的代码

 System.out.println("D position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 还原缓冲区的状态

 charBuffer.clear();

 System.out.println("E position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 继续写入

 charBuffer.put("我是美国人");

 System.out.println("F position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 // 使用flip()方法

 charBuffer.flip();

 System.out.println("G position=" + charBuffer.position() + " limit=" +

 charBuffer.limit());

 for (int i = 0; i < charBuffer.limit(); i++) {

 System.out.print(charBuffer.get());

 }

}

}

得出的运行结果是一样的。
1.3.11　判断是否有底层实现的数组

final boolean hasArray（）方法的作用：判断此缓冲区是否具有可访问的底层实现数组。该方法的内部源代码如下：

public final boolean hasArray() {

 return (hb != null) && !isReadOnly;

}

示例代码如下：

public class Test12 {

public static void main(String[] args) throws IOException {

 ByteBuffer byteBuffer = ByteBuffer.allocate(100);

 byteBuffer.put((byte) 1);

 byteBuffer.put((byte) 2);

 System.out.println(byteBuffer.hasArray());

}

}

程序运行结果如下：

true

也可以对直接缓冲区进行判断，示例代码如下：

public class Test12_1 {

public static void main(String[] args) throws IOException {

 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(100);

 byteBuffer.put((byte) 1);

 byteBuffer.put((byte) 2);

 System.out.println(byteBuffer.hasArray());

}

}

程序运行结果如下：

false

打印true值是因为在源代码：

public abstract class ByteBuffer

 extends Buffer

 implements Comparable<ByteBuffer>

{

 final byte[] hb;

程序中使用byte[]hb存储数据，所以hb[]对象为非空，结果就是true。

打印false代表byte[]hb数组值为null，并没有将数据存储到hb[]中，而是直接存储在内存中。

hasArray（）方法的内部源代码

public final boolean hasArray() {

 return (hb != null) && !isReadOnly;

}

正是以byte[]hb是否有值来判断是否有底层数组支持。
1.3.12　判断当前位置与限制之间是否有剩余元素

final boolean hasRemaining（）方法的作用：判断在当前位置和限制之间是否有元素。该方法的内部源代码如下：

public final boolean hasRemaining() {

 return position < limit;

}

final int remaining（）方法的作用：返回“当前位置”与限制之间的元素个数。该方法的内部源代码如下：

public final int remaining() {

 return limit - position;

}

示例代码如下：

public class Test13 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 bytebuffer.limit(3);

 bytebuffer.position(2);

 System.out.println("bytebuffer.hasRemaining=" + bytebuffer.hasRemaining() +

 " bytebuffer.remaining="

 + bytebuffer.remaining());

}

}

程序运行结果如下：

bytebuffer.hasRemaining=true bytebuffer.remaining=1

这两个方法可以在读写缓冲区中的数据时使用。本例仅测试读数据时的使用情况，示例代码如下：

public class Test13_1 {

public static void main(String[] args) {

 byte[] byteArray = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 ByteBuffer byteBuffer = ByteBuffer.wrap(byteArray);

 int remaining = byteBuffer.remaining();

 for (int i = 0; i < remaining; i++) {

 System.out.print(byteBuffer.get() + " ");

 }

 System.out.println();

 byteBuffer.clear();

 while (byteBuffer.hasRemaining()) {

 System.out.print(byteBuffer.get() + " ");

 }

 System.out.println();

 byteBuffer.clear();

 for (; byteBuffer.hasRemaining() == true;) {

 System.out.print(byteBuffer.get() + " ");

 }

}

}

程序运行结果如下：

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

运行结果表明成功取出全部的数据。
1.3.13　重绕缓冲区

final Buffer rewind（）方法的作用：重绕此缓冲区，将位置设置为0并丢弃标记。该方法的内部源代码如下。

public final Buffer rewind() {

 position = 0;

 mark = -1;

 return this;

}

在一系列通道“重新写入或获取”的操作之前调用此方法（假定已经适当设置了限制）。例如：

out.write(buf); // 将buf的remaining剩余空间的数据输出到out中

buf.rewind(); // rewind重绕缓冲区

buf.get(array); // 从缓冲区获取数据保存到array中

rewind（）方法的通俗解释就是“标记清除，位置position值归0，limit不变”。

rewind（）方法没有设置限制，说明此方法可以结合自定义的limit限制值。

注意：rewind（）方法常在重新读取缓冲区中数据时使用。

final Buffer clear（）方法的作用：清除此缓冲区，将位置设置为0，将限制设置为容量，并丢弃标记，方法内部的源代码如下。

public final Buffer clear() {

 position = 0;

 limit = capacity;

 mark = -1;

 return this;

}

方法clear（）的主要使用场景是在对缓冲区进行存储数据之前调用此方法。例如：

buf.clear(); // Prepare buffer for reading

in.read(buf); // Read data

此方法不能实际清除缓冲区中的数据，但从名称来看它似乎能够这样做，这样命名是因为它多数情况下确实是在清除数据时使用。

clear（）方法的通俗解释是“一切为默认”。

final Buffer flip（）方法的作用：反转此缓冲区。首先将限制设置为当前位置，然后将位置设置为0。如果已定义了标记，则丢弃该标记，方法内部的源代码如下：

public final Buffer flip() {

 limit = position;

 position = 0;

 mark = -1;

 return this;

}

flip（）方法的通俗解释是“缩小limit的范围，类似于String.subString（0，endIndex）方法”。

rewind（）、clear（）和flip（）方法在官方帮助文档中的解释如下。

·rewind（）：使缓冲区为“重新读取”已包含的数据做好准备，它使限制保持不变，将位置设置为0。

·clear（）：使缓冲区为一系列新的通道读取或相对put（value）操作做好准备，即它将限制设置为容量大小，将位置设置为0。

·flip（）：使缓冲区为一系列新的通道写入或相对get（value）操作做好准备，即它将限制设置为当前位置，然后将位置设置为0。

这3个方法的侧重点在于：

1）rewind（）方法的侧重点在“重新”，在重新读取、重新写入时可以使用；

2）clear（）方法的侧重点在“还原一切状态”；

3）flip（）方法的侧重点在substring截取。

示例代码如下：

public class Test14 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3, 4, 5 };

 ByteBuffer byteBuffer = ByteBuffer.wrap(byteArray);

 System.out.println("capacity=" + byteBuffer.capacity() + " limit=" +

 byteBuffer.limit() + " position="

 + byteBuffer.position());

 byteBuffer.position(1);

 byteBuffer.limit(3);

 byteBuffer.mark();

 System.out.println("capacity=" + byteBuffer.capacity() + " limit=" +

 byteBuffer.limit() + " position="

 + byteBuffer.position());

 byteBuffer.rewind();

 System.out.println("capacity=" + byteBuffer.capacity() + " limit=" +

 byteBuffer.limit() + " position="

 + byteBuffer.position());

 byteBuffer.reset();

}

}

程序运行结果如下：

capacity=5 limit=5 position=0

capacity=5 limit=3 position=1

capacity=5 limit=3 position=0

Exception in thread "main" java.nio.InvalidMarkException

 at java.nio.Buffer.reset(Buffer.java:306)

 at BufferAPITest.Test14.main(Test14.java:24)

1.3.14　获得偏移量

final int arrayOffset（）方法的作用：返回此缓冲区的底层实现数组中第一个缓冲区元素的偏移量，这个值在文档中标注为“可选操作”，也就是子类可以不处理这个值。该方法的内部源代码如下：

public final int arrayOffset() {

 if (hb == null)

 throw new UnsupportedOperationException();

 if (isReadOnly)

 throw new ReadOnlyBufferException();

 return offset;

}

实例变量offset是在执行HeapByteBuffer类的构造方法时传入的，示例代码如下：

HeapByteBuffer(byte[] buf, int off, int len) {

 super(-1, off, off + len, buf.length, buf, 0);

}

最后一个参数0就是对ByteBuffer类的offset实例变量进行赋值，源代码如下：

ByteBuffer(int mark, int pos, int lim, int cap, // 包级访问

 byte[] hb, int offset)

{

 super(mark, pos, lim, cap);

 this.hb = hb;

 this.offset = offset;

}

示例代码如下：

public class Test15 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArray);

 System.out.println("bytebuffer.arrayOffset=" + bytebuffer.arrayOffset());

}

}

程序运行结果如下：

bytebuffer.arrayOffset=0

在上面的示例中，不管怎么进行操作，arrayOffset（）方法的返回值永远是0，非0的情况将在后面的章节介绍。
1.3.15　使用List.toArray（T[]）转成数组类型

如果List中存储ByteBuffer数据类型，则可以使用List中的toArray（）方法转成ByteBuffer[]数组类型，示例代码如下：

public class Test16 {

public static void main(String[] args) {

 ByteBuffer buffer1 = ByteBuffer.wrap(new byte[] { 'a', 'b', 'c' });

 ByteBuffer buffer2 = ByteBuffer.wrap(new byte[] { 'x', 'y', 'z' });

 ByteBuffer buffer3 = ByteBuffer.wrap(new byte[] { '1', '2', '3' });

 List<ByteBuffer> list = new ArrayList<>();

 list.add(buffer1);

 list.add(buffer2);

 list.add(buffer3);

 ByteBuffer[] byteBufferArray = new ByteBuffer[list.size()];

 list.toArray(byteBufferArray);

 System.out.println(byteBufferArray.length);

 for (int i = 0; i < byteBufferArray.length; i++) {

 ByteBuffer eachByteBuffer = byteBufferArray[i];

 while (eachByteBuffer.hasRemaining()) {

 System.out.print((char) eachByteBuffer.get());

 }

 System.out.println();

 }

}

}

程序运行结果如下：

3

abc

xyz

123

至此，已经将Buffer类的全部API进行了介绍，熟练掌握父类Buffer的API对学习子类有非常大的帮助，因为这些API是可以被子类所继承并使用的。
1.4　ByteBuffer类的使用

ByteBuffer类是Buffer类的子类，可以在缓冲区中以字节为单位对数据进行存取，而且它也是比较常用和重要的缓冲区类。在使用NIO技术时，有很大的概率使用ByteBuffer类来进行数据的处理。

在前面的示例中已经使用过ByteBuffer类，该类的API列表如图1-19所示。

ByteBuffer类提供了6类操作。

1）以绝对位置和相对位置读写单个字节的get（）和put（）方法。

2）使用相对批量get（byte[]dst）方法可以将缓冲区中的连续字节传输到byte[]dst目标数组中。

3）使用相对批量put（byte[]src）方法可以将byte[]数组或其他字节缓冲区中的连续字节存储到此缓冲区中。

4）使用绝对和相对getType和putType方法可以按照字节顺序在字节序列中读写其他基本数据类型的值，方法getType和putType可以进行数据类型的自动转换。

5）提供了创建视图缓冲区的方法，这些方法允许将字节缓冲区视为包含其他基本类型值的缓冲区，这些方法有asCharBuffer（）、asDoubleBuffer（）、asFloatBuffer（）、asIntBuffer（）、asLongBuffer（）和asShortBuffer（）。

6）提供了对字节缓冲区进行压缩（compacting）、复制（duplicating）和截取（slicing）的方法。

 [image:]

图1-19　ByteBuffer类的API列表

字节缓冲区可以通过allocation（）方法创建，此方法为缓冲区的内容分配空间，或者通过wrapping方法将现有的byte[]数组包装到缓冲区中来创建。

本节将把ByteBuffer类所有API的功能进行展示，以促进对该类的学习与掌握。
1.4.1　创建堆缓冲区与直接缓冲区

字节缓冲区分为直接字节缓冲区与非直接字节缓冲区。

如果字节缓冲区为直接字节缓冲区，则JVM会尽量在直接字节缓冲区上执行本机I/O操作，也就是直接对内核空间进行访问，以提高运行效率。提高运行效率的原理就是在每次调用基于操作系统的I/O操作之前或之后，JVM都会尽量避免将缓冲区的内容复制到中间缓冲区中，或者从中间缓冲区中复制内容，这样就节省了一个步骤。

工厂方法allocateDirect（）可以创建直接字节缓冲区，通过工厂方法allocateDirect（）返回的缓冲区进行内存的分配和释放所需的时间成本通常要高于非直接缓冲区。直接缓冲区操作的数据不在JVM堆中，而是在内核空间中，根据这个结构可以分析出，直接缓冲区善于保存那些易受操作系统本机I/O操作影响的大量、长时间保存的数据。

allocateDirect（int capacity）方法的作用：分配新的直接字节缓冲区。新缓冲区的位置将为零，其界限将为其容量，其标记是不确定的。无论它是否具有底层实现数组，其标记都是不确定的。

allocate（int capacity）方法的作用：分配一个新的非直接字节缓冲区。新缓冲区的位置为零，其界限将为其容量，其标记是不确定的。它将具有一个底层实现数组，且其数组偏移量将为零。

在JDK中，可以查看一下allocate（）方法的源代码，从中会发现其会创建一个新的数组，而wrap（）方法是使用传入的数组作为存储空间，说明对wrap（）关联的数组进行操作会影响到缓冲区中的数据，而操作缓冲区中的数据也会影响到与wrap（）关联的数组中的数据，原理其实就是引用同一个数组对象。

示例代码如下：

public class Test1 {

public static void main(String[] args) {

 ByteBuffer bytebuffer1 = ByteBuffer.allocateDirect(100);

 ByteBuffer bytebuffer2 = ByteBuffer.allocate(200);

 System.out.println("bytebuffer1 position=" + bytebuffer1.position() +

 " limit=" + bytebuffer1.limit());

 System.out.println("bytebuffer2 position=" + bytebuffer2.position() +

 " limit=" + bytebuffer2.limit());

 System.out.println("bytebuffer1=" + bytebuffer1 + " isDirect=" + bytebuffer1.

 isDirect());

 System.out.println("bytebuffer2=" + bytebuffer2 + " isDirect=" + bytebuffer2.

 isDirect());

}

}

程序运行结果如下：

bytebuffer1 position=0 limit=100

bytebuffer2 position=0 limit=200

bytebuffer1=java.nio.DirectByteBuffer[pos=0 lim=100 cap=100] isDirect=true

bytebuffer2=java.nio.HeapByteBuffer[pos=0 lim=200 cap=200] isDirect=false

使用allocateDirect（）方法创建出来的缓冲区类型为DirectByteBuffer，使用allocate（）方法创建出来的缓冲区类型为HeapByteBuffer。

使用allocateDirect（）方法创建ByteBuffer缓冲区时，capacity指的是字节的个数，而创建IntBuffer缓冲区时，capacity指的是int值的数目，如果要转换成字节，则capacity的值要乘以4，来算出占用的总字节数。

使用allocateDirect（）方法创建的直接缓冲区如何释放内存呢？有两种办法，一种是手动释放空间，另一种就是交给JVM进行处理。先来看第一种：手动释放空间，示例代码如下：

public class Test1 {

public static void main(String[] args) throws NoSuchMethodException, Security

Exception, IllegalAccessException,

 IllegalArgumentException, InvocationTargetException, Interrupted

 Exception {

 System.out.println("A");

 ByteBuffer buffer = ByteBuffer.allocateDirect(Integer.MAX_VALUE);

 System.out.println("B");

 byte[] byteArray = new byte[] { 1 };

 System.out.println(Integer.MAX_VALUE);

 for (int i = 0; i < Integer.MAX_VALUE; i++) {

 buffer.put(byteArray);

 }

 System.out.println("put end!");

 Thread.sleep(1000);

 Method cleanerMethod = buffer.getClass().getMethod("cleaner");

 cleanerMethod.setAccessible(true);

 Object returnValue = cleanerMethod.invoke(buffer);

 Method cleanMethod = returnValue.getClass().getMethod("clean");

 cleanMethod.setAccessible(true);

 cleanMethod.invoke(returnValue);

 // 此程序运行的效果就是1秒钟之后立即回收内存

 // 也就是回收“直接缓冲区”所占用的内存

}

}

程序运行后，可在“Windows任务管理器”的“性能”标签页的“物理内存”选项的“可用”节点中查看内存的使用情况。

另一种就是由JVM进行自动化的处理，示例代码如下：

public class Test2 {

public static void main(String[] args) throws NoSuchMethodException, Security

Exception, IllegalAccessException,

 IllegalArgumentException, InvocationTargetException, InterruptedException {

 System.out.println("A");

 ByteBuffer buffer = ByteBuffer.allocateDirect(Integer.MAX_VALUE);

 System.out.println("B");

 byte[] byteArray = new byte[] { 1 };

 System.out.println(Integer.MAX_VALUE);

 for (int i = 0; i < Integer.MAX_VALUE; i++) {

 buffer.put(byteArray);

 }

 System.out.println("put end!");

 // 此程序多次运行后，一直在耗费内存，

 // 进程结束后，也不会马上回收内存，

 // 而是会在某个时机触发GC垃圾回收器进行内存的回收

}

}

在Windows 7系统中出现的现象就是进程结束后，Windows 7并不立即回收内存，而是在某一个时机回收。

此*.java类可以运行多次，产生多个进程，然后再查看内存使用情况会更加直观。
1.4.2　直接缓冲区与非直接缓冲区的运行效率比较

直接缓冲区会直接作用于本地操作系统的I/O，处理数据的效率相比非直接缓冲区会快一些。

可以创建两者性能比较用的测试程序，如使用直接缓冲区来看看用时是多少，源代码如下：

public class Test1_2 {

public static void main(String[] args) {

 long beginTime = System.currentTimeMillis();

 ByteBuffer buffer = ByteBuffer.allocateDirect(1900000000);

 for (int i = 0; i < 1900000000; i++) {

 buffer.put((byte) 123);

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

}

}

程序运行结果如下：

1840

使用非直接缓冲区的测试代码如下：

public class Test1_3 {

public static void main(String[] args) {

 long beginTime = System.currentTimeMillis();

 ByteBuffer buffer = ByteBuffer.allocate(1900000000);

 for (int i = 0; i < 1900000000; i++) {

 buffer.put((byte) 123);

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

}

}

程序运行结果如下：

2309

从运行结果来看，直接缓冲区比非直接缓冲区在运行效率上要高一些，是什么原因造成这样的结果呢？直接缓冲区是使用DirectByteBuffer类进行实现的，而非直接缓冲区是使用HeapByteBuffer类进行实现的。直接缓冲区的实现类DirectByteBuffer的put（byte）方法的源代码如下：

public ByteBuffer put(byte x) {

 unsafe.putByte(ix(nextPutIndex()), ((x)));

 return this;

}

直接缓冲区（DirectByteBuffer）在内部使用sun.misc.Unsafe类进行值的处理。Unsafe类的作用是JVM与操作系统进行直接通信，提高程序运行的效率，但正如其类的名称Unsafe一样，该类在使用上并不是安全的，如果程序员使用不当，那么极有可能出现处理数据上的错误，因此，该类并没有公开化（public），仅由JDK内部使用。

而非直接缓冲区的实现类HeapByteBuffer的put（byte）方法的源代码如下：

public ByteBuffer put(byte x) {

 unsafe.putByte(ix(nextPutIndex()), ((x)));

 return this;

}

非直接缓冲区（HeapByteBuffer）在内部直接对byte[]hb字节数组进行操作，而且还是在JVM的堆中进行数据处理，因此运行效率相对慢一些。
1.4.3　包装wrap数据的处理

wrap（byte[]array）方法的作用：将byte数组包装到缓冲区中。新的缓冲区将由给定的byte数组支持，也就是说，缓冲区修改将导致数组修改，反之亦然。新缓冲区的capacity和limit将为array.length，其位置position将为0，其标记mark是不确定的。其底层实现数组将为给定数组，并且其arrayOffset将为0。

wrap（byte[]array，int offset，int length）方法的作用：将byte数组包装到缓冲区中。新的缓冲区将由给定的byte数组支持，也就是说，缓冲区修改将导致数组修改，反之亦然。新缓冲区的capacity将为array.length，其position将为offset，其limit将为offset+length，其标记是不确定的。其底层实现数组将为给定数组，并且其arrayOffset将为0。

相关参数的解释如下。

1）array：缓冲区中关联的字节数组。

2）offset：设置位置（position）值，该值必须为非负且不大于array.length。

3）length：将新缓冲区的界限设置为offset+length，该值必须为非负且不大于array.length-offset。

注意：wrap（byte[]array，int offset，int length）方法并不具有subString（）方法截取的作用，它的参数offset只是设置缓冲区的position值，而length确定limit值。

示例代码如下：

public class Test2 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArray);

 ByteBuffer bytebuffer2 = ByteBuffer.wrap(byteArray, 2, 4);

 System.out.println("bytebuffer1 capacity=" + bytebuffer1.capacity() + " limit=" + bytebuffer1.limit()

 + " position=" + bytebuffer1.position());

 System.out.println();

 System.out.println("bytebuffer2 capacity=" + bytebuffer2.capacity() + " limit=" + bytebuffer2.limit()

 + " position=" + bytebuffer2.position());

}

}

程序运行结果如下：

bytebuffer1 capacity=8 limit=8 position=0

bytebuffer2 capacity=8 limit=6 position=2

1.4.4　put（byte b）和get（）方法的使用与position自增特性

Buffer类的每个子类都定义了两种get（读）和put（写）操作，分别对应相对位置操作和绝对位置操作。

相对位置操作是指在读取或写入一个或多个元素时，它从“当前位置开始”，然后将位置增加所传输的元素数。如果请求的传输超出限制，则相对get操作将抛出BufferUnderflowException异常，相对put操作将抛出BufferOverflowException异常，也就是说，在这两种情况下，都没有数据传输。

绝对位置操作采用显式元素索引，该操作不影响位置。如果索引参数超出限制，则绝对get操作和绝对put操作将抛出IndexOutOfBoundsException异常。

abstract ByteBuffer put（byte b）方法的作用：使用相对位置的put（）操作，将给定的字节写入此缓冲区的“当前位置”，然后该位置递增。

abstract byte get（）方法的作用：使用相对位置的get（）操作，读取此缓冲区“当前位置”的字节，然后该位置递增。

示例代码如下：

public class Test3 {

public static void main(String[] args) {

 ByteBuffer buffer1 = ByteBuffer.allocate(10);

 System.out.println(

 "A1 capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 buffer1.put((byte) 125);

 System.out.println(

 "A2 capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 buffer1.put((byte) 126);

 System.out.println(

 "A3 capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 buffer1.put((byte) 127);

 System.out.println(

 "B capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 buffer1.rewind();

 System.out.println(

 "C capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 System.out.println(buffer1.get());

 System.out.println(

 "D capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 System.out.println(buffer1.get());

 System.out.println(

 "E capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 System.out.println(buffer1.get());

 System.out.println(

 "F capacity=" + buffer1.capacity() + " limit=" + buffer1.limit()

 + " position=" + buffer1.position());

 System.out.println(buffer1.get());

 byte[] getByteArray = buffer1.array();

 for (int i = 0; i < getByteArray.length; i++) {

 System.out.print(getByteArray[i] + " - ");

 }

}

}

程序运行结果如下：

A1 capacity=10 limit=10 position=0

A2 capacity=10 limit=10 position=1

A3 capacity=10 limit=10 position=2

B capacity=10 limit=10 position=3

C capacity=10 limit=10 position=0

125

D capacity=10 limit=10 position=1

126

E capacity=10 limit=10 position=2

127

F capacity=10 limit=10 position=3

0

125 - 126 - 127 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

从运行结果可以看出，在执行相对位置读或写操作后，位置（position）呈递增的状态，位置自动移动到下一个位置上，也就是位置的值是++position的效果，以便进行下一次读或写操作。
1.4.5　put（byte[]src，int offset，int length）和get（byte[]dst，int offset，intlength）方法的使用

put（byte[]src，int offset，int length）方法的作用：相对批量put方法，此方法将把给定源数组中的字节传输到此缓冲区当前位置中。如果要从该数组中复制的字节多于此缓冲区中的剩余字节（即length>remaining（）），则不传输字节且将抛出BufferOverflowException异常。否则，此方法将给定数组中的length个字节复制到此缓冲区中。将数组中给定off偏移量位置的数据复制到缓冲区的当前位置，从数组中复制的元素个数为length。换句话说，调用此方法的形式为dst.put（src，offset，length），效果与以下循环语句完全相同：

for (int i = offset; i < offset + length; i++)

 dst.put(a[i]);

区别在于它首先检查此缓冲区中是否有足够空间，这样可能效率更高。

put（byte[]src，int offset，int length）方法的参数的介绍如下。

1）src：缓冲区中当前位置的数据来自于src数组。

2）offset：要读取的第一个字节在“数组中的偏移量”，并“不是缓冲区的偏移”，必须为非负且不大于src.length。

3）length：要从给定数组读取的字节的数量，必须为非负且不大于src.length-offset。

get（byte[]dst，int offset，int length）方法的作用：相对批量get方法，此方法将此缓冲区当前位置的字节传输到给定的目标数组中。如果此缓冲中剩余的字节少于满足请求所需的字节（即length>remaining（）），则不传输字节且抛出BufferUnderflowException异常。否则，此方法将此缓冲区中的length个字节复制到给定数组中。从此缓冲区的当前位置和数组中的给定偏移量位置开始复制。然后，此缓冲区的位置将增加length。换句话说，调用此方法的形式为src.get（dst，off，len），效果与以下循环语句完全相同：

 for (int i = offset; i < offset + length; i++)

 dst[i] = src.get();

区别在于get（byte[]dst，int offset，int length）方法首先检查此缓冲区中是否具有足够的字节，这样可能效率更高。

get（byte[]dst，int offset，int length）方法的参数介绍如下。

1）dst：将缓冲区中当前位置的数据写入dst数组中。

2）offset：要写入的第一个字节在“数组中的偏移量”，并“不是缓冲区的偏移”，必须为非负且不大于dst.length。

3）length：要写入到给定数组中的字节的最大数量，必须为非负且不大于dst.length-offset。

下面来看看这两个方法的基本使用情况，示例代码如下：

public class Test5 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 byte[] byteArrayIn2 = { 55, 66, 77, 88 };

 // 开辟10个空间

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 // 将1,2,3,4,5,6,7,8放入缓冲区的前8个位置中

 bytebuffer.put(byteArrayIn1);

 // 执行put()方法后位置发生改变，将位置设置成2

 bytebuffer.position(2);

 // 将数组55,66,77,88中的66,77,88放入缓冲区的第3位

 // 值变成1,2,66,77,88,6,7,8

 // 说明方法put(byte[] src, int offset, int length)放入的位置参考

 // 的是Buffer当前的position位置

 bytebuffer.put(byteArrayIn2, 1, 3);

 System.out.print("A=");

 byte[] getByte = bytebuffer.array();

 for (int i = 0; i < getByte.length; i++) {

 System.out.print(getByte[i] + " ");

 }

 System.out.println();

 bytebuffer.position(1);

 // 创建新的byte[]数组byteArrayOut，目的是将缓冲区中的数据导出来

 byte[] byteArrayOut = new byte[bytebuffer.capacity()];

 // 使用get()方法从缓冲区position值为1的位置开始，向byteArrayOut数组的

 // 索引为3处一共复制4个字节

 // 说明方法get(byte[] dst, int offset, int length)获得数据的位置参考

 // 的是Buffer当前的position位置

 bytebuffer.get(byteArrayOut, 3, 4);

 System.out.print("B=");

 // 打印byteArrayOut数组中的内容

 for (int i = 0; i < byteArrayOut.length; i++) {

 System.out.print(byteArrayOut[i] + " ");

 }

}

}

程序运行结果如下：

A=1 2 66 77 88 6 7 8 0 0

B=0 0 0 2 66 77 88 0 0 0

在使用put（byte[]src，int offset，int length）方法的过程中，需要注意两种出现异常的情况：

1）当offset+length的值大于src.length时，抛出IndexOutOfBoundsException异常；

2）当参数length的值大于buffer.remaining时，抛出BufferOverflowException异常。

也就是说，在上述两种异常情况下都不传输字节。

先来测试第1种情况，代码如下：

public class Test5_1 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7 };

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 bytebuffer.put(byteArrayIn1, 0, bytebuffer.capacity());

}

}

程序运行结果如下：

Exception in thread "main" java.lang.IndexOutOfBoundsException

 at java.nio.Buffer.checkBounds(Buffer.java:567)

 at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:187)

 at ByteBufferAPITest.Test5_1.main(Test5_1.java:9)

再来测试第2种情况，代码如下：

public class Test5_2 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7 };

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 bytebuffer.position(9);

 bytebuffer.put(byteArrayIn1, 0, 4);

}

}

程序运行结果如下：

Exception in thread "main" java.nio.BufferOverflowException

 at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:189)

 at ByteBufferAPITest.Test5_2.main(Test5_2.java:10)

在调用put（byte[]src，int offset，int length）方法时，如果遇到这种向缓冲区中写入数据时有可能写多或写少的情况，那么可以使用如下的示例代码进行解决：

public class Test5_3 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 int getArrayIndex = 0;

 while (getArrayIndex < byteArrayIn1.length) {

 // 下面代码的作用就是判断：缓冲区的剩余和数组的剩余谁少

 int readLength = Math.min(bytebuffer.remaining(), byteArrayIn1.length -

 getArrayIndex);

 bytebuffer.put(byteArrayIn1, getArrayIndex, readLength);

 bytebuffer.flip();

 byte[] getArray = bytebuffer.array();

 for (int i = 0; i < bytebuffer.limit(); i++) {

 System.out.print(getArray[i] + " ");

 }

 getArrayIndex = getArrayIndex + readLength;

 System.out.println();

 bytebuffer.clear();

 }

}

}

程序运行结果如下：

1 2 3 4 5 6 7 8 9 10

11 12

上面的代码在byte[]的length大于或等于缓冲区的remaining（）时，或者小于或等于remaining（）时都可以正确运行。

在使用get（byte[]dst，int offset，int length）方法的过程中，需要注意两种出现异常的情况：

1）当offset+length的值大于dst.length时，抛出IndexOutOfBoundsException异常；

2）当参数length的值大于buffer.remaining时，抛出BufferUnderflowException异常。

也就是说，在上述两种异常情况下都不传输字节。

先来测试第1种情况，代码如下：

public class Test5_4 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArrayIn1);

 byte[] byteArrayOut = new byte[5];

 bytebuffer.get(byteArrayOut, 0, 7);

}

}

运行效果如下：

Exception in thread "main" java.lang.IndexOutOfBoundsException

 at java.nio.Buffer.checkBounds(Buffer.java:567)

 at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:149)

 at ByteBufferAPITest.Test5_4.main(Test5_4.java:10)

再来测试第2种情况，代码如下：

public class Test5_5 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArrayIn1);

 bytebuffer.position(5);

 byte[] byteArrayOut = new byte[500];

 bytebuffer.get(byteArrayOut, 0, 50);

}

}

运行效果如下：

Exception in thread "main" java.nio.BufferUnderflowException

 at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:151)

 at ByteBufferAPITest.Test5_5.main(Test5_5.java:11)

在调用get（byte[]dst，int offset，int length）方法时，如果遇到这种从缓冲区中获得数据时有可能取多或取少的情况，那么可以使用如下的示例代码进行解决：

public class Test5_6 {

public static void main(String[] args) {

 byte[] byteArrayIn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArrayIn);

 byte[] byteArrayOut = new byte[5];

 while (bytebuffer.hasRemaining()) {

 int readLength = Math.min(bytebuffer.remaining(), byteArrayOut.length);

 bytebuffer.get(byteArrayOut, 0, readLength);

 for (int i = 0; i < readLength; i++) {

 System.out.print(byteArrayOut[i] + " ");

 }

 System.out.println();

 }

}

}

运行效果如下：

1 2 3 4 5

6 7 8 9 10

11 12

总结一下本小节介绍的put（byte[]src，int offset，int length）和get（byte[]dst，int offset，int length）方法的执行流程，核心流程代码如下：

public ByteBuffer put(byte[] src, int offset, int length) {

// 能从数组中取出指定长度的数据，就不报错(size是src数组的长度)

 if ((off | len | (off + len) | (size - (off + len))) < 0)

 throw new IndexOutOfBoundsException();

// 取出来的数据的大小小于或等于缓冲区的剩余空间，就不报错

 if (length > remaining())

 throw new BufferOverflowException();

 int end = offset + length;

 for (int i = offset; i < end; i++)

 this.put(src[i]);

 return this;

 }

get（byte[]dst，int offset，int length）方法和put（byte[]src，int offset，int length）方法的逻辑相同。
1.4.6　put（byte[]src）和get（byte[]dst）方法的使用

put（byte[]src）方法的作用：相对批量put方法，此方法将给定的源byte数组的所有内容存储到此缓冲区的当前位置中。与该方法功能完全相同的写法为：dst.put（a，0，a.length）。

get（byte[]dst）方法的作用：相对批量get方法，此方法将此缓冲区remaining的字节传输到给定的目标数组中。与该方法功能完全相同的写法为：src.get（a，0，a.length）。使用此方法取得数据的数量取决于byte[]dst目标数组的大小。

put（byte[]src）和get（byte[]dst）方法调用的是3个参数的put和get方法，源代码如下：

public final ByteBuffer put(byte[] src) {

 return put(src, 0, src.length);

}

public ByteBuffer get(byte[] dst) {

 return get(dst, 0, dst.length);

}

在上述源代码中调用的是3个参数的方法put（byte[]src，int offset，int length）和get（byte[]dst，int offset，int length）。

示例代码如下：

public class Test4 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 3, 4, 5, 6, 7, 8 };

 ByteBuffer buffer1 = ByteBuffer.allocate(10);

 buffer1.put((byte) 1);

 buffer1.put((byte) 2);

 System.out.println("A=" + buffer1.position());

 buffer1.put(byteArray);// 是相对位置存入操作

 System.out.println("B=" + buffer1.position());

 buffer1.flip();

 buffer1.position(3);

 System.out.println("C=" + buffer1.position());

 byte[] newArray = new byte[buffer1.remaining()];

 buffer1.get(newArray);// 是相对位置读取操作

 for (int i = 0; i < newArray.length; i++) {

 System.out.print(newArray[i] + " ");

 }

}

}

程序运行结果如下：

A=2

B=8

C=3

4 5 6 7 8

在使用put（byte[]src）和get（byte[]dst）方法的过程中，需要注意异常情况的发生。

（1）public final ByteBuffer put（byte[]src）

1）缓冲区的remaining大于或等于数组的length，不出现异常。

2）缓冲区的remaining小于数组的length，出现异常。

（2）public ByteBuffer get（byte[]dst）

1）缓冲区的remaining大于或等于数组的length，不出现异常。

2）缓冲区的remaining小于数组的length，出现异常。

下面对上述两种方法中出现的两种情况分别进行研究。

1）put（byte[]src）方法：缓冲区的remaining大于或等于数组的length，不出现异常。

public class Test4_1 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3, 4, 5 };

 ByteBuffer buffer = ByteBuffer.allocate(10);

 buffer.position(1);// 缓冲区的剩余空间足够了，不出现异常

 buffer.put(byteArray);

 byte[] newByteArray = buffer.array();

 for (int i = 0; i < newByteArray.length; i++) {

 System.out.print(newByteArray[i]);

 }

}

}

程序运行结果如下：

0123450000

2）put（byte[]src）方法：缓冲区的remaining小于数组的length，出现异常。

public class Test4_2 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 3, 4, 5, 6, 7, 8 };

 ByteBuffer buffer = ByteBuffer.allocate(10);

 buffer.position(8);// 缓冲区的剩余空间不够了，出现异常

 buffer.put(byteArray);

}

}

程序运行结果如下：

Exception in thread "main" java.nio.BufferOverflowException

 at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:189)

 at java.nio.ByteBuffer.put(ByteBuffer.java:859)

 at ByteBufferAPITest.Test4_2.main(Test4_2.java:10)

3）get（byte[]dst）方法：缓冲区的remaining大于或等于数组的length，不出现异常。

public class Test4_3 {

public static void main(String[] args) {

 byte[] byteArray1 = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 ByteBuffer buffer = ByteBuffer.wrap(byteArray1);

 byte[] byteArrayNew = new byte[5];

 buffer.get(byteArrayNew);// 不出现异常

 for (int i = 0; i < byteArrayNew.length; i++) {

 System.out.print(byteArrayNew[i]);

 }

}

}

程序运行结果如下：

12345

4）get（byte[]dst）方法：缓冲区的remaining小于数组的length，出现异常。

public class Test4_4 {

public static void main(String[] args) {

 byte[] byteArray1 = new byte[] { 1, 2, 3, 4, 5 };

 ByteBuffer buffer = ByteBuffer.wrap(byteArray1);

 buffer.position(3);

 byte[] byteArrayNew = new byte[3];

 buffer.get(byteArrayNew);

 // 出现异常，因为缓冲区中的剩余数据不够3个

}

}

程序运行结果如下：

Exception in thread "main" java.nio.BufferUnderflowException

 at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:151)

 at java.nio.ByteBuffer.get(ByteBuffer.java:715)

 at ByteBufferAPITest.Test4_4.main(Test4_4.java:11)

如果在使用public final ByteBuffer put（byte[]src）方法的过程中，出现字节数组的length大于或等于或者小于或等于缓冲区的remaining剩余空间时，就要进行特殊处理，即分批进行处理，示例代码如下：

public class Test4_5 {

public static void main(String[] args) throws NoSuchMethodException, Security

Exception, IllegalAccessException,

 IllegalArgumentException, InvocationTargetException, Interrupted

 Exception {

 byte[] byteArray1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(4);

 int byteArrayCurrentIndex = 0;

 int byteArrayRemaining = 0;

 while (byteArrayCurrentIndex < byteArray1.length) {

 byteArrayRemaining = byteArray1.length - byteArrayCurrentIndex;

 int readLength = Math.min(byteArrayRemaining, byteBuffer1.

 remaining());

 byte[] newByteArray = Arrays.copyOfRange(byteArray1, byteArray

 CurrentIndex,

 byteArrayCurrentIndex + readLength);

 byteBuffer1.put(newByteArray);

 byteBuffer1.flip();

 byte[] getByte = byteBuffer1.array();

 for (int i = 0; i < byteBuffer1.limit(); i++) {

 System.out.print(getByte[i] + " ");

 }

 System.out.println();

 byteArrayCurrentIndex = byteArrayCurrentIndex + readLength;

 byteBuffer1.clear();

 }

}

}

如果在使用get（byte[]dst）方法的过程中，出现字节数组的length大于或等于或者小于或等于缓冲区的remaining时，那么也要进行特殊处理，示例代码如下：

public class Test4_6 {

public static void main(String[] args) {

 byte[] byteArray = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer buffer = ByteBuffer.wrap(byteArray);

 int copyDataCount = 3;

 while (buffer.hasRemaining()) {

 byte[] copyByteArray = new byte[Math.min(buffer.remaining(), copy

 DataCount)];

 buffer.get(copyByteArray);

 for (int i = 0; i < copyByteArray.length; i++) {

 System.out.print(copyByteArray[i]);

 }

 System.out.println();

 }

}

}

1.4.7　put（int index，byte b）和get（int index）方法的使用与position不变

put（int index，byte b）方法的作用：绝对put方法，将给定字节写入此缓冲区的给定索引位置。

get（int index）方法的作用：绝对get方法，读取指定位置索引处的字节。

示例代码如下：

public class Test6_1 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 bytebuffer.put(byteArrayIn1);

 bytebuffer.put(2, (byte) 127);//

 System.out.println(bytebuffer.get(2));//

 bytebuffer.position(0);

 byte[] byteArrayOut = new byte[bytebuffer.capacity()];

 bytebuffer.get(byteArrayOut, 0, byteArrayOut.length);

 for (int i = 0; i < byteArrayOut.length; i++) {

 System.out.print(byteArrayOut[i] + " ");

 }

}

}

程序运行结果如下：

127

1 2 127 4 5 6 7 8 0 0

使用绝对位置操作后，位置（position）并不改变，测试代码如下：

public class Test6_2 {

public static void main(String[] args) {

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 bytebuffer.position(9);

 System.out.println(bytebuffer.position());

 bytebuffer.put(2, (byte) 127);

 System.out.println(bytebuffer.position());

 bytebuffer.rewind();

 byte[] byteArrayOut = new byte[bytebuffer.capacity()];

 bytebuffer.get(byteArrayOut, 0, byteArrayOut.length);

 for (int i = 0; i < byteArrayOut.length; i++) {

 System.out.print(byteArrayOut[i] + " ");

 }

}

}

程序运行结果如下：

9

9

0 0 127 0 0 0 0 0 0 0

1.4.8　put（ByteBuffer src）方法的使用

put（ByteBuffer src）方法的作用：相对批量put方法，此方法将给定源缓冲区中的剩余字节传输到此缓冲区的当前位置中。如果源缓冲区中的剩余字节多于此缓冲区中的剩余字节，即src.remaining（）>remaining（），则不传输字节且抛出BufferOverflowException异常。否则，此方法将给定缓冲区中的n=src.remaining（）个字节复制到此缓冲区中，从每个缓冲区的当前位置开始复制。然后，这两个缓冲区的位置都增加n。

示例代码如下：

public class Test7 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 byte[] byteArrayIn2 = { 55, 66, 77 };

 ByteBuffer bytebuffer2 = ByteBuffer.wrap(byteArrayIn2);

 bytebuffer1.position(4);

 bytebuffer2.position(1);

 bytebuffer1.put(bytebuffer2);

 System.out.println("bytebuffer1被改变：" + bytebuffer1.position());

 System.out.println("bytebuffer2被改变：" + bytebuffer2.position());

 byte[] byteArrayOut = bytebuffer1.array();

 for (int i = 0; i < byteArrayOut.length; i++) {

 System.out.print(byteArrayOut[i] + " ");

 }

}

}

程序运行结果如下：

bytebuffer1被改变：6

bytebuffer2被改变：3

1 2 3 4 66 77 7 8

1.4.9　putType（）和getType（）方法的使用

putChar（char value）方法的作用：用来写入char值的相对put方法（可选操作）。将两个包含指定char值的字节按照当前的字节顺序写入到此缓冲区的当前位置，然后将该位置增加2。

putChar（int index，char value）方法的作用：用于写入char值的绝对put方法（可选操作）。将两个包含给定char值的字节按照当前的字节顺序写入到此缓冲区的给定索引处。

putDouble（double value）方法的作用：用于写入double值的相对put方法（可选操作）。将8个包含给定double值的字节按照当前的字节顺序写入到此缓冲区的当前位置，然后将该位置增加8。

putDouble（int index，double value）方法的作用：用于写入double值的绝对put方法（可选操作）。将8个包含给定double值的字节按照当前的字节顺序写入到此缓冲区的给定索引处。

putFloat（float value）方法的作用：用于写入float值的相对put方法（可选操作）。将4个包含给定float值的字节按照当前的字节顺序写入到此缓冲区的当前位置，然后将该位置增加4。

putFloat（int index，float value）方法的作用：用于写入float值的绝对put方法（可选操作）。将4个包含给定float值的字节按照当前的字节顺序写入到此缓冲区的给定索引处。

putInt（int value）方法的作用：用于写入int值的相对put方法（可选操作）。将4个包含给定int值的字节按照当前的字节顺序写入到此缓冲区的当前位置，然后将该位置增加4。

putInt（int index，int value）方法的作用：用于写入int值的绝对put方法（可选操作）。将4个包含给定int值的字节按照当前的字节顺序写入到此缓冲区的给定索引处。

putLong（long value）方法的作用：用于写入long值的相对put方法（可选操作）。将8个包含给定long值的字节按照当前的字节顺序写入到此缓冲区的当前位置，然后将该位置增加8。

putLong（int index，long value）方法的作用：用于写入long值的绝对put方法（可选操作）。将8个包含给定long值的字节按照当前的字节顺序写入到此缓冲区的给定索引处。

putShort（short value）方法的作用：用于写入short值的相对put方法（可选操作）。将两个包含指定short值的字节按照当前的字节顺序写入到此缓冲区的当前位置，然后将该位置增加2。

putShort（int index，short value）方法的作用：用于写入short值的绝对put方法（可选操作）。将两个包含给定short值的字节按照当前的字节顺序写入到此缓冲区的给定索引处。

示例代码如下：

public class Test8 {

public static void main(String[] args) {

 ByteBuffer bytebuffer1 = ByteBuffer.allocate(100);

 bytebuffer1.putChar('a');// 0-1，char占2个字节

 bytebuffer1.putChar(2, 'b');// 2-3

 bytebuffer1.position(4);

 bytebuffer1.putDouble(1.1);// 4-11，double占8个字节

 bytebuffer1.putDouble(12, 1.2);// 12-19

 bytebuffer1.position(20);

 bytebuffer1.putFloat(2.1F);// 20-23，float占4个字节

 bytebuffer1.putFloat(24, 2.2F);// 24-27

 bytebuffer1.position(28);

 bytebuffer1.putInt(31);// 28-31，int占4个字节

 bytebuffer1.putInt(32, 32);// 32-35

 bytebuffer1.position(36);

 bytebuffer1.putLong(41L);// 36-43，long占8个字节

 bytebuffer1.putLong(44, 42L);// 44-51

 bytebuffer1.position(52);

 bytebuffer1.putShort((short) 51);// 52-53，short占2个字节

 bytebuffer1.putShort(54, (short) 52);// 54-55

 bytebuffer1.position(0);

 byte[] byteArrayOut = bytebuffer1.array();

 for (int i = 0; i < byteArrayOut.length; i++) {

 // System.out.print(byteArrayOut[i] + " ");

 }

 System.out.println();

 System.out.println(bytebuffer1.getChar());

 System.out.println(bytebuffer1.getChar(2));

 bytebuffer1.position(4);

 System.out.println(bytebuffer1.getDouble());

 System.out.println(bytebuffer1.getDouble(12));

 bytebuffer1.position(20);

 System.out.println(bytebuffer1.getFloat());

 System.out.println(bytebuffer1.getFloat(24));

 bytebuffer1.position(28);

 System.out.println(bytebuffer1.getInt());

 System.out.println(bytebuffer1.getInt(32));

 bytebuffer1.position(36);

 System.out.println(bytebuffer1.getLong());

 System.out.println(bytebuffer1.getLong(44));

 bytebuffer1.position(52);

 System.out.println(bytebuffer1.getShort());

 System.out.println(bytebuffer1.getShort(54));

}

}

程序运行结果如下：

a

b

1.1

1.2

2.1

2.2

31

32

41

42

51

52

1.4.10　slice（）方法的使用与arrayOffSet（）为非0的测试

slice（）方法的作用：创建新的字节缓冲区，其内容是此缓冲区内容的共享子序列。新缓冲区的内容将从此缓冲区的当前位置开始。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然；这两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的位置将为0，其容量和限制将为此缓冲区中所剩余的字节数量，其标记是不确定的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

示例代码如下：

public class Test9_1 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 bytebuffer1.position(5);

 ByteBuffer bytebuffer2 = bytebuffer1.slice();

 System.out.println("bytebuffer1.position=" + bytebuffer1.position() +

 " bytebuffer1.capacity="

 + bytebuffer1.capacity() + " bytebuffer1.limit=" + bytebuffer1.

 limit());

 System.out.println("bytebuffer2.position=" + bytebuffer2.position() +

 " bytebuffer2.capacity="

 + bytebuffer2.capacity() + " bytebuffer2.limit=" + bytebuffer2.

 limit());

 bytebuffer2.put(0, (byte) 111);

 byte[] byteArray1 = bytebuffer1.array();

 byte[] byteArray2 = bytebuffer2.array();

 for (int i = 0; i < byteArray1.length; i++) {

 System.out.print(byteArray1[i] + " ");

 }

 System.out.println();

 for (int i = 0; i < byteArray2.length; i++) {

 System.out.print(byteArray2[i] + " ");

 }

}

}

程序运行结果如下：

bytebuffer1.position=5 bytebuffer1.capacity=8 bytebuffer1.limit=8

bytebuffer2.position=0 bytebuffer2.capacity=3 bytebuffer2.limit=3

1 2 3 4 5 111 7 8

1 2 3 4 5 111 7 8

在使用slice（）方法后，再调用arrayOffSet（）方法时，会出现返回值为非0的情况，测试代码如下：

public class Test9_2 {

public static void main(String[] args) {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 bytebuffer1.position(5);

 ByteBuffer bytebuffer2 = bytebuffer1.slice();

 System.out.println(bytebuffer2.arrayOffset());

}

}

程序运行结果如下：

5

运行结果说明bytebuffer2的第1个元素的位置是相对于byteArrayIn1数组中索引值为5的偏移。
1.4.11　转换为CharBuffer字符缓冲区及中文的处理

asCharBuffer（）方法的作用：创建此字节缓冲区的视图，作为char缓冲区。新缓冲区的内容将从此缓冲区的当前位置开始。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然；这两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的位置将为0，其容量和限制将为此缓冲区中所剩余的字节数的1/2，其标记是不确定的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

示例代码如下：

public class Test10 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = "我是中国人".getBytes();

 // 运行本代码的*.java文件是UTF-8编码，所以运行环境取得的编码默认是UTF-8

 System.out.println(Charset.defaultCharset().name());

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArrayIn1);

 System.out.println("bytebuffer=" + bytebuffer.getClass().getName());

 CharBuffer charBuffer = bytebuffer.asCharBuffer();

 System.out.println("charBuffer=" + charBuffer.getClass().getName());

 System.out.println("bytebuffer.position=" + bytebuffer.position() + "

 bytebuffer.capacity="

 + bytebuffer.capacity() + " bytebuffer.limit=" + bytebuffer.

 limit());

 System.out.println("charBuffer.position=" + charBuffer.position() + "

 charBuffer.capacity="

 + charBuffer.capacity() + " charBuffer.limit=" + charBuffer.

 limit());

 System.out.println(charBuffer.capacity());

 charBuffer.position(0);

 for (int i = 0; i < charBuffer.capacity(); i++) {

 // get()方法使用的编码为UTF-16BE

 // UTF-8与UTF-16BE并不是同一种编码

 // 所以这时出现了乱码

 System.out.print(charBuffer.get() + " ");

 }

}

}

上述程序运行结果如图1-20所示。

 [image:]

图1-20　运行结果

上面的代码产生了4个步骤。

1）使用代码语句“byte[]byteArrayIn1="我是中国人".getBytes（）；”将中文转成字节数组，数组中存储的编码为UTF-8。

2）使用代码语句“ByteBuffer bytebuffer=ByteBuffer.wrap（byteArrayIn1）；”将UTF-8编码的字节数组转换成字节缓冲区（ByteBuffer），缓冲区中存储的编码也为UTF-8。

3）使用代码语句“CharBuffer charBuffer=bytebuffer.asCharBuffer（）；”将编码格式为UTF-8的ByteBuffer中的内容转换成UTF-8编码的CharBuffer。

4）当调用CharBuffer类的子类java.nio.ByteBufferAsCharBufferB中的get（）方法时，以UTF-16BE的编码格式获得中文时出现编码不匹配的情况，因此出现了乱码。

从上面的运行结果来看，并没有将正确的中文获取出来，相反还出现了乱码，出现乱码的原因就是编码不对称造成的，解决办法就是使编码对称，也就是将中文转成字节数组时使用UTF-16BE编码，而使用ByteBufferAsCharBufferB的get（）方法时再以UTF-16BE编码转回中文即可，这样就不会出现中文乱码问题了。解决乱码问题的程序代码如下：

public class Test11 {

public static void main(String[] args) throws UnsupportedEncodingException {

 // 将中文转成UTF-16BE编码的字节数组

 byte[] byteArrayIn1 = "我是中国人".getBytes("utf-16BE");

 System.out.println(Charset.defaultCharset().name());

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArrayIn1);

 System.out.println("bytebuffer=" + bytebuffer.getClass().getName());

 CharBuffer charBuffer = bytebuffer.asCharBuffer();

 System.out.println("charBuffer=" + charBuffer.getClass().getName());

 System.out.println("bytebuffer.position=" + bytebuffer.position() + "

 bytebuffer.capacity="

 + bytebuffer.capacity() + " bytebuffer.limit=" + bytebuffer.limit());

 System.out.println("charBuffer.position=" + charBuffer.position() + " charBuffer.capacity="

 + charBuffer.capacity() + " charBuffer.limit=" + charBuffer.limit());

 System.out.println(charBuffer.capacity());

 charBuffer.position(0);

 for (int i = 0; i < charBuffer.capacity(); i++) {

 System.out.print(charBuffer.get() + " ");// UTF-16BE

 }

}

}

程序运行结果如下：

UTF-8

bytebuffer=java.nio.HeapByteBuffer

charBuffer=java.nio.ByteBufferAsCharBufferB

bytebuffer.position=0 bytebuffer.capacity=10 bytebuffer.limit=10

charBuffer.position=0 charBuffer.capacity=5 charBuffer.limit=5

5

我 是 中 国 人

从上面输出的结果可以发现，中文乱码的问题解决了。

解决的步骤是什么呢？如下：

1）使用代码语句“byte[]byteArrayIn1="我是中国人".getBytes（"utf-16BE"）；”将中文转成字节数组，数组中存储的编码为UTF-16BE。

2）使用代码语句“ByteBuffer bytebuffer=ByteBuffer.wrap（byteArrayIn1）；”将UTF-16BE编码的字节数组转换成ByteBuffer，ByteBuffer中存储的编码也为UTF-16BE。

3）使用代码语句“CharBuffer charBuffer=bytebuffer.asCharBuffer（）；”将编码格式为UTF-16BE的ByteBuffer中的内容转换成UTF-16BE编码的CharBuffer。

4）当调用CharBuffer类的子类java.nio.ByteBufferAsCharBufferB中的get（）方法时，以UTF-16BE的编码格式获得中文时不再出现乱码，这样乱码问题就解决了。

当然，还可以使用其他的办法来解决乱码问题。

示例代码如下：

public class Test12 {

public static void main(String[] args) throws UnsupportedEncodingException {

 // 字节数组使用的编码为UTF-8

 byte[] byteArrayIn1 = "我是中国人".getBytes("utf-8");

 System.out.println(Charset.defaultCharset().name());

 ByteBuffer bytebuffer = ByteBuffer.wrap(byteArrayIn1);

 // 将bytebuffer中的内容转成UTF-8编码的CharBuffer

 CharBuffer charBuffer = Charset.forName("utf-8").decode(bytebuffer);

 System.out.println("bytebuffer=" + bytebuffer.getClass().getName());

 System.out.println("charBuffer=" + charBuffer.getClass().getName());

 System.out.println("bytebuffer.position=" + bytebuffer.position() + "

 bytebuffer.capacity="

 + bytebuffer.capacity() + " bytebuffer.limit=" + bytebuffer.limit());

 System.out.println("charBuffer.position=" + charBuffer.position() + "

 charBuffer.capacity="

 + charBuffer.capacity() + " charBuffer.limit=" + charBuffer.limit());

 System.out.println(charBuffer.capacity());

 charBuffer.position(0);

 for (int i = 0; i < charBuffer.limit(); i++) {

 System.out.print(charBuffer.get() + " ");

 }

}

}

程序运行结果如下：

GBK

bytebuffer=java.nio.HeapByteBuffer

charBuffer=java.nio.HeapCharBuffer

bytebuffer.position=15 bytebuffer.capacity=15 bytebuffer.limit=15

charBuffer.position=0 charBuffer.capacity=15 charBuffer.limit=5

15

我 是 中 国 人

输出信息的第一行为GBK是因为*.java文件的编码就是GBK，并没有改成UTF-8。

上面的代码也解决了中文乱码问题，解决步骤如下。

1）使用代码语句“byte[]byteArrayIn1="我是中国人".getBytes（"utf-8"）；”将GBK编码的中文转换成UTF-8编码格式的字节数组。

2）使用代码语句“ByteBuffer bytebuffer=ByteBuffer.wrap（byteArrayIn1）；”将UTF-8编码的字节数组转换成ByteBuffer，ByteBuffer中存储的编码也为UTF-8。

3）使用代码语句“CharBuffer charBuffer=Charset.forName（"utf-8"）.decode（bytebuffer）；”的目的是将编码类型为UTF-8的ByteBuffer转换成编码类型为UTF-8的java.nio.HeapCharBuffer。HeapCharBuffer类中的hb[]数组中存储的内容已经是正确的UTF-8编码的中文了。

4）当调用CharBuffer类的子类java.nio.HeapCharBuffer中的get（）方法时，在hb[]数组中直接获得中文，不再出现乱码，乱码问题解决了。

使用asCharBuffer（）方法获得CharBuffer后，对ByteBuffer的更改会直接影响CharBuffer中的值，示例代码如下：

public class Test12_sameValue {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArray = "我是中国人".getBytes("utf-16BE");

 ByteBuffer byteBuffer1 = ByteBuffer.wrap(byteArray);

 CharBuffer charBuffer = byteBuffer1.asCharBuffer();

 byteBuffer1.put(2, "为".getBytes("utf-16BE")[0]);

 byteBuffer1.put(3, "为".getBytes("utf-16BE")[1]);

 charBuffer.clear();

 for (int i = 0; i < charBuffer.limit(); i++) {

 System.out.print(charBuffer.get() + " ");

 }

}

}

运行结果如下：

我 为 中 国 人

1.4.12　转换为其他类型的缓冲区

asDoubleBuffer（）方法的作用：创建此字节缓冲区的视图，作为double缓冲区。新缓冲区的内容将从此缓冲区的当前位置开始。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然；这两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的位置将为0，其容量和界限将为此缓冲区中所剩余的字节数的1/8，其标记是不确定的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

asFloatBuffer（）方法的作用：创建此字节缓冲区的视图，作为float缓冲区。新缓冲区的内容将从此缓冲区的当前位置开始。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然；这两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的位置将为0，其容量和其限制将为此缓冲区中剩余字节数的1/4，其标记是不确定的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

asIntBuffer（）方法的作用：创建此字节缓冲区的视图，作为int缓冲区。新缓冲区的内容将从此缓冲区的当前位置开始。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然；这两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的位置将为0，其容量和限制将为此缓冲区中所剩余的字节数的1/4，其标记是不确定的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

asLongBuffer（）方法的作用：创建此字节缓冲区的视图，作为long缓冲区。新缓冲区的内容将从此缓冲区的当前位置开始。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然；这两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的位置将为0，其容量和限制将为此缓冲区中所剩余的字节数的1/8，其标记是不确定的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

asShortBuffer（）方法的作用：创建此字节缓冲区的视图，作为short缓冲区。新缓冲区的内容将从此缓冲区的当前位置开始。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然；这两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的位置将为0，其容量和限制将为此缓冲区中所剩余的字节数的1/2，其标记是不确定的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

示例代码如下：

public class Test13 {

public static void main(String[] args) throws UnsupportedEncodingException {

 ByteBuffer bytebuffer1 = ByteBuffer.allocate(32);

 bytebuffer1.putDouble(1.1D);

 bytebuffer1.putDouble(1.2D);

 bytebuffer1.putDouble(1.3D);

 bytebuffer1.putDouble(1.4D);

 bytebuffer1.flip();

 DoubleBuffer doubleBuffer = bytebuffer1.asDoubleBuffer();

 for (int i = 0; i < doubleBuffer.capacity(); i++) {

 System.out.print(doubleBuffer.get(i) + " ");

 }

 System.out.println();

 ByteBuffer bytebuffer2 = ByteBuffer.allocate(16);

 bytebuffer2.putFloat(2.1F);

 bytebuffer2.putFloat(2.2F);

 bytebuffer2.putFloat(2.3F);

 bytebuffer2.putFloat(2.4F);

 bytebuffer2.flip();

 FloatBuffer floatBuffer = bytebuffer2.asFloatBuffer();

 for (int i = 0; i < floatBuffer.capacity(); i++) {

 System.out.print(floatBuffer.get(i) + " ");

 }

 System.out.println();

 ByteBuffer bytebuffer3 = ByteBuffer.allocate(16);

 bytebuffer3.putInt(31);

 bytebuffer3.putInt(32);

 bytebuffer3.putInt(33);

 bytebuffer3.putInt(34);

 bytebuffer3.flip();

 IntBuffer intBuffer = bytebuffer3.asIntBuffer();

 for (int i = 0; i < intBuffer.capacity(); i++) {

 System.out.print(intBuffer.get(i) + " ");

 }

 System.out.println();

 ByteBuffer bytebuffer4 = ByteBuffer.allocate(32);

 bytebuffer4.putLong(41L);

 bytebuffer4.putLong(42L);

 bytebuffer4.putLong(43L);

 bytebuffer4.putLong(44L);

 bytebuffer4.flip();

 LongBuffer longBuffer = bytebuffer4.asLongBuffer();

 for (int i = 0; i < longBuffer.capacity(); i++) {

 System.out.print(longBuffer.get(i) + " ");

 }

 System.out.println();

 ByteBuffer bytebuffer5 = ByteBuffer.allocate(8);

 bytebuffer5.putShort((short) 51);

 bytebuffer5.putShort((short) 52L);

 bytebuffer5.putShort((short) 53L);

 bytebuffer5.putShort((short) 54L);

 bytebuffer5.flip();

 ShortBuffer shortBuffer = bytebuffer5.asShortBuffer();

 for (int i = 0; i < shortBuffer.capacity(); i++) {

 System.out.print(shortBuffer.get(i) + " ");

 }

}

}

程序运行结果如下：

1.1 1.2 1.3 1.4

2.1 2.2 2.3 2.4

31 32 33 34

41 42 43 44

51 52 53 54

在调用ByteBuffer中的putXXX（）方法时，比如如下代码：

ByteBuffer.putInt(value);

ByteBuffer.getInt();

视图缓冲区与之相比有以下三个优势：

1）视图缓冲区不是根据字节进行索引，而是根据其特定于类型的值的大小进行索引；

2）视图缓冲区提供了相对批量get和put方法，这些方法可在缓冲区和数组或相同类型的其他缓冲区之间传输值的连续序列；

3）视图缓冲区可能更高效，这是因为当且仅当其支持的字节缓冲区为直接缓冲区时，它才是直接缓冲区。

先来验证：视图缓冲区不是根据字节进行索引，而是根据其特定于类型的值的大小进行索引。

示例代码如下：

public class Test13_1 {

public static void main(String[] args) throws UnsupportedEncodingException {

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 System.out.println("A1=" + bytebuffer.position());

 bytebuffer.putInt(123);

 System.out.println("A2=" + bytebuffer.position());

 bytebuffer.putInt(456);

 System.out.println("A3=" + bytebuffer.position());

 System.out.println();

 IntBuffer intBuffer = IntBuffer.allocate(10);

 System.out.println("B1=" + intBuffer.position());

 intBuffer.put(456);

 System.out.println("B2=" + intBuffer.position());

 intBuffer.put(789);

 System.out.println("B3=" + intBuffer.position());

}

}

程序运行后的结果如下：

A1=0

A2=4

A3=8

B1=0

B2=1

B3=2

从输出的结果来看，ByteBuffer是按字节为单位进行存储，而IntBuffer是按数据类型为单位进行存储。

再来验证：视图缓冲区提供了相对批量get和put方法，这些方法可在缓冲区和数组或相同类型的其他缓冲区之间传输值的连续序列。

示例代码如下：

public class Test13_2 {

public static void main(String[] args) throws UnsupportedEncodingException {

 ByteBuffer bytebuffer = ByteBuffer.allocate(10);

 bytebuffer.putInt(123);

 bytebuffer.putInt(456);

 bytebuffer.flip();

 System.out.println("bytebuffer position=" + bytebuffer.position() + "

 value=" + bytebuffer.getInt());

 System.out.println("bytebuffer position=" + bytebuffer.position() + "

 value=" + bytebuffer.getInt());

 System.out.println("bytebuffer position=" + bytebuffer.position());

 System.out.println();

 IntBuffer intBuffer = IntBuffer.allocate(10);

 intBuffer.put(456);

 intBuffer.put(789);

 intBuffer.flip();

 System.out.println("intBuffer position=" + intBuffer.position() + "

 value=" + intBuffer.get());

 System.out.println("intBuffer position=" + intBuffer.position() + "

 value=" + intBuffer.get());

 System.out.println("intBuffer position=" + intBuffer.position());

}

}

程序运行结果如下：

bytebuffer position=0 value=123

bytebuffer position=4 value=456

bytebuffer position=8

intBuffer position=0 value=456

intBuffer position=1 value=789

intBuffer position=2

最后验证：视图缓冲区可能更高效，这是因为当且仅当其支持的字节缓冲区为直接缓冲区时，它才是直接缓冲区。

示例代码如下：

public class Test13_3 {

public static void main(String[] args) throws UnsupportedEncodingException {

 ByteBuffer bytebuffer = ByteBuffer.allocateDirect(100);

 bytebuffer.putInt(123);

 bytebuffer.putInt(456);

 bytebuffer.flip();

 IntBuffer intBuffer = bytebuffer.asIntBuffer();

 System.out.println(intBuffer.get());

 System.out.println(intBuffer.get());

 System.out.println();

 System.out.println("bytebuffer是直接缓冲区，效率比较快：");

 System.out.println(bytebuffer);

 System.out.println("由于bytebuffer是直接的，所以intBuffer也是直接缓冲区了：");

 System.out.println(intBuffer);

}

}

程序运行结果如下：

123

456

bytebuffer是直接缓冲区，效率比较快：

java.nio.DirectByteBuffer[pos=0 lim=8 cap=100]

由于bytebuffer是直接的，所以intBuffer也是直接缓冲区了：

java.nio.DirectIntBufferS[pos=2 lim=2 cap=2]

1.4.13　设置与获得字节顺序

order（）方法与字节数据排列的顺序有关，因为不同的CPU在读取字节时的顺序是不一样的，有的CPU从高位开始读，而有的CPU从低位开始读，当这两种CPU传递数据时就要将字节排列的顺序进行统一，此时order（ByteOrder bo）方法就有用武之地了，它的作用就是设置字节的排列顺序。

什么是高位和低位呢？如果是16位（双字节）的数据，如FF1A，高位是FF，低位是1A。如果是32位的数据，如3F68415B，高位字是3F68，低位字是415B，右边是低位，左边是高位。

ByteOrder order（）方法的作用：获取此缓冲区的字节顺序。新创建的字节缓冲区的顺序始终为BIG_ENDIAN。在读写多字节值以及为此字节缓冲区创建视图缓冲区时，使用该字节顺序。

1）public static final ByteOrder BIG_ENDIAN：表示BIG-ENDIAN字节顺序的常量。按照此顺序，多字节值的字节顺序是从最高有效位到最低有效位的。

2）public static final ByteOrder LITTLE_ENDIAN：表示LITTLE-ENDIAN字节顺序的常量。按照此顺序，多字节值的字节顺序是从最低有效位到最高有效位的。

order（ByteOrder bo）方法的作用：修改此缓冲区的字节顺序，在默认的情况下，字节缓冲区的初始顺序始终是BIG_ENDIAN。

示例代码如下：

public class Test14 {

public static void main(String[] args) throws UnsupportedEncodingException {

 int value = 123456789;

 ByteBuffer bytebuffer1 = ByteBuffer.allocate(4);

 System.out.print(bytebuffer1.order() + " ");

 System.out.print(bytebuffer1.order() + " ");

 bytebuffer1.putInt(value);

 byte[] byteArray = bytebuffer1.array();

 for (int i = 0; i < byteArray.length; i++) {

 System.out.print(byteArray[i] + " ");

 }

 System.out.println();

 bytebuffer1 = ByteBuffer.allocate(4);

 System.out.print(bytebuffer1.order() + " ");

 bytebuffer1.order(ByteOrder.BIG_ENDIAN);

 System.out.print(bytebuffer1.order() + " ");

 bytebuffer1.putInt(value);

 byteArray = bytebuffer1.array();

 for (int i = 0; i < byteArray.length; i++) {

 System.out.print(byteArray[i] + " ");

 }

 System.out.println();

 bytebuffer1 = ByteBuffer.allocate(4);

 System.out.print(bytebuffer1.order() + " ");

 bytebuffer1.order(ByteOrder.LITTLE_ENDIAN);

 System.out.print(bytebuffer1.order() + " ");

 bytebuffer1.putInt(value);

 byteArray = bytebuffer1.array();

 for (int i = 0; i < byteArray.length; i++) {

 System.out.print(byteArray[i] + " ");

 }

}

}

程序运行结果如下：

BIG_ENDIAN BIG_ENDIAN 7 91 -51 21

BIG_ENDIAN BIG_ENDIAN 7 91 -51 21

BIG_ENDIAN LITTLE_ENDIAN 21 -51 91 7

如果字节顺序不一致，那么在获取数据时就会出现错误的值，示例代码如下：

public class Test14_1 {

public static void main(String[] args) throws UnsupportedEncodingException {

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(8);

 byteBuffer1.order(ByteOrder.BIG_ENDIAN);

 byteBuffer1.putInt(123);

 byteBuffer1.putInt(567);

 byteBuffer1.flip();

 System.out.println(byteBuffer1.getInt());

 System.out.println(byteBuffer1.getInt());

 ByteBuffer byteBuffer2 = ByteBuffer.wrap(byteBuffer1.array());

 byteBuffer2.order(ByteOrder.LITTLE_ENDIAN);

 System.out.println(byteBuffer2.getInt());

 System.out.println(byteBuffer2.getInt());

}

}

运行结果就是错误的值：

123

567

2063597568

922877952

1.4.14　创建只读缓冲区

asReadOnlyBuffer（）方法的作用：创建共享此缓冲区内容的新的只读字节缓冲区。新缓冲区的内容将为此缓冲区的内容。此缓冲区内容的更改在新缓冲区中是可见的，但新缓冲区将是只读的并且不允许修改共享内容。两个缓冲区的位置、限制和标记值是相互独立的。新缓冲区的容量、限制、位置和标记值将与此缓冲区相同。

示例代码如下：

public class Test15 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn = { 1, 2, 3, 4, 5 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn);

 ByteBuffer bytebuffer2 = bytebuffer1.asReadOnlyBuffer();

 System.out.println("bytebuffer1.isReadOnly()=" + bytebuffer1.isReadOnly());

 System.out.println("bytebuffer2.isReadOnly()=" + bytebuffer2.isReadOnly());

 bytebuffer2.rewind();

 bytebuffer2.put((byte) 123);

}

}

程序运行结果如下：

bytebuffer1.isReadOnly()=false

bytebuffer2.isReadOnly()=true

Exception in thread "main" java.nio.ReadOnlyBufferException

 at java.nio.HeapByteBufferR.put(HeapByteBufferR.java:172)

 at ByteBufferAPITest.Test15.main(Test15.java:14)

1.4.15　压缩缓冲区

compact（）方法的作用：压缩此缓冲区（可选操作），将缓冲区的当前位置和限制之间的字节（如果有）复制到缓冲区的开始处，即将索引p=position（）处的字节复制到索引0处，将索引p+1处的字节复制到索引1处，依此类推，直到将索引limit（）-1处的字节复制到索引n=limit（）-1-p处。然后，将缓冲区的位置设置为n+1，并将其限制设置为其容量。如果已定义了标记，则丢弃它。将缓冲区的位置设置为复制的字节数，而不是0，以便调用此方法后可以紧接着调用另一个相对put方法。

压缩compact执行的过程如图1-21所示。

 [image:]

图1-21　压缩compact执行的过程

将缓冲区中的数据写出之后调用此方法，以防写出不完整。例如，以下循环语句通过buf缓冲区将字节从一个端点复制到另一个端点：

buf.clear(); // 还原缓冲区的状态

while (in.read(buf) >= 0 || buf.position != 0) {

 buf.flip();

 out.write(buf);

 buf.compact(); // 执行压缩操作

}

示例代码如下：

public class Test16 {

public static void main(String[] args) throws UnsupportedEncodingException {

 ByteBuffer byteBuffer1 = ByteBuffer.wrap(new byte[] { 1, 2, 3, 4, 5, 6 });

 System.out.println("A capacity=" + byteBuffer1.capacity() + " position=" +

 byteBuffer1.position() + " limit="

 + byteBuffer1.limit());

 System.out.println("1 getValue=" + byteBuffer1.get());

 System.out.println("B capacity=" + byteBuffer1.capacity() + " position=" +

 byteBuffer1.position() + " limit="

 + byteBuffer1.limit());

 System.out.println("2 getValue=" + byteBuffer1.get());

 System.out.println("C capacity=" + byteBuffer1.capacity() + " position=" +

 byteBuffer1.position() + " limit="

 + byteBuffer1.limit());

 byteBuffer1.compact();

 System.out.println("byteBuffer1.compact()");

 System.out.println("D capacity=" + byteBuffer1.capacity() + " position=" +

 byteBuffer1.position() + " limit="

 + byteBuffer1.limit());

 byte[] getByteArray = byteBuffer1.array();

 for (int i = 0; i < getByteArray.length; i++) {

 System.out.print(getByteArray[i] + " ");

 }

}

}

程序运行结果如下：

A capacity=6 position=0 limit=6

1 getValue=1

B capacity=6 position=1 limit=6

2 getValue=2

C capacity=6 position=2 limit=6

byteBuffer1.compact()

D capacity=6 position=4 limit=6

3 4 5 6 5 6

可以在使用完compact（）方法后再使用flip（）方法读取压缩后的数据内容。
1.4.16　比较缓冲区的内容

比较缓冲区的内容是否相同有两种方法：equals（）和compareTo（）。这两种方法还是有使用细节上的区别，先来看一下ByteBuffer类中的equals（）方法的源代码：

public boolean equals(Object ob) {

 if (this == ob)

 return true;

 if (!(ob instanceof ByteBuffer))

 return false;

 ByteBuffer that = (ByteBuffer)ob;

 if (this.remaining() != that.remaining())

 return false;

 int p = this.position();

 for (int i = this.limit() - 1, j = that.limit() - 1; i >= p; i--, j--)

 if (!equals(this.get(i), that.get(j)))

 return false;

 return true;

}

从equals（）方法的源代码中可以分析出运算的4个主要逻辑。

1）判断是不是自身，如果是自身，则返回为true。

2）判断是不是ByteBuffer类的实例，如果不是，则返回false。

3）判断remaining（）值是否一样，如果不一样，则返回false。

4）判断两个缓冲区中的position与limit之间的数据是否完全一样，只要有一个字节不同，就返回false，否则返回true。

通过源代码来看，两个缓冲区的capacity可以不相同，说明equals（）方法比较的是position到limit的内容是否完全一样。

1）验证：判断是不是自身，如果是自身，则返回为true。

示例代码如下：

public class Test17_1 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 System.out.println("A=" + bytebuffer1.equals(bytebuffer1));

