

 etcd技术内幕

 	
 第1章 etcd入门

 	
 第2章 Raft协议

 	
 第3章 etcd-raft模块详解

 	
 第4章 网络层

 	
 第5章 WAL日志与快照

 	
 第6章 storage

 	
 第7章 etcd-server详解

 	
 第8章 etcd客户端详解

 	
 参考文献

 第1章 etcd入门

1.1 etcd简介

etcd是一个可靠的分布式KV存储，其底层使用Raft算法保证一致性，主要用于共享配置和服务发现。etcd是CoreOS公司发起的一个开源项目，授权协议为Apache，其源代码地址为https：//github.com/coreos/etcd。

目前提供配置共享和服务发现功能的组件还是比较多的，其中应用最为广泛、大家最为熟悉的应该就是ZooKeeper了，很多开源项目也都在不同程度上依赖了ZooKeeper，例如，Dubbo、Kafka等。

这里简单介绍一下“服务发现”和“共享配置”两个概念。随着一个系统的不断迭代，功能模块会不断增加，对整个系统进行服务的拆分是必然的，这就会出现多个服务之间的相互调用，而在出现服务发现组件之前，一般是通过读取配置文件中预先设置的IP来获取服务的地址，然后进行调用。这会导致很多问题，例如，某些服务已经不可用时，调用方不能及时感知，负载均衡比较复杂，等等。使用服务发现组件之后，我们可以将服务提供方的信息注册到服务发现组件，例如，注册到ZooKeeper中，然后定期发送心跳等信息，让服务发现组件知晓服务提供方是可用的。当调用方进行服务调用时，会先请求服务发现组件，由服务发现组件来保证返回可用的服务地址及负载均衡等功能。

在一个系统的不同模块中有很多配置信息，例如，数据库地址、连接配置信息等都差不多，如果使用静态配置文件的方式实现，则需要将相同的信息写多份，每次更新配置时也需要更新多次。如果将这些配置信息注册到共享配置组件中，则系统的不同模块在启动时可从共享配置组件中获取配置，同时会监听配置信息的更改，当配置信息发生变更时，可以自动将配置值替换成新值。

在Golang社区中，etcd则是唯一一个可以媲美ZooKeeper的组件，在有些方面，etcd甚至超越了 ZooKeeper，给开发者眼前一亮的感觉。下面简单列举一下 etcd 相较于 ZooKeeper的优势。

· 一致性协议：一致性协议是配置共享和服务发现组件的核心，etcd底层采用了Raft协议，而ZooKeeper使用ZAB协议，ZAB协议是一种类Paxos的一致性协议。目前公认的是Raft比Paxos协议易于理解，工程化也较为容易。

· API接口：etcd v2版本中提供了HTTP+JSON的调用方式，在etcd v3版本的客户端中则使用GRPC与服务端进行交互，而GRPC本身就是跨平台的。

· 性能：在官方提供的基准测试数据中，etcd集群可以支持每秒10000+次的写入，性能相当可观，优于ZooKeeper。

· 安全性：etcd支持TLS访问，而ZooKeeper在权限控制这方面做得略显粗糙。

etcd也有很多成功的案例，最为大家熟知的就是Kubernetes，其底层就依赖于etcd实现集群状态和配置的管理。除了Kubernetes，Cloud Foundry等500+个GitHub项目都使用了etcd。etcd在GitHub上也有17000+的Star和近4000的Fork。

1.2 数据模型

etcd 支持可靠的键值对存储并且提供了可靠的 Watcher 机制，其中的键值对存储支持多版本，并且具备能够“Watch”历史事件的功能。这里简单介绍多版本存储的含义，假设键K1对应的值为V1，当我们将K1对应的值修改成V2时，etcd并不会直接将V1修改成V2，而是同时记录V1和V2两个值，并通过不同的版本号进行区分。另外，Watch历史事件的含义是，我们可以向一个 Key 添加 Watcher，同时可以指定一个历史版本，从该版本开始的所有事件都会触发该Watcher。

随着应用不断运行，键值对不断修改，每个Key都在etcd中保存了多个版本，数据量也会越来越大。为了缓解压力，etcd会定期进行压缩，清理过旧的数据。

在很多现代数据库系统中，都用了B树索引加速查询，etcd也是如此，其存储中会维护一个字段序的B树索引。在B树索引的每个索引项中，都存储了一个Key值，这样可以快速定位指定的Key或是进行范围查询。而每个Key值对应了多个版本号，etcd中维护了一个全局自增的版本号，为每次事务分配一个全局唯一的版本号（main revision），事务中的每个操作也有唯一的编号（sub revision），通过这两部分可以确定一个唯一的Value值。

每个Key会对应多个generation，当Key首次创建时，会同时创建一个与之关联的generation实例，当该Key被修改时，会将对应的版本记录到generation中，当Key被删除时，会向generation中添加tombstone，并创建新的generation，会向新generation中写入后续的版本信息。

在查询时，先在内存索引中通过用户指定的Key值，查找到该Key值对应的全部版本号，然后根据用户指定的版本号，从底层存储中查找到具体的 Value 值。当然，如果指定的版本号已经被etcd压缩删除，则无法再查询到该版本的Value值。

在etcd v3版本中，底层存储使用的是BoltDB，其中的Key是版本信息（main revision+sub revision）。这样，在查询时先通过上述B树索引查找到对应的版本信息，然后在BoltDB中通过版本信息查找相应的Value值。

1.3 环境搭建

了解了etcd中基本的概念和数据模型之后，我们开始搭建阅读etcd源码的环境。这里推荐使用Goland，如果读者熟悉其他IDE，也可以按照下面的步骤进行搭建。

1.3.1 环境变量

首先需要从 Golang 官方网站上下载最新的 Golang 包，笔者在开始写作时的最新版本是go1.10.darwin-amd64.tar.gz，下载完成后进行解压。接下来我们需要配置相应的环境变量，打开～/.bash_profile文件，添加如下内容：

如果读者使用了其他终端，则需要在相应的终端配置文件中添加上述配置。最后执行一下“source.bash_profile”命令编译配置文件。我们可以通过“go env”命令验证环境变量配置是否成功。

1.3.2 代码结构

我们可以直接使用“go get”命令下载etcd的源码代码，具体命令如下：

下载过程可能比较长，请读者耐心等待，待下载完成之后，即可以将代码直接导入Goland中了。这里简单介绍其中各个模块的主要功能，如下所示。

· raft：Raft 协议的核心实现，其中只实现了基本的 Raft 协议，并未提供实现网络层相关的内容。

· raft-http：Raft协议中各个节点发送消息时使用的网络层实现，该模块与raft模块紧密相关。

· wal和snap：WAL日志和快照存储相关的实现。

· store：etcd中的v2版本存储实现，v2版本的存储是完全的内存实现。

· mvcc：etcd中的v3版本存储实现，v3版本的存储底层使用BoltDB实现持久化存储。

· lease：租约相关的实现。

· auth和alarm：权限和报警相关的实现。

· etcdserver：etcd 服务端实现，它会基于上述模块提供的功能，对外提供一个 etcd 节点的完整功能。

· client：v2版本客户端的具体实现，v2版本的客户端是通过HTTP+JSON的方式与服务端进行交互的。

· clientv3：v3版本客户端的具体实现，v3版本的客户端是通过GRPC的方式与服务端进行交互的。

1.3.3 运行

etcd 提供了单机模式和集群模式两种模式，单机模式比较简单，直接编译之前下载的源代码得到/bin/etcd二进制文件并运行即可。默认配置运行时，etcd服务端会监听本地的2379和2380两个端口，其中2379端口用于与客户端的交互，2380端口则是用于etcd节点内部交互（主要是发送Raft协议相关的消息等）。当etcd服务端启动时，我们可以使用etcdctl工具进行测试，关于etcdctl命令的使用，这里不再展开介绍，请读者参考官方文档进行学习。

