

 Nginx Lua开发实战

 	
 第1章 Nginx高效服务器

 	
 1.1 Nginx的特点

 	
 1.2 Nginx的安装

 	
 1.3 configure命令参数

 	
 1.4 小结

 	
 第2章 数据库的基本操作

 	
 2.1 Nginx应用中的数据库

 	
 2.2 MySQL关系型数据库

 	
 2.3 Redis内存数据库

 	
 2.4 PostgreSQL关系型数据库

 	
 2.5 Memcached内存数据库

 	
 2.6 MongoDB分布式NoSQL数据库

 	
 2.7 小结

 	
 第3章 OpenResty

 	
 3.1 OpenResty：概述

 	
 3.2 OpenResty的组成

 	
 3.3 OpenResty的安装

 	
 3.4 Nginx多实例

 	
 3.5 小结

 	
 第4章 Nginx核心技术

 	
 4.1 Nginx设计目标

 	
 4.2 Nginx架构

 	
 4.3 小结

 	
 第5章 Nginx的工作流程

 	
 5.1 Nginx的启动流程

 	
 5.2 管理进程的工作流程

 	
 5.3 工作进程的工作流程

 	
 5.4 配置加载流程

 	
 5.5 HTTP框架初始化流程

 	
 5.6 HTTP模块调用流程

 	
 5.7 HTTP请求处理流程

 	
 5.8 小结

 	
 第二部分 Lua脚本语言

 	
 第6章 Lua教程

 	
 6.1 Lua基础

 	
 6.2 Lua基本语法

 	
 6.3 Lua的数据类型

 	
 6.4 Lua变量

 	
 6.5 Lua循环

 	
 6.6 Lua流程控制

 	
 6.7 Lua函数

 	
 6.8 Lua运算符

 	
 6.9 Lua字符串

 	
 6.10 Lua数组

 	
 6.11 Lua迭代器

 	
 6.12 Lua表

 	
 6.13 Lua模块与包

 	
 6.14 Lua元表

 	
 6.15 Lua协同程序

 	
 6.16 Lua错误处理

 	
 6.17 Lua调试

 	
 6.18 Lua垃圾回收

 	
 6.19 Lua面向对象

 	
 6.20 Lua数据库访问

 	
 6.21 小结

 	
 第7章 Lua通用库

 	
 7.1 字符串库

 	
 7.2 表库

 	
 7.3 文件I/O库

 	
 7.4 数学库

 	
 7.5 操作系统库

 	
 7.6 小结

 	
 第三部分 Nginx开发技术

 	
 第8章 JSON数据交换格式

 	
 8.1 什么是JSON

 	
 8.2 JSON转换为JavaScript对象

 	
 8.3 JSON与XML的比较

 	
 8.4 JSON语法规则

 	
 8.5 格式化

 	
 8.6 小结

 	
 第9章 nginx.conf文件配置

 	
 9.1 默认nginx.conf文件

 	
 9.2 nginx.conf示例

 	
 9.3 全局配置与顶层配置块

 	
 9.4 中文版nginx.conf

 	
 9.5 小结

 	
 第10章 Nginx下Lua实现机制

 	
 10.1 ngx_lua原理

 	
 10.2 HTTP请求的处理阶段

 	
 10.3 ngx_lua的处理阶段

 	
 10.4 Lua阶段解析

 	
 10.5 小结

 	
 第四部分 Nginx Lua开发实战

 	
 第11章 Redis操作

 	
 11.1 Redis操作方法概述

 	
 11.2 HttpRedis访问方法

 	
 11.3 HttpRedis2Module访问方法

 	
 11.4 lua-resty-redis访问方法

 	
 11.5 小结

 	
 第12章 MySQL操作

 	
 12.1 lua-restry-mysql访问方式

 	
 12.2 HttpDrizzleModule访问方式

 	
 12.3 HttpDrizzleModule完整示例

 	
 12.4 小结

 	
 第13章 Memcached操作

 	
 13.1 mem-nginx-module访问方式

 	
 13.2 lua-resty-memcached访问方式

 	
 13.3 小结

 	
 第14章 PostgreSQL操作

 	
 14.1 概述

 	
 14.2 配置指令

 	
 14.3 配置变量

 	
 14.4 示例

 	
 14.5 小结

 	
 第15章 MongoDB操作

 	
 15.1 安装

 	
 15.2 配置

 	
 15.3 操作函数

 	
 15.4 示例

 	
 15.5 小结

 	
 第16章 bit库的使用

 	
 16.1 示例

 	
 16.2 安装

 	
 16.3 函数

 	
 16.4 说明

 	
 16.5 小结

 	
 第17章 lfs库的使用

 	
 17.1 目录迭代示例

 	
 17.2 安装

 	
 17.3 LuaFileSystem函数

 	
 17.4 小结

 	
 第18章 resty.http库的使用

 	
 18.1 安装

 	
 18.2 概述

 	
 18.3 函数

 	
 18.4 小结

 	
 第19章 lcurl库的使用

 	
 19.1 安装

 	
 19.2 示例

 	
 19.3 函数

 	
 19.4 常用变量

 	
 19.5 完整示例

 	
 19.6 小结

 	
 第20章 FFI扩展C库

 	
 20.1 示例

 	
 20.2 FFI库的使用

 	
 20.3 FFI API

 	
 20.4 调用curl库的完整示例

 	
 20.5 小结

 	
 第21章 cjson库的使用

 	
 21.1 示例

 	
 21.2 函数

 	
 21.3 变量

 	
 21.4 小结

 	
 第22章 lua-resty-template类的使用

 	
 22.1 示例

 	
 22.2 模板符号

 	
 22.3 安装

 	
 22.4 Lua API

 	
 22.5 模板预编译

 	
 22.6 模板助手

 	
 22.7 用法示例

 	
 22.8 FAQ

 	
 22.9 小结

 	
 第23章 WebSocket的使用

 	
 23.1 示例

 	
 23.2 安装

 	
 23.3 resty.websocket.server

 	
 23.4 resty.websocket.client

 	
 23.5 resty.websocket.protocol

 	
 23.6 使用注意事项

 	
 23.7 小结

 	
 第24章 TCP私有服务器实例

 	
 24.1 协议

 	
 24.2 DDP系统架构

 	
 24.3 DDP服务实现

 	
 24.4 小结

 	
 第25章 WebSocket接入服务器实战

 	
 25.1 nginx.conf内容

 	
 25.2 ws_svr.lua内容

 	
 25.3 update_alarts代码

 	
 25.4 小结

 	
 第26章 Nginx应用简述

 	
 26.1 简单系统

 	
 26.2 读写分离系统

 	
 26.3 引入缓存系统

 	
 26.4 缓存主从系统

 	
 26.5 小结

 	
 第五部分 开发手册

 	
 第27章 ngx_lua_module模块配置指令详解

 	
 27.1 概述

 	
 27.2 Lua配置顺序

 	
 27.3 配置指令

 	
 27.4 小结

 	
 第28章 ngx_lua API详解

 	
 28.1 概述

 	
 28.2 API与常量

 	
 28.3 小结

 第1章　Nginx高效服务器

Nginx是一款轻量级的Web服务器，特点是高性能、高并发。它由俄罗斯程序设计师Igor Sysoev开发，供俄国大型入口网站及搜索引擎Rambler使用。Nginx在BSD-like协议下发行，是一款高性能Web服务器，目前在Web服务器中排名第二。虽然Apache还是全球Web服务器的“老大”，但是Nginx已经占到了Wed服务器市场22%以上的份额，是成长最快的Web服务器。Nginx使用了大量的高并发和低内存占用技术，并使用了高可靠性技术，拥有高过Apache一个数量级以上的接入能力。因为并发能力强的特点，Nginx在中国的互联网公司中得到了大量应用，中国的大型互联网公司无一不使用了Nginx，以应对中国众多的网民，以及各种抢购热潮（如“双十一”）、世界杯等热点事件。Nginx在这种大量的流量涌入、需要分流、导流、反向代理的场合下得到大量应用。
1.1　Nginx的特点

与其他Web服务器相比，Nginx具有以下显著特点。

1.速度更快

Nginx使用了预读、连接池、内存池等技术，使得单次HTTP请求速度更快。同时，因为其整体的多进程架构以及轻任务思想，在更多连接的情况下（以万为单位的并发情况下），Nginx比其他Web服务器速度更快。

2.扩展性好

Nginx的结构是“核心+模块”的结构，Nginx本身就是一个基于Epoll或Kqueue的事件处理和分发架构，管理HTTP主流程，其他功能都可以通过模块实现。模块专注于自身功能实现，可以更稳定，模块的升级和修复不影响其他功能以及核心本身。模块可以不断添加或升级，如事件（event）模块、代理模块、过滤模块、请求地址获取模块、地址转换模块、应答处理模块、日志模块等。Nginx提供了众多的模块以供选择，可以配置出不同行为的Web服务器。

Nginx提供了C级别的模块开发机制，但C级别的开发需要遵从复杂的数据结构。现在可以通过ngx_lua模块以Lua脚本实现业务逻辑。得益于Lua协程的支持，ngx_lua在万级并发请求时只占用很少的内存，而性能都是万级（Operation Per Second，每秒操作次数），这使得Nginx的扩展性更好。

3.高可靠性

得益于整体架构的优秀以及模块设计的简单性，Nginx拥有极高的可靠性，在各大型网站中得到了认可。Nginx核心由一个任务很轻的管理进程（master进程）和若干工作进程（worker进程）组成。具体的HTTP请求在工作进程内负载均衡，如果某个工作进程异常终止了，管理进程会迅速重启一个新的工作进程接替该进程。

4.低内存占用

一般情况下，10000个非活跃的HTTP保活连接仅占用2.5MB内存。而ngx_lua每扩展10000个连接也仅占2.xMB内存，使得Nginx可以大量部署。

5.高并发能力

一般Nginx是部署在万级以上的场合下。为了应付海量的请求，各网站都需要单机能处理峰值10万以上并发请求的Web服务器。理论上，Nginx处理能力的上限仅受内存限制，简单的业务场景下Nginx还可以提供更高的处理能力。

Nginx全异步、非阻塞I/O的思想贯穿在核心、模块以及ngx_lua模块中，无论是自己实现的模块，还是通过Lua实现的脚本代码，都是非阻塞地高速运行。

6.热部署

因为Nginx的管理进程和工作进程是分开设计的，所以可以实现热部署功能，即能在系统不间断的情况下升级可执行程序、更新配置文件、更新日志文件等。

7.开源

Nginx遵守相对自由的BSD协议。用户可以自由使用Nginx，还可以自由修改和使用Nginx的源码。用户可以在节省大量时间和成本的情况下，得到一个高性能的服务器框架。
1.2　Nginx的安装

Nginx有预编译版本、源码，因为我们进行的是Nginx配套的开发工作，考虑到功能、性能等原因，源码安装方法更适合本书读者，故这里主要介绍源码安装方法。

另外，有一个OpenResty项目将Nginx整合进Lua、LuaJIT和其他配合组件，形成一个多功能的开发型Web服务器套件，因为我们学习Lua开发，所以推荐使用OpenResty，本章介绍的Nginx安装方法可供读者自定义系统时参考。

因为典型的互联网应用基本安装在Linux上，所以，本文中的安装和编译均以Linux为例，系统为CentOS，用其他Linux发布包将对应工具换下即可。

1.下载Nginx源文件

安装文件与源码可以从Nginx官网下载，地址为http://nginx.org/en/download.html。

我们需要下载源码，本书以1.10.0版本为例。

下载：

wget http://nginx.org/download/nginx-1.10.0.tar.gz

解压：

tar -zxvf nginx-1.10.0.tar.gz

2.检查安装依赖项

要使用Nginx常用功能，首先需要确保操作系统上至少安装如下软件。

1）GCC（GNU Compiler Collection）：用来编译C语言程序。在使用源码方式安装Nginx时，需要使用GCC编译Nginx及后面要用到的模块源码。

2）PCRE（Perl Compatible Regular Expressions，Perl兼容正则表达式）：由Philip Hazel开发的函数库，目前为很多软件使用，支持正则表达式，由RegEx发展而来。ngx_lua中的ngx.re.*系列API需要使用PCRE库。如果在nginx.conf中使用了正则表达式，那么编译Nginx时就必须把PCRE库编译进Nginx，Nginx中的HTTP模块要靠它解析正则表达式。通常情况下都会用到正则表达式。

3）Zlib库：用于对HTTP报文内容做gzip格式压缩，如果在nginx.conf中配置了gzip on，并指定某些Content-Type的HTTP应答包体使用gzip进行压缩，以减小网络传输量，那么就需要在编译Nginx时指定zlib，将其编译进Nginx。

4）OpenSSL库：使用HTTPS在SSL上传输HTTP，就需要安装OpenSSL。另外，在ngx_lua中使用MD5、SHA1等散列函数时，也需要安装OpenSSL。

Nginx的特点是高性能和定制灵活，实现多功能的Web服务，所以各种模块可以根据需求组合。这些模块可能使用到其他支撑的基础库，因此需要保证这些库的正确安装，上面列出的4个库就是基础库，如果用到了其他库，也需要首先安装，具体需求参见模块的相关文档和手册。

在Nginx上安装工具的方法很多，我们可以使用yum安装，相对比较简单，命令如下：

yum -y install gcc pcre pcre-devel zlib zlib-devel openssl openssl-devel

也可以分步骤安装，命令如下：

yum install –y gcc

yum install –y gcc-c++

yum install –y pcre pcre-devel

yum install –y openssl openssl-devel

3.Linux内核参数优化

默认的Linux内核参数适合于通用的场景。Linux的特点是可以根据不同的应用场景调整内核参数以及安装的包和工具，使之成为专用的服务器。通常Linux用作各种服务器更为合适，作为高性能的Web服务器的基础服务是比较典型的应用。

当Nginx作为静态Web服务器、反向代理服务器等不同服务器时，所需的内核参数是不同的，本文针对通常的多并发Nginx应用，给出内核参数修改样表。

修改/etc/sysctl.conf，常用配置如下：

fs.file-max = 999999

net.core.netdev_max_backlog = 8096

net.core.rmem_default = 262144

net.core.wmem_default = 262144

net.core.rmem_max = 2097152

net.core.wmem_max = 2097152

net.ipv4.tcp_tw_reuse = 1

net.ipv4.tcp_keepalive_time = 600

net.ipv4.tcp_fin_timeout = 30

net.ipv4.tcp_max_tw_buckets = 5000

net.ipv4.ip_local_port_range = 1024 61000

net.ipv4.tcp_rmem = 4096 32768 262142

net.ipv4.tcp_wmen = 4096 32768 262142

net.ipv4.tcp_syncookies = 1

net.ipv4.tcp_max_syn_backlog = 1024

执行sysctl–p命令，使修改生效。

各内核参数的作用如下。

1）fs.file-max：表示进程（在Nginx里指一个工作进程）可以同时打开的最大句柄数。本参数影响最大并发连接数。

2）net.ipv4.tcp_syncookies：解决TCP的SYN攻击。

3）net.ipv4.tcp_tw_reuse：参数为1时表示允许将TIME_WAIT状态的套接字重新用于新的TCP连接。服务器上的TCP协议栈在工作时会有大量的TIME_WAIT状态连接，重新使用这些连接对于服务器处理大并发连接非常有用。

4）net.ipv4.tcp_keepalive_time：表示当keepalive启用时，TCP发送keepalive消息的频率。默认为2小时，如果本值变小，可以更快地清理无效的连接。

5）net.ipv4.tcp_fine_timeout：表示服务器主动关闭连接时，套接字的FIN_WAIT-2状态最大时间。

6）net.ipv4.tcp_max_tw_buckets：表示操作系统允许的TIME_WAIT套接字数量的最大值。当超过这个值，TIME_WAIT状态的套接字被立即清除并输出警告消息，默认值为180000，过多的TIME_WAIT套接字会使服务器速度变慢。

7）net.ipv4.tcp_max_syn_backlog：表示TCP三次握手阶段SYN请求队列最大值，默认为1024。调置为更大的值可以使Nginx在非常繁忙的情况下，若来不及接收新的连接时，Linux不至于丢失客户端新创建的连接请求。

8）net.ipv4.ip_local_port_range：定义UDP和TCP连接中本地端口范围（不包括连接到远端的端口）。

9）net.ipv4.tcp_rmen：定义TCP接收缓存（TCP接收窗口）的最小值、默认值、最大值。

10）net.ipv4.tcp_wmen：定义TCP发送缓存（TCP发送窗口）的最小值、默认值、最大值。

11）net.core.netdev_max_backlog：当网卡接收报文速度大于内核处理速度时，本参数设置这个缓冲队列最大值。

12）net.core.rmem_default：表示内核套接字接收缓冲区默认值。

13）net.core.wmem_default：表示内核套接字发送缓冲区默认值。

14）net.core.rmem_max：表示内核套接字接收缓冲区最大值。

15）net.core.wmem_max：表示内核套接字发送缓冲区最大值。

4.配置安装选项

通常Nginx安装在/opt或/usr/local目录下。其他配置选项根据需要选择，具体意义和使用方法参见1.3节中各个配置项分类表格，或使用./configuration–help命令查看。对于具体的ngx_lua API使用中所需要的参数，也可以在API章节查看API描述。

配置命令如下：

./configure –prefix=/opt/nginx –sbin-path=/opt/nginx/sbin/nginx

5.编译与安装

命令如下：

make

make install

未在./configuration中指定目录的情况下，Nginx默认会安装到/usr/local/nginx目录下。安装后的Nginx可以通过复制创建新实例，以方便调试和开发。

6.启动、停止、重启

启动命令如下：

/opt/nginx/sbin/nginx –p /opt/nginx/

如果在编译的时候通过--prefix和--sbin-path指定了目录，可以直接使用Nginx启动。

-p指定Nginx的目录。因为同一台服务器可以运行多个Nginx实例，所以需要指定当前实例的目录。这个参数将影响很多ngx_lua API中文件参数的检索。通常将配置文件等均放在指定目录下面。

多个Nginx实例可以编译不同的参数和模块，以实现不同的应用。

在本机浏览器中输入http://127.0.0.1或在其他机器上输入Nginx所在服务器IP，如果看到了“Welcome to nginx”页面，表示nginx启动成功。

停止命令如下：

/opt/nginx/sbin/nginx –p /opt/nginx –s stop

如果编译时指定了Nginx的工作目录，可以直接使用nginx–s stop启动。

重启（重新载入配置文件）命令如下：

/opt/nginx/sbin/nginx –p /opt/nginx –s reload

如果编译时指定了目录，可以直接使用nginx–s reload重启。
1.3　configure命令参数

使用configure命令参数可以在新编译的Nginx程序里打包指定的模块，或去除指定的模块，这样可以自定义Nginx功能，同时可以减少内存占用。下面介绍常用的configure命令参数。

1.编译参数

编译器相关参数如表1-1所示。

表1-1　编译器相关参数

 [image:]

2.路径参数

configures支持的路径参数如表1-2所示。

表1-2　configure支持的路径参数

 [image:]

 [image:]

3.依赖参数

依赖参数如表1-3所示。

表1-3　依赖参数

 [image:]

 [image:]

4.模块参数

Nginx的架构分为核心代码（Nginx core）和功能模块（module），以模块形式实现灵活而强大的功能。模块根据需求灵活使用，需要在configure阶段把需要用到的模块加载到Nginx中来。

Nginx的模块大致可以分为核心事件（event）模块、默认会编译进Nginx的HTTP模块、默认不会编译进Nginx的HTTP模块和其他模块。

Nginx的核心事件模块相关参数如表1-4所示。

表1-4　Nginx的核心事件模块相关参数

 [image:]

默认会编译进Nginx的HTTP模块如表1-5所示。

表1-5　默认会编译进Nginx的HTTP模块

 [image:]

 [image:]

默认不会编译进Nginx的HTTP模块如表1-6所示。

表1-6　默认不会编译进Nginx中的HTTP模块

 [image:]

 [image:]

其他Configure参数如表1-7所示。

表1-7　其他configure参数

 [image:]

 [image:]

1.4　小结

本章介绍了Nginx服务器的特点、以源码方式编译和安装Nginx的方法、Nginx常用操作，并分类别介绍了configure命令参数。
第2章　数据库的基本操作

Nginx应用系统通过以Nginx为核心，合理搭配Redis、Memcached、MySQL、Postgre-SQL、MongoDB等服务器，可起到数据内存缓存、内存数据库、关系型数据库、NoSQL数据库等作用。互联网系统上有各种关系型数据需要存储，需要用到关系型数据库。互联网要应对大量的高并发请求，就需要高速处理HTTP请求，需要用到各种数据缓存、页面缓存、操作缓存等。同时互联网上有大量的结构化非关系型数据要存储，还有各类音/视频、图片要缓存，需要用到各类内存型数据库、NoSQL数据库等，以形成完整的应用。所以本章将从这些数据库、缓存产品的作用、特点、安装方法、常用命令及配置文件解析展开。
2.1　Nginx应用中的数据库

在互联网公司，Nginx基本是标配组件，主要场景是负载均衡、反向代理、代理缓存、限流等场景，而把Nginx作为一个Web容器使用还不是那么广泛。但是因为Nginx的二次开发性非常好，所以很多公司会以Nginx为核心开发业务系统，在系统中容纳各种服务和组件，组成一个开放的、易于扩展的系统，以实现高容量和分布式的架构。

通常，互联网上的系统是分布式、集群式，由若干功能相同的服务器组成集群，以响应大并发请求。分布式系统提供并行处理能力和内存型数据缓存或存储功能。目前流行的架构是Hadoop，Map-Reduce式的并行处理架构提供了并行处理能力，一个任务被分解成多个Map处理任务，同时被多个系统或主机处理，结果经Reduce转换成用户响应。分布式存储也是类似的机制，互联网上的数据大量被存储在廉价主机的内存中，在根服务的调度下响应用户请求。这就需要用到各种关系型数据库存储关系型数据，用到内存缓存以缓存图片、音频、视频等数据，用到内存数据库以缓存和存储各种NoSQL和SQL数据。不同的应用使用不同的数据组件，以形成需要的应用功能。

一个常见的Nginx应用如图2-1所示。一个典型的应用可以使用Nginx作为负载均衡器或其他负载均衡器，将请求按负载均衡算法调度到后端的Nginx应用服务器上。Nginx使用Redis作为数据缓存，使用Memcached作为文件缓存，使用MongoDB持久化NoSQL数据，使用MySQL集群作为关系型数据库。Nginx还可以给其他类似Java或PHP服务做反向代理服务器或CGI缓存数据库。

 [image:]

图2-1　Nginx应用

以Nginx+Lua为核心的架构，可以使用Lua语言作为“胶水”，“黏合”各种流行数据库组件，在Lua的表达能力下形成各种复杂的应用。本章分别介绍常用的各种数据组件的主要特点、安装、部署和常用操作，以方便学习和使用这些组件，运营级的安装和配置请自行深入研究。根据尽量保证研发和使用一致性的原则，本文只介绍Linux下各组件的安装和使用方法，因为主流的系统都是基于Linux开发的。

各数据组件都有其定位和应用场景，理解各组件、合理地应用组件可以大大降低开发工作的难度，并实现大型的应用和系统。

·MySQL是关系型数据库，用于存储关系型数据。MySQL支持读写分区，可以通过代理分离读和写操作，实现高性能。在读写分离的机制下，一个MySQL簇由代理服务器、主服务器和从服务器构成。主服务器负责写入，多实例的从服务器负责读响应，主、从服务器之间通过数据同步/异步地写入数据。各服务器可以动态扩展以增容，自然地实现了备份。通过合理的配置，可以实现相当量级的并发访问。MySQL在大型互联网系统中得到广泛使用。基于读写分区的簇，在业务上再进行垂直分区，则可实现大型、超大型系统。在簇内还有分库、分表等技术，这些技术可以实现库内的大型数据存储。

·Redis是一个流行的内存数据库，与Memcached相似，但支持将内存的数据持久化到本地文件中，而且支持更多的数据种类，不仅仅支持简单的key/value类型的数据，同时支持list、set、hash等数据结构的存储。内存数据库解决了互联网上大并发和高速访问的问题。数据存放在内存中读写比从磁盘中读写速度快两个数量级。通常，在互联网系统中会将Redies/Memcached与MySQL/PostgreSQL组合使用，解决高速访问和数据持久化的问题。

·PostgreSQL是对象关系型数据库，支持大部分SQL标准，并且提供了许多其他现代特性：复杂查询、外键、触发器、视图、事务完整性、MVCC。PostgreSQL可以用许多方法扩展，例如，通过增加新的数据类型、函数、操作符、聚集函数、索引。PostgreSQL是支持数据种类最多的数据库，支持的接口也最丰富。PostgreSQL在数据库总的市场上占有的份额还不大，但上升很快。现在的云主机厂商越来越多地提供PostgreSQL数据库。

·Memcached是一个内存型数据库，用在动态Web应用上以减轻数据库负载。通过在内存中缓存数据和对象来减少读取数据库的次数，从而提高访问速度。Memcached基于一个存储key/value对的HashMap。Memcached和Redis的应用场景很相似，区别是：①Redis支持更多的数据种类；②Redis支持主从数据备份；③Redis支持数据持久化。两种内存型数据库的性能都非常优秀。目前Redis应用在数据量较小的应用上，性能更优。Memcached用在动态系统中，如文件、图片缓存场景，可以减少数据库负载、提升性能。

·MongoDB是一个分布式NoSQL数据库，处理NoSQL非关系型数据存储。它的数据非常松散，面向集合及易存储对象类型数据存储，支持大型对象（如视频）的存储。MongoDB支持集合存储，数据被分组存储在数据集中，每个数据集在数据库中都有一个唯一的标识名，类似于key/value的模式。目前MongoDB的典型应用如：①网站实时数据处理，处理实时的插入、更新、查询，支持实时数据的复制和高伸缩性；②用于系统数据缓存，由它搭建的持久化缓存层可以避免下层数据源过载；③用于高伸缩场景。MongoDB非常适合数十或数百台服务器组成的数据库。其缺点是不支持级联的跨文档查询。
2.2　MySQL关系型数据库

MySQL是一个关系型数据库管理系统，由瑞典MySQL AB公司开发，目前属于Oracle旗下产品。MySQL是最流行的关系型数据库管理系统，在Web应用方面是最好的RDBMS（Relational Database Management System，关系型数据库管理系统）应用软件之一。全球主流的互联网公司的系统基本上都使用MySQL数据库，可以看出其强大的功能和强劲的性能。MySQL 5.7现在已经可以轻松达到50万QPS（Queries Per Second，每秒查询率）的性能，并支持NoSQL接口，通过NoSQL接口可以达到100万QPS。

MySQL是一种关联数据库管理系统，关联数据库将数据保存在不同的表中，而不是将所有数据放在一个大仓库内，这样就增加了速度并提高了灵活性。

MySQL所使用的SQL语言是用于访问数据库最常用的标准化语言。MySQL软件采用了双授权政策，它分为社区版和商业版，由于其体积小、速度快、总体拥有成本低，尤其是开放源码这一特点，一般中小型网站的开发都选择MySQL作为网站数据库。其社区版的性能卓越，搭配PHP和Apache可组成良好的开发环境。

与其他的大型数据库（如Oracle、DB2、SQL Server等）相比，MySQL自有它的不足之处，但是这丝毫也没有减少它受欢迎的程度。对于一般的个人使用者和中小型企业来说，MySQL提供的功能已经绰绰有余，而且由于MySQL是开放源码软件，因此可以大大降低总体拥有成本。

Linux（作为操作系统）、Apache或Nginx（作为Web服务器）、MySQL（作为数据库）、PHP/Perl/Python（作为服务器端脚本解释器）这4种软件都是免费或开源软件（Free/Libre and Open Source Software，FLOSS），因此使用这4种软件不用花一分钱（除开人工成本）就可以建立一个稳定、免费的网站系统，被业界称为LAMP或LNMP组合。

MySQL支持单、复制、集群模式，分别适合小规模应用、中小规模应用和大规模应用，其应用场景非常广泛，在互联网系统中得到大量使用。基于Nginx的系统也遵循这样的原则和架构，可以组成低成本的系统。

MySQL用于存储关系型数据，和Redis、Memcached、MongoDB等组成高并发、分布式的大型系统。互联网的特点是使用不同特点的产品解决不同问题，对外提供高速响应、大并发的系统，所以合理地使用各种系统是最主要的方面。想要利用每种系统的特点而规避其缺点考验的是对技术和系统的熟练掌握与总体架构能力。

注意：关系型数据指的是二维表及其之间联系的一种数据类型，关系操作主要为查询、选择、投影、连接、并、交、差，以及增加、删除、修改、查询等普通操作。

非关系型数据及数据库指的是数据之间没有明确的范围和定义，不需要预定义表结构、模式。数据主要是key/value模式，数据模型简单，支持key/value数据、列簇存储的数据、key/value结构的文档数据以及图结构等。非关系型NoSQL数据库对数据一致性要求不高，但灵活性好，性能好。

所以对于数据的选择和使用，是基于对数据的分析和建模区分的。例如，用户的个人信息等就是结构化数据，一般使用MySQL存储。而网页检索记录、用户操作记录等信息就是NoSQL数据，一般使用NoSQL数据存储和查询更合适。通常中大型系统中的数据都是区别对待的。

2.2.1　yum安装方法

安装MySQL有两种方法：一种是通过源码自行编译安装，这种方式适合高级用户定制MySQL特性，这里不做说明；另一种是通过编译过的二进制文件进行安装。二进制文件安装的方法又分为两种：一种是不针对特定平台的通用安装方法，使用的二进制文件是扩展名为.tar.gz的压缩文件；另一种是使用RPM或其他包进行安装，这种安装进程会自动完成系统相关配置，所以比较方便。

MySQL运行需要很多依赖库，在安装过程中需要检查并逐一首先安装各种依赖库，过程比较复杂，所以在服务器联网的情况下，推荐使用yum安装。yum基于RPM包管理，能够从指定的服务器自动下载RPM包并且安装，可以自动处理依赖性关系，并且一次安装所有依赖的软件包。利用yum，这些检查和依赖库安装都会自动完成。只有当服务器不可访问时才使用手工安装。

本文重点不是MySQL的安装和管理，所以只介绍yum安装方法，其他安装方法如有需要，请读者自行了解。

注意：yum是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器。基于RPM包管理，能够从指定的服务器自动下载RPM包并且安装，可以自动处理依赖性关系，并且一次安装所有依赖的软件包，无须烦琐地一次次下载、安装。

可供yum下载的软件包包括Fedora本身的软件包以及源自RPM Fusion和RPM的FedoraExtras，全部是由Linux社区维护的，并且基本是自由软件。所有的包都有一个独立的GPG签名，主要是为了系统安全。而对于Fedora Core 4.0的用户，RPM的签名是自动导入并安装的。

yum在CentOS上是默认安装的。例如，使用下面的yum命令可列出可安装的MySQL库：

yum list installed | grep mysql

1.确认是否已经安装MySQL

查看自带MySQL是否已安装。不同的CentOS安装模式可能已经安装了集成的MySQL，使用下面命令检查其是否存在，如果存在则直接使用。

yum list installed | grep mysql

2.卸载自带MySQL

若有自带安装的MySQL，需要卸载CentOS系统自带MySQL数据库，使用下面命令卸载：

yum -y remove mysql-libs.x86_64

若有多个依赖文件，则依次卸载。

3.查看yum库上的MySQL版本信息

需要查看yum库上的MySQL版本信息时，使用命令：

yum list | grep mysql

或

yum -y list mysql*

4.使用yum安装MySQL数据库

当环境已经检查好，可以安装新的MySQL时，使用命令：

yum -y install mysql-server mysql mysql-devel

上面命令将mysql-server、mysql、mysql-devel都安装好，当结果显示为“Complete！”时，即安装完毕。

注意：安装mysql只是安装了数据库，只有安装mysql-server才相当于安装了客户端。

5.查看MySQL数据库版本信息

查看新安装MySQL数据库版本信息时使用命令：

rpm -qi mysql-server

注意：使用root安装MySQL。

安装完成后，安装进程会在Linux中添加一个mysql组，以及属于mysql组的用户mysql。可通过id命令查看：

id mysql

uid=496(mysql)gid=493(mysql) groups=493(mysql)

MySQL服务器安装之后虽然配置了相关文件，但并没有自动启动mysqld服务，需要自行启动：

service mysqld start

Starting MySQL.. SUCCESS!

可以通过检查端口是否开启查看MySQL是否正常启动：

netstat -anp|grep 3306

tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 34693/mysqld

2.2.2　使用mysql测试服务

运行客户端程序mysql，在mysql/bin目录中，测试能否连接到mysqld。如果安装成功则应该可以运行mysql命令。注意，mysqld服务必须已经开启。

mysql

Welcome to the MySQLmonitor. Commands end with ; or \g.

Your MySQL connection idis 1

Server version: 5.7.16MySQL Community Server (GPL)

Copyright (c) 2000, 2016,Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademarkof Oracle Corporation and/or its affiliates. Other names may be trademarks oftheir respective owners.

Type 'help;' or '\h' forhelp.Type '\c' to clear the current input statement.

mysql>

对于yum安装，安装程序已经把可执行程序放到系统程序目录里，不需要修改环境变量，可以直接使用。

2.2.3　MySQL文件分布

以yum方式安装后的MySQL文件分布如表2-1所示。

表2-1　MySQL文件分布

 [image:]

2.2.4　数据库操作

除去安装部分提到的mysql命令行工具，推荐在Windows上使用Navicat工具进行可视化管理和调试。方便的工具可以提高工作效率。这里简单介绍一下Navicat工具。

Navicat是一个图形化的工具，下载并安装Navicat，运行后主界面如图2-2所示。

 [image:]

图2-2　Navicat运行主界面

首先需要创建一个连接，单击“连接”按钮，弹出选择数据库类型菜单，如图2-3所示。

 [image:]

图2-3　选择数据库类型

这里有5种常用数据库，在这里我们选择MySQL，然后弹出数据库连接信息配置界面，如图2-4所示。

 [image:]

图2-4　数据库连接信息配置界面

根据数据库配置信息，输入连接名、地址、端口（一般是默认端口）、用户名、密码，就可以连接数据库了。如果要检测数据是否正确，可以使用“连接测试”功能进行测试。

设置完成后，左侧列表将列出已经配置的数据库，双击即可连接到数据库，如图2-5所示。

 [image:]

图2-5　已经配置的数据库

对应连接上的所有数据库都会列出来，然后我们可以在上面执行各种操作。例如，新的数据库实现是空的，可以通过执行SQL脚本建立数据库，或使用图形化的界面手工建立数据库。例如，我们使用testserver库，单击testserver后，Navicat将列出这个库中的资源，如图2-6所示。

 [image:]

图2-6　testserver库资源

因为操作是全图形化的，所以具体的操作是比较容易理解和学习的，请读者自行研究。
2.3　Redis内存数据库

Redis是完全开源免费的，遵守BSD协议，是一个高性能的key-value数据库。

与其他key-value缓存产品对比，Redis有以下3个特点：

·Redis支持数据的持久化，可以将内存中的数据保存在磁盘中，重启的时候可以再次加载进行使用。

·Redis不仅仅支持简单的key-value类型数据，同时提供list、set、zset、hash等数据结构的存储。

·Redis支持数据备份，即master-slave模式的数据备份。

Redis优势比较多：

·性能极高：读速度是110000次/s，写速度是81000次/s。

·丰富的数据类型：支持strings、lists、hashes、sets及ordered sets数据类型。

·原子：Redis操作都是原子操作，还支持全并发原子操作。

·丰富的特性：支持publish/subscribe、通知、key过期等特性。

·持久化：支持以RDB和AOF方式将数据持久化到文件中。

·数据复制：Redis的主从复制功能非常强大，一个master可以拥有多个slave，而一个slave又可以拥有多个slave，如此下去，形成了强大的多级服务器集群架构。

Redis有着更复杂的数据结构并且提供原子操作，不同于其他数据库，Redis的数据类型都是基于基本数据结构的，无须进行额外的抽象。

Redis运行在内存中并且可以持久化到磁盘，所以在对不同数据集进行高速读写时需要权衡内存，因为数据量不能大于硬件内存。Redis在内存数据库方面的另一个优点是，相比在磁盘上相同的复杂数据结构，在内存中操作起来非常简单，这样Redis可以做很多内部复杂性很强的事情。同时，在磁盘格式方面，Redis是紧凑的以追加方式产生的，它并不需要进行随机访问，所以性能相对比较好。

2.3.1　Redis安装

Redis的下载地址为http://redis.io/download，从这里可以下载最新文档版本。

本书使用的最新文档版本为3.2.6，下载并安装，命令如下。

wget http://download.redis.io/releases/redis-3.2.6.tar.gz

tar xzf redis-3.2.6.tar.gz

cd redis-3.2.6

make

安装完Redis后redis-3.2.6目录下会出现编译后的Redis服务程序redis-serve，还有用于测试的客户端程序redis-cli，两个程序位于源码目录src下。

2.3.2　启动Redis服务

默认启动Redis服务的命令如下：

cd src

./redis-server

注意，以这种方式启动Redis使用的是默认配置。也可以通过启动参数告诉Redis使用指定配置文件，使用下面命令启动：

cd src

./redis-server redis.conf

redis.conf是一个默认的配置文件。我们可以根据需要使用自己的配置文件。redis.conf的配置参数和选项直接注释在redis.conf中，需要的时候直接查看注释，然后配置相关选项就可以使用了。

启动Redis服务进程后，就可以使用测试客户端程序redis-cli和redis-server交互。例如：

cd src

./redis-cli

redis>set foo bar

OK

redis>get foo

"bar"

如果需要在远程Redis服务上执行命令，使用的也是redis-cli命令。

语法如下：

redis-cli -h host -p port -a password

下面实例演示了如何连接到主机为127.0.0.1、端口为6379、密码为mypass的Redis服务上。

redis-cli -h 127.0.0.1-p 6379-a "mypass"

redis 127.0.0.1:6379>

redis 127.0.0.1:6379> PING

PONG

2.3.3　Redis配置

Redis的配置文件位于Redis安装目录下，文件名为redis.conf。可以通过CONFIG命令查看配置项或设置配置项。

Redis CONFIG命令格式如下：

 redis 127.0.0.1:6379> CONFIG GET CONFIG_SETTING_NAME

示例：

redis 127.0.0.1:6379> CONFIG GET loglevel

1)"loglevel"

2)"notice"

可以使用*号获取所有配置项：

 redis 127.0.0.1:6379> CONFIG GET *

 1)"dbfilename"

 2)"dump.rdb"

 3)"requirepass"

 4)""

 5)"masterauth"

 6)""

 7)"unixsocket"

 8)""

 9)"logfile"

 10)""

 11)"pidfile"

 12)""

 13)"slave-announce-ip"

 14)""

 15)"maxmemory"

 16)"0"

 17)"maxmemory-samples"

 18)"5"

 19)"timeout"

 20)"0"

 21)"auto-aof-rewrite-percentage"

 22)"100"

 23)"auto-aof-rewrite-min-size"

 24)"67108864"

 25)"hash-max-ziplist-entries"

 26)"512"

 27)"hash-max-ziplist-value"

 28)"64"

 29)"list-max-ziplist-size"

 30)"-2"

 31)"list-compress-depth"

 32)"0"

 33)"set-max-intset-entries"

 34)"512"

 35)"zset-max-ziplist-entries"

 36)"128"

 37)"zset-max-ziplist-value"

 38)"64"

 39)"hll-sparse-max-bytes"

 40)"3000"

 41)"lua-time-limit"

 42)"5000"

 43)"slowlog-log-slower-than"

 44)"10000"

 45)"latency-monitor-threshold"

 46)"0"

 47)"slowlog-max-len"

 48)"128"

 49)"port"

 50)"6379"

 51)"tcp-backlog"

 52)"511"

 53)"databases"

 54)"16"

 55)"repl-ping-slave-period"

 56)"10"

 57)"repl-timeout"

 58)"60"

 59)"repl-backlog-size"

 60)"1048576"

 61)"repl-backlog-ttl"

 62)"3600"

 63)"maxclients"

 64)"10000"

 65)"watchdog-period"

 66)"0"

 67)"slave-priority"

 68)"100"

 69)"slave-announce-port"

 70)"0"

 71)"min-slaves-to-write"

 72)"0"

 73)"min-slaves-max-lag"

 74)"10"

 75)"hz"

 76)"10"

 77) "cluster-node-timeout"

 78)"15000"

 79)"cluster-migration-barrier"

 80)"1"

 81)"cluster-slave-validity-factor"

 82)"10"

 83)"repl-diskless-sync-delay"

 84)"5"

 85)"tcp-keepalive"

 86)"300"

 87)"cluster-require-full-coverage"

 88)"yes"

 89)"no-appendfsync-on-rewrite"

 90)"no"

 91)"slave-serve-stale-data"

 92)"yes"

 93)"slave-read-only"

 94)"yes"

 95)"stop-writes-on-bgsave-error"

 96)"yes"

 97)"daemonize"

 98)"no"

 99)"rdbcompression"

100)"yes"

101)"rdbchecksum"

102)"yes"

103)"activerehashing"

104)"yes"

105)"protected-mode"

106)"yes"

107)"repl-disable-tcp-nodelay"

108)"no"

109)"repl-diskless-sync"

110)"no"

111)"aof-rewrite-incremental-fsync"

112)"yes"

113)"aof-load-truncated"

114)"yes"

115)"maxmemory-policy"

116)"noeviction"

117)"loglevel"

118)"notice"

119)"supervised"

120)"no"

121)"appendfsync"

122)"everysec"

123)"syslog-facility"

124)"local0"

125)"appendonly"

126)"no"

127)"dir"

128)"/root/redis-3.2.6/src"

129)"save"

130)"3600 1 300 100 60 10000"

131)"client-output-buffer-limit"

132)"normal 0 0 0 slave 268435456 67108864 60 pubsub 33554432 8388608 60"

133)"unixsocketperm"

134)"0"

135)"slaveof"

136)""

137)"notify-keyspace-events"

138)""

139)"bind"

140)""

2.3.4　参数说明

Redis配置除了通过命令配置外，还可以通过直接编译redis.conf进行修改。默认的redis.conf对每一个配置项提供了详细的英文说明，需要使用的时候参照说明进行配置即可，本节主要介绍常用的配置项，方便学习时使用。

（1）daemonize no

Redis默认不以守护进程的方式运行，可以通过该配置项修改，使用yes启用守护进程（daemonize yes）。

（2）pidfile/var/run/redis.pid

当Redis以守护进程方式运行时，Redis默认会把pid写入/var/run/redis.pid文件，可以通过pidfile指定。

（3）port 6379

该配置项用于指定Redis监听端口，默认端口为6379。

（4）bind 127.0.0.1

该配置项用于绑定主机地址。

（5）timeout 300

该配置项用于指定当客户端闲置多长时间后关闭连接，如果指定为0，表示关闭该功能。

（6）loglevel verbose

该配置项用于指定日志记录级别，Redis支持4个级别：debug、verbose、notice、warning，默认为verbose。

（7）logfile stdout

该配置项用于指定日志记录方式，默认为标准输出，如果配置Redis为守护进程方式运行，而这里又配置为日志记录方式为标准输出，则日志将会发送给/dev/null。

（8）databases 16

该配置项用于设置数据库的数量，默认数据库为0，可以使用SELECT<dbid>命令在连接上指定数据库ID。

（9）save<seconds><changes>

该配置项用于指定在多长时间内，有多少次更新操作，就将数据同步到数据文件，可以多个条件配合。

Redis默认配置文件中提供了3个条件：

save 900 1

save 300 10

save 60 10000

这3个条件分别表示900秒（15分钟）内有1个更改，300秒（5分钟）内有10个更改，以及60秒内有10000个更改。

（10）rdbcompression yes

该配置项用于指定存储至本地数据库时是否压缩数据，默认为yes。Redis采用LZF压缩，如果为了节省CPU时间，可以关闭该选项，但会导致数据库文件变得巨大。

（11）dbfilename dump.rdb

该配置项用于指定本地数据库文件名，默认值为dump.rdb。

（12）dir./

该配置项用于指定本地数据库存放目录。

（13）slaveof<masterip><masterport>

该配置项用于当本机为slave服务时，设置master服务的IP地址及端口，在Redis启动时，它会自动从master进行数据同步。

（14）masterauth<master-password>

当master服务设置了密码保护时，slave服务连接master的密码。

（15）requirepass foobared

该配置项用于设置Redis连接密码，如果配置了连接密码，客户端在连接Redis时需要通过AUTH<password>命令提供密码，默认关闭。

（16）maxclients 128

该配置项用于设置同一时间最大客户端连接数，默认无限制。Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数量，如果设置maxclients 0，表示不限制。当客户端连接数到达限制时，Redis会关闭新的连接并向客户端返回max number of clients reached错误信息。

（17）maxmemory<bytes>

该配置项用于指定Redis最大内存限制，Redis在启动时会把数据加载到内存中，达到最大内存后，Redis会先尝试清除已到期或即将到期的key，若当此方法处理后仍然到达最大内存设置，则将无法再进行写入操作，但仍然可以进行读取操作。Redis新的VM机制会把key存放在内存，value存放在swap区。

（18）appendonly no

该配置项用于指定是否在每次更新操作后进行日志记录，在默认情况下，Redis异步地把数据写入磁盘，如果不开启，可能会在断电时导致一段时间内的数据丢失。因为Redis本身同步数据文件是按save条件来同步的，所以有的数据会在一段时间内只存在于内存中。默认为no。

（19）appendfilename appendonly.aof

该配置项用于指定更新日志文件名，默认为appendonly.aof。

（20）appendfsync everysec

该配置项用于指定更新日志条件，共有3个可选值。

1）no：表示等操作系统进行数据缓存同步到磁盘（快）。

2）always：表示每次更新操作后手动调用fsync（）将数据写到磁盘（慢，安全）。

3）everysec：表示每秒同步一次（折中，默认值）。

（21）vm-enabled no

该配置项用于指定是否启用虚拟内存机制，默认值为no。简单地介绍一下，VM机制将数据分页存放，由Redis将访问量较少的页即冷数据存放到磁盘上，访问多的页面由磁盘自动换出到内存中。

（22）vm-swap-file/tmp/redis.swap

该配置项用于指定虚拟内存文件路径，默认值为/tmp/redis.swap，不可多个Redis实例共享。

（23）vm-max-memory 0

将所有大于vm-max-memory的数据存入虚拟内存，无论vm-max-memory设置多小，所有索引数据都是内存存储的（Redis的索引数据就是keys），也就是说，当vm-max-memory设置为0时，其实是所有value都存在于磁盘中。默认值为0。

（24）vm-page-size 32

Redis swap文件分成了很多的page，一个对象可以保存在多个page中，但一个page不能被多个对象共享，vm-page-size是要根据存储的数据大小来设定的：如果存储很多小对象，page大小最好设置为32B或者64B；如果存储很大对象，则可以使用更大的page，如果不确定，就使用默认值。

（25）vm-pages 134217728

该配置项用于设置swap文件中的page数量，由于page表（一种表示页面空闲或使用的bitmap）是放在内存中的，在磁盘上每8个pages将消耗1B的内存。

（26）vm-max-threads 4

该配置项用于设置访问swap文件的线程数，最好不要超过机器的核数，如果设置为0，那么所有对swap文件的操作都是串行的，可能会造成比较长时间的延迟。默认值为4。

（27）glueoutputbuf yes

该配置项用于设置在向客户端应答时，是否把较小的包合并为一个包发送，默认为开启。

（28）hash-max-zipmap-entries 64、hash-max-zipmap-value 512

该配置项用于指定在超过一定的数量或者最大的元素超过某一临界值时，采用一种特殊的哈希算法。

（29）activerehashing yes

该配置项用于指定是否激活重置哈希，默认为开启。

（30）include/path/to/local.conf

该配置项用于指定包含其他的配置文件，可以在同一主机上多个Redis实例之间使用同一份配置文件，而各个实例又同时拥有自己特定的配置文件。

2.3.5　数据类型

Redis支持5种数据类型：string（字符串）、hash（哈希）、list（列表）、set（集合）及zset（sorted set，有序集合）。

1.string（字符串）

string是Redis最基本的数据类型，可以理解成与memcached一样的类型，一个key对应一个value，一个key的最大存储容量为512MB。string类型是二进制安全的，即Redis的string可以包含任何数据。如JPG图片或者序列化的对象。

例如：

redis 127.0.0.1:6379> SET name "test"

OK

redis 127.0.0.1:6379> GET name"test"

在以上实例中，我们使用了Redis的SET和GET命令，键（key）为name，对应的值（value）为test。

2.hash（哈希）

Redis hash是一个key-value对集合。Redis hash是一个string类型的field和value的映射表，特别适合用于存储对象。

例如：

127.0.0.1:6379> HMSET user:1 username test password test points 200

OK

127.0.0.1:6379>HGETALL user:1

1)"username"

2)"test"

3)"password"

4)"test"

5)"points"

6)"200"

127.0.0.1：6379〉

以上实例中，hash数据类型存储了包含用户脚本信息的用户对象。实例使用了Redis HMSET、HGETALL命令，user：1为key值。

每个hash可以存储232-1个key-value对（40多亿）。

3.list（列表）

Redis列表是简单的字符串列表，按照插入顺序排序。你可以添加一个元素到列表的头部（左边）或者尾部（右边）。

例如：

redis 127.0.0.1:6379> lpush test redis(integer)1

redis 127.0.0.1:6379> lpush test mongodb(integer)2

redis 127.0.0.1:6379> lpush test rabitmq(integer)3

redis 127.0.0.1:6379> lrange test 0 10

1)"rabitmq"

2)"mongodb"

3)"redis"

redis 127.0.0.1:6379>lrange test 5 10

(empty list or set)

列表最多可存储232-1个元素（40多亿）。

4.set（集合）

Redis的set是string类型的无序集合。集合是通过哈希表实现的，所以添加、删除、查找的复杂度都是O（1）。sadd命令用于添加一个string元素到key对应的set集合中，成功则返回1，如果元素已经在集合中则返回0，key对应的set不存在则返回错误。

例如：

redis 127.0.0.1:6379> sadd test redis(integer)1

redis 127.0.0.1:6379> sadd test mongodb(integer)1

redis 127.0.0.1:6379> sadd test rabitmq(integer)1

redis 127.0.0.1:6379> sadd test rabitmq(integer)0

redis 127.0.0.1:6379> smembers test

1)"rabitmq(integer)1"

2)"mongodb(integer)1"

3)"redis(integer)1"

注意：在以上实例中，rabitmq添加了两次，但根据集合内元素的唯一性，第二次插入的元素将被忽略。

集合中最大的成员数为232-1（40多亿）。

5.zset（有序集合）

Redis zset也是string类型元素的集合，且不允许重复的成员。不同的是，zset的每个元素都会关联一个double类型的分数。Redis正是通过分数为集合中的成员进行从小到大排序的。zset的成员是唯一的，但分数（score）可以重复。

例如：

redis 127.0.0.1:6379> zadd test 0 redis(integer)1

redis 127.0.0.1:6379> zadd test 0 mongodb(integer)1

redis 127.0.0.1:6379> zadd test 0 rabitmq(integer)1

redis 127.0.0.1:6379> zadd test 0 rabitmq(integer)0

redis 127.0.0.1:6379> ZRANGEBYSCORE test 0 1000

1)"mongodb(integer)1"

2)"rabitmq(integer)0"

3)"rabitmq(integer)1"

4) "redis(integer)1"

2.4　PostgreSQL关系型数据库

PostgreSQL是以加州大学伯克利分校计算机系开发的POSTGRES（现在已经更名为PostgreSQL）4.2版本为基础开发的对象关系型数据库管理系统（ORDBMS）。它是一个自由的对象关系型数据库服务器（数据库管理系统），在灵活的BSD风格许可证下发行。PostgreSQL提供了相对其他开源数据库系统（如MySQL和Firebird）和专有系统（如Oracle、Sybase、DB2和Microsoft SQL Server）之外的另一种选择。

PostgreSQL支持大部分SQL标准并且提供了许多其他现代特性：复杂查询、外键、触发器、视图、事务完整性、MVCC。同样，PostgreSQL可以用许多方法扩展，例如，增加新的数据类型、函数、操作符、聚集函数、索引。PostgreSQL的特性覆盖了SQL-2/SQL-92和SQL-3/SQL-99，首先，它包括了目前世界上最丰富的数据类型支持。

从技术角度来讲，PostgreSQL采用的是比较经典的C/S（Client/Server）结构，也就是一个客户端对应一个服务器端守护进程的模式，这个守护进程分析从客户端发来的查询请求，生成规划树，进行数据检索并最终把结果格式化输出后返回给客户端。为了便于客户端程序编写，由数据库服务器提供统一的客户端C接口。不同的客户端接口都是源自这个C接口，如ODBC、JDBC、Python、Perl、C/C++、ESQL等。PostgreSQL支持的接口非常丰富，几乎支持所有类型数据库客户端接口。

要在CentOS 6.4上使用yum，首先要保证CentOS外网是连通的，如果外网不通，只能使用RPM包或源码的方法安装。本文主要研究在Lua中如何使用PostgreSQL，所以以yum简化安装过程为例。

这里使用PostgreSQL yum repository安装最新版本的PostgreSQL。

1.安装PostgreSQL yum repository

yum默认安装的PostgreSQL是8.X版本的，如果想体验新版本PostgreSQL的性能，需要安装9.X版本，这需要首先安装PostgreSQL yum repository。如果只想调试OpenRestry的PG访问代码，可以跳过本步，直接使用yum安装8.X版本的PG。

使用下面命令安装PostgreSQL yum repository：

yum –i http://download.postgresql.org/pub/repos/yum/9.6/redhat/

rhel-6.4-x86_64/pgdg-redhat96-9.6-3.noarch.rpm

只要命令正确，就可以看到安装成功。如果要使用最新版本的PG，可以在http://yum.postgresql.org上查找到对应RPM包的连接，然后执行rpm-i uri命令。

2.安装PostgreSQL

使用下面命令安装新版本PG：

yum install postgresql92-server postgresql92-contrib

如果没有安装PostgreSQL yum repository，使用下面的命令安装8.X版本：

yum install postgresql*-server postgresql*-contrib

3.查看安装

使用rpm命令查看是否安装成功：

rpm –qa | grep postgresql

如果看到了类似：

postgresql96-server-9.6.1-1PGDG.rhel6.x86_64

postgresql96-libs-9.6.1-1PGDG.rhel6.x86_64

postgresql96-9.6.1-PGDG.rhel6.x86-64

postgresql96-contrib-9.6.1-1PGDG.rhel6.x86_64

表示安装成功，否则根据错误提示修正错误后重新安装。

4.初始化并启动数据库

PG安装完成需要首先初始化：

service postgresql-9.6 initdb

看到Initializing database：[OK]，就可以启动数据库了：

service postgresql-9.6 start

看到OK字样，表示PostgreSQL启动成功。

5.测试

首先切换到postgres用户：

su – postgres

执行psql命令查看数据库列表：

psql –l

看到下面的3个数据库列表，表示数据库启动并初始化成功：

List of databases

Name |owner |Encoding | Collate |Ctype |Access privileges|

postgres |postgres| UTF8 |en_us.UTF-8 |en_us.UTF-8|

template0|postgres| UTF8 |en_us.UTF-8 |en_us.UTF-8|

template1|postgres| UTF8 |en_us.UTF-8 |en_us.UTF-8|

(3 rows)

注意：因为PostgreSQL是一个关系型数据库，所以管理和使用相对比较复杂，推荐使用Navicat进行图形化的操作。
2.5　Memcached内存数据库

Memcached是一个高性能分布式内存对象缓存系统，用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数，从而提高数据库驱动网站的速度。Memcached基于一个存储键/值对的HashMap。

Memcached是一套分布式快取系统，当初是Danga Interactive为了LiveJournal所发展的，但被许多软件（如MediaWiki）所使用。这是一套开源软件，以BSD license授权协议发布。

Memcached的API使用32位循环冗余校验（CRC-32）计算键值后，将资料分散在不同的机器上。当表格满了以后，接下来新增的资料会以LRU机制替换。由于Memcached通常只是当作快取系统使用，所以使用Memcached的应用程序在写回较慢的系统时（像是后端的数据库）需要额外的程序码更新Memcached内的资料。

Memcached是以LiveJournal旗下Danga Interactive公司的Brad Fitzpatric为首开发的一款软件，已成为Mixi、Hatena、Facebook、Vox、LiveJournal等众多服务中提高Web应用扩展性的重要因素。许多Web应用都将数据保存到RDBMS中，应用服务器从中读取数据并在浏览器中显示。但随着数据量的增大、访问的集中，就会出现RDBMS的负担加重、数据库响应恶化、网站显示延迟等重大影响。Memcached的出现有效解决了以上这些问题。

Memcached是高性能的分布式内存缓存服务器，一般的使用目的是通过缓存数据库查询结果，减少数据库访问次数，从而提高动态Web应用的速度，提高可扩展性。

Memcached的守护进程（daemon）是用C编写的，但是客户端可以用任何语言来编写，并通过Memcached协议与守护进程通信。但是它并不提供冗余（例如，复制其HashMap条目），当某个服务器S停止运行或崩溃了，所有存放在S上的键/值对都将丢失。

Memcached由Danga Interactive开发，其最新版本发布于2010年（作者为Anatoly Vorobey和Brad Fitzpatrick），用于提升LiveJournal.com访问速度。LiveJournal（LJ）每秒动态页面访问量达几千次，用户700万。Memcached将数据库负载大幅度降低，更好地分配资源，用户可以更快速地访问。

为了提高性能，Memcached中保存的数据都存储在Memcached内置的内存存储空间中。由于数据仅存在于内存中，因此重启Memcached、重启操作系统会导致全部数据消失。另外，内存容量达到指定值之后，就基于LRU（Least Recently Used）算法自动删除不使用的缓存。Memcached本身是为缓存而设计的服务器，因此并没有过多考虑数据的永久性问题。

尽管Memcached是“分布式”缓存服务器，但服务器端并没有分布式功能。各个Memcached不会互相通信以共享信息。那么，怎样进行分布式呢？这完全取决于客户端的实现。

2.5.1　Memcached安装

本书使用yum安装Memcached。Memcached依赖于libevent库，这些依赖yum都会自动安装。

安装命令：

yum -y install memcached

启动和停止命令：

service memcached start|stop

Memcached的配置是通过命令行进行的，如果只是学习Memcahced的使用，使用service命令就可以了。

注意：如果安装缺少其他支持，可以使用以下命令

yum groupinstall "Development Tools"

2.5.2　连接编辑

可以通过telnet命令并指定主机IP和端口来连接Memcached服务。

语法如下：

telnet HOST PORT

命令中的HOST和PORT为运行Memcached服务的IP和端口。

下面实例演示了如何连接到Memcached服务并执行简单的set和get命令。Memcached默认端口为11211。

telnet 127.0.0.1 11211

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

set foo 0 0 3 //保存命令

bar //数据

STORED //结果

get foo //取得命令

VALUE foo 0 3 //数据

bar //数据

END //结束行

quit

Memcached缺乏认证以及安全管制，因此应该将Memcached服务器放置在防火墙后。

2.5.3　管理Memcached服务

1.启动Memcached

一般情况下，可以使用类似如下形式，启动Memcached服务：

memcached -d -m 64 -I 20m -u root -l 192.168.4.86 -p 11211 -c 1024 -P /tmp /memcached.pid

上述命令行中，基于上面各个选项，以及其他一些选项的含义，表2-2列出了Memcached的常用选项。

表2-2　Memcached常用选项

 [image:]

 [image:]

-d参数有如下几个选项，可以使用-d参数启动和关闭Memcached而不用使用pid文件。

·-d install 安装Memcached服务。

·-d uninstall：卸载Memcached服务。

·-d start：启动Memcached服务。

·-d restart：重启Memcached服务。

·-d stop：停止Memcached服务。

·-d shutdown：停止Memcached服务。

2.停止Memcached

可以在Linux下通过如下命令查询到Memcached进程号：

ps -ef | grep memcached

然后杀掉Memcached服务进程：

kill -9 <PID>

-9表示强制杀掉进程，或

kill -9 `cat /tmp/memcached.pid`

也可以使用-d参数关闭Memcached：

memcached -u root -d stop

2.5.4　Memcached命令

本节介绍Memcached常用命令，方便读者后续使用。

1.stats命令

该命令用于显示服务器信息、统计数据、结果示例数据等，例如：

stats

STAT pid 19510 // Memcache进程ID

STAT uptime 1466315 //已运行秒数

STAT time 1339671194 //服务器当前的UNIX时间戳

STAT version 1.4.4 // Memcache版本号

……

END

这里不再展开叙述每个选项的意义。

stats命令有若干个二级子项，如表2-3所示。

表2-3　stats命令二级子项

 [image:]

2.get命令

get命令用于获取缓存的数据，键为key。语法格式：

get<key>*

示例：

get basis_behavior_user

结果如下所示：

VALUE basis_behavior_user 0

451{"aaData":[["d1a2233dc382432b8e19e40254fdb98a","100000002223484","1402563046319","c4f82195815300bcf39a5232707ad9c1","1","0","EBEST_W70", "4.0.4","2.2.2.","wifi","","EBEST","19","854*480","H-yun35","00:08:22:da:c1:ce","863531010517866","c4f82195815300bcf39a5232707ad9c11402562805664","460010255508963","1901589461","1402563045960","429","338","23197","1","0","0","2014-06-12_16:50:46","-1","0","3"]],"sEcho":1,"iTotalRecords":0,"iTotalDisplayRecords":0}

END

也可以用get命令获取多个key对应的值，如下所示：

get name hobby

VALUE name 1 7

1234567

VALUE hobby 0 25

tenis basketball football

END

3.set命令

语法格式：

set<key><flags><exptime><bytes> [noreply]

<value>

noreplay是可选参数，告诉服务器不需要回复。

示例：

set name 0 1800 7

shirdrn

STORED

get name

VALUE name 0 7

shirdrn

END

4.delete命令

delete命令用于删除缓存中指定键key对应的数据。语法格式：

delete key [noreply]

参数说明：

key：键值key-value结构中的key，用于查找缓存值。

noreply（可选）：告知服务器不需要返回数据。

示例：

set tValue 0 900 9

memcached

STORED

get tValue

VALUE tValue 0 9

memcached

END

delete tValue

DELETED

get tValue

END

delete tValue

NOT_FOUND

输出信息说明：

·DELETED：删除成功。

·ERROR：语法错误或删除失败。

·NOT_FOUND：key不存在。

5.add命令

语法格式：

add<key><flags><exptime><bytes> [noreply]

<value>

示例：

add hobby 0 1800 10

basketball

STORED

get hobby

VALUE hobby 0 10

basketball

END

6.replace命令

replace命令用于覆盖一个已经存在的key及其对应value，替换时一定要保证替换后值的长度与原始长度相同，否则覆盖失败。

语法格式：

replace<key><flags><exptime><bytes> [noreply]

<value>

示例：

get name

VALUE name 0 7

shirdrn

END

replace name 0 1800 7

youak47

STORED

get name

VALUE name 0 7

youak47

END

7.append命令

append命令用于在一个已经存在的数据值（value）上追加（在数据值的后面追加）。

语法格式：

append<key><flags><exptime><bytes> [noreply]

<value>

示例：

get hobby

VALUE hobby 0 10

basketball

END

append hobby 0 1800 9

football

STORED

get hobby

VALUE hobby 0 19

basketball football

END

8.prepend命令

prepend命令用于在一个已经存在的数据值（value）上追加（在数据值的前面追加）。

语法格式：

prepend<key><flags><exptime><bytes> [noreply]

<value>

示例：

get hobby

VALUE hobby 0 19

basketball football

END

prepend hobby 0 1800 6

tenis

STORED

get hobby

VALUE hobby 0 25

tenis basketball football

END

9.incr命令

incr命令是计数命令，可以在原来已经存在的数字上进行累加求和计算，并存储新的数值。

语法格式：

incr<key><value> [noreply]

示例：

set active_users 0 1000000 7

1000000

STORED

get active_users

VALUE active_users 0 7

1000000

END

incr active_users 99

1000099

10.decr命令

decr命令是计数命令，可以在原来已经存在的数字上进行减法计算，并存储新的数值。

语法格式：

decr<key><value> [noreply]

示例：

get active_users

VALUE active_users 0 7

1000099

END

decr active_users 3456

996643

11.flush_all命令

flush_all命令用于使缓存中的数据项失效，可选参数指定数据项在多少秒后失效。

语法格式：

flush_all [<time>] [noreply]

调用flush_all命令时，数据所占的内存并不会被释放，但会被标记为过期，不能再被读取。后续添加的值会根据算法逐渐占用之前释放的空间。

示例：

setuser 0 0 5

123456

STORED

getuser

VALUE user0 5

123456

END

flush_all

OK

getuser

END

12.version命令

version命令用于返回Memcached服务器的版本信息。

示例：

version

VERSION 1.4.5

13.quit命令

quit命令用于退出Telnet终端。
2.6　MongoDB分布式NoSQL数据库

MongoDB是一个介于关系型数据库和非关系型数据库之间的产品，是非关系型数据库当中功能最丰富、最像关系型数据库的；它支持的数据结构非常松散，是类似JSON的BSON格式，因此可以存储比较复杂的数据类型。MongoDB最大的特点是支持的查询语言非常强大，其语法类似于面向对象的查询语言，几乎可以实现类似关系型数据库单表查询的绝大部分功能，而且支持对数据建立索引。

MongoDB的设计目标是高性能、可扩展、易部署、易使用，存储数据非常方便。其主要功能特性如下。

1）面向集合存储，容易存储对象类型的数据。在MongoDB中，数据被分组存储在集合中，集合类似RDBMS中的表，一个集合可以存储无限多的文档。

2）模式自由，采用无模式结构存储。在MongoDB的集合中存储的数据是无模式的文档。采用无模式存储数据是集合区别于RDBMS表的一个重要特征。

3）支持完全索引，可以在任意属性上建立索引，包含内部对象。MongoDB的索引和RDBMS的索引基本一样，可以在指定属性、内部对象上创建索引以提高查询的速度。除此之外，MongoDB还提供创建基于地理空间的索引能力。

4）支持查询。MongoDB支持丰富的查询操作，支持SQL中的大部分查询。

5）强大的聚合工具。MongoDB除了提供丰富的查询功能外，还提供强大的聚合工具，如count、group等，支持使用MapReduce完成复杂的聚合任务。

6）支持复制和数据恢复。MongoDB支持主从复制机制，可以实现数据备份、故障恢复、读扩展等功能。而基于副本集的复制机制提供了自动故障恢复的功能，确保集群数据不会丢失。

7）使用高效的二进制数据存储，包括大型对象（如视频）。MongoDB支持以二进制格式存储数据，可以保存任何类型的数据对象。

8）自动处理分片，以支持云计算层次的扩展。MongoDB支持集群自动切分数据，对数据进行分片可以使集群存储更多的数据，实现更大的负载，也能保证存储的负载均衡。

9）支持Perl、PHP、Java、C#、JavaScript、Ruby、C和C++语言的驱动程序。MongoDB提供了当前所有主流开发语言的数据库驱动包，开发人员使用任何一种主流开发语言都可以轻松编程，实现访问MongoDB数据库。

10）文件存储格式为BSON（JSON的一种扩展）。BSON是二进制格式的JSON的简称，BSON支持文档和数组的嵌套。

11）可以通过网络访问。可以通过网络远程访问MongoDB数据库。

“面向集合”（collection-oriented），是指数据被分组存储在数据集中，这个数据集称为一个集合（collection）。每个集合在数据库中都有一个唯一的标识名，并且可以包含无限数目的文档。集合的概念类似关系型数据库（RDBMS）里的表（table），不同的是它不需要定义任何模式（schema）。Nytro MegaRAID技术中的闪存高速缓存算法，能够快速识别数据库内大数据集中的热数据，提供一致的性能改进。

模式自由（schema-free），意味着对于存储在MongoDB数据库中的文件，我们不需要知道它的任何结构定义。

存储在集合中的文档，被存储为键–值（key-value）对的形式。键用于唯一标识一个文档，为字符串类型，而值可以是各种复杂的文件类型。我们称这种存储形式为BSON（Binary Serialized Document Format）。

MongoDB适合使用的场景如下：

1）网站实时数据处理。MongoDB非常适合实时的插入、更新与查询，并具备网站实时数据存储所需的复制及高度伸缩性。

2）缓存。由于性能很高，MongoDB适合作为信息基础设施的缓存层。在系统重启之后，由它搭建的持久化缓存层可以避免下层的数据源过载。

3）高伸缩性的场景。MongoDB非常适合由数十或数百台服务器组成的数据库，它的路线图中已经包含对MapReduce引擎的内置支持。

MongoDB不适用的场景如下：

1）要求高度事务性的系统。

2）传统的商业智能应用。

3）复杂的跨文档（表）级联查询。

2.6.1　MongoDB安装

本节介绍使用yum在CentOS系统上安装MongoDB以及后续配置的方法，但要保证CentOS外网连通。

1.配置yum源

运行yum命令查看MongoDB的包信息：

yum info mongo*

如果提示没有相关匹配的信息，说明CentOS系统中的yum源不包含MongoDB的相关资源，所以要在使用yum命令安装MongoDB前增加yum源，即在/etc/yum.repos.d/目录中增加*.repo yum源配置文件。

文件命名：

/etc/yum.repos.d/mongodb-org-3.4.repo

命令与内容：

vi /etc/yum.repos.d/mongodb-org-3.4.repo

[mongodb-org-3.4]

name=MongoDB Repository

baseurl=https://repo.mongodb.org/yum/amazon/2013.03/mongodb-org/3.4/x86_64/

gpgcheck=1

enabled=1

gpgkey=https://www.mongodb.org/static/pgp/server-3.4.asc

配置好yum源后，如果配置正确，执行下面的命令便可以查询MongoDB相关的信息：

yum info mongo*

当能看到MongoDB 3.X版本字样时，表示yum源已经配置正确，可以开始安装了。

2.安装MongoDB的服务器端

使用yum安装MongoDB：

sudo yum install -y mongodb-org

安装完成检查MongoDB程序文件：

ls /usr/bin/mongo（tab键）

mongo mongoexport mongooplog mongos

mongod mongofiles mongoperf mongostat

mongodump mongoimport mongorestore mongotop

这些就是MongoDB的程序文件。

MongoDB数据文件默认保存在/var/lib/mongo目录，日志文件保存在/var/log/mongodb，使用MongoDB作为运行用户。可以在/etc/mongod.conf里修改数据文件和日志文件的路径，参数为systemLog.path和storage.dbPath。

如果修改了运行MongoDB的用户，必须确保该用户对/var/lib/mongo和/var/log/mongodb两个目录有修改权限。

3.运行MongoDB

可以使用下面的命令运行MongoDB进程：

sudo service mongod start

4.确认MongoDB是否启动成功

通过检查/var/log/mongodb/mongod.log文件内容检查MongoDB是否启动成功，检查下面这行信息：

[initandlisten] waiting for connections on port <port>

<port>是在/etc/mongod.conf中配置的端口号，默认值是27017。

也可以使用下面命令让MongoDB在系统启动时自动运行：

sudo chkconfig mongod on

5.停止MongoDB

使用下面命令停止MongoDB进程：

sudo service mongod stop

6.重启MongoDB

使用下面命令重启MongoDB进程：

sudo service mongod restart

可以在/var/log/mongodb/mongod.log实时查看进程的状态。

7.测试MongoDB是否正常运行

进入mongodb的shell模式：

mongo

查看数据库列表：

show dbs

查看当前db版本：

db.version();

8.卸载MongoDB

（1）停止MongoDB

停止MongoDB：

sudo service mongod stop

（2）卸载安装包

卸载安装包：

sudo yum erase $(rpm -qa | grep mongodb-org)

（3）删除数据和日志目录

删除数据和日志目录：

sudo rm -r /var/log/mongodb

sudo rm -r /var/lib/mongo

2.6.2　mongod.conf配置说明

MongoDB的配置文件为/etc/mongod.conf，下面是一个mongod.conf示例，对于每个配置项，以中文注释项的方式注释在文件内，具体内容如下。

mongo.conf

#日志保存位置

logpath=/var/log/mongo/mongod.log

#以追加方式写入日志

logappend=true

#在后台运行

fork = true

#服务运行端口

#port = 27017

#数据库文件保存位置

dbpath=/var/lib/mongo

#启用定期记录CPU利用率和 I/O 等待

#cpu = true

是否以安全认证方式运行，默认是不认证的非安全方式

#noauth = true

#auth = true

详细记录输出

#verbose = true

#用于开发驱动程序时的检查客户端接收数据的有效性

#objcheck = true

#启用数据库配额管理，默认每个db可以有8个文件，可以用quotaFiles参数设置

#quota = true

#设置oplog记录等级

0=off (默认)

1=W

2=R

3=both

7=W+some reads

#oplog = 0

#动态调试项

#nocursors = true

#忽略查询提示

#nohints = true

禁用HTTP界面，默认为localhost：28017

#nohttpinterface = true

关闭服务器端脚本，这将极大地限制功能

#noscripting = true

#关闭扫描表，任何查询将会是扫描失败

#notablescan = true

关闭数据文件预分配

#noprealloc = true

为新数据库指定.ns文件的大小，单位为MB

nssize = <size>

#监视服务器的账号token

#mms-token = <token>

mongo监控服务器的名称

#mms-name = <server-name>

mongo监控服务器的ping 间隔

#mms-interval = <seconds>

复制选项

#在复制中，指定当前是从关系

#slave = true

#source = master.example.com

Slave only: specify a single database to replicate

#only = master.example.com

or

#master = true

#source = slave.example.com

以上是默认配置文件中的一些参数，更多参数可以使用mongod-h命令查看：

mongod -h

Allowed options:

General options:

 -h [--help] 显示本使用信息

 --version 显示版本信息

 -f [--config] arg 指定启动配置文件路径

 -v [--verbose] 显示详细信息

 --quiet 静默输出

 --port arg 端口

 --bind_ip arg 绑定IP，可以指定多个

 --maxConns arg 最大并发连接数

 --logpath arg 日志文件路径

 --logappend 日志写入方式

 --pidfilepath arg pid文件路径

 --keyFile arg 集群认证私钥，仅适用于副本集

 --unixSocketPrefix UNIX 域套接字的可选arg路径，（默认是/tmp）

 --fork 启动服务进程

 --auth 使用认证方式运行

 --cpu 定期显示的CPU和I/O等待利用率

 --dbpath arg 数据库文件路径

 --diaglog arg 0=off 1=W 2=R 3=both 7=W+some reads oplog记录等级

 --directoryperdb 每个数据库存储到单独目录

 --journal 记录日志，建议开启，在异常宕机时可以恢复一些数据

 --journalOptions arg 日志参数

 --ipv6 启用IPv6支持，IPv6默认关闭

 --jsonp 允许JSONP通过HTTP访问，该方式存在安全隐患

 --noauth 不带安全认证的方式

 --nohttpinterface 禁用HTTP接口

 --noprealloc 禁用数据文件的预分配，往往会损害性能

 --noscripting 禁用脚本引擎

 --notablescan 不允许表扫描

 --nounixsocket 禁止UNIX 套接字监听

 --nssize arg (=16) 为新数据设置ns文件的大小

 --objcheck 检查客户端数据的有效性

 --profile arg 0=off, 1=slow, 2=all

 --quota 启用数据库配额管理，默认每个db可以有8个文件，可以用quotaFiles参数设置

 --quotaFiles arg 数据库允许的文件数量，由--quota参数使用

 --rest 开启rest API

 --repair 修复所有数据库

 --repairpath arg 修复文件的根目录，默认为dbpath指定的目录

 --slowms arg (=100) 大于多少秒才算慢查询（需要与--profile|配合才会生效）

 --smallfiles 最小的文件大小默认值

 --syncdelay arg (=60) 与硬盘同步数据的时间，默认60秒，0表示不同步到硬盘（不建议）

 --sysinfo 打印一些诊断系统信息

 --upgrade 如果必要，将数据库文件升级到新的格式（1.0到1.1+升级时所需的）

Replication options: 复制选项

 --fastsync 从一个dbpath快照开始同步

 --autoresync 自动同步，如果从机的数据不是新的则自动同步

 --oplogSize arg oplog的大小，单位为MB

Master/slave options: 主/从配置选项

 --master 主模式

 --slave 从模式

 --source arg 从服务器上指定主服务器地址，格式为<server:port>

 --only arg 从服务器上指定要复制的数据库

 --slavedelay arg 指定从主服务器上同步数据的时间间隔，单位秒

Replica set options: 副本集选项

 --replSet arg 参数：<名称>[<种子主机列表>]

Sharding options: 分片设置选项

 --configsvr 声明这是一个集群的配置数据库，默认的端口是27019,默认的路径是/data/configdb

 --shardsvr 声明这是集群的一个分片数据库，默认端口为27018

 --noMoveParanoia 关闭moveChunk偏执型数据保存策略

2.7　小结

本章向用户介绍了在以Nginx为核心的系统中常用的几种数据库，包括关系型数据库MySQL、PostgreSQL，内存型数据库及缓存的Redis、Memcached，NoSQL数据库MongoDB。在一个小型的系统中，使用Nginx和这些数据库及缓存，可以快速搭建一个系统原型。

对于Redis数据库，需要注意以下两点：

·Redis本身是单线程的，因此可以设置每个实例在6～8GB之间，通过启动更多的实例提高吞吐量。例如，128GB的服务器上可以开启8GB×10个实例，充分利用多核CPU的性能。

·在实际项目中，为了提高吞吐量，往往需要使用主从策略，即数据写到主Redis，读取时从从Redis上读，这样可以通过挂载更多的从服务器提高吞吐量，而且可以通过主从机制，在叶子节点开启持久化方式防止数据丢失。更大型的系统则需要使用twemproxy实现Redis集群。
第3章　OpenResty

一个典型的互联网系统或云计算系统大量使用到关系型数据库、非关系型数据库、缓存、内存数据库等，以提供高速、高扩展性的服务，通常组成集群。以前协调这些系统开发是非常麻烦的，现在OpenResty提供的Nginx+Lua+Module的机制，使我们可以实现快速开发，让开发者着眼于应用，使用同一语言开发。在这种架构的应用领域里，其效率是其他语言和技术不能比拟的。

本章介绍OpenResty的组成及安装、配置方法。
3.1　OpenResty：概述

OpenResty是一个基于Nginx与Lua的高性能Web平台，集成了大量精良的Lua库、第三方模块以及大多数的依赖项，用于方便地搭建能够处理超高并发、扩展性极高的动态Web应用、Web服务和动态网关。

OpenResty通过汇聚各种设计精良的Nginx模块（主要由OpenResty团队自主开发），从而将Nginx有效地变成一个强大的通用Web应用平台。这样，Web开发人员和系统工程师可以使用Lua脚本语言调动Nginx支持的各种C以及Lua模块，快速构造出足以胜任10K乃至1000K以上单机并发连接的高性能Web应用系统。

OpenResty致力于将服务器端应用完全运行于Nginx服务器中，充分利用Nginx的事件模型进行非阻塞I/O通信，不仅仅和HTTP客户端间的网络通信是非阻塞的，与MySQL、PostgreSQL、Memcached以及Redis等众多后端之间的网络通信也是非阻塞的。

因为OpenResty软件包的维护者也是其中打包的许多Nginx模块的作者，所以Open-Resty可以确保所包含的所有组件可以可靠地协同工作。

使用Lua在Nginx下开发，需要安装很多支撑库，例如：

·Lua解释器：标准Lua 5.1或LuaJIT 2.0/2.1，用于对Lua语言进行解析。

·Lua核心模块：lua_nginx_module，是Lua语言和Nginx的桥梁，我们的脚本全部是通过ngx_lua模块和Nginx协调起来工作的。其中Lua的VM也在ngx_lua中工作。

·MySQL库：异步访问MySQL的Lua库。

·Redis库：异步访问MySQL的Lua库。

·Memcached库：异步访问Memcached的Lua库。

·PostgreSQL库：异步访问PostgreSQL的Lua库。

·JSON库：Lua上的CJSON库。

·MySQL RDS库：MySQL结果集处理RDS库。

·Redis RDS库：Redis的结果集处理RDS库。

·Drizzle Nginx Module：一个和MySQL或Drizzle通信的上游服务器。

·……

这些库都需要分别安装和配置，通过OpenResty可以把这些库和Nginx打包到一起，让研发者或使用者直接使用，从而省去配置和匹配的麻烦，所以我们推荐使用OpenResty进行Nginx下Lua开发环境的搭建。
3.2　OpenResty的组成

OpenResty由下面的组件组成。

·标准Lua 5.1解释器；

·Drizzle Nginx模块；

·Postgres Nginx模块；

·Iconv Nginx模块。

所有组件均可以方便地被激活或禁止。绝大部分组件已内置在OpenResty安装包中，但也有一部分不包含在内。

上面4个模块默认并未启用，需要分别加入--with-lua51、--with-http_drizzle_module、--with-http_postgres_module和--with-http_iconv_module编译选项开启它们。

其余各组件编译选项，可对照OpenResty安装说明，按需启用。非必要时，不推荐启用标准Lua 5.1解释器，而应尽量使用LuaJIT组件。

在1.5.8.1版本之前，OpenResty默认使用标准Lua 5.1解释器。所以对于老版本，需要显式地加入--with-luajit编译选项（1.5.8.1以后的版本已默认开启）来启用LuaJIT组件。

OpenResty支持的模块如下：

·LuaJIT；

·ArrayVarNginxModule；

·AuthRequestNginxModule；

·CoolkitNginxModule；

·DrizzleNginxModule；

·EchoNginxModule；

·EncryptedSessionNginxModule；

·FormInputNginxModule；

·HeadersMoreNginxModule；

·IconvNginxModule；

·StandardLuaInterpreter；

·MemcNginxModule；

·Nginx；

·NginxDevelKit；

·LuaCjsonLibrary；

·LuaNginxModule；

·LuaRdsParserLibrary；

·LuaRedisParserLibrary；

·LuaRestyCoreLibrary；

·LuaRestyDNSLibrary；

·LuaRestyLockLibrary；

·LuaRestyLrucacheLibrary；

·LuaRestyMemcachedLibrary；

·LuaRestyMySQLLibrary；

·LuaRestyRedisLibrary；

·LuaRestyStringLibrary；

·LuaRestyUploadLibrary；

·LuaRestyUpstreamHealthcheckLibrary；

·LuaRestyWebSocketLibrary；

·LuaRestyLimitTrafficLibrary；

·LuaUpstreamNginxModule；

·PostgresNginxModule；

·RdsCsvNginxModule；

·RdsJsonNginxModule；

·RedisNginxModule；

·Redis2NginxModule；

·RestyCLI；

·OPM；

·SetMiscNginxModule；

·SrcacheNginxModule；

·XssNginxModule。
3.3　OpenResty的安装

本章介绍在CentOS 6.x上使用yum安装OpenResty方法，其他平台的安装方法请到官方网站（https://openresty.org/cn/installation.html）查看：

对于下列Linux发行版的种类和版本号，OpenResty提供官方的预编译包。

1）RHEL/CentOS。版本号支持的体系结构：

5.x　x86_64，i386

6.x　x86_64，i386

7.x　x86_64

2）Fedora。版本号支持的体系结构：

23　x86_64，i386

24　x86_64，i386

25　x86_64，i386

26　x86_64，i386

1.添加资源库

在CentOS上使用yum安装OpenResty，需要首先安装资源库，这样就可以方便地安装OpenResty，以后也可以更新（通过yum update命令）。

创建一个名为/etc/yum.repos.d/OpenResty.repo的文件，内容如下：

[openresty]

name=Official OpenResty Repository

baseurl=https://copr-be.cloud.fedoraproject.org/results/openresty/openresty/epel-$releasever-$basearch/

skip_if_unavailable=True

gpgcheck=1

gpgkey=https://copr-be.cloud.fedoraproject.org/results/openresty/openresty/pubkey.gpg

enabled=1

enabled_metadata=1

也可以直接运行下面命令添加仓库：

sudo yum-config-manager --add-repo https://openresty.org/yum/centos/OpenResty.repo

国内用户可以把baseurl改成下面的链接，速度会更快：

baseurl=https://openresty.org/yum/openresty/openresty/epel-$releasever-$basearch/

或者运行下面命令直接添加仓库：

sudo yum-config-manager --add-repo https://openresty.org/yum/cn/centos/OpenResty.repo

2.列出所有包

使用下面命令列出资源库中所有的OpenResty包：

sudo yum --disablerepo="*" --enablerepo="openresty" list available

3.安装

使用下面命令进行安装：

sudo yum install openresty

使用yum安装OpenResty可能会因为缺少GeoIP库失败，所以需要先运行下面命令安装GeoIP：

yum install GeoIP-devel

GeoIP库的安装可能会因为仓库里没有Extra库而失败，所以需要首先添加Extra库：

yum install epel-release

4.测试

运行下面命令启动Nginx：

/usr/local/openresty/nginx/sbin/nginx -p /usr/local/openresty/nginx/

在浏览器里输入http://127.0.0.1（或主机IP），看到“Welcome to OpenResty！”表示已经启动成功。

可以进一步修改/usr/local/openresty/nginx/conf/nginx.conf，测试Lua是否正常工作，nginx.conf内容如下：

worker_processes 1;

error_log logs/error.log;

events {

 worker_connections 1024;

}

http {

 server {

 listen 8080;

 location / {

 default_type text/html;

 content_by_lua '

 ngx.say("<p>hello, world</p>")

 ';

 }

 }

}

然后运行下面命令重载配置文件：

/usr/local/openresty/nginx/sbin/nginx -p /usr/local/openresty/nginx/ -s reload

重载之前可以先测试一下配置文件的正确性：

/usr/local/openresty/nginx/sbin/nginx -p /usr/local/openresty/nginx/ -t

在浏览器里输入http://127.0.0.1:8080，如果看到了“hello world”就表示可以正常工作了。

也可以使用CURL工具测试：

curl http://localhost:8080/

<p>hello, world</p>

3.4　Nginx多实例

OpenRestry安装成功后，包里的Nginx可以部署多个实例，可以实例化多个不同的服务：或用于对外提供服务，或用于不同的开发任务，或用于学习。

只需要把OpenRestry中的Nginx目录复制一份就可以启动不同的实例：

cp -r /usr/local/openrestry/nginx /usr/local/openrestry/nginx_9090

然后修改nginx_9090/conf/nginx.conf，把端口从8080修改为9090，把“hello world”修改为“hello world2”，修改完成后启动实例。

/usr/local/openrestry/nginx_9090/sbin/nginx -p /usr/local/openrestry/nginx_9090/

在浏览器里输入http://127.0.0.1:9090，可以得到：

hello world2

表示新实例启动成功。
3.5　小结

本章介绍了OpenResty应用，并介绍了OpenResty的组成、安装方法；另外，为了方便应用，介绍了在OpenResty下多Nginx实例的方法。OpenResty是一个流行的Nginx下Lua开发解决方案，使用非常广泛。通过本章的介绍，读者可以在后续的学习和工作中掌握OpenResty的使用方法，感受其带来的便利性。
第4章　Nginx核心技术

在开发Nginx时，Apache已经是一个成熟的Web服务器了，性能不错、功能丰富、应用广泛。Nginx从设计之初就定位为高性能、高可靠性、高扩展性、高并发性的Web服务器，比Apache性能更好。Nginx是基于HTTP协议的Web服务器，受HTTP协议的制约，有些问题解决起来比较棘手，所以采用了一系列技术解决这些问题。

本章介绍这些有特色的技术，以便我们更了解Nginx，知道Lua开发的工作机制，这些技术和思想也可以应用到我们的项目中去。
4.1　Nginx设计目标

Nginx的设计目标体现7个方面，为了实现这7个方面的目标，Nginx采用了一系列架构和技术，具体如下。

1.性能

Nginx最大的特点是性能优异，客户接入的并发性出众，这是Apache无法比拟的。这个性能主要体现在网络传输方面。

1）网络性能：Nginx服务器整体的吞吐能力。Nginx在Linux上使用了Epoll网络模型，在全异步模式及多进程而非多线程模式的支持下，可以处理几万至几十万的并发请求。Nginx在用户干预请求之前，采用了预处理机制，保证更多的连接可以接入并被以最快的速度处理。而连接池等技术的使用也进一步提高了接入能力。全异步的处理机制使得响应速度更快，从而可以处理更多的请求。因为使用进程模式，减少了大并发情况下线程间切换、休眠等消耗，使得CPU消费很小。而低的内存占用，也减少了系统内存使用率。

2）网络效率：为了提高网络效率，Nginx使用了长连接（keepalive）代替短连接以减少建立、关闭带来的网络交互。同时使用压缩算法提高网络利用率，减少交互次数。

3）时延：Nginx使用了带宽控制技术，使各会话之间带宽尽量相等，保证每个连接都尽量通信，同时保证相同请求链路间低带宽和高带宽变化不会太大。全异步的模式也保证了每个请求都会以最快的速度被处理而不会被阻塞，而且每个请求的处理时间是可以预期的，保证了每个连接时延都是均等且可预期的，总体时延是相对较低的。

2.可靠性

可靠性是Nginx第二大特点。Nginx服务本身采用了主从机制以看门狗形式管理工作进程，一旦有工作进程崩溃，会马上启动新的进程代替。Nginx支持负载均衡机制，可以平行增加冗余点。

3.伸缩性

Nginx使用了组件技术，可以减少或增加使用的组件，或使用自行开发的新组件，介入到HTTP请求处理的中间环节，改变处理行为。Nginx提供了6个核心模块组成整个服务，核心模块中还可以串行增加新的模块以改变服务。

4.简单性

多组件以及多阶段的方式使一个HTTP处理过程被分为了11个小的阶段，每个阶段都可以非常简单，这使得每个阶段都容易理解和实现，也容易验证。Nginx的这种组件+分阶段的模式比通常系统中的模块化更进了一步，更加细化。直接的好处就是使HTTP处理过程变成了流水线模式，每个模块只是流水线上的一道环节的加工者，工作相对非常简单。一个间接的好处是，因为分了阶段，就要求模块间要按接口开发，接口相对固化、简化、统一，模块更高效、稳定。

5.可修改性

可修改性指的是当前架构下对系统功能修改的难易程度。对于Nginx这种定位专用的Web服务器，还需要具备动态修改配置、动态升级、动态部署的能力。动态修改配置指的是根据业务情况实时修改配置而不需要重启服务。动态升级指的是不重启服务而将Web服务器升级到新版本的能力。可修改性还可以理解为可扩展性、可定制性、可重用性等。

6.可见性

可见性指的是在Web服务器的应用场景中，系统的关键组件的运行情况可以被监控，如网络吞吐量、网络连接数、缓存使用情况等。通过这些数据的监控可以及时修改系统配置和服务配置，以改善服务性能。

7.可移植性

可移植性是指跨平台能力，通常在大型的Web应用中，操作系统是Linux和UNIX，Nginx使用Epoll，可以发挥最大性能。同时Nginx也支持Windows，但是在Windows上使用的是select，性能比较低，适合应用于小型应用，如专业型行业平台的Web容器，而不是大型Web应用。
4.2　Nginx架构

Nginx使用了很多提升稳定性和性能的架构，这些技术都非常有效，虽然有的技术本身看起来比较简单。

总体来看，Nginx使用事件驱动的服务模型。为此，Nginx在它的模块机制中专门定义了event模块实现事件驱动。在事件的基础上，Nginx使用了多阶段的异步模型。Nginx的异步模式将处理过程划分为阶段，进一步将异步的作用范围缩小。把一个处理过得的过程（如HTTP请求）划分为7个、9个或11个阶段，每一个阶段都异步处理，将请求和处理结果异步化处理。将请求多阶段处理，可以进一步控制每个请求的总体处理时间，因为每个阶段都细化，不会出现某个阶段过多占用CPU处理时间的问题。

这种多阶段的机制是保证Nginx能大并发处理多请求的基础，同时为使用模块介入请求处理提供了基础，Lua开发就是在这几个阶段中实现的。

管理进程和工作进程的机制使Nginx可以充分利用多处理器机制，充分利用了SMP机制的硬件资源，又可以减少过多线程、进程的调度开销。管理进程作为工作进程的管理者，监控工作进程的工作状态，可以做到动态升级，当工程进程终止时，管理进程可以快速启动新的进程，保证系统的可用性。

对于高并发下的多工程进程容易引起的“惊群”以及负载均衡问题，Nginx都做了比较好的处理。同时对于其他容易引起更多系统资源消费的访问，例如，每个请求阶段中频繁出现的时间比较操作，Nginx做了时间缓存机制。在其他通用的内存管理、连接池、跨平台管理等方面，Nginx都做得比较好。下面分别介绍这些架构和技术。

4.2.1　事件驱动

Nginx是事件驱动型服务，注册各种事件处理器以处理事件。对于Nginx，事件主要来源于网络和磁盘。事件（event）模块负责事件收集、管理和分发事件，其他的模块都是事件的处理者和消费者，会根据注册的事件得到事件的分发。

因为Nginx是Web服务器，而HTTP协议是基于TCP的，所以，Nginx的网络事件基本上来自于TCP网络。因为Nginx要跨平台，支持多个操作系统，所以，需要在不同的操作系统上支持不同的网络模型和事件机制。目前支持的事件机制如下：

·Linux内核2.6以前版本和大部分UNIX操作系统使用poll机制（ngx_poll_module事件模块）或select机制（ngx_select_module事件模块）。

·Linux内核2.6以上版本使用epoll机制（ngx_epoll_module事件模块）。epoll是Linux操作系统上最强大的事件管理机制。

·Windows操作系统上使用select机制。

·Solaris 10使用eventport机制（ngx_eventport_module事件模块）。

在不同的操作系统上，在nginx.conf的event{}块中配置相应的事件模块，就可以启用对应事件模型，而且可以根据应用场景随时切换事件模块，这也实现了Nginx的跨平台机制。这个具体的event模块被核心的ngx_events_module管理，ngx_events_module是核心模块。

Nginx为不同的操作系统和不同内核版本提供了共9个事件模块，分别为ngx_select_module、ngx_eventport_module、ngx_epoll_module、ngx_poll_module、ngx_devpoll_module、ngx_kqueue_module、ngx_aio_module、ngx_rtsig_module，以及一个Windows版本ngx_select_module。

图4-1描述Nginx事件处理的模型，即事件、事件管理器和事件消费者之间的一个概貌。

 [image:]

图4-1　Nginx事件处理模型

图4-1中所示的模型分为事件、事件管理器、事件消费者。事件是由生产者产生的，事件管理器负责收集、管理、分发，事件消费者使用和消费这些事件。而事件，不单单是网络事件，还有Nginx自定义的事件。

Nginx定义了丰富的事件，这些事件的消费者全部是模块，模块可以注册不同的事件，而事件可以细化到一个操作的不同阶段。图4-1中列出了5个事件，被5个事件消费者处理。这种细化的事件加上非阻塞的处理，可以使响应速度大大加快。区别于传统的Web处理机制，每个事件消费者都不去阻塞事件，处理完自己的事件后如果条件不满足，可以进入休眠状态，从而简化了开发过程的数据同步、进程同步、重入等问题。如果要管理一个事件，就需要首先注册一个handler，这个handler负责这个事件处理，ngx_lua正是利用注册handler实现的自定义开发，对HTTP请求处理过程进行干预。

Nginx的事件机制是完全的事件驱动，与传统Web服务不同。传统服务每个事件消费者都独占一个进程资源，而Nginx的完全事件驱动只是被事件分发者进程短期调用。每个用户请求产生的事件都会得到及时的响应，每个消费者不允许阻塞程序，不允许消费者使进程变为休眠状态或等待状态。

4.2.2　异步多阶段处理

Nginx的异步多阶段处理是基于事件驱动架构的。Nginx把一个请求划分成多个阶段，每个阶段都可以由事件、分发器来分发，注册的阶段管理器（消费者、handler）进行对应阶段的处理。所以，Nginx的阶段划分相当于人为创造了很多事件。例如，获取一个静态文件的HTTP请求可以划分为下面的几个阶段。

1）建立TCP连接阶段：收到TCP的SYN包。

2）开始接收请求：接收到TCP中的ACK包表示连接建立成功。

3）接收到用户请求并分析请求是否完整：接收到用户的数据包。

4）接收到完整用户请求后开始处理：接收到用户的数据包。

5）由静态文件读取部分内容：接收到用户数据包或接收到TCP中的ACK包，TCP窗口向前划动。这个阶段可多次触发，直到把文件完全读完。不一次性读完是为了避免长时间阻塞事件分发器。

6）发送完成后：收到最后一个包的ACK。对于非keepalive请求，发送完成后主动关闭连接。

7）用户主动关闭连接：收到TCP中的FIN报文。

只有多阶段划分，才能更好地实现异步处理。当一个事件被分发到事件消费者中处理时，消费者只是处理完了一个阶段的事件，只有一个请求的所有阶段都被处理完成，一个完整的流程才算走完，一个完整的请求被划分成很多个过程，有的过程（如读取）还会进一步被多次调用。每一个事件、每一个阶段均由event模块负责调用和激活。event模块监听系统内核消息，以激活Nginx事件。

这种异步多阶段处理模式的好处是高效。这将极大地提高网络性能，使每个进程都全力运转，不会或者尽量少地出现进程休眠情况。一旦有进程休眠，必然减少并发处理事件的数量，会降低网络性能。如果网络性能无法满足业务需求，将会增加进程，进程数目过多会造成进程间更多地切换，这也会消耗系统CPU资源，反过来影响网络性能。

Nginx中的阶段划分方法使用了若干种有效的方法，从上往下依次如下。

（1）将系统本身的事件和网络异步事件划分为阶段

如上面的7个阶段划分，这是网络模型通常的几个阶段，而现有的网络模型都在这个基础上划分为若干个事件。

（2）将阻塞进程的方法按照相关的触发事件分解为两个阶段

分析可能导致进程休眠的方法或系统调用，将阻塞的方法改成非阻塞的方法，调用这个方法的过程定义为第一个阶段。增加第二个阶段，用于处理非阻塞方法回调。非阻塞方法的返回结果是第二个阶段的触发事件。例如，将阻塞send接口改成非阻塞send接口。以send为节点将send和send之后划分为两个阶段。

（3）将阻塞方法按调用时间分解为多个阶段调用

在阻塞方法不能按上面方法划分多阶段情况下（如触发事件不可以被捕获），使用按照执行时间拆分方法。

Nginx主要处理网络收发任务，epoll的网络处理能力非常强大，支持完整的异步模式。一般无法划分的阻塞方法是发生在文件I/O上。在不支持异步文件I/O的系统上，如果读取10MB数据将会遇到文件不连续、中间不定时会等待的情况。这时将文件读取划分为小块读取，如每次读取10KB，这样每一块读取的时间都比较均匀，这个事件接收器不会占用进程多少时间，系统有机会处理其他的事件。但是没有读取完成的事件，通过将读取和网络发送直接关联，就可以在发送完成事件里知道上次读取已经完成并且已经发送出去，需要读取下一个10KB了。在不使用网络的情况下，可以将读取和一个专用定时器关联起来，因为每10KB的读取时间相对可控，比较均匀，所以时钟的命中率就比较高，一旦时钟检测到数据读取完成，就可以触发对应第二阶段的事件。

（4）在必须等待的情况下，使用定时器切分阶段

例如，我们经常在代码中做状态和标志检测的工作，直到某个条件满足时才往下执行，这种情况使用定时器检测标志，如果标志位不满足就立刻归还控制权，同时继续加入下一个定时器事件。

（5）阻塞方法无法继续划分，则必须使用独立的进程执行这个阻塞方法

如果某个阻塞方法没有提供非阻塞接口，则将其划分为阻塞方法调用前和阻塞方法调用后，而调用前需要使用独立进程调度。

Nginx提供的API以及ngx_lua提供的API和库都是非阻塞的，也都使用多阶段的异步机制。我们只是在此基础上开发应用，一般不会遇到阻塞的情况。但如果我们使用Lua原生库，则可能会碰到这个情况，典型的就是文件类API，这时我们也需要使用上面的方法进行多阶段划分。再如，我们的线程函数里就可能出现第4种情况，需要用对应的方法处理，可使用时钟解决这个问题。对于我们使用非OpenResty的库，使用其他的库，而库函数没有非阻塞接口，则会遇到第5种情况的问题，我们需要使用对应方法解决。否则，我们的代码将阻塞Nginx的工作进程，降低系统整体性能。这与Nginx和我们的初衷是违背的，需要注意。

Nginx中的定时器是由Nginx实现的，非内核态的，而且使用内存缓冲时间实现高性能读取，所以使用定时器时的性能是可以保证的。

4.2.3　模块化设计

模块化设计是Nginx中重要的架构，除了少量的核心代码，其他功能都是在模块中实现的，新功能的扩展是通过按照标准接口和数据结构开发新模块实现的，核心代码和核心模块不需要改动。模块化设计的好处是给Nginx带来了更好的扩展性、可靠性。

1.Nginx模块化设计的特点和技术

（1）使用模块接口

所有的模块遵循统一的接口设计规范，接口设计规范定义在ngx_module_t中，这样使接口简化、统一、可扩展。

（2）配置功能接口化

Nginx将配置信息也定义和开发成模块，配置模块专注于配置的解析和数据保存，是唯一一个只有一个模块的模块类型。ngx_module_t接口中定义了一个type成员，用于描述和定义模块类型。配置模块是ngx_conf_module，是其他模块的基础模块，因为Nginx模块全部使用配置模块来定义和配置，依赖于配置模块。