}

}

程序运行结果如下：

A=true

2）验证：判断是不是ByteBuffer类的实例，如果不是，则返回false。

示例代码如下：

public class Test17_2 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5 };

 int[] intArrayIn2 = { 1, 2, 3, 4, 5 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 IntBuffer intbuffer2 = IntBuffer.wrap(intArrayIn2);

 System.out.println("A=" + bytebuffer1.equals(intbuffer2));

}

}

程序运行结果如下：

A=false

3）验证：判断remaining（）值是否一样，如果不一样，则返回false。

示例代码如下：

public class Test17_3 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 3, 4, 5 };

 byte[] byteArrayIn2 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 ByteBuffer bytebuffer2 = ByteBuffer.wrap(byteArrayIn2);

 bytebuffer1.position(0);

 bytebuffer2.position(3);

 System.out.println("A=" + bytebuffer1.equals(bytebuffer2));

 System.out.println("bytebuffer1.remaining()=" + bytebuffer1.remaining());

 System.out.println("bytebuffer2.remaining()=" + bytebuffer2.remaining());

}

}

程序运行结果如下：

A=false

bytebuffer1.remaining()=3

bytebuffer2.remaining()=5

4）验证：判断两个缓冲区中的position与limit之间的数据是否完全一样，只要有一个字节不同，就返回false，否则返回true。

示例代码如下：

public class Test17_4 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 3, 4, 5 };

 byte[] byteArrayIn2 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 ByteBuffer bytebuffer2 = ByteBuffer.wrap(byteArrayIn2);

 bytebuffer1.position(0);

 bytebuffer1.limit(3);

 bytebuffer2.position(2);

 bytebuffer2.limit(5);

 System.out.println("A=" + bytebuffer1.equals(bytebuffer2));

 System.out.println("AA1 bytebuffer1.remaining()=" + bytebuffer1.remaining());

 System.out.println("AA2 bytebuffer2.remaining()=" + bytebuffer2.remaining());

 bytebuffer2.put(3, (byte) 44);

 System.out.println("B=" + bytebuffer1.equals(bytebuffer2));

 System.out.println("BB1 bytebuffer1.remaining()=" + bytebuffer1.remaining());

 System.out.println("BB2 bytebuffer2.remaining()=" + bytebuffer2.remaining());

}

}

程序运行结果如下：

A=true

AA1 bytebuffer1.remaining()=3

AA2 bytebuffer2.remaining()=3

B=false

BB1 bytebuffer1.remaining()=3

BB2 bytebuffer2.remaining()=3

以上的示例展示了equals（Object object）方法的使用。

compareTo（ByteBuffer that）方法的作用：将此缓冲区与另一个缓冲区进行比较。比较两个字节缓冲区的方法是按字典顺序比较它们的剩余元素序列，而不考虑每个序列在其对应缓冲区中的起始位置。该方法的源代码如下：

public int compareTo(ByteBuffer that) {

 int n = this.position() + Math.min(this.remaining(), that.remaining());

 for (int i = this.position(), j = that.position(); i < n; i++, j++) {

 int cmp = compare(this.get(i), that.get(j));

 if (cmp != 0)

 return cmp;

 }

 return this.remaining() - that.remaining();

}

从compareTo（ByteBuffer that）方法的源代码中可以分析出运算的3个主要逻辑。

1）判断两个ByteBuffer的范围是从当前ByteBuffer对象的当前位置开始，以两个ByteBuffer对象最小的remaining（）值结束说明判断的范围是remaining的交集。

2）如果在开始与结束的范围之间有一个字节不同，则返回两者的减数，Byte类中的源代码如下：

public static int compare(byte x, byte y) {

 return x - y;

}

3）如果在开始与结束的范围之间每个字节都相同，则返回两者remaining（）的减数。

通过源代码来看，两个缓冲区的capacity可以不相同，这个特性和equals（）方法一致。

1）验证：如果在开始与结束的范围之间有一个字节不同，则返回两者的减数。

示例代码如下：

public class Test17_5 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 3, 4, 5 };

 byte[] byteArrayIn2 = { 1, 2, 3, 104, 5, 6, 7, 8, 9, 10 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 ByteBuffer bytebuffer2 = ByteBuffer.wrap(byteArrayIn2);

 bytebuffer1.position(0);

 bytebuffer2.position(2);

 System.out.println("A=" + bytebuffer1.compareTo(bytebuffer2));

}

}

程序运行结果如下：

A=-100

2）验证：如果在开始与结束的范围之间每个字节都相同，则返回两者remaining（）的减数。

示例代码如下：

public class Test17_6 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 3, 4, 5 };

 byte[] byteArrayIn2 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 ByteBuffer bytebuffer2 = ByteBuffer.wrap(byteArrayIn2);

 bytebuffer1.position(0);

 bytebuffer2.position(2);

 System.out.println("A=" + bytebuffer1.compareTo(bytebuffer2));

}

}

程序运行结果如下：

A=-5

通过查看equals（Object obj）和compareTo（ByteBuffer that）方法的源代码可以发现，这两个方法的逻辑就是当前position到limit之间的字符是否逐个相同。
1.4.17　复制缓冲区

ByteBuffer duplicate（）方法的作用：创建共享此缓冲区内容的新的字节缓冲区。新缓冲区的内容将为此缓冲区的内容。此缓冲区内容的更改在新缓冲区中是可见的，反之亦然。在创建新的缓冲区时，容量、限制、位置和标记的值将与此缓冲区相同，但是这两个缓冲区的位置、界限和标记值是相互独立的。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。

下面的示例代码演示了duplicate（）方法与slice（）方法的区别。

public class Test18 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 bytebuffer1.position(2);

 System.out.println("bytebuffer1 capacity=" + bytebuffer1.capacity() +

 " limit=" + bytebuffer1.limit()

 + " position=" + bytebuffer1.position());

 ByteBuffer bytebuffer2 = bytebuffer1.slice();

 ByteBuffer bytebuffer3 = bytebuffer1.duplicate();

 // bytebuffer4和bytebuffer1指向的地址是一个

 // 所以在debug中的id是一样的

 ByteBuffer bytebuffer4 = bytebuffer1;

 System.out.println("bytebuffer2 capacity=" + bytebuffer2.capacity() +

 " limit=" + bytebuffer2.limit()

 + " position=" + bytebuffer2.position());

 System.out.println("bytebuffer3 capacity=" + bytebuffer3.capacity() +

 " limit=" + bytebuffer3.limit()

 + " position=" + bytebuffer3.position());

 bytebuffer2.position(0);

 for (int i = bytebuffer2.position(); i < bytebuffer2.limit(); i++) {

 System.out.print(bytebuffer2.get(i) + " ");

 }

 System.out.println();

 bytebuffer3.position(0);

 for (int i = bytebuffer3.position(); i < bytebuffer3.limit(); i++) {

 System.out.print(bytebuffer3.get(i) + " ");

 }

}

}

程序运行结果如下：

bytebuffer1 capacity=5 limit=5 position=2

bytebuffer2 capacity=3 limit=3 position=0

bytebuffer3 capacity=5 limit=5 position=2

3 4 5

1 2 3 4 5

duplicate（）方法和slice（）方法都会创建新的缓冲区对象，效果如图1-22所示。

 [image:]

图1-22　新创建的缓冲区对象

使用duplicate（）方法和slice（）方法能创建新的缓冲区，但这些新缓冲区使用的还是原来缓冲区中的byte[]字节数组。

下面验证使用duplicate（）方法创建新的缓冲区后，在新缓冲区中添加数据时，被复制的缓冲区中的值也发生改变，说明这两个缓冲区用的是同一个byte[]，代码如下：

public class Test19 {

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 ByteBuffer bytebuffer2 = bytebuffer1.duplicate();

 System.out.println("A capacity=" + bytebuffer1.capacity() + " position=" +

 bytebuffer1.position() + " limit="

 + bytebuffer1.limit());

 System.out.println("B capacity=" + bytebuffer2.capacity() + " position=" + bytebuffer2.position() + " limit="

 + bytebuffer2.limit());

 bytebuffer2.put(1, (byte) 22);

 bytebuffer2.position(3);

 System.out.println("C capacity=" + bytebuffer1.capacity() + " position=" +

 bytebuffer1.position() + " limit="

 + bytebuffer1.limit());

 System.out.println("D capacity=" + bytebuffer2.capacity() + " position="

 + bytebuffer2.position() + " limit="

 + bytebuffer2.limit() + " bytebuffer2位置是3，而bytebuffer1还是

 0，说明位置、限制和标记值是独立的");

 bytebuffer1.position(0);

 for (int i = 0; i < bytebuffer1.limit(); i++) {

 System.out.print(bytebuffer1.get(i) + " ");

 }

}

}

程序运行结果如下：

A capacity=5 position=0 limit=5

B capacity=5 position=0 limit=5

C capacity=5 position=0 limit=5

D capacity=5 position=3 limit=5 bytebuffer2位置是3，而bytebuffer1还是0，说明位置、限制和标记值是独立的

1 22 3 4 5

1.4.18　对缓冲区进行扩容

一旦创建缓冲区，则容量（capacity）就不能被改变。如果想对缓冲区进行扩展，就得进行相应的处理，示例代码如下：

public class Test20 {

public static ByteBuffer extendsSize(ByteBuffer buffer, int extendsSize) {

 ByteBuffer newBytebuffer = ByteBuffer.allocate(buffer.capacity() + extendsSize);

 newBytebuffer.put(buffer);

 return newBytebuffer;

}

public static void main(String[] args) throws UnsupportedEncodingException {

 byte[] byteArrayIn1 = { 1, 2, 3, 4, 5 };

 ByteBuffer bytebuffer1 = ByteBuffer.wrap(byteArrayIn1);

 ByteBuffer bytebuffer2 = extendsSize(bytebuffer1, 2);

 byte[] newArray = bytebuffer2.array();

 for (int i = 0; i < newArray.length; i++) {

 System.out.print(newArray[i] + " ");

 }

}

}

程序运行结果如下：

1 2 3 4 5 0 0

1.5　CharBuffer类的API使用

CharBuffer类提供一个字符（char）序列缓冲区。
1.5.1　重载append（char）/append（CharSequence）/append（CharSequence，start，end）方法的使用

public CharBuffer append（char c）方法的作用：将指定字符添加到此缓冲区（可选操作）。调用此方法的形式为dst.append（c），该调用与以下调用完全相同：dst.put（c）。

public CharBuffer append（CharSequence csq）方法的作用：将指定的字符序列添加到此缓冲区（可选操作）。调用此方法的形式为dst.append（csq），该调用与以下调用完全相同：dst.put（csq.toString（）），有可能没有添加整个序列，这取决于针对字符序列csq的toString规范。例如，调用字符缓冲区的toString（）方法将返回一个子序列，其内容取决于缓冲区的位置和限制。

public CharBuffer append（CharSequence csq，int start，int end）方法的作用：将指定字符序列的子序列添加到此缓冲区（可选操作）。当csq不为null时，调用此方法的形式为dst.append（csq，start，end），该调用与以下调用完全相同：dst.put（csq.subSequence（start，end）.toString（））。

示例代码如下：

public class Test1 {

public static void main(String[] args) {

 CharBuffer charbuffer = CharBuffer.allocate(15);

 System.out.println("A " + charbuffer.position());

 charbuffer.append('a');

 System.out.println("B " + charbuffer.position());

 charbuffer.append("bcdefg");

 System.out.println("C " + charbuffer.position());

 charbuffer.append("abchijklmn", 3, 8);

 System.out.println("D " + charbuffer.position());

 char[] newArray = charbuffer.array();

 for (int i = 0; i < newArray.length; i++) {

 System.out.print(newArray[i] + " ");

 }

 System.out.println();

 System.out.println("charbuffer capacity=" + charbuffer.capacity());

}

}

程序运行结果如下：

A 0

B 1

C 7

D 12

a b c d e f g h i j k l

charbuffer capacity=15

1.5.2　读取相对于当前位置的给定索引处的字符

public final char charAt（int index）方法的作用：读取相对于当前位置的给定索引处的字符。

示例代码如下：

public class Test2 {

public static void main(String[] args) {

 CharBuffer charbuffer = CharBuffer.allocate(10);

 charbuffer.append("abcdefg");

 charbuffer.position(2);

 System.out.println(charbuffer.charAt(0));

 System.out.println(charbuffer.charAt(1));

 System.out.println(charbuffer.charAt(2));

}

}

程序运行结果如下：

c

d

e

1.5.3　put（String src）、int read（CharBuffer target）和subSequence（int start，int end）方法的使用

put（String src）方法的作用：相对批量put方法（可选操作）。此方法将给定源字符串中的所有内容传输到此缓冲区的当前位置。调用此方法的形式为dst.put（s），该调用与以下调用完全相同：dst.put（s，0，s.length（））。

int read（CharBuffer target）方法的作用：试图将当前字符缓冲区中的字符写入指定的字符缓冲区。缓冲区可照原样用作字符的存储库：所做的唯一更改是put操作的结果。不对缓冲区执行翻转或重绕操作。

subSequence（int start，int end）方法的作用：创建表示此缓冲区的指定序列、相对于当前位置的新字符缓冲区。新缓冲区将共享此缓冲区的内容，即如果此缓冲区的内容是可变的，则修改一个缓冲区将导致另一个缓冲区被修改。新缓冲区的容量将为此缓冲区的容量，其位置将为position（）+start，其限制将为position（）+end。当且仅当此缓冲区为直接缓冲区时，新缓冲区才是直接缓冲区。当且仅当此缓冲区为只读时，新缓冲区才是只读的。其中两个参数的解释如下。

1）start：子序列中第一个字符相对于当前位置的索引；必须为非负且不大于remaining（）。

2）end：子序列中最后一个字符后面的字符相对于当前位置的索引；必须不小于start且不大于remaining（）。

示例代码如下：

public class Test3 {

public static void main(String[] args) throws IOException {

 CharBuffer buffer1 = CharBuffer.allocate(8);

 buffer1.append("ab123456");

 buffer1.position(2);

 buffer1.put("cde");

 buffer1.rewind();

 for (int i = 0; i < buffer1.limit(); i++) {

 System.out.print(buffer1.get());

 }

 System.out.println();

 buffer1.position(1);

 CharBuffer buffer2 = CharBuffer.allocate(4);

 System.out.println("A buffer2 position=" + buffer2.position());

 buffer1.read(buffer2);// read()相当于position是1进行导出

 System.out.println("B buffer2 position=" + buffer2.position());

 buffer2.rewind();

 for (int i = 0; i < buffer2.limit(); i++) {

 System.out.print(buffer2.get());

 }

 System.out.println();

 buffer1.position(2);

 CharBuffer buffer3 = buffer1.subSequence(0, 2);

 System.out.println("C buffer3 position=" + buffer3.position() + " capacity=" +

 buffer3.capacity() + " limit="

 + buffer3.limit());

 for (int i = buffer3.position(); i < buffer3.limit(); i++) {

 System.out.print(buffer3.get());

 }

}

}

程序运行结果如下：

abcde456

A buffer2 position=0

B buffer2 position=4

bcde

C buffer3 position=2 capacity=8 limit=4

cd

1.5.4　static CharBuffer wrap（CharSequence csq，int start，int end）方法的使用

public static CharBuffer wrap（CharSequence csq，int start，int end）方法的作用：将字符序列包装到缓冲区中。新的只读缓冲区的内容将为给定字符序列的内容。缓冲区的容量将为csq.length（），其位置将为start，其限制将为end，其标记是未定义的。

1）参数csq代表字符序列，新的字符缓冲区将从中创建。

2）参数start代表要使用的第一个字符的索引，必须为非负且不大于csq.length（）。新缓冲区的位置将被设置为此值。

3）参数end代表要使用的最后一个字符后面的字符的索引，必须不小于start且不大于csq.length（）。将新缓冲区的限制设置为此值。返回值是新的字符缓冲区。

示例代码如下：

public class Test4 {

public static void main(String[] args) throws IOException {

 CharBuffer charbuffer1 = CharBuffer.wrap("abcdefg", 3, 5);

 System.out.println("capacity=" + charbuffer1.capacity() + " limit=" +

 charbuffer1.limit() + " position="

 + charbuffer1.position());

 for (int i = 0; i < charbuffer1.limit(); i++) {

 System.out.print(charbuffer1.get(i) + " ");

 }

 charbuffer1.append("我是只读的，不能添加数据，会出现异常！");

}

}

程序运行结果如下：

capacity=7 limit=5 position=3

Exception in thread "main" a b c d e java.nio.ReadOnlyBufferException

 at java.nio.CharBuffer.put(CharBuffer.java:920)

 at java.nio.CharBuffer.put(CharBuffer.java:950)

 at java.nio.CharBuffer.append(CharBuffer.java:1351)

 at CharBufferAPITest.Test4.main(Test4.java:14)

1.5.5　获得字符缓冲区的长度

public final int length（）方法的作用：返回此字符缓冲区的长度。当将字符缓冲区视为字符序列时，长度只是该位置（包括）和限制（不包括）之间的字符数，即长度等效于remaining（）。

length（）方法的内部源代码如下：

public final int length() {

 return remaining();

}

示例代码如下：

public class Test5 {

public static void main(String[] args) throws IOException {

 CharBuffer charbuffer1 = CharBuffer.wrap("abcd");

 System.out.println("position=" + charbuffer1.position() + " remaining=" +

charbuffer1.remaining() + " length="

 + charbuffer1.length());

 System.out.println(charbuffer1.get());

 System.out.println("position=" + charbuffer1.position() + " remaining=" +

 charbuffer1.remaining() + " length="

 + charbuffer1.length());

 System.out.println(charbuffer1.get());

 System.out.println("position=" + charbuffer1.position() + " remaining=" +

 charbuffer1.remaining() + " length="

 + charbuffer1.length());

 System.out.println(charbuffer1.get());

 System.out.println("position=" + charbuffer1.position() + " remaining=" +

 charbuffer1.remaining() + " length="

 + charbuffer1.length());

 System.out.println(charbuffer1.get());

 System.out.println("position=" + charbuffer1.position() + " remaining=" +

 charbuffer1.remaining() + " length="

 + charbuffer1.length());

}

}

程序运行结果如下：

position=0 remaining=4 length=4

a

position=1 remaining=3 length=3

b

position=2 remaining=2 length=2

c

position=3 remaining=1 length=1

d

position=4 remaining=0 length=0

1.6　小结

本章主要介绍了NIO技术中的缓冲区（Buffer），通过上述若干示例可以发现，缓冲区的功能还是非常强大的，而且方法种类繁多，熟练掌握缓冲区是深入学习NIO技术的必经之路。
第2章　通道和FileChannel类的使用

本章将介绍NIO技术中的核心要点：通道（Channel）。

在NIO技术中，要将操作的数据打包到缓冲区中，而缓冲区中的数据想要传输到目的地是要依赖于通道的。缓冲区是将数据进行打包，而通道是将数据进行传输，可见两者是形影不离的。它们也是NIO技术中比较重要的知识点。因此，本章主要介绍Channel接口及其子接口，通道接口的实现类，以及FileChannel类的使用。
2.1　通道概述

什么是通道呢？先来看看百度百科中关于通道的解释，如图2-1所示。

 [image:]

图2-1　百度百科中关于通道的解释

从百度百科关于通道的解释来看，通道主要就是用来传输数据的通路。

NIO技术中的通道类似中国古代的“丝绸之路”，在“丝绸之路”上，东西方的商品可以运输和进行交易。那么在NIO技术中，可以在通道上传输“源缓冲区”与“目的缓冲区”要交互的数据，如图2-2所示。

NIO技术中的数据要放在缓冲区中进行管理，再使用通道将缓冲区中的数据传输到目的地。

NIO中Buffer类的继承关系如图2-3所示。

 [image:]

图2-2　通道的作用

 [image:]

图2-3　Buffer类的继承关系

Buffer类的子类只有ByteBuffer和CharBuffer比较常用，其他缓冲区类的API也大同小异。从Buffer类的继承关系来看，结构还是比较具有规律性的，比较容易看懂以及掌握。但Channel接口的继承结构相对来讲就比较复杂了，以致从视觉效果上来看是比较凌乱的，如图2-4所示。

从缓冲区和通道的数据类型可以发现，缓冲区都是类，而通道都是接口，这是由于通道的功能实现是要依赖于操作系统的，Channel接口只定义有哪些功能，而功能的具体实现在不同的操作系统中是不一样的，因此，在JDK中，通道被设计成接口数据类型。

 [image:]

图2-4　Channel接口的继承关系

从图2-4中可以发现，通道接口有各种实现和继承关系，众多的接口与类结构似乎很难看出规律性，但是再复杂的结构也具有化繁为简的过程，我们只需要将这些大的类结构进行分析并总结，也就不难理解它们之间的关系与区别了。那么从哪里入手呢？最好的办法就是查看Java API文档。
2.2　通道接口的层次结构

NIO技术中的通道是一个接口，其中Channel接口的信息如图2-5所示。

 [image:]

图2-5　Channel接口信息

图2-5就是由JDK1.8 API文档提供的信息，从中可以发现，Channel接口有很多的子接口，这些子接口又有很多的实现类，从此信息来看，NIO技术中的通道功能非常强大。

Channel接口的继承关系结构如图2-6所示。

 [image:]

图2-6　Channel接口的继承关系结构

AutoCloseable接口的作用是可以自动关闭，而不需要显式地调用close（）方法，示例代码如下：

public class DBOperate implements AutoCloseable {

@Override

public void close() throws Exception {

 System.out.println("关闭连接");

}

}

运行类代码如下：

public class Test {

public static void main(String[] args) {

 // 如果try后的小括号中有多条语句，则最后一条后是没有分号的

 // 并且小括号中的变量都要实现AutoCloseable接口

 try (DBOperate dbo = new DBOperate()) {

 System.out.println("使用" + dbo + "开始数据库的操作");

 } catch (Exception e) {

 e.printStackTrace();

 }

}

}

程序运行后的结果如下：

使用AutoCloseableTest.DBOperate@15db9742开始数据库的操作

关闭连接

DBOperate类实现了AutoCloseable接口，使DBOperate类具有close（）方法自动关闭资源的功能。

AutoCloseable接口强调的是与try（）结合实现自动关闭，该接口针对的是任何资源，不仅仅是I/O，因此，void close（）方法抛出Exception异常。该接口不要求是幂等的，也就是重复调用此接口的close（）方法会出现副作用。

因为Closeable接口的作用是关闭I/O流，释放系统资源，所以该方法抛出IOException异常。该接口的close（）方法是幂等的，可以重复调用此接口的close（）方法，而不会出现任何的效果与影响。Closeable接口继续继承自AutoCloseable接口，说明Closeable接口有自动关闭的功能，也有本身close（）方法手动关闭的功能。

AutoCloseable接口的子接口是Closeable，而Closeable的子接口是Channel接口。Channel接口的API结构如图2-7所示。

 [image:]

图2-7　Channel接口的API结构

通道是用于I/O操作的连接，更具体地讲，通道代表数据到硬件设备、文件、网络套接字的连接。通道可处于打开或关闭这两种状态，当创建通道时，通道就处于打开状态，一旦将其关闭，则保持关闭状态。一旦关闭了某个通道，则试图对其调用I/O操作时就会导致ClosedChannelException异常被抛出，但可以通过调用通道的isOpen（）方法测试通道是否处于打开状态以避免出现ClosedChannelException异常。一般情况下，通道对于多线程的访问是安全的。

在JDK 1.8版本中，Channel接口具有11个子接口，它们列表如下：

1）AsynchronousChannel

2）AsynchronousByteChannel

3）ReadableByteChannel

4）ScatteringByteChannel

5）WritableByteChannel

6）GatheringByteChannel

7）ByteChannel

8）SeekableByteChannel

9）NetworkChannel

10）MulticastChannel

11）InterruptibleChannel
2.2.1　AsynchronousChannel接口的介绍

AsynchronousChannel接口的主要作用是使通道支持异步I/O操作。异步I/O操作有以下两种方式进行实现。

（1）方法

Future<V> operation(...)

operation代表I/O操作的名称，大多数都是读或写操作。泛型变量V代表经过I/O操作后返回结果的数据类型。使用Future对象可以用于检测I/O操作是否完成，或者等待完成，以及用于接收I/O操作处理后的结果。

（2）回调

void operation(... A attachment, CompletionHandler<V,? super A> handler)

A类型的对象attachment的主要作用是让外部与CompletionHandler对象内部进行通信。使用CompletionHandler回调的方式实现异步I/O操作的优点是CompletionHandler对象可以被复用。当I/O操作成功或失败时，CompletionHandler对象中的指定方法会被调用。

这两种实现异步I/O代码的具体使用方式在后续部分会有详细介绍，在这里只是进行概述性的知识点引申。

当一个通道实现了可异步（asynchronously）或可关闭（closeable）相关的接口时，若调用这个正在I/O操作通道中的close（）方法，就会使I/O操作发生失败，并且出现Asynchronous CloseException异常。

异步通道在多线程并发的情况下是线程安全的。某些通道的实现是可以支持并发读和写的，但是不允许在一个未完成的I/O操作上再次调用read或write操作。

异步通道支持取消的操作，Future接口定义cancel（）方法来取消执行，这会导致那些等待处理I/O结果的线程抛出CancellationException异常。

底层的I/O操作是否能被取消，参考的是高层的具体实现，因此没有指定。

取消操作离开通道，或者离开与实体的连接，这会使通道造成不一致的状态，则通道就被置于一个错误的状态，这个状态可以阻止进一步对通道调用read（）或write（），以及其他有关联的方法。例如，如果取消了读操作，但实现不能保证在通道中阻止后面的读操作，而且通道还被置于错误的状态，如果进一步尝试启动读操作，就会导致抛出一个未指定的运行时异常。类似的，如果取消一个写操作，但实现不能保证阻止后面的写操作，而且通道还被置于错误的状态，则随后发起一次新的写入的尝试将失败，并出现一个未指定的运行时异常。

当调用通道的cancel（）方法时，对mayInterruptIfRunning参数传入true时，在关闭通道时I/O操作也许已经被中断。在这种情况下，所有等待I/O操作结果的线程会抛出CancellationException异常，并且其他在此通道中未完成的操作将会出现AsynchronousCloseException异常。

在调用cancel（）方法以取消读或写操作时，建议废弃I/O操作中使用的所有缓冲区，因为缓冲区中的数据并不是完整的，如果再次打开通道，那么也要尽量避免访问这些缓冲区。

AsynchronousChannel接口的API结构如图2-8所示。

 [image:]

图2-8　AsynchronousChannel接口的API结构

AsynchronousChannel接口的结构信息如图2-9所示。

 [image:]

图2-9　AsynchronousChannel接口的结构信息

AsynchronousChannel接口的继承关系如图2-10所示。

 [image:]

图2-10　AsynchronousChannel接口的继承关系
2.2.2　AsynchronousByteChannel接口的介绍

AsynchronousByteChannel接口的主要作用是使通道支持异步I/O操作，操作单位为字节。

若在上一个read（）方法未完成之前，再次调用read（）方法，就会抛出异常ReadPending-Exception。类似的，在上一个write（）方法未完成之前再次调用write（）方法时，也会抛出异常WritePendingException。其他类型的I/O操作是否可以同时进行read（）操作，取决于通道的类型或实现。ByteBuffers类不是线程安全的，尽量保证在对其进行读写操作时，没有其他线程一同进行读写操作。

AsynchronousByteChannel接口的API结构如图2-11所示。

 [image:]

图2-11　AsynchronousByteChannel接口的API结构

AsynchronousByteChannel接口的结构信息如图2-12所示。

AsynchronousByteChannel接口的继承关系如图2-13所示。
2.2.3　ReadableByteChannel接口的介绍

ReadableByteChannel接口的主要作用是使通道允许对字节进行读操作。

 [image:]

图2-12　AsynchronousByteChannel接口的结构信息

 [image:]

图2-13　AsynchronousByteChannel接口的继承关系

ReadableByteChannel接口只允许有1个读操作在进行。如果1个线程正在1个通道上执行1个read（）操作，那么任何试图发起另一个read（）操作的线程都会被阻塞，直到第1个read（）操作完成。其他类型的I/O操作是否可以与read（）操作同时进行，取决于通道的类型。

ReadableByteChannel接口有以下两个特点：

1）将通道当前位置中的字节序列读入1个ByteBuffer中；

2）read（ByteBuffer）方法是同步的。

ReadableByteChannel接口的API结构如图2-14所示。

 [image:]

图2-14　ReadableByteChannel

ReadableByteChannel接口的结构信息如图2-15所示。

 [image:]

图2-15　ReadableByteChannel接口的结构信息

ReadableByteChannel接口的继承关系如图2-16所示。

 [image:]

图2-16　ReadableByteChannel接口的继承关系

通道只接受以字节为单位的数据处理，因为通道和操作系统进行交互时，操作系统只接受字节数据。
2.2.4　ScatteringByteChannel接口的介绍

ScatteringByteChannel接口的主要作用是可以从通道中读取字节到多个缓冲区中。

ScatteringByteChannel接口的API结构如图2-17所示。

 [image:]

图2-17　ScatteringByteChannel接口的API结构

ScatteringByteChannel接口的结构信息如图2-18所示。

ScatteringByteChannel接口的继承关系如图2-19所示。

 [image:]

图2-18　ScatteringByteChannel接口的结构信息

 [image:]

图2-19　ScatteringByteChannel接口的继承关系
2.2.5　WritableByteChannel接口的介绍

WritableByteChannel接口的主要作用是使通道允许对字节进行写操作。

WritableByteChannel接口只允许有1个写操作在进行。如果1个线程正在1个通道上执行1个write（）操作，那么任何试图发起另一个write（）操作的线程都会被阻塞，直到第1个write（）操作完成。其他类型的I/O操作是否可以与write（）操作同时进行，取决于通道的类型。

WritableByteChannel接口有以下两个特点：

1）将1个字节缓冲区中的字节序列写入通道的当前位置；

2）write（ByteBuffer）方法是同步的。

WritableByteChannel接口的API结构如图2-20所示。

 [image:]

图2-20　WritableByteChannel接口的API结构

WritableByteChannel接口的结构信息如图2-21所示。

 [image:]

图2-21　WritableByteChannel接口的结构信息

WritableByteChannel接口的继承关系如图2-22所示。

 [image:]

图2-22　WritableByteChannel接口的继承关系
2.2.6　GatheringByteChannel接口的介绍

GatheringByteChannel接口的主要作用是可以将多个缓冲区中的数据写入到通道中。

GatheringByteChannel接口的API结构如图2-23所示。

 [image:]

图2-23　GatheringByteChannel接口的API结构

GatheringByteChannel接口的结构信息如图2-24所示。

 [image:]

图2-24　GatheringByteChannel接口的结构信息

GatheringByteChannel接口的继承关系如图2-25所示。

 [image:]

图2-25　GatheringByteChannel接口的继承关系
2.2.7　ByteChannel接口的介绍

ByteChannel接口的主要作用是将ReadableByteChannel（可读字节通道）与WritableByteChannel（可写字节通道）的规范进行了统一，也就是ByteChannel接口的父接口就是Readable-ByteChannel和WritableByteChannel。ByteChannel接口没有添加任何的新方法。ByteChannel接口的实现类就具有了读和写的方法，是双向的操作，而单独地实现ReadableByteChannel或WritableByteChannel接口就是单向的操作，因为实现类只能进行读操作，或者只能进行写操作。

ByteChannel接口的API结构如图2-26所示。

 [image:]

图2-26　ByteChannel接口的API结构

ByteChannel接口的结构信息如图2-27所示。

 [image:]

图2-27　ByteChannel接口的结构信息

ByteChannel接口的继承关系如图2-28所示。

 [image:]

图2-28　ByteChannel接口的继承关系
2.2.8　SeekableByteChannel接口的介绍

SeekableByteChannel接口的主要作用是在字节通道中维护position（位置），以及允许position发生改变。

SeekableByteChannel接口的API结构如图2-29所示。

 [image:]

图2-29　SeekableByteChannel接口的API结构

SeekableByteChannel接口的结构信息如图2-30所示。

 [image:]

图2-30　SeekableByteChannel接口的结构信息

SeekableByteChannel接口的继承关系如图2-31所示。

 [image:]

图2-31　SeekableByteChannel接口的继承关系
2.2.9　NetworkChannel接口的介绍

NetworkChannel接口的主要作用是使通道与Socket进行关联，使通道中的数据能在Socket技术上进行传输。该接口中的bind（）方法用于将Socket绑定到本地地址，get-LocalAddress（）方法返回绑定到此Socket的SocketAddress对象，并可以结合setOption（）和getOption（）方法用于设置和查询Socket相关的选项。

NetworkChannel接口的API结构如图2-32所示。

 [image:]

图2-32　NetworkChannel接口的API结构

NetworkChannel接口的结构信息如图2-33所示。

 [image:]

图2-33　NetworkChannel接口的结构信息

NetworkChannel接口的继承关系如图2-34所示。

 [image:]

图2-34　NetworkChannel接口的继承关系
2.2.10　MulticastChannel接口的介绍

MulticastChannel接口的主要作用是使通道支持Internet Protocol（IP）多播。IP多播就是将多个主机地址进行打包，形成一个组（group），然后将IP报文向这个组进行发送，也就相当于同时向多个主机传输数据。

MulticastChannel接口的API结构如图2-35所示。

 [image:]

图2-35　MulticastChannel接口的API结构

MulticastChannel接口的结构信息如图2-36所示。

 [image:]

图2-36　MulticastChannel接口的结构信息

MulticastChannel接口的继承关系如图2-37所示。

 [image:]

图2-37　MulticastChannel接口的继承关系
2.2.11　InterruptibleChannel接口的介绍

InterruptibleChannel接口的主要作用是使通道能以异步的方式进行关闭与中断。

当通道实现了asynchronously和closeable特性：如果一个线程在一个能被中断的通道上出现了阻塞状态，那么当其他线程调用这个通道的close（）方法时，这个呈阻塞状态的线程将接收到AsynchronousCloseException异常。

当通道在实现了asynchronously和closeable特性的同时还实现了interruptible特性：如果一个线程在一个能被中断的通道上出现了阻塞状态，那么当其他线程调用这个阻塞线程的interrupt（）方法后，通道将被关闭，这个阻塞的线程将接收到ClosedByInterruptException异常，这个阻塞线程的状态一直是中断状态。

InterruptibleChannel接口的API结构如图2-38所示。

 [image:]

图2-38　InterruptibleChannel接口的API结构

InterruptibleChannel接口的结构信息如图2-39所示。

 [image:]

图2-39　InterruptibleChannel接口的结构信息

InterruptibleChannel接口的继承关系如图2-40所示。

 [image:]

图2-40　InterruptibleChannel接口的继承关系
2.3　AbstractInterruptibleChannel类的介绍

前面介绍了NIO核心接口的作用，从本节开始就要学习那些接口的实现类，毕竟在开发时，虽然遵循的是接口，但功能具体的实现还是依赖于实现类的。

NIO核心接口的实现类列表如下：

1）AbstractInterruptibleChannel

2）AbstractSelectableChannel

3）AsynchronousFileChannel

4）AsynchronousServerSocketChannel

5）AsynchronousSocketChannel

6）DatagramChannel

7）FileChannel

8）Pipe.SinkChannel

9）Pipe.SourceChannel

10）SelectableChannel

11）ServerSocketChannel

12）SocketChannel

本节首先介绍AbstractInterruptibleChannel类，因为本章主要介绍FileChannel类，而FileChannel类的父类正是AbstractInterruptibleChannel类。其他类的使用在后面的部分都有所介绍。

AbstractInterruptibleChannel类的主要作用是提供了一个可以被中断的通道基本实现类。

此类封装了能使通道实现异步关闭和中断所需要的最低级别的机制。在调用有可能无限期阻塞的I/O操作的之前和之后，通道类必须分别调用begin（）和end（）方法，为了确保始终能够调用end（）方法，应该在try...finally块中使用这些方法：

boolean completed = false;

try {

 begin();

 completed = ...; // 执行blocking I/O操作

return ...; // 返回结果

 } finally {

 end(completed);

 }

end（）方法的completed参数告知I/O操作实际是否已完成。例如，在读取字节的操作中，只有确实将某些字节传输到目标缓冲区时此参数才应该为true，代表完成的结果是成功的。

具体的通道类还必须实现implCloseChannel（）方法，其方式为：如果调用此方法的同时，另一个线程阻塞在该通道上的本机I/O操作中，则该操作将立即返回，要么抛出异常，要么正常返回。如果某个线程被中断，或者异步地关闭了阻塞线程所处的通道，则该通道的end（）方法会抛出相应的异常。

此类执行实现Channel规范所需的同步。implCloseChannel（）方法的实现不必与其他可能试图关闭通道的线程同步。

AbstractInterruptibleChannel类的API结构如图2-41所示。

AbstractInterruptibleChannel类的结构信息如图2-42所示。

 [image:]

图2-41　AbstractInterruptibleChannel类的API结构图

 [image:]

2-42　AbstractInterruptibleChannel类的结构信息

AbstractInterruptibleChannel类的继承结构，如图2-43所示。

 [image:]

图2-43　AbstractInterruptibleChannel类的继承结构

AbstractInterruptibleChannel类是抽象类，另外其内部的API结构比较简单，只有两个方法，因此，具体的使用可参考其子类FileChannel。
2.4　FileChannel类的使用

FileChannel类的主要作用是读取、写入、映射和操作文件的通道。该通道永远是阻塞的操作。

FileChannel类在内部维护当前文件的position，可对其进行查询和修改。该文件本身包含一个可读写、长度可变的字节序列，并且可以查询该文件的当前大小。当写入的字节超出文件的当前大小时，则增加文件的大小；截取该文件时，则减小文件的大小。文件可能还有某个相关联的元数据，如访问权限、内容类型和最后的修改时间，但此类未定义访问元数据的方法。

除了字节通道中常见的读取、写入和关闭操作外，此类还定义了下列特定于文件的操作。

1）以不影响通道当前位置的方式，对文件中绝对位置的字节进行读取或写入。

2）将文件中的某个区域直接映射到内存中。对于较大的文件，这通常比调用普通的read（）或write（）方法更为高效。

3）强制对底层存储设备进行文件的更新，确保在系统崩溃时不丢失数据。

4）以一种可被很多操作系统优化为直接向文件系统缓存发送或从中读取的高速传输方法，将字节从文件传输到某个其他通道中，反之亦然。

5）可以锁定某个文件区域，以阻止其他程序对其进行访问。

多个并发线程可安全地使用文件通道。可随时调用关闭方法，正如Channel接口中所指定的。对于涉及通道位置或者可以更改其文件大小的操作，在任意给定时间只能进行一个这样的操作。如果尝试在第一个操作仍在进行时发起第二个操作，则会导致在第一个操作完成之前阻塞第二个操作。可以并发处理其他操作，特别是那些采用显式位置的操作；但是否并发处理则取决于基础实现，因此是未指定的。

确保此类的实例所提供的文件视图与同一程序中其他实例所提供的相同文件视图是一致的。但是，此类的实例所提供的视图不一定与其他并发运行的程序所看到的视图一致，这取决于底层操作系统所执行的缓冲策略和各种网络文件系统协议所引入的延迟。无论其他程序是以何种语言编写的，而且也无论是运行在相同机器还是不同机器上，都是如此。此种不一致的确切性质取决于系统，因此是未指定的。

此类没有定义打开现有文件或创建新文件的方法，以后的版本中可能添加这些方法。在此版本中，可从现有的FileInputStream、FileOutputStream或RandomAccessFile对象获得文件通道，方法是调用该对象的getChannel（）方法，这会返回一个连接到相同底层文件的文件通道。

文件通道的状态与其getChannel（）方法返回该通道的对象密切相关。显式或者通过读取或写入字节来更改通道的位置将更改发起对象的文件位置，反之亦然。通过文件通道更改此文件的长度将更改通过发起对象看到的长度，反之亦然。通过写入字节更改此文件的内容将更改发起对象所看到的内容，反之亦然。

此类在各种情况下指定要求“允许读取操作”“允许写入操作”或“允许读取和写入操作”的某个实例。通过FileInputStream实例的getChannel（）方法所获得的通道将允许进行读取操作。通过FileOutputStream实例的getChannel（）方法所获得的通道将允许进行写入操作。最后，如果使用模式“r”创建RandomAccessFile实例，则通过该实例的getChannel（）方法所获得的通道将允许进行读取操作；如果使用模式“rw”创建实例，则获得的通道将允许进行读取和写入操作。

如果从文件输出流中获得了允许进行写入操作的文件通道，并且该输出流是通过调用FileOutputStream（File，boolean）构造方法且为第二个参数传入true来创建的，则该文件通道可能处于添加模式。在此模式中，每次调用相关的写入操作都会首先将位置移到文件的末尾，然后写入请求的数据。在单个原子操作中，是否移动位置和写入数据是与系统相关的，因此是未指定的。

FileChannel类的API结构如图2-44所示。

 [image:]

图2-44　FileChannel类的API结构

FileChannel类的结构信息如图2-45所示。

 [image:]

图2-45　FileChannel类的结构信息

下面开始介绍FileChannel类中的API。
2.4.1　写操作与位置的使用

int write（ByteBuffer src）方法的作用是将remaining字节序列从给定的缓冲区写入此通道的当前位置，此方法的行为与WritableByteChannel接口所指定的行为完全相同：在任意给定时刻，一个可写入通道上只能进行一个写入操作。如果某个线程在通道上发起写入操作，那么在第一个操作完成之前，将阻塞其他所有试图发起另一个写入操作的线程。其他种类的I/O操作是否继续与写入操作并发执行，取决于该通道的类型。该方法的返回值代表写入的字节数，可能为零。

WritableByteChannel接口有两个特点：

1）将1个ByteBuffer缓冲区中的remaining字节序列写入通道的当前位置；

2）write（ByteBuffer）方法是同步的。

long position（）方法的作用是返回此通道的文件位置。

public abstract FileChannel position（long newPosition）方法的作用是设置此通道的文件位置。

1.验证int write（ByteBuffer src）方法是从通道的当前位置开始写入的

下面开始测试int write（ByteBuffer src）方法是从通道的当前位置开始写入的，测试代码如下：

public class Test1_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 try {

 ByteBuffer buffer = ByteBuffer.wrap("abcde".getBytes());

 System.out.println("A fileChannel.position()=" + fileChannel.position());

 System.out.println("write() 1 返回值：" + fileChannel.write(buffer));

 System.out.println("B fileChannel.position()=" + fileChannel.position());

 fileChannel.position(2);

 buffer.rewind();// 注意：还原buffer的position为0

 // 然后在当前位置position中再进行写入

 System.out.println("write() 2 返回值：" + fileChannel.write(buffer));

 System.out.println("C fileChannel.position()=" + fileChannel.position());

 } catch (IOException e) {

 e.printStackTrace();

 }

 fileChannel.close();

 fosRef.close();

}

}

生成的a.txt文件内容如下：

ababcde

控制台输出的结果如下：

A fileChannel.position()=0

write() 1 返回值：5

B fileChannel.position()=5

write() 2 返回值：5

C fileChannel.position()=7

2.验证int write（ByteBuffer src）方法将ByteBuffer的remaining写入通道

本示例将要测试使用int write（ByteBuffer src）方法时是将ByteBuffer的remaining写入通道的当前位置。

public class Test1_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 try {

 ByteBuffer buffer1 = ByteBuffer.wrap("abcde".getBytes());

 ByteBuffer buffer2 = ByteBuffer.wrap("12345".getBytes());

 fileChannel.write(buffer1);

 buffer2.position(1);

 buffer2.limit(3);

 fileChannel.position(2);

 fileChannel.write(buffer2);

 } catch (IOException e) {

 e.printStackTrace();

 }

 fileChannel.close();

 fosRef.close();

}

}

在上述程序运行后，a.txt文件的内容如下：

ab23e

3.验证int write（ByteBuffer src）方法具有同步特性

下面继续测试，使用多个线程同时对FileChannel通道进行写入，并且int write（ByteBuffer src）方法彼此之间出现同步的效果，代码如下：

public class Test1_2 {

private static FileOutputStream fosRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fosRef.getChannel();

 for (int i = 0; i < 10; i++) {

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer buffer = ByteBuffer.wrap("abcde\r\n".getBytes());

 fileChannel.write(buffer);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer buffer = ByteBuffer.wrap("我是中国人\r\n".

 getBytes());

 fileChannel.write(buffer);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread1.start();

 thread2.start();

 }

 Thread.sleep(3000);

 fileChannel.close();

 fosRef.close();

}

}

生成的文本文件的内容如下：

我是中国人

abcde

我是中国人

abcde

我是中国人

我是中国人

abcde

我是中国人

abcde

我是中国人

abcde

我是中国人

abcde

我是中国人

abcde

我是中国人

abcde

abcde

abcde

我是中国人

一共有20个字符串。

字符串“abcde”和“我是中国人”之间或者其自身之间是随机添加顺序的，但字符串“abcde”和“我是中国人”之间或者其自身之间不会出现交叉的情况，如英文和中文有交叉的情况：

abc我是de中国人

或者

我a是b中c国d人e

这也就说明int write（ByteBuffer src）方法是同步的。
2.4.2　读操作

int read（ByteBuffer dst）方法的作用是将字节序列从此通道的当前位置读入给定的缓冲区的当前位置。此方法的行为与ReadableByteChannel接口中指定的行为完全相同：在任意给定时刻，一个可读取通道上只能进行一个读取操作。如果某个线程在通道上发起读取操作，那么在第一个操作完成之前，将阻塞其他所有试图发起另一个读取操作的线程。其他种类的I/O操作是否继续与读取操作并发执行，取决于该通道的类型。该方法的返回值代表读取的字节数，可能为零。如果该通道已到达流的末尾，则返回-1。

ReadableByteChannel接口有以下两个特点：

1）将通道当前位置中的字节序列读入1个ByteBuffer缓冲区中的remaining空间中；

2）read（ByteBuffer）方法是同步的。

1.验证int read（ByteBuffer dst）方法返回值的意义

int read（ByteBuffer dst）方法返回int类型，存在以下3种值。

1）正数：代表从通道的当前位置向ByteBuffer缓冲区中读的字节个数。

2）0：代表从通道中没有读取任何的数据，也就是0字节，有可能发生的情况就是缓冲区中没有remainging剩余空间了。

3）-1：代表到达流的末端。

b.txt文件的初始内容如下：

abcde

测试用的代码如下：

public class Test2_1 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(5);

 int readLength = fileChannel.read(byteBuffer);

 System.out.println(readLength); // 取得5个字节

 // 将下面的代码添加注释，那么再次执行read()方法时，

 // 返回值是0，因为byteBuffer没有remaining剩余空间

 // byteBuffer.clear();

 readLength = fileChannel.read(byteBuffer);

 System.out.println(readLength); // 取得0个字节

 // 执行clear()方法，使缓冲区状态还原

 byteBuffer.clear();

 readLength = fileChannel.read(byteBuffer);

 System.out.println(readLength); // 到达流的末尾值为-1

 byteBuffer.clear();

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

5

0

-1

2.验证int read（ByteBuffer dst）方法是从通道的当前位置开始读取的

测试代码如下：

public class Test2_2 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 fileChannel.position(2);

 ByteBuffer byteBuffer = ByteBuffer.allocate(5);

 fileChannel.read(byteBuffer);

 byte[] getByteArray = byteBuffer.array();

 for (int i = 0; i < getByteArray.length; i++) {

 System.out.print((char) getByteArray[i]);

 }

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行的结果如下：

cde空格空格

3.验证int read（ByteBuffer dst）方法将字节放入ByteBuffer当前位置

测试代码如下：

public class Test2_3 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 // abcde

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 fileChannel.position(2);

 ByteBuffer byteBuffer = ByteBuffer.allocate(5);

 byteBuffer.position(3);

 // 向ByteBuffer读入cd

 fileChannel.read(byteBuffer);

 byte[] getByteArray = byteBuffer.array();

 for (int i = 0; i < getByteArray.length; i++) {

 if (getByteArray[i] == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) getByteArray[i]);

 }

 }

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行的结果如下：

空格空格空格cd

4.验证int read（ByteBuffer dst）方法具有同步特性

下面的示例将要测试int read（ByteBuffer dst）方法具有同步的效果。

首先创建a.txt文件，内容如下：

aaaa1aaaa2aaaa3aaaa4aaaa5aaaa6aaaa7aaaa8aaaa9bbbb1bbbb2bbbb3bbbb4bbbb5bbbb6bbb

b7bbbb8bbbb9cccc1cccc2cccc3cccc4cccc5cccc6cccc7cccc8cccc9

虽然a.txt文件内容显得比较凌乱，但还是具有规律性的，一共有27组字符串。

测试用的代码如下：

public class Test2_4 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fisRef.getChannel();

 for (int i = 0; i < 1; i++) {

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer byteBuffer = ByteBuffer.allocate(5);

 int readLength = fileChannel.read(byteBuffer);

 while (readLength != -1) {

 byte[] getByte = byteBuffer.array();

 System.out.println(new String(getByte, 0, readLength));

 byteBuffer.clear();

 readLength = fileChannel.read(byteBuffer);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer byteBuffer = ByteBuffer.allocate(5);

 int readLength = fileChannel.read(byteBuffer);

 while (readLength != -1) {

 byte[] getByte = byteBuffer.array();

 System.out.println(new String(getByte, 0, readLength));

 byteBuffer.clear();

 readLength = fileChannel.read(byteBuffer);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread1.start();

 thread2.start();

 }

 Thread.sleep(3000);

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

aaaa1

aaaa2

aaaa3

aaaa4

aaaa5

aaaa6

aaaa7

aaaa8

aaaa9

bbbb1

bbbb3

bbbb2

bbbb5

bbbb4

bbbb7

bbbb6

bbbb8

bbbb9

cccc1

cccc2

cccc3

cccc4

cccc5

cccc6

cccc7

cccc8

cccc9

一共输出了27个字符串。虽然输出的顺序是乱序的，但每组的序号都包含1～9，并没有出现重复的字符串，这也就说明int read（ByteBuffer dst）方法是同步的。

5.验证int read（ByteBuffer dst）方法从通道读取的数据大于缓冲区容量

创建a.txt文件，初始内容为：

abcde

测试用的代码如下：

public class Test2_4 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(3);

 System.out.println("A " + fileChannel.position());

 fileChannel.read(byteBuffer);

 System.out.println("B " + fileChannel.position());

 fileChannel.close();

 fileInputStream.close();

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 System.out.print((char) byteBuffer.get());

 }

}

}

上述程序运行的结果如下：

A 0

B 3

abc

上述结果说明ByteBuffer缓冲区remaining为多少，就从通道中读多少字节的数据。

6.验证int read（ByteBuffer dst）方法从通道读取的字节放入缓冲区的remaining空间中

测试用的代码如下：

public class Test2_6 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(100);

 byteBuffer.position(1);

 byteBuffer.limit(3);

 fileChannel.read(byteBuffer);

 fileChannel.close();

 fileInputStream.close();

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 byte eachByte = byteBuffer.get();

 if (eachByte == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) eachByte);

 }

 }

}

}

上述程序运行结果如下：

空格ab

2.4.3　批量写操作

long write（ByteBuffer[]srcs）方法的作用是将每个缓冲区的remaining字节序列写入此通道的当前位置。调用此方法的形式为c.write（srcs），该调用与调用c.write（srcs，0，srcs.length）的形式完全相同。

long write（ByteBuffer[]srcs）方法实现的是GatheringByteChannel接口中的同名方法。接口GatheringByteChannel的父接口是WritableByteChannel，说明接口GatheringByteChannel具有WritableByteChannel接口的以下两个特性：

1）将1个ByteBuffer缓冲区中的remaining字节序列写入通道的当前位置中；

2）write（ByteBuffer）方法是同步的。

此外，它还具有第3个特性：将多个ByteBuffer缓冲区中的remaining剩余字节序列写入通道的当前位置中。

1.验证long write（ByteBuffer[]srcs）方法是从通道的当前位置开始写入的

测试用的代码如下：

public class Test3_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 fileChannel.write(ByteBuffer.wrap("123456".getBytes()));

 fileChannel.position(3);

 ByteBuffer buffer1 = ByteBuffer.wrap("ooooo1".getBytes());

 ByteBuffer buffer2 = ByteBuffer.wrap("ooooo2".getBytes());

 ByteBuffer[] bufferArray = new ByteBuffer[] { buffer1, buffer2 };

 fileChannel.write(bufferArray);

 fileChannel.close();

 fosRef.close();

}

}

在上述程序运行后，a.txt文件的内容如下：

123ooooo1ooooo2

2.验证long write（ByteBuffer[]srcs）方法将ByteBuffer的remaining写入通道

测试用的代码如下：

public class Test3_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 fileChannel.write(ByteBuffer.wrap("123456".getBytes()));

 fileChannel.position(3);

 ByteBuffer buffer1 = ByteBuffer.wrap("abcde1".getBytes());

 ByteBuffer buffer2 = ByteBuffer.wrap("uvwxy2".getBytes());

 ByteBuffer[] bufferArray = new ByteBuffer[] { buffer1, buffer2 };

 buffer1.position(1);

 buffer1.limit(3);

 buffer2.position(2);

 buffer2.limit(4);

 fileChannel.write(bufferArray);

 fileChannel.close();

 fosRef.close();

}

}

上述程序运行的结果如下：

123bcwx

3.验证long write（ByteBuffer[]srcs）方法具有同步特性

测试代码如下：

public class Test3_2 {

private static FileOutputStream fosRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fosRef.getChannel();

 for (int i = 0; i < 10; i++) {

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer buffer1 = ByteBuffer.wrap("ooooo1\r\n".getBytes());

 ByteBuffer buffer2 = ByteBuffer.wrap("ooooo2\r\n".getBytes());

 ByteBuffer[] bufferArray = new ByteBuffer[] { buffer1,

 buffer2 };

 fileChannel.write(bufferArray);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer buffer1 = ByteBuffer.wrap("zzzzz1\r\n".

 getBytes());

 ByteBuffer buffer2 = ByteBuffer.wrap("zzzzz2\r\n".

 getBytes());

 ByteBuffer[] bufferArray = new ByteBuffer[] { buffer1,

 buffer2 };

 fileChannel.write(bufferArray);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread1.start();

 thread2.start();

 }

 Thread.sleep(3000);

 fileChannel.close();

 fosRef.close();

}

}

生成的文本文件的内容如下：

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

从上述输出的结果来看，ooooo1和ooooo2都是以组为单位出现的，zzzzz1和zzzzz2也是这样的，说明long write（ByteBuffer[]srcs）方法具有同步性。
2.4.4　批量读操作

long read（ByteBuffer[]dsts）方法的作用是将字节序列从此通道读入给定的缓冲区数组中的第0个缓冲区的当前位置。调用此方法的形式为c.read（dsts），该调用与调用c.read（dsts，0，dsts.length）的形式完全相同。

long read（ByteBuffer[]dsts）方法实现的是ScatteringByteChannel接口中的同名方法，而接口ScatteringByteChannel的父接口是ReadableByteChannel，说明接口ScatteringByteChannel具有ReadableByteChannel接口的以下两个特性。

1）将通道当前位置中的字节序列读入1个ByteBuffer缓冲区的remaining空间中；

2）read（ByteBuffer）方法是同步的。

此外，它还具有第3个特性：将通道当前位置的字节序列读入多个ByteBuffer缓冲区的remaining剩余空间中。

1.验证long read（ByteBuffer[]dsts）方法返回值的意义

b.txt文件的初始内容如下：

abcde

测试用的代码如下：

public class Test4_1 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(2);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(2);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 long readLength = fileChannel.read(bufferArray);

 System.out.println(readLength); // 取得4个字节

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray);

 System.out.println(readLength); // 取得1个字节

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray);

 System.out.println(readLength); // 到达流的末尾值为-1

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray);

 System.out.println(readLength); // 到达流的末尾值为-1

 byteBuffer1.clear();

 byteBuffer2.clear();

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

4

1

-1

-1

2.验证long read（ByteBuffer[]dsts）方法是从通道的当前位置开始读取的

测试用的代码如下：

public class Test4_2 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 fileChannel.position(2);

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(2);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(2);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 fileChannel.read(bufferArray);

 for (int j = 0; j < bufferArray.length; j++) {

 byte[] getByte = bufferArray[j].array();

 for (int k = 0; k < getByte.length; k++) {

 System.out.print((char) getByte[k]);

 }

 System.out.println();

 }

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

cd

e

3.验证long read（ByteBuffer[]dsts）方法将字节放入ByteBuffer当前位置

测试用的代码如下：

public class Test4_3 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 // abcde

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 fileChannel.position(2);

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(2);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(2);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 byteBuffer1.position(1);//

 fileChannel.read(bufferArray);

 for (int j = 0; j < bufferArray.length; j++) {

 byte[] getByte = bufferArray[j].array();

 for (int k = 0; k < getByte.length; k++) {

 if (getByte[k] == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) getByte[k]);

 }

 }

 System.out.println();

 }

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

空格c

de

4.验证long read（ByteBuffer[]dsts）方法具有同步特性

首先创建a.txt文件，内容如下：

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

注意：一定要在最后一个字符串的后面追加回车\r\n，不然会有一次打印未换行的效果。

测试用的代码如下：

public class Test4_4 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fisRef.getChannel();

 for (int i = 0; i < 10; i++) {

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(8);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(8);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1,

 byteBuffer2 };

 long readLength = fileChannel.read(bufferArray);

 while (readLength != -1) {

 // 同步的目的是输出的有序性

 synchronized (Test4_4.class) {

 for (int j = 0; j < bufferArray.length; j++) {

 byte[] getByte = bufferArray[j].array();

 for (int k = 0; k < getByte.length; k++) {

 System.out.print((char) getByte[k]);

 }

 }

 }

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(8);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(8);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1,

 byteBuffer2 };

 long readLength = fileChannel.read(bufferArray);

 while (readLength != -1) {

 synchronized (Test4_4.class) {

 for (int j = 0; j < bufferArray.length; j++) {

 byte[] getByte = bufferArray[j].array();

 for (int k = 0; k < getByte.length; k++) {

 System.out.print((char) getByte[k]);

 }

 }

 }

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread1.start();

 thread2.start();

 }

 Thread.sleep(3000);

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

ooooo1

ooooo2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

经过分析，一共输出了40个字符串。ooooo1和ooooo2为一组，一共10组；zzzzz1和zzzzz2为一组，一共10组，这也就说明long read（ByteBuffer[]dsts）方法是同步的。

5.验证long read（ByteBuffer[]dsts）方法从通道读取的数据大于缓冲区容量

如果从通道中读出来的数据大于ByteBuffer[]缓冲区数组总共的容量，会出现什么样的情况呢？创建a.txt文件，初始内容为：

abcde

测试用的代码如下：

public class Test4_5 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(2);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(2);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 System.out.println("A " + fileChannel.position());

 long readLength = fileChannel.read(bufferArray);

 System.out.println("B " + fileChannel.position() + " readLength=" + readLength);

 fileChannel.close();

 fileInputStream.close();

 byteBuffer1.rewind();

 byteBuffer2.rewind();

 for (int i = 0; i < bufferArray.length; i++) {

 ByteBuffer eachBuffer = bufferArray[i];

 byte[] byteArray = eachBuffer.array();

 for (int j = 0; j < byteArray.length; j++) {

 System.out.print((char) byteArray[j]);

 }

 System.out.println();

 }

}

}

上述程序运行结果如下：

A 0

B 4 readLength=4

ab

cd

上述结果说明ByteBuffer[]缓冲区数组总共的remaining剩余容量为多少，就从通道中读多少字节的数据。

6.验证long read（ByteBuffer[]dsts）方法从通道读取的字节放入缓冲区的remaining空间中

a.txt文件的初始内容如下：

abcdefg

测试用的代码如下：

public class Test4_6 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(7);

 byteBuffer1.position(1);

 byteBuffer1.limit(3);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(7);

 byteBuffer2.position(2);

 byteBuffer2.limit(4);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 fileChannel.read(bufferArray);

 fileChannel.close();

 fileInputStream.close();

 byteBuffer1.rewind();

 byteBuffer2.rewind();

 for (int i = 0; i < bufferArray.length; i++) {

 ByteBuffer eachBuffer = bufferArray[i];

 byte[] byteArray = eachBuffer.array();

 for (int j = 0; j < byteArray.length; j++) {

 byte eachByte = byteArray[j];

 if (eachByte == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) byteArray[j]);

 }

 }

 System.out.println();

 }

}

}

上述程序运行结果如下：

空格ab空格空格空格空格

空格空格cd空格空格空格

2.4.5　部分批量写操作

long write（ByteBuffer[]srcs，int offset，int length）方法的作用是以指定缓冲区数组的offset下标开始，向后使用length个字节缓冲区，再将每个缓冲区的remaining剩余字节子序列写入此通道的当前位置。

参数的作用说明如下。

1）offset：第一个缓冲区（要获取该缓冲区中的字节）在缓冲区数组中的偏移量；必须为非负数并且不能大于srcs.length。

2）length：要访问的最大缓冲区数；必须为非负数并且不能大于srcs.length-offset。

long write（ByteBuffer[]srcs，int offset，int length）方法实现的是GatheringByteChannel接口中的同名方法，而接口GatheringByteChannel的父接口是WritableByteChannel，说明接口GatheringByteChannel也具有WritableByteChannel接口的以下两个特性：

1）将1个ByteBuffer缓冲区中的remaining字节序列写入通道的当前位置；

2）write（ByteBuffer）方法是同步的。

1.验证long write（ByteBuffer[]srcs，int offset，int length）方法是从通道的当前位置开始写入的

测试代码如下：

public class Test5_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.wrap("abcde".getBytes());

 ByteBuffer byteBuffer2 = ByteBuffer.wrap("12345".getBytes());

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 fileChannel.write(ByteBuffer.wrap("qqqqq".getBytes()));

 fileChannel.position(2);

 fileChannel.write(bufferArray, 0, 2);

 fileChannel.close();

 fosRef.close();

}

}

上述程序运行结果如下：

qqabcde12345

2.验证long write（ByteBuffer[]srcs，int offset，int length）方法将ByteBuffer的remaining写入通道

测试用的代码如下：

public class Test5_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.wrap("abcde".getBytes());

 ByteBuffer byteBuffer2 = ByteBuffer.wrap("12345".getBytes());

 byteBuffer2.position(1);

 byteBuffer2.limit(3);

 ByteBuffer byteBuffer3 = ByteBuffer.wrap("d1e1f1".getBytes());

 byteBuffer3.position(2);

 byteBuffer3.limit(4);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2,

 byteBuffer3 };

 fileChannel.write(bufferArray, 1, 2);

 fileChannel.close();

 fosRef.close();

}

}

上述程序运行结果如下：

23e1

3.验证long write（ByteBuffer[]srcs，int offset，int length）方法具有同步特性

测试用的代码如下：

public class Test5_3 {

private static FileOutputStream fosRef;

private static FileChannel fileChannel;

private static int count = 0;

synchronized public static ByteBuffer[] getByteBufferArray(String printString1,

String printString2) {

 ++count;

 ByteBuffer byteBuffer1 = ByteBuffer.wrap((printString1 + count + "\r\n").

 getBytes());

 ByteBuffer byteBuffer2 = ByteBuffer.wrap((printString2 + count + "\r\n").

 getBytes());

 ByteBuffer[] returnArray = { byteBuffer1, byteBuffer2 };

 return returnArray;

}

public static void main(String[] args) throws IOException, InterruptedException {

 fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fosRef.getChannel();

 for (int i = 0; i < 10; i++) {

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer[] bufferArray = getByteBufferArray("aaaa", "bbbb");

 fileChannel.write(bufferArray, 0, 2);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer[] bufferArray = getByteBufferArray("xxxx", "yyyy");

 fileChannel.write(bufferArray, 0, 2);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread1.start();

 thread2.start();

 }

 Thread.sleep(3000);

 fileChannel.close();

 fosRef.close();

}

}

上述程序运行结果如下：

aaaa1

bbbb1

xxxx20

yyyy20

aaaa19

bbbb19

xxxx18

yyyy18

aaaa17

bbbb17

xxxx16

yyyy16

aaaa15

bbbb15

xxxx14

yyyy14

aaaa13

bbbb13

xxxx12

yyyy12

aaaa11

bbbb11

xxxx10

yyyy10

xxxx9

yyyy9

aaaa8

bbbb8

xxxx7

yyyy7

aaaa6

bbbb6

xxxx4

yyyy4

xxxx5

yyyy5

aaaa3

bbbb3

aaaa2

bbbb2

2.4.6　部分批量读操作

long read（ByteBuffer[]dsts，int offset，int length）方法的作用是将通道中当前位置的字节序列读入以下标为offset开始的ByteBuffer[]数组中的remaining剩余空间中，并且连续写入length个ByteBuffer缓冲区。

参数的作用说明如下。

1）dsts：要向其中传输字节的缓冲区数组。

2）offset：第一个缓冲区（字节传输到该缓冲区中）在缓冲区数组中的偏移量；必须为非负数并且不能大于dsts.length。

3）length：要访问的最大缓冲区数；必须为非负数并且不能大于dsts.length-offset。

long read（ByteBuffer[]dsts，int offset，int length）方法实现的是ScatteringByteChannel接口中的同名方法，而接口ScatteringByteChannel的父接口是ReadableByteChannel，说明接口ScatteringByteChannel也具有ReadableByteChannel接口的以下两个特性：

1）将通道当前位置的字节序列读入1个ByteBuffer缓冲区的remaining空间中；

2）read（ByteBuffer）方法是同步的。

1.验证long read（ByteBuffer[]dsts，int offset，int length）方法返回值的意义

b.txt文件的初始内容如下：

12345678

测试代码如下：

public class Test6_1 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(2);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(2);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 long readLength = fileChannel.read(bufferArray, 0, 2);

 System.out.println(readLength); // 取得4个字节

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray, 0, 2);

 System.out.println(readLength); // 取得4个字节

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray, 0, 2);

 System.out.println(readLength); // -1

 byteBuffer1.clear();

 byteBuffer2.clear();

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

4

4

-1

2.验证long read（ByteBuffer[]dsts，int offset，int length）方法是从通道的当前位置开始读取的

b.txt文件的初始内容如下：

12345678

测试代码如下：

public class Test6_2 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 fileChannel.position(2); // 改变位置

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(2);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(2);

 ByteBuffer[] byteBufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 fileChannel.read(byteBufferArray, 0, 2);

 for (int i = 0; i < byteBufferArray.length; i++) {

 ByteBuffer eachByteBuffer = byteBufferArray[i];

 byte[] getByteArray = eachByteBuffer.array();

 for (int j = 0; j < getByteArray.length; j++) {

 System.out.print((char) getByteArray[j]);

 }

 System.out.println();

 }

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

34

56

3.验证long read（ByteBuffer[]dsts，int offset，int length）方法将字节放入ByteBuffer当前位置

b.txt文件的初始内容如下：

12345678

测试代码如下：

public class Test6_3 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\b.txt"));

 fileChannel = fisRef.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(8);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(8);

 byteBuffer1.position(3);//

 byteBuffer2.position(4);//

 ByteBuffer[] byteBufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 fileChannel.read(byteBufferArray, 0, 2);

 for (int i = 0; i < byteBufferArray.length; i++) {

 ByteBuffer eachByteBuffer = byteBufferArray[i];

 byte[] getByteArray = eachByteBuffer.array();

 for (int j = 0; j < getByteArray.length; j++) {

 if (getByteArray[j] == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) getByteArray[j]);

 }

 }

 System.out.println("");

 }

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

空格空格空格12345

空格空格空格空格678空格

4.验证long read（ByteBuffer[]dsts，int offset，int length）方法具有同步特性

首先创建a.txt文件，内容如下：

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

测试代码如下：

public class Test6_4 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fisRef.getChannel();

 for (int i = 0; i < 10; i++) {

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(8);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(8);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1,

 byteBuffer2 };

 long readLength = fileChannel.read(bufferArray, 0, 2);

 while (readLength != -1) {

 synchronized (Test6_4.class) {

 for (int j = 0; j < bufferArray.length; j++) {

 byte[] getByte = bufferArray[j].array();

 for (int k = 0; k < getByte.length; k++) {

 System.out.print((char) getByte[k]);

 }

 }

 }

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray, 0, 2);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(8);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(8);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1,

 byteBuffer2 };

 long readLength = fileChannel.read(bufferArray);

 while (readLength != -1) {

 synchronized (Test6_4.class) {

 for (int j = 0; j < bufferArray.length; j++) {

 byte[] getByte = bufferArray[j].array();

 for (int k = 0; k < getByte.length; k++) {

 System.out.print((char) getByte[k]);

 }

 }

 }

 byteBuffer1.clear();

 byteBuffer2.clear();

 readLength = fileChannel.read(bufferArray, 0, 2);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread1.start();

 thread2.start();

 }

 Thread.sleep(3000);

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

ooooo1

ooooo2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

zzzzz1

zzzzz2

ooooo1

ooooo2

zzzzz1

zzzzz2

ooooo1

ooooo2

5.验证long read（ByteBuffer[]dsts，int offset，int length）方法从通道读取的数据大于缓冲区容量

a.txt文件的初始内容如下：

abcde

测试代码如下：

public class Test6_5 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(2);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(2);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 System.out.println("A " + fileChannel.position());

 long readLength = fileChannel.read(bufferArray, 0, 2);

 System.out.println("B " + fileChannel.position() + " readLength=" +

 readLength);

 fileChannel.close();

 fileInputStream.close();

 byteBuffer1.rewind();

 byteBuffer2.rewind();

 for (int i = 0; i < bufferArray.length; i++) {

 ByteBuffer eachBuffer = bufferArray[i];

 byte[] byteArray = eachBuffer.array();

 for (int j = 0; j < byteArray.length; j++) {

 System.out.print((char) byteArray[j]);

 }

 System.out.println();

 }

}

}

上述程序运行结果如下：

A 0

B 4 readLength=4

ab

cd

6.验证long read（ByteBuffer[]dsts，int offset，int length）方法从通道读取的字节放入缓冲区的remaining空间中

a.txt文件的初始内容如下：

abcdef

测试代码如下：

public class Test6_6 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer1 = ByteBuffer.allocate(7);

 byteBuffer1.position(1);

 byteBuffer1.limit(3);

 ByteBuffer byteBuffer2 = ByteBuffer.allocate(7);

 byteBuffer2.position(2);

 byteBuffer2.limit(5);

 ByteBuffer[] bufferArray = new ByteBuffer[] { byteBuffer1, byteBuffer2 };

 fileChannel.read(bufferArray, 0, 2);

 fileChannel.close();

 fileInputStream.close();

 byteBuffer1.rewind();

 byteBuffer2.rewind();

 for (int i = 0; i < bufferArray.length; i++) {

 ByteBuffer eachBuffer = bufferArray[i];

 byte[] byteArray = eachBuffer.array();

 for (int j = 0; j < byteArray.length; j++) {

 byte eachByte = byteArray[j];

 if (eachByte == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) byteArray[j]);

 }

 }

 System.out.println();

 }

}

}

上述程序运行结果如下：

空格ab空格空格空格空格

空格空格cde空格空格

2.4.7　向通道的指定position位置写入数据

write（ByteBuffer src，long position）方法的作用是将缓冲区的remaining剩余字节序列写入通道的指定位置。

参数src代表要传输其中字节的缓冲区。position代表开始传输的文件位置，必须为非负数。

除了从给定的文件位置开始写入各字节，而不是从该通道的当前位置外，此方法的执行方式与write（ByteBuffer）方法相同。此方法不修改此通道的位置。如果给定的位置大于该文件的当前大小，则该文件将扩大以容纳新的字节；在以前文件末尾和新写入字节之间的字节值是未指定的。

1.验证write（ByteBuffer src，long position）方法是从通道的指定位置开始写入的

测试代码如下：

public class Test7_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 try {

 ByteBuffer buffer = ByteBuffer.wrap("abcde".getBytes());

 fileChannel.write(buffer);

 buffer.rewind();

 fileChannel.write(buffer, 2);

 System.out.println("C fileChannel.position()=" + fileChannel.position());

 } catch (IOException e) {

 e.printStackTrace();

 }

 fileChannel.close();

 fosRef.close();

}

}

上述程序运行结果如下：

ababcde

2.验证write（ByteBuffer src，long position）方法将ByteBuffer的remaining写入通道

测试代码如下：

public class Test7_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 FileChannel fileChannel = fosRef.getChannel();

 try {

 ByteBuffer buffer1 = ByteBuffer.wrap("abcde".getBytes());

 ByteBuffer buffer2 = ByteBuffer.wrap("12345".getBytes());

 fileChannel.write(buffer1);

 buffer2.position(1);

 buffer2.limit(3);

 fileChannel.write(buffer2, 2);

 } catch (IOException e) {

 e.printStackTrace();

 }

 fileChannel.close();

 fosRef.close();

}

}

上述程序运行结果如下：

ab23e

3.验证write（ByteBuffer src，long position）方法具有同步特性

测试代码如下：

public class Test7_3 {

private static FileOutputStream fosRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fosRef = new FileOutputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fosRef.getChannel();

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 System.out.println("线程1运行");

 ByteBuffer buffer = ByteBuffer.wrap("12345".getBytes());

 fileChannel.write(buffer, 0);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 System.out.println("线程2运行");

 ByteBuffer buffer = ByteBuffer.wrap("67890".getBytes());

 fileChannel.write(buffer, 0);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread1.start();

 thread2.start();

 Thread.sleep(3000);

 fileChannel.close();

 fosRef.close();

}

}

上述程序运行结果就是哪个线程在最后运行write（）方法，文本文件里面就是哪个线程写入的数据。

4.验证write（ByteBuffer src，long position）方法中的position不变性

执行write（ByteBuffer src，long position）方法不改变position的位置（也就是绝对位置），操作不影响position的值。

测试代码如下：

public class Test7_4 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fos = new FileOutputStream("c:\\abc\\abc.txt");

 FileChannel fileChannel = fos.getChannel();

 System.out.println("A position" + fileChannel.position());

 fileChannel.position(3);