本小节重点介绍集群模式的搭建。为了方便测试和部署，在本小节的示例中将会在同一台机器上启动三个etcd节点，但每个节点监听不同的端口，形成伪分布式的集群。

首先介绍静态配置的启动方式，这种方式会预先将集群中各个节点的配置信息分配好，然后将集群中的节点逐个启动，这些节点将根据配置信息组成集群。在该示例中，三个节点启动的代码分别如下所示。

这里简单介绍一下上述命令使用的参数。

·--name：etcd集群中的节点名称，在同一个集群中必须是唯一的。

·--listen-peer-urls：用于集群内各个节点之间通信的 URL 地址，每个节点可以监听多个URL地址，集群内部将通过这些URL地址进行数据交互，例如，Leader节点的选举、Message消息传输或是快照传输等。

·--initial-advertise-peer-urls：建议用于集群内部节点之间交互的URL地址，节点间将以该值进行通信。

·--listen-client-urls：用于当前节点与客户端交互的URL地址，每个节点同样可以向客户端提供多个URL地址。

·--advertise-client-urls：建议客户端使用的URL地址，该值用于etcd代理或etcd成员与etcd节点通信。

·--initial-cluster-token etcd-cluster-1：集群的唯一标识。

·--initial-cluster：集群中所有的initial-advertise-peer-urls 的合集。

·--initial-cluster-state new：新建集群的标识。

当集群中各个节点按照上述配置分别启动后，集群会通过Leader选举选出一个Leader节点，另外两个节点将成为Follower节点。我们可以使用etcdctl命令检测当前集群的状态，etcdctl的相关使用方式请读者参考官方文档进行学习。

除了静态配置的启动方式，etcd还提供了服务发现和DNS发现两种启动方式，这两种启动方式并不复杂，这里不再一一展开介绍，读者可以参考官方文档进行测试。

本章小结

本章首先对etcd进行了简单的介绍，以及介绍etcd相较于ZooKeeper的优点。之后，我们简单介绍了etcd的数据模型，其中提到etcd中在内存中维护了B树索引，并且为每个Key维护了多个版本，在etcd v3中使用BoltDB作为持久存储，而etcd v2则是全内存实现。然后，我们简单介绍了etcd源码环境的搭建及代码结构，最后介绍了etcd集群中最基本的静态配置启动方式。希望通过本章的介绍，读者可以大致了解etcd的数据结构及代码结构，也希望读者能够自己亲自完成etcd的源码环境搭建，并使用静态配置的方式启动本地的测试集群。
第2章 Raft协议

在正式开始介绍 Raft 协议之间，我们有必要简单介绍一下其相关概念。在分布式系统中，一致性是比较常见的概念，所谓一致性指的是集群中的多个节点在状态上达成一致。在程序和操作系统不会崩溃、硬件不会损坏、服务器不会掉电、网络绝对可靠且没有延迟的理想情况下，我们可以将集群中的多个节点看作一个整体，此时要保证它们的一致性并不困难。

但是在现实的场景中，很难保证上述极端的条件全部满足，节点之间的一致性也就很难保证，这样就需要 Paxos、Raft 等一致性协议。一致性协议可以保证在集群中大部分节点可用的情况下，集群依然可以工作并给出一个正确的结果，从而保证依赖于该集群的其他服务不受影响。这里的“大部分节点可用”指的是集群中超过半数以上的节点可用，例如，集群中共有 5个节点，此时其中有 2 个节点出现故障宕机，剩余的可用节点数为 3，此时，集群中大多数节点处于可用的状态，从外部来看集群依然是可用的。

常见的一致性算法有Paxos、Raft等，Paxos协议是Leslie Lamport于1990年提出的一种基于消息传递的、具有高度容错特性的一致性算法，Paxos 算法解决的主要问题是分布式系统内如何就某个值达成一致。在相当长的一段时间内，Paxos 算法几乎成为一致性算法的代名词，但是 Paxos 有两个明显的缺点：第一个也是最明显的缺点就是 Paxos 算法难以理解，Paxos 算法的论文本身就比较晦涩难懂，要完全理解 Paxos 协议需要付出较大的努力，很多经验丰富的开发者在看完 Paxos 论文之后，无法将其有效地应用到具体工程实践中，这明显增加了工程化的门槛，也正因如此，才出现了几次用更简单的术语来解释 Paxos 的尝试。Paxos算法的第二个缺点就是它没有提供构建现实系统的良好基础，也有很多工程化 Paxos 算法的尝试，但是它们对 Paxos 算法本身做了比较大的改动，彼此之间的实现差距都比较大，实现的功能和目的都有所不同，同时与Paxos算法的描述有很多出入。例如，著名Chubby，它实现了一个类Paxos的算法，但其中很多细节并未被明确。本章并不打算详细介绍 Paxos 协议的相关内容，如果读者对Paxos感兴趣，则可以参考Lamport发表的三篇论文：《The Part-Time Parliament》、《Paxos made simple》、《Fast Paxos》。

正因为上述的缺点，导致Paxos协议处于一种比较尴尬的境地：在理论上Paxos算法是正确可行的，但是实际的工程中很少有与 Paxos 算法类似的实践。很多工程实践（包括上面提到的Chubby）都是从Paxos协议的研究开始的，然后在实践的过程中发现很多难题，之后通过各种技巧和手段进行改进，最后开发出一种与Paxos 明显不同的东西，这就导致最终开发出来的程序建立在一个未经证明的协议之上。也正因为如此，人们开始寻找新的一致性算法，寻找的结果也就是本章介绍的重点ü　Raft协议。

Raft算法是一种用于管理复制日志的一致性算法，其功能与Paxos算法相同类似，但其算法结构和Paxos算法不同，在设计Raft算法时设计者就将易于理解作为其目标之一，这使得Raft算法更易于构建实际的系统，大幅度减少了工程化的工作量，也方便开发者此基础上进行扩展。虽然Raft论文已经很好理解，但是本章并不打算直接翻译Raft论文，而是尽可能通过示例介绍Raft协议如何处理各种不同的场景，并且重点介绍Raft协议中的Leader选举和日志复制等方面的内容。

2.1 Leader选举

Raft 协议的工作模式是一个 Leader 节点和多个 Follower 节点的模式，也就是常说的Leader-Follower 模式。在 Raft 协议中，每个节点都维护了一个状态机，该状态机有三种状态，分别是Leader状态、Follower状态和Candidate状态，在任意时刻，集群中的任意一个节点都处于这三个状态之一。各个状态和转换条件如图2-1所示。

 图2-1

在多数情况下，集群中有一个Leader节点，其他节点都处于Follower状态，下面简单介绍一下每个状态的节点负责的主要工作。

· Leader节点负责处理所有客户端的请求，当接收到客户端的写入请求时，Leader节点会在本地追加一条相应的日志，然后将其封装成消息发送到集群中其他的Follower节点。当Follower节点收到该消息时会对其进行响应。如果集群中多数（超过半数）节点都已收到该请求对应的日志记录时，则 Leader 节点认为该条日志记录已提交（committed），可以向客户端返回响应。Leader 还会处理客户端的只读请求，其中涉及一个简单的优化，后面介绍具体实现时，再进行详细介绍。Leader节点的另一项工作是定期向集群中的 Follower 节点发送心跳消息，这主要是为了防止集群中的其他Follower节点的选举计时器超时而触发新一轮选举。