（3）模块分层设计

Nginx设计了6个基础类型模块（称为核心模块），实现了Nginx的6个主要部分，以及HTTP协议主流程。这样设计的目的是使框架程序只关注于如何调用核心模块，核心模块实现Nginx的核心功能，实现了第一层的流水线。核心模块之外是非核心模块，由对应的核心模块进行初始化和调用。这些模块可以动态添加，通过重新编译包含进Nginx，通过配置文件将模块使能，给Nginx带来了扩展性、灵活性。

event模块、HTTP模块、mail模块的非核心模块中有一个对应的core模块，代理核心模块的行为，例如，event模块均由ngx_events_module模块定义，加载由ngx_event_core_module模块负责。这3种模块不直接执行框架代码的操作，而是由对应的core代理模块实现，它们只重新定义了下面可以管理的模块。

（4）核心模块接口简单化

核心模块的接口非常简单，将ngx_module_t中的ctx上下文实例化为ngx_core_module_t结构，该结构是以配置项的解析为基础的。nginx.conf中解析出来的配置项会放到这个数据结构，通过提供的init_conf回调使用解析出的配置项初始化核心模块。Nginx框架允许核心模块接口、功能可自定义，这样就可以使核心模块自己定义新的模块类型，所以就有了event、mail和HTTP模块的模块簇。这使得Nginx可以灵活扩展、不停止服务升级、动态配置。

2.核心模块

核心模块是ngx_core_module。目前核心模块中有6个模块：ngx_core_module、ngx_events_module、ngx_openssl_module、ngx_http_module、ngx_mail_module、ngx_errlog_module。核心的功能都封装在这些核心模块中，框架代码只是这些模块的使用者，可以专注于主处理流程开发。模块使系统模块化，可以分别升级和进化，使系统功能和稳定性提升，但又不影响整体功能和稳定性。这是一种典型的模块化面向接口编程技术。

这6个核心模块分别代理6类模块，它们是其他子模块或非核心模块的管理者：

·ngx_events_module：管理所有事件类模块。

·ngx_http_module：管理所有HTTP类型模块。

·ngx_mail_module：管理所有邮件类型模块。

·ngx_errlog_modul：管理所有日志类模块。

·ngx_openssl_module：管理所有TLS/SSL模块。

·ngx_core_module：管理配置等全局模块。

模块化使Nginx可以实现动态可配置性、动态扩展性、动态可定制性，可以实现不停止服务、不重启服务实现更新和添加。

这6个核心模块只是定义了6类业务的业务流程，具体的工具并不由这些模块执行，例如，event模块由ngx_events_module定义，但是由ngx_event_core_module模块加载；HTTP模块由ngx_http_module定义以及加载，但业务核心逻辑以及具体请求应该调用哪个HTTP模块处理由ngx_http_core_module实现。

图4-2描述了常用模块之间的关系。

 [image:]

图4-2　Nginx常用模块之间的关系

配置模块和核心模块都是框架所面对的一层重要模块。其他模块则像部门经理，各自统领一个部门，负责不同的业务实现。

4.2.4　管理进程、工作进程设计

为支持现在流行的多CPU和多核架构，Nginx使用了管理进程+工作进程的设计。管理进程作为工作进程的管理进程和父进程，还可以带来高可靠性：工作进程终止，管理进程可以及时启动新的实例接替。这种模式的优点体现在以下3个方面。

1）充分利用多核系统的并发处理能力。Nginx中所有的工作进程都是平等的，并且可以在nginx.conf中将工作进程和处理器一一绑定，这样配合负载均衡机制，不会让某核繁忙，整体处理能力得到提高。

现代的服务器都支持多处理器架构，且处理器内还是多核心架构，只有多进程和多线程机制才能发挥硬件体系的最佳性能。而设计合理的多进程模式比多线程模式性能要好些，因为滥用线程带来的线程切换开销也是不容忽视的。

2）负载均衡。工作进程间通过进程间通信实现负载均衡，请求容易被分配到负载较轻的工作进程中，这将提高系统的整体性能。

3）方便状态监管。管理进程任务很轻，只负责启动、停止、监控工作进程，当某个工作进程不正常工作时，可以立即启动新的进程接管。同时管理进程支持服务运行中的程序升级、配置项修改等操作。使系统整体具备了动态扩展性、动态可定制性、动态可进化性。

Nginx管理/工作多进程模式如图4-3所示。

 [image:]

图4-3　Nginx管理/工作进程模式

管理进程向用户提供了命令行服务，包括启动、停止、重载配置文件、平滑升级程序等。管理进程运行时需要较大的权限。一般会使用root用户启动管理进程，而工作进程权限较小，使管理进程可以完全管理工作进程。当任意一个工作进程出现错误coredump时，管理进程会立刻启动新的工作进程继续服务。

多工作进程处理请求可以提高服务的健壮性，即若有工作进程意外退出，则会有新的工作进程启动代替，更可以充分利用SMP多核架构，实现真正的多核并发处理。Apache的每个进程在一个时刻只处理一个请求，因此在多任务处理阶段，Apache的进程数或线程数要设置得很多，一般一台服务器可以达到几百个进程，这种情况下大量的进程间切换将带来无谓的系统资源消耗。Nginx的工作进程之间处理并发请求时几乎没有同步锁的问题，而工作进程采用全异步的操作模式，处理速度快，所占内存非常小。所以，当Nginx的进程数与CPU核心数相等时，进程间切换的开销是最小的。

1.“惊群”问题

管理进程+工作进程模式有很多优点，同时也有一些问题需要解决。

Nginx里的工作进程一般是按系统CPU核数配置的，有多少个CPU核心，就会配置多少个工作进程，工作进程启动时就会利用fork函数创建多少个工作进程，并且所有的工作进程都监听在nginx.conf内配置的监听端口上，这样可以充分利用多核机器的性能。网络事件通过底层的events模块管理，当客户端连接请求到来时，一个新连接事件会上报，各个工作进程就会发生对事件的抢夺，这就是“惊群”问题。工作进程越多，问题越明显，这会造成系统性能下降，所以，必须避免“惊群”问题。详细来说，“惊群”问题的典型场景是这样的：在没有用户请求的时候，所有的工作进程都在休眠，此时，一个用户向服务器发起了连接请求，例如，在epoll模式下，内核在收到了TCP的SYN包时，会激活所有休眠的工作进程，最先接收连接请求的工作进程可以成功建立新连接，其他工作进程的接收会失败。这些失败的唤醒是不必要的，引发了不必要的进程上下文切换，增加了系统开销，这就是“惊群”问题。

Nginx应用层制定了一个机制解决这个问题：规定同一时刻只能有唯一一个工作进程监听Web端口，这样，新的连接事件只能唤醒唯一一个工作进程。内部的实现实际上是使用了一个进程间的同步锁，工作进程每次唤醒都先尝试这把锁，保证同一时间只有一个工作进程可以进入锁，获得锁的进程设置监听连接的读事件，以处理未来的新连接请求，并处理已连接上的事件；未能进入监听锁的工作进程则不监听新连接事件，只处理已连接上的事件，将唤醒的工作进程分为了两类，一类（只有1个）是可以监听新连接的，另一类是正常处理已有连接请求的。

设置了连接事件监听的进程在连接事件到来时会被唤醒并检查系统变量，发现新连接队列中有连接则释放锁，并调用对应事件的handler方法。这种技术既解决了“惊群”问题，也避免了一个进程过长占用锁使新连接得不到及时处理的问题，接收了一个连接后，把连接放入队列后马上释放锁，如果恰巧有新连接马上进来，则会由一个新的工作进程接收连接，起到一定的负载均衡作用。放入队列的请求事件会在后续阶段处理。

2.负载均衡

Nginx的负载均衡可以从两个层面来讲。

（1）系统级的负载均衡

如电子商城一类的大型网站，需要多台Web服务器组成集群以应对海量的访问，需要在不同的Web服务器之间实现负载均衡，一般有如下的做法。

1）系统级的负载均衡，实现方法是使用一个Nginx服务通过upstream机制将请求分配到上游后端服务器，而这里可以使用模块内置的一些负载均衡机制将请求均衡地分配到服务器组中。

2）使用一个单独的Nginx服务以自定义负载均衡算法实现代理模式，实现负载均衡集群。

（2）单Nginx服务内部工作进程间的负载均衡

不让某个进程“累死”，其他的进程“闲死”，才能发挥系统的最佳性能。

这里讲的是管理/工作进程模式下工作进程内的负载均衡机制。

Nginx内部有一个ngx_accept_disabled变量，设置的是负载均衡的阈值，是一个整数数值。events{}中的worker_connections参数，用于设置每个工作进程的连接数，这个连接数会影响连接池的大小，连接池在内部是一个数据结构，内部分为free_connections和connections，用完的连接都插入free_connections头部，新的连接从free_connections尾部取出一个连接，然后放入connections，这些数据都是链表操作。

图4-4描述了ngx_connection的结构。

 [image:]

图4-4　ngx_connection结构

ngx_accept_disabled是一个进程内的全局变量，在Nginx启动时是负数，每次接收一个新连接时都会赋值，值为连接总数的7/8。当本变量值为负数时，不会进行负载均衡操作，会参与到新连接的接收尝试中，尝试获取同步锁；当值为正数时，表示连接已经过多，则会放弃一次争夺，并将值减1。值为正数表示本进程处理的进程已经过多了，已经达到了上限的7/8，所以，只有值为正数时才启动均衡算法，可以使各工作进程相应地均衡。可以看出这个算法是比较简单的，也是比较有效的。

4.2.5　内存池

Nginx在内部设计并使用了一个简单的内存池，特点是，每一个TCP连接建立时分配一个内存池，而在请求结束时销毁整个内存池，把曾经分配的内存一次性归还给操作系统。而它不负责回收内存池中已经分配出去的内存，这些内存由请求方负责回收。内存池减少了分配内存带来的资源消耗，同时减少了内存碎片。一般Nginx内部的内存池有以下两种模式：①申请了永远保存；②申请了，请求结束全部释放。对于内存的使用，有缓冲写满了从头覆盖使用的方法等。

这种内存池是内部使用的，对于基于C的模块可以使用这个内存池机制，内部提供了ngx_palloc、ngx_pnalloc、ngx_pcall这3个系统调用模块用于内存申请。内存池机制是为没有垃圾回收机制的C语言提供的一个补充机制，因为在C语言中容易出现内存泄漏问题。当内存申请和释放逻辑比较远时，容易出错，例如释放两次这种异常。内存池在开发上可以降低使用错误的机率，模块开发者只需要关注内存的使用情况，释放则由内存池来负责。

对于Lua开发，这种机制并不能直接使用。Nginx的这种机制提高了系统整体的可用性，方便了Nginx模块的开发，我们在Lua开发中用到的很多模块就使用了内存池机制。

4.2.6　连接池

Nginx为了减少反复创建TCP连接以及创建套接字的次数，从而提高网络响应速度，在内部提供了连接池机制，在众多配置命令里也可以经常看到连接池的配置选项和单独命令。

连接池在Nginx启动阶段，由管理进程在配置文件中解析出来对应的配置项，配置项放到配置结构体中。在event核心模块ngx_events_module初始化事件模型时，ngx_event_core_module模块第一个被初始化，这个模块将根据配置结构体中的连接池大小配置创建连接池，如果没有配置项，则使用系统默认值创建连接池。注意，配置指令中worker_connections配置的连接池大小是工作进程级别的，所以实际的连接池大小是worker_connections*worker_processes。

所有使用连接池的接口都有keepalive（）方法，会将一个连接放入连接池中，对于应用来讲，连接将得到close状态，而连接实际没有释放。

Nginx内部封装了两个连接池方法：ngx_get_connection和ngx_free_connection，用于模块开发者使用内置的连接池，所以很多Nginx配套的模块，都使用了这个连接池。在后面的实战章节里，我们将会看到各种连接缓存、数据库的库都支持使用连接池，特别是OpenResty系列数据访问组件，支持内置的连接池。

4.2.7　时间缓存

Nginx内部提供了很多时间函数，而且内部的操作大多数要控制超时值，需要使用当前时间进行判断。由于对OS的时间函数gettimeofday的调用是内核态的系统调用，如果频繁调用会降低系统可用性，Nginx在自己内部对系统时间进行了缓冲，避免频繁进行系统调用，内部访问时间实际上访问了内存中的几个变量。

nginx.conf中的timer_resolution配置可以指定多长时间更新一次时间缓存。这也是一个降低系统资源占用的细节。因为，考虑到大并发大任务下的处理过程中，要处理很多的过程，那么这个占用带来的开销是不容忽视的，而其他的系统往往又会忽视这个因素。

时间缓存在系统初始化时被赋值，另一个修改的机会是在ngx_epoll_process_events调用epoll_wait返回时有可能会更新。

因为Nginx的多工作进程机制，可能导致时间缓存读写不一致问题，即前一个进程在读时间缓存时正好被中断了，而时间缓存又被另一个进程因为ngx_epoll_process_events导致了时间更新了，导致前后读取不一致。所以采用64个缓存时间，引入时间缓存数组（共64个成员），每次都更新数组中的下一个元素；读取时间缓存时，也是读取最新的时间，从而实现读写一致性。这是内部实现的机制，对于上层的应用开发是透明的。

4.2.8　延迟关闭

延迟关闭，即当Nginx要关闭连接时，并不马上关闭连接，而是先关闭TCP连接的写操作，等待一段时间后再关掉连接的读操作。假设有这样一个场景：Nginx在接收客户端请求时，可能由于客户端或服务端出错，要立即响应错误信息给客户端，Nginx在响应错误信息后，大部分情况下需要关闭当前连接。Nginx执行完write（）系统调用把错误信息发送给客户端，write（）系统调用返回成功并不表示数据已经发送到客户端，有可能还在TCP连接的写缓冲区里。如果紧接着执行close（）系统调用关闭TCP连接，内核会首先检查TCP的读缓冲区里有没有客户端发送过来的数据留在内核态没有被用户态进程读取。如果有则发送给客户端RST报文关闭TCP连接，丢弃写缓冲区里的数据；如果没有则等待写缓冲区里的数据发送完毕，然后经过正常的4次分手报文断开连接。所以，若在某些场景下TCP写缓冲区里的数据在write（）系统调用之后到close（）系统调用执行之前没有发送完毕，且TCP读缓冲区里面还有数据没有读，则close（）系统调用会导致客户端收到RST报文且不会拿到服务端发送过来的错误信息数据。客户端就会经常在没有错误信息的情况下被重置连接。

在这个场景中，关键点是服务端给客户端发送了RST包，导致自己发送的数据在客户端被忽略掉了。所以，解决问题的重点是，不让服务端发RST包。服务端发送RST包是因为关掉了连接，关掉连接是因为不想再处理此连接了，也不会有任何数据产生。对于全双工的TCP连接来说，只需要关掉写连接就行了，读可以继续进行，只需要丢掉读到的任何数据就可以了，当关掉连接后，当客户端再发过来数据时，就不会收到RST。设置一个超时时间，在这个时间过后，就关掉读连接，客户端再发送的数据就会被忽略掉，服务端会在超时时间内关掉读端。通过lingering_timeout选项设置这个超时值，如果在lingering_timeout时间内还没有收到数据，则直接关掉连接。Nginx还支持设置一个总的读取时间，通过lingering_time设置，这个时间也就是Nginx关闭写之后，保留套接字的时间，客户端需要在这个时间内发送完所有的数据，否则Nginx在这个时间过后，会直接关掉连接。Nginx支持配置是否打开延迟关闭选项，通过lingering_close选项配置。延迟关闭的主要作用是保持更好的客户端兼容性，但是需要消耗更多的额外资源，因为连接会一直占用。

4.2.9　跨平台

Nginx使用C语言开发，开发过程中可减少平台相关调用。在关键的网络部分，因为使用了模块技术，Nginx按不同平台提供了不同的模块，可以在nginx.conf中配置使用，适应了不同平台的环境；同时在内部重新封装了各种数据结构和容器代码，重新封装了日志。所以，Nginx可以在各种平台上运行，实现跨平台工作。

4.2.10　HTTP模块管道过滤模式

Nginx中定义了一种HTTP过滤模块。过滤模块有输入端和输出端，输入端和输出端有统一的接口。过滤模块按照配置时的次序依次连接，组成一个过滤链，每个模块处理接收到的数据，处理完成后输出到下一个模块，每一个模块都增量式地处理数据，可以正确处理完整数据流的一部分。

这种模式允许把整个HTTP过滤系统输入/输出简化为可以组合的机制。用户可以将任意的过滤模块按照业务要求组合起来，实现特定的要求。开发一个新的模块后，可以简单地将其添加到现有过滤系统中，提高了可验证性和可测试性；可以灵活地变动这个过滤模块流水线以验证功能，验证完毕可以使系统方便地扩展HTTP过滤模块，提高了扩展性，更便于开发和验证。

4.2.11　keepalive

keepalive是HTTP长连接，为了提高传输效率，HTTP协议中定义了这个特性。keepalive可以有效提高网络效率，所以Nginx对这个协议特性进行了运行，在配置指令以及API中，可以大量看到相关的配置和API。

在Nginx中，HTTP 1.0与HTTP 1.1也支持长连接。HTTP请求是基于TCP传输层协议的，客户端发起请求前，需要与服务端建立TCP连接，每一次的TCP连接需要3次握手确定，如果客户端与服务端之间的网络环境比较差，则这3次交互占用的时间会比较多，而且3次交互也会消耗网络流量。连接断开时，需要进行4次交互。HTTP协议是请求应答式的，如果知道每个请求头与响应体的长度，那么可以在一个连接上面执行多个请求，这就是长连接，前提条件是先确定请求头与响应体的长度。对于请求来说，如果当前请求包含body，如POST请求，那么Nginx需要客户端在请求头中指定Content-Length表明body的大小，否则返回400错误，也就是说，请求体的长度是确定的。HTTP协议中关于应答包body的长度定义如下。

·对于HTTP 1.0协议来说，如果响应头中有Content-Length头，则根据Content-Length的长度可以知道body的长度，客户端在接收body时，可以依照这个长度接收数据，接收完后，表示这个请求完成了。而如果响应头中没有Content-Length头，则客户端会一直接收数据，直到服务端主动断开连接，才表示body接收完了。

·对于HTTP 1.1协议来说，如果响应头中的Transfer-encoding为chunked传输，则表示body是流式输出，body会被分成多个块，每块的开始会标识出当前块长度，此时，body不需要通过长度指定。如果响应头中的Transfer-encoding为非chunked传输，而且有Content-Length，则按照Content-Length接收数据；否则，如果响应头中的Transfer-encoding为非chunked传输，并且没有Content-Length，则客户端接收数据，直到服务端主动断开连接。

可以看到，除了HTTP 1.0不带Content-Length以及HTTP 1.1非chunked传输不带Content-Length外，body的长度是可知的。这种情况下，当服务端输出完body之后，可以考虑使用长连接。能否使用长连接，也是有条件限制的。如果客户端的请求头中的connection为close，则表示客户端需要关掉长连接。如果客户端的请求头中的connection为keepalive，则客户端需要打开长连接，如果客户端的请求中没有connection这个头，那么根据协议，如果是HTTP 1.0，则默认为close，如果是HTTP 1.1，则默认为keepalive。如果结果为keepalive，Nginx在输出完响应体后，会设置当前连接的keepalive属性，然后等待客户端下一次请求。当然，Nginx不可能一直等待下去，如果客户端一直不发数据过来，连接将会被一直占用。所以当Nginx设置了keepalive等待下一次请求时，同时会设置一个最大等待时间，这个时间是通过选项keepalive_timeout配置的，如果配置为0，则表示关掉keepalive，此时，HTTP版本无论是1.1还是1.0，客户端的connection不管是close还是keepalive，都会强制为close。

如果服务端最后的决定是打开keepalive，那么在响应的HTTP头里面，也会包含connection头域，其值是keepalive，否则就是close。如果connection值为close，在Nginx响应完数据后，会主动关掉连接。对于请求量比较大的Nginx来说，关掉keepalive会产生比较多的time-wait状态socket。一般来说，当客户端的一次访问，需要多次访问同一个服务器时，打开keepalive的优势非常大，如对于图片服务器，通常一个网页会包含很多图片，打开keepalive会大量减少time-wait状态。

4.2.12　pipeline

在HTTP 1.1中，引入了一种新的特性，即pipeline。pipeline是流水线作业，可以看作keepalive的一种提高，因为pipeline也是基于长连接的，目的是利用一个连接做多次请求。如果客户端要提交多个请求，对于keepalive来说，那么第二个请求必须要等到第一个请求的响应接收完全后，才能发起，这和TCP的停止等待协议是一样的，得到两个响应的时间至少为2RTT；而对于pipeline来说，客户端不必等到第一个请求处理完后，就可以马上发起第二个请求，得到两个响应的时间可能达到RTT。Nginx支持pipeline，但是，Nginx对pipeline中的多个请求的处理不是并行的，依然是一个请求接一个请求地处理，只是在处理第一个请求的时候，客户端就可以发起第二个请求。这样，Nginx利用pipeline减少了处理完一个请求后，等待第二个请求请求头数据的时间。Nginx的做法很简单：Nginx在读取数据时，会将读取的数据放到一个buffer里面，如果Nginx在处理完前一个请求后，发现buffer里面还有数据，就认为剩下的数据是下一个请求的开始，接下来处理下一个请求，否则就将连接设置为keepalive。
4.3　小结

本章对Nginx的核心架构和关键技术进行了介绍。Nginx核心是事件驱动的纯异步架构。Nginx在代码上使用了核心模块和其他模块分开但是共同工作的模块机制。在程序模型上使用了管理进程/工作进程的工作机制，并对管理进程/工程进程机制引起的“惊群”问题和负载均衡的调度做了处理。Nginx中使用了一些提高系统性能的关键技术，这些技术对于开发高性能服务器是非常有效的，对我们进行Nginx配置也会有帮助，我们会知道这些配置项会对哪些模块产生影响，会知道这些取值的背景意义。
第5章　Nginx的工作流程

详细了解Nginx的主要工作流程，可以让我们更好地认识Nginx，从而更好地使用Nginx，同时可以让我们更好地掌握Lua在Nginx中的工作流程。根据对Nginx核心技术和架构的了解，我们知道了管理进程/工作进程机制，以及HTTP核心模块和配置对Nginx的重要性，也知道了Nginx的框架代码不多，只负责环境管理，本章将介绍这些部分的工作流程。
5.1　Nginx的启动流程

Nginx启动时分为两部分：

1）框架程序启动过程：这个阶段会创建各核心模块和非核心模块。

2）模块启动过程：模块内部完成自己的启动和初始化部分。

Nginx启动过程如图5-1所示。每个过程具体的任务如下：

1）启动时，Nginx接受命令行参数，解析出各主要参数。因为Nginx的参数主要放在nginx.conf中，所以最重要的参数是nginx.conf的路径。

2）平滑升级是指不重启服务而进行升级，不重启管理进程而启动新版本的Nginx程序。旧的管理进程先调用fork函数创建（即分叉）一个新进程，然后新进程通过execve系统调用启动新版本管理进程，旧版本管理进程首先设置环境变量，新版本管理进程启动时检查对应环境变量知道是平滑升级，并对通过环境变量传递的旧版本Nginx服务监听的句柄做继承处理。

3）框架通过调用核心模块的create_conf方法让核心模块创建用于存储对应配置信息的结构体创建核心模块。一直到第8步，都是基于配置文件对环境和模块进行初始化的。这一步为后面的配置文件解析做好准备工作。

4）调用配置模块的解析方法，解析nginx.conf中的配置项。调用对应核心模块的方法将属于各核心模块的配置项保存到核心模块的配置数据结构中。

5）调用所有核心模块的init_conf方法，用于让核心模块根据写入内部配置数据结构的数据对模块做处理和初始化。

6）配置文件中可能配置了缓存文件、库文件、日志文件等，同时包括共享内存，在这一步对这些文件和共享内存进行创建、打开操作。

7）对于配置了监听端口的模块，按配置开始监听配置的端口。一般HTTP模块、stream模块都会有监听端口。

8）调用所有模块的init_module方法，使用配置信息初始化模块。

9）如果nginx.conf中配置了Nginx为master模式（一般都是这种模式），则创建管理进程。

10）管理进程根据配置的工作进程数，使用一个循环将所需要的工作进程分叉出来。

11）管理进程根据配置解析过程时解析出来的配置信息，检查相应path配置是否配置值，如果配置了，则分叉出独立的cache manager进程（这是一个和工作进程并级的进程）。将后端服务器的应答使用文件缓存下来，下次请求时不需要再向后端发送请求，一般用在upstream{}中。缓存管理器这个进程定期检查缓存状态、查看缓存总量是否超出限制，如果超出则删除最少使用的部分。cache manager会定期删除过期缓存文件。

12）同第11步，管理进程根据配置文件查看是否对应的path路径配置了路径，如果配置了，则分叉出cache loader进程，并且延迟1分钟运行。cache loader进程会遍历配置文件中proxy_cache_path指定的缓存路径中所有的缓存文件。根据缓存文件的MD5编码遍历由cache manager进程生成的内存中的缓存文件红黑树和节点结构（ngx_http_file_cache_node_t）。如果不存在，则创建新的节点，并将对象的rbnode和queue分别插到红黑树和过期队列中；如果存在，则更新相应属性。cache loader进程实现的是根据缓存文件进行索引重建工作，即在Nginx服务重新启动将之前的缓存文件重建索引起来。该进程工作一段时间后将自动退出。

13）管理进程调用所有模块的init_process方法。此时，工作进程的启动工作就完成了，工作进程进入自己的消息循环中开始等待处理用户请求。

14）如果Nginx是single模式，则直接调用所有模块的init_process方法，直接以single模式启动完毕。单进程模式下，网络端口监听、数据处理等均由管理进程处理，多进程模式下，网络连接和数据处理等由工作进程处理。不管哪种模式，网络端口都是由管理进程创建的。single模式一般用于调试。

框架代码负责创建核心模块和功能模块，然后由各进程和模块配合起来向用户提供服务。下面将分别解析主要进程和服务的工作流程。

 [image:]

图5-1　Nginx启动流程
5.2　管理进程的工作流程

管理进程的工作比较简单，它只是管理工作等子进程，实现重启服务、平滑升级、更换日志文件、动态重新装载配置文件等操作，不需要处理网络任务。

用户通过信号操作管理进程。管理进程内部设置了信号，并注册了相应的handler，信号发生时，会调用相应的handler处理对应的请求。我们通过命令行参数操作Nginx，内部的实现是通过管理进程接收用户输入的信号并处理实现的。

管理进程信号定义如表5-1所示。

表5-1　管理进程信号定义

 [image:]

管理进程收到信号后，会设置内部定义的7个变量，在主循环中，根据这7个变量决定ngx_master_process_cycle方法如何执行，实现内部调用，完成预定的逻辑。

管理进程通过fork命令创建工作进程，并将工作进程号保存到内部进程变量表（ngx_processes）中，管理进程依靠信号改变表中进程的状态。当子进程意外退出时，管理进程作为父进程，会收到Linux内核发来的CHILD信号，根据进程ID修改内存中的进程状态。

Nginx设计管理进程/工作进程机制的目的是让管理进程监控和管理工作进程，当工作进程意外终止时，管理进程需要启动新的工作进程接替终止进程，实现系统的连续运行能力，提供高可靠性。下面介绍管理进程的工作循环机制，从中也可以看到其如何创建新工作进程的机制如图5-2所示。

管理进程的工作流程如图5-2所示。

管理进程的工作循环根据8个状态位（7个信号对应状态位与1个no_noaccept状态位）执行不同的代码路径。每当一个循环执行完毕后进程便被挂起，直到有新的信号才会被激活并继续执行。

1）如果ngx_reap为0，则执行第2步；如果ngx_reap为1，表示要监控所有的子进程，检查每个子进程的状态，非正常退出的子进程会重新启动。本阶段会返回一个live状态，0表示所有子进程均已经正常退出，1表示所有子进程均正常。

2）当live为0，同时ngx_terminate为1或者ngx_quit为1时，退出管理进程，并首先删除保存管理进程号的pid文件。

3）调用所有模块的exit_master方法。

4）关闭所有监听端口。

5）销毁内存池，退出管理进程。

6）如果ngx_terminate为1，则向所有子进程发送TERM信号，通知子进程执行强行退出流程，然后跳转到第1步挂起进程。

7）如果ngx_quit为1，表示需要“优雅”地退出服务，向所有子进程发送QUIT信号；否则判断ngx_reconfigure标志。

 [image:]

图5-2　管理进程的工作流程

8）继续执行ngx_quit为1的分支操作，关闭所有监听端口，然后跳转到第1步挂起进程。

9）当ngx_reconfigure为1时，重新读取配置文件。在这个过程中，管理进程首先重新初始化配置结构体，用来读取新的配置文件，再创建新的工作进程，然后销毁旧的工作进程。

10）使用新配置创建新的进程。

11）根据缓存模块中的配置，决定是否创建新的cache manager或cache loader进程，同时将内部live标志置1。

12）向旧的子进程发送QUIT信号，旧子进程“优雅”地退出。

13）启动子进程。

14）根据是否有缓存文件决定启动cache manage或cache loader，同时将live置1。

15）如果ngx_reopen标志为1，重新打开所有文件。

16）向所有子进程发送USR1信号，要求子进程重新打开所有文件。

17）检查ngx_change_binary标志位，为1表示需要平滑升级，则创建新的工作进程。

18）如果ngx_noaccept标志位为1，则向所有子进程发送QUIT信号，让子进程“优雅”地退出。如果ngx_noaccept为0则跳转到第1步。
5.3　工作进程的工作流程

Nginx的业务处理是在工作进程中完成的，但实际上是通过工作进程协调各模块组件完成任务的。工作进程由管理进程管理，它们之间的工作机制是通过信号实现的，工作进程中有一个专用的方法处理信号，工作进程关注4个信号，对应到4个全局变量，分别为ngx_terminate、ngx_quit、ngx_exiting、ngx_reopen。

除了ngx_exiting标志位（退出时作为标志位使用），其他3个标志位均由对应信号设置：

·ngx_terminate：TERM信号，对应强制退出操作。

·ngx_reopen：USR1信号，重新打开文件。

·ngx_quit：QUIT信号，“优雅”地退出。

工作进程的工作流程如图5-3所示。

 [image:]

图5-3　工作进程的工作流程

工作进程处理4个信号量，作为主流程，否则工作循环处理网络event事件，处理HTTP业务流程。
5.4　配置加载流程

Nginx服务是通过nginx.conf配置文件实现的，Nginx是多模块架构，在框架启动流程中，每个模块都会为自己创建一个配置信息数据结构，而框架又会调用模块init_conf接口，将配置项加载到模块一级。所有配置项中的配置以配置块为单位，而配置块又是与内部模块对应的。配置项配置信息保存在模块中。

下面是一个典型的nginx.conf配置文件。

#user nobody;

worker_processes 1;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 sendfile on;

 keepalive_timeout 65;

 server {

 listen 80;

 server_name localhost;

 #charset koi8-r;

 #access_log logs/host.access.log main;

 location / {

 root html;

 index index.html index.htm;

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 }

}

在这个最典型的简单例子中，最外层未在块中的配置信息是全局配置信息，保存在框架变量中。events{}配置块则保存到event模块中。http{}配置块则由HTTP模块解析并保存，而当HTTP模块遇到http{}、server{}、location{}配置块时，会创建新的配置块数据结构保存信息，如果http{}配置块中有多个server{}或location{}，则内存将会有多个配置数据结构。

框架程序在解析配置文件时，通过3个HTTP模块的回调函数将配置信息传给HTTP模块：create_main_conf、create_svr_conf、create_loc_conf，3个函数分别对应http{}、server{}、location{}配置块。create_main_conf只会被调用一次，而create_svr_conf和create_loc_conf则可能会被调用多次，这取决于配置情况。HTTP模块会多次生成配置数据结构保存配置信息。

取决于Nginx的这种配置实现，Nginx其实就有了一些特性，可以在不同的位置配置多个location，我们来看下面这个配置例子：

http{

 my_test hello;

 server{

 listen 80;

 my_test is80;

 location /t1{

 my_test test1;

 }

 location /t2{

 my_test test2;

 }

 }

 server{

 listen 8080;

 my_test is8080;

 loation /t3{

 my_test test3;

 };

 }

}

在这个例子中，http{}中定义了2个server，同时在3个location中重新赋值了my_test，那么，my_test的哪个值生效呢？my_test一共有hello、is80、test1、test2、is8080、test3这几个取值。本配置共监听了2个端口：80和8080，共提供了/t1、/t2、/t33个URL请求。my_test的值其实是由访问的URL决定的，即

http://localhost/t1 test1

http://localhost/t2 test2

http://localhost/t3 404

http://localhost:8080/t1 404

http://localhost:8080/t3 test3

上面解析中提供了2个错误URL请求的示例，按照配置正确访问3个URL则可以得到对应的my_test值。

1.配置文件加载和解析的过程

配置文件加载和解析的过程参见图5-1的Nginx启动流程。主要过程如下：

1）从Nginx命令行得到配置文件路径。

2）调用所有核心模块的create_conf方法，生成配置项结构体。

3）框架代码解析nginx.conf核心模块部分。

4）调用所有核心模块的init_conf方法，解析对应的配置块。

2.HTTP配置块解析过程

核心模块将配置主业务分解后，下一阶段就是核心模块的配置加载和解析过程了，下面以HTTP模块为例解析具体解析过程。

图5-4描述了在主架构内HTTP配置块解析过程。

 [image:]

图5-4　HTTP配置项解析过程

整个过程比较简洁易懂，不再重复描述。程序主架构指的是Nginx的框架代码，在系统启动时调用配置文件解析器解析nginx.conf文件。

Nginx系统配置文件解析还有一个渠道，就是管理进程提供的重新载入命令，一般是“nginx-s reoad”，在管理进程收到这个命令或消息时，会初始化存放配置信息的数据结构，然后使用新配置启动新的工作进程，然后杀掉旧的工作进程。这个过程也会触发上面的流程再次执行。
5.5　HTTP框架初始化流程

HTTP模块是Nginx中的核心模块，作为一个Web服务器而言，Nginx是工作在HTTP协议之上的，所以HTTP业务的处理是最重要的工作。处理HTTP协议，是基于网络层的，HTTP是TCP协议。HTTP部分是由核心模块ngx_http_module、ngx_http_core_module、ngx_http_upstream_module模块组成的。

HTTP模块的主要职责如下：

1）调用HTTP框架提供的接口发送HTTP应答。

2）分解出若干子请求进行复杂业务的处理，子请求也是全异步非阻塞式处理。

3）将一个HTTP请求分为顺序化的多个处理阶段，依次进行流水线式处理。如果前一个流水线阶段决定中断处理，则后续流水线处理部分将不会被调用到。

4）异步接收HTTP请求中的包体，可以将数据缓存到文件中。

5）异步访问第三方服务。

6）处理已经解析完的HTTP请求。

7）解析nginx.conf中属于自己的配置项。在不同的http{}、server{}、location{}下的配置项，都需要正确解析。

HTTP框架代码需要具备下述功能：

1）向HTTP模块提供磁盘I/O功能和网络I/O功能。

2）提供upstream机制使HTTP模块可以访问第三方服务。

3）使用event模块，以处理所有网络事件。

4）提供子请求机制实现子请求功能。

5）辨别接收到的TCP流是否是完整的HTTP报文。

6）根据请求中的URI和头域，根据配置文件将请求分发到对应的模块，调用模块注册的函数处理请求。

7）解析和处理nginx.conf文件，解析http{}配置块，解析http{}下的server{}、location{}等子配置块，可以处理同名配置项出现在不同配置块中的情况。

图5-5描述了HTTP框架初始化流程。

 [image:]

图5-5　HTTP框架初始化流程

主要流程简述如下：

1）初始化ngx_module数据中所有HTTP模块的ctx_index字段，从0开始递增。这个索引就是请求响应时调用的顺序，而这个顺序最终是由编译Nginx时的模块顺序决定的，同时初始化存放配置信息的ngx_http_conf_ctx_t数据结构。

2）依次调用所有HTTP模块的create_main_conf方法，产生的配置结构体指针按照各模块的ctx_index字段顺序放入ngx_http_conf_ctx_t的main_conf数组。

3）依次调用所有HTTP模块的create_svr_conf方法，产生的配置结构体指针按照各模块的ctx_index字段顺序放入ngx_http_conf_ctx_t的svr_conf数组。

4）依次调用所有HTTP模块的create_loc_conf方法，产生的配置结构体指针按照各模块的ctx_index字段顺序放入ngx_http_conf_ctx_t的loc_conf数组。

5）依次调用所有模块的preconfiguration方法，preconfiguration回调函数完成了对应模块的预处理操作，其主要工作是创建模块用到的变量。

6）调用所有HTTP模块的init_conf方法，告诉模块配置解析完成。

7）合并配置项。

8）Nginx将HTTP处理过程划分成了11个阶段，使多个模块可以介入到不同的阶段进行流水线式操作，充分发挥模块式架构的优势，并实现请求过程异步化。其中有7个阶段是允许用户介入的：NGX_HTTP_POST_READ_PHASE、NGX_HTTP_SERVER_REWRITE_PHASE、NGX_HTTP_REWRITE_PHASE、NGX_HTTP_PREACCESS_PHASE、NGX_HTTP_ACCESS_PHASE、NGX_HTTP_CONTENT_PHASE、NGX_HTTP_LOG_PHASE。调用ngx_http_init_phases方法初始化这7个动态数组，数据保存在phases数组中。

9）依次调用所有HTTP模块的postconfiguration方法，使HTTP模块可以处理HTTP阶段，将HTTP模块的ngx_http_handler_pt处理方法添加到HTTP阶段中。

10）构建虚拟主机的查找散列表。虚拟主机配置在server{}中，为了提高请求时查找的速度，使用散列表对主机server name进行了索引。

11）建立server与监听端口间的关联，同时设置新连接的回调方法。
5.6　HTTP模块调用流程

HTTP框架执行流程涉及底层事件模型，全异步的工作方式比较复杂，对于Nginx下的Lua开发指导意义不大，所以本书不会展开描述这部分知识，有需要的读者请自行研究。本节对HTTP模块间的调用流程进行简单介绍，这个流程将向我们展示配置的模块间的关系和分工，便于对HTTP模块有一个整体了解。

图5-6描述了一个简略的HTTP模块调用流程，精简了很多过程，去除了异步的处理机制。

 [image:]

图5-6　HTTP模块调用流程

工作进程在主循环调用事件模型，检测网络事件，当有新连接请求时，则建立TCP连接，然后根据nginx.conf配置，将请求交由HTTP框架处理。框架首先尝试接收HTTP头部，接收到完整HTTP头部后，将请求分发到具体的HTTP模块处理。通常根据URI和nginx.conf里的location匹配程度决定分发策略。请求处理结束时，通常都向客户端发送响应，这时一般自动依次调用所有的HTTP过滤模块，每个模块根据配置文件中定义的策略决定自己的行为，如可调用gzip模块根据nginx.conf中“gzip on|off；”决定是否将响应压缩。如果设置了子请求调用，在返回前还会执行异步的子请求调用。
5.7　HTTP请求处理流程

Nginx中的request指的是HTTP请求，在Nginx中对应的数据结构是ngx_http_request_t。ngx_http_request_t是对HTTP请求的封装。根据HTTP规范，一个HTTP请求包含请求行、请求头、请求体、响应行、响应头、响应体。

HTTP请求是典型的请求–响应类型的网络协议，而HTTP是文件协议，所以在分析请求行与请求头，以及输出响应行与响应头时，往往是一行一行地处理。如果自己编写一个HTTP服务器，通常在一个连接建立好后，客户端会发送请求过来。读取一行数据，分析请求行中包含的method、uri、http_version信息。然后一行一行处理请求头，并根据请求method与请求头的信息来决定是否有请求体以及请求体的长度，再去读取请求体。得到请求后，我们处理请求产生需要输出的数据，生成响应行、响应头以及响应体。在将响应发送给客户端之后，一个完整的请求就处理完了。这是最简单的webserver的处理方式，其实Nginx也是这样做的，只是有一些小的区别，例如，当请求头读取完成后，就开始进行请求的处理了。Nginx通过ngx_http_request_t来保存解析请求并输出响应相关的数据。

Nginx处理一个完整的请求过程是这样的。对于Nginx来说，从ngx_http_init_request开始处理一个请求，在这个函数中，会设置读事件为ngx_http_process_request_line，表示接下来的网络事件，会由ngx_http_process_request_line执行。ngx_http_process_request_line是来处理请求行的。通过ngx_http_read_request_header读取请求数据，然后调用ngx_http_parse_request_line函数解析请求行。Nginx为提高效率，采用状态机解析请求行，而且在进行method比较时，没有直接使用字符串比较，而是将4个字符转换成1个整型数据，然后一次比较以减少CPU的指令数。一个请求行包含请求的方法、URI、版本，请求行也可以包含host。例如，“GET http://www.google.com/uri HTTP/1.0”这样一个请求行是合法的，host是www.google.com。这个时候，Nginx会忽略请求头中的host域，而以请求行中的为准查找虚拟主机。另外，HTTP 0.9是不支持请求头的，所以这里也要特别地处理。整个请求行解析的参数会保存到ngx_http_request_t结构当中。

在解析完请求行后，Nginx会使用ngx_http_process_request_headers设置读事件的handler，然后后续的请求就在ngx_http_process_request_headers中进行读取与解析。ngx_http_process_request_headers函数用来读取请求头，跟请求行一样，还是调用ngx_http_read_request_header读取请求头，调用ngx_http_parse_header_line解析一行请求头，解析到的请求头会保存到ngx_http_request_t的域headers_in中，headers_in是一个链表结构，保存所有的请求头。而HTTP中有些请求是需要特别处理的，这些请求头与请求处理函数存放在一个映射表里面，即ngx_http_headers_in。在初始化时，会生成一个hash表，每当解析一个请求头后，就会先在hash表中查找，如果找到，则调用相应的处理函数处理这个请求头。例如，host头的处理函数是ngx_http_process_host。

当Nginx解析到两个回车换行符时，就表示请求头已经结束，此时会调用ngx_http_process_request处理请求。ngx_http_process_request会设置当前连接的读写事件处理函数为ngx_http_request_handler，然后调用ngx_http_handler真正开始处理一个完整的HTTP请求。读写事件处理函数ngx_http_request_handler在代码中会根据当前事件是读事件还是写事件，分别调用ngx_http_request_t中的read_event_handler或者write_event_handler。由于此时，请求头已经读取完成，因为Nginx的做法是先不读取请求body，所以这里面设置read_event_handler为ngx_http_block_reading，即不读取数据。真正开始处理数据，是在ngx_http_handler这个函数里面，这个函数会设置write_event_handler为ngx_http_core_run_phases，并执行ngx_http_core_run_phases函数。ngx_http_core_run_phases函数将执行多阶段请求处理，Nginx将一个HTTP请求的处理分为多个阶段，那么这个函数执行这些阶段来产生数据。ngx_http_core_run_phases最终调用处理请求，产生的响应头会放在ngx_http_request_t的headers_out中。Nginx的各种阶段会对请求进行处理，最后调用filter过滤数据，对数据进行加工，如truncked传输、gzip压缩等。filter是一个链表结构，分别有header filter（对响应头进行处理）与body filter（对响应体进行处理），先执行header filter中的所有filter，然后执行body filter中的所有filter。header filter中的最后一个filter，即ngx_http_header_filter，这个filter会遍历所有的响应头，最后需要输出的响应头在一个连续的内存中，然后调用ngx_http_write_filter进行输出。ngx_http_write_filter是body filter中的最后一个，所以Nginx收到的body信息经过一系列的body filter之后，最后也会调用ngx_http_write_filter输出。

这里要注意的是，Nginx会将整个请求头都放在一个buffer里面，这个buffer的大小通过配置项client_header_buffer_size设置。如果用户请求头太大，该buffer装不下，Nginx会重新分配一个更大的buffer装载请求头。这个更大的buffer可以通过large_client_header_buffers设置，这个大buffer是一组buffer，如配置48KB，表示有4个8KB大小的buffer可以用。注意，为了保存请求行或请求头的完整性，一个完整的请求行或请求头需要放在一个连续的内存里面，所以，一个完整的请求行或请求头只会保存在一个buffer里面。这样，如果请求行大于一个buffer的大小，就会返回414错误，如果一个请求头大于一个buffer的大小，就会返回400错误。了解了这些参数的值，以及Nginx的实际做法之后，在具体的应用场景下，就可以根据实际的需求调整这些参数。
5.8　小结

本章介绍了Nginx的启动流程、管理进程与工作进程的工作流程、配置项加载流程、HTTP模块初始化流程、HTTP模块调用流程及HTTP请求处理流程。通过对流程的介绍，可以让我们对各个阶段工作的上下文比较了解，更容易理解API的工作条件，有助于我们开发更高性能的Lua应用。
第二部分　Lua脚本语言

■第6章　Lua教程

■第7章　Lua通用库
第6章　Lua教程

Lua是一种轻量、小巧的脚本语言，用标准C语言编写并以源代码形式开放。其设计目的是嵌入应用程序中，从而为应用程序提供灵活的扩展和定制功能。目前Lua大量应用于Nginx、嵌入式设备、游戏逻辑开发等方面。

在Nginx中，Lua中的例程机制可以很好地和Nginx的全异步、非阻塞的多阶段处理机制结合，使开发者使用同步的模式，开发全异步的应用，而不用考虑异步的处理机制。

本章介绍Lua的基础语法知识。
6.1　Lua基础

推荐读者在自己的计算机上安装一个Lua开发环境，因为Lua是解释型脚本语言，可以一行一行地调试，便于快速理解。

6.1.1　Lua的特性

相较于其他语言、其他脚本语言，Lua有其自身的特点。

·轻量级：Lua用标准C语言编写并以源代码形式开放，编译后仅仅一百余千字节，可以很方便地嵌入其他程序中。

·可扩展：Lua提供了非常易于使用的扩展接口和机制，由宿主语言（通常是C或C++）提供功能，Lua可以使用它们，就像内置的功能一样。

·其他特性：

·支持面向过程编程和函数式编程。

·自动内存管理：只提供了一种通用类型的表（table），用它可以实现数组、hash表、集合、对象。

·语言内置模式匹配：①闭包（closure）；②函数也可以看作一个值；③提供多线程（协同进程，简称协程，并非操作系统所支持的线程）支持。

·通过闭包和table可以很方便地支持面向对象编程所需要的一些关键机制，如数据抽象、虚函数、继承和重载等。

6.1.2　Lua的应用场景

Lua在不同的系统中得到了大量应用，常见的应用场景如下。

·游戏开发：在游戏开发中，游戏的逻辑因为需要经常修改，所以游戏设计了一个模式，将游戏的操作收集和显示放在客户端，逻辑放在后端服务器上。在服务器上使用Lua脚本实现，这样当游戏规则修改或游戏规模变大而要修改逻辑时可以不用升级游戏客户端，而且在服务端修改起来也很简单。

·独立应用脚本：Lua的语法类似于C和C++，支持常用的系统库，可以编写简单的独立小程序，如一些纯数学计算应用、类似于Shell的复杂脚本。

·Web应用脚本：使用Lua实现CGI应用。CGI接口简单，使用CGI的应用程序对HTTP请求参数进行处理，将参数与数据库建立关系，然后返回格式化的数据。可以在这种场景下使用Lua进行字符串处理和数据格式化操作。

·扩展和数据库插件，如使用在MySQL的Proxy里。Proxy的工作是根据配置做调写分离调度，同时实现数据同步操作。是纯粹的业务逻辑，与磁盘的高速交互由对应的引擎处理。这种纯逻辑性工作适合用Lua开发，开发速度快，修改灵活。

·安全系统，如入侵检测系统：在WAF里，以及其他的应用层协议检测机制中，Lua可以用于做入侵规则判断。其相比于C语言的好处是规则可以动态加载，可以及时修改。不同的检测规则编写在不同的Lua文件中，根据配置调用对应的Lua文件，可以实现使用不同规则的机制。

6.1.3　安装Lua环境

为了运行Lua代码，可以在自己的开发环境上安装Lua，这比在Nginx上直接调试Lua要方便很多，所以推荐先使用本文讲解的工具学习Lua语法，之后再在Nginx上开始Web开发。

1.在Linux系统上安装Lua

在Linux上安装Lua非常简单，只需要下载源码包并在终端解压、编译即可，本文使用了5.3.0版本进行安装：

curl -R -O http://www.lua.org/ftp/lua-5.3.0.tar.gz

tar zxf lua-5.3.0.tar.gz

cd lua-5.3.0

make linux test

make install

2.在Mac OS X系统上安装Lua

在Mac OS X系统执行下面命令进行安装：

curl -R -O http://www.lua.org/ftp/lua-5.3.0.tar.gz

tar zxf lua-5.3.0.tar.gz

cd lua-5.3.0

make macosx test

make install

接下来创建一个HelloWorld.lua文件，代码如下：

print("Hello World!");

执行以下命令：

$ lua HelloWorld.lua

输出结果为

Hello World!

3.在Windows系统上安装Lua

在Windows下可以使用SciTE的集成开发环境（Integrated Development Environment，IDE）来执行Lua程序，下载地址为http://static.runoob.com/download/LuaForWindows_v5.1.4-46.exe。

GitHub下载地址：https://github.com/rjpcomputing/luaforwindows/releases。

Google Code下载地址：https://code.google.com/p/luaforwindows/downloads/list。

双击安装后即可在该环境下编写Lua程序并运行。

也可以使用Lua官方推荐的方法使用LuaDist：http://luadist.org/。
6.2　Lua基本语法

Lua与C/C++语言非常相似，大量使用了符号简化逻辑描述，所以整体上比较清晰、简洁。条件语句、循环语句、函数调用等与C/C++基本一致。

6.2.1　第一个Lua程序

Lua有交互式和脚本式两种编程方式，下面分别讲解。

1.交互式编程

Lua提供了交互式编程模式，可以在命令行中输入程序并立即查看效果。

Lua交互式编程模式可以通过命令lua-i或lua来启用：

$ lua -i

$ Lua 5.3.0 Copyright (C) 1994-2015 Lua.org, PUC-Rio

>

在命令行中，输入以下命令：

> print("Hello World！")

按下回车键，输出结果如下：

> print("Hello World！")

Hello World！

>

2.脚本式编程

可以将Lua代码保存到一个以lua为扩展名的文件中并执行，该模式称为脚本式编程。例如，将如下代码存储在名为hello.lua的脚本文件中：

print("Hello World！")

使用Lua执行以上脚本，输出结果为

$ lua test.lua

Hello World！

也可以将代码修改为如下形式来执行脚本（在开头添加#！/usr/local/bin/lua）：

#!/usr/local/bin/lua

print("Hello World！")

以上代码中，指定了Lua解释器为/usr/local/bin。加上#号标记解释器会忽略它。接下来为脚本添加可执行权限，并执行：

chmod 777 test.lua

./test.lua

Hello World！

6.2.2　注释

与其他语言的注释语法一样，Lua支持两种注释方法。

1.单行注释

单行注释格式：

 --注释

2.多行注释

多行注释格式：

--[[

多行注释

多行注释

 --]]

6.2.3　标识符

Lua标识符用于定义一个变量、函数或其他用户定义的项。标识符以一个字母（A～Z或a～z）或下划线（_）开头后加上0个或多个字母、下划线、数字（0～9）。

最好不要使用下划线加大写字母的标识符，因为Lua的保留字也是这样定义的。

Lua不允许使用特殊字符（如@、$、和%）来定义标识符。Lua是一个区分大小写的编程语言，因此在Lua中test与Test是两个不同的标识符。

以下列出了一些正确的标识符：mohd、zara、abc、move_name、a_123、myname50、_temp、j、a23b9、retVal。

6.2.4　关键词

表6-1列出了Lua保留关键字。保留关键字不能作为常量、变量或其他用户自定义标识符。

表6-1　Lua保留关键字

 [image:]

一般约定，以下划线开头连接一串大写字母的名字（如_VERSION）被保留用于Lua内部全局变量。

6.2.5　全局变量

默认情况下，变量总是被认为是全局的。

全局变量不需要声明，给一个变量赋值后即创建了这个全局变量，访问一个没有初始化的全局变量也不会出错，只不过得到的结果是nil。

>print(b)

nil

> b=10

>print(b)

10

>

如果想删除一个全局变量，只需要将变量赋值为nil。

b = nil

print(b) --> nil

这样变量b就好像从没被使用过一样。换句话说，当且仅当一个变量不等于nil时，这个变量即存在。
6.3　Lua的数据类型

Lua是动态类型语言，变量不需要类型定义，只需要为变量赋值。值可以存储在变量中，作为参数传递或作为结果返回。

Lua中有8个基本类型，分别为nil、boolean、number、string、userdata、function、thread和table。

Lua基本数据类型如表6-2所示。

表6-2　Lua基本数据类型

 [image:]

可以使用type函数测试给定变量或者值的类型：

print(type("Hello world")) --> string

print(type(10.4*3)) --> number

print(type(print)) --> function

print(type(type)) --> function

print(type(true)) --> boolean

print(type(nil)) --> nil

print(type(type(X))) --> string

1.nil（空）

nil类型表示没有任何有效值，它只有一个值：nil。例如，打印一个没有赋值的变量，便会输出nil值：

>print(type(a))

nil

>

对于全局变量和table，nil还有“删除”作用，给全局变量或者table表里的变量赋nil值，等同于把它们删掉，执行下面代码：

tab1 = { key1 = "val1", key2 = "val2", "val3" }

for k, v in pairs(tab1) do

print(k .. " - " .. v)

end

tab1.key1 = nil

for k, v in pairs(tab1) do

print(k .. " - " .. v)

end

2.boolean（布尔）

boolean类型只有两个可选值：true（真）和false（假），Lua把false和nil看作“假”，把其他值看作“真”：

print(type(true))

print(type(false))

print(type(nil))

if false or nil then

 print("至少有一个是 true")

else

 print("false 和 nil 都为 false!")

end

以上代码的执行结果如下：

$ lua test.lua

boolean

boolean

nil

false 和 nil 都为 false!

3.number（数字）

Lua默认只有一种number类型：double（双精度）类型。以下几种写法都被看作number类型：

print(type(2))

print(type(2.2))

print(type(0.2))

print(type(2e+1))

print(type(0.2e-1))

print(type(7.8263692594256e-06))

以上代码的执行结果如下：

number

number

number

number

number

number

4.string（字符串）

字符串由一对双引号或单引号来表示，例如：

string1 = "this is string1"

string2 = 'this is string2'

也可以用两个方括号“[[]]”来表示“一块”字符串：

html = [[

<html>

<head></head>

<body>

w3cschool菜鸟教程

</body>

</html>

]]

print(html)

以上代码的执行结果如下：

<html>

<head></head>

<body>

w3cschool菜鸟教程

</body>

</html>

在对一个数字字符串进行算术操作时，Lua会尝试将这个数字字符串转成一个数字：

>print("2" + 6)

8.0

>print("2" + "6")

8.0

>print("2 + 6")

2 + 6

>print("-2e2" * "6")

-1200.0

>print("error" + 1)

stdin:1: attempt to perform arithmetic on a string value

stack traceback:

 stdin:1: in main chunk

 [C]: in ?

>

以上代码中“error”+1执行报错了，字符串连接使用的是..，例如：

>print("a" .. 'b')

ab

>print(157 .. 428)

157428

>

使用#计算字符串的长度，放在字符串前面，如下面实例：

>len = "www.google.com"

>print(#len)

14

>print(#"www.google.com")

14

>

5.table（表）

在Lua里，table的创建是通过“构造表达式”完成的，最简单的构造表达式是{}，用来创建一个空表。也可以在表里添加一些数据，直接初始化表：

--创建一个空的table

local tbl1 = {}

--直接初始化表

local tbl2 = {"apple", "pear", "orange", "grape"}

Lua中的表（table）其实是一个“关联数组”，数组的索引可以是数字或者字符串：

-- table_test.lua 脚本文件

a = {}

a["key"] = "value"

key = 10

a[key] = 22

a[key] = a[key] + 11

for k, v in pairs(a) do

 print(k .. " : " .. v)

end

脚本的执行结果如下：

$ lua table_test.lua

key : value

10 : 33

不同于其他语言的数组把0作为数组的初始索引，在Lua中，表的默认初始索引一般以1开始：

-- table_test2.lua 脚本文件

local tbl = {"apple", "pear", "orange", "grape"}

for key, val in pairs(tbl) do

 print("Key", key)

end

脚本的执行结果如下：

$ lua table_test2.lua

Key 1

Key 2

Key 3

Key 4

table不会固定长度大小，添加新数据时table长度会自动增长，没初始化的table都是nil：

-- table_test3.lua 脚本文件

a3 = {}

for i = 1, 10 do

 a3[i] = i

end

a3["key"] = "val"

print(a3["key"])

print(a3["none"])

脚本的执行结果如下：

$ lua table_test3.lua

val

nil

6.function（函数）

在Lua中，函数被看作“第一类值”，函数可以存在变量中：

-- function_test.lua 脚本文件

function factorial1(n)

if n == 0 then

 return 1

else

 return n * factorial1(n - 1)

end

end

print(factorial1(5))

factorial2 = factorial1

print(factorial2(5))

脚本的执行结果如下：

$ lua function_test.lua

120

120

function可以以匿名函数的方式通过参数传递：

-- function_test2.lua 脚本文件

function anonymous(tab, fun)

for k, v in pairs(tab) do

 print(fun(k, v))

end

end

tab = { key1 = "val1", key2 = "val2" }

anonymous(tab, function(key, val)

return key .. " = " .. val

end)

脚本的执行结果如下：

$ lua function_test2.lua

key1 = val1

key2 = val2

7.thread（线程）

在Lua中，最主要的线程是协同程序（coroutine）。它跟线程（thread）差不多，拥有自己独立的栈、局部变量和指令指针，可以跟其他协同程序共享全局变量和其他大部分内容。

线程跟协程的区别：可以同时运行多个线程，而任意时刻只能运行一个协程，并且处于运行状态的协程只有在被挂起（suspend）时才会暂停。

8.userdata（自定义类型）

userdata是一种用户自定义数据，用于表示一种由应用程序或C/C++语言库所创建的类型，可以将任意C/C++的任意数据类型的数据（通常是struct和指针）存储到Lua变量中调用。
6.4　Lua变量

变量在使用前，必须在代码中进行声明，即创建该变量。编译程序执行代码之前，编译器需要知道如何给语句变量分配存储区，用于存储变量的值。

Lua变量有3种类型：全局变量、局部变量、表中的域。

Lua中的变量是全局变量，除非用local显式声明为局部变量。

局部变量的作用域为从声明位置开始到所在语句块结束。变量的默认值均为nil。

-- test.lua 文件脚本

a = 5 -- 全局变量

local b = 5 -- 局部变量

function joke()

 c = 5 -- 全局变量

 local d = 6 -- 局部变量

end

joke()

print(c,d) --> 5 nil

do

 local a = 6 -- 局部变量

 b = 6 -- 全局变量

print(a,b); --> 6 6

end

print(a,b) --> 5 6

执行以上实例输出结果如下：

$ lua test.lua

5 nil

6 6

5 6

6.4.1　赋值语句

赋值是改变一个变量值和改变表域最基本的方法。

a = "hello" .. "world"

t.n = t.n + 1

Lua可以对多个变量同时赋值，变量列表和值列表的各个元素用逗号分开，赋值语句右边的值会依次赋给左边的变量。

a, b = 10, 2*x --> a=10; b=2*x

遇到赋值语句，Lua会先计算右边所有的值，然后执行赋值操作，所以可以这样交换变量的值：

x, y = y, x -- swap 'x' for 'y'

a[i], a[j] = a[j], a[i] -- swap 'a[i]' for 'a[j]'

当变量个数和值的个数不一致时，Lua会一直以变量个数为基础采取以下策略：

1）变量个数>值的个数，按变量个数补足nil。

2）变量个数<值的个数，多余的值会被忽略。

例如：

a, b, c = 0, 1

print(a,b,c) --> 0 1 nil

a, b = a+1, b+1, b+2 -- b+2的值被忽略

print(a,b) --> 1 2

a, b, c = 0

print(a,b,c) --> 0 nil nil

上面最后一个例子是一个常见的错误情况。注意，如果要对多个变量赋值，则必须依次对每个变量赋值。

a, b, c = 0, 0, 0

print(a,b,c) --> 0 0 0

多值赋值经常用来交换变量，或将函数调用返回给变量：

a, b = f()

f（）返回两个值，第一个值赋给a，第二个值赋给b。

应该尽可能地使用局部变量，有两个好处：

1）避免命名冲突。

2）访问局部变量的速度比全局变量更快。

6.4.2　索引

对table的索引使用方括号[]。Lua也提供了.（点）操作。

t[i]

t.i -- 当索引为字符串类型时的一种简化写法

gettable_event(t,i) -- 采用索引访问本质上是一个类似这样的函数调用

例如：

>site = {}

>site["key"] = "www.w3cschool.cc"

>print(site["key"])

www.w3cschool.cc

>print(site.key)

www.w3cschool.cc

6.5　Lua循环

很多情况下需要做一些有规律性的重复操作，因此在程序中就需要重复执行某些语句。一组被重复执行的语句称为循环体，能否继续重复，由条件决定。循环结构是在一定条件下反复执行某段程序的流程结构，被反复执行的程序称为循环体。循环语句是由循环体及循环的终止条件两部分组成的。循环语句的结构如图6-1所示。

 [image:]

图6-1　循环语句的结构

Lua语言提供了几种循环语句，如表6-3所示。

表6-3　Lua循环语句

 [image:]

1.循环控制语句

循环控制语句用于控制程序的流程，以实现程序的各种结构方式。

Lua支持以下循环控制语句：

·break语句：退出当前循环或语句，开始执行紧接着的语句。

2.无限循环

在循环体中，如果条件永远为true循环语句就会永远执行下去，以下以while循环为例：

while(true)

do

 print("循环将永远执行下去")

end

6.6　Lua流程控制

Lua编程语言流程控制语句通过程序设定一个或多个条件语句来设定。在条件为true时执行指定程序代码，在条件为false时执行其他指定代码。

图6-2是循环语句流程控制流程图。

 [image:]

图6-2　循环语句流程控制流程图

控制结构的条件表达式结果可以是任何值，Lua认为false和nil为假，true和非nil为真。

要注意的是，在Lua中0为true：

--[0 为 true]

if(0)

then

 print("0 为 true")

end

以上代码的输出结果如下：

0 为 true

Lua提供了以下控制结构语句。

·if语句：由一个表达式作为条件判断，紧跟其他语句。

·if…else语句：可以与else搭配使用，在if条件表达式为false时，执行else语句代码。

·if嵌套语句：可以在if或else if中使用一个或多个if或else if语句。
6.7　Lua函数

在Lua中，函数是对语句和表达式进行抽象的主要方法，既可以用来处理一些特殊的工作，也可以用来计算一些值。

Lua提供了许多内建函数，可以很方便地在程序中调用它们，如print（）函数可以将传入的参数输出到控制台上。

Lua函数主要有两种用途。

1）完成指定的任务：这种情况下函数作为调用语句使用。

2）计算并返回值：这种情况下函数作为赋值语句的表达式使用。

6.7.1　函数的定义

Lua编程语言函数定义格式如下：

optional_function_scope function function_name(argument1, argument2, argument3,…, argumentn)

 function_body

 return result_params_comma_separated

end

说明：

·optional_function_scope：该参数是可选的，指定函数是全局函数还是局部函数。未设置该参数默认为全局函数；如果需要设置函数为局部函数，则需要使用关键字local。

·function_name：指定函数名称。

·argument1，argument2，argument3，…，argumentn：函数参数，多个参数以逗号隔开，函数也可以不带参数。

·function_body：函数体，即函数中需要执行的代码语句块。

·result_params_comma_separated：函数返回值，Lua语言函数可以返回多个值，每个值以逗号隔开。

下面是一个函数实例，实例定义了函数max（），参数为num1、num2，用于比较两个值的大小，并返回最大值。

--[[函数返回两个值的最大值 --]]

function max(num1, num2)

if (num1 > num2) then

 result = num1;

else

 result = num2;

end

return result;

end

-- 调用函数

print("两值比较最大值为 ",max(10,4))

print("两值比较最大值为 ",max(5,6))

以上代码的执行结果如下：

两值比较最大值为 10

两值比较最大值为 6

Lua中可以将函数作为参数传递给函数，例如：

myprint = function(param)

 print("这是打印函数 - ##",param,"##")

end

function add(num1,num2,functionPrint)

result = num1 + num2

 -- 调用传递的函数参数

functionPrint(result)

end

myprint(10)

-- myprint 函数作为参数传递

add(2,5,myprint)

以上代码的执行结果如下：

这是打印函数 - ## 10 ##

这是打印函数 - ## 7 ##

6.7.2　多返回值

Lua函数可以返回多个结果值，如string.find，其返回匹配串开始和结束的下标（如果不存在匹配串则返回nil）。

>s, e = string.find("www.google.com", "google")

>print(s, e)

5 10

Lua函数中，在return后，返回值可以是返回多值，例如：

function maximum (a)

 local mi = 1 -- 最大值索引

 local m = a[mi] -- 最大值

for i,val in ipairs(a) do

 if val > m then

 mi = i

 m = val

 end

end

return m, mi

end

print(maximum({8,10,23,12,5}))

以上代码的执行结果如下：

23 3

6.7.3　可变参数

Lua函数可以接受可变数目的参数，和C语言类似，在函数参数列表中使用“...”表示函数有可变的参数。

Lua将函数的参数放在arg表中，#arg表示传入参数的个数。

例如，计算几个数的平均值可以这样操作：

function average(...)

result = 0

local arg={...}

for i,v in ipairs(arg) do

 result = result + v

end

print("总共传入 " .. #arg .. " 个数")

return result/#arg

end

print("平均值为",average(10,5,3,4,5,6))

以上代码的执行结果如下：

总共传入 6 个数

平均值为 5.5

6.8　Lua运算符

运算符是一个特殊的符号，用于告诉解释器执行特定的数学或逻辑运算。Lua提供了以下几种运算符类型：算术运算符、关系运算符、逻辑运算符、其他运算符。

6.8.1　算术运算符

表6-4列出了Lua语言中的常用算术运算符，设定A的值为10，B的值为20。

表6-4　常用算术运算符

 [image:]

可以通过以下实例来更加透彻地理解算术运算符的应用：

a = 21

b = 10

c = a + b

print("Line 1 - c 的值为 ", c)

c = a - b

print("Line 2 - c 的值为 ", c)

c = a * b

print("Line 3 - c 的值为 ", c)

c = a / b

print("Line 4 - c 的值为 ", c)

c = a % b

print("Line 5 - c 的值为 ", c)

c = a^2

print("Line 6 - c 的值为 ", c)

c = -a

print("Line 7 - c 的值为 ", c)

以上程序的执行结果如下：

Line 1 - c 的值为 31

Line 2 - c 的值为 11

Line 3 - c 的值为 210

Line 4 - c 的值为 2.1

Line 5 - c 的值为 1

Line 6 - c 的值为 441

Line 7 - c 的值为 -21

6.8.2　关系运算符

表6-5列出了Lua语言中的常用关系运算符，设定A的值为10，B的值为20。

表6-5　常用关系运算符

 [image:]

可以通过以下实例来更加透彻地理解关系运算符的应用：

a = 21

b = 10

if(a == b)

then

 print("Line 1 - a 等于 b")

else

 print("Line 1 - a 不等于 b")

end

if(a ~= b)

then

 print("Line 2 - a 不等于 b")

else

 print("Line 2 - a 等于 b")

end

if (a < b)

then

 print("Line 3 - a 小于 b")

else

 print("Line 3 - a 大于等于 b")

end

if (a > b)

then

 print("Line 4 - a 大于 b")

else

 print("Line 5 - a 小于等于 b")

end

-- 修改 a 和 b 的值

a = 5

b = 20

if (a <= b)

then

 print("Line 5 - a 小于等于 b")

end

if (b >= a)

then

 print("Line 6 - b 大于等于 a")

end

以上程序的执行结果如下：

Line 1 - a 不等于 b

Line 2 - a 不等于 b

Line 3 - a 大于等于 b

Line 4 - a 大于 b

Line 5 - a 小于等于 b

Line 6 - b 大于等于 a

6.8.3　逻辑运算符

表6-6列出了Lua语言中的常用逻辑运算符，设定A的值为true，B的值为false。

表6-6　常用逻辑运算符

 [image:]

可以通过以下实例来更加透彻地理解逻辑运算符的应用：

a = true

b = true

if (a and b)

then

 print("a and b - 条件为 true")

end

if (a or b)

then

 print("a or b - 条件为 true")

end

print("---------分割线---------")

-- 修改 a 和 b 的值

a = false

b = true

if (a and b)

then

 print("a and b - 条件为 true")

else

 print("a and b - 条件为 false")

end

if (not(a and b))

then

 print("not(a and b) - 条件为 true")

else

 print("not(a and b) - 条件为 false")

end

以上程序的执行结果如下：

a and b - 条件为 true

a or b - 条件为 true

---------分割线---------

a and b - 条件为 false

not(a and b) - 条件为 true

6.8.4　其他运算符

表6-7列出了Lua语言中的连接运算符与计算表或字符串长度的运算符。

表6-7　其他运算符

 [image:]

可以通过以下实例来更加透彻地理解连接运算符与计算表或字符串长度的运算符的应用：

a = "Hello "

b = "World"

print("连接字符串 a 和 b ", a..b)

print("b 字符串长度 ",#b)

print("字符串 Test 长度 ",#"Test")

print("google网址长度 ",#"www.google.com")

以上程序的执行结果如下：

连接字符串 a 和 b Hello World

b 字符串长度 5

字符串 Test 长度 4

google网址长度 14

6.8.5　运算符的优先级

运算符的优先级从高到低的顺序如下：

^

not - (unary)

* /

+ -

..

<><= >= ~= ==

and

or

除^和..以外的二元运算符都是左连接的。

示例：

a+i < b/2+1 <--> (a+i) < ((b/2)+1)

5+x^2*8 <--> 5+((x^2)*8)

a < y and y <= z <--> (a < y) and (y <= z)

-x^2 <--> -(x^2)

x^y^z <--> x^(y^z)

可以通过以下实例来更加透彻地了解Lua语言运算符的优先级：

a = 20

b = 10

c = 15

d = 5

e = (a + b) * c / d;-- (30 * 15) / 5

print("(a + b) * c / d 运算值为 :",e)

e = ((a + b) * c) / d; -- (30 * 15) / 5

print("((a + b) * c) / d 运算值为 :",e)

e = (a + b) * (c / d);-- (30) * (15/5)

print("(a + b) * (c / d) 运算值为 :",e)

e = a + (b * c) / d; -- 20 + (150/5)

print("a + (b * c) / d 运算值为 :",e)

以上程序的执行结果如下：

(a + b) * c / d 运算值为 : 90.0

((a + b) * c) / d 运算值为 : 90.0

(a + b) * (c / d) 运算值为 : 90.0

a + (b * c) / d 运算值为 : 50.0

6.9　Lua字符串

字符串或串（string）是由数字、字母、下划线组成的一串字符。

Lua语言中字符串可以使用以下3种方式来表示：

·单引号间的一串字符；

·双引号间的一串字符；

·[[和]]间的一串字符。

以上3种方式的字符串实例如下：

string1 = "Lua"

print("\"字符串 1 是\"",string1)

string2 = 'google.com'

print("字符串 2 是",string2)

string3 = [["天天向上"]]

print("字符串 3 是",string3)

以上代码执行结果如下：

"字符串 1 是" Lua

字符串 2 是 google.com

字符串 3 是 "天天向上"

转义字符用于表示不能直接显示的字符，如后退键、回车键等。例如，在字符串中转换双引号可以使用“\”。

表6-8描述了所有的转义字符及其所对应的意义。

表6-8　Lua转义字符

 [image:]

 [image:]

6.10　Lua数组

数组，就是相同数据类型的元素按一定顺序排列的集合，包括一维数组和多维数组。Lua数组的索引值可以使用整数表示，数组的大小不是固定的。

6.10.1　一维数组

一维数组是最简单的数组，其逻辑结构是线性表。一维数组可以用for循环输出数组中的元素，如下实例：

array = {"Lua", "Tutorial"}

for i= 0, 2 do

 print(array[i])

end

以上代码的执行结果如下：

nil

Lua

Tutorial

可以使用整数索引来访问数组元素。如果索引没有值，则返回nil。

Lua索引值以1为起始值，也可以指定从0开始。另外，还可以用负数作为数组索引值，例如：

array = {}

for i= -2, 2 do

 array[i] = i *2

end

for i = -2,2 do

 print(array[i])

end

以上代码的执行结果如下：

-4

-2

0

2

4

6.10.2　多维数组

多维数组即数组中包含数组或一维数组的索引对应一个数组。

以下是一个三行三列的阵列多维数组：

-- 初始化数组

array = {}

for i=1,3 do

 array[i] = {}

for j=1,3 do

 array[i][j] = i*j

end

end

-- 访问数组

for i=1,3 do

 for j=1,3 do

 print(array[i][j])

 end

end

以上代码的执行结果如下：

1

2

3

2

4

6

3

6

9

不同索引的三行三列阵列多维数组：

-- 初始化数组

array = {}

maxRows = 3

maxColumns = 3

for row=1,maxRows do

 for col=1,maxColumns do

 array[row*maxColumns +col] = row*col

 end

end

-- 访问数组

for row=1,maxRows do

 for col=1,maxColumns do

 print(array[row*maxColumns +col])

 end

end

以上代码的执行结果如下：

1

2

3

2

4

6

3

6

9

上面的实例中，数组设定了指定的索引值，这样可以避免出现nil值，有利于节省内存空间。
6.11　Lua迭代器

迭代器（iterator）是一种对象，用来遍历标准模板库容器中的部分或全部元素。每个迭代器对象代表容器中确定的地址。

在Lua中，迭代器是一种支持指针类型的结构，它可以遍历集合的每一个元素。

6.11.1　泛型for迭代器

泛型for迭代器在自己内部保存迭代函数，实际上它保存3个值：迭代函数、状态常量、控制变量。

泛型for迭代器提供了集合的key/value对，语法格式如下：

for k, v in pairs(t) do

 print(k, v)

end

上面代码中，k，v为变量列表，pair（t）为表达式列表。

查看以下实例：

array = {"Lua", "Tutorial"}

for key,value in ipairs(array) do

 print(key, value)

end

以上代码的执行结果如下：

1 Lua

2 Tutorial

以上实例中，使用了Lua默认提供的迭代函数ipairs。

泛型for迭代器的执行过程：

1）初始化，计算in后面表达式的值，表达式应该返回泛型for迭代器需要的3个值：迭代函数、状态常量、控制变量。与多值赋值一样，如果表达式返回的结果个数不足3个，则自动用nil补足，多出部分会被忽略。

2）将状态常量和控制变量作为参数调用迭代函数（注意：对于for结构来说，状态常量没有用处，仅仅在初始化时获取它的值并传递给迭代函数）。

3）将迭代函数返回的值赋给变量列表。

4）如果返回的第一个值为nil，则循环结束，否则执行循环体。

5）回到第二步再次调用迭代函数。

在Lua中常常使用函数来描述迭代器，每次调用该函数就返回集合的下一个元素。Lua的迭代器包括两种类型：无状态的迭代器和多状态的迭代器。

6.11.2　无状态的迭代器

无状态的迭代器是指不保留任何状态的迭代器。在循环中可以利用无状态迭代器避免创建闭包花费额外的代价。

每一次迭代，迭代函数均用两个变量（状态常量和控制变量）的值作为参数被调用，一个无状态的迭代器利用这两个值可以获取下一个元素。

无状态的迭代器的典型的例子是ipairs，可遍历数组的每一个元素。

以下实例使用了一个简单的函数来实现迭代器，实现数字n的平方：

function square(iteratorMaxCount,currentNumber)

if currentNumber<iteratorMaxCount

then

 currentNumber = currentNumber+1

return currentNumber, currentNumber*currentNumber

end

end

for i,n in square,3,0

do

 print(i,n)

end

以上代码的执行结果如下：

1 1

2 4

3 9

迭代的状态包括被遍历的表（循环过程中不会改变的状态常量）和当前的索引下标（控制变量），ipairs和迭代函数都很简单，在Lua中可以这样实现：

function iter (a, i)

 i = i + 1

local v = a[i]

if v then

 return i, v

end

end

function ipairs (a)

return iter, a, 0

end

当Lua调用ipairs（a）开始循环时，可获取3个值：迭代函数iter、状态常量a、控制变量初始值0。然后Lua调用iter（a，0）返回1、a[1]（除非a[1]=nil）。第二次迭代调用iter（a，1）返回2、a[2]……直到第一个nil元素。

6.11.3　多状态的迭代器

很多情况下，迭代器需要保存多个状态信息而不是简单的状态常量和控制变量，最简单的方法是使用闭包，还有一种方法是将所有的状态信息封装到表内，将表作为迭代器的状态常量，因为这种情况下可以将所有的信息存放在表内，所以迭代函数通常不需要第二个参数。

以下实例创建了自己的迭代器：

array = {"Lua", "Tutorial"}

function elementIterator (collection)

local index = 0

local count = #collection

 -- 闭包函数

return function ()

index = index + 1

if index <= count

then

 -- 返回迭代器的当前元素

 return collection[index]

end

end

end

for element in elementIterator(array)

do

 print(element)

end

以上代码的执行结果如下：

Lua

Tutorial

以上实例中可以看到，elementIterator内使用了闭包函数，实现计算集合大小并输出各个元素。
6.12　Lua表

表（table）是Lua的一种数据结构，用来创建不同的数据类型，如数字、字典等。Lua表使用关联型数组，可以使用任意类型的值作为数组的索引，但这个值不能是nil。Lua表不是固定大小的，可以根据自己的需要进行扩容。Lua本身也是通过表解决模块、包和对象的。例如，string.format表示使用“format”索引表string。

构造器是创建和初始化表的表达式。最简单的构造函数是{}，用来创建一个空表。可以直接初始化数组：

-- 初始化表

mytable = {}

-- 指定值

mytable[1]= "Lua"

-- 移除引用

mytable = nil

-- Lua 垃圾回收会释放内存

首先为表a设置元素，然后将a赋值给b，则a与b都指向同一个内存。如果a设置为nil，则b同样能访问table的元素。如果没有指定的变量指向a，Lua的垃圾回收机制会清理相对应的内存。

以下实例演示了上面描述的情况：

-- 简单的 table

mytable = {}

print("mytable 的类型是 ",type(mytable))

mytable[1]= "Lua"

mytable["wow"] = "修改前"

print("mytable 索引为 1 的元素是 ", mytable[1])

print("mytable 索引为 wow 的元素是 ", mytable["wow"])

-- alternatetable和mytable的是指同一个 table

alternatetable = mytable

print("alternatetable 索引为 1 的元素是 ", alternatetable[1])

print("mytable 索引为 wow 的元素是 ", alternatetable["wow"])

alternatetable["wow"] = "修改后"

print("mytable 索引为 wow 的元素是 ", mytable["wow"])

-- 释放变量

alternatetable = nil

print("alternatetable 是 ", alternatetable)

-- mytable 仍然可以访问

print("mytable 索引为 wow 的元素是 ", mytable["wow"])

mytable = nil

print("mytable 是 ", mytable)

以上代码的执行结果如下：

mytable 的类型是 table

mytable 索引为 1 的元素是 Lua

mytable 索引为 wow 的元素是 修改前

alternatetable 索引为 1 的元素是 Lua

mytable 索引为 wow 的元素是 修改前

mytable 索引为 wow 的元素是 修改后

alternatetable 是 nil

mytable 索引为 wow 的元素是 修改后

mytable 是 nil

6.13　Lua模块与包

模块类似于一个封装库，从Lua 5.1开始，Lua加入了标准的模块管理机制，可以把一些公用的代码放在一个文件里，以API接口的形式在其他地方调用，有利于代码的重用和降低代码耦合度。

Lua的模块是由变量、函数等已知元素组成的表，因此创建一个模块很简单，就是创建一个表，然后把需要导出的常量、函数放入其中，最后返回这个表。

以下实例为创建自定义模块module.lua，文件代码格式如下：

-- 文件名为 module.lua

-- 定义一个名为 module 的模块

module = {}

-- 定义一个常量

module.constant = "这是一个常量"

-- 定义一个函数

function module.func1()

 io.write("这是一个公有函数！\n")

end

local function func2()

 print("这是一个私有函数！")

end

function module.func3()

func2()

end

return module

由上面实例可知，模块的结构就是一个表结构，因此可以像操作表里的元素一样调用模块里的常量和函数。

上例的func2声明为程序块的局部变量，表示一个私有函数，因此不能从外部访问模块的这个私有函数，必须通过模块公有函数调用。

6.13.1　require函数

Lua提供require函数用来加载模块。要加载一个模块，只需要简单地调用require函数即可。例如：

require("<模块名>")

或者

require "<模块名>"

执行require函数后会返回一个由模块常量或函数组成的表，并且还会定义一个包含该表的全局变量。

-- test_module.lua 文件

-- module 模块为上文提到到 module.lua

require("module")

print(module.constant)

module.func3()

以上代码的执行结果如下：

这是一个常量

这是一个私有函数！

还可以给加载的模块定义一个别名变量，方便调用：

-- test_module2.lua 文件

-- module 模块为上文提到到 module.lua

-- 别名变量 m

local m = require("module")

print(m.constant)

m.func3()

以上代码的执行结果如下：

这是一个常量

这是一个私有函数！

在Nginx中使用Lua，为了避免全局变量被不同的例程继承并改变，从而出现变量被修改或删除的错误，推荐以别名形式载入模块，即使用local为库定义一个局部变量。

6.13.2　加载机制

对于自定义的模块，模块文件不是放在哪个文件目录都行，require函数有自己的文件路径加载策略，它会尝试从Lua文件或C程序库中加载模块。

require用于搜索Lua文件的路径存放在package.path这个全局变量中。当Lua启动后，会以环境变量LUA_PATH的值初始这个环境变量。如果没有找到该环境变量，则使用编译时定义的默认路径初始化。

当然，如果没有LUA_PATH这个环境变量，也可以自定义设置，在当前用户根目录下打开.profile文件（没有则创建，打开.bashrc文件也可以）。例如，把“~/lua/”路径加入LUA_PATH环境变量中：

#LUA_PATH

export LUA_PATH="~/lua/?.lua;;"

文件路径以“；”分隔，最后的两个“；；”表示新加的路径后面加上原来的默认路径。

接着，更新环境变量参数，使之立即生效。

source ~/.profile

这时假设package.path的值是

/Users/dengjoe/lua/?.lua;./?.lua;/usr/local/share/lua/5.1/?.lua;/usr/local/share/lua/5.1/?/init.lua;/usr/local/lib/lua/5.1/?.lua;/usr/local/lib/lua/5.1/?/init.lua

那么调用require（“module”）时就会尝试打开以下文件目录去搜索目标。

/Users/dengjoe/lua/module.lua;

./module.lua

/usr/local/share/lua/5.1/module.lua

/usr/local/share/lua/5.1/module/init.lua

/usr/local/lib/lua/5.1/module.lua

/usr/local/lib/lua/5.1/module/init.lua

如果找到目标文件，则会调用package.loadfile加载模块；否则，就会去找C程序库。

搜索的文件路径从全局变量package.cpath获取，而这个变量则通过环境变量LUA_CPATH初始化。

搜索策略跟上面一样，只不过搜索的是so或dll类型的文件。如果找到所需文件，那么require就会通过package.loadlib来加载它。

6.13.3　C包

Lua和C是很容易结合的，可以使用C为Lua写包。与在Lua中写包不同，C包在使用以前必须首先加载并连接，在大多数系统中最容易的实现方式是通过动态连接库机制加载并连接。

Lua在loadlib函数内提供了所有的动态连接功能。这个函数有两个参数：库的绝对路径和初始化函数。典型的调用实例如下：

local path = "/usr/local/lua/lib/libluasocket.so"

local f = loadlib(path, "luaopen_socket")

loadlib函数加载指定的库并且连接到Lua，然而它并不打开库（也就是说没有调用初始化函数），反之它返回初始化函数作为Lua的一个函数，这样可以直接在Lua中调用它。

如果加载动态库或者查找初始化函数时出错，loadlib将返回nil和错误信息。可以通过修改前面一段代码，使其检测错误然后调用初始化函数：

local path = "/usr/local/lua/lib/libluasocket.so"

-- 或者 path = "C:\\windows\\luasocket.dll"，这是 Window 平台下

local f = assert(loadlib(path, "luaopen_socket"))

f() -- 真正打开库

一般情况下，期望二进制的发布库包含一个与前面代码段相似的stub文件，安装二进制库的时候可以随便放在某个目录，只需要修改stub文件对应二进制库的实际路径即可。

将stub文件所在的目录加入到LUA_PATH，这样设定后就可以使用require函数加载C库了。
6.14　Lua元表

在Lua表中可以通过访问key得到对应的value值，但是无法对两个表进行操作。因此Lua提供了元表（metatable），允许改变表的行为，每个行为关联了对应的元方法。

例如，使用元表可以定义Lua如何计算两个表的相加操作a+b。

当Lua试图对两个表进行相加时，先检查两者之一是否有元表，之后检查是否有一个包含“_add”字段，若找到，则调用对应的值。“_add”等即是字段对应的值（往往是一个函数或是表）就是“元方法”。

有两个很重要的函数辅助元表处理：

·setmetatable（table，metatable）：对指定表设置元表，如果元表中存在_metatable键值，setmetatable会失败。

·getmetatable（table）：返回对象的元表。

以下实例演示了如何对指定的表设置元表：

mytable = {} -- 普通表

mymetatable = {} -- 元表

setmetatable(mytable,mymetatable) -- 把mymetatable设为mytable的元表

以上代码也可以直接写成一行：

mytable = setmetatable({},{})

以下为返回对象元表：

getmetatable(mytable) -- 返回mymetatable

6.14.1　_index元方法

_index键是元表最常用的键。当通过键访问表的时候，如果这个键没有值，那么Lua就会寻找该表的元表（假定有metatable）中的_index键。如果_index包含一个表格，Lua会在表格中查找相应的键。

可以使用Lua命令进入交互模式查看：

$ lua

Lua 5.3.0 Copyright (C) 1994-2015 Lua.org, PUC-Rio

>other = { foo = 3 }

> t = setmetatable({}, { _index = other })

> t.foo

3

> t.bar

nil

如果_index包含一个函数，则Lua会调用这个函数，table和键作为参数传递给函数。

_index元方法查看表中元素是否存在：如果不存在，则返回结果为nil；如果存在，则由_index返回结果。

mytable = setmetatable({key1 = "value1"}, {

 _index = function(mytable, key)

if key == "key2" then

 return "metatablevalue"

else

 return nil

end

end

})

print(mytable.key1,mytable.key2)

以上代码的执行结果如下：

value1 metatablevalue

实例解析：

·mytable表赋值为{key1=“value1”}。

·mytable设置了元表，元方法为_index。

·在mytable表中查找key1，如果找到，则返回该元素，否则继续。

·在mytable表中查找key2，如果找到，则返回metatablevalue，否则继续。

·判断元表有没有_index方法，如果_index方法是一个函数，则调用该函数。

·在元方法中查看是否传入“key2”参数（mytable.key2已设置），如果传入“key2”参数则返回“metatablevalue”，否则返回mytable对应键值。

可以将以上代码简单写成：

mytable = setmetatable({key1 = "value1"}, { _index = { key2 = "metatablevalue" } })

print(mytable.key1,mytable.key2)

Lua查找一个表元素时的规则遵循如下3个步骤：

1）在表中查找，如果找到，则返回该元素，否则继续。

2）判断该表是否有元表，如果没有元表，则返回nil，否则继续。

3）判断元表有没有_index方法。如果_index方法为nil，则返回nil；如果_index方法是一个表，则重复第1～3步；如果_index方法是一个函数，则返回该函数的返回值。

6.14.2　_newindex元方法

_newindex元方法用来对表进行更新，_index用来对表访问。当给表的一个不存在的索引赋值时，解释器会查找_newindex元方法，如果_newindex元方法存在则调用这个函数而不进行赋值操作。

以下实例演示了_newindex元方法的应用：

mymetatable = {}

mytable = setmetatable({key1 = "value1"}, { _newindex = mymetatable })

print(mytable.key1)

mytable.newkey = "新值2"

print(mytable.newkey,mymetatable.newkey)

mytable.key1 = "新值1"

print(mytable.key1,mymetatable.key1)

以上代码的执行结果如下：

value1

nil 新值2

新值1 nil

以上实例中表设置了元方法_newindex，在对新索引键（newkey）赋值时（mytable.newkey=“新值2”），会调用元方法，而不进行赋值。而如果索引键（key1）已存在，则会进行赋值而不调用元方法_newindex。

以下实例使用了rawset函数更新表：

mytable = setmetatable({key1 = "value1"}, {

 _newindex = function(mytable, key, value)

 rawset(mytable, key, "\""..value.."\"")

end

})

mytable.key1 = "new value"

mytable.key2 = 4

print(mytable.key1,mytable.key2)

以上代码的执行结果如下：

new value "4"

6.14.3　为表添加运算符

以下实例演示了两表相加操作：

-- 计算表中最大值，table.maxn在Lua 5.2以上版本中已无法使用

-- 自定义计算表中最大值函数 table_maxn

function table_maxn(t)

local mn = 0

for k, v in pairs(t) do

 if mn < k then

 mn = k

 end

end

return mn

end

-- 两表相加操作

mytable = setmetatable({ 1, 2, 3 }, {

 _add = function(mytable, newtable)

for i = 1, table_maxn(newtable) do

 table.insert(mytable, table_maxn(mytable)+1,newtable[i])

end

return mytable

end

})

secondtable = {4,5,6}

mytable = mytable + secondtable

for k,v in ipairs(mytable) do

 print(k,v)

end

以上代码的执行结果如下：

1 1

2 2

3 3

4 4

5 5

6 6

_add键包含在元表中，并进行相加操作。元表的提供运算类操作如表6-9所示。

表6-9　元表提供的运算类操作

 [image:]

6.14.4　_call元方法

_call元方法在Lua调用一个值时调用。以下实例演示了计算表中元素的和：

-- 计算表中最大值，table.maxn在Lua 5.2以上版本中已无法使用

-- 自定义计算表中最大值函数 table_maxn

function table_maxn(t)

local mn = 0

for k, v in pairs(t) do

 if mn < k then

 mn = k

 end

end

return mn

end

-- 定义元方法_call

mytable = setmetatable({10}, {

_call = function(mytable, newtable)

 sum = 0

 for i = 1, table_maxn(mytable) do

 sum = sum + mytable[i]

 end

for i = 1, table_maxn(newtable) do

 sum = sum + newtable[i]

end

return sum

end

})

newtable = {10,20,30}

print(mytable(newtable))

以上代码的执行结果如下：

70

6.14.5　_tostring元方法

_tostring元方法用于修改表的输出行为。以下实例自定义了表的输出内容：

mytable = setmetatable({ 10, 20, 30 }, {

 _tostring = function(mytable)

sum = 0

for k, v in pairs(mytable) do

sum = sum + v

end

return "表所有元素的和为 " .. sum

end

})

print(mytable)

以上代码的执行结果如下：

表所有元素的和为 60

从以上内容可以知道元表可以很好地简化代码，所以了解Lua元表，可以写出更加简单优秀的Lua代码。
6.15　Lua协同程序

Lua协同程序与线程类似：拥有独立的堆栈、独立的局部变量、独立的指令指针，同时又与其他协同程序共享全局变量和其他大部分内容。

线程与协同程序的主要区别在于：一个具有多个线程的程序可以同时运行几个线程，而协同程序却需要彼此协作运行。在任一指定时刻只有一个协同程序在运行，并且这个正在运行的协同程序只有在明确的被要求挂起的时候才会被挂起。

协同程序有点类似同步的多线程，在等待同一个线程锁的几个线程有点类似协同程序。

6.15.1　基本语法

协程的基本函数如表6-10所示。

表6-10　协程的基本函数

 [image:]

以下实例演示了以上各个方法的用法：

-- coroutine_test.lua 文件

co = coroutine.create(

function(i)

print(i);

end

)

coroutine.resume(co, 1) -- 1

print(coroutine.status(co)) -- dead

print("----------")

co = coroutine.wrap(

function(i)

print(i);

end

)

co(1)

print("----------")

co2 = coroutine.create(

function()

for i=1,10 do

 print(i)

if i == 3 then

 print(coroutine.status(co2)) --running

print(coroutine.running()) --thread:XXXXXX

end

coroutine.yield()

end

end

)

coroutine.resume(co2) --1

coroutine.resume(co2) --2

coroutine.resume(co2) --3

print(coroutine.status(co2)) -- suspended

print(coroutine.running())

print("----------")

以上代码的执行结果如下：

1

dead

1

1

2

3

running

thread: 0x7fb801c05868 false

suspended

thread: 0x7fb801c04c88 true

通过coroutine.running可以看出，coroutine在底层实现就是一个线程。当create一个coroutine的时候就是在新线程中注册了一个事件。当使用resume触发事件的时候，create的coroutine函数就被执行了，当遇到yield的时候就代表挂起当前线程，等候再次resume触发事件。

接下来分析一个更详细的实例：

function foo (a)

print("foo 函数输出", a)

return coroutine.yield(2 * a) -- 返回 2*a 的值

end

co = coroutine.create(function (a , b)

print("第一次协同程序执行输出", a, b) -- co-body 1 10

local r = foo(a + 1)

print("第二次协同程序执行输出", r)

local r, s = coroutine.yield(a + b, a - b) -- a、b的值为第一次调用协同程序时传入

print("第三次协同程序执行输出", r, s)

return b, "结束协同程序" -- b的值为第二次调用协同程序时传入

end)

print("main", coroutine.resume(co, 1, 10)) -- true, 4

print("--分割线----")

print("main", coroutine.resume(co, "r")) -- true 11 -9

print("---分割线---")

print("main", coroutine.resume(co, "x", "y")) -- true 10 end

print("---分割线---")

print("main", coroutine.resume(co, "x", "y")) -- cannot resume dead coroutine

print("---分割线---")

以上代码的执行结果如下：

第一次协同程序执行输出 1 10

foo 函数输出 2

main true 4

--分割线----

第二次协同程序执行输出 r

main true 11 -9

---分割线---

第三次协同程序执行输出 x y

main true 10 结束协同程序

---分割线---

main false cannot resume dead coroutine

---分割线---

实例解析：

·调用resume，将协同程序唤醒，resume操作成功返回true，否则返回false。

·协同程序运行。

·运行到yield语句。

·yield挂起协同程序，第一次resume返回（注意：此处yield返回，参数是resume的参数）。

·第二次resume，再次唤醒协同程序（注意：此处resume的参数中，除了第一个参数，剩下的参数将作为yield的参数）。

·yield返回。

·协同程序继续运行。

·如果使用的协同程序继续运行完成后继续调用resume方法则输出：cannot resume dead coroutine。

resume和yield配合的强大之处在于，resume处于主程中，它将外部状态（数据）传入协同程序内部，而yield则将内部的状态（数据）返回到主程中。

6.15.2　生产者–消费者问题

协程解决经典的生产者–消费者问题是非常简单的。下面实例演示对应方法：

local newProductor

function productor()

local i = 0

while true do

 i = i + 1

 send(i) -- 将生产的物品发送给消费者

end

end

function consumer()

while true do

 local i = receive() -- 从生产者那里得到物品

print(i)

end

end

function receive()

local status, value = coroutine.resume(newProductor)

return value

end

function send(x)

coroutine.yield(x) -- x表示需要发送的值，值返回以后，就挂起该协同程序

end

-- 启动程序

newProductor = coroutine.create(productor)

consumer()

以上代码的执行结果如下：

1

2

3

4

5

6

7

8

9

10

11

12

13

……

6.16　Lua错误处理

程序运行中进行错误处理是必要的，在进行文件操作、数据转移及Web Service调用过程中都会出现不可预期的错误，如果不注重错误信息的处理，就会造成信息泄漏，程序无法运行等情况。

任何程序语言中，都需要进行错误处理，Lua的错误类型有语法错误、运行错误。下面将进行具体讲解。

6.16.1　语法错误

语法错误通常是由于对程序的组件（如运算符、表达式）使用不当引起的，下面是一个简单的实例：

-- test.lua 文件

a == 2

以上代码的执行结果如下：

lua: test.lua:2: syntax error near '=='

以上出现了语法错误，一个“=”号跟两个“=”号是有区别的。一个“=”是赋值表达式，两个“=”是比较运算。

另外一个实例：

for a= 1,10

 print(a)

end

执行以上程序会出现如下错误：

lua: test2.lua:2: 'do' expected near 'print'

语法错误比程序运行错误更简单，运行错误无法定位具体错误，而语法错误可以很快解决，如以上实例只要在for语句下面添加do即可：

for a= 1,10

do

 print(a)

end

6.16.2　运行错误

运行错误程序可以正常执行，但是会输出错误信息。如下面实例由于参数输入错误，程序执行时报错：

function add(a,b)

return a+b

end

add(10)

编译运行以下代码时，编译成功，但在运行的时候会产生如下错误：

lua: test2.lua:2: attempt to perform arithmetic on local 'b' (a nil value)

stack traceback:

 test2.lua:2: in function 'add'

 test2.lua:5: in main chunk

 [C]: ?

错误信息是由于程序缺少b参数引起的。

6.16.3　错误处理

可以使用assert和error两个参数处理错误，实例如下：

local function add(a,b)

 assert(type(a) == "number", "a 不是一个数字")

 assert(type(b) == "number", "b 不是一个数字")

return a+b

end

add(10)

执行以上程序会出现如下错误：

lua: test.lua:3: b 不是一个数字

stack traceback:

 [C]: in function 'assert'

 test.lua:3: in local 'add'

 test.lua:6: in main chunk

 [C]: in ?

实例中assert首先检查第一个参数，若没问题，assert不做任何事情；否则，assert以第二个参数作为错误信息抛出。

6.16.4　error函数

语法格式：

error (message [, level])

功能：终止正在执行的函数，并返回message的内容作为错误信息（error函数永远都不会返回）。

通常情况下，error会在message头部附加一些错误位置信息。

Level参数指示获得错误的位置：

·Level=1[默认]：调用error位置（文件+行号）。

·Level=2：指出调用error函数的函数。

·Level=0：不添加错误位置信息。

6.16.5　pcall、xpcall、debug

在Lua中处理错误，可以使用函数pcall（protected call）包装需要执行的代码。pcall接收一个函数和要传递给后者的参数，并执行。执行结果为有错误、无错误。返回值为true或false和errorinfo。

语法格式如下：

if pcall(function_name, ….) then

-- 没有错误

else

-- 一些错误

end

简单实例：

> =pcall(function(i) print(i) end, 33)

33

true

> =pcall(function(i) print(i) error('error..') end, 33)

33

false stdin:1: error..