 System.out.println("B position" + fileChannel.position());

 fileChannel.write(ByteBuffer.wrap("abcde".getBytes()), 0);

 System.out.println("C position" + fileChannel.position());

 fileChannel.close();

}

}

在上述程序运行后，position不改变，依然还是3，输出结果如下：

A position0

B position3

C position3

2.4.8　读取通道指定位置的数据

read（ByteBuffer dst，long position）方法的作用是将通道的指定位置的字节序列读入给定的缓冲区的当前位置。

参数dst代表要向其中传输字节的缓冲区。position代表开始传输的文件位置，必须为非负数。

除了从给定的文件位置开始读取各字节，而不是从该通道的当前位置外，此方法的执行方式与read（ByteBuffer）方法相同。此方法不修改此通道的位置。如果给定的位置大于该文件的当前大小，则不读取任何字节。

1.验证read（ByteBuffer dst，long position）方法返回值的意义

a.txt文件的初始内容如下：

abcde

测试代码如下：

public class Test8_1 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fisRef.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(2);

 int readLength = fileChannel.read(byteBuffer, 2);

 System.out.println(readLength); // 读到2个字节

 byteBuffer.clear();

 readLength = fileChannel.read(byteBuffer, 10);

 System.out.println(readLength); // 到达流的末尾值为-1

 byteBuffer.clear();

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

2

-1

2.验证read（ByteBuffer dst，long position）方法将字节放入ByteBuffer当前位置

a.txt文件的初始内容如下：

abcde

测试代码如下：

public class Test8_3 {

private static FileInputStream fisRef;

private static FileChannel fileChannel;

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new FileInputStream(new File("c:\\abc\\a.txt"));

 fileChannel = fisRef.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(5);

 byteBuffer.position(3);

 fileChannel.read(byteBuffer, 2);

 byte[] getByteArray = byteBuffer.array();

 for (int i = 0; i < getByteArray.length; i++) {

 if (getByteArray[i] == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) getByteArray[i]);

 }

 }

 fileChannel.close();

 fisRef.close();

}

}

上述程序运行结果如下：

空格空格空格cd

3.验证read（ByteBuffer dst，long position）方法具有同步特性

本示例要在U盘中读取一个大小为2GB的文件，目的是测试read（ByteBuffer dst，long position）方法具有同步特性。之所以要在U盘中进行测试，是因为U盘的读写速度相对较慢，可以实现read和write同步互斥的效果。

测试代码如下：

public class Test8_4 {

private static RandomAccessFile fisRef;

private static FileChannel fileChannel;

private static ByteBuffer byteBuffer1 = ByteBuffer.allocate((int) (1024 * 1024 * 1024 * 1.3));

public static void main(String[] args) throws IOException, InterruptedException {

 fisRef = new RandomAccessFile(

 new File("H:\\ISOS123\\oepe-indigo-installer-12.1.1.0.1.201203120349-

 12.1.1-win32.exe"), "rw");

 fileChannel = fisRef.getChannel();

 Thread thread1 = new Thread() {

 @Override

 public void run() {

 try {

 fileChannel.read(byteBuffer1, 0);

 System.out.println(" end thread1 " + System.currentTimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread thread2 = new Thread() {

 @Override

 public void run() {

 try {

 fileChannel.write(ByteBuffer.wrap("11111111".getBytes()),

 fileChannel.size() + 1);

 System.out.println(" end thread2 " + System.currentTimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 System.out.println(" begin time " + System.currentTimeMillis());

 thread1.start();

 Thread.sleep(100);

 thread2.start();

 // fileChannel.close();

 // fisRef.close();

}

}

上述程序运行结果如下：

begin time 1511253943187

 end thread1 1511253988061

 end thread2 1511253988061

从运行结果可以发现，字符串“begin time 1511253943187”和“end thread1 1511253988061”之间的时间差有近44s，说明读操作用时44s，而在这44s期间是不能进行写操作的，也就证明read（ByteBuffer dst，long position）方法具有同步特性。

当执行多次上述程序后，EXE文件会在结尾处出现多个1，效果如图2-46所示。

 [image:]

图2-46　对EXE文件追加了数据

4.验证read（ByteBuffer dst，long position）方法从通道读取的数据大于缓冲区容量

a.txt文件的初始内容如下：

abcde

测试代码如下：

public class Test8_5 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(3);

 fileChannel.read(byteBuffer, 1);

 fileChannel.close();

 fileInputStream.close();

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 System.out.print((char) byteBuffer.get());

 }

}

}

上述程序运行结果如下：

bcd

5.验证read（ByteBuffer dst，long position）方法从通道读取的字节放入缓冲区的remaining空间中

a.txt文件的初始内容如下：

abcde

测试代码如下：

public class Test8_6 {

public static void main(String[] args) throws IOException, InterruptedException {

 FileInputStream fileInputStream = new FileInputStream(new File("c:\\

 abc\\a.txt"));

 FileChannel fileChannel = fileInputStream.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(100);

 byteBuffer.position(1);

 byteBuffer.limit(3);

 fileChannel.read(byteBuffer, 2);

 fileChannel.close();

 fileInputStream.close();

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 byte eachByte = byteBuffer.get();

 if (eachByte == 0) {

 System.out.print("空格");

 } else {

 System.out.print((char) eachByte);

 }

 }

}

}

上述程序运行结果如下：

空格cd

2.4.9　设置位置与获得大小

position（long newPosition）方法的作用是设置此通道的文件位置。将该位置设置为大于文件当前大小的值是合法的，但这不会更改文件的大小，稍后试图在这样的位置读取字节将立即返回已到达文件末尾的指示，稍后试图在这种位置写入字节将导致文件扩大，以容纳新的字节，在以前文件末尾和新写入字节之间的字节值是未指定的。

long size（）方法的作用是返回此通道关联文件的当前大小。

示例代码如下：

public class Test9 {

public static void main(String[] args) throws IOException {

 ByteBuffer byteBuffer1 = ByteBuffer.wrap("abcd".getBytes());

 ByteBuffer byteBuffer2 = ByteBuffer.wrap("cde".getBytes());

 FileOutputStream fileOutputStream = new FileOutputStream(new File("c:\\

 abc\\newtxt.txt"));

 FileChannel fileChannel = fileOutputStream.getChannel();

 System.out.println("A " + "position=" + fileChannel.position() + " size=" +

 fileChannel.size());

 fileChannel.write(byteBuffer1);

 System.out.println("B " + "position=" + fileChannel.position() + " size=" +

 fileChannel.size());

 fileChannel.position(2);

 System.out.println("C " + "position=" + fileChannel.position() + " size=" +

 fileChannel.size());

 fileChannel.write(byteBuffer2);

 System.out.println("D " + "position=" + fileChannel.position() + " size=" +

 fileChannel.size());

 fileChannel.close();

 fileOutputStream.flush();

 fileOutputStream.close();

}

}

上述程序运行结果如下：

A position=0 size=0

B position=4 size=4

C position=2 size=4

D position=5 size=5

最后D处的position值是5，说明在下一次的write（）方法进行写入操作中，要在位置为5处进行继续写入。

生成的文本文件的内容如下：

abcde

下面验证“将该位置设置为大于文件当前大小的值是合法的，但这不会更改文件的大小，试图在这样的位置读取字节将立即返回已到达文件末尾的指示，试图在这种位置写入字节将导致文件扩大，以容纳新的字节，在以前文件末尾和新写入字节之间的字节值是未指定的”，示例代码如下：

public class Test9_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile file = new RandomAccessFile("c:\\abc\\abc.txt", "rw");

 FileChannel fileChannel = file.getChannel();

 System.out.println("A position=" + fileChannel.position() + " size=" +

 fileChannel.size());

 System.out.println(fileChannel.read(ByteBuffer.allocate(10), 10000));

 fileChannel.position(9);

 System.out.println("B position=" + fileChannel.position() + " size=" +

 fileChannel.size());

 fileChannel.write(ByteBuffer.wrap("z".getBytes()));

 System.out.println("C position=" + fileChannel.position() + " size=" +

 fileChannel.size());

 fileChannel.close();

}

}

abc.txt文件默认内容如下：

abcde

在上述程序运行后，控制台输出的结果如下：

A position=0 size=5

-1

B position=9 size=5

C position=10 size=10

abc.txt文件内容被更改，新内容如下：

abcde空格空格空格空格z

2.4.10　截断缓冲区

truncate（long size）方法的作用是将此通道的文件截取为给定大小。如果给定大小小于该文件的当前大小，则截取该文件，丢弃文件新末尾后面的所有字节。如果给定大小大于或等于该文件的当前大小，则不修改文件。无论是哪种情况，如果此通道的文件位置大于给定大小，则将位置设置为该大小。

下面测试一下正常截取文件的效果，示例代码如下：

public class Test10 {

public static void main(String[] args) throws IOException {

 ByteBuffer byteBuffer1 = ByteBuffer.wrap("12345678".getBytes());

 FileOutputStream fileOutputStream = new FileOutputStream(new File("c:\\

 abc\\newtxt.txt"));

 FileChannel fileChannel = fileOutputStream.getChannel();

 fileChannel.write(byteBuffer1);

 System.out.println("A size=" + fileChannel.size() + " position=" + fileChannel.

 position());

 fileChannel.truncate(3);

 System.out.println("B size=" + fileChannel.size() + " position=" + fileChannel.

 position());

 fileChannel.close();

 fileOutputStream.flush();

 fileOutputStream.close();

}

}

上述程序运行结果如下：

A size=8 position=8

B size=3 position=3

生成的文本文件的内容如下：

123

下面测试一下如果给定大小大于或等于该文件的当前大小，则不修改文件，示例代码如下：

public class Test10_1 {

public static void main(String[] args) throws IOException {

 ByteBuffer byteBuffer1 = ByteBuffer.wrap("12345678".getBytes());

 FileOutputStream fileOutputStream = new FileOutputStream(new File("c:\\

 abc\\abc.txt"));

 FileChannel fileChannel = fileOutputStream.getChannel();

 fileChannel.write(byteBuffer1);

 System.out.println("A size=" + fileChannel.size() + " position=" + fileChannel.

 position());

 fileChannel.truncate(30000);// 很大的值

 System.out.println("B size=" + fileChannel.size() + " position=" + fileChannel.

 position());

 fileChannel.close();

 fileOutputStream.flush();

 fileOutputStream.close();

}

}

abc.txt文件默认内容如下：

12345678

在上述程序运行后，控制台输出如下：

A size=8 position=8

B size=8 position=8

abc.txt文件的内容不变，依然是12345678。
2.4.11　将数据传输到其他可写入字节通道

long transferTo（position，count，WritableByteChannel dest）方法的作用是将字节从此通道的文件传输到给定的可写入字节通道。transferTo（）方法的功能相当于write（）方法，只不过是将通道中的数据传输到另一个通道中，而不是缓冲区中。

试图读取从此通道的文件中给定position处开始的count个字节，并将其写入目标通道的当前位置。此方法的调用不一定传输所有请求的字节，是否传输取决于通道的性质和状态。如果此通道的文件从给定的position处开始所包含的字节数小于count个字节，或者如果目标通道是非阻塞的并且其输出缓冲区中的自由空间少于count个字节，则所传输的字节数要小于请求的字节数。

此方法不修改此通道的位置。如果给定的位置大于该文件的当前大小，则不传输任何字节，否则从目标通道的position位置起始开始写入各字节，然后将该位置增加写入的字节数。

与从此通道读取并将内容写入目标通道的简单循环语句相比，此方法可能高效得多。很多操作系统可将字节直接从文件系统缓存传输到目标通道，而无须实际复制各字节。

该方法中的参数说明如下。

1）position：文件中的位置，从此位置开始传输，必须为非负数。

2）count：要传输的最大字节数；必须为非负数。

3）dest：目标通道。

long transferTo（position，count，WritableByteChannel dest）方法就是将数据写入WritableByte-Channel通道中。

1.如果给定的位置大于该文件的当前大小，则不传输任何字节

a.txt文件的初始内容如下：

abcdefg

b.txt文件的初始内容如下：

123456789

测试代码如下：

public class Test11_1 {

public static void main(String[] args) throws IOException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile fileB = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannel1 = fileA.getChannel();

 FileChannel fileChannel2 = fileB.getChannel();

 fileChannel2.position(8);

 fileChannel1.transferTo(1000, 4, fileChannel2);

 fileChannel1.close();

 fileChannel2.close();

 fileA.close();

 fileB.close();

}

}

在上述程序运行后，b.txt文件的内容保持不变，内容如下：

123456789

2.正常传输数据的测试

a.txt文件的初始内容如下：

abcdefg

b.txt文件的初始内容如下：

123456789

测试代码如下：

public class Test11_2 {

public static void main(String[] args) throws IOException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile fileB = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannel1 = fileA.getChannel();

 FileChannel fileChannel2 = fileB.getChannel();

 fileChannel2.position(3);

 fileChannel1.transferTo(2, 3, fileChannel2);

 fileChannel1.close();

 fileChannel2.close();

 fileA.close();

 fileB.close();

}

}

在上述程序运行后，b.txt文件的内容如下：

123cde789

3.验证：如果count的字节个数大于position到size的字节个数，则传输通道的size-position个字节数到dest通道的当前位置

在使用long transferTo（position，count，WritableByteChannel dest）方法时，需要注意以下两种情况：

1）如果count的字节个数大于position到size的字节个数，则传输通道的size-position个字节数到dest通道的当前位置；

2）如果count的字节个数小于或等于position到size的字节个数，则传输count个字节数到dest通道的当前位置。

下面先来验证第一种情况。

a.txt文件的默认内容如下：

1234567890

验证代码如下：

public class Test11_3 {

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile file1 = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile file2 = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannel1 = file1.getChannel();

 FileChannel fileChannel2 = file2.getChannel();

 System.out.println("A position=" + fileChannel2.position());

 fileChannel1.transferTo(0, 1000, fileChannel2);

 System.out.println("B position=" + fileChannel2.position());

 fileChannel1.close();

 fileChannel2.close();

 file1.close();

 file2.close();

}

}

在上述程序运行后，b.txt文件的内容如下：

1234567890

4.验证：如果count的字节个数小于或等于position到size的字节个数，则传输count个字节数到dest通道的当前位置

下面验证上文提到的第二种情况。

a.txt文件的默认内容如下：

1234567890

验证代码如下：

public class Test11_4 {

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile file1 = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile file2 = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannel1 = file1.getChannel();

 FileChannel fileChannel2 = file2.getChannel();

 System.out.println("A position=" + fileChannel2.position());

 fileChannel1.transferTo(1, 5, fileChannel2);

 System.out.println("B position=" + fileChannel2.position());

 fileChannel1.close();

 fileChannel2.close();

 file1.close();

 file2.close();

}

}

在上述程序运行后，b.txt文件的内容如下：

23456

2.4.12　将字节从给定可读取字节通道传输到此通道的文件中

long transferFrom（ReadableByteChannel src，position，count）方法的作用是将字节从给定的可读取字节通道传输到此通道的文件中。transferFrom（）方法的功能相当于read（）方法，只不过是将通道中的数据传输到另一个通道中，而不是缓冲区中。

试着从源通道中最多读取count个字节，并将其写入到此通道的文件中从给定position处开始的位置。此方法的调用不一定传输所有请求的字节；是否传输取决于通道的性质和状态。如果源通道的剩余空间小于count个字节，或者如果源通道是非阻塞的并且其输入缓冲区中直接可用的空间小于count个字节，则所传输的字节数要小于请求的字节数。

此方法不修改此通道的位置。如果给定的位置大于该文件的当前大小，则不传输任何字节。从源通道中的当前位置开始读取各字节写入到当前通道，然后将src通道的位置增加读取的字节数。

与从源通道读取并将内容写入此通道的简单循环语句相比，此方法可能高效得多。很多操作系统可将字节直接从源通道传输到文件系统缓存，而无须实际复制各字节。

该方法的参数说明如下。

1）src：源通道。

2）position：文件中的位置，从此位置开始传输；必须为非负数。

3）count：要传输的最大字节数；必须为非负数。

注意，参数position是指当前通道的位置，而不是指src源通道的位置。

long transferFrom（ReadableByteChannel，position，count）方法就是将数据从ReadableByteChannel通道中读取出来。

参数position针对于调用transferTo（）或transferFrom（）方法的对象。

1.如果给定的位置大于该文件的当前大小，则不传输任何字节

a.txt文件的初始内容如下：

abcdefg

b.txt文件的初始内容如下：

123456789

测试代码如下：

public class Test12_1 {

public static void main(String[] args) throws IOException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile fileB = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 FileChannel fileChannelB = fileB.getChannel();

 fileChannelB.position(4);

 long readLength = fileChannelA.transferFrom(fileChannelB, 100, 2);

 System.out.println(readLength);

 fileChannelA.close();

 fileChannelB.close();

 fileA.close();

 fileB.close();

}

}

在上述程序运行后，a.txt文件的内容保持不变，内容如下：

Abcdefg

与方法transferTo不同，方法transferFrom不能使FileChannel通道对应的文件大小增长。

2.正常传输数据的测试

a.txt文件的初始内容如下：

abcdefg

b.txt文件的初始内容如下：

123456789

测试代码如下：

public class Test12_2 {

public static void main(String[] args) throws IOException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile fileB = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 FileChannel fileChannelB = fileB.getChannel();

 fileChannelB.position(4);

 long readLength = fileChannelA.transferFrom(fileChannelB, 3, 2);

 System.out.println(readLength);

 fileChannelA.close();

 fileChannelB.close();

 fileA.close();

 fileB.close();

}

}

在上述程序运行后，a.txt文件的内容如下：

abc56fg

3.验证：如果count的字节个数大于src.remaining，则通道的src.remaining字节数传输到当前通道的position位置

在使用long transferFrom（ReadableByteChannel src，position，count）方法时，需要注意以下两种情况：

1）如果count的字节个数大于src.remaining，则通道的src.remaining字节数传输到当前通道的position位置；

2）如果count的字节个数小于或等于src.remaining，则count个字节传输到当前通道的position位置。

下面先来验证第一种情况。

a.txt文件的默认内容如下：

1234567890

b.txt文件的默认内容如下：

abcdefg

验证代码如下：

public class Test12_3 {

public static void main(String[] args) throws IOException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile fileB = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 FileChannel fileChannelB = fileB.getChannel();

 fileChannelB.position(2);

 long readLength = fileChannelA.transferFrom(fileChannelB, 1, 200);

 System.out.println(readLength);

 fileChannelA.close();

 fileChannelB.close();

 fileA.close();

 fileB.close();

}

}

在上述程序运行后，a.txt文件的内容如下：

1cdefg7890

4.验证：如果count的字节个数小于或等于src.remaining，则count个字节传输到当前通道的position位置

下面验证上文提到的第二种情况。

a.txt文件的默认内容如下：

1234567890

b.txt文件的默认内容如下：

abcdefg

验证代码如下：

public class Test12_4 {

public static void main(String[] args) throws IOException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 RandomAccessFile fileB = new RandomAccessFile("c:\\abc\\b.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 FileChannel fileChannelB = fileB.getChannel();

 fileChannelB.position(2);

 long readLength = fileChannelA.transferFrom(fileChannelB, 1, 2);

 System.out.println(readLength);

 fileChannelA.close();

 fileChannelB.close();

 fileA.close();

 fileB.close();

}

}

上述程序运行结果如下：

1cd4567890

2.4.13　执行锁定操作

FileLock lock（long position，long size，boolean shared）方法的作用是获取此通道的文件给定区域上的锁定。在可以锁定该区域之前、已关闭此通道之前或者已中断调用线程之前（以先到者为准），将阻塞此方法的调用。

在此方法调用期间，如果另一个线程关闭了此通道，则抛出AsynchronousCloseException异常。

如果在等待获取锁定的同时中断了调用线程，则将状态设置为中断并抛出FileLockInterruptionException异常。如果调用此方法时已设置调用方的中断状态，则立即抛出该异常；不更改该线程的中断状态。

由position和size参数所指定的区域无须包含在实际的底层文件中，甚至无须与文件重叠。锁定区域的大小是固定的；如果某个已锁定区域最初包含整个文件，并且文件因扩大而超出了该区域，则该锁定不覆盖此文件的新部分。如果期望文件大小扩大并且要求锁定整个文件，则应该锁定的position从零开始，size传入大于或等于预计文件的最大值。零参数的lock（）方法只是锁定大小为Long.MAX_VALUE的区域。

文件锁定要么是独占的，要么是共享的。共享锁定可阻止其他并发运行的程序获取重叠的独占锁定，但是允许该程序获取重叠的共享锁定。独占锁定则阻止其他程序获取共享或独占类型的重叠锁定。

某些操作系统不支持共享锁定，在这种情况下，自动将对共享锁定的请求转换为对独占锁定的请求。可通过调用所得锁定对象的isShared（）方法来测试新获取的锁定是共享的还是独占的。

文件锁定是以整个Java虚拟机来保持的。但它们不适用于控制同一虚拟机内多个线程对文件的访问。

1.验证FileLock lock（long position，long size，boolean shared）方法是同步的

本实验要在2个进程中进行测试，所以要创建2个Java文件。

创建测试用的代码如下：

public class Test13_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("A begin");

 fileChannelA.lock(1, 2, false);

 System.out.println("A end");

 Thread.sleep(Integer.MAX_VALUE);

 fileA.close();

 fileChannelA.close();

}

}

类Test13_1锁的范围是1到2。

测试用的代码如下：

public class Test13_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("B begin");

 fileChannelA.lock(1, 2, false);

 System.out.println("B end");

 Thread.sleep(Integer.MAX_VALUE);

 fileA.close();

 fileChannelA.close();

}

}

类Test13_2锁的范围也是1到2。

首先运行Test13_1类的实现代码，然后运行Test13_2类的实现代码，控制台输出信息如下：

B begin

上述结果说明Test13_1类进程持有文件锁，而Test13_2类获取不到这个锁，导致出现阻塞的状态。

2.验证AsynchronousCloseException异常的发生

在FileLock lock（long position，long size，boolean shared）方法调用期间，如果另一个线程关闭了此通道，则抛出AsynchronousCloseException异常。

测试用的代码如下：

public class Test13_3 {

// 随机出现异步关闭异常

private static FileOutputStream fileA;

private static FileChannel fileChannelA;

public static void main(String[] args) throws IOException, InterruptedException {

 FileOutputStream fileA = new FileOutputStream("c:\\abc\\a.txt");

 FileChannel fileChannelA = fileA.getChannel();

 Thread a = new Thread() {

 @Override

 public void run() {

 try {

 fileChannelA.lock(1, 2, false);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 Thread b = new Thread() {

 @Override

 public void run() {

 try {

 fileChannelA.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 a.start();

 Thread.sleep(1);

 b.start();

 Thread.sleep(1000);

 fileA.close();

 fileChannelA.close();

}

}

在上述程序运行后，控制台输出信息如下：

java.nio.channels.AsynchronousCloseException

 at java.nio.channels.spi.AbstractInterruptibleChannel.end(Unknown Source)

 at sun.nio.ch.FileChannelImpl.lock(Unknown Source)

 at test.Test13_3$1.run(Test13_3.java:19)

此测试在运行结果上具有随机性，如果一旦出现AsynchronousCloseException异常，说明在执行lock（）方法时，对通道执行了close（）方法的关闭操作。

3.验证FileLockInterruptionException异常的发生

如果在等待获取锁定的同时中断了调用线程，则将状态设置为中断并抛出FileLockInterruptionException异常。如果调用FileLock lock（long position，long size，boolean shared）方法时已设置调用方的中断状态，则立即抛出该异常；不更改该线程的中断状态。

测试用的代码如下：

public class Test13_4{

public static void main（String[]args）throws IOException，InterruptedException{

FileOutputStream fis=new FileOutputStream（"c：\\abc\\a.txt"）；

运行Test13_4类的实现代码，控制台输出信息如下：

i=999997

i=999998

i=999999

i=1000000

java.nio.channels.FileLockInterruptionException

 at sun.nio.ch.FileChannelImpl.lock(FileChannelImpl.java:1092)

 at FileChannelAPITest.Test13_4$1.run(Test13_4.java:18)

如果线程在获得锁时，感应到自身已经被中断，则也会抛出FileLockInterruptionException异常。

创建测试类代码如下：

public class Test13_5_1 {

public static void main(String[] args) throws Exception {

 RandomAccessFile file1 = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChanne1 = file1.getChannel();

 System.out.println("A begin");

 fileChanne1.lock(0, 2, false);

 System.out.println("A end");

 Thread.sleep(20000);

 fileChanne1.close();

 file1.close();

}

}

创建测试类代码如下：

public class Test13_5_2 {

public static void main(String[] args) throws Exception {

 Thread t = new Thread() {

 public void run() {

 try {

 RandomAccessFile file1 = new RandomAccessFile("c:\\abc\\a.

 txt", "rw");

 FileChannel fileChanne1 = file1.getChannel();

 System.out.println("B begin");

 fileChanne1.lock(0, 2, false);

 System.out.println("B end");

 fileChanne1.close();

 file1.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 };

 };

 t.start();

 Thread.sleep(2000);

 t.interrupt();

}

}

首先运行Test13_5_1.java，再运行Test13_5_2.java，20秒之后Test13_5_2.java出现异常FileLockInterruptionException。

4.验证共享锁自己不能写（出现异常）

注意，如果操作锁定的区域，就会出现异常；如果操作未锁定的区域，则不出现异常。

测试用的代码如下：

public class Test13_6 {

// 共享锁自己不能写

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, true);

 fileChannelA.write(ByteBuffer.wrap("123456".getBytes()));

}

}

上述程序运行结果如下：

Exception in thread "main" java.io.IOException: 另一个程序已锁定文件的一部分，进程无法访问。

 at sun.nio.ch.FileDispatcherImpl.write0(Native Method)

 at sun.nio.ch.FileDispatcherImpl.write(Unknown Source)

 at sun.nio.ch.IOUtil.writeFromNativeBuffer(Unknown Source)

 at sun.nio.ch.IOUtil.write(Unknown Source)

 at sun.nio.ch.FileChannelImpl.write(Unknown Source)

 at test.Test13_6.main(Test13_6.java:14)

异常信息有中文的内容存在，是因为使用了中文版的操作系统，在操作系统层面进行了异常的处理，再把这个中文异常信息传给JVM，然后在控制台进行显示。上述结果说明FileChannel通道对文件进行操作时，还需要调用操作系统的API进行实现，这点已经在异常信息中的write0（Native Method）得到了验证。

5.验证共享锁别人不能写（出现异常）

类Fest13_7使用的是共享锁。

测试用的代码如下：

public class Test13_7 {

// 共享锁别人不能写

private static RandomAccessFile fileA;

private static FileChannel fileChannelA;

public static void main(String[] args) throws IOException, InterruptedException {

 fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, true);

 Thread.sleep(Integer.MAX_VALUE);

}

}

测试用的代码如下，功能是写数据

public class Test13_8 {

// 共享锁别人不能写

private static RandomAccessFile fileA;

private static FileChannel fileChannelA;

public static void main(String[] args) throws IOException, InterruptedException {

 fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 fileChannelA = fileA.getChannel();

 fileChannelA.write(ByteBuffer.wrap("123456".getBytes()));

}

}

首先运行Test13_7类的实现代码，然后运行Test13_8类的实现代码，控制台输出信息如下：

Exception in thread "main" java.io.IOException: 另一个程序已锁定文件的一部分，进程无法访问。

 at sun.nio.ch.FileDispatcherImpl.write0(Native Method)

 at sun.nio.ch.FileDispatcherImpl.write(Unknown Source)

 at sun.nio.ch.IOUtil.writeFromNativeBuffer(Unknown Source)

 at sun.nio.ch.IOUtil.write(Unknown Source)

 at sun.nio.ch.FileChannelImpl.write(Unknown Source)

 at test.Test13_8.main(Test13_8.java:16)

6.验证共享锁自己能读

a.txt文件的初始内容如下：

abcdefg

测试用的代码如下：

public class Test13_9 {

// 共享锁自己能读

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, true);

 ByteBuffer byteBuffer = ByteBuffer.allocate(10);

 fileChannelA.read(byteBuffer);

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 System.out.print((char) byteBuffer.get());

 }

}

}

上述程序运行结果如下：

abcdefg

7.验证共享锁别人能读

类Test13_10使用的是共享锁。

测试用的代码如下：

public class Test13_10 {

// 共享锁别人能读

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, true);

 Thread.sleep(Integer.MAX_VALUE);

}

}

测试用的代码如下，功能是读数据。

public class Test13_11 {

// 共享锁别人能读

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(10);

 fileChannelA.read(byteBuffer);

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 System.out.print((char) byteBuffer.get());

 }

}

}

首先运行Test13_10类的实现代码，然后运行Test13_11类的实现代码，控制台输出信息如下：

abcdefg

通过上面两次测试的结果可知：共享锁是只读的。

8.验证独占锁自己能写

a.txt文件的初始内容为空。

测试用的代码如下：

public class Test13_12 {

// 独占锁自己能写

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, false);

 fileChannelA.write(ByteBuffer.wrap("123456".getBytes()));

 fileChannelA.close();

}

}

在上述程序运行后，a.txt文件中的内容如下：

123456

9.验证独占锁别人不能写（出现异常）

类Test13_13使用的是独占锁。

测试用的代码如下：

public class Test13_13 {

// 独占锁别人不能写

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, false);

 Thread.sleep(Integer.MAX_VALUE);

}

}

测试用的代码如下，功能是写数据。

public class Test13_14 {

// 独占锁别人不能写

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.write(ByteBuffer.wrap("123456".getBytes()));

}

}

首先运行Test13_13类的实现代码，然后运行Test13_14类的实现代码，控制台输出信息如下：

Exception in thread "main" java.io.IOException: 另一个程序已锁定文件的一部分，进程无法访问。

 at sun.nio.ch.FileDispatcherImpl.write0(Native Method)

 at sun.nio.ch.FileDispatcherImpl.write(Unknown Source)

 at sun.nio.ch.IOUtil.writeFromNativeBuffer(Unknown Source)

 at sun.nio.ch.IOUtil.write(Unknown Source)

 at sun.nio.ch.FileChannelImpl.write(Unknown Source)

 at test.Test13_14.main(Test13_14.java:13)

10.验证独占锁自己能读

a.txt文件的初始内容如下：

abcdefg

测试用的代码如下：

public class Test13_15 {

// 独占锁自己能读

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, false);

 ByteBuffer byteBuffer = ByteBuffer.allocate(10);

 fileChannelA.read(byteBuffer);

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 System.out.print((char) byteBuffer.get());

 }

}

}

上述程序运行结果如下：

abcdefg

11.验证独占锁别人不能读（出现异常）

类Test13_16使用的是独占锁。

测试用的代码如下：

public class Test13_16 {

// 独占锁别人不能读

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(1, 2, false);

 Thread.sleep(Integer.MAX_VALUE);

}

}

测试用的代码如下，功能是读数据。

public class Test13_17 {

// 独占锁别人不能读

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocate(10);

 fileChannelA.read(byteBuffer);

 byteBuffer.rewind();

 for (int i = 0; i < byteBuffer.limit(); i++) {

 System.out.print((char) byteBuffer.get());

 }

}

}

首先运行Test13_16类的实现代码，然后运行Test13_17类的实现代码，控制台输出信息如下：

Exception in thread "main" java.io.IOException: 另一个程序已锁定文件的一部分，进程无法访问。

 at sun.nio.ch.FileDispatcherImpl.read0(Native Method)

 at sun.nio.ch.FileDispatcherImpl.read(Unknown Source)

 at sun.nio.ch.IOUtil.readIntoNativeBuffer(Unknown Source)

 at sun.nio.ch.IOUtil.read(Unknown Source)

 at sun.nio.ch.FileChannelImpl.read(Unknown Source)

 at test.Test13_17.main(Test13_17.java:14)

总结：独占锁只有自己可以读写，其他人不允许对其读写。

12.验证lock（）方法的参数position和size的含义

上面都是在验证锁的特性，并未针对position和size这两个参数进行测试，参数position的作用是从哪个位置开始上锁，锁的范围由参数size来决定。

a.txt文件的初始内容如下：

abcdefg

测试用的代码如下：

public class Test13_18 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("A " + fileChannelA.position());

 fileChannelA.lock(3, 2, true);// // // // // // // // // // 必须使用共享锁

 System.out.println("B " + fileChannelA.position());

 fileChannelA.write(ByteBuffer.wrap("1".getBytes()));// index=0

 System.out.println("C " + fileChannelA.position());

 fileChannelA.write(ByteBuffer.wrap("2".getBytes()));// index=1

 System.out.println("D " + fileChannelA.position());

 fileChannelA.write(ByteBuffer.wrap("3".getBytes()));// index=2

 System.out.println("E " + fileChannelA.position() + " 在position为

 3处再write()就出现异常了");

 fileChannelA.write(ByteBuffer.wrap("4".getBytes()));// index=3 error

 System.out.println("F " + fileChannelA.position());

 fileChannelA.write(ByteBuffer.wrap("5".getBytes()));

 System.out.println("G " + fileChannelA.position());

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

在上述程序运行后，控制台输出信息如下：

A 0

B 0

C 1

D 2

E 3 在position为3处再write()就出现异常了

java.io.IOException: 另一个程序已锁定文件的一部分，进程无法访问。

 at sun.nio.ch.FileDispatcherImpl.write0(Native Method)

 at sun.nio.ch.FileDispatcherImpl.write(Unknown Source)

 at sun.nio.ch.IOUtil.writeFromNativeBuffer(Unknown Source)

 at sun.nio.ch.IOUtil.write(Unknown Source)

 at sun.nio.ch.FileChannelImpl.write(Unknown Source)

 at test.Test13_18.main(Test13_18.java:23)

a.txt文件的内容更改为：

123defg

上述结果说明文件未被锁定的部分被成功更新，锁定的部分未被更新。

13.提前锁定

FileLock lock（long position，long size，boolean shared）方法可以实现提前锁定，也就是当文件大小小于指定的position时，是可以提前在position位置处加锁的。

a.txt文件的默认内容如下：

abcde

测试用的代码如下：

public class Test13_19 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(6, 2, true);

 fileChannelA.write(ByteBuffer.wrap("1".getBytes()));

 fileChannelA.write(ByteBuffer.wrap("2".getBytes()));

 fileChannelA.write(ByteBuffer.wrap("3".getBytes()));

 fileChannelA.write(ByteBuffer.wrap("4".getBytes()));

 fileChannelA.write(ByteBuffer.wrap("5".getBytes()));

 fileChannelA.write(ByteBuffer.wrap("6".getBytes()));

 fileChannelA.write(ByteBuffer.wrap("7".getBytes()));// 此行出现异常

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

在上述程序运行后，控制台出现的异常如下：

java.io.IOException: 另一个程序已锁定文件的一部分，进程无法访问。

 at sun.nio.ch.FileDispatcherImpl.write0(Native Method)

 at sun.nio.ch.FileDispatcherImpl.write(Unknown Source)

 at sun.nio.ch.IOUtil.writeFromNativeBuffer(Unknown Source)

 at sun.nio.ch.IOUtil.write(Unknown Source)

 at sun.nio.ch.FileChannelImpl.write(Unknown Source)

 at test.Test13_19.main(Test13_19.java:21)

a.txt文件的内容变成如下：

123456

14.验证共享锁与共享锁之间是非互斥关系

在JDK API文档中有这样一段话：

文件锁定要么是独占的，要么是共享的。共享锁定可阻止其他并发运行的程序获取重叠的独占锁定，但是允许该程序获取重叠的共享锁定。独占锁定则阻止其他程序获取任一类型的重叠锁定。

共享锁之间、独占锁之间，以及共享锁与独占锁之间的关系，有以下4种情况[1]：

1）共享锁与共享锁之间是非互斥关系；

2）共享锁与独占锁之间是互斥关系；

3）独占锁与共享锁之间是互斥关系；

4）独占锁与独占锁之间是互斥关系。

首先测试：共享锁与共享锁之间是非互斥关系。

测试用的代码如下：

public class Test13_20 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(0, Long.MAX_VALUE, true);

 Thread.sleep(Integer.MAX_VALUE);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

测试用的代码如下（使用共享锁）：

public class Test13_21 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("begin");

 fileChannelA.lock(0, Long.MAX_VALUE, true);

 System.out.println(" end 拿到锁了");

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行Test13_20类的实现代码，然后运行Test13_21类的实现代码，控制台输出信息如下：

begin

 end 拿到锁了

上述结果说明共享锁与共享锁之间是非互斥关系这一结论是成立的。

15.验证共享锁与独占锁之间是互斥关系

测试用的代码如下（使用共享锁）：

public class Test13_22 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 FileLock lock = fileChannelA.lock(0, Long.MAX_VALUE, true);

 Thread.sleep(Integer.MAX_VALUE);

 lock.release();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

测试用的代码如下（使用独占锁）：

public class Test13_23 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("begin " + System.currentTimeMillis());

 fileChannelA.lock(0, Long.MAX_VALUE, false);

 System.out.println(" end 拿到锁了 " + System.currentTimeMillis());

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行Test13_22类的实现代码，然后立即运行Test13_23类的实现代码，控制台输出信息如下：

begin 1499934879329

上述结果说明共享锁与独占锁之间是互斥关系这一结论是成立的。

16.验证独占锁与共享锁之间是互斥关系

测试用的代码如下：

public class Test13_24 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(0, Long.MAX_VALUE, false);

 Thread.sleep(Integer.MAX_VALUE);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

测试用的代码如下：

public class Test13_25 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("Test13_25 begin " + System.currentTimeMillis());

 fileChannelA.lock(0, Long.MAX_VALUE, true);

 System.out.println("Test13_25 end " + System.currentTimeMillis());

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行Test13_24类的实现代码，然后立即运行Test13_25类的实现代码，控制台输出信息如下：

Test13_25 begin 1499935209465

上述结果说明独占锁与共享锁之间是互斥关系这一结论是成立的。

17.测试独占锁与独占锁之间是互斥关系

测试用的代码如下（使用独占锁）：

public class Test13_26 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 fileChannelA.lock(0, Long.MAX_VALUE, false);

 System.out.println("Test13_26 begin " + System.currentTimeMillis());

 Thread.sleep(Integer.MAX_VALUE);

 System.out.println("Test13_26 end " + System.currentTimeMillis());

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

测试用的代码如下（使用独占锁）：

public class Test13_27 {

public static void main(String[] args) {

 try {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("Test13_27 begin " + System.currentTimeMillis());

 fileChannelA.lock(0, Long.MAX_VALUE, false);

 System.out.println("Test13_27 end " + System.currentTimeMillis());

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行Test13_26.java，然后立即运行Test13_27.java，控制台输出信息如下：

Test13_27 begin 1499935311054

上述结果说明独占锁与独占锁之间是互斥关系这一结论是成立的。

[1] 第2种和第3种情况的区别是在代码中验证的顺序。
2.4.14　FileLock lock（）方法的使用

前面介绍的FileLock lock（long position，long size，boolean shared）方法可以对文件的某个区域进行部分锁定，而无参方法FileLock lock（）的作用为获取对此通道的文件的独占锁定，是对文件的整体进行锁定。调用此方法的形式为fc.lock（），该调用与以下调用完全相同：fc.lock（0L，Long.MAX_VALUE，false）。FileLock lock（）方法的源代码如下：

public final FileLock lock() throws IOException {

 return lock(0L, Long.MAX_VALUE, false);

}

在源代码的内部调用的还是FileLock lock（long position，long size，boolean shared）有参方法，说明FileLock lock（long position，long size，boolean shared）方法具有什么特性，FileLock lock（）方法也同样具有什么特性。因此，针对FileLock lock（）方法进行测试的源代码不再重复给出，具体的使用可参考前面FileLock lock（long position，long size，boolean shared）有参方法相关的代码演示。
2.4.15　获取通道文件给定区域的锁定

FileLock tryLock（long position，long size，boolean shared）方法的作用是试图获取对此通道的文件给定区域的锁定。此方法不会阻塞。无论是否已成功地获得请求区域上的锁定，调用总是立即返回。如果由于另一个程序保持着一个重叠锁定而无法获取锁定，则此方法返回null。如果由于任何其他原因而无法获取锁定，则抛出相应的异常。

由position和size参数所指定的区域无须包含在实际的底层文件中，甚至无须与文件重叠。锁定区域的大小是固定的；如果某个已锁定区域最初包含整个文件，但文件因扩大而超出了该区域，则该锁定不覆盖此文件的新部分。如果期望文件大小扩大并且要求锁定整个文件，则应该锁定从零开始，到不小于期望最大文件大小为止的区域。零参数的tryLock（）方法只是锁定大小为Long.MAX_VALUE的区域。

某些操作系统不支持共享锁定，在这种情况下，自动将对共享锁定的请求转换为对独占锁定的请求。可通过调用所得锁定对象的isShared（）方法来测试新获取的锁定是共享的还是独占的。

文件锁定以整个Java虚拟机来保持。但它们不适用于控制同一虚拟机内多个线程对文件的访问。

FileLock tryLock（long position，long size，boolean shared）方法与FileLock lock（long position，long size，boolean shared）方法的区别：

1）tryLock（）方法是非阻塞的；

2）lock（）方法是阻塞的。

下面开始测试FileLock tryLock（long position，long size，boolean shared）方法是非阻塞的，也就是当FileLock tryLock（long position，long size，boolean shared）方法获取不到锁时，返回null对象。

创建测试程序，代码如下（使用独占锁）：

public class Test14_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("A begin");

 FileLock fileLock = fileChannelA.tryLock(0, 5, false);

 System.out.println("A end 获得了锁 fileLock=" + fileLock);

 Thread.sleep(Integer.MAX_VALUE);

}

}

在Test14_1类中设置的是独占锁。

创建测试程序，代码如下（使用共享锁）：

public class Test14_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 RandomAccessFile fileA = new RandomAccessFile("c:\\abc\\a.txt", "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("B begin");

 FileLock fileLock = fileChannelA.tryLock(0, 5, true);// 使用的是共享锁定！

 System.out.println("B end 未获得锁 fileLock=" + fileLock);

 fileA.close();

 fileChannelA.close();

}

}

首先运行Test14_1类的实现代码，控制台输出结果如下：

A begin

A end 获得了锁 fileLock=sun.nio.ch.FileLockImpl[0:5 exclusive valid]

然后运行Test14_2类的实现代码，控制台输出信息如下：

B begin

B end 未获得锁 fileLock=null

因为Test14_2类并未获得锁，所以tryLock（）方法返回值为null。

[image:]注意　在本测试中，在Test14_1类里设置的是独占锁，如果是共享锁，则Test14_2类是可以获得锁的。
2.4.16　FileLock tryLock（）方法的使用

前面介绍的FileLock tryLock（long position，long size，boolean shared）方法可以对文件的某个区域进行部分锁定，而且具有非阻塞的特性，而无参方法FileLock tryLock（）的作用为获取对此通道的文件的独占锁定，是对文件的整体进行锁定。调用此方法的形式为fc.tryLock（），该调用与以下调用完全相同：fc.tryLock（0L，Long.MAX_VALUE，false）。FileLock tryLock（）方法的源代码如下：

public final FileLock tryLock() throws IOException {

 return tryLock(0L, Long.MAX_VALUE, false);

}

在源代码的内部调用的还是FileLock tryLock（long position，long size，boolean shared）有参方法，说明FileLock tryLock（long position，long size，boolean shared）方法具有什么特性，FileLock tryLock（）方法也同样具有什么特性。因此，针对FileLock tryLock（）方法进行测试的源代码不再重复给出，具体的使用可参考前面FileLock tryLock（long position，long size，boolean shared）有参方法相关的代码演示。
2.4.17　FileLock类的使用

FileLock类表示文件区域锁定的标记。每次通过FileChannel类的lock（）或tryLock（）方法获取文件上的锁定时，就会创建一个FileLock（文件锁定）对象。

文件锁定对象最初是有效的。通过调用release（）方法、关闭用于获取该锁定的通道，或者终止Java虚拟机（以先到者为准）来释放锁定之前，该对象一直是有效的。可通过调用锁定的isValid（）方法来测试锁定的有效性。

文件锁定要么是独占的，要么是共享的。共享锁定可阻止其他并发运行的程序获取重叠的独占锁定，但是允许该程序获取重叠的共享锁定。独占锁定则阻止其他程序获取任一类型的重叠锁定。一旦释放某个锁定后，它就不会再对其他程序所获取的锁定产生任何影响。

可通过调用某个锁定的isShared（）方法来确定它是独占的还是共享的。某些平台不支持共享锁定，在这种情况下，对共享锁定的请求被自动转换为对独占锁定的请求。

单个Java虚拟机在某个特定文件上所保持的锁定是不重叠的。要测试某个候选锁定范围是否与现有锁定重叠，可使用overlaps（）方法。

文件锁定对象记录了在其文件上保持锁定的文件通道、该锁定的类型和有效性，以及锁定区域的位置和大小。只有锁定的有效性是随时间而更改的；锁定状态的所有其他方面都是不可变的。

文件锁定以整个Java虚拟机来保持。但它们不适用于控制同一虚拟机内多个线程对文件的访问。

多个并发线程可安全地使用文件锁定对象。

FileLock类具有平台依赖性，此文件锁定API直接映射到底层操作系统的本机锁定机制。因此，无论程序是用何种语言编写的，某个文件上所保持的锁定对于所有访问该文件的程序来说都应该是可见的。

由于某个锁定是否实际阻止另一个程序访问该锁定区域的内容是与系统相关的，因此是未指定的。有些系统的本机文件锁定机制只是劝告的，意味着为了保证数据的完整性，各个程序必须遵守已知的锁定协议。其他系统本机文件锁定是强制的，意味着如果某个程序锁定了某个文件区域，则实际上阻止其他程序以违反该锁定的方式访问该区域。但在其他系统上，本机文件锁定是劝告的还是强制的可以以每个文件为基础进行配置。为确保平台间的一致性和正确性，强烈建议将此API提供的锁定作为劝告锁定来使用。

在有些系统上，在某个文件区域上获取强制锁定会阻止该区域被java.nio.channels.FileChannel#map映射到内存，反之亦然。组合锁定和映射的程序应该为此组合的失败做好准备。

在有些系统上，关闭某个通道会释放Java虚拟机在底层文件上所保持的所有锁定，而不管该锁定是通过该通道获取的，还是通过同一文件上打开的另一个通道获取的。强烈建议在某个程序内使用唯一的通道来获取任意给定文件上的所有锁定。

1.常见API的使用

测试用的代码如下：

public class FileLockAPI_1 {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println("fileChannelA.hashCode()=" + fileChannelA.hashCode());

 FileLock lock = fileChannelA.lock(1, 10, true);

 System.out.println("A position=" + lock.position() + " size=" + lock.

 size() + " isValid=" + lock.isValid()

 + " isShared=" + lock.isShared() + " channel().hashCode()=" +

 lock.channel().hashCode()

 + " acquiredBy().hashCode()=" + lock.acquiredBy().hashCode());

 lock.release();

 lock = fileChannelA.lock(1, 10, false);

 System.out.println("B position=" + lock.position() + " size=" + lock.

 size() + " isValid=" + lock.isValid()

 + " isShared=" + lock.isShared() + " channel().hashCode()=" +

 lock.channel().hashCode()

 + " acquiredBy().hashCode()=" + lock.acquiredBy().hashCode());

 lock.close();

 fileChannelA.close();

 System.out.println("C position=" + lock.position() + " size=" + lock.

 size() + " isValid=" + lock.isValid()

 + " isShared=" + lock.isShared() + " channel().hashCode()=" +

 lock.channel().hashCode()

 + " acquiredBy().hashCode()=" + lock.acquiredBy().hashCode());

}

}

上述程序运行结果如下：

fileChannelA.hashCode()=366712642

A position=1 size=10 isValid=true isShared=true channel().hashCode()=366712642 acquiredBy().hashCode()=366712642

B position=1 size=10 isValid=true isShared=false channel().hashCode()=366712642 acquiredBy().hashCode()=366712642

C position=1 size=10 isValid=false isShared=false channel().hashCode()=366712642 acquiredBy().hashCode()=366712642

FileLock类的close（）方法在源代码内部调用的是release（）方法，源代码如下：

public final void close() throws IOException {

 release();

}

channel（）方法是返回当前锁所属的FileChannel文件通道对象，在最新版本的JDK中，该方法已经被public Channel acquiredBy（）方法所替代，这两个方法的源代码如下：

public final FileChannel channel() {

 return (channel instanceof FileChannel) ? (FileChannel)channel : null;

}

public Channel acquiredBy() {

 return channel;

}

2.boolean overlaps（long position，long size）方法的使用

boolean overlaps（long position，long size）方法的作用：判断此锁定是否与给定的锁定区域重叠。返回值是boolean类型，也就是当且仅当此锁定与给定的锁定区域至少重叠一个字节时，才返回true。

测试用的代码如下：

public class FileLockAPI_2 {

public static void main(String[] args) throws InterruptedException, IOException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 FileLock lock = fileChannelA.lock(1, 10, true);

 System.out.println(lock.overlaps(5, 10));

 lock.close();

}

}

上述程序运行结果是true。

测试用的代码如下：

public class FileLockAPI_3 {

public static void main(String[] args) throws InterruptedException, IOException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 FileLock lock = fileChannelA.lock(1, 10, true);

 System.out.println(lock.overlaps(11, 12));

 lock.close();

}

}

上述程序运行结果是false。
2.4.18　强制将所有对通道文件的更新写入包含文件的存储设备

void force（boolean metaData）方法的作用是强制将所有对此通道的文件更新写入包含该文件的存储设备中。如果此通道的文件驻留在本地存储设备上，则此方法返回时可保证：在此通道创建后或在最后一次调用此方法后，对该文件进行的所有更改都已写入该设备中。这对确保在系统崩溃时不会丢失重要信息特别有用。如果该文件不在本地设备上，则无法提供这样的保证。

metaData参数可用于限制此方法必须执行的I/O操作数量。在为此参数传入false时，只需将对文件内容的更新写入存储设备；在传入true时，则必须写入对文件内容和元数据的更新，这通常需要一个以上的I/O操作。此参数是否实际有效，取决于底层操作系统，因此是未指定的。

调用此方法可能导致发生I/O操作，即使该通道仅允许进行读取操作时也是如此。例如，某些操作系统将最后一次访问的时间作为元数据的一部分进行维护，每当读取文件时就更新此时间。实际是否执行操作是与操作系统相关的，因此是未指定的。

此方法只保证强制进行通过此类中已定义的方法对此通道的文件所进行的更改。此方法不一定强制进行那些通过修改已映射字节缓冲区（通过调用map（）方法获得）的内容所进行的更改。调用已映射字节缓冲区的force（）方法将强行对要写入缓冲区的内容进行更改。

以上文字是JDK API文档对该方法的解释，并不能完全反映出该方法的使用意图与作用，因此，在此着重说明一下，其实在调用FileChannel类的write（）方法时，操作系统为了运行的效率，先是把那些将要保存到硬盘上的数据暂时放入操作系统内核的缓存中，以减少硬盘的读写次数，然后在某一个时间点再将内核缓存中的数据批量地同步到硬盘中，但同步的时间却是由操作系统决定的，因为时间是未知的，这时就不能让操作系统来决定，所以要显式地调用force（boolean）方法来强制进行同步，这样做的目的是防止在系统崩溃或断电时缓存中的数据丢失而造成损失。但是，force（boolean）方法并不能完全保证数据不丢失，如正在执行force（）方法时出现断电的情况，那么硬盘上的数据有可能就不是完整的，而且由于断电的原因导致内核缓存中的数据也丢失了，最终造成的结果就是force（boolean）方法执行了，数据也有可能丢失。既然调用该方法也有可能造成数据的丢失，那么该方法的最终目的是什么呢？其实force（boolean）方法的最终目的是尽最大的努力减少数据的丢失。例如，内核缓存中有10KB的数据需要同步，那么可以每2KB就执行1次force（boolean）方法来同步到硬盘上，也就不至于缓存中有10KB数据，在突然断电时，这10KB数据全部丢失的情况发生，因此，force（boolean）方法的目的是尽可能少地丢失数据，而不是保证完全不丢失数据。

1.void force（boolean metaData）方法的性能

测试用的代码如下：

public class Test15_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 if (file.exists() == false) {

 file.createNewFile();

 } else {

 file.delete();

 }

 FileOutputStream fileA = new FileOutputStream(file);

 FileChannel fileChannelA = fileA.getChannel();

 long beginTime = System.currentTimeMillis();

 for (int i = 0; i < 5000; i++) {

 fileChannelA.write(ByteBuffer.wrap(("abcde").getBytes()));

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 fileChannelA.close();

 fileChannelA.close();

}

}

上述程序运行后在控制台输出时间如下：

24

再继续创建新的测试程序，在下面的代码中执行了force（boolean）方法：

public class Test15_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 if (file.exists() == false) {

 file.createNewFile();

 } else {

 file.delete();

 }

 FileOutputStream fileA = new FileOutputStream(file);

 FileChannel fileChannelA = fileA.getChannel();

 long beginTime = System.currentTimeMillis();

 for (int i = 0; i < 5000; i++) {

 fileChannelA.write(ByteBuffer.wrap(("abcde").getBytes()));

 fileChannelA.force(false);

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 fileChannelA.close();

 fileChannelA.close();

}

}

上述程序运行后在控制台输出运行的时间如下：

19492

因为执行force（boolean）方法后性能急剧下降，所以调用该方法是有运行效率成本的。

2.布尔参数metaData的作用

参数metaData的作用：如果传入值为true，则需要此方法强制对要写入存储设备的文件内容和元数据进行更改，否则只需强行写入内容更改。

此方法需要依赖于底层操作系统的支持，在Linux所使用的glibc库的2.17版本中，这两个方法的作用是一样的，因为fdatasync调用的就是fsync（）方法，其调用关系如图2-47所示。

 [image:]

图2-47　调用关系

如果Java代码在Linux系统中进行测试，无论传入的是false还是true，都会更新文件的元数据，因为最终调用的就是fsync（）方法。
2.4.19　将通道文件区域直接映射到内存

MappedByteBuffer map（FileChannel.MapMode mode，long position，long size）方法的作用是将此通道的文件区域直接映射到内存中。可以通过下列3种模式将文件区域映射到内存中。

1）只读：试图修改得到的缓冲区将导致抛出ReadOnlyBufferException异常。（MapMode.READ_ONLY）

2）读取/写入：对得到的缓冲区的更改最终将传播到文件；该更改对映射到同一文件的其他程序不一定是可见的。（MapMode.READ_WRITE）

3）专用：对得到的缓冲区的更改不会传播到文件，并且该更改对映射到同一文件的其他程序也不是可见的；相反，会创建缓冲区已修改部分的专用副本。（MapMode.PRIVATE）

对于只读映射关系，此通道必须可以进行读取操作；对于读取/写入或专用映射关系，此通道必须可以进行读取和写入操作。

此方法返回的已映射字节缓冲区位置为零，限制和容量为size；其标记是不确定的。在缓冲区本身被作为垃圾回收之前，该缓冲区及其表示的映射关系都是有效的。

映射关系一经创建，就不再依赖于创建它时所用的文件通道。特别是关闭该通道对映射关系的有效性没有任何影响。

很多内存映射文件的细节从根本上是取决于底层操作系统的，因此是未指定的。当所请求的区域没有完全包含在此通道的文件中时，此方法的行为是未指定的：未指定是否将此程序或另一个程序对底层文件的内容或大小所进行的更改传播到缓冲区；未指定将对缓冲区的更改传播到文件的频率。

对于大多数操作系统而言，与通过普通的read（）和write（）方法读取或写入数千字节的数据相比，将文件映射到内存中开销更大。从性能的观点来看，通常将相对较大的文件映射到内存中才是值得的。

该方法的3个参数的说明如下。

1）mode：根据只读、读取/写入或专用（写入时复制）来映射文件，分别为FileChannel.MapMode类中所定义的READ_ONLY、READ_WRITE和PRIVATE；

2）position：文件中的位置，映射区域从此位置开始；必须为非负数。

3）size：要映射的区域大小；必须为非负数且不大于Integer.MAX_VALUE。

1.MapMode和MappedByteBuffer类的介绍

MapMode类的作用是提供文件映射模式，其结构信息如图2-48所示。

 [image:]

图2-48　MapMode类的结构信息

MapMode类中有3个常量，这3个常量的说明如图2-49所示。

 [image:]

图2-49　MapMode类中的常量说明

再来介绍一下MappedByteBuffer类，它是直接字节缓冲区，其内容是文件的内存映射区域。映射的字节缓冲区是通过FileChannel.map（）方法创建的。此类用特定于内存映射文件区域的操作扩展ByteBuffer类。

映射的字节缓冲区和它所表示的文件映射关系在该缓冲区本身成为垃圾回收缓冲区之前一直保持有效。

映射的字节缓冲区的内容可以随时更改，如在此程序或另一个程序更改了对应的映射文件区域的内容的情况下。这些更改是否发生（以及何时发生）与操作系统无关，因此是未指定的。

全部或部分映射的字节缓冲区可能随时成为不可访问的，如截取映射的文件。试图访问映射的字节缓冲区的不可访问区域将不会更改缓冲区的内容，并导致在访问时或访问后的某个时刻抛出未指定的异常。因此，强烈推荐采取适当的预防措施，以避免此程序或另一个同时运行的程序对映射的文件执行操作（读写文件内容除外）。

除此之外，映射的字节缓冲区的功能与普通的直接字节缓冲区完全相同。

MappedByteBuffer类的继承关系如图2-50所示。

 [image:]

图2-50　MappedByteBuffer类的继承关系

因为MappedByteBuffer类的父类是java.nio.ByteBuffer，所以父类java.nio.ByteBuffer中的方法在MappedByteBuffer类中也可以使用。MappedByteBuffer类增加了哪些新的方法呢？其新增方法列表如图2-51所示。

 [image:]

图2-51　MappedByteBuffer类的自增API列表

2.map（MapMode mode，long position，long size）方法的使用

文件a.txt初始内容如下：

abcdefg

测试用的代码如下：

public class Test16_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 MappedByteBuffer buffer = fileChannelA.map(FileChannel.MapMode.READ_ONLY,

 0, 5);

 System.out.println((char) buffer.get() + " position=" + buffer.position());// a

 System.out.println((char) buffer.get() + " position=" + buffer.position());// b

 System.out.println((char) buffer.get() + " position=" + buffer.position());// c

 System.out.println((char) buffer.get() + " position=" + buffer.position());// d

 System.out.println((char) buffer.get() + " position=" + buffer.position());// e

 System.out.println();

 buffer = fileChannelA.map(FileChannel.MapMode.READ_ONLY, 2, 2);

 // 缓冲区第0个位置的值是c

 System.out.println((char) buffer.get() + " position=" + buffer.position());// c

 System.out.println((char) buffer.get() + " position=" + buffer.position());// d

 Thread.sleep(500);

 System.out.println();

 // 下面程序代码出现异常，因为超出映射的范围

 System.out.println((char) buffer.get() + " position=" + buffer.position());

 fileA.close();

 fileChannelA.close();

}

}

在上述程序运行后，控制台输出结果如下：

a position=1

b position=2

c position=3

d position=4

e position=5

c position=1

d position=2

Exception in thread "main" java.nio.BufferUnderflowException

 at java.nio.Buffer.nextGetIndex(Unknown Source)

 at java.nio.DirectByteBuffer.get(Unknown Source)

 at test.Test16_1.main(Test16_1.java:32)

3.只读模式（READ_ONLY）的测试

测试用的代码如下：

public class Test16_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 MappedByteBuffer buffer = fileChannelA.map(FileChannel.MapMode.READ_ONLY,

 0, 5);

 buffer.putChar('1');// 此行出现异常，因为是只读的，不允许更改数据

}

}

在上述程序运行后，控制台输出结果如下：

Exception in thread "main" java.nio.ReadOnlyBufferException

 at java.nio.DirectByteBufferR.putChar(Unknown Source)

 at test.Test16_2.main(Test16_2.java:15)

4.可写可读模式（READ_WRITE）的测试

a.txt文件的内容默认为：

abcde

测试用的代码如下：

public class Test16_3 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 MappedByteBuffer buffer = fileChannelA.map(FileChannel.MapMode.READ_WRITE,

 0, 5);

 System.out.println((char) buffer.get() + " position=" + buffer.position());// a

 System.out.println((char) buffer.get() + " position=" + buffer.position());// b

 System.out.println((char) buffer.get() + " position=" + buffer.position());// c

 System.out.println((char) buffer.get() + " position=" + buffer.position());// d

 System.out.println((char) buffer.get() + " position=" + buffer.position());// e

 buffer.position(0);

 buffer.put((byte) 'o');

 buffer.put((byte) 'p');

 buffer.put((byte) 'q');

 buffer.put((byte) 'r');

 buffer.put((byte) 's');

 fileChannelA.close();

 fileA.close();

}

}

在上述程序运行后，控制台输出结果如下：

a position=1

b position=2

c position=3

d position=4

e position=5

a.txt文件的内容被更改成如下：

opqrs

5.专用模式（PRIVATE）的测试

专用模式可以使对文件的更改只针对当前的MappedByteBuffer可视，并不更改底层文件。

a.txt文件的内容默认为：

abcde

测试用的代码如下：

public class Test16_4 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 MappedByteBuffer buffer = fileChannelA.map(FileChannel.MapMode.PRIVATE,

 0, 5);

 System.out.println((char) buffer.get() + " position=" + buffer.position());// a

 System.out.println((char) buffer.get() + " position=" + buffer.position());// b

 System.out.println((char) buffer.get() + " position=" + buffer.position());// c

 System.out.println((char) buffer.get() + " position=" + buffer.position());// d

 System.out.println((char) buffer.get() + " position=" + buffer.position());// e

 buffer.position(0);

 buffer.put((byte) 'o');

 buffer.put((byte) 'p');

 buffer.put((byte) 'q');

 buffer.put((byte) 'r');

 buffer.put((byte) 's');

 fileChannelA.close();

 fileA.close();

}

}

在上述程序运行后，控制台输出结果如下：

a position=1

b position=2

c position=3

d position=4

e position=5

a.txt文件的内容未被更改，内容如下：

abcde

6.MappedByteBuffer类的force（）方法的使用

public final MappedByteBuffer force（）方法的作用是将此缓冲区所做的内容更改强制写入包含映射文件的存储设备中。如果映射到此缓冲区中的文件位于本地存储设备上，那么当此方法返回时，可以保证自此缓冲区创建以来，或自最后一次调用此方法以来，已将对缓冲区所做的所有更改写入到该设备。如果文件不在本地设备上，则无法作出这样的保证。如果此缓冲区不是以读/写模式（FileChannel.MapMode.READ_WRITE）映射的，则调用此方法无效。

调用该方法后程序在运行效率上会下降，测试代码如下：

创建测试用的代码如下，未使用force（）方法。

public class Test16_5 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 MappedByteBuffer buffer = fileChannelA.map(FileChannel.MapMode.READ_WRITE,

 0, 100);

 long beginTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 buffer.put("a".getBytes());

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 fileChannelA.close();

 fileA.close();

}

}

在上述程序运行后，控制台输出结果如下：

0

测试用的代码如下，使用force（）方法。

public class Test16_6 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 MappedByteBuffer buffer = fileChannelA.map(FileChannel.MapMode.READ_WRITE,

 0, 100);

 long beginTime = System.currentTimeMillis();

 for (int i = 0; i < 100; i++) {

 buffer.put("a".getBytes());

 buffer.force();

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 fileChannelA.close();

 fileA.close();

}

}

在上述程序运行后，控制台输出结果如下：

418

7.MappedByteBuffer load（）和boolean isLoaded（）方法的使用

public final MappedByteBuffer load（）方法的作用是将此缓冲区内容加载到物理内存中。此方法最大限度地确保在它返回时此缓冲区内容位于物理内存中。调用此方法可能导致一些页面错误，并导致发生I/O操作。

public final boolean isLoaded（）方法的作用是判断此缓冲区的内容是否位于物理内存中。返回值为true意味着此缓冲区中所有数据极有可能都位于物理内存中，因此是可访问的，不会导致任何虚拟内存页错误，也无须任何I/O操作。返回值为false不一定意味着缓冲区的内容不位于物理内存中。返回值是一个提示，而不是保证，因为在此方法的调用返回之前，底层操作系统可能已经移出某些缓冲区数据。

本测试要在Linux系统中进行，因为在Windows系统中调用isLoaded（）方法永远返回false。

测试用的代码如下：

public class Test16_7 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("/home/ghy/下载/a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 MappedByteBuffer buffer = fileChannelA.map(FileChannel.MapMode.READ_

 WRITE, 0, 100);

 System.out.println(buffer + " " + buffer.isLoaded());

 buffer = buffer.load();

 System.out.println(buffer + " " + buffer.isLoaded());

 fileChannelA.close();

 fileA.close();

}

}

上述程序在Linux系统中运行的结果如图2-52所示。

 [image:]

图2-52　运行的结果
2.4.20　打开一个文件

FileChannel open（Path path，OpenOption...options）方法的作用是打开一个文件，以便对这个文件进行后期处理。

参数Path代表一个文件在文件系统中的路径。Path接口的信息如图2-53所示。

 [image:]

图2-53　Path接口的信息

Path接口的实现类可以使用多种方式进行获取，在本章节中通过调用File类的toPath（）方法进行获取。

参数OpenOption代表以什么样的方式打开或创建一个文件。OpenOption也是一个接口，OpenOption接口的信息如图2-54所示。

 [image:]

图2-54　OpenOption接口的信息

OpenOption接口的实现类通常由StandardOpenOption枚举进行代替。枚举StandardOpenOption信息如图2-55所示。

枚举StandardOpenOption有若干枚举常量，下面就介绍这些常量的使用。

1.枚举常量CREATE和WRITE的使用

枚举常量CREATE的作用：创建一个新文件（如果它不存在）。如果还设置了CREATE_NEW选项，则忽略此选项。此选项只是一个创建文件的意图，并不能真正地创建文件，因此，CREATE不能单独使用，那样就会出现java.nio.file.NoSuchFileException异常。

 [image:]

图2-55　枚举StandardOpenOption的信息

枚举常量WRITE的作用：打开以进行写入访问。

假如路径C：\abc下并没有aaa.txt文件，

测试代码如下：

public class OpenMethod2Param_1 {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.CREATE);

 fileChannel.close();

}

}

运行程序时出现异常，结果如下：

Exception in thread "main" java.nio.file.NoSuchFileException: c:\abc\aaa.txt

 at sun.nio.fs.WindowsException.translateToIOException(Unknown Source)

 at sun.nio.fs.WindowsException.rethrowAsIOException(Unknown Source)

 at sun.nio.fs.WindowsException.rethrowAsIOException(Unknown Source)

 at sun.nio.fs.WindowsFileSystemProvider.newFileChannel(Unknown Source)

 at java.nio.channels.FileChannel.open(Unknown Source)

 at java.nio.channels.FileChannel.open(Unknown Source)

 at FileChannelAPITest.OpenMethod2Param_1.main(OpenMethod2Param_1.java:13)

上述结果说明单独使用CREATE常量并不能创建1个aaa.txt文件，这时需要结合WRITE常量，更改代码如下：

public class OpenMethod2Param_2 {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 CREATE, StandardOpenOption.WRITE);

 fileChannel.close();

}

}

上述程序运行后成功创建出aaa.txt文件。

如果aaa.txt文件存在，则重复执行上面的程序代码，不会更改原始文件的内容。

2.枚举常量APPEND的使用

枚举常量APPEND的作用：如果打开文件以进行写入访问，则字节将写入文件末尾而不是开始处。

假设路径C：\abc下存在aaa.txt文件，并且初始内容为abcde。

测试代码如下：

public class OpenMethod2Param_3 {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.APPEND);

 fileChannel.write(ByteBuffer.wrap("123".getBytes()));

 fileChannel.close();

}

}

在上述程序运行后，aaa.txt文件内容变成abcde123，在文件的结尾处追加了字符123。

3.枚举常量READ的使用

枚举常量READ的作用：打开以进行读取访问。

假设路径C：\abc下存在aaa.txt文件，并且初始内容为abcde。

测试代码如下：

public class OpenMethod2Param_4 {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.READ);

 byte[] byteArray = new byte[(int) file.length()];

 ByteBuffer buffer = ByteBuffer.wrap(byteArray);

 fileChannel.read(buffer);

 fileChannel.close();

 byteArray = buffer.array();

 for (int i = 0; i < byteArray.length; i++) {

 System.out.print((char) byteArray[i]);

 }

}

}

上述程序运行后在控制台输出字符abcde。

4.枚举常量TRUNCATE_EXISTING的使用

枚举常量TRUNCATE_EXISTING的作用：如果该文件已存在并且为写入访问而打开，则其长度将被截断为0。如果只为读取访问打开文件，则忽略此选项。

假设路径C：\abc下存在aaa.txt文件，并且初始内容为abcde。

测试代码如下：

public class OpenMethod2Param_5 {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 TRUNCATE_EXISTING,

 StandardOpenOption.WRITE);

 fileChannel.close();

}

}

上述程序运行后文件aaa.txt内容为空。

5.枚举常量CREATE_NEW的使用

枚举常量CREATE_NEW的作用：创建一个新文件，如果该文件已存在，则失败。

假设路径C：\abc下并没有aaa.txt文件。

测试代码如下：

public class OpenMethod2Param_6 {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 CREATE_NEW, StandardOpenOption.WRITE);

 fileChannel.close();

}

}

上述程序运行后成功创建出aaa.txt文件。

如果aaa.txt文件存在，则重复执行上面的程序就会出现异常，异常信息如下：

Exception in thread "main" java.nio.file.FileAlreadyExistsException: c:\abc\aaa.txt

 at sun.nio.fs.WindowsException.translateToIOException(Unknown Source)

 at sun.nio.fs.WindowsException.rethrowAsIOException(Unknown Source)

 at sun.nio.fs.WindowsException.rethrowAsIOException(Unknown Source)

 at sun.nio.fs.WindowsFileSystemProvider.newFileChannel(Unknown Source)

 at java.nio.channels.FileChannel.open(Unknown Source)

 at java.nio.channels.FileChannel.open(Unknown Source)

 at FileChannelAPITest.OpenMethod2Param_6.main(OpenMethod2Param_6.java:13)

如果使用代码

FileChannel.open(path, StandardOpenOption.CREATE, StandardOpenOption.WRITE)

重复执行上述程序，则不会出现java.nio.file.FileAlreadyExistsException异常。

6.枚举常量DELETE_ON_CLOSE的使用

枚举常量DELETE_ON_CLOSE的作用：关闭时删除。

当此选项存在时，实现会尽最大努力尝试在关闭时通过适当的close（）方法删除该文件。如果未调用close（）方法，则在Java虚拟机终止时尝试删除该文件。此选项主要用于仅由Java虚拟机的单个实例使用的工作文件。在打开由其他实体并发打开的文件时，建议不要使用此选项。有关何时以及如何删除文件的许多详细信息都是特定于实现的，因此没有指定。特别是，实现可能无法保证当文件打开或攻击者替换时，它将删除预期的文件。因此，安全敏感的应用程序在使用此选项时应小心。

假设路径C：\abc下不存在aaa.txt文件。

测试代码如下：

public class OpenMethod2Param_7 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 DELETE_ON_CLOSE, StandardOpenOption.CREATE,

 StandardOpenOption.WRITE);

 Thread.sleep(10000);

 fileChannel.close();

}

}

上述程序运行后创建了新的文件aaa.txt，但在10s后，即程序运行结束时，则自动删除aaa.txt文件。

7.枚举常量SPARSE的使用

枚举常量SPARSE的作用：稀疏文件。与CREATE_NEW选项一起使用时，此选项提供了一个提示，表明新文件将是稀疏的。当文件系统不支持创建稀疏文件时，将忽略该选项。

什么是稀疏文件呢？在介绍稀疏文件之前，先来看看普通文件存储时硬盘空间占用的情况。

例如，使用如下代码创建1个普通的文件，而且文件很大。

public class OpenMethod2Param_8 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 CREATE, StandardOpenOption.WRITE);

 long fileSize = Integer.MAX_VALUE;

 fileSize = fileSize + fileSize + fileSize;

 fileSize = fileSize + fileSize + fileSize;

 fileChannel.position(fileSize);

 fileChannel.write(ByteBuffer.wrap("a".getBytes()));

 fileChannel.close();

}

}

在未执行上面的代码时，C盘剩余空间是152GB，如图2-56所示。

当执行上面的代码后，C盘空间剩余134GB，如图2-57所示。

 [image:]

图2-56　C盘剩余空间为152GB

 [image:]

图2-57　C盘剩余空间为134GB

上述结果说明只对aaa.txt文件写入了一个字符a也要占用18GB的硬盘空间。aaa.txt文件大小如图2-58所示。

 [image:]

图2-58　一个18GB大小的文件

这个18GB大小的文件只有一个字符a有效，其他都是不存储数据的空间，而且这些空间还占用硬盘的容量，这样就浪费了硬盘资源。解决问题的思路是对那些不存储数据的空间不让其占用硬盘容量，等以后写入有效的数据时再占用硬盘容量，这样就达到了提高硬盘空间利用率的目的，这个需求可以通过创建1个“稀疏文件”进行实现。

在删除刚才创建的aaa.txt文件后，C盘使用情况如图2-59所示。

 [image:]

图2-59　C盘剩余空间恢复为152GB

测试代码如下：

public class OpenMethod2Param_9 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 SPARSE, StandardOpenOption.CREATE_NEW,

 StandardOpenOption.WRITE);

 long fileSize = Integer.MAX_VALUE;

 fileSize = fileSize + fileSize + fileSize;

 fileChannel.position(fileSize);

 fileChannel.write(ByteBuffer.wrap("a".getBytes()));

 fileChannel.close();

}

}

[image:]注意　不要使用StandardOpenOption.CREATE来创建稀疏文件，而是要使用StandardOpen

Option.CREATE_NEW来创建稀疏文件。

在上述程序运行后，创建了新的文件aaa.txt，但C盘空间占用情况基本不变，如图2-60所示。

 [image:]

图2-60　C盘空间占用情况基本不变

aaa.txt文件只占用了64KB硬盘空间容量，这就是使用稀疏文件后的结果。

8.枚举常量SYNC的使用

枚举常量SYNC的作用：要求对文件内容或元数据的每次更新都同步写入底层存储设备。如果这样做，程序运行的效率就降低了。

先来看一个不使用SYNC同步选项的程序运行时间。

测试代码如下：

public class OpenMethod2Param_10 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 CREATE_NEW, StandardOpenOption.WRITE);

 long beginTime = System.currentTimeMillis();

 for (int i = 0; i < 200; i++) {

 fileChannel.write(ByteBuffer.wrap("a".getBytes()));

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 fileChannel.close();

}

}

在上述程序运行后，控制台输出内容如下：

4

再来看看经过SYNC同步后的运行时间，测试代码如下：

public class OpenMethod2Param_11 {

public static void main(String[] args) throws IOException, InterruptedException {

 File file = new File("c:\\abc\\aaa.txt");

 Path path = file.toPath();

 FileChannel fileChannel = FileChannel.open(path, StandardOpenOption.