· Follower节点不会发送任何请求，它们只是简单地响应来自Leader或者Candidate 的请求；Follower节点也不处理Client的请求，而是将请求重定向给集群的Leader节点进行处理。

· Candidate节点是由Follower节点转换而来的，当Follower节点长时间没有收到Leader节点发送的心跳消息时，则该节点的选举计时器就会过期，同时会将自身状态转换成Candidate，发起新一轮选举。选举的具体过程在下面详细描述。

了解了Raft协议中节点的三种状态及各个状态下节点的主要行为之后，我们通过一个示例介绍Raft协议中Leader选举的大致流程。为了方便描述，我们假设当前集群中有三个节点（A、B、C），如图2-2所示。

 图2-2

在Raft协议中有两个时间控制Leader选举发生，其中一个是选举超时时间（election timeout），每个Follower节点在接收不到Leader节点的心跳消息之后，并不会立即发起新一轮选举，而是需要等待一段时间之后才切换成Candidate状态发起新一轮选举。这段等待时长就是这里所说的election timeout（后面介绍etcd的具体实现时会提到，Follower节点等待的时长并不完全等于该配置）。之所以这样设计，主要是 Leader 节点发送的心跳消息可能因为瞬间的网络延迟或程序瞬间的卡顿而迟到（或是丢失），因此就触发新一轮选举是没有必要的。election timeout一般设置为150ms～300ms之间的随机数。另一个超时时间是心跳超时时间（heartbeat timeout），也就是Leader节点向集群中其他Follower节点发送心跳消息的时间间隔。

当集群初始化时，所有节点都处于 Follower 的状态，此时的集群中没有 Leader 节点。当Follower 节点一段时间（选举计时器超时）内收不到 Leader 节点的心跳消息，则认为 Leader节点出现故障导致其任期（Term）过期，Follower节点会转换成Candidate状态，发起新一轮的选举。所谓 “任期（Term）”，实际上就是一个全局的、连续递增的整数，在 Raft 协议中每进行一次选举，任期（Term）加一，在每个节点中都会记录当前的任期值（currentTerm）。每一个任期都是从一次选举开始的，在选举时，会出现一个或者多个 Candidate 节点尝试成为 Leader节点，如果其中一个Candidate节点赢得选举，则该节点就会切换为Leader状态并成为该任期的Leader节点，直到该任期结束。

回到前面的示例中，此时节点 A 由于长时间未收到 Leader 的心跳消息，就会切换成为Candidate状态并发起选举（节点A的选举计时器（election timer）已被重置）。在选举过程中，节点A首先会将自己的选票投给自己，并会向集群中其他节点发送选举请求（Request Vote）以获取其选票，如图2-3（1）所示；此时的节点B和节点C还都是处于Term=0的任期之中，且都是Follower状态，均未投出Term=1任期中的选票，所以节点B和节点C在接收到节点A的选举请求后会将选票投给节点A，另外，节点B、C在收到节点A的选举请求的同时会将选举定时器重置，这是为了防止一个任期中同时出现多个Candidate节点，导致选举失败，如图2-3 （2）所示。注意，节点B和节点C也会递增自身记录的Term值。

 图2-3

在节点 A 收到节点 B、C 的投票之后，其收到了集群中超过半数的选票，所以在 Term=1这个任期中，该集群的Leader节点就是节点A，其他节点将切换成Follower状态，如图2-4所示。另外需要读者了解的是，集群中的节点除了记录当期任期号（currentTerm），还会记录在该任期中当前节点的投票结果（VoteFor）。

 图2-4

继续前面的示例，成为Term=1任期的Leader节点之后，节点A会定期向集群中的其他节点发送心跳消息，如图2-5（1）所示，这样就可以防止节点B和节点C中的选举计时器（election timer）超时而触发新一轮的选举；当节点B和节点C（Follower）收到节点A的心跳消息之后会重置选举计时器，如图2-5（2）所示，由此可见，心跳超时时间（heartbeat timeout）需要远远小于选举超时时间（election timeout）。

 图2-5

到这里读者可能会问，如果有两个或两个以上节点的选举计时器同时过期，则这些节点会同时由 Follower 状态切换成 Candidate 状态，然后同时触发新一轮选举，在该轮选举中，每个Candidate节点获取的选票都不到半数，无法选举出Leader节点，那么Raft协议会如何处理呢？这种情况确实存在，假设集群中有4个节点，其中节点A和节点B的选举计时器同时到期，切换到Candidate状态并向集群中其他节点发出选举请求，如图2-6（1）所示。

这里假设节点A发出的选举请求先抵达节点C，节点B发出的选举请求先抵达节点D，如图2-6（2）所示，节点A和节点B除了得到自身的选票之外，还分别得到了节点C和节点D投出的选票，得票数都是2，都没有超过半数。在这种情况下，Term=4这个任期会以选举失败结束，随着时间的流逝，当任意节点的选举计时器到期之后，会再次发起新一轮的选举。前面提到过election timeout是在一个时间区间内取的随机数，所以在配置合理的时候，像上述情况多次出现的概率并不大。

 图2-6

继续上面的示例，这里假设节点A的选举计时器再次到期（此次节点B、C、D 的选举计时器并未到期），它会切换成Candidate状态并发起新一轮选举（Term=5），如图2-7（1）所示，其中节点B虽然处于Candidate状态，但是接收到Term值比自身记录的Term值大的请求时，节点会切换成Follower状态并更新自身记录的Term值，所以该示例中的节点B也会将选票投给节点A，如图2-7（2）所示。

 图2-7

在获取集群中半数以上的选票并成为新任期（Term=5）的 Leader 之后，节点 A 会定期向集群中其他节点发送心跳消息；当集群中其他节点收到Leader节点的心跳消息的时候，会重置选举定时器，如图2-8所示。

 图2-8

介绍完集群启动时的Leader选举流程之后，下面分析Leader节点宕机之后重新选举的场景。继续上述4节点集群的示例，在系统运行一段时间后，集群当前的Leader节点（A）因为故障而宕机，此时将不再有心跳消息发送到集群的其他Follower节点（节点B、C、D），一段时间后，会有一个Follower节点的选举计时器最先超时，这里假设节点D的选举计时器最先超时，然后它将切换为Candidate状态并发起新一轮选举，如图2-9（1）所示。

 图2-9

当节点B和节点C收到节点D的选举请求后，会将其选票投给节点D，由于节点A已经宕机，没有参加此次选举，也就无法进行投票，但是在此轮选举中，节点D依然获得了半数以上的选票，故成为新任期（Term=6）的Leader节点，并开始向其他Follower节点发送心跳消息，如图2-10所示。

 图2-10

当节点A恢复之后，会收到节点D发来的心跳消息，该消息中携带的任期号（Term=6）大于节点A当前记录的任期号（Term=5），所以节点A会切换成Follower状态。在Raft协议中，当某个节点接收到的消息所携带的任期号大于当前节点本身记录的任期号，那么该节点会更新自身记录的任期号，同时会切换为Follower状态并重置选举计时器，这是Raft算法中所有节点最后请读者考虑一个场景：如果集群中选出的Leader节点频繁崩溃或是其他原因导致选举频繁发生，这会使整个集群中没有一个稳定的Leader节点，这样客户端无法与集群中的Leader节点正常交互，也就会导致整个集群无法正常工作。