>function f() return false,2 end

>if f() then print '1' else print '0' end

0

pcall以一种“保护模式”调用第一个参数，因此pcall可以捕获函数执行中的任意错误。通常在错误发生时，希望获得更多的调试信息，而不只是发生错误的位置。但pcall返回时，已经销毁了调用栈的内容。

Lua提供了xpcall函数，xpcall接收第二个参数：一个错误处理函数。当错误发生时，Lua会在调用栈查看引起错误的调用，所以，可以在这个函数中使用debug库获取关于错误的额外信息。

debug库提供了两个通用的错误处理函数：

·debug.debug：提供一个Lua提示符，让用户检查错误原因。

·debug.traceback：根据调用栈构建扩展的错误消息。

上面例子的输出为

>=xpcall(function(i) print(i) error('error..') end, function() print(debug.traceback()) end, 33) 33 stack traceback: stdin:1: in function?[C]: in function 'error' stdin:1: in function?[C]: in function 'xpcall' stdin:1: in main chunk [C]: in ? false nil

xpcall使用实例：

function myfunction ()

 n = n/nil

end

function myerrorhandler(err)

print("ERROR:", err)

end

status = xpcall(myfunction, myerrorhandler)

print(status)

执行以上程序会出现如下错误：

ERROR: test2.lua:2: attempt to perform arithmetic on global 'n' (a nil value)

false

6.17　Lua调试

Lua提供了debug库用于提供创建自定义调试器。Lua本身没有内置的调试器，但很多开发者共享了Lua调试器代码。

Lua debug库函数如表6-11所示。

表6-11　Lua debug库函数

 [image:]

 [image:]

下面是一些debug库函数的应用实例：

function myfunction ()

print(debug.traceback("Stack trace"))

print(debug.getinfo(1))

print("Stack trace end")

 return 10

end

myfunction ()

print(debug.getinfo(1))

以上代码的执行结果如下：

Stack trace

stack traceback:

 test2.lua:2: in function 'myfunction'

 test2.lua:8: in main chunk

 [C]: ?

table: 0054C6C8

Stack trace end

在以实例中，用到了debug库的traceback函数和getinfo函数，getinfo函数用于返回函数信息的表。

开发中经常需要调试函数内局部变量，可以使用getupvalue函数设置这些局部变量，实例如下：

function newCounter ()

local n = 0

local k = 0

return function ()

 k = n

 n = n + 1

return n

end

end

counter = newCounter ()

print(counter())

print(counter())

local i = 1

repeat

name, val = debug.getupvalue(counter, i)

if name then

 print ("index", i, name, "=", val)

 if(name == "n") then

 debug.setupvalue (counter,2,10)

 end

 i = i + 1

end -- if

until not name

print(counter())

以上代码的执行结果如下：

1

2

index 1 k = 1

index 2 n = 2

11

在以上实例中，计数器在每次调用时都会自动增加1。实例中使用了getupvalue函数查看局部变量当前状态。可以将局部变量设置为新值。实例中，设置前n的值为2，使用setupvalue函数将其设置为10。现在调用函数，执行后输出结果为11，而不是3。

有两种调试类型可供选择。

·命令行调试；

·图形界面调试。

命令行调试器有RemDebug、clidebugger、ctrace、xdbLua、LuaInterface-Debugger、Rldb、ModDebug。

图形界面调试器有SciTE、Decoda、ZeroBrane Studio、akdebugger、luaedit。

可根据自身需求选择合适的调试类型。例如，我们用SciTE，就直接用SciTE调试。
6.18　Lua垃圾回收

Lua采用自动内存管理机制。这意味着开发者不用操心新创建的对象需要的内存如何分配，也不用考虑对象不再被使用后怎样释放它们所占用的内存。Lua通过运行垃圾收集器收集所有死对象（即在Lua中不可能再访问到的对象）来完成自动内存管理的工作。Lua中所有用到的内存，如字符串、表、用户数据、函数、线程、内部结构等，都服从自动管理机制。

Lua实现了一个增量标记——扫描收集器。它使用两个参数控制垃圾收集循环：垃圾收集器间歇率和垃圾收集器步进倍率。这两个参数都以百分数为单位（例如，值100在内部表示1）。垃圾收集器间歇率控制着收集器需要在开启新的循环前要等待多久。增大这个值会减少收集器的积极性。当这个值比100小时，收集器在开启新的循环前不会等待。设置这个值为200会让收集器等到总内存使用量达到之前的两倍时才开始新的循环。

垃圾收集器步进倍率控制着收集器运作速度相对于内存分配速度的倍率。增大这个值不仅会让收集器更加积极，还会增加每个增量步骤的长度。这个值不得小于100，否则收集器就工作得太慢了以至于永远都做不完一个循环。默认值是200，表示收集器以内存分配的“两倍”速工作。如果把步进倍率设为一个非常大的数字（比程序可能用到的字节数还大10%），收集器的行为就像一个stop-the-world收集器。接着若把间歇率设为200，收集器的行为就和过去的Lua版本一样了：每次Lua使用的内存翻倍时，就做一次完整的收集。

Lua提供了函数collectgarbage（[opt[，arg]]）控制自动内存管理：

·collectgarbage（"collect"）：做一次完整的垃圾收集循环。通过参数opt提供了一组不同的功能。

·collectgarbage（"count"）：以KB为单位返回Lua使用的总内存数。这个值有小数部分，所以只需要乘上1024就能得到Lua使用的准确字节数（除非溢出）。

·collectgarbage（"restart"）：重启垃圾收集器的自动运行。

·collectgarbage（"setpause"）：将arg设为收集器的间歇率，返回间歇率的前一个值。

·collectgarbage（"setstepmul"）：返回步进倍率的前一个值。

·collectgarbage（"step"）：单步运行垃圾收集器。步长大小由arg控制。传入0时，收集器步进（不可分割的）一步。传入非0值时，收集器收集相当于Lua分配指定（KB）内存的工作。如果收集器结束一个循环将返回true。

·collectgarbage（"stop"）：停止垃圾收集器的运行，调用重启前收集器只会因显式的调用运行。

以下代码演示了一个简单的垃圾回收实例：

mytable = {"apple", "orange", "banana"}

print(collectgarbage("count"))

mytable = nil

print(collectgarbage("count"))

print(collectgarbage("collect"))

print(collectgarbage("count"))

以上代码的执行结果如下（注意内存的变化）：

20.9560546875

20.9853515625

0

19.4111328125

6.19　Lua面向对象

面向对象编程（Object Oriented Programming，OOP）是一种非常流行的计算机编程架构。以下几种编程语言都支持面向对象编程：C++、Java、Objective-C、Smalltalk、C#、Ruby。

面向对象的主要特性如下：

1）封装：能够把一个实体的信息、功能、响应都装入一个单独的对象中的特性。

2）继承：继承的方法允许在不改动原程序的基础上对其进行扩充，这样使得原功能得以保存，而新功能也得以扩展。这有利于减少重复编码，提高软件的开发效率。

3）多态：同一操作作用于不同的对象，可以有不同的解释，产生不同的执行结果。在运行时，可以通过指向基类的指针来调用实现派生类中的方法。

4）抽象：抽象是简化复杂现实问题的途径，它可以为具体问题找到最恰当的类定义，并且可以在最恰当的继承级别解释问题。

6.19.1　Lua中面向对象

对象由属性和方法组成。Lua中最基本的结构是表，所以需要用表描述对象属性，Lua的函数用来表示方法，那么Lua中的类可以通过表+函数模拟出来。至于继承，可以通过元表模拟出来（不推荐使用，只模拟最基本的对象特性，通常情况下够用了）。

Lua中的表在某种意义上是一种对象。像对象一样，表也有状态（成员变量），也有与对象的值独立的本性，特别是拥有两个不同值的对象代表两个不同的对象，一个对象在不同的时候也可以有不同的值，但它始终是一个对象。与对象类似，表的生命周期与由什么创建、在哪创建没有关系。对象有自己的成员函数，表也有：

Account = {balance = 0}

function Account.withdraw (v)

 Account.balance = Account.balance - v

end

这个定义创建了一个新的函数，并且保存在Account对象的withdraw域内，下面我们可以这样调用：

Account.withdraw(100.00)

下面是一个简单实例的例子。类包含了3个属性：area、length和breadth，printArea方法用于打印计算结果：

-- Meta class

Rectangle = {area = 0, length = 0, breadth = 0}

-- 派生类的方法 new

function Rectangle:new (o,length,breadth)

 o = o or {}

setmetatable(o, self)

 self.__index = self

 self.length = length or 0

 self.breadth = breadth or 0

 self.area = length*breadth;

return o

end

-- 派生类的方法 printArea

function Rectangle:printArea ()

 print("矩形面积为 ",self.area)

end

1.创建对象

创建对象是类实例分配内存的过程。每个类都有属于自己的内存并共享公共数据。

r = Rectangle:new(nil,10,20)

2.访问属性

可以使用点号（.）访问类的属性：

print(r.length)

3.访问成员函数

使用冒号（：）来访问类的属性：

r:printArea()

内存在对象初始化时分配。

4.函数重写

Lua中可以重写基础类的函数，在派生类中定义自己的实现方式：

-- 派生类方法 printArea

function Square:printArea ()

 print("正方形面积 ",self.area)

end

5.Lua类实例

下面是一个Lua类的完整实例：

-- Meta class

Shape = {area = 0}

-- 基础类方法 new

function Shape:new (o,side)

 o = o or {}

setmetatable(o, self)

 self.__index = self

side = side or 0

 self.area = side*side;

return o

end

-- 基础类方法 printArea

function Shape:printArea ()

 print("面积为 ",self.area)

end

-- 创建对象

myshape = Shape:new(nil,10)

myshape:printArea()

以上代码的执行结果如下：

面积为 100

6.19.2　Lua继承

继承是指一个对象直接使用另一对象的属性和方法，可用于扩展基础类的属性和方法。

下面代码演示了一个简单的继承实例：

 -- Meta class

Shape = {area = 0}

-- 基础类方法 new

function Shape:new (o,side)

 o = o or {}

setmetatable(o, self)

 self._index = self

side = side or 0

 self.area = side*side;

return o

end

-- 基础类方法 printArea

function Shape:printArea ()

 print("面积为 ",self.area)

end

Square对象继承了Shape类的实例：

Square = Shape:new()

-- Derived class method new

function Square:new (o,side)

 o = o or Shape:new(o,side)

setmetatable(o, self)

 self._index = self

return o

end

以下实例演示继承一个简单的类，扩展派生类的方法，派生类中保留了继承类的成员变量和方法：

 -- Meta class

Shape = {area = 0}

-- 基础类方法 new

function Shape:new (o,side)

 o = o or {}

setmetatable(o, self)

 self.__index = self

side = side or 0

 self.area = side*side;

return o

end

-- 基础类方法 printArea

function Shape:printArea ()

 print("面积为 ",self.area)

end

-- 创建对象

myshape = Shape:new(nil,10)

myshape:printArea()

Square = Shape:new()

-- 派生类方法 new

function Square:new (o,side)

 o = o or Shape:new(o,side)

setmetatable(o, self)

 self.__index = self

return o

end

-- 派生类方法 printArea

function Square:printArea ()

 print("正方形面积为 ",self.area)

end

-- 创建对象

mysquare = Square:new(nil,10)

mysquare:printArea()

Rectangle = Shape:new()

-- 派生类方法 new

function Rectangle:new (o,length,breadth)

 o = o or Shape:new(o)

setmetatable(o, self)

 self.__index = self

 self.area = length * breadth

return o

end

-- 派生类方法 printArea

function Rectangle:printArea ()

 print("矩形面积为 ",self.area)

end

-- 创建对象

myrectangle = Rectangle:new(nil,10,20)

myrectangle:printArea()

以上代码的执行结果如下：

面积为 100

正方形面积为 100

矩形面积为 200

6.20　Lua数据库访问

本节主要介绍Lua 5.1中数据库的访问方法。在Nginx架构中，我们使用其他和Nginx架构整合更好的各种组件，本节仅用于学习通用Lua数据库访问方法。

通用数据访问使用的是LuaSQL库，LuaSQL是一个开源库，支持的数据库有ODBC、ADO、Oracle、MySQL、SQLite和PostgreSQL。本文为大家介绍MySQL的数据库连接。

LuaSQL可以使用LuaRocks来安装，可以根据需要安装数据库驱动。

LuaRocks安装方法：

$ wget http://luarocks.org/releases/luarocks-2.2.1.tar.gz

$ tar zxpf luarocks-2.2.1.tar.gz

$ cd luarocks-2.2.1

$./configure; sudo make bootstrap

$ sudo luarocks install luasocket

$ lua

Lua 5.3.0 Copyright (C) 1994-2015 Lua.org, PUC-Rio

> require "socket"

Windows下安装LuaRocks：https://github.com/keplerproject/luarocks/wiki/Installation-instructions-for-Windows。

安装不同数据库驱动：

luarocks install luasql-sqlite3

luarocks install luasql-postgres

luarocks install luasql-mysql

luarocks install luasql-sqlite

luarocks install luasql-odbc

也可以使用源码安装方式，Lua Github源码地址：https://github.com/keplerproject/luasql。

Lua连接MySQL数据库：

require "luasql.mysql"

--创建环境对象

env = luasql.mysql()

--连接数据库

conn = env:connect("数据库名","用户名","密码","IP地址",端口)

--设置数据库的编码格式

conn:execute"SET NAMES UTF8"

--执行数据库操作

cur = conn:execute("select * from role")

row = cur:fetch({},"a")

--创建文件对象

file = io.open("role.txt","w+");

while row do

var = string.format("%d %s\n", row.id, row.name)

print(var)

file:write(var)

row = cur:fetch(row,"a")

end

file:close() --关闭文件对象

conn:close() --关闭数据库连接

env:close() --关闭数据库环境

6.21　小结

本章详细介绍了Lua的基本语法和数据类型；Lua中最有特点的是表这个数据类型，大部分的复杂数据类型以及函数接口参数都可以使用表来实现；元表这个数据类型则提供了对两个表进行操作的能力；Lua的库是以模块形式实现的。

本章还介绍了Lua中的协同程序，协程是Lua中比较特殊但是非常有效的多任务机制；Lua中的错误处理机制和调试器接口对自我的Lua开发非常有用；介绍了Lua垃圾回收机制，Lua中的资源都是自动管理内存的，用户不用管理；Lua支持面向对象编程，可以使用表模拟类，使用元表实现继承。

本章最后介绍了LuaSQL库，使用户可以在通用Lua程序中访问多种数据库。

Lua基础库和系统库在后面章节介绍，基础语法和基础库这两部分构成了Lua语言的全部内容。
第7章　Lua通用库

Lua提供了一些通用库，使用者在Lua中可以直接进行字符串操作、表操作、文件操作、访问操作系统、进行科学计算等。本章汇总这些常用函数和操作，方便读者使用中查找。
7.1　字符串库

字符串操作在编程中应用广泛，特别是在互联网上，字符型流式数据、字符流式协议非常多，所以有大量的字符串操作，Lua提供了很多的方法支持字符串操作。

下面是Lua内建的字符串函数。

1）string.upper（argument）：字符串全部转为大写字母。

2）string.lower（argument）：字符串全部转为小写字母。

3）string.gsub（mainString，findString，replaceString，num）：在字符串中替换。mainString为要替换的字符串，findString为被替换的字符，replaceString为要替换的字符，num为替换次数（可以忽略，则全部替换）。

例如：

> string.gsub("aaaa","a","z",3);

zzza 3

4）string.find（str，substr，[init，[end]]）：在一个指定的目标字符串中搜索指定的内容（第三个参数为索引），返回其具体位置，不存在则返回nil。

例如：

> string.find("Hello Lua user", "Lua", 1)

7 9

5）string.reverse（arg）：字符串反转。

例如：

> string.reverse("Lua")

auL

6）string.format（...）：返回一个类似printf的格式化字符串。

例如：

> string.format("the value is:%d",4)

the value is:4

7）string.char（arg）和string.byte（arg[，int]）：string.char（arg）用于将整型数字转化为字符并连接，string.byte（arg[，int]）用于将字符转换为整数值（可以指定某个字符，默认第一个字符）。

例如：

> string.char(97,98,99,100)

abcd

> string.byte("ABCD",4)

68

> string.byte("ABCD")

65

>

8）string.len（arg）：计算字符串长度。

例如：

string.len("abc")

3

9）string.rep（string，n））：将字符串string复制n次。

例如：

> string.rep("abcd",2)

abcdabcd

10）..：连接两个字符串。

例如：

> print("www.google"..".com")

www.google.com

1.字符串大小写转换

以下实例演示了如何对字符串大小写进行转换：

string1 = "Lua";

print(string.upper(string1))

print(string.lower(string1))

以上代码的执行结果如下：

LUA

lua

2.字符串查找与反转

以下实例演示了如何对字符串进行查找与反转操作：

string = "Lua Tutorial"

-- 查找字符串

print(string.find(string,"Tutorial"))

reversedString = string.reverse(string)

print("新字符串为",reversedString)

以上代码的执行结果如下：

5 12

新字符串为 lairotuT auL

3.字符串格式化

以下实例演示了如何对字符串进行格式化操作：

string1 = "Lua"

string2 = "Tutorial"

number1 = 10

number2 = 20

-- 基本字符串格式化

print(string.format("基本格式化 %s %s",string1,string2))

-- 日期格式化

date = 2; month = 1; year = 2014

print(string.format("日期格式化 %02d/%02d/%03d", date, month, year))

-- 十进制格式化

print(string.format("%.4f",1/3))

以上代码的执行结果如下：

基本格式化 Lua Tutorial

日期格式化 02/01/2014

0.3333

4.字符与整数相互转换

以下实例演示了字符与整数相互转换：

-- 字符转换

-- 转换第一个字符

print(string.byte("Lua"))

-- 转换第三个字符

print(string.byte("Lua",3))

-- 转换末尾第一个字符

print(string.byte("Lua",-1))

-- 第二个字符

print(string.byte("Lua",2))

-- 转换末尾第二个字符

print(string.byte("Lua",-2))

-- 整数 ASCII 码转换为字符

print(string.char(97))

以上代码的执行结果如下：

76

97

97

117

117

a

5.其他常用字符串操作

以下实例演示了其他字符串操作，如计算字符串长度、字符串连接、字符串复制等。

string1 = "www."

string2 = "google"

string3 = ".com"

-- 使用 .. 进行字符串连接

print("连接字符串",string1..string2..string3)

-- 字符串长度

print("字符串长度 ",string.len(string2))

-- 字符串复制两次

repeatedString = string.rep(string2,2)

print(repeatedString)

以上代码的执行结果如下：

连接字符串 www.google.com

字符串长度 6

googlegoogle

7.2　表库

Lua的表功能强大，能表示大部分的数据类型和对象类型，所以，编程中需要对表进程非常多的操作。Lua内建了Lua表的操作函数，可以执行大部分的表操作，对于不支持的一些特殊性能，也提供了机制由开发者扩展。

下面列出Table表操作常用方法。

1）table.concat（table[，sep[，start[，end]]]）：concat是concatenate（连锁、连接）的缩写。table.concat（）函数列出参数中指定table的数组部分从start位置到end位置的所有元素，元素间以指定的分隔符（sep）隔开。

2）table.insert（table，[pos，]value）：在table数组部分指定位置（pos）插入值为value的一个元素。pos参数可选，默认为数组部分末尾。

3）table.maxn（table）：指定table中所有正数key值中最大的key值，如果不存在key值为正数的元素，则返回0（Lua 5.2之后，该方法已经不存在了，本文使用了自定义函数实现）。

4）table.remove（table[，pos]）：返回table数组部分位于pos位置的元素。其后的元素会被前移，pos参数可选，默认为table长度，即从最后一个元素删起。

5）table.sort（table[，comp]）：对给定的table进行升序排序。

下面是这几个方法的使用实例。

1.Table连接

可以使用concat（）方法连接两个Table。

fruits = {"banana","orange","apple"}

-- 返回 table 连接后的字符串

print("连接后的字符串 ",table.concat(fruits))

-- 指定连接字符

print("连接后的字符串 ",table.concat(fruits,", "))

-- 指定索引来连接 table

print("连接后的字符串 ",table.concat(fruits,", ", 2,3))

以上代码的执行结果如下：

连接后的字符串 bananaorangeapple

连接后的字符串 banana, orange, apple

连接后的字符串 orange, apple

2.Table插入和移除

以下实例演示Table的插入和移除操作。

fruits = {"banana","orange","apple"}

-- 在末尾插入

table.insert(fruits,"mango")

print("索引为 4 的元素为 ",fruits[4])

-- 在索引为 2 的键处插入

table.insert(fruits,2,"grapes")

print("索引为 2 的元素为 ",fruits[2])

print("最后一个元素为 ",fruits[5])

table.remove(fruits)

print("移除后最后一个元素为 ",fruits[5])

以上代码的执行结果如下：

索引为 4 的元素为 mango

索引为 2 的元素为 grapes

最后一个元素为 mango

移除后最后一个元素为 nil

3.Table排序

以下实例演示sort（）方法（用于对Table进行排序）的使用。

fruits = {"banana","orange","apple","grapes"}

print("排序前")

for k,v in ipairs(fruits) do

 print(k,v)

end

table.sort(fruits)

print("排序后")

for k,v in ipairs(fruits) do

 print(k,v)

end

以上代码的执行结果如下：

排序前

1 banana

2 orange

3 apple

4 grapes

排序后

1 apple

2 banana

3 grapes

4 orange

4.Table最大值

在Lua 5.2之后，我们定义了table_maxn方法来实现Table的最大值。

以下实例演示了如何获取Table中的最大值。

function table_maxn(t)

 local mn = 0

 for k, v in pairs(t) do

 if mn < k then

 mn = k

 end

 end

 return mn

end

tbl = {[1] = "a", [2] = "b", [3] = "c", [26] = "z"}

print("tbl 长度 ", #tbl)

print("tbl 最大值 ", table_maxn(tbl))

以上代码的执行输出如下：

tbl 长度 3

tbl 最大值 26

7.3　文件I/O库

Lua内建了文件I/O库支持对系统文件进行简单的读写操作。但是，需要注意的是，这些文件库功能简单，只能对文件进行打开和读写，不能操作目录、进行文件移动等（复杂的应用可参见后面介绍的lfs库，这里不再赘述）。另外，文件I/O库会阻塞进程，所以要慎重使用，或合理使用技术将操作碎片化。

Lua I/O库用于读取和处理文件，分为简单模式和完全模式。

·简单模式：拥有一个当前输入文件和一个当前输出文件，并且提供针对这些文件相关的操作。

·完全模式：使用外部文件句柄实现，即以一种面向对象的形式，将所有的文件操作定义为文件句柄。

简单模式较适用于一些简单的文件操作，但是在进行一些高级文件操作的时候，例如，同时读取多个文件这样的操作，使用完全模式则较为合适。

打开文件操作语句如下：

file = io.open (filename [, mode])

mode的取值如下：

·r：以只读方式打开文件，该文件必须存在。

·w：打开只写文件，若文件存在则文件长度清为0，即该文件内容会消失。若文件不存在则建立该文件。

·a：以附加的方式打开只写文件。若文件不存在，则会建立该文件，如果文件存在，写入的数据会被加到文件尾，即文件原先的内容会被保留（EOF符保留）。

·r+：以可读写方式打开文件，该文件必须存在。

·w+：打开可读写文件，若文件存在则文件长度清为零，即该文件内容会消失。若文件不存在则建立该文件。

·a+：与a类似，但此文件可读可写。

·b：二进制模式，如果文件是二进制文件，可以加上b。

·+：表示对文件既可以读也可以写。

7.3.1　简单模式

简单模式使用标准的I/O或使用一个当前输入文件和一个当前输出文件。

下面为file.lua文件代码，操作的文件为test.lua（如果没有，需要创建该文件），代码如下：

-- 以只读方式打开文件

file = io.open("test.lua", "r")

-- 设置默认输入文件为 test.lua

io.input(file)

-- 输出文件第一行

print(io.read())

-- 关闭打开的文件

io.close(file)

-- 以附加的方式打开只写文件

file = io.open("test.lua", "a")

-- 设置默认输出文件为 test.lua

io.output(file)

-- 在文件最后一行添加 Lua 注释

io.write("-- test.lua 文件末尾注释")

-- 关闭打开的文件

io.close(file)

执行以上代码，会输出test.ua文件的第一行信息，并在该文件最后一行添加lua的注释。例如：

-- test.lua 文件末尾注释

上面实例中使用了io.“x”方法，其中io.read（）没有带参数，参数可以是表7-1中的任意一个。

表7-1　Lua文件操作参数

 [image:]

其他的I/O方法如下：

·io.tmpfile（）：返回一个临时文件句柄，该文件以更新模式打开，程序结束时自动删除。

·io.type（file）：检测obj是否是一个可用的文件句柄。

·io.flush（）：向文件写入缓冲中的所有数据。

·io.lines（optional file name）：返回一个迭代函数，每次调用将获得文件中的一行内容，当到文件尾时，将返回nil，但不关闭文件。

7.3.2　完全模式

通常需要在同一时间处理多个文件时，可使用file：function_name代替io.function_name方法。以下实例演示如何同时处理同一个文件。

-- 以只读方式打开文件

file = io.open("test.lua", "r")

-- 输出文件第一行

print(file:read())

-- 关闭打开的文件

file:close()

-- 以附加的方式打开只写文件

file = io.open("test.lua", "a")

-- 在文件最后一行添加 Lua 注释

file:write("--test")

-- 关闭打开的文件

file:close()

执行以上代码会发现，结果输出了test.lua文件第一行信息，并在文件最后一行添加了lua注释，例如：

-- test.lua 文件

read函数参数与简单模式一致。

7.3.3　其他方法

1）file：seek（optional whence，optional offset）：设置和获取当前文件位置，成功时返回文件位置（按字节），失败时返回nil与错误信息。

参数whence可以取以下值：

·"set"：从文件头开始。

·"cur"：从当前位置开始[默认]。

·"end"：从文件尾开始。

·offset：默认为0。

不带参数file：seek（）表示返回当前位置。file：seek（"set"）表示定位到文件头。file：seek（"end"）表示定位到文件尾并返回文件大小。

2）file：flush（）：向文件写入缓冲中的所有数据。

3）io.lines（optional filename）：以读模式打开filename文件并返回一个迭代函数，每次调用获得文件中的一行内容，读到文件尾时，返回nil，并自动关闭文件。

若不带参数，io.lines（）函数的作用等同于io.input（）：lines（），用于读取默认输入设备的内容，但结束时不关闭文件。例如：

for line in io.lines("main.lua") do

 print(line)

end

以下实例使用了seek方法，定位到文件倒数第25个位置并使用read方法的*a参数，表示从当期位置（倒数第25个位置）读取整个文件。

-- 以只读方式打开文件

file = io.open("test.lua", "r")

file:seek("end",-25)

print(file:read("*a"))

-- 关闭打开的文件

file:close()

以上代码的执行结果如下：

st.lua 文件末尾--test

7.4　数学库

在Lua编程中，会经常用到科学计算或工程计算，如科学计算、图形处理、界面特效处理等。需要进行科学计算的场合下可以使用Lua标准math（数学库）进行复杂的数学运算。

表7-2列出Lua Math库函数。

表7-2　Lua Math库函数

 [image:]

 [image:]

从函数名字可以看出，这些函数和C、PHP、JavaScript等语言中的数学函数是一致的，所以作用及使用场景也是一样的。函数本身并没有特殊功能，具体是由使用场景及数学计算决定的。

下面是一个三角函数的实例，可以看见Lua的数学函数定义和其他语言的是一样的。

radianVal = math.rad(math.pi / 2)

io.write(radianVal,"\n")

-- Sin value of 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.sin(radianVal)),"\n")-- Cos value of 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.cos(radianVal)),"\n")-- Tan value of 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.tan(radianVal)),"\n")-- Cosh value of 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.cosh(radianVal)),"\n")-- Pi Value in degrees

io.write(math.deg(math.pi),"\n")

以上代码的执行结果如下：

0.027415567780804

0.0

1.0

0.0

1.0

180

下面是一个普通数学函数的实例：

-- Floor

io.write("Floor of 10.5055 is ", math.floor(10.5055),"\n")-- Ceil

io.write("Ceil of 10.5055 is ", math.ceil(10.5055),"\n")-- Square root

io.write("Square root of 16 is ",math.sqrt(16),"\n")-- Power

io.write("10 power 2 is ",math.pow(10,2),"\n")

io.write("100 power 0.5 is ",math.pow(100,0.5),"\n")-- Absolute

io.write("Absolute value of -10 is ",math.abs(-10),"\n")--Random

math.randomseed(os.time())

io.write("Random number between 1 and 100 is ",math.random(),"\n")--Random between 1 to 100

io.write("Random number between 1 and 100 is ",math.random(1,100),"\n")--Max

io.write("Maximum in the input array is ",math.max(1,100,101,99,999),"\n")--Min

io.write("Minimum in the input array is ",math.min(1,100,101,99,999),"\n")

以上代码的执行结果如下：

Floor of 10.5055 is 10

Ceil of 10.5055 is 11

Square root of 16 is 410

power 2 is 100100

power 0.5 is 10

Absolute value of -10 is 10

Random number between 1 and 100 is 0.22876674703207

Random number between 1 and 100 is 7

Maximum in the input array is 999

Minimum in the input array is 1

下面介绍一下math.random函数和math.randomseed函数。

math.random是伪随机数生成函数，在很多场合下需要使用。其支持的参数如下：

1）math.random（）：无参数，生成0～1之间的浮点随机数。

2）math.random（upper）：生成1～upper之间的一个整数数值，upper必须是整数。

3）math.random（lower，upper）：生成lower～upper之间的一个整数数值。lower和upper必须是整数。

下面是几个例子：

> = math.random()

0.0012512588885159

> = math.random()

0.56358531449324

> = math.random(100)

20

> = math.random(100)

81

> = math.random(70,80)

76

> = math.random(70,80)

75

math.randomseed用于设置一个随机种子，请看下面的例子：

math.randomseed()

> math.randomseed(1234)

> = math.random(), math.random(), math.random()

0.12414929654836 0.0065004425183874 0.3894466994232

> math.randomseed(1234)

> = math.random(), math.random(), math.random()

0.12414929654836 0.0065004425183874 0.3894466994232

对上面的例子分析可以发现：对于相同的随机种子，生成的随即序列一定是相同的。所以程序每次运行，赋予不同的种子就很重要。这时很自然想到使用系统时间作为随机种子，即

math.randomseed(os.time())

但是在某些实时操作系统上，os.time（）精度是毫秒，这时randomseed工作正常，如果os.time（）是秒级的系统，则随机数工作不正常，将会返回相同的随机数。

改进这个机制为

math.randomseed(tonumber(tostring(os.time()):reverse():sub(1,6)))

就是把time返回的数值字串倒过来（低位变高位），再取高位6位。这样，即使time变化很小，但是因为低位变了高位，种子数值变化也会很大，就可以使伪随机序列生成得更好一些。

所以，math.randomseed描述上说是伪随机数生成器，使用上要注意这些限制。
7.5　操作系统库

应用开发中，会面临访问操作系统级功能的时候，如我们常用的获取系统时钟，通过系统环境变量传递信息，调用外部的工作执行一些Lua不方便执行的操作，用curl从指定的RestFUL接口读取数据等。Lua为这些应用场景提供了操作系统库（OS库）。

Lua操作系统库函数如表7-3所示。

表7-3　Lua操作系统库函数

 [image:]

 [image:]

下面是一组简单函数操作示例：

-- Date with format

io.write("The date is ", os.date("%m/%d/%Y"),"\n")

-- Date and time

io.write("The date and time is ", os.date(),"\n")

-- Time

io.write("The OS time is ", os.time(),"\n")

-- Wait for some timefor i=1,1000000 doend

-- Time since Lua started

io.write("Lua started before ", os.clock(),"\n")

以上代码的执行结果如下：

The date is 01/25/2014

The date and time is 01/25/14 07:38:40

The OS time is 1390615720

Lua started before 0.013

上面是一些通用示例，我们可以在需要的时候使用OS库，通常更多地使用os.time（）、os.execute。
7.6　小结

本章介绍了字符串库、表库、文件I/O库和数学库。这些库都是常用库。字符串库用于操作字符串，执行格式化、转换、合并等操作。表是Lua中功能强大的数据类型，可以实现复杂的数据类型，表库定义了表操作的函数。文件I/O库定义了对本地文件操作的基本接口，复杂的文件操作需要使用其他扩展模块库实现，本库只定义了基本的文件内容读写操作。数学库定义了类似于C数学库的全数学函数，可以实现复杂的科学计算、客户端渲染、用户操作运算等操作。
第三部分　Nginx开发技术

■第8章　JSON数据交换格式

■第9章　nginx.conf文件配置

■第10章　Nginx下Lua实现机制
第8章　JSON数据交换格式

JSON是JavaScript Object Notation（JavaScript对象表示法）的缩写，JSON是一种存储和交换文本信息的语法，类似XML。JSON比XML更小、更快，更易解析，是JavaScript内部使用的一种格式。JSON因为其特点，在互联网应用、嵌入式应用上得到了大量应用。我们在Nginx下的Lua开发中也大量使用JSON进行数据交换。本章介绍JSON这种常用的数据交换格式。
8.1　什么是JSON

·JSON指的是JavaScript对象表示法；

·JSON是轻量级的文本数据交换格式；

·JSON独立于语言；

·JSON具有自我描述性，更易理解。

JSON使用JavaScript语法描述数据对象，但是独立于语言和平台。JSON解析器和JSON库支持许多不同的编程语言。目前非常多的动态（PHP、JSP、.NET）编程语言支持JSON，如Lua、C++、Python等，主流编程语言也支持JSON。

因为JSON具有诸多优点，所以，Nginx开发中大量使用JSON进行数据交换，OpenResty中直接集成了CJSON。JSON和Lua表可以直接映射后使用，后面的Lua开发中，使用JSON描述和交换各种结构化数据、非结构化数据以及数据集更方便和直接。

下面是一个JSON实例：

{ "sites": [{ "name":"nginx" , "url":"www.nginx.org" }, { "name":"google" , "url":"www.google.com" }, { "name":"微博" , "url":"www.weibo.com" }] }

其中，sites对象是1个包含3个站点记录（对象）的数组，而数组中每个元素又可以包含自己的属性。总体来讲，JSON是key-value式的结构，跟NoSQL非关系型数据和数据库有着天然的一致性。
8.2　JSON转换为JavaScript对象

JSON文本格式在语法上与创建JavaScript对象的代码相同。由于这种相似性，不需要解析器，JavaScript程序能够使用内建的eval（）函数，用JSON数据生成原生JavaScript对象。

本章着重描述数据封装和传输中用到的JSON特性。
8.3　JSON与XML的比较

和JSON使用场景类似的还有XML格式，应用也非常广泛，本质上两者都是自描述性语言，复杂程度不同，各自有适应的场景。

两者的相似之处如下：

·纯文本；

·具有“自我描述性”（人类可读）；

·具有层级结构（值中存在值）；

·可通过JavaScript进行解析。

JSON相较于XML不同之处如下：

·没有结束标签；

·更短；

·读写速度更快；

·能够使用内建的JavaScript eval（）方法进行解析；

·使用数组；

·不使用保留字。

JSON相对于XML，数据冗余少，可以方便描述数据，编程简单，所以在数据交换过程中更有效。XML也有自己的应用领域，适合描述数据之间的关系，也适合描述复杂的数据和关系，如用户的配置信息、权限信息等。JSON适合透传数据库行和列信息网络协议、数据参数和返回结果等。

下面是一个基于JSON的网络协议示例：

{ "code" : 400, "command" : 7, "flow" : 1, "message" : "", "name" : "DDP", "sequence" : 1, "session" : 1, "version" : "v1.0" }

上面的例子描述了一条协议的应答包，头和应答可以很好地自描述，调试方便，不用刻意编写协议转换代码，也方便于网络上调试，协议数据与顺序无关。

下面是一个复杂带嵌套的数据返回示例：

{"gateways":[{"sensors":[{"sensorId":"0101","gps":"33.33333,22.2222","region":"shunfan","type":"HUMI","name":"wow","isOnline":null,"isAlarm":null}],"gwId":"02","gps":"33.2233,432.2233","isAlarm":1,"firmware":"","interval":10000,"region":"学校","gwName":"you are 02"},{"sensors":[{"sensorId":"0101","gps":"33.33333,22.2222","region":"shunfan","type":"HUMI","name":"wow","isOnline":null,"isAlarm":null}],"gwId":"03","gps":"33.2233,432.2233","isAlarm":1,"firmware":"","interval":10000,"region":"学校","gwName":"you are 03"}]}

JSON对大型数据的传输相对比较节省流量，而且可以描述比较复杂的嵌套结构，且具备一定的可读性，适合在网络上传输。
8.4　JSON语法规则

JSON语法是JavaScript对象表示语法的子集。

·数据在名称/值对中；

·数据由逗号分隔；

·花括号保存对象；

·方括号保存数组。

1.JSON名称/值对

JSON数据的书写格式是“名称/值对”。名称/值对包括字段名称（在双引号中），后面写一个冒号，然后是值：

"name" : "Nginx"

这很容易理解，等价于下面的JavaScript语句：

name = "Nginx"

2.JSON值

JSON值可以是：

·数字（整数或浮点数）；

·字符串（在双引号中）；

·逻辑值（true或false）；

·数组（在方括号中）；

·对象（在花括号中）；

·null。

3.JSON对象

JSON对象在花括号中书写，对象可以包含多个名称/值对：

{ "name":"nginx" , "url":"www.nginx.org" }

这一点也容易理解，与下面的JavaScript语句等价：

name = "nginx" url = "www.nginx.org"

4.JSON数组

JSON数组在方括号中书写，数组可包含多个对象：

{ "sites": [{ "name":"openresty" , "url":"openresty.org" }, { "name":"google" , "url":"www.google.com" }, { "name":"微博" , "url":"www.weibo.com" }] }

在上面的例子中，对象“sites”是包含3个对象的数组。每个对象代表一条关于网站（有名称和URL）的记录。

5.JSON文件

·JSON文件的文件类型是.json。

·JSON文本的MIME类型是application/json。
8.5　格式化

JSON在具体的类实现代码里编码时有两种风格：格式化（style）和未格式化。未格式化风格不在每个元素后面输出换行符，例如：

[{"Name":"T1","Value":"1"},{"Name":"01H1","Value":"96.2"}]

未格式化风格用于数据封装和传输。

格式化风格在每个元素之后输出换行符，可读性更强，例如：

{

 "idName":"01",

 "name":"gateway1",

 "typeName":"arduino",

 "description":"test",

 "isPublic":true

}

格式化风格的JSON数据会导致接收代码处理复杂，因为换行符会使当前接收代码返回，因为协议接收端通常是以换行符作为一行数据接收完毕返回的判断机制，用户端需要自行拼包。因为我们通常将JSON用做数据交换，所以未格式化风格更适合在网络上传输。
8.6　小结

JSON总体是一个key-value的结构，value可以是数据，而数据可以嵌套。在Nginx的Location中，JSON主要用于在各Web服务间提供数据交换的机制。各Restful服务以及Location多以JSON为数据交换格式，就连PostgreSQL返回的数据都是JSON的改良版本——BSON，支持二进制数据交换。
第9章　nginx.conf文件配置

nginx.conf是Nginx的配置文件。Nginx的工作流程是：在编译阶段选择要使用的模块并编译进整体工程中去。模块和业务的使用通过nginx.conf配置文件中配置指令的配置得以控制和实现，复杂的业务和自定义的业务逻辑使用Lua脚本实现。所以，nginx.conf是我们开始开发及调整服务行为的首要途径。

配置正确的nginx.conf为我们提供一个正常运行且高效的服务框架，可以在框架内选择我们要介入的HTTP请求处理阶段，编写Lua代码提供具体实现。
9.1　默认nginx.conf文件

Nginx提供了一个默认的nginx.conf模板，里面包含了一个HTTP服务配置块、一个HTTPS配置块和主要的全局配置项，我们可以在这个基础上修改从而形成需要的服务器配置文件。

配置文件内容如下：

#user nobody;

worker_processes 1;

#error_log logs/error.log;

#error_log logs/error.log notice;

#error_log logs/error.log info;

#pid logs/nginx.pid;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 #log_format main '$remote_addr - $remote_user [$time_local] "$request" '

 # '$status $body_bytes_sent "$http_referer" '

 # '"$http_user_agent""$http_x_forwarded_for"';

 #access_log logs/access.log main;

 sendfile on;

 #tcp_nopush on;

 #keepalive_timeout 0;

 keepalive_timeout 65;

 #gzip on;

 server {

 listen 80;

 server_name localhost;

 #charset koi8-r;

 #access_log logs/host.access.log main;

 location / {

 root html;

 index index.html index.htm;

 }

 #error_page 404 /404.html;

 # redirect server error pages to the static page /50x.html

 #

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 # proxy the PHP scripts to Apache listening on 127.0.0.1:80

 #

 #location ~ \.php$ {

 # proxy_pass http://127.0.0.1;

 #}

 # pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000

 #

 #location ~ \.php$ {

 # root html;

 # fastcgi_pass 127.0.0.1:9000;

 # fastcgi_index index.php;

 # fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_name;

 # include fastcgi_params;

 #}

 # deny access to .htaccess files, if Apache's document root

 # concurs with nginx's one

 #

 #location ~ /\.ht {

 # deny all;

 #}

 }

 # another virtual host using mix of IP-, name-, and port-based configuration

 #

 #server {

 # listen 8000;

 # listen somename:8080;

 # server_name somename alias another.alias;

 # location / {

 # root html;

 # index index.html index.htm;

 # }

 #}

 # HTTPS server

 #

 #server {

 # listen 443 ssl;

 # server_name localhost;

 # ssl_certificate cert.pem;

 # ssl_certificate_key cert.key;

 # ssl_session_cache shared:SSL:1m;

 # ssl_session_timeout 5m;

 # ssl_ciphers HIGH:!aNULL:!MD5;

 # ssl_prefer_server_ciphers on;

 # location / {

 # root html;

 # index index.html index.htm;

 # }

 #}

}

对这个配置文件不用做任何修改，直接使用前面的命令启动Nginx，就可以在127.0.0.1和实际IP上访问到默认的index页，这是一个标准的Web服务器。
9.2　nginx.conf示例

下面给出一个实际使用的nginx.conf文件，这个文件实现了一个典型的应用，支持MySQL访问、Redis访问、子链接访问等，内嵌了Lua代码。通过这个示例，读者可以对nginx.conf配置有一个总体印象。

user root;

worker_processes 4;

worker_rlimit_nofile 1000000;

error_log logs/error.log;

#error_log logs/error.log notice;

#error_log logs/error.log info;

#pid logs/nginx.pid;

events {

 use epoll;

 worker_connections 300000;

}

http {

 include mime.types;

 default_type text/html;

 #log_format main '$remote_addr - $remote_user [$time_local] "$request" '

 # '$status $body_bytes_sent "$http_referer" '

 # '"$http_user_agent""$http_x_forwarded_for"';

 access_log off;

 server_tokens off;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 open_file_cache max=10240 inactive=60s;

 open_file_cache_valid 80s;

 open_file_cache_min_uses 1;

 lua_shared_dict gkey 50m;

 lua_shared_dict gpost 10m;

 lua_shared_dict gvar 80m;

 lua_shared_dict msg_queue 300m;

 lua_shared_dict gsqs 100m;

 lua_shared_dict gex_session 50m;

 keepalive_timeout 0;

 #keepalive_timeout 600s;

 #keepalive_requests 10000;

 chunked_transfer_encoding off;

 #gzip on;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 upstream bk_mysql {

 drizzle_server 10.185.220.120:3306 protocol=mysql dbname=test user=he password=33Er3~#;

 drizzle_keepalive max=300 overflow=reject mode=single;

 }

 upstream bk_master_db {

 drizzle_server 127.0.0.1:3306 protocol=mysql dbname=test user=he password=33Er3~#;

 drizzle_keepalive max=100 overflow=reject mode=single;

 }

 upstream bk_redis {

 server 10.185.220.120:6009;

 # a pool with at most 1024 connections

 # and do not distinguish the servers:

 keepalive 1000;

 }

 upstream bk_svr_conf {

 server 10.195.194.47:9001;

 keepalive 1000;

 }

 server {

 listen 9500 default so_keepalive=on;

 server_name 10.185.194.47;

 set $pub_ip "120.26.57.240:9510";

 set $idm "121.40.249.246:8300";

 #charset koi8-r;

 charset utf-8;

 #chunked_transfer_encoding off;

 #access_log logs/host.access.log main;

 location /redis_set_ex {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 set $expire $arg_expire;

 redis2_query set $key $request_body;

 redis2_query expire $key $expire;

 redis2_pass bk_redis;

 }

 location /redis_expire {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 set $expire $arg_expire;

 redis2_query expire $key $expire;

 redis2_pass bk_redis;

 }

 location /redis_persist {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query persist $key;

 redis2_pass bk_redis;

 }

 location /redis_set1 {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query set $key $request_body;

 redis2_query expire $key 86400;

 redis2_pass bk_redis;

 }

 location /redis_get {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query get $key;

 #redis2_query expire $key 86400;

 redis2_pass bk_redis;

 }

 location /redis_del {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query del $key;

 redis2_pass bk_redis;

 }

 location /mt_redis_set_ex {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua_block {'

 local val=ngx.unescape_uri(ngx.var.arg_val)

 local resp = ngx.location.capture("/redis_set_ex?key=" .. ngx.var.arg_key .. "&expire=" .. ngx.var.arg_expire, {

 method = ngx.HTTP_POST, body = val

 })

 ngx.exit(resp.status)

 }

 }

 location /user_status {

 include /usr/local/ip_limit.conf;

 default_type 'text/plain';

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 content_by_lua "local srcid

 if ngx.var.arg_uid == nil then

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)

 else

 srcid=ngx.var.arg_uid

 end

 local gvar = ngx.shared.gvar

 local user_status = gvar:get('user_status_' .. srcid)

 if user_status == nil then

 ngx.print('0')

 else

 ngx.print(user_status)

 end

";

 }

 location /user_offline {

 include /usr/local/ip_limit.conf;

 default_type 'text/plain';

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 content_by_lua "local srcid

 if ngx.var.arg_uid == nil then

 local gvar = ngx.shared.gvar

 local gex_session = ngx.shared.gex_session

 local keys = gex_session:get_keys(0)

 local k,v

 for k, v in ipairs(keys) do

 gvar:set('user_session_' .. v, nil)

 gvar:set('user_status_' .. v, nil)

 gex_session:set(v,nil)

 local resp = ngx.location.capture('/redis_del?key=S_' .. v)

 ngx.say('cleanup session:' .. v)

 end

 ngx.exit(ngx.HTTP_OK)

 else

 srcid=ngx.var.arg_uid

 end

 local gvar = ngx.shared.gvar

 local session_key = gvar:get('user_session_' .. srcid)

 if session_key ~= nil then

 gvar:set('user_session_' .. srcid, nil)

 local resp = ngx.location.capture('/redis_del?key=S_' .. srcid)

 end

 local user_status = gvar:get('user_status_' .. srcid)

 if user_status ~= nil then

 gvar:set('user_status_' .. srcid, nil)

 end

 ";

 }

 location /msg_count {

 include /usr/local/ip_limit.conf;

 default_type 'text/plain';

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 content_by_lua "local srcid

 if ngx.var.arg_uid == nil then

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)

 else

 srcid=ngx.var.arg_uid

 end

 local msg_queue = ngx.shared.msg_queue

 ngx.print('unread:' .. msg_queue:llen('user_msg_' .. srcid))

 ";

 }

}

9.3　全局配置与顶层配置块

nginx.conf从整体上讲分全局配置（main）、顶层配置块及子配置块。放在配置文件中不用{}括起来的部分是全局配置，第一层用{}括起来的是顶层配置块，在顶层配置块中再用{}括起来的是子配置块。顶层配置块目前有http、event、stream。下面分别描述顶层配置块和主要的子配置块。

9.3.1　main全局配置

全局配置是Nginx在运行时与具体业务功能（如HTTP服务或者E-mail服务代理）无关的一些参数，如工作进程数、运行的身份等。全局配置在配置文件最外层。

1.工作进程数

语法：

worker_processes number | auto;

默认：

worker_process 1;

配置块：全局。

说明：在配置文件的全局main部分，管理进程接收任务并将请求分配给工作进程处理，工作进程是实际的处理进程。工作进程的个数可以设置为CPU的核数（grep^processor/proc/cpuinfo|wc-l），也可以是auto值，如果开启了ssl和gzip更应该设置成与逻辑CPU数量一样甚至为2倍，可以减少I/O操作。如果Nginx服务器还有其他服务，可以考虑适当减少。

2.绑定工作进程到指定的CPU内核

语法：

worker_cpu_affinity cpumask[cpumask…]

默认：无。

配置块：全局。

说明：如果CPU非常繁忙，不一定会把每一个工作进程分配到一个核心上，通过本指令手工指定会得到真正的并发（仅对Linux有效）。例如：

worker_processes 4;

worker_cpu_affinity 1000 0100 0010 0001;

3.工作进程最大打开文件数

语法：

worker_rlimit_nofile number;

默认：无。

配置块：全局。

说明：改变工作进程最大打开文件数，修改配置无须重启管理进程。

4.工作进程的当前工作路径

语法：

worker_directory directory;

默认：无。

配置块：全局。

说明：定义当前工作进程的工作路径，主要用于生成coredump文件，工作进程所在用户和组需要对工作目录有写权限。

5.工作进程优先级

语法：

worker_priority number;

默认：

worker_priority 0;

配置块：全局。

说明：定义工作进程的优先级，取值范围为-20～+20。

6.coredump文件最大尺寸

语法：

worker_rlimit_core size;

默认：无。

配置块：全局。

说明：定义工作进程coredump文件尺寸，改动无须重启管理进程。

7.是否以守护进程方式运行Nginx

语法：

daemon on|off;

默认：

daemon on；

配置块：全局。

说明：指明是否以守护进程方式运行Nginx，默认为打开。

8.是否以master_process方式工作

语法：

master_process on|off;

默认：

master_process on;

配置块：全局。

说明：指明工作进程是否马上启动，主要用于Nginx深度开发使用，不是常规配置功能项。

9.error日志设置

语法：

error_log /path/file level;

默认：

error_log logs/error.log err;

配置块：main、http、mail、stream、server、location。

说明：设置日志文件路径名，还可以设置要写入的错误级别。

10.定义环境变量

语法：

env VAR|VAR=Value;

配置块：全局。

说明：直接设置操作系统上的环境变量。例如：

env MACCOC_OPTIONS;

env PERL5LIB=/data/site/modules;

env OPENSSL_ALLOW_PROXY_CERTS=1;

11.引用其他配置文件

语法：

include /path/file;

默认：无。

配置块：any。

说明：文件名可以是绝对路径，也可以是相对路径，如果是相对路径，就是nginx.conf所在的路径。例如：

include mime.types;

include /usr/local/ip_limit.conf;

12.锁定文件

语法：

lock_file file;

默认：

lock_file logs/nginx.lock;

配置块：全局。

说明：Nginx使用锁定文件实现accept_mutex。在多数系统上，这个锁用原子操作实现，则这个值就被忽略掉了。这个配置在使用lock file机制的系统上使用。

13.设置pid文件路径

语法：

pid path/file;

默认：

pid logs/nginx.pid;

配置块：main。

说明：设置保存管理进程ID的文件，用于使用进程ID操作Nginx的环境。

14.设置工作进程运行时的用户及用户组

语法：

user username[groupname];

默认：

user nobody;

配置块：main。

说明：指定工作进程工作时的用户和用户组，主要在Linux和UNIX上使用。

15.SSL硬件加速

语法：

ssl_engine device;

说明：如果服务器上有SSL硬件加速设备，可以通过配置实现硬件加速。可以使用OpenSSL命令查看是否有硬件设备：

openssl engine –t;

16.工作进程中多线程读和写的线程池

语法：

thread_pool name threads=number [max_queue=number];

默认：

thread_pool default threads=32 max_queue=65535;

配置块：main。

说明：这条指令从1.7.11版本出现，定义工作进程中对文件读和写时用到的线程池。threads参数定义线程池中线程的数量。max_queue限制允许在队列中等待的任务，默认是65536个任务。队列超出时，任务将返回一个错误信息。

17.工作进程时间频率

语法：

timer_resolution interval;

默认：无。

配置块：main。

说明：早期的Linux中，gettimeofday是一个系统调用，需要进行一次核心态和用户态的切换，所以需要限制。现在的内核中，gettimeofday仅是一次vsyscall，是对共享内存中的数据做访问，代价不大，所以目前通常不需要考虑这个问题。

9.3.2　events配置块

events模块中包含Nginx中所有处理连接的设置。events是Nginx使用到的I/O事件模型，是最主要的进出交互部分。Nginx强大的部分就是在Linux上完美实现了epoll模型。

这里定义events的模型选择和参数。

常用配置项如下：

events{

 use epoll;

 worker_connections 20000;

｝

1.设置事件模型

语法：

use method;

默认：无。

配置块：events。

说明：method取值为[kqueue|rtsig|epoll|/dev/poll|select|poll]；。指令用于确定使用的事件模型，一般在Linux下用epoll。如果不设置本值，Nginx会自动确定事件模型。

（1）标准事件模型

select、poll属于标准事件模型，如果当前系统不存在更有效的方法，Nginx会选择select或poll。

（2）高效事件模型

kqueue：用于FreeBSD 4.1+、OpenBSD 2.9+、NetBSD 2.0和MacOS X。使用双处理器的MacOS X系统使用kqueue可能会造成内核崩溃。

epoll：用于Linux内核2.6版本及以后的系统。

/dev/poll：用于Solaris 711/99+、HP/UX 11.22+（eventport）、IRIX 6.5.15+和Tru64 UNIX 5.1A+。

eventport：用于Solaris 10。为了防止出现内核崩溃的问题，有必要安装安全补丁程序。

查看linux版本号可以使用cat/proc/version命令。

2.每个工作进程的最大连接数

语法：

worker_connections number;

默认：

worker_connections 512;

配置块：event。

说明：写在events部分，指每一个工作进程能并发处理（发起）的最大连接数（包含与客户端或后端被代理服务器间等所有连接数）。当Nginx作为反向代理服务器时，计算公式为最大连接数=worker_processes×worker_connections/4，所以这里客户端最大连接数是1024，这个可以增大到8192，看情况而定，但不能超过worker_rlimit_nofile。当Nginx作为http服务器时，以上计算公式里面改为除以2。

3.工作进程并发接收

语法：

multi_accept on|off;

默认：

multi_accept off;

配置块：events。

说明：如果multi_accept是禁用的，一个工作进程同一时刻只能接收一个新的连接，否则，可以在同一时刻接收所有的连接。当类型是kqueue时，这个配置指令会被自动忽略。

4.AIO最大输出数

语法：

worker_aio_requests number;

默认：

worker_aio_request 32;

配置块：events。

说明：当在epoll连接处理方法中使用AIO时，设置单工作进程AIO输出的最大数。

9.3.3　http服务器配置块

HTTP模块是Nginx中重要的模块，顾名思义，这是处理HTTP请求的模块。HTTP模块中一般使用HTTP全局配置参数控制整体行为，使用server配置虚拟主机，包含监听地址、文档路径和各种location。

反向代理、负载均衡等都是在内部的server等模块实现的。同时在各个子配置块或location等内部划分了许多阶段（phase），这些阶段可以注册Lua代码或Lua文件，干预处理的过程。

本节重点讲述HTTP配置项的主要配置指令，详细的配置请参阅官方ngx_http_core_module模块介绍。

一个典型的Web服务器会包含全局配置、多个server块和多个location块：

http{

 gzip on;

 upstream{

 …

 }

 …

 server{

 listen localhost:80;

 …

 location /webstatic {

 if … {

 …

 }

 root /opt/webresource;

 …

 }

 location ~* .(jpg|jpeg|png|jpe|gif)${

 …

 }

 }

 server{

 …

 }

}

Nginx为Web服务器提供了很多配置项，这些配置项有的可以出现在任意一个配置块中，有的只能在特定的块中，这点在查看配置项描述时需要注意一下。

1.监听端口

语法：

listen address[:port] [default_server] [ssl] [http2 | spdy] [proxy_protocol] [setfib=number] [fastopen=number] [backlog=number] [rcvbuf=size] [sndbuf=size] [accept_filter=filter] [deferred] [bind] [ipv6only=on|off] [reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

listen port [default_server] [ssl] [http2 | spdy] [proxy_protocol] [setfib=number] [fastopen=number] [backlog=number] [rcvbuf=size] [sndbuf=size] [accept_filter=filter] [deferred] [bind] [ipv6only=on|off] [reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

listen unix:path [default_server] [ssl] [http2 | spdy] [proxy_protocol] [backlog=number] [rcvbuf=size] [sndbuf=size] [accept_filter=filter] [deferred] [bind] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

默认：

listen *:80 | *:8000;

配置块：server。

说明：listen参数决定Nginx如何监听端口。在listen后面可以只加IP、端口或主机名，非常灵活。例如：

listen 127.0.0.1:8000;

listen 127.0.0.1;

listen 8000;

listen *:8000;

listen localhost:8000;

如果使用IPv6，那么可以这样使用：

listen [::]:8000;

listen [::1];

还可以加其他参数：

listen 127.0.0.1 default_server accept_filter=dataready backlog=1024;

主要参数的意义如下：

·default：将所在的server块作为整个Web服务的默认server块。如果没有设置这个参数，将以找到的第一个server块为默认server块。

·default_server：同default。

·backlog=num：表示TCP中backlog队列大小，默认为-1，表示不设置。在TCP三次握手过程中，进程还没有开始处理监听句柄，backlog队列就会放置这些新连接。如果队列已满，新的客户尝试连接，则会失败。

·rcvbuf=size：设置so_rcvbuf接收缓冲区大小。

·sndbuf=size：设置so_sndbuf发送缓冲区大小。

·accept_filter：设置accept过滤器，只对FreeBSD操作系统有用。

·deferred：设置本参数后，客户端建立连接，并且完成了三次握手，也不会调度工作进程来处理，直到客户端实际请求数据到来才分配工作进程处理，适用于大并发情况下减轻工作进程负担。

·bind：绑定当前ip/port对，只有在一个端口监听多个地址时才会生效。

·ssl：在当前监听的端口上建立的连接必须使用SSL协议。

2.主机名称

语法：

server_name name[...];

默认：

server_name "";

配置块：server。

说明：server_name后可以跟多个主机名称。例如：

server_name www.google.com mail.google.com;

3.location

语法：

location[=|~|~*|^~|@]/uri/{...}

配置块：server。

说明：location尝试根据用户请求中的URI匹配上面的/uri表达式，如果匹配，就选择location中的配置处理用户请求。匹配的方式有很多种，下面介绍匹配规则。

1）=表示把URI作为字符串，以便与参数中的uri做完全匹配。例如：

location = / {

#只有当用户请求，才会作用本location下的配置

...

}

2）~表示匹配URI时是大小写敏感的。

3）~*表示匹配URI时是大小写不敏感的。

4）^~表示匹配时只需要前半部分与URI匹配即可。例如：

Location ^~ /image/{

#以/image/开始的请求都会匹配上

...

}

5）@表示仅用于Nginx服务内部请求之间重定向，又名命名location（named location）。

可以在URI中使用正则表达式，例如：

Location ~* \.(gif|jpg|jpeg)${

 #匹配以.gif、.jpg、.jpeg结尾的请求

}

location是有顺序的，当一个请求可以匹配多个location时，只会被第一个匹配的location处理。

location的匹配只能表达“如果匹配，则……”，如果需要匹配“如果不匹配，则……”，就比较难实现。可以在最后加一个/location，如果前面都没有匹配上，则由“/”处理。

4.设置root路径

语法：

root path

默认：

html

配置块：http、server、location、if。

例如，定义资源文件相对于HTTP请求的根目录。

location /download/{

 root /opt/web/html/;

}

如果有一个URI是/download/index/test.html，那么Web服务器会返回服务器上/opt/web/html/download/index/test.html文件的内容。

5.以别名方式设置资源路径

语法：

alias path;

配置块：location。

说明：alias是用来设置文件资源路径的，与root的不同点在于如何解读location后面的uri参数，alias和root会以不同的方式将用户请求映射到真正的磁盘文件上。例如，有一个请求的URI是/conf/nging.conf，而实际文件在/usr/local/nginx/conf/nginx.conf，那么可以使用下面的方式设置：

location /conf{

 alias /usr/local/nginx/conf/;

}

如果用root设置，则为

location /conf{

 root /usr/local/nginx

}

alias后面也可以添加正则表达式，例如：

location ~ ^/test/(\w+)\.(\w+)${

 alias /usr/local/nginx/$2/$1.$2;

}

在请求/test/nging.conf时，会返回/usr/local/nginx/conf/nginx.conf文件的内容。

root和alias配置块不同，root使用更广。

6.首页

语法：

index file ...;

默认：

index index.html;

配置块：http、server、location。

说明：如果访问站点的URI是/，一般返回网站首页。index后面可以跟多个参数，Nginx按照顺序访问这些文件。例如：

location /{

 root path;

 index /index.html /html/index.php /index.asp;

}

7.根据HTTP返回码重定向页面

语法：

error_page code[code...][=|=answer-code]uri|@named_location

配置块：http、server、location、if。

说明：当某个请求返回错误码时，如果匹配上了error_page中设置的页面，则重定向到新的URI中。例如：

error_page 404 /404.html;

error_page 502 503 504 /50x.html;

error_page 403 http://example.com/forbidden.html;

error_page 404 = @fetch;

虽然重定向了URI，但返回的HTTP错误码还是原来的值，可以使用=更改返回的错误码。例如：

error_page 404 =200 /empty.gif;

error_page 404 =403 /forbidden.gif;

如果不想修改URI，只想重定向到另外一个location中处理，可以这样设置：

location / {

 error_page 404 @fallback;

}

location @fallback{

 proxy_pass http://backend;

}

其中，404请求会被反向代理到http://backend上游服务器中。

8.是否允许递归使用error_page

语法：

recursive_error_pages[on|off];

默认：

recursive_error_pages off;

配置块：http、server、location。

说明：标明是否允许递归定义error_page。

9.try_files

语法：

try_files path1 [path2] uri;

配置块：server、location。

说明：try_fies后要跟若干路径，最后必须要有uri参数，表示尝试按照顺序访问每一个path，如果可以有效地读取，就直接向用户返回这个path对应的文件并结束请求，否则继续向下访问。如果都找不到，就定向到最后的uri上，所以这个uri必须存在，而且应该是可以有效重定向的。例如：

try_files /system/maintenance.html $uri $uri/index.html $uri.html @other;

location @other{

 proxy_pass http://backend;

}

还可以与error_page配合使用。例如：

location / {

 try_files $uri $uri/ /error.php?c=404 =404;

}

10.HTTP包体只存储到磁盘文件中

语法：

client_body_in_file_only on|clean|off;

默认：

client_body_in_file_only off;

配置块：http、server、location。

说明：当值为非off时，用户请求的HTTP包体都会存储到文件中，即使只有0字节也会保存为文件。当请求结束时，如果配置为on，这个文件不会被删除（一般用来调试定位问题），如果配置为clean，则会删除该文件。

11.HTTP包体尽量写入缓冲区

语法：

client_body_in_single_buffer on|off;

默认：

client_body_in_single_buffer off;

配置块：http、server、location。

说明：用户请求中的HTTP包体写入内存缓冲区中。当包体大小超过了client_body_buffer_size，还是会被写入文件中。

12.存储HTTP头的缓冲区大小

语法：

client_header_buffer_size size;

默认：

client_header_buffer_size 1k;

配置块：http、server。

说明：定义HTTP头缓冲区大小。有时，HTTP头会超过这个大小，这时large_client_header_buffers定义的缓冲区将生效。

13.存储超大HTTP头部的缓冲区大小

语法：

large_client_header_buffers number size;

默认：

large_client_header_buffers 4 8k;

配置块：http、server。

说明：定义超大HTTP头部缓冲区大小。如果HTTP请求行（如GET/index HTTP/1.1）的大小超过了单个缓冲区个数，会返回“Request URI too large”（414）。请求中一般会有许多头域，每一个头域大小也不能超过单个缓冲区大小，否则会返回“Bad request”（400）。请求行和请求头部总和不能超过缓冲区个数×缓冲区大小。

14.存储HTTP包体的缓冲区大小

语法：

client_body_buffer_size size;

默认：

client_body_buffer_size 8k/16k;

配置块：http、server、location。

说明：定义接收HTTP内存缓冲区大小。HTTP包体会先接收到这块缓冲区里，再决定是否写入磁盘。

15.HTTP包体的临时存放目录

语法：

client_body_temp_path dir-path[level1[level2[level3]]];

默认：

client_body_temp_path cient_body_temp;

配置块：http、server、location。

说明：定义HTTP包体存放的临时目录。接收HTTP包体时，如果包体的大小大于client_body_buffer_size，则会以一个递增的整数命名并存放到client_body_temp_path指定的目录中。后面跟着的level1、level2、level3，是为了防止一个目录下文件数量太多导致性能下降，这样可以按照临时文件名最多再使用3层目录。例如：

client_body_temp_path /opt/nginx/client_temp 1 2;

如果新上传的HTTP包体使用00000123456作为临时文件名，会被存放到这个目录中：

/opt/nginx/client_temp/6/45/00000123456

16.连接内存池

语法：

connection_pool_size size;

默认：

connection_pool_size 256;

配置块：http、server。

说明：Nginx对每个建立成功的TCP连接会预先分配一个内存池，本参数指定内存池大小，用于减少内核对于小块内存的分配次数。过大的size会占用更多的服务器内存，更小的size则会引发更多的内存分配次数。

17.请求池尺寸

语法：

request_pool_size size;

默认：

request_pool_size 4k;

配置块：http、server。

说明：Nginx为每个HTTP请求分配一个内存池。TCP连接关闭时会销毁connection_pool_size指定的连接内存池，HTTP请求结束时会销毁request_pool_size指定的HTTP请求内存池。但它们创建、销毁时间不同，因为一个TCP连接可能复用于多个HTTP请求。

18.HTTP头读取超时时间

语法：

client_header_timeout time(默认单位：秒);

默认：

client_header_timeout 60;

配置块：http、server、location。

说明：客户端和服务器建立连接后开始接收HTTP头，如果读取超时，向客户端返回408（Request timed out）错误。

19.读取HTTP包体超时时间

语法：

client_body_time time;

默认：

client_body_time 60;

配置块：http、server、location。

说明：读取包体的超时时间。

20.发送响应的超时时间

语法：

send_timeout time;

默认：

send_timeout 60;

配置块：http、server、location。

说明：发送响应的超时时间。超时发生时Nginx将关闭这个连接。

21.重置超时连接

语法：

reset_timeout_connection on|off;

默认：

reset_timeout_connection off;

配置块：http、server、location。

说明：连接超时后向客户端发送RST包重置连接。选项打开后，在某个连接超时后，不是使用正常的四次握手关闭TCP连接，而是直接向客户端发送RST重置包，不再等待用户应答，直接释放套接字。相比正常关闭，这种设置可以避免许多处于FIN_WAIT_1、WAIT_2、TIME_WAIT状态的连接。

因为使用RST重置连接会带来一些问题，所以默认关闭。

22.用户连接关闭方式

语法：

lingering_close off |on|always;

默认：

lingering_cose on;

配置块：http、server、location。

说明：设置Nginx关闭用户连接的方式。always表示关闭之前必须先处理连接上所有用户发送的数据；off表示不管数据直接关闭；on是中间值，一般都会处理完用户发送的数据，除非业务上认为这些数据是不必要的。

23.用户连接关闭时间

语法：

lingering_time time;

默认：

lingering_time 30s;

配置块：http、server、location。

说明：lingering_close启用后，这个配置项对于上传大文件很有用。当用户请求的content-length大于max_client_body_size时，Nginx会立即返回413（request engity too large）响应，但是很多客户端可能不处理413返回值，仍然上传数据。这时，经过lingering_time后，Nginx不管是否还有数据在上传，直接把这个连接关掉。

24.用户连接关闭超时值

语法：

lingering_timeout 5s;

配置块：http、server、location。

说明：lingering_close生效后，检查关闭连接前是否有用户发送的数据到达服务器。如果超过lingering_timeout时间后还没有数据可读，就直接关闭连接；否则，必须读取完连接缓冲区上的数据并丢弃后才会关闭连接。

25.keepalive超时时间

语法：

keepalive_timeout time;

默认：

keepalive_timeout 75;

配置块：http、server、location。

说明：一个keepalive连接在闲置超过一定时间后，服务器和浏览器都会关闭这个连接。这个值是用于限制Nginx服务器的，Nginx会把这个值传给浏览器，但每个浏览器对待keepalive的策略可能是不同的。

26.keepalive连接上最大承载数

语法：

keepalive_requests n;

默认：

keepalive_requests 100;

配置块：http、server、location。

说明：一个keepalive长连接上默认最多只能发送100个请求。

27.tcp尼古拉算法开关

语法：

tcp_nodelay on|off;

默认：

tcp_nodelay on;

配置块：http、server、location。

说明：确定对keepalive连接是否使用tcp_nodelay选项。

28.tcp协议nopush开关

语法：

tcp_nopush on|off;

默认：

tcp_nopush off;

配置块：http、server、location。

说明：在打开sendfile选项时，确定是否开启FreeBSD系统上的tcp_nopush或Linux系统上的tcp_cork功能。打开tcp_nopush后，将会在发送响应时把整个响应包头放到一个TCP包中发送。

29.MIME type到文件扩展名的映射

语法：

type{…};

配置块：http、server、location。

说明：定义MIME type到文件扩展名的映射。多个扩展名可以映射到同一个MIME type。例如：

types{

 text/html html;

 text/html conf;

 image/gif gif;

 image/jpeg jpg;

}

30.默认MIME type

语法：

default_type MIME-type;

默认：

default_type text/plain;

配置块：http、server、location。

说明：当找不到MIME type的映射时，使用默认的MIME type作为HTTP头域中的content-type。

31.MIME type映射散列桶内存大小

语法：

types_hash_bucket_size size;

默认：

types_hash_bucket_size 32|64|128;

配置块：http、server、location。

说明：Nginx使用散列表存储MIME type映射，本指令定义了每个散列桶占用内存的大小。

32.MIME type映射散列桶大小

语法：

types_hash_max_size size;

默认：

types_hash_max_size 1024;

配置块：http、server、location。

说明：本配置影响散列表的冲突率。值越大，就消耗越多的内存，但冲突率越小，检索速度更快。值越小，冲突机率高，检索效率降低，但节省内存。

33.按HTTP方法限制用户请求

语法：

limit_except method … {…}

配置块：location。

说明：Nginx通过limit_except后面指定的方法名限制用户请求。方法名取值包括GET、HEAD、POST、PUT、DELETE、MKCOL、COPY、MOVE、OPTIONS、PPROPFIND、PROPPATCH、LOCK、UNLOCK、PATCH。例如：

limit_except GET{

 allow 192.168.1.0/32;

 deny all;

}

上面方法中，允许GET方法和HEAD方法通过，其他方法禁止。

34.HTTP请求包体最大值

语法：

client_max_body_size size;

默认：

client_max_body_size 1m;

配置块：http、server、location。

说明：浏览器在发送较大包体的请求时，会在头部带一个content-type字段，client_max_body_size是用来限制content-type大小的，这就使得Nginx不用等待至接收完所有的包体，会大大节约时间。例如，当用户上传一个1GB的文件时，Nginx接收完包头后发现包体超大，直接发送413（request entity too large）响应给客户端。

35.对请求限速

语法：

limit_rate speed;

默认：

limit_rate 0;

配置块：http、server、location、if。

说明：限制客户端每秒传输字节数。默认为0，表示不限速。针对不同客户端，可以用$limit_rate参数执行不同的限速策略。例如：

server{

 if($slow)

 set $limit_rate 4k;

}

36.限速阈值

语法：

limit_rate_after time;

默认：

limit_rate_after 1m;

配置块：http、server、location、if。

说明：此配置表示Nginx向客户端发送的响应长度超过limit_rate_after后才开始限速。例如：

limit_rate_after 1;

limit_rate 100k;

37.sendfile系统调用

语法：

sendfile on|off;

默认：

sendfile off;

配置块：http、server、location。

说明：可以启用Linux上的sendfile系统调用发送文件，它减少了用户态与核心态之间的两次内存复制，可以从磁盘中读取文件后直接在内核态发送到网卡，提高了效率。

38.AIO系统调用

语法：

aio on|off;

默认：

aio off;

配置块：http、server、location。

说明：表示是否在FreeBSD或Linux系统上启用内核级别的异步文件I/O功能，AIO与sendfile是互斥的。

39.direction选项

语法：

directio size|off;

默认：

directio off;

配置块：http、server、location。

说明：在FreeBSD或Linux系统上使用O_DIRECT选项读取文件，缓冲区大小为size，对大文件读取速度有优化作用，与sendfile互斥。

40.direction选项对齐尺寸

语法：

directio_alignment size;

默认：

directio_alignment 512;

配置块：http、server、location。

说明：与directio一起使用，指定以directio方式读取文件时的对齐方式。一般情况下，512B足够了，但对一些高性能文件系统，如Linux下的XFS文件系统，可能需要设置到4KB作为对齐方式。

41.打开文件缓存

语法：

open_file_cache max=N[inactive=time]|off;

默认：

open_file_cache off;

配置块：http、server、location。

说明：文件缓存会在内存中存储3种信息。

·文件句柄、文件大小、上次修改时间；

·已经打开过的目录结构；

·没有找到的或者没有权限操作的文件信息。

通过读取缓存减少了磁盘操作。

3个参数如下：

·max：表示在内存中存储元素的最大个数，当达到最大限制时，采用LRU算法从缓存中淘汰最近最少使用的元素。

·inactive：表示在inactive指定的时间段内没有被访问过的元素将会被淘汰。默认时间为60秒。

·off：关闭缓存功能。

例如：

open_file_cache max=1000 inactive=20s

42.是否缓存打开文件时的错误信息

语法：

open_file_cache_errors on|off;

默认：

open_file_cache_errors off;

配置块：http、server、location。

说明：指定是否缓存打开文件时的错误信息。

43.不被淘汰的最小访问次数

语法：

open_file_cache_min_uses number;

默认：

open_file_cache_min_uses 1;

配置块：http、server、location。

说明：本参数与open_file_cache_min_uses配合使用。如果在inactive指定的时间段内，访问次数超过了open_file_cache_min_uses指定的最小次数，那么将不会被淘汰出缓存。

44.检验缓存中元素有效率性的频率

语法：

open_file_cache_valid time;

默认：

open_file_cache_valid 60;

配置块：http、server、location。

说明：默认每60秒检查一次缓存中的元素是否有效。

45.忽略不合法的HTTP头部

语法：

ignore_invalid_headers on|off;

默认：

ignore_invalid_headers on;

配置块：http、server。

说明：on情况下，当出现不合法的HTTP头部时，Nginx会忽略此HTTP头部；off情况下则会拒绝服务，并向用户发送400（bad request）错误。

46.HTTP头部是否允许下划线

语法：

underscores_in_headers on|off;

默认：

underscores_in_headers off;

配置块：http、server。

说明：默认为off，表示头域名称不允许带下划线。

47.if_Modified_Since头域处理策略

语法：

if_Modified_Since[off|exact|before];

默认：

if_modified_since exact;

配置块：http、server、location。

说明：为了更好的性能，客户端浏览器会在客户端本地缓存一些文件，并保存当时获取的时间，下次向服务器获取缓存过的资源时，就携带If-Modified-Since头域，本指令根据参数决定如何处理。

·off：忽略If-Modified-Since头域，每次都读取文件给客户端。

·exact：将头域时间和文件修改时间做精确比较，如果未匹配上，则读取文件返回给用户；如果匹配上，则表示浏览器本地为最新内容，返回304（not modified）给客户端，直接使用本地缓存，节省带宽。

·before：比exact更宽松，只要文件修改时间等于或早于If-Modified-Since头部时间，就向客户端返回304（not modified）。

48.文件未找到时是否记录到error中

语法：

log_not_found on|off;

语法：

log_not_found on;

配置块：http、server、location。

说明：当处理用户文件请求时，如果没找到文件是否记录到error.log中，一般用于调试定位问题，生产系统需要关掉。

49.合并相邻斜线

语法：

merge_slashes on|off;

默认：

merge_slashed on;

配置块：http、server、location。

说明：指明是否合并相邻的/，例如，如果//test///a.txt为on，则会匹配为location/test/a.txt；如果为off，则不会匹配，URI还是//test///a.txt。

50.DNS解析

语法：

resolver address …;

配置块：http、server、location。

说明：设置DNS域名解析服务器地址。例如：

resolver 127.0.0.1 192.0.2.1;

51.DNS解析超时时间

语法：

resolver_timeout time;

默认：

resolver_timeout 30s;

配置块：http、server、location。

说明：表示DNS解析的超时时间。

52.返回错误页面时是否注明Nginx版本

语法：

server_token on|off;

默认：

server_token on;

配置块：http、server、location。

说明：表明处理出错的请求时，是否在应答头域的server域内标明Nginx版本，用于定位问题。

53.upstream块

语法：

upstream name{…}

配置块：http。

说明：upstream块定义一个上游服务器集群，用于反向代理中的proxy_pass指令。

例如：

upstream backend{

 server backend1.example.com;

 server backend2.example.com;

 server backend3.example.com;

}

server{

 location / {

 proxy_pass http://backend;

 }

}

54.上游服务器名

语法：

server name[parmameters];

配置块：upstream。

说明：server配置项指定了一台上游服务器名，可以是域名、IP地址、UNIX句柄等。

参数如下：

·weight=number：这台上游服务器的权重，默认为1。

·max_fails=number：与fail_timeout配合使用，指在fail_timeout时间段内，如果这台上游服务器转发失败次数超过number，则认为在fail_timeout内该服务器不可用。默认为1，0表示不检查失败次数。

·fail_timeout=time：表示该时间段内上游服务器转发失败多少次后就认为该服务器暂时不可用，用于优化反向代理。默认为10秒。这个超时不是连接、发送等超时。

·down：表示该服务器永久下线，只在使用ip_hash配置项时才有用。

·backup：使用ip_hash无效。表示该上游服务器仅是备份服务器，只有在所有非备份服务器都失效后，才会向备份服务器转发请求。例如：

upstream backend{

 server backend1.example.com weight=5;

 server 127.0.0.1 max_fails=3 fail_timeout=30s;

 server unix:/tmp/backend3;

}

55.基于IP的hash算法

语法：

ip_hash;

配置块：upstream。

说明：在如有会话的Web请求下，如Java、PHP的动态页面，希望一个客户端的请求最好始终分配到固定的一台上游服务器中，这样就可以保持会话，而不用在上游服务器中做会话同步。ip_hash就是解决这个问题的，根据客户端IP Hash出一个key，将key与upstream集群中的上游服务器数量取模，然后以取模后的结果把请求转发到对应的上游服务器上，确保同一个客户端的请求只转发到指定的上游服务器中。

ip_hash与weight配置不可同时使用。如果upstream中的一台服务器暂时不可用，不能直接删除该服务器配置，要使用down标志，否则转发策略会混乱。例如：

upstream backend{

 ip_hash;

 server backend1.example.com;

 server backend2.example.com;

 server backend3.example.com down;

 server backend4.example.com;

}

56.转发当前代理

语法：

proxy_pass URL;

配置块：location、if。

说明：这个配置将当前请求反向代理到URL指定的服务器上，URL可以是主机名或IP地址+端口。例如：

proxy_pass http://localhost:8000/uri/;

也可以是UNIX句柄：

proxy_pass http://unix:/path/to/backend.socket:/uri/;

也可以直接使用upstream块：

upstream backend{

 ……

}

server{

 location / {

 proxy_pass http://backend;

 }

}

也可以把HTTP转换成https:

proxy_pass https://10.12.0.1;

默认情况下，反向代理不会转发请求中的Host头部，如果需要转发，那么需要加上配置项：

proxy_set_header Host $host;

57.转发使用的协议方法

语法：

proxy_method method

配置块：http、server、location。

说明：设置转发时的协议方法名。例如：

proxy_method POST;

则客户端发来的GET请求在转发时方法名也会改为POST。

58.转发时隐藏的头域

语法：

proxy_hide_header the_header;

配置块：http、server、location。

说明：Nginx会将上游服务器的响应转发给客户端，但默认不会转发以下头域——Date、Server、X-Pad、X-Accel-*。使用proxy_hide_header后，可以任意指定哪些头域不用转发。例如：

proxy_hide_header Cache-Control;

proxy_hide_header MicrosoftOffieWebServer;

59.转发时明确使用的头域

语法：

proxy_pass_header the_header;

配置块：http、server、location。

说明：与proxy_hide_header功能相反，可以将原来禁止的头域进行转发。

60.是否转发请求包体

语法：

request_pass_request_body on|off;

默认：

request_pass_request_body on;

配置块：http、server、location。

说明：指定是否向上游服务器转发请求包体。

61.是否转发请求头

语法：

proxy_pass_request_header on|off;

默认：

proxy_pass_request_header on;

配置块：http、server、location。

说明：确定是否向上游服务器转发请求包头。

62.重定向转发

语法：

proxy_redirect[default|off|redirect replacement];

默认：

proxy_redirect default;

配置块：http、server、location。

说明：当上游服务器返回的响应是重定向或刷新请求（301、302）时，proxy_redirect可以重设HTTP头部的location或refresh字段。例如：

proxy_redirect http://localhost:8000/two/ http://frontend/one/;

则上游的location字段就被替换了，客户端的一致性检查就可以通过。

也可以使用ngx_http_core_module提供的变量设置新的location。例如：

proxy_redirect http://localhost:8000/ http://$host:$server_port/;

也可以省略replacement中的主机名，使用虚拟主机名称。例如：

proxy_redirect http://localhost:8000/two/ /one/;

使用off时，则不进行转换。

使用default参数时，会按照proxy_pass配置项和所属的location配置项重组发送给客户端的location头部。例如，下面两种配置效果一样：

location /one/{

 proxy_pass http://upstream:port/two/;

 proxy_redirect default;

}

location /one/{

 proxy_pass http://upstream:port/two/;

 proxy_pass http://upstream:port/two/ /one/;

}

63.更换上游服务器

语法：

proxy_next_upstream[error|timeout|invalid_header|http_500|http_502|

http_503|http_504|http|404|off];

默认：

proxy_next_upstrem error timeout;

配置块：http、server、location。

说明：表示向上台上游服务器转发请求错误时，继续换一台上游服务器处理这个请求。因为上游服务器一旦开始发送应答，反向代理服务器会立刻把应答包转发给客户端，所以，一旦Nginx开始向客户端发送响应包，之后的过程中若出现错误不允许换下一台上游服务器继续处理。proxy_next_upstream的参数用来说明在哪些情况下会继续选择下一台上游服务器转发请求。

可以使用的值和参数如下：

·error：上游服务器出现错误。

·timeout：发送请求或读取响应发生超时。

·invalid_header：上游服务器发送的响应不合法。

·http_500：上游服务器返回状态码是500。

·http_502：上游服务器返回状态码是502。

·http_503：上游服务器返回状态码是503。

·http_504：上游服务器返回状态码是504。

·http_404：上游服务器返回状态码是404。

·off：关闭这个功能。

9.3.4　ngx_http_core_module变量

ngx_http_core_module模块提供了很多变量，可以在配置日志格式或URI中使用。

表9-1列出了ngx_http_core_module变量。

表9-1　ngx_http_core_module变量

 [image:]

 [image:]

9.3.5　stream

从1.9.0版本开始，Nginx支持stream模块，跟main、HTTP和event一样，Stream属于第一层配置块，实现TCP功能。

本模块默认是不在版本里的，需要通过--with-stream配置参数使能。

下面是官方的一个stream配置示例：

worker_processes auto;

error_log /var/log/nginx/error.log info;

events {

 worker_connections ?1024;

}

stream {

 upstream backend {

 hash $remote_addr consistent;

 server backend1.example.com:12345 weight=5;

 server 127.0.0.1:12345 max_fails=3 fail_timeout=30s;

 server unix:/tmp/backend3;

 }

 server {

 listen 12345;

 proxy_connect_timeout 1s;

 proxy_timeout 3s;

 proxy_pass backend;

 }

 server {

 listen [::1]:12345;

 proxy_pass unix:/tmp/stream.socket;

 }

}

示例中定义了一个TCP的stream块，从1.9.0开始，Nginx支持TCP纯代理服务。可以利用Nginx的负载均衡功能，或Nginx强大的网络接入能力实现会话管理和接入，再把具体的业务分发到后面使用其他语言实现的服务器上。

示例中定义了一个由3台服务器组成的负载均衡组（upstream）backend，负载均衡的策略是根据客户端IP地址进行hash，保证相同IP过来的总是被调度到同一个服务器上处理，优点是会话可以持续。3台服务器分配了不同的权重，最后一台服务器是UNIX域套接字，是内部通信的服务。另外定义了两个监听（server）：第一个是IPv4的监听，在12345端口上；第二个是IPv6的监听，也在12345端口上。IPv4的请求交由负载均衡组backend处理，IPv5请求的直接交给UNIX域套接字监听的服务处理，不经过负载均衡，这是为了演示两种应用。

下面再给出一个TCP服务的配置示例：

user root;

worker_processes 4;

worker_rlimit_nofile 100000;

error_log logs/error.log;

pid logs/nginx.pid;

events{

 use epoll;

 worker_connections 10000;

}

stream{

 tcp_nodelay on;

 lua_shared_dict gvar 50m;

 lua_shared_dict gmsg 50m;

 lua_shared_dict gdata 300m;

 lua_shared_dict gsess 30m;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 init_worker_by_lua_file init.lua;

server{

 listen 127.0.0.1:8081;

 listen 10.47.105.112:8081;

 listen 120.27.148.219:8081;

 lua_socket_log_errors off;

 content_by_lua_file mmp.lua;

}

}

http{

include mime.types;

default_type text/html;

access_log off;

server_tokens off;

sendfile on;

tcp_nopush on;

tcp_nodelay on;

open_file_cache max=10240 inactive=60s;

open_file_cache_valid 80s;

open_file_cache_min_uses 1;

lua_shared_dict gkey 50m;

keepalive_timeout 0;

chunked_transfer_encoding off;

lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

……

}

本例中，在8081端口监听了一个TCP服务，工作进程初始化时使用init脚本初始化了预定义的共享字典，TCP内容进来时使用mmp.lua脚本处理业务逻辑。而HTTP部分定义了一些内部的location为TCP服务使用（参考前面的location例子，此处略）。

1.stream配置指令

（1）监听

语法：

listen address:port [ssl] [udp] [proxy_protocol] [backlog=number] [bind] [ipv6only=on|off] [reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

默认：无。

配置块：server。

说明：设置监听的套接字IP地址和端口。也可以只指定端口。地址可以是主机名，例如：

listen 127.0.0.1:12345;

listen *:12345;

listen 12345; # same as *:12345

listen localhost:12345;

支持IPv6地址，地址用[]括起来：

listen [::1]:12345;

listen [::]:12345;

UNIX域套接字使用“unix：”前缀：

listen unix:/var/run/nginx.sock;

ssl参数用于声明所有连接使用SSL模式。

udp参数声明这是一个UDP监听。

proxy_protocol参数指定所有连接使用Proxy协议。

listen指令可以有几个参数：

·backlog=number：设置listen（）调用时未决状态连接队列大小。默认地，该参数在Free子BSD系统上是-1，在其他系统是511。

·bind：如果这个listen使用bind参数，表示实际绑定在这个ip*port对上。同样，如果哪一行ipv6only或者so_keepalive参数在一个address：porth指定，则与bind参数一样，会执行绑定操作。

·ipv6only=on|off：这个参数表明是否在[：：]上是只监听IPv6连接还是IPv6和IPv4同时都接收。这个参数默认打开，并且只能在启动时打开一次。

·reuseport：这个参数使每一个工作进程都在IP和端口上监听一次（使用so_reuseport套接字选项），允许内核在工作进程间分配任务。目前仅Linux 3.9+和DragonFly支持该配置项。

·so_keepalive=on|off|[keepidle]：[keepintvl]：[keepcnt]：这个指令为监听的套接字配置TCP保活机制。操作系统的设备可能会忽略这个参数。如果该参数设置为on，则套接字so_keepalive参数会被启用。

（2）预读缓冲区

语法：

preread_buffer_size size;

默认：

preread_buffer_size 16k;

配置块：stream、server。

说明：指定预读缓冲区尺寸。

（3）预计超时

语法：

preread_timeout timeout;

默认：

preread_timeout 30s；

配置块：stream、server。

说明：指定预读阶段超时值。

（4）Proxy协议

语法：

proxy_protocol_timeout timeout

默认：

proxy_protocol_timeout 30s;

配置块：stream、server。

说明：指定Proxy协议头读取超时值。如果这期间没有头数据传输，连接将被关闭。

（5）域名解析服务

语法：

resolver address … [valid=time] [ipv6=on|off]

默认：无。

配置块：stream、server。

说明：配置域名服务器，用于解析地址中的upstream服务。例如：

resolver 127.0.0.1 [::1]:5353;

将一个地址指定一个域名，可选配端口。如果未指定端口，使用53号端口。默认地，Nginx将在IPv4和IPv6中查找解析。如果没有IPv6地址，可以设置ipv6=off。默认地，Nginx使用应答的TTL值缓存结果，valid参数可以改写这个值：

resolver 127.0.0.1 [::1]:5353 valid=30s;

（6）解析超时值

语法：

resolver_timeout time;

默认：

resolver_timeout 30s;

配置块：stream、server。

说明：设置域名解析超时值。

（7）服务

语法：

server{…}

默认：无。

配置块：stream。

说明：配置一个server块，server中可用的指令均可用在stream下的server中。

（8）tcp nodelay

语法：

tcp_nodelay on|off

默认：

tcp_nodelay on;

配置块：stream、server。

说明：使能tcp_nodelay选项。

（9）变量hash表桶尺寸

语法：

variables_hash_bucket_size size;

默认：

variables_hash_bucket_size 64;

配置块：stream。

说明：设置变量hash表桶尺寸。

（10）变量hash表最大尺寸

语法：

variables_hash_max_size?size;

默认：

variables_hash_max_size 1024;

配置块：stream。

说明：设置变量哈希表最大尺寸。

2.stream内建变量

ngx_stream_core_module模块从1.11.2版本开始支持下面的变量：

·$binary_remote_addr：二进制的客户端地址，IPv4总是4字节，IPv6总是16字节。

·$bytes_received：从客户端收到的字节数（1.11.4）。

·$bytes_sent：发送给客户端的字节数。

·$connection：连接序列号。

·$hostname：主机名。

·$msec：当前时间，精度是毫秒。

·$nginx_version：Nginx版本。

·$pid：工作进程PID。

·$protocol：和客户端通信的协议——TCP或UDP（1.11.4）。

·$proxy_protocol_addr：Proxy协议头中的客户端地址，也可能是一个空字符串。

·$proxy_protocol_port：Proxy协议头中的客户端端口，或者用一个空字符串代替（1.11.4）。

·$remote_addr：客户端地址。

·$remote_port：客户端端口。

·$server_addr：服务器地址。

·$server_port：服务器端口。

·$session_time：会话时间，精度是毫秒。

·$status：会话状态（1.11.4），可以是下列值。

·200：成功。

·400：客户数据不能解析。

·403：禁止访问。

·500：服务器内部错误。

·502：错误路由。

·503：服务不可达。

·$time_iso8601：ISO 8601格式的本地时间。

·$time_local：通常Log格式的本地时间。
9.4　中文版nginx.conf

下面是一份cnblog上的中文版nginx.conf示例，其中大部分配置指令本文都介绍过，请参照学习。

#$开头是变量

#定义Nginx运行的用户和用户组

user work work;

#Nginx进程数，建议设置为CPU总核心数

worker_processes auto;

#指当一个Nginx进程打开的最多文件描述符数目

worker_rlimit_nofile 204800;

#全局错误日志定义类型，[debug | info | notice | warn | error | crit]

error_log /opt/log/nginx/error.log error;

#工作模式及连接数上限

events {

 #参考事件模型，use [kqueue | rtsig | epoll | /dev/poll | select | poll];

 #epoll模型是Linux 2.6以上版本内核中的高性能网络I/O模型，如果运行在FreeBSD上面，

 #就用kqueue模型

 use epoll;

 #单个后台worker process进程的最大并发连接数

 worker_connections 102400;

}

#设定http服务器，利用它的反向代理功能提供负载均衡支持

http {

 #文件扩展名与文件类型映射表

 include mime.types;

 #默认文件类型

 default_type application/octet-stream;

 #默认编码

 charset utf-8;

 #设定日志格式

 #log_format main '$idXXXX\t$remote_addr\t$remote_user\t$time_local\t$http_host\t$request\t'

 # '$status\t$body_bytes_sent\t$http_referer\t'

 # '$http_user_agent\t$http_x_forwarded_for\t$request_time\t$upstream_response_time\t$userid';

 log_format main "$cookie_idXXXX\t$remote_addr\t$remote_user\t[$time_local]\t$request_method\t$host\t$request_uri\t"

 "$request_time\t$status\t$body_bytes_sent\t'$http_referer'\t"

 "'$http_user_agent'\t'$http_x_forwarded_for'\t$upstream_addr\t$upstream_response_time\t$upstream_status\t";

 #不可见字符分隔日志格式

 #include other_log_format.conf;

 #实时日志收集JSON格式日志

 #include json_log_format.conf;

 #日志流格式

 log_format stream_log "$cookie_idXXXX\t$remote_addr\t$remote_user\t[$time_local]\t$request_method\t$host\t$request_uri\t"

 "$request_time\t$status\t$body_bytes_sent\t'$http_referer'\t" "'$http_user_agent'\t'$http_x_forwarded_for'\t$upstream_addr\t$upstream_response_time\t3";

 #成功日志

 access_log /opt/log/nginx/access.log main;

 #access_log syslog:local6:notice:log1.op.XXXXdns.org:514:nginx-main-log main;

 #指定 Nginx 是否调用 sendfile 函数（zero copy 方式）来输出文件，对于普通应用，

 # 必须设为 on,如果用来进行下载等应用磁盘I/O重负载应用，可设置为 off，以平衡磁盘与网络I/O处理速度，降低系统的uptime

 sendfile on;

 #长连接超时时间，单位是秒

 keepalive_timeout 60;

 #服务器名称hash表的最大值(默认512)[hash%size]

 server_names_hash_max_size 1024;

 #服务器名字的哈希表大小

 server_names_hash_bucket_size 256;

 #客户请求头缓冲大小

 client_header_buffer_size 4k;

 #如果header过大，它会使用large_client_header_buffers来读取

 large_client_header_buffers 4 256k;

 client_header_timeout 1m;

 client_body_timeout 1m;

 send_timeout 1m;

 #防止网络阻塞

 tcp_nopush on;

 tcp_nodelay on;

 #允许客户端请求的最大单文件字节数

 client_max_body_size 50m;

 #缓冲区代理缓冲用户端请求的最大字节数

 client_body_buffer_size 50m;

 #Nginx跟后端服务器连接超时时间(代理连接超时)

 proxy_connect_timeout 5;

 #后端服务器数据回传时间(代理发送超时)

 proxy_send_timeout 15;

 #连接成功后，后端服务器响应时间(代理接收超时)

 proxy_read_timeout 15;

 #设置代理服务器（Nginx）保存用户头信息的缓冲区大小

 proxy_buffer_size 4k;

 #proxy_buffers缓冲区，网页平均在32KB以下的话，这样设置

 proxy_buffers 8 32k;

 #高负荷下缓冲大小（proxy_buffers*2）

 proxy_busy_buffers_size 64k;

 #设定缓存文件夹大小，大于这个值，将从upstream服务器传

 proxy_temp_file_write_size 64k;

 proxy_intercept_errors on;

 #客户端放弃请求，Nginx也放弃对后端的请求

 #proxy_ignore_client_abort on;

 #代理缓存头信息最大长度[设置头部哈希表的最大值，不能小于后端服务器设置的头部总数]

 proxy_headers_hash_max_size 512;

 #设置头部hash表大小(默认64)[这将限制头部字段名称的长度大小，如果使用超过64个字符的头部名可以加大这个值。]

 proxy_headers_hash_bucket_size 256;

 #变量hash表的最大值(默认值)

 variables_hash_max_size 512;

 #为变量hash表设置关键字栏的大小(默认64)

 variables_hash_bucket_size 128;

 #开启gzip压缩输出

 gzip on;

 #最小压缩文件大小

 gzip_min_length 1k;

 #压缩缓冲区

 gzip_buffers 4 16k;

 #压缩等级

 gzip_comp_level 9;

 #压缩版本（默认1.1，前端如果是squid2.5，则使用1.0）

 gzip_http_version 1.0;

 #压缩类型，默认就已经包含textml

 gzip_types text/plain application/x-javascript application/json application/ javascript text/css application/xml text/javascript image/gif image/png;

 gzip_vary on;

 #map模块的使用

 map_hash_max_size 102400;

 map_hash_bucket_size 256;

 #Tengine Config

 #concat on;

 #trim on;

 #trim_css off;

 #trim_js off;

 server_tokens off;

 #footer "<!-- $remote_addr $server_addr $upstream_addr -->";

 #rewrite_log on;

 fastcgi_intercept_errors on;

 #include other config file

 include ../conf.d/*.conf;

 #包含一些特殊站点的配置文件,此目录下文件暂时不包含在git自动管理过程中

 include ../special/*.conf;

 #屏蔽不加主机域名的默认请求

 #server {

 # listen *:80 default;

 # server_name _ "";

 # return 444;

 #}

 #ceshi by dongange 2016-01-07

 #Nginx状态监测模块配置

 req_status_zone server "$server_name,$server_addr:$server_port" 10M;

 req_status server;

 server {

 listen 127.0.0.1:80;

 server_name 127.0.0.1;

 access_log /opt/log/nginx/nginx_status/status_access.log main;

 location /status {

 req_status_show;

 access_log /opt/log/nginx/nginx_status/status_access.log main;

 allow 127.0.0.1;

 deny all;

 }

 location /stub_status {

 stub_status on;

 access_log /opt/log/nginx/nginx_status_stub/status_stub_access.log main;

 allow 127.0.0.1;

 deny all;

 }

 location /check_status {

 check_status;

 access_log /opt/log/nginx/nginx_status_check/status_access_check.log main;

 allow 127.0.0.1;

 deny all;

 }

 }

}

9.5　小结

本章介绍了Nginx中的默认配置文件，Nginx是通过nginx.conf进行配置的。同时本章给出一个包含有Redis访问、MySQL访问的nginx.conf配置实例，方便读者对配置文件有一个总体的认识。

本章还对Nginx的顶层配置块和全局配置块（Nginx共有main全局配置、events配置块、http配置块、stream配置块5个顶层配置块），以及各配置块所属的配置指令进行了详细介绍。

Nginx的配置内容是由模块决定的，本章介绍的配置是系统核心模块配置指令。系统中使用了不同的模块后，根据使用到的模块，还会有新的配置项。例如，后续我们使用ngx_lua模块进行Lua开发时，还需要在本章介绍的配置基础上，增加ngx_lua模块需要用到的配置指令。
第10章　Nginx下Lua实现机制

Nginx中的大部分功能是通过模块提供的，这种方式使得Nginx开发和扩展很方便，模块可以依次串起来形成一个过滤器。一个模块的失效不会影响其他部分，是Nginx扩展性和可靠性的一个保证。系统提供了如http模块、mail模块、event等模块。根据业务需要，通过配置或编译将不同的模块组合起来，形成自己业务特有的Web服务器，实现一些特定的功能。Nginx使用比较多的场合是反向代理，使用Nginx在前端做登录校验、JS合并、数据库访问、访问鉴权等，具体业务由反向代理实现，发挥Nginx业务开发灵活、有大并发接入和会话保持能力的优点。

以往Nginx模块是通过C或C++开发的，需要符合Nginx的开发规则和数据结构。使用C开发Nginx模块必须要熟悉Nginx源码，而且C下面模块的调试非常麻烦。在以Nginx作为核心开发业务系统时，大量的数据库、缓存等访问会使得开发周期非常漫长。chaoslawful和agentzh将Lua解释器集成进Nginx中，开发了ngx_lua模块，使开发者可以使用Lua脚本语言实现业务。Lua是高效、紧凑的脚本语言，为了嵌入式而开发的快速脚本语言，内建协程，非常便于业务开发，所以使用Lua脚本语言快速地开发高并发业务系统可以大大降低开发工作量，使业务开发更灵活，更快速。ngx_lua也使得Nginx得到了更广泛的应用，很多工程师使用Lua+Nginx开发了许多富有创意的应用。
10.1　ngx_lua原理

ngx_lua将Lua集成进Nginx。Lua内建协程，使用协程可以很好地将异步回调转换成顺序调用的形式，和Nginx的全异步模式匹配起来：协程调用异步API，然后协程挂起，在异步回调事件到来时，再将协程唤醒，继续执行。这样既可以实现全异步的Nginx机制，不会影响Nginx的高并发处理性能，又使开发者以同步的方式编写异步程序，使代码复杂性大为降低。ngx_lua中Lua的I/O操作都委托给Nginx事件模型，从而实现完全的非阻塞调用。协程在挂起时自动保存上下文，工作进程上的VM可以处理下一个协程的任务。底层事件模型完成任务时，根据回调，对应的例程会被恢复上下文，从而继续执行用户操作，这个过程不需要对数据进行同步和匹配，用起来与同步操作无异。

Nginx采用管理/工作进程（master/worker）的主从进程机制，工作进程都由管理进程管理，同时配置文件、命令、任务分派由管理进程实现，从而使Nginx可以动态重新载入配置文件、动态升级、动态部署。而多工作进程的机制，可以充分利用多处理器架构的性能，又不会因为过多的线程增加调试的开销。而工作进程时刻处于管理进程的监管之下，任何崩溃可以由管理进程马上重启一个工作进程，实现高可靠性。

图10-1描述了Nginx管理/工作进程模式。

 [image:]

图10-1　Nginx管理/工作进程模式

ngx_lua在Nginx的管理/工作进程机制基础上加入了Lua解释器或虚拟机。ngx_lua在每一个Nginx工作进程上执行一个Lua解释器或LuaJIT实例（VM虚拟机实例），这个工作进程上处理的所有请求共享这个实例。每个请求的上下文都被Lua的协程分割，保证每个请求是独立的。ngx_lua采用“一个请求一个协程”的处理模型，对于每个用户请求，ngx_lua都会创建一个协程用于执行用户代码以处理请求，请求处理完毕，协程会被销毁。每个协程都有一个独立的全局变量（变量空间），保存从全局共享的数据。所以，用户在自己的代码里操作了全局空间的变量不会影响其他的请求处理协程，因为数据被隔离了，数据用完了会被释放，用户代码运行在一个沙箱（sandbox）内，沙箱的生存周期与请求的生命周期相同，请求时被分配并创建协程，处理完毕刚被释放。

协程是轻量级线程，所以占用极少内存，通常每个请求ngx_lua只会占用2KB左右内存。协程不能同时运行。

图10-2描述了一个简单的ngx_lua请求处理流程。

 [image:]

图10-2　ngx_lua请求处理流程

这是一个典型的HTTP请求处理过程：

1）工作进程初始化各模块。

2）event模块检测到用户请求，自动创建连接。

3）event模块根据nginx.conf配置调用HTTP模块。

4）HTTP模块根据nginx.conf配置的阶段handler调用ngx_lua模块。

5）ngx_lua模块调用Lua VM，运行注册的代码段。

6）Lua VM调用协程处理代码。

7）VM向ngx_lua返回结果数据。

8）ngx_lua向HTTP模块返回HTTP应答。

9）HTTP调用event模块发送回答。

10）event模块向工作进程交还控制权。

现在Nginx也支持stream模块、websocket协议等，处理过程有所不同，但总体机制是一样的。

ngx_lua模块的主要机制总结如下：

1）每个工作进程创建一个Lua虚拟机（VM），工作进程内所有协程使用相同VM。

2）将Nginx I/O操作封装成Lua使用的API载入虚拟机，供Lua代码使用。

3）每个外部请求都由一个Lua协程处理，协程之间数据隔离。

4）Lua代码调用I/O等异步接口时，当前协程会被挂起，上下文数据自动保存，不会阻塞工作进程。

5）I/O等异步操作完成时还原线程上下文，继续代码执行。

ngx_lua模块提供了新的配置项以支持Lua编程，同时ngx_lua支持Nginx的主要阶段，通过类似于content_by_lua*、access_by_lua*、init_by_lua*、init_worker_by_lu*等配置项将Lua代码挂载入Nginx的事件处理机制中。Nginx启动时虚拟机VM被创建，同时配置项被装载，当Nginx框架处理请求事件，对应的阶段发生调用时，注册的Lua代码实现的阶段handler接管输入管道和输出管道，在VM处理完后，将数据返回给调用者，实现的Lua介入Nginx处理。
10.2　HTTP请求的处理阶段