 SYNC, StandardOpenOption.CREATE_NEW,

 StandardOpenOption.WRITE);

 long beginTime = System.currentTimeMillis();

 for (int i = 0; i < 200; i++) {

 fileChannel.write(ByteBuffer.wrap("a".getBytes()));

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 fileChannel.close();

}

}

在上述程序运行后，控制台输出内容如下：

27

上述结果说明使用SYNC同步选项后程序运行时间增加了。

9.枚举常量DSYNC的使用

枚举常量DSYNC的作用：要求对文件内容的每次更新都同步写入底层存储设备。

枚举常量SYNC与DSYNC的区别：SYNC更新内容与元数据，而DSYNC只更新内容，与force（boolean）方法作用一样。
2.4.21　判断当前通道是否打开

public final boolean isOpen（）方法的作用是判断当前的通道是否处于打开的状态。

示例代码如下：

public class IsOpenTest {

public static void main(String[] args) throws IOException {

 File file = new File("c:\\abc\\a.txt");

 RandomAccessFile fileA = new RandomAccessFile(file, "rw");

 FileChannel fileChannelA = fileA.getChannel();

 System.out.println(fileChannelA.isOpen());

 fileChannelA.close();

 System.out.println(fileChannelA.isOpen());

}

}

上述程序运行结果如下：

true

false

2.5　小结

本章主要介绍了NIO技术中的FileChannel类的使用，该类提供了大量的API供程序员调用。但在使用FileChannel类或MappedByteBuffer类对文件进行操作时，在大部分情况下，它们的效率并不比使用InputStream或OutputStream高很多，这是因为NIO的出现是为了解决操作I/O线程阻塞的问题，使用NIO就把线程变成了非阻塞，这样就提高了运行效率。但在本章中并没有体会到非阻塞的特性与优势，在后面的章节就会了解NIO真正的优势：非阻塞。NIO中非阻塞的特性是与Socket有关的通道进行实现的，因此，要先掌握Socket的使用，然后再来学习非阻塞的特性。下面开始进入Socket网络编程的学习。
第3章　获取网络设备信息

在计算机软件中，实现计算机之间数据通信的方式有多种。在Web开发领域，实现数据通信时使用最多的就是HTTP，它是B/S架构使用的数据通信协议。虽然HTTP在开发效率上得到了保障，但运行效率其实并不是最高的，因为HTTP属于高层协议，内部封装了很多细节，并且请求（request）进入Web容器内部还要执行容器的内部代码，最后执行具体的业务代码。如果想要实现高效率、高并发的数据通信机制，高层协议HTTP基本就不太适合了，因此，底层技术Socket就成为必须要掌握的内容了。

Socket技术和HTTP有什么关系呢？像HTTP这样的高层协议，在通信的原理上，底层还是使用Socket技术进行实现。Socket这项技术并不仅仅在Java语言中存在，如C++、C#等都支持针对Socket技术的软件开发。针对Socket技术的软件项目是在TCP/IP的基础上进行的，不同的编程语言也可以使用Socket技术进行异构平台的通信，只要这些编程语言支持TCP/IP编程即可。

Socket不是协议，是一种实现计算机之间通信的技术，而HTTP才是协议。如果计算机之间想互相通信，就必须要使用Socket技术，而能读懂对方传递过来的数据是要依靠协议的。

使用任何的编程语言实现套接字（Socket）程序设计，都避免不了要与网络接口进行交互，而在进行网络通信之前获得网络接口的相关信息就显得非常重要，如网卡、IP地址等信息。本章将介绍如何使用JDK中的NetworkInterface类获得网络接口信息，掌握这些知识才能深入理解Java Socket技术。

需要说明的是，本书不是TCP/IP知识大全，也不是网络工程师知识手册，本书主要介绍的是在Java语言中应用Socket技术进行软件设计，希望可以给想掌握Socket这项技术的Java程序员一些帮助。
3.1　NetworkInterface类的常用方法

在学习网络编程时，“IP地址”是必须要知道的技术点。百度百科中对“IP地址”的解释如图3-1所示。

 [image:]

图3-1　IP地址的解释

IP地址就是标识加入到网络中设备的地址，通过IP地址就可以在网络中找到指定的设备。

IP地址分为两种，一种是IPv4，另一种是IPv6。在生活和工作中，接触最多的还是IPv4地址。IPv4地址是由4组8位的二进制数组成，格式如下：

00000001.00000001.00000001.00000001

由于每组的8位二进制数比较难记，因此使用十进制数表示，变成：

0～255. 0～255. 0～255. 0～255

IPv4地址总数是232。IPv4地址总数可以使用Java代码进行计算，代码如下：

public class Test1 {

public static void main(String[] args) {

 double getValue = Math.pow(2, 32);

 BigDecimal bigDecimal = new BigDecimal("" + getValue);

 System.out.println(bigDecimal.toString());

}

}

程序运行后得出的结果如下：

4294967296

而IPv6地址一共由128位二进制数组成，这128位被分为8组，每组由16位的二进制数组成。由于16位的二进制数更加难记，因此，在使用IPv6地址时，也是被分成8组，但每组由4个十六进制数组成。因为每4个二进制数可以使用1个十六进制数作为代替，所以16位的二进制数可以使用4位十六进制数作为代替。各进制关系表如图3-2所示。

 [image:]

图3-2　各进制关系表

IPv6地址总数的计算代码如下：

public class Test2 {

public static void main(String[] args) {

 double getValue = Math.pow(2, 128);

 BigDecimal bigDecimal = new BigDecimal("" + getValue);

 System.out.println(bigDecimal.toString());

}

}

程序运行结果如下：

3.4028236692093846E+38

此数的完整格式如下：

340282366920938460000000000000000000000

了解了IP地址相关知识后，下面开始介绍可以获得网络接口信息的NetworkInterface类，该类就可以获取IP地址信息。

NetworkInterface类表示一个由名称和分配给此接口的IP地址列表组成的网络接口，也就是NetworkInterface类包含网络接口名称与IP地址列表。该类提供访问网卡设备的相关信息，如可以获取网卡名称、IP地址和子网掩码等。

想要取得NetworkInterface对象，就必须要通过NetworkInterface类的public static Enumeration小于号 <NetworkInterface>getNetworkInterfaces（）方法，该方法的返回值是泛型Enumeration小于号 <NetworkInterface>，作用是返回此机器上的所有接口。

NetworkInterface类中有很多常用的方法，如图3-3所示。

 [image:]

图3-3　NetworkInterface类中的方法

下面将开始介绍NetworkInterface类中的方法的使用。
3.1.1　获得网络接口的基本信息

public String getName（）方法的作用：取得网络设备在操作系统中的名称。该名称并不能得知具体设备的相关信息，仅仅就是一个代号，多数都以eth开头，后面跟着数字序号，如eth0、eth1、eth2和eth3等这样的格式，但序号并不一定是连续的。eth代表以太网（Ethernet），它是由Xerox公司创建并由Xerox、英特尔和DEC公司联合开发的基带局域网规范，是当今现有局域网采用的通用的通信协议标准。

public String getDisplayName（）方法的作用：取得设备在操作系统中的显示名称。此方法返回的字符串包含厂商名称和网卡具体型号等相关信息，此方法返回的信息是对getName（）返回信息的丰富化。

public int getIndex（）方法的作用：获得网络接口的索引。此索引值在不同的操作系统中有可能不一样。索引是大于或等于0的整数，索引未知时，值就是-1。

public boolean isUp（）方法的作用：判断网络接口是否已经开启并正常工作。

public boolean isLoopback（）方法的作用：判断该网络接口是否为localhost回调/回环接口。什么是回调/回环接口？如果一个网络设备是一个回环/回调网络接口，那么它永远工作，并且还是虚拟的，也就是计算机上并不存在这样的硬件网络设备，那么它存在的意义是什么呢？如果某一台计算机没有安装物理硬件网卡，但安装了Tomcat后想访问Tomcat，就可以使用地址localhost或127.0.0.1进行访问。这里的localhost和127.0.0.1就是回调/回环地址，这时回调地址的作用就体现出来了：没有网卡，使用回调/回环地址就能访问Tomcat。

在学习Socket技术时，需要留意一个知识点，就是localhost和127.0.0.1的区别。其实localhost只是一个域名，只有把域名localhost解析为127.0.0.1，才能进行数据传输与通信，这个解析的过程是由hosts文件完成的，该文件位置为：C：\Windows\System32\drivers\etc。

hosts文件的内容如图3-4所示。

 [image:]

图3-4　hosts文件的内容

创建测试用的项目test1，并创建类文件Test1.java，文件中的代码如下：

public class Test1 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface

 .getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface

 .nextElement();

 System.out.println("■getName获得网络设备名称="

 + eachNetworkInterface.getName());

 System.out.println("■getDisplayName获得网络设备显示名称="

 + eachNetworkInterface.getDisplayName());

 System.out.println("■getIndex获得网络接口的索引="

 + eachNetworkInterface.getIndex());

 System.out.println("■isUp是否已经开启并运行="

 + eachNetworkInterface.isUp());

 System.out.println("■isLoopback是否为回调接口="

 + eachNetworkInterface.isLoopback());

 System.out.println();

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行结果如下：

■getName获得网络设备名称=lo

■getDisplayName获得网络设备显示名称=MS TCP Loopback interface

■getIndex获得网络接口的索引=1

■isUp是否已经开启并运行=true

■isLoopback是否为回调接口=true

■getName获得网络设备名称=eth0

■getDisplayName获得网络设备显示名称=Realtek PCIe GBE Family Controller

■getIndex获得网络接口的索引=65539

■isUp是否已经开启并运行=true

■isLoopback是否为回调接口=false

控制台输出了两组日志，说明当前操作系统中有两个网络接口，一个是localhost回调，另一个是真实的物理网卡设备。

从上面输出的结果可以得出如下4个结论。

1）网络设备的索引有可能不连续。

2）isLoopback（）方法针对lo设备返回值是true，针对其他设备返回值为false，因为系统中只有1个回调/回环地址。

3）而isUp（）方法的返回值都是true，那什么时候为false呢？返回值为true是因为网络设备正在工作，如图3-5所示。

 [image:]

图3-5　网络设备状态正确

继续实验，将网线拔掉，出现的状态如图3-6所示。

 [image:]

图3-6　网络设备状态错误

这时再运行Test1.java文件会出现如下运行结果：

■getName获得网络设备名称=lo

■getDisplayName获得网络设备显示名称=MS TCP Loopback interface

■getIndex获得网络接口的索引=1

■isUp是否已经开启并运行=true

■isLoopback是否为回调接口=true

■getName获得网络设备名称=eth0

■getDisplayName获得网络设备显示名称=Realtek PCIe GBE Family Controller

■getIndex获得网络接口的索引=131075

■isUp是否已经开启并运行=false

■isLoopback是否为回调接口=false

针对eth0的网络设备，isUp（）方法返回值为false了。

4）getDisplayName（）方法的返回值是有据可查的。从控制台输出的运行结果来看，该计算机有两个网络接口，名称分别是lo和eth0，而设备名分别是MS TCP Loopback interface和Realtek PCIe GBE Family Controller，其中值Realtek PCIe GBE Family Controller的来源如图3-7所示。

 [image:]

图3-7　设备管理器中的信息

在设备管理器中，可以找到名称为“Realtek PCIe GBE Family Controller”的网络设备。
3.1.2　获取MTU大小

public int getMTU（）方法的作用：返回MTU大小。在网络传输中是以数据包为基本传输单位，可以使用MTU（Maximum Transmission Unit，最大传输单元）来规定网络传输最大数据包的大小，单位为字节。以太网的网卡MTU大多数默认值是1500字节，在IPv6协议中，MTU的范围是1280～65535。MTU值设置的大小与传输效率有关，如果MTU设置大值，则传输速度很快，因为发送的数据包数量少了，但延迟很大，因为对方需要一点一点地处理数据；如果MTU设置小值，则传输速度慢，因为发送的数据包数量多了。建议不要随意更改网卡的MTU值，因为有可能造成网络传输数据故障，致使数据传输不完整，发生丢包的现象。

创建类文件Test2.java，其中的代码如下：

public class Test2 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface

 .getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface

 .nextElement();

 System.out.println("■getName获得网络设备名称="

 + eachNetworkInterface.getName());

 System.out.println("■getDisplayName获得网络设备显示名称="

 + eachNetworkInterface.getDisplayName());

 System.out.println("■getMTU获得最大传输单元="

 + eachNetworkInterface.getMTU());

 System.out.println();

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行结果如下：

■getName获得网络设备名称=lo

■getDisplayName获得网络设备显示名称=MS TCP Loopback interface

■getMTU获得最大传输单元=1520

■getName获得网络设备名称=eth0

■getDisplayName获得网络设备显示名称=Realtek PCIe GBE Family Controller

■getMTU获得最大传输单元=1500

从上面输出的结果来看，两种网络设备的MTU值是不一样的。MTU的值为-1会出现在网络接口禁用的情况下。
3.1.3　子接口的处理

public Enumeration小于号 <NetworkInterface>getSubInterfaces（）方法的作用：取得子接口。什么是子接口？子接口的作用是在不添加新的物理网卡的基础上，基于原有的网络接口设备再创建出一个虚拟的网络接口设备进行通信，这个虚拟的网络接口可以理解成是一个由软件模拟的网卡。Windows操作系统不支持子接口，而Linux支持。

public boolean isVirtual（）方法的作用：判断当前的网络接口是否为“虚拟子接口”。在Linux操作系统上，虚拟子接口作为物理接口的子接口被创建，并给予不同的设置（如IP地址或MTU等）。通常，虚拟子接口的名称将是父网络接口的名称加上冒号（：），再加上标识该子接口的编号，因为一个物理网络接口可以存在多个虚拟子接口。需要注意的是，“虚拟接口”也就是非硬件类的网络设备，是由软件模拟的网络设备，这些网络设备并不一定就是“虚拟子接口”，因为有可能该虚拟网络接口没有父网络接口。总结一下：①虚拟接口就是软件模拟的，没有父网络接口；②虚拟子接口也是由软件模拟的，但有父网络接口；③虚拟接口并不一定就是虚拟子接口，而虚拟子接口一定是虚拟接口。

public NetworkInterface getParent（）方法的作用：获得父接口。一个虚拟的子网络接口必须依赖于父网络接口，可以使用此方法来取得虚拟子网络设备所属的父接口，也就是所属的硬件网卡。

上文提到Windows操作系统中是不存在网络子接口的概念的，因此，这个实验是在Linux操作系统中实现的。

在Linux中，创建子接口的步骤如图3-8所示。

在Linux的终端工具中，画粗线的地方就是输入的命令，当命令执行完毕后，子接口也就成功创建了。

创建Test3.java文件，其中的代码如下：

 [image:]

图3-8　创建子接口的步骤

public class Test3 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface

 .getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface

 .nextElement();

 System.out.println("■eachNetworkInterface父接口的hashCode="

 + eachNetworkInterface.hashCode());

 System.out.println("■getName获得网络设备名称="

 + eachNetworkInterface.getName());

 System.out.println("■getDisplayName获得网络设备显示名称="

 + eachNetworkInterface.getDisplayName());

 System.out.println("■isVirtual是否为虚拟接口="

 + eachNetworkInterface.isVirtual());

 System.out.println("■getParent获得父接口="

 + eachNetworkInterface.getParent());

 System.out.println("■getSubInterfaces取得子接口信息=");

 Enumeration<NetworkInterface> networkInterfaceSub = eachNetwork

 Interface

 .getSubInterfaces();

 while (networkInterfaceSub.hasMoreElements()) {

 NetworkInterface eachNetworkInterfaceSub = networkInterfaceSub

 .nextElement();

 System.out.println(" getName获得网络设备名称="

 + eachNetworkInterfaceSub.getName());

 System.out.println(" getDisplayName获得网络设备显示名称="

 + eachNetworkInterfaceSub.getDisplayName());

 System.out.println(" isVirtual是否为虚拟接口="

 + eachNetworkInterfaceSub.isVirtual());

 System.out.println(" getParent获得父接口的hashCode="

 + eachNetworkInterfaceSub.getParent().hashCode());

 }

 System.out.println();

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行结果如下：

■eachNetworkInterface父接口的hashCode=-784968843

■getName获得网络设备名称=wlp3s0

■getDisplayName获得网络设备显示名称=wlp3s0

■isVirtual是否为虚拟接口=false

■getParent获得父接口=null

■getSubInterfaces取得子接口信息=

 getName获得网络设备名称=wlp3s0:0

 getDisplayName获得网络设备显示名称=wlp3s0:0

 isVirtual是否为虚拟接口=true

 getParent获得父接口的hashCode=-784968843

■eachNetworkInterface父接口的hashCode=3459

■getName获得网络设备名称=lo

■getDisplayName获得网络设备显示名称=lo

■isVirtual是否为虚拟接口=false

■getParent获得父接口=null

■getSubInterfaces取得子接口信息=

从控制台输出的结果来看，使用getSubInterfaces（）方法在Linux操作系统中获得了子接口的集合Enumeration小于号 <NetworkInterface>，而且名称为wlp3s0：0的子接口的确是虚拟的，从子接口中获得父接口的hashCode有两处，出现一样的-784968843值，说明父接口是一个。
3.1.4　获得硬件地址

public byte[]getHardwareAddress（）方法的作用：获得网卡的硬件地址。什么是硬件地址？硬件地址也称为物理地址，或MAC（Media Access Control，媒体访问控制）。它用来定义网络设备的位置，也是网卡设备的唯一ID，采用十六进制表示，一共48位。MAC地址包含由IEEE的注册管理机构RA负责给不同厂商分配的唯一标识，因此，正规厂商出厂的网卡的MAC地址永远不会出现重复。

物理地址、MAC地址和硬件地址，这三者的含义是一样的。

可以在CMD中输入“ipconfig-all”来查看物理地址。

创建Test4.java文件，其中的代码如下：

public class Test4 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface

 .getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface

 .nextElement();

 System.out.println("■getName获得网络设备名称="

 + eachNetworkInterface.getName());

 System.out.println("■getDisplayName获得网络设备显示名称="

 + eachNetworkInterface.getDisplayName());

 System.out.print("■getHardwareAddress获得网卡的物理地址=");

 byte[] byteArray = eachNetworkInterface.getHardwareAddress();

 if (byteArray != null && byteArray.length != 0) {

 for (int i = 0; i < byteArray.length; i++) {

 System.out.print(byteArray[i] + " ");

 }

 System.out.println();

 }

 System.out.println();

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行结果如下：

■getName获得网络设备名称=lo

■getDisplayName获得网络设备显示名称=MS TCP Loopback interface

■getHardwareAddress获得网卡的物理地址=

■getName获得网络设备名称=eth0

■getDisplayName获得网络设备显示名称=Realtek PCIe GBE Family Controller

■getHardwareAddress获得网卡的物理地址=28 111 101 -66 8 73

设备eth0的物理地址为“28 111 101-66 8 73”，这些值是十进制的，真正的物理地址是十六进制的，将这些值转换成十六进制，就变成“1C 6F 65 BE 8 49”，由于-66是负数，需要多计算一步：256-66=190，然后将十进制的190转换成十六进制，也就是BE。

转换后的值到底对不对呢？在CMD控制台输入命令“ipconfig-all”运行结果如图3-9所示。

 [image:]

图3-9　控制台中输出的物理地址

其中“Physical Address.........：1C-6F-65-BE-08-49”后的“1C-6F-65-BE-08-49”和我们之前转换出的“1C 6F 65 BE 8 49”结果一模一样，说明转换是正确的。
3.1.5　获得IP地址

public Enumeration小于号 <InetAddress>getInetAddresses（）方法的作用：获得绑定到此网络接口的InetAddress列表，此方法返回泛型Enumeration小于号 <InetAddress>。

InetAddress类可以表示成互联网协议（IP）地址，通过使用InetAddress对象中的若干方法来获取该IP地址相关信息。一个网络接口可以使用多个IP地址。

InetAddress类代表IP地址，它有两个子类，分别是Inet4Address.java和Inet6Address.java，它们用来描述IPv4和IPv6的地址信息。因为InetAddress类没有公共（public）的构造方法，所以它不能直接实例化，要借助它的静态方法来实现对象的创建，静态方法列表如图3-10所示。

 [image:]

图3-10　静态方法

1.获得IP地址的基本信息

先来测试InetAddress类中的4个方法的使用效果，类NetworkInterface中的getInetAddresses（）方法的返回值是Enumeration小于号 <InetAddress>泛型。InetAddress.java类中的常用方法解释如下。

1）getCanonicalHostName（）方法获取此IP地址的完全限定域名（Fully Qualified Domain Name，FQDN）。完全限定域名是指主机名加上全路径，全路径中列出了序列中所有域成员。

2）getHostName（）方法获取此IP地址的主机名，该方法与getCanonicalHostName（）方法的区别在下文中会进行介绍。

3）getHostAddress（）方法返回IP地址字符串（以文本表现形式）。

4）getAddress（）方法返回此InetAddress对象的原始IP地址，返回值是byte[]数组。

创建Test5.java文件，其中的代码如下：

public class Test5 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface

 .getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface

 .nextElement();

 System.out.println("■getName获得网络设备名称="

 + eachNetworkInterface.getName());

 System.out.println("■getDisplayName获得网络设备显示名称="

 + eachNetworkInterface.getDisplayName());

 System.out.println("■getInetAddresses获得网络接口的InetAddress

 信息：");

 Enumeration<InetAddress> enumInetAddress = eachNetworkInterface

 .getInetAddresses();

 while (enumInetAddress.hasMoreElements()) {

 InetAddress inetAddress = enumInetAddress.nextElement();

 System.out.println(" getCanonicalHostName获取此IP地址的完全

 限定域名="

 + inetAddress.getCanonicalHostName());

 System.out.println(" getHostName获取此IP地址的主机名="

 + inetAddress.getHostName());

 System.out.println(" getHostAddress返回IP地址字符串="

 + inetAddress.getHostAddress());

 System.out.print(" getAddress返回此InetAddress对象的原始IP

 地址=");

 byte[] addressByte = inetAddress.getAddress();

 for (int i = 0; i < addressByte.length; i++) {

 System.out.print(addressByte[i] + " ");

 }

 System.out.println();

 }

 System.out.println();

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行结果如下：

■getName获得网络设备名称=lo

■getDisplayName获得网络设备显示名称=MS TCP Loopback interface

■getInetAddresses获得网络接口的InetAddress信息：

 getCanonicalHostName获取此IP地址的完全限定域名=activate.adobe.com

 getHostName获取此IP地址的主机名=activate.adobe.com

 getHostAddress返回IP地址字符串=127.0.0.1

 getAddress返回此InetAddress对象的原始IP地址=127 0 0 1

■getName获得网络设备名称=eth0

■getDisplayName获得网络设备显示名称=Realtek PCIe GBE Family Controller

■getInetAddresses获得网络接口的InetAddress信息：

 getCanonicalHostName获取此IP地址的完全限定域名=tc03

 getHostName获取此IP地址的主机名=tc03

 getHostAddress返回IP地址字符串=192.168.5.31

 getAddress返回此InetAddress对象的原始IP地址=-64 -88 5 31

2.获得本地主机和回环地址的基本信息

static InetAddress getLocalHost（）方法的作用：返回本地主机的IP地址信息。如果本机拥有多个IP，则getLocalHost（）方法只返回下标为[0]的第一个IP。如果想返回本机全部的IP，就需要使用getAllByName（）方法。在JDK源代码中，getLocalHost（）方法与getAllByName（）方法调用相同的方法：private static InetAddress[]getAddressesFromNameService（String host，InetAddress reqAddr），来实现取得InetAddress[]数组。

static InetAddress getLoopbackAddress（）方法的作用：返回回环/回调的IP地址信息。

创建测试用的代码如下：

public class Test5_1 {

public static void main(String[] args) throws UnknownHostException {

 InetAddress localhost = InetAddress.getLocalHost();

 System.out.print(" localhost.getAddress()地址为=");

 byte[] localIPAddress = localhost.getAddress();

 for (int i = 0; i < localIPAddress.length; i++) {

 System.out.print(" " + localIPAddress[i] + " ");

 }

 System.out.println();

 System.out.println(" " + localhost.getClass().getName());

 System.out.println();

 System.out.print(" inetAddress.getLoopbackAddress()地址为=");

 InetAddress loopbackAddress = InetAddress.getLoopbackAddress();

 byte[] loopbackIPAddress = loopbackAddress.getAddress();

 for (int i = 0; i < loopbackIPAddress.length; i++) {

 System.out.print(" " + loopbackIPAddress[i] + " ");

 }

 System.out.println();

 System.out.println(" " + localhost.getClass().getName());

}

}

程序运行结果如下：

localhost.getAddress()地址为= -64 -88 0 102

java.net.Inet4Address

inetAddress.getLoopbackAddress()地址为= 127 0 0 1

java.net.Inet4Address

3.根据主机名获得IP地址

static InetAddress getByName（String host）方法的作用：在给定主机名的情况下确定主机的IP地址。参数host可以是计算机名、IP地址，也可以是域名。

测试用的代码如下：

public class Test5_2 {

public static void main(String[] args) throws UnknownHostException {

 InetAddress myAddress = InetAddress.getByName("gaohongyan-pc");

 InetAddress baiduAddress = InetAddress.getByName("www.baidu.com");

 // 192.168.0.100是本地的IP地址

 InetAddress ipStringAddress = InetAddress.getByName("192.168.0.100");

 InetAddress localhostAddress = InetAddress.getByName("localhost");

 System.out.println(localhostAddress.getClass().getName() + " " + localhost-

 Address.getHostAddress());

 System.out.println(myAddress.getClass().getName() + " " + myAddress.getHost-

 Address());

 System.out.println(baiduAddress.getClass().getName() + " " + baiduAddress.

 getHostAddress());

 System.out.println(ipStringAddress.getClass().getName() + " " + ipString-

 Address.getHostAddress());

 // 以下2个示例为错误的情况：

 // 没有192.168.0.777这个IP地址

 InetAddress notIPAddress = InetAddress.getByName("192.168.0.777");

 System.out.println(notIPAddress.getClass().getName() + " " + notIPAddress.

 getHostAddress());

 // 不存在的域名

 InetAddress notDomainAddress = InetAddress.getByName("www.123123452345-

 23451234234234134123412342412341234.com");

 System.out.println(notDomainAddress.getClass().getName() + " " + notDomain-

 Address.getHostAddress());

}

}

程序运行后前4个输出信息如下：

java.net.Inet4Address 127.0.0.1

java.net.Inet4Address 192.168.0.101

java.net.Inet4Address 180.149.131.98

java.net.Inet4Address 192.168.0.100

而后两个输出出现异常，原因是IP地址和域名并不存在。

4.根据主机名获得所有的IP地址

static InetAddress[]getAllByName（String host）方法的作用：在给定主机名的情况下，根据系统上配置的名称服务返回其IP地址所组成的数组。

测试用的程序代码如下：

public class Test5_3 {

public static void main(String[] args) throws UnknownHostException {

 InetAddress[] myAddressArray = InetAddress.getAllByName("gaohongyan-pc");

 InetAddress[] baiduAddressArray = InetAddress.getAllByName("www.baidu.com");

 InetAddress[] ipStringAddressArray = InetAddress.getAllByName("192.168.0.102");

 for (int i = 0; i < myAddressArray.length; i++) {

 InetAddress myAddress = myAddressArray[i];

 System.out.println(

 "myAddress.getHostAddress()=" + myAddress.getHostAddress()

 + " " + myAddress.getClass().getName());

 }

 System.out.println();

 for (int i = 0; i < baiduAddressArray.length; i++) {

 InetAddress baiduAddress = baiduAddressArray[i];

 System.out.println("baiduAddress.getHostAddress()=" + baiduAddress.

 getHostAddress() + " "

 + baiduAddress.getClass().getName());

 }

 System.out.println();

 for (int i = 0; i < ipStringAddressArray.length; i++) {

 InetAddress ipStringAddress = ipStringAddressArray[i];

 System.out.println("ipStringAddress.getHostAddress()=" + ipStringAddress.

 getHostAddress() + " "

 + ipStringAddress.getClass().getName());

 }

}

}

程序运行结果如下：

myAddress.getHostAddress()=192.168.0.102 java.net.Inet4Address

myAddress.getHostAddress()=192.168.136.1 java.net.Inet4Address

myAddress.getHostAddress()=192.168.56.1 java.net.Inet4Address

myAddress.getHostAddress()=fe80:0:0:0:85bb:af35:e9d8:b53c%13 java.net.Inet6Address

myAddress.getHostAddress()=fe80:0:0:0:a438:fb81:122c:c98f%19 java.net.Inet6Address

myAddress.getHostAddress()=fe80:0:0:0:5161:632:7109:2e40%21 java.net.Inet6Address

baiduAddress.getHostAddress()=220.181.111.188 java.net.Inet4Address

baiduAddress.getHostAddress()=220.181.112.244 java.net.Inet4Address

ipStringAddress.getHostAddress()=192.168.0.102 java.net.Inet4Address

5.根据IP地址byte[]addr获得InetAddress对象

static InetAddress getByAddress（byte[]addr）方法的作用：在给定原始IP地址的情况下，返回InetAddress对象。参数按网络字节顺序：地址的高位字节位于getAddress（）[0]中。

测试代码如下：

public class Test5_4 {

public static void main(String[] args) throws UnknownHostException {

 byte[] byteArray = new byte[] { -64, -88, 0, 102 };

 InetAddress myAddress = InetAddress.getByAddress(byteArray);

 System.out.println("myAddress.getHostAddress()=" + myAddress.getHostAddress());

 System.out.println("myAddress.getHostName()=" + myAddress.getHostName());

 System.out.println("myAddress.getClass().getName()=" + myAddress.getClass().

 getName());

}

}

程序运行结果如下：

myAddress.getHostAddress()=192.168.0.102

myAddress.getHostName()=gaohongyan-PC

myAddress.getClass().getName()=java.net.Inet4Address

6.根据主机名和IP地址byte[]addr获得InetAddress对象

static InetAddress getByAddress（String host，byte[]addr）方法的作用：根据提供的主机名和IP地址创建InetAddress，并不对host的有效性进行验证。

其中参数host仅仅是参数addr的一个说明及备注，代表addr这个地址所属的主机名是host。

测试代码如下：

public class Test5_5 {

public static void main(String[] args) throws UnknownHostException {

 byte[] byteArray = new byte[] { -64, -88, 0, 102 };

 InetAddress myAddress = InetAddress.getByAddress("zzzzzzzzz", byteArray);

 System.out.println("myAddress.getHostAddress()=" + myAddress.

 getHostAddress());

 System.out.println("myAddress.getHostName()=" + myAddress.getHostName());

 System.out.println("myAddress.getClass().getName()=" + myAddress.getClass().

 getName());

}

}

程序运行结果如下：

myAddress.getHostAddress()=192.168.0.102

myAddress.getHostName()=zzzzzzzzz

myAddress.getClass().getName()=java.net.Inet4Address

7.获得全限主机名和主机名

getCanonicalHostName（）方法的作用是取得主机完全限定域名，而getHostName（）方法是取得主机别名。

测试代码如下：

public class Test5_6 {

public static void main(String[] args) throws Exception {

 // 使用getLocalHost()创建InetAddress

 // getCanonicalHostName()和getHostName()都是本地名称

 InetAddress address1 = InetAddress.getLocalHost();

 System.out.println("A1 " + address1.getCanonicalHostName());

 System.out.println("A2 " + address1.getHostName());

 System.out.println();

 // 使用域名创建InetAddress

 InetAddress address2 = InetAddress.getByName("www.ibm.com");

 System.out.println("B1 " + address2.getCanonicalHostName());

 System.out.println("B2 " + address2.getHostName());

 System.out.println();

 // 使用IP地址创建InetAddress

 // getCanonicalHostName()和getHostName()结果都是IP地址

 InetAddress address3 = InetAddress.getByName("14.215.177.38");

 System.out.println("C1 " + address3.getCanonicalHostName());

 System.out.println("C2 " + address3.getHostName());

 System.out.println();

}

}

程序运行后在控制台输出的结果如下：

A1 gaohongyan-PC

A2 gaohongyan-PC

B1 a23-211-146-231.deploy.static.akamaitechnologies.com

B2 www.ibm.com

C1 14.215.177.38

C2 14.215.177.38

在以域名“www.ibm.com”作为getByName（）方法的参数时，getCanonicalHostName（）方法和getHostName（）方法的输出结果是不一样的。

输出的信息“a23-211-146-231.deploy.static.akamaitechnologies.com”是完全限定域名，而输出的信息“www.ibm.com”是别名。不过，由于DNS服务处理的原因，有时输出的结果是两个“www.ibm.com”，因此，输出的结果和DNS服务有直接关系。
3.1.6　InterfaceAddress类的使用

public java.util.List小于号 <InterfaceAddress>getInterfaceAddresses（）方法的作用：获取网络接口的InterfaceAddresses列表。通过使用InterfaceAddresses类中的方法可以取得网络接口对应的IP地址、子网掩码和广播地址等相关信息。对于IPv4地址，可以取得IP地址、子网掩码和广播地址，而对于IPv6地址，可以取得IP地址和网络前缀长度这样的信息。

什么是网络前缀长度？网络前缀长度在IPv4地址上下文中也称为子网掩码。典型的IPv4值是8（255.0.0.0）、16（255.255.0.0）或24（255.255.255.0）；典型的IPv6值是128（：：1/128）或10（fe80：：203：baff：fe27：1243/10）。

前面介绍过InetAddress类是对应IP地址信息的，而InterfaceAddress类是对应网络接口信息的，可以在InterfaceAddress对象中取得IP地址的InetAddress对象信息，以及多播地址的InetAddress对象信息，还有子网掩码等。

InetAddress getAddress（）/InetAddress getBroadcast（）/short getNetworkPrefixLength（）方法的使用

public InetAddress getAddress（）方法的作用：返回此InterfaceAddress的InetAddress。

public InetAddress getBroadcast（）方法的作用：返回此InterfaceAddress广播地址的InetAddress。由于只有IPv4网络具有广播地址，因此对于IPv6网络将返回null。

public short getNetworkPrefixLength（）方法的作用：返回此InterfaceAddress的网络前缀长度。

创建Test6.java文件，其中的代码如下：

public class Test6 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface.

 getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface.nextElement();

 System.out.println("■getName获得网络设备名称=" + eachNetworkInterface.

 getName());

 System.out.println("■getDisplayName获得网络设备显示名称=" + eachNetwork

 Interface.getDisplayName());

 List<InterfaceAddress> addressList = eachNetworkInterface.getInter

 faceAddresses();

 for (int i = 0; i < addressList.size(); i++) {

 InterfaceAddress eachAddress = addressList.get(i);

 InetAddress inetaddress = eachAddress.getAddress();

 if (inetaddress != null) {

 System.out.println(" eachAddress.getAddress()=" +

 inetaddress.getHostAddress());

 }

 inetaddress = eachAddress.getBroadcast();

 if (inetaddress != null) {

 System.out.println(" eachAddress.getBroadcast()=" +

 inetaddress.getHostAddress());

 }

 System.out.println(" getNetworkPrefixLength=" + eachAddress.

 getNetworkPrefixLength());

 System.out.println();

 }

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行后输出的部分结果如下：

■getName获得网络设备名称=wlan0

■getDisplayName获得网络设备显示名称=Intel(R) Dual Band Wireless-AC 7260

 eachAddress.getAddress()=192.168.0.102

 eachAddress.getBroadcast()=192.168.0.255

 getNetworkPrefixLength=24

 eachAddress.getAddress()=fe80:0:0:0:85bb:af35:e9d8:b53c%wlan0

 getNetworkPrefixLength=64

NetworkInterface、InterfaceAddress和InetAddress这三者之间的关系如图3-11所示。

 [image:]

图3-11　三者之间的关系

每个NetworkInterface有多个InterfaceAddress对象，从方法可以证明：

public java.util.List<InterfaceAddress> getInterfaceAddresses()

而每一个InterfaceAddress对象只有一个InetAddress对象，从方法可以证明：

public InetAddress getAddress()

间接着也代表每个NetworkInterface有多个InetAddress对象，从方法可以证明：

public Enumeration<InetAddress> getInetAddresses()

3.1.7　判断是否为点对点设备

public boolean isPointToPoint（）方法的作用：判断当前的网络设备是不是点对点设备。什么是point to point（点对点）？它被设计的主要目的就是用来通过拨号或专线方式建立点对点连接以发送数据，使其成为各种主机、网桥和路由器之间简单连接的一种通信解决方案。

创建Test7.java文件，其中的代码如下：

public class Test7 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface

 .getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface

 .nextElement();

 System.out.println("■getName获得网络设备名称="

 + eachNetworkInterface.getName());

 System.out.println("■getDisplayName获得网络设备显示名称="

 + eachNetworkInterface.getDisplayName());

 System.out.println("■isPointToPoint是不是点对点设备="

 + eachNetworkInterface.isPointToPoint());

 System.out.println();

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行后，输出的部分结果如下：

■getName获得网络设备名称=net6

■getDisplayName获得网络设备显示名称=Microsoft ISATAP Adapter

■isPointToPoint是不是点对点设备=true

上述结果说明名称为Microsoft ISATAP Adapter的网络设备是点对点设备，因为判断结果为true。ISATAP的英文全称是Internet/Site Automatic Tunnel Addressing Protocol，是一个把IPv6转换到旧的IPv4系统的转换器。
3.1.8　是否支持多播

public boolean supportsMulticast（）方法的作用：判断当前的网络设备是否支持多播。

什么是多播？在讨论多播之前，先来学习一下单播和广播。所谓的单播大多数都是点对点式的网络，如打开网页、发送邮件和两人网络聊天等情况，都是在使用点对点方式传输数据。

再来看看广播。广播是一种一对多的形式，是对网络中所有的计算机发送数据，不区分目标，这就极易造成网络中存在大量无用的垃圾通信数据，造成“广播风暴”，使网络变慢，严重时网络会彻底瘫痪。

下面开始介绍多播。多播也称为组播，它也是一种一对多的网络。从组播的名字来看，它可以对某些计算机分配多播类型的IP地址以进行分组，然后只针对这些计算机发送数据，这就是多播。多播比广播传输数据更加有效率，因为发送的目标是确定的，而不是网络中全部的计算机。在网络中，多播一般通过多播IP地址来实现，多播IP地址就是D类IP地址，即224.0.0.0～239.255.255.255之间的IP地址。

单播、广播和组播的作用总结如下。

1）单播：单台主机与单台主机之间的通信。

2）广播：单台主机与网络中所有主机的通信。

3）组播：单台主机与选定的一组主机的通信。

创建Test8.java文件，其中的代码如下：

public class Test8 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface

 .getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface

 .nextElement();

 System.out.println("■getName获得网络设备名称="

 + eachNetworkInterface.getName());

 System.out.println("■getDisplayName获得网络设备显示名称="

 + eachNetworkInterface.getDisplayName());

 System.out.println("■supportsMulticast是否支持多地址广播="

 + eachNetworkInterface.supportsMulticast());

 System.out.println();

 System.out.println();

 }

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行后，控制台输出的部分结果如下：

■getName获得网络设备名称=wlan15

■getDisplayName获得网络设备显示名称=Microsoft Virtual WiFi Miniport Adapter #3-QoS Packet Scheduler-0000

■supportsMulticast是否支持多地址广播=true

■getName获得网络设备名称=wlan16

■getDisplayName获得网络设备显示名称=Microsoft Virtual WiFi Miniport Adapter #3-WFP LightWeight Filter-0000

■supportsMulticast是否支持多地址广播=true

3.2　NetworkInterface类的静态方法

NetworkInterface类除了有getNetworkInterfaces（）方法外，还有3个静态方法，分别介绍如下。

1）public static NetworkInterface getByIndex（int index）方法的作用：根据指定的索引取得NetworkInterface对象。

2）public static NetworkInterface getByName（String name）方法的作用：根据指定的NetworkInterface的name名称来获取NetworkInterface对象。

3）public static NetworkInterface getByInetAddress（InetAddress addr）方法的作用：根据指定的InetAddress对象获得NetworkInterface。如果指定的IP地址绑定到多个网络接口，则不确定返回哪个网络接口。
3.2.1　根据索引获得NetworkInterface对象

测试用的代码如下：

public class Test9 {

public static void main(String[] args) {

 try {

 Enumeration<NetworkInterface> networkInterface = NetworkInterface.

 getNetworkInterfaces();

 while (networkInterface.hasMoreElements()) {

 NetworkInterface eachNetworkInterface = networkInterface.nextElement();

 System.out.println("■getName=" + eachNetworkInterface.getName());

 System.out.println("■getDisplayName=" + eachNetworkInterface.

 getDisplayName());

 System.out.println("■getIndex=" + eachNetworkInterface.getIndex());

 System.out.println();

 }

 // 通过上面代码的输出，可知localhost的索引是1

 System.out.println();

 NetworkInterface newNetworkInterface = NetworkInterface.getByIndex(1);

 System.out.println("----->>>> " + newNetworkInterface.getName());

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行后，控制台输出的部分结果如下：

■getName=lo

■getDisplayName=Software Loopback Interface 1

■getIndex=1

----->>>> lo

3.2.2　根据网络接口名称获得NetworkInterface对象

测试用的代码如下：

public class Test10 {

public static void main(String[] args) {

 try {

 NetworkInterface newNetworkInterface = NetworkInterface.getByName("lo");

 System.out.println("----->>>> " + newNetworkInterface.getName());

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行后，控制台输出的结果如下：

----->>>> lo

3.2.3　根据IP地址获得NetworkInterface对象

测试用的代码如下：

public class Test11 {

public static void main(String[] args) throws UnknownHostException {

 try {

 InetAddress localhostAddress = InetAddress.getByName("127.0.0.1");

 NetworkInterface newNetworkInterface = NetworkInterface.getByInetA

 ddress(localhostAddress);

 System.out.println(newNetworkInterface.getName());

 System.out.println(newNetworkInterface.getDisplayName());

 } catch (SocketException e) {

 e.printStackTrace();

 }

}

}

程序运行后，控制台输出的结果如下：

lo

Software Loopback Interface 1

如果指定的IP地址绑定到多个网络接口，则不确定返回哪个网络接口，这个功能是可以实现的。在Linux中，bonding的含义是将多个物理的网卡抽象成1块网卡，能够提升网络吞吐量，实现网络冗余、负载等功能，有很大的好处。
3.3　小结

本章主要介绍了NetworkInterface类、InetAddress类和InterfaceAddress类中常见方法的使用。这3个类主要获取的就是网络接口、IP地址及接口地址的相关信息。熟悉这3个类的基本使用是熟练掌握使用Java获取网络接口设备相关信息的前提。
第4章　实现Socket通信

本章在TCP/IP的基础上介绍如何使用Java语言来实现Socket通信，如何使用Server-Socket.类处理服务端（Server），如何使用Socket类处理客户端（Client），如何实现服务端与客户端之间的交互。

基于UDP时，会使用DatagramSocket类处理服务端与客户端之间的Socket通信，传输的数据要存放在DatagramPacket类中。

另外，详细介绍这4个类的API的使用细节和注意事项。
4.1　基于TCP的Socket通信

TCP提供基于“流”的“长连接”的数据传递，发送的数据带有顺序性。TCP是一种流协议，以流为单位进行数据传输。

什么是长连接？长连接可以实现当服务端与客户端连接成功后连续地传输数据，在这个过程中，连接保持开启的状态，数据传输完毕后连接不关闭。长连接是指建立Socket连接后，无论是否使用这个连接，该连接都保持连接的状态。

什么是短连接？短连接是当服务端与客户端连接成功后开始传输数据，数据传输完毕后则连接立即关闭，如果还想再次传输数据，则需要再创建新的连接进行数据传输。

什么是连接？在TCP/IP中，连接可以认为是服务端与客户端确认彼此都存在的过程。这个过程需要实现，就要创建连接，如何创建连接（环境）呢？需要服务端与客户端进行3次握手，握手成功之后，说明服务端与客户端之间能实现数据通信。如果建立连接的过程是成功的，就说明连接被成功创建。在创建好的1个连接中，使用TCP可以实现多次的数据通信。在多次数据通信的过程中，服务端与客户端要进行彼此都存在的过程验证，也就是验证连接是否正常，如果连接正常，并且多次通信，则这就是长连接。长连接就是复用当前的连接以达到数据多次通信的目的。由于复用当前的连接进行数据通信，因此不需要重复创建连接，传输效率比较高。而当实现1次数据通信之后，关闭连接，这种情况就可称为短连接。使用短连接进行数据传输时，由于每次传输数据前都要创建连接，这样会产生多个连接对象，增大占用内存的空间，在创建连接时也要进行服务端与客户端之间确认彼此存在，确认的过程比较耗时，因此运行效率较低。由于UDP是无连接协议，也就是服务端与客户端没有确认彼此都存在的握手过程，因此在UDP里面不存在长连接与短连接的概念。

（1）长连接的优缺点

1）优点：除了第一次之外，客户端不需要每次传输数据时都先与服务端进行握手，这样就减少了握手确认的时间，直接传输数据，提高程序运行效率。

2）缺点：在服务端保存多个Socket对象，大量占用服务器资源。

（2）短连接的优缺点

1）优点：在服务端不需要保存多个Socket对象，降低内存占用率。

2）缺点：每次传输数据前都要重新创建连接，也就是每次都要进行3次握手，增加处理的时间。
4.1.1　验证ServerSocket类的accept（）方法具有阻塞特性

ServerSocket类的作用是创建Socket（套接字）的服务端，而Socket类的作用是创建Socket的客户端。在代码层面使用的方式就是使用Socket类去连接ServerSocket类，也就是客户端要主动连接服务端。

ServerSocket类中的public Socket accept（）方法的作用是侦听并接受此套接字的连接。此方法在连接传入之前一直阻塞。public Socket accept（）方法的返回值是Socket类型。

在本实验中，将验证ServerSocket类中的accept（）方法具有阻塞特性，也就是当没有客户端连接服务端时，呈阻塞状态。

创建名为test2的项目，并创建Server.java文件，其中的代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket socket = new ServerSocket(8088);

 System.out.println("server阻塞开始=" + System.currentTimeMillis());

 socket.accept();

 System.out.println("server阻塞结束=" + System.currentTimeMillis());

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

代码语句“new ServerSocket（8088）；”中的8088是设置的服务器的Socket端口号，客户端要连接到8088这个端口才可以实现服务端与客户端的通信。

上述程序运行后的结果如图4-1所示。

 [image:]

图4-1　accept()方法的阻塞特性

那么什么时候不阻塞呢？有客户端连接到服务端时就不再出现阻塞了，服务端的程序会继续运行。针对该结论，下面继续进行验证。

创建Client.java文件，其中的代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("client连接准备=" + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("client连接结束=" + System.currentTimeMillis());

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

构造方法new Socket（"localhost"，8088）中的参数值localhost代表服务器的地址，8088代表服务器的端口，将这两个参数传给Socket类后，客户端就确定了服务端的地址及端口号，然后客户端Socket就开始连接到服务端了。

Client类运行后的服务端日志如图4-2所示。

 [image:]

图4-2　服务端不再阻塞

Client类运行后的客户端日志如图4-3所示。

 [image:]

图4-3　客户端日志

此实验结果证明服务端与客户端连接成功。

构造方法public Socket（String host，int port）的第一个参数host可以写成IP地址或域名。如果写成域名，就会使用DNS服务转成IP地址再访问服务端。下面的代码就是使用Socket类作为客户端来连接www.csdn.net网站。

public class Test1 {

public static void main(String[] args) throws IOException {

 Socket socket = null;

 try {

 socket = new Socket("www.csdn.net", 80);

 System.out.println("socket连接成功");

 } catch (IOException e) {

 System.out.println("socket连接失败");

 e.printStackTrace();

 } finally {

 socket.close();

 }

}

}

程序运行结果如下：

socket连接成功

如果host改成不存在的域名，则会出现异常，示例代码如下：

public class Test2 {

public static void main(String[] args) throws IOException {

 Socket socket = null;

 try {

 socket = new Socket("www.csdncasdfq34w21342345345634567.com", 80);

 System.out.println("socket连接成功");

 } catch (IOException e) {

 System.out.println("socket连接失败");

 e.printStackTrace();

 } finally {

 socket.close();

 }

}

}

程序运行后出现异常，结果如下：

socket连接失败

java.net.UnknownHostException: www.csdncasdfq34w21342345345634567.com

 at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:184)

 at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:172)

 at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)

 at java.net.Socket.connect(Socket.java:589)

 at java.net.Socket.connect(Socket.java:538)

 at java.net.Socket.<init>(Socket.java:434)

 at java.net.Socket.<init>(Socket.java:211)

 at test.Test2.main(Test2.java:10)

Exception in thread "main" java.lang.NullPointerException

 at test.Test2.main(Test2.java:16)

上面的实验是使用Socket类实现www.csdn.net网站的连接，下面介绍如何使用ServerSocket类创建一个Web服务器。

测试用的代码如下：

public class CreateWebServer {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(6666);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 BufferedReader bufferedReader = new BufferedReader(inputStreamReader);

 String getString = "";

 while (!"".equals(getString = bufferedReader.readLine())) {

 System.out.println(getString);

 }

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("HTTP/1.1 200 OK\r\n\r\n".getBytes());

 outputStream.write(

 "<html><body>i am baidu.com welcome

 you!</body></html>".getBytes());

 outputStream.flush();

 inputStream.close();

 outputStream.close();

 socket.close();

 serverSocket.close();

}

}

在IE浏览器地址栏中输入以下网址：

http://127.0.0.1:6666

按Enter键后，控制台输出的结果如下：

GET / HTTP/1.1

Accept: text/html, application/xhtml+xml, */*

Accept-Language: zh-CN

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko

Accept-Encoding: gzip, deflate

Host: 127.0.0.1:6666

DNT: 1

Connection: Keep-Alive

而IE浏览器也接收到了从服务端传递过来的数据，效果如图4-4所示。

 [image:]

图4-4　浏览器显示的数据
4.1.2　验证Socket中InputStream类的read（）方法也具有阻塞特性

除了ServerSocket类中的accept（）方法具有阻塞特性外，InputStream类中的read（）方法也同样具有阻塞特性。

通过使用Socket类的getInputStream（）方法可以获得输入流，从输入流中获取从对方发送过来的数据。

创建名为test3的项目，服务端类Server代码如下：

public class Server {

public static void main(String[] args) {

 try {

 byte[] byteArray = new byte[1024];

 ServerSocket serverSocket = new ServerSocket(8088);

 System.out.println("accept begin " + System.currentTimeMillis());

 Socket socket = serverSocket.accept();// 呈阻塞效果

 System.out.println("accept end " + System.currentTimeMillis());

 InputStream inputStream = socket.getInputStream();

 System.out.println("read begin " + System.currentTimeMillis());

 int readLength = inputStream.read(byteArray);// 呈阻塞效果

 System.out.println("read end " + System.currentTimeMillis());

 inputStream.close();

 socket.close();

 serverSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

客户端类Client代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("socket begin " + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("socket end " + System.currentTimeMillis());

 Thread.sleep(Integer.MAX_VALUE);

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

首先执行Server类，可以发现accept（）方法具有阻塞特性，效果如图4-5所示。

 [image:]

图4-5　服务端阻塞了，进程不销毁

然后执行客户端类Client，发现客户端运行结束但进程并未销毁，如图4-6所示。

 [image:]

图4-6　客户端运行结束但进程并未销毁

再次查看服务端控制台，发现服务端在read（）方法处阻塞，如图4-7所示。

 [image:]

图4-7　服务端在read（）方法处阻塞

read（）方法阻塞的原因是客户端并未发送数据到服务端，服务端一直在尝试读取从客户端传递过来的数据，因为客户端从未发送数据给服务端，所以服务端一直在阻塞。
4.1.3　客户端向服务端传递字符串

本实验是学习Socket编程的经典案例，真正实现了服务端与客户端进行通信。

创建名为test4的项目，Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 char[] charArray = new char[3];

 ServerSocket serverSocket = new ServerSocket(8088);

 System.out.println("accept begin " + System.currentTimeMillis());

 Socket socket = serverSocket.accept();

 System.out.println("accept end " + System.currentTimeMillis());

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 System.out.println("read begin " + System.currentTimeMillis());

 int readLength = inputStreamReader.read(charArray);

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStreamReader.read(charArray);

 }

 System.out.println("read end " + System.currentTimeMillis());

 inputStreamReader.close();

 inputStream.close();

 socket.close();

 serverSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("socket begin " + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("socket end " + System.currentTimeMillis());

 Thread.sleep(3000);

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("我是外星人".getBytes());

 outputStream.close();

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

首先运行Server类的实现代码，结果如图4-8所示。

 [image:]

图4-8　服务端发生阻塞

然后运行客户端类Client的实现代码，结果如图4-9所示。

 [image:]

图4-9　客户端进程销毁

在3秒之后，服务端正确输出从客户端传递过来的字符串，结果如图4-10所示。

 [image:]

图4-10　服务端取得客户端传递过来的数据
4.1.4　服务端向客户端传递字符串

上一节已经实现了从客户端向服务端传递数据，本小节将实现反向操作，也就是从服务端向客户端传递数据。

创建名为test41的项目，Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8088);

 System.out.println("server阻塞开始=" + System.currentTimeMillis());

 Socket socket = serverSocket.accept();

 System.out.println("server阻塞结束=" + System.currentTimeMillis());

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("我是高洪岩，我来自server端！".getBytes());

 outputStream.close();

 socket.close();

 serverSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("client连接准备=" + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("client连接结束=" + System.currentTimeMillis());

 char[] charBuffer = new char[3];

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(

 inputStream);

 System.out.println("serverB begin " + System.currentTimeMillis());

 int readLength = inputStreamReader.read(charBuffer);

 System.out.println("serverB end " + System.currentTimeMillis());

 while (readLength != -1) {

 System.out.print(new String(charBuffer, 0, readLength));

 readLength = inputStreamReader.read(charBuffer);

 }

 System.out.println();

 inputStream.close();

 socket.close();

 System.out.println("client运行结束=" + System.currentTimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行服务端类Server的实现程序，发现呈阻塞状态，如图4-11所示。

 [image:]

图4-11　服务端阻塞

然后运行客户端类Client的实现程序，结果如图4-12所示。

 [image:]

图4-12　成功接收服务端传递过来的数据

客户端执行完毕后，服务端进程也销毁了，结果如图4-13所示。

 [image:]

图4-13　服务端进程销毁
4.1.5　允许多次调用write（）方法进行写入操作

write（）方法允许多次被调用，每执行一次就代表传递一次数据。

创建名为test5的项目，Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 char[] charBuffer = new char[15];

 ServerSocket serverSocket = new ServerSocket(8088);

 System.out.println("server阻塞开始=" + System.currentTimeMillis());

 Socket socket = serverSocket.accept();

 System.out.println("server阻塞结束=" + System.currentTimeMillis());

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(

 inputStream);

 System.out.println("serverB begin " + System.currentTimeMillis());

 int readLength = inputStreamReader.read(charBuffer);

 System.out.println("serverB end " + System.currentTimeMillis());

 while (readLength != -1) {

 System.out.println(new String(charBuffer, 0, readLength)

 + " while " + System.currentTimeMillis());

 readLength = inputStreamReader.read(charBuffer);

 }

 inputStream.close();

 socket.close();

 serverSocket.close();

 System.out.println("server端运行结束=" + System.currentTimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("client连接准备=" + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("client连接结束=" + System.currentTimeMillis());

 Thread.sleep(2000);

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("我是高洪岩1".getBytes());

 Thread.sleep(3000);

 outputStream.write("我是高洪岩2".getBytes());

 Thread.sleep(3000);

 outputStream.write("我是高洪岩3".getBytes());

 Thread.sleep(3000);

 outputStream.write("我是高洪岩4".getBytes());

 Thread.sleep(3000);

 outputStream.write("我是高洪岩5".getBytes());

 System.out.println("client close begin="

 + System.currentTimeMillis());

 outputStream.close();

 socket.close();

 System.out.println("client close end="

 + System.currentTimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

首先运行服务端类Server的实现代码，发现呈阻塞状态，如图4-14所示。

 [image:]

图4-14　服务端阻塞

然后运行客户端类Client的实现代码，结果如图4-15所示。

 [image:]

图4-15　客户端多次调用write（）方法写入数据

客户端执行完毕后，服务端以多次的方式取得数据，结果如图4-16所示。

 [image:]

图4-16　服务端日志

服务端不执行while（）循环的条件是当客户端调用了outputStream.close（）方法时，代表到达流的结尾（end），不再传输数据。
4.1.6　实现服务端与客户端多次的往来通信

前面的实验都是服务端与客户端只进行了1次通信，那么如何实现连续多次的长连接通信呢？

创建名为doubleSayString的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 // 输入开始

 InputStream inputStream = socket.getInputStream();

 ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

 int byteLength = objectInputStream.readInt();

 byte[] byteArray = new byte[byteLength];

 objectInputStream.readFully(byteArray);

 String newString = new String(byteArray);

 System.out.println(newString);

 // 输入结束

 // 输出开始

 OutputStream outputStream = socket.getOutputStream();

 String strA = "客户端你好A\n";

 String strB = "客户端你好B\n";

 String strC = "客户端你好C\n";

 int allStrByteLength = (strA + strB + strC).getBytes().length;

 ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

 objectOutputStream.writeInt(allStrByteLength);

 objectOutputStream.flush();

 objectOutputStream.write(strA.getBytes());

 objectOutputStream.write(strB.getBytes());

 objectOutputStream.write(strC.getBytes());

 objectOutputStream.flush();

 // 输出结束

 // 输入开始

 byteLength = objectInputStream.readInt();

 byteArray = new byte[byteLength];

 objectInputStream.readFully(byteArray);

 newString = new String(byteArray);

 System.out.println(newString);

 // 输入结束

 // 输出开始

 strA = "客户端你好D\n";

 strB = "客户端你好E\n";

 strC = "客户端你好F\n";

 allStrByteLength = (strA + strB + strC).getBytes().length;

 objectOutputStream.writeInt(allStrByteLength);

 objectOutputStream.flush();

 objectOutputStream.write(strA.getBytes());

 objectOutputStream.write(strB.getBytes());

 objectOutputStream.write(strC.getBytes());

 objectOutputStream.flush();

 // 输出结束

 inputStream.close();

 socket.close();

 serverSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 Socket socket = new Socket("localhost", 8088);

 OutputStream outputStream = socket.getOutputStream();

 InputStream inputStream = socket.getInputStream();

 // 输出开始

 ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

 String strA = "服务端你好A\n";

 String strB = "服务端你好B\n";

 String strC = "服务端你好C\n";

 int allStrByteLength = (strA + strB + strC).getBytes().length;

 objectOutputStream.writeInt(allStrByteLength);

 objectOutputStream.flush();

 objectOutputStream.write(strA.getBytes());

 objectOutputStream.write(strB.getBytes());

 objectOutputStream.write(strC.getBytes());

 objectOutputStream.flush();

 // 输出结束

 // 输入开始

 ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

 int byteLength = objectInputStream.readInt();

 byte[] byteArray = new byte[byteLength];

 objectInputStream.readFully(byteArray);

 String newString = new String(byteArray);

 System.out.println(newString);

 // 输入结束

 // 输出开始

 strA = "服务端你好D\n";

 strB = "服务端你好E\n";

 strC = "服务端你好F\n";

 allStrByteLength = (strA + strB + strC).getBytes().length;

 objectOutputStream.writeInt(allStrByteLength);

 objectOutputStream.flush();

 objectOutputStream.write(strA.getBytes());

 objectOutputStream.write(strB.getBytes());

 objectOutputStream.write(strC.getBytes());

 objectOutputStream.flush();

 // 输出结束

 // 输入开始

 byteLength = objectInputStream.readInt();

 byteArray = new byte[byteLength];

 objectInputStream.readFully(byteArray);

 newString = new String(byteArray);

 System.out.println(newString);

 // 输入结束

 objectOutputStream.close();

 outputStream.close();

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

程序运行后，服务端控制台输出的结果如下：

服务端你好A

服务端你好B

服务端你好C

服务端你好D

服务端你好E

服务端你好F

客户端控制台输出的结果如下：

客户端你好A

客户端你好B

客户端你好C

客户端你好D

客户端你好E

客户端你好F

4.1.7　调用Stream的close（）方法造成Socket关闭

创建名为test6的项目，Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 byte[] charArray = new byte[10];

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 int readLength = inputStream.read(charArray);

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString + " " + System.currentTimeMillis());

 readLength = inputStream.read(charArray);

 }

 inputStream.close();

 // OutputStream outputStream = socket.getOutputStream();

 socket.close();

 serverSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws UnknownHostException, IOException,

InterruptedException {

 Socket socket = new Socket("localhost", 8088);

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("我是中国人".getBytes());

 outputStream.close();

 Thread.sleep(Integer.MAX_VALUE);

}

}

首先运行服务端类Server的实现代码，然后运行客户端类Client的实现代码，服务端成功取得字符串，结果如图4-17所示。

 [image:]

图4-17　服务端正确输出数据

在Server类的实现代码中，如果将代码语句“//OutputStream outputStream=socket.getOut-putStream（）；”中的注释符号去掉，再运行服务端类Server的实现代码，接着运行客户端类Client的实现代码，就出现了异常，结果如图4-18所示。

 [image:]

图4-18　服务端异常

出现异常的原因是在Server类中调用了下列代码：

inputStream.close();

此行代码的功能是将InputStream关闭。Stream在Socket技术中进行应用时，如果关闭返回的Stream，将关闭关联的Socket（套接字），类型为InputStream的对象inputStream的真正数据类型是java.net.SocketInputStream，其close（）方法源代码如下：

public void close() throws IOException {

 // Prevent recursion. See BugId 4484411

 if (closing)

 return;

 closing = true;

 if (socket != null) {

 if (!socket.isClosed())

 socket.close();////此行代码将会被执行，将Socket关闭

 } else

 impl.close();

 closing = false;

}

从上述源代码可知，当调用java.net.SocketInputStream类的close（）方法时，顺便也将Socket（套接字）close（）关闭。如果Socket关闭，则服务端与客户端不能进行通信。因此，当执行代码OutputStream outputStream=socket.getOutputStream（）取得输出流时，就会出现异常。
4.1.8　使用Socket传递PNG图片文件

本实验要实现的是客户端向服务器端传递PNG图片文件，练习一下使用Socket传递字节数据。

创建名为beginTransFile的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 byte[] byteArray = new byte[2048];

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 int readLength = inputStream.read(byteArray);

 FileOutputStream pngOutputStream = new FileOutputStream(new File(

 "c:\\newqq.png"));

 while (readLength != -1) {

 pngOutputStream.write(byteArray, 0, readLength);

 readLength = inputStream.read(byteArray);

 }

 pngOutputStream.close();

 inputStream.close();

 socket.close();

 serverSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 String pngFile = "c:\\qq.png";

 FileInputStream pngStream = new FileInputStream(new File(pngFile));

 byte[] byteArray = new byte[2048];

 System.out.println("socket begin " + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("socket end " + System.currentTimeMillis());

 OutputStream outputStream = socket.getOutputStream();

 int readLength = pngStream.read(byteArray);

 while (readLength != -1) {

 outputStream.write(byteArray, 0, readLength);

 readLength = pngStream.read(byteArray);

 }

 outputStream.close();

 pngStream.close();

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行Server类的实现代码，再运行Client类的实现代码，在C盘中出现了名为newqq.png的图片，如图4-19所示。

 [image:]

图4-19　正确传递PNG图片文件
4.1.9　TCP连接的3次“握手”过程

在使用TCP进行服务端与客户端连接时，需要进行3次“握手”。3次“握手”是学习Socket的必备知识，更是学习TCP/IP的必备技能，下面就介绍3次“握手”的过程。

创建项目test2_1。

创建测试用的服务端代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket socket = new ServerSocket(8088);

 System.out.println("server阻塞开始=" + System.currentTimeMillis());

 socket.accept();

 System.out.println("server阻塞结束=" + System.currentTimeMillis());

 Thread.sleep(Integer.MAX_VALUE);

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

创建测试用的客户端代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("client连接准备=" + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("client连接结束=" + System.currentTimeMillis());

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("111".getBytes());

 outputStream.write("11111".getBytes());

 outputStream.write("1111111111".getBytes());

 Thread.sleep(500000000);

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

在这个实验中，使用wireshark工具结合npcap进行抓包，过滤规则如下：

(ip.src ==127.0.0.1 and tcp.port==8088) or (ip.dst==127.0.0.1 and tcp.port==8088)

首先运行服务端，然后运行客户端，在wirkshark工具中捕获完整的通信过程，结果如图4-20所示。

 [image:]

图4-20　通信的全部过程

其中3次“握手”的过程如图4-21所示。

 [image:]

图4-21　3次“握手”的过程

第1次“握手”的信息如图4-22所示。

 [image:]

图4-22　第1次“握手”的过程

在第一次“握手”时，客户端向服务端发送SYN标志位，目的是与服务端建立连接。

SYN标志位的值表示发送数据流序号sequence number的最大值。例如，Seq的值是5，说明在数据流中曾经一共发送了1，2，3，4这4个字节。而在本次“握手”中，Seq的值是0，代表发送数据流的大小是0。另外，从Len=0也可以看出来是没有数据可供发送的，客户端仅仅发送一个SYN标志位到服务端，代表要进行连接。

第2次“握手”的信息如图4-23所示。

 [image:]

图4-23　第2次“握手”的过程

第2次“握手”时，服务端向客户端发送SYN和ACK标志位，其中ACK标志位表示是对收到的数据包的确认，说明服务端接收到了客户端的连接。ACK的值是1，表示服务端期待下一次从客户端发送数据流的序列号是1，而Seq=0代表服务端曾经并没有给客户端发送数据，而本次也没有发送数据，因为Len=0也证明了这一点。

第3次“握手”的信息如图4-24所示。

 [image:]

图4-24　第3次“握手”的过程

第3次“握手”时，客户端向服务端发送的ACK标志位为1，Seq的值是1。

Seq=1代表这正是服务端所期望的Ack=1。虽然Seq=1，但Len=0说明客户端这次还是没有向服务端传递数据。而客户端向服务端发送ACK标志位为1的信息，说明客户端期待服务端下一次传送的Seq的值是1。

3次“握手”的过程如下。

1）客户端到服务端：我要连接。

2）服务端到客户端：好的，已经连接上了。

3）客户端到服务端：收到，确认已连接上了。
4.1.10　标志位SYN与ACK值的自增特性

在服务端与客户端进行数据传输时，标志位SYN和ACK的值具有确认自增机制，这个机制在4.1.9节的截图中已经看到了，效果如图4-25所示。

 [image:]

图4-25　标志位SYN的展示和ACK值自增特性

TCP数据包中的序列号（Sequence Number）不是以报文包的数量来进行编号的，而是将传输的所有数据当作一个字节流，序列号就是整个字节流中每个字节的编号。一个TCP数据包中包含多个字节流的数据（即数据段），而且每个TCP数据包中的数据大小不一定相同。在建立TCP连接的3次“握手”过程中，通信双方各自已确定了初始的序号x和y，TCP每次传送的报文段中的序号字段值表示所要传送本报文中的第一个字节在整体字节流中的序号。

TCP的报文到达确认（ACK），是对接收到的数据的最高序列号的确认，并向发送端返回一个下次接收时期望的TCP数据包的序列号（Ack Number）。例如，主机A发送的当前数据序号是400，数据长度是100，则接收端收到后会返回一个500的确认号给主机A。

当客户端第一次调用write（"111".getBytes（））代码向服务端传输数据时，客户端发送标志位PSH和ACK，结果如图4-26所示。

 [image:]

图4-26　客户端第一次调用write（"111".getBytes（））方法时的“握手”过程

标志位PSH的作用是发送数据，让接收方立即处理数据。

先来看看客户端发送的信息，如图4-27所示。

 [image:]

图4-27　客户端第一次调用write（）发送的Flag

客户端发送Seq=1、Ack=1和Len=3信息给服务端。Len=3代表发送数据段的大小为3，数据内容是“111”。Seq=1代表以前从未传输数据，此次是从第1位开始发送数据给服务端。Ack=1表示客户端期望服务端返回Seq=1的数据包。

再来看看服务端对客户端第一次使用write（）方法写入的响应，结果如图4-28所示。

 [image:]

图4-28　服务端对write ("111".getBytes())方法的响应

服务器发送给客户端Seq=1、Ack=4和Len=0的信息。Seq=1正是客户端所期望的Ack=1，但由于Len=0，说明服务端并没有给客户端发送任何数据。而服务端期待客户端继续发送第4个字节的数据，说明服务端已经接收到从客户端传递过来的“111”这3个字节的数据。

后面的过程以此类推即可。
4.1.11　TCP断开连接的4次“挥手”过程

在使用TCP时，若要断开服务端与客户端的连接，需要进行4次“挥手”，本小节将会介绍4次“挥手”的过程。

创建项目test2_2。

创建测试用的服务端代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8088);

 System.out.println("server阻塞开始=" + System.currentTimeMillis());

 Socket socket = serverSocket.accept();

 System.out.println("server阻塞结束=" + System.currentTimeMillis());

 socket.close();

 serverSocket.close();

 Thread.sleep(2000);

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

创建测试用的客户端代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("client连接准备=" + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8088);

 System.out.println("client连接结束=" + System.currentTimeMillis());

 socket.close();

 Thread.sleep(2000);

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

首先运行服务端，然后运行客户端，在wirkshark工具中捕获了4次“挥手”的过程，结果如图4-29所示。

 [image:]

图4-29　4次“挥手”过程

图4-29中的FIN标志代表结束会话。

4次“挥手”的过程如下。

1）客户端到服务端：我关了。

2）服务端到客户端：好的，收到。

3）服务端到客户端：我也关了。

4）客户端到服务端：好的，收到。
4.1.12　“握手”的时机与立即传数据的特性

服务端与客户端进行“握手”的时机不是在执行accpet（）方法时，而是在ServerSocket对象创建出来并且绑定到指定的地址与端口时。

创建测试用的项目beforeTest。

创建Server类代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException,

ClassNotFoundException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Thread.sleep(Integer.MAX_VALUE);

}

}

创建Client类代码如下：

package beforeTest;

import java.io.IOException;

import java.io.OutputStream;

import java.net.Socket;

public class Client {

public static void main(String[] args) throws IOException, InterruptedException,

ClassNotFoundException {

 Socket socket = new Socket("localhost", 8088);

 OutputStream outputStream = socket.getOutputStream();

 for (int i = 0; i < 3; i++) {

 outputStream.write("1234567890".getBytes());

 System.out.println(i + 1);

 }

 outputStream.close();

 socket.close();

}

}

程序运行后，通过抓包工具可以分析出的确在ServerSocket绑定到地址时就可以实现3次“握手”了，如图4-30所示。

 [image:]

图4-30　“握手”的时机
4.1.13　结合多线程Thread实现通信

在Socket技术中，常用的实践方式就是Socket结合Thread多线程技术，客户端每发起一次新的请求，就把这个请求交给新创建的线程来执行这次业务。当然，如果使用线程池技术，则会更加高效。本示例先使用原始的非线程池来进行演示。

创建测试用的项目socket_thread。

创建BeginServer类代码如下：

public class BeginServer {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8888);

 int runTag = 1;

 while (runTag == 1) {

 Socket socket = serverSocket.accept();

 BeginThread beginThread = new BeginThread(socket);

 beginThread.start();

 }

 serverSocket.close();

}

}

创建BeginThread类代码如下：

public class BeginThread extends Thread {

private Socket socket;

public BeginThread(Socket socket) {

 super();

 this.socket = socket;

}

@Override

public void run() {

 try {

 InputStream inputStream = socket.getInputStream();

 InputStreamReader reader = new InputStreamReader(inputStream);

 char[] charArray = new char[1000];

 int readLength = -1;

 while ((readLength = reader.read(charArray)) != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 }

 reader.close();

 inputStream.close();

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

创建BeginClient类代码如下：

public class BeginClient {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("我是中国人".getBytes());

 outputStream.close();

 socket.close();

}

}

在上述程序运行后，服务端与客户端成功地进行通信，每个任务以异步的方式一起执行，大大增加程序运行时的吞吐量，提高了数据处理的能力。

再来看看使用线程池的代码，创建Runnable实现类代码如下：

public class ReadRunnable implements Runnable {

private Socket socket;

public ReadRunnable(Socket socket) {

 super();

 this.socket = socket;

}

@Override

public void run() {

 try {

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[100];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 System.out.println(new String(byteArray, 0, readLength));

 readLength = inputStream.read(byteArray);

 }

 inputStream.close();

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

创建服务器运行类代码如下：

public class Server {

private ServerSocket serverSocket;

private Executor pool;

public Server(int port, int poolSize) {

 try {

 serverSocket = new ServerSocket(port);

 pool = Executors.newFixedThreadPool(poolSize);

 } catch (IOException e) {

 e.printStackTrace();

 }

}

public void startService() {

 try {

 for (;;) {

 Socket socket = serverSocket.accept();

 pool.execute(new ReadRunnable(socket));

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

}

public static void main(String[] args) throws Exception {

 Server server = new Server(8088, 10000);

 server.startService();