Leader选举是Raft算法中对时间要求较为严格的一个点，一般要求整个集群中的时间满足如下不等式：

广播时间 ＜＜ 选举超时时间 ＜＜ 平均故障间隔时间

在上述不等式中，广播时间指的是从一个节点发送心跳消息到集群中的其他节点并接收响应的平均时间；平均故障间隔时间就是对于一个节点而言，两次故障之间的平均时间。为了保证整个Raft集群可用，广播时间必须比选举超时时间小一个数量级，这样Leader节点才能够发送稳定的心跳消息来重置其他 Follower 节点的选举计时器，从而防止它们切换成 Candidate 状态，触发新一轮选举。在前面的描述中也提到过，选举超时时间是一个随机数，通过这种随机的方式，会使得多个Candidate节点瓜分选票的情况明显减少，也就减少了选举耗时。另外，选举超时时间应该比平均故障间隔时间小几个数量级，这样Leader节点才能稳定存在，整个集群才能稳定运行。当Leader节点崩溃之后，整个集群会有大约相当于选举超时的时间不可用，这种情况占比整个集群稳定运行的时间还是非常小的。

广播时间和平均故障间隔时间是由网络和服务器本身决定的，但是选举超时时间是可以由我们自己调节的。一般情况下，广播时间可以做到0.5ms～50ms，选举超时时间设置为200ms～1s之间，而大多数服务器的平均故障间隔时间都在几个月甚至更长，很容易满足上述不等式的时间需求。

2.2 日志复制

通过上一节介绍的Leader选举过程，集群中最终会选举出一个Leader节点，而集群中剩余的其他节点将会成为Follower节点。Leader节点除了向Follower节点发送心跳消息，还会处理客户端的请求，并将客户端的更新操作以消息（Append Entries消息）的形式发送到集群中所有的Follower节点。当Follower节点记录收到的这些消息之后，会向Leader节点返回相应的响应消息。当Leader节点在收到半数以上的Follower节点的响应消息之后，会对客户端的请求进行应答。最后，Leader会提交客户端的更新操作，该过程会发送Append Entries消息到Follower节点，通知Follower节点该操作已经提交，同时Leader节点和Follower节点也就可以将该操作应用到自己的状态机中。

上面这段描述仅仅是Raft协议中日志复制部分的大致流程，下面我们依然通过一个示例描述该过程，为了方便描述，我们依然假设当前集群中有三个节点（A、B、C），其中A是Leader节点，B、C是Follower 节点，此时有一个客户端发送了一个更新操作到集群，如图 2-11（1）所示。前面提到过，集群中只有Leader节点才能处理客户端的更新操作，这里假设客户端直接将请求发给了节点A。当收到客户端的请求时，节点A会将该更新操作记录到本地的Log中，如图2-11（2）所示。

 图2-11

之后，节点A会向其他节点发送Append Entries消息，其中记录了Leader节点最近接收到的请求日志，如图2-12（1）所示。集群中其他Follower节点收到该Append Entries消息之后，会将该操作记录到本地的Log中，并返回相应的响应消息，如图2-12（2）所示。

 图2-12

当Leader节点收到半数以上的响应消息之后，会认为集群中有半数以上的节点已经记录了该更新操作，Leader 节点会将该更新操作对应的日志记录设置为已提交（committed），并应用到自身的状态机中。同时 Leader 节点还会对客户端的请求做出响应，如图 2-13（1）所示。同时，Leader节点也会向集群中的其他Follower节点发送消息，通知它们该更新操作已经被提交，Follower节点收到该消息之后，才会将该更新操作应用到自己的状态机中，如图2-13（2）所示。

 图2-13

在上述示例的描述中我们可以看到，集群中各个节点都会维护一个本地Log用于记录更新操作，除此之外，每个节点还会维护commitIndex和lastApplied两个值，它们是本地Log的索引值，其中commitIndex表示的是当前节点已知的、最大的、已提交的日志索引值，lastApplied表示的是当前节点最后一条被应用到状态机中的日志索引值。当节点中的 commitIndex 值大于lastApplied值时，会将lastApplied 加1，并将lastApplied对应的日志应用到其状态机中。

在Leader节点中不仅需要知道自己的上述信息，还需要了解集群中其他Follower节点的这些信息，例如，Leader节点需要了解每个Follower节点的日志复制到哪个位置，从而决定下次发送 Append Entries 消息中包含哪些日志记录。为此，Leader 节点会维护 nextIndex[]和matchIndex[]两个数组，这两个数组中记录的都是日志索引值，其中nextIndex[]数组记录了需要发送给每个 Follower 节点的下一条日志的索引值，matchIndex[]表示记录了已经复制给每个Follower节点的最大的日志索引值。

这里简单看一下 Leader 节点与某一个 Follower 节点复制日志时，对应 nextIndex 和matchIndex值的变化：Follower节点中最后一条日志的索引值大于等于该Follower节点对应的nextIndex 值，那么通过 Append Entries 消息发送从 nextIndex 开始的所有日志。之后，Leader节点会检测该 Follower 节点返回的相应响应，如果成功则更新相应该 Follower 节点对应的nextIndex值和matchIndex值；如果因为日志不一致而失败，则减少nextIndex值重试。

下面我们依然通过一个示例来说明nextIndex[]和matchIndex[]在日志复制过程中的作用，假设集群现在有三个节点，其中节点A是Leader节点（Term=1），而Follower节点C因为宕机导致有一段时间未与Leader节点同步日志。此时，节点C的Log中并不包含全部的已提交日志，而只是节点A的Log的子集，节点C故障排除后重新启动，当前集群的状态如图2-14所示（这里只关心Log、nextIndex[]、matchIndex[]，其他的细节省略，另外需要注意的是，图中的Term=1表示的是日志发送时的任期号，而非当前的任期号）。

 图2-14

A作为Leader节点，记录了nextIndex[]和matchIndex[]，所以知道应该向节点C发送哪些日志，在本例中，Leader节点在下次发送Append Entries消息时会携带Index=2的消息（这里为了描述简单，每条消息只携带单条日志，Raft协议采用批量发送的方式，这样效率更高），如图2-15（1）所示。当节点C收到Append Entries消息后，会将日志记录到本地Log中，然后向Leader 节点返回追加日志成功的响应，当 Leader 节点收到响应之后，会递增节点 C 对应的nextIndex和matchIndex，这样Leader节点就知道下次发送日志的位置了，该过程如图2-15（2）所示。

在上例中，当Leader节点并未发生过切换，所以Leader节点始终准确地知道节点C对应nextIndex值和matchIndex值。

如果在上述示例中，在节点C故障恢复后，节点A宕机后重启，并且导致节点B成为新任期（Term=2）的 Leader 节点，则此时节点 B 并不知道旧 Leader 节点中记录的 nextIndex[]和matchIndex[]信息，所以新Leader节点会重置nextIndex[]和matchIndex[]，其中会将nextIndex[]全部重置为其自身Log的最后一条已提交日志的Index值，而matchIndex[]全部重置为0，如图2-16所示。

 图2-15

 图2-16

随后，新任期中的Leader节点会向其他节点发送Append Entries消息，如图2-17（1）所示，节点A已经拥有了当前Leader的全部日志记录，所以会返回追加成功的响应并等待后续的日志，而节点C并没有Index=2和Index=3两条日志，所以返回追加日志失败的响应，在收到该响应后，Leader节点会将nextIndex前移，如图2-17（2）所示。

 图2-17

然后新 Leader 节点会再次尝试发送 Append Entries 消息，循环往复，不断减小 nextIndex值，直至节点C返回追加成功的响应，之后就进入了正常追加消息记录的流程，不再赘述。