基于Nginx使用的多模块设计思想，Nginx将HTTP请求的处理过程划分为很多个阶段。这样可以使一个HTTP请求的处理过程由很多模块参与处理，每个模块只专注于一个独立而简单的功能处理，可以使性能更好、更稳定，同时拥有更好的扩展性。这些模块可以灵活地更换、升级、隔离。划分阶段可以使各模块可以介入自己关注的处理阶段中，使各模块以流水线式按步骤处理一个请求。

Nginx将一个HTTP请求分成了11个阶段，每一个处理阶段都可以由任意多个HTTP模块流水式地处理请求。ngx_http_phases定义的11个阶段是有顺序的，必须按照定义的顺序执行。阶段定义在内部的ngx_http_phases枚举类型中：

typdef enum{

 NGX_HTTP_POST_READ_PHASE = 0,

 NGX_HTTP_SERVER_REWRITE_PHASE,

 NGX_HTTP_FIND_CONFIG_PHASE,

 NGX_HTTP_REWRITE_PHASE,

 NGX_HTTP_POST_REWRITE_PHASE,

 NGX_HTTP_PREACCESS_PHASE,

 NGX_HTTP_ACCESS_PHASE,

 NGX_HTTP_POST_ACCESS_PHASE,

 NGX_HTTP_TRY_FILES_PHASE,

 NGX_HTTP_CONTENT_PHASE,

 NGX_HTTP_LOG_PHASE

}ngx_http_phases;

这11个阶段的意义分别如下：

1）NGX_HTTP_POST_READ_PHASE：接收到完整的HTTP头部后的处理阶段。

2）NGX_HTTP_SERVER_REWRITE_PHASE：在将请求的URI与location表达式匹配前，修改请求的URI（重定向），是一个独立的HTTP阶段。

3）NGX_HTTP_FIND_CONFIG_PHASE：根据请求的URI寻找匹配的location表达式，这个阶段只能由ngx_http_core_module模块实现，不建议其他HTTP模块重新定义这一阶段行为。

4）NGX_HTTP_REWRITE_PHASE：在NGX_HTTP_FIND_CONFIG_PHASE阶段寻找到匹配的location之后再修改请求的URI。

5）NGX_HTTP_POST_REWRITE_PHASE：重写URL后，防止错误的nginx.conf配置导致死循环（递归地修改URI），这一阶段仅由ngx_http_core_module模块处理。目前控制死循环的方式是限制10次重定向，超过10次，本阶段向会用户返回500错误。

6）NGX_HTTP_PREACCESS_PHASE：这是下一个阶段（NGX_HTTP_ACCESS_PHASE）决定请求的访问权限前，HTTP模块可以介入的处理阶段。

7）NGX_HTTP_ACCESS_PHASE：用于HTTP模块判断是否允许这个请求访问Nginx服务器。

8）NGX_HTTP_POST_ACCESS_PHASE：当上一个阶段的handler函数返回不允许访问的错误码（NGX_HTTP_FORBIDDEN、NGX_HTTP_UNAUTHORIZED），这个阶段负责向用户发送拒绝服务的错误响应。用于上一阶段的收尾处理。

9）NGX_HTTP_TRY_FILES_PHASE：这个阶段是为了try_files设置的，当HTTP请求访问静态文件资源时，try_files配置项可以使这个请求顺序地访问多个静态文件资源，如果某一次访问失败，则继续访问try_files中指定的下一个静态资源。

10）NGX_HTTP_CONTENT_PHASE：用于处理HTTP请求内容的阶段，这是大部分HTTP模块最常用的介入阶段。

11）NGX_HTTP_LOG_PHASE：日志写入阶段。ngx_http_log_module实际上也是在这里注册了一个handler实现的日志写入工作。

这些阶段有些是必备的，有些是可选的，也有一些是可以多次进入的：

NGX_HTTP_POST_READ_PHASE、NGX_HTP_SERVER_REWRITE_PHASE、NGX_HTTP_REWRITE_PHASE、NGX_HTTP_PREACCESS_PHASE、NGX_HTTP_ACCESS_PHASE、NGX_HTTP_CONTENT_PHASE、NGX_HTTP_LOG_PHASE允许用户介入操作。其他的4个阶段是由HTTP框架实现，不允许用户进入。
10.3　ngx_lua的处理阶段

ngx_lua在HTTP处理阶段基础上，分别在Rewrite/Access阶段、Content阶段、Log阶段注册了自己的handler，加上系统初始阶段master的两个阶段，共11个阶段为Lua脚本提供处理介入的能力。

ngx_lua的11个阶段是建立在HTTP阶段之上的，所以并不完全等同于HTTP的11个阶段。

图10-3描述了Lua的11个阶段在Nginx的4个主要阶段分布情况。

参照HTTP的核心阶段，加上master进程的几个重要阶段，就构成了ngx_lua可以介入的阶段，另外指令可以在http、server、server if、location、location if几个范围进行配置。

表10-1描述了Lua可以使用的主要阶段。

 [image:]

图10-3　ngx_lua的11个用户可介入阶段

表10-1　Lua可使用的主要阶段

 [image:]

 [image:]

注：SSL部分还扩展了其他一些可以添加Lua代码的阶段，不属于主阶段，所以这里只描述主要阶段。
10.4　Lua阶段解析

这里详细解析并举例说明Lua中可用的主要阶段。

10.4.1　init_by_lua

init_by_lua在每次Nginx重新加载配置时执行，可以用来完成一些耗时模块的加载，或者初始化一些全局配置。在管理进程创建工作进程时，此指令中加载的全局变量会进行Copy-OnWrite，即会复制所有全局变量到工作进程中。

第1步：在nginx.conf配置文件中的http部分添加如下代码。

#共享全局变量，在所有工作进程间共享

lua_shared_dict shared_data 1m;

init_by_lua_file /usr/example/lua/init.lua;

第2步：编写init.lua。

--初始化耗时的模块

local redis = require 'resty.redis'

local cjson = require 'cjson'

--全局变量，不推荐

count = 1

--共享全局内存

local shared_data = ngx.shared.shared_data

shared_data:set("count", 1)

第3步：缩写test.lua。

count = count + 1

ngx.say("global variable : ", count)

local shared_data = ngx.shared.shared_data

ngx.say(", shared memory : ", shared_data:get("count"))

shared_data:incr("count", 1)

ngx.say("hello world")

并在http中增加location/lua：

location /lua{

 default_type "text/xml";

 content_by_lua_file "test.lua"

}

第4步：访问如http://192.168.1.2/lua会发现全局变量一直不变，而共享内存一直递增。

global variable : 2 , shared memory : 8 hello world

注意：一定在生产环境开启lua_code_cache，否则每个请求都会创建Lua VM实例。

10.4.2　init_worker_by_lua

init_worker_by_lua用于启动一些定时任务，如心跳检查、定时拉取服务器配置等。此处的任务是跟工作进程数量有关系的。例如，如果有两个工作进程，那么就会启动两个完全一样的定时任务。

第1步：在nginx.conf配置文件中的http部分添加如下代码。

init_worker_by_lua_file /usr/example/lua/init_worker.lua;

第2步：编写init_worker.lua文件，内容如下。

local count = 0

local delayInSeconds = 3

local heartbeatCheck = nil

heartbeatCheck = function(args)

count = count + 1

ngx.log(ngx.ERR, "do check", count)

local ok, err = ngx.timer.at(delayInSeconds, heartbeatCheck)

if not ok then

 ngx.log(ngx.ERR, "failed to startup heartbeart worker...", err)

end

end

heartbeatCheck()

ngx.timer.at：延时调用相应的回调方法。可以将延时设置为0即得到一个立即执行的任务，任务不会在当前请求中执行，不会阻塞当前请求，而是在一个轻量级线程中执行。

另外，根据实际情况设置如下指令：

lua_max_pending_timers 1024; #最大等待任务数

lua_max_running_timers 256; #最大同时运行任务数

10.4.3　set_by_lua

set_by_lua用于设置Nginx变量，用于处理一些特定的情况，例如，用set指令配合if指令也很难实现的赋值逻辑，可以在本阶段实现。

第1步：在example.conf配置文件添加set_by_lua定义。

location /lua_set_1 {

 default_type "text/html";

 set_by_lua_file $num /usr/example/lua/test_set_1.lua;

 echo $num;

}

set_by_lua_file的语法如下：

set_by_lua_file $var lua_file arg1 arg2...;

该指令在Lua代码中可以实现所有复杂的逻辑，但是要执行速度很快，不要阻塞。

第2步：定义test_set_1.lua文件。

编写test_set_q.lua文件，内容如下：

local uri_args = ngx.req.get_uri_args()

local i = uri_args["i"] or 0

local j = uri_args["j"] or 0

return i + j

这个文件的功能是得到请求参数进行相加然后返回。

访问如http://192.168.1.2/lua_set_1?i=1&j=10进行测试。如果用纯set指令是无法实现的。

再举一个实际例子，我们实际工作时经常涉及网站改版，有时候需要新老并存，或者切一部分流量到新版，下面说明这个过程。

首先在example.conf中使用map指令映射host到指定Nginx变量，方便测试。

############ 测试时使用的动态请求

map $host $item_dynamic {

 default "0";

 item2014.jd.com "1";

}

如绑定hosts：

192.168.1.2 item.jd.com;

192.168.1.2 item2014.jd.com;

此时我们想访问item2014.jd.com时访问新版，那么我们可以简单地使用如下指令：

if ($item_dynamic = "1") {

 proxy_pass http://new;

}

proxy_pass http://old;

假如我们并未完成8位编号商品页面的改版（如品类为图书的商品）没有改版完成，需要按照相应规则跳转到老版，其他页面定向到新版，虽然使用if指令能实现，但是比较麻烦，可以这样做：

set jump "0";

if($item_dynamic = "1") {

 set $jump "1";

}

if(uri ~ "^/6[0-9]{7}.html") {

 set $jump "${jump}2";

}

#非强制访问新版，且访问指定范围的商品

if (jump == "02") {

 proxy_pass http://old;

}

proxy_pass http://new;

以上规则是比较简单的，如果要用更复杂的多重if/else或嵌套if/else实现，则可能需要到后端去做，此时可以借助Lua：

set_by_lua $to_book '

 local ngx_match = ngx.re.match

 local var = ngx.var

 local skuId = var.skuId

 local r = var.item_dynamic ~= "1" and ngx.re.match(skuId, "^[0-9]{8}$")

 if r then return "1" else return "0" end;

';

set_by_lua $to_mvd '

 local ngx_match = ngx.re.match

 local var = ngx.var

 local skuId = var.skuId

 local r = var.item_dynamic ~= "1" and ngx.re.match(skuId, "^[0-9]{9}$")

 if r then return "1" else return "0" end;

';

#自营图书

if ($to_book) {

 proxy_pass http://127.0.0.1/old_book/$skuId.html;

}

#自营音像

if ($to_mvd) {

 proxy_pass http://127.0.0.1/old_mvd/$skuId.html;

}

#默认

proxy_pass http://127.0.0.1/proxy/$skuId.html;

10.4.4　rewrite_by_lua

rewrite_by_lua用于执行内部URL重写或者外部重定向，典型的如伪静态化URL重写，本阶段在rewrite处理阶段的最后默认执行。

示例1：在rewrite阶段实现新老页面跳转。

第1步，修改example.conf配置文件。

location /lua_rewrite_1 {

 default_type "text/html";

 rewrite_by_lua_file /usr/example/lua/test_rewrite_1.lua;

 echo "no rewrite";

}

第2步，编写test_rewrite_1.lua文件。

if ngx.req.get_uri_args()["jump"] == "1" then

 return ngx.redirect("http://www.jd.com?jump=1", 302)

end

当我们请求http://192.168.1.2/lua_rewrite_1时发现没有跳转，而请求http://192.168.1.2/lua_rewrite_1?jump=1时发现跳转到京东首页了。此处301/302跳转根据自己需求定义。

示例2：使用set_uri_args重写请求内部实现重新发起定位。

第1步：修改example.conf配置文件。

location /lua_rewrite_2 {

 default_type "text/html";

 rewrite_by_lua_file /usr/example/lua/test_rewrite_2.lua;

 echo "rewrite2 uri : $uri, a : $arg_a";

}

第2步：编写test_rewrite_2.lua文件。

if ngx.req.get_uri_args()["jump"] == "1" then

 ngx.req.set_uri("/lua_rewrite_3", false);

 ngx.req.set_uri("/lua_rewrite_4", false);

 ngx.req.set_uri_args({a = 1, b = 2});

end

·ngx.req.set_uri（uri，false）：用于内部重写URI（可以带参数），等价于“rewrite^/lua_rewrite_3”。通过配合if/else可以实现“rewrite^/lua_rewrite_3 break；”这种功能。此处两者都是location内部URI重写，不会重新发起新的location匹配。

·ngx.req.set_uri_args：重写请求参数，可以是字符串（a=1&b=2），也可以是表。

访问如http://192.168.1.2/lua_rewrite_2?jump=0时得到响应：

rewrite2 uri : /lua_rewrite_2, a :

访问如http://192.168.1.2/lua_rewrite_2?jump=1时得到响应：

rewrite2 uri : /lua_rewrite_4, a : 1

示例3：使用set_uri强制发起新的location实现重写跳转。

第1步，修改example.conf配置文件。

location /lua_rewrite_3 {

 default_type "text/html";

 rewrite_by_lua_file /usr/example/lua/test_rewrite_3.lua;

 echo "rewrite3 uri : $uri";

}

第2步，编写test_rewrite_3.lua文件。

if ngx.req.get_uri_args()["jump"] == "1" then

 ngx.req.set_uri("/lua_rewrite_4", true);

 ngx.log(ngx.ERR, "=========")

 ngx.req.set_uri_args({a = 1, b = 2});

end

ngx.req.set_uri（uri，true）：可以内部重写URI，即会发起新的匹配location请求，等价于“rewrite^/lua_rewrite_4 last；”，此处看error log是看不到我们记录的log的，因为set_uri（uri，trur）后发起新的location已经跳出当前代码了。

所以请求如http://192.168.1.2/lua_rewrite_3?jump=1会到新的location中得到响应，新的location是/lua_rewrite_4。

rewrite指令和ngx.req.set_uri函数对应关系如下：

rewrite ^ /lua_rewrite_3; 等价于ngx.req.set_uri("/lua_rewrite_3", false);。

rewrite ^ /lua_rewrite_3 break; 等价于ngx.req.set_uri("/lua_rewrite_3", false); 加 if/else判断/break/return。

rewrite ^ /lua_rewrite_4 last; 等价于ngx.req.set_uri("/lua_rewrite_4", true);。

注意：在使用rewrite_by_lua时，开启rewrite_log on；后也看不到相应的rewrite log。

10.4.5　access_by_lua

access_by_lua用于访问控制。例如，如果只允许内网IP访问，可以使用如下形式：

allow 127.0.0.1;

allow 10.0.0.0/8;

allow 192.168.0.0/16;

allow 172.16.0.0/12;

deny all;

示例4：实现使用token作为权限检查的应用。

第1步：修改example.conf配置文件。

location /lua_access {

 default_type "text/html";

 access_by_lua_file /usr/example/lua/test_access.lua;

 echo "access";

}

第2步：编写test_access.lua文件。

if ngx.req.get_uri_args()["token"] ~= "123" then

 return ngx.exit(403)

end

如果访问如http://192.168.1.2/lua_access?token=234将得到403 Forbidden的响应，这样我们可以根据如“cookie/用户token”来决定是否有访问权限。

10.4.6　content_by_lua

content_by_lua是应用最多的指令，大部分任务是在这个阶段完成的，其他的过程往往为这个阶段准备数据，正式处理基本都在本阶段。

示例5：下面是一个RESTful API的例子，这是一个location，配置在http配置块中。

第1步：配置nginx.conf。

user root;

worker_processes 4;

worker_rlimit_nofile 100000;

error_log logs/error.log;

pid logs/nginx.pid;

events{

 use epoll;

 worker_connections 10000;

}

http{

 include mime.types;

 default_type text/html;

 access_log off;

 server_tokens off;

 lua_shared_dict gvar 50m;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 open_file_cache max=10240 inactive=60s;

 open_file_cache_valid 80s;

 open_file_cache_min_uses 1;

 keepalive_timeout 0;

 chunked_transfer_encoding off;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 init_worker_by_lua_file init.lua;

 }

}

第2步：实现API的location。

location /mdp/getConfig {

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 content_by_lua '

local gwId=ngx.var.arg_gwId

local vdata={}

local cjson = require "cjson"

vdata["name"]="MMP"

vdata["version"]="v1.0"

vdata["session"]=1

vdata["command"]=8

vdata["flow"]=0

vdata["sequence"]=1

vdata["gwId"]=gwId

vdata["cfgData"]=cfgData

local jsonRequest=cjson.encode(vdata)

local devCmdKey="get_config_request_" .. gwId

local resp = ngx.location.capture("/redis_set1?key=" .. devCmdKey, {method = ngx.HTTP_POST, body = jsonRequest})

local responseKey="get_config_response_" .. gwId

for i = 1, 10, 1 do

 resp = ngx.location.capture("/redis_get?key=" .. responseKey)

 if resp.status == ngx.HTTP_OK and resp.body then

 local parser = require "redis.parser"

 local res, typ = parser.parse_reply(resp.body)

 resp = ngx.location.capture("/redis_del?key=" .. responseKey)

 if res ~= nil then

 ngx.print(res)

 ngx.exit(200)

 end

 else

 break

 end

 ngx.sleep(1)

end

';

}

这个示例演示了接收到请求后从向Redis中写入了一个命令，然后等待回应。

另外，在使用PCRE进行正则匹配时需要注意正则的写法，具体规则请参考http://wiki.nginx.org/HttpLuaModule中的Special PCRE Sequences部分。其他注意事项可参阅官方文档。

10.4.7　header_filter_by_lua

本阶段用于设置应答消息的头部信息，下面是一个修改应答头的例子。

location / {

 proxy_pass http://mybackend;

 header_filter_by_lua 'ngx.header.Foo = "blah"';

}

10.4.8　body_filter_by_lua

本阶段使用Lua代码定义一个应答包体过滤器，例如：

location / {

 proxy_pass http://mybackend;

 body_filter_by_lua 'ngx.arg[1] = string.upper(ngx.arg[1])';

}

当向ngx.arg[1]传递一个nil值或空字符串，不会有任何数据块向下游传递。同样地，可以在ngx.arg[2]中传递一个“eof”实现目的，例如：

location /t {

 echo hello world;

 echo hiya globe;

 body_filter_by_lua '

 local chunk = ngx.arg[1]

 if string.match(chunk, "hello") then

 ngx.arg[2] = true -- new eof

 return

 end

 -- just throw away any remaining chunk data

 ngx.arg[1] = nil

 ';

}

GET/t将得到如下输出：

hello world

10.4.9　log_by_lua

log_by_lua用于在log请求处理阶段，用Lua代码处理日志，但并不替换原有log处理。

示例6：下面是一个从$upstream_response_time中汇集并产生平均数据的例子。

lua_shared_dict log_dict 5M;

server {

 location / {

 proxy_pass http://mybackend;

 log_by_lua '

 local log_dict = ngx.shared.log_dict

 local upstream_time = tonumber(ngx.var.upstream_response_time)

 local sum = log_dict:get("upstream_time-sum") or 0

 sum = sum + upstream_time

 log_dict:set("upstream_time-sum", sum)

 local newval, err = log_dict:incr("upstream_time-nb", 1)

 if not newval and err == "not found" then

 log_dict:add("upstream_time-nb", 0)

 log_dict:incr("upstream_time-nb", 1)

 end

 ';

 }

 location = /status {

 content_by_lua_block {

 local log_dict = ngx.shared.log_dict

 local sum = log_dict:get("upstream_time-sum")

 local nb = log_dict:get("upstream_time-nb")

 if nb and sum then

 ngx.say("average upstream response time: ", sum / nb,

 " (", nb, " reqs)")

 else

 ngx.say("no data yet")

 end

 }

 }

}

10.4.10　balancer_by_lua_block

balancer_by_lua*的代码可作为上游服务器的负载均衡器。

示例7：在两个端口上创建服务，根据请求的参数进行简单的除2作为hash值，取出对应端口作为服务。

upstream backend{

 server 0.0.0.0;

 balancer_by_lua_block{

 local balancer = require 'ngx.balancer'

 local port = {8088, 8089}

 local backend = ""

 local dvid = ngx.req.get_uri_args()["david"] or 0

 ngx.log(ngx.ERR, "dvid=", dvid)

 local hash = (dvid % 2) + 1

 ngx.log(ngx.ERR, "hash=" , hash)

 backend = port[hash]

 ngx.log(ngx.ERR, "backend=", backend)

 ngx.log(ngx.ERR, "dvid=", dvid, " hash=", hash , " up=", backend)

 local ok, err = balancer.set_current_peer("127.0.0.1", backend)

 if not ok then

 ngx.log(ngx.ERR, "failed to set the current peer:", err)

 return ngx.exit(500)

 end

 ngx.log(ngx.DEBUG, " current peer ", backend)

 }

}

10.5　小结

本章介绍了Nginx下Lua的实现原理，介绍了Nginx核心对HTTP请求划分的11个处理阶段；介绍了ngx_lua模块参与处理的阶段，并对重要阶段进行了介绍，给出了简单示例，演示各阶段的主要功能。

Lua的阶段处理，都是通过在nginx.conf配置文件中配置，注册Lua代码实现业务逻辑的。通过本章的学习，读者可以在自己的nginx.conf中开始尝试编写Lua代码了。
第四部分　Nginx Lua开发实战

■第11章　Redis操作

■第12章　MySQL操作

■第13章　Memcached操作

■第14章　PostgreSQL操作

■第15章　MongoDB操作

■第16章　bit库的使用

■第17章　lfs库的使用

■第18章　resty.http库的使用

■第19章　lcurl库的使用

■第20章　FFI扩展C库

■第21章　cjson库的使用

■第22章　lua-resty-template类的使用

■第23章　WebSocket的使用

■第24章　TCP私有服务器实例

■第25章　WebSocket接入服务器实战

■第26章　Nginx应用简述
第11章　Redis操作

Redis在系统中经常作为数据缓存、内存数据库使用，在大型系统中扮演着非常重要的作用。在Nginx核心系统中，Redis是常备组件。本章主要介绍常用的Redis操作方法。
11.1　Redis操作方法概述

Nginx支持3种方法访问Redis。

·HttpRedis模块

·HttpRedis2Module

·lua-resty-redis库

这3种方法的特点如下：

·HttpRedis模块提供的指令少，功能单一，适合做简单缓存，可能以后会扩展。

·HttpRedis2Module模块比HttpRedis模块操作更灵活，功能更强大。

·Lua-resty-redis库是OpenResty提供的一个操作Redis的接口库，可根据自己的业务情况做一些逻辑处理，类似PHP开发中的各种扩展，适合做复杂的业务逻辑。

这3个模块都在OpenResty中集成了，前两个模块默认是启用的，对于第三个模块，可以使用--with-luajit开启luajit支持，lua-resty-redis库默认是启用的。

关于这3种方法的选用，一般有如下建议：

·HttpRedis2Module支持Redis 2.0协议，支持操作多。模块会原封不动地返回Redis服务的返回值。

·HttpRedis只支持Redis的get命令和select命令，所以在使用set等操作时，本模块无法支持，只适用于get和select操作的场景。一般需要对Redis的返回值做一定的解析。

·lua-resty-redis更适合Lua包装数据，也更节省内存空间。

下面将具体介绍这3种方法，读者在自己的项目中可根据需要选择适合自己的方法。
11.2　HttpRedis访问方法

HttpRedis是Nginx的一个第三方扩展模块，用于实现Nginx直接使用Redis作为缓存系统。

11.2.1　示例

下面是一个通过HttpRedis使用Redis的例子。

1）配置nginx.conf：

worker_processes 1;

error_log logs/error.log debug;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 sendfile on;

 keepalive_timeout 65;

 server {

 listen 80;

 server_name localhost;

 root html;

 index index.html index.htm;

 location / {

 default_type text/html;

 set $redis_key $uri;

 redis_pass 127.0.0.1:6379;

 error_page 404 = @fetch;

 }

 location @fetch {

 root html;

 }

 }

}

2）测试配置并重启Nginx。使用-s reload命令使Nginx重载配置文件：

/usr/local/openresty/nginx/sbin/nginx -p /usr/local/openresty/nginx/ -s reload

3）在html目录下创建一个common.js文件，内容为//this is a test js file。命令如下：

cd /usr/local/openresty/nginx/html

echo '// this is a test js file'>common.js

4）测试。使用curl命令访问测试路径，查看测试结果：

#curl -i localhost/common.js

返回结果如下：

HTTP/1.1 200 OK

Server: ngx_openresty/1.2.3.14

Date: Wed, 20 Feb 2016 19:14:57 GMT

Content-Type: application/x-javascript

Content-Length: 23

Last-Modified: Wed, 20 Feb 2016 9:28:15 GMT

Connection: keep-alive

Accept-Ranges: bytes

// this is a test js file

因为Redis缓存是空的，所以输出404状态码，转向命名location@fetch，从本地文件系统读取/common.js文件，本地是存在这个文件的，所以返回了文件内容“//this is a test js file”，同时返回HTTP状态码200。

下面我们在Redis里存入这个key：

redis-cli

redis 127.0.0.1:6379> set ?/common.js? ?// fetch from redis?

OK

redis 127.0.0.1:6379> keys *

1) "/common.js"

再次请求：

curl -i localhost/common.js

HTTP/1.1 200 OK

Server: ngx_openresty/1.2.3.14

Date: Wed, 20 Feb 2016 19:27:11 GMT

Content-Type: application/x-javascript

Content-Length: 19

Connection: keep-alive

// fetch from redis

结果跟预定流程一样。

11.2.2　HttpRedis API

HttpRedis模块只使用Redis的get命令和select命令。

样例配置文件如下：

server {

 location / {

 set $redis_key $uri;

 redis_pass name:6379;

 default_type text/html;

 error_page 404 = /fallback;

 }

 location = /fallback {

 proxy_pass backend;

 }

}

下面为常用配置指令的详细介绍。

1.redis_pass

语法：

redis_pass [name:port]

默认：none。

上下文：http、server、location。

说明：端点需要在Redis中首先设置数据，key为/uri？args。

2.redis_bind

语法：

redis_bind [addr]

默认：none。

上下文：http、server、localtion。

说明：使用下面的地址作为Redis连接的源地址。

3.redis_connect_timeout

语法：

redis_connect_timeout [time]

默认：60000。

上下文：http、server、location。

说明：以毫秒为单位的Redis连接超时值。

4.redis_read_timeout

语法：

redis_read_timeout [time]

默认：60000。

上下文：http、server、location。

说明：以毫秒为单位的Redis读取超时值。

5.redis_send_timeout

语法：

redis_send_timeout [time]

默认：60000。

上下文：http、server、location。

说明：发送的超时值。

6.redis_buffer_size

语法：

redis_buffer_size [size]

默认：see getpagesize（2）。

上下文：http、server、location。

说明：以字节为单位的发送和接收缓冲区尺寸。

7.redis_next_upstream

语法：

redis_next_upstream [error] [timeout] [invalid_response] [not_found] [off]

默认：error timeout。

上下文：http、server、location。

说明：定义哪个失败条件可以导引请求向下一个upstream内server项流转。只有在redis_pass中使用的upstream中有两个以上server的情况下才有效。

8.redis_gzip_flag

语法：

redis_gzip_flag [number]

默认：unset。

上下文：location。

说明：使用gzip压缩标志。

11.2.3　HttpRedis变量

配置中如果有需要使用变量传递参数，目前支持下面两个变量。

1）$redis_key：key值。

2）$redis_db：Redis数据库数量（详情查看官方文档，实用性不高）。
11.3　HttpRedis2Module访问方法

HttpRedis2Module是一个支持Redis 2.0模块协议的Nginx上游模块，提供非阻塞方式访问机制。

11.3.1　示例

下面例子演示HttpRedis2Module的使用方法。

1）配置nginx.conf：

worker_processes 1;

error_log logs/error.log debug;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 sendfile on;

 keepalive_timeout 65;

 server {

 listen 80;

 server_name localhost;

 root html;

 index index.html index.htm;

 location /get {

 set_unescape_uri $key $arg_key;

 redis2_query get $key;

 redis2_pass 127.0.0.1:6379;

 }

 location /set {

 set_unescape_uri $key $arg_key;

 set_unescape_uri $val $arg_val;

 redis2_query set $key $val;

 redis2_pass 127.0.0.1:6379;

 }

 }

}

2）测试配置并重启Nginx。命令如下：

/usr/local/openresty/nginx/sbin/nginx -p /usr/local/openresty/nginx/ -s reload

3）测试。命令如下：

 # curl -i localhost/get?key=/common.js

 HTTP/1.1 200 OK

 Server: ngx_openresty/1.2.3.14

 Date: Wed, 20 Feb 2016 9:23:57 GMT

 Content-Type: application/octet-stream

 Transfer-Encoding: chunked

 Connection: keep-alive

 $19

 // fetch from redis

 # curl -i 'localhost/set?key=/common.js&val=set by nginx'

 HTTP/1.1 200 OK

 Server: ngx_openresty/1.2.3.14

 Date: Wed, 20 Feb 2016 9:23:41 GMT

 Content-Type: application/octet-stream

 Transfer-Encoding: chunked

 Connection: keep-alive

 +OK

 # curl -i localhost/get?key=/common.js

 HTTP/1.1 200 OK

 Server: ngx_openresty/1.2.3.14

 Date: Wed, 20 Feb 2016 9:23:45 GMT

 Content-Type: application/octet-stream

 Transfer-Encoding: chunked

 Connection: keep-alive

 $12

 set by nginx

结果与预期一致，其中的$19和$12是返回的数据长度。

11.3.2　nginx.conf配置

HTTPRedis2Module通过配置指令实现Redis访问功能，它是一个上游模块，下面是样例配置文件。

location = /foo {

 set $value 'first';

 redis2_query set one $value;

 redis2_pass 127.0.0.1:6379;

}

GET /get?key=some_key

location = /get {

 set_unescape_uri $key $arg_key; # this requires ngx_set_misc

 redis2_query get $key;

 redis2_pass foo.com:6379;

}

GET /set?key=one&val=first%20value

location = /set {

 set_unescape_uri $key $arg_key; # this requires ngx_set_misc

 set_unescape_uri $val $arg_val; # this requires ngx_set_misc

 redis2_query set $key $val;

 redis2_pass foo.com:6379;

 }

multiple pipelined queries

location = /foo {

 set $value 'first';

 redis2_query set one $value;

 redis2_query get one;

 redis2_query set one two;

 redis2_query get one;

 redis2_pass 127.0.0.1:6379;

}

location = /bar {

 # $ is not special here...

 redis2_literal_raw_query '*1\r\n$4\r\nping\r\n';

 redis2_pass 127.0.0.1:6379;

}

location = /bar {

 # variables can be used below and $ is special

 redis2_raw_query 'get one\r\n';

 redis2_pass 127.0.0.1:6379;

}

GET /baz?get%20foo%0d%0a

location = /baz {

 set_unescape_uri $query $query_string; # this requires the ngx_set_misc module

 redis2_raw_query $query;

 redis2_pass 127.0.0.1:6379;

}

location = /init {

 redis2_query del key1;

 redis2_query lpush key1 C;

 redis2_query lpush key1 B;

 redis2_query lpush key1 A;

 redis2_pass 127.0.0.1:6379;

}

location = /get {

 redis2_query lrange key1 0 -1;

 redis2_pass 127.0.0.1:6379;

}

11.3.3　常用指令

1.redis2_query

语法：

redis2_query cmd arg1 arg2 ...

默认：no。

上下文：location、location if。

说明：定义一个Redis命令行，与redis-cli操作非常相似。可以定义多个指令，这些指令会被流水线执行，例如：

location = /pipelined {

 redis2_query set hello world;

 redis2_query get hello;

 redis2_pass 127.0.0.1:$TEST_NGINX_REDIS_PORT;

}

通过GET访问/pipelined会得到两个原始的Redis应答。

+OK

$5

world

新行是CR LF（\r\n）。

2.redis2_raw_query

语法：

redis2_raw_query QUERY

默认：no。

上下文：location、location if。

说明：定义一个原始Redis查询，可以使用Nginx变量作为查询参数。

只允许一个查询命令，否则会收到错误信息。如果要使用多个流水线式查询命令，可使用下条指令。

3.redis2_raw_queries

语法：

redis2_raw_queries N QUERIES

默认：no。

上下文：location、location if。

说明：在查询参数中定义多条命令。可以使用Nginx变量。

例如：

location = /pipelined {

 redis2_raw_queries 3 "flushall\r\nget key1\r\nget key2\r\n";

 redis2_pass 127.0.0.1:6379;

}

GET /pipelined2?n=2&cmds=flushall%0D%0Aget%20key%0D%0A

location = /pipelined2 {

 set_unescape_uri $n $arg_n;

 set_unescape_uri $cmds $arg_cmds;

 redis2_raw_queries $n $cmds;

 redis2_pass 127.0.0.1:6379;

}

注意，第二个例子中的set_unescape_uri指令是由set-misc-nginx-module模块提供的。

4.redis2_literal_raw_query

语法：

redis2_literal_raw_query QUERY

默认：no。

上下文：location、location if。

说明：指定一个原始查询，但不能使用Nginx变量。也就是说，可以在查询参数中使用$符号。只能使用一个查询命令。

5.redis2_pass

语法：

redis2_pass <upstream_name>

redis2_pass <host>:<port>

默认：no。

上下文：location、location if。

阶段：content。

说明：指定Redis服务器端点。

6.redis2_connect_timeout

语法：

redis2_connect_timeout <time>

默认：60s。

上下文：http、server、location。

说明：连接到服务器的超时值，默认为60秒。

7.redis2_send_timeout

语法：

redis2_send_timeout <time>

默认：60s。

上下文：http、server、location。

说明：发送超时值。

8.redis2_read_timeout

语法：

redis2_read_timeout <time>

默认：60s。

上下文：http、server、location。

说明：读取超时值。

9.redis2_buffer_size

语法：

redis2_buffer_size <size>

默认：4k/8k。

上下文：http、server、location。

说明：读取应用的缓冲区大小，不需要和可能收到的最大应答包大小一致。默认尺寸是页尺寸，4k或8k。

10.redis2_next_upstream

语法：

redis2_next_upstream [error | timeout | invalid_response | off]

默认：error timeout。

上下文：http、server、location。

说明：指定哪个条件可以使请求向下个upstream server流转。当然只在redis2_pass中的upstream中有两个以上server的情况下有效。

例如：

upstream redis_cluster {

 server 127.0.0.1:6379;

 server 127.0.0.1:6380;

}

server {

 location = /redis {

 redis2_next_upstream error timeout invalid_response;

 redis2_query get foo;

 redis2_pass redis_cluster;

 }

}

11.3.4　技术点

HttpRedis2Module使用中有若干个需要注意的技术点。

1.连接池

可以使用HttpUpstreamKeepaliveModule为Redis提供TCP连接池（Connection Pool）。

例如：

http {

 upstream backend {

 server 127.0.0.1:6379;

 # a pool with at most 1024 connections

 # and do not distinguish the servers:

 keepalive 1024;

 }

 server {

 ...

 location = /redis {

 set_unescape_uri $query $arg_query;

 redis2_query $query;

 redis2_pass backend;

 }

 }

}

2.选择Redis数据库

Redis提供select命令切换Redis数据库，可以在redis2_query中使用，例如：

redis2_query select 8;redis2_query get foo;

3.Lua协同能力

本模块可以作为lua-ngx-module的非阻塞redis2客户端，下面是一个使用get子请求的示例：

location = /redis {

 internal;

 # set_unescape_uri is provided by ngx_set_misc

 set_unescape_uri $query $arg_query;

 redis2_raw_query $query;

 redis2_pass 127.0.0.1:6379;

}

location = /main {

 content_by_lua '

 local res = ngx.location.capture("/redis",{ args = { query = "ping\\r\\n" } })

 ngx.print("[" .. res.body .. "]") ';

}

访问/main：

[+PONG\r\n]

当把内嵌的Lua代码保存到.lua文件时，需要对\r\n转义。也可以使用post/put子请求通过请求包体传输原始请求，这样就不需要进行请求URI转码了，节省CPU资源。

location = /redis {

 internal;

 # $echo_request_body is provided by the ngx_echo module

 redis2_raw_query $echo_request_body;

 redis2_pass 127.0.0.1:6379;

}

location = /main {

 content_by_lua '

 local res = ngx.location.capture("/redis",{ method = ngx.HTTP_PUT, body = "ping\\r\\n" })

 ngx.print("[" .. res.body .. "]") ';

}

这个例子的输出和GET的示例输出相同。

可以使用Lua在复杂的hash规则下选择固定的Redis端点：

upstream redis-a {

 server foo.bar.com:6379;

}

upstream redis-b {

 server bar.baz.com:6379;

}

upstream redis-c {

 server blah.blah.org:6379;

}

server {

 ...

 location = /redis {

 set_unescape_uri $query $arg_query;

 redis2_query $query;

 redis2_pass $arg_backend;

 }

 location = /foo {

 content_by_lua "

 -- pick up a server randomly

 local servers = {'redis-a', 'redis-b', 'redis-c'}

 local i = ngx.time() % #servers + 1

 local srv = servers[i]

 localres = ngx.location.capture('/redis',{args={query='...', backend = srv }})

 ngx.say(res.body) ";

 }

}

4.流水线请求

下面是一个多请求的例子：

location = /redis2 {

 internal;

 redis2_raw_queries $args $echo_request_body;

 redis2_pass 127.0.0.1:6379;

}

location = /test {

 content_by_lua_file conf/test.lua;

}

URI的args传输请求数量，包体传递请求字符串。

创建conf/test.lua文件：

-- conf/test.lua

local parser = require "redis.parser"

local reqs = {

 {"set", "foo", "hello world"},

 {"get", "foo"}

}

local raw_reqs = {}

for i, req in ipairs(reqs) do

 table.insert(raw_reqs, parser.build_query(req))

end

local res = ngx.location.capture("/redis2?" .. #reqs,

 { body = table.concat(raw_reqs, "") })

if res.status ~= 200 or not res.body then

 ngx.log(ngx.ERR, "failed to query redis")

 ngx.exit(500)

end

local replies = parser.parse_replies(res.body, #reqs)

for i, reply in ipairs(replies) do

 ngx.say(reply[1])

end

使用curl访问/test将得到下面输出：

OK

hello world

5.redis publish/subscribe支持

本模块有限支持publish/subscribe性能，这是因为REST和HTTP是无状态的。考虑下面的例子：

location = /redis {

 redis2_raw_queries 2 "subscribe /foo/bar\r\n";

 redis2_pass 127.0.0.1:6379;

}

然后通过redis-cli命令行对key/foo/bar发布一个消息，将从/redis接收到两个回复，这两个回复也可以解析。

6.publish/subscribe限制

使用publish/subscribe有下面的限制：

·不能在HttpUpstreamKeepaliveModule中以Redis作为upstream，因为只有短的Redis连接可以工作。

·Redis为Nginx的error.log产生额外的警告数据机制，会有一些竞争的情况产生，虽然这种警告的产生是比较少见的。

·需要调整多个超时值，如redis2_connect_timeout和redis2_read_timeout。

如果不能接受这些限制，推荐使用lua-resty-redis库。

7.性能调整

在模块使用中，可以使用下列性能优化机制。

·确保使用TCP连接池（HttpUpstreamKeepaliveModule提供），可能的情况下使用流水线指令。

·在多核的机器上使用多个Redis服务示例。

·当使用诸如ab或http_load时，要确保error日志级别足够高（如warn），避免工作进程频繁刷写日志文件。

11.3.5　应答包解析

应答包需要使用redis.parser进行解析，如果value为原始数据，则解析出来的数据直接可用，如果value保存进去就为JSON格式，则需要使用CJSON进行进一步解析处理：

...

local json_data

local cjson = require "cjson"

local parser = require "redis.parser"

local res,err

local resp

resp = ngx.location.capture("/redis_get?key=" .. "123")

if resp.status == ngx.HTTP_OK and resp.body then

 local res, typ = parser.parse_reply(resp.body)

 if res ~= nil then

--如果是原始格式，则此处res可以直接使用，如果原始数据是JSON，则往下进行JSON解析处理

 local ev={}

 ev=cjson.decode(res)

 local sid = ev["sid"]

 local ev_time = ev["ev_time"]

 local ev_type = ev["ev_type"]

...

end

end

……

11.4　lua-resty-redis访问方法

lua-resty-redis是OpenResty团队写的组件，相比其他Redis库，本库占用内存更小，使用更灵活，功能更强大，适合在复杂应用下使用。如果只是简单访问Redis数据，使用HttpRedis2Module可能更简洁一些，所以，需要根据应用场合选用库。

11.4.1　示例

下面是一个lua-resty-redis库完整的使用范例。代码编写在nginx.conf中。

#如果使用OpenResty，则不需要下面的配置行。

lua_package_path "/path/to/lua-resty-redis/lib/?.lua;;";

server {

 location /test {

 content_by_lua_block {

 local redis = require "resty.redis"

 local red = redis:new()

 red:set_timeout(1000) -- 1 sec

 -- or connect to a unix domain socket file listened

 -- by a redis server:

 -- local ok, err = red:connect("unix:/path/to/redis.sock")

 local ok, err = red:connect("127.0.0.1", 6379)

 if not ok then

 ngx.say("failed to connect: ", err)

 return

 end

 ok, err = red:set("dog", "an animal")

 if not ok then

 ngx.say("failed to set dog: ", err)

 return

 end

 ngx.say("set result: ", ok)

 local res, err = red:get("dog")

 if not res then

 ngx.say("failed to get dog: ", err)

 return

 end

 if res == ngx.null then

 ngx.say("dog not found.")

 return

 end

 ngx.say("dog: ", res)

 red:init_pipeline()

 red:set("cat", "Marry")

 red:set("horse", "Bob")

 red:get("cat")

 red:get("horse")

 local results, err = red:commit_pipeline()

 if not results then

 ngx.say("failed to commit the pipelined requests: ", err)

 return

 end

 for i, res in ipairs(results) do

 if type(res) == "table" then

 if res[1] == false then

 ngx.say("failed to run command ", i, ": ", res[2])

 else

 -- process the table value

 end

 else

 -- process the scalar value

 end

 end

 -- put it into the connection pool of size 100,

 -- with 10 seconds max idle time

 local ok, err = red:set_keepalive(10000, 100)

 if not ok then

 ngx.say("failed to set keepalive: ", err)

 return

 end

 -- or just close the connection right away:

 -- local ok, err = red:close()

 -- if not ok then

 -- ngx.say("failed to close: ", err)

 -- return

 -- end

 }

 }

}

11.4.2　API函数

1.API概述

在lua-resty-redis中，所有的Redis命令都有自己的方法，方法名字和命令名字相同，只是全部为小写。

命令参数可以直接填充在方法调用中。例如，“GET”命令接受一个key参数，可以这样调用“get”方法：

local res, err = red:get("key")

类似地，“LRANGE”命令接受3个参数，则可以这样调用“lrange”：

local res, err = red:lrange("nokey", 0, 1)

更多的例子如下：

 -- HMGET myhash field1 field2 nofield

 local res, err = red:hmget("myhash", "field1", "field2", "nofield")

 -- HMSET myhash field1 "Hello" field2 "World"

 local res, err = red:hmset("myhash", "field1", "Hello", "field2", "World")

这些方法成功时返回success，失败返回nil和保存在err中的错误描述。

·A Redis“status reply”结果返回一个前导为“+”的字符串。

·A Redis“integer reply”返回一个Lua数据型数据。

·A Redis“error reply”返回一个false值和一个错误描述字符串。

·A non-nil Redis“bulk reply”返回一个Lua表。如果错误，将返回一个包含两个元素的表{false，err}。

·A nil multi-bulk reply返回Lua ngx.null值。

下面将详细介绍lua-resty-redis提供的API。

2.API详述

lua-resty-redis提供了访问Redis的详细API，包括创建对接、连接、操作、数据处理等。这些API基本上与Redis的操作一一对应。

（1）new

语法：

red, err = redis:new()

说明：创建一个Redis对象。

（2）connect

语法：

ok, err = red:connect(host, port, options_table?)

ok, err = red:connect("unix:/path/to/unix.sock", options_table?)

说明：连接到远程的Redis服务器。在进行主机解析之前，本方法会先遍历连接池。可选的表用于向方法传送连接参数。

pool指声明一个自定义连接池名字，如果未指定，将使用模板<host>：<port>or<unix-socket-path>。

（3）set_timeout

语法：

red:set_timeout(time)

说明：设置子请求操作的超时值，单位为毫秒，包括connect方法。

（4）set_keepalive

语法：

ok, err = red:set_keepalive(max_idle_timeout, pool_size)

说明：把当前Redis连接立即放入连接池。

可以指定最大空闲时间，以及工作进程级的连接池大小。如果成功则返回1，失败则返回nil和错误描述。

本方法要放在原本放close方法的地方，本方法被调用，Redis对象马上就进入close状态，后续操作将会失败。

（5）get_reused_times

语法：

times, err = red:get_reused_times()

说明：获取本连接是否是重用的连接。如果失败则返回nil和字符串描述。如果当前连接是不得重用的连接池连接，则总是返回0。

（6）close

语法：

ok, err = red:close()

说明：关闭当前连接，成功则返回1，失败则返回nil和错误描述。

（7）init_pipeline

语法：

red:init_pipeline()

red:init_pipeline(n)

说明：使能Redis流水线模式。所有Redis调用方法自动缓存起来，当commit_pipeline方法调用被提交，或cancel_pipeline调用时被取消。

本方法总是成功。如果对象已经在流水线模式中，再次调用将会清空缓存，丢失之前未发送的查询命令。

可靠参数n定义可以加到流水线中的命令数量。

（8）commit_pipeline

语法：

results, err = red:commit_pipeline()

说明：提交缓存的查询命令，并退出流水线模式。这些请求的应答将被自动收集，以multi-bulk类型应答给上层。

（9）cancel_pipeline

语法：

red:cancel_pipeline()

说明：退出流水线模式，并丢弃所有的缓存命令。这个方法总是成功。如果Redis对象不是流水线模式，也可以成功，只是程序空跑。

（10）hmset

语法：

red:hmset(myhash, field1, value1, field2, value2, ...)

red:hmset(myhash, { field1 = value1, field2 = value2, ... })

说明：为“hmset”命令定义一个封装。当只有3个参数（包括red对象）时，最后一个参数必须是一个Lua表，存放filed/value对。

（11）array_to_hash

语法：

hash = red:array_to_hash(array)

说明：辅助函数，转换数据风格Lua表到hash表。

（12）read_reply

语法：

res, err = red:read_reply()

说明：从服务器读取一个应答。这个方法对于pub/sub非常有用。例如：

 local cjson = require "cjson"

 local redis = require "resty.redis"

 local red = redis:new()

 local red2 = redis:new()

 red:set_timeout(1000) -- 1 sec

 red2:set_timeout(1000) -- 1 sec

 local ok, err = red:connect("127.0.0.1", 6379)

 if not ok then

 ngx.say("1: failed to connect: ", err)

 return

 end

 ok, err = red2:connect("127.0.0.1", 6379)

 if not ok then

 ngx.say("2: failed to connect: ", err)

 return

 end

 local res, err = red:subscribe("dog")

 if not res then

 ngx.say("1: failed to subscribe: ", err)

 return

 end

 ngx.say("1: subscribe: ", cjson.encode(res))

 res, err = red2:publish("dog", "Hello")

 if not res then

 ngx.say("2: failed to publish: ", err)

 return

 end

 ngx.say("2: publish: ", cjson.encode(res))

 res, err = red:read_reply()

 if not res then

 ngx.say("1: failed to read reply: ", err)

 return

 end

 ngx.say("1: receive: ", cjson.encode(res))

 red:close()

 red2:close()

运行这个例子可以得到如下输出：

1: subscribe: ["subscribe","dog",1]

2: publish: 1

1: receive: ["message","dog","Hello"]

11.4.3　技术点

使用lua-resty-redis库时也有若干技术点需要注意，下面将分别进行介绍。

1.Redis验证

Redis使用AUTH命令验证，例如：

local redis = require "resty.redis"

local red = redis:new()

red:set_timeout(1000) -- 1 sec

local ok, err = red:connect("127.0.0.1", 6379)

if not ok then

 ngx.say("failed to connect: ", err)

 return

end

local res, err = red:auth("foobared")

if not res then

 ngx.say("failed to authenticate: ", err)

 return

end

假设Redis服务器在redis.conf配置了密码foobared：

requirepass foobared

如果密码错误，运行上面的程序会得到下面的错误信息：

failed to authenticate: ERR invalid password

2.Redis事务

本库支持Redis事务，例如：

local cjson = require "cjson"

local redis = require "resty.redis"

local red = redis:new()

red:set_timeout(1000) -- 1 sec

local ok, err = red:connect("127.0.0.1", 6379)

if not ok then

 ngx.say("failed to connect: ", err)

 return

end

local ok, err = red:multi()

if not ok then

 ngx.say("failed to run multi: ", err)

 return

end

ngx.say("multi ans: ", cjson.encode(ok))

local ans, err = red:set("a", "abc")

if not ans then

 ngx.say("failed to run sort: ", err)

 return

end

ngx.say("set ans: ", cjson.encode(ans))

local ans, err = red:lpop("a")

if not ans then

 ngx.say("failed to run sort: ", err)

 return

end

ngx.say("set ans: ", cjson.encode(ans))

ans, err = red:exec()

ngx.say("exec ans: ", cjson.encode(ans))

red:close()

输出如下：

Then the output will be

multi ans: "OK"

set ans: "QUEUED"

set ans: "QUEUED"

exec ans: ["OK",[false,"ERR Operation against a key holding the wrong kind of value"]]

3.负载均衡和故障切换

可以在自己的Lua里实现一般的负载均衡逻辑。保存一张所有有效Redis端点的Lua表（如主机名或端口号），每个请求中按照某种规则选取一个服务器（轮循或key哈希）。

同样地，可以自己实现更灵活的故障切换规则。

4.调试

通常我们使用lua-cjson库将返回值转换为JSON格式，例如：

local cjson = require "cjson"

...

local res, err = red:mget("h1234", "h5678")

if res then

 print("res: ", cjson.encode(res))

end

5.自动错误日志

默认地，ngx_lua方法在套接字出现错误时会自动记录日志，如果已经自己做了日志处理，需要禁用自动记录错误日志功能：

lua_socket_log_errors off;

11.4.4　问题列表

lua-resty-redis库属于比较常用的模块，下面是一些常见问题。

·保证连接池容量配置正确（set_keepalive）。注意，连接池是以工作线程为单位的。如果系统整体处理1000个请求，而工作进程有10个，则每个连接池容量应该是1000/10=100（个）。如果直接配成1000，则实际池容量为10000，浪费内存。

·保证Redis侧backlog设置为足够大。在Redis 2.8及以上版本中，可以直接在redis.conf上打开tcp-backlogparameter（同时需要打开Linux内核参数SOMAXCONN，进行相应配置）。也可能要在redis.conf中打开maxclients。

·保证set_timeout方法设置的超时值不会太短。如果需要，在超时时重做失败的操作，并且关闭自动记录错误日志功能。

·如果工作进程负载非常重，Nginx的事件循环可能被CPU阻塞非常多。使用基于C或基于Lua的图形分析工具，对CPU进行优化。

·如果工作进程CPU负载非常轻，则事件循环可能被一些系统调用阻塞了（如I/O系统调用）。可以运行epoll-loop-blocking-distr工具确认问题。如果确实是这个问题，可以使用图形化工具分析实际阻塞的位置。

·如果redis-server是100%的CPU使用率，则需要考虑使用多个Redis端点进行负载均衡，或者使用图形化工具分析Redis内部瓶颈。

11.4.5　限制

使用lua-resty-redis库时，需要注意下面这些限制。

·本库不能用到这些上下文：init_by_lua、set_by_lua、log_by_lua、header_filter_by_lua，在这些地方，ngx_lua cosocket API是无效的。

·resty.redis对象不能被存储在模块级的变量中（因为会被其他例程分享），要保存在局部变量或ngx.ctxtable中，这些地方的每个例程有自己的数据副本，不会出现访问冲突。

11.4.6　安装

OpenResty包内建了访问模块，可以直接使用：

local redis = require "resty.redis"

...

如果使用自己的Nginx+ngx_lua环境，需要配置lua_package_path指令，以确保工作进程的账号有权限访问这些.lua文件，具体指令如下：

nginx.conf

http {

 lua_package_path "/path/to/lua-resty-redis/lib/?.lua;;";

 ...

}

11.5　小结

本章介绍了在ngx_lua中访问Redis的3种方法，分别是HttpRedis、HttpRedis2Module和lua-resty-redis。3种方法各有适用场合，根据需要选择使用。本章对每种方法都进行了概述，给出了示例，并详细解释了各库提供的API以及使用的注意事项。示例中未涉及的API可参照描述加入示例，形成读者自己的使用代码。
第12章　MySQL操作

MySQL是一个使用广泛的关系型数据库，用来保存关系型数据。根据应用，MySQL规模可大可小。大的系统可以做读写分离的大型集群。

在ngx_lua中，MySQL有两种访问模式：

1）使用ngx_lua模块和lua-resty-mysql模块：这两个模块是安装OpenResty时默认安装的。

2）使用drizzle_nginx_module（HttpDrizzleModule）模块：需要单独安装，这个库现不在OpenResty中。

本章分别介绍这两种MySQL操作方法。
12.1　lua-restry-mysql访问方式

lua-resty-mysql是OpenResty开发的模块，使用灵活、功能强大，适合复杂的业务场景，同时支持存储过程的访问。

12.1.1　示例

下面是一个lua-resty-mysql使用MySQL数据库的示例。

1.创建测试数据库

在安装好的MySQL中执行下面语句，创建表和初始数据：

mysql> create table users(id int,username varchar(30),age tinyint);

Query OK, 0 rows affected (0.00 sec)

mysql> insert into users values(1,'zhangsan',24);

Query OK, 1 row affected (0.00 sec)

mysql> insert into users values(2,'lisi',26);

Query OK, 1 row affected (0.00 sec)

2.修改Nginx配置文件nginx.conf

worker_processes 1;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 sendfile on;

 keepalive_timeout 65;

 server {

 listen 80;

 server_name localhost;

 root html;

 index index.html index.htm;

 location / {

 content_by_lua '

 local mysql = require "resty.mysql"

 local db,err = mysql:new()

 if not db then

 ngx.say("failed to instantiate mysql: ",err)

 return

 end

 db:set_timeout(1000)

 local ok,err,errno,sqlstate = db:connect{

 host = "127.0.0.1",

 port = 3306,

 database = "test",

 user = "root",

 password = "",

 max_package_size = 1024

 }

 if not ok then

 ngx.say("failed to connect: ", err, ": ", errno, " ", sqlstate)

 return

 end

 res,err,errno,sqlstate = db:query("select id,username,age from users where id=1")

 if not res then

 ngx.say("bad result: ", err, ": ", errno, ": ", sqlstate, ".")

 return

 end

 local cjson = require "cjson"

 ngx.say(cjson.encode(res))

 ';

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 }

}

从MySQL数据库返回的是JSON数据，需要使用CJSON进行转换处理。

也可以将上面的Lua代码放到一个以.lua为扩展名的文件里，并在nginx.conf中使用content_by_lua_file指令引用。

3.重启Nginx服务

命令如下：

/usr/local/openresty/nginx/sbin/nginx -t -p /usr/local/openresty/nginx/conf/

nginx: the configuration file /usr/local/openresty/nginx/conf/nginx.conf syntax is ok

nginx: configuration file /usr/local/openresty/nginx/conf/nginx.conf test is successful

/usr/local/openresty/nginx/sbin/nginx -p /usr/local/openresty/nginx/conf/ -s reload

4.测试

命令如下：

curl localhost

[{"username":"zhangsan","age":24,"id":1}]

输出结果是JSON数据。

12.1.2　安装

如果使用OpenResty安装，直接使用即可：

local mysql = require "resty.mysql"

...

如果使用自己的Nginx+ngx_lua，需要配置lua_packet_path指令添加lua-resty-mysql源树到LUA_PATH搜索路径，例如：

 # nginx.conf

 http {

 lua_package_path "/path/to/lua-resty-mysql/lib/?.lua;;";

 ...

 }

要保证运行Nginx工作进程的账号有权限访问.lua文件。

12.1.3　方法与函数

本节详述lua-resty-mysql提供的方法。方法涉及传输层连接池、超时时间配置等。

1.new

语法：

db, err = mysql:new()

说明：创建一个MySQL连接对象，遇到错误时返回db=nil和存放在err中的错误描述。

2.connect

语法：

ok, err = db:connect(options)

说明：尝试连接到一个远程的MySQL服务器。

这里options是一个参数的Lua表，涉及的具体参数如下：

·host：服务器主机名或IP地址。

·port：服务器监听端口，默认为3306。

·path：UNIX套接字文件存放路径。

·database：使用的数据库名，相当于“select database；”。

·user：登录的用户名。

·password：登录密码（明文）。

·max_packet_size：MySQL服务器应答包最大长度（默认1MB）。

·ssl：如果设置为true，使用SSL连接到MySQL（默认是false），如果不支持SSL或禁用了SSL，则返回“ssl disabled on server”错误信息。

·ssl_verify：如果设置为true，使用服务器的SSL证书校验（默认为false）。注意，需要配置lua_ssl_trusted_certificate指定MySQL服务器使用的CA证书。可能也需要配置lua_ssl_verify_depth。

·pool：MySQL连接池的名称。如果没有指定，连接池名称将会被指定为user：database：host：port格式或user：database：path。

·compact_arrays：设置为true时，查询和读取方法将返回array-of-arrays结构的resultset，默认是array-of-hashes结构。

本方法在进行主机名解析并连接到远程服务器前，总是在连接池中寻找之前调用创建的空闲连接。

3.set_timeout

语法：

db:set_timeout(time)

说明：设置子请求的超时时间（ms），包括connect方法。

4.set_keepalive

语法：

ok, err = db:set_keepalive(max_idle_timeout, pool_size)

说明：把当前的MySQL连接立即放进ngx_lua cosocket连接池。可以指定最大空调时间（ms），可以指定每一个Nginx工作进程池的最大容量。如果成功，则返回1；如果错误，则返回nil和错误描述。

这个方法可以放到原本放close方法的地方。这个方法将把resty.mysql对象直接设置为关闭状态。所有的子操作都将返回关闭错误。

5.get_reused_times

语法：

times, err = db:get_reused_times()

说明：返回当前连接的重用次数。如果有错误，则返回nil和错误描述。

如果当前连接不是来自于内建连接池，则总是返回0，表示从未重用过。如果当前连接来自于连接池，则返回值总是非0。所以，可以使用本方法判断连接是否来自于连接池。

6.close

语法：

ok, err = db:close()

说明：关闭当前MySQL连接并返回状态。如果成功，则返回1；如果出现任何错误，则将返回nil和错误描述。

7.send_query

语法：

bytes, err = db:send_query(query)

说明：异步向远程MySQL发送一个查询。如果成功则返回成功发送的字节数；如果错误，则返回nil和错误描述。

需要使用read_result方法读取应答。

8.read_result

语法：

res, err, errcode, sqlstate = db:read_result()

res, err, errcode, sqlstate = db:read_result(nrows)

说明：从MySQL服务器返回结果中读取一行数据。res返回一个描述OK包或结果集包的Lua表。

返回值是一个容纳多行的数组。每一行是一个数据列的key-value对，例如：

 {

 { name = "Bob", age = 32, phone = ngx.null },

 { name = "Marry", age = 18, phone = "10666372"}

 }

如果查询没有返回值，则返回类似的内容：

{

 insert_id = 0,

 server_status = 2,

 warning_count = 1,

 affected_rows = 32,

 message = nil

}

如果当前结果返回的是多结果集，则err内容是“again”。所以需要检测err是否是again，直到把所有的数据读取完毕。该指令主要用于查询语句中有多个查询或多个查询语句的情况下。

任何错误，将返回最多4个值：nil、err、errcode和sqlstate。err返回一个错误描述字符串，errocode返回MySQL错误码，sqlstate返回由5个字符组成的标准SQL错误码。注意，errcode和sqlstate可能因为MySQL没返回它们而造成值为nil。

可选的参数nrows可以用来指定返回结果集的最大值。这个参数可以用来预申请空调，默认这个值为4。

9.query

语法：

res, err, errcode, sqlstate = db:query(query)

res, err, errcode, sqlstate = db:query(query, nrows)

说明：本方法是send_query和read_result组合的快捷方法。

这个方法需要自行检查again，因为它只能调用一次read_result。参见下面的多结果集部分。

10.server_ver

语法：

str = db:server_ver()

说明：返回服务器版本号字符串，如“5.1.64”。

只有当成功连接到服务器时调用才会成功，否则会返回nil。

11.set_compact_arrays

语法：

db:set_compact_arrays(boolean)

说明：设置是否使用compact-arrays结构。

12.1.4　多结果集返回示例

查询语句会产生多结果集返回的情况，这种情况下需要自行检查query和read_result方法返回的“again”错误字符。

示例：

local cjson = require "cjson"

local mysql = require "resty.mysql"

local db = mysql:new()

local ok, err, errcode, sqlstate = db:connect({

 host = "127.0.0.1",

 port = 3306,

 database = "world",

 user = "monty",

 password = "pass"})

if not ok then

 ngx.log(ngx.ERR, "failed to connect: ", err, ": ", errcode, " ", sqlstate)

 return ngx.exit(500)

end

res, err, errcode, sqlstate = db:query("select 1; select 2; select 3;")

if not res then

 ngx.log(ngx.ERR, "bad result #1: ", err, ": ", errcode, ": ", sqlstate, ".")

 return ngx.exit(500)

end

ngx.say("result #1: ", cjson.encode(res))

local i = 2

while err == "again" do

 res, err, errcode, sqlstate = db:read_result()

 if not res then

 ngx.log(ngx.ERR, "bad result #", i, ": ", err, ": ", errcode, ": ", sqlstate, ".")

 return ngx.exit(500)

 end

 ngx.say("result #", i, ": ", cjson.encode(res))

 i = i + 1

end

local ok, err = db:set_keepalive(10000, 50)

if not ok then

 ngx.log(ngx.ERR, "failed to set keepalive: ", err)

 ngx.exit(500)

end

这个代码段将生成下面的应答数据：

result #1: [{"1":"1"}]

result #2: [{"2":"2"}]

result #3: [{"3":"3"}]

12.1.5　其他注意事项

使用lua-resty-mysql库有若干需要注意的事项，下面将详细讲解。

1.SQL文字引用（文法）

对SQL语句做好引用检查，以防止注入攻击。使用ngx_lua提供的ngx.quote_sql_str函数引用参数值，例如：

local name = ngx.unescape_uri(ngx.var.arg_name)

local quoted_name = ngx.quote_sql_str(name)

local sql = "select * from users where name = " .. quoted_name

2.Debugging

需要使用lua-cjson库处理query方法返回的JSON数据，例如：

local cjson = require "cjson"

...

local res, err, errcode, sqlstate = db:query("select * from cats")

if res then

 print("res: ", cjson.encode(res))

end

3.自动记录错误日志

默认地，当套接字发生错误时，ngx_lua模块会自动记录错误日志。如果你在自己的Lua代码中做了错误处理，推荐关闭自动日志功能。关闭ngx_lua的lua_socket_log_errors指令如下：

lua_socket_log_errors off;

12.1.6　限制

·这个库不能在这些上下文使用：init_by_lua、set_by_lua、log_by_lua和header_filter_by_lua。因为在这些上下文中cosocket对象是无效的。

·resty.mysql不能在Lua模块级别被保存在Lua变量中，因为对象会被所在工作进程中的所有例程共享，当几个例程使用相同的resty.mysql对象时就会出现问题。只能在函数内部变量或ngx.ctx表里初始化resty.mysql对象。在这些地方，每一个请求都会放置自己的数据。
12.2　HttpDrizzleModule访问方式

HttpDrizzleModule提供了配置指令级的使用方式，相较于lua-resty-mysql使用更方便一些，代码会更简洁。但是HttpDrizzleModule不支持存储过程的访问。

12.2.1　示例

下面这个示例演示了如何使用libdrizzle访问MySQL。

首先编辑nginx.conf，使用指令访问MySQL。

http {

 ...

 upstream cluster {

 # simple round-robin

 drizzle_server 127.0.0.1:3306 dbname=test

 password=some_pass user=monty protocol=mysql;

 drizzle_server 127.0.0.1:1234 dbname=test2

 password=pass user=bob protocol=drizzle;

 }

 upstream backend {

 drizzle_server 127.0.0.1:3306 dbname=test

 password=some_pass user=monty protocol=mysql;

 }

 server {

 location /mysql {

 set $my_sql 'select * from cats';

 drizzle_query $my_sql;

 drizzle_pass backend;

 drizzle_connect_timeout 500ms; # default 60s

 drizzle_send_query_timeout 2s; # default 60s

 drizzle_recv_cols_timeout 1s; # default 60s

 drizzle_recv_rows_timeout 1s; # default 60s

 }

 ...

 # for connection pool monitoring

 location /mysql-pool-status {

 allow 127.0.0.1;

 deny all;

 drizzle_status;

 }

 }

}

HttpDrizzleModule访问MySQL非常简单，由配置指令和API两部分实现。使upstream模块和libdrizzle一起工作，可以提供一个非阻塞和流式的访问途径。

HttpDrizzleModule模块本质上提供了一个非常有效果和灵活的方法访问MySQL、Drizzle或其他支持Drizzle或MySQL协议的RDBMS，而且可以直接作为这些RDBMS端点的REST接口。

这个接口不产生可读的输出，是一种叫作RDS（Resty-DBD-Stream）的二进制格式，所以解析输出需要其他的组件，如rds-json-nginx-module、rds-csv-nginx-module、lua-rds-parser。

12.2.2　安装

ngx_drizzle模块默认是不打开的，需要在configuring OpenResty时使用--with-http_drizzle_module选项打开。

libdrizzle C库不再是OpenResty包的一部分，所以需要自行下载，下载地址为https://launchpad.net/drizzle。

1.安装libdrizzle 1.0

首先下载libdrizzle源码包：

wget http://agentzh.org/misc/nginx/drizzle7-2011.07.21.tar.gz

解压和编译：

tar xzvf drizzle7-2011.07.21.tar.gz

 cd drizzle7-2011.07.21/

 ./configure –without-server

 make libdrizzle-1.0

 make install-libdrizzle-1.0

注意：make的时候可能会失败，原因通常是缺少支撑的模块，根据错误提示把缺少的模块安装上即可，例如，缺少g++编译器，则输入以下命令即可。

yum -y install gcc-g++

需要确保系统上已经安装指向python2的python界面，大多数最近的Linux商业版本默认已经是python3，这在运行libdrizzle-1.0时会得到下面错误：

File "config/pandora-plugin", line 185

 print "Dependency loop detected with %s" % plugin['name']

 ^

SyntaxError: invalid syntax

make: *** [.plugin.scan] Error 1

把python指向python2就可以解决这个错误。

2.安装OpenResty

通过yum安装的OpenResty没有内置HttpDrizzleModule，需要通过源码安装，可以直接覆盖yum安装，也可以安装新的OpenResty。

安装支撑库：

yum install -y openssl-devel pcre-devel

下载源码包：

wget http://openresty.org/download/openresty-1.11.2.1.tar.gz

解压和安装：

 tar zxvf openresty-1.11.2.1.tar.gz

 cd openresty-1.11.2.1

 ./configure --with-http_drizzle_module --with-libdrizzle=/usr/local

 gmake

 gmake install

当把libdrizzle-1.0库安装到一个自定义的路径中时，需要在OpenResty里指定前缀，例如：

cd /path/to/ngx_openresty-VERSION/

./configure --with-libdrizzle=/path/to/drizzle --with-http_drizzle_module

12.2.3　技术点

HttpDrizzleModule在使用中有两个技术点需要注意。

1.Keepalive连接池

HttpDrizzleModule提供了一个内建的MySQL或Drizzle TCP工作进程级连接池。

下面是一个简单的配置：

upstream backend {

 drizzle_server 127.0.0.1:3306 dbname=test

 password=some_pass user=monty protocol=mysql;

 drizzle_keepalive max=100 mode=single overflow=reject;

}

连接池使用一个简单的LIFO算法分配空闲连接。最近使用的连接会在下次首先复用。在连接池满载的情况下，新的空闲连接将覆盖旧的空闲连接。

2.Last Insert ID

如果要获取LAST_INSERT_ID，当执行一个SQL插入查询的时候，ngx_drizzle会自动返回这个值。

 location /test {

 echo_location /mysql "drop table if exists foo";

 echo;

 echo_location /mysql "create table foo (id serial not null, primary key (id), val real);";

 echo;

 echo_location /mysql "insert into foo (val) values (3.1415926);";

 echo;

 echo_location /mysql "select * from foo;";

 echo;

}

location /mysql {

 drizzle_pass backend;

 drizzle_module_header off;

 drizzle_query $query_string;

 rds_json on;

}

请求/test会得到下面输出：

{"errcode":0}

{"errcode":0}

{"errcode":0,"insert_id":1,"affected_rows":1}

[{"id":1,"val":3.1415926}]

12.2.4　配置指令

HttpDrizzleModule访问方式主要涉及以下配置指令。

1.drizzle_server

语法：

drizzle_server <host> user=<user> password=<pass> dbname=<database>

drizzle_server <host>:<port> user=<user> password=<pass> dbname=<database> protocol=<protocol> charset=<charset>

默认：no。

上下文：upstream。

说明：配置MySQL服务器名字和参数。名字可以是域名、地址，可以配合一个可选的端口号（默认3306），如果域名可以解析为多个地址，那么多个地址都将会使用。

配置drizzle_server，支持下面可选参数。

·user=<user>：MySQL/Drizzle用户名，用于登录。

·password=<pass>：登录密码。如果有特殊符号，需要使用双括号或单括号括起来，如密码中有#：

drizzle_server 127.0.0.1:3306 user=monty "password=a b#1"

 dbname=test protocol=mysql;

·dbname=<database>：指定默认MySQL数据库。

·protocol=<protocol>：指定使用的协议，即Drizzle或MySQL。默认是Drizzle

·charset=<charset>：编码格式。如果默认的格式正是你需要使用的格式，则不要重新使用本参数指定，否则会造成运行期的性能占用。例如：

drizzle_server foo.bar.com:3306 user=monty password=some_pass

 dbname=test protocol=mysql

 charset=utf8;

2.drizzle_keepalive

语法：

drizzle_keepalive max=<size> mode=<mode>

默认：

drizzle_keepalive max=0 mode=single

上下文：upstream。

说明：配置MySQL/Drizzle连接池，支持下面可选参数。

·max=<num>：指定当前upstream块连接池最大能力。值必须是非0值，如果是0，则表示禁用连接池，默认是0。

·mode=<mode>：支持single和multi。single模式表示连接池不区分当前块中多个Drizzle服务器，multi意味着连接池将按服务器名字和端口进行连接池匹配和调度。默认是single。

·overflow=<action>：指定连接池满的时候如何处理新来的请求，支持reject或ignore。reject情况下将拒绝新的请求，返回503错误。ignore情况下将继续创建新的连接。

3.drizzle_query

语法：

drizzle_query <sql>

默认：no。

上下文：http、server、location、location if。

说明：向Drizzle/MySQL发送查询命令。

支持Nginx变量，但是要小心SQL注入攻击，可以使用set_quote_sql_str指令，例如：

location /cat {

 set_unescape_uri $name $arg_name;

 set_quote_sql_str $quoted_name $name;

 drizzle_query "select * from cats where name = $quoted_name";

 drizzle_pass my_backend;

}

4.drizzle_pass

语法：

drizzle_pass <remote>

默认：no。

上下文：location、location if。

阶段：content。

说明：指定Drizzle或MySQL upstream名字，<remote>可以是包含drizzle_server的任意upstream。

在<remote>中使用Nginx变量，即可实现动态端点路由，例如：

upstream moon { drizzle_server ...; }

server {

 location /cat {

 set $backend 'moon';

 drizzle_query ...;

 drizzle_pass $backend;

 }

}

5.drizzle_connect_timeout

语法：

drizzle_connect_time <time>

默认：

drizzle_connect_time 60s

上下文：http、server、location、location if。

说明：指定连接到远程Drizzle或MySQL服务器的连接超时值。<time>值可以是整数，单位是秒（s）、毫秒（ms）、分钟（m）。默认是60秒。

6.drizzle_send_query_timeout

语法：

drizzle_send_query_timeout <time>

默认：

drizzle_send_query_timeout 60s

上下文：http、server、location、location if。

说明：指定发送到远程服务器查询指令的超时值。单位和默认值同drizzle_connect_timeout指令。

7.drizzle_recv_cols_timeout

语法：

drizzle_recv_cols_timeout <time>

默认：

drizzle_recv_cols_timeout 60s

上下文：http、server、location、location if。

说明：指定从服务器接收列结果集的超时值。

8.drizzle_recv_rows_timeout

语法：

drizzle_recv_rows_timeout <time>

默认：

drizzle_recv_rows_timeout 60s

上下文：http、server、location、location if。

说明：指定从服务器接收行结果集数据的超时值。

9.drizzle_buffer_size

语法：

drizzle_buffer_size <size>

默认：

drizzle_buffer_size 4k/8k

上下文：http、server、location、location if。

说明：指定drizzle输出的缓冲区，默认页是4k/8k。

10.drizzle_module_header

语法：

drizzle_module_header on|off

默认：

drizzle_module_header on

上下文：http、server、location、location。

说明：控制是否在应答中加入drizzle头。默认是on。

11.drizzle_status

语法：

drizzle_status

默认：no。

上下文：location、location if。

阶段：content。

说明：打开时，Nginx的location为所有的drizzle upstream中的servers输出状态报告。

输出样例如下：

worker process: 15231

upstream backend

 active connections: 0

 connection pool capacity: 10

 overflow: reject

 cached connection queue: 0

 free'd connection queue: 10

 cached connection successfully used count:

 free'd connection successfully used count: 3 0 0 0 0 0 0 0 0 0

 servers: 1

 peers: 1

upstream backend2

 active connections: 0

 connection pool capacity: 0

 servers: 1

 peers: 1

如果有多个工作者进程，这个报告不是全局的统计，就是每个工作进程中的upstream。

12.2.5　变量

drizzle-nginx-module创建了新的Nginx变量：

$drizzle_thread_id

当前SQL查询超时，这个变量返回一个对应MySQL或Drizzle线程ID的字符串，用于将来发送SQL kill命令以取消超时的查询。

例如：

drizzle_connect_timeout 1s;

drizzle_send_query_timeout 2s;

drizzle_recv_cols_timeout 1s;

drizzle_recv_rows_timeout 1s;

location /query {

 drizzle_query 'select sleep(10)';

 drizzle_pass my_backend;

 rds_json on;

 more_set_headers -s 504 'X-Mysql-Tid: $drizzle_thread_id';

}

location /kill {

 drizzle_query "kill query $arg_tid";

 drizzle_pass my_backend;

 rds_json on;

}

location /main {

 content_by_lua '

 local res = ngx.location.capture("/query")

 if res.status ~= ngx.HTTP_OK then

 local tid = res.header["X-Mysql-Tid"]

 if tid and tid ~= "" then

 ngx.location.capture("/kill", { args = {tid = tid} })

 end

 return ngx.HTTP_INTERNAL_SERVER_ERROR;

 end

 ngx.print(res.body) '

}

在使用headers_more_nginx_module、lua_nginx_module和rds_json_nginx_module的时候，若SQL查询超时，我们可以立即明确取消该查询操作。这里有一个陷阱，你需要在创建Nginx时按以下顺序添加这些模块：

·lua_nginx_module。

·headers_more_nginx_module。

·rds_json_nginx_module。

这会决定它们的输出过滤器工作在倒序情况下。例如，第一个转换RDS到JSON，另一个添加自定义X-Mysql-Tidcustom头，最后一个使用Lua模块捕获整个应答，推荐使用OpenResty，它自动按正确顺序绑定模块。

12.2.6　输出格式

本模块输出二进制查询结果，多数Nginx数据模块，如ngx_postgres，都遵守RDS格式。

如果你是一个Web APP开发者，可能对这些更感兴趣：

·使用rds_json_nginx_module获得JSON输出。

·使用rds_csv_nginx_module获得Comma-Separated-Value（CSV）输出。

·使用lua-rds-parser将RDS解析成Lua数据格式。

HTTP应答头部分总是返回200。Content-Type必须设置为application/x-resty-dbd-stream。驱动生成应答头部时总是设置为X-Resty-DBD，例如：

X-Resty-DBD-Module: drizzle 0.1.0

X-Resty-DBD-Module是可选的，下面是HTTP应答包体。

1.RDS头域

RDS头由下面域组成：

·uint8_t：字节序类型（1表示大端模式，其他表示小端模式）。

·uint32_t：格式版本（v1.2.3表示1002003这个数值）。

·uint8_t：结果类型（0表示正常SQL结果类型，现在仅这个固定值）。

·uint16_t：标准错误码。

·uint16_t：驱动指定错误码。

·uint16_t：驱动指定错误字符串长度。

·*u_char**：驱动指定错误字符串。

·uint64_t：数据库受影响行数。

·uint64_t：插入ID（如果没有，值为0）。

·uint16_t：列数。

2.RDS包体

若头域的列数域是0，则整个RDS包体部分将被忽略。

RDS包体由两部分组成：Columns和Rows。

（1）Columns

列部分存放列数据，数量由头部列数部分指定。

每一列由下面域组成：

·uint16_t：非零值表示标准列类型码和结束符。

·uint16_t：驱动指定的列类型码。

·uint16_t：列名长度。

·*u_char**：列名数据。

（2）Rows

行由0或更多原始数据组成，使用一个8bit的0表示结束。

每一个原始数据由Row Flag和一个可选的Fields Data部分组成。

1）Row Flag。

uint8_t：有效行（1表示有效，0表示结果集列表结束，没有更多行了）。

2）Fields Data：由0或更多的域数据组成。数量由头部的列数域指定。

·uint32_t：域长度（-1表示null）。

·*u_char**：文本定义的域数据，如果域长度为-1，本域为空串。

3.Status Code

如果MySQL查询错误码不是OK，则返回一个500的错误页（除了表不存在错误，这个返回410错误）。
12.3　HttpDrizzleModule完整示例

下面的nginx.conf定义了两个location，用于访问MySQL，相当于封装了两个RESTful API供内部调用，如果监听的IP是局域网的，则可以只为本网提供服务，防止外来访问，同时可以使用access进行访问控制：

#nginx.conf

user root;

worker_processes 4;

worker_rlimit_nofile 100000;

error_log logs/error.log;

pid logs/nginx.pid;

events{

 use epoll;

 worker_connections 10000;

}

http{

 include mime.types;

 default_type text/html;

 access_log off;

 server_tokens off;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 open_file_cache max=10240 inactive=60s;

 open_file_cache_valid 80s;

 open_file_cache_min_uses 1;

 lua_shared_dict gkey 50m;

 keepalive_timeout 0;

 chunked_transfer_encoding off;

 upstream bk_mysql {

 drizzle_server 10.12.10.15:3306 protocol=mysql dbname=test user=mgr password="233wk%"

 drizzle_keepalive max=300 overflow=reject mode=single;

 }

 upstream bk_redis{

 server 10.12.10.5:69;

 keepalive 1000;

 }

 server{

 listen 9000 default so_keepalive=on;

 server_name ourtestdrizzle;

 charset utf-8;

 location /mysql {

 include /usr/local/ip_limit.conf;

 drizzle_pass bk_mysql;

 drizzle_query $request_body;

 }

 location /exec_sql {

 include /usr/local/ip_limit.conf;

 content_by_lua '

 local sql=ngx.unescape_uri(ngx.var.arg_sql)

 local resp = ngx.location.capture("/mysql", {method = ngx.HTTP_POST,

body = sql})

 if resp.status ~= ngx.HTTP_OK or not resp.body then

 ngx.exit(resp.status)

 end

 ngx.print(resp.body)

 ';

 }

 }

}

在server里增加一个location，对外提供rest服务，服务调用上面的内部子请求访问数据库，执行用户的请求：

####################add gateway ###########################

 location /gateway/add {

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 content_by_lua '

local vdata={}

local json_data = ngx.var.request_body

ngx.log(ngx.ERR, json_data)

local cjson = require "cjson"

vdata = cjson.decode(json_data)

local gwId = vdata["gwId"]

local gwName = vdata["gwName"]

local model = vdata["model"]

local interval = vdata["interval"]

local isAlarm = vdata["isAlarm"]

local isOnline = vdata["isOnline"]

local firmwall = vdata["firmwall"]

local region = vdata["region"]

local gps = vdata["gps"]

local userId = vdata["userId"]

local msg="{\034msg\034:\034failure\034}"

if gwId == nil then

 msg="{\034msg\034:\034failure\034,\034desc\034:\034gateway id is null!\034}"

 ngx.print(msg)

 ngx.exit(ngx.HTTP_OK)

end

if userId == nil then

 msg="{\034msg\034:\034failure\034,\034desc\034:\034user id is null!\034}"

 ngx.print(msg)

 ngx.exit(ngx.HTTP_OK)

end

if model == nil then

 msg="{\034msg\034:\034failure\034,\034desc\034:\034model field is null!\034}"

 ngx.print(msg)

 ngx.exit(ngx.HTTP_OK)

end

local sql="SELECT sid,userId from gateway WHERE sid=\'" .. gwId .. "\'"

local resp= ngx.location.capture("/exec_sql?sql=" .. ngx.escape_uri(sql), {method = ngx.HTTP_GET})

msg="{\034msg\034:\034failure\034,\034desc\034:\034server error!\034}"

if resp.status ~= ngx.HTTP_OK or not resp.body then

 ngx.print(msg)

 ngx.exit(501)

end

local parser = require "rds.parser"

local res, err = parser.parse(resp.body)

if res == nil then

 msg="{\034msg\034:\034failure\034,\034desc\034:\034server error!\034}"

 ngx.print(msg)

 ngx.exit(501)

end

local rows = res.resultset

if #rows > 0 then

 msg="{\034msg\034:\034failure\034,\034desc\034:\034gateway already exist!\034}"

 ngx.print(msg)

 ngx.exit(ngx.HTTP_OK)

end

if gwName == nil then

 gwName = ""

end

if isAlarm == nil then

 isAlarm = 0

end

if gps == nil then

 gps=""

end

if interval == nil then

 interval = 10000

end

if firmware == nil then

 firmware = ""

end

if region == nil then

 region = ""

end

if model == nil then

 model = ""

end

if vender == nil then

 vender = ""

end

sql="INSERT INTO gateway (sid, userId, gwName, isAlarm, intervaltime, gps, firmware, model, vender, region) VALUES (\'" .. gwId .. "\',\'" .. userId .. "\',\'" .. gwName .. "\',\'" .. isAlarm .. "\',\'" .. interval .. "\',\'" .. gps .. "\',\'" .. firmware.. "\',\'" .. model .. "\',\'" .. vender .. "\',\'" .. region .. "\')"

for i = 1, 4, 1 do

 resp= ngx.location.capture("/exec_sql?sql=" .. ngx.escape_uri(sql), {method = ngx.HTTP_GET})

 if resp.status == ngx.HTTP_OK and resp.body then

 break

 end

 ngx.sleep(0.5)

end

if resp.status ~= ngx.HTTP_OK or not resp.body then

 --ngx.say("failed to query mysql")

 msg="{\034msg\034:\034failure\034,\034desc\034:\034failed to insert gateway!\034}"

 ngx.print(msg)

 ngx.exit(501)

end

local parser = require "rds.parser"

local res, err = parser.parse(resp.body)

if res == nil then

 msg="{\034msg\034:\034failure\034,\034desc\034:\034failed to parse rds!\034}"

 ngx.print(msg)

 ngx.exit(501)

end

local rows = res.affected_rows

if rows == nil then

 rows=0

end

if rows>0 then

 msg="{\034msg\034:\034successfully\034,\034desc\034:\034OK!\034}"

 ngx.print(msg)

 ngx.exit(ngx.HTTP_OK)

else

 msg="{\034msg\034:\034failure\034,\034desc\034:\034failed to add gateway!\034}"

 ngx.print(msg)

 ngx.exit(501)

end

下面是一个完整处理RDS的例子：

location /user/getGateways {

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 content_by_lua '

local userId=ngx.var.arg_userId

local resultStr

local vdata={}

local gateways={}

local sensors={}

local cjson = require "cjson"

if userId == nil then

 msg="{\034msg\034:\034failure\034,\034desc\034:\034user id is null!\034}"

 ngx.print(msg)

 ngx.exit(ngx.HTTP_OK)

end

local sql="SELECT sid,gwName,model,vender,isAlarm,state,firmware,intervaltime, region,gps FROM gateway WHERE userid=\'" .. userId .. "\'"

local resp= ngx.location.capture("/exec_sql?sql=" .. ngx.escape_uri(sql), {method = ngx.HTTP_GET})

msg="{\034msg\034:\034failure\034,\034desc\034:\034server error!\034}"

if resp.status ~= ngx.HTTP_OK or not resp.body then

 ngx.print(msg)

 ngx.exit(501)

end

local parser = require "rds.parser"

local res, err = parser.parse(resp.body)

if res == nil then

 ngx.exit(501)

end

local affected_rows = 0

local rows = res.resultset

local gwId

local gwName

local model

local vender

local isAlarm

local isOnline

local firmware

local intervaltime

local region

local gps

local i,row,col,val

local j,jrow,jcol,jval

local jparser

local jres,jerr, jresp, jrows

local sensorId

local sensorName

local sensorType

local sensorUnit

local sensorOnline

local sensorAlarm

local sensorRegiion

local sensorGps

if rows == nil then

 ngx.say("no gateway.")

 ngx.exit(403)

end

for i, row in ipairs(rows) do

 for col, val in pairs(row) do

 if col=="sid" then

 gwId = val

 elseif col=="gwName" then

 gwName = val

 elseif col=="model" then

 model = val

 elseif col=="vender" then

 vender = val

 elseif col=="isAlarm" then

 isAlarm = val

 elseif col=="isOnline" then

 isOnline=val

 elseif col=="firmware" then

 firmware=val

 elseif col=="intervaltime" then

 intervaltime=val

 elseif col=="region" then

 region=val

 elseif col=="gps" then

 gps=val

 end

 end

sql="SELECT sensorId,name,type,unit,isAlarm,isOnline,region,gps FROM sensor WHERE gwId=\'" .. gwId .. "\'"

jresp= ngx.location.capture("/exec_sql?sql=" .. ngx.escape_uri(sql), {method = ngx.HTTP_GET})

if jresp.status ~= ngx.HTTP_OK or not jresp.body then

 break

end

jparser = require "rds.parser"

jres, jerr = jparser.parse(jresp.body)

if jres == nil then

 break

end

jrows = jres.resultset

for j, jrow in ipairs(jrows) do

 for jcol, jval in pairs(jrow) do

 if jcol=="sensorId" then

 sensorId=jval

 elseif jcol=="name" then

 sensorName=jval

 elseif jcol=="type" then

 sensorType=jval

 elseif jcol=="isOnline" then

 sensorOnline=jval

 elseif jcol=="isAlarm" then

 sensorAlarm=jval

 elseif jcol=="region" then

 sensorRegion=jval

 elseif jcol=="gps" then

 sensorGps=jval

 end

 end

 vdata["sensorId"]=sensorId

 vdata["name"]=sensorName

 vdata["type"]=sensorType

 vdata["unit"]=sensorUnit

 vdata["isOnline"]=sensorOnline

 vdata["isAlarm"]=sensorAlarm

 vdata["region"]=sensorRegion

 vdata["gps"]=sensorGps

 table.insert(sensors, vdata)

 vdata={}

end

vdata["gwId"]=gwId

vdata["gwName"]=gwName

vdata["isAlarm"]=isAlarm

vdata["isOnline"]=isOnline

vdata["firmware"]=firmware

vdata["interval"]=intervaltime

vdata["region"]=region

vdata["gps"]=gps

vdata["sensors"]=sensors

table.insert(gateways, vdata)

 vdata={}

end

vdata["gateways"]=gateways

local resultStr=cjson.encode(vdata)

ngx.say(resultStr)

ngx.exit(200)

 ';

}

12.4　小结

本章介绍了HttpDrizzleModule和lua-resty-mysql两种MySQL访问方式。Http-Drizzle-Module结合upstream模块，访问速度快，使用简单，但是这种方式不支持存储过程。lua-resty-mysql是OpenResty团队开发的组件，所占内存更小，使用更灵活，支持存储过程，但编码工作量大。我们应该根据具体工程的规模和实际使用情况选择MySQL访问方式。
第13章　Memcached操作

访问Memcached有两种方式：mem-nginx-module访问方式和lua-resty-memcached访问方式。lua-restry-memcached是由OpenResty实现的，mem-nginx-module也被包含在OpenResty内。使用OpenResty可以直接使用这两种方式访问Memcached，自行安装Nginx的需要加入这两个模块才可以使用。
13.1　mem-nginx-module访问方式

ngx_memc是标准Memcached模块的一个扩展版本，支持set、add、delete和其他Memcached命令。ngx_memc实现了Memcached ascii协议，可以使用本模块快速实现Memcached的REST接口，可作为其他模块的子请求提供服务，或对外服务。如果使用本模块缓存location应答，最好和srcache-nginx-module配合实现。

如果在lua-nginx-module中使用，推荐使用lua-resty-memcached库替代，因为其更灵活，更节省内存。

本模块不随Nginx源码发行，在Nginx中需要单独安装。

13.1.1　概述

这里通过6个示例演示ngx_memc的使用方法。ngx_memc通过配置指令实现，通常通过子请求向其他模块提供服务。

1.最简单访问示例

下面是一个最简单的示例：

GET /foo?key=dog

#

POST /foo?key=cat

Cat's value...

#

PUT /foo?key=bird

Bird's value...

#

DELETE /foo?key=Tiger

location /foo {

 set $memc_key $arg_key;

 # $memc_cmd defaults to get for GET,

 # add for POST, set for PUT, and

 # delete for the DELETE request method.

 memc_pass 127.0.0.1:11211;

}

上面的例子配置了一个名为/foo的location，我们可以使用如下的URL访问这个location：

1. GET /foo?key=dog

2. POST /foo?key=cat

3. PUT /foo?key=bird

4. DELETE /foo?key=Tiger

key是我们传入的key。memc_cmd默认使用将请求的GET方法对应为get操作，将POST操作对应为add，将PUT对应为set，将DELETE对应为delete。

2.带cmd操作和key的示例

GET /bar?cmd=get&key=cat

#

POST /bar?cmd=set&key=dog

My value for the "dog" key...

#

DELETE /bar?cmd=delete&key=dog

GET /bar?cmd=delete&key=dog

location /bar {

 set $memc_cmd $arg_cmd;

 set $memc_key $arg_key;

 set $memc_flags $arg_flags; # defaults to 0

 set $memc_exptime $arg_exptime; # defaults to 0

 memc_pass 127.0.0.1:11211;

}

这个示例定义了一个名叫/bar的location，访问这个location时需要提供两个参数，一个是cmd操作，另一个是key值。另外两个参数flags和exptime因为没有使用，所以默认值是0。

访问的方法如下：

1. GET /bar?cmd=get&key=cat

2. POST /bar?cmd=set&key=dog

3. DELETE /bar?cmd=delete&key=dog

4. GET /bar?cmd=delete&key=dog

3.使用全部参数的示例

GET /bar?cmd=get&key=cat

GET /bar?cmd=set&key=dog&val=animal&flags=1234&exptime=2

GET /bar?cmd=delete&key=dog

GET /bar?cmd=flush_all

location /bar {

 set $memc_cmd $arg_cmd;

 set $memc_key $arg_key;

 set $memc_value $arg_val;

 set $memc_flags $arg_flags; # defaults to 0

 set $memc_exptime $arg_exptime; # defaults to 0

 memc_cmds_allowed get set add delete flush_all;

 memc_pass 127.0.0.1:11211;

}

这个示例使用了更多的参数和配置，参数多了val，同时配置了模块允许的操作：

memc_cmds_allowed get set add delete flush_all;

可以访问URL如下：

1.GET /bar?cmd=get&key=cat

2.GET /bar?cmd=set&key=dog&val=animal&flags=1234&exptime=2

3.GET /bar?cmd=delete&key=dog

4.GET /bar?cmd=flush_all

4.stats操作示例

http {

 ...

 upstream backend {

 server 127.0.0.1:11984;

 server 127.0.0.1:11985;

 }

 server {

 location /stats {

 set $memc_cmd stats;

 memc_pass backend;

 }

 ...

 }

 }

 ...

这个示例定义了一个/stats的location，访问这个URL会得到Memcached的stats信息。

5.标志读进Last-Modified示例

read the memcached flags into the Last-Modified header

 # to respond 304 to conditional GET

 location /memc {

 set $memc_key $arg_key;

 memc_pass 127.0.0.1:11984;

 memc_flags_to_last_modified on;

}

这个示例中将Memcached的标志读进Last-Modified头域，用于响应304的GET操作。

6.访问UNIX域套接字服务示例

location /memc {

 set $memc_key foo;

 set $memc_cmd get;

 # access the unix domain socket listend by memcached

 memc_pass unix:/tmp/memcached.sock;

}

这个示例访问Memcached监听的UNIX域套接字。

13.1.2　命令

本节介绍Memcached命令在ngx_memc中的实现。因为ngx_memc模块是通过upstream机制实现的，所以所有命令都是在nginx.conf中通过配置命令实现的，参数通过变量传递。

与其他的库不同，其他的库对应的是函数和API，ngx_memc对应的是命令在配置文件中的实现。

1.get$memc_key

功能：获取key的值。

location /foo {

 set $memc_cmd 'get';

 set $memc_key $arg_key;

 memc_pass 127.0.0.1:11211;

 add_header X-Memc-Flags $memc_flags;

 }

如果key找到了，将在应答包体中返回200 ok，否则返回404（not found）。flags的数值型值放在$mem_flags变量中，经常使用add_header指令在应答头中放进这条信息。在ERROR、CLIENT_ERROR、SERVER_ERROR情况下返回502错误。

数据存储在包体里，可以直接使用包体变量取出值。

在Lua代码中，使用子请求访问REST风格的接口，以子请求方式访问，直接通过包体返回对象读取数值：

 ...

 local resp

 resp = ngx.location.capture("/foo?key=" .. val)

 if resp.status == ngx.HTTP_OK and resp.body then

 print(resp.body)

 end

 ...

2.set$memc_key$memc_flags$memc_exptime$memc_value

功能：使用请求包体作为Memcached值，避免设置$memc_value变量。

POST /foo

my value...

location /foo {

 set $memc_cmd 'set';

 set $memc_key 'my_key';

 set $memc_flags 12345;

 set $memc_exptime 24;

 memc_pass 127.0.0.1:11211;

}

或使用$memc_value保存值：

location /foo {

 set $memc_cmd 'set';

 set $memc_key 'my_key';

 set $memc_flags 12345;

 set $memc_exptime 24;

 set $memc_value 'my_value';

 memc_pass 127.0.0.1:11211;

 }

如果服务端返回STORED状态，函数返回201状态码。其他状态码为404（not found）、502（ERROR、CLIENT_ERROR、SERVER_ERROR）。

除了404-not found外，原始的Memcahced应答在包体内返回。

3.add$memc_key$memc_flags$memc_exptime$memc_value

功能：和set命令一样。

4.replace$memc_key$memc_flags$memc_exptime$memc_value

功能：和set命令一样。

5.append$memc_key$memc_flags$memc_exptime$memc_value

功能：和set命令一样。

注意：Memcached 1.2.2版本不支持append命令和prepend命令。Memcached 1.2.4以上版本才支持这两个命令。

6.prepend$memc_key$memc_flags$memc_exptime$memc_value

功能：和append命令一样。

7.delete$memc_key

功能：删除key的值对数据。

 location /foo

 set $memc_cmd delete;

 set $memc_key my_key;

 memc_pass 127.0.0.1:11211;

 }

删除成功返回200，其他错误为404（not found）、502（ERROR、CLIENT_ERROR、SERVER_ERROR）。

8.delete$memc_key$memc_exptime

功能：和delete$memc_key命令很相似，除了多接受一个可选的过期时间参数，保存在变量$memc_exptime里。这个命令在最新的Memcached 1.4.4版本里不再有效。

9.incr$memc_key$memc_value

功能：将$memc_key的值增长$memc_value。

 location /foo {

 set $memc_key my_key;

 set $memc_value 2;

 memc_pass 127.0.0.1:11211;

 }

上面的例子中，每次访问/foo都会引起my_key增长2。

执行成功返回200 OK，没找到的情况下返回404（not found），ERROR、CLIENT_ERROR、SERVER_ERROR情况下返回502。

10.decr$memc_key$memc_value

功能：同incr$memc_key$memc_value。

11.flush_all

功能：使Memcached中的所有key过期。

 location /foo {

 set $memc_cmd flush_all;

 memc_pass 127.0.0.1:11211;

 }

12.flush_all$memc_exptime

功能：和flush_all不同的是通过$memc_exptime接收一个过期时间。

13.stats

功能：获取Memcached输出统计信息和设置。

 location /foo {

 set $memc_cmd stats;

 memc_pass 127.0.0.1:11211;

 }

查询成功返回200，否则返回502（ERROR、CLIENT_ERROR、SERVER_ERROR）。统计信息在包体里。

14.版本

功能：查询服务器版本。

 location /foo {

 set $memc_cmd version;

 memc_pass 127.0.0.1:11211;

 }

成功返回200，否则返回502（ERROR、CLIENT_ERROR、SERVER_ERROR）。输出在应答的包体里。

13.1.3　指令

指令是ngx_memc在nginx.conf中使用的配置指令，配置指令控制模块的参数和行为，模块按照配置执行操作。

1.memc_pass

语法：

memc_pass <memcached server IP address>:<memcached server port>

memc_pass <memcached server hostname>:<memcached server port>

memc_pass <upstream_backend_name>

memc_pass unix:<path_to_unix_domain_socket>

默认：none。

上下文：http、server、location、if。

阶段：content。

说明：指定Memcached端点。

2.memc_cmds_allowed

语法：

memc_cmds_allowed <cmd>...

默认：none。

上下文：http、server、location、if。

说明：允许使用Memcached命令列表功能。默认地，所有支持的命令都是可访问的，例如：

location /foo {

 set $memc_cmd $arg_cmd;

 set $memc_key $arg_key;

 set $memc_value $arg_val;

 memc_pass 127.0.0.1:11211;

 memc_cmds_allowed get;

 }

3.memc_flags_to_last_modified

语法：

memc_flags_to_last_modified on|off

默认：off。

上下文：http、server、location、if。

说明：读取Last-Modified时间。GET操作中，Nginx将返回304（Not Modified）应答以节省带宽。

4.memc_connect_timeout

语法：

memc_connect_timeout <time>

默认：60s。

上下文：http、server、location。

说明：连接超时值，默认单位是秒。

5.memc_send_timeout

语法：

memc_send_timeout <time>

默认：60s。

上下文：http、server、location。

说明：发送的超时值，默认单位是秒。

6.memc_read_timeout

语法：

memc_read_timeout <time>

默认：60s。

上下文：http、server、location。

说明：读取超时值，默认单位是秒。

7.memc_buffer_size

语法：

memc_buffer_size <size>

默认：4K/8K。

上下文：http、server、location。

说明：缓冲区大小。默认是页尺寸，可以是4KB或8KB。

8.memc_ignore_client_abort

语法：

memc_ignore_client_abort on|off

默认：off。

上下文：location。

说明：是否到Memcache的连接不等待应答就关闭。

13.1.4　安装

使用OpenResty时，不需要单独安装，如果自己使用Nginx源码进行安装，则需要参照下面的步骤安装模块。

wget 'http://nginx.org/download/nginx-1.9.15.tar.gz'

tar -xzvf nginx-1.9.15.tar.gz

cd nginx-1.9.15/

Here we assume you would install you nginx under /opt/nginx/.