}

}

4.1.14　服务端与客户端互传对象以及I/O流顺序问题

本实验将实现Server与Client交换Userinfo对象，而不是前面章节String类型的数据。

创建测试用的项目server_object_client。

实体类代码如下：

public class Userinfo implements Serializable {

private long id;

private String username;

private String password;

public Userinfo() {

}

public Userinfo(long id, String username, String password) {

 super();

 this.id = id;

 this.username = username;

 this.password = password;

}

 // 省略get和set方法

}

服务端示例代码如下：

public class Server {

public static void main(String[] args) throws IOException, ClassNotFoundException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 OutputStream outputStream = socket.getOutputStream();

 ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

 ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

 for (int i = 0; i < 5; i++) {

 Userinfo userinfo = (Userinfo) objectInputStream.readObject();

 System.out.println("在服务端打印" + (i + 1) + "：" + userinfo.getId() +

 " " + userinfo.getUsername() + " "

 + userinfo.getPassword());

 Userinfo newUserinfo = new Userinfo();

 newUserinfo.setId(i + 1);

 newUserinfo.setUsername("serverUsername" + (i + 1));

 newUserinfo.setPassword("serverPassword" + (i + 1));

 objectOutputStream.writeObject(newUserinfo);

 }

 objectOutputStream.close();

 objectInputStream.close();

 outputStream.close();

 inputStream.close();

 socket.close();

 serverSocket.close();

}

}

客户端示例代码如下：

public class Client {

public static void main(String[] args) throws IOException, ClassNotFoundException {

 Socket socket = new Socket("localhost", 8888);

 InputStream inputStream = socket.getInputStream();

 OutputStream outputStream = socket.getOutputStream();

 ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

 ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

 for (int i = 0; i < 5; i++) {

 Userinfo newUserinfo = new Userinfo();

 newUserinfo.setId(i + 1);

 newUserinfo.setUsername("clientUsername" + (i + 1));

 newUserinfo.setPassword("clientPassword" + (i + 1));

 objectOutputStream.writeObject(newUserinfo);

 Userinfo userinfo = (Userinfo) objectInputStream.readObject();

 System.out.println("在客户端打印" + (i + 1) + "：" + userinfo.getId() +

 " " + userinfo.getUsername() + " "

 + userinfo.getPassword());

 }

 objectOutputStream.close();

 objectInputStream.close();

 outputStream.close();

 inputStream.close();

 socket.close();

}

}

程序运行后在控制台输出的结果如下：

在服务端打印1：1 clientUsername1 clientPassword1

在服务端打印2：2 clientUsername2 clientPassword2

在服务端打印3：3 clientUsername3 clientPassword3

在服务端打印4：4 clientUsername4 clientPassword4

在服务端打印5：5 clientUsername5 clientPassword5

在客户端打印1：1 serverUsername1 serverPassword1

在客户端打印2：2 serverUsername2 serverPassword2

在客户端打印3：3 serverUsername3 serverPassword3

在客户端打印4：4 serverUsername4 serverPassword4

在客户端打印5：5 serverUsername5 serverPassword5

控制台输出的信息证明服务端与客户端成功互传Userinfo对象。

但在这里需要注意的是，如果在服务端使用程序代码：

public class Server {

public static void main(String[] args) throws IOException, ClassNotFoundException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 OutputStream outputStream = socket.getOutputStream();

 ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

 ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

那么先获得ObjectInputStream对象，然后获得ObjectOutputStream对象。如果客户端也使用同样顺序的代码：

public class Client {

public static void main(String[] args) throws IOException, ClassNotFoundException {

 Socket socket = new Socket("localhost", 8888);

 InputStream inputStream = socket.getInputStream();

 OutputStream outputStream = socket.getOutputStream();

 ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

 ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

那么客户端也是先获得ObjectInputStream对象，然后获得ObjectOutputStream对象。这样的话，在运行程序时，会在服务端的程序代码：

ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

出现阻塞的现象。

正确的写法应该是：

1）服务端先获得ObjectInputStream对象，客户端就要先获得ObjectOutputStream对象；

2）服务端先获得ObjectOutputStream对象，客户端就要先获得ObjectInputStream对象。
4.2　ServerSocket类的使用

ServerSocket类中有很多方法，熟悉这些方法的功能与使用是掌握Socket的基础，下面就开始介绍其常用的API方法。
4.2.1　接受accept与超时Timeout

public Socket accept（）方法的作用就是侦听并接受此套接字的连接。此方法在连接传入之前一直阻塞。

setSoTimeout（timeout）方法的作用是设置超时时间，通过指定超时timeout值启用/禁用SO_TIMEOUT，以ms为单位。在将此选项设为非零的超时timeout值时，对此Server-Socket调用accept（）方法将只阻塞timeout的时间长度。如果超过超时值，将引发java.net.SocketTimeoutException，但ServerSocket仍旧有效，在结合try-catch结构后，还可以继续进行accept（）方法的操作。SO_TIMEOUT选项必须在进入阻塞操作前被启用才能生效。注意，超时值必须是大于0的数。超时值为0被解释为无穷大超时值。参数int timeout的作用是在指定的时间内必须有客户端的连接请求，超过这个时间即出现异常，默认值是0，即永远等待。

int getSoTimeout（）方法的作用是获取SO_TIMEOUT的设置。返回0意味着禁用了选项（即无穷大的超时值）。

创建名为test7的项目，Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8000);

 System.out.println(serverSocket.getSoTimeout());

 serverSocket.setSoTimeout(4000);

 System.out.println(serverSocket.getSoTimeout());

 System.out.println();

 System.out.println("begin " + System.currentTimeMillis());

 serverSocket.accept();

 System.out.println(" end " + System.currentTimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 System.out.println("catch " + System.currentTimeMillis());

 }

}

}

在上面的示例代码中，设置超时时间为4s，目的是验证在4s内没有客户端连接时服务端是否出现超时异常。

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("client begin " + System.currentTimeMillis());

 Socket socket = new Socket("localhost", 8000);

 System.out.println("client end " + System.currentTimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 System.out.println("catch " + System.currentTimeMillis());

 }

}

}

首先运行Server类的实现代码，等待4s后出现异常，结果如图4-31所示。

 [image:]

图4-31　超时后出现异常

出现“java.net.SocketTimeoutException：Accept timed out”异常的原因是在4s之内并没有客户端连接服务端。

再次运行Server类的实现代码，然后以最快的速度运行Client类的实现代码，结果如图4-32所示。

 [image:]

图4-32　客户端运行结果

服务端运行结果如图4-33所示。

 [image:]

图4-33　未超时时运行正确

客户端在设置的超时时间之内连接到服务端，并没有发生超时现象。
4.2.2　构造方法的backlog参数含义

ServerSocket类的构造方法

public ServerSocket(int port, int backlog)

中的参数backlog的主要作用就是允许接受客户端连接请求的个数。客户端有很多连接进入到操作系统中，将这些连接放入操作系统的队列中，当执行accept（）方法时，允许客户端连接的个数要取决于backlog参数。

利用指定的backlog创建服务器套接字并将其绑定到指定的本地端口号port。对port端口参数传递值为0，意味着将自动分配空闲的端口号。

传入backlog参数的作用是设置最大等待队列长度，如果队列已满，则拒绝该连接。

backlog参数必须是大于0的正值，如果传递的值等于或小于0，则使用默认值50。

创建名为test71的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket(8088, 3);

 // sleep(5000)的作用是不让ServerSocket调用accept()方法，

 // 而是由客户端Socket先发起10个连接请求

 // 然后在执行accept()方法时只能接收3个连接

 Thread.sleep(5000);

 System.out.println("accept1 begin");

 Socket socket1 = serverSocket.accept();

 System.out.println("accept1 end");

 System.out.println("accept2 begin");

 Socket socket2 = serverSocket.accept();

 System.out.println("accept2 end");

 System.out.println("accept3 begin");

 Socket socket3 = serverSocket.accept();

 System.out.println("accept3 end");

 System.out.println("accept4 begin");

 Socket socket4 = serverSocket.accept();

 System.out.println("accept4 end");

 System.out.println("accept5 begin");

 Socket socket5 = serverSocket.accept();

 System.out.println("accept5 end");

 socket1.close();

 socket2.close();

 socket3.close();

 socket4.close();

 socket5.close();

 serverSocket.close();

}

}

accept（）方法被调用了5次，而构造方法的参数backlog值却为3，实际也只能接受3个连接的请求，其他的连接请求被忽略。

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException, InterruptedException {

 Socket socket1 = new Socket("localhost", 8088);

 Socket socket2 = new Socket("localhost", 8088);

 Socket socket3 = new Socket("localhost", 8088);

 Socket socket4 = new Socket("localhost", 8088);

 Socket socket5 = new Socket("localhost", 8088);

}

}

首先运行Server类的实现代码，然后以最快的速度运行Client类的实现代码，结果如图4-34所示。

 [image:]

图4-34　客户端第4次连接请求出现异常

第4次连接请求出现的异常类型为：

java.net.ConnectException: Connection refused: connect

相应的服务端日志如图4-35所示。

 [image:]

图4-35　服务端仅接受3个连接

服务端main线程呈阻塞状态。
4.2.3　参数backlog的默认值

在不更改参数backlog设置的情况下，其默认值是50。需要注意的是，backlog限制的连接数量是由操作系统进行处理的，因为backlog最终会传递给用native声明的方法，下面验证一下这个结论。

创建名为test72的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 // 默认backlog值是50

 ServerSocket serverSocket = new ServerSocket(8088);

 Thread.sleep(5000);

 for (int i = 0; i < 100; i++) {

 System.out.println("accept1 begin " + (i + 1));

 Socket socket = serverSocket.accept();

 System.out.println("accept1 end" + (i + 1));

 }

 serverSocket.close();

}

}

上述代码对ServerSocket类的构造方法不传入backlog参数，目的是分析默认时的backlog的值是多少。

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException, InterruptedException {

 for (int i = 0; i < 100; i++) {

 Socket socket1 = new Socket("localhost", 8088);

 System.out.println("client发起连接次数：" + (i + 1));

 }

}

}

首先运行Server类的实现代码，然后以最快的速度运行Client类的实现代码，客户端控制台部分输出结果如下：

client发起连接次数：48

client发起连接次数：49

client发起连接次数：50

Exception in thread "main" java.net.ConnectException: Connection refused: connect

 at java.net.DualStackPlainSocketImpl.connect0(Native Method)

 at java.net.DualStackPlainSocketImpl.socketConnect(DualStackPlainSocketImpl.java:79)

 at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)

 at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)

 at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)

 at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:172)

 at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)

 at java.net.Socket.connect(Socket.java:589)

 at java.net.Socket.connect(Socket.java:538)

 at java.net.Socket.<init>(Socket.java:434)

 at java.net.Socket.<init>(Socket.java:211)

 at test72.Client.main(Client.java:9)

从客户端的控制台输出的结果可以发现，客户端在发起第51次连接请求时出现异常，因为服务端的连接队列默认只允许接受50个连接请求，其他的客户端请求被操作系统忽略了。

服务端日志如图4-36所示。

 [image:]

图4-36　服务端仅接受50个连接

从图4-36可以看出，服务端仅接受了50个连接，而第51个连接被操作系统拒绝了。
4.2.4　构造方法ServerSocket（int port，int backlog，InetAddress bindAddr）的使用

构造方法

public ServerSocket(int port, int backlog, InetAddress bindAddr)

的作用是使用指定的port和backlog将Socket绑定到本地InetAddress bindAddr来创建服务器。bindAddr参数可以在ServerSocket的多宿主主机（multi-homed host）上使用，Server-Socket仅接受对其多个地址的其中一个的连接请求。如果bindAddr为null，则默认接受任何/所有本地地址上的连接。注意，端口号必须0～65535（包括两者）。

多宿主主机代表一台计算机有两块网卡，每个网卡有不同的IP地址，也有可能出现一台计算机有1块网卡，但这块网卡有多个IP地址的情况。

backlog参数必须是大于0的正值。如果传递的值等于或小于0，则使用默认值50。

创建名为test73的Java项目，目的是验证在以显式的方式对backlog传入指定的值时，accept（）的次数就是backlog的值。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 InetAddress inetAddress = InetAddress.getLocalHost();

 ServerSocket serverSocket = new ServerSocket(8088, 50, inetAddress);

 Thread.sleep(5000);

 for (int i = 0; i < 100; i++) {

 System.out.println("accept1 begin " + (i + 1));

 Socket socket = serverSocket.accept();

 System.out.println("accept1 end" + (i + 1));

 }

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException, InterruptedException {

 InetAddress inetAddress = InetAddress.getLocalHost();

 for (int i = 0; i < 100; i++) {

 Socket socket1 = new Socket(inetAddress, 8088);

 System.out.println("client发起连接次数：" + (i + 1));

 }

}

}

上述程序运行的结果和4.2.3节一样，accept（）方法执行了50次，第51次出现异常。

ServerSocket类有3个构造方法，在使用上还是有一些区别的。

1）使用构造方法public ServerSocket（int port）和public ServerSocket（int port，int backlog）

创建ServerSocket对象，则客户端可以使用服务器任意的IP连接到ServerSocket对象中。

2）在使用public ServerSocket（int port，int backlog，InetAddress bindAddr）构造方法中的参数bindAddr创建ServerSocket对象后，客户端想要连接到服务端，则客户端Socket的构造方法的参数要写上与ServerSocket构造方法的参数bindAddr相同的IP地址，不然就会出现异常。
4.2.5　绑定到指定的Socket地址

public void bind（SocketAddress endpoint）方法的主要作用是将ServerSocket绑定到特定的Socket地址（IP地址和端口号），使用这个地址与客户端进行通信。如果地址为null，则系统将挑选一个临时端口和一个有效本地地址来绑定套接字。

该方法的使用场景就是在使用ServerSocket类的无参构造方法后想指定本地端口。

因为SocketAddress类表示不带任何协议附件的Socket Address，所以SocketAddress类的源代码非常简单，如下：

public abstract class SocketAddress implements java.io.Serializable {

 static final long serialVersionUID = 5215720748342549866L;

}

作为一个抽象（abstract）类，应通过特定的、协议相关的实现为其创建子类。它提供不可变对象，供套接字用于绑定、连接或用作返回值。

SocketAddress类是抽象类，其相关信息如图4-37所示。

 [image:]

图4-37　SocketAddress类的信息

SocketAddress类有1个子类InetSocketAddress，该类的信息如图4-38所示。

 [image:]

图4-38　InetSocketAddress类的信息

需要注意的是，InetAddress类代表IP地址，而Inet-SocketAddress类代表Socket地址。

InetSocketAddress类的API列表如图4-39所示。

 [image:]

图4-39　InetSocketAddress类的API列表

InetSocketAddress类有3个构造方法，说明如下。

1）构造方法public InetSocketAddress（int port）的作用是创建套接字地址，其中IP地址为通配符地址，端口号为指定值。有效的端口值介于0～65535之间。端口号传入0代表在bind操作中随机挑选空闲的端口。

2）构造方法public InetSocketAddress（String hostname，int port）的作用是根据主机名和端口号创建套接字地址。有效的端口值介于0～65535之间。端口号传入0代表在bind操作中随机挑选空闲的端口。

3）构造方法public InetSocketAddress（InetAddress addr，int port）的作用根据IP地址和端口号创建套接字地址。有效的端口值介于0～65535之间。端口号传入0代表在bind操作中随机挑选空闲的端口。

创建名为test8的Java项目，观察一下bind（）方法的使用。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.bind(new InetSocketAddress(8888));

 System.out.println("server begin accept");

 serverSocket.accept();

 System.out.println("server end accept");

 } catch (IOException e) {

 e.printStackTrace();

 System.out.println("catch " + System.currentTimeMillis());

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 System.out.println("client request begin");

 Socket socket = new Socket("localhost", 8888);

 System.out.println("client request end");

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先执行Server类的实现代码，结果如图4-40所示。

 [image:]

图4-40　等待连接中

然后执行Client类的实现代码，结果如图4-41所示。

 [image:]

图4-41　客户端日志

此时服务端日志如图4-42所示。

 [image:]

图4-42　服务端日志
4.2.6　绑定到指定的Socket地址并设置backlog数量

bind（SocketAddress endpoint，int backlog）方法不仅可以绑定到指定IP，而且还可以设置backlog的连接数量。

创建名为test9的Java项目，测试一下该方法的使用。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.bind(new InetSocketAddress(8888), 50);// 参数backlog设置为50

 Thread.sleep(8000);

 for (int i = 0; i < 100; i++) {

 System.out.println("server accept begin " + (i + 1));

 Socket socket = serverSocket.accept();

 System.out.println("server accept end " + (i + 1));

 socket.close();

 }

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 for (int i = 0; i < 100; i++) {

 System.out.println("client begin " + (i + 1));

 Socket socket = new Socket("localhost", 8888);

 System.out.println("client end " + (i + 1));

 }

}

}

首先执行Server类的实现代码，然后以最快的速度执行Client类的实现代码，控制台输出的信息说明客户端在发起50个连接后被拒绝连接了，信息如下：

client begin 50

client end 50

client begin 51

Exception in thread "main" java.net.ConnectException: Connection refused: connect

 at java.net.DualStackPlainSocketImpl.connect0(Native Method)

 at java.net.DualStackPlainSocketImpl.socketConnect(DualStackPlainSocketImpl.

 java:79)

 at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)

服务端日志如图4-43所示。

 [image:]

图4-43　服务端在等待第51个连接

Server类的实现代码如下：在Windows 7操作系统中，backlog的极限就是200，下面对此进行测试。

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.bind(new InetSocketAddress(8088), Integer.MAX_VALUE);

 Thread.sleep(20000);

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException, InterruptedException {

 for (int i = 0; i < 5000; i++) {

 Socket socket1 = new Socket("localhost", 8088);

 System.out.println("client send request " + (i + 1));

 }

}

}

首先执行Server类的实现代码，然后执行Client类的实现代码，控制台输出的结果如图4-44所示。

 [image:]

图4-44　Windows 7操作系统中的backlog的极限值为200
4.2.7　获取本地SocketAdress对象以及本地端口

getLocalSocketAddress（）方法用来获取本地的SocketAddress对象，它返回此Socket绑定的端点的地址，如果尚未绑定，则返回null。getLocalPort（）方法用来获取Socket绑定到本地的端口。

创建名为test12的Java项目，测试一下getLocalSocketAddress（）和getLocalPort（）方法的使用。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket();

 System.out.println("new ServerSocket()无参构造的端口是：" + serverSocket.get-

 LocalPort());

 serverSocket.bind(new InetSocketAddress("192.168.0.103", 8888));

 System.out.println("调用完bind方法之后的端口是：" + serverSocket.getLocalPort());

 InetSocketAddress inetSocketAddress = (InetSocketAddress) serverSocket.

 getLocalSocketAddress();

 System.out.println("inetSocketAddress.getHostName=" + inetSocketAddress.

 getHostName());

 System.out.println("inetSocketAddress.getHostString=" + inetSocketAddress.

 getHostString());

 System.out.println("inetSocketAddress.getPort=" + inetSocketAddress.getPort());

 serverSocket.close();

}

}

InetSocketAddress类主要表示Socket的IP地址，而InetAddress类主要表示一个IP地址。

上述程序运行结果如图4-45所示。

 [image:]

图4-45　运行结果
4.2.8　InetSocketAddress类的使用

InetSocketAddress类表示此类实现IP套接字地址（IP地址+端口号）。它还可以是一个（主机名+端口号），在此情况下，将尝试解析主机名，如果解析失败，则该地址将被视为未解析的地址，但是其在某些情形下仍然可以使用，如通过代理连接。它提供不可变对象，供套接字用于绑定、连接或用作返回值。

通配符是一个特殊的本地IP地址。它通常表示“任何”，只能用于bind操作。

SocketAddress与InetAddress本质的区别就是SocketAddress不基于任何协议。

1.构造方法public InetSocketAddress（InetAddress addr，int port）的使用

创建项目test12_1，用来测试构造方法public InetSocketAddress（InetAddress addr，int port）的使用。

创建服务端Server类，代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket();

 InetAddress inetAddress = InetAddress.getByName("localhost");

 InetSocketAddress inetSocketAddress = new InetSocketAddress(inetAddress, 8888);

 serverSocket.bind(inetSocketAddress);

 System.out.println("server begin");

 Socket socket = serverSocket.accept();

 System.out.println("server end");

 socket.close();

 serverSocket.close();

}

}

创建客户端Client类，代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 System.out.println("client begin");

 Socket socket = new Socket("localhost", 8888);

 System.out.println("client end");

}

}

执行上述代码后，客户端正确连接服务端。

2.getHostName（）和getHostString（）方法的区别

public final String getHostName（）方法的作用是获取主机名。注意，如果地址是用字面IP地址创建的，则此方法可能触发名称服务反向查找，也就是利用DNS服务通过IP找到域名。

public final String getHostString（）方法的作用是返回主机名或地址的字符串形式，如果它没有主机名，则返回IP地址。这样做的好处是不尝试反向查找。

测试用的代码如下：

public class Test1 {

public static void main(String[] args) throws IOException {

 InetSocketAddress inetSocketAddress1 = new InetSocketAddress("192.168.

 0.103", 80);

 InetSocketAddress inetSocketAddress2 = new InetSocketAddress("192.168.

 0.103", 80);

 System.out.println(inetSocketAddress1.getHostName());

 System.out.println(inetSocketAddress2.getHostString());

}

}

注意，此例需要创建两个InetSocketAddress类的对象才能分析出这两种方法的区别。

上述程序运行结果如下：

gaohongyan-PC

192.168.0.103

之所以要创建两个对象来进行测试，是因为这两种方法的执行顺序是有关系的，先执行get HostName（）方法的示例代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException,

ClassNotFoundException {

 InetSocketAddress address1 = new InetSocketAddress("192.168.0.150", 8088);

 InetSocketAddress address2 = new InetSocketAddress("192.168.0.150", 8088);

 // 如果先输出getHostName()，再输出getHostString()，

 // 则在笔者计算机中输出2个相同的值"gaohongyan-PC"，

 // 之所以出现这样的情况是因为先使用getHostName()取得了hostName的值，

 // 在这个过程中进行了DNS解析，hostName的值为"gaohongyan-PC"。

 // 然后在调用getHostString()方法时，在源代码中使用：

 // if (hostname != null)

 // return hostname;

 // 直接将hostname的值"gaohongyan-PC"进行返回，因此，这两种方法输出的结果是一样的

 System.out.println(address1.getHostName());

 System.out.println(address1.getHostString());

}

}

再来看看另外一种顺序，即执行getHostString（）方法的代码如下：

public class Test2 {

public static void main(String[] args) throws IOException, InterruptedException,

ClassNotFoundException {

 InetSocketAddress address1 = new InetSocketAddress("192.168.0.150", 8088);

 InetSocketAddress address2 = new InetSocketAddress("192.168.0.150", 8088);

 // 但是，如果先输出getHostString()，再输出getHostName()，

 // 运行结果输出2个字符串：

 // 192.168.0.150

 // gaohongyan-PC

 // 这是因为getHostString()方法的源代码调用了代码：

 // return addr.getHostAddress();

 // 将地址直接返回，该地址是由InetSocketAddress构造方法第1个参数决定的。

 // 在执行getHostName()方法时，在源代码会调用方法：

 // InetAddress.getHostFromNameService(this, check);

 // 对这个IP进行DNS解析

 System.out.println(address1.getHostString());

 System.out.println(address1.getHostName());

}

}

3.获取IP地址InetAddress对象

public final InetAddress getAddress（）方法的作用是获取InetAddress对象。

示例代码如下：

public class Test2 {

public static void main(String[] args) throws IOException {

 InetSocketAddress inetSocketAddress = new InetSocketAddress("localhost", 8080);

 InetAddress inetAddress = inetSocketAddress.getAddress();

 byte[] ipAddress = inetAddress.getAddress();

 for (int i = 0; i < ipAddress.length; i++) {

 System.out.print((byte) ipAddress[i] + " ");

 }

}

}

上述程序运行结果如下：

127 0 0 1

4.创建未解析的套接字地址

public static InetSocketAddress createUnresolved（String host，int port）方法的作用是根据主机名和端口号创建未解析的套接字地址，但不会尝试将主机名解析为InetAddress。该方法将地址标记为未解析，有效端口值介于0～65535之间。端口号0代表允许系统在bind操作中随机挑选空闲的端口。

public final boolean isUnresolved（）方法的作用：如果无法将主机名解析为InetAddress，则返回true。

示例代码如下：

public class Test3 {

public static void main(String[] args) throws IOException {

 InetSocketAddress inetSocketAddress1 = new InetSocketAddress("www.baidu.

 com", 80);

 // 输出false的原因是可以对www.baidu.com进行解析

 System.out.println(inetSocketAddress1.isUnresolved());

 InetSocketAddress inetSocketAddress2 = new InetSocketAddress("www.baidu

 3245fdgsadfasdfasdfasdf.com", 80);

 // 输出true的原因是不能对这个域名进行解析

 System.out.println(inetSocketAddress2.isUnresolved());

 // 输出true是因为即使能对www.baidu.com进行解析，内部也不解析

 InetSocketAddress inetSocketAddress3 = InetSocketAddress.createUnresolved

 ("www.baidu.com", 80);

 System.out.println(inetSocketAddress3.isUnresolved());

 // 输出true的原因是内部从来不解析

 InetSocketAddress inetSocketAddress4 = InetSocketAddress

 .createUnresolved("www.baidu3245fdgsadfasdfasdfasdf.com", 80);

 System.out.println(inetSocketAddress4.isUnresolved());

}

}

上述程序运行结果如下：

false

true

true

true

4.2.9　关闭与获取关闭状态

public void close（）方法的作用是关闭此套接字。在accept（）中，所有当前阻塞的线程都将会抛出SocketException。如果此套接字有一个与之关联的通道，则关闭该通道。

public boolean isClosed（）方法的作用是返回ServerSocket的关闭状态。如果已经关闭了套接字，则返回true。

创建名为test10的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8888);

 System.out.println(serverSocket.isClosed());

 serverSocket.close();

 System.out.println(serverSocket.isClosed());

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

上述程序运行结果如下：

false

true

4.2.10　判断Socket绑定状态

public boolean isBound（）方法的作用是返回ServerSocket的绑定状态。如果将Server-Socket成功地绑定到一个地址，则返回true。

创建名为test11的Java项目。

Server1类的实现代码如下：

public class Server1 {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket();

 System.out.println("bind begin " + serverSocket.isBound());

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 System.out.println("bind end " + serverSocket.isBound());

 } catch (IOException e) {

 e.printStackTrace();

 System.out.println("catch come in!");

 }

}

}

Server1类的实现代码的执行结果如图4-46所示。

 [image:]

图4-46　正确绑定到IP地址及端口

Server2类的实现代码如下：

public class Server2 {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket();

 System.out.println("bind begin " + serverSocket.isBound());

 serverSocket.bind(new InetSocketAddress("www.baidubaidu不存在的网址.com",

 8888));

 System.out.println("bind end " + serverSocket.isBound());

 } catch (IOException e) {

 e.printStackTrace();

 System.out.println("catch come in!");

 }

}

}

执行Server2类的实现代码的结果如图4-47所示。

 [image:]

图4-47　绑定失败
4.2.11　获得IP地址信息

getInetAddress（）方法用来获取Socket绑定的本地IP地址信息。如果Socket是未绑定的，则该方法返回null。

创建名为test13的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ClassNotFoundException {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.bind(new InetSocketAddress("192.168.0.150", 8088));

 System.out.println(serverSocket.getInetAddress().getHostAddress());

 System.out.println(serverSocket.getInetAddress().getLoopbackAddress());

}

}

上述程序运行结果如下：

192.168.0.150

localhost/127.0.0.1

4.2.12　Socket选项ReuseAddress

public void setReuseAddress（boolean on）方法的作用是启用/禁用SO_REUSEADDR套接字选项。关闭TCP连接时，该连接可能在关闭后的一段时间内保持超时状态（通常称为TIME_WAIT状态或2MSL等待状态）。对于使用已知套接字地址或端口的应用程序而言，如果存在处于超时状态的连接（包括地址和端口），则应用程序可能不能将套接字绑定到所需的SocketAddress上。

如果在使用bind（SocketAddress）方法“绑定套接字之前”启用SO_REUSEADDR选项，就可以允许绑定到处于超时状态的套接字。

当创建ServerSocket时，SO_REUSEADDR的初始设置是不确定的，要依赖于操作系统的实现。在使用bind（）方法绑定套接字后，启用或禁用SO_REUSEADDR时的行为是不确定的，也要依赖于操作系统的实现。

应用程序可以使用getReuseAddress（）来判断SO_REUSEADDR的初始设置。

public boolean getReuseAddress（）方法的作用是测试是否启用SO_REUSEADDR。

在调用Socket类的close（）方法时，会关闭当前连接，释放使用的端口，但在操作系统层面，并不会马上释放当前使用的端口。如果端口呈TIME_WAIT状态，则在Linux操作系统中可以重用此状态的端口。setReuseAddress（boolean）方法就是用来实现这样的功能的，也就是端口复用。端口复用的优点是可以大幅提升端口的使用率，用较少的端口数完成更多的任务。

什么是TIME_WAIT状态？服务端（Server）与客户端（Client）建立TCP连接之后，主动关闭连接的一方就会进入TIME_WAIT状态。例如，客户端主动关闭连接时，会发送最后一个ACK，然后客户端就会进入TIME_WAIT状态，再“停留若干时间”，然后进入CLOSED状态。在Linux操作系统中，当在“停留若干时间”段时，应用程序是可以复用呈TIME_WAIT状态的端口的，这样可提升端口利用率。

在Linux发行版CentOS中，默认允许端口复用。

本节将对ServerSocket类的setReuseAddress（boolean）方法在Linux操作系统中进行复用地址的测试。因为Windows操作系统并没有完全实现BSD Socket的标准，所以意味着在Windows操作系统中不能使用setReuseAddress（boolean）方法来实现端口复用。

注意，本小节的代码要在Linux操作系统中进行测试才可以出现预期的结果。

1.服务端实现端口不允许被复用

先来看一下服务端不允许复用端口的测试。

创建名为ServerSocketReuseAddress_server的Java项目。

Test1类的实现代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException {

 Thread server = new Thread() {

 @Override

 public void run() {

 try {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.setReuseAddress(false);

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 Socket socket = serverSocket.accept();

 Thread.sleep(1000);

 socket.close(); // 服务端首先主动关闭连接■■■■■

 serverSocket.close(); // 服务端首先主动关闭连接■■■■■

 } catch (SocketException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 server.start();

 Thread.sleep(500);

 Thread client = new Thread() {

 @Override

 public void run() {

 try {

 Socket socket = new Socket("localhost", 8888);

 Thread.sleep(3000);

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 client.start();

}

}

上述程序中的代码语句“ServerSocket.setReuseAddress（false）；”的含义是不允许端口复用。

Test3类的现实代码如下：

public class Test3 {

public static void main(String[] args) throws IOException, InterruptedException {

 try {

 ServerSocket serverSocket = new ServerSocket(8888);

 System.out.println("accept begin");

 Socket socket = serverSocket.accept();

 System.out.println("accept end");

 socket.close();

 serverSocket.close();

 } catch (SocketException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Test3类的实现代码的主要作用是使用服务端的端口8888。

首先运行Test1类的实现代码，两个线程按顺序执行，然后在终端中查看一下端口的状态，结果如图4-48所示。

 [image:]

图4-48　端口8888呈TIME_WAIT状态

然后运行Test3类的实现代码，结果出现端口被使用的异常提示，说明端口8888并不允许复用。异常结果如下所示：

java.net.BindException: 地址已在使用

 at java.net.PlainSocketImpl.socketBind(Native Method)

 at java.net.AbstractPlainSocketImpl.bind(AbstractPlainSocketImpl.java:387)

 at java.net.ServerSocket.bind(ServerSocket.java:375)

 at java.net.ServerSocket.<init>(ServerSocket.java:237)

 at java.net.ServerSocket.<init>(ServerSocket.java:128)

 at test.Test3.main(Test3.java:11)

上述结果表明服务端的端口不允许被复用的测试成功了。

2.服务端实现端口允许被复用

下面进行服务端允许复用端口的测试。

在名为ServerSocketReuseAddress_server的Java项目中，创建Test2类，代码如下：

public class Test2 {

public static void main(String[] args) throws IOException, InterruptedException {

 Thread server = new Thread() {

 @Override

 public void run() {

 try {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.setReuseAddress(true);

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 Socket socket = serverSocket.accept();

 Thread.sleep(1000);

 socket.close(); // 服务端首先主动关闭连接■■■■■

 serverSocket.close(); // 服务端首先主动关闭连接■■■■■

 } catch (SocketException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 server.start();

 Thread.sleep(500);

 Thread client = new Thread() {

 @Override

 public void run() {

 try {

 Socket socket = new Socket("localhost", 8888);

 Thread.sleep(3000);

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 client.start();

}

}

Test2类中的代码：serverSocket.setReuseAddress（true）；的含义是允许端口复用。

首先运行Test2类，然后在终端中查看一下端口的状态，状态结果如图4-49所示。

 [image:]

图4-49　端口8888呈TIME_WAIT状态

然后运行Test3类的实现代码，并未出现异常提示，说明端口8888允许复用，控制台输出信息如下：

accept begin

上述结果表明服务端的端口允许被复用的测试成功了。

3.客户端实现端口不允许被复用

下面进行客户端不允许复用端口的测试。

创建名为ServerSocketReuseAddress_client的Java项目。

Test1类的实现代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException {

 Thread server = new Thread() {

 @Override

 public void run() {

 try {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.setReuseAddress(true);

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 Socket socket = serverSocket.accept();

 Thread.sleep(3000);

 socket.close();

 serverSocket.close();

 } catch (SocketException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 server.start();

 Thread.sleep(500);

 Thread client = new Thread() {

 @Override

 public void run() {

 try {

 Socket socket = new Socket();

 socket.setReuseAddress(false);

 socket.bind(new InetSocketAddress(7777));

 socket.connect(new InetSocketAddress(8888));

 System.out.println("socket.getLocalPort()=" + socket.getLocalPort());

 socket.close();// 客户端首先主动关闭连接■■■■■

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 client.start();

}

}

Test1类中的代码“socket.setReuseAddress（false）；”的含义是不允许端口复用。

首先运行Test1类，程序运行结果如图4-50所示。

 [image:]

图4-50　端口7777呈TIME_WAIT状态

然后再运行Test1类的实现代码，出现端口被使用的异常提示，说明端口7777并不允许复用，异常结果如图4-51所示。

上述结果表明客户端的端口不允许被复用的测试成功了。

 [image:]

图4-51　端口7777不允许复用

4.客户端实现端口允许被复用

下面进行客户端允许复用端口的测试。

在名为ServerSocketReuseAddress_client的Java项目中创建Test2类，代码如下：

public class Test2 {

public static void main(String[] args) throws IOException, InterruptedException {

 Thread server = new Thread() {

 @Override

 public void run() {

 try {

 ServerSocket serverSocket = new ServerSocket();

 serverSocket.setReuseAddress(true);

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 Socket socket = serverSocket.accept();

 Thread.sleep(3000);

 socket.close();

 serverSocket.close();

 } catch (SocketException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 server.start();

 Thread.sleep(500);

 Thread client = new Thread() {

 @Override

 public void run() {

 try {

 Socket socket = new Socket();

 socket.setReuseAddress(true);

 socket.bind(new InetSocketAddress(7777));

 socket.connect(new InetSocketAddress(8888));

 System.out.println("socket.getLocalPort()=" + socket.getLocalPort());

 socket.close();// 客户端首先主动关闭连接■■■■■

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 client.start();

}

}

Test2类中的代码“socket.setReuseAddress（true）；”的含义是允许端口复用。

首先运行Test2类，程序运行结果如图4-52所示。

 [image:]

图4-52　端口7777呈TIME_WAIT状态

然后再运行Test2类的实现代码，并未出现异常提示，说明端口7777允许复用。

上述结果表明客户端的端口允许被复用的测试成功了。
4.2.13　Socket选项ReceiveBufferSize

public void setReceiveBufferSize（int size）方法的作用是为从此ServerSocket接受的套接字的SO_RCVBUF选项设置新的建议值。在接受的套接字中，实际被采纳的值必须在accept（）方法返回套接字后通过调用Socket.getReceiveBufferSize（）方法进行获取。

SO_RCVBUF的值用于设置内部套接字接收缓冲区的大小和设置公布到远程同位体的TCP接收窗口的大小。随后可以通过调用Socket.setReceiveBufferSize（int）方法更改该值。但是，如果应用程序希望允许大于RFC 1323中定义的64KB的接收窗口，则在将ServerSocket绑定到本地地址之前必须在其中设置建议值。这意味着，必须用无参数构造方法创建ServerSocket，然后必须调用setReceiveBufferSize（）方法，最后通过调用bind（）将ServerSocket绑定到地址。如果不是按照前面的顺序设置接收缓冲区的大小，也不会导致错误，缓冲区大小可能被设置为所请求的值，但是此ServerSocket中接受的套接字中的TCP接收窗口将不再大于64KB。

public int getReceiveBufferSize（）方法的作用是获取此ServerSocket的SO_RCVBUF选项的值，该值是将用于从此ServerSocket接受的套接字的建议缓冲区大小。

在接受的套接字中，实际设置的值通过调用Socket.getReceiveBufferSize（）方法来确定。

注意，对于客户端，SO_RCVBUF选项必须在connect方法调用之前设置，对于服务端，SO_RCVBUF选项必须在bind（）前设置。

创建名为test15的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket();

 System.out.println("A server serverSocket.getReceiveBufferSize()=" +

 serverSocket.getReceiveBufferSize());

 serverSocket.setReceiveBufferSize(66);

 System.out.println("B server serverSocket.getReceiveBufferSize()=" +

 serverSocket.getReceiveBufferSize());

 serverSocket.bind(new InetSocketAddress("localhost", 8088));

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 char[] charArray = new char[1024];

 int readLength = inputStreamReader.read(charArray);

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStreamReader.read(charArray);

 }

 socket.close();

 serverSocket.close();

 } catch (SocketTimeoutException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 Socket socket = new Socket();

 System.out.println("begin " + socket.getReceiveBufferSize());

 socket.connect(new InetSocketAddress("localhost", 8088));

 System.out.println(" end " + socket.getReceiveBufferSize());

 OutputStream outputStream = socket.getOutputStream();

 for (int i = 0; i < 100; i++) {

 outputStream

 .write("123456789123456789123456789123456789123456789123

 456789123456789123456789123456789123456789123456789

 123456789123456789123456789123456789123456789123456

 789123456789123456789123456789123456789123456789123

 456789123456789123456789123456789123456789123456789

 123456789123456789123456789123456789123456789123456

 789123456789123456789123456789123456789123456789123

 456789123456789123456789123456789123456789123456789

 123456789123456789123456789123456789123456789123456

 789123456789123456789123456789123456789123456789123

 456789123456789123456789123456789123456789123456789

 123456789123456789123456789123456789123456789123456

 789123456789123456789"

 .getBytes());

 }

 outputStream.write("end!".getBytes());

 outputStream.close();

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行服务端，再运行客户端，抓包的结果如图4-53所示。

在服务端的控制台中首先输出如下结果：

A server serverSocket.getReceiveBufferSize()=8192

B server serverSocket.getReceiveBufferSize()=66

上述输出结果说明服务端的接收缓冲区大小被更改了。

在客户端的控制台中输出如下结果：

begin 8192

 end 8192

 [image:]

图4-53　抓包的结果

上述输出结果说明在3次“握手”的第2步，服务端只是告诉客户端，下一次客户端向服务端传输数据的windowsSize窗口大小，但并没有更改客户端的接收缓冲区的大小，只是更改了服务端接收缓冲区的大小。
4.3　Socket类的使用

ServerSocket类作用是搭建Socket的服务端环境，而Socket类的主要作用是使Server与Client进行通信。Socket类包含很多实用且能增加软件运行效率的API方法，本节将介绍这些方法的功能及使用。
4.3.1　绑定bind与connect以及端口生成的时机

public void bind（SocketAddress bindpoint）方法的作用是将套接字绑定到本地地址。如果地址为null，则系统将随机挑选一个空闲的端口和一个有效的本地地址来绑定套接字。

在Socket通信的过程中，服务端和客户端都需要端口来进行通信。而在前面的示例中，都是使用“new ServerSocket（8888）”的代码格式来创建Socket服务端，其中8888就是服务端的端口号。使用代码“new Socket（"localhost"，8888）”来创建客户端的Socket并连接服务端的8888端口，客户端的端口并没有指定，而是采用自动分配端口号的算法。当然，在客户端的Socket中是可以指定使用某个具体的端口的，这个功能就由bind（）方法提供。bind（）方法就是将客户端绑定到指定的端口上，该方法要优先于connect（）方法执行，也就是先绑定本地端口再执行连接方法。

public void connect（SocketAddress endpoint）方法的作用就是将此套接字连接到服务端。

创建名为SocketTest_1的Java项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 socket.close();

 serverSocket.close();

 System.out.println("server end!");

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket();

 socket.bind(new InetSocketAddress("localhost", 7777));

 socket.connect(new InetSocketAddress("localhost", 8888));

 socket.close();

 System.out.println("client end!");

}

}

首先运行服务端，再运行客户端，控制台输出结果如图4-54所示。

 [image:]

图4-54　服务端与客户端成功进行连接

如果使用Socket类的无参的构造方法结合connect（）方法连接到服务端，那么，在调用socket.

connect（）方法时，在内部首先绑定到客户端的一个空闲的随机端口，然后使用这个端口再去连接服务端。

创建测试用的项目socketPortCreateTime。

Server类的示例代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException,

ClassNotFoundException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Thread.sleep(10000);

 serverSocket.close();

}

}

Client类的示例代码如下：

public class Client {

public static void main(String[] args) throws IOException, InterruptedException,

ClassNotFoundException {

 Socket socket = new Socket();

 System.out.println("A=" + socket.getLocalPort());

 socket.connect(new InetSocketAddress("localhost", 8088));

 System.out.println("B=" + socket.getLocalPort());

 socket.close();

}

}

在上述程序运行后，客户端控制台输出如下结果：

A=-1

B=57561

上述结果说明Socket类的无参构造方法结合connect（）方法实现的功能是：在connect（）方法执行时，在connect内部自动绑定了一个空闲的随机端口57561，再使用这个57561端口连接到服务端。在第一次“握手”时，客户端使用57561端口连接服务端，抓包结果如图4-55所示。

 [image:]

图4-55　抓包结果

如果在connect（）方法之后又显式执行bind（）方法，则出现“java.net.SocketException：Already bound”异常。
4.3.2　连接与超时

public void connect（SocketAddress endpoint，int timeout）方法的作用是将此套接字连接到服务端，并指定一个超时值。超时值是0意味着无限超时。在Windows操作系统中，默认的超时时间为20s。

若时间超过timeout还没有连接到服务端，则出现异常。

创建测试用的项目SocketTest_2。

Client1类的实现代码如下：

public class Client1 {

public static void main(String[] args) throws IOException {

 long beginTime = 0;

 try {

 Socket socket = new Socket();

 socket.bind(new InetSocketAddress("192.168.0.101", 7777));

 beginTime = System.currentTimeMillis();

 socket.connect(new InetSocketAddress("1.1.1.1", 8888), 6000);

 socket.close();

 System.out.println("client end!");

 } catch (Exception e) {

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 e.printStackTrace();

 }

}

}

上述代码语句“socket.bind（new InetSocketAddress（"192.168.0.101"，7777））；”中的“192.168.0.101”不要写成“localhost”，因为远程计算机连接不到“localhost”这个地址。

本测试代码中的IP地址1.1.1.1是不存在的IP地址，即故意制造一个连接不成功的场景。

Client2类的实现代码如下：

public class Client2 {

public static void main(String[] args) throws IOException {

 long beginTime = 0;

 try {

 Socket socket = new Socket();

 beginTime = System.currentTimeMillis();

 socket.connect(new InetSocketAddress("1.1.1.1", 8888), 6000);

 socket.close();

 System.out.println("client end!");

 } catch (Exception e) {

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 e.printStackTrace();

 }

}

}

上面的代码并没有执行bind（）操作。

这两个Java类运行的效果是一样的，也就是在6s之后出现“java.net.SocketTimeoutException：connect timed out”超时异常。
4.3.3　获得远程端口与本地端口

public int getPort（）方法的作用是返回此套接字连接到的远程端口。

public int getLocalPort（）方法的作用是返回此套接字绑定到的本地端口。

创建测试用的项目SocketTest_3。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 System.out.println("服务端的输出：");

 System.out.println("服务端的端口号socket.getLocalPort()=" + socket.get-

 LocalPort());

 System.out.println("客户端的端口号socket.getPort()=" + socket.getPort());

 socket.close();

 serverSocket.close();

 System.out.println("server end!");

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket();

 socket.bind(new InetSocketAddress("localhost", 7777));

 socket.connect(new InetSocketAddress("localhost", 8888));

 System.out.println("客户端的输出：");

 System.out.println("客户端的端口号socket.getLocalPort()=" + socket.getLocal-

 Port());

 System.out.println("服务端的端口号socket.getPort()=" + socket.getPort());

 socket.close();

}

}

在上述程序运行后，控制台输出的结果如图4-56所示。

 [image:]

图4-56　控制台输出的结果
4.3.4　获得本地InetAddress地址与本地SocketAddress地址

public InetAddress getLocalAddress（）方法的作用是获取套接字绑定的本地InetAddress地址信息。

public SocketAddress getLocalSocketAddress（）

方法的作用是返回此套接字绑定的端点的Socket-Address地址信息。如果尚未绑定，则返回null。

创建测试用的项目SocketTest_4。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 InetAddress inetAddress = socket.getLocalAddress();

 InetSocketAddress inetSocketAddress = (InetSocketAddress) socket.getLocal-

 SocketAddress();

 byte[] byteArray1 = inetAddress.getAddress();

 System.out.print("服务端的IP地址为：");

 for (int i = 0; i < byteArray1.length; i++) {

 System.out.print(byteArray1[i] + " ");

 }

 System.out.println();

 System.out.println("服务端的端口为：" + inetSocketAddress.getPort());

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 socket.close();

}

}

上述程序运行后在控制台输出如下信息：

服务端的IP地址为：127 0 0 1

服务端的端口为：8888

4.3.5　获得远程InetAddress与远程SocketAddress（）地址

public InetAddress getInetAddress（）方法的作用是返回此套接字连接到的远程的Inet-Address地址。如果套接字是未连接的，则返回null。

public SocketAddress getRemoteSocketAddress（）方法的作用是返回此套接字远程端点的SocketAddress地址，如果未连接，则返回null。

创建测试用的项目SocketTest_5。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 InetAddress inetAddress = socket.getInetAddress();

 InetSocketAddress inetSocketAddress = (InetSocketAddress) socket.get-

 RemoteSocketAddress();

 byte[] byteArray1 = inetAddress.getAddress();

 System.out.print("客户端的IP地址为：");

 for (int i = 0; i < byteArray1.length; i++) {

 System.out.print(byteArray1[i] + " ");

 }

 System.out.println();

 System.out.println("客户端的端口为：" + inetSocketAddress.getPort());

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 socket.close();

}

}

上述程序运行后在控制台输出如下信息：

客户端的IP地址为：127 0 0 1

客户端的端口为：59853

4.3.6　套接字状态的判断

public boolean isBound（）方法的作用是返回套接字的绑定状态。如果将套接字成功地绑定到一个地址，则返回true。

public boolean isConnected（）方法的作用是返回套接字的连接状态。如果将套接字成功地连接到服务端，则为true。

public boolean isClosed（）方法的作用是返回套接字的关闭状态。如果已经关闭了套接字，则返回true。

public synchronized void close（）方法的作用是关闭此套接字。所有当前阻塞于此套接字上的I/O操作中的线程都将抛出SocketException。套接字被关闭后，便不可在以后的网络连接中使用（即无法重新连接或重新绑定），如果想再次使用套接字，则需要创建新的套接字。

关闭此套接字也将会关闭该套接字的InputStream和OutputStream。如果此套接字有一个与之关联的通道，则关闭该通道。

创建测试用的项目SocketTest_6。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket();

 System.out.println("1 socket.isBound()=" + socket.isBound());

 socket.bind(new InetSocketAddress("localhost", 7777));

 System.out.println("2 socket.isBound()=" + socket.isBound());

 System.out.println("3 socket.isConnected()=" + socket.isConnected());

 socket.connect(new InetSocketAddress("localhost", 8888));

 System.out.println("4 socket.isConnected()=" + socket.isConnected());

 System.out.println("5 socket.isClosed()=" + socket.isClosed());

 socket.close();

 System.out.println("6 socket.isClosed()=" + socket.isClosed());

}

}

上述程序运行后在控制台输出如下信息：

1 socket.isBound()=false

2 socket.isBound()=true

3 socket.isConnected()=false

4 socket.isConnected()=true

5 socket.isClosed()=false

6 socket.isClosed()=true

4.3.7　开启半读与半写状态

public void shutdownInput（）方法的作用是将套接字的输入流置于“流的末尾EOF”，也就是在套接字上调用shutdownInput（）方法后从套接字输入流读取内容，流将返回EOF（文件结束符）。发送到套接字的输入流端的任何数据都将在确认后被静默丢弃。调用此方法的一端进入半读状态（read-half），也就是此端不能获得输入流，但对端却能获得输入流。一端能读，另一端不能读，称为半读。

public void shutdownOutput（）方法的作用是禁用此套接字的输出流。对于TCP套接字，任何以前写入的数据都将被发送，并且后跟TCP的正常连接终止序列。如果在套接字上调用shutdownOutput（）方法后写入套接字输出流，则该流将抛出IOException。调用此方法的一端进入半写状态（write-half），也就是此端不能获得输出流。但对端却能获得输出流。一端能写，另一端不能写，称为半写。

创建名为SocketTest_7的测试项目。

先来测试一下public void shutdownInput（）方法屏蔽输入流（InputStream）的效果。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 System.out.println("A=" + inputStream.available());

 byte[] byteArray = new byte[2];

 int readLength = inputStream.read(byteArray);

 System.out.println("server取得的数据：" + new String(byteArray, 0, readLength));

 socket.shutdownInput();// 屏蔽InputStream，到达流的结尾

 System.out.println("B=" + inputStream.available());// 静默丢弃其他数据

 readLength = inputStream.read(byteArray);// -1

 System.out.println("readLength=" + readLength);

 // 再次调用getInputStream方法出现异常：

 // java.net.SocketException: Socket input is shutdown

 socket.getInputStream();

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8088);

 OutputStream out = socket.getOutputStream();

 out.write("abcdefg".getBytes());

 socket.close();

}

}

首先运行服务端程序（Server类），然后运行客户端程序（Client类），控制台输出的信息如下：

A=7

server取得的数据：ab

B=0

readLength=-1

Exception in thread "main" java.net.SocketException: Socket input is shutdown

 at java.net.Socket.getInputStream(Socket.java:907)

 at test1.Server.main(Server.java:23)

再来测试一下public void shutdownOutput（）方法屏蔽输出流（OutputStream）的效果。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 OutputStream out = socket.getOutputStream();

 out.write("123".getBytes());

 socket.shutdownOutput(); // 终止序列

 socket.getOutputStream(); // 出现异常

 // out.write("456".getBytes()); // 出现异常

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8088);

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1000];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 System.out.println(new String(byteArray, 0, readLength));

 readLength = inputStream.read(byteArray);

 }

 inputStream.close();

 socket.close();

}

}

首先运行服务端程序（Server类），然后运行客户端程序（Client类），服务端控制台出现的异常信息如下：

Exception in thread "main" java.net.SocketException: Socket output is shutdown

 at java.net.Socket.getOutputStream(Socket.java:947)

 at test2.Server.main(Server.java:15)

上述异常信息说明输出流被屏蔽。

如果Server类的代码更改如下：

// socket.getOutputStream(); // 出现异常

out.write("456".getBytes()); // 出现异常

程序运行后控制台输出的结果如下：

Exception in thread "main" java.net.SocketException: Cannot send after socket shutdown:

socket write error

 at java.net.SocketOutputStream.socketWrite0(Native Method)

 at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:111)

 at java.net.SocketOutputStream.write(SocketOutputStream.java:143)

 at test2.Server.main(Server.java:16)

说明输出流被屏蔽后不能再使用输出流写出数据。
4.3.8　判断半读半写状态

public boolean isInputShutdown（）方法的作用是返回是否关闭套接字连接的半读状态（read-half）。如果已关闭套接字的输入，则返回true。

public boolean isOutputShutdown（）方法的作用是返回是否关闭套接字连接的半写状态（write-half）。如果已关闭套接字的输出，则返回true。

创建测试用的项目SocketTest_8。

先来测试一下public boolean isInputShutdown（）方法判断的效果。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 System.out.println("A isInputShutdown=" + socket.isInputShutdown());

 socket.shutdownInput();

 System.out.println("B isInputShutdown=" + socket.isInputShutdown());

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8088);

 socket.close();

}

}

首先运行Server类的实现代码，然后运行Client类的实现代码，控制台输出内容如下：

A isInputShutdown=false

B isInputShutdown=true

再来测试一下public boolean isOutputShutdown（）方法判断的效果。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 System.out.println("C isOutputShutdown=" + socket.isOutputShutdown());

 socket.shutdownOutput();

 System.out.println("D isOutputShutdown=" + socket.isOutputShutdown());

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8088);

 socket.close();

}

}

首先运行Server类的实现代码，然后运行Client类的实现代码，控制台输出内容如下：

C isOutputShutdown=false

D isOutputShutdown=true

4.3.9　Socket选项TcpNoDelay

public void setTcpNoDelay（boolean on）方法的作用是启用/禁用TCP_NODELAY（启用/禁用Nagle算法）。参数为true，表示启用TCP_NODELAY；参数为false，表示禁用。

public boolean getTcpNoDelay（）方法的作用是测试是否启用TCP_NODELAY。返回值为是否启用TCP_NODELAY的boolean值。

1.Nagle算法简介

Socket选项TCP_NODELAY与Nagle算法有关。什么是Nagle算法？Nagle算法是以它的发明人John Nagle的名字命名的，该算法可以将许多要发送的数据进行本地缓存（这一过程称为nagling），以减少发送数据包的个数来提高网络软件运行的效率，这就是Nagle算法被发明的初衷。

Nagle算法最早出现在1984年的福特航空和通信公司，是解决TCP/IP拥塞控制的方法。这个算法在当时将福特航空和通信公司的网络拥塞得到了控制，从那以后这一算法得到了广泛应用。

Nagle算法解决了处理小数据包众多而造成的网络拥塞。网络拥塞的发生是指如果应用程序1次产生1个字节的数据，并且高频率地将它发送给对方网络，那么就会出现严重的网络拥塞。为什么只发送1个字节的数据就会出现这么严重的网络拥塞呢？这是因为在网络中将产生1个41字节的数据包，而不是1个字节的数据包，这41字节的数据包中包括1字节的用户数据以及40字节的TCP/IP协议头，这样的情况对于轻负载的网络来说还是可以接受的，但是在重负载的福特网络就受不了了，网络拥塞就发生了。

Nagle算法的原理是在未确认ACK之前让发送器把数据送到缓存里，后面的数据也继续放入缓存中，直到得到确认ACK或者直到“攒到”了一定大小（size）的数据再发送。尽管Nagle算法解决的问题只是局限于福特网络，然而同样的问题也可能出现在互联网上，因此，这个算法在互联网中也得到了广泛推广。

先来看看不使用Nagle算法时，数据是如何传输的，过程如图4-57所示。

 [image:]

图4-57　不使用Nagle算法的数据传输过程

客户端向服务端传输很多小的数据包，造成了网络的拥塞，而使用Nagle算法后不再出现拥塞了。使用Nagle算法的数据传输过程是怎样的呢？其过程如图4-58所示。

使用Nagle算法的数据传输过程是在第一个ACK确认之前，将要发送的数据放入缓存中，接收到ACK之后再发送一个大的数据包，以提升网络传输利用率。举个例子，客户端调用Socket的写操作将一个int型数据123456789（称为A块）写入到网络中，由于此时连接是空闲的（也就是说，还没有未被确认的小段），因此这个int类型的数据就会被马上发送到服务端。接着，客户端又调用写操作写入“\r\n”（简称B块），这个时候，因为A块的ACK没有返回，所以可以认为A块是一个未被确认的小段，这时B块在没有收到ACK之前是不会立即被发送到服务端的，一直等到A块的ACK收到（大概40ms之后），B块才被发送。这里还隐藏了一个问题，就是A块数据的ACK为什么40ms之后才收到？这是因为TCP/IP中不仅仅有Nagle算法，还有一个TCP“确认延迟（Delay）ACK”机制，也就是当服务端收到数据之后，它并不会马上向客户端发送ACK，而是会将ACK的发送延迟一段时间（假设为t），它希望在t时间内服务端会向客户端发送应答数据，这样ACK就能够和应答数据一起发送，使应答数据和ACK一同发送到对方，节省网络通信的开销。

 [image:]

图4-58　使用Nagle算法的数据传输过程

通过前面的介绍可以知道，Nagle算法是把要发送的数据放在本地缓存中，这就造成客户端与服务端之间交互并不是高互动的，是有一定延迟的，因此，可以使用TCP_NODELAY选项在套接字中开启或关闭这个算法。当然，到底使不使用Nagle算法是要根据实际的项目需求来决定的。

如果采用Nagle算法，那么一个数据包要“攒到”多大才将数据进行发送呢？要“攒到”MSS大小才发送！什么是MSS呢？MSS（Maximum Segment Size）即最大报文段长度。在TCP/IP中，无论发送多少数据，总是要在数据前面加上协议头，同时，对方接收到数据，也需要发送回ACK以表示确认。为了尽可能地利用网络带宽，TCP总是希望尽可能一次发送足够大的数据，此时就可以使用MSS来进行设置。MSS选项是TCP/IP定义的一个选项，该选项用于在TCP/IP连接建立时，收发双方协商通信时每一个报文段所能承载的最大数据长度，它的计算方式如下：

MSS=MTU-20字节的TCP报头-20字节的IP报头

在以太网环境下，MSS值一般就是1500-20-20=1460字节。TCP/IP希望每次都能够以MSS（最大尺寸）的数据块来发送数据，以增加每次网络传输的数据量。

Nagle算法就是为了尽可能发送大块数据，避免网络中充斥着许多小数据块。Nagle算法的基本含义是在任意的时刻，最多只能有一个未被确认的小段。所谓“小段”指的是小于MSS的数据块；所谓“未被确认”，是指一个数据块发送出去后，没有收到对方发送的ACK确认该数据已收到。

[image:]注意　BSD系统的实现是允许在空闲连接上发送大的写操作剩下的最后的小段，也就是说，当超过1个MSS数据发送时，内核先依次发送完n个完整的MSS数据包，然后发送尾部剩余的小数据包，其间不再延时等待。

TCP_NODELAY选项可以控制是否采用Nagle算法。在默认情况下，发送数据采用的是Nagle算法，这样虽然提高了网络吞吐量，但是实时性却降低了，在一些交互性很强的应用程序中是不允许的。使用TCP_NODELAY选项可以禁止Nagle算法。

通过前面的一些知识点的介绍，可以分析出以下两点。

1）如果要求高实时性，那么有数据发送时就要马上发送，此时可以将TCP_NODELAY选项设置为true，也就是屏蔽了Nagle算法。典型的应用场景就是开发一个网络格斗游戏，程序设计者希望玩家A每点击一次按键都会立即在玩家B的计算机中得以体现，而不是等到数据包达到最大时才通过网络一次性地发送全部数据，这时就可以屏蔽Nagle算法，传入参数true就达到实时效果了。

2）如果不要求高实时性，要减少发送次数达到减少网络交互，就将TCP_NODELAY设置为false，等数据包累积一定大小后再发送。

Nagle算法适用于大包、高延迟的场合，而对于要求交互速度的B/S或C/S就不合适了。在Socket创建的时候，默认都是使用Nagle算法的，这会导致交互速度严重下降，因此，需要屏蔽Nagle算法。不过，如果取消了Nagle算法，就会导致TCP碎片增多，效率可能会降低，因此，要根据实际的运行场景进行有效的取舍。

2.启用与屏蔽Nagle算法的测试

创建测试用的项目SocketTest_9。本测试要在两台计算机中进行，也就是Server类运行在安装Windows 7操作系统的计算机中，而Client类运行在安装CentOS操作系统的计算机中。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 System.out.println("A=" + socket.getTcpNoDelay());

 socket.setTcpNoDelay(true);// 立即发送，不缓存数据，不启用Nagle算法

 System.out.println("B=" + socket.getTcpNoDelay());

 OutputStream outputStream = socket.getOutputStream();

 for (int i = 0; i < 10; i++) {

 outputStream.write("1".getBytes());

 }

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("写上服务器IP", 8888);

 socket.setTcpNoDelay(false);

 InputStream inputStream = socket.getInputStream();

 long beginTime = System.currentTimeMillis();

 byte[] byteArray = new byte[1];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 String newString = new String(byteArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStream.read(byteArray);

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 socket.close();

}

}

首先运行Server类的实现代码，然后运行Client类的实现代码，控制台输出的内容如下：

A=false

B=true

使用wireshark工具设置过滤策略：

(ip.src ==192.168.0.104 and tcp.port==8888) or (ip.dst==192.168.0.104 and tcp.port==8888)

使用wireshark工具抓包，结果如图4-59所示。

 [image:]

图4-59　立即发送数据

从面4-59来看，如果高频度地发送小数据包，势必会造成网络的拥塞。下面就来测试一下启用Nagle算法的通信方式。

Server2类的实现代码如下：

public class Server2 {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 System.out.println("A=" + socket.getTcpNoDelay());

 socket.setTcpNoDelay(false);// 缓存数据

 System.out.println("B=" + socket.getTcpNoDelay());

 OutputStream outputStream = socket.getOutputStream();

 for (int i = 0; i < 50000; i++) {////// 循环50000次

 outputStream.write("1".getBytes());

 }

 socket.close();

 serverSocket.close();

}

}

首先运行Server2类的实现代码，然后运行Client类的实现代码，控制台输出内容如下：

A=false

B=false

使用wireshark工具抓包，结果如图4-60所示。

 [image:]

图4-60　缓存发送数据

从抓包的过程来看，启用Nagle算法会将数据进行缓存，以便“攒成”一个大的数据包再进行发送，从而提高网络运行效率。
4.3.10　Socket选项SendBufferSize

Socket中的SO_RCVBUF选项是设置接收缓冲区的大小的，而SO_SNDBUF选项是设置发送缓冲区的大小的。

public synchronized void setSendBufferSize（int size）方法的作用是将此Socket的SO_SND-BUF选项设置为指定的值。平台的网络连接代码将SO_SNDBUF选项用作设置底层网络I/O缓存的大小的提示。由于SO_SNDBUF是一种提示，因此想要验证缓冲区设置大小的应用程序应该调用getSendBufferSize（）方法。参数size用来设置发送缓冲区的大小，此值必须大于0。

public int getSendBufferSize（）方法的作用是获取此Socket的SO_SNDBUF选项的值，该值是平台在Socket上输出时使用的缓冲区大小。返回值是此Socket的SO_SNDBUF选项的值。

创建测试用的项目SocketTest_13。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 char[] charArray = new char[1024];

 int readLength = inputStreamReader.read(charArray);

 long beginTime = System.currentTimeMillis();

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStreamReader.read(charArray);

 }

 long endTime = System.currentTimeMillis();

 System.out.println(endTime - beginTime);

 socket.close();

 serverSocket.close();

 } catch (SocketTimeoutException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 Socket socket = new Socket();

 System.out.println("A client socket.getSendBufferSize()=" + socket.

 getSendBufferSize());

 socket.setSendBufferSize(1);

 System.out.println("B client socket.getSendBufferSize()=" + socket.

 getSendBufferSize());

 socket.connect(new InetSocketAddress("localhost", 8888));

 OutputStream outputStream = socket.getOutputStream();

 for (int i = 0; i < 5000000; i++) {

 outputStream.write("123456789123456789123456789123456789123456

 789".getBytes());

 System.out.println(i + 1);

 }

 outputStream.write("end!".getBytes());

 outputStream.close();

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行Server类的实现代码，然后运行Client类的实现代码，大概需要耗时216019ms。

而如果把Client类中的代码由

socket.setSendBufferSize(1);

改成

socket.setSendBufferSize(1024 * 1024);

则程序运行需要耗时112323ms，时间节省了将近一半，说明设置合适的发送缓冲区大小能提高程序运行的效率。

代码语句“socket.setSendBufferSize（1024*1024）；”所在的项目是SocketTest_13。
4.3.11　Socket选项Linger

Socket中的SO_LINGER选项用来控制Socket关闭close（）方法时的行为。在默认情况下，执行Socket的close（）方法后，该方法会立即返回，但底层的Socket实际上并不会立即关闭，它会延迟一段时间。在延迟的时间里做什么呢？是将“发送缓冲区”中的剩余数据在延迟的时间内继续发送给对方，然后才会真正地关闭Socket连接。

public void setSoLinger（boolean on，int linger）方法的作用是启用/禁用具有指定逗留时间（以秒为单位）的SO_LINGER。最大超时值是特定于平台的。该设置仅影响套接字关闭。参数on的含义为是否逗留，参数linger的含义为逗留时间，单位为秒。

public int getSoLinger（）方法的作用是返回SO_LINGER的设置。返回-1意味着禁用该选项。该设置仅影响套接字关闭。返回值代表SO_LINGER的设置。

public void setSoLinger（boolean on，int linger）方法的源代码如下：

public void setSoLinger(boolean on, int linger) throws SocketException {

 if (isClosed())

 throw new SocketException("Socket is closed");

 if (!on) {

 getImpl().setOption(SocketOptions.SO_LINGER, new Boolean(on));

 } else {

 if (linger < 0) {

 throw new IllegalArgumentException("invalid value for SO_LINGER");

 }

 if (linger > 65535)

 linger = 65535;

 getImpl().setOption(SocketOptions.SO_LINGER, new Integer(linger));

 }

}

从public void setSoLinger（boolean on，int linger）方法的源代码中可以发现以下几点内容。

getImpl().setOption(SocketOptions.SO_LINGER, new Boolean(on));

1）on传入false，SO_LINGER功能被屏蔽，因为对代码语句中的new Boolean（）传入了false值。对参数on传入false值是close（）方法的默认行为，也就是close（）方法立即返回，但底层Socket并不关闭，直到发送完缓冲区中的剩余数据，才会真正地关闭Socket的连接。

2）on传入true，linger等于0，当调用Socket的close（）方法时，将立即中断连接，也就是彻底丢弃在缓冲区中未发送完的数据，并且发送一个RST标记给对方。此知识点是根据TCP中的SO_LINGER特性总结而来的。

3）on传入true，linger大于65535时，linger值就被赋值为65535。

4）on传入true，linger不大于65535时，linger值就是传入的值。

5）如果执行代码“socket.setSoLinger（true，5）”，那么执行Socket的close（）方法时的行为随着数据量的多少而不同，总结如下。

·数据量小：如果将“发送缓冲区”中的数据发送到对方的时间需要耗时3s，则close（）方法阻塞3s，数据会被完整发送，3s后close（）方法立即返回，因为3小于号 <5。

·数据量大：如果将“发送缓冲区”中的数据发送到对方的时间需要耗时8s，则close（）方法阻塞5s，5s之后发送RST标记给对方，连接断开，因为8>5。

本测试要结合public synchronized void setSendBufferSize（int size）方法进行，目的是增加缓冲区的大小，以让更多的数据存留在缓冲区中。

1.验证：在on=true、linger=0时，close（）方法立即返回且丢弃数据，并且发送RST标记

创建验证用的项目SocketTest_10_2。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedEx-

ception {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 System.out.println("A socket.getSoLinger()=" + socket.getSoLinger());

 socket.setSoLinger(true, 0);

 System.out.println("B socket.getSoLinger()=" + socket.getSoLinger());

 OutputStream out = socket.getOutputStream();

 for (int i = 0; i < 10; i++) {

 out.write(

 "123456789012345678901234567890123456789012345678901234567

 8901234567890123456789012345678901234567890"

 .getBytes());

 }

 out.write("end!".getBytes());

 System.out.println("socket close before=" + System.currentTimeMillis());

 out.close();

 socket.close();

 System.out.println("socket close after=" + System.currentTimeMillis());

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException, InterruptedException {

 Socket socket = new Socket();

 // 设置超小的接收缓冲区

 // 目的是先让Server服务发送端close()

 // 然后将服务端发送缓冲区中的数据再传入客户端的接收缓冲区中

 // 虽然服务端的socket.close()已经执行，但是数据不会丢失

 socket.setReceiveBufferSize(1);// windows size

 // 然后绑定

 socket.bind(new InetSocketAddress("localhost", 7077));

 // 进行连接

 socket.connect(new InetSocketAddress("localhost", 8088));

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 System.out.println(new String(byteArray, 0, readLength));

 readLength = inputStream.read(byteArray);

 }

 System.out.println("client read end time=" + System.currentTimeMillis());

 inputStream.close();

 socket.close();

}

}

首先运行Server类的实现代码，然后运行Client类的实现代码。

服务端控制台输出的结果如下：

A socket.getSoLinger()=-1

B socket.getSoLinger()=0

socket close before=1514450008629

socket close after=1514450008629

before=1514450008629和after=1514450008629表示的时间几乎相同，说明close（）方法是立即返回。

客户端控制台输出部分结果如下：

1

2

3

Exception in thread "main" java.net.SocketException: Connection reset

 at java.net.SocketInputStream.read(SocketInputStream.java:210)

 at java.net.SocketInputStream.read(SocketInputStream.java:141)

 at java.net.SocketInputStream.read(SocketInputStream.java:127)

 at test1.Client.main(Client.java:26)

使用wireshark抓包的过程如图4-61所示。

 [image:]

图4-61　抓包截图

图4-61所示的抓包的数据是向参数on传入true、linger等于0时的数据。从抓包过程中可以分析出，服务端向客户端发送了8个字节，因为客户端最后的ACK值是9。但是在客户端的控制台中输出的数据却是1～3，说明4～8在操作系统的内核空间中。而服务端发送缓冲区中数据的个数为1000-8=992。当服务端的Socket执行close（）方法时，立即将RST标记传给客户端重置连接，客户端再次执行read（）方法时出现异常，而且服务端发送缓冲区中的数据被丢弃。

上述结果证明：当向on传入true，linger等于0时，close（）方法是立即返回的，并且发送端丢弃缓冲区中的数据，还要发送RST标记给对方。

如果想实现不丢弃数据，那么代码如何修改呢？下面进行介绍。

2.验证：在on=false时，close（）方法立即返回并且数据不丢失，正常进行4次“挥手”

创建验证用的项目SocketTest_10_1。

Server1类的实现代码如下：

public class Server1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 System.out.println("A socket.getSoLinger()=" + socket.getSoLinger());

 socket.setSoLinger(false, 123123);

 System.out.println("B socket.getSoLinger()=" + socket.getSoLinger());

 OutputStream out = socket.getOutputStream();

 for (int i = 0; i < 10; i++) {

 out.write(

 "123456789012345678901234567890123456789012345678901234567

 8901234567890123456789012345678901234567890"

 .getBytes());

 }

 out.write("end!".getBytes());

 System.out.println("socket close before=" + System.currentTimeMillis());

 out.close();

 socket.close();

 System.out.println("socket close after=" + System.currentTimeMillis());

 serverSocket.close();

}

}

Client1类的实现代码如下：

public class Client1 {

public static void main(String[] args) throws IOException, InterruptedException {

 Socket socket = new Socket();

 // 设置超小的接收缓冲区

 // 目的是先让Server服务端执行close()

 // 然后将服务端发送缓冲区中的数据再传入客户端的接收缓冲区中

 // 虽然服务端的socket.close()已经执行，但是数据不会丢失

 socket.setReceiveBufferSize(1);// 窗口大小

 // 然后绑定

 socket.bind(new InetSocketAddress("localhost", 7077));

 // 进行连接

 socket.connect(new InetSocketAddress("localhost", 8088));

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 System.out.println(new String(byteArray, 0, readLength));

 readLength = inputStream.read(byteArray);

 }

 System.out.println("client read end time=" + System.currentTimeMillis());

 inputStream.close();

 socket.close();

}

}

首先运行Server1类的实现代码，然后运行Client1类的实现代码。

服务端控制台输出结果如下：

A socket.getSoLinger()=-1

B socket.getSoLinger()=-1

socket close before=1514450941681

socket close after=1514450941681

before=1514450941681和after=1514450941681表示的时间几乎是相同的，说明close（）方法是立即返回的。

客户端控制台输出部分结果如下：

8

9

0

e

n

d

!

client read end time=1514450942010

抓包过程如图4-62所示。

从抓包结果可以分析出，服务端向客户端一共传输了1004个字节，并且实现正常的4次“挥手”。

 [image:]

图4-62　抓包截图

上面的结果就是使用代码语句“socket.setSoLinger（false，123123）；”实现的。如果不写该条代码语句，而是直接执行close（）方法，那么默认的行为是一致的，都是将服务端发送缓冲区中的数据发送到客户端，然后执行4次“挥手”，这个测试在下文进行介绍。

3.验证：如果只是调用close（）方法，则立即返回并且数据不丢失，正常进行4次“挥手”

Server2类的实现代码如下：

public class Server2 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 OutputStream out = socket.getOutputStream();

 for (int i = 0; i < 10; i++) {

 out.write(

 "123456789012345678901234567890123456789012345678901234567

 8901234567890123456789012345678901234567890"

 .getBytes());

 }

 out.write("end!".getBytes());

 System.out.println("socket close before=" + System.currentTimeMillis());

 out.close();

 socket.close();

 System.out.println("socket close after=" + System.currentTimeMillis());

 serverSocket.close();

}

}

Client2类的实现代码如下：

public class Client2 {

public static void main(String[] args) throws IOException, InterruptedException {

 Socket socket = new Socket();

 // 设置超小的接收缓冲区

 // 目的是先让Server服务端执行close()

 // 然后将服务端发送缓冲区中的数据再传入客户端的接收缓冲区中

 // 虽然服务端的socket.close()已经执行，但是数据不会丢失

 socket.setReceiveBufferSize(1);// 窗口大小

 // 然后绑定

 socket.bind(new InetSocketAddress("localhost", 7077));

 // 进行连接

 socket.connect(new InetSocketAddress("localhost", 8088));

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 System.out.println(new String(byteArray, 0, readLength));

 readLength = inputStream.read(byteArray);

 }

 System.out.println("client read end time=" + System.currentTimeMillis());

 inputStream.close();

 socket.close();

}

}

首先运行Server2类的实现代码，然后运行Client2类的实现代码，控制台输出结果如下：

socket close before=1514452045141

socket close after=1514452045141

从输出的时间来看，close（）方法是立即返回。

使用wireshark抓包的结果如图4-63所示。

在图4-63中可以发现，有正常关闭连接的4次“挥手”过程，说明使用代码

socket.setSoLinger(false, 123243453);

socket.close();

与单独使用代码

socket.close();

效果是一样的，数据不丢失，并且有完整的4次“挥手”过程。

 [image:]

图4-63　抓包截图

4.测试：在on=true、linger=10时，发送数据耗时小于10s的情况

如果将“发送缓冲区”中的数据发送给对方需要耗时3s，则close（）方法阻塞3s，数据被完整发送，不会丢失。

创建测试用的项目SocketTest_10_3。

Server1类的实现代码如下：

public class Server1 {

public static void main(String[] args) throws IOException {

 StringBuffer buffer = new StringBuffer(1000000);

 for (int i = 0; i < 1000000; i++) {

 buffer.append("1");

 }

 buffer.append("end");

 System.out.println("Server填充完毕！");

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 socket.setSendBufferSize(1000000);

 // close()被阻塞的时间就是“发送缓冲区”中的数据发送的时间

 // 发送的时间小于10s

 socket.setSoLinger(true, 10);

 OutputStream out = socket.getOutputStream();

 out.write(buffer.toString().getBytes());

 long beginTime = 0;

 long endTime = 0;

 beginTime = System.currentTimeMillis();

 System.out.println("C=" + beginTime);

 socket.close();

 endTime = System.currentTimeMillis();

 System.out.println("D=" + endTime);

 System.out.println("时间差：" + (endTime - beginTime));

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 String newString = new String(byteArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStream.read(byteArray);

 }

 System.out.println("E=" + System.currentTimeMillis());

 inputStream.close();

 socket.close();

}

}

首先运行Server1类的实现代码，然后运行Client类的实现代码。

服务端控制台输出结果如下：

Server填充完毕！

C=1514453112775

D=1514453116425

时间差：3650

C和D的时间并不相同，说明close（）方法阻塞了3650ms的时间单位。

客户端控制台输出部分结果如下：

1

1

e

n

d

E=1514453116425

客户端收到服务端发送过来的全部数据，使用wireshark抓包的结果如图4-64所示。

 [image:]

图4-64　抓包截图

998613加1391等于1000004。

本测试结果证明：在on=true、linger=10时，若传输小数据量，说明用时少于10s，则close（）方法阻塞的时间就是传输数据的时间，并且数据被完整发送，正常进行3次“握手”和4次“挥手”，并不发送RST标记。

5.测试：在on=true、linger=1时，发送数据耗时大于1s的情况

如果将“发送缓冲区”中的数据发送给对方需要耗时8s，则close（）方法阻塞1s后连接立即关闭，并发送RST标记给对方。

Server2类的实现代码如下：

public class Server2 {

public static void main(String[] args) throws IOException, InterruptedException {

 StringBuffer buffer = new StringBuffer(1000000);

 for (int i = 0; i < 1000000; i++) {

 buffer.append("1");

 }

 buffer.append("end");

 System.out.println("Server填充完毕！");

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 socket.setSendBufferSize(1000000);

 // close()被阻塞的时间就是“发送缓冲区”中的数据发送的时间

 // 发送的时间大于1s

 socket.setSoLinger(true, 1);

 OutputStream out = socket.getOutputStream();

 out.write(buffer.toString().getBytes());

 long beginTime = 0;

 long endTime = 0;

 beginTime = System.currentTimeMillis();

 System.out.println("C=" + beginTime);

 socket.close();

 endTime = System.currentTimeMillis();

 System.out.println("D=" + endTime);

 System.out.println("时间差：" + (endTime - beginTime));

 // 加上sleep，保持进程不销毁的效果

 Thread.sleep(Integer.MAX_VALUE);

 serverSocket.close();

}

}

首先运行Server2的实现代码，然后运行Client类的实现代码（参见随书示例源代码）。

服务端控制台输出结果如下：

Server填充完毕！

C=1514453409964

D=1514453410965

时间差：1001

close（）方法阻塞了大约1s。

客户端控制台输出异常信息java.net.SocketException：Connection reset，而且服务端还发送了RST标记给客户端，结果如图4-65所示。

 [image:]

图4-65　发送RST标记给客户端

本测试结果证明：在on=true、linger=1时，若数据量大，close（）方法最多阻塞1s，超过1s后不再发送数据，并且把RST标记发送给客户端。

提示：在测试public void setSoLinger（boolean on，int linger）方法的过程中，可以结合抓包工具将抓包的时间与使用代码System.currentTimeMillis（）记录socket.close（）方法执行的时间进行对比，也能发现上面5个验证或测试的运行规律。在wireshark工具中设置时间显示格式的步骤如图4-66所示。

 [image:]

图4-66　设置时间显示格式
4.3.12　Socket选项Timeout

setSoTimeout（int timeout）方法的作用是启用/禁用带有指定超时值的SO_TIMEOUT，以毫秒为单位。将此选项设为非零的超时值时，在与此Socket关联的InputStream上调用read（）方法将只阻塞此时间长度。如果超过超时值，就将引发java.net.SocketTimeoutException，

尽管Socket仍旧有效。启用timeOut特性必须在进入阻塞操作前被启用才能生效。超时值必须是大于0的数。超时值为0被解释为无穷大超时值。

public int getSoTimeout（）方法的作用是返回SO_TIMEOUT的设置。返回0意味着禁用了选项（即无穷大的超时值）。

创建名为SocketTest_11的测试项目。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 // setSoTimeout设置超时时间为5s

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 System.out.println("setSoTimeout before " + socket.getSoTimeout());

 socket.setSoTimeout(5000);

 System.out.println("setSoTimeout after " + socket.getSoTimeout());

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1024];

 System.out.println("read begin__：" + System.currentTimeMillis());

 int readLength = inputStream.read(byteArray);

 System.out.println("read end：" + System.currentTimeMillis());

 } catch (SocketTimeoutException e) {

 System.out.println("timeout time：" + System.currentTimeMillis());

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 Socket socket = new Socket("localhost", 8888);

 Thread.sleep(Integer.MAX_VALUE);

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

首先运行服务端代码（Server类），然后运行客户端代码（Client类）服务端控制台在超过5s后发生超时，出现异常，结果如图4-67所示。

 [image:]

图4-67　read（）方法超过5s还未读到数据则发生异常
4.3.13　Socket选项OOBInline

Socket的选项SO_OOBINLINE的作用是在套接字上接收的所有TCP紧急数据都将通过套接字输入流接收。禁用该选项时（默认），将悄悄丢弃紧急数据。OOB（Out Of Bound，带外数据）可以理解成是需要紧急发送的数据。

setOOBInline（true）方法的作用是启用/禁用OOBINLINE选项（TCP紧急数据的接收者），默认情况下，此选项是禁用的，即在套接字上接收的TCP紧急数据被静默丢弃。如果用户希望接收到紧急数据，则必须启用此选项。启用时，可以将紧急数据内嵌在普通数据中接收。注意，仅为处理传入紧急数据提供有限支持。特别要指出的是，不提供传入紧急数据的任何通知并且不存在区分普通数据和紧急数据的功能（除非更高级别的协议提供）。参数on传入true表示启用OOBINLINE，传入false表示禁用。public void setOOBInline（boolean on）方法在接收端进行设置来决定是否接收与忽略紧急数据。在发送端，使用public void sendUrgentData（int data）方法发送紧急数据。

Socket类的public void sendUrgentData（int data）方法向对方发送1个单字节的数据，但是这个单字节的数据并不存储在输出缓冲区中，而是立即将数据发送出去，而在对方程序中并不知道发送过来的数据是由OutputStream还是由sendUrgentData（int data）发送过来的。

创建测试用的项目SocketTest_12。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 System.out.println("server A getOOBInline=" + socket.getOOBInline());

 socket.setOOBInline(true);

 System.out.println("server B getOOBInline=" + socket.getOOBInline());

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 char[] charArray = new char[1024];

 int readLength = inputStreamReader.read(charArray);

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStreamReader.read(charArray);

 }

 socket.close();

 serverSocket.close();

 } catch (SocketTimeoutException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) {

 try {

 Socket socket = new Socket("localhost", 8888);

 OutputStream outputStream = socket.getOutputStream();

 // 必须使用OutputStreamWriter类才出现预期的效果

 OutputStreamWriter outputStreamWriter = new OutputStreamWriter(outputStream);

 socket.sendUrgentData(97);

 outputStreamWriter.write("zzzzzzzzzzzzzzzzzzzzzzzzzz!");

 socket.sendUrgentData(98);

 socket.sendUrgentData(99);

 // 必须使用flush()，不然不会出现预期的效果

 outputStreamWriter.flush();

 socket.sendUrgentData(100);

 outputStream.close();

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

程序运行后的结果如下：

server A getOOBInline=false

server B getOOBInline=true

abczzzzzzzzzzzzzzzzzzzzzzzzzz!d

从程序运行结果来看，使用sendUrgentData（）方法发送的数据的确是比使用write（）方法要优先紧急发送，调用write（）方法写入的数据其实是放入缓存区中的，直到执行flush（）方法才发送。

上面使用代码语句“socket.setOOBInline（true）；”接收了紧急数据，再来测试一下丢弃紧急数据的情况，测试代码如下：

public class Server2 {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 System.out.println("server A getOOBInline=" + socket.getOOBInline());

 socket.setOOBInline(false);// 服务端忽略紧急数据

 System.out.println("server B getOOBInline=" + socket.getOOBInline());

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 char[] charArray = new char[1024];

 int readLength = inputStreamReader.read(charArray);

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStreamReader.read(charArray);

 }

 socket.close();

 serverSocket.close();

 } catch (SocketTimeoutException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

运行Server2和Client类，程序运行后，服务端控制台输出结果如下：

server A getOOBInline=false

server B getOOBInline=false

zzzzzzzzzzzzzzzzzzzzzzzzzz!