了解了 Log 日志及节点中基本的数据结构之后，请读者回顾前面描述的选举过程，其中Follower节点的投票过程并不像前面描述的那样简单（先收到哪个Candidate节点的选举请求，就将选票投给哪个Candidate节点），Follower节点还需要比较该Candidate节点的日志记录与自身的日志记录，拒绝那些日志没有自己新的Candidate节点发来的投票请求，确保将选票投给包含了全部已提交（committed）日志记录的 Candidate 节点。这也就保证了已提交的日志记录不会丢失：Candidate节点为了成为Leader节点，必然会在选举过程中向集群中半数以上的节点发送选举请求，因为已提交的日志记录必须存在集群中半数以上的节点中，这也就意味着每一条已提交的日志记录肯定在这些接收到节点中的至少存在一份。也就是说，记录全部已提交日志的节点和接收到Candidate节点的选举请求的节点必然存在交集，如图2-18所示。

 图2-18

如果Candidate节点上的日志记录与集群中大多数节点上的日志记录一样新，那么其日志一定包含所有已经提交的日志记录，也就可以获得这些节点的投票并成为Leader。

在比较两个节点的日志新旧时，Raft 协议通过比较两节点日志中的最后一条日志记录的索引值和任期号，以决定谁的日志比较新：首先会比较最后一条日志记录的任期号，如果最后的日志记录的任期号不同，那么任期号大的日志记录比较新；如果最后一条日志记录的任期号相同，那么日志索引较大的比价新。

这里只是大概介绍一下 Raft 协议的流程和节点使用的各种数据结构，读者需要了解的是Raft 协议的工作原理，如果对上述数据结构描述感到困惑，在后面介绍etcd-raft 模块时，还会再次涉及这些数据结构，到时候读者可以结合代码及这里的描述进一步进行分析。

2.3 网络分区的场景

接下来，我们来看一下Raft协议是如何处理网络分区情况的。在一个集群中，如果有部分节点的网络发生故障，与集群中另一部分节点的连接中断，就会出现网络分区，如图2-19所示，集群有A、B、C、D、E五个节点，其中节点A、B相互之间网络连通，节点C、D、E相互之间网络连通，但是这两部分节点之间出现网络故障，这就形成了网络分区。

 图2-19

这里依然通过一个示例来说明 Raft 协议对网络分区场景的处理。假设集群中节点 A 是Leader节点，它会向其他四个节点发送Append Entries消息和心跳消息，如图2-20（1）所示。当出现网络出现分区时，节点A的心跳消息只有节点B才能收到，而集群中的其他节点收不到，如图2-20（2）所示（图中节点A发往节点C、D、E的消息由于网络分区，并不会抵达节点C、D、E，故未在图中画出）。

 图2-20

随着时间的流逝，集群中与Leader节点隔离的网络分区（C、D、E）中，会率先有一个节点的选举计时器（election timer）超时，这里假设该节点是E，此时的节点E就会切换成Candidate状态并发起下一轮选举，如图2-21（1）所示。由于网络分区，当前集群中只有节点C、D能够收到节点E的选举请求，这里假设节点C、D都会将选票投给节点E，如图2-21（2）所示。

 图2-21

到此为止，节点 E 在此次选举中收到了得到三票（其中包括它本身的一票），达到集群半数以上，所以节点E成为新任期（Term=2）的Leader节点，如图2-22所示：

 图2-22

当网络故障被修复时，上述的网络分区也就会消失，此时节点 A（任期 Term=1 的 Leader节点）发送的心跳消息会被节点C、D、E接收到（图2-22中虽然省略了这些由于网络分区而无法送达的心跳消息，但实际上节点A依然认为自己是Leader节点，在发送心跳消息时也会向节点C、D、E发送心跳消息），但是这些心跳消息中携带的Term值小于当前C、D、E节点的Term值，会被C、D、E节点忽略；同时，节点E（Term=2任期的Leader节点）发送的心跳消息会被节点 A、B 接收到（图2-22 中同样省略了这些无法送达的心跳消息），不同的是，这些心跳消息携带的Term值大于当前A、B节点的Term值，所以节点A、B会切换成Follower状态，这样整个集群中的Leader节点依然是节点E。

读者可能会问：如果网络分区时，Leader节点划分到节点较多的分区中，如图2-23所示，此时节点较少的分区中，会有节点的选举计时器超时，切换成Candidate状态并发起新一轮的选举。但是由于该分区中节点数不足半数，所以无法选举出新的 Leader 节点。待一段时间之后，该分区中又会出现某个节点的选举计时器超时，会再次发起新一轮的选举，循环往复，从而导致不断发起选举，Term号不断增长。

在Raft协议中对这种情况有一个优化，当某个节点要发起选举之前，需要先进入一个叫作PreVote的状态，在该状态下，节点会先尝试连接集群中的其他节点，如果能够成功连接到半数以上的节点，才能真正发起新一轮的选举。通过这种方式就可以解决上述的问题，在后面分析etcd-raft模块时，还会详细介绍其具体实现。

 图2-23

回到前面的示例简单来介绍网络分区恢复时的相关处理。当网络分区恢复时，集群中存在新旧两个Leader节点（A和E），其中节点E的Term值较高，会成为整个集群中的Leader节点。但是由于之前的网络分区，节点A、B的本地Log中可能存在未提交的日志记录，如图2-24（1）所示，此时节点A和B会回滚未提交的日志记录，并重新复制新Leader节点的日志，如图2-24 （2）所示。

 图2-24

这样在网络分区恢复之后，整个集群的日志又会恢复一致。到此为止，网络分区场景下的Leader选举及日志复制过程就介绍完了，希望通过对这种特殊场景的介绍，读者能够更深刻地了解Raft协议的工作原理。

另一个需要介绍的问题是，网络分区场景下，客户端与集群的交互过程及日志复制的过程。这里我们先简单介绍一下客户端如何与集群进行交互并找到集群的Leader节点。在前面提到过，集群中只有Leader节点可以处理客户端发来的请求，当Follower节点收到客户端的请求时，也必须将Leader节点信息告知客户端，然后由Leader节点处理其请求，具体步骤如下：

（1）当客户端初次连接到集群时，会随机挑选一个服务器节点进行通信。

（2）如果客户端第一次挑选的节点不是 Leader 节点，那么该节点会拒绝客户端的请求，并且将它所知道的Leader节点的信息返回给客户端。

（3）当客户端连接到Leader节点之后，即可发送消息进行交互。

（4）如果在交互过程中 Leader 节点宕机，那么客户端的请求会超时，客户端会再次随机挑选集群中的节点，并从步骤1重新开始执行。

这里依然通过一个示例来介绍整个过程，假设集群依然有五个节点，在未发生网络分区时，节点A为集群的Leader节点，此时的客户端请求会发送到节点A，经过前面描述的日志复制过程后，节点A也会向客户端返回响应，与如图2-25（1）和（2）所示。

 图2-25

当节点A、B与节点C、D、E之间发生网络分区之后，客户端发往节点 A的请求将会超时，这主要是因为节点A无法将请求发送到集群中超过半数的节点上，该请求相应的日志记录也就无法提交，从而导致无法给客户端返回相应的响应，该过程如图2-26（1）和（2）所示。