./configure --prefix=/opt/nginx \

 --add-module=/path/to/memc-nginx-module

make -j2

make install

下载最新版本的mem-nginx-module模块文件。也可以在Nginx中使用动态模块，在上面的./configure命令中使用--add-dynamic-module=PATH代替--add-module=PATH。然后在nginx.conf通过load_module指令明确装载模块，例如：

load_module /path/to/modules/ngx_http_memc_module.so;

13.1.5　说明

在使用mem-nginx-module时，也有两个需要注意的事项。

1.连接池

使用mem-nginx-module时，推荐使用HttpUpstreamKeepaliveModule实现后端Mem-c-ached服务器连接缓存，使用连接池会显著提升访问的速度。下面是一个样例配置：

 http {

 upstream backend {

 server 127.0.0.1:11211;

 # a pool with at most 1024 connections

 # and do not distinguish the servers:

 keepalive 1024;

 }

 server {

 ...

 location /memc {

 set $memc_cmd get;

 set $memc_key $arg_key;

 memc_pass backend;

 }

 }

 }

2.支持的Memcached命令

mem-nginx-module支持的Memcached命令为set、add、replace、prepend、append。

配置这些命令时，支持下面的变量作为参数：

·$memc_cmd作为命令。

·$memc_key作为key。

·$memc_exptime作为过期时间（或延迟，默认为0）。

·$memc_flags作为标志（默认为0），按照这个规则生成请求命令。

·如果$memc_value没有定义，除了incr和decr命令外，请求包体将作为$memc_value。如果$memc_value定义了一个空字符串（“”），那么这个空字符串仍然有效会被使用。

13.1.6　示例

下面是一个比较完整的例子，演示了Memcached的常用操作。

1.配置nginx.conf

worker_processes 1;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 sendfile on;

 keepalive_timeout 65;

 upstream memcached {

 server 127.0.0.1:11211;

 }

 server {

 listen 80;

 server_name localhost;

 root html;

 index index.html index.htm;

 location = /memcached-status {

 set $memc_cmd stats;

 memc_pass memcached;

 }

 location / {

 set $memc_cmd $arg_cmd;

 set $memc_key $arg_key;

 set $memc_value $arg_val;

 set $memc_flags $arg_flags;

 set $memc_exptime $arg_exptime;

 memc_cmds_allowed get set add incr delete flush_all;

 memc_pass memcached;

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 }

}

2.测试配置文件，并重启服务

/usr/local/openresty/nginx/sbin/nginx -t -p /usr/local/openresty/nginx/

nginx: the configuration file /usr/local/openresty/nginx/conf/nginx.conf syntax is ok

nginx: configuration file /usr/local/openresty/nginx/conf/nginx.conf test is successful

/usr/local/openresty/nginx/sbin/nginx -p /usr/local/openresty/nginx/ -s reload

3.测试结果

curl 'localhost/?cmd=set&key=1&val=test

STORED

curl 'localhost/?cmd=get&key=1'

test

curl 'localhost/?cmd=delete&key=1'

DELETED

curl 'localhost/?cmd=add&key=2&val=100'

STORED

curl 'localhost/?cmd=get&key=2'

100

curl 'localhost/?cmd=incr&key=2&val=1'

101

curl 'localhost/?cmd=incr&key=2&val=1'

102

curl 'localhost/?cmd=decr&key=2&val=1'

<html>

<head><title>403 Forbidden</title></head>

<body bgcolor="white">

<center><h1>403 Forbidden</h1></center>

<hr><center>ngx_openresty/1.2.4.14</center>

</body>

</html>

curl 'localhost/?cmd=flush_all'

OK

curl 'localhost/?cmd=get&key=1'

<html>

<head><title>404 Not Found</title></head>

<body bgcolor="white">

<center><h1>404 Not Found</h1></center>

<hr><center>ngx_openresty/1.2.4.14</center>

</body>

</html>

curl 'localhost/?cmd=get&key=2'

<html>

<head><title>404 Not Found</title></head>

<body bgcolor="white">

<center><h1>404 Not Found</h1></center>

<hr><center>ngx_openresty/1.2.4.14</center>

</body>

</html>

curl 'localhost/memcached-status'

STAT pid 4914

STAT uptime 2774

STAT time 1360198988

STAT version 1.4.15

STAT libevent 2.0.21-stable

STAT pointer_size 64

STAT rusage_user 0.014997

STAT rusage_system 0.015997

STAT curr_connections 5

STAT total_connections 46

STAT connection_structures 6

STAT reserved_fds 20

STAT cmd_get 35

STAT cmd_set 8

STAT cmd_flush 5

STAT cmd_touch 0

STAT get_hits 11

STAT get_misses 24

STAT delete_misses 0

STAT delete_hits 1

STAT incr_misses 0

STAT incr_hits 4

STAT decr_misses 0

STAT decr_hits 0

STAT cas_misses 0

STAT cas_hits 0

STAT cas_badval 0

STAT touch_hits 0

STAT touch_misses 0

STAT auth_cmds 0

STAT auth_errors 0

STAT bytes_read 611

STAT bytes_written 1584

STAT limit_maxbytes 33554432

STAT accepting_conns 1

STAT listen_disabled_num 0

STAT threads 4

STAT conn_yields 0

STAT hash_power_level 16

STAT hash_bytes 524288

STAT hash_is_expanding 0

STAT bytes 0

STAT curr_items 0

STAT total_items 11

STAT expired_unfetched 1

STAT evicted_unfetched 0

STAT evictions 0

STAT reclaimed 1

END

13.2　lua-resty-memcached访问方式

lua-resty-memcached是OpenResty团队提供的Memcached访问库。lua-resty-memcached适合在Lua代码里使用，可以灵活控制各个环节，并且节省内存，和内存池结合得更好。

13.2.1　概述

下面是一个lua-resty-memcached使用示例，演示了典型的使用方法。

 lua_package_path "/path/to/lua-resty-memcached/lib/?.lua;;";

 server {

 location /test {

 content_by_lua '

 local memcached = require "resty.memcached"

 local memc, err = memcached:new()

 if not memc then

 ngx.say("failed to instantiate memc: ", err)

 return

 end

 memc:set_timeout(1000) -- 1 sec

 -- or connect to a unix domain socket file listened

 -- by a memcached server:

 -- local ok, err = memc:connect("unix:/path/to/memc.sock")

 local ok, err = memc:connect("127.0.0.1", 11211)

 if not ok then

 ngx.say("failed to connect: ", err)

 return

 end

 local ok, err = memc:flush_all()

 if not ok then

 ngx.say("failed to flush all: ", err)

 return

 end

 local ok, err = memc:set("dog", 32)

 if not ok then

 ngx.say("failed to set dog: ", err)

 return

 end

 local res, flags, err = memc:get("dog")

 if err then

 ngx.say("failed to get dog: ", err)

 return

 end

 if not res then

 ngx.say("dog not found")

 return

 end

 ngx.say("dog: ", res)

 -- put it into the connection pool of size 100,

 -- with 10 seconds max idle timeout

 local ok, err = memc:set_keepalive(10000, 100)

 if not ok then

 ngx.say("cannot set keepalive: ", err)

 return

 end

 -- or just close the connection right away:

 -- local ok, err = memc:close()

 -- if not ok then

 -- ngx.say("failed to close: ", err)

 -- return -- end ';

 }

 }

13.2.2　API

下面的API中，key参数在被传送给服务器之前将被自动按URI编码规则编码。

1.new

语法：

memc, err = memcached:new(opts?)

说明：创建Memcached对象，失败则返回nil和描述字串。opts是可选参数，类型为表。支持下面的数据选项。

key_transform：包含两个函数的数组，函数用于对key转码和解码。默认地，key会使用URI组件转码和解码。

memached:new{

 key_transform = { ngx.escape_uri, ngx.unescape_uri }

}

2.connect

语法：

ok, err = memc:connect(host, port)

ok, err = memc:connect("unix:/path/to/unix.sock")

说明：连接到服务器。实际连接之前会先遍历连接池。

3.set

语法：

ok, err = memc:set(key, value, exptime, flags)

说明：无条件插入一条记录。如果key已经存在，将覆盖。

value可以是一个Lua表，容纳多个Lua字符串，例如：

 memc:set("dog", {"a ", {"kind of"}, " animal"})

等同于

 memc:set("dog", "a kind of animal")

exptime参数可选，默认为0。

flags参数可选，默认为0。

4.set_timeout

语法：

ok, err = memc:set_timeout(time)

说明：设置超时值，包括connect操作。成功则返回1，失败则返回nil和错误描述。

5.set_keepalive

语法：

ok, err = memc:set_keepalive(max_idle_timeout, pool_size)

说明：将对象立即放入连接池内，对象进入close状态，可用于原本使用close的地方。参见其他模块的set_keepalive部分。

6.get_reused_times

语法：

times, err = memc:get_reused_times()

说明：返回当前连接重用次数，用于判断是否是来自于连接池，如果不是永远返回0。

7.close

语法：

ok, err = memc:close()

说明：关闭当前连接，成功则返回1，失败则返回nil和错误描述。

8.add

语法：

ok, err = memc:add(key, value, exptime, flags)

说明：插入一条记录，只有key不存在才会成功。

参数同样可以是Lua表，容纳多个Lua字符串，例如：

 memc:add("dog", {"a ", {"kind of"}, " animal"})

等同于

memc:add("dog", "a kind of animal")

exptime参数可选，默认为0。

flags参数可选，默认为0。

9.replace

语法：

ok, err = memc:replace(key, value, exptime, flags)

说明：插入一条记录，只有key存在才会成功。

参数同样可以是Lua表，容纳多个Lua字符串，例如：

 memc:add("dog", {"a ", {"kind of"}, " animal"})

等同于

memc:add("dog", "a kind of animal")

exptime参数可选，默认为0。

flags参数可选，默认为0。

10.append

语法：

ok, err = memc:append(key, value, exptime, flags)

说明：向key的value追加内容。

参数同样可以是Lua表，容纳多个Lua字符串，例如：

 memc:add("dog", {"a ", {"kind of"}, " animal"})

等同于

memc:add("dog", "a kind of animal")

exptime参数可选，默认为0。

flags参数可选，默认为0。

11.prepend

语法：

ok, err = memc:prepend(key, value, exptime, flags)

说明：向key的value前面追加内容。

参数同样可以是Lua表，容纳多个Lua字符串，例如：

 memc:add("dog", {"a ", {"kind of"}, " animal"})

等同于

memc:add("dog", "a kind of animal")

exptime参数可选，默认为0。

flags参数可选，默认为0。

12.get

语法：

value, flags, err = memc:get(key) syntax: results, err = memc:get(keys)

说明：从服务器获取1个或多个key的值。key可以是单key，也可以是存放在Lua表中的多key。

单key的情况下，如果key找到了，返回value和flags。发生错误时将返回nil，flags和str将返回描述性错误。

如果没有找到，则返回3个nil。

多key的情况下，返回结果将保存在一个Lua表中返回。每一个key对应着一个表，存放value和flags。如果key不存在，则没有对应的结果表。

任何错误发生时，将返回nil和错误描述信息。

13.gets

语法：

value, flags, cas_unique, err = memc:gets(key)

results, err = memc:gets(keys)

说明：跟get方法很像，只是返回CAS唯一值，本方法通常和cas方法一起使用。

14.cas

语法：

ok, err = memc:cas(key, value, cas_unique, exptime?, flags?)

说明：和set方法相似，只是做一个检查和set操作，意思是：如果从我上次获取这个值以来没有人修改过，那么存储这个数据。

cas_unique参数可以从gets方法获取。

15.touch

语法：

ok, err = memc:touch(key, exptime)

说明：更新一个已经存在key的过期时间。

16.flush_all

语法：

ok, err = memc:flush_all(time?)

说明：清掉服务中的所有元素，不指定time则默认立即操作，指定time则在time时间后操作（秒）。

17.delete

语法：

ok, err = memc:delete(key)

说明：立即删除一个key。key必须已经存在于服务中。

18.incr

语法：

new_value, err = memc:incr(key, delta)

说明：将key的值按delta里的整数增长。成功则返回增长后的新值，失败则返回nil和错误描述。

19.decr

语法：

new_value, err = memc:decr(key, value)

说明：将key的value减少value。成功则返回新文值，失败则返回nil和错误描述。

20.stats

语法：

lines, err = memc:stats(args?)

说明：返回服务器的统计信息。成功则返回一个Lua表，容纳所有的行。失败则返回nil的错误描述。args参数未指定，返回服务器统计信息，args可以是sizes、slabs或其他值。

21.version

版本：

version, err = memc:version(args?)

说明：返回服务器版本号，如1.2.8。

22.quit

语法：

ok, err = memc:quit()

说明：关闭当前连接。

23.verbosity

语法：

ok, err = memc:verbosity(level)

说明：设置冗余级别，level必须是数值型。

13.2.3　自动日志

如果自行处理了错误日志，需要关闭自动日志功能：

 lua_socket_log_errors off;

13.2.4　限制

使用lua-resty-memcached库时要注意以下两点限制：

·本库不能在set_by_lua*、log_by_lua*、header_filter_by_lua*上下文中使用，因为cosocket API处于无效状态。

·resty.memcached对象不能存储在模块级变量中，只能保存在局部变量或ctx.ctxtable中。
13.3　小结

在Lua中访问Memcached，有mem-nginx-module和lua-resty-memcached两种常用方法。ngx_memc使用简单，通过连接池的配置，可以获得不错的性能。lua-resty-memcached使用更灵活，更节约内存。两种方式需要根据具体项目的模型和用途选择。
第14章　PostgreSQL操作

ngx_postgres用于和PostgreSQL数据库通信。应答包是RDS格式，可以和rds-json-nginx模块的drizzle-nginx-module一起工作。

默认在OpenResty下没有使能本模块，需要在编译OpenResty时使用--with-http_postgres_module选项打开。本模块需要系统中首先安装libpq。
14.1　概述

下面是一个ngx_postgre使用示例，这个示例向我们展示了ngx_postgre的使用概貌。

RDS格式的cats表结果集：

http {

 upstream database {

 postgres_server 127.0.0.1 dbname=test user=test password=test;

 }

 server {

 location / {

 postgres_pass database;

 postgres_query "SELECT * FROM cats";

 }

 }

}

示例中定义了一个location/，向cats表发起了一个查询。查询通过postgres_query发起，请求通过postgres_pass传递到database这个upstream，而服务器的信息配置在postgre_server这条配置里。

这是一个典型的upstream访问模式。
14.2　配置指令

ngx_postgres是一个通过配置指令实现的upstream模块。本节介绍所有配置指令。

1.postgres_server

语法：

postgres_server ip[:port] dbname=dbname user=user password=pass

默认：none。

上下文：upstream。

说明：设置要使用的数据库参数。

2.postgres_keepalive

语法：

postgres_keepalive off | max=count [mode=single|multi] [overflow=ignore|reject]

默认：max=10 mode=single overflow=ignore。

上下文：upstream。

说明：配置连接池参数如下。

·max：每个工作进程最多连接数。

·mode：后端匹配模式。

·overflow：ignore表示忽略连接池满了的情况并且允许请求，但之后关闭连接，或直接使用503错误拒绝请求。

3.postgres_pass

语法：

postgres_pass upstream

默认：none。

上下文：location、if location。

说明：设置数据连接使用的upstream块，可以包含变量。

4.postgres_query

语法：

postgres_query [methods] query

默认：none。

上下文：http、server、location、if location。

说明：设置查询语句，可以包含变量。如果methods变量指定了，则查询只使用于methods方法，否则可以使用于所有的方法。

本指令可以在相同的上下文内使用多次。

5.postgres_rewrite

语法：

postgres_rewrite [methods] condition [=]status_code

默认：none。

上下文：http、server、location、if location。

当条件成立时，重写应答状态码：

·no_changes：本查询没有受影响的数据行。

·changes：至少一行被查询影响到。

·no_rows：结果集没有返回一行数据。

·rows：结果集里至少返回一行。

status_code使用“=”前缀时表示原始应答包体代替status_code表示的默认错误页发送给请求方。

no_changes和changes只使用于INSERT、UPDATE、DELETE、MOVE、FETCH和COPY查询。

在相同的上下文中，本指令可以使用多次。

6.postgres_output

语法：

postgres_output rds|text|value|binary_value|none

默认：rds。

上下文：http、server、location、if location。

说明：设置输出格式。

·rds：结果集使用RDS格式。

·text：使用文本格式（使用默认的Content-Type），值使用新行分隔。

·value：使用文本格式返回单值（使用默认的Content-Type）。

·binary_value：使用二进制格式（使用默认的Content-Type）。

·none：不返回任何数据，只在使用了postgres_set设置其他模块处理结果集时使用默认的Content-Type。

7.postgres_set

语法：

postgres_set $variable row column [optional|required]

默认：none。

上下文：http、server、location。

说明：从结果集中读取单值，保存值在$variable。

当请求级别设置为required并且值超出范围、null或0长度时，Nginx返回500错误。当需要的级别是optional时，这种情况会被忽略。

行和列数从0开始。列号可以用列名代替。

本指令可以在相同的上下文中调用多次。

8.postgres_escape

语法：

postgres_escape $escaped [[=]$unescaped]

默认：none。

上下文：http、server、location。

说明：解码$unescaped字符串，结果保存在$escaped变量中，可以安全地在SQL查询中使用。

因为Nginx不能描述空和不存在字符串，所有空字符中默认地转成null值。可以通过在$unescaped前面加“=”禁用。

9.postgres_connect_timeout

语法：

postgres_connect_timeout timeout

默认：10s。

上下文：http、server、location。

说明：设置连接到服务器的超时值。

10.postgres_result_timeout

语法：

postgres_result_timeout timeout

默认：30s。

上下文：http、server、location。

说明：设置接收超时值。
14.3　配置变量

配置指令支持下列变量，可以在配置过程中使用。

·$postgres_columns：结果集中的列数量。

·$postgres_rows：结果集中的行数量。

·$postgres_affected：受影响的行数，由INSERT、UPDATE、DELETE、MOVE、FETCH、COPY查询产生。

·$postgres_query：SQL查询语句。
14.4　示例

这里提供几个示例方便对ngx_postgres模块学习。

示例1：从sites表返回从$http_host变量匹配的行。

http {

 upstream database {

 postgres_server 127.0.0.1 dbname=test user=test password=test;

 }

 server {

 location / {

 postgres_pass database;

 postgres_query SELECT * FROM sites WHERE host='$http_host'";

 }

 }

}

这个示例定义了location/以供其他请求使用，这是一个子请求或REST接口，使用$http_host这个变量作为查询参数，读取信息。请求配置到database这个upstream上。

示例2：将请求转发给从数据中选择的后端点。

http {

 upstream database {

 postgres_server 127.0.0.1 dbname=test user=test password=test;

 }

 server {

 location / {

 eval_subrequest_in_memory off;

 eval $backend {

 postgres_pass database;

 postgres_query "SELECT * FROM backends LIMIT 1";

 postgres_output value 0 0;

 }

 proxy_pass $backend;

 }

 }

}

这个示例使用eval模块将请求使用proxy_pass指令向上游请求适配，本示例需要模块nginx-eval-module（agentzh's fork）支持。

示例3：使用本地数据库进行校验，实现访问限制。

http {

 upstream database {

 postgres_server 127.0.0.1 dbname=test

 user=test password=test;

 }

 server {

 location = /auth {

 internal;

 postgres_escape $user $remote_user;

 postgres_escape $pass $remote_passwd;

 postgres_pass database;

 postgres_query "SELECT login FROM users WHERE login=$user AND pass=$pass";

 postgres_rewrite no_rows 403;

 postgres_output none;

 }

 location / {

 auth_request /auth;

 root /files;

 }

 }

}

这是一个比较典型的应用，从数据库中获取校验信息，实现访问控制，这里可以加以扩展，从Redis或Memcached中缓存访问控制信息，则可以形成一个生产系统上可用的访问控制。

本示例需要下面模块支持：

·ngx_http_auth_request_module。

·ngx_coolkit。

示例4：返回JSON的简单RESTFul Webservice。

http {

 upstream database {

 postgres_server 127.0.0.1 dbname=test

 user=test password=test;

 }

 server {

 set $random 123;

 location = /numbers/ {

 postgres_pass database;

 rds_json on;

 postgres_query HEAD GET "SELECT * FROM numbers";

 postgres_query POST"INSERT INTO numbers VALUES('$random') RETURNING *";

 postgres_rewrite POST changes 201;

 postgres_query DELETE "DELETE FROM numbers";

 postgres_rewrite DELETE no_changes 204;

 postgres_rewrite DELETE changes 204;

 }

 location ~ /numbers/(?<num>\d+) {

 postgres_pass database;

 rds_json on;

 postgres_queryHEAD GET "SELECT * FROM numbers WHERE number='$num'";

 postgres_rewrite HEAD GET no_rows 410;

 postgres_query PUT"UPDATE numbers SET number='$num' WHERE number

='$num' RETURNING *";

 postgres_rewrite PUT no_changes 410;

 postgres_query DELETE "DELETE FROM numbers WHERE number='$num'";

 postgres_rewrite DELETE no_changes 410;

 postgres_rewrite DELETE changes 204;

 }

 }

}

这个示例使用了大部分的配置指令，演示了比较复杂的应用。通常这个模块还适合应用于简单的使用场景，可以直接实现REST接口。本示例需要ngx_rds_json模块支持。

示例5：在SQL查询中使用GET参数。

location /quotes {

 set_unescape_uri $txt $arg_txt;

 postgres_escape $txt;

 postgres_pass database;

 postgres_query "SELECT * FROM quotes WHERE quote=$txt";

}

这个示例只是增加了set_unescape_uri指令和postgres_escape指令，对输入处理做了URI解码。

本示例需要ngx_set_misc模块支持。
14.5　小结

ngx_postgres库集成在OpenResty包中，但默认没有启用，需要通过对应的编译参数启用。ngx_postgres库通过配置指令实现，使用比较简单。
第15章　MongoDB操作

Nginx下使用lua-resty-mongol模块访问MongoDB，但lua-resty-mongol模块并没有打包在OpenResty内，需要单独安装，即在OpenResty的lualib目录下复制进对应的脚本文件。lua-resty-mongol库提供了很好的性能和灵活性，内存占用率低。
15.1　安装

首先从git上下载lua-resty-mongol。如果机器上没有git，则要先安装git：

yum -y install git

然后执行下面的命令：

git clone https://github.com/bigplum/lua-resty-mongol.git

cd lua-resty-mongol

make PREFIX=/usr/local/openresty install

/usr/local/openresty为已经安装的resty的安装路径，安装程序会在/usr/local/openresty/lualib/resty目录下面建立mongol目录，并添加mongol的Lua脚本。
15.2　配置

在nginx.conf中添加库目录：

lua_package_path '/usr/local/openresty/lualib/?/init.lua;;';

或者在Lua文件使用之前调用：

local p = "/usr/local/openresty/lualib/"

local m_package_path = package.path

package.path = string.format("%s?.lua;%s?/init.lua;%s", p, p, m_package_path)

调用require操作会得到一个到mongod的连接对象函数，后面的操作都使用这个对象。

mongol = require "resty.mongol"

conn = mongol:new() -- return a conntion object

15.3　操作函数

lua-resty-mongol库函数共分为3类：①连接对象，用于管理和服务器的连接；②数据库对象方法，用于获取数据行；③列对象，用于对数据行进行分析和处理。三者的关系如下：连接对象返回数据库对象，数据库对象返回列，列返回需要访问的数据。

15.3.1　连接对象方法

连接对象操作包含以下方法：

1.ok，err=conn：connect（host，port）

功能：连接到服务器，默认值host是localhost，端口是27017。

2.ok，err=conn：set_timeout（msec）

功能：设置套接字超时值，影响connect、read、writing，单位是毫秒。

成功则返回1，失败则返回nil和错误描述字串。

3.ok，err=conn：set_keepalive（msec，pool_size）

功能：将连接放入连接池，成功则返回1，失败则返回nil和错误描述字串。

4.times，err=conn：get_reused_times（）

功能：返回连接重用次数。

5.ok，err=conn：close（）

功能：关闭连接。

6.bool，hosts=conn：ismaster（）

功能：返回一个布尔值标示是否这是一个主服务器，并且返回一个其他主机的表hosts，失败则返回nil和err。

7.newconn=conn：getprimary（[already_checked]）

功能：返回一个连接到主服务器的连接，或者返回nil和errmsg。返回的连接对象可能就是它自己。

8.databases=conn：databases（）

功能：返回一个服务器上数据库的表。

databases.name: string

databases.empty: boolean

databases.sizeOnDisk: number

9.conn：shutdown（）

功能：关闭服务器，没有返回。

10.db=conn：new_db_handle（database_name）

功能：返回一个数据库对象，或者nil。

15.3.2　数据库对象方法

数据库对象操作包含以下方法：

1.db：list（）

功能：列出数据库所有表。

2.db：dropDatabase（）

功能：删除数据库。

3.db：add_user（username，password）

功能：添加新用户。

4.ok，err=db：auth（username，password）

功能：校验用户，成功则返回1，失败则返回nil和错误描述。

5.col=db：get_col（collection_name）

功能：返回一个列对象，以便在上面执行更多操作。

6.gridfs=db：get_gridfs（fs）

功能：从MongoDB获取一个gridfs对象。

15.3.3　列对象方法

列对象操作包含以下方法：

1.n=col：count（query）

功能：返回列内query条件结果数。

2.ok，err=col：drop（）

功能：删除当前列。

3.n，err=col：update（selector，update，upsert，multiupdate，safe）

功能：返回被更新的列数或失败时返回nil。

·upsert设置为1时，如果没有找到匹配的文档，照样把支持的对象插入数据库。默认是0。

·multiupdate设置为1时，数据库将所有匹配的对象进行更新，否则只更新第一个匹配的记录。默认是0。

·safe可以是布尔值或整型值。默认是0，如果为1，则程序将向服务器发送一个getlasterror命令查询结果。如果是false，则返回值n将总是-1。

4.n，err=col：insert（docs，continue_on_error，safe）

功能：如果设置了continue_on_error值，当执行一个块插入操作时，出现错误也不会停止执行（如重复的ID）。

safe的含义同第3条命令的safe参数。

5.n，err=col：delete（selector，singleRemove，safe）

功能：返回被删除的行数，失败则返回nil和错误描述。

·singleRemove设置为1时，数据库只会删除第一个匹配的记录，否则所有的记录会被删除。默认为0。

·safe的含义同第3条命令的saft参数。

6.r=col：find_one（query，returnfields）

功能：返回一个单元素数据，否则返回nil。

returnfields是需要返回的域，如{n=0}或{n=1}。

7.cursor=col：find（query，returnfields，num_each_query）

功能：为查询语句返回一个游标对象。

·returnfields：需要返回的域，如{n=0}或{n=1}。

·num_each_query：游标每次查询的最大返回数，必须大于1，0是无限制，默认是100。

8.col：getmore（cursorID，[numberToReturn]，[offset_i]）

·cursorID：一个8字节字符串。

·numberToReturn：要返回多少结果，默认是-1。

·offset_i：开始的数量，默认为1。

9.col：kill_cursors（cursorIDs）

功能：释放当前游标。
15.4　示例

示例1：实现简单的键值读取，这是最常用的使用情况，同样可以实现将我们的键值数据保存到数据库上。

local mongo = require "resty.mongol"

conn = mongo:new()

conn:set_timeout(1000)

ok, err = conn:connect()

if not ok then

 ngx.say("connect failed: "..err)

end

local db = conn:new_db_handle ("test")

col = db:get_col("test")

r = col:find_one({name="dog"})

ngx.say(r["name"])

或进行进一步解析：

local mongo = require "resty.mongol"

local conn = mongo:new()

conn:set_timeout(1000)

local ok, err = conn:connect("127.0.0.1",27017)

if not ok then

 ngx.say(?connect failed: ?..err)

end

local db=conn:new_db_handle("test")

local col = db:get_col("test")

local r = col:find_one({name="dog"},{_id=0})

for k,v in pairs(r) do

 ngx.say(k..?: ?..v)

end

示例2：将MongoDB返回的BSON格式结果集，用CJSON库转换为JSON返回给Web使用JavaScript处理。

local mongo = require "resty.mongol"

local json = require("cjson")

local conn = mongo:new()

conn:set_timeout(1000)

local ok, err = conn:connect("127.0.0.1",27017)

if not ok then

 ngx.say(?connect failed: ?..err)

end

local db=conn:new_db_handle("meedo-service")

local col = db:get_col("channels")

local r = col:find_one({_id=1})

value = json.encode(r)

ngx.say(value)

15.5　小结

使用lua-resty-mongol库访问MongoDB，但lua-resty-mongol并没有打包在OpenResty内，需要单独安装。lua-resty-mongol与OpenResty团队开发的其他库拥有相同的访问网络，性能好，内存占用率非常小。
第16章　bit库的使用

Lua提供了bit库，可以对变量数据进行位运算，在某些应有场景，我们需要在Lua中对数据进行位移，或进行“与、或、非”及进制转换等操作。

例如，用一个32位的整数表示RGB颜色。32位整数，被分为4个部分，每个部分8位，8位可表示的十进制数的范围是0～255。
16.1　示例

下面演示爱拉托逊斯筛法，计算一定范围内质数的数量。使用一个Lua表容纳位vector。每一个数组索引有32位的vector。位操作用于访问和操作这些容器和元素。注意，不需要标记移位数量。

local bit = require("bit")

local band, bxor = bit.band, bit.bxor

localrshift, rol = bit.rshift, bit.rol

local m = tonumber(arg and arg[1]) or 100000

if m < 2 then m = 2 end

local count = 0

local p = {}

fori=0,(m+31)/32 do p[i] = -1 end

fori=2,m do

if band(rshift(p[rshift(i, 5)], i), 1) ~= 0 then

count = count + 1

for j=i+i,m,i do

localjx = rshift(j, 5)

p[jx] = band(p[jx], rol(-2, j))

end

end

end

io.write(string.format("Found %d primes up to %d\n", count, m))

LuaBitOp操作非常快。这个程序在3GHz CPU上的运行时间少于90毫秒，但是事实上执行了超过100万次位操作。这是在标准Lua安装上得到的数据，如果使用LuaJIT，速度会更快。
16.2　安装

因为bit库需要使用到lua-devel库，所以需要在CentOS上首先安装lua-devel库。

安装lua-devel库：

yum install lua-devel.*

下载BitOp源码包：

wgethttp://bitop.luajit.org/download/LuaBitOp-1.0.1.tar.gz

解压缩：

tar -xzvf LuaBitOp-1.0.2.tar.gz

cd LuaBitOp-1.0.2

编译：

make（编译出来的库在目录下为bit.so）

make install

bit.so将安装在lua C库目录下，如/usr/lib64/lua/5.1/。
16.3　函数

BitOp提供了大部分的位操作函数。

1.载入BitOp模块

推荐使用require命令载入BitOp模块：

local bit = require("bit")

这个方法限制了访问范围在当前文件，同时提供快速的方式访问bit.*函数。不在全局变量使用模块对象是好的编程实践。require函数保证模块在任何情况下只会载入一次。

2.定义快捷方式

通用的做法是将常用的模块函数缓冲到local变量内。这种方法将加速这些函数解析。

localbnot = bit.bnot

local band, bor, bxor = bit.band, bit.bor, bit.bxor

locallshift, rshift, rol = bit.lshift, bit.rshift, bit.rol

-- etc...

-- 快捷方式示例

local function tr_i(a, b, c, d, x, s)

returnrol(bxor(c, bor(b, bnot(d))) + a + x, s) + b

end

and、or和not是Lua保留关键字，它们不能用于变量名和语义域名。所以位函数命名为band、bor和bnot（bxor异或）。

3.Bit操作

printfx函数将参数作为一个无符号32位十六进制数输出，后面的函数示例中将使用本函数。

functionprintx(x)

print("0x"..bit.tohex(x))

end

（1）y=bit.tobit（x）

功能：将一个数值规范化，做好位操作准备并返回。

并不是在所有的位操作之前都需要对参数进行规范化操作，具体需要查看每个操作的说明。

print(0xffffffff) --> 4294967295 (*)

print(bit.tobit(0xffffffff)) --> -1

printx(bit.tobit(0xffffffff)) --> 0xffffffff

print(bit.tobit(0xffffffff + 1)) --> 0

print(bit.tobit(2^40 + 1234)) --> 1234

（2）y=bit.tohex（x[，n]）

功能：将x转换为十六进制字符串。

n是可选参数，表示生成的十六进制字节数。正数1～8的取值会生成小写的十六进制串。负数取值将会生成大写十六进制串。结果数值只使用重要的4|n|位。默认生成8位小写十六进制数值。

print(bit.tohex(1)) --> 00000001

print(bit.tohex(-1)) -->ffffffff

print(bit.tohex(0xffffffff)) -->ffffffff

print(bit.tohex(-1, -8)) --> FFFFFFFF

print(bit.tohex(0x21, 4)) --> 0021

print(bit.tohex(0x87654321, 4)) --> 4321

（3）y=bit.bnot（x）

功能：按位取反。

print(bit.bnot(0)) --> -1

printx(bit.bnot(0)) --> 0xffffffff

print(bit.bnot(-1)) --> 0

print(bit.bnot(0xffffffff)) --> 0

printx(bit.bnot(0x12345678)) --> 0xedcba987

（4）y=bit.bor（x1[，x2...]），y=bit.band（x1[，x2...]），y=bit.bxor（x1[，x2...]）

功能：分别为或、与、异或操作。

print(bit.bor(1, 2, 4, 8)) --> 15

printx(bit.band(0x12345678, 0xff)) --> 0x00000078

printx(bit.bxor(0xa5a5f0f0, 0xaa55ff00)) --> 0x0ff00ff0

（5）y=bit.lshift（x，n），y=bit.rshift（x，n），y=bit.arshift（x，n）

功能：分别为逻辑左移、逻辑右移、算术右移，n表示移动位数，n取值为0～31。

逻辑移动将x作为无符号数操作，以0位填充。算术右移将移动的位作为有符号位复制并填充。

print(bit.lshift(1, 0)) --> 1

print(bit.lshift(1, 8)) --> 256

print(bit.lshift(1, 40)) --> 256

print(bit.rshift(256, 8)) --> 1

print(bit.rshift(-256, 8)) --> 16777215

print(bit.arshift(256, 8)) --> 1

print(bit.arshift(-256, 8)) --> -1

printx(bit.lshift(0x87654321, 12)) --> 0x54321000

printx(bit.rshift(0x87654321, 12)) --> 0x00087654

printx(bit.arshift(0x87654321, 12)) --> 0xfff87654

（6）y=bit.rol（x，n），y=bit.ror（x，n）

功能：分别为左旋转、右旋转。n为旋转位数，范围为0～31。

printx(bit.rol(0x12345678, 12)) --> 0x45678123

printx(bit.ror(0x12345678, 12)) --> 0x67812345

（7）y=bit.bswap（x）

功能：交换x的字节，可以用来转换小端序32位数值为大端序32位数值。

printx(bit.bswap(0x12345678)) --> 0x78563412

printx(bit.bswap(0x78563412)) --> 0x12345678

16.4　说明

使用BitOp库时需要注意以下事项。

1.有符号结果

避免使用string.format时用“%x”和“%u”进行格式化，因为在超过8个十六进制数字时这些格式会出错。

因为这些是有符号结果，所以也可能需要避免默认的数值向字符串转换，这个约束也适用于其他的接受字符串参数的标准库，如print（）或io.write（）。

2.条件

如果从C/C++代码翻译成Lua，要小心位操作为判断条件的情况。在C/C++中非0值被当成true对待，例如：

if (x & 3) ...

不能这样转换为Lua代码：

if band(x, 3) then ... -- wrong!

在Lua中所有的对象除了nil都被认为是true，包括所有的数值。所以这样处理是正确的：

if band(x, 3) ~= 0 then ... -- correct!

3.十六进制比较

对位操作的结果（有符号数）和十六进制数（无符号）进行比较需要一些额外的考虑，下面的条件表达式可能不能正确工作，这依赖于平台：

bit.bor(x, 1) == 0xffffffff

在默认的数值类型下，这个条件永远不会为true。

简单的方案如下：

·不要在表达式中使用超过0x7fffffff的十六进制串：

bit.bor(x, 1) == -1

·在比较之前使用bit.tobit（）进行转换：

bit.bor(x, 1) == bit.tobit(0xffffffff)

·为bit.bxor（）生成一个工作区：

bit.bxor(bit.bor(x, 1), 0xffffffff) == 0

·使用一个具体的工作区：

bit.rshift(x, 1) == 0x7fffffff

16.5　小结

因为Lua在语言一级并不支持位操作，不能像C/C++等语言直接使用位操作，需要使用bit库进行位操作。本章详细介绍了BitOp库，使用BitOp库可以执行与C/C++相同的位操作。位操作性能通常都要好一些。
第17章　lfs库的使用

lfs-file system operations（LuaFileSystem）用于补充标准Lua发布版本的文件操作函数。LuaFileSystem提供了一个访问底层目录文件属性的轻便方法。Lua系统库里的文件函数只能打开文件以及对文件进行读写，lfs库提供了对文件和目录操作的方法。
17.1　目录迭代示例

示例：对一个目录进行迭代并且递归显示每一个文件的属性。

require"lfs"

function attrdir (path)

 for file in lfs.dir(path) do

 if file ~= "." and file ~= ".." then

 local f = path..'/'..file

 print ("\t "..f)

 local attr = lfs.attributes (f)

 assert (type(attr) == "table")

 if attr.mode == "directory" then

 attrdir (f)

 else

 for name, value in pairs(attr) do

 print (name, value)

 end

 end

 end

 end

 end

attrdir (".")

17.2　安装

OpenResty中并未打包LuaFileSystem，所以使用lfs时，需要首先下载和安装。

从http://luaforge.net/projects/luafilesystem/files下载lfs源码，执行configure、make、make install。或者将编译出来的lfs.so复制到lua库目录中，如/usr/local/nginx/lib。

git clone https://github.com/keplerproject/luafilesystem

cd luafilessystem

make

make install

lfs.so会被编译连接并复制到lua目录下，如/usr/local/lib/lua/5.1。
17.3　LuaFileSystem函数

LuaFileSystem提供的文件和路径操作函数与C标准库中的对应函数非常相似，理解和使用起来无难度。

1.lfs.attributes

语法：

lfs.attributes (filepath [, aname])

说明：返回filepath对应文件属性的table（或发生任何错误时返回nil和对应的错误描述）。如果第二个可选参数给定，则只返回给定的属性（等同于fs.attributes（filepath）.aname，但是不会创建属性结果表并且只会从操作系统返回一个属性）。属性在下面描述，属性模式是字符串，其他是数值，属性中使用的时间跟os.time（）的时间格式相同。

·dev：在UNIX系统上，返回inode驻留的设备；在Windows系统上，描述包含文件的磁盘号。

·ino：在UNIX系统上，返回inode号；在Windows系统上，此模式无意义。

·mode：以字符串描述的保护模式（值可以是文件、路径、连接、套接字、命名管道、字符设备、块设备或其他）。

·nlink：文件硬连接号。

·uid：所有者的user-id（UNIX下有效，Windows下总为0）。

·gid：所有者的group-id of owner（UNIX下有效，Windows下总为0）。

·rdev：在UNIX系统上，描述设备类型；在Windows系统上与dev相同。

·access：上次访问的时间。

·modification：上次编辑的时间。

·change：上次状态改变的时间。

·size：字节单位的文件尺寸。

·blocks：文件申请的块（UNIX下有效）。

·blksize：最优文件I/O块尺寸（UNIX下有效）。

2.lfs.chdir

语法：

lfs.chdir (path)

说明：改变当前工作路径到path。成功则返回true，失败则返回nil和错误字符串。

3.lfs.currentdir

语法：

lfs.currentdir ()

说明：返回当前工作路径的字符串，失败则返回nil和错误字符串。

4.lfs.dir

语法：

lfs.dir (path)

说明：迭代显示path目录的条目。每次调用，都会返回一个条目字符串；当没有更多条目时，返回nil。如果目录是空的，引发一个错误。

5.lfs.lock

语法：

lfs.lock (filehandle, mode[, start[, length]])

说明：锁定一个文件或文件的一部分。这个函数工作在打开的文件上；文件句柄必须作为第一个参数。mode是字符串模式，可以是r（读/共享锁）或w（写/独占锁）。可选参数start和length可以用来指定开始点和长度，都为数值类型。

操作成功则返回true，任何错误发生则返回nil和错误字符串。

6.lfs.mkdir

语法：

lfs.mkdir (dirname)

说明：创建一个新路径。操作成功则返回True，失败则返回nil和错误字符串。

7.lfs.rmdir

语法：

lfs.rmdir (dirname)

说明：移除一个存在的路径。成功则返回true，失败则返回nil和错误字符串。

8.lfs.touch

语法：

lfs.touch (filepath [, atime [, mtime]])

说明：设置文件的访问和编辑时间。这个函数是一个utime的绑定函数。第一个参数filepath是文件名，第二个参数atime是访问时间，第三个参数mtime是编辑时间。两个时间均以秒为单位（通过os.date产生的时间）。如果忽略编辑时间，则使用访问时间；如果两个时间都忽略了，则使用当前时间。

成功则返回true，失败则返回nil和错误字符串。

9.lfs.unlock

语法：

lfs.unlock (filehandle[, start[, length]])

说明：解锁一个文件或文件的一部分。函数工作在一个打开的文件上，文件句柄必须是第一个参数。可选参数start和length可以用来指定开始点和长度，必须是数值型。

成功则返回true，失败则返回nil和错误字符串。
17.4　小结

Lua的系统OS库提供了文件读写操作，LuaFileSystem补充了系统库对文件属性和文件/路径操作。lfs比较简单，但对于我们需要对目录和文件进行操作的情况下比较有用，例如，可以用于创建和管理自己的文件缓存系统。
第18章　resty.http库的使用

resty.http用于访问外部HTTP资源、location等，如访问非本地location、外部Web服务、RESTFul、Web Service等。resty.http是一个轻量级HTTP库。
18.1　安装

下载源码：

git clone https://github.com/pintsized/lua-resty-http

安装：

本库使用Lua编写，直接将下载目录中的lib/resty目录和上一层的util目录复制到Lua目录中，如/usr/local/nginx/lib/，或/usr/local/openresty/lualib/。openresty/lualib下已经有resty目录了，复制文件即可。

resty.http库支持：

·HTTP-1.0/1.1。

·SSL。

·应答包体流式接口，可预期式内存使用。

·其他单请求无须手动连接可选的简单接口。

·块式或非块式传输编码。

·连接池。

·流水线。

·“拖车”数据。
18.2　概述

示例：resty.http库的使用方法和概况。

lua_package_path "/path/to/lua-resty-http/lib/?.lua;;";

server {

 location /simpleinterface {

 resolver 8.8.8.8; #使用谷歌开放DNS服务器

 content_by_lua '

 -- 使用URI接口处理单请求

 local http = require "resty.http"

 local httpc = http.new()

 local res, err = httpc:request_uri("http://example.com/helloworld", {

 method = "POST",

 body = "a=1&b=2",

 headers = {

 ["Content-Type"] = "application/x-www-form-urlencoded",

 }

 })

 if not res then

 ngx.say("failed to request: ", err)

 return

 end

 -- 这是简单的表单，没有手动连接的步骤，所以包体一次性读取

 -- 包括任意的"拖车"数据，并且连接放到连接池里

 ngx.status = res.status

 for k,v in pairs(res.headers) do

 --

 end

 ngx.say(res.body)

 ';

 }

 location /genericinterface {

 content_by_lua '

 local http = require "resty.http"

 local httpc = http.new()

 -- 普通表单可以有更多控制，需要手工连接

 httpc:set_timeout(500)

 httpc:connect("127.0.0.1", 80)

 -- 请求使用路径，而不是完整的URI

 local res, err = httpc:request{

 path = "/helloworld",

 headers = {

 ["Host"] = "example.com",

 },

 }

 if not res then

 ngx.say("failed to request: ", err)

 return

 end

 -- 可以使用body_reader迭代子了，使用期望的块尺寸流化包体

 local reader = res.body_reader

 repeat

 local chunk, err = reader(8192)

 if err then

 ngx.log(ngx.ERR, err)

 break

 end

 if chunk then

 -- process

 end

 until not chunk

 local ok, err = httpc:set_keepalive()

 if not ok then

 ngx.say("failed to set keepalive: ", err)

 return

 end

 ';

 }

}

18.3　函数

resty.http提供了数量相对比较多的函数，但接口都比较简单。

18.3.1　连接类

1.new

语法：

httpc = http.new()

说明：创建HTTP对象。失败则返回nil和错误描述。

2.connect

语法：

ok, err = httpc:connect(host, port, options_table?)

ok, err = httpc:connect("unix:/path/to/unix.sock", options_table?)

说明：连接到Web服务器。

在实际解析主机名并连接到远程端点前，本方法总是先检查连接池寻找本方法之前创建的空闲连接。

options_table：可选的Lua表，用于指定连接设置。

pool：为使用的连接池指定一个自定义名字。如果省略本设置，连接池使用<host>：<port>或<unix-socket-path>模板生成。

3.set_timeout

语法：

httpc:set_timeout(time)

说明：设置子操作（包括connect操作）的超时值，单位为毫秒。

4.ssl_handshake

语法：

session, err = httpc:ssl_handshake(session, host, verify)

说明：在TCP连接上执行SSL握手操作，在v0.9.11版本以上才有效。

细节可参考第28章ngx.socket.tcp一节。

5.set_keepalive

语法：

ok, err = httpc:set_keepalive(max_idle_timeout, pool_size)

说明：将当前连接放入ngx_lua的cosocket连接池中。

可以指定连接在连接池最大的空闲超时值（毫秒）和每一个Nginx工作进程中连接池尺寸。

本方法可以替换close方法，本方法可以立即将连接置入关闭状态。任意后续的子操作，如connect（）都返回closed错误。

注意，使用本方法代替close是相对安全的，它会依赖请求的类型有条件地关闭。通常地，无连接的1.0请求——关闭，有连接的1.1请求——关闭。

调用成功则返回1，发生任何错误则返回nil和错误描述。如果是上面的有条件关闭，则返回2和错误描述，并且连接会被关闭。

6.get_reused_times

语法：

times, err = httpc:get_reused_times()

说明：返回当前连接的重用次数，如果有错误，则返回nil和错误描述。

如果当前连接不是来自于连接池，将返回0。如果连接来自于连接池，则返回非0值。所以，本方法可以用来判断连接是否来自于连接池。

7.close

语法：

ok, err = http:close()

说明：关闭当前连接并返回状态。成功则返回1，失败则返回nil和错误描述。

8.request

语法：

res, err = httpc:request(params)

说明：普通请求接口，发起HTTP请求，返回一个res表或当错误发生时返回nil和错误描述。

params参数表接受下面的域：

·version：HTTP版本，1.0或1.1。

·method：HTTP方法字符串。

·path：路径字符串。

·query：查询串。

·headers：表，存放请求头。

·body：请求包体，字符串，或一个迭代函数（参见get_client_body_reader）。

·ssl_verify SSL：证书匹配的主机。

当请求成功，res包含下面的域：

·status：状态码。

·reason reason：阶段。

·headers：表，存储HTTP头，多个头域拥有相同的头域名称，值要放在一个表中，使头表中拥有一个头域。

·has_body：布尔值，指示包体可以读取。

·body_reader：一个迭代子函数，用于包体流式读取。

·read_body：一个方法，将包体读入字符串。

·read_trailers：一个方法，在包体读取之后合并头域后面的拖车数据。

9.request_uri

语法：

res, err = httpc:request_uri(uri, params)

说明：简单接口params表支持的参数和普通接口一样，并且将覆盖URI中找到的组件。

简单模式用于处理一个简单的HTTP请求，没有太复杂的过程。本模式下，不能采用流式应答包体。如果请求成功，res将包含下面域：

·status：状态码。

·headers：头域表。

·body：字符串式应答包体。

10.request_pipeline

语法：

responses, err = httpc:request_pipeline(params)

说明：本方法在前面的请求方法之上工作，params代替参数表。每个请求按顺序发送，responses是应答表，例如：

local responses = httpc:request_pipeline{

 {

 path = "/b",

 },

 {

 path = "/c",

 },

 {

 path = "/d",

 }

}

for i,r in ipairs(responses) do

 if r.status then

 ngx.say(r.status)

 ngx.say(r:read_body())

 end

end

因为流水线的特性，直到尝试读取应答域（status/headers等）才实际读取应答，而且在读取下一个应答前必须读取前一个应答的所有包体。

18.3.2　应答类

连接类函数返回res是应答类，存储应答数据。

1.res.body_reader

说明：body_reader可以使用自定义块尺寸流式化应答。例如：

local reader = res.body_reader

repeat

 local chunk, err = reader(8192)

 if err then

 ngx.log(ngx.ERR, err)

 break

 end

 if chunk then

 -- process

 end

until not chunk

如果未使用参数调用reader，具体行为依赖于连接的类型。如果应答以块式编码，迭代器将返回到达的块；否则，简单地返回整个包体。

2.res：read_body

语法：

body, err = res:read_body()

说明：将整个包体读进一个本地字符串。

3.res：read_trailers

语法：

res:read_trailers()

说明：合并头域表后的拖车数据，必须在包体读取之后读取。

18.3.3　代理类

有两个方便的方法可将当前请求代理到上游连接，安全地将下游数据发送到客户端，作为一个反向代理。

示例：

local http = require "resty.http"local httpc = http.new()

httpc:set_timeout(500)local ok, err = httpc:connect(HOST, PORT)

if not ok then

 ngx.log(ngx.ERR, err)

 return

end

httpc:set_timeout(2000)

httpc:proxy_response(httpc:proxy_request())

httpc:set_keepalive()

本示例共提供了两个函数实现代理操作。

1.proxy_request

语法：

local res, err = httpc:proxy_request(request_body_chunk_size?)

说明：使用当前请求参数执行一个请求，代理到连接上游。请求包体用流式读取。

2.proxy_response

语法：

httpc:proxy_response(res, chunksize?)

说明：使用res设置当前应答。确保头域发送到下游，并且依赖chunksize读取应答。

18.3.4　工具类

resty.http库提供了两个工具类函数，实现包头读取和URI解析。

1.parse_uri

语法：

local scheme, host, port, path, query? = unpack(httpc:parse_uri(uri, query_in_path?))

说明：这是一个常用函数，允许当输入URI时一对多使用普通接口。

query_in_path参数指定是否查询串包含在返回值的路径中。默认为true，以保证后台兼容性。当设置为false时，path只包含路径，query将包含URI参数，不包括？。

2.get_client_body_reader

语法：

reader, err = httpc:get_client_body_reader(chunksize?, sock?)

说明：返回迭代器函数，用于流式读取下游客户端请求包体。可以指定可选的chunksize（默认为65536），sock是一个和客户端请求建立的套接字。

例如：

local req_reader = httpc:get_client_body_reader()

repeat

 local chunk, err = req_reader(8192)

 if err then

 ngx.log(ngx.ERR, err)

 break

 end

 if chunk then

 -- process

 end

until not chunk

这个迭代器可以用来作为请求参数中包体域的值，允许将一个请求包体流式化到代理的请求中，例如：

local client_body_reader, err = httpc:get_client_body_reader()

local res, err = httpc:request{

 path = "/helloworld",

 body = client_body_reader,

}

18.4　小结

resty.http是一个轻量级的HTTP库，使用比较方便，可以用于访问外部RESTFul服务或Web Service。

本章介绍了resty.http库的安装方法及库提供的所有方法，并给出了使用示例。读者可以将示例修改为自己的使用代码。
第19章　lcurl库的使用

lcurl库封装了libcurl的函数，为Lua提供了使用curl的接口。

libcurl的主要功能是用不同的协议连接，与不同的服务器沟通，相当于封装了的sock。libcurl当前支持http、https、ftp、gopher、telnet、dict、file、ldap协议。libcurl同样支持HTTPS证书授权，支持HTTP POST、HTTP PUT、FTP上传、HTTP基本表单上传、代理、cookies和用户认证。

lcurl功能强大，可以为Lua提供方便而强大的网络访问能力。
19.1　安装

lcrul库需要单独安装，才能使用。安装过程中因为依赖于libcurl库，所以需要分两步，先安装libcure库，然后安装lcurl库。

19.1.1　安装libcurl

libcurl库是源码编译，过程中需要用到curl库头文件，所以需要首先下载并安装curl库。

1.下载

从下载地址https://curl.haxx.se/download.html下载curl-7.52.1.tar.gz文件。

2.安装

tar -xzvf curl-7.52.1.tar.gz

cd curl-7.52.1

make

make install

19.1.2　安装lcurl

（1）下载

git clone https://github.com/moteus/lua-lcurl

（2）编译

cd lua-lcurl

make

（3）安装

将编译出来的lcurl.so，手动复制到lua目录下，如/usr/local/lib/lua/5.1；将src/lua目录下的内容复制到/usr/local/share/lua/5.1下即可使用。
19.2　示例

下面给出几个示例，分别演示了使用luacurl执行了Get、Put、Upload以及MuLti-FTP Upload操作。

HTTP Get示例：

local curl = require"lcurl"

local http = curl.easy{

 url = 'http://httpbin.org/get',

 httpheader = {

 "X-Test-Header1: Header-Data1",

 "X-Test-Header2: Header-Data2",

 },

 writefunction = io.stderr -- use io.stderr:write()

 }

http:perform()

http:close()

http=nil

curl=nil

HTTP Post示例：

local curl = require "lcurl"

local http = curl.easy()

http:setopt_url('http://posttestserver.com/post.php')

http:setopt_writefunction(io.write)

http:setopt_httppost(curl.form() -- Lua-cURL guarantee that form will be alive

http:add_content("test_content", "some data", {

 "MyHeader: SomeValue"

 })

http:add_buffer("test_file", "filename", "text data", "text/plain", {

 "Description: my file description"

 })

 :add_file("test_file2", "BuildLog.htm", "application/octet-stream", {

 "Description: my file description"

 })

)

http:perform()

http:close()

FTP Upload示例：

ocal pos = 1 - n

 return function()

 pos = pos + n

 return (str:sub(pos,pos+n-1))

 end

end

local curl = require "lcurl"

local ftp = curl.easy()

ftp:setopt_url("ftp://moteus:123456@127.0.0.1/test.dat")

ftp:setopt_upload(true)

ftp:setopt_readfunction(

 get_bin_by(("0123456789"):rep(4), 9)

)

ftp:perform()

ftp:close()

Multi FTP Upload示例：

local curl = require "lcurl"

-- We get error E_LOGIN_DENIED for this operation

local e1 = curl.easy{url = "ftp://moteus:999999@127.0.0.1/test1.dat", upload = true}

e1:setopt_readfunction(

 function(t) return table.remove(t) end, {"1111", "2222"}

)

local e2 = curl.easy{url = "ftp://moteus:123456@127.0.0.1/test2.dat", upload = true}

e2:setopt_readfunction(get_bin_by(("e"):rep(1000), 5))

local m = curl.multi()

m:add_handle(e1)

m:add_handle(e2)

while m:perform() > 0 do m:wait() end

while true do

 h, ok, err = m:info_read()

 if h == 0 then break end

 if h == e1 then

 assert(ok == nil)

 assert(err:name() == "LOGIN_DENIED")

 assert(err:no() == curl.E_LOGIN_DENIED)

 end

 if h == e2 then

 assert(ok == true)

 end

end

19.3　函数

luacurl的函数用来创建封装了执行具体任务的对象。例如，form（）函数创建HTTP表单对象，easy（）函数创建简单的curl对象。具体的操作在生成的对象中进行。

1.form（）

功能：创建HTTP multipart/formdata对象。

返回：（httpform）新curl HTTP Post对象上下文。

2.easy（[options]）

功能：创建easy对象。

参数：

options：表。

返回：easy对象。

用法：

c = curl.easy{

 url = 'http://example.com',

 [curl.OPT_VERBOSE] = true,

}

3.multi（[options]）

功能：创建multi对象。

参数：

options：表。

返回：multi对象。

用法：

m = curl.multi{

 socketfunction = handle_socket;

 timerfunction = start_timeout;

}

4.share（[options]）

功能：创建share对象。

参数：

options：表。

返回：share对象。

5.version（）

功能：返回一个可读的libcurl库版本号。

6.version_info（[param]）

功能：以表返回libcurl版本号。

参数：

param：以字符串指定的版本信息。

返回：如果没有指定param则返回完整的版本信息，否则返回指定的信息。

用法：

proto = curl.version_info('protocols')

if proto.HTTP then ... -- libcurl support http protocol

19.3.1　httpform类

httpform是用于POST操作的表单对象，主要执行POST操作，携带POST所需要的数据。

1.httpform：add_content（name，content[，type[，headers]]）

功能：为form添加新部分。

参数：

name：新部分的名字。

content：实际发送的字符串型数据。

type：新部分以字符串描述的Content-Type。

headers：以表为POST指定的扩展头域。

返回：self。

2.httpform：add_buffer（name，filename，content[，type[，headers]]）

功能：为form添加新的部分。

参数：

name：新部分的名字。

content：实际发送的字符串型数据。

type：新部分以字符串描述的content-type。

headers：以表为POST指定的扩展头域。

filename：在content头域里的文件名。

返回：self（自身）。

3.httpform：add_file（name，path[，type[，filename[，headers]]]）

功能：为form添加新部分。

参数：

name：新部分的名字。

path：待发送的文件路径。

type：新部分以字符串描述的content-type。

headers：以表为POST指定的扩展头域。

filename：在content头域里的文件名。

返回：self。

4.httpform：add_stream（name[，filename][，type][，headers]，size，reader[，context]）

功能：为form添加新部分。

参数：

name：新部分的名字。

type：新部分以字符串描述的content-type。

headers：以表为POST指定的扩展头域。

filename：在content头域里的文件名。

size：以字节为单位的流数量。

reader：function/object。

context：reader的上下文。

返回：self。

5.httpform：get（）

功能：序列化multipart/formdata HTTP POST链。

返回：字符串式序列化的数据。

用法：

print(post:get())

6.httpform：get（writer[，context]）

功能：序列化multipart/formdata HTTP POST链。

writer函数可以返回true或写完的数量。函数没有返回则也认为是成功的。

参数：

writer：函数。

context：writer上下文。

返回：self。

用法：

t = {}

post:get(table.insert, t)

print(table.concat(t))

7.httpform：get（writer）

功能：读取多部分/表单的POST数据。

本调用和httpform：get（writer.write，writer）一样。

参数：

writer：对象。

返回：self。

用法：

f = io.open(...)

post:get(f)

8.httpform：free（）

功能：释放multipart/formdata。

19.3.2　easy类

easy类封装的是HTTP通用操作，可以执行相对较复杂的GET操作，但通常用来执行相对简单的操作。

1.easy：perfom（）

功能：执行一个文件传输。

返回：self。

2.easy：escape（url）

功能：对url进行URL编码。

参数：

url：字符串。

返回：编码后的URI。

3.easy：unescape（url）

功能：对url进行URL解码。

参数：

url：字符串。

返回：解码后的URI。

4.easy：reset（）

功能：以之前的设置重新初始化。

返回：easy self。

5.easy：pause（mask）

功能：暂停或恢复一个连接。

参数：

mask：以位表示连接的新状态（PAUSE_XXX常量）。

返回：easy self。

6.easy：close（）

功能：结束easy会话。

7.easy：setopt（opt，...）

功能：设置操作。

参数：

opt：`curl.OPT_XXX`常量或配置表。

...：值。

返回：easy self。

用法：

c:setopt(curl.OPT_URL, "http://example.com")

c:setopt(curl.OPT_READFUNCTION,

function(t, n) return table.remove(t) end,

{"1111", "2222"}

)

c:setopt{

 url = 'http://example.com',

 [curl.OPT_VERBOSE] = true,

}

8.easy：unsetopt（opt）

功能：将操作重设为默认值。

参数：

opt：`curl.OPT_XXX`常量或配置表。

返回：easy self。

用法：

c:unsetopt(curl.OPT_URL)

c:unsetopt(curl.OPT_READFUNCTION)

9.easy：getinfo（info）

功能：读取信息。

参数：

info：`curl.INFO_XXX`常量。

返回：值。

用法：

print(c:getinfo(curl.INFO_EFFECTIVE_URL))

print(c:getinfo(curl.INFO_TOTAL_TIME))

print(c:getinfo(curl.INFO_RESPONSE_CODE))

10.easy：setopt_writefunction（writer[，context]）

功能：设置writer函数。

一个回调接受1或2个参数。第一个是writer的上下文（如果有），第二个是一个字符串式要写的数据。函数返回true（任何非数值的true值）或完整的数据长度，否则传输将在任何错误下中断。

参数：

writer：函数

context：writer上下文。

返回：self。

11.easy：setopt_writefunction（writer）

功能：设置writer函数。与easy：setopt_writefunction（writer.write，writer）相同。

参数：

writer：对象。

返回：self。

12.easy：setopt_headerfunction（writer[，context]）

功能：设置头函数。参见easy：setopt_writefunction（writer[，context]）。

参数：

writer：对象。

context：writer上下文。

返回：self。

13.easy：setopt_headerfunction（writer）

功能：设置头函数。与easy：setopt_headerfunction（writer.header，writer）相同。

参数：

writer：对象。

返回：self。

14.easy：setopt_readfunction（reader[，context]）

功能：设置reader函数。参见easy：setopt_writefunction（writer[，context]）。

参数：

reader：函数。

context：reader上下文。

返回：self。

用法：

local counter = 10

c:setopt_readfunction(function()

 if counter > 0 then

 counter = counter - 1

 return 'a'

 end

end)

15.easy：setopt_readfunction（reader）

功能：设置reader函数。与easy：setopt_readfunction（reader.read，reader）一样。

参数：

reader：对象。

返回：self。

16.easy：setopt_progressfunction（progress[，context]）

功能：设置set progress函数。

参数：

progress：函数。

context：progress上下文。

返回：self。

17.easy：setopt_progressfunction（progress）

功能：设置progress函数。

参数：

progress：对象。

返回：self。

18.easy：setopt_httppost（data）

功能：设置multipart/formdata。调用者不需要保存数据。

参数：

data：httpform。

返回：self。

19.easy：setopt_postfields（data[，length=#data]）

功能：设置multipart/formdata。

参数：

data：字符串。

length：长度（默认#data）。

返回：self。

20.easy：setopt_share（data）

功能：设置curl share对象。调用者不需要保存数据。

参数：

data：share。

返回：self。

19.3.3　multi类

multi类执行并发操作，内部使用的是easy类，multi类只是一个管理类。

1.multi：add_handle（handle）

功能：添加easy对象。

调用者必须确保easy对象是存活的，直到操作结束。

参数：

handle：easy。

返回：multi self。

2.multi：remove_handle（handle）

功能：移除easy对象。

参数：

handle：easy。

返回：multi self。

3.multi：perfom（）

功能：从每一个easy句柄中读/写有效数据。

返回：number（激活的easy句柄数量）。

4.multi：info_read（[remove]）

功能：读取multi堆信息。

参数：

remove：如果读取完成，移除easy句柄。

返回：如果没有信息，返回数值0，或

（easy）句柄

（boolean）true

或

（easy）句柄

（nil）

（error）错误代码

5.multi：setopt（opt，...）

功能：设置操作。

参数：

opt：`curl.OPT_MULTI_XXX`常量。

...：值

返回：multi self。

用法：

c:setopt(curl.OPT_MULTI_MAXCONNECTS, 10)

c:setopt{maxconnects = 10}

6.multi：socket_action（[socket=curl.SOCKET_TIMEOUT[，mask=0]]）

功能：执行套接字操作。

参数：

socket：数值（默认curl.SOCKET_TIMEOUT）。

mask：数值（默认0）。

返回：multi self。

用法：

c:socket_action()

c:socket_action(sock_fd, curl.CSELECT_IN)

c:socket_action(sock_fd, curl.CSELECT_OUT)

7.multi：setopt_timerfunction（timer[，context]）

功能：设置时钟回调。

参数：

timer：时钟回调。

context：上下文。

返回：multi self。

8.multi：setopt_timerfunction（timer）

功能：设置时钟回调。

参数：

timer：userdata或表式的时钟对象。

返回：multi self。

9.multi：wait（[timeout]）

功能：暂停一个multi对象中所有easy对象。

参数：

timeout：以毫秒为单位的超时值，默认是multi：timeout（）。

返回：number（受影响的对象数）。

10.multi：timeout（）

功能：在处理之前的等待时间。

返回：number（以毫秒为单位的超时值）。

11.multi：close（）

功能：结束multi会话。

19.3.4　error类

error类是错误信息处理类。

1.error：category（）

功能：获取error类别。

返回：number[错误的类别号（curl.ERROR_XXX常量）]。

用法：

if err:category() == curl.ERROR_EASY then

-- proceed easy error

end

2.error：no（）

功能：读取错误的数值值。

返回：number[错误的数值号（curl.E_XXX常量）]。

3.error：name（）

功能：获取错误名字。

返回：string[错误名（如"UNSUPPORTED_PROTOCOL"、"BAD_OPTION"）]。

4.error：msg（）

功能：获取错误描述。

返回：string[错误描述（如"Login denied"）]。

5.error：_tostring（）

功能：获取完整的错误描述。

返回：string（包含名字的字符串，如消息和错误值）。

19.3.5　share类

share类用于创建共享句柄。共享的类可以实现创建一次，然后分配给不同的对象使用的效果，以节省内存。easy类支持设置共享句柄，有对应接口。

1.share：setopt（opt，...）

功能：设置操作。

参数：

opt：`curl.OPT_SHARE_XXX`常量的数值或表。

...：值。

返回：share self。

用法：

c:setopt(curl.OPT_SHARE_SHARE, curl.LOCK_DATA_COOKIE)

c:setopt{share = curl.LOCK_DATA_COOKIE}

2.share：close（）

功能：结束share会话。
19.4　常用变量

libcurl中的常量非常多，这些量在lcurl中大部分都需要用到。本节将所有常用选项按类型分类列出，方便工作中使用。

19.4.1　字符串数组类选项

表19-1列出lcurl库常用字符串数组类常量，作为配置项时值应该是字符串数组。

表19-1　lcurl库常用字符串数组类常量

 [image:]

19.4.2　字符串选项

表19-2列出lcurl字符串类型常量，作为选项时值应该是字符串类型。

表19-2　lcurl字符串类型常量

 [image:]

 [image:]

 [image:]

19.4.3　数值型选项

表19-3描述lcurl库数值型常量，作为选项时值必须是数值类型。

表19-3　lcurl库数值型常量

 [image:]

 [image:]

19.4.4　布尔型选项

表19-4列出lcurl库布尔型常量，作为选项时值必须是布尔型的。

表19-4　lcurl库布项型常量

 [image:]

 [image:]

19.5　完整示例

下面是一个完整的使用示例，演示了最简单的HTTP操作。

local curl = require("lcurl")

local ipList =

{

 "192.168.1.1",

 "192.168.1.1",

}

--登录

function loginWeb(ip)

 c = curl.easy()

 c:setopt(curl.OPT_SSL_VERIFYHOST, 0);

 c:setopt(curl.OPT_SSL_VERIFYPEER, 0);

 c:setopt(curl.OPT_URL, "https://"..ip.."/")

 c:setopt(curl.OPT_POSTFIELDS, "Username=admin&Password=admin&Frm_Logintoken=&action=login")

 c:setopt(curl.OPT_WRITEFUNCTION, function(buffer)

 --print(buffer)

 --print("\r\n---------------------------\r\n");

 return #buffer

 end

)

 c:perform()

end

--访问页面

function accessPage(ip)

 c = curl.easy()

 c:setopt(curl.OPT_SSL_VERIFYHOST, 0);

 c:setopt(curl.OPT_SSL_VERIFYPEER, 0);

 c:setopt(curl.OPT_URL, "https://"..ip.."/xxpage.html")

 c:setopt(curl.OPT_WRITEFUNCTION, function(buffer)

 --print(buffer)

 --print("\r\n---------------------------\r\n");

 return #buffer

 end

)

 c:perform()

end

--设置参数

function setParameter(ip, file)

 c = curl.easy()

 c:setopt(curl.OPT_SSL_VERIFYHOST, 0);

 c:setopt(curl.OPT_SSL_VERIFYPEER, 0);

 c:setopt(curl.OPT_URL, "https://"..ip.."/xx.php")

 c:setopt(curl.OPT_POSTFIELDS, "DaylightSavingsUsed=1&Dscp=-1")

 local htmlTable = {}

 c:setopt(curl.OPT_WRITEFUNCTION, function(buffer)

 --print(buffer)

 --print("\r\n---------------------------\r\n");

 table.insert(htmlTable, buffer)

 return #buffer

 end)

 c:perform()

 local htmlStr = table.concat(htmlTable);

 local resultBuff = "";

 if string.match(htmlStr, "<result>SUCC</result>") ~= nil then

 resultBuff = ip.." config OK\r\n";

 print(resultBuff)

 file:write(resultBuff);

 else

 resultBuff = ip.." config NOK\r\n";

 print(resultBuff)

 file:write(resultBuff);

 end

end

local file = io.open(".\\result.txt", "w+");for key,ip in ipairs(ipList) do

 loginWeb(ip);

 accessPage(ip);

 openLightSave(ip, file);

end

file:close();

print("Done")

19.6　小结

curl库是一个强大的网络库，lcurl是Lua内的curl库封装，让Lua拥有强大的网络功能。本章详细介绍了curl库支持的所有curl类和特性，为方便工作中查找curl常用变量，本章分类整理了lcurl支持的大部分常量。
第20章　FFI扩展C库

FFI库是LuaJIT中最重要的一个扩展库，允许在纯Lua代码内调用扩展的C函数或使用C数据结构。FFI库用于扩展Lua的功能，使Lua成为纯的“胶水”语言，可以整合丰富的C/C++库，实现高性能的功能。使用FFI库可以从C工程头文件复制代码进Lua代码，把开发者从开发Lua扩展C（语言/功能绑定库）的繁重工作中解放出来。

FFI被紧密地整合进LuaJIT中，JIT编译器为Lua代码直接访问C数据结构产生适配代码，等同于C编译器产生的代码。在JIT编译过的代码中，调用C函数被当作内联函数处理，不同于基于Lua/C API函数调用。
20.1　示例

下面通过两个示例介绍FFI的使用。

20.1.1　调用外部C函数

调用外部C函数是简单的，例如：

local ffi = require("ffi")

ffi.cdef[[

 int printf(const char *fmt, ...);

]]

ffi.C.printf("Hello %s!", "world")

具体分为3个步骤：

1）载入FFI库。

2）添加C函数的声明，使用双[]号存放C定义。

3）调用C函数。

步骤3中的ffi.C是标准库中的命名空间，后面的print自动绑定到标准C库。传入的参数自动从Lua对象转换为相应的C类型。

上面的例子只是演示在纯Lua中调用C函数，实际上可以使用io.write（）和string.format（）函数。下面的例子演示在Windows上弹出一个消息框：

local ffi = require("ffi")

ffi.cdef[[

 int MessageBoxA(void *w, const char *txt, const char *cap, int type);

]]

ffi.C.MessageBoxA(nil, "Hello world!", "Test", 0)

可以使用这个机制使Lua和C协同工作：创建一个外部的C文件，添加C函数供Lua调用，Lua传入参数，C检查参数、校验密码。添加一个模块列表，在C函数名前加上luaopen_*，注册所有的函数，编译成一个共享连接库（DLL），放到合作的路径，添加Lua代码载入模块，最后调用函数。

20.1.2　使用C结构体数据

使用FFI库可以创建和访问C数据，主要用途是为了和C函数接口，为C接口封装所需要的C结构体数据作为参数，当然，也可以单独使用C的数据结构。

Lua由高层数据结构构建，这些数据结构复杂、可扩展、动态，所以Lua被众多开发者喜爱。但是，这些数据在某些任务下比较低效。例如，要实现一个巨大的数组，容纳一个大表，其中包含许多小表，这将需要一个大的内存负载和性能负载。

下例是一个操作颜色表的性能测试例子，下面是纯Lua版本：

local floor = math.floor

local function image_ramp_green(n)

 local img = {}

 local f = 255/(n-1)

 for i=1,n do

 img[i] = { red = 0, green = floor((i-1)*f), blue = 0, alpha = 255 }

 end

 return img

end

local function image_to_grey(img, n)

 for i=1,n do

 local y = floor(0.3*img[i].red + 0.59*img[i].green + 0.11*img[i].blue)

 img[i].red = y; img[i].green = y; img[i].blue = y

 end

end

local N = 400*400

local img = image_ramp_green(N)

for i=1,1000 do

 image_to_grey(img, N)

end

本示例中创建了容纳160000像素的表，每个像素是一个存放范围在0～255间数值的表。首先创建了一个绿色调色板，然后图像被转成灰度1000次。

下面是FFI版本：

local ffi = require("ffi")

ffi.cdef[[

 typedef struct { uint8_t red, green, blue, alpha; } rgba_pixel;

]]

local function image_ramp_green(n)

 local img = ffi.new("rgba_pixel[?]", n)

 local f = 255/(n-1)

 for i=0,n-1 do

 img[i].green = i*f

 img[i].alpha = 255

 end

 return img

end

local function image_to_grey(img, n)

 for i=0,n-1 do

 local y = 0.3*img[i].red + 0.59*img[i].green + 0.11*img[i].blue

 img[i].red = y; img[i].green = y; img[i].blue = y

 end

end

local N = 400*400

local img = image_ramp_green(N)

for i=1,1000 do

 image_to_grey(img, N)

end

下面分析两者的不同点：

1）载入FFI库，定义低层次的数据类型。这里可以选择使用一个4B的结构体，可以容纳4×8位RGBA像素。

2）使用ffi.new（）创建数据结构，[？]是要创建的数组大小。

3）C数组索引从0开始，所以索引是0～n-1。

4）ffi.new（）默认地对数组补零，只需要设置绿色和alpha域。

5）math.floor（）调用可以忽略，因为双浮点数在转换成整型时被截断了0部分。这是隐式地在数值存储进每一个像素域的时候进行的。

两份代码的不同点如下：

1）内存消耗从22MB降到640KB（400×400×4B），降低了35倍。原来的纯Lua代码在x64平台上要消耗40MB内存。

2）Lua代码运行消耗了9.57秒（Lua解释器消耗52.9秒），FFI版本消耗了0.48秒，提高了近20倍（比Lua解释器约提高了110倍）。
20.2　FFI库的使用

FFI库定义了必需的类型转换函数，以实现高级数据类型和C数据类型的转换，同时提供了常用的支撑性方法。

20.2.1　载入FFI库

使用require载入FFI库。

local ffi = require("ffi")

不要在全局表中定义ffi变量，需要使用局部变量。require保证库只被载入一次。

20.2.2　访问标准系统函数

下面代码演示访问标准系统函数：缓慢打印两行点号，并在每个点后休眠10毫秒。

local ffi = require("ffi")

ffi.cdef[[

 void sleep(int ms);

 int poll(struct pollfd *fds, unsigned long nfds, int timeout);

]]

local sleep

if ffi.os == "Windows" then

 function sleep(s)

 ffi.C.sleep(s*1000)

 end

else

 function sleep(s)

 ffi.C.poll(nil, 0, s*1000)

 end

end

for i=1,160 do

 io.write("."); io.flush()

 sleep(0.01)

end

io.write("\n")

主要步骤解析：

1）定义要使用的C为函数，定义在[[]]中。此处代码通常从C库头文件中获得，或者从C库的文档中获得。

2）Windows有sleep（）函数，与其他平台的sleep（）函数有稍许不同，一般是参数单位不同。其他平台使用poll（）函数。ffi.os用于判断平台，以便调用正确的平台适应函数。

3）在Lua函数中调用C函数，在初始化时判断平台以避免每次调用时判断。

4）sleep（）参数的单位是秒，所以将毫秒×1000。传入的参数是Lua数值，是一个双精度浮点数。方便的是FFI库在调用函数的时候自动进行转换。

Sleep（）是KERNEL32.DLL中的一个函数，是一个stdcall函数。FFI库提供了ffi.C这个默认的C库命名空间，允许从默认库中调用函数，像C编译器工作的原理一样。FFI库自动检测stdcall函数，所以会自动调用系统连接库中的函数。

5）poll（）函数调用需要几个参数，可以使用nil传递空指针和0参数。注意，0不会转换为指针值，和C++不同，C++需要对各种类型参数提前赋值。

6）在Lua代码里调用自己定义的sleep（）函数，

20.2.3　访问zlib压缩库

下面代码演示从Lua代码中访问zlib压缩库。预先定义了两个转换接口，携带一个字符串参数描述压缩和解压的数据。

local ffi = require("ffi")

ffi.cdef[[

 unsigned long compressBound(unsigned long sourceLen);

 int compress2(uint8_t *dest, unsigned long *destLen,

 const uint8_t *source, unsigned long sourceLen, int level);

 int uncompress(uint8_t *dest, unsigned long *destLen,

 const uint8_t *source, unsigned long sourceLen);

]]

local zlib = ffi.load(ffi.os == "Windows" and "zlib1" or "z")

local function compress(txt)

 local n = zlib.compressBound(#txt)

 local buf = ffi.new("uint8_t[?]", n)

 local buflen = ffi.new("unsigned long[1]", n)

 local res = zlib.compress2(buf, buflen, txt, #txt, 9)

 assert(res == 0)

 return ffi.string(buf, buflen[0])

end

local function uncompress(comp, n)

 local buf = ffi.new("uint8_t[?]", n)

 local buflen = ffi.new("unsigned long[1]", n)

 local res = zlib.uncompress(buf, buflen, comp, #comp)

 assert(res == 0)

 return ffi.string(buf, buflen[0])

end

-- Simple test code.

local txt = string.rep("abcd", 1000)

print("Uncompressed size: ", #txt)

local c = compress(txt)

print("Compressed size: ", #c)

local txt2 = uncompress(c, #txt)

assert(txt2 == txt)

操作步骤解析：

1）定义zlib提供的C函数。

2）载入zlib共享库（在POSIX系统上称为libz.so，通常都会预装）。在ffi.load（）自动添加或丢失标准前后缀，我们只需要简单地载入z库。ffi.load（）中进行了平台判断，传入正确的库名字。

3）首先使用未压缩字符串长度调用zlib.compressBound获得压缩缓冲区。下行申请这个长度的缓冲区。？指出数组变量长度。实际数组元素数量作为ffi.new（）的第二个参数。

4）目标长度被定义作为一个指针，传入最大缓冲区长度并且传回实际使用长度。在C语言里，需要传入本地变量的地址，但是Lua中没有地址操作，所以传入一个元素的数组。

5）需要将压缩后数据作为一个Lua字符串返回，所以使用ffi.string（）。本函数需要一个指针指向数据开始部分和实际长度。长度在bufLen数组中返回，所以从数据中获取长度。

注意，当函数返回后，buf和buflen变量将被垃圾回收器回收。ffi.string（）已经将内容复制到一个新创建的Lua字符串中。如果计划多次调用这个函数，考虑重用缓冲区，把结果存放到缓冲区里，这将降低垃圾回收的负载。

6）uncompress函数的作用和compress函数是相反的。压缩数据不包含原始字符串的长度，所以需要传入长度。

7）使用刚定义的纯Lua代码函数，这部分不需要熟悉LuaJIT FFI。

注意　zlib API使用long类型传送长度和尺寸。这些zlib函数实际只处理32位值。

long类型在POSIX/x64系统上是64位，但是在Windows/x64和32位系统上是32位。这样，在Lua上，一个long类型结果可以是一个Lua32位数值类型，或一个cdata类型的64位数值，依赖于具体的系统。所以，ffi.*函数接受cdata对象的时候，无论是不是真正要使用number，都需要对返回结果使用tonumber（）处理结果的long类型，否则在很多系统上应用可能会失败。

20.2.4　为一个C类型定义元方法

下面代码为一个C类型定义了元方法，定义了一个简单的point类型并且添加了一些操作。

local ffi = require("ffi")

ffi.cdef[[

 typedef struct { double x, y; } point_t;

]]

local point

local mt = {

 _add = function(a, b) return point(a.x+b.x, a.y+b.y) end,

 _len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,

 _index = {

 area = function(a) return a.x*a.x + a.y*a.y end,

 },

}

point = ffi.metatype("point_t", mt)

local a = point(3, 4)

print(a.x, a.y) --> 3 4

print(#a) --> 5

print(a:area()) --> 25

local b = a + point(0.5, 8)

print(#b) --> 12.5

主要步骤解析：

1）使用C类型定义一个二维的point对象。

2）首先定义变量存储point构造函数，因为需要在元方法之内使用。

3）定义一个_add元方法添加两个相关的point并且创建一个point对象。该函数假设两个参数是point。但是可以是任意混合对象，如果至少一个运算符是请求的类型。_len元方法返回原点之间的距离。

4）_index表定义了一个area函数，还可以定义一个_newindex函数代替。

5）point=ffi.metatype（"point_t"，mt）只需要调用一次。ffi.metatype（）返回构造方式，我们不需要使用本方法。原始C类型可以创建一个point数组，原方法自动使用这些类型。

6）这里是一些point类型和期待的结果。预定义的操作如a.x可以自由混合新定义的元方法。area是必须通过a：area（）调用的方法，而非a.area（）。

C类型元方法是和面向对象风格C库连接时非常有用的机制，创建者返回一个指向新实例的指针，_index指向库命名空间，_gc指向完成的析构函数。可以添加多个接口返回实际Lua字符串或返回多个值。

一些C库定义实例指针类型为void*。这种情况下，需要为所有声明定义一个假类型，如一个命名结构体的指针将这样做：typedef struct foo_type*foo_handle。C端代码不知道使用LuaJIT FFI，但是因为底层类型的兼容性，可以正常工作。

20.2.5　转换C语法

表20-1列出通常的C语法与LuaJIT FFI对应关系。

表20-1　C语法与LuaJIT FFI对应关系

 [image:]

 [image:]

20.3　FFI API

FFI提供了7类API，涉及类型转换、功能操作、类型信息、标准库扩展等。

20.3.1　声明和访问外部符号

外部符号必须首先声明并且可以被一个库命名空间索引和访问，库自动绑定符号。

1.ffi.cdef（def）

ffi.cdef（def）用于添加多个C类型或扩展符号（命名变量或函数）。def必须是一个Lua字符串。例如：

ffi.cdef[[

typedef struct foo { int a, b; } foo_t; // Declare a struct and typedef.

int dofoo(foo_t *f, int n); /* Declare an external C function. */

]]

字符串的内容必须是一系列C声明，使用分号分隔。为避免错误，推荐严格遵守C语法。扩展符号只是声明，没有绑定到任何地址，绑定由C库命名空间实现。

2.ffi.C

ffi.C是默认的C库命名空间，绑定到目标系统的符号或库。

3.clib=ffi.load（name[，global]）

装载name的动态库，返回绑定到符号的C库命名空间。在POSIX系统上，如果global设置为true，库符号将装载入全局命名空间。

如果name携带路径，库将从目录中载入，否则将从系统默认查找路径查找。

在POSIX系统上，如果名字不包含“.”，将自动添加.so为后缀，系统也会自动添加前缀，所以ffi.load（“z”）在实际的POSIX系统上执行结果为：在共享库目录中查找libz.so。

20.3.2　创建cdata对象

下列API函数用于创建cdata对象，所有创建的cdata对象都被垃圾回收器管理。

1.cdata=ffi.new（ct[，nelem][，init...]），cdata=ctype（[nelem，][init...]）

说明：用ct创建cdata对象，VLA/VLS类型需要nelem参数。第二个使用ctype作为构造器，其他都是一样的。

cdata对象依照初始化规则初始化，使用可选的init参数。

如果要创建相同类型的多个对象，只要解析cdecl一次，通过ffi.typeof（）获取它的ctype，然后使用ctype重复创建。

2.ctype=ffi.typeof（ct）

说明：创建ct的ctype对象。这个函数用于解析cdecl一次，使用结果ctype对象作为一个构造器。

3.cdata=ffi.cast（ct，init）

说明：使用ct创建一个标量cdata对象，cdata对象可以使用init初始化。

4.ctype=ffi.metatype（ct，metatable）

说明：使用ct和绑定的元表创建一个ctype对象。只允许struct/union类型、vector和复数，其他类型可以使用struct封装。

元表需要持久并且在未来不能被改变，元表的内容和_index表的内容都不能被编辑。

5.cdata=ffi.gc（cdata，finalizer）

说明：关联一个finalizer到cdata对象，这个对象被无改变返回。

这个函数允许安全地将一个cdata对象绑定到LuaJIT垃圾回收器上。

local p = ffi.gc(ffi.C.malloc(n), ffi.C.free)

...

p = nil -- 最后一个p调用

-- GC 将调用finalizer: ffi.C.free(p)

finalizer可以是Lua函数或是一个cdata函数或是一个cdata函数指针。可以通过设置nil移除一个finalizer。

ffi.C.free(ffi.gc(p, nil)) -- 手动释放内存

20.3.3　C类型信息

下列API函数返回C类型信息，这对检验cdata对象非常有用。

1.size=ffi.sizeof（ct[，nelem]）

说明：返回ct尺寸（以字节为单位）。如果尺寸未知，则返回nil（如void类型）。VLA/VLS类型需要nelem参数。

2.align=ffi.alignof（ct）

说明：返回ct最小对齐需求（字节为单位）。

3.ofs[，bpos，bsize]=ffi.offsetof（ct，field）

说明：返回ct在field中的偏移量，field必须是结构体。

4.status=ffi.istype（ct，obj）

说明：如果obj是ct的C类型，则返回true，否则返回false。

C类型修改辞（const等）被忽略，指针按标准指针兼容规则检查，但是对void*不做任何特殊对待。如果ct指定是struct/union，将接受一个指针，否则必须精确匹配。

20.3.4　功能函数

下面是FFI库功能函数，用于对返回库状态或执行库级支撑功能。

1.err=ffi.errno（[newerr]）

说明：返回上次C函数设置的错误码。如果给定可选的newerr参数，将返回前一个错误码并将当前错误码设置成新的值。

函数提供的是平台无关性的错误码，注意，只有部分的C函数设置错误码，但并不标示实际错误条件（如返回-1或null），而且可能包含上次设置的值。

2.str=ffi.string（ptr[，len]）

说明：从ptr数据指针创建并保留一个Lua字符串。

如果没有给出可选的len参数，ptr转成一个char*类型，数据用0终结，长度使用strlen（）计算。

如果给出len值，ptr转换成void*类型，len表示数据的长度。

这个函数用于将C函数返回的const char*指针转换为Lua字符串并且存储数据传输到其他函数。Lua字符串是8位单字节，可以用来保存任意非字符数据。

注意：给Len赋值会使本函数比不给Len赋值更快。

3.ffi.copy（dst，src，len），ffi.copy（dst，str）

说明：将数据从src复制到dst。dst被转换为void*，src被转换为const void*。

第一个表达式中，len用于指定要复制的长度。如果src是一个Lua字符串，len必须不能超过#src+1。

第二个表达式中，源数据必须是一个Lua字符串，字符串所有的字节包括终结符0都会被复制到dst（#src+1字节）。

注意：ffi.copy可以用C库中类似于memcpy（）、strcpy（）和strncpy（）等更快的函数替换。

4.ffi.fill（dst，len[，c]）

说明：dst中的len个数据使用c填充，如果没有c参数，使用0填充。

注意：ffi.fill（）可以使用C库中的memset（dst，c，len）替换。

20.3.5　特定目标信息

本节函数用于返回目标主机的特定信息，一般用于平台信息获取。

1.status=ffi.abi（param）

说明：如果param（Lua字符串）被ABI（Application Binary Interface）理解，则返回true，否则返回false。表20-2列出param支持的参数。

表20-2　param支持的参数

 [image:]

2.ffi.os

说明：包含目标OS名称，内容和jit.os内容相同。

3.ffi.arch

说明：包含目标架构名字，内容和jit.arch相同。

20.3.6　方法回调

库提供了两个用于回调函数的操作。

1.cb：free（）

说明：释放回调绑定的资源。绑定的Lua函数是固定的并且可以被回收。操作后，回调函数指针不再有效并且不能再被调用，可以被重用。

2.cb：set（func）

说明：将Lua函数和回调关联起来。但是C类型的回调和回调函数指针都不会改变。

这个函数用于动态切换回调的接收器，而不需要每次重新创建一个新的回调并重新注册。

20.3.7　扩展标准库函数

下列标准库函数扩展和cdata对象共同工作。

1.n=tonumber（cdata）

说明：转换cdata对象为double型，并且返回Lua数值。本函数对64位整数封装特别有用。

2.s=tostring（cdata）

说明：返回描述64位整数的字符串（"nnnLL"或"nnnULL"）或复数（"re±imi"）。如果cdata不是整数类型，则返回一个描述ctype的对象（"ctype<type>"）或一个cdata对象（"cdata<type>：address"）。注：如果使用_tostring元方法覆盖了方法，则会使元方法操作cdata。

3.iter，obj，start=pairs（cdata），iter，obj，start=ipairs（cdata）

说明：调用_pairs或_ipairs元方法。
20.4　调用curl库的完整示例

下面是一个调用curl的FFI示例，这个示例演示了直接使用C库或使用封装库（可以直接使用lcurl库）的差别。

local ffi = require 'ffi'

ffi.cdef[[

 void *curl_easy_init();

 int curl_easy_setopt(void *curl, int option, ...);

 int curl_easy_perform(void *curl);

 void curl_easy_cleanup(void *curl);

 char *curl_easy_strerror(int code);

]]

local libcurl = ffi.load('libcurl')

local curl = libcurl.curl_easy_init()

local CURLOPT_URL = 10002 -- 参考 curl/curl.h 中定义

if curl then

 libcurl.curl_easy_setopt(curl, CURLOPT_URL, 'http://example.com')

 res = libcurl.curl_easy_perform(curl)

 if res ~= 0 then

 print(ffi.string(libcurl.curl_easy_strerror(res)))

 end

 libcurl.curl_easy_cleanup(curl)

end

20.5　小结

FFI库是LuaJit中的一个重要库，使用FFI库可以让Lua调用C/C++的代码和库，让Lua拥有了丰富的资源。本文详细介绍了FFI库的使用方法，并详细描述了每一个FFI API。通过本章的学习，读者可以在自己的Lua程序中使用C函数和数据结构。
第21章　cjson库的使用

Lua cjson库为Lua提供了JSON处理能力，是一个快速的JSON处理库，包含在OpenResty内，可以使用编译开关打开或关闭，默认是打开的。

Lua cjson模块特点如下：

·快速，支持标准的编解码操作。

·完全支持UTF-8。

·可选运行期JSON异常支持。

·不支持UTF-16和UTF-32。
21.1　示例

示例：演示cjson库使用方法，cjson库使用还是相对简洁的。

-- 模块初始化

local cjson = require "cjson"

local cjson2 = cjson.new()

local cjson_safe = require "cjson.safe"

-- 将Lua值转换为JSON

text = cjson.encode(value)

value = cjson.decode(text)

-- 读/写CJSON配置

setting = cjson.decode_invalid_numbers([setting])

setting = cjson.encode_invalid_numbers([setting])

keep = cjson.encode_keep_buffer([keep])

depth = cjson.encode_max_depth([depth])

depth = cjson.decode_max_depth([depth])

convert, ratio, safe = cjson.encode_sparse_array([convert[, ratio[, safe]]])

21.2　函数

CJSON的函数不多，常用的是用于编码的encode和用于解码的decode。

1.模块导入

local cjson = require "cjson"

local cjson2 = cjson.new()

local cjson_safe = require "cjson.safe"

通过require函数导入cjson库，cjson库不注册全局模块表。

当cjson模块遇到无效数据时，将抛出错误。参见cjson.encode和cjson.decode查看细节。

cjson.safe模块和cjson模块一致，除了在JSON转换过程中对错误的处理方式不同。错误发生时，cjson_safe.encode和cjson_safe.decode函数将返回nil和错误描述信息。

cjson.new可以用于实例一个独立的cjson模块。新模块拥有一个独立编码缓冲区和默认设置。

Lua cjson可以在单Lua提供一个不共享的持续缓冲区的情况下使Lua代码使用多个优先线程，可以被下列方法实现。

·使用cjson.encode_keep_buffer使缓冲区无效。

·确保每一个线程分别调用cjson.encode。

·在优先线程中使用分隔的cjson模块表（cjson.new）。

注意：CJSON使用strtod和snprintf实现数值转换。然而，这些函数需要一个工作区用于编码/解析。CJSON在导入时候自动侦测当前区域，在需要的时候自动实现工作区。如果当前进程区域改变了，需要通过cjson.new重新初始化CJSON。CJSON不支持在一个线程中使用不同的区域。

2.decode

语法：

value = cjson.decode(json_text)

cjson.decode反序列化任意的UTF-8 JSON字符串为Lua值或表。不支持UTF-16和UTF-32字符串。

cjson.decode？需要NULL（ASCII 0）和双引号（ASCII 34）分离内嵌的字符串。转义码将被解码，其他的字节将被透明传输。UTF-8字符只在需要的时候检查。

JSON null被转成NULL值，可以使用cjson.null？进行比较。

默认地，数值不和JSON规格兼容（无穷大，NaN，十六进制）的可以解码，这个默认值可以通过cjson.decode_invalid_numbers修改。

解码示例：

json_text = '[true, { "foo": "bar" }]'

value = cjson.decode(json_text)

-- Returns: { true, { foo = "bar" } }

注意：以数值作为key，CJSON都将返回字符串，所以不能直接以数值进行key判断。

3.decode_invalid_numbers

语法：

setting = cjson.decode_invalid_numbers([setting])

该指令用于设置无效的数值类型，setting必须是布尔型，默认是true。

当解码JSON规格中不支持的数值时，将会产生一个错误。无效的数值如下：

·无穷大。

·非数值（NaN）。

·十六进制。

有效的setting值：

·true：接收并解码无效数值，这是默认设置。

·false：当遇到无效数值时，抛出一个错误。

4.decode_max_depth

语法：

depth = cjson.decode_max_depth([depth])

该指令用于解析最大深度。当数组/对象解析深度达到上限时，将产生一个错误，用于防止混乱的JSON格式拖慢应用程序，或者由此引起的堆栈溢出。

depth必须是正整数，默认为1000。

5.encode

语法：

json_text = cjson.encode(value)

cjson.encode将Lua值编码进一个字符串。

cjson.encode支持下面类型：

·boolean；

·lightuserdata（空值）；

·nil；

·number；

·string；

·table。

下面的Lua类型将引发错误：

·function；

·lightuserdata（非空值）；

·thread；

·userdata。

默认地，数值编码为14个数字，可在cjson.encode_number_precision查看细节。

Lua CJSON将UTF-8字符串中的下列字符进行编码：

·控制字符（ASCII 0～31）；

·双引号（ASCII 34）；

·正斜杠（ASCII 47）；

·黑斜线（ASCII 92）；

·删除键（ASCII 127）。

所有其他字节直接传输。

注意：Lua CJSON可以成功编码/解码二进制串，但这是JSON不支持的，也与其他JSON库不兼容。保证输出是有效的JSON，应用程序需要确保所有传入cjson.encode的字符串是UTF-8。通常使用Base64对二进制编码，然后嵌入UTF-8串。Lua Base64可以在LuaSocket和Base64包中找到。

Lua CJSON试探决定将一个Lua表编码为JSON数组或一个对象。表中的key是数值型，将编码为一个JSON数组，其他的表将编码为JSON对象。

Lua CJSON序列化表时，不使用元方法。

·rawget用于迭代Lua数组。

·next用于迭代Lua对象。

JSON对象keys总是字符串，因此cjson.encode支持表keys是字符串和数值类型，对其他类型会产生错误。

注意：标准JSON串必须装入{}或[]。表必须通过cjson.encode编码。

默认，编码下列Lua值将产生错误：

·不兼容的数值类型（infinity，NaN）；

·超过1000层的表；

·过度稀疏Lua数组。

这些默认值可以通过下列方法修改：

·cjson.encode_invalid_numbers；

·cjson.encode_max_depth；

·cjson.encode_sparse_array。

编码示例：

value = { true, { foo = "bar" } }

json_text = cjson.encode(value)-- Returns: '[true,{"foo":"bar"}]'

6.encode_invalid_numbers

语法：

setting = cjson.encode_invalid_numbers([setting])

该指令用于设置无效值的处理方法。setting必须是布尔值或null，默认是false。

当Lua CJSON编码JSON规格不支持的数据类型时会产生错误：

·无穷大；

·非数值（NaN）。

setting值：

·true：允许无效数值编码。将产生一个不标准的JSON，但有些库支持这种输出。

·null：编码无效数值为一个JSON null值。允许无穷大和NaN编码为有效的JSON。

·false：当遇到无效数值时，抛出错误。这是默认值。

7.encode_keep_buffer

语法：

keep = cjson.encode_keep_buffer([keep])

-- "keep" must be a boolean. Default: true.