客户端向服务端传递的紧急数据“abcd”被服务端忽略且丢弃。

在调用sendUrgentData（）方法时所发送的数据可以被对方所忽略，结合这个特性可以实现测试网络连接状态的心跳机制，测试代码如下：

public class Test1 {

public static void main(String[] args) {

 try {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 Thread.sleep(Integer.MAX_VALUE);

 socket.close();

 serverSocket.close();

 } catch (SocketException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

以上代码是服务端的。

public class Test2 {

public static void main(String[] args) throws Exception {

 // 在windows7中执行方法sendUrgentData()到17次出现异常：

 // Connection reset by peer: send

 // 异常起因是windows7服务器发给客户端一个RST导致的，

 // 所以Server在本实验中要放到Linux操作系统中，Client放在windows7中进行测试

 Socket socket = new Socket("192.168.0.102", 8888);

 try {

 int count = 0;

 for (;;) {

 socket.sendUrgentData(1);

 count++;

 System.out.println("执行了" + count + "次嗅探");

 Thread.sleep(10000);

 }

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("------网络断开了！");

 socket.close();

 }

}

}

以上代码是客户端的。

当网络断开时打印“------网络断开了！”信息。
4.3.14　Socket选项KeepAlive

Socket选项SO_KEEPALIVE的作用是在创建了服务端与客户端时，使客户端连接上服务端。当设置SO_KEEPALIVE为true时，若对方在某个时间（时间取决于操作系统内核的设置）内没有发送任何数据过来，那么端点都会发送一个ACK探测包到对方，探测双方的TCP/IP连接是否有效（对方可能断电，断网）。如果不设置此选项，那么当客户端宕机时，服务端永远也不知道客户端宕机了，仍然保存这个失效的连接。如果设置了比选项，就会将此连接关闭。

public boolean getKeepAlive（）方法的作用是判断是否启用SO_KEEPALIVE选项。

public void setKeepAlive（boolean on）方法的作用是设置是否启用SO_KEEPALIVE选项。参数on代表是否开启保持活动状态的套接字。

创建测试用的项目SocketTest_17。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket(8888);

 System.out.println("server begin");

 Socket socket = serverSocket.accept();

 System.out.println("server end");

 Thread.sleep(Integer.MAX_VALUE);

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws UnknownHostException, IOException,

InterruptedException {

 System.out.println("client begin");

 Socket socket = new Socket("localhost", 8888);

 System.out.println("a=" + socket.getKeepAlive());

 socket.setKeepAlive(true);

 System.out.println("b=" + socket.getKeepAlive());

 System.out.println("client end");

 Thread.sleep(Integer.MAX_VALUE);

 socket.close();

}

}

在上述程序运行后，使用抓包软件得出如图4-68所示的监测结果。

 [image:]

图4-68　监测结果

上述结果说明在2个小时之后，客户端向服务端发送了TCP Keep-Alive探测是否存活的ACK数据包，而服务端也向客户端发送了同样类型的ACK回复数据包，但是该选项在实际软件开发中并不是常用的技术，判断连接是否正常时，较常用的办法是启动1个线程，在线程中使用轮询嗅探的方式来判断连接是否为正常的状态。
4.3.15　Socket选项TrafficClass

IP规定了以下4种服务类型，用来定性地描述服务的质量。

1）IPTOS_LOWCOST（0x02）：发送成本低。

2）IPTOS_RELIABILITY（0x04）：高可靠性，保证把数据可靠地送到目的地。

3）IPTOS_THROUGHPUT（0x08）：最高吞吐量，一次可以接收或者发送大批量的数据。

4）IPTOS_LOWDELAY（0x10）：最小延迟，传输数据的速度快，把数据快速送达目的地。

这4种服务类型还可以使用“或”运算进行相应的组合。

public void setTrafficClass（int tc）方法的作用是为从此Socket上发送的包在IP头中设置流量类别（traffic class）。

public int getTrafficClass（）方法的作用是为从此Socket上发送的包获取IP头中的流量类别或服务类型。

当向IP头中设置了流量类型后，路由器或交换机就会根据这个流量类型来进行不同的处理，同时必须要硬件设备进行参与处理。

因为Windows 7不支持此特性，所以本测试的客户端需要在Linux操作系统中进行，服务端可以安装在Windows 7中，然后使用wireshark工具进行抓包。

创建测试用的项目SocketTest_18。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocket serverSocket = new ServerSocket(8888);

 Socket socket = serverSocket.accept();

 socket.close();

 serverSocket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws UnknownHostException, IOException,

InterruptedException {

 Socket socket = new Socket();

 socket.setTrafficClass(0x10);

 socket.connect(new InetSocketAddress("localhost", 8888));

 OutputStream outStream = socket.getOutputStream();

 outStream.write("我是发送的数据！".getBytes());

 outStream.close();

 socket.close();

}

}

本测试使用wireshark抓包，抓包策略为：

ip.dst==192.168.0.101 and tcp.port==8888

上述程序运行后，在IP包头包含流量类别，值是0x10，如图4-69所示。

 [image:]

图4-69　流量类别
4.4　基于UDP的Socket通信

注意，在使用UDP实现Socket通信时一定要使用两台真机，不要使用虚拟机，不然会出现UDP包无法发送的情况。

UDP（User Datagram Protocol，用户数据报协议）是一种面向无连接的传输层协议，提供不可靠的信息传送服务。

无连接是指通信时服务端与客户端不需要建立连接，直接把数据包从一端发送到另一端，对方获取数据包再进行数据的处理。

UDP是“不可靠的”，是指该协议在网络环境不好的情况下，会丢失数据包，因为没有数据包重传的功能，另外它也不提供对数据包进行分组、组装，以及不能对数据包进行排序，这些都是它和TCP最主要的区别。使用UDP发送报文后，是无法得知其是否安全，以及是否完整地到达目的地的。

UDP将网络数据流量压缩成数据包的形式，一个典型的数据包就是一个二进制的数据传输单位，每一个数据包的前8个字节用来包含报头信息，剩余字节则用来包含具体的传输数据。

因为UDP报文没有可靠性保证、没有顺序保证，以及没有流量控制等功能，所以它可靠性较差。但是，正因为UDP的控制选项较少，在数据传输过程中延迟小、数据传输效率高，因而适合对可靠性要求不高的应用程序。

UDP和TCP都属于传输层协议。

在选择使用某种协议的时候，选择UDP必须要谨慎，因为在网络质量不好的情况下，UDP的数据包丢失的情况会比较严重，但正是因为它是无连接型协议，因而具有资源消耗小、处理速度快的优点。通常音频、视频和普通数据在传送时使用UDP较多，因为它们即使偶尔丢失一两个数据包，也不会对接收结果产生太大影响，如视频聊天时，丢失某些帧对聊天效果影响不大。

TCP中包含了专门的传递保证机制，来确保发送的数据能到达对端，并且是有序的。UDP与TCP不同，UDP并不提供数据传送的保证机制，如果在从发送方到接收方的传递过程中出现数据报的丢失，协议本身并不能做出任何检测或提示，因此，经常把UDP称为不可靠的传输协议。

另外，相对于TCP，UDP的另外一个不同之处是不能确保数据的发送和接收的顺序。例如，客户端的应用程序向服务端发送了以下4个数据报：

D1

D22

D333

D4444

但是UDP有可能按照以下的顺序接收数据：

D333

D1

D4444

D22

既然UDP是一种不可靠的网络协议，那么还有什么使用价值或必要呢？其实，在有些情况下，UDP可能会变得非常有用，因为UDP具有TCP所不具有的速度上的优势。虽然TCP中提供了各种安全保障功能，但在实际执行的过程中会占用大量的系统资源和开销，这无疑使运行的效率，也就是运行速度受到严重的影响。反观UDP，由于排除了信息可靠传递机制，将安全和排序等功能移交给上层应用来完成，因此极大地减少了执行时间，使运行速度得到了保证。TCP与UDP各有利弊，在不同的场景要使用不同的技术。
4.4.1　使用UDP实现Socket通信

在使用UDP实现Socket通信时，服务端与客户端都是使用DatagramSocket类，传输的数据要存放在DatagramPacket类中。

DatagramSocket类表示用来发送和接收数据报包的套接字。数据报套接字是包投递服务的发送或接收点。每个在数据报套接字上发送或接收的包都是单独编址和路由的。从一台机器发送到另一台机器的多个包可能选择不同的路由，也可能按不同的顺序到达。在DatagramSocket上总是启用UDP广播发送。为了接收广播包，应该将DatagramSocket绑定到通配符地址。在某些实现中，将DatagramSocket绑定到一个更加具体的地址时广播包也可以被接收。

示例：

DatagramSocket s = new DatagramSocket(null);

s.bind(new InetSocketAddress(8888));

这等价于：

DatagramSocket s = new DatagramSocket(8888);

两个例子都能在8888端口上接收使用UDP发送的广播DatagramSocket。

DatagramPacket类表示数据报包。数据报包用来实现无连接包投递服务。每条报文仅根据该包中包含的信息从一台机器路由到另一台机器。从一台机器发送到另一台机器的多个包可能选择不同的路由，也可能按不同的顺序到达。

DatagramSocket类中的public synchronized void receive（DatagramPacket p）方法的作用是从此套接字接收数据报包。当此方法返回时，DatagramPacket的缓冲区填充了接收的数据。数据报包也包含发送方的IP地址和发送方机器上的端口号。此方法在接收到数据报前一直阻塞。数据报包对象的length字段包含所接收信息的长度。如果发送的信息比接收端包关联的byte[]长度长，该信息将被截短。如果发送信息的长度大于65507，则发送端出现异常。

DatagramSocket类中的public void send（DatagramPacket p）方法的作用是从此套接字发送数据报包。DatagramPacket包含的信息有：将要发送的数据及其长度、远程主机的IP地址和远程主机的端口号。

DatagramPacket类中的public synchronized byte[]getData（）方法的作用是返回数据缓冲区。接收到的或将要发送的数据从缓冲区中的偏移量offset处开始，持续length长度。

创建测试用的项目udp1。

本测试要实现的是客户端使用UDP将字符串1234567890传递到服务端。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket(8888);

 byte[] byteArray = new byte[12];

 // 构造方法第2个参数也要写上10个，代表要接收数据的长度为10

 // 和客户端发送数据的长度要一致

 DatagramPacket myPacket = new DatagramPacket(byteArray, 10);

 socket.receive(myPacket);

 socket.close();

 System.out.println("包中数据的长度：" + myPacket.getLength());

 System.out.println(new String(myPacket.getData(), 0, myPacket.getLength()));

}

}

Client类的实现代码如下：

public class Client {

// 客户端要发送的数据字节长度为10

// 所以服务端只能最大取得10个数据

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.connect(new InetSocketAddress("localhost", 8888));

 String newString = "1234567890";

 byte[] byteArray = newString.getBytes();

 DatagramPacket myPacket = new DatagramPacket(byteArray, byteArray.length);

 socket.send(myPacket);

 socket.close();

}

}

首先运行Server类的实现代码，然后运行Client类的实现代码，控制台输出结果如下：

包中数据的长度：10

1234567890

上述结果说明使用UDP实现了Server与Client的通信。
4.4.2　测试发送超大数据量的包导致数据截断的情况

理论上，一个UDP包最大的长度为216-1（65536-1=65535），因此，IP包最大的发送长度为65535。但是，在这65535之内包含IP协议头的20个字节，还有UDP协议头的8个字节，即65535-20-8=65507，因此，UDP传输用户数据最大的长度为65507。如果传输的数据大于65507，则在发送端出现异常。

创建测试用的项目udpSendBigData。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket(8088);

 byte[] byteArray = new byte[65507];

 DatagramPacket packet = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(packet);

 socket.close();

 System.out.println("服务端接收到的数据长度为：" + packet.getLength());

 String getString = new String(packet.getData(), 0, packet.getLength());

 FileOutputStream fileOutputStream = new FileOutputStream("c:\\abc\\getData.

 txt");

 fileOutputStream.write(getString.getBytes());

 fileOutputStream.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.connect(new InetSocketAddress("localhost", 8088));

 String sendString = "";

 for (int i = 0; i < 65507 - 3; i++) {

 sendString = sendString + "a";

 }

 sendString = sendString + "end";

 DatagramPacket packet = new DatagramPacket(sendString.getBytes(), sendString.

 getBytes().length);

 socket.send(packet);

 socket.close();

}

}

在上述程序运行后，服务端接收了全部的数据，结果如图4-70所示。

 [image:]

图4-70　接收全部的数据

如果发送的数据量大于65507，则发送端出现异常。

服务端测试用的代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket(8088);

 byte[] byteArray = new byte[65509];

 DatagramPacket packet = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(packet);

 socket.close();

 System.out.println("服务端接收到的数据长度为：" + packet.getLength());

 String getString = new String(packet.getData(), 0, packet.getLength());

 FileOutputStream fileOutputStream = new FileOutputStream("c:\\abc\\getData.

 txt");

 fileOutputStream.write(getString.getBytes());

 fileOutputStream.close();

}

}

客户端测试用的代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.connect(new InetSocketAddress("localhost", 8088));

 String sendString = "";

 for (int i = 0; i < 65507 - 3; i++) {

 sendString = sendString + "a";

 }

 sendString = sendString + "end";

 sendString = sendString + "zz";

 DatagramPacket packet = new DatagramPacket(sendString.getBytes(), sendString.

 getBytes().length);

 socket.send(packet);

 socket.close();

}

}

首先运行服务端，再运行客户端，客户端出现异常，结果如下：

Exception in thread "main" java.net.SocketException: The message is larger than

the maximum supported by the underlying transport: Datagram send failed

 at java.net.DualStackPlainDatagramSocketImpl.socketSend(Native Method)

 at java.net.DualStackPlainDatagramSocketImpl.send(DualStackPlainDatagramSo

 cketImpl.java:136)

 at java.net.DatagramSocket.send(DatagramSocket.java:693)

 at test2.Client.main(Client.java:19)

4.4.3　Datagram Packet类中常用API的使用

DatagramPacket类中的public synchronized void setData（byte[]buf）方法的作用是为此包设置数据缓冲区。将此DatagramPacket的偏移量设置为0，长度设置为buf的长度。

DatagramPacket类中的public synchronized void setData（byte[]buf，int offset，int length）方法的作用是为此包设置数据缓冲区。此方法设置包的数据、长度和偏移量。

DatagramPacket类中的public synchronized int getOffset（）方法的作用是返回将要发送或接收到的数据的偏移量。

DatagramPacket类中的public synchronized void setLength（int length）方法的作用是为此包设置长度。包的长度是指包数据缓冲区中将要发送的字节数，或用来接收数据的包数据缓冲区的字节数。长度必须小于或等于偏移量与包缓冲区长度之和。

创建测试用的项目udp2。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket(8888);

 byte[] byteArray = new byte[10];

 DatagramPacket myPacket = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(myPacket);

 socket.close();

 byteArray = myPacket.getData();

 System.out.println(new String(byteArray, 0, myPacket.getLength()));

}

}

Client1类的实现代码如下：

public class Client1 {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.connect(new InetSocketAddress("localhost", 8888));

 String newString = "我是员工";

 byte[] byteArray = newString.getBytes();

 DatagramPacket myPacket = new DatagramPacket(new byte[] {}, 0);

 myPacket.setData(byteArray);

 myPacket.setLength(2);

 socket.send(myPacket);

 socket.close();

}

}

Client2类的实现代码如下：

public class Client2 {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.connect(new InetSocketAddress("localhost", 8888));

 String newString = "我是员工";

 byte[] byteArray = newString.getBytes();

 DatagramPacket myPacket = new DatagramPacket(new byte[] {}, 0);

 myPacket.setData(byteArray, 2, 6);

 System.out.println("myPacket.getOffset()=" + myPacket.getOffset());

 socket.send(myPacket);

 socket.close();

}

}

首先运行Server类的实现代码，然后运行Client1类的实现代码，控制台输出结果如下：

我

再次运行Server类的实现代码，然后运行Client2类的实现代码，Server端的控制台输出结果如下：

是员工

Client2端的控制台输出结果如下：

myPacket.getOffset()=2

4.4.4　使用UDP实现单播

“单播”就是将数据报文让1台计算机知道。

笔者在本小节以及后面的所有章节测试的环境是物理的两台便携式计算机。

注意，想要让Linux接收UDP信息，必须使用root管理员角色执行命令关闭防火墙：

systemctl stop firewalld.service

还需要注意的是，笔者的测试环境使用的是交换机，如果使用路由器将两台计算机进行连接，则UDP的广播数据包会出现随机丢失的情况。

两台计算机的子网掩码、网关要一样，这也是设置的重点，这样配置完成后，两个操作系统就可以ping通，就可以互相通信了。

将计算机A中的Windows 7操作系统的IP设置为192.168.0.150，将计算机B中的CentOS操作系统的IP地址设置为192.168.0.105，最后在控制台或终端互ping就可以了。

创建测试用的项目udp_1。

Server类的实现代码如下：

public class Server {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket(8888);

 byte[] byteArray = new byte[10];

 DatagramPacket packet = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(packet);

 byteArray = packet.getData();

 System.out.println(new String(byteArray, 0, packet.getLength()));

 socket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.connect(new InetSocketAddress("192.168.0.150", 8888));

 byte[] byteArray = "1234567890".getBytes();

 DatagramPacket packet = new DatagramPacket(byteArray, byteArray.length);

 socket.send(packet);

 socket.close();

}

}

上述程序运行后，成功地在服务端的控制台输出如下结果：

1234567890

4.4.5　使用UDP实现广播

“广播”就是将数据报文让其他计算机都知道。

创建测试用的项目udp3。

Server1类的实现代码如下：

public class Server1 {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket(7777);

 byte[] byteArray = new byte[10];

 DatagramPacket myPacket = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(myPacket);

 socket.close();

 byteArray = myPacket.getData();

 System.out.println(new String(byteArray, 0, myPacket.getLength()));

}

}

Server1类是在计算机A中运行的。

Server2类的实现代码如下：

public class Server2 {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket(7777);

 byte[] byteArray = new byte[10];

 DatagramPacket myPacket = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(myPacket);

 socket.close();

 byteArray = myPacket.getData();

 System.out.println(new String(byteArray, 0, myPacket.getLength()));

}

}

Server2类是在计算机B中运行的。

Client1类的实现代码如下：

public class Client1 {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.connect(new InetSocketAddress("192.168.0.105", 7777));

 String newString = "12345_____";

 byte[] byteArray = newString.getBytes();

 DatagramPacket myPacket = new DatagramPacket(byteArray, byteArray.length);

 socket.send(myPacket);

 socket.close();

}

}

注意，Client1类实现的不是广播的效果。

首先，在计算机A中运行Server1类，然后在计算机B中运行Server2类，最后在计算机A中运行Client1类，结果是只在计算机B中输出了字符，说明Client1类只具备单播的功能。

上面的过程并没有实现广播的效果，这时如果想实现两台计算机都能接收到这个数据包，就要使用广播技术了，创建Client2类代码如下：

public class Client2 {

public static void main(String[] args) throws IOException {

 DatagramSocket socket = new DatagramSocket();

 socket.setBroadcast(true);

 socket.connect(InetAddress.getByName("192.168.0.255"), 7777);

 String newString = "_____12345";

 byte[] byteArray = newString.getBytes();

 DatagramPacket myPacket = new DatagramPacket(byteArray, byteArray.length);

 socket.send(myPacket);

 socket.close();

}

}

首先在计算机A中运行Server1类，然后在计算机B中运行Server2类，最后在计算机A中运行Client2类，结果是计算机A和计算机B都接收到了UDP广播的信息。

在Windows操作系统中，服务端可以使用代码

DatagramSocket socket = new DatagramSocket(new InetSocketAddress("192.168.0.150",

7777));

和

DatagramSocket socket = new DatagramSocket(7777);

来开启服务端的服务，这样都能接收到客户端的UDP广播信息。

而在Linux中必须使用代码

DatagramSocket socket = new DatagramSocket(7777);

来开启服务端的服务。经过笔者的测试，如果在Linux中使用代码

DatagramSocket socket = new DatagramSocket(new InetSocketAddress("192.168.0.150",

7777));

作为服务端，则Linux中的UDP服务器接收不到UDP广播消息。

另外，一定要留意广播地址，错误的广播地址不能实现UDP广播的效果。具体使用哪些广播地址，要根据当前计算机中的IP进行换算，可自行查看搜索引擎提供的相关资料，或使用如下程序代码获得。

public class Test3 {

public static void main(String[] args) throws Exception {

 Enumeration<NetworkInterface> enum1 = NetworkInterface.getNetworkInterfaces();

 while (enum1.hasMoreElements()) {

 NetworkInterface n = enum1.nextElement();

 System.out.println(n.getName() + " " + n.getDisplayName());

 List<InterfaceAddress> list = n.getInterfaceAddresses();

 for (int i = 0; i < list.size(); i++) {

 InterfaceAddress a = list.get(i);

 InetAddress ip = a.getBroadcast();

 if (ip != null) {

 System.out.println(" " + a.getBroadcast().getHostAddress());

 }

 }

 }

}

}

4.4.6　使用UDP实现组播

“组播”就是将数据报文让指定的计算机知道。组播也称为多播。

注意，如果在两台物理计算机中进行UDP组播的测试，一定要将多余的网卡禁用，不然会出现使用wireshark工具可以抓到组播包，但receive（）方法依然是阻塞的情况，但如果服务端与客户端在同一台中，就不会出现这样的情况。

创建测试用的项目udp4。

ServerA类的实现代码如下：

public class ServerA {

public static void main(String[] args) throws IOException {

 MulticastSocket socket = new MulticastSocket(8888);

 socket.joinGroup(InetAddress.getByName("224.0.0.5"));

 byte[] byteArray = new byte[10];

 DatagramPacket packet = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(packet);

 byteArray = packet.getData();

 System.out.println("ServerA " + new String(byteArray, 0, packet.getLength()));

 socket.close();

}

}

ServerB类的实现代码如下：

public class ServerB {

public static void main(String[] args) throws IOException {

 MulticastSocket socket = new MulticastSocket(8888);

 socket.joinGroup(InetAddress.getByName("224.0.0.5"));

 byte[] byteArray = new byte[10];

 DatagramPacket packet = new DatagramPacket(byteArray, byteArray.length);

 socket.receive(packet);

 byteArray = packet.getData();

 System.out.println("ServerB " + new String(byteArray, 0, packet.getLength()));

 socket.close();

}

}

Client类的实现代码如下：

public class Client {

public static void main(String[] args) throws IOException {

 MulticastSocket socket = new MulticastSocket();

 byte[] byteArray = "1234567890".getBytes();

 DatagramPacket packet = new DatagramPacket(byteArray, byteArray.length,

 InetAddress.getByName("224.0.0.5"),

 8888);

 socket.send(packet);

 socket.close();

}

}

在上述程序运行后，在两个服务端控制台输出的结果如下：

ServerA 1234567890

ServerB 1234567890

如果是发送数据报包，则可以不调用joinGroup（）方法加入多播组；如果是接收数据报包，则必须调用joinGroup（）方法加入多播组。

上述结果表明组播的测试成功。
4.5　小结

本章主要介绍了使用ServerSocket和Socket实现TCP/IP数据通信，使用DatagramSocket和DatagramPacket实现UDP数据通信，并详细介绍了这些类中API的使用，以及全部Socket Option选项的特性，同时，分析了TCP/IP通信时的“握手”与“挥手”，熟练掌握这些知识有助于理解网络编程的特性，对学习ServerSocketChannel通道起到非常重要的铺垫作用。那么在下一章就要学习选择器与ServerSocketChannel通道实现多路复用，深入到NIO高性能处理的核心。
第5章　选择器的使用

本章将介绍NIO技术中最重要的知识点之一：选择器（Selector）。选择器结合Selectable-Channel实现了非阻塞的效果，大大提高了程序运行的效率。因为选择器与Selectable-Channel会进行联合使用，所以本章将SelectableChannel类一同进行介绍。

选择器实现了I/O通道的多路复用，使用它可以节省CPU资源，提高程序运行效率，那么这个技术到底是如何使用的呢？下面就开始相关知识的学习。
5.1　选择器与I/O多路复用

Selector选择器是NIO技术中的核心组件，可以将通道注册进选择器中，其主要作用就是使用1个线程来对多个通道中的已就绪通道进行选择，然后就可以对选择的通道进行数据处理，属于一对多的关系，也就是使用1个线程来操作多个通道，这种机制在NIO技术中称为“I/O多路复用”。它的优势是可以节省CPU资源，因为只有1个线程，CPU不需要在不同的线程间进行上下文切换。线程的上下文切换是一个非常耗时的动作，减少切换对设计高性能服务器具有很重要的意义。

若不使用“I/O多路复用”，那会是什么样的设计结构呢？效果如图5-1所示。

 [image:]

图5-1　不使用I/O多路复用

从在图5-1中可以发现，如果不使用I/O多路复用，则需要创建多个线程对象，每个线程都对应一个通道，在对应的通道中进行数据的处理。但是，如果在高并发环境下，就会创建很多的线程对象，造成内存占用率升高，增加CPU在多个线程之间上下文切换的时间，因此，此种设计就不适用于高并发的场景。

如果使用“I/O多路复用”，那又会是什么样的设计结构呢？效果如图5-2所示。

 [image:]

图5-2　使用I/O多路复用

从图5-2中可以发现，使用了I/O多路复用后，只需要使用1个线程就可以操作多个通道，属于一对多的关系。它和“不使用I/O多路复用”相比最大的优势就是内存占用率下降了，因为线程对象的数量大幅减少，还有CPU不需要过多的上下文切换，这对高并发高频段处理的业务环境有非常重要的优势。

线程数会随着通道的多少而动态地增减以进行适配，在内部其实并不永远是一个线程，多路复用的核心目的就是使用最少的线程去操作更多的通道。在JDK的源代码中，创建线程的个数是根据通道的数量来决定的，每注册1023个通道就创建1个新的线程，这些线程执行Windows中的select（）方法来监测系统socket的事件，如果发生事件则通知应用层中的main线程终止阻塞，继续向下运行，处理事件。可以在CMD中使用jps和jstack来查看创建线程的数量。

[image:]注意　学习I/O多路复用时一定要明白一个知识点，就是在使用I/O多路复用时，这个线程不是以for循环的方式来判断每个通道是否有数据要进行处理，而是以操作系统底层作为“通知器”，来“通知JVM中的线程”哪个通道中的数据需要进行处理，这点一定要注意。当不使用for循环的方式来进行判断，而是使用通知的方式时，这就大大提高了程序运行的效率，不会出现无限期的for循环迭代空运行了。
5.2　核心类Selector、SelectionKey和Sel-ectableChannel的关系

在使用选择器技术时，主要由3个对象以合作的方式来实现线程选择某个通道进行业务处理，这3个对象分别是Selector、SelectionKey和SelectableChannel。

先来看看Selector类的结构信息，如图5-3所示。

 [image:]

图5-3　抽象类Selector的结构信息

Selector类是抽象类，它是SelectableChannel对象的多路复用器。这句话的含义是只有SelectableChannel通道对象才能被Selector.java选择器所复用，那么为什么必须是SelectableChannel通道对象才能被Selector.java选择器所复用呢？因为只有SelectableChannel类才具有register（Selector sel，int ops）方法，该方法的作用是将当前的SelectableChannel通道注册到指定的选择器中，参数sel也说明了这个问题。注册的效果如图5-4所示。

 [image:]

图5-4　将通道注册到选择器

由选择器来决定对哪个通道中的数据进行处理，这些能被选择器所处理的通道的父类就是SelectableChannel，它是抽象类，该类的结构信息如图5-5所示。

 [image:]

图5-5　抽象类SelectableChannel的结构信息

SelectableChannel类的继承关系如图5-6所示。

 [image:]

图5-6　SelectableChannel类的继承关系

SelectableChannel类和FileChannel类是平级关系，都继承自父类AbstractInterruptibleChannel。

抽象类SelectableChannel有很多子类，如图5-7所示，其中的3个通道子类是在选择器技术中使用最为广泛的。

 [image:]

图5-7　SelectableChanne1类中比较常用的3个子类

抽象类SelectableChannel的子类继承关系如图5-8所示。

 [image:]

图5-8　抽象类SelectableChannel的子类继承关系

通过图5-8表达的内容可以分析出，SelectableChannel类的子类都可以使用register（Selector sel，int ops）方法将自身注册到选择器中。

再来看看SelectionKey类的结构信息，如图5-9所示。

 [image:]

图5-9　SelectionKey类的结构信息

SelectionKey类的作用是一个标识，这个标识代表SelectableChannel类已经向Selector类注册了。

在后续部分将对SelectableChannel类的子类进行详细介绍，使读者充分地掌握选择器与通道类的结合使用。
5.3　通道类AbstractInterruptibleChannel与接口InterruptibleChannel的介绍

AbstractInterruptibleChannel类实现了InterruptibleChannel接口，该接口的主要作用，是使通道能以异步的方式进行关闭与中断。

如果通道实现了asynchronously和closeable特性，那么，当一个线程在一个能被中断的通道上出现了阻塞状态，其他线程调用这个通道的close（）方法时，这个呈阻塞状态的线程将接收到AsynchronousCloseException异常。

如果通道实现了asynchronously和closeable，并且还实现了interruptible特性，那么，当一个线程在一个能被中断的通道上出现了阻塞状态，其他线程调用这个阻塞线程的interrupt（）方法时，通道将被关闭，这个阻塞的线程将接收到ClosedByInterruptException异常，这个阻塞线程的状态一直是中断状态。

上面这两个特性已经验证过了。

InterruptibleChannel接口的API结构如图5-10所示。

 [image:]

图5-10　InterruptibleChannel接口的API结构

InterruptibleChannel接口的结构信息如图5-11所示。

 [image:]

图5-11　InterruptibleChannel接口的结构信息

再来看看InterruptibleChannel接口的实现类AbstractInterruptibleChannel的结构信息，如图5-12所示。

 [image:]

图5-12　AbstractInterruptibleChannel类的结构信息

AbstractInterruptibleChannel类是抽象类，其内部的API结构比较简单，只有两个方法，如图5-13所示。

 [image:]

图5-13　AbstractInterruptibleChannel类的API结构

AbstractInterruptibleChannel类的主要作用是提供了一个可以被中断的通道基本实现类。

此类封装了能使通道实现异步关闭和中断所需要的最低级别的机制。在调用有可能无限期阻塞的I/O操作的之前和之后，通道类必须分别调用begin（）和end（）方法。为了确保始终能够调用end（）方法，应该在try...finally块中使用begin和end（）方法：

boolean completed = false;

try {

begin();

completed = ...; // 执行blocking I/O操作

return ...; // 返回结果

} finally {

 end(completed);

}

end（）方法的completed参数用于告知I/O操作实际是否已完成。例如，在读取字节的操作中，只有确实将某些字节传输到目标缓冲区，此参数才应该为true，代表完成的结果是成功的。

具体的通道类还必须实现implCloseChannel（）方法，其方式为：如果在调用此方法的同时，另一个线程阻塞在该通道上的本机I/O操作中，则该操作将立即返回，要么抛出异常，要么正常返回。如果某个线程被中断，或者异步地关闭了阻塞线程所处的通道，则该通道的end（）方法会抛出相应的异常。
5.4　通道类SelectableChannel的介绍

AbstractInterruptibleChannel类的子类就包含抽象类SelectableChannel和FileChannel。

SelectableChannel类的结构信息如图5-14所示。

 [image:]

图5-14　抽象类SelectableChannel的结构信息

从继承关系的结构信息来看，抽象类SelectableChannel并没有实现其他的新接口，只是单纯地从父类AbstractInterruptibleChannel进行继承，进行扩展，它的API结构如图5-15所示。

 [image:]

图5-15　抽象类SelectableChannel的API结构

SelectableChannel与选择器关联的关键方法就是前面已经介绍过的：

public final SelectionKey register(Selector sel, int ops)

通过此方法，可将SelectableChannel注册到选择器对象上。

抽象类SelectableChannel有很多子类，如图5-16所示，其中的3个通道子类是在选择器技术中使用最为广泛的。

 [image:]

图5-16　SelectableChannel类中比较常用的3个子类

SelectableChannel类可以通过选择器实现多路复用。

在与选择器结合使用的时候，需要先调用SelectableChannel对象的register（）方法在选择器对象里注册SelectableChannel，register（）方法返回一个新的SelectionKey对象，SelectionKey表示该通道已向选择器注册了。

当SelectableChannel在选择器里注册后，通道在注销之前将一直保持注册状态。需要注意的是，不能直接注销通道，而是通过调用SelectionKey类的cancel（）方法显式地取消，这将在选择器的下一次选择select（）操作期间去注销通道。无论是通过调用通道的close（）方法，还是中断阻塞于该通道上I/O操作中的线程来关闭该通道，都会隐式地取消该通道的所有SelectionKey。

如果选择器本身已关闭，则将注销该通道，并且表示其注册的SelectionKey将立即无效。

一个通道至多只能在任意特定选择器上注册一次。可以通过调用isRegistered（）方法来确定是否已经向一个或多个选择器注册了某个通道。

SelectableChannel在多线程并发环境下是安全的。

SelectableChannel要么处于阻塞模式，要么处于非阻塞模式。在阻塞模式中，每一个I/O操作完成之前都会阻塞在其通道上调用的其他I/O操作。在非阻塞模式中，永远不会阻塞I/O操作，并且传输的字节可能少于请求的数量，或者可能根本不传输字节。可通过调用SelectableChannel的isBlocking（）方法来确定其是否为阻塞模式。

新创建的SelectableChannel总是处于阻塞模式。在结合使用基于选择器的多路复用时，非阻塞模式是最有用的。向选择器注册某个通道前，必须将该通道置于非阻塞模式，并且在注销之前可能无法返回到阻塞模式。
5.5　通道类AbstractSelectableChannel的介绍

SelectableChannel类的子类包含抽象类AbstractSelectableChannel。AbstractSelectable-Channel类的结构信息如图5-17所示。

 [image:]

图5-17　抽象类AbstractSelectableChannel的结构信息

从继承关系的结构信息来看，抽象类AbstractSelectableChannel并没有实现其他的新接口，只是单纯地从父类SelectableChannel进行继承，进行扩展，它的API结构如图5-18所示。

 [image:]

图5-18　抽象类AbstractSelectableChannel的API结构

抽象类AbstractSelectableChannel是可选择通道的基本实现类。此类定义了处理通道注册、注销和关闭机制的各种方法。它会维持此通道的当前阻塞模式及其当前的选择键集SelectionKey。它执行实现SelectableChannel规范所需的所有同步。此类中所定义的抽象保护方法的实现不必与同一操作中使用的其他线程同步。
5.6　通道类ServerSocketChannel与接口NetworkChannel的介绍

抽象类AbstractSelectableChannel的子类包含抽象类ServerSocketChannel，它的结构信息如图5-19所示。

从继承关系的结构信息来看，抽象类ServerSocketChannel实现了1个新的接口Network-Channel。

 [image:]

图5-19　抽象类ServerSocketChannel的结构信息

抽象类ServerSocketChannel的API结构如图5-20所示。

 [image:]

图5-20　抽象类ServerSocketChannel的API结构

ServerSocketChannel类是针对面向流的侦听套接字的可选择通道。ServerSocketChannel不是侦听网络套接字的完整抽象，必须通过调用socket（）方法所获得的关联ServerSocket对象来完成对套接字选项的绑定和操作。不可能为任意的已有ServerSocket创建通道，也不可能指定与ServerSocketChannel关联的ServerSocket所使用的SocketImpl对象。

通过调用此类的open（）方法创建ServerSocketChannel。新创建的ServerSocketChannel已打开，但尚未绑定。试图调用未绑定的ServerSocketChannel的accept（）方法会导致抛出NotYetBoundException。可通过调用相关ServerSocket的某个bind（）方法来绑定ServerSocketChannel。

多个并发线程可安全地使用服务器套接字通道ServerSocketChannel。

NetworkChannel接口的结构信息如图5-21所示。

 [image:]

图5-21　NetworkChannel接口的结构信息

一个NetworkChannel代表连接到Socket的网络通道。

NetworkChannel接口的API结构如图5-22所示。

 [image:]

图5-22　NetworkChannel接口的API结构

实现此接口的通道就是网络套接字通道。bind（）方法用于将套接字绑定到本地地址，get-LocalAddress（）方法返回套接字绑定到的地址，setOption（）和getOption（）方法分别用于设置和查询套接字选项。

ServerSocketChannel类可供调用的API如图5-23所示。

 [image:]

图5-23　ServerSocketChannel类可供调用的API

在学习使用这些API的过程中，就会掌握如何将通道注册到选择器里。
5.7　ServerSocketChannel类、Selector和SelectionKey的使用

本节主要介绍ServerSocketChannel类、Selector和SelectionKey的联合使用，来实现ServerSocketChannel结合Selector达到I/O多路复用的目的。
5.7.1　获得ServerSocketChannel与ServerSocket socket对象

ServerSocketChannel类是抽象的，如图5-24所示。

 [image:]

图5-24　ServerSocketChannel类是抽象的

因此，ServerSocketChannel类并不能直接new实例化，但API中提供了public static ServerSocket-Channel open（）方法来创建ServerSocketChannel类的实例。open（）方法是静态的，作用是打开服务器套接字通道。新通道的套接字最初是未绑定的；可以接受连接之前，必须通过它的某个套接字的bind（）方法将其绑定到具体的地址。

通过调用open（）方法创建ServerSocketChannel类的实例后，可以调用它的public abstract ServerSocket socket（）方法来返回ServerSocket类的对象，然后与客户端套接字进行通信。socket（）方法的作用是获取与此通道关联的服务器套接字ServerSocket类的对象。

public final void close（）方法的作用是关闭此通道。如果已关闭该通道，则此方法立即返回。否则，它会将该通道标记为已关闭，然后调用implCloseChannel（）方法以完成关闭操作。

创建测试用的代码如下：

public class Test1_Server1 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 ServerSocket serverSocket = serverSocketChannel.socket();

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 char[] charArray = new char[1024];

 int readLength = inputStreamReader.read(charArray);

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStreamReader.read(charArray);

 }

 inputStreamReader.close();

 inputStream.close();

 socket.close();

 serverSocket.close();

 serverSocketChannel.close();

}

}

可自行创建一个Socket客户端对服务端传输数据，以达到服务端与客户端通信的目的。

通过查看上述的示例代码可以发现，在不使用ServerSocketChannel类，而只是单纯地使用ServerSocket类与Socket类，也能实现服务端与客户端通信的目的，那么为什么要使用ServerSocketChannel通道呢？因为单纯地使用ServerSocket类与Socket类，而不使用ServerSocketChannel类是实现不了I/O多路复用的。关于如何使用ServerSocketChannel类实现I/O多路复用，可参见后的代码。
5.7.2　执行绑定操作

上文使用如下代码

serverSocket.bind(new InetSocketAddress("localhost", 8888));

将ServerSocket类绑定到指定的地址，而ServerSocketChannel类也有bind（）方法，该方法public final ServerSocketChannel bind（SocketAddress local）的作用是将通道的套接字绑定到本地地址并侦听连接。

测试用的代码如下：

public class Test1_Server2 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 // 如果使用serverSocketChannel进行了bind()绑定，

 // 那么就不再使用serverSocket进行bind()绑定

 ServerSocket serverSocket = serverSocketChannel.socket();

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 InputStreamReader inputStreamReader = new InputStreamReader(inputStream);

 char[] charArray = new char[1024];

 int readLength = inputStreamReader.read(charArray);

 while (readLength != -1) {

 String newString = new String(charArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStreamReader.read(charArray);

 }

 inputStreamReader.close();

 inputStream.close();

 socket.close();

 serverSocket.close();

 serverSocketChannel.close();

}

}

5.7.3　执行绑定操作与设置backlog

public abstract ServerSocketChannel bind（SocketAddress local，int backlog）方法的作用是将通道的套接字绑定到本地地址并侦听连接，通过使用参数backlog来限制客户端连接的数量。

Test1_Server3类的实现代码如下：

public class Test1_Server3 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888), 60);

 ServerSocket serverSocket = serverSocketChannel.socket();

 Thread.sleep(5000);

 boolean isRun = true;

 while (isRun == true) {

 Socket socket = serverSocket.accept();

 socket.close();

 }

 Thread.sleep(8000);

 serverSocket.close();

 serverSocketChannel.close();

}

}

Test1_Server3_Client类的实现代码如下：

public class Test1_Server3_Client {

public static void main(String[] args) throws IOException, InterruptedException {

 for (int i = 0; i < 100; i++) {

 Socket socket = new Socket("localhost", 8888);

 socket.close();

 System.out.println("客户端连接个数为：" + (i + 1));

 }

}

}

首先运行Test1_Server3类的实现代码，然后运行Test1_Server3_Client类的实现代码，控制台输出结果如下：

客户端连接个数为：57

客户端连接个数为：58

客户端连接个数为：59

客户端连接个数为：60

Exception in thread "main" java.net.ConnectException: Connection refused: connect

 at java.net.DualStackPlainSocketImpl.connect0(Native Method)

 at java.net.DualStackPlainSocketImpl.socketConnect(DualStackPlainSocketImpl.

 java:79)

 at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:

 350)

 at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketIm

 pl.java:206)

上述结果说明服务端允许接受的客户端连接个数上限为60。
5.7.4　阻塞与非阻塞以及accept（）方法的使用效果

public abstract SocketChannel accept（）方法的作用是接受此通道套接字的连接。如果此通道处于非阻塞模式，那么在不存在挂起的连接时，此方法将直接返回null。否则，在新的连接可用或者发生I/O错误之前会无限期地阻塞它。无论此通道的阻塞模式如何，此方法返回的套接字通道（如果有）将处于阻塞模式。

如何切换ServerSocketChannel通道的阻塞与非阻塞的执行模式呢？调用ServerSocket-Channel的public final SelectableChannel configureBlocking（boolean block）方法即可。public final SelectableChannel configureBlocking（boolean block）方法的作用是调整此通道的阻塞模式，传入true是阻塞模式，传入false是非阻塞模式。

先来看看阻塞模式的执行特性，代码如下测试：

public class TestBlockServer {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 System.out.println(serverSocketChannel.isBlocking());

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 System.out.println("begin " + System.currentTimeMillis());

 SocketChannel socketChannel = serverSocketChannel.accept();

 System.out.println(" end " + System.currentTimeMillis());

 socketChannel.close();

 serverSocketChannel.close();

}

}

上述程序运行后控制台输出结果如下：

true

begin 1514863858768

从输出的结果来看，输出了begin却没有输出end，说明accept（）方法呈阻塞状态。

再来看看非阻塞模式的执行特性，测试代码如下：

public class TestNotBlockServer {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 System.out.println(serverSocketChannel.isBlocking());

 serverSocketChannel.configureBlocking(false);

 System.out.println(serverSocketChannel.isBlocking());

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 System.out.println("begin " + System.currentTimeMillis());

 SocketChannel socketChannel = serverSocketChannel.accept();

 System.out.println(" end " + System.currentTimeMillis() + " socketChannel=" +

 socketChannel);

 socketChannel.close();

 serverSocketChannel.close();

}

}

上述程序运行后控制台输出结果如下：

true

false

begin 1514863943717

 end 1514863943717 socketChannel=null

Exception in thread "main" java.lang.NullPointerException

 at ServerSocketChannelAPITest.TestNotBlockServer.main(TestNotBlockServer.java:18)

在非阻塞模式下，accept（）方法在没有客户端连接时，返回null值。

下面继续测试，使用public abstract SocketChannel accept（）方法结合ByteBuffer来获取数据。

测试代码如下：

public class Test1_Server4 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 SocketChannel socketChannel = serverSocketChannel.accept();

 ByteBuffer buteBuffer = ByteBuffer.allocate(2);

 int readLength = socketChannel.read(buteBuffer);

 while (readLength != -1) {

 String newString = new String(buteBuffer.array());

 System.out.println(newString);

 buteBuffer.flip();

 readLength = socketChannel.read(buteBuffer);

 }

 socketChannel.close();

 serverSocketChannel.close();

}

}

使用ServerSocketChannel类的accept（）方法的优势是返回1个SocketChannel通道，此通道是SelectableChannel（可选择通道）的子类，可以把这个SocketChannel通道注册到选择器中实现I/O多路复用，另外，SocketChannel通道使用缓冲区进行数据的读取操作。

前面创建的3个服务端处理的Java类Test1_Server1、Test1_Server2和Test1_Server4都可以与Test1_Client类进行通信。Test1_Client类的实现代码如下：

public class Test1_Client {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 OutputStream outStream = socket.getOutputStream();

 outStream.write("我是发送的数据Client".getBytes());

 outStream.close();

 socket.close();

}

}

注意：上面实验所使用的*.Java文件编码格式要统一，不然会出现乱码。

上述程序运行后在控制台可以输出字符串“我是发送的数据Client”。
5.7.5　获得Selector对象

上文一直在使用ServerSocketChannel类进行Socket服务端与客户端的通信，并没有涉及高性能的I/O多路复用，从本小节开始就逐步地向I/O多路复用的实现前进。在这之前，需要提前掌握Selector类中的一些方法，如open（）方法。

由于Selector类是抽象的，声明如下：

public abstract class Selector implements Closeable

因此并不能直接实例化，需要调用open（）方法获得Selector对象。Selector类的public static Selector open（）方法的作用是打开1个选择器，使SelectableChannel能将自身注册到这个选择器上，如图5-25所示。

 [image:]

图5-25　将通道注册到选择器

获得Selector类实例的代码如下：

public class Test1 {

public static void main(String[] args) throws IOException {

 Selector selector = Selector.open();

 System.out.println(selector);

}

}

上述程序运行结果如下：

sun.nio.ch.WindowsSelectorImpl@b4c966a

5.7.6　执行注册操作与获得SelectionKey对象

SelectableChannel类的public final SelectionKey register（Selector sel，int ops）方法的作用是向给定的选择器注册此通道，返回一个选择键（SelectionKey）。

参数sel代表要向其注册此通道的选择器，参数ops代表register（）方法的返回值Selection-Key的可用操作集，操作集是在SelectionKey类中以常量的形式进行提供的，如图5-26所示。

 [image:]

图5-26　操作集ops常量

方法public final SelectionKey register（Selectorsel，int ops）的ops参数就是通道感兴趣的事件，也就是通道能执行操作的集合，可以对ops执行位运算。

示例代码如下：

public class Test2 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 // 必须将ServerSocketChannel设置成非阻塞的

 // 不然会出现：

 // java.nio.channels.IllegalBlockingModeException

 // 异常

 serverSocketChannel.configureBlocking(false);

 ServerSocket serverSocket = serverSocketChannel.socket();

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 // 核心代码-开始

 Selector selector = Selector.open();

 SelectionKey key = serverSocketChannel.register(selector, SelectionKey.

 OP_ACCEPT);

 // 核心代码-结束

 System.out.println("selector=" + selector);

 System.out.println("key=" + key);

 serverSocket.close();

 serverSocketChannel.close();

}

}

在上述程序运行后，控制台输出的结果如下：

selector=sun.nio.ch.WindowsSelectorImpl@4e50df2e

key=sun.nio.ch.SelectionKeyImpl@2f4d3709

5.7.7　判断注册的状态

SelectableChannel类的public final boolean isRegistered（）方法的作用是判断此通道当前是否已向任何选择器进行了注册。新创建的通道总是未注册的。由于对SelectionKey执行取消操作和通道进行注销之间有延迟，因此在已取消某个通道的所有SelectionKey后，该通道可能在一定时间内还会保持已注册状态。关闭通道后，该通道可能在一定时间内还会保持已注册状态。

示例代码如下：

public class Test3 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.configureBlocking(false);

 ServerSocket serverSocket = serverSocketChannel.socket();

 serverSocket.bind(new InetSocketAddress("localhost", 8888));

 System.out.println("A isRegistered=" + serverSocketChannel.isRegistered());

 Selector selector = Selector.open();

 SelectionKey key = serverSocketChannel.register(selector, SelectionKey.

 OP_ACCEPT);

 System.out.println("B isRegistered=" + serverSocketChannel.isRegistered());

 serverSocket.close();

 serverSocketChannel.close();

}

}

上述程序运行结果如下：

A isRegistered=false

B isRegistered=true

5.7.8　将通道设置成非阻塞模式再注册到选择器

在将通道注册到选择器之前，必须将通道设置成非阻塞模式，测试代码如下：

public class Test0 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 Selector selector = Selector.open();

 System.out.println("selector=" + selector);

 System.out.println("A serverSocketChannel1.isRegistered()=" + server-

 SocketChannel.isRegistered());

 SelectionKey selectionKey = serverSocketChannel.register(selector, Selection-

 Key.OP_ACCEPT);

 System.out.println("B serverSocketChannel1.isRegistered()=" + serverSocket-

 Channel.isRegistered());

 serverSocketChannel.close();

}

}

register（）方法的第2个参数传入SelectionKey.OP_ACCEPT代表监测接受此通道套接字的连接。

上述程序运行后出现异常，结果如图5-27所示。

 [image:]

图5-27　出现异常

出现异常的原因是没有将通道设置成非阻塞模式。如果想把通道注册到选择器中，就必须将通道设置成非阻塞模式。
5.7.9　使用configureBlocking（false）方法解决异常

将通道设置成非阻塞模式的代码如下：

public class Test1 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 System.out.println("A isBlocking=" + serverSocketChannel.isBlocking());

 serverSocketChannel.configureBlocking(false);////// 设置成非阻塞模式

 System.out.println("B isBlocking=" + serverSocketChannel.isBlocking());

 Selector selector = Selector.open();

 System.out.println("selector=" + selector);

 System.out.println("A serverSocketChannel1.isRegistered()=" + serverSocket-

Channel.isRegistered());

 SelectionKey selectionKey = serverSocketChannel.register(selector, Selection-

 Key.OP_ACCEPT);

 System.out.println("B serverSocketChannel1.isRegistered()=" + serverSocket-

 Channel.isRegistered());

 serverSocketChannel.close();

}

}

public final SelectableChannel configureBlocking（boolean block）方法的作用是调整此通道的阻塞模式。如果向一个或多个选择器注册了此通道，则尝试将此通道置于阻塞模式将导致抛出IllegalBlockingModeException。可在任意时间调用此方法。新的阻塞模式仅影响在此方法返回后发起的I/O操作。对于某些实现，这可能需要阻塞，直到所有挂起的I/O操作已完成。如果调用此方法的同时正在进行另一个此方法或register（）方法的调用，则在另一个操作完成前将首先阻塞该调用。

public final boolean isBlocking（）方法的作用是判断此通道上的每个I/O操作在完成前是否被阻塞。新创建的通道总是处于阻塞模式。如果此通道已关闭，则此方法返回的值是未指定的。

上述程序运行后并没有出现异常，控制台输出的信息如下：

A isBlocking=true

B isBlocking=false

selector=sun.nio.ch.WindowsSelectorImpl@b4c966a

A serverSocketChannel1.isRegistered()=false

B serverSocketChannel1.isRegistered()=true

从控制台输出的信息来看，通道成功地注册到选择器中。
5.7.10　判断打开的状态

public final boolean isOpen（）方法的作用是判断此通道是否处于打开状态。

示例代码如下：

public class Test2 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 System.out.println("A serverSocketChannel.isOpen()=" + serverSocketChannel.

 isOpen());

 serverSocketChannel.close();

 System.out.println("B serverSocketChannel.isOpen()=" + serverSocketChannel.

 isOpen());

 serverSocketChannel = serverSocketChannel.open();

 System.out.println("C serverSocketChannel.isOpen()=" + serverSocketChannel.

 isOpen());

 serverSocketChannel.close();

}

}

在上述程序运行后，控制台输出结果如下：

A serverSocketChannel.isOpen()=true

B serverSocketChannel.isOpen()=false

C serverSocketChannel.isOpen()=true

5.7.11　获得阻塞锁对象

public final Object blockingLock（）方法的作用是获取其configureBlocking（）和register（）方法实现同步的对象，防止重复注册。该方法的源代码如下：

private final Object regLock = new Object();

public final Object blockingLock() {

 return regLock;

}

示例代码如下：

public class Test3 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 Object lock = serverSocketChannel.blockingLock();

 System.out.println(lock);

 serverSocketChannel.close();

}

}

在上述程序运行后，控制台输出结果如下：

java.lang.Object@6d06d69c

5.7.12　获得支持的SocketOption列表

Set小于号 <SocketOption小于号 <>>supportedOptions（）方法的作用是返回通道支持的Socket Option。

示例代码如下：

public class Test4 {

public static void main(String[] args) throws IOException, InterruptedException {

 Thread t = new Thread() {

 public void run() {

 try {

 Thread.sleep(2000);

 Socket socket = new Socket("localhost", 8088);

 socket.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 };

 };

 t.start();

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8088));

 SocketChannel socketChannel = serverSocketChannel.accept();

 Set<SocketOption<?>> set1 = serverSocketChannel.supportedOptions();

 Set<SocketOption<?>> set2 = socketChannel.supportedOptions();

 Iterator iterator1 = set1.iterator();

 Iterator iterator2 = set2.iterator();

 System.out.println("ServerSocketChannel supportedOptions:");

 while (iterator1.hasNext()) {

 SocketOption each = (SocketOption) iterator1.next();

 System.out.println(each.name() + " " + each.getClass().getName());

 }

 System.out.println();

 System.out.println();

 System.out.println("SocketChannel supportedOptions:");

 while (iterator2.hasNext()) {

 SocketOption each = (SocketOption) iterator2.next();

 System.out.println(each.name() + " " + each.getClass().getName());

 }

 socketChannel.close();

 serverSocketChannel.close();

}

}

在上述程序运行后，控制台输出信息如下：

ServerSocketChannel supportedOptions:

IP_TOS java.net.StandardSocketOptions$StdSocketOption

SO_RCVBUF java.net.StandardSocketOptions$StdSocketOption

SO_REUSEADDR java.net.StandardSocketOptions$StdSocketOption

SocketChannel supportedOptions:

IP_TOS java.net.StandardSocketOptions$StdSocketOption

SO_SNDBUF java.net.StandardSocketOptions$StdSocketOption

SO_REUSEADDR java.net.StandardSocketOptions$StdSocketOption

TCP_NODELAY java.net.StandardSocketOptions$StdSocketOption

SO_LINGER java.net.StandardSocketOptions$StdSocketOption

SO_RCVBUF java.net.StandardSocketOptions$StdSocketOption

SO_OOBINLINE sun.nio.ch.ExtendedSocketOption$1

SO_KEEPALIVE java.net.StandardSocketOptions$StdSocketOption

5.7.13　获得与设置SocketOption

public abstract小于号 <T>ServerSocketChannel setOption（SocketOption小于号 <T>name，T value）方法的作用是设置Socket Option值。

<T>T getOption（SocketOption<T>name）方法的作用是获取Socket Option值。

示例代码如下：

public class Test5 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 // 通道支持什么，Socket Option就只能设置什么，设置其他的Socket Option就会出现异常

 System.out.println("A SO_RCVBUF=" + serverSocketChannel.getOption(Standard-

 SocketOptions.SO_RCVBUF));

 serverSocketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 5678);

 System.out.println("B SO_RCVBUF=" + serverSocketChannel.getOption(Standard-

 SocketOptions.SO_RCVBUF));

 serverSocketChannel.close();

}

}

在上述程序运行后，控制台输出结果如下：

A SO_RCVBUF=8192

B SO_RCVBUF=5678

5.7.14　获得SocketAddress对象

public abstract SocketAddress getLocalAddress（）方法的作用是获取绑定的SocketAddress对象。

示例代码如下：

public class Test6 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 InetSocketAddress address = (InetSocketAddress) serverSocketChannel.getLocal-

 Address();

 System.out.println(address.getHostString());

 System.out.println(address.getPort());

 serverSocketChannel.close();

}

}

上述程序运行结果如下：

127.0.0.1

8888

5.7.15　阻塞模式的判断

public final boolean isBlocking（）方法的作用是判断此通道上的每个I/O操作在完成前是否被阻塞。新创建的通道总是处于阻塞模式。如果此通道已关闭，则此方法返回的值是未指定的。返回值代表当且仅当此通道处于阻塞模式时才返回true。

示例代码如下：

public class Test6_isBlockingTest {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 System.out.println(serverSocketChannel.isBlocking());

 serverSocketChannel.configureBlocking(false);

 System.out.println(serverSocketChannel.isBlocking());

 serverSocketChannel.close();

}

}

上述程序运行结果如下：

true

false

5.7.16　根据Selector找到对应的SelectionKey

public final SelectionKey keyFor（Selector sel）方法的作用是获取通道向给定选择器注册的SelectionKey。

同一个SelectableChannel通道可以注册到不同的选择器对象，然后返回新创建的Selection-Key对象，可以使用public final SelectionKey keyFor（Selector sel）方法来取得当前通道注册在指定选择器上的SelectionKey对象。

示例代码如下：

public class Test7 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel.register(selector, Selec-

 tionKey.OP_ACCEPT);

 System.out.println("A=" + selectionKey1 + " " + selectionKey1.hashCode());

 SelectionKey selectionKey2 = serverSocketChannel.keyFor(selector);

 System.out.println("B=" + selectionKey2 + " " + selectionKey2.hashCode());

 serverSocketChannel.close();

}

}

上述程序运行结果如下：

A=sun.nio.ch.SelectionKeyImpl@2f4d3709 793589513

B=sun.nio.ch.SelectionKeyImpl@2f4d3709 793589513

上述输出的结果说明是同一个SelectionKey对象。
5.7.17　获得SelectorProvider对象

public final SelectorProvider provider（）方法的作用是返回创建此通道的SelectorProvider。

SelectorProvider类的结构信息如图5-28所示。

 [image:]

图5-28　SelectorProvider类的结构信息

SelectorProvider类的作用是用于选择器和可选择通道的服务提供者类。选择器提供者的实现类是SelectorProvider类的一个子类，它具有零参数的构造方法，并实现了抽象方法。给定的对Java虚拟机的调用维护了单个系统级的默认提供者实例，它由provider（）方法返回。在第一次调用该方法时，将查找以下指定的默认提供者。系统级的默认提供者由Datagram-Channel、Pipe、Selector、ServerSocketChannel和SocketChannel类的静态open（）方法使用。除了默认提供者之外，程序还可以使用其他提供者，方法是通过实例化一个提供者，然后直接调用此类中定义的open（）方法。多个并发线程可安全地使用此类中的所有方法。

SelectorProvider类的API列表如图5-29所示。

 [image:]

图5-29　SelectorProvider类的API列表

SelectorProvider类的API详细使用方式下文会有介绍。

方法public final Selectorprovider（）使用的示例代码如下：

public class Test8 {

public static void main(String[] args) throws IOException {

 SelectorProvider provider1 = SelectorProvider.provider();

 System.out.println(provider1);

 ServerSocketChannel serverSocketChannel = null;

 serverSocketChannel = serverSocketChannel.open();

 SelectorProvider provider2 = serverSocketChannel.provider();

 System.out.println(provider2);

 serverSocketChannel.close();

}

}

上述程序运行结果如下：

sun.nio.ch.WindowsSelectorProvider@15db9742

sun.nio.ch.WindowsSelectorProvider@15db9742

不同的代码写法，获取的却是同一个对象。
5.7.18　通道注册与选择器

1.相同的通道可以注册到不同的选择器，返回的SelectionKey不是同一个对象

创建测试用的代码如下：

public class Test9 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel.configureBlocking(false);

 Selector selector1 = Selector.open();

 Selector selector2 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel.register(selector1, Selec-

 tionKey.OP_ACCEPT);

 System.out.println("selectionKey1=" + selectionKey1.hashCode());

 SelectionKey selectionKey2 = serverSocketChannel.register(selector2, Selec-

 tionKey.OP_ACCEPT);

 System.out.println("selectionKey2=" + selectionKey2.hashCode());

 serverSocketChannel.close();

}

}

上述程序运行后的结果如下：

selectionKey1=793589513

selectionKey2=1313922862

从上述输出的结果来看，证实了结论：相同的通道可以注册到不同的选择器，返回的SelectionKey不是同一个对象。

2.不同的通道注册到相同的选择器，返回的SelectionKey不是同一个对象

创建测试用的代码如下：

public class Test9_1 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel1 = null;

 serverSocketChannel1 = serverSocketChannel1.open();

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = null;

 serverSocketChannel2 = serverSocketChannel2.open();

 serverSocketChannel2.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey key1 = serverSocketChannel1.register(selector, SelectionKey.

 OP_ACCEPT);

 SelectionKey key2 = serverSocketChannel2.register(selector, SelectionKey.

 OP_ACCEPT);

 System.out.println(key1);

 System.out.println(key2);

 serverSocketChannel1.close();

 serverSocketChannel2.close();

}

}

上述程序运行后的结果如下：

sun.nio.ch.SelectionKeyImpl@2f4d3709

sun.nio.ch.SelectionKeyImpl@4e50df2e

从上述输出的结果来看，证实了结论：不同的通道注册到相同的选择器，返回的Sele-ctionKey不是同一个对象。

3.不同的通道注册到不同的选择器，返回的Selectionkey不是同一个对象

创建测试用的代码如下：

public class Test9_2 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel1 = null;

 serverSocketChannel1 = serverSocketChannel1.open();

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = null;

 serverSocketChannel2 = serverSocketChannel2.open();

 serverSocketChannel2.configureBlocking(false);

 Selector selector1 = Selector.open();

 Selector selector2 = Selector.open();

 SelectionKey key1 = serverSocketChannel1.register(selector1, SelectionKey.

 OP_ACCEPT);

 SelectionKey key2 = serverSocketChannel2.register(selector2, SelectionKey.

 OP_ACCEPT);

 System.out.println(key1);

 System.out.println(key2);

 serverSocketChannel1.close();

 serverSocketChannel2.close();

}

}

上述程序运行结果如下：

sun.nio.ch.SelectionKeyImpl@2f4d3709

sun.nio.ch.SelectionKeyImpl@4e50df2e

从打印的结果来看，证实了结论：不同的通道注册到不同的选择器，返回的key不是同一个对象。

4.相同的通道重复注册相同的选择器，返回的SelectionKey是同一个对象

创建测试用的代码如下：

public class Test9_3 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = null;

 serverSocketChannel = serverSocketChannel.open();

 serverSocketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey key1 = serverSocketChannel.register(selector, SelectionKey.

 OP_ACCEPT);

 SelectionKey key2 = serverSocketChannel.register(selector, SelectionKey.