 图2-26

前面已经介绍了网络分区之后的Leader选举过程，这里不再赘述，该示例中假设节点E被选举为新任期（Term=2）的Leader节点。当请求超时之后，客户端会重新随机选择一个节点，并获取新Leader节点的信息，客户端最终会连接到节点E并发送请求，而该网络分区中有超过半数的节点，请求对应的日志记录可以提交，所以客户端的请求不会再次出现超时，之后客户端会一直与节点E进行交互直至下次请求超时。上述过程的如图2-27（1）～（4）所示。

 图2-27

 图2-27（续）

在 Raft 协议的论文中，还给出了另一种 proxy 的方案：假设客户端连接到集群中的某个Follower 节点，该 Follower 节点会将客户端发送的所有请求转发给 Leader 节点进行处理，当Leader节点响应Follower节点之后，再由Follower节点响应客户端。当出现请求超时的情况时，客户端同样需要随机选择新的节点进行连接。

2.4 日志压缩与快照

通过前面章节的描述可知，随着客户端与集群不断地交互，每个节点上的日志记录会不断增加，但是服务器的空间都是有限的，日志量不能无限制地增长。另外，在节点重启时会重放日志记录，如果日志记录过多，则需要花费较长的时间完成重放操作。这就需要压缩和清除机制来减少日志量，从而避免上述情况。

定期生成快照是最常见也是最简单的压缩方法。在创建快照文件时，会将整个节点的状态进行序列化，然后写入稳定的持久化存储中，这样，在该快照文件之前的日志记录就可以全部丢弃了。例如，集群中变量a的值为100，客户端发送了一个更新请求将变量a更新为13，经过前面描述的日志复制过程之后，该请求对应的日志记录最终被提交并应用到集群中的每个节点中。此时每个节点中维护的变量 a 都是 13，而 a=13 这条日志记录就无须继续保留。在ZooKeeper、Chubby和etcd中都有类似上述的快照处理逻辑，这里只是介绍创建快照文件和压缩日志的基本逻辑，在后面的章节会具体介绍其实现。

在快照中除了节点当前的数据状态，还包含了其最后一条日志记录的任期号和索引号，如图2-28所示，该快照包含了6条日志记录，在快照的元数据中记录了第6条日志记录的任期号和索引号，在生成快照文件之后，即可将1～6条日志记录丢弃了。

 图2-28

一般情况下，集群中的每个节点都会自己独立、定时地创建快照，在其状态恢复时，都会使用自己本地最新的快照数据。如果Follower节点长时间宕机（或是刚刚加入集群的新节点），就有可能导致其日志记录远远落后于当前的Leader节点，与此同时，Leader节点中陈旧的日志记录已被删除了。在这种场景下，为了将该Follower节点恢复到正确的状态，Leader节点会将快照发送给该Follower节点，Follower节点会使用该快照数据进行状态恢复。当Leader节点需要向Follower节点发送快照时，会发送一种特殊的消息类型（快照消息）。etcd的网络层为了高效地传输消息，会将快照的发送与普通消息（Append Entries消息、心跳消息等）的发送分开在不同的消息通道中完成，在后面介绍etcd网络层时会详细介绍。

当Follower节点接收到该快照消息时，必须决定如何处理已存在的日志记录，在快照中之所以保留前面介绍的一些元数据，其作用之一就是为了在Follower节点收到快照之后进行一致性检查。一般情况下，快照已包含了该Follower节点中不存在的日志记录，此时Follower节点直接丢弃其所有的日志记录，因为这些日志最终会被Leader传递来的快照所代替。如果Follower节点接收到的快照只包含了自己本地日志的一部分，那么被该快照所包含的全部日志记录会被全部删除，但是快照之后的日志则会保留。

有的读者可能会考虑过另一种替代方案，即只有Leader节点创建快照，然后发送给所有的Follower 节点。但是该方案有几个缺点：首先就是快照数据会比较大，并且发送快照数据是比较浪费网络带宽的，也比较耗时，这显然比Follower节点从本地直接加载要耗时很多；其次就是Leader的实现会更加复杂。

在Raft协议中，每个节点都会创建快照，所以创建快照的时机决定了快照的性能。如果创建快照过于频繁，那么就会消耗大量的资源，导致每个节点的性能下降；如果创建快照的频率过低，那么两次创建快照之间积累的日志记录会比较多，快照就无法为节点节约内存等资源。所以我们要在两者之间进行权衡，常见的策略是当日志记录个数达到一个固定阈值的时候，就触发一次创建快照的操作，生成相应的快照文件，我们可以通过调节该阈值来控制创建快照的频率。

2.5 其他技术点

2.5.1 linearizable语义

Raft协议的目标是实现linearizable语义，即在客户端每次向集群发送一次读请求时，该请求只会被执行一次。但是根据前面的描述，客户端虽然只是想发送一次请求，但是集群可能多次收到该请求。例如，Leader节点负责提交日志记录（通知了其他Follower节点）并将日志记录应用到了其状态机中，但是在向客户端返回相应的响应消息之前宕机了，那么客户端会连接到新的Leader节点并重发对应的请求，这就导致该请求再次被执行。或者，网络出现故障，导致请求丢失或是延迟，如图2-29所示，就会导致同一条请求被执行两次。

 图2-29

常见的解决方案就是客户端对于每个请求都产生一个唯一的序列号，然后由服务端为每个客户端维护一个Session，并对每个请求进行去重。当服务端接收到一个请求时，会检测其序列号，如果该请求已经被执行过了，那么就立即返回结果，而不会重新执行。

2.5.2 只读请求

在介绍 Raft 协议的日志复制时提到，请求对应的日志记录会写入 Leader 节点的本地 Log中并完成复制到集群中半数以上的节点，之后才会真正提交并应用到状态机中。为了提高只读请求的性能，我们可以考虑直接处理而不记录对应的日志记录（也不会经过日志复制的过程）。但是，在不增加任何限制的情况下，这么做可能会冒着返回脏数据的风险，因为Leader节点响应客户端请求时可能已经故障（或是已经发生了网络分区），集群已经选出了新的Leader节点，但是旧的Leader节点自身还不知道。

为了不返回脏数据，同时为了保证linearizability语义，Raft协议在处理只读请求时，除了直接读取Leader节点对应的状态信息，还需要使用额外的措施。处理只读请求的大致逻辑如下：

（1）Leader节点必须有关于已提交日志的最新信息，虽然在节点刚刚赢得选举成为Leader时，拥有所有已经被提交的日志记录，但是在其任期刚开始时，它可能不知道哪些是已经被提交的日志。为了明确这些信息，它会在其任期开始时提交一条空日志记录，这样上一个任期中的所有日志都会被提交。

（2）Leader节点会记录该只读请求对应的编号作为readIndex，当Leader节点的提交位置（commitIndex）达到或是超过该位置之后，即可响应该只读请求。

（3）Leader节点在处理只读的请求之前必须检查集群中是否有新的Leader节点，自己是否已经被作废，如果该节点已经不再是集群的Leader节点，则该节点中日志记录就可能包含脏数据，必须由新Leader节点来处理此次只读请求。Raft协议中，通过让Leader节点在处理只读请求之前，先和集群中的半数以上的节点交换一次心跳消息来解决这个问题。如果该Leader节点可以与集群中半数以上的节点交换一次心跳，则表示该Leader 节点依然为该集群最新的Leader节点。这样，readIndex值也就是整个集群中所有节点所能看到的最大提交位置（commitIndex）。

（4）随着日志记录的不断提交，Leader 节点的提交位置（commitIndex）最终会超过上述readIndex，此时Leader就可以响应客户端的只读请求了。