Lua CJSON可以重用编码缓冲区以改善性能。keep必须是布尔值，默认是true。

keep值：

·true：默认值，缓冲区将增长到需要的最大值，并且直到cjson模块被回收。

·false：在每一次cjson.encode调用完释放编码缓冲区。

8.encode_max_depth

语法：

depth = cjson.encode_max_depth([depth])

该指令用于设置编码最大表深度，depth必须是正整数，默认为1000。

9.encode_number_precision

语法：

precision = cjson.encode_number_precision([precision])

该指令用于修改数值型编码为文件的字节数，用于改善性能。例如，若precision改为3，则可以提升编码性能到50%。precision必须是1～14间的一个数值，默认是14字节。

10.encode_sparse_array

语法：

convert, ratio, safe = cjson.encode_sparse_array([convert[, ratio[, safe]]])

Lua CJSON将Lua表编码为JSON三种数组中的一种，由Lua数组中丢失的值数量决定：

·普通：所有值有效。

·稀疏：至少1个值丢失。

·过度稀疏：丢失的值超过设置的比例。

Lua CJSON编码稀疏数组时，使用JSON null作为丢失的条目。

当满足下列条件时，一个数组判定为稀疏数组：

·ratio>0；

·maximum_index>safe；

·maximum_index>item_count*ratio。

3个参数如下：

·convert：必须是布尔值，默认为false。

·ratio：必须是正整数，默认为2。

·safe：必须是正整数，默认为10。

Lua CJSON不会在ratio=0时认为一个数组是稀疏数组。safe限制保证小的数组总是编码为稀疏数组。

默认，企图编码一个绝对稀疏数组将产生一个错误，如果convert设置为true，绝对稀疏数组将转换为JSON对象。

例如，编码一个稀疏数组：

cjson.encode({ [3] = "data" })

-- Returns: '[null,null,"data"]'

例如，使能转换为JSON对象：

cjson.encode_sparse_array(true)

cjson.encode({ [1000] = "excessively sparse" })

-- Returns: '{"1000":"excessively sparse"}'

21.3　变量

CJSON提供了3个变量供使用。

1）_NAME：返回CJSON名字（“cjson”）。

2）_VERSION：返回cjson模块版本号（“2.1.0”）。

3）null：Lua CJSON解码JSON null为一个用户级NULL指针，cjson.null用于兼容性。
21.4　小结

Web开发中广泛使用JSON数据格式，所以cjson库是Lua中的一个重要基础库。本章介绍了CJSON的用法和实例。因为JSON本身简洁易读，所以cjson库使用也非常简单，容易上手。
第22章　lua-resty-template类的使用

Web开发中经常使用到动态Web网页开发技术，如淘宝商品页，详情页面显示非常复杂，逻辑也非常复杂，一般都是使用动态页面技术实现的，常见的Web端动态页面技术是PHP、JSP等。但在商品详情这种页面中变动又不是那么快速，使用PHP、JSP等又不完全合适，需要组建复杂的系统，使用CGI缓存等技术提高系统整体并发能力，这时可以使用模板技术实现。Lua中有许多模板引擎，这里介绍OpenResty团队提供的lua-resty-template，可以渲染很复杂的页面，在LuaJIT上的性能表现不错。

模板的工作机理与JSP类似。页面是模板，中间有定义好的标签。页面被提交到后端后，Servlet（Servlet是服务端程序）对模板进行翻译，将变量翻译成系统动态的数据，然后返回给客户端。lua-resty-template模板也是一样的机制，模板页面被template模块翻译成Lua模板，然后通过ngx.print输出。

lua-resty-template提供了下面的工作能力：

·模板位置：模板存放位置。

·变量输出/转义：变量值输出。

·代码片段：执行代码片段，完成如if/else、for等复杂逻辑，调用对象函数/方法。

·注释：解释代码片段含义。

·include：包含另一个模板片段。

·其他：不需要解析片段、简单布局、可复用的代码块、宏指令等。
22.1　示例

示例：通过模板输出“Hello World！”。

Lua代码如下：

local template = require "resty.template"

view = template.new "view.html"

view.message = "Hello, World!"

view:render()

template.render("view.html", { message = "Hello, World!" })

view.html内容如下：

<!DOCTYPE html>

<html>

<body>

<h1>{{message}}</h1>

</body>

</html>

输出如下：

<!DOCTYPE html>

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

Lua代码可以存放到nginx.conf相应的location里，实现访问指定location输出格式化内容。

也可以使用内联模板字符串实现：

-- 使用内联模板字符串

template.render([[<!DOCTYPE html><html><body><h1>{{message}}</h1></body></html>]], { message = "Hello, World!" })

22.2　模板符号

现在模板中定义了下面的标签。

·{{expression}}：表达式的结果，HTML转义。

·{*expression*}：表达式的结果。

·{%lua code%}：运行Lua代码。

·{（template）}：包含模板文件，也可以为包含文件提供内容，如{（file.html，{message="Hello，World"}）}。

·{[expression]}：包含表达式文件。同样可以为文件提供内容（表达式的结果），如{["file.html"，{message="Hello，World"}]}。

·{-block-}...{-block-}{-block-}：一个以block为key的一个blocks表的值。这种情况不能使用预定义块。

·{-verbatim-}...{-verbatim-}和{-raw-}...{-raw-}：预定义块，不被模板模块运行，但是会输出。

·{#comments#}：注释#中间的是注释内容，不会输出和运行。

使用模板可以访问上下文表以及模板表中的所有内容，也可以使用前缀访问，例如：

<h1>{{message}}</h1> == <h1>{{context.message}}</h1>

22.2.1　短转义符号

如果不想输出一个模板符号，在标签开头加上反斜杠\：

<h1>\{{message}}</h1>

将输出：

<h1>{{message}}</h1>

如果想在模板标签前输出反斜杠，需要将反斜杠转义：

<h1>\\{{message}}</h1>

将输出：

<h1>\[message-variables-content-here]</h1>

22.2.2　上下文表中的复杂key

可能会有这种类型的上下文表：

local ctx = {["foo:bar"] = "foobar"}

想在模板中渲染ctx[“foo：bar”]的值的时候，可以模板中这样引用：

{# {*["foo:bar"]*} won't work, you need to use: #}

{*context["foo:bar"]*}

或者：

template.render([[{*context["foo:bar"]*}]], {["foo:bar"] = "foobar"})

22.2.3　HTML转义

只有字符串会被转义，没有参数的函数调用返回结果会被转义，其他类型要使用tostring，nil和ngx.nulls被转成“”。

转义的HTML字符如下：

·&->　&；

·<->　<；

·>->　>；

·“->　"；

·‘->　'；

·/->　/；

例如：

--Lua代码

local template = require "resty.template"

template.render("view.html", {

 title = "Testing lua-resty-template",

 message = "Hello, World!",

 names = { "James", "Jack", "Anne" },

 jquery = '<script src="js/jquery.min.js"></script>'

})

view.html内容如下：

{(header.html)}

<h1>{{message}}</h1>

{% for _, name in ipairs(names) do %}

{{name}}

{% end %}

{(footer.html)}

header.html内容如下：

<!DOCTYPE html>

<html>

<head>

<title>{{title}}</title>

 {*jquery*}

</head>

<body>

footer.html内容如下：

</body>

</html>

22.2.4　保留的上下文key和评论

下面的key不要在上下文表中使用：

·_：存放编译模板，如果设置了内容可以通过{{context._}}使用。

·context：存放当前上下文，如果设置了内容可以通过{{context.context}}使用。

·include：保存include的helper函数，通过{{context.include}}使用。

·layout：存储view中要使用的layout，通过{{context.layout}}使用。

·blocks：存储blocks，通过{{context.blocks}}使用。

·template：存储模板表，通过{{context.template}}使用。

template.new也不要被覆盖：

·render：用来渲染一个view。

不能有{（view.html）}递归调用，例如：

Lua

template.render "view.html"

view.html

{(view.html)}

解决这个问题可以通过使用{（符号）}从子路径载入模板：

view.html

{(users/list.html)}

同样，可以通过文件路径或一个字符串提供模板，如果文件存在，将使用文件，否则当成一个字符串使用。
22.3　安装

只需要把template路径和template.lua文件复制到系统的package.path路径下即可，在resty路径下。如果使用OpenResty，默认位置是/usr/local/openresty/lualib/resty。

下载源文件：

git clone https://github.com/bungle/lua-resty-template

安装：

cd lua-resty-template\lib

cp -r resty /usr/local/openresty/lualib/

22.3.1　Nginx/OpenResty配置

lua-resty-template在Nginx/OpenResty上使用，需要在nginx.conf的server部分进行一些配置：

·template_root（set$template_root/var/www/site/templates；）。

·template_location（set$template_location/templates；）。

如果在nginx.conf中配置了这两个问题，则可以使用ngx.var.document_root。设置template_location后，需要测试一下，以查看对应的location是否返回了200。

22.3.2　使用document_root

示例：从html路径载入Lua代码生成内容。

http {

 server {

 location / {

 root html;

 content_by_lua 'local template = require "resty.template" template.render("view.html", { message = "Hello, World!" }) ';

 }

 }

}

22.3.3　使用template_root

示例：从/usr/local/openresty/nginx/html/templates路径载入Lua代码。

http {

 server {

 set $template_root /usr/local/openresty/nginx/html/templates;

 location / {

 root html;

 content_by_lua ' local template = require "resty.template" template.render("view.html", { message = "Hello, World!" }) ';

 }

 }

}

22.3.4　使用template_location

示例：使用ngx.location.capture从/templates读取内容。

http {

 server {

 set $template_location /templates;

 location / {

 root html;

 content_by_lua 'local template = require "resty.template" template.render("view.html", { message = "Hello, World!" }) ';

 }

 location /templates {

 internal;

 alias html/templates/;

 }

 }

}

22.4　Lua API

本节介绍lua-resty-template提供的Lua API。

1.boolean template.caching（boolean or nil）

说明：使能或禁用模板缓存，如果没有参数直接调用，则返回当前模板缓存的状态。如果默认模板缓存使能，可能因为开发的原因或低内存占用的原因禁用它。

local template = require "resty.template"

template.caching()-- Disable template caching

template.caching(false)-- Enable template caching

template.caching(true)

如果模板已经在编译时被缓存了，将返回缓存版本，也可以通过调用template.cache={}丢弃原来的缓存并使之重新编译。

2.table template.new（view，layout）

说明：使用默认的上下文建立一个新的模板实例。返回一个表，只有一个方法是render。表还有_tostring元表操作定义。view参数和layout参数可以是字符串或文件路径，layout可以是之前通过template.new创建的表。

local view = template.new"template.html"

local view = template.new("view.html", "layout.html")

local view = template.new[[<h1>{{message}}</h1>]]

local view = template.new([[<h1>{{message}}</h1>]], [[<html><body> {*view*}</body></html>]])

例如：

local template = require "resty.template"

local view = template.new"view.html"

view.message = "Hello, World!"

view:render()

view:render{ title = "Testing lua-resty-template" }

view:render(setmetatable({ title = "Testing lua-resty-template" }, { _index = view }))-- To get rendered template as a string, you can use tostringlocal result = tostring(view)

3.function，boolean template.compile（view，key，plain）

说明：解析、编译、缓存（如果缓存使能）一个模板，编译成功的模板返回一个函数。函数以上下文为参数，以字符串返回渲染的模板。可以传递key参数作为缓存key，如果缓存key没有提供view，则其将只作为一个缓存key。如果缓存key没有缓存模板，缓存将不会检查，并且返回结果函数，并且不被缓存。可以可选传入plain的值，对于plain模式的字符串，可以传入true（将跳过template.load，并且跳过template.parse阶段的二进制块检测）。

local func = template.compile("template.html")

local func = template.compile([[<h1>{{message}}</h1>]])

例如：

local template = require "resty.template"

local func = template.compile("view.html")

local world = func{ message = "Hello, World!" }

local universe = func{ message = "Hello, Universe!" }print(world, universe)

第二个返回值是布尔型，可以忽略掉，或者用它判断返回的函数是否是缓冲的。

4.template.render（view，context，key，plain）

说明：解析、编译、缓存（如果缓存使能），并且输出ngx.print或print有效的模板。可以选择传递key作为一个缓冲key。如果plain是true，view将优先使用plain纯净模板。将跳过template.load，并且将跳过template.parse阶段的二进制块检测。

template.render("template.html", { message = "Hello, World!" }) -- or

template.render([[<h1>{{message}}</h1>]], { message = "Hello, World!" })

例如：

local template = require "resty.template"

template.render("view.html", { message = "Hello, World!" })

template.render("view.html", { message = "Hello, Universe!" })

5.string template.parse（view，plain）

说明：解析模板文件或字条串，生成解析后的模板字符串。该函数在调试模板的时候很有用，可以解析二进制块。如果plain是true，view将优先使用plain纯净模板。将跳过template.load，并且将跳过template.parse阶段的二进制块检测。

local t1 = template.parse("template.html")local t2 = template.parse([[<h1>{{message}}</h1>]])

6.string template.precompile（view，path，strip）

说明：将模板当二进制块预编译，二进制块可以写入一个文件输出（并且可以被Lua的loadfile直接载入）。path用于指定二进制块输出的文件和路径。strip设置为false会生成调试信息，默认是true。

local view = [[<h1>{{title}}</h1>{% for _, v in ipairs(context) do %} {{v}}{% end %}]]

local compiled = template.precompile(view)

local file = io.open("precompiled-bin.html", "wb")

file:write(compiled)

file:close()

-- Alternatively you could just write (which does the same thing as above)

template.precompile(view, "precompiled-bin.html")

template.render("precompiled-bin.html", {

 title = "Names",

 "Emma", "James", "Nicholas", "Mary"

})

7.template.load

说明：载入模板。在template.parse之前调用该函数（要保证template.parse的plain可选参数是false（默认值））。默认地，有两个loader，一个是Lua用loader，另一个是Nginx/OpenResty用loader，用户可以覆盖这些函数。例如，需要从数据库中载入一个模板loader。

Lua版本的template.load：

local function load_lua(path)

 -- read_file tries to open file from path, and return its content.

return read_file(path) or path

end

默认的Nginx/OpenResty的template.load：

local function load_ngx(path)

 local file, location = path, ngx.var.template_location

 if file:sub(1) == "/" then

 file = file:sub(2)

 end

 if location and location ~= "" then

 if location:sub(-1) == "/" then

 location = location:sub(1, -2)

 end

 local res = ngx.location.capture(location .. '/' .. file)

 if res.status == 200 then

 return res.body

 end

 end

 local root = ngx.var.template_root or ngx.var.document_root

 if root:sub(-1) == "/" then

 root = root:sub(1, -2)end

 -- read_file tries to open file from path, and return its content.

 return read_file(root .. "/" .. file) or pathend

如示例所示，如果以字符串提供模板，lua-resty-template总是尝试从文件（ngx.location.capture）载入模板。如果用户知道自己使用的是字符串，而不是文件，可以在template.compile、template.render、template.parse使用plain参数。或者替换template.load。可以使用字符串载入模板或自定义查找模板，比如从数据库里载入模板，如果从Redis载入模板：

local template = require "resty.template"

template.load = function(s)

return s

 end

8.template.print

说明：包含一个为template.render（）或template.new（"example.html"）使用的函数，render（）用来输出结果。默认使用ngx.print或print。可以覆盖这个域，可以使用自己的输出函数替代。该函数在一些框架下使用比较有用。

local template = require "resty.template"

template.print = function(s)

 print(s)

 print("<!-- Output by My Function -->")

end

22.5　模板预编译

lua-resty-template支持模板预编译，这在需要跳过模板解析时非常有用，如不希望在生产系统上发布纯文本内容。预编译可以保证模板不包含一些东西，不去编译部分内容，尽管模板缓存会带来一些性能上的提升。可以在编译脚本里加上预编译功能。

1）预编译模板，作为二进制文件输出：

local template = require "resty.template"

local compiled = template.precompile("example.html", "example-bin.html")

2）载入预编译模板文件，以上下文参数运行：

local template = require "resty.template"

template.render("example-bin.html", { "Jack", "Mary" })

22.6　模板助手

当lua-resty-template没有底层的结构或方法扩展时，仍然有一些可能性可以尝试。

·在全局字符串增加方法、表（但不推荐使用）。

·在加入上下文之前处理值。

·创建全局函数。

·为本地函数创建模板表或上下文表。

·在表内使用元方法。

编辑全局类型看起来很方便，但是会污染变量空间。

例如，向模板表或上下文表添加moses：

local _ = require "moses"

local template = require "resty.template"

template._ = _

然后就可以在模板内使用_，例如：

Lua代码：

Lua代码：

local template = require "resty.template"

local html = require "resty.template.html"

template.render([[{% for _, person in ipairs(context) do %} {*html.li(person.name)*}{% end %}<table>{% for _, person in ipairs(context) do %} <tr data-sort="{{(person.name or ""):lower()}}"> {*html.td{ id = person.id }(person.name)*} </tr>{% end %}</table>]], {

 { id = 1, name = "Emma"},

 { id = 2, name = "James" },

 { id = 3, name = "Nicholas" },

 { id = 4 }

})

输出：

Emma

James

Nicholas

<table>

<tr data-sort="emma">

<td id="1">Emma</td>

</tr>

<tr data-sort="james">

<td id="2">James</td>

</tr>

<tr data-sort="nicholas">

<td id="3">Nicholas</td>

</tr>

<tr data-sort="">

<td id="4" />

</tr>

</table>

22.7　用法示例

22.7.1　引用模板

可以在模板内使用{（template）}和{（template，context）}符号引用其他的模板。第一个符号使用当前上下文作为引用模板的上下文，第二个符号使用一个新的上下文替换，下面是一个引用模板并更换上下文的例子。

Lua代码：

local template = require "resty.template"

template.render("include.html", { users = {

 { name = "Jane", age = 29 },

 { name = "John", age = 25 }

}})

include.html：

<html>

 <body>

 {% for _, user in ipairs(users) do %}

 {(user.html, user)}

 {% end %}

 </body>

</html>

user.html：

User {{name}} is of age {{age}}

输出：

<html>

<body>

User Jane is of age 29

User John is of age 25

</body>

</html>

22.7.2　Layouts的views

Layouts（或主页）可以用来在其他view中包装一个新view。

Lua代码：

local template = require "resty.template"

local layout = template.new "layout.html"

layout.title = "Testing lua-resty-template"

layout.view = template.compile "view.html" { message = "Hello, World!" }

layout:render()-- Or like this

template.render("layout.html", {

 title = "Testing lua-resty-template",

 view = template.compile "view.html" { message = "Hello, World!" }

})-- Or maybe you like this style more-- (but please remember that context.view is overwritten on rendering the layout.html)local view = template.new("view.html", "layout.html")

view.title = "Testing lua-resty-template"

view.message = "Hello, World!"

view:render()-- Well, maybe like this then?local layout = template.new "layout.html"

layout.title = "Testing lua-resty-template"local view = template.new("view.html", layout)

view.message = "Hello, World!"

view:render()

view.html：

<h1>{{message}}</h1>

layout.html：

<!DOCTYPE html>

<html>

 <head>

 <title>{{title}}</title>

 </head>

 <body>

 {*view*}

 </body>

</html>

可选的可以这样操作。

Lua代码：

 local view = template.new("view.html", "layout.html")

 view.title = "Testing lua-resty-template"

 view.message = "Hello, World!"

 view:render()

view.html：

{% layout="section.html" %}

<h1>{{message}}</h1>

section.html：

<div id="section">

 {*view*}

</div>

layout.html：

<!DOCTYPE html>

<html>

<head>

<title>{{title}}</title>

</head>

<body>

 {*view*}

</body>

</html>

输出：

<!DOCTYPE html>

<html>

 <head>

 <title>Testing lua-resty-template</title>

 </head>

 <body>

 <div id="section">

 <h1>Hello, World!</h1>

 </div>

 </body>

</html>

22.7.3　使用Blocks

blocks可以在layouts的view中不同地方移动，layouts有blocks的占位符。

Lua代码：

 local view = template.new("view.html", "layout.html")

 view.title = "Testing lua-resty-template blocks"

 view.message = "Hello, World!"

 view.keywords = { "test", "lua", "template", "blocks" }

 view:render()

view.html：

<h1>{{message}}</h1>

{-aside-}

 {% for _, keyword in ipairs(keywords) do %}

{{keyword}}

 {% end %}

{-aside-}

layout.html：

<!DOCTYPE html>

<html>

 <head>

 <title>{*title*}</title>

 </head>

 <body>

 <article>

 {*view*}

 </article>

 {% if blocks.aside then %}

 <aside>

 {*blocks.aside*}

 </aside>

 {% end %}

 </body>

</html>

输出：

<!DOCTYPE html>

<html>

 <head>

 <title>Testing lua-resty-template blocks</title>

 </head>

 <body>

 <article>

 <h1>Hello, World!</h1>

 </article>

 <aside>

 test

 lua

 template

 blocks

 </aside>

 </body>

</html>

22.7.4　继承

假如用户有base.html、layout1.html、layout2.html和page.html，且需要这样一个继承关系：base.html→layout1.html→page.html或base.html→layout2.html→page.html（实际上不需要限制为3层）。

Lua代码：

local res = require"resty.template".compile("page.html"){}

base.html：

<html lang='zh'>

<head>

<link href="css/bootstrap.min.css" rel="stylesheet">

 {* blocks.page_css *}

</head>

<body>

 {* blocks.main *} <script src="js/jquery.js"></script><script src="js/bootstrap.min.js"></script>

 {* blocks.page_js *}

</body>

</html>

layout1.html：

{% layout = "base.html" %}

{-main-}

<div class="sidebar-1">

 {* blocks.sidebar *}

</div>

<div class="content-1">

 {* blocks.content *}

</div>

{-main-}

layout2.html：

{% layout = "base.html" %}

{-main-}

<div class="sidebar-2">

 {* blocks.sidebar *}

</div>

<div class="content-2">

 {* blocks.content *}

</div>

<div>I am different from layout1 </div>

{-main-}

page.html：

{% layout = "layout1.html" %}

{-sidebar-}

 this is sidebar

{-sidebar-}

{-content-}

 this is content

{-content-}

{-page_css-}

<link href="css/page.css" rel="stylesheet">

{-page_css-}

{-page_js-} <script src="js/page.js"></script>

{-page_js-}

或

page.html：

{% layout = "layout2.html" %}

{-sidebar-}

 this is sidebar

{-sidebar-}

{-content-}

 this is content

{-content-}

{-page_css-}

<link href="css/page.css" rel="stylesheet">

{-page_css-}

{-page_js-} <script src="js/page.js"></script>

{-page_js-}

22.7.5　Macros

使用宏处理参数化的views，这是lua-resty-template中一个很好的特性。

要使用宏，要首先定义Lua代码：

template.render("macro.html", {

 item = "original",

 items = { a = "original-a", b = "original-b" }

})

macro-example.html:

{% local string_macro = [[<div>{{item}}</div>]] %}

{* template.compile(string_macro)(context) *}

{* template.compile(string_macro){ item = "string-macro-context" } *}

输出：

<div>original</div>

<div>string-macro-context</div>

现在在macro-example.html中添加函数宏：

{% local function_macro = function(var, el)

 el = el or "div"

 return "<" .. el .. ">{{" .. var .. "}}</" .. el .. ">\n"end %}

{* template.compile(function_macro("item"))(context) *}

{* template.compile(function_macro("a", "span"))(items) *}

输出：

<div>original</div>

original-a

但是，这个方法比较复杂，下面尝试另外一个函数宏：

{% local function function_macro2(var)

 return template.compile("<div>{{" .. var .. "}}</div>\n")end %}

{* function_macro2 "item" (context) *}

{* function_macro2 "b" (items) *}

输出：

<div>original</div>

<div>original-b</div>

这是另外一个：

{% function function_macro3(var, ctx)

 return template.compile("<div>{{" .. var .. "}}</div>\n")(ctx or context)end %}

{* function_macro3("item") *}

{* function_macro3("a", items) *}

{* function_macro3("b", items) *}

{* function_macro3("b", { b = "b-from-new-context" }) *}

输出：

<div>original</div>

<div>original-a</div>

<div>original-b</div>

<div>b-from-new-context</div>

宏有点复杂，可以使用form-renders或helpers-macros实现参数化模板输出。需要注意的是，在代码块中（{%and%}））不能有%，但是可以用级联：“%”..“}”。

22.7.6　调用模板中的方法

可以调用模板中的字符串方法（或其他表方法）。

Lua代码：

local template = require "resty.template"

template.render([[<h1>{{header:upper()}}</h1>]], { header = "hello, world!" })

输出：

<h1>HELLO, WORLD!</h1>

22.7.7　模板内嵌的Angular或其他标签/模板

一些情况下需要混合和匹配其他模板（如果客户端调用Angular类的JS模板），客户端和服务端的lua-resty-templates类模板混合，需要这样的模板：

<html ng-app>

 <body ng-controller="MyController">

 <input ng-model="foo" value="bar">

 <button ng-click="changeFoo()">{{buttonText}}</button><script src="angular.js">

 </body>

</html>

可以看到，为Angular模板准备了一个{{buttonText}}，不是为lua-resty-template准备的。可以用{-verbatim-}或{-raw-}处理代码：

{-raw-}

<html ng-app>

<body ng-controller="MyController">

<input ng-model="foo" value="bar">

<button ng-click="changeFoo()">{{buttonText}}</button><script src="angular.js">

</body>

</html>

{-raw-}

或（{（head.html）}是lua-resty-template处理的）：

<html ng-app>

 {(head.html)}

<body ng-controller="MyController">

<input ng-model="foo" value="bar">

<button ng-click="changeFoo()">{-raw-}{{buttonText}}{-raw-}</button><script src="angular.js">

</body>

</html>

也可以使用短的转义字符：

...

<button ng-click="changeFoo()">\{{buttonText}}</button>

...

22.7.8　模板内嵌的Markdown

如果要在模板中内嵌Markdown（和SmartyPants），可以使用lua-resty-hoedown（依赖LuaJIT）。下面是一个使用例子。

Lua代码：

local template = require "resty.template"

template.markdown = require "resty.hoedown"

template.render[=[<html><body>{*markdown[[#Hello, WorldTesting Markdown.]]*}

 </body></html>]=]

输出：

<html>

 <body>

 <h1>Hello, World</h1>

 <p>Testing Markdown.</p>

 </body>

</html>

也可以添加lua-resty-hoedown文档中的配置参数，还可以使用SmartyPants。

Lua代码：

local template = require "resty.template"

template.markdown = require "resty.hoedown"

template.render[=[<html><body>{*markdown([[#Hello, WorldTesting Markdown with "SmartyPants"...]], { smartypants = true })*}</body></html>]=]

输出：

<html>

 <body>

 <h1>Hello, World</h1>

 <p>Testing Markdown with “SmartyPants”…</p>

 </body>

</html>

22.7.9　LSP

LSP（Lua Server Pages）跟PHP、ASP、JSP类似，使用lua-resty-template实现是比较简单的。跟ASP一样，LSP由后端服务对前端页面进行格式化。

nginx.conf：

http {

 init_by_lua 'require "resty.core" template = require "resty.template" template.caching(false)';

 server {

 location ~ \.lsp$ {

 default_type text/html;

 content_by_lua 'template.render(ngx.var.uri)';

 }

 }

}

上面配置文件在Lua环境里创建了一个全局的template变量（也许这不是期望的），同样创建了一个location用于匹配所有的LSP文件，下面渲染模板。

假设一个index.lsp请求。

index.lsp

{%

layout = "layouts/default.lsp"

local title = "Hello, World!"

%}

<h1>{{title}}</h1>

可以看到这些文件包含一些小的view（<h1>{{title}}</h1>），包含一些我们想要运行的Lua代码。如果需要一个前端layout纯的代码文件，layout变量应该已经在view中定义了。看下其他的文件。

layouts/default.lsp

<html>

 {(include/header.lsp)}

 <body>

 {*view*}

 </body>

</html>

这里需要一个层去装饰index.lsp，但是已经包含了，例如：

include/header.lsp

 <head>

 <title>Testing Lua Server Pages</title>

 </head>

这是静态的数据。

最后的输出应该是这样的：

<html>

 <head>

 <title>Testing Lua Server Pages</title>

 </head>

 <body>

 <h1>Hello, World!</h1>

 </body>

</html>

lua-resty-template可以简单使用，也可以复杂使用。只要在root目录保存文件，就使用通常的保存、刷新的开发风格。服务将文件保存时自动装载新文件并重新载入模板（如果缓存关闭）。如果希望传递参数到layouts或向上下文表添加材料（看下面的例子）：

{%

layout = "layouts/default.lsp"

local title = "Hello, World!"

context.title = 'My Application - ' .. title

%}

<h1>{{title}}</h1>

22.8　FAQ

（1）如何清除模板缓存

如果使能了缓存，lua-resty-template会自动缓存模板的结果，可以通过template.cache={}清理缓存。

（2）lua-resty-template用户

jd.com–京东商城
22.9　小结

大型网站为了提高并发性，往往使用网页静态化技术，以方便使用反向代理技术，并进行CDN加速。小型网站往往使用动态网页技术，但这并不适用于大型网站。lua-resty-template模板定位的是这样一个中间地带，既提供了动态网页能力，又不需要经常变动。

本章详细介绍了模板类的使用方法，并针对每个特性给出了详细的用法示例。通过本章的学习，可以了解并掌握模板化页面的相关知识。
第23章　WebSocket的使用

WebSocket protocol是HTML5一种新的协议。它实现了浏览器与服务器全双工通信（full-duple），一开始的握手需要借助HTTP请求完成。

在WebSocket出现之前，网站为了实现即时通信，所用的技术是轮询（polling）。轮询是在特定的时间间隔（如每1秒）内，由浏览器对服务器发出HTTP request，然后由服务器返回最新的数据给客户端的浏览器。这种传统的HTTP request的模式带来很明显的缺点：浏览器需要不断地向服务器发出请求，然而HTTP request的header是非常长的，其中包含的有用数据可能只是一个很小的值，这样会占用很多的带宽。

而比较新的实现轮询效果的技术是Comet，它使用了AJAX。这种技术虽然可达到全双工通信，但依然需要发出请求。

在WebSocket API中，浏览器和服务器只需要做一个握手的动作，两者之间就会形成了一条快速通道，从而可以直接互相传送数据。WebSocket协议为我们实现即时服务带来了两大好处。

·Header：互相沟通的Header是很小的，大概只有2 Bytes。

·Server Pus：服务器的推送。服务器不再被动地在接收到浏览器的request之后才返回数据，而是在有新数据时就主动推送给浏览器。

lua-resty-websocket库在ngx_module的cosocket API上实现了非阻塞的WebServer服务端和非阻塞的WebSocket客户端。

库在OpenResty中默认是使能的，可以在./configure时通过--without-lua_resty_websocket选项禁用。
23.1　示例

示例：lua-resty-websocket模块的使用方法。

 local server = require "resty.websocket.server"

 local wb, err = server:new{

 timeout = 5000, -- in milliseconds

 max_payload_len = 65535,

 }

 if not wb then

 ngx.log(ngx.ERR, "failed to new websocket: ", err)

 return ngx.exit(444)

 end

 local data, typ, err = wb:recv_frame()

 if not data then

 ngx.log(ngx.ERR, "failed to receive a frame: ", err)

 return ngx.exit(444)

 end

 if typ == "close" then

 -- send a close frame back:

 local bytes, err = wb:send_close(1000, "enough, enough!")

 if not bytes then

 ngx.log(ngx.ERR, "failed to send the close frame: ", err)

 return

 end

 local code = err

 ngx.log(ngx.INFO, "closing with status code ", code, " and message ", data)

 return

 end

 if typ == "ping" then

 -- send a pong frame back:

 local bytes, err = wb:send_pong(data)

 if not bytes then

 ngx.log(ngx.ERR, "failed to send frame: ", err)

 return

 end

 elseif typ == "pong" then

 -- just discard the incoming pong frame

 else

 ngx.log(ngx.INFO, "received a frame of type ", typ, " and payload ", data)

 end

 wb:set_timeout(1000) -- change the network timeout to 1 second

 bytes, err = wb:send_text("Hello world")

 if not bytes then

 ngx.log(ngx.ERR, "failed to send a text frame: ", err)

 return ngx.exit(444)

 end

 bytes, err = wb:send_binary("blah blah blah...")

 if not bytes then

 ngx.log(ngx.ERR, "failed to send a binary frame: ", err)

 return ngx.exit(444)

 end

 local bytes, err = wb:send_close(1000, "enough, enough!")

 if not bytes then

 ngx.log(ngx.ERR, "failed to send the close frame: ", err)

 return

 end

这个示例代码可以在nginx.conf内配置一个http模块，在server中注册一个location，注册为content_by_lua_file，则可以使服务器处理WebSocket协议。

nginx.conf：

#user nobody;

worker_processes 1;

#error_log logs/error.log;

#error_log logs/error.log notice;

#error_log logs/error.log info;

#pid logs/nginx.pid;

events {

 worker_connections 1024;

}

http {

 include mime.types;

 default_type application/octet-stream;

 #log_format main '$remote_addr - $remote_user [$time_local] "$request" '

 # '$status $body_bytes_sent "$http_referer" '

 # '"$http_user_agent""$http_x_forwarded_for"';

 #access_log logs/access.log main;

 sendfile on;

 #tcp_nopush on;

 #keepalive_timeout 0;

 keepalive_timeout 65;

 #gzip on;

 server {

 listen 80;

 server_name localhost;

 #charset koi8-r;

 #access_log logs/host.access.log main;

 location / {

 root html;

 index index.html index.htm;

 }

 #error_page 404 /404.html;

 # redirect server error pages to the static page /50x.html

 #

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 # proxy the PHP scripts to Apache listening on 127.0.0.1:80

 #

 #location ~ \.php$ {

 # proxy_pass http://127.0.0.1;

 #}

 location /websocket{

 set $cmd_test "test";

 content_by_lua_file socketsvr.lua;

 }

 }

}

socketsvr.lua保存WebSocket演示代码。
23.2　安装

推荐直接使用最新的OpenResty包，默认使用本库。

如果在自己的Nginx中使用，ngx_lua已经安装，需要确保ngx_lua是0.9.0以上版本，同时需要在配置文件里配置lua_package_path指令：

 # nginx.conf

 http {

 lua_package_path "/path/to/lua-resty-websocket/lib/?.lua;;";

 ...

 }

然后，就可以在代码里使用库了：

 local server = require "resty.websocket.server"

23.3　resty.websocket.server

resty.websocket.server是服务端模块，使用下面的方法载入模块：

local server = require "resty.websocket.server"

server模块提供WebSocket定义的帧处理函数。

1.new

语法：

wb, err = server:new()

wb, err = server:new(opts)

说明：在服务端执行一个WebSocket握手操作，并返回一个WebSocket服务对象。出现任何错误，则返回nil和错误描述字符串。

opts是可选参数：

·max_payload_len：指定发送和接收WebSocket帧负载最大长度。

·send_masked：标示是否发送masked WebSocket帧，true表示发送，false表示不发送，默认不发送。

·timeout：网络超时值，以毫秒为单位，可以通过set_timeout方法改变。这个参数并不影响WebSocket握手HTTP应答头发送处理，同时需要配置send_time配置指令以设置HTTP超时值。

2.set_timeout

语法：

wb:set_timeout(ms)

说明：设置网络操作超时值，以毫秒为单位。

3.send_text

语法：

bytes, err = wb:send_text(text)

说明：以文本类型发送数据帧，返回TCP层实际发送的数量。出现任何错误，则返回nil和错误描述字符串。

4.send_binary

语法：

bytes, err = wb:send_binary(data)

说明：以二进制类型发送数据报文，返回TCP层实际发送的数据数。出现任何错误，则返回nil和错误描述字符串。

5.send_ping

语法：

bytes, err = wb:send_ping()

bytes, err = wb:send_ping(msg)

说明：发送一个ping帧，也可以以msg可选参数发送ping帧，返回TCP层实际发送的字节数。出现任何错误，则返回nil和错误描述字符串。

注意，本方法不等待对端返回应答帧。

6.send_pong

语法：

bytes, err = wb:send_pong()

bytes, err = wb:send_pong(msg)

说明：发送一个pong帧，返回TCP层实际发送的字节数。出现任何错误，则返回nil和错误描述字符串。

7.send_close

语法：

bytes, err = wb:send_close()

bytes, err = wb:send_close(code, msg)

说明：发送一个close帧，可以携带可选的code和消息。出现任何错误，则返回nil和错误描述字符串。

注意，本方法不等对端返回。

支持的code如下：

·1000：一个正常的关闭。

·1001：指示端点离开了，指示浏览器或服务器离开了页面。

·1002：指示端点因为协议错误被中断了。

·1003：标示端点因为收到了不接受的类型数据而中断。

·1004：保留。

·1005：保留而且不允许使用。

·1006：保留。

·1007：指示端点收到了数据，包含的消息是不支持的，所以中断。

·1008：指端点收到了不合数据类型规则的数据而中断。

·1009：端点接收到的消息太大了。

·1010：表示端点在尝试和服务尝试协商扩展，服务没有在握手信息里返回。

·1011：表示请求中遇到了不期望的异常。

·1015：保留。

8.send_frame

语法：

bytes, err = wb:send_frame(fin, opcode, payload)

说明：用fin（布尔值）、opcode和payload发送一个原始的WebSocket帧。出现任何错误，则返回nil和错误描述字符串。成功则返回TCP发送的字节数。

该方法可用于控制最大允许的负载长度，可以在new时传递max_payload_len选项实现；控制是否发送masked帧，通过将send_masked设置为true实现，默认不发送。

支持的opcode（占4bit）如下：

·%x0：连续帧。

·%x1：文本帧。

·%x2：二进制帧。

·%x3-7：保留。

·%x8：连接关闭。

·%x9：ping。

·%xA：pong。

·*%xB-F：保留。

9.recv_frame

语法：

data, typ, err = wb:recv_frame()

说明：从线路上接收一个WebSocket帧。出现任何错误，则返回nil和错误描述字符串。

第2个返回值总是帧类型，取值为continuation、text、binary、close、ping、pong、nil（表示未知类型）中的一个，其中close帧将返回3个值，第三个为扩展的状态信息，参见send_close描述。其他帧类型返回载荷和类型。对于分片帧，err返回“again”。
23.4　resty.websocket.client

载入客户端模块，代码如下：

 local client = require "resty.websocket.client"

下面是一个简单的示例：

 local client = require "resty.websocket.client"

 local wb, err = client:new()

 local uri = "ws://127.0.0.1:" .. ngx.var.server_port .. "/s"

 local ok, err = wb:connect(uri)

 if not ok then

 ngx.say("failed to connect: " .. err)

 return

 end

 local data, typ, err = wb:recv_frame()

 if not data then

 ngx.say("failed to receive the frame: ", err)

 return

 end

 ngx.say("received: ", data, " (", typ, "): ", err)

 local bytes, err = wb:send_text("copy: " .. data)

 if not bytes then

 ngx.say("failed to send frame: ", err)

 return

 end

 local bytes, err = wb:send_close()

 if not bytes then

 ngx.say("failed to send frame: ", err)

 return

 end

client模块提供WebSocket定义的帧处理函数。

（1）client：new

语法：

wb, err = client:new()

wb, err = client:new(opts)

说明：创建一个WebSocket客户端对象。出现任何错误，则返回nil和错误描述字符串。

opts是可选参数：

·max_payload_len：指定发送和接收WebSocket帧负载最大长度。

·send_masked：标示是否发送masked WebSocket帧，true表示发送，false表示不发送，默认不发送。

·timeout：网络超时值，以毫秒为单位，可以通过set_timeout方法改变。这个参数并不影响WebSocket握手HTTP应答头发送处理，同时需要配置send_time配置指令以设置HTTP超时值。

（2）client：connect

语法：

ok, err = wb:connect("ws://<host>:<port>/<path>")

ok, err = wb:connect("wss://<host>:<port>/<path>")

ok, err = wb:connect("ws://<host>:<port>/<path>", options)

ok, err = wb:connect("wss://<host>:<port>/<path>", options)

说明：连接到WebSocket服务端口，并且执行握手操作。

在实际解析主机名并连接到远端前，方法总是在连接池中查找本方法前次调用的空闲连接。

options是一个可选的Lua表，用于控制连接：

·protocols：指定当前会话使用的子协议。options可以是一个Lua表，存放所有子协议的Lua字符串。

·origin：指定origin请求头。

·pool：指定连接池名字，如果未指定，连接池名字将使用字符串模板生成<host>：<port>。

·ssl_verify：指示在wss：//scheme下是否执行SSL证书校验。

SSLl连接模式（wss：//）需要ngx_lua 0.9.11或OpenResty 1.7.4.1。

（3）client：close

语法：

ok, err = wb:close()

说明：关闭当前WebSocket连接，如果没有发送close帧，则自动发送close帧。

（4）client：set_keepalive

语法：

ok, err = wb:set_keepalive(max_idle_timeout, pool_size)

说明：将当前连接立即放入ngx_lua的cosocket连接池，可以指定每一个工作进程连接池中连接最大的空闲时间（毫秒）。成功则返回1，出现任何错误则返回nil和一个错误描述字符串。

可以把本方法放到任何放置close的地方，连接并不会被关闭，但是后续的网络操作会得到closed错误。连接被置成了closed状态。

（5）client：set_timeout

语法：

wb:set_timeout(ms)

说明：和resty.websocket.server端的set_timeout方法一样。

（6）client：send_text

语法：

bytes, err = wb:send_text(text)

说明：与resty.websocket.server对应方法一样。

（7）client：send_binary

语法：

bytes, err = wb:send_binary(data)

说明：与resty.websocket.server对象的send_binary方法一样。

（8）client：send_ping

语法：

bytes, err = wb:send_ping()

bytes, err = wb:send_ping(msg)

说明：与resty.websocket.server对象的send_ping方法一样。

（9）client：send_pong

语法：

bytes, err = wb:send_pong()

bytes, err = wb:send_pong(msg)

说明：与resty.websocket.server的send_pong方法一样。

（10）client：send_close

语法：

bytes, err = wb:send_close()

bytes, err = wb:send_close(code, msg)

说明：与resty.websocket.server中的send_close方法一样。

（11）client：send_frame

语法：

bytes, err = wb:send_frame(fin, opcode, payload)

说明：与resty.websocket.server对象的send_frame方法一样。

（12）client：recv_frame

语法：

data, typ, err = wb:recv_frame()

说明：与resty.websocket.server对象的recv_freame方法一样。
23.5　resty.websocket.protocol

使用下面代码载入模块：

 local protocol = require "resty.websocket.protocol"

协议模块提供的方法相对比较简单。

1.recv_frame

语法：

data, typ, err = protocol.recv_frame(socket, max_payload_len, force_masking)

说明：接收一个WebSocket帧。

2.build_frame

语法：

frame = protocol.build_frame(fin, opcode, payload_len, payload, masking)

说明：创建一个WebSocket帧。

3.send_frame

语法：

bytes, err = protocol.send_frame(socket, fin, opcode, payload, max_payload_len, masking)

说明：发送一个WebSocket帧。
23.6　使用注意事项

WebSocket库使用中需要注意自动错误日志功能和限制条件。

1.自动错误日志功能

默认情况下，ngx_lua模块在网络错误发生时会自动进行日志记录。如果已经自己做了错误处理，可以关闭自动错误日志功能，通过如下配置指令：

lua_socket_log_errors off;

2.限制条件

·本库不能在init_by_lua、set_by_lua、log_by_lua、header_filter_by_lua中使用，因为ngx_lua cosocket API在这时候无效。

·模块对象不能放在全局变量里，需要放在local变量里，因为变量会被其他例程改写。
23.7　小结

随着HTML5的推广，WebSocket得到了大量的使用，WebSocket可以解决安全传输及服务端主动下推数据的功能。本章介绍了WebSocket库的client和server对象，使用两个对象可以分别开发WebSocket服务端和客户端程序，并通过具体示例给出了使用方法演示。
第24章　TCP私有服务器实例

本章描述一个使用Nginx架构实现一个私有的TCP服务器的实例，这个服务器用于实现物联网网关类设备使用私有协议接入功能。系统定义了基于JSON格式的交互协议，使用TCP作为传输层协议。服务器使用stream模块实现TCP服务的功能，因为整体仍是Nginx架构，所以整个系统具备高并发处理能力，接入能力以W为单位。

ngx_lua模块使用例程机制，使得每一个请求都拥有一个独立的例程。因为网关类设备需要具备双向通信能力，所以与服务器是长连接，服务器会不定时将客户端请求转发到网关设备，也会不定期发送各种通知、消息。每个连接会在VM中保持一个例程，一个例程为一个连接处理，而我们编程也只需要考虑单个例程的工作流程即可，不用考虑自行编写服务器要考虑的：异步机制、状态机。通过ngx_lua实现的完全是非阻塞异步的服务器，而编写代码只考虑同步风格。
24.1　协议

首先为服务定义一个传输协议，JSON以字符类型、强大的自描述能力、相较于XML的简洁性成为我们首选的传输形式，同时JSON在Lua中有cjson处理库，且设备端也有对应的处理库，方便对协议报文封装。

下面介绍DDP协议概况。

24.1.1　协议总体要求

DDP协议总体要求如下：

1）协议设计为一应一答的交互模式，请求报文对应应答报文。

2）若请求方3次超时没有收到应答，则需要断开之前的连接，重新建立连接。

3）超时时间为T×500毫秒，T为重试次数。

4）协议第一版本不支持加密。

5）协议体完全采用JSON封装。

6）协议为同步模式，不支持异步模式，即一应一答。

7）错误码遵循HTTP的规范，200系列表示成功，300系列表示重定向，400系列表示客户端错误，500系列表示服务端错误。DDP错误均从X50开始。

8）为减轻服务器负担，若设备累积60分钟没有收发数据，则需要重新登录，以保证链路有效。

24.1.2　包头定义

包头携带控制类信息，主要用命令字控制程序流转，内容放在包体中。

1.请求报文

1）name：协议名字，恒为DDP。

2）version：版本，从1.0开始，逢重要更新才增加版本号。

3）session：会话ID。初始session为0，登录成功后，使用服务器分配session替换，直到退出，session在此期间一直有效。

4）command：命令，是协议操作命令字。

5）content：协议数据正文，具体参数由具体协议定义。

6）flow：方向，req——请求，resp——应答。

7）sequence：序号，可以在命令字空间内排序，也可以全局排序。0为请求，1为应答。

示例：

{

 "Name":"DDP",

 "Version":"1.0",

 "Session":"10010",

 "Command":"003",

 "flow" : "0",

 "sequence":"001",

 "Content":"{

 "devId":"922383",

 "beginTime":"2016/10/18 14:33:43",

 "beginTime":"2016/10/18 15:33:44"

 }"

}

2.应答报文

因为协议设计成同步协议，所以应答包只包含3个域，不包含包头同步信息。

1）code：返回码。

2）message：错误信息或提示信息，由应答方填写。

3）result：应答包体，具体由操作字决定。

示例1：

{

 "code":"200",

 "message":"用户登录成功",

 "result":"{

 "session":"323721"

 }"

}

示例2：

{

"code":"200",

"message":"Get alarm successfully!",

"result":{

 "alarm.list":[

 {devId:"10001", time:"2016-10-18 23:53:33", owner:"lmj"},

 {devId:"10001", time:"2016-10-18 23:53:35", owner:"lmj"},

 {devId:"10001", time:"2016-10-18 23:53:37", owner:"lmj"},

 ...

]

 }

}

24.1.3　协议命令

DDP协议定义了9个协议操作，用于实现网关类设备管理，分别为登录、退出、数据上报、查询数据、消息、命令、前端配置、配置获取、前端升级。

以数据上报为例，报文数据格式如下：

{

 "gwId": "2233",

 "Data":[

 {"sensor" : "01", "value": "10"},

 {"sensor": "02", "value": "97.5"}

]

}

返回报文无包体。

查询数据操作报文格式如下：

Content:{

 Sensors:["11112222", "33334444", "55556666"]

}

应答报文格式如下：

Result:{

 "Valus":[

 {id:"11112222",value:"134" },

 {id:"33334444",value:"333"}

 {id:"55556666",value:nil }

]

}

24.2　DDP系统架构

DDP系统架构如图24-1所示。

 [image:]

图24-1　DDP系统架构

系统整体是一个以Nginx为核心的架构。

·DDP是系统核心，是DDP协议处理服务器，也是接入服务器。本系统只演示简单应用，对于集群和负载均衡暂未演示，未来容量不足时可以在前面使用一个Nginx服务配置成负载均衡器，管理多台upstream型的DDP服务器。DDP服务器基于Nginx实现，配合Redis服务器实现会话、报警类数据高速缓存。未来Redis容量不足时，可以对Redis进行主从扩展。

·系统使用一个MySQL存放关系型数据，当MySQL容量不足时，可以将其扩展成集群，使用proxy实现读写分离。

·Redis服务器用做系统数据高速缓存服务，缓存会话、最新数据、报警、历史数据等，未来可以进行主从扩展容量。

·Web服务器用于向用户提供Web操作界面，用户可以在管理页面上对网关设备进行操作，所有操作以Rest接口形式由DDP服务器提供。
24.3　DDP服务实现

DDP是以Nginx为核心实现的，开发语言为Lua。

DDP是基于stream模块实现的，注册了stream的content_by_lua_file阶段。在content处理阶段，获取ngx.req.socket对象，处理客户端的socket。根据Nginx的工作机制，每一个连接建立后，会被创建一个例程来处理这个请求，对应ddp.lua代码中的循环。

在DDP的nginx.conf中，还注册了init_worker_by_lua_file阶段，并注册了一个init.lua文件，用于为每个工作进程初始化一个时钟，定时清理共享内存，并定时将缓存中的数据刷入数据库。

24.3.1　nginx.conf配置

nginx.conf的配置如下：

user root;

worker_processes 4;

worker_rlimit_nofile 100000;

error_log logs/error.log;

pid logs/nginx.pid;

events{

 use epoll;

 worker_connections 10000;

}

stream{

 tcp_nodelay on;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 server{

 listen 127.0.0.1:1688;

 listen 10.113.141.121:1688;

 listen 120.26.142.207:1688;

 lua_socket_log_errors off;

 content_by_lua_file ddp.lua;

 }

}

http{

 include mime.types;

 default_type text/html;

 access_log off;

 server_tokens off;

 lua_shared_dict gvar 50m;

 lua_shared_dict gmsg 50m;

 lua_shared_dict gkey 200m;

 lua_shared_dict gsess 30m;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 open_file_cache max=10240 inactive=60s;

 open_file_cache_valid 80s;

 open_file_cache_min_uses 1;

 keepalive_timeout 0;

 chunked_transfer_encoding off;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 init_worker_by_lua_file init.lua;

 upstream bk_mysql {

 drizzle_server 10.47.104.71:3306 protocol=mysql dbname=testserver user=ets password=ManNiu1545~#;

 drizzle_keepalive max=300 overflow=reject mode=single;

 }

 upstream bk_redis{

 #server 10.175.204.120:6379;

 server 10.47.104.71:6379;

 keepalive 1000;

 }

 server{

 listen 9000 default so_keepalive=on;

 server_name 10.175.194.47;

 charset utf-8;

 location /redis_set_ex {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 set $expire $arg_expire;

 redis2_query set $key $request_body;

 redis2_query expire $key $expire;

 redis2_pass bk_redis;

 }

 }

}

在DDP中，我们使用了epoll事件模型，每个工作进程10000个连接，也即连接池中每个进程1000个连接：

events{

 use epoll;

 worker_connections 10000;

}

主机是4核的，所以配置了4个工作进程：

worker_processes 4;

下面的stream模块定义了一个监听在1688端口上的TCP服务：

stream{

 tcp_nodelay on;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 server{

 listen 127.0.0.1:1688;

 listen 10.113.141.121:1688;

 listen 120.26.142.207:1688;

 lua_socket_log_errors off;

 content_by_lua_file ddp.lua;

 }

}

具体的DDP服务代码在ddp.lua中。ddp.lua依据DDP协议和定义的业务流程处理核心业务。

下面的http模块中定义了4个共享内存对象，用于进程间通信以及Web端和DDP服务间交换命令：

http{

 include mime.types;

 default_type text/html;

 access_log off;

 server_tokens off;

 lua_shared_dict gvar 50m;

 lua_shared_dict gmsg 50m;

 lua_shared_dict gkey 200m;

 lua_shared_dict gsess 30m;

 ...

 }

其他的HTTP配置用于为Web提供Rest接口，配置在server下，大概形式如下：

location /DDP/upgrade {

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 content_by_lua '

';

}

location /user/getGateways {

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 content_by_lua '

 local userId=ngx.var.arg_userId

 ...

同时注册了一个init事件，在每个工作进程初始化时init脚本会被调用，用来注册时钟以管理共享内存：

http{

 ...

 init_worker_by_lua_file init.lua;

 ...

 }

24.3.2　init.lua

init.lua内容：

math.randomseed(os.time()+ngx.worker.pid()%100)

local delay = 5+math.floor(math.random()*10000000)%5 -- in seconds

ngx.log(ngx.ERR, "delay=" .. delay)

local handler

handler = function(premature)

 if not premature then

 local gvar = ngx.shared.gvar

 local gmsg = ngx.shared.gmsg

 local gsess = ngx.shared.gsess

 local gkey = ngx.shared.gkey

ngx.log(ngx.ERR, "----timer in-------------")

 local cmd='curl -s -m 5 --connect-timeout 2 "http://localhost:9000/store_sensor_data?count=1000" >/dev/null'

 local ret = os.execute(cmd)

 --local curl = require "lcurl"

 --local http=curl.easy()

 --http:setopt(curl.OPT_NOSIGNAL,1)

 --http:setopt(curl.OPT_TIMEOUT, 5)

 --http:setopt(curl.OPT_CONNECTTIMEOUT, 2)

 --http:setopt_url('http://127.0.0.1:9000/store_sensor_data?count=1000')

 --http:perform()

 --http:close()

ngx.log(ngx.ERR, "----timer out-------------")

 gvar:flush_expired(0)

 gmsg:flush_expired(0)

 gsess:flush_expired(0)

 gkey:flush_expired(0)

 local ok, err = ngx.timer.at(delay, handler)

 if not ok then

 return

 end

 end

end

local ok, err = ngx.timer.at(delay, handler)

if not ok then

 return

end

init.lua在管理进程启动过程中被调用，在管理进程开始fork工作进程之前时调用。init的主要工作有两个：

1）调用lcurl库，定期调用本地的http://localhost:9000/store_sensor_data?count=1000接口，实现将Redis中的传感器数据刷入MySQL数据库。因为使用了Redis缓存，所以对于传感器实时数据并不实时往数据里刷，而是定时批量写入数据库，这个工作由init.lua在定时器中执行。

2）调用共享内存的flush_expired（0）方法，清除过期内容。

代码最后，要尝试再次注册时钟函数，使时钟可以持续运行下去。

24.3.3　ddp.lua

ddp.lua是服务器的核心处理代码，演示了简单的DDP协议和业务处理流程。代码如下：

-- MySQL & Redis function sector --

function db_exec(sql)

 local rst = nil

 local rcount = 0

 local data = nil

 local resp = nil

 local i,row,col,val

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/exec_sql?sql=' .. ngx.escape_uri(sql)

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

 resp=res.body

 if resp ~= "" then

 local parser = require "rds.parser"

 res, err = parser.parse(resp)

 if res ~= nil then

 local rows = res.resultset

 if rows ~= nil then

 rcount = #rows

 if rows and rcount > 0 then

 rst={}

 for i, row in ipairs(rows) do

 data={}

 for col, val in pairs(row) do

 data[col] = val

 end

 rst[i]=data

 end

 end

 end

 end

 end

 return rst,rcount

end

function redis_set_ex(key,val,expire)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/mt_redis_set_ex?key=' .. key .. '&expire=' .. expire .. '&val=' .. ngx.escape_uri(val)

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

function redis_expire(key,expire)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/redis_expire?key=' .. key .. '&expire=' .. expire

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

function redis_persist(key)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/redis_persist?key=' .. key

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

function redis_set1(key,val)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://http://10.47.101.66:2001/mt_redis_set1?key=' .. key .. '&val=' .. ngx.escape_uri(val)

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

function redis_set0(key,val)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/mt_redis_set0?key=' .. key .. '&val=' .. ngx.escape_uri(val)

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

function redis_get(key)

 local resp = nil

 local typ = nil

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/redis_get?key=' .. key

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

 resp=res.body

 if resp ~= "" then

 local redis_parser = require("redis.parser")

 res, typ = redis_parser.parse_reply(resp)

 else

 res=nil

 end

 return res,typ

end

function redis_exists(key)

 local resp = nil

 local typ = nil

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/redis_exists?key=' .. key

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

 resp=res.body

 if resp ~= "" then

 local redis_parser = require("redis.parser")

 res, typ = redis_parser.parse_reply(resp)

 else

 res=nil

 end

 return res,typ

end

function redis_del(key)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/redis_del?key=' .. key

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

function upload_sensor(gwId, sensorId, value)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://10.47.101.66:2001/upload_sensor_data?gwId=' .. gwId .. "&sensorId=" .. sensorId .. "&data=" .. value

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

-- Logic sector & Main programe --

local json_data

local cjson = require("cjson")

cjson.encode_keep_buffer = 0

local gvar = ngx.shared.gvar

local gmsg = ngx.shared.gmsg

--local gsess = ngx.shared.gsess

local stream, err = ngx.req.socket(true)

local data, partial

stream:settimeout(5000)

local vdata={}

local arrayData={}

local sql

local result

local cmd

local session

local sequence

local content

local flow

local gwId

local bytes

local err

while not ngx.worker.exiting() do

data, err, partial = stream:receive()

repeat

 if not data then

 if err ~= 'timeout' then

 ngx.log(ngx.ERR, 'receive error:', err)

 return

 end

 end

 if gwId ~= nil and string.len(gwId)>0 then

 local queryKey="query_request_"..gwId

 local queryRes, queryTyp = redis_get(queryKey)

 if queryRes ~= nil then

 ngx.log(ngx.ERR, "found query_request command.")

 ngx.log(ngx.ERR, queryRes)

 bytes,err=stream:send(queryRes)

 qureyRes, qureyTyp = redis_del(queryKey)

 end

 local configKey="config_request_"..gwId

 local configRes, configTyp = redis_get(configKey)

 if configRes ~= nil then

 ngx.log(ngx.ERR, "found config_request command.")

 bytes,err=stream:send(configRes)

 configRes, configTyp = redis_del(configKey)

 end

 local getConfigKey="get_config_request_"..gwId

 local getConfigRes, configTyp = redis_get(getConfigKey)

 if getConfigRes ~= nil then

 ngx.log(ngx.ERR, "found get_config_request command.")

 bytes,err=stream:send(getConfigRes)

 getConfigRes, getConfigTyp = redis_del(getConfigKey)

 end

 local commandKey="command_request_"..gwId

 local commandRes, commandTyp = redis_get(commandKey)

 if commandRes ~= nil then

 ngx.log(ngx.ERR, "found command_request command.")

 bytes,err=stream:send(commandRes)

 commandRes, commandTyp = redis_del(commandKey)

 end

 local messageKey="message_request_"..gwId

 local messageRes, messageTyp = redis_get(messageKey)

 if messageRes ~= nil then

 ngx.log(ngx.ERR, "found message_request command.")

 bytes,err=stream:send(messageRes)

 messageRes, messageTyp = redis_del(messageKey)

 end

 end

 if data == nil or string.len(data)<0 then

 --ngx.log(ngx.ERR, 'data is nil.')

 break

 end

 ngx.log(ngx.ERR, data)

 vdata={}

 vdata=cjson.decode(data)

 cmd = vdata["command"]

 session = vdata["session"]

 sequence = vdata["sequence"]

 content = vdata["content"]

 flow = vdata["flow"]

 if cmd == 1 then

 for k,v in pairs(content) do

 gwId = v["gwId"]

 end

 vdata = {}

 vdata["name"]="DDP"

 vdata["version"]="1.0"

 vdata["session"]=session

 vdata["sequence"]=sequence

 vdata["command"]=1

 vdata["flow"]=1

 result = {}

 sql="SELECT gwName from gateway WHERE sid=\'" .. gwId .. "\'"

 local rs, rcount=db_exec(sql)

 if rs ~= nil then

 vdata["code"] = 200

 vdata["message"] = "ok"

 result["session"] = "1"

 vdata["result"] = result

 --gsess:set(gwId, 1)

 else

 vdata["code"] = 451

 vdata["message"] = "device not exist!"

 result["session"] = "0"

 vdata["result"] = result

 end

 json_data = cjson.encode(vdata)

 bytes,err=stream:send(json_data)

 elseif cmd == 2 then

 -- gsess:set(gwid, 0)

 return

 elseif cmd == 3 then

 arrayData={}

 for k,v in pairs(content) do

 gwId = v["gwId"]

 arrayData = v["data"]

 end

 local sensorId

 local sensorValue

 for k,v in pairs(arrayData) do

 sensorId = v["sensor"]

 sensorValue = v["value"]

 -- sql="INSERT INTO sensorData (gwId,sensorId,time,value) VALUES(\'" .. gwId .. "\', \'" .. sensorId .. "\', \'" .. ngx.localtime() .. "\',\'" .. sensorValue .. "\')"

 -- local rs, rcount=db_exec(sql)

 --1. store sensor real data to redis for request for client.

 --2. store record key to share memory

 --3. store record to redis

 if sensorId == nil and gwId == nil and sensorValue == nil then

 ngx.log(ngx.ERR, " DDP.lua null")

 else

 -- ngx.log(ngx.ERR, "DDP.lua gwid=" .. gwId .. " sensorId=" .. sensorId .. " sensorValue=" .. sensorValue)

 local dbres, dberr = upload_sensor(gwId, sensorId, sensorValue)

 end

 end

 vdata = {}

 vdata["name"]="DDP"

 vdata["version"]="1.0"

 vdata["session"]=session

 vdata["sequence"]=sequence

 vdata["flow"]=1

 vdata["code"] = 200

 vdata["message"] = "ok"

 vdata["command"] = 3

 json_data = cjson.encode(vdata)

 bytes,err=stream:send(json_data)

 elseif cmd == 4 then

 if flow == 1 then

 local resultKey="query_response_"..gwId

 redis_set1(resultKey,data)

 ngx.log(ngx.ERR, "query response stored into redis successfully!")

 else

 ngx.log(ngx.ERR, "mistake pdu.")

 end

 elseif cmd == 5 then

 if flow == 1 then

 local resultKey="message_response_"..gwId

 redis_set1(resultKey,data)

 ngx.log(ngx.ERR, "message response stored into redis successfully!")

 else

 ngx.log(ngx.ERR, "mistake pdu.")

 end

 elseif cmd==6 then

 if flow == 1 then

 local cmdKey="command_response_"..gwId

 redis_set1(cmdKey, data)

 ngx.log(ngx.ERR, "command response stored into redis successfully!")

 else

 ngx.log(ngx.ERR, "mistake pdu.")

 end

 elseif cmd==7 then

 if flow == 1 then

 local cmdKey="config_response_"..gwId

 redis_set1(cmdKey, data)

 ngx.log(ngx.ERR, "config response stored into redis successfully!")

 else

 ngx.log(ngx.ERR, "mistake pdu.")

 end

 elseif cmd==8 then

 if flow == 1 then

 local getConfigKey="get_config_response_"..gwId

 redis_set1(cmdKey, data)

 ngx.log(ngx.ERR, "get config response stored into redis successfully!")

 else

 ngx.log(ngx.ERR, "mistake pdu.")

 end

 else

 ngx.log(ngx.ERR, '--------else-----------------------')

 end

 until true

end

24.3.4　DDP代码解析

第一部分是“MySQL & Redis function sector”，这里定义了访问MySQL、Redis的共用函数。因为ddp.lua是在stream模块的content阶段运行的，所以不能使用子请求（ngx.location.capture）访问，而使用resty.http库访问定义在2001端口的数据库Rest接口。这里要注意，为了安全性，提供数据访问Rest服务的主机应该不配置公网IP，和DDP服务器之间通过局域网通信。Redis也是相同的道理。这里封装了Redis的常用操作，包括get、set、delete、exist等。这些函数都是主代码中要使用的。

第二部分是“Logic sector & Main programe”，是DDP协议处理的主代码。

local json_data

local cjson = require("cjson")

cjson.encode_keep_buffer = 0

local gvar = ngx.shared.gvar

local gmsg = ngx.shared.gmsg

--local gsess = ngx.shared.gsess

local stream, err = ngx.req.socket(true)

local data, partial

stream:settimeout(5000)

主要部分是通过ngx.req.socket（true）获取stream对象。对于收到的客户端请求，Nginx做好预处理后，在content处理阶段就会创建本代码的例程，一对请求对应一个例程。这时我们通过ngx.req.socket得到底层创建好的TCP连接，并由此进行后续处理。回想一下我们自己写网络服务器程序的情况：Nginx前面处理的这些过程，我们都要自己动手编写，基于libevent的epoll实现，编写相对复杂的逻辑，最终也是对连接进行收发处理，根据协议进行业务处理。这里，我们通过一行代码就接管了业务的处理，普通的网络及环境处理由Nginx框架实现，并全部继承框架的全异步式非阻塞架构、高并发、高可靠性。

stream:settimeout(5000)

对网络超时值做了设置，然后程序进入主循环：

while not ngx.worker.exiting() do

 data, err, partial = stream:receive()

 repeat

 if not data then

 if err ~= 'timeout' then

 ngx.log(ngx.ERR, 'receive error:', err)

 return

 end

 end

 ...

调用stream：receive（）进行数据接收，实际上receive是异步的，客户端并不知道数据到达的时间，因为例程的引入，实际上代码运行到这里，如果没有数据由例程被挂起来，直到有数据才被唤醒，继续执行，而工作进程接着处理其他的例程。这样，代码是以同步方式编写的，其他事务是由ngx_lua底层处理的。

这里的repeat是用于实现break的，因为Lua里面没有break语句，所以用repeat实现break功能，这样可以在数据检查失败时直接跳出当前循环。

if not data then

 if err ~= 'timeout' then

...

这是比较重要的一段代码，Nginx底层网络出现错误时都会中断连接，唯有timeout错误不会中断，但是timeout会经常出现，所以一定要进行检查，发现这种情况就中断当前循环，处理下一次数据收发。

第三部分，从Redis中读取一些命令的代码是用于调试不方便调试的命令的，并不是正式的生产代码。测试时通过浏览器或CURL在测试URL上传递参数，参数和命令将被写入Redis，然后在消息循环里检测并返回结果。这时需要在网页的REST接口部分代码中使用TCPSocket API向DDP服务发条命令，激活消息循环，否则就需要等到连接上有数据处理才会被唤醒，有一定延迟。

if gwId ~= nil and string.len(gwId)>0 then

 local queryKey="query_request_"..gwId

 local queryRes, queryTyp = redis_get(queryKey)

 if queryRes ~= nil then

 ngx.log(ngx.ERR, "found query_request command.")

 ngx.log(ngx.ERR, queryRes)

 bytes,err=stream:send(queryRes)

 qureyRes, qureyTyp = redis_del(queryKey)

 end

 local configKey="config_request_"..gwId

 local configRes, configTyp = redis_get(configKey)

 if configRes ~= nil then

 ngx.log(ngx.ERR, "found config_request command.")

 bytes,err=stream:send(configRes)

 configRes, configTyp = redis_del(configKey)

 end

 ...

第四部分是协议命令字处理部分。这里的代码并没有演示把登录会话保存在共享内存或Redis中，下面的例子中将演示这部分应用。

TCP私有服务器这个实例演示了CJSON、resty.http、rds.parser、stream模块、lcurl库的使用。

24.3.5　Redis和MySQL的location

下面给出TCP私有服务器实例中用到的Redis和MySQL的location代码，在nginx.conf中实现。

user root;

worker_processes 4;

worker_rlimit_nofile 100000;

error_log logs/error.log;

pid logs/nginx.pid;

events{

 use epoll;

 worker_connections 10000;

}

stream{

 tcp_nodelay on;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 server{

 listen 127.0.0.1:1688;

 listen 10.113.141.121:1688;

 listen 120.26.142.207:1688;

 lua_socket_log_errors off;

 content_by_lua_file ddp.lua;

 }

}

http{

 include mime.types;

 default_type text/html;

 access_log off;

 server_tokens off;

 lua_shared_dict gvar 50m;

 lua_shared_dict gmsg 50m;

 lua_shared_dict gkey 200m;

 lua_shared_dict gsess 30m;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 open_file_cache max=10240 inactive=60s;

 open_file_cache_valid 80s;

 open_file_cache_min_uses 1;

 keepalive_timeout 0;

 chunked_transfer_encoding off;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 init_worker_by_lua_file init.lua;

 upstream bk_mysql {

 drizzle_server 10.47.120.22:3306 protocol=mysql dbname=testserver user=test password=5~#32Df;

 drizzle_keepalive max=300 overflow=reject mode=single;

 }

 upstream bk_redis{

 server 10.46.102.64:6379;

 keepalive 1000;

 }

 server{

 listen 9000 default so_keepalive=on;

 server_name 10.175.164.33;

 charset utf-8;

 location /redis_set_ex {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 set $expire $arg_expire;

 redis2_query set $key $request_body;

 redis2_query expire $key $expire;

 redis2_pass bk_redis;

 }

 location /redis_expire {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 set $expire $arg_expire;

 redis2_query expire $key $expire;

 redis2_pass bk_redis;

 }

 location /redis_persist {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query persist $key;

 redis2_pass bk_redis;

 }

 location /redis_set1 {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query set $key $request_body;

 redis2_query expire $key 86400;

 redis2_pass bk_redis;

 }

 location /redis_set0 {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query set $key $request_body;

 redis2_pass bk_redis;

 }

 location /redis_get {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query get $key;

 #redis2_query expire $key 86400;

 redis2_pass bk_redis;

 }

 location /redis_exists {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query exists $key;

 redis2_pass bk_redis;

 }

 location /redis_del {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query del $key;

 redis2_pass bk_redis;

 }

 location /mt_redis_set_ex {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local val=ngx.unescape_uri(ngx.var.arg_val)

 local resp = ngx.location.capture("/redis_set_ex?key=" .. ngx.var.arg_key .. "&expire=" .. ngx.var.arg_expire, {

 method = ngx.HTTP_POST, body = val

 })

 ngx.exit(resp.status)

 ';

 }

 location /mt_redis_set1 {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local val=ngx.unescape_uri(ngx.var.arg_val)

 local resp = ngx.location.capture("/redis_set1?key=" .. ngx.var.arg_key, {

 method = ngx.HTTP_POST, body = val

 })

 ngx.exit(resp.status)

 ';

 }

 location /mt_redis_set0 {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local val=ngx.unescape_uri(ngx.var.arg_val)

 local resp = ngx.location.capture("/redis_set0?key=" .. ngx.var.arg_key, {

 method = ngx.HTTP_POST, body = val

 })

 ngx.exit(resp.status)

 ';

 }

 location /mysql {

 include /usr/local/ip_limit.conf;

 drizzle_pass bk_mysql;

 drizzle_query $request_body;

 #rds_csv on;

 #rds_csv_field_name_header off;

 }

 location /exec_sql {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local sql=ngx.unescape_uri(ngx.var.arg_sql)

 local resp = ngx.location.capture("/mysql", {

 method = ngx.HTTP_POST, body = sql

 })

 if resp.status ~= ngx.HTTP_OK or not resp.body then

 ngx.exit(resp.status)

 end

 ngx.print(resp.body)

 ';

 }

}

24.3.6　管理页面REST操作

管理页面提供了用户操作设备的页面，包括网关添加、删除、修改，传感器添加、删除、修改，命令下发、配置下发、配置获取等。

下面是一个操作的代码示例。

location /mdp/getConfig {

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 content_by_lua '

 local gwId=ngx.var.arg_gwId

 local vdata={}

 local cjson = require "cjson"

 vdata["name"]="DDP"

 vdata["version"]="v1.0"

 vdata["session"]=1

 vdata["command"]=8

 vdata["flow"]=0

 vdata["sequence"]=1

 vdata["gwId"]=gwId

 vdata["cfgData"]=cfgData

 local jsonRequest=cjson.encode(vdata)

 local devCmdKey="get_config_request_" .. gwId

 local resp = ngx.location.capture("/redis_set1?key=" .. devCmdKey, {method = ngx.HTTP_POST, body = jsonRequest})

 local sock = ngx.socket.tcp()

 local ok, err = sock:connect(10.233.122.31, 1688)

 if not ok then

 return

 end

 socket:send("from web.")

 sock:close()

 local responseKey="get_config_response_" .. gwId

 for i = 1, 10, 1 do

 resp = ngx.location.capture("/redis_get?key=" .. responseKey)

 if resp.status == ngx.HTTP_OK and resp.body then

 local parser = require "redis.parser"

 local res, typ = parser.parse_reply(resp.body)

 resp = ngx.location.capture("/redis_del?key=" .. responseKey)

 if res ~= nil then

 ngx.print(res)

 ngx.exit(200)

 end

 else

 break

 end

 ngx.sleep(1)

 end

 ';

 }

代码将用户读取配置的请求数据放入Redis中，然后创建了一个TCP对象向DDP服务发送了一条数据，这条数据因为不符合协议格式会被删除，但是会触发一个网络读事件，让相应例程有机会进入工作循环处理请求，如向设备下发命令，当设备处理好后，数据也会被放入对应的Redis中，由页面例程取走返回给用户。

后面是检测Redis的代码，等待并取出结果。这里也可以使用共享内存实现数据共享。
24.4　小结

本章详细介绍了一个基于stream模块实现一个私有的TCP服务器的示例。这个例子中使用到了Redis、共享内存、MySQL、RESTFual等技术，本章给出了这些技术的具体实现代码。

本章介绍了一个基于JSON的通信协议，详细介绍了示例中DDP服务器的nginx.conf文件、init.lua、ddp.lua，并对DDP代码进行了解析。通过这个示例，读者可以了解一个完整的典型应用，深入地理解以Nginx为核心系统的开发过程。
第25章　WebSocket接入服务器实战

WebSocket接入服务器实战这个实例实现了通用的Web接口，供客户端调用，同时使用了WebSocket协议实现了一个客户长连接接入的机制，客户端和服务器之间可以随时交换各种数据，完全等同于自己使用C\C++等编写的接入业务服务器。

WebSocket服务器启动后在9512端口上监听，接收来自于WebSocket客户端的连接。因为HTML5支持WebSocket协议，所以Nginx也支持该协议。客户端和服务端的连接方式是长连接，双方可以在任意时间内主动向对方发起通信。通信协议为JSON格式。

这个实例的客户端可以是任意类型，可以接入APP、桌面程序、智能硬件设备。服务端程序根据协议操作，访问Redis、MySQL、共享内存等资源和服务。这个服务与自己使用C++开发的业务服务器定位和功能是一样的。借助于Nginx的框架，我们不必从头搭建程序框架，不必进行管理接入、连接保持等雷同的处理，而是可以直接实现业务逻辑。

与通常的Nginx开发过程一样，首先需要定义nginx.conf，定义需要监听的WebSocket服务。nginx.conf中定义的系统用到的location相当于RESTFul接口。WebSocket的处理放在ws_svr.lua中。
25.1　nginx.conf内容

nginx.conf中配置了全局变量、event模块、HTTP模块。使用epoll作为event模块。HTTP中定义了供业务层使用的location，下面将简略给出部分有代表性的一些接口，以演示各种模块的使用方法。其中ws_svr这个location用于处理WebSocket协议，业务代码在ws_svr.lua中。

关键代码和逻辑在代码中以注释形式给出，由读者参考学习（这是示例代码，并不能直接运行，需要修正和调试后才能运行，这里仅供参考和学习使用）。

nginx.conf内容：

user root;

worker_processes 4;

worker_rlimit_nofile 500000;

error_log logs/error.log;

#error_log logs/error.log notice;

#error_log logs/error.log info;

#pid logs/nginx.pid;

events {

 use epoll;

 worker_connections 50000;

}

http {

 include mime.types;

 default_type text/html;

 #log_format main '$remote_addr - $remote_user [$time_local] "$request" '

 # '$status $body_bytes_sent "$http_referer" '

 # '"$http_user_agent" "$http_x_forwarded_for"';

 access_log off;

 server_tokens off;

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 open_file_cache max=10240 inactive=60s;

 open_file_cache_valid 80s;

 open_file_cache_min_uses 1;

 #这些共享内存供业务部分内部使用

 lua_shared_dict gkey 50m;

 lua_shared_dict gpost 10m;

 keepalive_timeout 0;

 #keepalive_timeout 600s;

 #keepalive_requests 10000;

 request_pool_size 32k;

 chunked_transfer_encoding off;

 #gzip on;

 lua_package_path "/usr/local/lib/lua/5.1/?.lua;;";

 #下面定义的MySQL用在drizzleMocule2中的upstream，即MySQL的连接

 upstream bk_mysql {

 drizzle_server 120.33.62.16:3306 protocol=mysql dbname=testserver user=test password=2D45~3#;

 drizzle_keepalive max=300 overflow=reject mode=single;

 }

 upstream bk_master_db {

 drizzle_server 127.0.0.1:3306 protocol=mysql dbname=testserver user=test password=2D45~3#;

 drizzle_keepalive max=100 overflow=reject mode=single;

 }

 #定义的是Redis的upsteam，用于后续访问使用

 upstream bk_redis {

 server 120.33.62.16:6379;

 # a pool with at most 1024 connections

 # and do not distinguish the servers:

 keepalive 1000;

 }

 upstream bk_svr_conf {

 server 120.33.62.18:9511;

 keepalive 1000;

 }

 server {

 listen 9512 default;

 server_name 120.33.62.16;

 set $pub_ip "120.33.62.16:9512";

 #系统里还包含了两个转发服务器：一个使用私有协议，称为mts；另一个使用HLS协议，称为

 #ats

 set $mts "120.33.62.18:8300";

 set $ats "120.33.62.16:8511";

 set $nc "CN";

 #charset koi8-r;

 charset utf-8;

 #chunked_transfer_encoding off;

 #access_log logs/host.access.log main;

 #定义Redis的各种操作

 location /redis_expire {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 set $expire $arg_expire;

 redis2_query expire $key $expire;

 redis2_pass bk_redis;

 }

 location /redis_persist {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query persist $key;

 redis2_pass bk_redis;

 }

 location /redis_set_ex {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 set $expire $arg_expire;

 redis2_query set $key $request_body ex $expire;

 #redis2_query expire $key $expire;

 redis2_pass bk_redis;

 }

 location /redis_get {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query get $key;

 #redis2_query expire $key 86400;

 redis2_pass bk_redis;

 }

 location /redis_exists {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query exists $key;

 redis2_pass bk_redis;

 }

 location /redis_del {

 include /usr/local/ip_limit.conf;

 set $key $arg_key;

 redis2_query del $key;

 redis2_pass bk_redis;

 }

 location /mt_redis_set_ex {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local val=ngx.unescape_uri(ngx.var.arg_val)

 local resp = ngx.location.capture("/redis_set_ex?key=" .. ngx.var.arg_key .. "&expire=" .. ngx.var.arg_expire, {

 method = ngx.HTTP_POST, body = val

 })

 ngx.exit(resp.status)

 ';

 }

 location /mt_redis_set0 {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local val=ngx.unescape_uri(ngx.var.arg_val)

 local resp = ngx.location.capture("/redis_set0?key=" .. ngx.var.arg_key, {

 method = ngx.HTTP_POST, body = val

 })

 ngx.exit(resp.status)

 ';

 }

 #定义MySQL操作

 location /mysql {

 include /usr/local/ip_limit.conf;

 drizzle_pass bk_mysql;

 drizzle_query $request_body;

 #rds_csv on;

 #rds_csv_field_name_header off;

 }

 location /exec_sql {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local sql=ngx.unescape_uri(ngx.var.arg_sql)

 local resp = ngx.location.capture("/mysql", {

 method = ngx.HTTP_POST, body = sql

 })

 if resp.status ~= ngx.HTTP_OK or not resp.body then

 ngx.exit(resp.status)

 end

 ngx.print(resp.body)

 ';

 }

 #将请求包体作为SQL向主服务器请求。主服务器是MySQL集群的写入主服务器，会自动将数据同步到#从服务器中，实现各从表数据一致。这个接口的调用者location在其他文件中。

 location /master_db {

 include /usr/local/ip_limit.conf;

 drizzle_pass bk_master_db;

 drizzle_query $request_body;

 #rds_csv on;

 #rds_csv_field_name_header off;

 }

 location /mdb_exec {

 include /usr/local/ip_limit.conf;

 #access_by_lua_file access.lua;

 content_by_lua '

 local sql=ngx.unescape_uri(ngx.var.arg_sql)

 local resp = ngx.location.capture("/master_db", {

 method = ngx.HTTP_POST, body = sql

 })

 if resp.status ~= ngx.HTTP_OK or not resp.body then

 ngx.exit(resp.status)

 end

 ngx.print(resp.body)

 ';

 }

 #这个location演示一个与数据库关联的操作，用到了数据库操作、rds.parser、CJSON操作。这#个操作将设备信息写入dev_logs表，未来用于客户端操作统计。

 location /update_device_info {

 include /usr/local/ip_limit.conf;

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 set $debug_log "0";

 content_by_lua '

 local vdata={}

 local json_data=ngx.var.request_body

 local cjson = require "cjson"

 vdata=cjson.decode(json_data)

 local sid = vdata["sid"]

 local state = vdata["state"]

 local geox = vdata["geox"]

 local geoy = vdata["geoy"]

 local nettype = vdata["nettype"]

 local strdata = vdata["strdata"]

 local intdata = vdata["intdata"]

 local mdltype = vdata["mdltype"]

 local rip = vdata["rip"]

 if rip == nil then

 rip=""

 end

 local resp

 local sql

 if state == 2 then

 sql="INSERT INTO dev_logs(pid, sid, state, logtime, geox, geoy, nettype, strdata, intdata, mdltype, rip) VALUES(CRC32(\'" .. sid .. "\'), \'" .. sid .. "\', " .. state .. ", NOW(), " .. geox .. ", " .. geoy .. ", " .. nettype .. ", \'" .. strdata .. "\', " .. intdata .. ", \'" .. mdltype .. "\', \'" .. rip .. "\');"

 elseif state == 3 then

 sql="INSERT INTO dev_logs(pid, sid, state, logtime, geox, geoy, nettype, strdata, intdata, rip) VALUES(CRC32(\'" .. sid .. "\'), \'" .. sid .. "\', " .. state .. ", NOW(), NULL, NULL, NULL, NULL, NULL, \'" .. rip .. "\');"

 elseif state == 4 then

 if ngx.var.debug_log == "1" then

 ngx.log(ngx.ERR, ngx.var.arg_sid .. "------nettype------" .. nettype .. "------strdata------" .. strdata .. "------intdata------" .. intdata)

 end

 ngx.exit(ngx.HTTP_OK)

 else

 --ngx.say("no acceptable parameter(state)")

 ngx.exit(501)

 end

 local i

 resp = nil

 for i = 1, 4, 1 do

 resp = ngx.location.capture("/mysql", {

 method = ngx.HTTP_POST, body = sql

 })

 if resp.status == ngx.HTTP_OK and resp.body then

 break

 end

 ngx.sleep(0.5)

 end

 if resp.status ~= ngx.HTTP_OK or not resp.body then

 --ngx.say("failed to query mysql")

 ngx.exit(501)

 end

 local parser = require "rds.parser"

 local res, err = parser.parse(resp.body)

 if res == nil then

 --ngx.say("failed to parse RDS: " .. err)

 ngx.exit(501)

 end

 local rows = res.affected_rows

 if rows == nil then

 rows=0

 end

 if rows>0 then

 ngx.say(rows)

 ngx.exit(ngx.HTTP_OK)

 else

 --ngx.say("failed to insert")

 ngx.exit(501)

 end

 ';

 }

 #这是一个报警上报的接口，直接操作Redis，数据并没有写入数据值，在其他服务的/update_

#alerts中被批量写入了数据库，参考代码在下节给出。

 location /update_alert {

 include /usr/local/ip_limit.conf;

 set $sp1 "F";

 set $sp2 "_";

 set_random $idx 0 9;

 set_secure_random_alphanum $uuid 27;

 set $redis_key $sp1$sp2idxuuid;

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 content_by_lua "local ev_state=0

 local ev_fid=ngx.var.redis_key

 if ngx.var.arg_state ~= nil then

 ev_state=tonumber(ngx.var.arg_state)

 end

 if ngx.var.arg_key ~= nil then

 if string.len(ngx.var.arg_key) > 0 then

 ev_fid=ngx.var.arg_key

 end

 end

 if string.sub(ev_fid, 1, 2) ~= 'F_' then

 ev_fid = 'F_' .. ev_fid

 end

 local json_data=ngx.var.request_body

 local resp = ngx.location.capture('/redis_set1?key=' .. ev_fid, {

 method = ngx.HTTP_POST, body = json_data

 })

 ngx.print(ev_fid)

 if ev_state ~=0 then

 local gsqs = ngx.shared.gsqs

 gsqs:rpush('fid',ev_fid)

 end

 ";

 }

 #这是WebSocket接口，每个客户端访问本location都将会启动一个新例程，合法的用户将建立一个#长连接会话。

 location /ws_svr {

 set $gckey "gctime";

 set $gctime $gckey$pid;

 set $sp1 "T";

 set $sp2 "_";

 set_secure_random_alphanum $uuid 28;

 set $session_key $sp1$sp2$uuid;

 lua_socket_log_errors off;

 lua_socket_keepalive_timeout 7200s;

 lua_socket_read_timeout 7200s;

 #access_by_lua_file access.lua;

 content_by_lua_file ws_svr.lua;

 log_by_lua "

 local srcid

 if ngx.var.arg_uid ~= nil then

 srcid=ngx.var.arg_uid

 local gvar = ngx.shared.gvar

 local session_key = gvar:get('user_session_' .. srcid)

 if session_key == ngx.var.session_key then

 gvar:set('user_session_' .. srcid, nil)

 local gex_session = ngx.shared.gex_session

 gex_session:set(srcid, ngx.var.session_key)

 end

 end

 ";

 }

 #从共享内存中取用用户状态，演示共享内存使用

 location /user_status {

 include /usr/local/ip_limit.conf;

 default_type 'text/plain';

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 content_by_lua "local srcid

 if ngx.var.arg_uid == nil then

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)

 else

 srcid=ngx.var.arg_uid

 end

 local gvar = ngx.shared.gvar

 local user_status = gvar:get('user_status_' .. srcid)

 if user_status == nil then

 ngx.print('0')

 else

 ngx.print(user_status)

 end

 ";

 }

 location / {

 root html;

 index index.html index.htm;

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 }

}

25.2　ws_svr.lua内容

ws_svr.lua内容是WebSocket处理的部分代码。接下来这部分代码主要演示实现服务、用户、设备之间的业务处理（主要实现的是控制流），并以注释形式在关键地方给予说明。

#定义数据库操作的函数

function db_exec(sql)

 local rst = nil

 local rcount = 0

 local data = nil

 local resp = nil

 local i,row,col,val

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://127.0.0.1:' .. ngx.var.server_port .. '/exec_sql?sql=' .. ngx.escape_uri(sql)

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

 resp=res.body

 if resp ~= "" then

 local parser = require "rds.parser"

 res, err = parser.parse(resp)

 if res ~= nil then

 local rows = res.resultset

 if rows ~= nil then

 rcount = #rows

 if rows and rcount > 0 then

 rst={}

 for i, row in ipairs(rows) do

 data={}

 for col, val in pairs(row) do

 data[col] = val

 end

 rst[i]=data

 end

 end

 end

 end

 end

 return rst,rcount

end

#定义Redis操作函数

function redis_set_ex(key,val,expire)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://127.0.0.1:' .. ngx.var.server_port .. '/mt_redis_set_ex?key=' .. key .. '&expire=' .. expire .. '&val=' .. ngx.escape_uri(val)

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

function redis_get(key)

 local resp = nil

 local typ = nil

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://127.0.0.1:' .. ngx.var.server_port .. '/redis_get?key=' .. key

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

 resp=res.body

 if resp ~= "" then

 local redis_parser = require("redis.parser")

 res, typ = redis_parser.parse_reply(resp)

 else

 res=nil

 end

 return res,typ

end

function redis_exists(key)

 local resp = nil

 local typ = nil

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://127.0.0.1:' .. ngx.var.server_port .. '/redis_exists?key=' .. key

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

 resp=res.body

 if resp ~= "" then

 local redis_parser = require("redis.parser")

 res, typ = redis_parser.parse_reply(resp)

 else

 res=nil

 end

 return res,typ

end

function redis_del(key)

 local http_lib = require "resty.http"

 local http_conn = http_lib:new()

 http_conn:set_timeout(10000)

 local notify_url='http://127.0.0.1:' .. ngx.var.server_port .. '/redis_del?key=' .. key

 local res, err = http_conn:request_uri (notify_url,{method = "GET"})

end

#定义使用的局部变量（这是Lua编程尤其要注意的）

local srcid

local user_id

local sub_user={}

local dev_name

local ctrl_access

local func_access

local valid_term

local appid

local openid

local start_ts

local srctype

if ngx.var.arg_uid == nil then

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)

else

 srcid=ngx.var.arg_uid

 if string.len(srcid) >= 40 then

 srcid = string.sub(srcid,1,40)

 end

end

local geox=ngx.var.arg_geox

local geoy=ngx.var.arg_geoy

local nettype=ngx.var.arg_nettype

local strdata=ngx.var.arg_chardata

local intdata=ngx.var.arg_intdata

local version=ngx.var.arg_version

local channels=ngx.var.arg_channels

local mdltype=ngx.var.arg_mdltype

local sdkver=ngx.var.arg_sdkver

local vn=ngx.var.arg_vn

if geox == nil then

 geox = 0

elseif geox == '' then

 geox = 0

else

 geox = tonumber(geox)

end

if geoy == nil then

 geoy = 0

elseif geoy == '' then

 geoy = 0

else

 geoy = tonumber(geoy)

end

if nettype == nil then

 nettype = 0

elseif nettype == '' then

 nettype = 0

else

 nettype = tonumber(nettype)

end

if strdata == nil then

 strdata = ''

elseif string.len(strdata) >= 40 then

 strdata = string.sub(strdata,1,40)

end

if intdata == nil then

 intdata = 0

elseif intdata == '' then

 intdata = 0

else

 intdata = tonumber(intdata)

end

if version == nil then

 version = '1.0'

elseif string.len(version) >= 30 then

 version = string.sub(version,1,30)

end

if version == '' then

 version = '1.0'

elseif string.len(version) >= 30 then

 version = string.sub(version,1,30)

end

if channels == nil then

 channels = 1

elseif channels == '' then

 channels = 1

else

 channels = tonumber(channels)

end

if mdltype == nil then

 mdltype = 'undefined'

end

if sdkver == nil then

 sdkver = ''

end

if vn == nil then

 vn = ''

end

#载入后面要用到的各种模块

local bit = require("bit")

local json_data

local cjson = require("cjson")

local rds_parser = require("rds.parser")

local redis_parser = require("redis.parser")

cjson.encode_keep_buffer = 0

local wb,bytes,res,typ,err

local vdata={}

local resp

res, typ = redis_get("S_" .. srcid)

if res ~= nil and typ == redis_parser.BULK_REPLY then

 vdata=cjson.decode(res)

 if vdata["pub_ip"] ~= ngx.var.pub_ip then

 return ngx.redirect('http://' .. vdata["pub_ip"] .. ngx.var.request_uri,301)

 end

end

res = nil

#载入WebSocket服务模块

local server = require "resty.server"

wb, err = server:new()

if not wb then

 ngx.log(ngx.ERR, 'failed to new websocket: ', err)

 return ngx.exit(444)

end

#获取几个用到的共享内存

local gpost = ngx.shared.gpost

local gvar = ngx.shared.gvar

local msg_queue = ngx.shared.msg_queue

local gsqs = ngx.shared.gsqs

local gctime=gvar:get(ngx.var.gctime)

if gctime == nil then

 gvar:set(ngx.var.gctime, ngx.now())

 gctime=gvar:get(ngx.var.gctime)

end

#这里自己对共享内存做了周期性的管理

if (ngx.now()-gctime)>300 then

 gvar:set(ngx.var.gctime, ngx.now())

 collectgarbage('collect')

 gvar:flush_expired(0)

 msg_queue:flush_expired(0)

 gsqs:flush_expired(0)

end

#设置WebSocket参数

wb:set_timeout(50)

local pri_key=ngx.md5_bin(ngx.header['Sec-WebSocket-Accept'] .. 'e5fb91c5-1b0d-1e1b-9f7a-03e01cb1ef6e')

--ngx.log(ngx.ERR, 'Sec-WebSocket-Accept: ' .. ngx.header['Sec-WebSocket-Accept'])

--verify srcid

#下面是业务操作，这里并非要展示清楚这个系统是如何工作的，主要是展示一些技术如何整合和单独使用的#方法，以方便实现自己的系统。

local sql=""

sql="SELECT type,100 as action,sid,'' as userid,'' state,1 as channels,0 as ctrl_access,appname as dev_name,'' as vn,0 as func_access,0 as valid_term,0 as appid,0 as max_count,0 as max_bps,ifnull(mts_info,'') as mts,ifnull(ats_info,'') as ats,'' as sub_user,0 as auth_access FROM appserver WHERE sid='" .. srcid .. "' and (state & 1)=1 union (SELECT a.type,100,a.sid,ifnull(a.userid,''),'"'),,a.state,ifnull(a.channels,0),ifnull(a.ctrl_access,1),ifnull(a.devname,''),ifnull(a.vn,''),ifnull(a.func_access,11),ifnull(unix_timestamp(a.valid_term)-unix_timestamp(),0),ifnull(a.appid,0),ifnull(a.max_count,20),ifnull(a.max_bps,2048),ifnull(a.mts_info,''),ifnull(a.ats_info,''),ifnull(b.userid,''),ifnull(b.state,0) FROM devices a left join dev_viewer b on a.sid=b.devid WHERE a.sid='" .. srcid .. "' and (a.state & 1)=1) union (SELECT 13,100 as action,sid,'' as userid,'" .. "',state,1,0,ifnull(username,''),'',0,0,ifnull(appid,0),0,0,ifnull(mts_info,''),ifnull(ats_info,''),'',0 FROM users WHERE sid='" .. srcid .. "' and (state & 1)=1)"

local i,row,col,val

resp = nil

local rows,rcount

rows,rcount=db_exec(sql)

if rcount == 0 then

 return ngx.exit(ngx.status)

end

local session_key = gvar:get('user_session_' .. srcid)

if session_key ~= nil and session_key == ngx.var.session_key then

 ngx.log(ngx.ERR, 'user already exists: ' .. srcid)

 return ngx.exit(444)

end

vdata = {}

for i, row in ipairs(rows) do

 for col, val in pairs(row) do

 if i == 1 and col ~= 'sub_user' and col ~= 'auth_access' then

 vdata[col] = val

 end

 end

 col=row["sub_user"] .. ""

 val=row["auth_access"]

 if col ~= "" and bit.band(val, 16) == 16 then

 sub_user[col]=val

 end

end

if vdata["mts"] == "" then

 vdata["mts"] = ngx.var.mts

end

if vdata["ats"] == "" then

 vdata["ats"] = ngx.var.ats

end

vdata["stype"] = vdata["type"]

srctype = vdata["type"]

user_id=vdata["userid"]

if user_id ~= '' then

 sql="select ifnull(openid,'') as open_id from users where sid='" .. user_id .. "'"

 local rs,rcount=db_exec(sql)

 if rs ~= nil then

 rs=rs[1]

 openid=rs["open_id"]

 end

end

if openid == nil then

 openid=''

end

dev_name=vdata["dev_name"]

ctrl_access=vdata["ctrl_access"]

func_access=vdata["func_access"]

valid_term=vdata["valid_term"]

appid=vdata["appid"]

vdata["appid"]=nil

start_ts=ngx.time()

vdata["type"] = 2

vdata["skey"] = ngx.var.session_key

vdata["pub_ip"] = ngx.var.pub_ip

vdata["svr_time"] = ngx.utctime()

vdata["pri_key"] = ngx.header['Sec-WebSocket-Accept']

vdata["version"] = version

--if srctype == 1 and vdata["channels"] > 0 then

-- if vdata["vn"] ~= vn then

-- ngx.log(ngx.ERR, srcid .. '------disconnect,device vn=' .. vn .. ',db vn=' .. vdata["vn"])

-- return ngx.exit(444)

-- end

--end

if srctype == 1 then

 if valid_term<10 then

 ngx.log(ngx.ERR, srcid .. '------disconnect,valid_term=' .. valid_term)

 return ngx.exit(444)

 end

end

vdata["nc"] = ngx.var.nc

if srctype == 1 and vdata["channels"] ~= channels then

 sql="update devices set model='" .. mdltype .. "',nc='" .. ngx.var.nc .. "',channels=" .. channels .. " where sid='" .. vdata["sid"] .. "'"

 db_exec(sql)

 mdb_exec(sql)

 vdata["pri_login"] = 1

end

vdata["channels"] = channels

vdata["mdltype"] = mdltype

vdata["sdkver"] = sdkver

gvar:set('user_session_' .. srcid, ngx.var.session_key)

json_data=cjson.encode(vdata)

resp = nil

redis_set_ex("S_" .. srcid,json_data,600)

if srctype == 13 then

 redis_persist("U_" .. srcid)

end

local user_status = gvar:get('user_status_' .. srcid)

if user_status == nil then

 gvar:set('user_status_' .. srcid, 1)

end

local user_count = gvar:get('user_count')

if user_count == nil then

 gvar:set('user_count', 0)

 user_count = 0

end

local session_exit=1

gvar:incr('user_count',1)

--wb:send_text(srcid .. '|' .. json_data)

vdata = nil

vdata = ngx.encode_tea(json_data,pri_key,0)

wb:send_text(srcid .. '|' .. vdata)

vdata = {}

vdata["sid"] = srcid

vdata["state"] = 2

vdata["geox"] = geox

vdata["geoy"] = geoy

vdata["nettype"] = nettype

vdata["strdata"] = strdata

vdata["intdata"] = intdata

vdata["mdltype"] = mdltype

vdata["rip"] = ngx.var.remote_addr

json_data=cjson.encode(vdata)

vdata = nil

local exit_time=0

local next_time=ngx.now() + 120

local update_time=ngx.now()

local data

local packet

local user_array = {}

local http_lib = require "resty.http"

local http_conn = http_lib:new()

http_conn:set_timeout(10000)

resp = nil

http_conn:request_uri ("http://127.0.0.1:" .. ngx.var.server_port .. "/update_device_info",{method = "POST",body = json_data})

--ngx.log(ngx.ERR, srcid .. '------connected')

json_data = nil

local def_frame = {}

local partial = nil

#通过之前的环境初始化工作后，进入主循环，根据网络上的操作进行事件处理循环。

while not ngx.worker.exiting() do

 packet = nil

 data = nil

 data, typ, err, partial = wb:recv_frame(def_frame)

 if not data then

 if wb.fatal then

 if err ~= 'fatal error already happened' and string.find(err, ": closed", 1, true) == nil and string.find(err, ": connection reset by peer", 1, true) == nil then

 ngx.log(ngx.ERR, srcid .. '------fatal error(' .. err .. ') on recv_frame')

 end

 break

 else

 if exit_time>0 and ngx.now()>=exit_time then

 ngx.log(ngx.ERR, srcid .. '------device no response(5 secs) with app request')

 break

 end

 if srctype==1 or srctype==4 then

 if next_time>0 and ngx.now()>=next_time then

 ngx.log(ngx.ERR, srcid .. '------missing heartbeat packet(120 secs)')

 break

 end

 end

 --if srctype==2 or srctype==3 or srctype==13 then

 -- break

 --end

 --ngx.log(ngx.ERR, ngx.worker.pid() .. '------timeout')

 def_frame = partial

 end

 else

 def_frame = {}

 --ngx.log(ngx.ERR, 'receive a frame: ', data)

 if srctype == 1 then

 if ngx.time()>start_ts then

 local secs=ngx.time()-start_ts

 if secs>10 then

 valid_term=valid_term-secs

 start_ts=ngx.time()

 end

 elseif ngx.time()<start_ts then

 start_ts=ngx.time()

 end

 if valid_term<10 then

 ngx.log(ngx.ERR, srcid .. '------disconnect,valid_term=' .. valid_term)

 break

 end

 end

 next_time = ngx.now() + 120

 if typ == 'close' then

 ngx.log(ngx.ERR, srcid .. '------receive websocket closed')

 break

 elseif typ == 'ping' then

 wb:send_pong()

 elseif typ == 'pong' then

 elseif typ == 'text' then

 --wb:send_text(data)

 user_array = {}

 local k

 local key_index

 local find_pos

 local dstid

 local sendtext

 find_pos = string.find(data, '|')

 key_index = 0

 while find_pos ~= nil do

 dstid = string.sub(data,1,find_pos-1)

 if dstid == nil then

 sendtext = data

 break

 else

 key_index = key_index + 1

 table.insert(user_array, key_index, dstid)

 end

 find_pos = find_pos+1

 data = string.sub(data,find_pos)

 find_pos = string.find(data, '|')

 if find_pos == nil then

 sendtext = data

 end

 end

 for k,dstid in ipairs(user_array) do

 if dstid ~= nil and string.len(dstid)>0 and dstid ~= srcid then

 if string.len(dstid) >= 5 then

 local dst_exists = gvar:get('user_session_' .. dstid)

 if dst_exists ~= nil then

 local offset_w = 'user_msg_' .. dstid

 packet=sendtext

 if string.sub(packet, 1, 1) ~= "{" then

 packet=ngx.decode_tea(sendtext,pri_key,0)

 end

 msg_queue:rpush(offset_w,srcid .. '|' .. packet)

 packet=nil

 else

 vdata={}

 res, typ = redis_get("S_" .. dstid)

 if res ~= nil and typ == redis_parser.BULK_REPLY then

 vdata=cjson.decode(res)

 if vdata["pub_ip"] ~= ngx.var.pub_ip then

 packet=sendtext

 if string.sub(packet, 1, 1) ~= "{" then

 packet=ngx.decode_tea(sendtext,pri_key,0)

 end

 local notify_url='http://' .. vdata["pub_ip"] .. '/send_msg?uid=' .. srcid .. '&did=' .. dstid

 local notify_body = packet

 local res, err = http_conn:request_uri (notify_url,{method = "POST",body = notify_body})

 packet=nil

 else

 wb:send_text(dstid .. '|{"type":3,"action":902,"result":2}')

 end

 vdata=nil

 else

 wb:send_text(dstid .. '|{"type":3,"action":902,"result":2}')

 end

 res = nil

 end

 else

 local notify_url = gpost:get('k' .. dstid)

 if notify_url ~= nil then

 packet=sendtext

 if string.sub(packet, 1, 1) ~= "{" then

 packet=ngx.decode_tea(sendtext,pri_key,0)

 end

 local notify_body = srcid .. '|' .. packet

 local res, err = http_conn:request_uri (notify_url,{method = "POST",body = notify_body})

 packet=nil

 end

 end

 elseif action==102 and cmd_type==2 then

 resp = nil

 local res, err = http_conn:request_uri ("http:// 127.0.0.1:" .. ngx.var.server_port .. "/start_live?sid=" .. srcid,{method = "POST",body = packet})

 elseif action==103 and cmd_type==2 then

 resp = nil

 local res, err = http_conn:request_uri ("http:// 127.0.0.1:" .. ngx.var.server_port .. "/stop_live?sid=" .. srcid,{method = "POST",body = packet})

 elseif action==104 and cmd_type==2 then

 resp = nil

 local res, err = http_conn:request_uri ("http:// 127.0.0.1:" .. ngx.var.server_port .. "/snap_picture?sid=" .. srcid,{method = "POST",body = packet})

 elseif action==105 and cmd_type==2 then

 resp = nil

 local res, err =http_conn:request_uri ("http:// 127.0.0.1:" .. ngx.var.server_port .. "/upload_video?sid=" .. srcid,{method = "POST",body = packet})

 elseif action==106 and cmd_type==2 then

 resp = nil

 local res, err =http_conn:request_uri ("http: //127.0.0.1:" .. ngx.var.server_port .. "/play_video?sid=" .. srcid,{method = "POST",body = packet})

 elseif action==902 and cmd_type==3 then

 resp = nil

 local res, err =http_conn:request_uri ("http:// 127.0.0.1:" .. ngx.var.server_port .. "/update_alert?state=1",{method = "POST",body = packet})

 elseif action==904 and cmd_type==3 then

 resp = nil

 local res, err =http_conn:request_uri ("http: //127.0.0.1:" .. ngx.var.server_port .. "/update_p2p_info?sid=" .. srcid,{method = "POST",body = packet})

 elseif action==905 and cmd_type==3 then

 local func_bit=bit.band(func_access, 16)

 if func_bit == 16 then

 resp = nil

 local res, err =http_conn:request_uri ("http: //127.0.0.1:" .. ngx.var.server_port .. "/update_vid_info?sid=" .. srcid,{method = "POST",body = packet})

 end

 --if resp.status == ngx.HTTP_OK then

 -- wb:send_text(dstid .. '|{"type":3,"action":905,"result":0}')

 --else

 -- wb:send_text(dstid .. '|{"type":3,"action":905,"result":8}')

 --end

 else

 ngx.log(ngx.ERR, srcid .. '------unsupported action------' .. packet)

 end

 packet=nil

 vdata=nil

 end

 end

 elseif typ == 'binary' then

 --wb:send_binary(data)

 end

 end

 session_key = gvar:get('user_session_' .. srcid)

 if session_key == nil then

 --session_exit=0

 --wb:send_text(srcid .. '|{"type":3,"action":903,"result":0}')

 ngx.log(ngx.ERR, srcid .. '------missing session key')

 break

 elseif session_key~=ngx.var.session_key then

 session_exit=0

 wb:send_text(srcid .. '|{"type":3,"action":903,"result":0}')

 ngx.log(ngx.ERR, srcid .. '------exit old session')

 break

 end

 local need_send

 local v = nil

 v = msg_queue:lpop('user_msg_' .. srcid)

 while v ~= nil do

 need_send = 1

 packet=v

 local find_pos

 local sid

 find_pos = string.find(v, '|')

 if find_pos ~= nil then

 sid = string.sub(v,1,find_pos-1)

 find_pos = find_pos+1

 packet = string.sub(v,find_pos)

 if string.sub(packet, 1, 1) == "{" then

 local cmd_type

 local action

 vdata={}

 vdata=cjson.decode(packet)

 cmd_type = vdata["type"]

 action = vdata["action"]

 if action==109 and cmd_type==1 then

 exit_time = ngx.now()+5

 elseif action==101 and cmd_type==1 then

 if vdata["method"]==0 then

 local channel=vdata["channel"]

 local sql="select func_access from user_config where sid='" .. sid .. "'"

 local rs,rcount=db_exec(sql)

 local chan_func=0

 if rs ~= nil then

 rs=rs[1]

 chan_func=rs["func_access"]

 end

 vdata["func_access"]=tonumber(chan_func)

 sql="select net_type,wifi_ip,pass_mask,net_gateway,net_dns from devices where sid='" .. srcid .. "'"

 rs,rcount=db_exec(sql)

 if rs ~= nil then

 rs=rs[1]

 if rs["net_type"] ~= nil then

 vdata["net_type"]=rs["net_type"]

 end

 if rs["wifi_ip"] ~= nil then

 vdata["wifi_ip"]=rs["wifi_ip"]

 end

 if rs["pass_mask"] ~= nil then

 vdata["pass_mask"]=rs["pass_mask"]

 end

 if rs["net_gateway"] ~= nil then

 vdata["net_gateway"]=rs["net_gateway"]

 end

 if rs["net_dns"] ~= nil then

 vdata["net_dns"]=rs["net_dns"]

 end

 end

 vdata["channel"]=nil

 if channel == nil then

 sql="select channel,stream,alert_type,pre_secs,rec_secs,width,height,overlay_text,overlay_pos,fps,bps

 from dev_config where sid='" .. srcid .. "'"

 else

 if string.len(channel) == 0 then

 sql="select channel,stream,alert_type,pre_secs,rec_secs,width,height,overlay_text,overlay_pos,fps,bps

 from dev_config where sid='" .. srcid .. "'"

 else

 sql="select channel,stream,alert_type,pre_secs,rec_secs,width,height,overlay_text,overlay_pos,fps,bps

 from dev_config where sid='" .. srcid .. "' and channel in (" .. channel .. ")"

 end

 end

 rs,rcount=db_exec(sql)