 OP_ACCEPT);

 System.out.println(key1);

 System.out.println(key2);

 serverSocketChannel.close();

}

}

上述程序运行结果如下：

sun.nio.ch.SelectionKeyImpl@2f4d3709

sun.nio.ch.SelectionKeyImpl@2f4d3709

上述结果说明只有相同的通道重复注册相同的选择器，才会返回相同的SelectionKey对象。
5.7.19　返回此通道所支持的操作

public final int validOps（）方法的作用是返回一个操作集，标识此通道所支持的操作。因为服务器套接字通道仅支持接受新的连接，所以此方法返回SelectionKey.OP_ACCEPT。

示例代码如下：

public class Test4 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 SocketChannel socketChannel = SocketChannel.open();

 int value1 = serverSocketChannel.validOps();

 int value2 = socketChannel.validOps();

 System.out.println("value1=" + value1);

 System.out.println("value2=" + value2);

 System.out.println();

 // ServerSocketChannel只支持OP_ACCEPT

 System.out.println(SelectionKey.OP_ACCEPT & ~serverSocketChannel.validOps());

 System.out.println(SelectionKey.OP_CONNECT & ~serverSocketChannel.validOps());

 System.out.println(SelectionKey.OP_READ & ~serverSocketChannel.validOps());

 System.out.println(SelectionKey.OP_WRITE & ~serverSocketChannel.validOps());

 System.out.println();

 // SocketChannel支持OP_CONNECT、OP_READ、OP_WRITE

 System.out.println(SelectionKey.OP_ACCEPT & ~socketChannel.validOps());

 System.out.println(SelectionKey.OP_CONNECT & ~socketChannel.validOps());

 System.out.println(SelectionKey.OP_READ & ~socketChannel.validOps());

 System.out.println(SelectionKey.OP_WRITE & ~socketChannel.validOps());

 socketChannel.close();

 serverSocketChannel.close();

}

}

上述程序运行后的结果如下：

value1=16

value2=13

0

8

1

4

16

0

0

0

在打印台中，如果输出的结果为0，就说明支持哪个选项。
5.7.20　执行Connect连接操作

public abstract boolean connect（SocketAddress remote）方法的作用是连接到远程通道的Socket。如果此通道处于非阻塞模式，则此方法的调用将启动非阻塞连接操作。

如果通道呈阻塞模式，则立即发起连接；如果呈非阻塞模式，则不是立即发起连接，而是在随后的某个时间才发起连接。

如果连接是立即建立的，说明通道是阻塞模式，当连接成功时，则此方法返回true，连接失败出现异常。如果此通道处于阻塞模式，则此方法的调用将会阻塞，直到建立连接或发生I/O错误。

如果连接不是立即建立的，说明通道是非阻塞模式，则此方法返回false，并且以后必须通过调用finishConnect（）方法来验证连接是否完成。

虽然可以随时调用此方法，但如果在调用此方法时调用此通道上的读或写操作，则该操作将首先阻止，直到此调用完成为止。如果已尝试连接但失败，即此方法的调用引发检查异常，则该通道将关闭。

返回值代表如果建立了连接，则为true。如果此通道处于非阻塞模式且连接操作正在进行中，则为false。

创建测试类，代码如下：

public class ConnectServer {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8088));

 SocketChannel socketChannel = serverSocketChannel1.accept();

 socketChannel.close();

 serverSocketChannel1.close();

 System.out.println("server end!");

}

}

创建测试类，以阻塞模式进行连接操作，代码如下：

public class ConnectTest1 {

public static void main(String[] args) {

 long beginTime = 0;

 long endTime = 0;

 boolean connectResult = false;

 try {

 // SocketChannel是阻塞模式

 // 在发生错误或连接到目标之前，connect()方法一直是阻塞的

 SocketChannel socketChannel = SocketChannel.open();

 beginTime = System.currentTimeMillis();

 connectResult = socketChannel.connect(new InetSocketAddress("localhost",

 8088));

 endTime = System.currentTimeMillis();

 System.out.println("正常连接耗时：" + (endTime - beginTime) + " connect-

 Result=" + connectResult);

 socketChannel.close();

 } catch (IOException e) {

 e.printStackTrace();

 endTime = System.currentTimeMillis();

 System.out.println("异常连接耗时：" + (endTime - beginTime) + " connect-

 Result=" + connectResult);

 }

}

}

单独运行测试类ConnectTest1的实现代码，控制台输出的结果如下：

java.net.ConnectException: Connection refused: connect

 at sun.nio.ch.Net.connect0(Native Method)

 at sun.nio.ch.Net.connect(Net.java:454)

 at sun.nio.ch.Net.connect(Net.java:446)

 at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:648)

 at ServerSocketChannelAPITest.ConnectTest1.main(ConnectTest1.java:17)

异常连接耗时：1012 connectResult=false

出现异常说明连接建立失败，输出false的原因是因为变量connectResult的初始值为false，在程序执行的过程中并未对这个变量再次进行赋值。

再来创建新的测试类，以非阻塞模式进行连接操作，代码如下：

public class ConnectTest2 {

public static void main(String[] args) throws IOException, InterruptedException {

 long beginTime = 0;

 long endTime = 0;

 SocketChannel socketChannel = SocketChannel.open();

 // SocketChannel是非阻塞模式

 socketChannel.configureBlocking(false);

 beginTime = System.currentTimeMillis();

 boolean connectResult = socketChannel.connect(new InetSocketAddress("localhost",

 8088));

 endTime = System.currentTimeMillis();

 System.out.println("连接耗时：" + (endTime - beginTime) + " connectResult=" +

 connectResult);

 Thread.sleep(10000);

 socketChannel.close();

}

}

单独运行测试类ConnectTest2的实现代码，控制台输出的结果如下：

连接耗时：10 connectResult=false

输出false说明此通道处于非阻塞模式且连接操作正在进行中，此时connect（）方法返回false。

上面两个类都是单独运行的，并没有运行服务端ConnectServer类，目的就是查看当连接失败时阻塞与非阻塞连接在耗时上的区别。从输出的时间来看，当连接失败的时候，阻塞模式耗时比非阻塞模式耗时多，是因为阻塞模式在执行connect（）方法时在内部发起了3次SYN请求，完成3次SYN请求连接后才返回，而非阻塞模式是在执行connect（）方法后立即返回，耗时较少，尽管非阻塞模式在内部也发起了3次SYN请求。

下面测试一下使用阻塞与非阻塞模式正常连接到服务端的时间差别。

1）首先运行ConnectServer类的实现代码，然后运行ConnectTest1类的实现代码，控制台输出的结果如下：

正常连接耗时：9 connectResult=true

2）首先运行ConnectServer类的实现代码，然后运行ConnectTest2类的实现代码，控制台输出的结果如下：

连接耗时：10 connectResult=false

从两者的输出时间来看，耗时的差距不大，但阻塞模式由于正确连接到服务器，因此返回值为true，而非阻塞模式由于正在连接服务器，因此返回false。
5.7.21　判断此通道上是否正在进行连接操作

public abstract boolean isConnectionPending（）方法的作用是判断此通道上是否正在进行连接操作。返回值是true代表当且仅当已在此通道上发起连接操作，但是尚未通过调用finish-Connect（）方法完成连接。还可以是在通道accept（）之后和通道close（）之前，isConnection-Pending（）方法的返回值都是true。

下面用4个测试来验证public abstract boolean isConnectionPending（）方法的使用情况。

首先创建服务器端代码：

public class ConnectServer {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8088));

 SocketChannel socketChannel = serverSocketChannel1.accept();

 socketChannel.close();

 serverSocketChannel1.close();

 System.out.println("server end!");

}

}

（1）阻塞通道，IP不存在

示例代码如下：

public class ConnectTest3_1 {

// 阻塞，IP不存在

public static void main(String[] args) {

 SocketChannel socketChannel = null;

 try {

 socketChannel = SocketChannel.open();

 System.out.println(socketChannel.isConnectionPending());

 // 192.168.0.123此IP不存在

 socketChannel.connect(new InetSocketAddress("192.168.0.123", 8088));

 socketChannel.close();

 } catch (IOException e) {

 e.printStackTrace();

 System.out.println("catch " + socketChannel.isConnectionPending());

 }

}

}

上述程序运行结果如下：

false

java.net.ConnectException: Connection timed out: connect

 at sun.nio.ch.Net.connect0(Native Method)

 at sun.nio.ch.Net.connect(Net.java:454)

 at sun.nio.ch.Net.connect(Net.java:446)

 at sun.nio.ch.SocketChannelImpl.connect(SocketChannelImpl.java:648)

 at ServerSocketChannelAPITest.ConnectTest3_1.main(ConnectTest3_1.java:15)

catch false

此测试结果出现异常代表通道建立连接失败，然后在catch中输出false，表示当前并没有进行连接。

（2）非阻塞通道，IP不存在

示例代码如下：

public class ConnectTest3_2 {

public static void main(String[] args) throws IOException {

 // 非阻塞，IP不存在

 SocketChannel socketChannel = null;

 socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 System.out.println(socketChannel.isConnectionPending());

 // 192.168.0.123此IP不存在

 socketChannel.connect(new InetSocketAddress("192.168.0.123", 8088));

 System.out.println(socketChannel.isConnectionPending());

 socketChannel.close();

}

}

上述程序运行结果如下：

false

true

最后输出值为true，说明非阻塞通道正在建立连接。

（3）阻塞通道，IP存在

示例代码如下：

public class ConnectTest3_3 {

public static void main(String[] args) throws IOException {

 // 阻塞，IP存在

 SocketChannel socketChannel = null;

 socketChannel = SocketChannel.open();

 System.out.println(socketChannel.isConnectionPending());

 socketChannel.connect(new InetSocketAddress("localhost", 8088));

 System.out.println(socketChannel.isConnectionPending());

 socketChannel.close();

}

}

本测试首先运行服务端ConnectServer.java类，然后运行客户端。

上述程序运行结果如下：

false

false

上述程序运行结果并未出现异常，最后输出值为false，说明阻塞通道并没有正在建立连接。

（4）非阻塞通道，IP存在

示例代码如下：

public class ConnectTest3_4 {

public static void main(String[] args) throws IOException {

 // 非阻塞，IP存在

 SocketChannel socketChannel = null;

 socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 System.out.println(socketChannel.isConnectionPending());

 socketChannel.connect(new InetSocketAddress("localhost", 8088));

 System.out.println(socketChannel.isConnectionPending());

 socketChannel.close();

}

}

本实验首先运行服务端ConnectServer.java类，然后再运行客户端。

上述程序运行结果如下：

false

true

最后输出值为true，说明非阻塞通道正在建立连接。
5.7.22　完成套接字通道的连接过程

public abstract boolean finishConnect（）方法的作用是完成套接字通道的连接过程。通过将套接字通道置于非阻塞模式，然后调用其connect（）方法来发起非阻塞连接操作。如果连接操作失败，则调用此方法将导致抛出IOException。

一旦建立了连接，或者尝试已失败，该套接字通道就变为可连接的，并且可调用此方法完成连接序列。

如果已连接了此通道，则不阻塞此方法并且立即返回true。如果此通道处于非阻塞模式，那么当连接过程尚未完成时，此方法将返回false。

如果此通道处于阻塞模式，当连接成功之后返回true，连接失败时抛出描述该失败的、经过检查的异常。在连接完成或失败之前都将阻塞此方法。

虽然可在任意时间调用此方法，但如果正在调用此方法时在此通道上调用读取或写入操作，则在此调用完成前将首先阻塞该操作。

如果试图发起连接但失败了，也就是说，调用此方法导致抛出经过检查的异常，则关闭此通道。返回值当且仅当已连接此通道的套接字时才返回true。

创建测试用的代码如下：

public class ConnectTest4_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 long beginTime = 0;

 long endTime = 0;

 SocketChannel socketChannel = SocketChannel.open();

 // SocketChannel是非阻塞模式

 socketChannel.configureBlocking(false);

 // connect()方法的返回值表示如果建立了连接，则为true

 // 如果此通道处于非阻塞模式且连接操作正在进行中，则为 false

 boolean connectResult = socketChannel.connect(new InetSocketAddress("localhost",

 8088));

 if (connectResult == false) {

 System.out.println("connectResult == false");

 while (!socketChannel.finishConnect()) {

 System.out.println("一直在尝试连接");

 }

 }

 socketChannel.close();

}

}

在单独运行此程序后，控制台输出的部分结果如下：

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

Exception in thread "main" java.net.ConnectException: Connection refused: no further

information

 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)

 at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)

 at ServerSocketChannelAPITest.ConnectTest4_1.main(ConnectTest4_1.java:19)

上述结果说明在没有服务端时，客户端一直在使用finishConnect（）方法判断连接是否成功，最终检测出客户端连接服务端失败，出现异常。

下面测试一下客户端成功连接服务端的情况，代码如下：

public class ConnectTest4_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 long beginTime = 0;

 long endTime = 0;

 SocketChannel socketChannel = SocketChannel.open();

 // SocketChannel是非阻塞模式

 socketChannel.configureBlocking(false);

 boolean connectResult = socketChannel.connect(new InetSocketAddress("localhost",

8088));

 Thread t = new Thread() {

 @Override

 public void run() {

 try {

 Thread.sleep(50);

 ServerSocketChannel serverSocketChannel1 = ServerSocket-

 Channel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost",

 8088));

 SocketChannel socketChannel = serverSocketChannel1.accept();

 socketChannel.close();

 serverSocketChannel1.close();

 System.out.println("server end!");

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 t.start();

 if (connectResult == false) {

 System.out.println("connectResult == false");

 while (!socketChannel.finishConnect()) {

 System.out.println("一直在尝试连接");

 }

 }

 socketChannel.close();

}

}

运行上述测试类，控制台输出的结果如下：

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

......

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

一直在尝试连接

server end!

从运行结果来看，客户端成功连接到了服务端。
5.7.23　类FileChannel中的long transferTo（position，count，WritableByte-Channel）方法的使用

方法transferTo（）的作用是试图读取此通道文件中给定position处开始的count个字节，并将其写入目标通道中，但是此方法的调用不一定传输所有请求的字节，是否传输取决于通道的性质和状态。本节就验证一下“此方法的调用不一定传输所有请求的字节”。

创建测试用的代码如下，目的是发送一个超大的文件。

public class Test5 {

public static void main(String[] args) throws Exception {

 ServerSocketChannel channel1 = ServerSocketChannel.open();

 SocketChannel socketChannel = null;

 channel1.configureBlocking(false);

 channel1.bind(new InetSocketAddress("localhost", 8088));

 Selector selector = Selector.open();

 channel1.register(selector, SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> set = selector.selectedKeys();

 Iterator<SelectionKey> iterator = set.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 iterator.remove();

 if (key.isAcceptable()) {

 socketChannel = channel1.accept();

 socketChannel.configureBlocking(false);

 socketChannel.register(selector, SelectionKey.OP_WRITE);

 }

 if (key.isWritable()) {

 RandomAccessFile file = new RandomAccessFile(

"c:\\abc\\oepe-indigo-installer-12.1.1.0.1.2012031

20349-12.1.1-win32.exe", "rw");

 // 此exe文件大小大约1.2GB

 System.out.println("file.length()=" + file.length());

 FileChannel fileChannel = file.getChannel();

 fileChannel.transferTo(0, file.length(), socketChannel);

 fileChannel.close();

 file.close();

 socketChannel.close();

 }

 }

 }

 channel1.close();

}

}

创建测试用的代码，目的是验证不是每一次都要接收完整50000字节的数据。

public class Test6 {

public static void main(String[] args) throws Exception {

 SocketChannel channel1 = SocketChannel.open();

 channel1.configureBlocking(false);

 channel1.connect(new InetSocketAddress("localhost", 8088));

 Selector selector = Selector.open();

 channel1.register(selector, SelectionKey.OP_CONNECT);

 boolean isRun = true;

 while (isRun == true) {

 System.out.println("begin selector");

 if (channel1.isOpen() == true) {

 selector.select();

 System.out.println(" end selector");

 Set<SelectionKey> set = selector.selectedKeys();

 Iterator<SelectionKey> iterator = set.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 iterator.remove();

 if (key.isConnectable()) {

 while (!channel1.finishConnect()) {

 }

 channel1.register(selector, SelectionKey.OP_READ);

 }

 if (key.isReadable()) {

 ByteBuffer byteBuffer = ByteBuffer.allocate(50000);

 int readLength = channel1.read(byteBuffer);

 byteBuffer.flip();

 long count = 0;

 while (readLength != -1) {

 count = count + readLength;

 readLength = channel1.read(byteBuffer);

 System.out.println("count=" + count + " readLength=" +

 readLength);

 byteBuffer.clear();

 }

 System.out.println("读取结束");

 channel1.close();

 }

 }

 } else {

 break;

 }

 }

}

}

程序运行后在服务端控制台输出结果如下：

file.length()=1214126714

程序运行后在客户端控制台输出结果如下：

count=240900 readLength=7300

count=248200 readLength=8760

count=256960 readLength=5182

count=262142 readLength=-1

读取结束

begin selector

说明：transferTo（）方法每一次传输的字节数有可能是小于50000个的。transferTo（）方法结合SocketChannel通道传输数据时，最终传输数据的大小不是1214126714。
5.7.24　方法public static SocketChannel open（SocketAddress remote）与Socket-Option的执行顺序

如果先调用public static SocketChannel open（SocketAddress remote）方法，然后设置Socket-Option，则不会出现预期的效果，因为在public static SocketChannel open（SocketAddress remote）方法中已经自动执行了connect（）方法，源代码如下：

public static SocketChannel open(SocketAddress remote)

 throws IOException

{

 SocketChannel sc = open();

 try {

 sc.connect(remote);

 } catch (Throwable x) {

 try {

 sc.close();

 } catch (Throwable suppressed) {

 x.addSuppressed(suppressed);

 }

 throw x;

 }

 assert sc.isConnected();

 return sc;

}

而在设置某些SocketOption特性时，需要在connect（）方法执行之前进行初始化，先给出服务端代码，然后来看看正确和错误的客户端代码的对比。

服务端代码如下：

public class Test7 {

public static void main(String[] args) throws IOException {

 ServerSocket serverSocket = new ServerSocket(8088);

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1024];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 System.out.println(new String(byteArray, 0, readLength));

 readLength = inputStream.read(byteArray);

 }

 inputStream.close();

 socket.close();

 serverSocket.close();

}

}

错误的客户端代码如下：

public class Test8 {

public static void main(String[] args) throws IOException {

 SocketChannel socketChannel = SocketChannel.open(new InetSocketAddress

 ("localhost", 8088));

 socketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 1234);

 socketChannel.write(ByteBuffer.wrap("我是中国人我来自客户端！".getBytes()));

 socketChannel.close();

}

}

运行程序后通过抓包并没有发现设置了SO_RCVBUF为1234。

正确的客户端代码更改如下：

public class Test8 {

public static void main(String[] args) throws IOException {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.setOption(StandardSocketOptions.SO_RCVBUF, 1234);

 socketChannel.connect(new InetSocketAddress("localhost", 8088));

 socketChannel.write(ByteBuffer.wrap("我是中国人我来自客户端！".getBytes()));

 socketChannel.close();

}

}

使用新版本的代码后在握手时就可以看到设置接收缓冲区的大小为1234了，握手抓包信息如下：

65325 → 8088 [SYN] Seq=0 Win=1234 Len=0 MSS=65495 WS=1 SACK_PERM=1

5.7.25　传输大文件

创建服务端代码如下：

public class BigFileServer {

public static void main(String[] args) throws Exception {

 ServerSocketChannel channel1 = ServerSocketChannel.open();

 channel1.configureBlocking(false);

 channel1.bind(new InetSocketAddress("localhost", 8088));

 Selector selector = Selector.open();

 channel1.register(selector, SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> set = selector.selectedKeys();

 Iterator<SelectionKey> iterator = set.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 iterator.remove();

 if (key.isAcceptable()) {

 SocketChannel socketChannel = channel1.accept();

 socketChannel.configureBlocking(false);

 socketChannel.register(selector, SelectionKey.OP_WRITE);

 }

 if (key.isWritable()) {

 SocketChannel socketChannel = (SocketChannel) key.channel();

 FileInputStream file = new FileInputStream(

 "c:\\abc\\oepe-indigo-installer-12.1.1.0.1.2012031

 20349-12.1.1-win32.exe");

 FileChannel fileChannel = file.getChannel();

 ByteBuffer byteBuffer = ByteBuffer.allocateDirect(524288000);

 // 500MB空间

 while (fileChannel.position() < fileChannel.size()) {

 fileChannel.read(byteBuffer);

 byteBuffer.flip();

 while (byteBuffer.hasRemaining()) {

 socketChannel.write(byteBuffer);

 }

 byteBuffer.clear();

 System.out.println(fileChannel.position() + " " + file-

 Channel.size());

 }

 System.out.println("结束写操作");

 socketChannel.close();

 }

 }

 }

 channel1.close();

}

}

创建客户端代码如下：

public class BigFileClient {

public static void main(String[] args) throws Exception {

 SocketChannel channel1 = SocketChannel.open();

 channel1.configureBlocking(false);

 channel1.connect(new InetSocketAddress("localhost", 8088));

 Selector selector = Selector.open();

 channel1.register(selector, SelectionKey.OP_CONNECT);

 boolean isRun = true;

 while (isRun == true) {

 System.out.println("begin selector");

 if (channel1.isOpen() == true) {

 selector.select();

 System.out.println(" end selector");

 Set<SelectionKey> set = selector.selectedKeys();

 Iterator<SelectionKey> iterator = set.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 iterator.remove();

 if (key.isConnectable()) {

 while (!channel1.finishConnect()) {

 }

 channel1.register(selector, SelectionKey.OP_READ);

 }

 if (key.isReadable()) {

 ByteBuffer byteBuffer = ByteBuffer.allocate(50000);

 int readLength = channel1.read(byteBuffer);

 byteBuffer.flip();

 long count = 0;

 while (readLength != -1) {

 count = count + readLength;

 System.out.println("count=" + count + " readLength=" +

 readLength);

 readLength = channel1.read(byteBuffer);

 byteBuffer.clear();

 }

 System.out.println("读取结束");

 channel1.close();

 }

 }

 } else {

 break;

 }

 }

}

}

通过上面的2个类就可以实现服务端与客户端之间传输大文件的需求。
5.7.26　验证read和write方法是非阻塞的

执行代码configureBlocking（false）代表当前的I/O为非阻塞的，NIO就是同步非阻塞模型，所以read和write方法也呈现此特性，下面开始实验。

先测试一下read为非阻塞的特性。创建服务端代码如下：

public class ReadNONBlock_Server {

public static void main(String[] args) throws Exception {

 ServerSocketChannel channel1 = ServerSocketChannel.open();

 channel1.configureBlocking(false);

 channel1.bind(new InetSocketAddress("localhost", 7077));

 Selector selector = Selector.open();

 channel1.register(selector, SelectionKey.OP_ACCEPT);

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel serverSocketChannel = (ServerSocketChannel) key.

 channel();

 SocketChannel socketChannel = serverSocketChannel.accept();

 socketChannel.configureBlocking(false);

 ByteBuffer byteBuffer = ByteBuffer.allocate(100);

 System.out.println("begin " + System.currentTimeMillis());

 socketChannel.read(byteBuffer);

 System.out

 .println(" end " + System.currentTimeMillis() + " byte-

 Buffer.position()=" + byteBuffer.position());

 }

 channel1.close();

}

}

创建客户端代码如下：

public class ReadNONBlock_Client {

public static void main(String[] args) throws Exception {

 SocketChannel channel1 = SocketChannel.open();

 channel1.connect(new InetSocketAddress("localhost", 7077));

 channel1.close();

}

}

程序运行结果如下：

begin 1524130875256

 end 1524130875256 byteBuffer.position()=0

方法read并没有读到数据就继续向下运行，说明read具有非阻塞特性。

再来测试一下write为非阻塞的特性。创建服务端代码如下：

public class WriteNONBlock_Server {

public static void main(String[] args) throws Exception {

 ServerSocketChannel channel1 = ServerSocketChannel.open();

 channel1.configureBlocking(false);

 channel1.bind(new InetSocketAddress("localhost", 7077));

 Selector selector = Selector.open();

 channel1.register(selector, SelectionKey.OP_ACCEPT);

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel serverSocketChannel = (ServerSocketChannel) key.

 channel();

 SocketChannel socketChannel = serverSocketChannel.accept();

 socketChannel.configureBlocking(false);

 ByteBuffer byteBuffer = ByteBuffer.allocate(Integer.MAX_VALUE / 10);

 System.out.println("byteBuffer.limit()=" + byteBuffer.limit());

 System.out.println("begin " + System.currentTimeMillis());

 socketChannel.write(byteBuffer);

 System.out

 .println(" end " + System.currentTimeMillis() + " byte-

 Buffer.position()=" + byteBuffer.position());

 }

 channel1.close();

}

}

创建客户端代码如下：

public class WriteNONBlock_Client {

public static void main(String[] args) throws Exception {

 SocketChannel channel1 = SocketChannel.open();

 channel1.connect(new InetSocketAddress("localhost", 7077));

 channel1.close();

}

}

程序运行结果如下：

byteBuffer.limit()=214748364

begin 1524130959378

 end 1524130959469 byteBuffer.position()=131071

方法write并没有将全部的214748364字节传输到对端，只传输了131071个字节，说明write具有非阻塞特性。
5.8　Selector类的使用

Selector类的主要作用是作为SelectableChannel对象的多路复用器。

可通过调用Selector类的open（）方法创建选择器，该方法将使用系统的默认Selector-Provider创建新的选择器。也可通过调用自定义选择器提供者的openSelector（）方法来创建选择器。在通过选择器的close（）方法关闭选择器之前，选择器一直保持打开状态。

通过SelectionKey对象来表示SelectableChannel（可选择通道）到选择器的注册。选择器维护了3种SelectionKey-Set（选择键集）。

1）键集：包含的键表示当前通道到此选择器的注册，也就是通过某个通道的register（）方法注册该通道时，所带来的影响是向选择器的键集中添加了一个键。此集合由keys（）方法返回。键集本身是不可直接修改的。

2）已选择键集：在首先调用select（）方法选择操作期间，检测每个键的通道是否已经至少为该键的相关操作集所标识的一个操作准备就绪，然后调用selectedKeys（）方法返回已就绪键的集合。已选择键集始终是键集的一个子集。

3）已取消键集：表示已被取消但其通道尚未注销的键的集合。不可直接访问此集合。已取消键集始终是键集的一个子集。在select（）方法选择操作期间，从键集中移除已取消的键。

在新创建的选择器中，这3个集合都是空集合。

无论是通过关闭某个键的通道还是调用该键的cancel（）方法来取消键，该键都被添加到其选择器的已取消键集中。取消某个键会导致在下一次select（）方法选择操作期间注销该键的通道，而在注销时将从所有选择器的键集中移除该键。

通过select（）方法选择操作将键添加到已选择键集中。可通过调用已选择键集的remove（）方法，或者通过调用从该键集获得的iterator的remove（）方法直接移除某个键。通过任何其他方式都无法直接将键从已选择键集中移除，特别是，它们不会因为影响选择操作而被移除。不能将键直接添加到已选择键集中。

下面再来了解一下选择操作的相关知识。

在每次select（）方法选择操作期间，都可以将键添加到选择器的已选择键集或从中将其移除，并且可以从其键集和已取消键集中将其移除。选择是由select（）、select（long）和selectNow（）方法执行的，涉及以下3个步骤。

1）将已取消键集中的每个键从所有键集中移除（如果该键是键集的成员），并注销其通道。此步骤使已取消键集成为空集。

2）在开始进行select（）方法选择操作时，应查询基础操作系统来更新每个剩余通道的准备就绪信息，以执行由其键的相关集合所标识的任意操作。对于已为至少一个这样的操作准备就绪的通道，执行以下两种操作之一。

·如果该通道的键尚未在已选择键集中，则将其添加到该集合中，并修改其准备就绪操作集，以准确地标识那些通道现在已报告为之准备就绪的操作。丢弃准备就绪操作集中以前记录的所有准备就绪信息。

·如果该通道的键已经在已选择键集中，则修改其准备就绪操作集，以准确地标识所有通道已报告为之准备就绪的新操作。保留准备就绪操作集以前记录的所有准备就绪信息。换句话说，基础系统所返回的准备就绪操作集是和该键的当前准备就绪操作集按位分开（bitwise-disjoined）的。

如果在此步骤开始时键集中的所有键都为空的相关集合，则不会更新已选择键集和任意键的准备就绪操作集。

3）如果在步骤2）进行时已将任何键添加到已取消的键集，则它们将按照步骤1）进行处理。

是否阻塞选择操作以等待一个或多个通道准备就绪，以及要等待多久，是这3种选择方法之间的本质差别。

下面再来了解一下并发操作的相关知识。

选择器自身可由多个并发线程安全使用，但是其键集并非如此。

选择操作在选择器本身上、在键集上和在已选择键集上是同步的，顺序也与此顺序相同。在执行上面的步骤1）和步骤3）时，它们在已取消键集上也是同步的。

在执行选择操作的过程中，更改选择器键的相关集合对该操作没有影响；进行下一次选择操作才会看到此更改。

可在任意时间取消键和关闭通道。因此，在一个或多个选择器的键集中出现某个键并不意味着该键是有效的，也不意味着其通道处于打开状态。如果存在另一个线程取消某个键或关闭某个通道的可能性，那么应用程序代码进行同步时应该小心，并且必要时应该检查这些条件。

阻塞在select（）或select（long）方法中的某个线程可能被其他线程以下列3种方式之一中断：

1）通过调用选择器的wakeup（）方法；

2）通过调用选择器的close（）方法；

3）在通过调用已阻塞线程的interrupt（）方法的情况下，将设置其中断状态并且将调用该选择器的wakeup（）方法。

close（）方法在选择器上是同步的，并且所有3个键集都与选择操作中的顺序相同。

一般情况下，选择器的键和已选择键集由多个并发线程使用是不安全的。如果这样的线程可以直接修改这些键集之一，那么应该通过对该键集本身进行同步来控制访问。这些键集的iterator（）方法所返回的迭代器是快速失败的：如果在创建迭代器后以任何方式（调用迭代器自身的remove（）方法除外）修改键集，则会抛出Concurr-entModificationException。

Selector类的API列表如图5-30所示。

 [image:]

图5-30　Selector类的API列表

下面对Selector类的API进行详细介绍，同时增加若干测试来验证一些相关问题。
5.8.1　验证public abstract int select（）方法具有阻塞性

public abstract int select（）方法的作用是选择一组键，其相应的通道已为I/O操作准备就绪。此方法执行处于阻塞模式的选择操作。仅在至少选择一个通道、调用此选择器的wakeup（）方法，或者当前的线程已中断（以先到者为准）后，此方法才返回。返回值代表添加到就绪操作集的键的数目，该数目可能为零，为零代表就绪操作集中的内容并没有添加新的键，保持内容不变。

验证select（）方法有阻塞特性的示例代码如下：

public class Test10 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 System.out.println("1");

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 System.out.println("2");

 serverSocketChannel.configureBlocking(false);

 System.out.println("3");

 Selector selector1 = Selector.open();

 System.out.println("4");

 SelectionKey selectionKey1 = serverSocketChannel.register(selector1,

 SelectionKey.OP_ACCEPT);

 System.out.println("5");

 int keyCount = selector1.select();

 System.out.println("6 keyCount=" + keyCount);

 serverSocketChannel.close();

 System.out.println("7 end!");

}

}

客户端连接服务端示例代码如下：

public class Test11 {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 socket.close();

}

}

首先运行Test10类的实现代码，结果如下：

1

2

3

4

5

上述结果说明执行代码

int keyCount = selector1.select();

时出现了阻塞

然后运行Test11类的实现代码，控制台输出完整的结果如下：

1

2

3

4

5

6 keyCount=1

7 end!

客户端运行后，服务端阻塞状态消失，程序继续向下运行。

在程序中使用代码

serverSocketChannel.register(selector1, SelectionKey.OP_ACCEPT);

将OP_ACCEPT事件当成感兴趣的事件。因此，在运行Test11这个客户端类后，select（）方法感知到有客户端的连接请求，服务端中的ServerSocketChannel通道需要接受，则select（）方法不再出现阻塞的效果，程序继续向下运行。

Test10类不阻塞后继续向下运行，进程结束，但随后客户端也连接不到服务端了，因为服务端进程已经销毁。其实在大多数的情况下，服务端的进程并不需要销毁，因此，就要使用while（true）无限循环来无限地接受客户端的请求。但在这个过程中，有可能出现select（）方法不出现阻塞的情况，造成的结果就是真正地出现“死循环”了，下一节就会解释其原因并给出相应的解决办法。
5.8.2　select（）方法不阻塞的原因和解决办法

在某些情况下，select（）方法是不阻塞的，服务端测试代码如下：

public class Test101 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel.register(selector1,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector1.select();

 Set<SelectionKey> set1 = selector1.keys();

 Set<SelectionKey> set2 = selector1.selectedKeys();

 System.out.println("keyCount =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 System.out.println();

 }

 serverSocketChannel.close();

}

}

客户端测试代码如下：

public class Test102 {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 socket.close();

}

}

首先运行Test101类的实现代码，然后运行Test102类的实现代码，控制台将出现“死循环”，前3次循环的输出结果如下：

keyCount =1

set1 size=1

set2 size=1

keyCount =0

set1 size=1

set2 size=1

keyCount =0

set1 size=1

set2 size=1

出现“死循环”的原因是在客户端连接服务端时，服务端中的通道对accept事件并未处理，导致accept事件一直存在，也就是select（）方法一直检测到有准备好的通道要对accept事件进行处理，但一直未处理，就一直呈“死循环”输出的状态了。解决“死循环”的办法是将accept事件消化处理。

创建新的服务端测试类代码如下：

public class Test103 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel.register(selector1,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector1.select();

 Set<SelectionKey> set1 = selector1.keys();

 Set<SelectionKey> set2 = selector1.selectedKeys();

 System.out.println("keyCount =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 System.out.println();

 Iterator<SelectionKey> iterator = set2.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 channel.accept();// 使用方法accept()将事件处理掉

 }

 }

 serverSocketChannel.close();

}

}

首先运行Test103类的实现代码，再运行Test102类的实现代码，控制台不再出现“死循环”的状态，输出结果如下：

keyCount =1

set1 size=1

set2 size=1

select（）方法又呈阻塞状态了，因为accept事件已经处理。
5.8.3　出现重复消费的情况

如果两个不同的通道注册到相同的选择器，那么极易出现重复消费的情况。

创建服务端测试类代码如下：

public class Test104 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = ServerSocketChannel.open();

 serverSocketChannel2.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel2.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector1,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey2 = serverSocketChannel2.register(selector1,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector1.select();

 Set<SelectionKey> set1 = selector1.keys();

 Set<SelectionKey> set2 = selector1.selectedKeys();

 System.out.println("keyCount =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 Iterator<SelectionKey> iterator = set2.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel serverSocketChannel = (ServerSocketChannel)

 key.channel();

 SocketChannel socketChannel = serverSocketChannel.accept();

 if (socketChannel == null) {

 System.out.println("打印这条信息证明是连接8888服务器时，重复消费

 的情况发生，");

 System.out.println("将7777关联的SelectionKey对应的Socket-

 Channel通道取出来，");

 System.out.println("但是值为null，socketChannel == null。");

 }

 InetSocketAddress ipAddress = (InetSocketAddress) serverSocket-

 Channel.getLocalAddress();

 System.out.println(ipAddress.getPort() + " 被客户端连接了！");

 System.out.println();

 }

 }

 serverSocketChannel1.close();

 serverSocketChannel2.close();

}

}

客户端A程序代码如下：

public class Test105 {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 7777);

 socket.close();

}

}

客户端B程序代码如下：

public class Test106 {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 socket.close();

}

}

首先运行Test104类的实现代码，然后运行Test105类的实现代码，控制台输出的结果如下：

keyCount =1

set1 size=2

set2 size=1

7777 被客户端连接了！

上述结果说明端口7777被客户端连接了。

最后运行Test106类的实现代码，控制台完整输出的结果如下：

keyCount =1

set1 size=2

set2 size=1

7777 被客户端连接了！

keyCount =1

set1 size=2

set2 size=2

打印这条信息证明是连接8888服务器时，重复消费的情况发生，

将7777关联的SelectionKey对应的SocketChannel通道取出来，

但是值为null，socketChannel == null。

7777 被客户端连接了！

8888 被客户端连接了！

 打印了信息：

打印这条信息证明是连接8888服务器时，重复消费的情况发生，

将7777关联的SelectionKey对应的SocketChannel通道取出来，

但是值为null，socketChannel == null。

上述结果说明运行Test106类的实现代码连接服务端时，服务端对Test106类的连接请求处理过程中的set2进行第一次循环时，从SelectionKey取得的通道是绑定到7777端口上的，但本次连接的端口是8888，因此，在本次循环中执行以下代码：

SocketChannel socketChannel = serverSocketChannel.accept();

返回的socketChannel对象的值是null。如果在后面有业务型代码，那些代码被无效地执行，下一次循环还要处理连接8888的业务，这样来看，第1次循环就是重复消费了。因此，这样是错误的，也就是出现重复无效的消费。那么内部的技术原因是什么呢？下面继续分析。

Test106类连接的端口是8888，但却重复输出“7777被客户端连接了！”信息，造成这样的原因是变量set2在每一次循环中使用的是底层提供的同一个对象，一直在往set2里面添加已就绪的SelectionKey，一个是关联7777端口的SelectionKey，另一个是关联8888端口的SelectionKey。在这期间，从未从set2中删除SelectionKey，因此，set2的size值为2，再使用while（iterator.hasNext（））对set2循环两次，就导致了重复消费。解决重复消费问题的方法就是使用remove（）方法删除set2中处理过后的SelectionKey。
5.8.4　使用remove（）方法解决重复消费问题

创建新的服务端程序代码如下：

public class Test107 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = ServerSocketChannel.open();

 serverSocketChannel2.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel2.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector1,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey2 = serverSocketChannel2.register(selector1,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector1.select();

 Set<SelectionKey> set1 = selector1.keys();

 Set<SelectionKey> set2 = selector1.selectedKeys();

 System.out.println("keyCount =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 Iterator<SelectionKey> iterator = set2.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 channel.accept();

 InetSocketAddress ipAddress = (InetSocketAddress) channel.getLocal-

 Address();

 System.out.println(ipAddress.getPort() + " 被客户端连接了！");

 System.out.println();

 iterator.remove();///// 删除当前的SelectionKey

 }

 }

 serverSocketChannel1.close();

 serverSocketChannel2.close();

}

}

首先运行Test107类的实现代码，然后运行Test105类的实现代码，控制台输出的结果如下：

keyCount =1

set1 size=2

set2 size=1

7777 被客户端连接了！

上述结果说明端口7777被客户端连接了。

最后运行Test106类的实现代码，控制台完整输出的结果如下：

keyCount =1

set1 size=2

set2 size=1

7777 被客户端连接了！

keyCount =1

set1 size=2

set2 size=1

8888 被客户端连接了！

服务端并没有出现重复消费的情况，这就是使用remove（）方法的原因。

注意，每一次while（iterator.hasNext（））循环执行时，set2的对象永远是一个，不会因为执行下一次循环创建新的set2变量所对应的对象，这个对象是NIO底层提供的，这和以往的认知具有非常大的不同。下面就证明一下set2永远是同一个对象。
5.8.5　验证产生的set1和set2关联的各自对象一直是同一个

本小节要测试set1一直关联set1Object，而set2一直关联的是set2Object。

先创建验证是不同对象的代码如下：

public class Test100 {

public static void main(String[] args) throws IOException {

 SimpleDateFormat format = new SimpleDateFormat();

 format = new SimpleDateFormat();

 format = new SimpleDateFormat();

 format = new SimpleDateFormat();

}

}

通过debug调试可以查看到，每一次new SimpleDateFormat（）实例化新的对象后，id值是不一样的，如图5-31和图5-32所示。

 [image:]

图5-31　第一次产生的对象id值是19

变量format对应对象的id值由19变成25，说明产生了新的SimpleDateFormat对象，而变量set2对应对象的id值会永远不变，永远是一个对象，开始验证。

 [image:]

图5-32　第二次产生的对象id值是25

创建测试用的服务端代码如下，目的是验证set变量使用的对象是同一个。

public class Test101 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = ServerSocketChannel.open();

 serverSocketChannel2.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel2.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector1,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey2 = serverSocketChannel2.register(selector1,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector1.select();

 Set<SelectionKey> set1 = selector1.keys();

 Set<SelectionKey> set2 = selector1.selectedKeys();

 System.out.println("keyCount =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 System.out.println();

 Iterator<SelectionKey> iterator = set2.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel serverSocketChannel = (ServerSocketChannel)

 key.channel();

 serverSocketChannel.accept();

 }

 }

 serverSocketChannel1.close();

}

}

创建测试用的客户端A代码如下：

public class Test102_1 {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 7777);

 socket.close();

}

}

创建测试用的客户端B代码如下：

public class Test102_2 {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 socket.close();

}

}

在Test101类的实现代码的第31行设置断点，如图5-33所示。

 [image:]

图5-33　在第31行设置断点

首先执行Test101类的实现代码，然后执行Test102_1类的实现代码，调试结果如图5-34所示。

 [image:]

图5-34　执行Test102_1类的实现代码后的调试结果

最后执行Test102_2类的实现代码，调试结果如图5-35所示。

 [image:]

图5-35　执行Test102_2类的实现代码后的调试结果与第一次进行对比

从对比结果中可以发现，变量set1对应对象的id值一直是50，变量set2对应对象的id值一直是56。虽然两次进入了while（isRun==true）循环体，set2中的元素个数也由1变成2，但并没有创建变量set2对应的新对象，一直向set2中添加端口7777和8888的SelectionKey。

结论：set1和set2一直在使用各自不变的对象，也就会出现一直向set2中添加Selection-Key造成重复消费的效果，因此，就要结合remove（）方法避免重复消费。
5.8.6　int selector.select（）方法返回值的含义

int selector.select（）方法返回值的含义是已更新其准备就绪操作集的键的数目，该数目可能为零或排零，非零的情况就是向set2中添加SelectionKey的个数，值为零的情况是set2中的元素并没有更改。

服务端示例代码如下：

public class Test201 {

public static void main(String[] args) throws IOException, Interrupted-

Exception {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = ServerSocketChannel.open();

 serverSocketChannel2.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel2.configureBlocking(false);

 ServerSocketChannel serverSocketChannel3 = ServerSocketChannel.open();

 serverSocketChannel3.bind(new InetSocketAddress("localhost", 9999));

 serverSocketChannel3.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector1,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey2 = serverSocketChannel2.register(selector1,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey3 = serverSocketChannel3.register(selector1,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector1.select();

 Set<SelectionKey> set1 = selector1.keys();

 Set<SelectionKey> set2 = selector1.selectedKeys();

 System.out.println("keyCount =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 System.out.println();

 Iterator<SelectionKey> iterator = set2.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel serverSocketChannel = (ServerSocketChannel)

 key.channel();

 serverSocketChannel.accept();

 }

 Thread.sleep(10000);

 }

 serverSocketChannel1.close();

 serverSocketChannel2.close();

 serverSocketChannel3.close();

}

}

客户端A示例代码如下：

public class Test202 {

public static void main(String[] args) throws IOException {

 Socket socket7777 = new Socket("localhost", 7777);

 socket7777.close();

}

}

客户端B示例代码如下：

public class Test203 {

public static void main(String[] args) throws IOException {

 Socket socket8888 = new Socket("localhost", 8888);

 socket8888.close();

 Socket socket9999 = new Socket("localhost", 9999);

 socket9999.close();

}

}

首先运行Test201类的实现代码，然后运行Test202类的实现代码，控制台输出的结果如下：

keyCount =1

set1 size=3

set2 size=1

运行结果keyCount=1的含义是在已就绪键值中添加了1个SelectionKey，因此，key-Count值是1。

运行结果set1 size=3的含义是因为有3个通道注册到了同一个选择器中，键集个数为3。

运行结果set2 size=1的含义是已就绪键集中存在1个SelectionKey，这个SelectionKey代表7777端口对应的ServerSocketChannel。

然后再运行Test202.java，控制台输出的完整结果如下：

keyCount =1

set1 size=3

set2 size=1

keyCount =0

set1 size=3

set2 size=1

运行结果keyCount=0的含义是在已就绪键集中已存在7777为端口的通道对应的SelectionKey，再次运行Test202.java时，对原有的SelectionKey进行复用，并没有在已就绪键集中添加新的SelectionKey，值为0，代表影响的个数是0。

运行结果set1 size=3的含义是因为有3个通道注册到了同一个选择器中，键集个数为3。

运行结果set2 size=1的含义是已就绪键集中存在1个SelectionKey，这个SelectionKey还是代表7777端口对应的ServerSocketChannel。

再来看看keyCount的值大于1时的情况。

将Test201类的进程停止，重置测试环境。

首先运行Test201类的实现代码，然后运行Test202类的实现代码，最后运行Test203类的实现代码，程序运行后控制台完整输出的结果如下：

keyCount =1

set1 size=3

set2 size=1

keyCount =2

set1 size=3

set2 size=3

运行结果keyCount=2代表在执行sleep（10000）方法的时候，端口8888和9999被客户端所连接，在已就绪键集中添加了两个新的SelectionKey，因此，keyCount的值是2。
5.8.7　从已就绪的键集中获得通道中的数据

下面就来看一下完整的从通道中取得数据的代码，其中服务端示例代码如下：

public class Test12 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();

 serverSocketChannel.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel.register(selector,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> set = selector.selectedKeys();

 Iterator<SelectionKey> iterator = set.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 ServerSocket serverSocket = channel.socket();

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1000];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 String newString = new String(byteArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStream.read(byteArray);

 }

 inputStream.close();

 socket.close();

 iterator.remove();// 删除

 }

 }

 }

 serverSocketChannel.close();

}

}

客户端示例代码如下：

public class Test13 {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 8888);

 OutputStream outputStream = socket.getOutputStream();

 outputStream.write("我是中国人，我来自客户端！".getBytes());

 socket.close();

}

}

首先运行Test12类的实现代码程序，然后重复运行3次Test13类的实现代码，控制台输出的结果如下：

我是中国人，我来自客户端！

我是中国人，我来自客户端！

我是中国人，我来自客户端！

5.8.8　对相同的通道注册不同的相关事件返回同一个SelectionKey

创建测试用的服务端代码如下：

public class Test301 {

public static void main(String[] args) throws IOException, Interrupted-

Exception {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector1,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector1.select();

 Set<SelectionKey> set1 = selector1.keys();

 Set<SelectionKey> set2 = selector1.selectedKeys();

 System.out.println("keyCountA =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 System.out.println();

 Iterator<SelectionKey> iterator = set2.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel serverSocketChannel = (ServerSocketChannel)

 key.channel();

 SocketChannel socketChannel = serverSocketChannel.accept();

 socketChannel.configureBlocking(false);

 SelectionKey key2 = socketChannel.register(selector1, SelectionKey.

 OP_READ);

 System.out.println("key2.isReadable()=" + ((SelectionKey.OP_READ &

 ~key2.interestOps()) == 0));

 System.out.println("key2.isWritable()=" + ((SelectionKey.OP_WRITE &

 ~key2.interestOps()) == 0));

 SelectionKey key3 = socketChannel.register(selector1, SelectionKey.

 OP_READ | SelectionKey.OP_WRITE);

 System.out.println("key3.isReadable()=" + ((SelectionKey.OP_READ &

 ~key3.interestOps()) == 0));

 System.out.println("key3.isWritable()=" + ((SelectionKey.OP_WRITE &

 ~key3.interestOps()) == 0));

 System.out.println("keyCountB =" + keyCount);

 System.out.println("set1 size=" + set1.size());

 System.out.println("set2 size=" + set2.size());

 System.out.println("key2==key3结果：" + (key2 == key3));

 }

 Thread.sleep(Integer.MAX_VALUE);

 }

 serverSocketChannel1.close();

}

}

创建测试用的客户端代码如下：

public class Test302 {

public static void main(String[] args) throws IOException {

 Socket socket7777 = new Socket("localhost", 7777);

 socket7777.getOutputStream().write("12345".getBytes());

 socket7777.close();

}

}

在上述程序运行后，控制台输出的结果如下：

keyCountA =1

set1 size=1

set2 size=1

key2.isReadable()=true

key2.isWritable()=false

key3.isReadable()=true

key3.isWritable()=true

keyCountB =1

set1 size=2

set2 size=1

key2==key3结果：true

一个SocketChannel通道注册两个事件并没有创建出两个SelectionKey，而是创建出一个，read和write事件是在同一个SelectionKey中进行注册的。

另一个SelectionKey代表关联的是ServerSocketChannel通道。
5.8.9　判断选择器是否为打开状态

public abstract boolean isOpen（）方法的作用是告知此选择器是否已打开。返回值当且仅当此选择器已打开时才返回true。

public abstract void close（）方法的作用是关闭此选择器。如果某个线程目前正阻塞在此选择器的某个选择方法中，则中断该线程，如同调用该选择器的wakeup（）方法。所有仍与此选择器关联的未取消键已无效，其通道已注销，并且与此选择器关联的所有其他资源已释放。如果此选择器已经关闭，则调用此方法无效。关闭选择器后，除了调用此方法或wakeup（）方法外，以任何其他方式继续使用它都将导致抛出ClosedSelectorException。

示例代码如下：

public class Test18 {

public static void main(String[] args) throws IOException, InterruptedException {

 Selector selector = Selector.open();

 System.out.println(selector.isOpen());

 selector.close();

 System.out.println(selector.isOpen());

}

}

在上述程序运行后，控制台输出的结果如下：

true

false

5.8.10　获得SelectorProvider provider对象

public abstract SelectorProvider provider（）方法的作用是返回创建此通道的提供者。

示例代码如下：

public class Test19 {

public static void main(String[] args) throws IOException, InterruptedException {

 SelectorProvider provider1 = SelectorProvider.provider();

 SelectorProvider provider2 = Selector.open().provider();

 System.out.println(provider1);

 System.out.println(provider2);

}

}

在上述程序运行后，控制台输出的结果如下：

sun.nio.ch.WindowsSelectorProvider@b4c966a

sun.nio.ch.WindowsSelectorProvider@b4c966a

5.8.11　返回此选择器的键集

public abstract Set小于号 <SelectionKey>keys（）方法的作用是返回此选择器的键集。不可直接修改键集。仅在已取消某个键并且已注销其通道后才移除该键。试图修改键集会导致抛出UnsupportedOperationException。

示例代码如下：

public class Test20 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = ServerSocketChannel.open();

 serverSocketChannel2.bind(new InetSocketAddress("localhost", 9999));

 serverSocketChannel2.configureBlocking(false);

 ServerSocketChannel serverSocketChannel3 = ServerSocketChannel.open();

 serverSocketChannel3.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel3.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey2 = serverSocketChannel2.register(selector,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey3 = serverSocketChannel3.register(selector,

 SelectionKey.OP_ACCEPT);

 System.out.println(selectionKey1.hashCode());

 System.out.println(selectionKey2.hashCode());

 System.out.println(selectionKey3.hashCode());

 System.out.println();

 Set<SelectionKey> keysSet = selector.keys();

 Iterator<SelectionKey> iterator = keysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 System.out.println(key.hashCode());

 }

}

}

在上述程序运行后，控制台输出的结果如下：

793589513

1313922862

495053715

495053715

793589513

1313922862

5.8.12　public abstract int select（long timeout）方法的使用

public abstract int select（long timeout）方法的作用是选择一组键，其相应的通道已为I/O操作准备就绪。此方法执行处于阻塞模式的选择操作。仅在至少选择一个通道、调用此选择器的wakeup（）方法、当前的线程已中断，或者给定的超时期满（以先到者为准）后，此方法才返回。此方法不提供实时保证：它安排了超时时间，就像调用Object.wait（long）方法一样。参数timeout代表如果为正，则在等待某个通道准备就绪时最多阻塞timeout毫秒；如果为零，则无限期地阻塞；必须为非负数。返回值代表已更新其准备就绪操作集的键的数目，该数目可能为零。

示例代码如下：

public class Test22 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 System.out.println("while (isRun == true) " + System.currentTimeMillis());

 int keyCount = selector.select(5000);

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 System.out.println("进入while");

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 Socket socket = channel.socket().accept();

 socket.close();

 }

 iterator.remove();

 }

 }

 serverSocketChannel1.close();

}

}

在上述程序运行后，控制台输出的结果如下：

while (isRun == true) 1511423992891

while (isRun == true) 1511423997892

while (isRun == true) 1511424002893

while (isRun == true) 1511424007893

while (isRun == true) 1511424012893

5.8.13　public abstract int selectNow（）方法的使用

public abstract int selectNow（）方法的作用是选择一组键，其相应的通道已为I/O操作准备就绪。此方法执行非阻塞的选择操作。如果自从前一次选择操作后，没有通道变成可选择的，则此方法直接返回零。调用此方法会清除所有以前调用wakeup（）方法所得的结果。返回值代表由选择操作更新其准备就绪操作集的键的数目，该数目可能为零。

示例代码如下：

public class Test23 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 System.out.println("while (isRun == true) " + System.currentTimeMillis());

 int keyCount = selector.selectNow();

 System.out.println("while (isRun == true) " + System.currentTimeMillis());

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 System.out.println("进入while");

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 Socket socket = channel.socket().accept();

 socket.close();

 }

 iterator.remove();

 }

 }

 serverSocketChannel1.close();

}

}

在上述程序运行后，控制台输出的部分结果如下：

while (isRun == true) 1511424082297

while (isRun == true) 1511424082297

while (isRun == true) 1511424082297

while (isRun == true) 1511424082297

while (isRun == true) 1511424082297

while (isRun == true) 1511424082297

5.8.14　唤醒操作

public abstract Selector wakeup（）方法的作用是使尚未返回的第一个选择操作立即返回。如果另一个线程目前正阻塞在select（）或select（long）方法的调用中，则该调用将立即返回。如果当前未进行选择操作，那么在没有同时调用selectNow（）方法的情况下，对上述方法的下一次调用将立即返回。在任一情况下，该调用返回的值可能是非零的。如果未同时再次调用此方法，则照常阻塞select（）或select（long）方法的后续调用。在两个连续的选择操作之间多次调用此方法与只调用一次的效果相同。

示例代码如下：

public class Test24 {

private static Selector selector;

public static void main(String[] args) throws IOException, InterruptedException {

 Thread thread = new Thread() {

 @Override

 public void run() {

 try {

 Thread.sleep(2000);

 selector.wakeup();

 Set<SelectionKey> set1 = selector.keys();

 Set<SelectionKey> set2 = selector.selectedKeys();

 System.out.println("执行wakeup()方法之后的selector的信息：");

 System.out.println("set1.size()=" + set1.size());

 System.out.println("set2.size()=" + set2.size());

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 };

 thread.start();

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 Socket socket = channel.socket().accept();

 socket.close();

 }

 iterator.remove();

 }

 serverSocketChannel1.close();

 System.out.println("main end!");

}

}

运行上述程序，在2s之后，控制台输出的结果如下：

执行wakeup（）方法之后的selector的信息：

set1.size()=1

main end!

set2.size()=0

键集中至少保留了1个SelectionKey。
5.8.15　测试若干细节

下面开始测试在使用选择器过程中需要注意的一些细节知识点。

1.对SelectionKey执行cancel（）方法后的效果

调用该键的cancel（）方法来取消键，该键都被添加到其选择器的已取消键集中。取消某个键会导致在下一次select（）方法选择操作期间注销该键的通道，而在注销时将从所有选择器的键集中移除该键。

测试用的代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = ServerSocketChannel.open();

 serverSocketChannel2.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel2.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey2 = serverSocketChannel2.register(selector,

 SelectionKey.OP_ACCEPT);

 Thread client = new Thread() {

 public void run() {

 try {

 Socket socket1 = new Socket("localhost", 7777);

 OutputStream outputStream1 = socket1.getOutputStream();

 outputStream1.write("我是中国人，我来自客户端 to7777！".getBytes());

 socket1.close();

 Socket socket2 = new Socket("localhost", 8888);

 OutputStream outputStream2 = socket2.getOutputStream();

 outputStream2.write("我是中国人，我来自客户端 to8888！".getBytes());

 socket2.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 };

 };

 client.start();

 Thread getInfo = new Thread() {

 public void run() {

 try {

 Thread.sleep(10000);

 System.out.println();

 Set<SelectionKey> keys = selector.keys();

 Set<SelectionKey> selectedKeys = selector.selectedKeys();

 System.out.println("select()方法执行第2次后的信息：");

 System.out.println("keys.size()=" + keys.size());

 System.out.println("selectedKeys.size()=" + selectedKeys.size());

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 };

 };

 getInfo.start();

 Thread.sleep(1000);// 目的是先让客户端连接服务端

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> keys = selector.keys();

 Set<SelectionKey> selectedKeys = selector.selectedKeys();

 System.out.println("取消之前的信息：");

 System.out.println("keys.size()=" + keys.size());

 System.out.println("selectedKeys.size()=" + selectedKeys.size());

 System.out.println();

 Iterator<SelectionKey> iterator = selectedKeys.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 ServerSocket serverSocket = channel.socket();

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1000];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 String newString = new String(byteArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStream.read(byteArray);

 }

 inputStream.close();

 socket.close();

 // iterator.remove();

 if (serverSocket.getLocalPort() == 7777) {

 key.cancel();

 AbstractSelectionKey abc;

 System.out.println("取消之后的信息：");

 System.out.println("keys.size()=" + keys.size());

 System.out.println("selectedKeys.size()=" + selectedKeys.size());

 }

 }

 }

 }

 serverSocketChannel1.close();

 serverSocketChannel2.close();

}

}

上述程序运行结果如下：

取消之前的信息：

keys.size()=2

selectedKeys.size()=2

我是中国人，我来自客户端 to7777！

取消之后的信息：

keys.size()=2

selectedKeys.size()=2

我是中国人，我来自客户端 to8888！

select()方法执行第2次后的信息：

keys.size()=1

selectedKeys.size()=1

对SelectionKey执行cancel（）方法操作会将SelectionKey放入取消键集中，并且在下一次执行select（）方法时删除这个SelectionKey所有的键集，并且通道被注销，因此，在控制台的最后输出两个1：

keys.size()=1

selectedKeys.size()=1

2.对通道执行close（）方法后的效果

关闭某个键的通道，通道对应的键都被添加到其选择器的已取消键集中，会导致在下一次select（）方法选择操作期间注销该键的通道，而在注销时将从所有选择器的键集中移除该键。

测试代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 ServerSocketChannel serverSocketChannel2 = ServerSocketChannel.open();

 serverSocketChannel2.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel2.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 SelectionKey selectionKey2 = serverSocketChannel2.register(selector,

 SelectionKey.OP_ACCEPT);

 Thread client = new Thread() {

 public void run() {

 try {

 Socket socket1 = new Socket("localhost", 7777);

 OutputStream outputStream1 = socket1.getOutputStream();

 outputStream1.write("我是中国人，我来自客户端 to7777！".getBytes());

 socket1.close();

 Socket socket2 = new Socket("localhost", 8888);

 OutputStream outputStream2 = socket2.getOutputStream();

 outputStream2.write("我是中国人，我来自客户端 to8888！".getBytes());

 socket2.close();

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 };

 };

 client.start();

 Thread getInfo = new Thread() {

 public void run() {

 try {

 Thread.sleep(10000);

 System.out.println();

 Set<SelectionKey> keys = selector.keys();

 Set<SelectionKey> selectedKeys = selector.selectedKeys();

 System.out.println("channel.close()之后的信息：");

 System.out.println("keys.size()=" + keys.size());

 System.out.println("selectedKeys.size()=" + selectedKeys.size());

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 };

 };

 getInfo.start();

 Thread.sleep(1000);// 先让客户端连接到服务器

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> keys = selector.keys();

 Set<SelectionKey> selectedKeys = selector.selectedKeys();

 System.out.println("channel.close()之前的信息：");

 System.out.println("keys.size()=" + keys.size());

 System.out.println("selectedKeys.size()=" + selectedKeys.size());

 System.out.println();

 Iterator<SelectionKey> iterator = selectedKeys.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 ServerSocket serverSocket = channel.socket();

 Socket socket = serverSocket.accept();

 InputStream inputStream = socket.getInputStream();

 byte[] byteArray = new byte[1000];

 int readLength = inputStream.read(byteArray);

 while (readLength != -1) {

 String newString = new String(byteArray, 0, readLength);

 System.out.println(newString);

 readLength = inputStream.read(byteArray);

 }

 inputStream.close();

 socket.close();

 // iterator.remove();

 if (serverSocket.getLocalPort() == 7777) {

 channel.close();

 }

 }

 }

 }

 serverSocketChannel1.close();

 serverSocketChannel2.close();

}

}

上述程序运行结果如下：

channel.close()之前的信息：

keys.size()=2

selectedKeys.size()=2

我是中国人，我来自客户端 to7777！

我是中国人，我来自客户端 to8888！

channel.close()之后的信息：

keys.size()=1

selectedKeys.size()=1

对ServerSocketChannel调用close（）方法后，在下一次select（）方法选择时将Server-SocketChannel对应的SelectionKey从所有键集中删除，并且将这个ServerSocketChannel通道从Selector中注销。

3.在新创建的选择器中，3个集合都是空集合

测试用的代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException {

 Selector selector = Selector.open();

 Set<SelectionKey> keys = selector.keys();

 Set<SelectionKey> selectedKeys = selector.selectedKeys();

 System.out.println("keys.size()=" + keys.size());

 System.out.println("selectedKeys.size()=" + selectedKeys.size());

}

}

上述程序运行结果如下：

keys.size()=0

selectedKeys.size()=0

4.删除键集中的键会导致UnsupportedOperationException异常

测试用的代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 selector.keys().remove(selectionKey1);

}

}

上述程序运行后的结果如下：

Exception in thread "main" java.lang.UnsupportedOperationException

 at java.util.Collections$UnmodifiableCollection.remove(Collections.java:1058)

 at Seletor.moretest.test4.Test1.main(Test1.java:18)

上述结果表明键集中的元素不可以显式修改。

5.多线程环境下删除键集中的键会导致ConcurrentModificationException异常

一般情况下，选择器的键和已选择键集由多个并发线程使用是不安全的。如果这样的线程可以直接修改这些键集之一，那么应该通过对该键集本身进行同步来控制访问。这些键集的iterator（）方法所返回的迭代器是快速失败的：如果在创建迭代器后以任何方式（调用迭代器自身的remove（）方法除外）修改键集，则会抛出ConcurrentModificationException异常。

示例代码如下：

public class Test1 {

public static void main(String[] args) throws InterruptedException {

 Set set = new HashSet();

 set.add("abc1");

 set.add("abc2");

 set.add("abc3");

 set.add("abc4");

 set.add("abc5");

 set.add("abc6");

 new Thread() {

 public void run() {

 try {

 Thread.sleep(1500);

 set.remove("abc3");

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 };

 }.start();

 Iterator iterator = set.iterator();

 while (iterator.hasNext()) {

 Thread.sleep(1000);

 iterator.next();

 }

}

}

上述程序运行后的结果如下：

Exception in thread "main" java.util.ConcurrentModificationException

 at java.util.HashMap$HashIterator.nextNode(HashMap.java:1437)

 at java.util.HashMap$KeyIterator.next(HashMap.java:1461)

 at Seletor.moretest.test5.Test1.main(Test1.java:31)

6.阻塞在select（）或select（long）方法中的线程通过选择器的close（）方法被中断

测试用的代码如下：

public class Test1 {

private static Selector selector;

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 Thread client = new Thread() {

 public void run() {

 try {

 Thread.sleep(2000);

 selector.close();

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 };

 };

 client.start();

 boolean isRun = true;

 while (isRun == true) {

 System.out.println("begin " + System.currentTimeMillis());

 int keyCount = selector.select();

 System.out.println(" end " + System.currentTimeMillis());

 Set<SelectionKey> keys = selector.keys();

 Set<SelectionKey> selectedKeys = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeys.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 iterator.remove();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 ServerSocket serverSocket = channel.socket();

 Socket socket = serverSocket.accept();

 socket.close();

 }

 }

 }

 serverSocketChannel1.close();

}

}

上述程序运行后的结果如下：

begin 1515141679828

 end 1515141681828

Exception in thread "main" java.nio.channels.ClosedSelectorException

 at sun.nio.ch.SelectorImpl.keys(SelectorImpl.java:68)

 at Seletor.moretest.test6.Test1.main(Test1.java:47)

7.阻塞在select（）或select（long）方法中的线程调用interrupt（）方法被中断

测试用的代码如下：

public class Test1 {

private static Thread mainThread = Thread.currentThread();

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 7777));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 Thread client = new Thread() {

 public void run() {

 try {

 Thread.sleep(2000);

 // interrupt()含义是不想让线程工作了，也就是要销毁线程

 // interrupt()方法只是对线程对象打一个标记，

 // 代表这个线程要销毁，因此，要结合interrupted()进行判断，

 // 如果结果为true，以break退出while(true)，结束当前线程的执行

 mainThread.interrupt();// 中断主线程

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 };

 };

 client.start();

 boolean isRun = true;

 while (isRun == true) {

 System.out.println("begin " + System.currentTimeMillis());

 int keyCount = selector.select();

 mainThread.interrupted();// 清除中断状态，继续无限循环运行

 System.out.println(" end " + System.currentTimeMillis() + " keyCount=" +

 keyCount);

 Set<SelectionKey> keys = selector.keys();

 Set<SelectionKey> selectedKeys = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeys.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 iterator.remove();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 ServerSocket serverSocket = channel.socket();

 Socket socket = serverSocket.accept();

 socket.close();

 }

 }

 }

 serverSocketChannel1.close();

}

}

上述程序运行后的结果如下：

begin 1515143811021

 end 1515143813021 keyCount=0

begin 1515143813022

8.调用Selector.close（）方法删除全部键并且通道注销

测试的代码如下：

public class Test1 {

private static Selector selector;

public static void main(String[] args) throws IOException, InterruptedException {

 Thread thread = new Thread() {

 @Override

 public void run() {

 try {

 Thread.sleep(2000);

 selector.close();

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 thread.start();

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 Socket socket = channel.socket().accept();

 socket.close();

 }

 iterator.remove();

 }

 serverSocketChannel1.close();

 System.out.println("main end!");

}

}

上述程序运行后的结果如下：

Exception in thread "main" java.nio.channels.ClosedSelectorException

 at sun.nio.ch.SelectorImpl.selectedKeys(SelectorImpl.java:74)

 at Seletor.moretest.test8.Test1.main(Test1.java:39)

在程序代码“Set小于号 <SelectionKey>selectedKeysSet=selector.selectedKeys（）；”处出现异常，因为执行Selector的close（）方法后，除了再次调用close（）和wakeup（）方法外，调用Selector的其他方法均出现异常。
5.9　SelectionKey类的使用

SelectionKey类表示SelectableChannel在选择器中的注册的标记。

在每次向选择器注册通道时，就会创建一个选择键（SelectionKey）。通过调用某个键的cancel（）方法、关闭其通道，或者通过关闭其选择器取消该键之前，通道一直保持有效。取消某个键不会立即从其选择器中移除它，而是将该键添加到选择器的已取消键集，以便在下一次进行select（）方法操作时移除它。可通过调用某个键的isValid（）方法来测试其有效性。

选择键包含两个集，是表示为整数值的操作集，其中每一位都表示该键通道所支持的一类可选择操作。

1）interest集，确定了下一次调用某个选择器的select（）方法时，将测试哪类操作的准备就绪信息。创建该键时使用给定的值初始化interest集合，之后可通过interestOps（int）方法对其进行更改。

2）ready集，标识了这样一类操作，即某个键的选择器检测到该键的通道已为此类操作准备就绪。在创建该键时，ready集初始化为零，可以在之后的select（）方法操作中通过选择器对其进行更新，但不能直接更新它。

选择键的ready集指示，其通道对某个操作类别已准备就绪，该指示只是一个提示，并不保证线程可执行此类别中的操作而不发生线程阻塞。ready集很可能一完成选择操作就是准确的。ready集可能由于外部事件和在相应通道上调用的I/O操作而变得不准确。

SelectionKey类定义了所有已知的操作集位（operation-set bit），但是给定的通道具体支持哪些位则取决于该通道的类型。SelectableChannel的每个子类都定义了validOps（）方法，该方法返回的集合恰好标识该通道支持的操作。试图设置或测试某个键的通道所不支持的操作集位将导致抛出相应的运行时异常。

通常必须将某个特定于应用程序的数据与某个选择键相关联，如表示高级协议状态的对象和为了实现该协议而处理准备就绪通知的对象。因此，选择键支持将单个任意对象附加到某个键的操作。可通过attach（）方法附加对象，然后通过attachment（）方法获取该对象。

多个并发线程可安全地使用选择键。一般情况下，读取和写入interest集的操作将与选择器的某些操作保持同步。具体如何执行该同步操作与实现有关：在一般实现中，如果正在进行某个选择操作，那么读取或写入interest集可能会无限期地阻塞；在高性能的实现中，可能只会暂时阻塞。无论在哪种情况下，选择操作将始终使用该操作开始时的interest集值。

选择器是线程安全的，而键集却不是。

SelectionKey类的API列表如图5-36所示。

 [image:]

图5-36　SelectionKey类的API列表

下面开始具体介绍SelectionKey类中API的使用。
5.9.1　判断是否允许连接SelectableChannel对象

public final boolean isAcceptable（）方法的作用是测试此键的通道是否已准备好接受新的套接字连接。调用此方法的形式为k.isAcceptable（），该调用与以下调用的作用完全相同：k.readyOps（）&OP_ACCEPT！=0。如果此键的通道不支持套接字连接操作，则此方法始终返回false。返回值当且仅当readyOps（）&OP_ACCEPT为非零值时才返回true。

public final boolean isConnectable（）方法的作用是测试此键的通道是否已完成其套接字连接操作。调用此方法的形式为k.isConnectable（），该调用与以下调用的作用完全相同：k.readyOps（）&OP_CONNECT！=0。如果此键的通道不支持套接字连接操作，则此方法始终返回false。返回值当且仅当readyOps（）&OP_CONNECT为非零值时才返回true。

public abstract SelectableChannel channel（）方法的作用是返回为之创建此键的通道。即使已取消该键，此方法仍继续返回通道。

isAcceptable（）方法的示例代码如下：

public class Test1_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 Socket socket = null;

 if (key.isAcceptable()) {

 socket = channel.socket().accept();

 System.out.println("server isAcceptable()");

 }

 socket.close();

 iterator.remove();

 }

 }

 serverSocketChannel1.close();

}

}

isConnectable（）方法的示例代码如下：

public class Test1_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = socketChannel.register(selector, SelectionKey.

 OP_CONNECT);

 boolean isRun = true;

 socketChannel.connect(new InetSocketAddress("localhost", 8888));

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isConnectable()) {

 System.out.println("client isConnectable()");

 // 需要在此处使用finishConnect()方法完成连接，

 // 因为socketChannel是非阻塞模式

 while (!socketChannel.finishConnect()) {

 System.out.println("!socketChannel.finishConnect()");

 }

 SocketChannel channel = (SocketChannel) key.channel();

 channel.close();

 }

 iterator.remove();

 }

 }

 socketChannel.close();

 System.out.println("");

}

}

首先运行isAcceptable（）方法的示例代码，然后运行isConnectable（）方法的示例代码，控制台输出的结果如下：

server isAcceptable()

client isConnectable()

上述结果说明客户端接受连接，以及客户端已经成功连接到服务端。
5.9.2　判断是否已准备好进行读取

public final boolean isReadable（）方法的作用是测试此键的通道是否已准备好进行读取。调用此方法的形式为k.isReadable（），该调用与以下调用的作用完全相同：k.readyOps（）&OP_READ！=0。如果此键的通道不支持读取操作，则此方法始终返回false。返回值当且仅当readyOps（）&OP_READ为非零值时才返回true。

测试用的服务端代码如下：

public class Test2_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8088));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 SocketChannel socketChannel = null;

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 System.out.println("server isAcceptable()");

 socketChannel = channel.accept();

 socketChannel.configureBlocking(false);

 // 对socketChannel注册读的事件

 socketChannel.register(selector, SelectionKey.OP_READ);

 }

 if (key.isReadable()) {

 System.out.println("server isReadable()");

 ByteBuffer buffer = ByteBuffer.allocate(1000);

 int readLength = socketChannel.read(buffer);

 while (readLength != -1) {

 String newString = new String(buffer.array(), 0, readLength);

 System.out.println(newString);

 readLength = socketChannel.read(buffer);

 }

 socketChannel.close();

 }

 iterator.remove();

 }

 }

 serverSocketChannel1.close();

}

}

测试用的客户端代码如下：

public class Test2_2 {

public static void main(String[] args) throws InterruptedException {

 try {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = socketChannel.register(selector,

 SelectionKey.OP_CONNECT);

 socketChannel.connect(new InetSocketAddress("localhost", 8088));

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isConnectable()) {

 // 需要在此处使用finishConnect()方法完成连接，因为socketChannel是非阻塞模式

 while (!socketChannel.finishConnect()) {

 System.out.println("!socketChannel.finishConnect()--------");

 }

 System.out.println("client isConnectable()");

 SocketChannel channel = (SocketChannel) key.channel();

 byte[] writeDate = "我来自客户端，你好，服务器！".getBytes();

 ByteBuffer buffer = ByteBuffer.wrap(writeDate);

 channel.write(buffer);

 channel.close();

 }

 }

 System.out.println("client end !");

 } catch (ClosedChannelException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

}

首先运行Test2_1类的实现代码，然后运行Test2_2类的实现代码，控制台输出的内容如下：

server isAcceptable()

server isReadable()

我来自客户端，你好，服务器！

client isConnectable()

client end !

5.9.3　判断是否已准备好进行写入

public final boolean isWritable（）方法的作用是测试此键的通道是否已准备好进行写入。调用此方法的形式为k.isWritable（），该调用与以下调用的作用完全相同：k.readyOps（）&OP_WRITE！=0。如果此键的通道不支持写入操作，则此方法始终返回false。返回值当且仅当readyOps（）&OP_WRITE为非零值时才返回true。

测试用的服务端代码如下：

public class Test3_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 SocketChannel socketChannel = null;

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 System.out.println("server isAcceptable()");

 socketChannel = channel.accept();

 socketChannel.configureBlocking(false);

 socketChannel.register(selector, SelectionKey.OP_READ);

 }

 if (key.isReadable()) {

 System.out.println("server isReadable()");

 ByteBuffer buffer = ByteBuffer.allocate(1000);

 int readLength = socketChannel.read(buffer);

 while (readLength != -1) {

 String newString = new String(buffer.array(), 0, readLength);

 System.out.println(newString);

 readLength = socketChannel.read(buffer);

 }

 socketChannel.close();

 }

 iterator.remove();

 }

 }

 serverSocketChannel1.close();

}

}

测试用的客户端代码如下：

public class Test3_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = socketChannel.register(selector, SelectionKey.