这里简单介绍一下linearizability的含义，线性化（linearizability）是分布式系统中比较重要的概念。linearizability 是对单对象上的单个操作的一种顺序保证，它提供了对于同一个对象的一系列读写操作都是按照实时时间排序的保证。简单地说，linearizability 保证对于一个对象的写操作一旦完成，需要立即被后续的读操作看到，即读操作一定是读到该对象的最新的值。从该角度来看，linearizability与atomic consistency是同义词，也是CAP原则中的C（consistency）。另外，并且linearizability是可组合的，如果系统中每个对象的操作都是linearizable，则系统中所有操作是linearizable。

2.5.3 PreVote状态

在前面介绍网络分区场景时提到，在节点数不足集群半数的网络分区中，始终没有节点可以获取半数以上的选票成为Leader节点，所以每过一段时间，就有节点的选举计时器超时并切换成Candidate状态，发起新一轮的选举。

这虽然不影响集群的使用（在节点超过半数的网络分区中，已经成功选举出Leader节点并对外提供服务），但是会导致不断发起选举的节点的Term号不断增长。当网络分区结束时，由于该节点的Term值高于集群当前的Leader节点的Term值，就会迫使当前Leader节点发生状态切换，并重新发起一次新的选举。

Raft 协议为了优化此次无意义的选举，给节点添加了一个 PreVote 的状态：当某个节点要发起选举之前，需要先进入PreVote的状态。在PreVote状态下的节点会先尝试连接集群中的其他节点，如果能够成功连接到半数以上的节点，才能真正切换成Candidate状态并发起新一轮的选举。在后面分析etcd-raft模块时，我们可以看到相关实现。

2.5.4 Leader节点转移

通过前面的介绍我们知道，Leader节点在整个集群中的作用至关重要。但是在有的场景中需要对Leader节点进行手动切换。例如，我们要将Leader节点所在的机器进行系统升级或是停机维护等。此时，我们可能需要集群中指定的Follower节点成为新的Leader节点，继续对外提供服务。在原Leader节点所在的机器维护结束之后，我们可能还需要将Leader节点再转移到该机器上（可能该机器的配置等条件优于集群中的其他机器，更适合做 Leader 节点）。这种场景下就需要特定的Follower节点成为下一任期的Leader节点。根据前面介绍的Leader选举过程我们知道，Leader节点的选举在本质上是随机的，无法满足上述需求。

Raft协议给出的方案是：首先暂停接收客户端请求，让一个指定的Follower节点的本地日志与当前的Leader节点完全同步，在完成同步之后，该特定的Follower节点立刻发起新一轮的选举。由于其Term值较大，原Leader节点自然被其替换下来。该方案需要控制好选举计时器及特定Follower与Leader节点同步的时间，防止其他Follower节点在这段时间内发起选举，当然，发生这种情况的概率还是比较低的。

在实现Raft协议的时候，除了上面提到的扩展点和优化点，在Raft大论文中还提到一些其他的相关内容，非常值得参考。笔者也极力推荐读者亲自阅读该论文，毕竟本书篇幅有限，无法将其内容逐一介绍。

本章小结

本章主要介绍了Raft协议的基本概念和基本流程，其中包括Leader节点的选举、节点间的复制、日志的压缩、快照的生成，以及网络分区等场景的介绍，最后还介绍了在实现Raft协议时可能会遇到的特殊问题的相关方案。在本章中介绍每个流程时，都是通过示例方式进行描述的，希望读者在阅读完本章后，对Raft协议有一个初步的了解，为后面分析etcd-raft模块打下基础。在后面分析 etcd-raft 模块时，也建议读者回顾本章 Raft 算法的实例，了解 etcd 实现与Raft算法的细微差异。
第3章 etcd-raft模块详解

通过上一章对Raft协议的介绍，相信读者已经对Raft协议的关键流程和工作原理有了大致的了解。在本章中，我们将详细分析etcd-raft 模块的实现，希望读者在分析etcd-raft模块的代码时，结合上一章对Raft协议的介绍，更加深入地了解Raft协议。

在开始介绍 etcd-raft 模块的具体实现之前，我们需要先来了解一下其中的一些概念，具体如下。

· Node：对etcd-raft模块具体实现的一层封装，方便上层模块使用etcd-raft模块。

· 上层模块：etcd-raft模块的调用者，上层模块通过Node提供的API与底层的etcd-raft模块进行交互。

· Cluster：表示一个集群，其中记录了该集群的基础信息。

· Member：组成Cluster的元素之一，其中封装了一个节点的基本信息。

· Peer：集群中某个节点对同一集群中另外一个节点的称呼，在后面还会介绍其具体实现。

· Entry 记录：在前面介绍 Raft 协议时提到，节点之间传递的是消息（Message），每条消息中可以携带多条Entry记录，每条Entry记录对应一个独立的操作。在Entry中其中封装了如下信息。

Term（uint64类型）：该Entry所在的任期号。

Index（uint64类型）：该Entry对应的索引号。

Type（EntryType 类型）：该 Entry 记录的类型。该字段有两个可选项：一个是EntryNormal，表示普通的数据操作；另一个是EntryConfChange，表示集群的变更操作。Data（[]byte类型）：具体操作使用的数据。

另外，在每个节点中记录的本地Log的基本单位也是Entry记录。有的文章也会将Entry记录称为“日志记录”，在etcd中还有一个WAL日志的概念，这两者并非完全等价，所以请读者注意一下，避免两者混淆。

在etcd-raft 模块中另一个比较重要结构体就是raftpb.Message。在etcd-raft模块的实现中，Message是所有消息的抽象，包括了各种类型消息所需要的字段，其中核心字段的含义如下。

· Type（MessageType 类型）：该字段定义了消息的类型，etcd-raft 的实现中就是通过该字段区分不同的消息并进行分类处理的，MessageType 中共定义了 19 种消息类型，后面会详细分析每种消息类型的含义及相应的处理方式。

· From（uint64 类型）：发送消息的节点 ID。在集群中，每个节点都拥有一个唯一 ID作为标识。

· To（uint64类型）：消息的目标节点ID。

· Term（uint64类型）：发送消息的节点的Term值。如果Term值为0，则为本地消息，在etcd-raft模块的实现中，对本地消息进行特殊处理。例如，后面见到的MsgHup类型消息就是本地消息的一种。

· Entries（[]Entry类型）：如果是MsgApp类型的消息，则该字段中保存了Leader节点复制到Follower节点的Entry记录。在其他类型消息中，该字段的含义后面会详细介绍。

· LogTerm（uint64类型）：该消息携带的第一条Entry记录的Term值。

· Index（uint64 类型）：记录了一个索引值，该索引值的具体含义与消息的类型相关。例如，MsgApp消息的Index字段保存了其携带的Entry记录（即Entries字段）中前一条记录的Index值，而MsgAppResp消息的Index字段则是Follower节点提示Leader节点下次从哪个位置开始发送Entry记录。

· Commit（uint64类型）：消息发送节点的提交位置（commitIndex）。

· Snapshot（Snapshot类型）：在传输快照时，该字段保存了快照数据。

· Reject（bool 类型）：主要用于响应类型的消息，表示是否拒绝收到的消息。例如，Follower节点收到Leader节点发来的MsgApp消息，如果Follower节点发现MsgApp消息携带的Entry记录并不能直接追加到本地的raftLog中，则会将响应消息的Reject字段设置为true，并且会在RejectHint字段中记录合适的Entry索引值，供Leader节点参考。