 --vdata["cam_count"]=rcount

 vdata["cam_conf"]=rs

 packet = cjson.encode(vdata)

 end

 elseif action==113 and cmd_type==1 then

 if vdata["on_off"] == 1 then

 func_access = bit.bor(func_access, 4)

 sql="update devices set func_access=" .. func_access .. " where sid='" .. vdata["sid"] .. "'"

 db_exec(sql)

 else

 local func_bit=bit.band(func_access, 4)

 if func_bit == 4 then

 func_access = bit.bxor(func_access, 4)

 sql="update devices set func_access=" .. func_access .. " where sid='" .. vdata["sid"] .. "'"

 db_exec(sql)

 end

 end

 vdata["func_access"] = func_access

 packet = cjson.encode(vdata)

 elseif action==114 and cmd_type==1 then

 if vdata["on_off"] == 1 then

 func_access = bit.bor(func_access, 16)

 sql="update devices set func_access=" .. func_access .. " where sid='" .. vdata["sid"] .. "'"

 db_exec(sql)

 else

 local func_bit=bit.band(func_access, 16)

 if func_bit == 16 then

 func_access = bit.bxor(func_access, 16)

 sql="update devices set func_access=" .. func_access .. " where sid='" .. vdata["sid"] .. "'"

 db_exec(sql)

 end

 end

 vdata["func_access"] = func_access

 packet = cjson.encode(vdata)

 elseif action==115 and cmd_type==1 then

 valid_term=vdata["valid_term"]

 start_ts=ngx.time()

 elseif action==117 and cmd_type==1 then

 if vdata["on_off"] == 1 then

 func_access = bit.bor(func_access, 1)

 sql="update devices set func_access=" .. func_access .. " where sid='" .. vdata["sid"] .. "'"

 db_exec(sql)

 else

 local func_bit=bit.band(func_access, 1)

 if func_bit == 1 then

 func_access = bit.bxor(func_access, 1)

 sql="update devices set func_access=" .. func_access .. " where sid='" .. vdata["sid"] .. "'"

 db_exec(sql)

 end

 end

 vdata["func_access"] = func_access

 packet = cjson.encode(vdata)

 end

 if need_send == 1 then

 v = packet

 packet = nil

 packet = ngx.encode_tea(v,pri_key,0)

 end

 vdata=nil

 end

 if need_send == 1 then

 packet = sid .. '|' .. packet

 end

 end

 if need_send == 1 then

 bytes, err = wb:send_text(packet)

 if bytes == nil then

 ngx.log(ngx.ERR, srcid .. '------send error------')

 v = msg_queue:lpop('user_msg_' .. srcid)

 while v ~= nil do

 v = msg_queue:lpop('user_msg_' .. srcid)

 end

 break

 end

 end

 packet=nil

 v = msg_queue:lpop('user_msg_' .. srcid)

 end

 local diff_time=ngx.now()-update_time

 if diff_time<0 or diff_time>300 then

 redis_expire("S_" .. srcid,600)

 update_time=ngx.now()

 end

end

if session_exit~=0 then

 session_key = gvar:get('user_session_' .. srcid)

 if session_key ~= nil then

 gvar:set('user_session_' .. srcid, nil)

 end

 user_status = gvar:get('user_status_' .. srcid)

 if user_status ~= nil then

 gvar:set('user_status_' .. srcid, nil)

 end

 redis_del("S_" .. srcid)

 if srctype == 13 then

 redis_expire("U_" .. srcid,120)

 end

 vdata = {}

 vdata["sid"] = srcid

 vdata["state"] = 3

 vdata["geox"] = 0

 vdata["geoy"] = 0

 vdata["nettype"] = 0

 vdata["strdata"] = ""

 vdata["intdata"] = 0

 vdata["rip"] = ngx.var.remote_addr

 json_data=cjson.encode(vdata)

 http_conn:request_uri ("http://127.0.0.1:" .. ngx.var.server_port .. "/update_device_info",{method = "POST",body = json_data})

 json_data=nil

 vdata=nil

end

gvar:incr('user_count',-1)

if session_key == nil or session_exit==0 then

 ngx.sleep(2)

end

wb:send_close()

wb=nil

--ngx.log(ngx.ERR, srcid .. '------disconnected')

25.3　update_alarts代码

这个location供外部时钟性函数调用，用于周期性地将Redis中的报警记录写入数据库。可以使用init.lua中的时钟，也可以在外部由cronjob调用CURL工具实现。只是cronjob最小时间单位是分钟，一般周期太长了，因为写入的操作不应该超过1分钟。

代码主要接收一个count参数，决定一次写入多少条记录。下面这个实例还可以进一步优化为使用批量写入语句。

location /update_alerts {

 include /usr/local/ip_limit.conf;

 lua_need_request_body on;

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 #access_by_lua_file access.lua;

 content_by_lua 'local key_count

 if ngx.var.arg_count == nil then

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)

 else

 key_count=tonumber(ngx.var.arg_count)

 end

 local resp = ngx.location.capture("/sqs_get?count=" .. key_count)

 if resp.status ~= ngx.HTTP_OK or not resp.body then

 --ngx.say("failed to query sqs")

 ngx.exit(501)

 end

 local json_data=resp.body

 local vkey={}

 local cjson = require "cjson"

 local parser = require "redis.parser"

 vkey=cjson.decode(json_data)

 key_count=0

 local col,val

 for col, val in pairs(vkey) do

 resp = ngx.location.capture("/redis_get?key=" .. val)

 if resp.status == ngx.HTTP_OK and resp.body then

 local res, typ = parser.parse_reply(resp.body)

 if res ~= nil then

 local ev={}

 ev=cjson.decode(res)

 local sid = ev["sid"]

 local ev_time = ev["ev_time"]

 local ev_type = ev["ev_type"]

 local ev_data = ev["ev_data"]

 local ev_value = ev["ev_value"]

 local ev_channel = ev["ev_channel"]

 local ev_picture = ev["ev_picture"]

 local ev_video = ev["ev_video"]

 local ev_state = ev["ev_state"]

 local ev_vsize = ev["ev_vsize"]

 local ev_fid2 = ev["ev_fid2"]

 local thumb_url = ev["thumb_url"]

 local ev_subtype = ev["ev_subtype"]

 local ev_stop = ev["ev_stop"]

 if ev_vsize == nil then

 ev_vsize = 0

 end

 if ev_fid2 == nil then

 ev_fid2 = ""

 end

 if thumb_url == nil then

 thumb_url = ""

 end

 if ev_subtype == nil then

 ev_subtype = 0

 end

 if ev_stop == nil then

 ev_stop = ""

 end

 --local sql="INSERT INTO alt_logs(pid, sid, logtime, evt_time, evt_type, evt_data, evt_value, evt_channel, evt_picture, evt_video, evt_state, fid, evt_vsize, fid2, thumb_url) VALUES(CRC32(\'" .. sid .. "\'), \'" .. sid .. "\', NOW(), date_add(str_to_date(\'" .. ev_time .. "\',\'%Y-%m-%d %H:%i:%s\'), interval 8 hour), " .. ev_type .. ", \'" .. ev_data .. "\', " .. ev_value .. ", " .. ev_channel .. ", \'" .. ev_picture .. "\', \'" .. ev_video .. "\', " .. ev_state .. ", \'" .. val .. "\', " .. ev_vsize .. ", \'" .. ev_fid2 .. "\', \'" .. thumb_url .. "\')"

 local sql="INSERT INTO alt_logs(pid, sid, logtime, evt_time, evt_type, evt_data, evt_value, evt_channel, evt_picture, evt_video, evt_state, fid, evt_vsize, fid2, thumb_url, evt_subtype, evt_stop) VALUES(CRC32(\'" .. sid .. "\'), \'" .. sid .. "\', NOW(), str_to_date(\'" .. ev_time .. "\',\'%Y-%m-%d %H:%i:%s\'), " .. ev_type .. ", \'" .. ev_data .. "\', " .. ev_value .. ", " .. ev_channel .. ", \'" .. ev_picture .. "\', \'" .. ev_video .. "\', " .. ev_state .. ", \'" .. val .. "\', " .. ev_vsize .. ", \'" .. ev_fid2 .. "\', \'" .. thumb_url .. "\', " .. ev_subtype .. ", str_to_date(\'" .. ev_stop .. "\',\'%Y-%m-%d %H:%i:%s\'))"

 resp = ngx.location.capture("/mysql", {

 method = ngx.HTTP_POST, body = sql

 })

 if resp.status == ngx.HTTP_OK and resp.body then

 resp = ngx.location.capture("/redis_del?key=" .. val)

 end

 key_count = key_count + 1

 end

 end

 end

 ngx.print(key_count)

 ';

 }

25.4　小结

本章介绍了一个基于WebSocket的Web服务，这个服务使用了Redis、MySQL、RDS、JSON、WebSocket、bit库等技术，使用了基于共享内存的消息队列，并针对这些内容给出了详细的示例，方便深入地理解这些技术。

限于篇幅的原因，本章所举示例做过大量裁剪，不可以直接使用。
第26章　Nginx应用简述

Nginx作为一个高速Web服务器，用于典型的HTTP环境中。本章重点介绍小、中、大型以Nginx为核心的系统进化方式，为初入Nginx应用开发的使用者提供一个思路，从开始就全面考虑或知道后面系统会遇到的问题更有利于系统的设计和后续的开发。

以Nginx为核心的系统进化方式分为4种，下面将具体展开论述。
26.1　简单系统

第一种情况是使用Nginx做负载均衡或直接在Nginx中做业务，将部分请求根据一致性的哈希算法分配到固定的后端主机上，如Java的后面，以Tomcat为容器。一般通过挂载1个或多个Tomcat实例实现后端Java的大并发。这种系统每次都需要访问MySQL数据库，数据库压力大，并且当Tomcat数量多了并且请求多了，连接数也会不足（虽然Tomcat和MySQL间是连接池技术），这个时候就需要对数据库做读写分区了。

单数据库系统如图26-1所示。

 [image:]

图26-1　单数据库系统
26.2　读写分离系统

数据库主从分区系统如图26-2所示。

数据库的写和读分开，组成了簇，相当于MySQL集群，有更多的从服务器可以用于读操作，服务器之间的数据由MySQL自身的主从同步机制实现同步，但是这有一定的延迟。另外，对于进一步上升的访问量，还会遇到速度瓶颈，这时需要引入缓存技术。

 [image:]

图26-2　数据库主从分区系统
26.3　引入缓存系统

引入了Redis缓存的系统结构如图26-3所示。

 [image:]

图26-3　Redis缓存的系统结构

拥有了缓存则应答前先把数据写入缓存，再次访问时先访问缓存，如果命中则不访问数据库，可以大大减少数据库压力，因为缓存数据都在内存中，比从硬盘读取要快，所以性能要提升。

当数据量大到Redis也承受不了时，一般把Redis建立成主从系统，类似于MySQL主从系统，建立Redis集群。
26.4　缓存主从系统

引入主从缓存机制的系统如图26-4所示。

 [image:]

图26-4　引入主从缓存机制的系统

Redis主从系统后会有更多的Redis实例或服务器为前端提供服务，一般在操作中每个前端对应一个Redis实例操作，数据由主从复制机制保证。

当系统进一步扩大以后，Redis的主从机制也变得复杂起来，因为Redis的结构一般是树形的，这时系统的可靠性和维护性就很差，系统需要进一步进化成分区模式。

使用缓存分区的系统结构如图26-5所示。

 [image:]

图26-5　使用缓存分区的系统结构

与主从机制不同，分区系统通过Twemproxy中间代理软件进行了分区，实现了集群。使用一致性的哈希算法，保证每个客户端固定使用Redis主机。但这时候中间件主机Twemproxy又成为系统的关键节点，需要做备份，同时做一定的负载均衡，还需要使用热备软件，如LVS/HAProxy。这些内容由读者在项目中自行深入研究。
26.5　小结

当我们做的是一个小型的系统时，最简单的架构就可以支撑我们的业务。随着系统容量的上升，系统需要扩容，系统瓶颈可能出现在任意环节。系统扩容以及大系统组建是一个专业性很强的话题，本书不展开叙述，而Nginx和Lua又主要用于开发高性能、大并发系统，所以开发者从一开始就考虑这些问题尤为重要。

负载均衡、主从机制、系统分区、水平分区、垂直分区、热备、读写分离、多实例、连接池、SMP架构等技术和产品需要开发者认真考虑，合理地应用这些技术解决系统扩容的问题。
第五部分　开发手册

■第27章　ngx_lua_module模块配置指令详解

■第28章　ngx_lua API详解
第27章　ngx_lua_module模块配置指令详解

ngx_lua（ngx_lua_module的简称）是Nginx的内嵌Lua模块，并不在Nginx发行的源码中。现在流行的Nginx下的Lua开发方式是OpenResty，OpenResty打包了Nginx、LuaJIT、ngx_lua_module等，方便用户使用，具体请参见第3章。

ngx_lua由配置指令和API两部分组成。本章详细介绍ngx_lua的配置指令。
27.1　概述

ngx_lua模块通过标准的Lua 5.1翻译器或LuaJIT 2.0/2.1嵌入Lua，在Nginx中通过使用子请求，将Lua线程（Lua协程）整合进Nginx的事件模型。

与Apache的mod_lua及Lighttpd的mod_magnet不同，Lua代码使用整合事件模式可以达到100%的非阻塞率，在网络传输等应用场合用于处理upstream的请求，在如MySQL、PostgreSQL、Memcached、Redis或upstream HTTP服务中均可高效运作。

至少下列Lua库和Nginx模块可以被ngx_lua使用：

·lua-resty-memcached；

·lua-resty-mysql；

·lua-resty-redis；

·lua-resty-dns；

·lua-resty-upload；

·lua-resty-websocket；

·lua-resty-lock；

·lua-resty-logger-socket；

·lua-resty-lrucache；

·lua-resty-string；

·ngx_memc；

·ngx_postgres；

·ngx_redis2；

·ngx_redis；

·ngx_proxy；

·ngx_fastcgi。

几乎所有的Nginx模块可以被ngx_lua模块通过ngx.location.capture或ngx.location.capture_multi使用，但是推荐使用lua-resty-*库代替创建子请求访问Nginx upstream模块，因为其更灵活并且更省内存（内部子请求如location或命名location使用capture访问，其他模块使用lua-restry-*库访问，不要混淆了）。

Lua解释器或LuaJIT实例在单Nginx工作进程（worker）里被所有的请求共享，但是请求上下文中的Lua代码是用轻量级的Lua线程（协程）隔离起来运行的。Lua模块驻留在工作进程的结果就是即使在很重的负载下，Lua也占用很小的内存。

ngx_lua模块放在Nginx中HTTP子项下，所以只能和downstream（下游）使用HTTP协议簇（HTTP 0.9/1.0/1.1/2.0、WebSocket等）通信。如果想要使用TCP和下游客户端通信，需要使用ngx_stream_lua模块。

下面的例子演示了一个典型的Nginx下的Lua代码，这个配置文件修改后可以应用到自己的工程中。这里描述的配置项、Lua API都是服务于最终的配置脚本或独立的Lua文件的。

Nginx下的Lua开发的步骤：

1）配置nginx.conf。

2）注册Lua代码。

nginx.conf内容：

设置纯Lua库的寻找路径 (';;' 是默认的路径):

lua_package_path '/foo/bar/?.lua;/blah/?.lua;;';

设置C语言的Lua库路径 (默认路径 ';;'):

lua_package_cpath '/bar/baz/?.so;/blah/blah/?.so;;';

 server {

 location /lua_content {

 #默认的MIME类型:

 default_type 'text/plain';

 content_by_lua_block {

 ngx.say('Hello,world!')

 }

 }

 location /nginx_var {

 # 默认的MIME类型:

 default_type 'text/plain';

 # 尝试使用这个参数访问本location： /nginx_var?a=hello,world

 content_by_lua_block {

 ngx.say(ngx.var.arg_a)

 }

 }

 location = /request_body {

 client_max_body_size 50k;

 client_body_buffer_size 50k;

 content_by_lua_block {

 ngx.req.read_body() -- 指明去读请求包的包体

 local data = ngx.req.get_body_data()

 if data then

 ngx.say("body data:")

 ngx.print(data)

 return

 end

 -- 包体可以被存放在一个临时文件中:

 local file = ngx.req.get_body_file()

 if file then

 ngx.say("body is in file ", file)

 else

 ngx.say("no body found")

 end

 }

 }

 # Lua中通过子请求使用非阻塞I/O

 # (最好的方法是使用cosocket)

 location = /lua {

 # 默认的MIME类型:

 default_type 'text/plain';

 content_by_lua_block {

 local res = ngx.location.capture("/some_other_location")

 if res then

 ngx.say("status: ", res.status)

 ngx.say("body:")

 ngx.print(res.body)

 end

 }

 }

 location = /foo {

 rewrite_by_lua_block {

 res = ngx.location.capture("/memc",

 { args = { cmd = "incr", key = ngx.var.uri } }

)

 }

 proxy_pass http://blah.blah.com;

 }

 location = /mixed {

 rewrite_by_lua_file /path/to/rewrite.lua;

 access_by_lua_file /path/to/access.lua;

 content_by_lua_file /path/to/content.lua;

 }

 # 在代码路径上使用Nginx var变量

 # 警告: Nginx var变量的内容，必须仔细过滤，否则，将会引起巨大的安全风险

 location ~ ^/app/([-_a-zA-Z0-9/]+) {

 set $path $1;

 content_by_lua_file /path/to/lua/app/root/$path.lua;

 }

 location / {

 client_max_body_size 100k;

 client_body_buffer_size 100k;

 access_by_lua_block {

 -- 检查客户IP地址是否在黑名单中

 if ngx.var.remote_addr == "132.5.72.3" then

 ngx.exit(ngx.HTTP_FORBIDDEN)

 end

 -- 检查URI中是否包含敏感词

 if ngx.var.uri and

 string.match(ngx.var.request_body, "evil")

 then

 return ngx.redirect("/terms_of_use.html")

 end

 -- tests passed

 }

 # proxy_pass/fastcgi_pass/etc settings

 }

 }

1.典型应用

ngx_lua可以应用在很多地方，例如：

1）糅合并且处理多种Nginx上游（upstream）输出（如Proxy、Drizzle、Postgres、Redis、Memcached等）。

2）在请求到达upstream上游前，做任意复杂的访问控制和安全检查。

3）任意改变和操作应答头。

4）从扩展的存储后端匹配信息（如Redis、Memcached、MySQL、PostgreSQL），并且使用该信息选择传输过程中使用的upstream后端。

5）内容使用是同步的，但仍想在非阻塞访问数据库后端或其他存储的情况下编写任意复杂的Web应用。

6）在Lua重写阶段做复杂的URL分配。

7）使用Lua实现先进的缓冲机制。

另外，ngx_lua允许携带其他多种元素和Nginx一起协同工作，模块提供多种灵活的脚本，提供C语言级别的性能，提供CPU时间和内存使用的双重高性能，特别是LuaJIT 2.X使能的情况下，这是其他脚本语言不容易达到的性能。

2.兼容性

最新版本的ngx_lua_module兼容下列Nginx版本：

·1.11.x（最后测试1.11.2）；

·1.10.x；

·1.9.x（最后测试1.9.15）；

·1.8.x；

·1.7.x（最后测试1.7.10）；

·1.6.x。

3.安装

推荐使用OpenResty，其打包了Nginx、ngx_lua、LuaJIT2.0/2.1（或可选标准的Lua 5.1解释器），基本安装命令如下：

./configure --with-LuaJIT && make && make install

有经验的用户可以选择手工安装方式，将ngx_lua手工编译进Nginx。

·安装LuaJIT2.0或2.1（推荐），或者Lua5.1（目前不支持Lua5.2）。LuaJIT可以从LuaJIT项目网站上下载（http://LuaJIT.org/download.html）。Lua5.1从Lua网站上下载（http://www.lua.org/）。已经有很多发行版本可用。

·下载最近版本的ngx_devel_kit（NDK）模块（https://github.com/simpl/ngx_devel_kit/tags）。

·下载最新版本的ngx_lua（https://github.com/openresty/lua-nginx-module/tags）。

·下载最新版本的Nginx（http://nginx.org/）。

编译源码并生成模块：

wget 'http://nginx.org/download/nginx-1.11.2.tar.gz'

tar -xzvf nginx-1.11.2.tar.gz

cd nginx-1.11.2/

编辑系统环境变量：

设置用于Nginx编译环境定位LuaJIT 2.0的路径

export LuaJIT_LIB=/path/to/LuaJIT/lib

export LuaJIT_INC=/path/to/LuaJIT/include/LuaJIT-2.0

设置用于Nginx编译环境定位LuaJIT 2.1的路径

export LuaJIT_LIB=/path/to/LuaJIT/lib

export LuaJIT_INC=/path/to/LuaJIT/include/LuaJIT-2.1

如果使用Lua，配置Lua路径

#export LUA_LIB=/path/to/lua/lib

#export LUA_INC=/path/to/lua/include

下面路径会让Nginx安装到/opt/nginx/

./configure --prefix=/opt/nginx \

 --with-ld-opt="-Wl,-rpath,/path/to/LuaJIT-or-lua/lib" \

 --add-module=/path/to/ngx_devel_kit \

 --add-module=/path/to/lua-nginx-module

make -j2

make install

4.编译动态模块

从Nginx 1.9.11开始，可以把ngx_lua编译成一个动态模块。在./configure命令行使用--add-dynamic-module=PATH代替--add-module=PATH。可以在nginx.conf中使用load_module项加载模块。

load_module /path/to/modules/ndk_http_module.so; # 假设NDK也作为动态模块编译

load_module /path/to/modules/ngx_http_lua_module.so;

5.C宏定义配置

当使用OpenResty或者Nginx核心编译ngx_lua模块时，可以定义下列编译器选项：

·NGX_LUA_USE_ASSERT：定义后，可以打开ngx_lua模块C代码部分断言，推荐在测试版本或调试代码时使用。打开它将增加运行期负载。

·NGX_LUA_ABORT_AT_PANIC：当Lua/LuaJIT虚拟机崩溃的时候，ngx_lua将通知工作进程优雅地退出。这个宏会立即中断当前的Nginx工作进程（通常会生成一个core dump文件）。此宏通常用来调试Lua虚拟机崩溃。

·NGX_LUA_NO_EFI_API：排除纯C API，只使用Nginx EFI基础Lua API（如lua-resty-core模块需要此模式）。使能此宏可以使二进制代码更小。

要使能一个或多个宏，需要在./configure脚本使能扩展的C编译器，例如：

./configure --with-cc-opt="-DNGX_LUA_USE_ASSERT -DNGX_LUA_ABORT_AT_PANIC"

6.Lua/LuaJIT字节代码支持

从v0.5.0rc32版本开始，所有的*_by_lua_file配置项（如content_by_lua_file）均支持装载Lua5.1和LuaJIT2.0/2.1原始字节码文件。

需要注意的是，LuaJIT 2.0/2.1的字节码和Lua5.1的字节码互相不兼容。

如果使用LuaJIT2.0/2.1，LuaJIT兼容的字节码必须这样生成：

/path/to/LuaJIT/bin/LuaJIT -b /path/to/input_file.lua /path/to/output_file.luac

可以加入-bg选项以加入调试信息：

/path/to/LuaJIT/bin/LuaJIT -bg /path/to/input_file.lua /path/to/output_file.luac

在LuaJIT官方文档可查阅-b选项具体细节：

http://LuaJIT.org/running.html#opt_b

同样地，LuaJIT2.1和2.0的字节码也互不兼容，如果使用Lua5.1解释器，字节码需要使用luac产生：

luac -o /path/to/output_file.luac /path/to/input_file.lua

跟LuaJIT不同，调试信息默认包含在Lua5.1中，可以使用-s选项跳过。

luac -s -o /path/to/output_file.luac /path/to/input_file.lua

企图在Lua5.1装入LuaJIT2.0/2.1的字节码，将得到下面的类似错误，错误记录在Nginx的error.log文件中：

[error] 13909#0: *1 failed to load Lua inlined code: bad byte-code header in /path/to/test_file.luac

通过规范的操作（如require和dofile）装入字节码文件（正确的文件格式），字节码将会按预期工作。

7.环境变量支持

如果需要访问系统环境变量，如foo，可以使用标准Lua API实现：使用os.getenv。但也必须首先在nginx.conf中使用env配置项列出此变量，例如：

env foo;

8.HTTP 1.0支持

HTTP 1.0协议不支持块输出，并且当应答包体非空的时候，需要一个明确的Content-Length头用以支持HTTP 1.0的保活。所以，当一个HTTP 1.0请求生成时，lua_http10_buffering配置项打开，ngx_lua将缓冲ngx.say和ngx.print的输出，延缓发送输出的包头，直到收到所有的应答包体。ngx_lua可以计算包体的总长度，构造一个正式的Content-Length头域返回给HTTP 1.0客户端。如果在运行的Lua代码中直接设置了响应的Content-Length头域，尽管lua_http10_buffering配置项打开，缓冲也会被禁用。

在大的流式应答情况下，禁用lua_http_buffering配置项是非常重要的，可以降低内存使用率。

注意，普通的HTTP测试工具（如ab和http_load）发出默认的HTTP 1.0请求。通过-0选项可强制curl发出HTTP 1.0请求。

9.静态连接纯Lua模块

当使用LuaJIT 2.x的时候，可能会静态连接纯字节码的Lua模块到Nginx运行环境。可使用LuaJIT将.lua模块文件编译成.o目标文件，目标文件包含导出的字节码，然后直接将.o连接到Nginx工程。

下面通过一个示例来论证这项技术。假设我们有一个名为foo.lua的.lua文件。

-- foo.lua

local _M = {}

function _M.go()

 print("Hello from foo")

end

return _M

把.lua文件编译成foo.o文件：

/path/to/LuaJIT/bin/LuaJIT -bg foo.lua foo.o

.lua文件告诉LuaJIT哪个文件将来会被用到lua侧，foo.o的扩展名.o告诉LuaJIT使用字节码格式转换.lua文件。如果想在结果的字节码中去掉调试信息，使用-b选项代替-bg选项。

使用字节码模块需要在编译Nginx或OpenResty的时候，在./configure脚本传入--with-ld-opt=“foo.o”选项：

./configure --with-ld-opt="/path/to/foo.o" ...

完成编译后，可以在ngx_lua的Lua代码里这样使用：

local foo = require "foo"

foo.go()

可以看出，代码不再依赖于foo.lua文件，因为它早已经被编译进Nginx程序内部。如果想在require配置项中使用.符号，可以这样使用：

local foo = require "resty.foo"

这就需要把foo.lua文件重命名为resty_foo.lua，然后编译成.o文件。

在编译.lua到.o文件的时候用到的LuaJIT要和编译Nginx+ngx_lua时用的LuaJIT是相同版本。因为若LuaJIT不同版本之间的字节码不兼容，则会在Lua运行期发生错误，并提示找不到Lua模块。

当有多个.lua文件要编译和连接的时候，需要把文件名依次放到--with-ld-opt选项后面，例如：

./configure --with-ld-opt="/path/to/foo.o /path/to/bar.o" ...

如果有很多.o文件，最好打包到一个静态库里，例如：

ar rcus libmyluafiles.a *.o

然后把myluafiles包连接到Nginx运行文件中：

./configure \

 --with-ld-opt="-L/path/to/lib -Wl,--whole-archive -lmyluafiles -Wl,--no-whole-archive"

/path/to/lib是包含libmyluafiles.a文件的路径。这里要用到--whole-archive选项，否则库会因为没有符号被跳过。

10.在Nginx工作进程中共享数据

把共享数据封装进一个Lua模块，以便于在Nginx工作进程处理的所有请求中共享全局数据。子请求中使用require连接模块，然后在Lua里操作共享数据。因为需要Lua模块装载一次，然后所有的线程（例程）共享相同的模块副本（代码和数据）。注意：因为单线程处理单个请求这种隔离设计会导致Lua全局变量（非模块级别变量）不会在请求间持续存在。

示例：

-- mydata.lua

 local _M = {}

 local data = {

 dog = 3,

 cat = 4,

 pig = 5,

 }

 function _M.get_age(name)

 return data[name]

 end

 return _M

在nginx.conf中访问：

location /lua {

 content_by_lua_block {

 local mydata = require "mydata"

 ngx.say(mydata.get_age("dog"))

 }

 }

示例中的mydata模块只会被第一个/lua请求装载和运行，相同工作进程中所有的子请求将使用重新载入的模块实例，数据的副本完全相同，直到HUP信号被发送给Nginx管理进程去强制重新载入配置。这个数据分享技术在高性能Lua应用程序上是非常有必要的。

这个数据分享是基于工作线程的，而非基于服务的，即不能跨工作进程在整个服务上有效。同一个Nginx管理进程下的多个工作进程不能使用这项技术实现跨进程的分享。

通常推荐在共享只读数据的情况下使用这项技术。可以在每个工程进程的子线程请求中共享可改变数据，但要保证在这段时间内没有非阻塞的I/O操作（包括ngx.sleep）。这段时间内，不能返回Nginx的消息循环和ngx_lua的轻线程调度，它们不会让彼此处于竞争情况。因为这个原因，对于工作进程级别的可变数据共享需要非常小心。

如果需要服务器级的数据共享，需要使用下面一项或多项技术。

1）使用ngx.shared.DICT API。

2）使用只有一个工作进程的单Nginx服务（不推荐这种模式，因为现在的服务器基本上是多处理器或单处理器多核心）。

3）使用数据存储机制，如Memcached、Redis、MySQL或PostgreSQL。OpenRestry工具平台绑定了很多Nginx模块和Lua库，提供了数据访问机制。

11.TCP套接字连接操作

tcpsock：：connect方法可以在连接被拒绝等错误情况下一律返回成功标识，然而下步操作cosocket对象将失败，返回连接实际的错误信息。

这个问题由Nginx的消息模型限制引起，并且只在Mac OS X上发生。

12.Lua线程的挂起和恢复

Lua中的dofile和require在Lua5.1和LuaJIT2.0/2.1中作为C函数内置，当通过dofile或require载入的Lua文件调用ngx.location.capture*、ngx.exec、ngx.exit或其他API时，会挂起最高级别的Lua文件，进而引发“attempt to yield across C-call boundary”这个错误。为避免这个问题，需要把会引起挂起的调用放到自己的Lua文件中，以函数形式存在，不要把这些调用放到库里面。

因为标准的Lua5.1虚拟机不支持完全恢复操作，方法ngx.location.capture、ngx.location.capture_multi、ngx.redirect、ngx.exec和ngx.exit不能在pcall（）或xpcall或者在for…in…第一行中被使用，否则会引发“a ttempt to yields across metamethod/C-call boundary”错误。可使用支持完整恢复机制的LuaJIT 2.X避免这个问题。

13.Lua变量范围

导入模块的时候要使用规范做法：

local xxx = require('xxx')

不要使用已经过时的做法：

require('xxx')

这样做的原因：设计上，全局变量拥有与之关联Nginx请求处理者相同的生命周期。每一个请求处理者拥有自己的一系列全局变量，并且请求之间是隔离的。Lua模块被第一个Nginx请求处理者载入，并且被require（）缓存在package.loaded表，后续引用都将使用这个实例。内置的module（）被相同的Lua模块使用，设置一个已经载入模块表中的全局变量会产生副作用，但是这个全局变量会由请求处理者在最后清理，每一个子请求处理者都拥有它们自己的全局环境，所以有可能访问到一个已经被清理的全局变量，而这个nil值会产生Lua异常，所以推荐使用新方法。

通常在ngx_lua上下文中使用Lua全局变量是一个非常糟糕的主意。

1）在协程请求上滥用实际上应该是本地变量的全局变量有非常多的副作用。

2）全局变量需要在全局环境下查表，价格高昂。

3）一些全局变量引用会引起很多打印错误，这将很影响调试。

推荐通过local声明在本范围使用的变量。

要找出所有在Lua代码中使用的Lua全局变量，可以使用lua-releng工具：

$ lua-releng

Checking use of Lua global variables in file lib/foo/bar.lua ...

 1 [1489] SETGLOBAL 7 -1 ; contains

 55 [1506] GETGLOBAL 7 -3 ; setvar

 3 [1545] GETGLOBAL 3 -4 ; varexpand

输出显示在lib/foo/bar.lua的1489行写入了contains变量，在1506行读取了setvar变量，在1545行读取了全局的varexpand变量。

这个工具保证本地变量全部被local关键字声明，否则会抛出一个运行期异常，从而避免访问这些变量引起的资源竞争。

14.location访问的局限

ngx.location.capture和ngx.location.capture_multi配置项不能捕捉包含add_before_body、add_after_body、auth_request、echo_location、echo_location_async、echo_subrequest或echo_subrequest_async这些配置项的location。

location /foo {

 content_by_lua_block {

 res = ngx.location.capture("/bar")

 }

 }

 location /bar {

 echo_location /blah;

 }

 location /blah {

 echo "Success!";

 }

$ curl -i http://example.com/foo

因为Location/bar里包含了echo_location，所以示例并不能按预期工作。

15.CoSocket应用限制

cosocket并非在任何地方都有效。因为Nginx核心内部的限制，cosocket API在下面的上下文中被禁用：set_by_lua*、log_by_lua*、header_filter_by_lua*、body_filter_by_lua。

cosocket通常在init_by_lua*和init_work_by_lia*配置项中被禁用，但在未来这个功能可以加上，因为实际上Nginx核心并没有限制。

当原始的上下文不需要等待cosocket结果时，通过ngx.timer.at创建一个零延迟的时钟，在时钟回调中异步地处理cosocket结果，即可使用cosocket。

16.特殊的转义序列

因为Lua语言解析器和Nginx配置文件解析器在处理之前会将\去掉，所以避免在正则规则中使用\d、\s或\w这种转义：

nginx.conf

 ? location /test {

 ? content_by_lua '

 ? local regex = "\d+" -- THIS IS WRONG!!

 ? local m = ngx.re.match("hello, 1234", regex)

 ? if m then ngx.say(m[0]) else ngx.say("not matched!") end

 ? ';

 ? }

 # evaluates to "not matched!"

避免使用双\：

nginx.conf

 location /test {

 content_by_lua '

 local regex = "\\\\d+"

 local m = ngx.re.match("hello, 1234", regex)

 if m then ngx.say(m[0]) else ngx.say("not matched!") end

 ';

 }

 # evaluates to "1234"

Nginx配置文件会将\\\\d+解析为\\d+，然后由Lua解析器解析为\d+。

另一种方法，正则表达规则可以放到[[...]]中，只会被Nginx配置文件过滤一次，这是Lua长字符串的一种格式：

nginx.conf

 location /test {

 content_by_lua '

 local regex = [[\\d+]]

 local m = ngx.re.match("hello, 1234", regex)

 if m then ngx.say(m[0]) else ngx.say("not matched!") end

 ';

 }

 # evaluates to "1234"

[[\\d+]]被Nginx配置文件解析成了[[\d+]]，而这是预期的，是正确的。

长的正则规则中可能包含[...]，形成[=[...]=]这样的规则。

nginx.conf

 location /test {

 content_by_lua '

 local regex = [=[[0-9]+]=]

 local m = ngx.re.match("hello, 1234", regex)

 if m then ngx.say(m[0]) else ngx.say("not matched!") end

 ';

 }

 # evaluates to "1234"

另外一个选择是把Lua代码放到一个外部的脚本文件中，通过*_by_lua_file调用，这样，转义符就只会被过滤一次。

-- test.lua

 local regex = "\\d+"

 local m = ngx.re.match("hello, 1234", regex)

 if m then ngx.say(m[0]) else ngx.say("not matched!") end

 -- evaluates to "1234"

同样，括号内的转义符也需要修正。Lua不对[…]中的符号做修改，直接使用正则规则即可。

-- test.lua

 local regex = [[\d+]]

 local m = ngx.re.match("hello, 1234", regex)

 if m then ngx.say(m[0]) else ngx.say("not matched!") end

 -- evaluates to "1234"

17.不支持SSI混合模式

不支持在相同的Nginx请求中使用ngx_lua进行SSI混合，只能完全通过ngx_lua自己实现SSI的功能，这更有效。

18.不完全支持SPDY模式

当前ngx_lua提供的Lua API不支持Nginx SPDY模式：ngx.location.capture、ngx.location.capture_multi、ngx。
27.2　Lua配置顺序

Nginx中的Lua代码用配置项分隔成一个个脚本块，这些配置项决定Lua代码何时运行以及何时结束被使用。关于Lua在Nginx下的运行机制以及Nginx在HTTP处理过程中的阶段机制前文已经有讲述，图27-1再次描述Lua代码可以运行的阶段，用于参照研读下面的配置指令。

 [image:]

图27-1　Lua模块指令运行顺序
27.3　配置指令

下面详细描述ngx_lua中的配置指令。

1.lua_use1_default_type

语法：

lua_use_default_type on | of1f

默认：

lua_use_default_type on

上下文：http、server、location、location if。

说明：声明是否使用default_type配置项中的Content-Type作为应答头。

如果不想在Lua请求的应答包中使用默认Content-Type响应头，可把这个配置项关掉。该配置项是打开的，并从v0.9.1版本中开始生效。

2.Lua_malloc_trim

语法：

lua_malloc_trim <request-count>

默认：

lua_malloc_trim 1000

上下文：http。

说明：让底层libc库在Nginx核心每N次请求处理后释放它缓存的剩余内存。N默认是1000。如果该项配置成了自己的数值，小于默认值将会引发更多的释放操作，会导致占用更高的CPU时间，但是内存占用更少；但大于缺省值，会减少CPU消耗，内存占用会上升，这需要用户自行权衡。

如果该项配置为0，则会关闭内存周期性整理。

lua_malloc_trim 0; # turn off trimming completely

当前实现是通过在Nginx写log阶段使用一个管理器做请求统计，所以nginx.conf中log_subrequest on配置项使用子请求统计，统计更快。默认地，只做主请求统计。

注意：这个配置项不影响LuaJIT本身基于mmap系统调用的内存申请。

这个配置项是从v0.10.7版本开始的。

3.Lua_code_cache

语法：

lua_code_cache on | off

默认：

lua_code_cache on

上下文：http、server、location、location if。

说明：在*_by_lua_file和Lua模块配置项里缓冲Lua代码（如set_by_lua_file和content_by_lua_file）。

从0.9.3版本开始，当配置项为off时，每一个ngx_lua的请求服务将在一个独立的Lua VM实例中处理，所以被set_by_lua_file、content_by_lua_file、access_by_lua_file引用的Lua文件不会被缓存，所有的Lua模块使用Lua文件都是临时读取，为程序员提供了一个边编辑边刷新的机制。

注意：nginx.conf内嵌的Lua代码，如set_by_lua、content_by_lua、access_by_lua和rewrite_by_lua在编辑的时候不会被更新，nginx.conf只有在收到HUP信号重新载入的时候才能更新。

当代码缓存打开的时候，Lua文件在*_by_lua_file阶段被dofile或loadfile载入是不可以被缓存的，通常可以使用init_by_lua或init_by_lua_file配置项载入所有这些文件或把这些文件制作成Lua模块，并通过require载入。

ngx_lua模块跟Apache的mod_lua不一样，不支持stat模式。

不建议在生产环境下禁用缓存模式，只建议在开发模式下禁用，因为会非常影响系统性能。例如，一个“hello world”的Lua例子在禁用缓存的情况下会使系统性能降低一个数量级。

4.Lua_regex_cache_max_entries

语法：

lua_regex_cache_max_entries <num>

默认：

lua_regex_cache_max_entries 1024

上下文：http。

说明：定义工作进程级别上最大编译正则表达式缓冲条数。在ngx.re.match、ngx.re.gmatch、ngx.re.sub和ngx.re.gsub中使用的正则表达式在选项o被指定的情况下会被缓冲在这个缓存里。

默认值是1024，当缓冲数据达到上限时，新的正则表达式不会被缓冲（0选项没有指定的情况下），在error.log里将看到这个警告：

2011/08/27 23:18:26 [warn] 31997#0: *1 lua exceeding regex cache max entries (1024), ...

如果正在使用通过resty.core.regex载入lua-resty-core模块使用ngx.re.*API，那么，会使用一个LRU缓冲管理算法管理缓存。

使用正则表达式的时候不要激活0选项（或使用replace来修改ngx.re.sub和ngx.re.gsub参数），这可以保证避免达到数量限制。

5.Lua_regex_match_limit

语法：

lua_regex_match_limit <num>

默认：

lua_regex_match_limit 0

上下文：http。

说明：指定使用ngx.re API时PCRE库用的“match limit”。

PCRE手册上指出，这个限制影响回溯发生的数量。当这个限制命中的时候，Lua侧的ngx.re API会收到“pcre_exec（）failed：-8”的错误字符串。当限制设置为0的时候，会使用编译时设置的默认值，这也是这个配置项的默认值。

6.Lua_package_path

语法：

lua_package_path <lua-style-path-str>

默认：LUA_PATH环境变量或编译时内建默认值。

上下文：http。

说明：设置set_by_lua、content_by_lua和其他配置项使用到的Lua模块搜索路径。路径字符串使用Lua路径格式，；；可以用来表示原来的搜索路径。

从v0.5.0rc29版本开始，可以在搜索路径中使用$prefix或${prefix}，用以指明server前缀。这个前缀是Nginx服务启动时通过-p PATH命令行传进来的。

7.Lua_package_cpath

语法：

lua_package_cpath <lua-style-cpath-str>

默认：LUA_PATH环境变量或编译时内建默认值。

上下文：http。

说明：设置set_by_lua、content_by_lua和其他配置项脚本中用到的Lua C模块的搜索路径。这也是使用Lua路径格式，可以用；；表示原有路径。

8.init_by_lua

语法：

init_by_lua <lua-script-str>

上下文：http。

阶段：loading-config。

说明：从v0.9.17版本开始，不鼓励使用这个配置项了，推荐使用init_by_lua_block。

当Nginx主进程载入Nginx配置文件的时候，将在全局的Lua VM级别运行<lua-script-str>。

当Nginx收到HUP信号重新载入配置文件的时候，Lua VM自动重新创建，init_by_lua将再次在新的Lua VM中运行。当lua_code_cache配置项关闭的时候，init_by_lua管理者将会在每一个请求中运行一个标准的Lua VM（虚拟机）。

通常可以在服务启动阶段使用这个配置项注册全局变量或预加载Lua模块，下面是一个预加载模块的例子：

init_by_lua 'cjson = require "cjson"';

 server {

 location = /api {

 content_by_lua_block {

 ngx.say(cjson.encode({dog = 5, cat = 6}))

 }

 }

 }

也可以在这个阶段初始化lua_shared_dict共享内存。例如：

lua_shared_dict dogs 1m;

 init_by_lua '

 local dogs = ngx.shared.dogs;

 dogs:set("Tom", 56)

 ';

 server {

 location = /api {

 content_by_lua_block {

 local dogs = ngx.shared.dogs;

 ngx.say(dogs:get("Tom"))

 }

 }

 }

需要注意的是，配置文件重载不能清除lua_shared_dict的共享内存，所以在这种情况下，需要在init_by_lua代码中重新初始化共享内存，需要设置一个自定义标志，init_by_lua代码总是需要检查这个标志。因为这段Lua代码在Nginx工作进程运行前运行，数据和代码在这里享受写时复制copy-on-write（COW）性能，这是许多操作系统为工作进程提供的机制，这将节约很多内存。

不要在这里初始化自己的全局变量，因为使用全局变量容易出错，还可能污染命名空间。推荐使用Lua模块文件（但是不要使用标准Lua函数的module定义模块，因为它会污染命名空间），并且在init_by_lua或其他步骤调用require（）装载自己的模块文件（require不在package.loaded缓存载入模块，所以模块只能在整个Lua VM实例中被载入一次）。

这个阶段只有少数的Nginx Lua API可用：

·日志API：ngx.log和print。

·共享内存API：ngx.shared.DICT。

更多的Nginx API将在后面的阶段支持。

基本上，在这个阶段可以安全地使用Lua库做阻塞I/O操作，因为在服务启动阶段是可以阻塞管理进程的。每一个Nginx核心在配置载入阶段执行阻塞I/O（至少解析上游服务器主机名是阻塞的）。

必须注意本阶段Lua的安全性，因为Nginx管理进程通常在root账户下运行。

9.Init_by_lua_block

语法：

init_by_lua_block { lua-script }

上下文：http。

阶段：loading-config。

说明：跟init_by_lua配置项类似，除了这个配置项直接在{}里使用内嵌Lua代码，代替原来的’’分隔。例如：

init_by_lua_block {

 print("I need no extra escaping here, for example: \r\nblah")

 }

10.Init_by_lua_file

语法：

init_by_lua_file <path-to-lua-script-file>

上下文：http。

阶段：loading-config。

说明：与init_by_lua一样，只是Lua代码是放在文件内的。

如果指定了类似foo/bar.lua这样的路径，将会使用启动Nginx时的命令行中的-p PATH选项传进来的server prefix，使用它转换为绝对路径。

11.init_worker_by_lua

语法：

init_worker_by_lua <lua-script-str>

上下文：http。

阶段：starting-worker。

说明：从v0.9.17版本开始，这个配置项就不再鼓励使用了，推荐使用新的配置项init_worker_by_lua_block。

当管理进程已经启动并开始工作了，管理进程启动每一个工作进程，工作进程启动时指定的Lua代码就会被运行。如果管理进程还没有启动，需要做一些处理，需要在init_by_lua*中注册代码。

这个阶段通常用于创建基于工作进程的重复时钟（通过ngx.timer.at API），进行后端的健康检查或其他时间周期性工作，下面是一个例子。

init_worker_by_lua '

 local delay = 3 -- in seconds

 local new_timer = ngx.timer.at

 local log = ngx.log

 local ERR = ngx.ERR

 local check

 check = function(premature)

 if not premature then

 -- do the health check or other routine work

 local ok, err = new_timer(delay, check)

 if not ok then

 log(ERR, "failed to create timer: ", err)

 return

 end

 end

 end

 local ok, err = new_timer(delay, check)

 if not ok then

 log(ERR, "failed to create timer: ", err)

 return

 end

 ';

12.init_worker_by_lua_block

语法：

init_worker_by_lua_block { lua-script }

上下文：http。

阶段：starting-worker。

说明：与init_worker_by_lua不同的是使用{}代替Nginx字体串内嵌代码，其他都与init_worker_by_lua相同。例如：

init_worker_by_lua_block {

 print("I need no extra escaping here, for example: \r\nblah")

 }

13.init_worker_by_lua_file

语法：

init_worker_by_lua_file <lua-file-path>

上下文：http。

阶段：starting-worker。

说明：跟init_worker_by_lua相比，除了把代码从{}移到Lua源文件或字节码文件外，其他都是一样的。

14.set_by_lua

语法：

set_by_lua $res <lua-script-str> [$arg1 $arg2 ...]

上下文：server、server if、location、location if。

阶段：rewrite。

说明：运行<lua-script-str>指定的代码，$arg1$arg2…是输入参数，$res是输出返回字符串。<lua-script-str>中的代码可以调用API，可以从ngx.arg表（索引从1开始顺序增长）获取输入参数。

因为Nginx事件循环在<lua-script-str>代码运行阶段是阻塞的，所以配置项被设计成运行短、快的代码块，应该避免运行消耗时间的代码。

这个配置项用于向ngx_http_rewrite_module标准命令列表中插入自定义命令。因为ngx_http_rewrite_module自己的命令不支持非阻塞I/O，所以不能在这个配置项内运行需要挂起当前Lua轻线程（协程）类的API。

至少下列API和函数在set_by_lua中被禁用：

·输出类API，如ngx.say和ngx.send_headers。

·控制类API，如ngx.exit。

·子请求类API，如ngx.location.capture和ngx.location.capture_multi。

·cosocket类API，如ngx.socket.tcp和ngx.req.socket。

·睡眠类API，如ngx.sleep。

另外，同一时间内，这个配置项只能写并输出一个Nginx变量。可以使用ngx.var.VARIABLE。

location /foo {

 set $diff ''; # 定义 $diff 变量

 set_by_lua $sum '

 local a = 32

 local b = 56

 ngx.var.diff = a - b; -- 直接写入 $diff

 return a + b; -- 正常地返回 $sum 值

 ';

 echo "sum = $sum, diff = $diff";

 }

set_by_lua配置项可以自由地和ngx_http_rewrite_module、set_misc_nginx_module、array_var_nginx_module模块的配置项混合使用。所有这些配置项会根据它们在配置文件中的顺序运行。

set $foo 32;

set_by_lua $bar 'return tonumber(ngx.var.foo) + 1';

set $baz "bar: $bar"; # $baz == "bar: 33"

从v0.5.0rc29版本开始，<lua-script-str>禁止插入Nginx变量。配置项中可以直接使用$符号。

这个配置项需要ngx_devel_kit模块。

15.set_by_lua_block

语法：

set_by_lua_block $res { lua-script }

上下文：server、server if、location、location if。

阶段：rewrite。

说明：跟set_by_lua相同，除了以下两点。

·Lua代码在{}中，取代了Nginx字符串语义。

·不支持额外的参数。

例如：

set_by_lua_block $res { return 32 + math.cos(32) }

$res now has the value "32.834223360507" or alike.

代码中不需要转义。

16.set_by_lua_file

语法：

set_by_lua_file $res <path-to-lua-script-file> [$arg1 $arg2 ...]

上下文：server、server if、location、location if。

阶段：rewrite。

说明：除了代码放在<path-to-lua-script-file>中，其他均于set_by_lua相同，从v0.5.0rc32版本开始，支持Lua/LuaJIT字节码。

<path-to-lua-script-file>支持变量插入。需要注意的是，在处理变量时要特别小心，防止注入攻击。

当使用foo/bar.lua类的路径时，模块会使用启动Nginx命令行时的-p PATH选项确定的server prefix，从而将路径转换成绝对路径。

Lua代码缓存打开的时候（默认是打开的），用户代码会在第一个请求到来的时候被装载，并被缓存起来，每次代码编辑过后，Nginx必须重新载入配置文件。Lua代码缓存可以在开发阶段临时关闭，把lua_code_cache设置为off可以避免重载Nginx。

17.content_by_lua

语法：

content_by_lua <lua-script-str>

上下文：location、location if。

阶段：content。

说明：从v0.9.17版本开始，不鼓励使用这个配置项了，推荐使用content_by_lua_block。

每一个请求到来的时候，<lua-script-str>中的Lua代码都会被运行。Lua代码可以调用API，它作为一个新创建的协程在独立的全局环境中运行（像一个沙箱）。

不要在相同的location中同时使用本配置项和其他内容管理器，例如，本配置项不能和proxy_pass配置项在相同的location中使用。

18.content_by_lua_block

语法：

content_by_lua_block { lua-script }

上下文：location、location if。

阶段：content。

说明：除了代码放在{}中，其他均与content_by_lua相同。例如：

content_by_lua_block {

 ngx.say("I need no extra escaping here, for example: \r\nblah")

 }

19.content_by_lua_file

语法：

content_by_lua_file <path-to-lua-script-file>

上下文：location、location if。

阶段：content。

说明：除了代码放在文件中，其他均与content_by_lua相同。从v0.5.0rc32版本开始，支持Lua/LuaJIT字节码运行。

可以在<path-to-lua-script-file>中使用Nginx的变量，当然这样做会引入一些风险，所以不推荐这种做法。

当使用foo/bar.lua类型的路径时，模块会使用Nginx启动时的-p PATH参数设置的server prefix路径参数，从而将路径转换成绝对路径。

同样地，Lua代码缓存也会影响调试，可参见其他配置项相同部分。

Nginx变量支持在文件路径中的动态匹配，例如：

WARNING: Nginx变量中的内容必须仔细过滤，否则，将会是巨大的安全隐患。

 location ~ ^/app/([-_a-zA-Z0-9/]+) {

 set $path $1;

 content_by_lua_file /path/to/lua/app/root/$path.lua;

 }

必须仔细校验和过滤输入的参数，以阻止恶意的用户和访问。

20.rewrite_by_lua

语法：

rewrite_by_lua <lua-script-str>

上下文：http、server、location、location if。

阶段：rewrite tail。

说明：从v0.9.17版本开始，不鼓励使用这个配置项了，推荐使用rewrite_by_lua_block。

每一个请求都会引发<lua-script-str>中的Lua代码运行。Lua代码可以调用API，在一个独立的全局环境里作为一个新的协程运行。

注意，这个管理器总是在ngx_http_rewrite_module之后运行，所以下面的代码将会按预期工作：

location /foo {

 set $a 12; # create and initialize $a

 set $b ""; # create and initialize $b

 rewrite_by_lua 'ngx.var.b = tonumber(ngx.var.a) + 1';

 echo "res = $b";

 }

因为set$a 12和set$b""在rewrite_by_lua之前运行。

下面的例子中，代码将不会按预期运行：

? location /foo {

 ? set $a 12; # create and initialize $a

 ? set $b ''; # create and initialize $b

 ? rewrite_by_lua 'ngx.var.b = tonumber(ngx.var.a) + 1';

 ? if ($b = '13') {

 ? rewrite ^ /bar redirect;

 ? break;

 ? }

 ?

 ? echo "res = $b";

 ? }

因为if在rewrite_by_lua事件之前运行，如果if放在rewrite_by_lua之后，正确的代码应该是这样的：

location /foo {

 set $a 12; # create and initialize $a

 set $b ''; # create and initialize $b

 rewrite_by_lua '

 ngx.var.b = tonumber(ngx.var.a) + 1

 if tonumber(ngx.var.b) == 13 then

 return ngx.redirect("/bar");

 end

 ';

 echo "res = $b";

 }

注意，ngx_eval模块可以使用rewrite_by_lua实现，例如：

location / {

 eval $res {

 proxy_pass http://foo.com/check-spam;

 }

 if ($res = 'spam') {

 rewrite ^ /terms-of-use.html redirect;

 }

 fastcgi_pass ...;

 }

用ngx_lua实现：

location = /check-spam {

 internal;

 proxy_pass http://foo.com/check-spam;

 }

 location / {

 rewrite_by_lua '

 local res = ngx.location.capture("/check-spam")

 if res.body == "spam" then

 return ngx.redirect("/terms-of-use.html")

 end

 ';

 fastcgi_pass ...;

 }

和其他rewrite过程管理器一样，rewrite_by_lua总是在子请求中运行。

注意，当在rewrite_by_lua管理器中调用ngx.exit（ngx.OK）时，Nginx请求处理控制流将仍然继续运行内容管理器。要想中断当前rewrite_by_lua管理器，需要使用status>=200（ngx.HTTP_OK）并且通过status<300（ngx.HTTP_SPECIAL_RESPONSE）调用ngx.exit，可以成功退出。ngx.exit（ngx.HTTP_INTERNAL_SERVER_ERROR）（或其错误码族）用于表示失败退出。

ngx_http_rewrite_module的重写配置项被用来改变URI、初始化内部定向操作，如果使用了ngx_http_rewrite_module，则情况会变得复杂。例如：

location /foo {

 rewrite ^ /bar;

 rewrite_by_lua 'ngx.exit(503)';

 }

 location /bar {

 ...

 }

ngx.exit（503）不会运行，rewrite^/bar在这里初始化了一个内部重定向，所以rewrite_by_lua不会运行。

rewrite_by_lua代码总是在rewrite请求预处理过程之后运行，除非rewrite_by_lua_no_postpone打开。

21.rewrite_by_lua_block

语法：

rewrite_by_lua_block { lua-script }

上下文：http、server、location、location if。

阶段：rewrite tail。

说明：除了代码放在{}中，其他均和rewrite_by_lua相同。例如：

 rewrite_by_lua_block {

 do_something("hello, world!\nhiya\n")

 }

22.rewrite_by_lua_file

语法：

rewrite_by_lua_file <path-to-lua-script-file>

上下文：http、server、location、location if。

阶段：rewrite tail。

说明：和rewrite_by_lua的区别是代码放在<path-to-lua-script-file>中，并且从v0.5.0rc32版本开始，支持字节码。或在源码文件中使用Nginx变量，但是要防范注入等风险，从安全性角度考虑，不是推荐这种做法。同样地，当文件名是foo/bar.lua类似的风格时，模块会使用server prefix转换为绝对路径。Lua代码缓存也会让代码在第一个请求时被载入。开发阶段想要快速修改代码调试程序，需要临时把lua_code_cache从默认打开改成关闭，否则就需要每次重新载入nginx.conf文件。

rewrite_by_lua_file代码总是在rewrite请求预处理阶段之后运行，除非rewrite_by_lua_no_postpone打开。

23.access_by_lua

语法：

access_by_lua <lua-script-str>

上下文：http、server、location、location if。

阶段：access tail。

说明：从v0.9.17版本，推荐使用access_by_lua_block代替。

在每一个请求来的时候，<lua-script-str>的Lua代码被运行，作为访问阶段的管理者。Lua脚本可以进行API调用，会在一个独立的全局环境中新建一个协程运行，类似沙箱。

注意，本管理器在标准的ngx_http_access_module之后运行，所以，下面的代码将按预期运行。

location / {

 deny 192.168.1.1;

 allow 192.168.1.0/24;

 allow 10.1.1.0/16;

 deny all;

 access_by_lua '

 local res = ngx.location.capture("/mysql", { ... })

 ...

 ';

 # proxy_pass/fastcgi_pass/...

 }

这里，如果一个客户端IP在黑名单中，将被拒绝往下执行，不会执行MySQL数据库查询。

注意，ngx_auth_request模块可以用access_by_lua实现：

location / {

 auth_request /auth;

 # proxy_pass/fastcgi_pass/postgres_pass/...

 }

还可以用ngx_lua实现：

location / {

 access_by_lua '

 local res = ngx.location.capture("/auth")

 if res.status == ngx.HTTP_OK then

 return

 end

 if res.status == ngx.HTTP_FORBIDDEN then

 ngx.exit(res.status)

 end

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)

 ';

 # proxy_pass/fastcgi_pass/postgres_pass/...

 }

和其他的访问阶段（access）管理者一样，access_by_lua不能在子请求中工作。

在access_by_lua管理中调用ngx.exit（ngx.OK）时，Nginx请求控制流程还会继续运行管理器。要在当前的请求处理管理器中断处理，要用错误码为200～300的值，status>=200（ngx.HTTP_OK）和status<300（ngx.HTTP_SPECIAL_RESPONSE）表示成功退出，ngx.exit（ngx.HTTP_INTERNAL_SERVER_ERROR）（或其友类值）表示失败退出。

从v0.9.20版本开始，可以使用access_by_lua_no_postpone配置项控制使用本管理器代替access的请求管理阶段工作。

24.access_by_lua_block

语法：

access_by_lua_block { lua-script }

上下文：http、server、location、location if。

阶段：access tail。

说明：与access_by_lua不同的仅仅是代码放在{}中。例如：

access_by_lua_block {

 do_something("hello, world!\nhiya\n")

 }

25.access_by_lua_file

语法：

access_by_lua_file <path-to-lua-script-file>

上下文：http、server、location、location if。

阶段：access tail。

说明：与access_by_lua不同的是代码放在<path-to-lua-script-file>指定的文件里，同时从v0.5.0rc32版本开始，支持Lua/LuaJIT字节码。

可以在Lua文件中使用Nginx变量实现复杂的功能，但是考虑到风险的因素，不推荐这样做。

当指定类似于foo/bar.lua的文件名时，模块会进行绝对路径的转换，使用启动Nginx时命令行通过-p PATH选项传入的路径设置的server prefix进行转换。同样，因为默认的Lua代码缓存是打开的，代码编辑后需要重载服务器的nginx.conf文件才能生效，为了方便调试代码，可以临时将lua_code_cached关闭，避免每次都要重新装载配置文件。

通过文件路径传入的Nginx变量动态分配与content_by_lua_file一样。

26.header_filter_by_lua

语法：

header_filter_by_lua <lua-script-str>

上下文：http、server、location、location if。

过程：output-header-filter。

说明：从v0.9.17版本开始，推荐使用header_filter_by_lua_block代替。使用<lua-script-str>指定的Lua代码定义一个输出头过滤器。

注意，下面的API在这里不能使用：

·输出类API，如ngx.say和ngx.send_headers。

·控制类API，如ngx.redirect和ngx.exec。

·子请求类API，如ngx.location.capture和ngx.location.capture_multi。

·cosocket类API，如ngx.socket.tcp和ngx.req.socket。

下面是一个修改应答头的例子：

location / {

 proxy_pass http://mybackend;

 header_filter_by_lua 'ngx.header.Foo = "blah" ';

 }

27.header_filter_by_lua_block

语法：

header_filter_by_lua_block { lua-script }

上下文：http、server、location、location if。

过程：output-header-filter。

说明：和header_filter_by_lua的区别仅是代码放在{}内。例如：

 header_filter_by_lua_block {

 ngx.header["content-length"] = nil

 }

28.header_filter_by_lua_file

语法：

header_filter_by_lua_file <path-to-lua-script-file>

上下文：http、server、location、location if。

阶段：output-header-filter。

说明：与header_filter_by_lua仅两点不同，一是代码放在文件中，二是从v0.5.0rc32版本开始，支持Lua/LuaJIT字节码。

29.body_filter_by_lua

语法：

body_filter_by_lua <lua-script-str>

上下文：http、server、location、location if。

阶段：output-body-filter。

说明：从v0.9.17版本开始，推荐使用body_filter_by_lua_block代替。

使用Lua代码定义了一个应答包体过滤器。

输入的数据块通过ngx.arg[1]传递（作为Lua字符串值），“eof”标志指示应答包体数据流结束，标志存放在ngx.arg[2]中（作为Lua布尔类型值）。

在底层实现上，“eof”标志只是主请求last_buf或子请求last_in_chain链型缓冲区的标志。

输出数据流可以被立即中断：

return ngx.ERROR

可以用于立即中断数据不正确、不完整以及无效的应答，以节省时间。

Lua代码可以通过ngx.arg[1]传递编辑过的输入数据块到下游输出过滤器，数据作为一个Lua字符串或一个Lua字符串表。例如，在应答包体里转换所有的小写字符，可以这样写：

location / {

 proxy_pass http://mybackend;

 body_filter_by_lua 'ngx.arg[1] = string.upper(ngx.arg[1])';

 }

当向ngx.arg[1]传递一个nil值或空字符串时，不会有任何数据块向下游传递。同样地，可以通过在ngx.arg[2]中传递“eof”实现目的，例如：

 location /t {

 echo hello world;

 echo hiya globe;

 body_filter_by_lua '

 local chunk = ngx.arg[1]

 if string.match(chunk, "hello") then

 ngx.arg[2] = true -- new eof

 return

 end

 -- just throw away any remaining chunk data

 ngx.arg[1] = nil

 ';

 }

输入GET/t将得到如下输出：

hello world

当包体过滤器看到一块包含着单词“hello”的数据块，将马上设置eof标志为真，结果是马上中断了后续处理，但本次应答仍然有效。

当Lua代码改变应答报文长度的时候，需要清除Content-Length应答头域，强迫流输出，例如：

location /foo {

 # fastcgi_pass/proxy_pass/...

 header_filter_by_lua_block { ngx.header.content-length = nil }

 body_filter_by_lua 'ngx.arg[1] = string.len(ngx.arg[1]) .. "\\n"';

 }

注意，下面的API因为系统限制，不能在本阶段使用：

·输出类API，如ngx.say和ngx.send_headers。

·控制类API，如ngx.redirect和ngx.exec。

·子请求类API，如ngx.location.capture和ngx.location.capture-multi。

·cosocket类API，如ngx.socket.tcp和ngx.req.socket。

一个输出过滤器在一个请求过程中可以被调用多次，因为应答包体可能以块形式传输过来，所以Lua代码也会被调用多次。

30.body_filter_by_lua_block

语法：

body_filter_by_lua_block { lua-script-str }

上下文：http、server、location、location if。

阶段：output-body-filter。

说明：和body_filter_by_lua不同的是代码放在{}中。例如：

body_filter_by_lua_block {

 local data, eof = ngx.arg[1], ngx.arg[2]

 }

31.body_filter_by_lua_file

语法：

body_filter_by_lua_file <path-to-lua-script-file>

上下文：http、server、location、location if。

阶段：output-body-filter。

说明：和body_filter_by_lua有两点区别，一是代码存放在文件中，二是支持字节码。当文件是类似于foo/bar.lua的形式时，会被转换成绝对值。

32.log_by_lua

语法：

log_by_lua <lua-script-str>

上下文：http、server、location、location if。

阶段：log。

说明：从v0.9.17版本开始，鼓励使用log_by_lua_block配置项代替。

在log请求处理阶段，运行<lua-script-str>中的Lua代码。在访问log之前运行本段代码，不替换原有log处理。

注意，下列API在此过程中暂时是禁用的。

·输出类API，如ngx.say和ngx.send_headers。

·控制类API，如ngx.redirect和ngx.exec。

·子请求类API，如ngx.location.capture和ngx.location.capture_multi。

·cosocket类API，如ngx.socket.tcp和ngx.req.socket。

下面是一个从$upstream_response_time中汇集并产生平均数据的例子：

lua_shared_dict log_dict 5M;

server {

 location / {

 proxy_pass http://mybackend;

 log_by_lua '

 local log_dict = ngx.shared.log_dict

 local upstream_time = tonumber(ngx.var.upstream_response_time)

 local sum = log_dict:get("upstream_time-sum") or 0

 sum = sum + upstream_time

 log_dict:set("upstream_time-sum", sum)

 local newval, err = log_dict:incr("upstream_time-nb", 1)

 if not newval and err == "not found" then

 log_dict:add("upstream_time-nb", 0)

 log_dict:incr("upstream_time-nb", 1)

 end

 ';

 }

 location = /status {

 content_by_lua_block {

 local log_dict = ngx.shared.log_dict

 local sum = log_dict:get("upstream_time-sum")

 local nb = log_dict:get("upstream_time-nb")

 if nb and sum then

 ngx.say("average upstream response time: ", sum / nb,

 " (", nb, " reqs)")

 else

 ngx.say("no data yet")

 end

 }

 }

}

33.log_by_lua_block

语法：

log_by_lua_block { lua-script }

上下文：http、server、location、location if。

阶段：log。

说明：和log_by_lua的区别仅是代码放在{}内。例如：

log_by_lua_block {

 print("I need no extra escaping here, for example: \r\nblah")

}

34.log_by_lua_file

语法：

log_by_lua_file <path-to-lua-script-file>

上下文：http、server、location、location if。

阶段：log。

说明：与log_by_lua仅有两点不同，一是代码放在<path-to-lua-script-file>指定的lua文件中，二是从v0.5.0rc32版本开始，支持Lua/LuaJIT字节码。

35.balancer_by_lua_block

语法：

balancer_by_lua_block { lua-script }

上下文：upstream。

阶段：content。

说明：这个配置项运行Lua代码作为上游服务器配置中服务器的负载均衡器。例如：

upstream foo {

 server 127.0.0.1;

 balancer_by_lua_block {

 -- 使用Lua在这里实现一个动态负载均衡器，做一些有趣的事情。

 }

 }

 server {

 location / {

 proxy_pass http://foo;

 }

 }

Lua负载均衡器可以和任意存在的Nginx上游模块（如ngx_proxy和ngx_fastcgi）协作。同时，Lua负载均衡器可以和标准的上游连接池机制配合工作，如标准的keepalive配置指令。只要确保一个upstream{}上下文中的keepalive配置项在blancer_by_lua_block配置项之后。

Lua负载均衡器可以完全忽略upstream{}中定义的服务器，可以从lua-resty-core库的ngx.balance模块中选择完全独立的服务器列表。当Nginx上游机制尝试处理来自类似于proxy_next_upstream配置项的请求时，管理器在一个请求中可以被调用超过一次。

Lua代码运行的上下文不支持挂起操作，所以禁用可以挂起的Lua API（如cosocket和轻线程）。如果确实需要这样做，那么把需要挂起的操作在一个早期的过程管理器里做好，结果通过ngx.ctx表传进来。

36.balancer_by_lua_file

语法：

balancer_by_lua_file <path-to-lua-script-file>

上下文：upstream。

阶段：content。

说明：和balancer_by_lua_block仅两点不同，一是代码放在<path-to-lua-script-file>指定的文件中，二是从v0.5.0rc32版本开始，支持Lua/LuaJIT字节码。

当指定了类似于foo/bar.lua这样的文件名时，会被Nginx启动时通过-p PATH选项传进来的PATH参数转换成绝对路径。

37.lua_need_request_body

语法：

lua_need_request_body <on|off>

默认：

lua_need_request_body_<off>

上下文：http、server、location、location if。

阶段：依赖于用法。

说明：决定请求的包体数据在rewrite/access/access_by_lua*之前是否被读取。默认地，Nginx核心不读取客户端的请求包体，这个配置项可以打开或在Lua代码内通过调用ngx.req.read_body函数读取。

通过$request_body读取请求包体数据，client_body_buffer_size值必须和client_max_body_size一样，因为如果包体内容长度超过client_body_buffer_size但小于clieng_max_body_size，Nginx就会把数据缓冲到硬盘上，则$request_body会变空。如果当前location包含rewrite_by_lua*配置项，请求包包体会在rewrite_by_lua*代码之前被类似于rewrite阶段读取，同样地，如果content_by_lua声明了，请求包体则会在被content管理器处理过才会运行（请求的包体会在content阶段被读取）。推荐使用ngx.req.read_body和ngx.req.discard_body函数，实现精细的控制。

38.ssl_certificate_by_lua_block

语法：

ssl_certificate_by_lua_block { lua-script }

上下文：server。

阶段：right-before-SSL-handshake。

在Nginx和下游服务开始一个SSL握手操作时将运行本配置项的Lua代码。

这对于设置SSL证书链和选择一个适当的私有密钥是很重要的，对于非阻塞地从远端获取握手配置信息（使用cosocket API）等也是很有用的。用纯Lua在这里做一些请求前的OCSP stapling交互是非常合适的。

另一个典型应用的是在lua-resty-limit-traffic库的帮助下非阻塞地进行SSL握手流量管理。还可以在客户端请求SSL握手时做一些有趣的事情，例如，使用SSLv3协议踢出旧的SSL客户端。Lua-resty-core库提供的ngx.ssl和ngx.ocsp模块在这种场合下非常有用。可以使用Lua API在当前建立起的SSL连接上维护SSL证书链或私有密钥等工作。当Nginx/OpenSSL通过SSL会话ID或TLS会话票据成功恢复了SSL会话，或者这个管理器在Nginx初始化了一个完整的SSL握手后才会运行，其他情况下不会运行。

下面是一个使用ngx.ssl模块的例子：

server {

 listen 443 ssl;

 server_name test.com;

 ssl_certificate_by_lua_block {

 print("About to initiate a new SSL handshake!")

 }

 location / {

 root html;

 }

 }

在当前的SSL会话中，Lua代码不能立即捕获Lua异常，所以使用ngx.exit系统调用，检查ngx.ERROR一类的错误码。这个Lua运行上下文不支持挂起，所以禁止使用可以挂起的Lua API（cosocket、sleeping、协程）。

注意，尽管使用者可能不使用静态证书和私有密钥，还是要配置ssl_certificate和ssl_certificate_key配置项，因为Nginx核心需要使用，否则将会看到下面的错误：

nginx: [emerg] no ssl configured for the server

这个配置项当前需要下面的Nginx核心补丁：

http://mailman.nginx.org/pipermail/nginx-devel/2016-January/007748.html

OpenResty 1.9.7.2以上版本内的Nginx包已经打包了这个补丁。

另外，还需要至少OpenSSL 1.0.2e以支持本配置项。

39.ssl_certificate_by_lua_file

语法：

ssl_certificate_by_lua_file <path-to-lua-script-file>

配置项：server。

过程：right-before-SSL-handshake。

说明：和ssl_certificate_by_lua_block仅有两点不同，一是代码放在文件中，二是支持字节码。文件名类似foo/bar.lua这种风格时，会被系统使用server prefix转换为绝对路径。

40.ssl_session_fetch_by_lua_block

语法：

ssl_session_fetch_by_lua_block { lua-script }

上下文：http。

过程：right-before-SSL-handshake。

说明：这个配置项根据下游服务请求的SSL握手会话ID载入Lua代码查询和载入SSL会话（如果需要）。Lua API获取当前会话的ID，并且通过ngx.ssl.session（lua-resty-core提供的）装载缓存的SSL会话数据。可以在这里使用需要挂起协程或阻塞的API，如ngx.sleep和cosocket。

这个管理器和ssl_session_store_by_lua*钩子管理器，可以一起实现分布式缓存机制（依赖于cosocket API等）。如果缓存的SSL会话找到并且装入当前会话的上下文，SSL会话可以立即重启，并且可以跨过SSL握手进程，大量节省CPU时间。

注意，TLS会话的tickets是非常不同的，它的客户端在会话tickets使用时缓存SSL会话状态。SSL会话重启基于TLS会话tickets自动处理，不依赖于这个钩子管理器。这个钩子管理器主要对旧的只能通过会话ID工作的SSL客户端有意义，服务于这种情况。

当同一时刻指定了ssl_certificate_by_lua*，这个管理器通常在它们之前运行。当找到SSL会话并且成功载入当前SSL连接，SSL会话会跳过ssl_cerficate_by_lua钩子管理器重启。这种情况下，Nginx同样会跳过ssl_session_store_by_lua_block。当需要在一个主流浏览器简单测试这个钩子的时候，可以临时把下面这行加入到https上下文中，临时禁用TLS会话支持：

ssl_session_tickets off;

发布系统的时候不要忘记把这行去掉。如果要使用OpenResty1.11.2.1或后面版本配套的官方预编译包，需要做好下面几件事情。

1）如果使用的OpenSSL库不是OpenResty提供的，那么需要为OpenSSL1.0.2h及以后版本打上下面的补丁程序：

https://github.com/openresty/openresty/blob/master/patches/openssl-1.0.2h-sess_set_get_cb_yield.patch

2）如果没有使用OpenResty 1.11.2.1或后续版本中的Nginx，那么需要在标准的Nginx 1.11.2或以后版本打上下面的补丁程序：

http://openresty.org/download/nginx-1.11.2-nonblocking_ssl_handshake_hooks.patch

41.ssl_session_fetch_by_lua_file

语法：

ssl_session_fetch_by_lua_file <path-to-lua-script-file>

上下文：http。

阶段：right-before-SSL-handshake。

说明：和ssl_session_fetch_by_lua_block仅有两点不同，一是代码放在文件中，二是支持字节码。当使用foo/bar.lua类的文件名时，会被系统转换为绝对路径。

42.ssl_session_store_by_lua_block

语法：

ssl_session_store_by_lua_block { lua-script }

上下文：http。

阶段：right-after-SSL-handshake。

说明：这个配置项运行Lua代码并保存会话ID对应的SSL会话。保存和缓冲SSL会话数据，用于后续SSL连接恢复（重启），目的是节省昂贵的CPU时间。禁止需要挂起协程类的API，如ngx.sleep和cosockets等。如果需要使用，可使用ngx.timer.at创建一个零延迟的时钟异步地保存SSL会话数据到其他服务（如Redis或Memcached）。Lua-resty-core库的ngx.ssl.session提供了获取当前会话ID以及和会话状态数据关系的API。

当需要在一个流行的浏览器简单测试这个钩子的时候，可以临时把下面这行加入https上下文中，临时禁用TLS会话支持：

ssl_session_tickets off;

发布系统的时候不要忘记把这行去掉。

43.ssl_session_store_by_lua_file

语法：

ssl_session_store_by_lua_file <path-to-lua-script-file>

上下文：http。

阶段：right-before-SSL-handshake。

说明：与SSL_session_store_by_lua_block仅有两点不同，一是代码放在文件中，二是支持字节码。文件名同样会被server prefix转换为绝对路径。

44.lua_shared_dict

语法：

lua_shared_dict <name><size>

默认：no。

上下文：http。

阶段：依赖于用法。

说明：声明一个共享内存块<name>，使用ngx.shared.<name>路径提供一块用于存储的内存。共享内存被用于向当前Nginx服务中所有的工作进程共享。<size>参数接受的单位为k和m。

 http {

 lua_shared_dict dogs 10m;

 ...

 }

45.lua_socket_connect_timeout

语法：

lua_socket_connect_timeout <time>

默认：lua_socket_connect_timeout 60s。

上下文：http、server、location。

说明：这个配置项控制TCP/UNIX-domain套接字的默认值，这个值可以在程序中用settimeout和settimeouts方法进行覆盖。<time>参数可以是数值型，单位为秒（s）、毫秒（ms）、分钟（m）。默认单位是秒。默认值是60秒。

46.lua_socket_send_timeout

语法：

lua_socket_send_timeout <time>

默认：

lua_socket_send_timeout 60s

上下文：http、server、location。

说明：控制TCP/UNIX-domain套接字的发送超时值，可以被settimeout和settimeouts方法覆盖。<time>参数可以是数值型，单位为秒（s）、毫秒（ms）、分钟（m）。默认单位是秒。默认值是60秒。

47.lua_socket_send_lowat

语法：

lua_socket_send_lowat <size>

默认：

lua_socket_send_lowat 0

上下文：http、server、location。

说明：控制cosocket发送缓冲区的低水位线。

48.lua_socket_read_timeout

语法：

lua_socket_read_timeout <time>

默认：

lua_socket_read_timeout 60s

上下文：http、server、location。

过程：依赖于用法。

说明：设置TCP/UNIX-domain套按字默认的接收超时值，会影响receiveuntil方法。这个值可以被settimeout和settimeouts方法的值所覆盖。<time>参数可以是数值型，单位为秒（s）、毫秒（ms）、分钟（m）。默认单位是秒。默认值是60秒。

49.lua_socket_buffer_size

语法：

lua_socket_buffer_size <size>

默认：

lua_socket_buffer_size 4k/8k

上下文：http、server、location。

说明：声明cosocket读操作用到的缓冲区大小。这个缓冲区不需要很大去缓冲所有的数据，因为cosocket支持100%的非缓冲读取和解析。所以，1B的缓冲区同样可以正常工作，只是性能会变得很差。

50.lua_socket_pool_size

语法：

lua_socket_pool_size <size>

默认：

lua_socket_pool_size 30

上下文：http、server、location。

说明：声明每一个cosocket对应到远程服务的连接数量限制。这是一个连接池参数。默认每个连接池是30个连接。当连接池超过有效的限制时，最后一个空闲池中的连接将被关闭，释放空间给新的连接。

注意：

1）连接池是针对工作进程的，而不是针对服务器的。

2）当连接超过最大连接池大小时，会按照LRU算法回收空闲连接供新连接使用。

3）连接池中的空闲连接出现异常时会自动被移除。

4）连接池是通过IP和port标识的，即相同的IP和port会使用同一个连接池（即使是不同类型的客户端，如Redis、Memcached）。

5）连接池第一次set_keepalive时，连接池大小就确定下了，不会再变更。

6）cosocket的连接池是针对工程进程的，并不针对服务器，所以这个配置会应用到每一个工作进程上。

51.lua_socket_keepalive_timeout

语法：

lua_socket_keepalive_timeout <time>

默认：

lua_socket_keepalive_timeout 60s

上下文：http、server、location。

说明：设置连接在cosocket内建连接池中的最大空闲时间。当超时发生时，空闲连接会被关闭并从池中删除，这个设置可以被setkeepalive方法覆盖。<time>参数可以是数值型，单位为秒（s）、毫秒（ms）、分钟（m）。默认单位是秒，默认值是60秒。

52.lua_socket_log_errors

语法：

lua_socket_log_errors on|off

默认：

lua_socket_log_errors on

上下文：http、server、location。

说明：这个配置用于切换错误日志，当cosocket的TCP或UDP发生错误时会记录日志。如果自己已经做了适当的错误处理或自己在代码里做了日志，推荐关闭这个配置，以保证自己程序中日志的刷写，节省资源。

53.lua_ssl_ciphers

语法：

lua_ssl_ciphers <ciphers>

默认：

lua_ssl_ciphers DEFAULT

上下文：http、server、location。

说明：声明tcpsock：sslhandshake用到的SSL/TLS密码。这个密码用的是OpenSSL库生成的不可读的格式。具体可参见openssl ciphers命令。

54.lua_ssl_crl

语法：

lua_ssl_crl <file>

默认：no。

上下文：http、server、location。

说明：指定一个tcpsock：sslhandshake进行SSL/TLS DRL通信时要用到的PEM证书文件。

55.lua_ssl_protocols

语法：

lua_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2]

默认：

lua_ssl_protocols SSLv3 TLSv1 TLSv1.1 TLSv1.2

上下文：http、server、location。

说明：使能指定的SSL协议，用于与tcpsock：sslhandshake方法进行SSL/TLS通信。

56.lua_ssl_trusted_certificate

语法：

lua_ssl_trusted_certificate <file>

默认：no。

上下文：http、server、location。

说明：指定CA证书的路径。PEM格式的CA证书用于tcpsock：sslhandshake方法与SSL/TLS通信。

57.lua_ssl_verify_depth

语法：

lua_ssl_verify_depth <number>

默认：

lua_ssl_verify_depth 1

上下文：http、server、location。

说明：设置证书链的检验深度。

58.lua_http10_buffering

语法：

lua_http10_buffering on|off

默认：

lua_http10_buffering on

上下文：http、server、location、location if。

说明：使能和关闭HTTP 1.0或更老协议应答包的自动缓冲。这个缓冲机制主要用于HTTP 1.0协议保活，应答包包头如果有一个合适的Content-Length，就需要使用这个机制保活。

如果Lua代码在发送包头之前明确设置了一个应答头的Content-Length头域（或者明确通过ngx.send_headers或隐含地通过第一个ngx.say或ngx.print调用实现），那么HTTP 1.0应答缓冲机制将被关闭，甚至是这个配置项被打开的情况下。在一个流式方法（如ngx.flush）发送一个很大的应答数据时，这个配置项必须打开，以优化内存占用。这个配置项默认是打开的。

59.rewrite_by_lua_no_postpone

语法：

rewrite_by_lua_no_postpone on|off

默认：

rewrite_by_lua_no_postpone off

上下文：http。

说明：控制是否推迟rewrite_by_lua*配置项在rewrite请求处理阶段之后运行。默认地，这个配置项是关闭的，Lua代码推迟到rewrite阶段之后运行。

60.access_by_lua_no_postpone

语法：

access_by_lua_no_postpone on|off

默认：

access_by_lua_no_postpone off

上下文：http。

说明：控制Lua代码是否推迟到access_by_lua*配置项access请求处理阶段之后运行。默认地，这个配置项是关闭的，Lua代码推迟到access阶段后运行。

61.lua_transform_underscores_in_response_headers

语法：

lua_transform_underscores_in_response_headers on|off

默认：

lua_transform_underscores_in_response_headers on

上下文：http、server、location、location if。

说明：控制是否在应答头名字中使用下划线（_）。

62.lua_check_client_abort

语法：

lua_check_client_abort on|off

默认：

lua_check_client_abort off

上下文：http、server、location、location if。

说明：控制是否检查过早的连接中断。

当这个配置项打开时，ngx_lua模块将监视下游连接过早关闭情况。当这种情况发生时，将会调用用户的Lua回调函数（通过ngx.on_abort注册的）或当未注册回调函数时把当前请求管理器上的所有Lua协程关闭并清理掉。如果客户端在Lua代码通过ngx.req.socket读取请求完成之前关闭了连接，ngx_lua将永远不会清理所有的协程并调用用户回调函数。

这种情况下，ngx.req.socket将在返回时返回错误信息，第一个值应该是nil。在TCP保活关闭的情况下，依赖于客户端优雅地关闭连接（发送一个FIN包或类似的操作）。在实时的Web应用下，极力推荐在系统打开TCP keepalive，以便及时发现半打开的TCP连接。例如，在Linux上，可以在nginx.conf中配置标准的listen配置项：

listen 80 so_keepalive=2s:2s:8;

在FreeBSD系统上只需要打开系统级的配置即可：

sysctl net.inet.tcp.keepintvl=2000

sysctl net.inet.tcp.keepidle=2000

63.lua_max_pending_timers

语法：

lua_max_pending_timers <count>

默认：

lua_max_pending_timers 1024

上下文：http。

说明：设置最大允许的待定时钟数量。待定时钟是仍然没有过时的时钟之一。当超过这些限制时，ngx.timer.at调用会立即返回nil，并且返回错误字符串“too many pending timers”"。

64.lua_max_running_timers

语法：

lua_max_running_timers <count>

默认：

lua_max_running_timers 256

上下文：http。

说明：设置最大允许的运行时钟数量。运行时钟是正在运行的用户回调函数，即用户注册的时钟。当超过限制时，Nginx将停止回调最新的过期时钟，并且记录一个错误信息——“N lua_max_running_timers are not enough”，N就是这里配置的数值。
27.4　小结

本章详细介绍了ngx_lua_module模块，包括ngx_lua_module总体约束、使用机制，Lua配置顺序，ngx-lua模块的安装和编译，以及ngx-lua模块的配置指令。

ngx-lua模块对于Nginx是一个扩展模块，所以配置和使用都是基于nginx.conf的。这些配置指令在内部都将配置到ngx_lua模块中。
第28章　ngx_lua API详解

Nginx API包含方法、常量、状态码、变量等，服务于方法。各种*_by_lua、*_by_lua_block和*_by_lua_file指令是nginx.conf到Lua API的桥梁和网关。本章描述的Nginx Lua API只能在这些指令内编写和运行。
28.1　概述

API通过ngx和ndk暴露给Lua。这些包默认在ngx_lua全局上下文有效。这些包可以放到扩展Lua模块中，例如：

local say = ngx.say

local _M = {}

function_M.foo(a)

 say(a)

end

return _M

不允许使用package.seeall标志，是因为它有很多种可见或不可见的有害影响。

也可以直接使用require扩展Lua模块。

local ngx = require "ngx"

local ndk = require "ndk"

只能通过Lua API调用用户模式的网络I/O操作，否则可能会阻塞Nginx消息循环，导致性能大幅下降。可以使用标准的Lua I/O库进行数量相对小的磁盘操作，因为会显著阻塞Nginx处理循环，所以需要避免大型的读写操作。为了得到最佳的性能，推荐将所有的网络和磁盘操作委派给Nginx的子请求（通过ngx.location.capture及相似的方法）。

为了方便查询，表28-1列出了所有的API与常量，后面将详细解释每一个API。

表28-1　Nginx API与常量

 [image:]

 [image:]

28.2　API与常量

1.ngx.arg

语法：

val = ngx.arg[index]

上下文：set_by_lua*，body_filter_by_lua*。

说明：读取请求包的变量。在set_by_lua*指令中使用的时候，这个参数表是只读的：

value = ngx.arg[n]

例如：

location/foo {

 set$a32;

 set$b56;

 set_by_lua$sum 'return tonumber(ngx.arg[1]) + tonumber(ngx.arg[2])'

 ab;

 echo $sum;

}

输出的值是88，两个参数分别是32和56，只读。

当参数表在body_filter_by_lua*使用的时候，第一个元素存放输入数据，第二个参数存放布尔型的“eof”标志值，标示整个输出数据的结束。

数据块和“eof”标志传递给下游Nginx输出过滤器，也可以直接用参数表元素覆盖。当ngx.arg[1]被设置为nil或空字符串时，将不会有数据传递给下游输出过滤器。

2.ngx.var.VARIABLE

语法：

ngx.var.VAR_NAME

上下文：set_by_lua*、rewrite_by_lua、access_by_lua、content_by_lua、header_filter_by_lua、body_filter_by_lua、log_by_lua*。

说明：用于读写Nginx参数的值。例如：

value = ngx.var.some_nginx_variable_name

ngx.var.some_nginx_variable_name = value

注意，只有预先定义的Nginx变量可以写入，例如：

location/foo {

 set$my_var''; #提前创建 $my_var变量

 content_by_lua_block {

 ngx.var.my_var = 123;

 ...

 }

}

确切地说，不能在运行中创建Nginx变量。一些指定的Nginx变量，如$args和$limit_rate可以被赋值，大多数变量是不可以被赋值的，如$query_string、$arg_PARAMETE、$http_NAME。

Nginx regex正则API组通过$1、$2、$3和其他方式获取变量，所以，ngx.var[1]、ngx.var[2]、ngx.var[3]这种方式可以很好地工作。

设置ngx.var.Foo为nil值将取消$Foo这个变量。

ngx.var.args=nil

注意，在读取变量的时候，Nginx会在预请求内存池（只有在请求终止才会被释放）申请内存。所以，当需要重复读取Nginx变量的时候，需要把参数的值缓存到自己的Lua变量内。例如：

local val = ngx.var.some_var

--- 后面将重复使用变量

注意预防内存泄漏。另一个办法是使用ngx.ctx表缓存数据。未定义的Nginx变量被置为nil，定义但未初始化的变量被置为空的字符串。这个API（ngx.var.*）需要相对昂贵的元操作，应避免在频繁使用的代码段中使用。

ngx.var的作用非常广范，例如：

·在ngx_lua中访问Nginx内置变量ngx.var.arg_PARAMETER即可获得GET操作PARAMETER参数的内容。

·访问ngx.var.http_HEADER即可获得请求头HEADER的内容。对于常见的特殊头（content-type、cookie等），Nginx使用了特殊的变量来独立保存。例如，“content-type”头可以通过ngx.var.content_type变量取得。

·通过ngx.var.request_body获得完整的POST请求体数据（注意，由于Nginx默认在处理请求前不自动读取请求包体，所以需要使用ngx.req.read_body方法先读取包体数据或使用lua_need_request_body配置指令，否则该变量内容始终为空）。

3.核心常量

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、*log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

例如：

ngx.OK (0)

ngx.ERROR (-1)

ngx.AGAIN (-2)

ngx.DONE (-4)

ngx.DECLINED (-5)

注意，只有3个常量被Nginx Lua API使用（ngx.exit接受NGX_OK、NGX_ERROR、NGX_DECLINED作为输入）。

4.ngx.null

说明：ngx.null常量是一个轻量级用户数据，通常用于在Lua表中表示nil值，和lua-cjson库中的cjson.null常量一样。

5.HTTP方法常量

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

例如：

ngx.HTTP_GET

ngx.HTTP_HEAD

ngx.HTTP_PUT

ngx.HTTP_POST

ngx.HTTP_DELETE

ngx.HTTP_OPTIONS (added in the v0.5.0rc24 release)

ngx.HTTP_MKCOL (added in the v0.8.2 release)

ngx.HTTP_COPY (added in the v0.8.2 release)

ngx.HTTP_MOVE (added in the v0.8.2 release)

ngx.HTTP_PROPFIND (added in the v0.8.2 release)

ngx.HTTP_PROPPATCH (added in the v0.8.2 release)

ngx.HTTP_LOCK (added in the v0.8.2 release)

ngx.HTTP_UNLOCK (added in the v0.8.2 release)

ngx.HTTP_PATCH (added in the v0.8.2 release)

ngx.HTTP_TRACE (added in the v0.8.2 release)

这些常量经常在ngx.location.capture和ngx.location.capture_multi调用中用到。

6.HTTP状态常量

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

例如：

value = ngx.HTTP_CONTINUE (100) (first added in the v0.9.20 release)

value = ngx.HTTP_SWITCHING_PROTOCOLS (101) (first added in the v0.9.20 release)

value = ngx.HTTP_OK (200)

value = ngx.HTTP_CREATED (201)

value = ngx.HTTP_ACCEPTED (202) (first added in the v0.9.20 release)

value = ngx.HTTP_NO_CONTENT (204) (first added in the v0.9.20 release)

value = ngx.HTTP_PARTIAL_CONTENT (206) (first added in the v0.9.20 release)

value = ngx.HTTP_SPECIAL_RESPONSE (300)

value = ngx.HTTP_MOVED_PERMANENTLY (301)

value = ngx.HTTP_MOVED_TEMPORARILY (302)

value = ngx.HTTP_SEE_OTHER (303)

value = ngx.HTTP_NOT_MODIFIED (304)

value = ngx.HTTP_TEMPORARY_REDIRECT (307) (first added in the v0.9.20 release)

value = ngx.HTTP_BAD_REQUEST (400)

value = ngx.HTTP_UNAUTHORIZED (401)

value = ngx.HTTP_PAYMENT_REQUIRED (402) (first added in the v0.9.20 release)

value = ngx.HTTP_FORBIDDEN (403)

value = ngx.HTTP_NOT_FOUND (404)

value = ngx.HTTP_NOT_ALLOWED (405)

value = ngx.HTTP_NOT_ACCEPTABLE (406) (first added in the v0.9.20 release)

value = ngx.HTTP_REQUEST_TIMEOUT (408) (first added in the v0.9.20 release)

value = ngx.HTTP_CONFLICT (409) (first added in the v0.9.20 release)

value = ngx.HTTP_GONE (410)

value = ngx.HTTP_UPGRADE_REQUIRED (426) (first added in the v0.9.20 release)

value = ngx.HTTP_TOO_MANY_REQUESTS (429) (first added in the v0.9.20 release)

value = ngx.HTTP_CLOSE (444) (first added in the v0.9.20 release)

value = ngx.HTTP_ILLEGAL (451) (first added in the v0.9.20 release)

value = ngx.HTTP_INTERNAL_SERVER_ERROR (500)

value = ngx.HTTP_METHOD_NOT_IMPLEMENTED (501)

value = ngx.HTTP_BAD_GATEWAY (502) (first added in the v0.9.20 release)

value = ngx.HTTP_SERVICE_UNAVAILABLE (503)

value = ngx.HTTP_GATEWAY_TIMEOUT (504) (first added in the v0.3.1rc38 release)

value = ngx.HTTP_VERSION_NOT_SUPPORTED (505) (first added in the v0.9.20 release)

value = ngx.HTTP_INSUFFICIENT_STORAGE (507) (first added in the v0.9.20 release)

7.Nginx日志级别常量

上下文：init_by_lua*、init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

例如：

ngx.STDERR

ngx.EMERG

ngx.ALERT

ngx.CRIT

ngx.ERR

ngx.WARN

ngx.NOTICE

ngx.INFO

ngx.DEBUG

这些常量经常被ngx.log方法调用。

8.print

语法：

print(...)

上下文：init_by_lua*、init_worker_by_lua*，set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：以ngx.NOTICE级别把参数的内容写到error.log文件，等同于

ngx.log(ngx.NOTICE, ...)