 OP_CONNECT);

 socketChannel.connect(new InetSocketAddress("localhost", 8888));

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isConnectable()) {

 System.out.println("client isConnectable()");

 if (socketChannel.isConnectionPending()) {

 while (!socketChannel.finishConnect()) {

 System.out.println("!socketChannel.finishConnect()

 --------");

 }

 socketChannel.register(selector, SelectionKey.OP_WRITE);

 }

 }

 if (key.isWritable()) {

 System.out.println("client isWritable()");

 byte[] writeDate = "我来自客户端，你好，服务器！".getBytes();

 ByteBuffer buffer = ByteBuffer.wrap(writeDate);

 socketChannel.write(buffer);

 socketChannel.close();

 }

 }

 }

 System.out.println("client end !");

}

}

在上述程序运行后，控制台输出的结果如下：

server isAcceptable()

server isReadable()

我来自客户端，你好，服务器！

client isConnectable()

client isWritable()

5.9.4　返回SelectionKey关联的选择器

public abstract Selector selector（）方法的作用是返回SelectionKey关联的选择器。即使已取消该键，此方法仍将继续返回选择器。

测试用的代码如下：

public class Test4 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector1 = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector1,

 SelectionKey.OP_ACCEPT);

 Selector selector2 = selectionKey1.selector();

 System.out.println(selector1 + " " + selector1.hashCode());

 System.out.println(selector2 + " " + selector2.hashCode());

 serverSocketChannel1.close();

}

}

程序运行结果显示为同一个Selector对象，输出如下：

sun.nio.ch.WindowsSelectorImpl@4e50df2e 1313922862

sun.nio.ch.WindowsSelectorImpl@4e50df2e 1313922862

5.9.5　在注册操作时传入attachment附件

SelectableChannel类中的public final SelectionKey register（Selector sel，int ops，Object att）方法的作用是向给定的选择器注册此通道，返回一个选择键。如果当前已向给定的选择器注册了此通道，则返回表示该注册的选择键。该键的相关操作集将更改为ops，就像调用interestOps（int）方法一样。如果att参数不为null，则将该键的附件设置为该值。如果已取消该键，则抛出CancelledKeyException异常。如果尚未向给定的选择器注册此通道，则注册该通道并返回得到的新键。该键的初始可用操作集是ops，并且其附件是att。可在任意时间调用此方法。如果调用此方法的同时正在进行另一个此方法或configureBlocking（）方法的调用，则在另一个操作完成前将首先阻塞该调用。然后，此方法将在选择器的键集上实现同步。因此，如果调用此方法时并发地调用了涉及同一选择器的另一个注册或选择操作，则可能阻塞此方法的调用。如果正在进行此操作时关闭了此通道，则此方法返回的键是已取消的，因此返回键无效。参数sel代表要向其注册此通道的选择器，ops代表所得键的可用操作集，att代表所得键的附件，attr参数可能为null。返回值表示此通道向给定选择器注册的键。

SelectionKey类中的public final Object attachment（）方法的作用是获取当前的附加对象。返回值代表当前已附加到此键的对象，如果没有附加对象，则返回null。

测试用的服务端代码如下：

public class Test5_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 SocketChannel socketChannel = null;

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 System.out.println("server isAcceptable()");

 socketChannel = channel.accept();

 socketChannel.configureBlocking(false);

 socketChannel.register(selector, SelectionKey.OP_READ);

 }

 if (key.isReadable()) {

 System.out.println("server isReadable()");

 ByteBuffer buffer = ByteBuffer.allocate(1000);

 int readLength = socketChannel.read(buffer);

 while (readLength != -1) {

 String newString = new String(buffer.array(), 0, readLength);

 System.out.println(newString);

 readLength = socketChannel.read(buffer);

 }

 socketChannel.close();

 }

 iterator.remove();

 }

 }

 serverSocketChannel1.close();

}

}

测试用的客户端代码如下：

public class Test5_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = socketChannel.register(selector, Selection-

 Key.OP_CONNECT);

 socketChannel.connect(new InetSocketAddress("localhost", 8888));

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isConnectable()) {

 System.out.println("client isConnectable()");

 if (socketChannel.isConnectionPending()) {

 while (!socketChannel.finishConnect()) {

 System.out.println("!socketChannel.finishConnect()

 --------");

 }

 socketChannel.register(selector, SelectionKey.OP_WRITE,

 "我使用附件进行注册 ，我来自客户端，你好服务端！");

 }

 }

 if (key.isWritable()) {

 System.out.println("client isWritable()");

 ByteBuffer buffer = ByteBuffer.wrap(((String) key.attachment()).

 getBytes());

 socketChannel.write(buffer);

 socketChannel.close();

 }

 }

 }

 System.out.println("client end !");

}

}

首先运行Test5_1类的实现代码，然后运行Test5_2类的实现代码，运行后的结果如下：

server isAcceptable()

server isReadable()

我使用附件进行注册 ，我来自客户端，你好服务端！

client isConnectable()

client isWritable()

5.9.6　设置attachment附件

public final Object attach（Object ob）方法的作用是将给定的对象附加到此键。之后可通过attachment（）方法获取已附加的对象。一次只能附加一个对象。调用此方法会导致丢弃所有以前的附加对象。通过附加null可丢弃当前的附加对象。参数ob代表要附加的对象，可以为null。返回值代表先前已附加的对象（如果有），否则返回null。

测试用的代码如下：

public class Test5_3 {

public static void main(String[] args) throws IOException, InterruptedException {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = socketChannel.register(selector, Selection-

 Key.OP_CONNECT);

 socketChannel.connect(new InetSocketAddress("localhost", 8888));

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isConnectable()) {

 System.out.println("client isConnectable()");

 if (socketChannel.isConnectionPending()) {

 while (!socketChannel.finishConnect()) {

 System.out.println("!socketChannel.finishConnect()

 --------");

 }

 socketChannel.register(selector, SelectionKey.OP_WRITE);

 // 追加附件数据

 key.attach("我使用attach(Object)进行注册 ，我来自客户端，你

 好服务端！");

 }

 }

 if (key.isWritable()) {

 System.out.println("client isWritable()");

 ByteBuffer buffer = ByteBuffer.wrap(((String) key.attachment()).

 getBytes());

 socketChannel.write(buffer);

 socketChannel.close();

 }

 }

 }

 System.out.println("client end !");

}

}

首先运行5.9.5节的Test5_1类的实现代码，然后运行Test5_3类的实现代码，控制台输出的结果如下：

server isAcceptable()

server isReadable()

我使用attach(Object)进行注册 ，我来自客户端，你好服务端！

5.9.7　获取与设置此键的interest集合

public abstract int interestOps（）方法的作用是获取此键的interest集合。可保证返回的集合仅包含对于此键的通道而言有效的操作位。可在任意时间调用此方法。是否受阻塞，以及阻塞时间长短都是与实现相关的。返回值代表此键的interest集合。

public abstract SelectionKey interestOps（int ops）方法的作用是将此键的interest集合设置为给定值。可在任意时间调用此方法。是否受阻塞，以及阻塞时间长短都是与实现相关的。参数ops代表新的interest集合，返回值代表此选择键。

测试用的代码如下：

public class Test6 {

public static void main(String[] args) throws IOException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.configureBlocking(false);

 SocketChannel socketChannel1 = SocketChannel.open();

 socketChannel1.configureBlocking(false);

 SocketChannel socketChannel2 = SocketChannel.open();

 socketChannel2.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey key1 = serverSocketChannel1.register(selector, Selection-

 Key.OP_ACCEPT);

 SelectionKey key2 = socketChannel1.register(selector, SelectionKey.OP_

 CONNECT | SelectionKey.OP_READ);

 SelectionKey key3 = socketChannel2.register(selector,

 SelectionKey.OP_CONNECT | SelectionKey.OP_READ | SelectionKey.

 OP_WRITE);

 System.out.println(~key1.interestOps() & SelectionKey.OP_ACCEPT);

 System.out.println(~key1.interestOps() & SelectionKey.OP_CONNECT);

 System.out.println(~key1.interestOps() & SelectionKey.OP_READ);

 System.out.println(~key1.interestOps() & SelectionKey.OP_WRITE);

 System.out.println();

 System.out.println(~key2.interestOps() & SelectionKey.OP_ACCEPT);

 System.out.println(~key2.interestOps() & SelectionKey.OP_CONNECT);

 System.out.println(~key2.interestOps() & SelectionKey.OP_READ);

 System.out.println(~key2.interestOps() & SelectionKey.OP_WRITE);

 System.out.println();

 System.out.println(~key3.interestOps() & SelectionKey.OP_ACCEPT);

 System.out.println(~key3.interestOps() & SelectionKey.OP_CONNECT);

 System.out.println(~key3.interestOps() & SelectionKey.OP_READ);

 System.out.println(~key3.interestOps() & SelectionKey.OP_WRITE);

 System.out.println();

 // 使用public abstract SelectionKey interestOps(int ops)方法，

 // 重新定义感兴趣的事件

 key3.interestOps(SelectionKey.OP_WRITE | SelectionKey.OP_CONNECT);

 System.out.println(~key3.interestOps() & SelectionKey.OP_ACCEPT);

 System.out.println(~key3.interestOps() & SelectionKey.OP_CONNECT);

 System.out.println(~key3.interestOps() & SelectionKey.OP_READ);

 System.out.println(~key3.interestOps() & SelectionKey.OP_WRITE);

}

}

上述程序运行结果如下：

0

8

1

4

16

0

0

4

16

0

0

0

16

0

1

0

5.9.8　判断此键是否有效

public abstract boolean isValid（）方法的作用是告知此键是否有效。键在创建时是有效的，并在被取消、其通道已关闭或者其选择器已关闭之前保持有效。返回值当且仅当此键有效时才返回true。

测试用的代码如下：

public class Test7 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector, Selec-

 tionKey.OP_ACCEPT);

 System.out.println(selectionKey1.isValid());

 selectionKey1.cancel();

 System.out.println(selectionKey1.isValid());

 serverSocketChannel1.close();

}

}

上述程序运行结果如下：

true

false

5.9.9　获取此键的ready操作集合

public abstract int readyOps（）方法的作用是获取此键的ready操作集合，可保证返回的集合仅包含对于此键的通道而言有效的操作位，返回值代表此键的ready操作集合。

测试用的服务端代码如下：

public class Test8_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector,

 SelectionKey.OP_ACCEPT);

 SocketChannel socketChannel = null;

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 System.out.println(

 "server isAcceptable() OP_ACCEPT result=" + (Selection-

 Key.OP_ACCEPT & ~key.readyOps()));

 System.out.println(

 "server isAcceptable() OP_CONNECT result=" + (Selection-

 Key.OP_CONNECT & ~key.readyOps()));

 System.out.println(

 "server isAcceptable() OP_READ result=" + (Selection-

 Key.OP_READ & ~key.readyOps()));

 System.out.println(

 "server isAcceptable() OP_WRITE result=" + (Selection-

 Key.OP_WRITE & ~key.readyOps()));

 socketChannel = channel.accept();

 socketChannel.configureBlocking(false);

 socketChannel.register(selector, SelectionKey.OP_READ);

 }

 if (key.isReadable()) {

 System.out.println(

 "server isReadable() OP_ACCEPT result=" + (Selection-

 Key.OP_ACCEPT & ~key.readyOps()));

 System.out.println(

 "server isReadable() OP_CONNECT result=" + (Selection-

 Key.OP_CONNECT & ~key.readyOps()));

 System.out.println(

 "server isReadable() OP_READ result=" + (Selection-

 Key.OP_READ & ~key.readyOps()));

 System.out.println(

 "server isReadable() OP_WRITE result=" + (Selection-

 Key.OP_WRITE & ~key.readyOps()));

 ByteBuffer buffer = ByteBuffer.allocate(1000);

 int readLength = socketChannel.read(buffer);

 while (readLength != -1) {

 String newString = new String(buffer.array(), 0, readLength);

 System.out.println(newString);

 readLength = socketChannel.read(buffer);

 }

 socketChannel.close();

 }

 iterator.remove();

 }

 }

 serverSocketChannel1.close();

}

}

测试用的客户端代码如下：

public class Test8_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = socketChannel.register(selector, Selection-

Key.OP_CONNECT);

 socketChannel.connect(new InetSocketAddress("localhost", 8888));

 boolean isRun = true;

 while (isRun == true) {

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isConnectable()) {

 System.out.println(

 "client isConnectable() OP_ACCEPT result=" + (Selection-

 Key.OP_ACCEPT & ~key.readyOps()));

 System.out.println(

 "server isConnectable() OP_CONNECT result=" + (Selection-

 Key.OP_CONNECT & ~key.readyOps()));

 System.out.println(

 "server isConnectable() OP_READ result=" + (Selection-

 Key.OP_READ & ~key.readyOps()));

 System.out.println(

 "server isConnectable() OP_WRITE result=" + (Selection-

 Key.OP_WRITE & ~key.readyOps()));

 if (socketChannel.isConnectionPending()) {

 while (!socketChannel.finishConnect()) {

 System.out.println("!socketChannel.finishConnect()

 --------");

 }

 selectionKey1 = socketChannel.register(selector, Selection-

 Key.OP_WRITE,

 "我使用附件进行注册 ，我来自客户端，你好服务端！");

 }

 }

 if (key.isWritable()) {

 System.out.println(

 "client isWritable() OP_ACCEPT result=" + (Selection-

 Key.OP_ACCEPT & ~key.readyOps()));

 System.out.println(

 "server isWritable() OP_CONNECT result=" + (Selection-

 Key.OP_CONNECT & ~key.readyOps()));

 System.out.println(

 "server isWritable() OP_READ result=" + (Selection-

 Key.OP_READ & ~key.readyOps()));

 System.out.println(

 "server isWritable() OP_WRITE result=" + (Selection-

 Key.OP_WRITE & ~key.readyOps()));

 ByteBuffer buffer = ByteBuffer.wrap(((String) key.attachment()).

 getBytes());

 socketChannel.write(buffer);

 socketChannel.close();

 key.cancel();

 }

 }

 }

 System.out.println("client end !");

}

}

上述程序运行后的结果如下：

server isAcceptable() OP_ACCEPT result=0

server isAcceptable() OP_CONNECT result=8

server isAcceptable() OP_READ result=1

server isAcceptable() OP_WRITE result=4

server isReadable() OP_ACCEPT result=16

server isReadable() OP_CONNECT result=8

server isReadable() OP_READ result=0

server isReadable() OP_WRITE result=4

我使用附件进行注册 ，我来自客户端，你好服务端！

client isConnectable() OP_ACCEPT result=16

server isConnectable() OP_CONNECT result=0

server isConnectable() OP_READ result=1

server isConnectable() OP_WRITE result=4

client isWritable() OP_ACCEPT result=16

server isWritable() OP_CONNECT result=8

server isWritable() OP_READ result=1

server isWritable() OP_WRITE result=0

5.9.10　取消操作

public abstract void cancel（）方法的作用是请求取消此键的通道到其选择器的注册。一旦返回，该键就是无效的，并且将被添加到其选择器的已取消键集中。在进行下一次选择操作时，将从所有选择器的键集中移除该键。如果已取消了此键，则调用此方法无效。一旦取消某个键，SelectionKey.isValid（）方法返回false。可在任意时间调用cancel（）方法。此方法与选择器的已取消键集保持同步，因此，如果通过涉及同一选择器的取消或选择操作并发调用它，则它可能会暂时受阻塞。

测试用的服务端代码如下：

public class Test9_1 {

private static Set<SelectionKey> selectedKeysSet;

public static void main(String[] args) throws IOException, InterruptedException {

 ServerSocketChannel serverSocketChannel1 = ServerSocketChannel.open();

 serverSocketChannel1.bind(new InetSocketAddress("localhost", 8888));

 serverSocketChannel1.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = serverSocketChannel1.register(selector, Selection-

 Key.OP_ACCEPT);

 SocketChannel socketChannel = null;

 new Thread() {

 public void run() {

 try {

 Thread.sleep(3000);

 System.out.println("cancel() after selector.keys().size()=" +

 selector.keys().size());

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 };

 }.start();

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 selectedKeysSet = selector.selectedKeys();

 System.out.println("cancel() before selector.keys().size()=" + selector.

 keys().size());

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isAcceptable()) {

 ServerSocketChannel channel = (ServerSocketChannel) key.channel();

 socketChannel = channel.accept();

 }

 key.cancel();

 }

 }

 serverSocketChannel1.close();

}

}

测试用的客户端代码如下：

public class Test9_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 SocketChannel socketChannel = SocketChannel.open();

 socketChannel.configureBlocking(false);

 socketChannel.connect(new InetSocketAddress("localhost", 8888));

 socketChannel.close();

}

}

首先运行Test9_1类的实现代码，然后运行Test9_2类的实现代码，控制台输出的结果如下：

cancel() before selector.keys().size()=1

cancel() after selector.keys().size()=0

5.10　DatagramChannel类的使用

DatagramChannel类是针对面向DatagramSocket的可选择通道。DatagramChannel不是DatagramSocket的完整抽象，必须通过调用socket（）方法获得的关联DatagramSocket对象来完成套接字选项的绑定和操作。不可能为任意的已有DatagramSocket创建通道，也不可能指定与DatagramChannel关联的DatagramSocket所使用的DatagramSocketImpl对象。

通过调用此类的open（）方法创建DatagramChannel。新创建的DatagramChannel已打开，但尚未连接。使用send（）和receive（）方法，不需要将DatagramChannel进行连接，但是每次send和receive操作时都要执行安全检查，会造成系统开销，要避免这种情况也可以通过调用DatagramChannel的connect（）方法来建立DatagramChannel连接。为了使用read（）和write（）方法，必须建立DatagramChannel连接，因为这些方法不接受或返回套接字地址。

一旦建立连接，在断开DatagramChannel的连接或将其关闭之前，该DatagramChannel保持连接状态。可通过调用DatagramChannel的isConnected（）方法来确定它是否已连接。

多个并发线程可安全地使用DatagramChannel。尽管在任意给定时刻最多只能有一个线程进行读取和写入操作，但DatagramChannel支持并发读写。

DatagramChannel类的结构信息如图5-37所示。

 [image:]

图5-37　DatagramChannel类的结构信息

DatagramChannel类的继承关系如图5-38所示。

 [image:]

图5-38　DatagramChannel类的继承关系
5.10.1　使用DatagramChannel类实现UDP通信

测试用的服务端代码如下：

public class Test1_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open();

 channel.configureBlocking(false);

 // 如果在两台物理计算机中进行实验，则要把localhost改成服务端的IP地址

 channel.bind(new InetSocketAddress("localhost", 8888));

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.OP_READ);

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isReadable()) {

 channel = (DatagramChannel) key.channel();

 ByteBuffer buffer = ByteBuffer.allocate(1000);

 channel.receive(buffer);

 System.out.println(new String(buffer.array(), 0, buffer.position()));

 }

 iterator.remove();

 }

 }

 channel.close();

}

}

测试用的客户端代码如下：

public class Test1_2 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open();

 channel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.

 OP_WRITE);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isWritable()) {

 ByteBuffer buffer = ByteBuffer.wrap("我来自客户端！".getBytes());

 // 如果在两台物理计算机中进行实验，则要把localhost改成客户端的IP地址

 channel.send(buffer, new InetSocketAddress("localhost", 8888));

 channel.close();

 }

 }

 System.out.println("client end !");

}

}

在多次运行客户端程序后，控制台输出的结果如下：

我来自客户端！

我来自客户端！

我来自客户端！

我来自客户端！

我来自客户端！

5.10.2　连接操作

public abstract DatagramChannel connect（SocketAddress remote）方法的作用是连接此通道的套接字。

测试用的客户端代码如下：

public class Test1_3 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open();

 channel.configureBlocking(false);

 // 如果在两台物理计算机中进行实验，则要把localhost改成服务端的IP地址

 channel.connect(new InetSocketAddress("localhost", 8888));

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.

 OP_WRITE);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isWritable()) {

 ByteBuffer buffer = ByteBuffer.wrap("我来自客户端！".getBytes());

 channel.write(buffer);

 channel.close();

 }

 }

 System.out.println("client end !");

}

}

首先运行5.10.1节的Test1_1类的实现代码，然后多次运行Test1_3类的实现代码，控制台输出的结果如下：

我来自客户端！

我来自客户端！

我来自客户端！

我来自客户端！

我来自客户端！

5.10.3　断开连接

public abstract DatagramChannel disconnect（）方法的作用是断开此通道套接字的连接。

测试用的客户端代码如下：

public class Test1_4 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open();

 channel.configureBlocking(false);

 channel.connect(new InetSocketAddress("localhost", 8888));

 channel.disconnect();

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.

 OP_WRITE);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isWritable()) {

 ByteBuffer buffer = ByteBuffer.wrap("我来自客户端！".getBytes());

 channel.write(buffer);

 channel.close();

 }

 }

 System.out.println("client end !");

}

}

首先运行5.10.1节的Test1_1类的实现代码，然后多次运行Test1_4类的实现代码，控制台输出的结果如下：

Exception in thread "main" java.nio.channels.NotYetConnectedException

 at sun.nio.ch.DatagramChannelImpl.write(DatagramChannelImpl.java:596)

 at DatagramChannelAPITest.Test1_4.main(Test1_4.java:27)

5.10.4　将通道加入组播地址

注意，首先在Linux中使用命令

systemctl stop firewalld.service

关闭防火墙，然后屏蔽服务端上多余的网卡。

MembershipKey join（InetAddress group，NetworkInterface interf）方法的作用是将通道加入到组播地址中。

创建测试用的代码，本类需要运行在计算机A中，程序代码如下：

public class Test1_5 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open(StandardProtocolFamily.INET);

 channel.join(InetAddress.getByName("224.0.0.5"),

 NetworkInterface.getByInetAddress(InetAddress.getByName("192.

 168.0.150")));

 // 必须执行bind操作，不然客户端发送数据本类接收不到

 channel.bind(new InetSocketAddress("192.168.0.150", 8088));

 channel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.

 OP_READ);

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isReadable()) {

 channel = (DatagramChannel) key.channel();

 ByteBuffer buffer = ByteBuffer.allocate(1000);

 channel.receive(buffer);

 System.out.println(new String(buffer.array(), 0, buffer.position(),

 "utf-8"));

 }

 iterator.remove();

 }

 }

 channel.close();

}

}

创建测试用的代码，本类需要运行在计算机B中，程序代码如下：

public class Test1_6 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open(StandardProtocolFamily.

 INET);

 channel.connect(new InetSocketAddress("224.0.0.5", 8088));

 channel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.

 OP_WRITE);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isWritable()) {

 ByteBuffer buffer = ByteBuffer.wrap("我来自客户端！".getBytes());

 channel.write(buffer);

 channel.close();

 }

 }

 System.out.println("client end !");

}

}

首先在计算机A中运行Test1_5类的实现代码，然后在计算机B中运行Test1_6类的实现代码，计算机A控制台输出结果如下：

我来自客户端!

5.10.5　将通道加入组播地址且接收指定客户端数据

MembershipKey join（InetAddress group，NetworkInterface interf，InetAddress source）方法的作用是将通道加入到组播地址中，但是会通过source参数来接收指定客户端IP发来的数据包。

创建测试用的代码，本类需要运行在计算机A中，程序代码如下：

public class Test1_7 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open(StandardProtocolFamily.INET);

 channel.join(InetAddress.getByName("224.0.0.5"), NetworkInterface.getByName("wlan0"),

 InetAddress.getByName("192.168.0.105"));

 channel.bind(new InetSocketAddress("192.168.0.150", 8088));

 channel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.

 OP_READ);

 boolean isRun = true;

 while (isRun == true) {

 selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isReadable()) {

 channel = (DatagramChannel) key.channel();

 ByteBuffer buffer = ByteBuffer.allocate(1000);

 channel.receive(buffer);

 System.out.println(new String(buffer.array(), 0, buffer.position(),

 "utf-8"));

 }

 iterator.remove();

 }

 }

 channel.close();

}

}

创建测试用的代码，本类需要运行在计算机B中，程序代码如下：

public class Test1_8 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open(StandardProtocolFamily.INET);

 channel.bind(new InetSocketAddress("192.168.0.150", 9099));

 channel.connect(new InetSocketAddress("224.0.0.5", 8088));

 channel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.

 OP_WRITE);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isWritable()) {

 ByteBuffer buffer = ByteBuffer.wrap("from Linux！".getBytes());

 channel.write(buffer);

 channel.close();

 }

 }

 System.out.println("client end !");

}

}

创建测试用的代码，本类需要运行在计算机A中，程序代码如下：

public class Test1_9 {

public static void main(String[] args) throws IOException, InterruptedException {

 DatagramChannel channel = DatagramChannel.open(StandardProtocolFamily.INET);

 channel.bind(new InetSocketAddress("192.168.0.150", 9099));

 channel.connect(new InetSocketAddress("224.0.0.5", 8088));

 channel.configureBlocking(false);

 Selector selector = Selector.open();

 SelectionKey selectionKey1 = channel.register(selector, SelectionKey.OP_WRITE);

 int keyCount = selector.select();

 Set<SelectionKey> selectedKeysSet = selector.selectedKeys();

 Iterator<SelectionKey> iterator = selectedKeysSet.iterator();

 while (iterator.hasNext()) {

 SelectionKey key = iterator.next();

 if (key.isWritable()) {

 ByteBuffer buffer = ByteBuffer.wrap("我来自客户端！".getBytes());

 channel.write(buffer);

 channel.close();

 }

 }

 System.out.println("client end !");

}

}

首先在计算机A中运行Test1_7类的实现代码，然后在计算机B中运行Test1_8类的实现代码，计算机A控制台输出结果如下：

from linux!

接着在计算机A中运行Test1_9类的实现代码，计算机A中的控制台并没有输出任何的数据信息，说明Test1_7类没有接收到任何的数据包，因为已经使用source参数限制了接收的来源地址。
5.11　Pipe.SinkChannel和Pipe.SourceChannel类的使用

Pipe.SinkChannel类表示Pipe的可写入结尾的通道，其结构信息如图5-39所示。

 [image:]

图5-39　Pipe.SinkChannel类的结构信息

Pipe.SourceChannel类表示Pipe的可读取结尾的通道，其结构信息如图5-40所示。

 [image:]

图5-40　Pipe.SourceChannel类的结构信息

创建Pipe.SinkChannel和Pipe.SourceChannel类的实例需要使用Pipe类。Pipe类的结构信息如图5-41所示。

 [image:]

图5-41　Pipe类的结构信息

Pipe类实现单向管道传送的通道对。

管道由一对通道组成：一个可写入的sink通道和一个可读取的source通道。一旦将某些字节写入接收器通道，就可以按照与写入时完全相同的顺序从源通道中读取这些字节。

在另一个线程从管道中读取这些字节或先前已写入的字节之前，是否阻塞将该字节写入管道的线程是与系统相关的，因此是未指定的。很多管道实现都对接收器和源通道之间一定数量的字节进行缓冲，但是不应假定会进行这种缓冲。

可写入的sink通道和可读取的source通道的继承关系参见图5-38所示。

下面测试使用管道进行数据传输的情况。

测试用的代码如下：

public class Test1_1 {

public static void main(String[] args) throws IOException, InterruptedException {

 Pipe pipe = Pipe.open();

 SinkChannel sinkChannel = pipe.sink();

 SourceChannel sourceChannel = pipe.source();

 Thread t1 = new Thread() {

 @Override

 public void run() {

 try {

 Thread.sleep(1000);

 for (int i = 0; i < 5; i++) {

 sinkChannel.write(ByteBuffer.wrap(("我来自客户端A " + (i +

 1) + "\r\n").getBytes()));

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 t1.start();

 Thread t2 = new Thread() {

 @Override

 public void run() {

 try {

 Thread.sleep(1000);

 for (int i = 0; i < 5; i++) {

 sinkChannel.write(ByteBuffer.wrap(("我来自客户端B " + (i +

 1) + "\r\n").getBytes()));

 }

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 };

 t2.start();

 Thread.sleep(3000);

 sinkChannel.close();

 ByteBuffer readBuffer = ByteBuffer.allocate(1000);

 int readLength = sourceChannel.read(readBuffer);

 while (readLength != -1) {

 System.out.println(new String(readBuffer.array(), 0, readLength));

 readLength = sourceChannel.read(readBuffer);

 }

 sourceChannel.close();

}

}

上述程序的运行结果如下：

我来自客户端B 1

我来自客户端B 2

我来自客户端B 3

我来自客户端B 4

我来自客户端B 5

我来自客户端A 1

我来自客户端A 2

我来自客户端A 3

我来自客户端A 4

我来自客户端A 5

5.12　SelectorProvider类的使用

SelectorProvider是用于选择器和可选择通道的服务提供者类。选择器提供者实现类是SelectorProvider类的一个子类，它具有零参数的构造方法，并实现了以下指定的抽象方法。给定的对Java虚拟机的调用维护了单个系统级的默认提供者实例，它由provider（）方法返回。

第一次调用该方法将查找指定的默认提供者。系统级的默认提供者由Datagram-Channel、Pipe、Selector、ServerSocketChannel和SocketChannel类的静态open（）方法使用。System.inheritedChannel（）方法也使用它。除了默认提供者之外，程序还可以使用其他提供者，方法是通过实例化一个提供者，然后直接调用此类中定义的open（）方法。

多个并发线程可安全地使用SelectorProvider类中的所有方法。

SelectorProvider类的结构信息如图5-42所示。

 [image:]

图5-42　SelectorProvider类的结构信息

下面介绍SelectorProvider类的API的使用。

示例代码如下：

public class Test1 {

public static void main(String[] args) throws IOException {

 SelectorProvider provider = SelectorProvider.provider();

 System.out.println("provider=" + provider.getClass().getName());

 Selector selector = provider.openSelector();

 DatagramChannel DatagramChannel1 = provider.openDatagramChannel();

 DatagramChannel DatagramChannel2 = provider.openDatagramChannel(Standa

 rdProtocolFamily.INET);

 DatagramChannel DatagramChannel3 = provider.openDatagramChannel(Standa

 rdProtocolFamily.INET6);

 Pipe pipe = provider.openPipe();

 ServerSocketChannel serverSocketChannel = provider.openServerSocket-

 Channel();

 SocketChannel socketChannel = provider.openSocketChannel();

 // 方法inheritedChannel()在源代码中返回的值就是null

 Channel channel = provider.inheritedChannel();

 System.out.println("openSelector()=" + selector.getClass().getName());

 System.out.println("openDatagramChannel()=" + DatagramChannel1.getClass().

 getName());

 System.out.println("openDatagramChannel(StandardProtocolFamily.INET)=" +

 DatagramChannel2.getClass().getName());

 System.out

 .println("openDatagramChannel(StandardProtocolFamily.INET6)=" +

 DatagramChannel3.getClass().getName());

 System.out.println("openPipe()=" + pipe.getClass().getName());

 System.out.println("openServerSocketChannel()=" + serverSocketChannel.

 getClass().getName());

 System.out.println("openSocketChannel()=" + socketChannel.getClass().

 getName());

 System.out.println("inheritedChannel()=" + channel);

}

}

上述程序运行后的结果如下：

provider=sun.nio.ch.WindowsSelectorProvider

openSelector()=sun.nio.ch.WindowsSelectorImpl

openDatagramChannel()=sun.nio.ch.DatagramChannelImpl

openDatagramChannel(StandardProtocolFamily.INET)=sun.nio.ch.DatagramChannelImpl

openDatagramChannel(StandardProtocolFamily.INET6)=sun.nio.ch.DatagramChannelImpl

openPipe()=sun.nio.ch.PipeImpl

openServerSocketChannel()=sun.nio.ch.ServerSocketChannelImpl

openSocketChannel()=sun.nio.ch.SocketChannelImpl

inheritedChannel()=null

5.13　小结

本章介绍了NIO技术中比较重要的技术—选择器。只有使用选择器，才算是使用了NIO。通过使用选择器来实现I/O多路复用，可大大节省CPU资源，大幅减少多个线程上下文切换的时间，提高程序运行的效率。
第6章　AIO的使用

在学习I/O技术时，需要了解几个技术点，包括同步阻塞、同步非阻塞、异步阻塞及异步非阻塞。这些都是I/O模型，是学习I/O、NIO、AIO必须要了解的概念。只有清楚了这些概念，才能更好地理解不同I/O的优势。

但在本章开始不想生硬地介绍这些枯燥的概念，而要先学习与AIO有关类的使用，在使用的过程中慢慢体会这些不同I/O模型所带来的差异。
6.1　AsynchronousFileChannel类的使用

AsynchronousFileChannel类用于读取、写入和操作文件的异步通道。

在通过调用此类定义的open（）方法打开文件时，将创建一个异步文件通道。该文件包含可读写的、可查询其当前大小的可变长度的字节序列。当写入字节超出其当前大小时，文件的大小会增加。文件的大小在截断时会减小。

异步文件通道在文件中没有当前位置，而是将文件位置指定给启动异步操作的每个读取和写入方法。CompletionHandler被指定为参数，并被调用以消耗I/O操作的结果。此类还定义了启动异步操作的读取和写入方法，并返回Future对象以表示操作的挂起结果。将来可用于检查操作是否已完成，等待完成，然后检索结果。

除了读写操作之外，此类还定义了以下操作：

1）对文件所做的更新可能会被强制到底层存储设备，以确保在发生系统崩溃时不会丢失数据。

2）文件的某个区域可能被其他程序的访问锁定。

AsynchronousFileChannel与一个线程池关联，任务被提交来处理I/O事件，并发送到使用通道上I/O操作结果的CompletionHandler对象。在通道上启动的I/O操作的Completion-Handler保证由线程池中的一个线程调用（这样可以确保CompletionHandler程序由具有预期标识的线程运行）。如果I/O操作立即完成，并且起始线程本身是线程池中的线程，则启动线程可以直接调用完成处理程序。当创建AsynchronousFileChannel而不指定线程池时，该通道将与系统相关的默认线程池关联，该线程池可能与其他通道共享。默认线程池由AsynchronousChannelGroup类定义的系统属性配置。

此类型的通道可以安全地由多个并发线程使用。可以在任何时候调用close（）方法，如通道接口所指定的那样。这将导致通道上的所有未完成的异步操作都使用异常Asyn-chronousCloseException。多个读写操作在同一时间可能是未完成的。当多个读写操作未完成时，将不指定I/O操作的顺序以及调用CompletionHandler程序的顺序。特别是，它们没有保证按照行动的启动顺序执行。读取或写入时使用的ByteBuffers不安全，无法由多个并发I/O操作使用。此外，在启动I/O操作之后，应注意确保在操作完成后才能访问缓冲区。

与FileChannel一样，此类的实例提供的文件的视图保证与同一程序中其他实例提供的同一文件的其他视图一致。但是，该类的实例提供的视图可能与其他并发运行的程序所看到的视图一致，也可能不一致，这是由于底层操作系统所执行的缓存和网络文件系统协议引起的延迟。无论编写这些程序的语言是什么，也无论它们是在同一台机器上运行还是在其他机器上，都是如此。任何此类不一致的确切性质都依赖于系统，因此未指定。
6.1.1　获取此通道文件的独占锁

public final Future小于号 <FileLock>lock（）方法的作用是获取此通道文件的独占锁。此方法启动一个操作以获取此通道的文件的独占锁。该方法返回一个表示操作的挂起结果的Future对象。Future的get（）方法在成功完成时返回FileLock。调用此方法的行为及调用的方式与代码ch.lock（0L，Long.MAX_VALUE，false）完全相同。返回值表示待定结果的Future对象。

测试用的A进程代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 Future<FileLock> future = channel.lock();

 FileLock lock = future.get();

 System.out.println("A get lock time=" + System.currentTimeMillis());

 Thread.sleep(8000);// 给出一些时间，用来启动Test2类

 lock.release();

 System.out.println("A release lock time=" + System.currentTimeMillis());

 channel.close();

}

}

测试用的B进程代码如下：

public class Test2 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

StandardOpenOption.WRITE);

 System.out.println("lock begin " + System.currentTimeMillis());

 Future<FileLock> future = channel.lock();

 System.out.println("lock end " + System.currentTimeMillis());

 FileLock lock = future.get();

 System.out.println("B get lock time=" + System.currentTimeMillis());

 lock.release();

 channel.close();

}

}

首先运行Test1类的实现代码，然后运行Test2类的实现代码，控制台输出的结果如下：

A get lock time=1515481494662

A release lock time=1515481502664

lock begin 1515481496909

lock end 1515481496909

B get lock time=1515481502665

从输出的时间来看，在“A release lock time=1515481502664”释放锁后，“B get lock time=1515481502665”才获得锁对象，说明Test1类锁定成功。
6.1.2　获取通道文件给定区域的锁

public abstract Future小于号 <FileLock>lock（long position，long size，boolean shared）方法的作用是获取此通道文件给定区域的锁。此方法启动一个操作以获取此信道文件的给定区域的锁。该方法的行为与lock（long，long，boolean，Object，CompletionHandler）方法完全相同，不同之处在于，此方法不指定CompletionHandler程序，而是返回一个表示待定结果的Future对象。Future的get（）方法在成功完成时返回FileLock。

参数position代表锁定区域的起始位置，必须是非负数。size代表锁定区域的大小，必须是非负数，并且position+size的结果必须是非负数。shared值为true代表请求的是共享锁，在这种情况下，此通道必须为读取（并可能写入）打开，如果请求排他锁，在这种情况下，此通道必须为写入而打开（并且可能读取）。返回值代表待定结果的Future对象。

测试用的A进程代码如下：

public class Test3 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 Future<FileLock> future = channel.lock(0, 3, false);

 FileLock lock = future.get();

 System.out.println("A get lock time=" + System.currentTimeMillis());

 Thread.sleep(8000);// 给出一些时间，用来启动Test2类

 lock.release();

 System.out.println("A release lock time=" + System.currentTimeMillis());

 channel.close();

}

}

测试用的B进程代码如下：

public class Test4 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("B lock begin " + System.currentTimeMillis());

 Future<FileLock> future = channel.lock(0, 3, false);

 System.out.println("B lock end " + System.currentTimeMillis());

 FileLock lock = future.get();

 System.out.println("B get lock time=" + System.currentTimeMillis());

 lock.release();

 channel.close();

}

}

测试用的C进程代码如下：

public class Test5 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("C lock begin " + System.currentTimeMillis());

 Future<FileLock> future = channel.lock(4, 4, false);

 System.out.println("C lock end " + System.currentTimeMillis());

 FileLock lock = future.get();

 System.out.println("C get lock time=" + System.currentTimeMillis());

 lock.release();

 channel.close();

}

}

首先运行Test3类的实现代码，然后运行Test4类的实现代码，控制台输出的结果如下：

A get lock time=1515482609871

A release lock time=1515482617873

B lock begin 1515482612787

B lock end 1515482612788

B get lock time=1515482617873

从时间信息来看，Test3类成功锁定范围内前3个数据区域。

再次运行Test3类的实现代码，然后运行Test5类的实现代码，控制台输出的结果如下：

A get lock time=1515482665135

A release lock time=1515482673137

C lock begin 1515482667533

C lock end 1515482667534

C get lock time=1515482667534

从时间信息来看，Test3类和Test5类锁定的文件范围并不相同，因此，Test5类并没有出现阻塞的现象。
6.1.3　实现重叠锁定

在两个进程对同一个文件的锁定范围有重叠时，会出现阻塞的状态。

A进程示例代码如下：

public class Test17 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 Future<FileLock> future = channel.lock(0, 3, false);

 FileLock lock = future.get();

 System.out.println("A get lock time=" + System.currentTimeMillis());

 Thread.sleep(8000);

 lock.release();

 System.out.println("A release lock time=" + System.currentTimeMillis());

 channel.close();

}

}

B进程示例代码如下：

public class Test18 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("lock begin " + System.currentTimeMillis());

 Future<FileLock> future = channel.lock(1, 5, false);

 System.out.println("lock end " + System.currentTimeMillis());

 FileLock lock = future.get();

 System.out.println("B get lock time=" + System.currentTimeMillis());

 lock.release();

 channel.close();

}

}

在上述程序运行后，控制台输出的结果如下：

A get lock time=1515482812753

A release lock time=1515482820753

lock begin 1515482814994

lock end 1515482814995

B get lock time=1515482820754

6.1.4　返回此通道文件当前大小与通道打开状态

public abstract long size（）方法的作用是返回此通道文件的当前大小。

public boolean isOpen（）方法的作用是判断通道是否呈打开的状态。

a.txt文件的内容如下：12345。

测试用的代码如下：

public class Test6 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("File size=" + channel.size());

 System.out.println("A isOpen=" + channel.isOpen());

 channel.close();

 System.out.println("B isOpen=" + channel.isOpen());

}

}

上述程序运行结果如下：

File size=5

A isOpen=true

B isOpen=false

6.1.5　CompletionHandler接口的使用

public final小于号 <A>void lock（A attachment，CompletionHandler小于号 <FileLock，super A>handler）方法的作用是获取此通道文件的独占锁。此方法启动一个操作以获取此通道文件的给定区域的锁。handler参数是在获取锁（或操作失败）时调用的CompletionHandler对象。传递给CompletionHandler的结果是生成的FileLock。

调用此方法ch.lock（att，handler）的行为及方式与ch.lock（0L，Long.MAX_VALUE，false，att，handler）完全相同。参数A代表附件的数据类型。参数attachment代表要附加到IO操作的对象，可以为空。CompletionHandler代表处理程序，用于消耗结果的处理程序。

测试用的代码如下：

public class Test8 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("begin time=" + System.currentTimeMillis());

 channel.lock("我是附加值", new CompletionHandler<FileLock, String>() {

 @Override

 public void completed(FileLock result, String attachment) {

 try {

 System.out.println(

 "public void completed(FileLock result, String attachment)

 attachment=" + attachment);

 result.release();

 channel.close();

 System.out.println("release and close");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 System.out.println(" end time=" + System.currentTimeMillis());

 Thread.sleep(3000);

}

}

上述程序运行后的结果如下：

begin time=1511835578953

 end time=1511835578955

public void completed(FileLock result, String attachment) attachment=我是附加值

release and close

从输出信息

begin time=1511835578953

 end time=1511835578955

可以发现，begin和end的时间非常接近，几乎是相同的时间，这就是异步（asynchronized）的优势。
6.1.6　public void failed（Throwable exc，A attachment）方法调用时机

public void failed（Throwable exc，A attachment）方法被调用的时机是出现I/O操作异常时。

测试用的代码如下：

public class Test9 {

private static AsynchronousFileChannel channel;

public static void main(String[] args) throws IOException, InterruptedException {

 Path path = Paths.get("c:\\abc\\abc.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE,

 StandardOpenOption.READ);

 channel.close();

 channel.lock("我是字符串我是附件", new CompletionHandler<FileLock, String>() {

 @Override

 public void completed(FileLock result, String attachment) {

 try {

 result.release();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment)");

 System.out.println("attachment=" + attachment + " exc.getMessage()=" +

 exc.getMessage());

 System.out.println("exc.getClass().getName()=" + exc.getClass().

 getName());

 }

 });

 Thread.sleep(3000);

}

}

在上述程序运行后，控制台输出的结果如下：

public void failed(Throwable exc, String attachment)

attachment=我是字符串我是附件 exc.getMessage()=null

exc.getClass().getName()=java.nio.channels.ClosedChannelException

6.1.7　执行指定范围的锁定与传入附件及整合接口

public abstract <A> void lock（long position,long size,boolean shared,A attachment,Completi-onHandler<FileLock,？super A> handler）方法的作用是将public abstract Future<FileLock> lock（long position, long size, boolean shared）方法和public final <A> void lock(A attachment,Comp-letionHandler<FileLock,？ super A> handler）方法进行了整合。

测试用的代码如下：

public class Test11 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("begin time=" + System.currentTimeMillis());

 channel.lock(0, 3, false, "我是附加值", new CompletionHandler<FileLock,

 String>() {

 @Override

 public void completed(FileLock result, String attachment) {

 try {

 System.out.println(

 "public void completed(FileLock result, String

 attachment) attachment=" + attachment);

 result.release();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 System.out.println(" end time=" + System.currentTimeMillis());

 Thread.sleep(3000);

 channel.close();

}

}

上述程序运行结果如下：

begin time=1515488588683

 end time=1515488588685

public void completed(FileLock result, String attachment) attachment=我是附加值

6.1.8　执行锁定与传入附件及整合接口CompletionHandler

如果public final小于号 <A>void lock（A attachment，CompletionHandler小于号 <FileLock，super A>handler）

方法获得不到锁，则一直等待。

测试用的A进程代码如下：

public class Test8_1 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("A begin time=" + System.currentTimeMillis());

 channel.lock("我是附加值A", new CompletionHandler<FileLock, String>() {

 @Override

 public void completed(FileLock result, String attachment) {

 try {

 Thread.sleep(9000);

 result.release();

 System.out.println("A release lock time=" + System.current-

 TimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 System.out.println("A end time=" + System.currentTimeMillis());

 Thread.sleep(10000);

 channel.close();

}

}

测试用的B进程代码如下：

public class Test8_2 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("B begin time=" + System.currentTimeMillis());

 channel.lock("我是附加值B", new CompletionHandler<FileLock, String>() {

 @Override

 public void completed(FileLock result, String attachment) {

 try {

 System.out.println(

 "B public void completed(FileLock result, String

 attachment) attachment=" + attachment);

 result.release();

 System.out.println("B get lock time=" + System.current-

 TimeMillis());

 result.release();

 channel.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 System.out.println("B end time=" + System.currentTimeMillis());

 Thread.sleep(50000);

}

}

上述程序运行结果如下：

A begin time=1515488789617

A end time=1515488789619

A release lock time=1515488798619

B begin time=1515488792157

B end time=1515488792159

B public void completed(FileLock result, String attachment) attachment=我是附加值B

B get lock time=1515488798620

时间单位1515488798620减去1515488789617等于9003，说明Test8_1类锁定了9s，9s之后Test8_2类才获得锁。
6.1.9　lock（position，size，shared，attachment，CompletionHandler）方法的特点

如果lock（position，size，shared，attachment，CompletionHandler）方法获得不到锁，则一直等待。

测试用的A进程代码如下：

public class Test11_1 {

public static void main(String[] args) throws IOException, InterruptedException,

ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("A begin time=" + System.currentTimeMillis());

 channel.lock(0, 3, false, "我是附加值A", new CompletionHandler<FileLock,

 String>() {

 @Override

 public void completed(FileLock result, String attachment) {

 try {

 Thread.sleep(9000);

 result.release();

 System.out.println("A release lock time=" + System.current-

 TimeMillis());

 } catch (IOException e) {

 e.printStackTrace();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 System.out.println("A end time=" + System.currentTimeMillis());

 Thread.sleep(10000);

 channel.close();

}

}

测试用的B进程代码如下：

public class Test11_2 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 System.out.println("B begin time=" + System.currentTimeMillis());

 channel.lock(0, 3, false, "我是附加值B", new CompletionHandler<FileLock,

 String>() {

 @Override

 public void completed(FileLock result, String attachment) {

 try {

 System.out.println(

 "B public void completed(FileLock result, String

 attachment) attachment=" + attachment);

 result.release();

 System.out.println("B get lock time=" + System.currentTime-

 Millis());

 result.release();

 channel.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 System.out.println("B end time=" + System.currentTimeMillis());

 Thread.sleep(50000);

}

}

上述程序运行结果如下：

A begin time=1515489173316

A end time=1515489173318

A release lock time=1515489182318

B begin time=1515489175697

B end time=1515489175699

B public void completed(FileLock result, String attachment) attachment=我是附加值B

B get lock time=1515489182320

时间单位1515489182320减去1515489173316等于9004，说明Test11_1类锁定了9s，9s之后Test11_2类才获得锁。
6.1.10　读取数据方式1

public abstract Future小于号 <Integer>read（ByteBuffer dst，long position）方法的作用是从给定的文件位置开始，从该通道将字节序列读入给定的缓冲区。此方法从给定的文件位置开始，将从该通道的字节序列读取到给定的缓冲区。此方法返回Future对象。如果给定位置大于或等于在尝试读取时文件的大小，则Future的get（）方法将返回读取的字节数或-1。

此方法的工作方式与AsynchronousByteChannel.read（ByteBuffer）方法相同，只是从给定文件位置开始读取字节。如果给定的文件位置大于文件在读取时的大小，则不读取任何字节。参数dst代表要将字节传输到的缓冲区。参数position代表开始的文件位置，必须是非负数。

a.txt文件的内容：12345。

测试用的代码如下：

public class Test13 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.READ);

 ByteBuffer buffer = ByteBuffer.allocate(3);

 Future<Integer> future = channel.read(buffer, 0);

 System.out.println("length=" + future.get());

 channel.close();

 byte[] byteArray = buffer.array();

 for (int i = 0; i < byteArray.length; i++) {

 System.out.print((char) byteArray[i]);

 }

}

}

上述程序运行结果如下：

length=3

123

6.1.11　读取数据方式2

a.txt文件的内容：12345。

测试用的代码如下：

public class Test14 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.READ);

 ByteBuffer buffer = ByteBuffer.allocate(3);

 channel.read(buffer, 0, "我是附加的参数", new CompletionHandler<Integer,

 String>() {

 @Override

 public void completed(Integer result, String attachment) {

 System.out.println("public void completed(Integer result, String

 attachment) result=" + result

 + " attachment=" + attachment);

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 channel.close();

 Thread.sleep(2000);

 byte[] byteArray = buffer.array();

 for (int i = 0; i < byteArray.length; i++) {

 System.out.print((char) byteArray[i]);

 }

}

}

上述程序运行结果如下：

public void completed(Integer result, String attachment) result=3 attachment=我是附加的参数

123

6.1.12　写入数据方式1

a.txt文件的内容：12345。

测试用的代码如下：

public class Test15 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 ByteBuffer buffer = ByteBuffer.wrap("abcde".getBytes());

 Future<Integer> future = channel.write(buffer, channel.size());

 System.out.println("length=" + future.get());

 channel.close();

}

}

在上述程序运行后，a.txt文件的内容如下：

12345abcde

6.1.13　写入数据方式2

a.txt文件的内容：12345。

测试用的代码如下：

public class Test16 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 Path path = Paths.get("c:\\abc\\a.txt");

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,

 StandardOpenOption.WRITE);

 ByteBuffer buffer = ByteBuffer.wrap("abcde".getBytes());

 channel.write(buffer, channel.size(), "我是附加的数据", new CompletionHandler<

 Integer, String>() {

 @Override

 public void completed(Integer result, String attachment) {

 System.out.println("public void completed(Integer result, String

 attachment) result=" + result

 + " attachment=" + attachment);

 }

 @Override

 public void failed(Throwable exc, String attachment) {

 System.out.println("public void failed(Throwable exc, String

 attachment) attachment=" + attachment);

 System.out.println("getMessage=" + exc.getMessage());

 }

 });

 channel.close();

 Thread.sleep(2000);

}

}

在上述程序运行后，a.txt文件的内容如下：

12345abcde

控制台输出的结果如下：

public void completed(Integer result, String attachment) result=5 attachment=我是附加的数据

6.2　AsynchronousServerSocketChannel和AsynchronousSocketChannel类的使用

AsynchronousServerSocketChannel类是面向流的侦听套接字的异步通道。1个Asynchronous-ServerSocketChannel通道是通过调用此类的open（）方法创建的。新创建的Asynchronous-ServerSocketChannel已打开但尚未绑定。它可以绑定到本地地址，并通过调用bind（）方法来配置为侦听连接。一旦绑定，accept（）方法被用来启动接受连接到通道的Socket。尝试在未绑定通道上调用accept（）方法将导致引发NotYetBoundException异常。

此类型的通道是线程安全的，可由多个并发线程使用，但在大多数情况下，在任何时候都可以完成一个accept操作。如果线程在上一个接受操作完成之前启动接受操作，则会引发AcceptPendingException异常。

可以使用setOption（）方法设置如下的Socket Option，如图6-1所示。

 [image:]

图6-1　AsynchronousServerSocketChannel支持 的Socket Option

其他的Socket Option是否支持取决于实现。

AsynchronousServerSocketChannel类的使用示例如下：

public static void main(String[] args) throws IOException, InterruptedException, ExecutionException {

 final AsynchronousServerSocketChannel serverSocketChannel = Asynchronous-

 ServerSocketChannel.open()

 .bind(new InetSocketAddress(8088));

 serverSocketChannel.accept(null, new CompletionHandler<AsynchronousSocket

 Channel, Void>() {

 public void completed(AsynchronousSocketChannel ch, Void att) {

 serverSocketChannel.accept(null, this);

 // 方法handle用来处理这个连接

 handle(ch);

 }

 public void failed(Throwable exc, Void att) {

 }

 });

}

AsynchronousServerSocketChannel类的结构信息如图6-2所示。

 [image:]

图6-2　AsynchronousServerSocketChannel类的结构信息

AsynchronousServerSocketChannel类的继承关系如图6-3所示。

 [image:]

图6-3　AsynchronousServerSocketChannel类的继承关系

因为AsynchronousServerSocketChannel类是抽象类，所以不能直接new实例化，需要借助于open（）方法。该类的API列表如图6-4所示。

 [image:]

图6-4　AsynchronousServerSocketChannel类的API列表

AsynchronousSocketChannel类是面向流的连接套接字的异步通道。

使用AsynchronousSocketChannel类的open（）方法创建的是未连接状态的Asynchronous-SocketChannel对象，之后再使用connect（）方法将未连接的AsynchronousSocketChannel变成已连接的AsynchronousSocketChannel对象，详述如下：

1）创建AsynchronousSocketChannel是通过调用此类定义的open（）方法，新创建的AsynchronousSocketChannel呈已打开但尚未连接的状态。当连接到AsynchronousServerSocket-Channel的套接字时，将创建连接的AsynchronousSocketChannel对象。不可能为任意的、预先存在的Socket创建异步套接字通道。

2）通过调用connect（）方法将未连接的通道变成已连接，连接后该通道保持连接，直到关闭。是否连接套接字通道可以通过调用其getRemoteAddress（）方法来确定。尝试在未连接的通道上调用IO操作将导致引发NotYetConnectedException异常。

此类型的通道可以安全地由多个并发线程使用。它们支持并发读写，虽然最多一次读取操作，并且一个写操作可以在任何时候未完成。如果一个线程在上一个读操作完成之前启动了read操作，则会引发ReadPendingException异常。类似的，尝试在前一个写操作完成之前启动一个写运算将会引发一个WritePendingException异常。

可以使用setOption（）方法设置如下的Socket Option，如图6-5所示。

 [image:]

图6-5　AsynchronousSocketChannel支持的Socket Option

其他的Socket Option是否支持取决于实现。

此类定义的read（）和write（）方法允许在启动读或写操作时指定超时。如果在操作完成之前超时，则操作将以InterruptedByTimeoutException异常完成。超时可能会使通道或基础连接处于不一致状态。如果实现不能保证字节没有从通道中读取，那么它就会将通道置于实现特定的错误状态，随后尝试启动读取操作会导致引发未指定的运行时异常。类似的，如果写操作超时并且实现不能保证字节尚未写入信道，则进一步尝试写入信道会导致引发未指定的运行时异常。如果超时时间已过，则不定义I/O操作的缓冲区或缓冲区序列的状态，应丢弃缓冲区，或者至少要注意确保在通道保持打开状态时不访问缓冲区。所有接受超时参数的方法都将值处理得小于或等于零，这意味着I/O操作不会超时。

AsynchronousSocketChannel类的结构信息如图6-6所示。

 [image:]

图6-6　AsynchronousSocketChannel类 的结构信息

AsynchronousSocketChannel类的继承关系如图6-7所示。

 [image:]

图6-7　AsynchronousSocketChannel类的继承关系
6.2.1　接受方式1

测试用的服务端代码如下：

public class Test1 {

public static void main(String[] args) throws IOException, InterruptedException, ExecutionException {

 final AsynchronousServerSocketChannel serverSocketChannel = Asynchronous-

 ServerSocketChannel.open()

 .bind(new InetSocketAddress(8088));

 serverSocketChannel.accept(null, new CompletionHandler<AsynchronousSoc-

 ketChannel, Void>() {

 public void completed(AsynchronousSocketChannel ch, Void att) {

 try {

 serverSocketChannel.accept(null, this);

 System.out.println("public void completed ThreadName=" +

 Thread.currentThread().getName());

 ByteBuffer byteBuffer = ByteBuffer.allocate(20);

 Future<Integer> readFuture = ch.read(byteBuffer);

 System.out.println(new String(byteBuffer.array(), 0, read-

 Future.get()));

 ch.close();

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public void failed(Throwable exc, Void att) {

 System.out.println("public void failed");

 }

 });

 while (true) {

 }

}

}

测试用的客户端代码如下：

public class Test2 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 Socket socket = new Socket("localhost", 8088);

 OutputStream out = socket.getOutputStream();

 out.write("我来自客户端1".getBytes());

 out.flush();

 out.close();

}

}

测试用的客户端2代码如下：

public class Test3 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 AsynchronousSocketChannel socketChannel = AsynchronousSocketChannel.open();

 socketChannel.connect(new InetSocketAddress("localhost", 8088), null,

 new CompletionHandler<Void, Void>() {

 @Override

 public void completed(Void result, Void attachment) {

 try {

 Future<Integer> writeFuture = socketChannel.write(ByteBuffer.

 wrap("我来自客户端2".getBytes()));

 System.out.println("写入大小：" + writeFuture.get());

 socketChannel.close();

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 }

 });

 Thread.sleep(1000);

}

}

首先运行Test1类的实现代码，再运行Test2类的实现代码，控制台输出的结果如下：

public void completed ThreadName=Thread-9

我来自客户端1

然后运行Test3类的实现代码，控制台输出的完整结果如下：

public void completed ThreadName=Thread-9

我来自客户端1

public void completed ThreadName=Thread-9

我来自客户端2

从输出的结果来看，除了main主线程外，还有一个Thread-9线程执行了completed（）方法。
6.2.2　接受方式2

测试用的服务端代码如下：

public class Test4 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 AsynchronousServerSocketChannel serverSocketChannel = Asynchronous-

 ServerSocketChannel.open()

 .bind(new InetSocketAddress(8088));

 System.out.println("A " + System.currentTimeMillis());

 Future<AsynchronousSocketChannel> socketChannelFuture = serverSocket-

 Channel.accept();

 System.out.println("B " + System.currentTimeMillis());

 AsynchronousSocketChannel socketChannel = socketChannelFuture.get();

 System.out.println("C " + System.currentTimeMillis());

 ByteBuffer byteBuffer = ByteBuffer.allocate(20);

 System.out.println("D " + System.currentTimeMillis());

 Future<Integer> readFuture = socketChannel.read(byteBuffer);

 System.out.println("E " + System.currentTimeMillis());

 System.out.println(new String(byteBuffer.array(), 0, readFuture.get()));

 System.out.println("F " + System.currentTimeMillis());

 Thread.sleep(40000);

}

}

首先运行Test4类的实现代码，再运行6.2.1节的Test2类的实现代码，控制台输出的结果如下：

A 1515641822136

B 1515641822137

C 1515641829318

D 1515641829318

E 1515641829319

我来自客户端1

F 1515641829319

再次运行Test4类的实现代码，然后运行6.2.1节的Test3类的实现代码，控制台输出的完整结果如下：

A 1515641851665

B 1515641851666

C 1515641854127

D 1515641854128

E 1515641854128

我来自客户端2

F 1515641854128

6.2.3　重复读与重复写出现异常

测试用的服务端代码如下：

public class Test5 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 AsynchronousServerSocketChannel serverSocketChannel = Asynchronous-

 ServerSocketChannel.open()

 .bind(new InetSocketAddress(8088));

 Future<AsynchronousSocketChannel> socketChannelFuture = serverSocket-

 Channel.accept();

 AsynchronousSocketChannel socketChannel = socketChannelFuture.get();

 ByteBuffer byteBuffer = ByteBuffer.allocate(20);

 Future<Integer> readFuture1 = socketChannel.read(byteBuffer);

 Future<Integer> readFuture2 = socketChannel.read(byteBuffer);

}

}

首先运行Test5类的实现代码，然后运行6.2.1节的Test2类的实现代码，控制台出现的异常如下：

Exception in thread "main" java.nio.channels.ReadPendingException

 at sun.nio.ch.AsynchronousSocketChannelImpl.read(AsynchronousSocketChannel-

 Impl.java:251)

 at sun.nio.ch.AsynchronousSocketChannelImpl.read(AsynchronousSocketChannel-

 Impl.java:283)

 at AsynchronousServerSocketChannelAPITest.Test5.main(Test5.java:19)

因为read（）方法是非阻塞的，所以执行第1个read（）方法后立即继续执行第2个read（）方法，但由于第1个read（）方法并没有完成读的操作，因为并没有调用future.get（）方法，因此出现ReadPendingException异常。

重复写也是同样的道理，出现WritePendingException异常，在此不再举例说明。
6.2.4　读数据

public abstract小于号 <A>void read（ByteBuffer dst，long timeout，TimeUnit unit，A attachment，Co-mpletionHandler小于号 <Integer，super A>handler）方法的作用是将此通道中的字节序列读入给定的缓冲区。此方法启动一个异步读取操作，以便将该通道中的字节序列读入给定的缓冲区。handler参数是在读取操作完成或失败时调用的CompletionHandler。传递给completed（）方法的结果是读取的字节数，如果无法读取字节，则为-1，因为信道已达到end-of-stream。

如果指定了timeout并且在操作完成之前发生超时的情况，则操作将以异常Interrupted-ByTimeoutException完成。在发生超时的情况下，实现无法保证字节没有被读取，或者不会从通道读取到给定的缓冲区，那么进一步尝试从通道读取将导致引发不运行时异常，否则，此方法的工作方式与public final小于号 <A>void read（ByteBuffer dst，A attachment，CompletionHandler小于号 <Integer，super A>handler）方法相同。

创建正常传输数据的服务端，其测试用的代码如下：

public class Test7_1 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 final AsynchronousServerSocketChannel serverSocketChannel = Asynchronous-

 ServerSocketChannel.open()

 .bind(new InetSocketAddress(8088));

 serverSocketChannel.accept(null, new CompletionHandler<AsynchronousSoc-

 ketChannel, Void>() {

 public void completed(AsynchronousSocketChannel ch, Void att) {

 serverSocketChannel.accept(null, this);// continue next accept

 ByteBuffer byteBuffer = ByteBuffer.allocate(Integer.MAX_VALUE / 100);

 ch.read(byteBuffer, 10, TimeUnit.SECONDS, null, new Completion-

 Handler<Integer, Void>() {

 @Override

 public void completed(Integer result, Void attachment) {

 if (result == -1) {

 System.out.println("客户端没有传输数据就执行close了，到

 stream end");

 }

 if (result == byteBuffer.limit()) {

 System.out.println("服务端获得客户端完整数据");

 }

 try {

 ch.close();

 System.out.println("服务端close");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("read public void failed(Throwable

 exc, Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().

 getName());

 }

 });

 }

 public void failed(Throwable exc, Void att) {

 System.out.println("accept public void failed");

 }

 });

 while (true) {

 }

}

}

创建正常传输数据的客户端，创建测试用的代码如下：

public class Test8 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 final AsynchronousSocketChannel socketChannel = AsynchronousSocket-

 Channel.open();

 socketChannel.connect(new InetSocketAddress("localhost", 8088), null,

 new CompletionHandler<Void, Void>() {

 @Override

 public void completed(Void result, Void attachment) {

 try {

 ByteBuffer byteBuffer = ByteBuffer.allocate(Integer.MAX_

 VALUE / 100);

 for (int i = 0; i < Integer.MAX_VALUE / 100 - 3; i++) {

 byteBuffer.put("1".getBytes());

 }

 byteBuffer.put("end".getBytes());

 byteBuffer.flip();

 int writeSum = 0;

 // 由于write()方法是异步的，所以执行write()方法后

 // 并不能100%将数据写出，所以得通过writeLength变量

 // 来判断具体写出多少字节的数据

 while (writeSum < byteBuffer.limit()) {

 Future<Integer> writeFuture = socketChannel.write(byteBuffer);

 Integer writeLength = writeFuture.get();

 writeSum = writeSum + writeLength;

 }

 socketChannel.close();

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (ExecutionException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("connect public void failed(Throwable exc,

 Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().getName());

 }

 });

 Thread.sleep(10000);

}

}

运行Test7_1.java和Test8.java后控制台输出结果如下：

服务端获得客户端完整数据

服务端close

验证出现读超时异常，创建测试用的代码如下：

public class Test7_2 {

public static void main(String[] args) throws IOException, InterruptedException, ExecutionException {

 final AsynchronousServerSocketChannel serverSocketChannel = Asynchronous-

 ServerSocketChannel.open()

 .bind(new InetSocketAddress(8088));

 serverSocketChannel.accept(null, new CompletionHandler<AsynchronousSoc-

 ketChannel, Void>() {

 public void completed(AsynchronousSocketChannel ch, Void att) {

 serverSocketChannel.accept(null, this);// continue next accept

 ByteBuffer byteBuffer = ByteBuffer.allocate(Integer.MAX_VALUE / 100);

 ch.read(byteBuffer, 1, TimeUnit.MICROSECONDS, null, new Comp-

 letionHandler<Integer, Void>() {

 @Override

 public void completed(Integer result, Void attachment) {

 if (result == -1) {

 System.out.println("客户端没有传输数据就执行close了，到

 stream end");

 }

 if (result == byteBuffer.limit()) {

 System.out.println("服务端获得客户端完整数据");

 }

 try {

 ch.close();

 System.out.println("服务端close");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("read public void failed(Throwable

 exc, Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().

 getName());

 }

 });

 }

 public void failed(Throwable exc, Void att) {

 System.out.println("accept public void failed");

 }

 });

 while (true) {

 }

}

}

运行Test7_2.java和Test8.java后，控制台输出结果如下：

read public void failed(Throwable exc, Void attachment)

exc getMessage()=java.nio.channels.InterruptedByTimeoutException

验证result == -1的情况，测试代码如下：

public class Test9 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 final AsynchronousSocketChannel socketChannel = AsynchronousSocketChannel.

 open();

 socketChannel.connect(new InetSocketAddress("localhost", 8088), null,

 new CompletionHandler<Void, Void>() {

 @Override

 public void completed(Void result, Void attachment) {

 try {

 socketChannel.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("connect public void failed(Throwable exc,

 Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().getName());

 }

 });

 Thread.sleep(10000);

}

}

运行Test7_1.java和Test9.java后，控制台输出结果如下：

客户端没有传输数据就执行close了，到stream end

服务端close

6.2.5　写数据

public abstract小于号 <A>void write（ByteBuffer src，long timeout，TimeUnit unit，A attachment，Co-mpletionHandler小于号 <Integer，super A>handler）方法的作用是从给定缓冲区向此通道写入一个字节序列。此方法启动异步写入操作，以便从给定缓冲区向此通道写入一个字节序列。handler参数是在写操作完成或失败时调用的CompletionHandler。传递给completed（）方法的结果是写入的字节数。

如果指定了timeout，并且在操作完成之前发生了超时，则它将以异常Interrupted-ByTimeoutException完成。如果发生超时，并且实现无法保证字节尚未写入或不会从给定的缓冲区写入通道，则进一步尝试写入信道将导致引发不运行时异常，否则，此方法的工作方式与public final小于号 <A>void write（ByteBuffer src，A attachment，CompletionHandler小于号 <Integer，super A>handler）方法相同。

测试用的服务端代码如下：

public class Test10 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 final AsynchronousServerSocketChannel serverSocketChannel = Asynchronous-

 ServerSocketChannel.open()

 .bind(new InetSocketAddress(8088));

 serverSocketChannel.accept(null, new CompletionHandler<AsynchronousSoc-

 ketChannel, Void>() {

 public void completed(AsynchronousSocketChannel ch, Void att) {

 serverSocketChannel.accept(null, this);// 继续下一个accept接作

 ByteBuffer byteBuffer = ByteBuffer.allocate(Integer.MAX_VALUE / 100);

 ch.read(byteBuffer, 10, TimeUnit.SECONDS, null, new Completion-

 Handler<Integer, Void>() {

 @Override

 public void completed(Integer result, Void attachment) {

 if (result == -1) {

 System.out.println("客户端没有传输数据就执行close了，到stream

 end");

 }

 if (result == byteBuffer.limit()) {

 System.out.println("服务端获得客户端完整数据");

 }

 try {

 ch.close();

 System.out.println("服务端close");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("read public void failed(Throwable

 exc, Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().

 getName());

 }

 });

 }

 public void failed(Throwable exc, Void att) {

 System.out.println("accept public void failed");

 }

 });

 while (true) {

 }

}

}

测试正常写操作的客户端代码如下：

public class Test11_1 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 final AsynchronousSocketChannel socketChannel = AsynchronousSocketChannel.

 open();

 socketChannel.connect(new InetSocketAddress("localhost", 8088), null,

 new CompletionHandler<Void, Void>() {

 @Override

 public void completed(Void result, Void attachment) {

 ByteBuffer byteBuffer = ByteBuffer.allocate(Integer.MAX_VALUE / 100);

 for (int i = 0; i < Integer.MAX_VALUE / 100 - 3; i++) {

 byteBuffer.put("1".getBytes());

 }

 byteBuffer.put("end".getBytes());

 byteBuffer.flip();

 socketChannel.write(byteBuffer, 1, TimeUnit.SECONDS, null, new

 CompletionHandler<Integer, Void>() {

 @Override

 public void completed(Integer result, Void attachment) {

 try {

 socketChannel.close();

 System.out.println("client close");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("write public void failed(Throwable

 exc, Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().

 getName());

 }

 });

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("connect public void failed(Throwable exc,

 Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().getName());

 }

 });

 Thread.sleep(5000);

}

}

运行Test10.java和Test11_1.java后控制台输出结果如下：

服务端获得客户端完整数据

服务端close

测试写操作超时的客户端代码如下：

public class Test11_2 {

public static void main(String[] args) throws IOException, Interrupted-

Exception, ExecutionException {

 final AsynchronousSocketChannel socketChannel = AsynchronousSocket-

 Channel.open();

 socketChannel.connect(new InetSocketAddress("localhost", 8088), null,

 new CompletionHandler<Void, Void>() {

 @Override

 public void completed(Void result, Void attachment) {

 ByteBuffer byteBuffer = ByteBuffer.allocate(Integer.MAX_VALUE / 100);

 for (int i = 0; i < Integer.MAX_VALUE / 100 - 3; i++) {

 byteBuffer.put("1".getBytes());

 }

 byteBuffer.put("end".getBytes());

 byteBuffer.flip();

 socketChannel.write(byteBuffer, 1, TimeUnit.MILLISECONDS, null,

 new CompletionHandler<Integer, Void>() {

 @Override

 public void completed(Integer result, Void attachment) {

 try {

 socketChannel.close();

 System.out.println("client close");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("write public void failed(Throwable

 exc, Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().

 getName());

 }

 });

 }

 @Override

 public void failed(Throwable exc, Void attachment) {

 System.out.println("connect public void failed(Throwable exc,

 Void attachment)");

 System.out.println("exc getMessage()=" + exc.getClass().getName());

 }

 });

 Thread.sleep(5000);

}

}

运行Test10.java和Test11_2.java后，控制台输出结果如下：

write public void failed(Throwable exc, Void attachment)

exc getMessage()=java.nio.channels.InterruptedByTimeoutException

还有另外两个方法：

1）read(dsts, offset, length, timeout, unit, attachment, handler);

2）ch.write(srcs, offset, length, timeout, unit, attachment, handler);

功能就是分散读、聚合写。这两个方法与以下两个方法功能非常相似，在此不再重复演示。

1）ch.read(dst, timeout, unit, attachment, handler);

2）ch.write(src, timeout, unit, attachment, handler);

6.3　同步、异步、阻塞与非阻塞之间的关系

同步、异步、阻塞与非阻塞可以组合成以下4种排列：

1）同步阻塞

2）同步非阻塞

3）异步阻塞

4）异步非阻塞

在使用普通的InputStream、OutputStream类时，就是属于同步阻塞，因为执行当前读写任务一直是当前线程，并且读不到或写不出去就一直是阻塞的状态。阻塞的意思就是方法不返回，直到读到数据或写出数据为止。

NIO技术属于同步非阻塞。当执行“serverSocketChannel.configureBlocking（false）”代码后，也是一直由当前的线程在执行读写操作，但是读不到数据或数据写不出去时读写方法就返回了，继续执行读或写后面的代码。

而异步当然就是指多个线程间的通信。例如，A线程发起一个读操作，这个读操作要B线程进行实现，A线程和B线程就是异步执行了。A线程还要继续做其他的事情，这时B线程开始工作，如果读不到数据，B线程就呈阻塞状态了，如果读到数据，就通知A线程，并且将拿到的数据交给A线程，这种情况是异步阻塞。

最后一种是异步非阻塞，是指A线程发起一个读操作，这个读操作要B线程进行实现，因为A线程还要继续做其他的事情，这时B线程开始工作，如果读不到数据，B线程就继续执行后面的代码，直到读到数据时，B线程就通知A线程，并且将拿到的数据交给A线程。

从大的概念上来讲，同步和异步关注的是消息通信机制，阻塞和非阻塞关注的是程序在等待调用结果时的状态。文件通道永远都是阻塞的，不能设置成非阻塞模式。

首先一个I/O操作其实分成了两个步骤：

1）发起I/O请求；

2）实际的I/O操作。

同步I/O和异步I/O的区别就在于第二个步骤是否阻塞。如果实际的I/O读写阻塞请求进程，那么就是同步I/O。因此，阻塞I/O、非阻塞I/O、I/O复用、信号驱动I/O都是同步I/O。如果不阻塞，而是操作系统帮用户做完IO操作再将结果返回给用户，那么就是异步I/O。

阻塞I/O和非阻塞I/O的区别在于第一步，即发起I/O请求是否会被阻塞。如果阻塞直到完成，那么就是传统的阻塞I/O；如果不阻塞，那么就是非阻塞I/O。
6.4　小结

本章介绍了AIO技术的使用，读者应该着重掌握与Socket有关的异步技术，因为该技术是开发高性能的软件项目必备的技能。在Java SE技术中，笔者认为有4个技术是重点，分别是多线程、并发、Socket及NIO/AIO，只有将这4个知识点进行全面掌握，才可以开始学习架构/高并发/高可用等与互联网有关的技术。
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
BAGHAEENS, BERALSHERRBERA: NIOSSocket
E MUEBMAS), ERMEPROEA, SRR, HE. BEELRETF @
TR Socket TCPIPAIUDPHRIE

NIO5Socket
IifEBi AR

NIO and Socket Programming Technical Guide

mitE &

@ﬂu:mggg
inG Machine Press