当Lua布尔型值放在一个字符串中，形式为“true”或“false”时，可以接受nil参数，并且结果也将放在一个字符串内，内容为“nil”。Nginx核心限制消息最长为2048B。限制包括结尾的换行符和前导的时间戳。如果消息尺寸超过限制，Nginx将截断消息。这个限制可以手工修改：修改src/core/ngx_log.h中的NGX_MAX_ERROR_STR宏定义。

9.ngx.ctx

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*。

说明：这个表存放每个请求的Lua上下文数据，并且为当前请求保存一个生命周期（作为Nginx变量）。

考虑下面的例子：

location/test {

rewrite_by_lua_block {

 ngx.ctx.foo = 76

 }

access_by_lua_block {

 ngx.ctx.foo = ngx.ctx.foo + 3

 }

content_by_lua_block {

 ngx.say(ngx.ctx.foo)

 }

}

GET/test将输出

79

ngx.ctx.foo变量经过了across、rewrite和content处理过程。每一个请求，包括子请求，都有自己对应的表副本，例如：

location/sub {

content_by_lua_block {

 ngx.say("sub pre: ", ngx.ctx.blah)

 ngx.ctx.blah = 32

 ngx.say("sub post: ", ngx.ctx.blah)

 }

}

location /main {

 content_by_lua_block {

 ngx.ctx.blah = 73

 ngx.say("main pre: ", ngx.ctx.blah)

 local res = ngx.location.capture("/sub")

 ngx.print(res.body)

 ngx.say("main post: ", ngx.ctx.blah)

 }

}

调用/main将得到输出：

main pre: 73

sub pre: nil

sub post: 32

main post: 73

在子请求中编辑ngx.ctx.blah不影响父请求中的值。这是因为有两个分离的ngx.ctx.blah。

内部重定向将销毁原请求的ngx.ctx数据，新的请求将拥有一个新的ngx.ctx表，例如：

location/new {

content_by_lua_block {

 ngx.say(ngx.ctx.foo)

 }

}

location/orig {

content_by_lua_block {

 ngx.ctx.foo = "hello"

 ngx.exec("/new")

 }

}

读取/orig将得到：

nil

任意的数据，包括Lua闭合函数或嵌套表，都可以插入这个表中，同时允许注册自定义元方法，并支持使用一个新的Lua表覆盖ngx.ctx表，例如：

ngx.ctx= { foo =32, bar =54 }

当在init_worker_by_lua*中使用的时候，这张表和处理器拥有相同的生命周期。ngx.ctx查找需要调用相对昂贵的原函数，并且比自己通过函数参数传递数据速度慢，所以，考虑到系统整体性能，不要使用这个API保存自己函数参数。因为原方法的原因，不要在用户的Lua模块级别的Lua函数上下文范围外使用ngx.ctx表使用。例如，下面代码是很糟糕的：

-- mymodule.lua

local _M = {}

local ctx = ngx.ctx

function_M.main()

 ctx.foo="bar"

end

return _M

可使用下面的代码代替：

-- mymodule.lua

local _M = {}

function_M.main(ctx)

 ctx.foo="bar"

end

return _M

调用者通过函数参数显式传输ctx表。

10.ngx.location.capture

语法：

res = ngx.location.capture(uri, options?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：使用URI发起一个并发但是非阻塞的Nginx子请求。

Nginx子请求提供了一个发起非阻塞内部请求有力的方法，以使用其他的功能性location的服务，如其他的Nginx C模块、ngx_proxy、ngx_fastcgi、ngx_memc、ngx_postgres、ngx_drizzle等。子请求都是模拟的HTTP接口，但并不支持扩展的HTTP/TCP通信。所有内部环节都是工作在C语言的级别。子请求和HTTP 301/302（通过ngx.redirect）重定向及内部重定向（通过ngx.exec）完全不同。

通常，capture初始化一个子请求之前需要读取请求包体（通过调用ngx.req.read_body或配置lua_need_request_body为on）。这个API函数（同样有效于ngx.location.capture_multi）总是在内存中缓冲整个子请求应答包体。这样，如果需要处理一个很大的子请求应答，可以使用cosocket和流进行处理。

下面是一个基本的例子：

res = ngx.location.capture(uri)

返回一个有4个元素的Lua表：res.status、res.header、res.body、res.truncated。

·res.status存放子请求应答的状态码。

·res.header存储所有子请求应答报文头域，是一个Lua表。在多个应答值的情况下，值是Lua数组，按顺序存放所有的值。例如，如果子请求应答头包含下列的行：

Set-Cookie: a=3

Set-Cookie: foo=bar

Set-Cookie: baz=blah

res.header[“Set-Cookie”]的值被合并成一个表，值为{“a=3”，“foo=bar”，“baz=blah”}。

·res.body存储子请求应答的包体数据，数据可能会被截断。

·res.truncated值是布尔型，true表示res.body包含被截断的数据。数据截断只会发生在无法处理的情况下，如远程突然中断了连接或传输过程中远程挂机等情况。

URI参数可以被URI自己级联，例如：

res = ngx.location.capture('/foo/bar?a=3&b=4')

@foo这样的命名被Nginx核心限制在URI使用，这种叫location“命名location”，专供内部重定向使用，一般用于error_page、try_files。如果要创建仅供内部使用的location，则在配置location时加上internal指令。

options是可选参数，标示可选选项，支持选项如下：

·method指定子请求的方法，只接受如ngx.HTTP_POST的常量。

·body指定子请求的包体（只接受字符串值）。

·args指定子请求URL查询参数（只接受字符串和Lua表）。

·ctx指定一个Lua表代替子请求的ngx.ctx表，可以是当前请求的ngx.ctx表，使父请求和子请求共享相同的上下文表。

·vars使用一个带值的Lua表设置子请求Nginx变量的值。

·copy_all_vars声明是否复制当前请求Nginx变量到子请求。子请求对变量的编辑不会影响父请求。

·share_all_vars声明是否将子请求的Nginx变量共享给父请求，父请求对变量的修改不会影响子请求。这种方式用于难于调试的情形下对代码进行调试，不能作为常规应用，因为性能非常糟糕。只有在非常清楚自己在做什么的情况下才能打开这个选项。

·always_forward_body选项设置为true，而body选项没有声明的时候，当前请求的包体将传给子请求。通过ngx.req.read_body（）或lua_need_request_body on读取的包体会直接交给子请求（因为请求包体数据被缓存在内存中或临时文件中，所以不用担心性能问题）。默认地，当没有指定body选项时，这个选项是false，当前请求的包体只会在子请求是PUT或POST方法时才会被转发。

发起一个POST子请求，可以这样做：

res = ngx.location.capture(

'/foo/bar',

 { method = ngx.HTTP_POST, body ='hello, world' }

)

调用使用POST方法，ngx.HTTP_GET是默认的方法。

args选项可以通过扩展参数实现，例如：

ngx.location.capture('/foo?a=1',

 { args = { b =3, c =':' } }

)

等同于

ngx.location.capture('/foo?a=1&b=3&c=%3a')

用到的参数键和值，将会按照URI规则组成一个完整的查询字符串。作为args参数传输的Lua表的格式和ngx.encode_args的格式是一样的。

args选项也可以使用普通的查询字符串：

ngx.location.capture('/foo?a=1',

 { args ='b=3&c=%3a' } }

)

跟上面例子的结果是一样的。

share_all_vars选项控制是否在当前请求和子请求间共享Nginx变量。如果该选项设置为true，当前请求和相关的子请求将共享Nginx变量上下文。子请求修改变量将会影响当前请求。谨慎使用这个配置，避免变量上下文共享引起未知的上下文影响。

args、vars、copy_all_vars选项通常有更好的替代方法。

默认地，这个选项是关闭的：

location/other {

set$dog"$dog world";

echo"$uri dog: $dog";

}

location/lua {

set$dog'hello';

content_by_lua_block {

res = ngx.location.capture("/other",

 { share_all_vars = true });

 ngx.print(res.body)

 ngx.say(ngx.var.uri, ": ", ngx.var.dog)

 }

}

访问location/lua会得到输出：

/other dog: hello world

/lua: hello world

copy_all_vars选项将父请求选项的变量复制了一份给子请求。改变子请求中的变量不会影响父请求中的变量。

location/other {

set$dog"$dog world";

echo"$uri dog: $dog";

}

location/lua {

set$dog'hello';

content_by_lua_block {

res = ngx.location.capture("/other",

 { copy_all_vars = true });

 ngx.print(res.body)

 ngx.say(ngx.var.uri, ": ", ngx.var.dog)

 }

}

请求GET/lua将得到输出：

/other dog: hello world

/lua: hello

注意，如果share_all_vars和copy_all_vars都设置为true，则share_all_vars优先。

除了上面的方法外，可以通过vars选项向子请求传递变量值。这些变量将在共享或复制之后设置，并且提供一个非常有效率的方法为URL参数编码并且进行Base64解码后传递给子请求。

location/other {

content_by_lua_block {

 ngx.say("dog = ", ngx.var.dog)

 ngx.say("cat = ", ngx.var.cat)

 }

}

location /lua {

 set $dog '';

 set $cat '';

 content_by_lua_block {

 res = ngx.location.capture("/other",

 { vars = { dog = "hello", cat = 32 }});

 ngx.print(res.body)

 }

}

访问/lua会得到输出：

dog = hello

cat = 32

ctx选项用于指定一个Lua表代替子请求的ngx.ctx。

location/sub {

content_by_lua_block {

 ngx.ctx.foo = "bar";

 }

}

location/lua {

content_by_lua_block {

local ctx = {}

res = ngx.location.capture("/sub", { ctx = ctx })

 ngx.say(ctx.foo);

 ngx.say(ngx.ctx.foo);

 }

}

访问GET/lua：

bar

nil

也可以在当前请求和子请求间共享相同的表：

location/sub {

content_by_lua_block {

 ngx.ctx.foo = "bar";

 }

}

location/lua {

content_by_lua_block {

res = ngx.location.capture("/sub", { ctx = ngx.ctx })

 ngx.say(ngx.ctx.foo);

 }

}

通过GET访问/lua获得输出：

bar

ngx.location.capture创建的子请求默认继承了当前请求所有的头域，这可能会引发子请求应答中非预期中的影响。例如，当我们使用标准的ngx_proxy模块服务于子请求时，主请求的“Accept-Encoding：gzip”头域将引发结果被压缩，Lua代码不能处理。原请求头应该忽略掉。在子请求的location配置中设置proxy_pass_request_headers为off。

body选项没指定，并且always_forward_body选项为false（默认值），POST和PUT的子请求将从父请求继承请求包包体。

每个主请求对应的子请求例程有一个硬性限制，老版本的Nginx限制50个子请求例程，最近的版本，从Nginx 1.1.x开始，这个值提高到200个协程。当达到这个限制后，将会在error.log里收到错误信息：

[error] 13983#0: *1 subrequests cycle while processing "/uri"

这个限制可以手工修改：修改nginx/src/http/ngx_http_request.h中的NGX_HTTP_MAX_SUBREQUESTS宏。

11.ngx.location.capture_multi

语法：

res1, res2, ... = ngx.location.capture_multi({ {uri, options?}, {uri, options?}, ... })

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：与ngx.location.capture很相似，只是支持并发多个子连接请求。这个函数发起几个并行的子请求，同时按请求顺序返回结果，例如：

res1,res2,res3 = ngx.location.capture_multi{

 { "/foo", { args ="a=3&b=4" } },

 { "/bar" },

 { "/baz", { method = ngx.HTTP_POST, body ="hello" } },

}

if res1.status== ngx.HTTP_OKthen

...

end

if res2.body=="BLAH"then

...

end

这个函数在所有子请求中断之前不会返回，花费时间是最长请求的时间，比分别执行的时间总和要好很多。

当并发请求的数量不能确定的时候，可以在请求和应答中使用Lua表。

-- 构造请求表

local reqs = {}

table.insert(reqs, { "/mysql" })

table.insert(reqs, { "/postgres" })

table.insert(reqs, { "/redis" })

table.insert(reqs, { "/memcached" })

-- 发送请求并且等待返回

local resps = { ngx.location.capture_multi(reqs) }

-- 循环处理应答表

for i, resp inipairs(resps) do

-- process the response table "resp"

end

ngx.location.capture只是ngx.location.capture_multi函数的一个指定格式，逻辑上来讲，ngx.location.capture可以这样实现：

ngx.location.capture=

function (uri, args)

 return ngx.location.capture_multi({ {uri, args} })

end

12.ngx.status

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*。

说明：当前请求的读写状态，应当在发送应答头之前调用和检查。

ngx.status= ngx.HTTP_CREATED

status = ngx.status

在应答包发送之后设置ngx.status不会产生影响，但是会在error.log里留下一行错误信息。

attempt to set ngx.status after sending out response headers

13.ngx.header.HEADER

语法：

ngx.header.HEADER = VALUE

value = ngx.header.HEADER

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*。

说明：设置、添加或清除当前请求应答头。头域名称中的下划线（_）默认会被连字符替换（-）。这个转换可以通过将lua_transform_underscores_in_response_headers指令置为off关闭。头域名字是大小写敏感的。

下面是3个效果相等的操作：

ngx.header["Content-Type"] = 'text/plain'

ngx.header.content_type='text/plain';

ngx.header["X-My-Header"] ='blah blah';

多值的头域可以这样设置：

ngx.header['Set-Cookie'] = {'a=32; path=/', 'b=4; path=/'}

将在应答头中得到结果：

Set-Cookie: a=32; path=/

Set-Cookie: b=4; path=/

头域只接受Lua表（因为单个头域只接受一个值，所以只有表中最近的值才有效）。

ngx.header.content_type= {'a', 'b'}

等同于

ngx.header.content_type='b'

把一个头域设置为nil就等于从应答头域中移除了该头域：

ngx.header["X-My-Header"] =nil;

绑定一个空表，起到的是相同的作用：

ngx.header["X-My-Header"] = {};

在应答头已经发送完成后设置ngx.header.HEADER（或明确使用ngx.send_headers或明确使用ngx.print）将抛出一个Lua异常。读取ngx.header.HEADER将返回HEADER头域的值。头域中的下划线（_）同样会被连字符（-）替换，并且头域是大小写敏感的。如果应答头没有完全准备好，将会返回nil值，这在header_filter_by_lua*上下文中特别有用，例如：

location/test {

set$footer'';

proxy_pass http://some-backend;

header_filter_by_lua_block {

 if ngx.header["X-My-Header"] == "blah" then

 ngx.var.footer = "some value"

 end

 }

echo_after_body$footer;

}

在多返回值的头域，所有的值都收集在一个Lua表中，例如，应答头：

Foo: bar

Foo: baz

将存放在

{"bar", "baz"}

读取ngx.header.Foo.时将得到这个表。ngx.header不是一个普通的Lua表，它不能通过Lua ippairs函数遍历。要读取请求头，可使用ngx.req.get_headers函数代替。

14.ngx.resp.get_headers

语法：

headers = ngx.resp.get_headers(max_headers?, raw?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、balancer_by_lua*。

说明：返回一个容纳应答头域的Lua表。

local h = ngx.resp.get_headers()

for k, v inpairs(h) do

...

end

这个函数和ngx.req.get_headers相同，除了它是读取应答头。

15.ngx.req.is_internal

语法：

is_internal = ngx.req.is_internal()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*。

说明：返回一个布尔值，表明当前请求是否是一个内部请求。内部请求是Nginx服务器内部初始化代替客户端请求的一种请求。内部重定向的子请求全部都是内部请求。

16.ngx.req.start_time

语法：

secs = ngx.req.start_time()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*。

说明：返回一个描述请求创建时间的浮点数，存放时戳（包含毫秒）。

下面例子使用纯Lua模拟$request_time变量值：

local request_time = ngx.now() - ngx.req.start_time()

17.ngx.req.http_version

语法：

num = ngx.req.http_version()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*。

说明：以Lua数值型返回当前请求的HTTP协议版本。当前可能的值是2.0、1.0、1.1、0.9。nil表示是不认识的协议。

18.ngx.req.raw_header

语法：

str = ngx.req.raw_header(no_request_line?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*。

说明：返回Nginx接收到的原始HTTP协议头。默认地，请求中的换行符和回车符都包含在内。例如：

ngx.print(ngx.req.raw_header())

会输出下面类似的信息：

GET /t HTTP/1.1

Host: localhost

Connection: close

Foo: bar

可以指定可选的no_request_line参数以true值传入，排除请求行，例如：

ngx.print(ngx.req.raw_header(true))

输出将会是这样的：

Host: localhost

Connection: close

Foo: bar

这个方法仍然不能在HTTP/2下面工作。

19.ngx.req.get_method

语法：

method_name = ngx.req.get_method()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、balancer_by_lua*。

说明：获取当前请求中请求方法名。值是“GET”和“POST”这样的字符串，不是数值方法常量。如果当前请求是Nginx子请求，那么将会返回子请求的方法名字。

20.ngx.req.set_method

语法：

ngx.req.set_method(method_id)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*。

说明：使用method_id参数覆盖当前请求的方法。目前只支持方法常量，如ngx.HTTP_POST和ngx.HTTP_GET。如果当前是子请求，则会覆盖子请求的方法。

细节参见ngx.req.get_method方法。

21.ngx.req.set_uri

语法：

ngx.req.set_uri(uri, jump?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*。

说明：使用uri重写当前请求的URI。uri参数必须是Lua字符串，不能是零长度，否则将会抛出一个Lua异常。可选的参数jump是布尔值，可以触发location的ngx_http_rewrite_module模块的重写（rewrite）或跳转。当jump是true（默认是false）时，这个函数将永远不会返回，它将告诉Nginx去重新匹配新的location。除非当前请求的URI被修改过了，否则永远不会触发location跳转，这是默认的行为。当jump参数是flase或不填，这个函数会返回，但没有返回值。jump为true，等价于rewrite...last。

例如，下面的Nginx配置文件，

rewrite^ /foo last;

可以这样编码：

ngx.req.set_uri("/foo", true)

相似地，nginx.conf如下：

rewrite^ /foo break;

不可以这样编码：

ngx.req.set_uri("/foo", false)

或者

ngx.req.set_uri("/foo")

在rewrite_by_lua*中，jump只能设置为true。在其他的上下文中，jump是禁止的，否则会抛出Lua异常。

一个更复杂的例子是调用正则表达式：

location/test {

 rewrite_by_lua_block {

 local uri = ngx.re.sub(ngx.var.uri, "^/test/(.*)", "/$1", "o")

 ngx.req.set_uri(uri)

 }

 proxy_pass http://my_backend;

}

和下面的代码等同：

location/test {

 rewrite^/test/(.*) /$1 break;

 proxy_pass http://my_backend;

}

注意，不可能使用这个接口重写URI参数，使用ngx.req.set_uri_args替换，例如，Nginx config：

rewrite^ /foo?a=3? last;

可以编码为

ngx.req.set_uri_args("a=3")

ngx.req.set_uri("/foo", true)

或

ngx.req.set_uri_args({a = 3})

ngx.req.set_uri("/foo", true)

22.ngx.req.set_uri_args

语法：

ngx.req.set_uri_args(args)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*。

说明：使用args参数重写当前请求的URI查询参数。args参数可以是一个Lua字符串，类似于：

ngx.req.set_uri_args("a=3&b=hello%20world")

或者一个以key/value形式存储参数对的Lua表，类似于：

ngx.req.set_uri_args({ a =3, b ="hello world" })

当使用Lua表的方法时，方法将会按URL的格式将键和值组成查询串。也支持多值参数：

ngx.req.set_uri_args({ a =3, b = {5, 6} })

将编码成一个字符串：a=3&b=5&b=6。

23.ngx.req.get_uri_args

语法：

args = ngx.req.get_uri_args(max_args?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、balancer_by_lua*。

说明：返回一个包含当前请求所有URL查询参数的Lua表。

location= /test {

 content_by_lua_block {

 local args = ngx.req.get_uri_args()

 for key, val in pairs(args) do

 if type(val) == "table" then

 ngx.say(key, ": ", table.concat(val, ", "))

 else

 ngx.say(key, ": ", val)

 end

 end

 }

}

GET/test？foo=bar&bar=baz&bar=blah将收到下面的应答包体：

foo: bar

bar: baz, blah

一个键的多个值放顺序地存放在表中。键和值按URI编码规则解码后生成。上面例子中的URL：GET/test？a%20b=1%61+2将得到：

 a b: 1a 2

没有值的参数会被处理成布尔型参数。GET/test？foo&bar会得到：

foo: true

bar: true

但是，在参数值是空字符串的情况下，情况又不一样。GET/test？foo=&bar=将得到：

foo:

bar:

禁止空参数名这种情况。GET/test？=hello&=world将得到一个空的输出。支持通过$args实时更新查询参数：

ngx.var.args="a=3&b=42"

local args = ngx.req.get_uri_args()

args表是这样的：

{a =3, b =42}

注意，默认支持最多100个请求参数（包括相同名字的参数），并且超过的额外参数被自动丢弃，以防止服务器攻击。max_args函数参数可以用来覆盖这个限制：

local args = ngx.req.get_uri_args(10)

这个参数可以设置成0移除限制，以处理所有的参数：

local args = ngx.req.get_uri_args(0)

24.ngx.req.get_post_args

语法：

args, err = ngx.req.get_post_args(max_args?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*。

说明：返回一个Lua表，容纳所有当前请求的POST查询参数（MIME类型application/x-www-form-urlencoded）。调用ngx.req.read_body首先读取请求包体或打开lua_need_request_body指令避免错误。

location= /test {

content_by_lua_block {

 ngx.req.read_body()

local args, err = ngx.req.get_post_args()

if not args then

 ngx.say("failed to get post args: ", err)

 return

 end

 for key, val in pairs(args) do

 if type(val) == "table" then

 ngx.say(key, ": ", table.concat(val, ", "))

 else

 ngx.say(key, ": ", val)

 end

 end

 }

}

测试：

Post request with the body 'foo=bar&bar=baz&bar=blah'

$ curl --data 'foo=bar&bar=baz&bar=blah' localhost/test

将得到类似的应答包体：

foo: bar

bar: baz, blah

一个参数有多个返回值，使用一个Lua表依次存放。键和值会使用URI编码规则正反向处理。按照上面的配置：

POST request with body 'a%20b=1%61+2'

$ curl -d 'a%20b=1%61+2' localhost/test

将得到：

a b: 1a 2

没有=<value>部分的参数被当成布尔型对待。使用“foo&bar”作为包体POST/test会得到：

foo: true

bar: true

如果只是空字符串，则结果不同。以“foo=&bar=”为请求包体POST/test将得到

foo:

bar:

禁止空参数名情况。“=hello&=world”这个参数POST将会得到空输出。默认支持最多100个请求参数（包括相同名字的参数），并且将自动丢弃超过的额外参数，以防止服务器攻击。

max_args函数参数可以用来覆盖这个限制：

local args = ngx.req.get_uri_args(10)

这个参数可以设置成0移除限制，以处理所有的参数：

local args = ngx.req.get_uri_args(0)

25.ngx.req.get_headers

语法：

headers = ngx.req.get_headers(max_headers?, raw?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*。

说明：返回一个Lua表容纳当前请求所有头域。

local h = ngx.req.get_headers()

for k, v inpairs(h) do

...

end

读取某一个头域：

ngx.say("Host: ", ngx.req.get_headers()["Host"])

注意，ngx.var.HEADERAPI使用了核心的$http_HEADER变量，所以更适用于读取单个头域。对于常见的特殊头（Content-Type、cookie等），NginX使用了特殊的变量独立保存，例如，“Content-Type”头域可以通过ngx.var.content_type变量取得。

一个多实例的请求头域例子：

Foo: foo

Foo: bar

Foo: baz

ngx.req.get_headers（）[“Foo”]值是一个Lua表或数组，类似于：

{"foo", "bar", "baz"}

注意，默认支持最多100个请求参数（包括相同名字的参数），并且超过的额外参数被自动丢弃，以防止服务器攻击。

max_args函数参数可以用来覆盖这个限制：

local args = ngx.req.get_uri_args(10)

这个参数可以设置成0移除限制，以处理所有的参数：

local args = ngx.req.get_uri_args(0)

从0.6.9版本开始，Lua表中的头域默认全部被转换成小写，除非raw参数设置为true（默认为false）。默认地，结果Lua表也增加了_index元方法，以小写形式索引头域。例如，一个请求头域有一个My-Foo-Header头域，下面的方法都可以取出对应的值：

ngx.say(headers.my_foo_header)

ngx.say(headers["My-Foo-Header"])

ngx.say(headers["my-foo-header"])

当raw参数设置为true时，将不能使用下标元方法。

26.ngx.req.set_header

语法：

ngx.req.set_header(header_name, header_value)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*。

说明：将当前请求名字为header_name的头域设置成header_value值，覆盖原有数据。默认地，所有通过初始化的ngx.location.capture和ngx.location.capture_multi子请求将继承这个新头域。

这是一个设置Content-Type头域的例子：

ngx.req.set_header("Content-Type", "text/css")

header_value可以是一个值列表，例如：

ngx.req.set_header("Foo", {"a", "abc"})

将产生两个头域：

Foo: a

Foo: abc

如果有老的Foo头域，将被覆盖。当header_value参数是nil，头域将被移除：

ngx.req.set_header("X-Foo", nil)

等同于

ngx.req.clear_header("X-Foo")

27.ngx.req.clear_header

语法：

ngx.req.clear_header(header_name)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*。

说明：清除当前请求的header_name头域。所有的子请求也将受到影响，对应的头域也被清除。

28.ngx.req.read_body

语法：

ngx.req.read_body()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：同步地读取客户端请求包体，但不阻塞Nginx事件循环。

ngx.req.read_body()

local args = ngx.req.get_post_args()

如果请求包体已经通过打开lua_need_request_body或其他模块读取，本函数会立即返回而并不执行。如果包体已经被ngx.req.discard_body或其他模块丢弃，本函数也是立即返回而不执行。当读取数据的时候发生任意错误，本方法将抛出Lua异常或使用500状态码立即退出。如果请求包体通过本函数读取，则后续还可以通过ngx.req.get_body_data获取。另外，包体数据可以通过ngx.req.get_body_file缓存到临时文件中。这取决于：

1）当前请求包体尺寸是否大于client_body_buffer_size。

2）client_body_in_file_only是否被打开。

在当前请求有一个包体，而我们正好不需要包体数据的时候，使用ngx.req.discard_body函数可以解决我们的需求，同时避免中断连接，同时可以保证HTTP 1.1的心跳正常进行或HTTP 1.1的正常流转。

29.ngx.req.discard_body

语法：

ngx.req.discard_body()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：丢弃请求的包体，在不需要使用包体的情况下，立即将连接上的包体丢弃。这个函数是一个异步调用，会立即返回。如果请求包体已经读取，这个函数立即返回，不做任何处理。

30.ngx.req.get_body_data

语法：

data = ngx.req.get_body_data()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、log_by_lua*。

说明：获取内存中的包体数据，返回一个容纳解析好查询参数的Lua字符串。使用ngx.req.get_post_args会返回一个Lua表。

下面情况中，函数将返回nil：

·请求的包体还未读取。

·请求的包体被读取到磁盘的临时文件中。

·请求包体是零长度。

如果请求包体还没有读取，可以使用ngx.req.read_body进行读取（或打开lua_need_request_body强制模块读取请求包体，但不推荐这个方法）。如果包体已经被读取并存放到磁盘文件中，需要尝试调用ngx.req.get_body_file函数替代。要强制使用内存请求包体，需要尝试设置client_body_buffer_size与client_max_body_size值一样。

注意，使用本函数代替ngx.var.request_body或ngx.var.echo_request_body更有效，因为它可以保存一个动态内存申请，使用一个数据副本。

31.ngx.req.get_body_file

语法：

file_name = ngx.req.get_body_file()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：获取请求包体数据的临时缓存文件名。如果请求包体没有读取或没有被读到内存中，会返回nil。这个文件是只读的，由Nginx内存池负责清除。不可以在Lua代码中手工编辑、改名或删除。

如果请求包体仍然没有被读取，那么首先调用ngx.req.read_body（或打开lua_need_request_body强制模块读取请求包体，但这个方法并不推荐）。如果请求包体被读取到内存中了，尝试使用ngx.req.get_body_data函数代替。要强制使用文件化的请求包体，尝试打开client_body_in_file_only指令。

32.ngx.req.set_body_data

语法：

ngx.req.set_body_data(data)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：设置当前请求使用内存中的data数据。如果当前请求包体还没有读取，那么会被丢弃。当前请求包体已经被读取进内存或放到一个磁盘文件中，旧的请求包体内存将被释放，磁盘文件会被立即清除。

33.ngx.req.set_body_file

语法：

ngx.req.set_body_file(file_name, auto_clean?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：将当前请求包体设置为使用file_name指定的文件内容。

auto_clean是可选参数，如果设置为true，那么请求处理完毕或下一次本函数被调用或ngx.req.set_body_data在相同的请求上被调用，本文件将被删除。默认auto_clean是false。请确保file_name指定的文件存在并且可以被Nginx工作进程读取。要设置正确的权限以避免Lua异常错误。如果当前请求包体还没有被读取，则包体将被丢弃。如果当前请求包体已经被读取进内存或一个磁盘文件，那么旧的请求包体内存将立即被释放和清理。

34.ngx.req.init_body

语法：

ngx.req.init_body(buffer_size?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：为当前请求创建一个新的空请求包体，这个缓冲在后续请求包体数据到来时，可以使用ngx.req.append_body和ngx.req.finish_body写入。如果指定了buffer_size参数，则包体尺寸也指定了。如果未指定本参数，则使用client_body_buffer_size指令的数值代替。当请求包体不能在内存缓冲区里容纳时，像Nginx核心处理标准请求包体那样将数据刷写进一个临时文件。

所有的数据都写入后，调用ngx.req.finish_body是非常重要的。当本函数和ngx.req.socket一起使用时，需要在本函数之前调用ngx.req.socket，否则会得到一个“request body already exists”的错误消息。

经常这样使用本函数：

ngx.req.init_body(128*1024) -- buffer is 128KB

for chunk innext_data_chunk() do

 ngx.req.append_body(chunk) -- each chunk can be 4KB

end

ngx.req.finish_body()

本函数可以和ngx.req.append_body、ngx.req.finish_body、ngx.req.socket一起使用，用Lua脚本实现输入过滤器（在rewrite_by_lua*和access_by_lua*中使用），可以被其他上下文处理器或上游模块使用，如ngx_http_proxy_module和ngx_http_fastcgi_module上游模块。

35.ngx.req.append_body

语法：

ngx.req.append_body(data_chunk)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：把data_chunk指定的新数据追加到ngx.req.init_body初始化请求包体后。当数据可以不再缓冲在内存中时，会与Nginx核心处理标准请求包体一样，被刷写进一个临时文件。当所有的数据被追加到包体后，需要调用ngx.req.finish_body。

本函数可以和ngx.req.init_body、ngx.req.finish_body、ngx.req.socket一起使用，实现输入过滤器（在rewrite_by_lua*或access_by_lua*上下文中），可以被其他Nginx上下文处理器或上游模块（如ngx_http_proxy_module和ngx_http_fastcgi_module）使用。

36.ngx.req.finish_body

语法：

ngx.req.finish_body()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：结束ngx.req.init_body和ngx.req.append_body调用创建的请求包体构造过程。本函数可以和ngx.req.init_body、ngx.req.finish_body、ngx.req.socket一起使用，实现输入过滤器（在rewrite_by_lua*或access_by_lua*上下文中），可以被其他Nginx上下文处理器或上游模块（如ngx_http_proxy_module和ngx_http_fastcgi_module）使用。

37.ngx.req.socket

语法：

tcpsock, err = ngx.req.socket()

tcpsock, err = ngx.req.socket(raw)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：返回下游连接只读的cosocket对象。任何错误下，将返回nil，同时返回一个错误描述字符串。这个套接字对象经常用来以流式读取当前请求包体。不要打开lua_need_request_body指令，不要把这个调用和ngx.req.read_body和ngx.req.discard_body混合使用。如果请求包体数据已经被Nginx核心预读进请求头缓冲区，cosocket对象需要小心处理这种预读造成的数据丢失。暂时不支持分块读取。

从v0.9.0版本开始，本函数接受一个可靠的布尔型raw参数。当这个参数为true时，函数返回一个全双工的cosocket对象，可以调用receive、receiveuntil和send方法。当raw参数为true时，需要没有ngx.say、ngx.print或ngx.send_headers这种未定的调用存在。所以，如果要输出信息，需要在前面先行调用，并且通过ngx.flush（true）结束数据待定状态，确保没有待定状态的数据再调用ngx.req.socket（true）。如果请求包体还没有准备好，那么可以使用这个原始套接字读取请求包体。

可以使用ngx.req.socket（true）返回的原始套接字实现如WebSocket等协议，或者提交自己的原始HTTP协议头和体。

参见第23章第3节lua-resty-websocket库，该节有一个真实的例子。

38.ngx.exec

语法：

ngx.exec(uri, args?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：使用args为参数重定向到URI上，与echo-nginx-module模块中的echo_exe指令一样。ngx.exec是内部重定向机制，与ngx.location.capture的子请求不同，子请求在请求中并行运行，而exec的重定向则中断当前请求处理，跳转到新的location上，等价于rewrite：

rewrite regrex replacement last;

ngx.exec('/some-location');

ngx.exec('/some-location', 'a=3&b=5&c=6');

ngx.exec('/some-location?a=3&b=5', 'c=6');

可选的第二个参数args可以用来指定扩展的URI查询参数，例如：

ngx.exec("/foo", "a=3&b=hello%20world")

也可以使用一个Lua表传递参数：

ngx.exec("/foo", { a =3, b ="hello world" })

结果和上面的例子是一样的。

Lua表的格式和ngx.encode_args方法的格式相同，支持命名location（Named locations），但是args参数会被忽略。查询字符串会从上层location继承（如果有）。

GET/foo/file.php？a=hello，则下面例子将返回“hello”而不是“goodbye”：

location/foo {

content_by_lua_block {

 ngx.exec("@bar", "a=goodbye");

 }

}

location@bar {

 content_by_lua_block {

 local args = ngx.req.get_uri_args()

 for key, val in pairs(args) do

 if key == "a" then

 ngx.say(val)

 end

 end

 }

}

注意，ngx.exec和ngx.redirect不同，ngx.exec是一个纯粹的内部重定向，不涉及额外的流量。也要注意，必须在ngx.send_headers之前或确保应答包体已经通过ngx.print or ngx.say发送出去才能中断当前处理过程。当本方法用在除了header_filter_by_lua*以外的上下文时，推荐使用本方法返回，以处理请求中断的处理过程。

39.ngx.redirect

语法：

ngx.redirect(uri, status?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：向URI发出一个HTTP 301或302重定向。可选参数status指定HTTP状态码。支持下面的状态码：

·301。

·302（默认）。

·307。

302状态码是默认值（ngx.HTTP_MOVED_TEMPORARILY）。下面的例子假设当前服务器名字为localhost，并且监听在1984端口上：

return ngx.redirect("/foo")

等价于：

return ngx.redirect("/foo", ngx.HTTP_MOVED_TEMPORARILY)

也支持重定向任意的外部URL，例如：

return ngx.redirect("http://www.google.com")

status参数也可以直接使用数字代码：

return ngx.redirect("/foo", 301)

本方法和ngx_http_rewrite_module模块中rewrite指令的redirect关键字一样。例如nginx.conf片断：

rewrite^ /foo? redirect; # nginx config

等价于下面的Lua代码：

return ngx.redirect('/foo'); -- Lua code

下面的：

rewrite^ /foo? permanent; # nginx config

等价于：

return ngx.redirect('/foo', ngx.HTTP_MOVED_PERMANENTLY) -- Lua code

可以指定URI参数，例如：

return ngx.redirect('/foo?a=3&b=4')

注意，必须在ngx.send_headers之前或确保应答包体已经通过ngx.print or ngx.say发送出去才能中断当前处理过程。当本方法用在除了header_filter_by_lua*外的上下文时，推荐使用本方法返回，以处理请求中断的处理过程。

40.ngx.send_headers

语法：

ok, err = ngx.send_headers()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：发送一个应答头。

从v0.8.3版本开始，本函数成功时返回1，否则返回nil和一个错误描述的字符串。

注意，一般情况下不需要手工发送应答头，ngx_lua会在ngx.say或ngx.print或当content_by_lua*存在时自动发送应答头。

41.ngx.headers_sent

语法：

value = ngx.headers_sent

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：如果应答包头被ngx_lua发送则返回true，否则返回false。

42.ngx.print

语法：

ok, err = ngx.print(...)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：把参数级联后作为应答包体输出至HTTP客户端。如果还没有发送应答头，这个函数会先发送一个应答头。从v0.8.3版本开始，本函数返回1表示成功，返回nil表示失败，同时返回一个错误描述字符串。nil值会输出“nil”字符串，布尔值会输出“true”或“false”字符串。允许使用嵌套的字符串数组，这些元素会被一个接一个地发送。

local table = {

"hello, ",

 {"world: ", true, " or ", false,

 {": ", nil}}

}

ngx.print(table)

将得到输出：

hello, world: true or false: nil

非数组表参数会引发一个Lua异常。ngx.null常量会得到一个“null”字符串输出。这是一个异步调用，并且会立即返回，不等待数据写入系统发送缓冲区。如果运行在同步模式，需要在调用后调用ngx.flush（true）。可以显式引发流的输出。

注意，ngx.print和ngx.say总是会调用Nginx输出包体过滤器链，这是一个昂贵的操作。所以，不要在一个高效循环中调用这两个函数，可在Lua中缓冲数据，节省调用消耗。

43.ngx.say

语法：

ok, err = ngx.say(...)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：跟ngx.print一样，只是每次提交一行数据（数据结尾有换行符）。

44.ngx.log

语法：

ngx.log(log_level, ...)

上下文：init_by_lua*、init_worker_by_lua*、set_by_lua*，rewrite_by_lua*、access_by_lua*、content_by_lua*，header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：使用给定的日志级别，将参数追加到error.log文件中。接收nil参数，输出的时候显示“nil”，布尔值显示“true”和“false”，ngx.null常量显示“null”。log_level参数的取值是ngx.ERR和ngx.WARN等常量，参见本章第7节log级别常量。

错误消息被Nginx核心限制为2048B。限制部分包含了时间、换行符等。如果消息超过了这个限制，超过的部分会被截断。这个限制可以手工修改，在src/core/ngx_log.h中修改NGX_MAX_ERROR_STR宏。

45.ngx.flush

语法：

ok, err = ngx.flush(wait?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：将输出强制输出到客户端。从v0.3.1rc32版本开始，接受一个可选的布尔型参数wait（默认是false）。使用默认值调用时，flush发出一个异步的调用。wait为true时，flush切换为同步模式。同步模式下，函数直到输出数据都写到系统缓冲区或send_timeout设置的时间到期才会返回。注意，使用Lua例程机制意味着这个函数即使在同步模式下，也不能阻塞住Nginx事件循环。

当ngx.flush（true）在ngx.print或ngx.say之后立即调用，将使后面的函数运行在同步模式下，这对流式输出特别有用。

注意，当工作在HTTP 1.0输出缓冲模式下，ngx.flush将变得不实用。从v0.8.3版本开始，这个函数返回1表示成功，返回nil和err错误描述信息表示失败。

46.ngx.exit

语法：

ngx.exit(status)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：当status>=200（ngx.HTTP_OK）时，将中断当前请求运行，并将状态码返回给Nginx。当status==0（ngx.OK）时，只会退出当前的上下文处理器（或内容处理器，如果使用了content_by_lua*命令），继续运行当前请求下面的上下文过程（如果有）。status参数的取值可以是ngx.ERRO、ngx.HTTP_NOT_FOUND、ngx.HTTP_MOVED_TEMPORARIL、ngx.OK或其他的HTTP status常量。

如果需要返回一个自定义内容的错误页，可以使用下面的代码片段：

ngx.status= ngx.HTTP_GONE

ngx.say("This is our own content")

-- to cause quit the whole request rather than the current phase handler

ngx.exit(ngx.HTTP_OK)

代码效果如下：

$ curl -i http://localhost/test

HTTP/1.1 410 Gone

Server: nginx/1.0.6

Date: Thu, 15 Sep 2011 00:51:48 GMT

Content-Type: text/plain

Transfer-Encoding: chunked

Connection: keep-alive

This is our own content

可以直接使用数值型错误码，例如：

ngx.exit(501)

注意，当本方法接受所有HTTP状态常量的时候，仅接受核心常量中的NGX_OK和NGX_ERROR。使用本方法中断当前请求的处理过程时，推荐和return组合使用，如return ngx.exit（...），强化请求进程被退出的事实。当用于header_filter_by_lua和ssl_session_store_by_lua*上下文中时，ngx.exit（）是一个异步操作，立即返回。使用和return组合的方法可以改变为同步，使退出行为更稳定。

47.ngx.eof

语法：

ok, err = ngx.eof()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：在输出流里明确指出应答的结尾。在HTTP 1.1输出编码块中，这将触发Nginx核心发送“last chunk”。当禁用了HTTP1.1的keepalive特性后可以通过调用ngx.eof（）使客户端主动断开连接，这个技巧可以用来做一些后台工作而不需要HTTP客户端等待连接。

参见下面的例子：

location= /async {

 keepalive_timeout 0;

 content_by_lua_block {

 ngx.say("got the task!")

 ngx.eof() -- 下游HTTP客户端将在这个点关闭连接。

 -- access MySQL、 PostgreSQL、 Redis、 Memcached等

 }

}

当创建子请求来请求在其他location配置的上游模块时，应该配置这些上游模块来忽略客户端连接的中断，如果默认不是忽略的话。例如，默认的标准ngx_http_proxy_module模块会在客户端断开连接后立即同时终止子请求和主请求，所以在模块ngx_http_proxy_module将proxy_ignore_client_abort设置为开启就十分重要：

proxy_ignore_client_abort on;

一个更好的方法是使用ngx.timer.at做后台工作。从v0.8.3版本开始，这个函数返回1表示成功，返回nil和包含错误提示信息的err表示失败。

ngx.exit和ngx.eof的本质区别在于ngx.exit（）用于中断当前操作，不管是ngx_lua模块请求处理的当前阶段还是整个请求，而ngx.eof只是用于结束响应流的输出，中断HTTP连接，后面的代码逻辑还会继续在服务端执行，而且ngx.eof支持运行的上下文比ngx.exit少很多，ngx.eof有返回值，ngx.exit没有，因为请求已经结束。

48.ngx.sleep

语法：

ngx.sleep(seconds)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：休眠时间（秒），释放CPU，不阻塞进程。可以指定的时间精度是0.001秒（1毫秒）。在这个精度和机制下，这个方法对Nginx时钟非常有用。从0.7.20版本，0可以作为参数指定。

49.ngx.escape_uri

语法：

newstr = ngx.escape_uri(str)

上下文：init_by_lua*、init_worker_by_lua*、set_by_lua*，rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：把str进行URI格式编码。

50.ngx.unescape_uri

语法：

newstr = ngx.unescape_uri(str)

上下文：init_by_lua*、init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*。

说明：对str进行URI解码。例如：

ngx.say(ngx.unescape_uri("b%20r56+7"))

输出：

b r56 7

51.ngx.encode_args

语法：

str = ngx.encode_args(table)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*。

说明：把Lua表编码为查询参数字符串。例如：

ngx.encode_args({foo =3, ["b r"] ="hello world"})

输出：

foo=3&b%20r=hello%20world

表索引必须是Lua字符串。支持多值查询参数。只需要对多值的变量使用一个Lua表，例如：

ngx.encode_args({baz = {32, "hello"}})

获得输出：

baz=32&baz=hello

如果返回的值表是空的，表示值是nil。同样支持布尔值，例如：

ngx.encode_args({a =true, b =1})

输出：

a&b=1

如果参数值是false，等同于nil值。

52.ngx.decode_args

语法：

table = ngx.decode_args(str, max_args?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：将查询字符串str解码为Lua表，这是ngx.encode_args的反向操作。可靠参数max_args用于指定从str中解析的最大参数数量。默认的值是100（包括多值的相同名字），额外的URI参数被静默地丢弃，以防止Dos攻击。

max_args可以设置为0，表示取消限制，以处理所有接收到的参数：

local args = ngx.decode_args(str, 0)

不建议移除最大值限制。

53.ngx.encode_base64

语法：

newstr = ngx.encode_base64(str, no_padding?)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：将str进行Base64编码。从0.9.16版本开始，布尔型no_padding参数可以指定控制是否在结果尾增加一个Base64填充（默认是false，表示要增加填充）。

54.ngx.decode_base64

语法：

newstr = ngx.decode_base64(str)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：将str进行Base64解码，还原为原始格式。如果返回nil，则表示格式不对。

55.ngx.crc32_short

语法：

intval = ngx.crc32_short(str)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：该方法主要用于计算给定字符串str的循环校验码（Cyclic Redundancy Code，CRC）的摘要，计算出来的结果是一个很大的整数。本方法在短的str输入（小于30-60字节）情况下性能良好。本方法只是ngx_crs32_short的一个ngx_lua封装。本方法与ngx.crc32_long基本一样，只是输入数据长度不同。

56.ngx.crc32_long

语法：

intval = ngx.crc32_long(str)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：该方法主要用于计算给定字符串str的CRC的摘要，计算出来的结果是一个很大的整数。本方法在一个长str输入（大于30-60个字节）的情况下性能良好。这个方法是ngx_crc32_long函数的一个封装。

57.ngx.hmac_sha1

语法：

digest = ngx.hmac_sha1(secret_key, str)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：该方法主要用于计算输入字符串str的HMAC-SHA1的摘要，并根据secret_key对结果进行转换，计算后得到的结果是二进制格式的，可以通过ngx.encode_base64转换成非二进制格式的字符串。例如：

local key ="thisisverysecretstuff"

local src ="some string we want to sign"

local digest = ngx.hmac_sha1(key, src)

ngx.say(ngx.encode_base64(digest))

输出：

R/pvxzHC4NLtj7S+kXFg/NePTmk=

这个API需要在Nginx里使能OpenSSL（./configure--with-http_ssl_moudule）。

58.ngx.md5

语法：

digest = ngx.md5(str)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：返回字符串str的MD5摘要的十六进制表示。例如：

location= /md5 {

 content_by_lua_block { ngx.say(ngx.md5("hello")) }

}

输出：

5d41402abc4b2a76b9719d911017c592

59.ngx.md5_bin

语法：

digest = ngx.md5_bin(str)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：该方法将返回字符串str的MD5摘要的二进制格式，可以通过ngx.encode_base64方法转换成非二进制格式的字符串，或者直接使用ngx.md5方法。

60.ngx.sha1_bin

语法：

digest = ngx.sha1_bin(str)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：该方法返回字符串str二进制格式的SHA-1摘要。本函数需要Nginx支持SHA-1算法（意味着需要在Nginx中安装或使能OpenSSL）。

例如：

location /encryption {

 content_by_lua '

 local crc_32s, crc_32l

 local key = "it is my secret"

 local str = "encrypted hello yuefei"

 crc_32s = ngx.crc32_short(str)

 crc_32l = ngx.crc32_long(str)

 local hmac = ngx.hmac_sha1(key, str)

 local md5 = ngx.md5(str)

 local md5_bin = ngx.md5(str)

 local sha1_bin = ngx.sha1_bin(str)

 ngx.say("crc_32_short:", crc_32s, ", crc_32_long: ", crc_32l)

 ngx.say("hmac: ", ngx.encode_base64(hmac))

 ngx.say("md5: ", md5, ", md5_bin: ", ngx.encode_base64(md5_bin))

 ngx.say("sha1_bin: ", ngx.encode_base64(sha1_bin))

 ';

}

输出：

crc_32_short:1560312840,crc_32_long: 1560312840

hmac: 1gpvtAliGFZfSqSD32Sz04/3PiM=

md5: b80a89b331b307dbef83e2eb90c43481, md5_bin: uAqJszGzB9vvg+LrkMQ0gQ==

sha1_bin: 2A/wkXlXjz1t3wmNxMUi3QuMP7c=

61.ngx.quote_sql_str

语法：

quoted_value = ngx.quote_sql_str(raw_value)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：根据MySQL查询字符串标准返回一个SQL字串。

62.ngx.today

语法：

str = ngx.today()

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：从Nginx缓冲时间中返回当前日期（格式yyyy-mm-dd），返回的时间是本地时间。

63.ngx.time

语法：

secs = ngx.time()

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：从Nginx缓冲的时间（与Lua的date库不同，无系统调用）返回从纪元开始到当前流逝的秒数。更新Nginx时间缓存，首先需要调用ngx.update_time。

64.ngx.now

语法：

secs = ngx.now()

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：返回一个浮点型的流逝秒数值（小时部分表示毫秒）。本调用无系统调用，调用的是缓冲的时间。可以先调用ngx.update_time强制同步时间缓存。

65.ngx.update_time

语法：

ngx.update_time()

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：强制更新Nginx当前时间缓存。这个调用要进行系统调用，所以有一些资源消耗，不要经常使用它。

66.ngx.localtime

语法：

str = ngx.localtime()

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：从Nginx时间缓存返回当前的时间（本地时间，格式为yyyy-mm-dd hh：mm：ss，与Lua的date函数不同，本方法无系统调用）。

67.ngx.utctime

语法：

str = ngx.utctime()

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：从Nginx时间缓存返回当前时间（UTC时间，格式为yyyy-mm-dd hh：mm：ss，与Lua的date函数不同，本方法无系统调用）。

68.ngx.cookie_time

语法：

str = ngx.cookie_time(sec)

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：返回一个可以用做cookie期限的格式化时间字符串。sec是以秒为单位的时间（与ngx.time返回的时间一样）。

ngx.say(ngx.cookie_time(1290079655))

 -- yields"Thu, 18-Nov-10 11:27:35 GMT"

69.ngx.http_time

语法：

str = ngx.http_time(sec)

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：返回一个HTTP头域可以使用的时间字符串（如Last-Modified头域）。参数sec是以秒为单位的时间（与ngx.time返回的一致）。

ngx.say(ngx.http_time(1290079655))

 -- yields"Thu, 18 Nov 2010 11:27:35 GMT"

70.ngx.parse_http_time

语法：

sec = ngx.parse_http_time(str)

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：把HTTP时间字符串（与ngx.http_time返回的数值一样）解析成秒。如果输入的字符串是错误的格式，则返回nil。

local time = ngx.parse_http_time("Thu, 18 Nov 2010 11:27:35 GMT")

if time == nil then

 ...

end

71.ngx.is_subrequest

语法：

value = ngx.is_subrequest

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*。

说明：如果当前请求是子请求，则返回true，否则返回false。

72.ngx.re.match

语法：

captures, err = ngx.re.match(subject, regex, options?, ctx?, res_table?)

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：使用Perl兼容的正则表达式匹配subject，可选参数options是regex的参数。只有第一个出现的匹配会被返回，如果没有匹配则返回nil。遇到错误（如一个错误的表达式）或遇到PCRE（Perl库，包括兼容的正则表达式库）堆栈限制，将返回nil值和错误描述（err）。当发现一个匹配，captures会返回一个Lua表，captures[0]容纳的是第一个匹配的完整子串，capture[1]保存的是用括号括起来的第一个子模式的结果，capture[2]存放的是第二个子模式的结果，依此类推。

local m, err = ngx.re.match("hello, 1234", "[0-9]+")

if m then

-- m[0] == "1234"

else

 if err then

 ngx.log(ngx.ERR, "error: ", err)

 return

 end

 ngx.say("match not found")

end

上面例子中，匹配的字符串是1234，因此m[0]==“1234”，是没有用括号括起来的子模式，因此，m[1]、m[2]等均为nil。

local m, err = ngx.re.match("hello, 1234", "([0-9])[0-9]+")

-- m[0] == "1234"

-- m[1] == "1"

因为有了子模式，所以返回的m[1]有了值。

从v0.7.14版本后开始支持命名方式的捕获，返回值存放在相同的Lua表中，以key-value对存放。

local m, err = ngx.re.match("hello, 1234", "([0-9])(?<remaining>[0-9]+)")

-- m[0] == "1234"

-- m[1] == "1"

-- m[2] == "234"

-- m["remaining"] == "234"

未匹配的子域，将在结果里存放false值，索引是模式名。

local m, err = ngx.re.match("hello, world", "(world)|(hello)|(?<named>howdy)")

-- m[0] == "hello"

-- m[1] == nil

-- m[2] == "hello"

-- m[3] == nil

-- m["named"] == nil

上面例子中，第一个匹配的是hello，所以m[0]是hello，然后3个模式依次是，m[1]是world没匹配上，m[2]是hello匹配上，m[3]没匹配上。所以，m[0]是第一个匹配的字串。

可以使用option控制如何执行匹配操作，支持下面的选项字符：

·a：锚定模式，只从头开始匹配。

·d：DFA模式，或者称最长字符串匹配语义，需要PCRE 6.0+支持。

·D：允许重复命名的子模式，该选项需要PCRE 8.12+支持。例如：

local m = ngx.re.match("hello, world","(?<named>\w+), (?<named>\w+)","D")

 -- m["named"] == {"hello", "world"}

·i：大小写不敏感模式。

·j：启用PCRE JIT编译，需要PCRE 8.21+支持，并且必须在编译时加上选项--enable-jit，为了达到最佳性能，该选项总是应该和’o’选项搭配使用。

·J：启用PCRE JavaScript的兼容模式，需要PCRE 8.12+支持。

·m：多行模式。

·o：一次编译模式，启用worker-process级别的编译正则表达式的缓存。

·s：单行模式。

·u：UTF-8模式。该选项需要在编译PCRE库时加上--enable-utf8选项。

·U：与“u”选项类似，但是禁止PCRE对subject字符串UTF-8有效性检查。

·x：扩展模式。

这些选项可以组合使用。

local m, err = ngx.re.match("hello, world", "HEL LO", "ix")

-- m[0] == "hello"

local m, err = ngx.re.match("hello, 美好生活", "HELLO, (.{2})", "iu")

-- m[0] == "hello, 美好"

-- m[1] == "美好"

o选项用于性能调优，因为正则表达式只会被编译一次，在工作进程级别缓存，在当前工作进程的所有请求间共享。正则缓存限制可以通过设置lua_regex_cache_max_entries指令实现。

可选参数ctx可以传入一个Lua表，传入的Lua表可以是一个空表，也可以是包含pos字段的Lua表。如果传入的是一个空的Lua表，那么，ngx.re.match将会从subject字符串的起始位置开始匹配查找，查找到匹配串后，修改pos的值为匹配字符串的下一个位置的值，并将pos的值保存到ctx中，如果匹配失败，那么pos的值保持不变。如果传入的是一个非空的Lua表，即指定了pos的初值，那么ngx.re.match将会从指定的pos位置开始进行匹配，如果匹配成功了，修改pos值为匹配字符串下一个位置的值，并将pos值保存到ctx中，如果匹配失败，那么pos值保持不变。

local ctx = {}

local m, err = ngx.re.match("1234, hello", "[0-9]+", "", ctx)

-- m[0] = "1234"

-- ctx.pos == 5

local ctx = { pos =2 }

local m, err = ngx.re.match("1234, hello", "[0-9]+", "", ctx)

-- m[0] = "34"

-- ctx.pos == 5

ctx表参数和一个正则编辑器组合，可以用于在ngx.re.match之上构造自己的方法（但这显然意义不大）。注意，当传入了ctx参数时，options不能可选，如果没有一个有意义的options，必须在options用一个Lua空串“”。必须在Nginx里使能PCRE库才能使用正则。

通过在Nginx或OpenResty的./configure脚本添加—with-debug使能Nginx日志调试，以确认PCRE JIT是否使能。将error_log指令设置为debug级别，下面的消息表示PCRE JIT已经使能了：

pcre JIT compiling result: 1

从0.9.4版本开始，这个函数已经接受第5个参数：res_table。为调用者提供了Lua表容纳所有捕获结果的能力。从0.9.6版本开始，调用者要自己保证这个表为空，这对回收表及GC和表申请的负载很有帮助。

73.ngx.re.find

语法：

from, to, err = ngx.re.find(subject, regex, options?, ctx?, nth?)

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*，ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和ngx.re.match基本相同，但是只返回匹配子串的开始位置index（from）和结束位置index（to）。返回的索引从1开始，可以直接填充到string.sub，获得匹配的子串。遇到错误（如一个错误的表达式）或遇到了PCRE（Perl库，包括兼容的正则表达式库）堆栈限制，将返回nil值和错误描述err。

例如：

local s ="hello, 1234"

local from, to, err = ngx.re.find(s, "([0-9]+)", "jo")

if from then

 ngx.say("from: ", from)

 ngx.say("to: ", to)

 ngx.say("matched: ", string.sub(s, from, to))

else

if err then

 ngx.say("error: ", err)

return

end

 ngx.say("not matched!")

end

输出：

from: 8

to: 11

matched: 1234

因为这个函数不创建新Lua字符串和新Lua表，所以比ngx.re.match快很多，应该在任何情况下优先使用。从0.9.3版本开始，支持第五个可选参数，可以指定第几个匹配的索引可以返回。当nth是0的时候（默认值），返回匹配的整体字串；当nth为1的时候，只返回第一个子模式始末位置索引值；当nth为2的时候，只返回第二个子模式匹配的始末值，依此类推。如果都没有匹配上，则返回2个nil值。例如：

local str ="hello, 1234"

local from, to = ngx.re.find(str, "([0-9])([0-9]+)", "jo", nil, 2)

if from then

 ngx.say("matched 2nd submatch: ", string.sub(str, from, to)) -- yields "234"

end

74.ngx.re.gmatch

语法：

iterator, err = ngx.re.gmatch(subject, regex, options?)

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和ngx.re.match基本一致，只是返回一个Lua迭代器，用户可以使用迭代器遍历所有匹配的结果。如果匹配失败，将会返回nil；如果匹配出现错误，那么还会返回错误信息到err中。下面是一个演示基本使用方法的列子：

local iterator, err = ngx.re.gmatch("hello, world!", "([a-z]+)", "i")

ifnot iterator then

 ngx.log(ngx.ERR, "error: ", err)

 return

end

local m

m, err =iterator() -- m[0] == m[1] == "hello"

if err then

 ngx.log(ngx.ERR, "error: ", err)

 return

end

m, err =iterator() -- m[0] == m[1] == "world"

if err then

 ngx.log(ngx.ERR, "error: ", err)

 return

end

m, err =iterator() -- m == nil

if err then

 ngx.log(ngx.ERR, "error: ", err)

 return

end

通常我们把处理放到一个循环中：

local it, err = ngx.re.gmatch("hello, world!", "([a-z]+)", "i")

ifnot it then

 ngx.log(ngx.ERR, "error: ", err)

 return

end

whiletruedo

local m, err =it()

if err then

 ngx.log(ngx.ERR, "error: ", err)

 return

end

ifnot m then

 -- no match found (any more)

 break

end

-- found a match

 ngx.say(m[0])

 ngx.say(m[1])

end

可选的options参数和ngx.re.match方法的options用法一样。当前只允许在单个请求中使用返回的迭代器，不能把返回的迭代器赋值到持久存在的命名空间（如Lua包）。

这个方法同样需要在Nginx中使能PCRE库。

75.ngx.re.sub

语法：

newstr, n, err = ngx.re.sub(subject, regex, replace, options?)

使用域：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：在subject字符串中使用replace替换第一个匹配上regex的字符串。options参数与ngx.re.match中的定义相同。成功替换后，newstr返回新的字符串，n存储替换的数量。如果失败了，类似于表达式里有符号错误或<replace>错误，将返回nil和err里的错误描述。若replace是一个字符串，则会作为一个替换模板。例如：

local newstr, n, err = ngx.re.sub("hello, 1234", "([0-9])[0-9]", "[$0][$1]")

if newstr then

-- newstr == "hello, [12][1]34"

-- n == 1

else

 ngx.log(ngx.ERR, "error: ", err)

return

end

在上面的例子中，$0表示整个匹配的子串，$1表示第一个子模式匹配的字串，以此类推。可以用大括号{}将相应的0、1、2……括起来，以区分一般的数字：

local newstr, n, err = ngx.re.sub("hello, 1234", "[0-9]", "${0}00")

-- newstr == "hello, 100234"

-- n == 1

如果想在replace字符串中显示$符号，可以用$进行转义（不要用反斜杠\$对美元符号进行转义，这种方法不会得到期望的结果）：

local newstr, n, err = ngx.re.sub("hello, 1234", "[0-9]", "$$")

-- newstr == "hello, $234"

-- n == 1

如果replace是一个函数，那么函数的参数是一个“match table”，而这个“match table”与ngx.re.match中的返回值captures是一样的，replace这个函数根据“match table”产生用于替换的字符串，例如：

local func =function (m)

return"[".. m[0] .."][".. m[1] .."]"

end

local newstr, n, err = ngx.re.sub("hello, 1234", "([0-9]) [0-9]", func, "x")

-- newstr == "hello, [12][1]34"

-- n == 1

通过函数形式返回的替换字符串中的符号$不再是特殊字符，而只是被看作一个普通字符。

本方法同样需要Nginx使能PCRE库。

76.ngx.re.gsub

语法：

newstr, n, err = ngx.re.gsub(subject, regex, replace, options?)

上下文：init_worker_by_lua*、set_by_lua*，rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和ngx.re.sub一样，只是不进行全局替换。例如：

local newstr, n, err = ngx.re.gsub("hello, world", "([a-z])[a-z]+", "[$0,$1]", "i")

if newstr then

 -- newstr == "[hello,h], [world,w]"

 -- n == 2

else

 ngx.log(ngx.ERR, "error: ", err)

 return

end

local func =function (m)

 return"[".. m[0] ..",".. m[1] .."]"

end

local newstr, n, err = ngx.re.gsub("hello, world", "([a-z])[a-z]+", func, "i")

-- newstr == "[hello,h], [world,w]"

-- n == 2

本方法需要Nginx使能PCRE库。

77.ngx.shared.DICT

语法：

dict = ngx.shared.DICT

dict = ngx.shared[name_var]

上下文：init_by_lua*、init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：获取定义在lua_shared_dict指令中的共享内存字典。共享内存字典是工作进程级的，所以早已经被系统共享出来了。

可以使用下面的方法使用共享内存：get、get_stale、set、safe_set、add、safe_add、replace、delete、incr、lpush、rpush、lpop、rpop、llen、flush_all、flush_expired、get_keys。

在ngx_lua模块中使用共享内存字典项相关API的前提条件是已经使用lua_shared_dict命令定义了一个字典项对象，该命令的具体用法如下：

语法：

lua_shared_dict <name><size>

该命令用于定义一块名为name的共享内存空间，内存大小为size。通过该命令定义的共享内存对象对于Nginx中所有工作进程都是可见的，当Nginx通过reload命令重启时，共享内存字典项会重新获取它的内容，当Nginx退出时，字典项的值将会丢失。下面是一个具体的例子：

http {

 lua_shared_dict dogs 10m;

 server {

 location /set {

 content_by_lua_block {

 local dogs = ngx.shared.dogs

 dogs:set("Jim", 8)

 ngx.say("STORED")

 }

 }

 location /get {

 content_by_lua_block {

 local dogs = ngx.shared.dogs

 ngx.say(dogs:get("Jim"))

 }

 }

 }

}

测试下：

$ curl localhost/set

STORED

$ curl localhost/get

8

$ curl localhost/get

8

当访问/get时，不管有多少个工作进程，总是输出8。因为dogs辞典存在于共享内存中，所有的工作进程都可以看见并使用它。

共享辞典会一直保存它的内容，直到收到配置文件重载（收到HUP信号或Nginx通过–s reload重载）。当Nginx服务退出时，辞典里的数据将丢失。

在上面的例中，下面两种方法都可以：

local dogs =ngx.shared.dogs

local dogs = ngx.shared["dogs"]

获取了字典对象后，可以使用下面的方法进行操作。

78.ngx.shared.DICT.get

语法：

value, flags = ngx.shared.DICT:get(key)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：读取key对应的值。如果key不存在或过期了，将返回nil值。任何错误发生时，value将返回nil，flag返回描述错误的字符串。返回的值携带原始插入时的数据类型，如Lua布尔值、数值、字符串。第一个参数必须是共享内存字典对象自己，例如：

local cats = ngx.shared.cats

local value, flags = cats.get(cats, "Marry")

或者使用Lua方法调用方法：

local cats = ngx.shared.cats

local value, flags = cats:get("Marry")

这两种方法一样。

返回列表中的flags，是在ngx.shared.DICT.set方法中设置的值，默认值为0。如果设置的flags为0，那么这里不会返回flags值。

79.ngx.shared.DICT.get_stale

语法：

value, flags, stale = ngx.shared.DICT:get_stale(key)

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和get方法一样，同时返回过期值。返回3个值，stale表明值是否过期。

注意，一个过期的值不保证是有效的，所以，永远不要信任过期的值。

80.ngx.shared.DICT.set

语法：

success, err, forcible = ngx.shared.DICT:set(key, value, exptime?, flags?)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：无条件向以共享内存为机制的字典插入一个key-value对，返回3个值。

·success：布尔值表示数据对是否存储。

·err：文本的错误信息，可以是“no memory”。

·forcible：布尔值，描述当空间不足时其他有效的元素是否被强制移走。

value参数可以是Lua的布尔型、数值型、字符串或nil。这些值类型会被辞典保存，类型可以被get方法获取。

可选项exptime参数指定插入的数据的过期时间（以秒为单位）。时间精度分辨率是0.001秒。如果exptime值是0（默认值），则元素永远不会过期。

选项flags参数指定了一个用户自定义标志一同保存在字典中，后续可以获取。flags作为一个32位的整形保存，默认是0。用户flags参数第一次出现在v0.5.0rc2版本中。

当为当前key-value项申请内存失败时，set操作会根据LRU算法删除存储中已有的元素。注意，LRU以过期时间为优先考虑对象。如果删除了10个元素，剩下的空间仍然不足，则err中将返回“no memory”信息，success将为false。如果通过LRU算法强行删除没有过期的元素使当前保存操作成功，则forcible返回值为true，否则为false。

第一个参数必须是字典对象本身，例如：

local cats = ngx.shared.cats

local succ, err, forcible = cats.set(cats, "Marry", "it is a nice cat!")

或通过Lua的方法调用规则：

local cats = ngx.shared.cats

local succ, err, forcible = cats:set("Marry", "it is a nice cat!")

以上两种形式相同。注意，key-value的设置在内部是原子级的，原子操作只会在set方法内部，不会超过边界。

81.ngx.shared.DICT.safe_set

语法：

ok, err = ngx.shared.DICT:safe_set(key, value, exptime?, flags?)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和set方法相似，只是在没有存储空间的时候永远不会覆盖还没过期的元素。这种情况下，会立即返回nil和字符串“no memory”。

82.ngx.shared.DICT.add

语法：

success, err, forcible = ngx.shared.DICT:add(key, value, exptime?, flags?)

使用域：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和set方法很像，但只有key不存在的情况下将key-value对保存到字典内。如果key已经在字典内（或还没过期），success会返回false，err返回“exists”。

83.ngx.shared.DICT.safe_add

语法：

ok, err = ngx.shared.DICT:safe_add(key, value, exptime?, flags?)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和add方法相似，只是内存不足时永远不会覆盖LRU中没有过期的元素。这种情况下，会立即返回nil和“no memory”字符串。

84.ngx.shared.DICT.replace

语法：

success, err, forcible = ngx.shared.DICT:replace(key, value, exptime?, flags?)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和set方法相似，但是只是在key不存在的情况下将key-value对存储进字典。如果key不存在（或者已经过期了），success将返回false，err将返回“not found”。

85.ngx.shared.DICT.delete

语法：

ngx.shared.DICT:delete(key)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：无条件从共享内存字典中删除key-value对，等于ngx.shared.DICT：set（key，nil）。

86.ngx.shared.DICT.incr

语法：

newval, err, forcible? = ngx.shared.DICT:incr(key, value, init?)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：使字典中key的值（数值型）按value增长。如果操作成功了，则返回新的值，否则返回nil。当key不存在或已经过期的时候，如果init没有指定或者数值为nil，则方法将返回nil和错误信息“not found”。如果init参数是一个数值型值，那么创建一个新的key-value对，值是init+value。和add方法一样，当内存不足时会覆盖未过期的元素。

当init参数没有指定时，forcible总是返回nil。如果在内存不足时通过LRU删除未过期元素而存储成功，则forcible值是true。如果没有强制删除其他有效元素，则forcible将返回false。如果原始的value是一个无效的Lua数值，则返回nil和“not a number”。

value参数和inot参数可以是任意有效的Lua数值，如负数和浮点数。本方法从v0.3.1rc22版本开始出现。init参数在v0.10.6版本加入。

87.ngx.shared.DICT.lpush

语法：

length, err = ngx.shared.DICT:lpush(key, value)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：在名为key的列表头部插入value（数值型或字符串型），返回插入后的列表元素数目。如果key不存在，则首先创建一个空的列表。当key已经存在但不是一个列表时，则返回nil和“value not a list”错误信息。

88.ngx.shared.DICT.rpush

语法：

length, err = ngx.shared.DICT:rpush(key, value)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和Ipush类似，只是在列表的尾部插入元素。

89.ngx.shared.DICT.lpop

语法：

val, err = ngx.shared.DICT:lpop(key)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：删除并返回列表中第一个元素。如果key不存在，则返回nil。当key已经存在但不是一个列表时，返回nil和“value not a list”错误信息。

90.ngx.shared.DICT.rpop

语法：

val, err = ngx.shared.DICT:rpop(key)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：删除并返回key列表中的最后一个元素。如果key不存在，则返回nil。当key已经存在但不是一个列表时，则返回nil和“value not a list”错误信息。

91.ngx.shared.DICT.llen

语法：

len, err = ngx.shared.DICT:llen(key)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：返回key列表中元素的数量。如果key不存在，则中断并返回0。当key已经存在但不是一个列表时，返回nil和“value not a list”错误信息。

92.ngx.shared.DICT.flush_all

语法：

ngx.shared.DICT:flush_all()

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：清除字典中的所有元素。本方法不实际释放所有的内存块，只是把所有的元素标记为过期。

93.ngx.shared.DICT.flush_expired

语法：

flushed = ngx.shared.DICT:flush_expired(max_count?)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：清除所有过期的元素，max_count表明清除的上限数量。当max_count为0或没有指定的时候，意味着没有限制。返回值是实际清除掉的元素数目。和flush_all方法不同，这个方法会实际释放被过期元素占用的内存。

94.ngx.shared.DICT.get_keys

语法：

keys = ngx.shared.DICT:get_keys(max_count?)

上下文：init_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：从字典中最多获取max_count条key，返回一个key的列表。默认地，只会返回前1024个key。当<max_count>参数给定为0时，所有的元素都会被返回。

注意，在字典中有大量key的情况下要慎重使用本方法。这个方法将锁定字典很长一段时间，所有其他工作进程都将因为字典被占用而不断重试，导致处理速度降低。

95.ngx.socket.udp

语法：

udpsock = ngx.socket.udp()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：创建并返回一个UDP套接字或数据报基础的UNIX域套接字（cosocket对象）。可以在对象上使用下面的方法：setpeername、send、receive、close、settimeout。

本对象计划兼容LuaSocket的UDP API，但是是100%非阻塞的。

96.udpsock：setpeername

语法：

ok, err = udpsock:setpeername(host, port)

ok, err = udpsock:setpeername("unix:/path/to/unix-domain.socket")

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：准备连接一个套接字对象到一个远程服务上的UDP服务或UNIX域套接字文件。因为数据报是无连接的，这个过程没有实际建立一个连接，只是为子请求的读和写设置了远程服务的名字。

可以在host参数上使用IP地址和域名。如果使用域名，方法将调用Nginx核心的非阻塞动态域名解析器，但这个需要在nginx.conf文件配置resolver指令：

resolver8.8.8.8; # use Google's public DNS nameserver

如果名字服务返回多个IP地址，方法将随机选取一个。发生任何错误，返回nil，err包含错误描述。如果成功了，ok返回的是1。这是一个连接到UDP服务器的例子：

location/test {

 resolver8.8.8.8;

 content_by_lua_block {

 local sock = ngx.socket.udp()

 local ok, err = sock:setpeername("my.memcached.server.domain", 11211)

 if not ok then

 ngx.say("failed to connect to memcached: ", err)

 return

 end

 ngx.say("successfully connected to memcached!")

 sock:close()

 }

}

从v0.7.18版本开始，在Linux上也可以连接到数据报的域套接字：

local sock = ngx.socket.udp()

local ok, err = sock:setpeername("unix:/tmp/some-datagram-service.sock")

ifnot ok then

 ngx.say("failed to connect to the datagram unix domain socket: ", err)

 return

end

假设数据报服务监听在UNIX域套接字文件/tmp/some-datagram-service.sock，客户端套接字要使用Linux的autobind性能。

在一个已经连接的套接字对象上调用这个方法，将使原来的连接先关闭。

97.udpsock：send

语法：

ok, err = udpsock:send(data)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：在当前UDP或UNIX域套接上发送数据。发送成功，返回1，否则返回nil和一个错误描述字符串。data可以是一个Lua字符串或一个由字符串元素构成的Lua表（可以是嵌套的）。在表的情况下，方法将复制所有的字符串元素到底层Nginx套接字发送缓冲区，这比在Lua端进行字符串拼接更有效率。

98.udpsock：receive

语法：

data, err = udpsock:receive(size?)

上下文：rewrite_by_lua*，access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：从UDP或UNIX域套接字对象接收size数量的数据。这个方法是一个同步操作，但是是100%非阻塞的。读取成功了，返回接收到的数据；发生任何一种错误，将返回nil和一个错误描述字符串。如果指定了size参数，那么将使用size作为接收缓冲区尺寸。如果size大于8192，那么将使用8192代替。如果没有参数指定，将使用8192作为最大的尺寸。读取的超时值由lua_socket_read_timeout指令控制或者通过settimeout方法设置，settimeout值优先。例如：

sock:settimeout(1000) -- one second timeout

local data, err = sock:receive()

ifnot data then

 ngx.say("failed to read a packet: ", err)

 return

end

ngx.say("successfully read a packet: ", data)

在receive之前调用settimeout是非常重要的。

99.udpsock：close

语法：

ok, err = udpsock:close()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：关闭当前UDP或UNIX域套接字。ok返回1表示成功，ok返回nil和err错误描述信息表示失败。当套接字对象被Lua GC（垃圾回收器）回收或当前客户端HTTP请求结束处理时，尽管没有调用过本方法，连接也会被关闭。

100.udpsock：settimeout

语法：

udpsock:settimeout(time)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：设置子请求套接字操作的超时值，单位为毫秒。本操作设置的值优先级比lua_socket_read_timeout指令高。

101.ngx.socket.stream

说明：ngx.socket.tcp的一个别名。如果流式的cosocket可以连接到一个UNIX域套接字上，那么这个API名字是首选的。

102.ngx.socket.tcp

语法：

tcpsock = ngx.socket.tcp()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：创建并且返回一个TCP或流式UNIX域套接字对象（cosocket对象）。对象提供下面的方法：connect、sslhandshake、send、receive、close、settimeout、settimeouts、setoption、receiveuntil、setkeepalive、getreusedtimes。

本对象考虑兼容LuaSocket库的TCP API，但是是100%非阻塞的。这个API创建的cosocket对象和创建它的Lua处理器拥有相同的生命周期。所以，永远不要把cosocket传递到其他的处理器中（包括ngx.timer的回调函数），也永远不要在不同的Nginx请求中共享cosocket对象。

对于每一个cosocket对象的底层连接，如果不能明确地关闭它（通过close）或放到连接池的后面（通过setkeepalive），那么发生下面两种事件时会被自动关闭：

·当前请求处理器工作完成；

·cosocket对象值被Lua GC回收了。

cosocket操作上的致命错误总是会自动关闭当前连接（读超时错误只是一个不致命的错误），如果在一个已经关闭的连接上调用close，会得到“closed”错误。

从0.9.9版本开始，cosocket对象是全双工的，意味着在一个cosocket对象上读和写可以分别由一个协程同时处理（两个协程必须同属于相同的处理器）。但是不能有两个协程同时读或同时写或同时连接同一个cosocket对象，否则，会得到“socket busy reading”的错误。

103.tcpsock：connect

语法：

ok, err = tcpsock:connect(host, port, options_table?)

ok, err = tcpsock:connect("unix:/path/to/unix-domain.socket", options_table?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：非阻塞式地连接一个远程的TCP服务或一个流式的UNIX域套接字。实际解析主机名并且连接到远程后端之前，这个方法总是遍历连接池，查找之前，这个方法调用创建的匹配的空闲连接（或者ngx.socket.connect函数）。

IP地址和域名都可以指定为host参数。如果host是域名，方法将使用Nginx核心非阻塞的动态解析器。解析器通过resolver指令配置在nginx.conf中，例如：

resolver8.8.8.8; # use Google's public DNS nameserver

如果返回多个IP，方法会随机选择一个。发生任何错误时，ok会返回nil，err会返回一个错误描述字符串。ok为1则表示成功。

下面是一个连接TCP服务的例子：

location/test {

resolver8.8.8.8;

content_by_lua_block {

local sock = ngx.socket.tcp()

local ok, err = sock:connect("www.google.com", 80)

if not ok then

 ngx.say("failed to connect to google: ", err)

 return

 end

 ngx.say("successfully connected to google!")

 sock:close()

 }

}

也可能连接到UNIX域套接字：

local sock = ngx.socket.tcp()

local ok, err = sock:connect("unix:/tmp/memcached.sock")

ifnot ok then

 ngx.say("failed to connect to the memcached unix domain socket: ", err)

 return

end

假设memcached（或其他的）监听在/tmp/memcached.sock这个UNIX域套接字文件上。

超时值由lua_socket_connect_timeout指令控制，也可以通过settimeout方法设置，而且方法的数值优先，例如：

local sock = ngx.socket.tcp()

sock:settimeout(1000) -- one second timeout

local ok, err = sock:connect(host, port)

在本方法之前调用settimeout方法是很重要的。在一个已经连接成功的套接字对象上调用本方法，将会导致原始旧的套接字首先被关闭。

可以使用一个Lua表作为可选的最后一个参数，以指定多种连接参数：pool为用到的连接池指定了一个自定义名字。如果未指定，那么连接池名字会使用模板“<host>：<port>”或“<unix-socket-path>”。

104.tcpsock：sslhandshake

语法：

session, err = tcpsock:sslhandshake(reused_session?, server_name?, ssl_verify?, send_status_req?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：在当前建立起的连接上做SSL/TLS握手。

可选参数reused_session可以携带一个由之前相同目标的握手方法产生的最近的SSL会话自定义数据（ID）。对于短生命周期连接，重用SSL会话可以将握手速度提高一个数量级。但是，如果连接池是使能状态，则重用就不是很有效了。此参数默认是nil。如果此参数是false，将没有SSL会话用户数据返回，而且只有一个Lua布尔值作为第一个返回值；否则，成功的情况下，当前SSL会话将总是作为第一个参数返回。

可选参数server_name用于指定新的TLS扩展服务名字（SNI）。使用SNI可以使不同的服务共享相同的IP地址。同样，当SSL校验打开的时候，server_name也总是用于校验远程服务发来的服务器证书中的名字。

可选参数ssl_verify用一个Lua布尔值控制是否执行SSL验证。当该参数为true时，服务器证书将通过CA中心验证，CA中心通过lua_ssl_trusted_certificate指令指定。可能总是需要调节lua_ssl_verify_depth以控制需要的校验链深度。同样，当ssl_verity为true，且server_name参数也指定了时，可使用server_name机制验证证书中的服务名。

可选参数send_status_req用一个布尔值控制SSL握手是否发送OCSP状态请求，在一个已经创建好SSL/TLS握手的连接上，本方法会立即返回。

105.tcpsock：send

语法：

bytes, err = tcpsock:send(data)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：非阻塞地在当前TCP或UNIX域套接字连接上发送数据。

本方法是一个同步操作，除非所有的数据被写到系统套接字发送缓冲区内或有一个错误发生，否则不会返回。成功的情况下，bytes返回已经发送的字节数；否则，bytes返回nil，err返回一个错误描述信息。

data可以是一个Lua字符串或一个由字符串元素构成的Lua表（可以是嵌套的）。在data为表的情况下，方法将复制所有的字符串元素到底层Nginx套接字发送缓冲区，这比在Lua端进行字符串拼接更有效率。

发送超时值通过lua_socket_send_timeout指令控制，或者通过settimeout方法，后者优先级更高。例如：

sock:settimeout(1000) -- one second timeout

local bytes, err = sock:send(request)

调用本方法之前调用settimeout方法是非常重要的。

106.tcpsock：receive

语法：

data, err, partial = tcpsock:receive(size)

data, err, partial = tcpsock:receive(pattern?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：依据读取模式或size从当前连接上接收数据。

本方法和send方法一样，是一个100%不阻塞的同步操作。接收成功，data返回收到的数据。任何错误情况下，data为nil，err返回描述错误的字符串，partial返回错误发生时收到的部分数据。如果指定了类数据型的size参数，将被作为一个接收的尺寸。在收到指定大小数据或发生错误之前不会返回。

如果指定了一个非数值型字符串，那么将当作一个模板使用。支持下列模板：

·'*a'：在套接字读取直到连接关闭，不执行行尾转换。

·'*l'：读取一行文本，一行是用换行符（LF，ASCII 10）标记的，可选的，回车符（CR，ASCII 13）也表示一行结束。LF和CR不包含在返回的行数据中。事实上，所有的CR都会被模板忽略。

如果没有指定参数，系统默认使用’*l’模板，默认读取一行。

读取操作的超时值由lua_socket_read_timeout指令控制，也可以通过settimeout方法操作，settimeout方法优先。下面是一个例子：

sock:settimeout(1000) -- one second timeout

local line, err, partial = sock:receive()

ifnot line then

 ngx.say("failed to read a line: ", err)

 return

end

ngx.say("successfully read a line: ", line)

调用本方法之前调用settimeout方法是非常重要的。

从v0.8.8版本开始，当读取超时错误发生时，不会自动关闭当前连接。在其他的方法中，receive方法会自动在错误发生的情况下关闭连接。

107.tcpsock：receiveuntil

语法：

iterator = tcpsock:receiveuntil(pattern, options?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：返回一个Lua迭代器函数，可以用来读取数据值，直到指定的模板出现或发生错误。例如：

local reader = sock:receiveuntil("\r\n--abcedhb")

local data, err, partial =reader()

ifnot data then

 ngx.say("failed to read the data stream: ", err)

end

ngx.say("read the data stream: ", data)

当不使用任何参数调用时，迭代器函数返回指定的模板字符串之前的数据。

当错误发生时，迭代器函数返回nil和错误信息描述字串，partial中存放错误发生时已经读到的数据。

迭代器函数可以多次调用，并且可以和其他cosocket方法混合使用。

当使用一个size参数调用迭代器函数时，它的行为将非常不同。因为它在每次读取时只读取size大小的数据，在最后一次调用时返回nil（依模板界线或遇到了错误）。最后一次成功调用时，err返回的值也是nil。最后一次成功调用后，迭代器函数将被复位，返回nil的data值和nil的err值。考虑下面的例子：

local reader = sock:receiveuntil("\r\n--abcedhb")

while true do

 local data, err, partial =reader(4)

 ifnot data then

 if err then

 ngx.say("failed to read the data stream: ", err)

 break

 end

 ngx.say("read done")

 break

 end

 ngx.say("read chunk: [", data, "]")

end

输入数据是’hello，world！-agentzh\r\n--abcedhb blah blah’的情况下，我们将得到下面的输出：

read chunk: [hell]

read chunk: [o, w]

read chunk: [orld]

read chunk: [! -a]

read chunk: [gent]

read chunk: [zh]

read done

注意，当模板在解析流时有不明确的时候，实际收到的数据可能比size要求的长一点。同样，也可能是data返回的数据稍短一点点。

读取操作的超时值由lua_socket_read_timeout指令控制，也可以通过settimeout方法操作，settimeout方法优先。例如：

local readline = sock:receiveuntil("\r\n")

sock:settimeout(1000) -- one second timeout

line, err, partial =readline()

ifnot line then

 ngx.say("failed to read a line: ", err)

return

end

ngx.say("successfully read a line: ", line)

在迭代函数之前调用settimeout是非常重要的，但是receiveuntil函数用不到这个值，所以是不相关的。

从v0.5.1版本开始，receiveuntil支持可选的option选项，并支持下面的选项：

·inclusive是布尔型值，控制是否在返回的数据串中包含模板串，默认是false。例如：

local reader = tcpsock:receiveuntil("_END_", { inclusive =true })

local data =reader()

ngx.say(data)

对于“hello world_END_blah blah blah”这串数据，上面的例子将输出“hello world_END_”，包含了模板字串“_END_”。

从v0.8.8版本开始，当读取超时错误发生时，不会自动关闭当前连接。在其他的方法中，本方法会自动在错误发生的情况下关闭连接。

108.tcpsock：close

语法：

ok, err = tcpsock:close()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：关闭当前TCP或UNIX域套接字。成功时ok返回1，失败时ok返回nil，err存放错误描述字串。

注意，当连接已经调用setkeepalive方法后，不需要再调用close，因为套接字会自动关闭（并且当前连接保存在内建的连接池中），套接字对象不需要调用本方法。当套接字对象被Lua GC释放或HTTP处理过程结束的时候，将被自动关闭，不需要手工再次调用。

109.tcpsock：settimeout

语法：

tcpsock:settimeout(time)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：设置套接字的超时值，单位为毫秒。受影响的方法为connect、receive和receiveuntil返回的迭代函数。本方法设置的值比指令中的数据优先级高，如lua_socket_connect_timeout、lua_socket_send_timeout、lua_socket_read_timeout。

注意，本方法不影响lua_socket_keepalive_timeout设置。可使用setkeepalive方法修改其设置。

110.tcpsock：settimeouts

语法：

tcpsock:settimeouts(connect_timeout, send_timeout, read_timeout)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：分别设置连接、发送和读操作的超时值，单位为毫秒，同时也影响receiveuntil返回的迭代函数。本方法优先级高于lua_socket_connect_timeout、lua_socket_send_timeout和lua_socket_read_timeout指令。推荐使用settimeouts代替settimeout。

注意，本方法不影响lua_socket_keepalive_timeout设置。可使用setkeepalive方法修改其设置。

111.tcpsock：setoption

语法：

tcpsock:setoption(option, value?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：本函数是为了兼容LuaSocket API加进来的，但是当前不做任何事情，未来会实现。

112.tcpsock：setkeepalive

语法：

ok, err = tcpsock:setkeepalive(timeout?, size?)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：把当前的连接立即放进cosocket内建的连接池，并且保活，直到其他的connect方法请求它或者关联的最大空闲时间到期。

可选的timeout参数用来指定最大空闲超时时间，单位为毫秒。如果没有指定timeout参数，使用lua_socket_keepalive_timeout指令的值。如果指定timeout为0，则表示永远不会过期。

第二个可选参数size用来指定连接池允许的最大数量。注意，连接池的容量在创建后也可以修改。当未指定这个参数时，使用lua_socket_pool_size指令。

当连接池超过容量限制时，将根据LRU算法将空闲时间最久的连接关闭，为当前连接释放空间。

注意，cosocket连接池是工作进程级别的，而不是Nginx服务级别的，所以在这里设置的连接池size也会被应用到每一个工作进程中的。

池中的空闲连接会被监控，每一个异常事情，如断开、非预期的输入数据等，会导致连接被关闭并从池中移除。

成功时，方法返回1，失败时则返回nil和一个错误描述字串。

当前连接的系统接收缓冲区中有未读数据时，将返回“connection in dubious state”错误信息，因为之前的会话未把数据读取完全，有数据遗留，这种情况对于后续连接是不安全的。

本方法总是使当前cosocket对象进入“closed”状态，所以不需要手工调用close方法。

113.tcpsock：getreusedtimes

语法：

count, err = tcpsock:getreusedtimes()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：返回当前连接重用次数。如果失败，则返回nil和错误描述字串。

如果当前连接不是来自于内建的连接池，将返回0，表示这个连接未被重用过。如果本连接来自于连接池，则返回值是非0值。

114.ngx.socket.connect

语法：

tcpsock, err = ngx.socket.connect(host, port)

tcpsock, err = ngx.socket.connect("unix:/path/to/unix-domain.socket")

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*。

说明：本方法把ngx.socket.tcp（）和connect（）组合成单一操作，下面是一个实际应用例子。

local sock = ngx.socket.tcp()

local ok, err = sock:connect(...)

ifnot ok then

 return nil, err

end

return sock

settimeout无法为本方法指定连接超时值，需要使用lua_socket_connect_timeout指令。

115.ngx.get_phase

语法：

str = ngx.get_phase()

上下文：init_by_lua*、init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：获取当前运行阶段名字，可能的返回值如下。

·init for the context of init_by_lua*；

·init_worker for the context of init_worker_by_lua*；

·ssl_cert for the context of ssl_certificate_by_lua*；

·ssl_session_fetch for the context of ssl_session_fetch_by_lua*；

·ssl_session_store for the context of ssl_session_store_by_lua*；

·set for the context of set_by_lua*；

·rewrite for the context of rewrite_by_lua*；

·balancer for the context of balancer_by_lua*；

·access for the context of access_by_lua*；

·content for the context of content_by_lua*；

·header_filter for the context of header_filter_by_lua*；

·body_filter for the context of body_filter_by_lua*；

·log for the context of log_by_lua*；

·timer for the context of user callback functions for ngx.timer.*。

116.ngx.thread.spawn

语法：

co = ngx.thread.spawn(func, arg1, arg2, ...)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：使用func为运行函数创建一个新的用户级轻量化线程，参数为arg1、arg2等。返回值co是Lua线程（或Lua协程）代表这个轻量化线程的协程对象。轻量化线程是一种ngx_lua模块调度的特殊的Lua协程。

ngx.thread.spawn返回之前，func函数会被使用参数arg1、arg2等调用，直到返回。任何错误都会导致函数返回，或者因为通过Nginx Lua API进行I/O操作（如tcpsocket：receive）导致挂起。ngx.thread.spawn返回以后，新创建的轻量化线程将在各种I/O事件中保持异步运行。所有rewrite_by_lua、access_by_lua、content_by_lua运行起来的Lua代码块，都会被ngx_lua自动创建一个样板协程来运行。这个样板轻线程名字为“entry threads”。

默认地，相关的Nginx处理器（如rewrite_by_lua处理器）直到遇到下列情况，否则不会中止：

·所有的“entry thread”和所有的用户轻量化线程中止。

·“entry thread”或一个用户轻量化线程通过调用ngx.exit、ngx.exec、ngx.redirect、ngx.req.set_uri（uri，true）中止。

·“entry thread”遇到一个Lua错误中止。

当轻线程遇到一个Lua错误中止的时候，不会终止其他轻线程。因为Nginx子请求模式的限制，常规上不允许中断一个正在运行的子请求，也不允许中断待定状态的线程，必须使用ngx.thread.wait等待协程中止。在严重异常的情况下，可以使用ngx.ERROR（-1）、408、444或499状态码的ngx.exit中断待定的子请求。

轻线程不是按抢先模式调度的，所以不会被自动分配时间片。线程排外地在CPU上运行，直到：

·一个（非阻塞）I/O操作不能够在一次单一的运行中完成。

·通过coroutine.yield放弃运行。

·Lua错误中断或调用了ngx.exit、ngx.exec、ngx.redirect或ngx.req.set_uri（uri，true）。

前两种情况下，纯线程通常会被ngx_lua调度器恢复，除非整个进程退出了。

轻线程可以创建自己的轻线程。一个通过coroutine.create创建的协程也可以创建“轻线程”。一个直接创建轻线程的协程（可以是普通的Lua协程或轻线程）叫做新线程的“父协程”。

父协程可以通过调用ngx.thread.wait等待所有的子轻线程退出。可以在轻线程的协程上调用coroutines.status（）和coroutine.yield（）。

线程对应的协程状态可以是迟钝的状态，如果：

·当前线程已经中断（成功或发生错误）。

·父协程仍然存在。

·父协程没有在ngx.thread.wait上等待。

下面的例子演示在轻线程的协程对象上通过coroutine.yield（）手工控制时间片。

local yield = coroutine.yield

function f()

 local self=coroutine.running()

ngx.say("f 1")

 yield(self)

ngx.say("f 2")

yield(self)

 ngx.say("f 3")

end

local self=coroutine.running()

ngx.say("0")

yield(self)

ngx.say("1")

ngx.thread.spawn(f)

ngx.say("2")

yield(self)

ngx.say("3")

yield(self)

ngx.say("4")

会得到输出：

0

1

f 1

2

f 2

3

f 3

4

轻线程在单个Nginx请求处理器中同时并发处理上游请求时非常有用，有点像ngx.location.capture_multi可以和所有的Nginx Lua API工作一样。下面的例子演示在单Lua处理器中并发的MySQL、Memcached和上游HTTP服务请求，并且输出按照实际返回顺序的结果（与Facebook的BigPipe模式很像）：

-- query mysql, memcached, and a remote http service at the same time,

-- output the results in the order that they

-- actually return the results.

local mysql =require"resty.mysql"

local memcached =require"resty.memcached"

localfunction query_mysql()

local db = mysql:new()

 db:connect{

 host ="127.0.0.1",

 port =3306,

 database ="test",

 user ="monty",

 password ="mypass"

 }

local res, err, errno, sqlstate =

 db:query("select * from cats order by id asc")

 db:set_keepalive(0, 100)

 ngx.say("mysql done: ", cjson.encode(res))

end

localfunction query_memcached()

local memc = memcached:new()

 memc:connect("127.0.0.1", 11211)

local res, err = memc:get("some_key")

 ngx.say("memcached done: ", res)

end

localfunction query_http()

local res = ngx.location.capture("/my-http-proxy")

 ngx.say("http done: ", res.body)

end

ngx.thread.spawn(query_mysql) -- create thread 1

ngx.thread.spawn(query_memcached) -- create thread 2

ngx.thread.spawn(query_http) -- create thread 3

117.ngx.thread.wait

语法：

ok, res1, res2, ... = ngx.thread.wait(thread1, thread2, ...)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*。

说明：等待一个或多个轻线程，返回第一个中断线程的状态，无论成功或失败。thread1、thread2是使用ngx.thread.spawn创建的线程对象（协程）。返回值返回和coroutine.resume拥有完全相同的意思，ok值是一个布尔型值，指出线程是否退出，res1、res2用于存放协程函数返回值或错误的对象（失败的情况）。

只有直接的父协程才能够等待它的子线程，否则会抛出一个Lua异常。下面的例子演示ngx.thread.wait和ngx.location.capture模拟ngx.location.capture_multi：

local capture = ngx.location.capture

local spawn = ngx.thread.spawn

local wait = ngx.thread.wait

local say = ngx.say

localfunction fetch(uri)

 return capture(uri)

end

local threads = {

 spawn(fetch, "/foo"),

 spawn(fetch, "/bar"),

 spawn(fetch, "/baz")

 }

for i =1, #threads do

 local ok, res = wait(threads[i])

 if not ok then

 say(i, ": failed to run: ", res)

 else

 say(i, ": status: ", res.status)

 say(i, ": body: ", res.body)

 end

end

这是一个典型的wait all模式。下面的例子演示wait any模式：

function f()

 ngx.sleep(0.2)

 ngx.say("f: hello")

 return "f done"

end

function g()

 ngx.sleep(0.1)

 ngx.say("g: hello")

 return "g done"

end

local tf, err = ngx.thread.spawn(f)

if not tf then

 ngx.say("failed to spawn thread f: ", err)

 return

end

ngx.say("f thread created: ", coroutine.status(tf))

local tg, err = ngx.thread.spawn(g)

if not tg then

 ngx.say("failed to spawn thread g: ", err)

 return

end

ngx.say("g thread created: ", coroutine.status(tg))

ok, res = ngx.thread.wait(tf, tg)

if not ok then

 ngx.say("failed to wait: ", res)

return

end

ngx.say("res: ", res)

-- stop the "world", aborting other running threads

ngx.exit(ngx.OK)

输出：

f thread created: running

g thread created: running

g: hello

res: g done

118.ngx.thread.kill

语法：

ok, err = ngx.thread.kill(thread)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、ngx.timer.*。

说明：杀掉一个通过ngx.thread.spawn创建的轻线程。如果成功，ok返回true值，否则，ok返回nil，err返回错误描述。

本函数依赖于当前实现。只有父协程（或轻线程）可以杀掉一个线程，因为Nginx核心的限制，不能杀掉一个包含Nginx子请求处于待定状态的线程（如通过ngx.location.capture初始化的）。

119.ngx.on_abort

语法：

ok, err = ngx.on_abort(callback)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*。

说明：把一个Lua函数作为回调函数注册，当用户端（下游）过早地关闭连接时，会被自动调用。如果注册成功，ok返回1，否则返回nil，err返回错误提示信息。

所有的Nginx Lua API都可以在回调函数中使用，因为函数运行在一个特殊的轻线程中，就像这些线程是用ngx.thread.spawn创建出来的一样。回调函数可以在客户端中断时决定做些什么。例如，可以什么也不做，这样当前请求处理器将继续运行。回调函数也可以通过ngx.exit中断处理，例如：

localfunction my_cleanup()

-- custom cleanup work goes here, like cancelling a pending DB transaction

-- now abort all the "light threads" running in the current request handler

 ngx.exit(499)

end

local ok, err = ngx.on_abort(my_cleanup)

ifnot ok then

 ngx.log(ngx.ERR, "failed to register the on_abort callback: ", err)

 ngx.exit(500)

end

lua_check_client_abort指令设置为off（默认值）时，调用本函数时将总是返回“lua_check_client_abort is off”错误信息。

本函数依赖于当前实现。在一个请求处理器中，本回调只会被调用一次，子请求再调本函数会得到错误信息“duplicate call”。

120.ngx.timer.at

语法：

ok, err = ngx.timer.at(delay, callback, user_arg1, user_arg2, ...)

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：使用可选的用户参数和callback回调函数创建一个用户自定义时钟。

delay指定时钟从什么时候开始，可以使用小数如0.001表示1毫秒。0表示立即过期（马上回调函数被调用）。第二个参数是Lua函数，在时钟到期时会在一个轻线程中被调用。

user_arg1、user_arg2等参数是callback的参数，函数被调用时会传入这些参数。

当Nginx工作进程尝试关闭时，时钟会提前到期，函数提前被调用。例如，Nginx收到HUP信号，将重新载入配置文件。这时调用ngx.timer.at创建非零延迟的新时钟，将返回nil和“process exiting”错误消息。

从v0.9.3版本开始，在工作进程开始关闭的时候允许创建零延迟的时钟。

当一个时钟到期了，回调函数中的Lua代码运行在一个从创建时钟的请求中分离的轻线程中。所以，与其相同生命周期的请求创建的对象，如cosockets，不能够在原始请求和时钟回调函数中共享。

这是一个简单的例子：

location/ {

 ...

log_by_lua_block {

 local function push_data(premature, uri, args, status)

 -- push the data uri, args, and status to the remote

 -- via ngx.socket.tcp or ngx.socket.udp

 -- (one may want to buffer the data in Lua a bit to

 -- save I/O operations)

 end

 local ok, err = ngx.timer.at(0, push_data,ngx.var.uri, ngx.var.args, ngx.header.status)

 if not ok then

 ngx.log(ngx.ERR, "failed to create timer: ", err)

 return

 end

 }

}

同样可以创建一个无限发生的时钟，示例中一个时钟通过在回调函数中再次调用ngx.timer.at实现每5秒触发一次，下面是代码：

local delay =5

local handler

handler =function (premature)

-- do some routine job in Lua just like a cron job

 if premature then

 return

 end

 local ok, err = ngx.timer.at(delay, handler)

 if not ok then

 ngx.log(ngx.ERR, "failed to create the timer: ", err)

 return

 end

end

local ok, err = ngx.timer.at(delay, handler)

if not ok then

 ngx.log(ngx.ERR, "failed to create the timer: ", err)

 return

end

因为时钟回调在后台运行，其运行时间不被计入客户请求应答时间，所以，它们会因为Lua程序中的错误或者只是单纯的负载过重就在服务端累积占用系统，耗费系统资源。为防止极端的结果，如Nginx服务崩溃，设置一个内建的限制，在工作进程中设置待定时钟数和运行时钟数。待定时钟数意味着还没有到期的时钟，运行时钟数指回调函数当前运行的时钟。

工作进程上的最大待定时钟数由lua_max_pending_timers指令配置。最大工作时钟数由lua_max_running_timers指令配置。

本函数依赖于当前实现。每一个运行中的时钟将从全局连接记录列表中占用一条记录，配置在nginx.conf中的worker_connections指令。所以，需要确保worker_connections配置了一条足够大的值以供实际的连接或伪造连接供时钟使用（通过lua_max_running_timer配置的最大运行时钟数）。

很多Nginx Lua API可以在时钟回调中使用，如流/数据报cosocket（ngx.socket.tcp和ngx.socket.udp）、共享内存词典（ngx.shared.DICT）、用户协程（coroutine.*）、用户轻量级线程（ngx.thread.*）、ngx.exit、ngx.now、ngx.time、ngx.md5、ngx.sha1_bin，都可以使用。但是子请求API（ngx.location.capture）、ngx.req.*API、下游输出API（如ngx.say、ngx.print、ngx.flush）是完全禁止使用的。

回调函数的参数支持多种标准的Lua类型（nil、booleans、numbers、strings、tables、closures、file handles）。有几种异常情况：不能传递通过coroutine.create和ngx.thread.spawn创建的线程对象，或ngx.socket.tcp、ngx.socket.udp、ngx.req.socket类型的cosocket对象，因为这些对象的生命周期是由请求处理器创建的，所以和处理器是相同生命周期的，而回调函数要从上下文中分开，运行在自己的上下文中。如果共享这些对象，将收到“no co ctx found”错误（线程对象）或“bad request”错误（cosocket对象）。如果需要使用，在回调函数中自己创建这些对象。

121.ngx.timer.running_count

语法：

count = ngx.timer.running_count()

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：返回当前运行的时钟数量。

122.ngx.timer.pending_count

语法：

count = ngx.timer.pending_count()

上下文：init_worker_by_lua*、set_by_lua*，rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：返回待定的时钟数量。

123.ngx.config.subsystem

语法：

subsystem = ngx.config.subsystem

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*、init_worker_by_lua*。

说明：标识当前Lua上下文基于哪个Nginx子系统。这个模块总是返回“http”。在ngx_stream_lua_module下，返回值是“stream”。

124.ngx.config.debug

语法：

debug = ngx.config.debug

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*、init_worker_by_lua*。

说明：返回当前Nginx是否是调试版本。例如，当前Nginx通过./configure option--with-debug参数配置和编译。

125.ngx.config.prefix

语法：

prefix = ngx.config.prefix()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*，ngx.timer.*、init_by_lua*、init_worker_by_lua*。

说明：返回Nginx服务前缀路径，即启动时通过-p参数传进入的值，或者是预编译时通过--prefix参数在./configure脚本指定的。

126.ngx.config.nginx_version

语法：

ver = ngx.config.nginx_version

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*、init_worker_by_lua*。

说明：返回当前Nginx核心的数值型版本号。例如，版本号1.4.3将作为数字1004003返回。

127.ngx.config.nginx_configure

语法：

str = ngx.config.nginx_configure()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*。

说明：返回./configure命令行的参数字符串。

128.ngx.config.ngx_lua_version

语法：

ver = ngx.config.ngx_lua_version

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*。

说明：返回当前ngx_lua的版本号的整型值。例如，0.9.3版本将返回9003。

129.ngx.worker.exiting

语法：

exiting = ngx.worker.exiting()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*、init_worker_by_lua*。

说明：返回一个布尔值，标示当前工作进程是否已经开始退出。退出发生在配置文件重载时（HUP信号）。

130.ngx.worker.pid

语法：

pid = ngx.worker.pid()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*、init_worker_by_lua*。

说明：返回当前工作进程的ID（PID）。这个函数比ngx.var.pid更有效，可以用于ngx.var.VARIABLE不能使用的上下文中（如init_worker_by_lua）。

131.ngx.worker.count

语法：

count = ngx.worker.count()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_by_lua*、init_worker_by_lua*。

说明：返回工作进程数量（nginx.conf中worker_processes指令的值）。

132.ngx.worker.id

语法：

count = ngx.worker.id()

上下文：set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、init_worker_by_lua*。

说明：返回当前工作进程的序数（从0开始）。如果总的工作进程数是N，那么返回值将是0－（N－1）。

这个函数只有在Nginx 1.9.1+以上版本中返回有意义的数值，在早期版本中返回nil。

133.ngx.semaphore

语法：

local semaphore = require "ngx.semaphore"

说明：实现一个典型的信号灯，用于不同的轻线程同步。支持在不同上下文创建的轻线程中共享同一个信号灯，条件是lua_code_cache指令打开（默认打开）并且所有的轻线程在同一个工作进程上。

Lua模块不支持被模块自己装载，但支持通过lua-resty-core库装载。具体细节可在lua-resty-core模块ngx.semaphore部分官方文档查阅。

134.ngx.balancer

语法：

local balancer = require "ngx.balancer"

说明：这是一个Lua模块，提供一个Lua API允许定义一个完全动态的纯Lua负载均衡器。Lua模块不支持被模块自己装载，但支持通过lua-resty-core库装载。具体细节可在lua-resty-core模块ngx.balancer部分官方文档查阅。

135.ngx.ssl

语法：

local ssl = require "ngx.ssl"

说明：本模块提供了一个方法以控制SSL握手，工作在ssl_certificate_by_lua*类的上下文中。

136.ngx.ocsp

语法：

local ocsp = require "ngx.ocsp"

说明：本模块提供了一个API执行OCSP请求、OCSP应答验证和OCSP stapling。通常，本模块和ngx.ssl模块在上下文ssl_certificate_by_lua*中使用。

137.ndk.set_var.DIRECTIVE

语法：

res = ndk.set_var.DIRECTIVE_NAME

上下文：init_worker_by_lua*、set_by_lua*、rewrite_by_lua*、access_by_lua*、content_by_lua*、header_filter_by_lua*、body_filter_by_lua*、log_by_lua*、ngx.timer.*、balancer_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：这个机制允许调用其他的C模块通过NDK实现的指令。例如，下面set-misc-nginx-module指令可以被访问：set_quote_sql_str、set_quote_pgsql_str、set_quote_json_str、set_unescape_uri、set_escape_uri、set_encode_base32、set_decode_base32、set_encode_base64、set_decode_base64、set_encode_hex、set_decode_hex、set_sha1、set_md5。

例如：

local res = ndk.set_var.set_escape_uri('a/b');

-- now res == 'a%2fb'

同样地，encrypted-session-nginx-module提供的指令也可以被访问：

set_encrypt_session

set_decrypt_session

详情请参阅ngx_devel_kit模块。

138.coroutine.create

语法：

co = coroutine.create(f)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、init_by_lua*、ngx.timer.*、header_filter_by_lua*、body_filter_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：使用Lua函数创建一个用户协程，返回是协程对象；和标准的Lua coroutine.create API一样，但是工作在ngx_lua创建协程的上下文中。

这个API首次使用在0.9.2版本开始的init_by_lua*上下文中。

139.coroutine.resume

语法：

ok, ... = coroutine.resume(co, ...)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、init_by_lua*、ngx.timer.*、header_filter_by_lua*、body_filter_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：使之前挂起的协程恢复运行；和标准的Lua coroutine.resume API一样，但是工作在ngx_lua创建协程的上下文中。

140.coroutine.yield

语法：

... = coroutine.yield(...)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、init_by_lua*、ngx.timer.*、header_filter_by_lua*、body_filter_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：挂起当前的Lua协程；和标准的Lua coroutine.yield API一样，但是工作在ngx_lua创建协程的上下文中。

141.coroutine.wrap

语法：

co = coroutine.wrap(f)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、init_by_lua*、ngx.timer.*、header_filter_by_lua*、body_filter_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和标准的Lua coroutine.wrap API一样，但是工作在ngx_lua创建协程的上下文中。

142.coroutine.running

语法：

co = coroutine.running()

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、init_by_lua*、ngx.timer.*、header_filter_by_lua*、body_filter_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和标准coroutine.running API一样。

143.coroutine.status

语法：

status = coroutine.status(co)

上下文：rewrite_by_lua*、access_by_lua*、content_by_lua*、init_by_lua*、ngx.timer.*、header_filter_by_lua*、body_filter_by_lua*、ssl_certificate_by_lua*、ssl_session_fetch_by_lua*、ssl_session_store_by_lua*。

说明：和标准Lua coroutine.status API一样。
28.3　小结

本章详细介绍了ngx_lua模块中的API和常量，并针对每一个API给出了语法、上下文的要求，方便读者在工作中查阅和使用这些API和常量。
EPUB/cover.xhtml
[image: Cover]

EPUB/cover.jpg
#RIT

AEBI20FHEANERLROAREAERMNE)
R, RAMHR T ENginx P ALuaFF LR A REMRATS X i =
lE
FPL #

Tgonx Luia in Achon

Nginx Lua