· RejectHint（uint64类型）：在Follower节点拒绝Leader节点的消息之后，会在该字段记录一个Entry索引值供Leader节点。

· Context（[]byte类型）：消息携带的一些上下文信息。例如，该消息是否与Leader节点转移相关。

3.1 raft结构体

在etcd-raft模块中，raft结构体是其核心数据结构，在结构体raft中封装了当前节点所有的核心数据。本节会对raft结构体进行详细分析，首先来看其核心字段。

· id（uint64类型）：当前节点在集群中的ID。

· Term（uint64类型）：当前任期号。如果Message的Term字段为0，则表示该消息是本地消息，例如，后面提到的 MsgHup、MsgProp、MsgReadIndex 等消息，都属于本地消息。

· Vote（uint64类型）：当前任期中当前节点将选票投给了哪个节点，未投票时，该字段为None。

· raftLog（*raftLog类型）：在前面介绍过，在Raft协议中的每个节点都会记录本地Log，在etcd-raft模块中，使用结构体raftLog表示本地Log，在raftLog中还涉及日志的缓存等相关内容，后面会展开详细介绍。

· maxInflight（int 类型）：对于当前节点来说，已经发送出去但未收到响应的消息个数上限。如果处于该状态的消息超过maxInflight这个阈值，则暂停当前节点的消息发送，这是为了防止集群中的某个节点不断发送消息，引起网络阻塞或是压垮其他节点，从而影响其他节点的正常运行。

· maxMsgSize（uint64类型）：单条消息的最大字节数。

· prs（map[uint64]*Progress类型）：在上一章介绍Raft协议时提到过，Leader节点会记录集群中其他节点的日志复制情况（NextIndex和MatchIndex）。在etcd-raft模块中，每个Follower节点对应的NextIndex值和MatchIndex值都封装在Progress实例中，除此之外，每个Progress实例中还封装了对应Follower节点的相关信息，这里简单介绍一下其核心字段的含义。

Match（uint64类型）：对应Follower 节点当前已经成功复制的 Entry记录的索引值。

Next（uint64类型）：对应Follower节点下一个待复制的Entry记录的索引值。

State（ProgressStateType类型）：对应Follower节点的复制状态，其可选项的含义后面详细介绍。

Paused（bool类型）：当前Leader节点是否可以向该Progress实例对应的Follower节点发送消息。PendingSnapshot（uint64类型）：当前正在发送的快照数据信息。RecentActive（bool类型）：从当前Leader节点的角度来看，该Progress实例对应的Follower节点是否存活。ins（*inflights类型）：记录了已经发送出去但未收到响应的消息信息。

· state（StateType 类型）：当前节点在集群中的角色，可选值分为 StateFollower、StateCandidate、StateLeader和StatePreCandidate四种状态。

· votes（map[uint64]bool类型）：在选举过程，如果当前节点收到了来自某个节点的投票，则会将votes中对应的值设置为true，通过统计votes这个map，就可以确定当前节点收到的投票是否超过半数。

· msgs（[]pb.Message类型）：缓存了当前节点等待发送的消息。

· lead（uint64类型）：当前集群中Leader节点的ID。

· leadTransferee（uint64类型）：用于集群中Leader节点的转移，leadTransferee记录了此次Leader角色转移的目标节点的ID。

· electionElapsed（int 类型）：选举计时器的指针，其单位是逻辑时钟的刻度，逻辑时钟每推进一次，该字段值就会增加1。

· electionTimeout（int 类型）：选举超时时间，当 electionElapsed 字段值到达该值时，就会触发新一轮的选举。

· heartbeatElapsed（int 类型）：心跳计时器的指针，其单位也是逻辑时钟的刻度，逻辑时钟每推进一次，该字段值就会增加1。

· heartbeatTimeout（int类型）：心跳超时时间，当heartbeatElapsed字段值到达该值时，就会触发Leader节点发送一条心跳消息。

· checkQuorum（bool类型）：在前面介绍Raft协议时提到，Leader节点只有在收到更大Term值的消息时才会切换成Follower 状态。故在发生网络分区时，即使在其他分区里新的 Leader节点已经被选举出来，旧的Leader节点由于接收不到新Leader节点的心跳消息，依然会认为自己是当前集群的 Leader 节点（与其同一网络分区的Follower 节点也认为它是当前集群的 Leader 节点），它依然会接收客户端的请求，但无法向客户端返回任何响应。CheckQuorum机制的意思是：每隔一段时间，Leader节点会尝试连接集群中的其他节点（发送心跳消息），如果发现自己可以连接到节点个数没有超过半数（即没有收到足够的心跳响应），则主动切换成 Follower 状态。这样，在上述网络分区的场景中，旧的 Leader 节点可以很快知道自己已经过期，可以减少Client连接旧Leader节点的等待时间。

· preVote（bool类型）：在上一章介绍Raft协议时提到，Follower节点在选举计时器超时之后，会切换成Candidate状态并发起选举。然而 Follower节点超时没有收到心跳消息时，也可能是由于Follower节点自身的网络问题导致的，例如，前面提到的网络分区的场景。即使如此，该Follower 节点还是会不断地发起选举，其Term值也会不断递增。待该Follower节点的网络故障恢复并收到Leader节点的心跳消息时，由于其Term值已经增加，该Follower节点会丢弃掉Term值比其自身小的心跳消息，之后就会触发一次没有必要进行的Leader选举。在前面介绍Raft协议时也提到了PreVote优化避免上述情况，当Follower节点准备发起一次选举之前，会先连接集群中的其他节点，并询问它们是否愿意参与选举，如果集群中的其他节点能够正常收到Leader节点的心跳消息，则会拒绝参与选举，反之则参与选举。当在 PreVote 过程中，有超过半数的节点响应并参与新一轮选举，则可以发起新一轮的选举。

· randomizedElectionTimeout（int类型）：该字段是electiontimeout～2×electiontimeout-1之间的随机值，也是选举计时器的上限，当electionElapsed超过该值时即为超时。

· tick（func（）类型）：当前节点推进逻辑时钟的函数。如果当前节点是 Leader，则指向raft.tickHeartbeat（）函数，如果当前节点是 Follower 或是 Candidate，则指向raft.tickElection（）函数。

· step（stepFunc类型）：当前节点收到消息时的处理函数。如果是Leader节点，则该字段指向stepLeader（）函数，如果是Follower节点，则该字段指向stepFollower（）函数，如果是处于preVote阶段的节点或是Candidate节点，则该字段指向stepCandidate（）函数。

· readStates（[]ReadState 类型）：与只读请求相关，后面会详细介绍只读请求的相关内容。

· readOnly（*readOnly类型）：与只读请求相关，后面会详细介绍只读请求的相关内容。在开始详细介绍raft提供的方法之前，我们需要先了解支持raft功能的相关组件。

3.1.1 Config结构体

Config结构体主要用于配置参数的传递，在创建raft实例时需要的参数会通过Config实例传递进去。Config的核心字段如下。

· ID（uint64类型）：当前节点的ID。

· peers（[]uint64类型）：记录了集群中所有节点的ID。

· ElectionTick（int类型）：用于初始化raft.electionTimeout，即逻辑时钟连续推进多少次后，就会触发Follower节点的状态切换及新一轮的Leader选举。

· HeartbeatTick（int 类型）：用于初始化raft.heartbeatTimeout，即逻辑时钟连续推进多少次后，就触发Leader节点发送心跳消息。

· Storage（Storage 类型）：当前节点保存 raft 日志记录使用的存储，后面会有单独的小节介绍Storage接口及其实现。

· Applied（uint64类型）：当前已经应用的记录位置（已应用的最后一条Entry记录的索引值），该值在节点重启时需要设置，否则会重新应用已经应用过Entry记录。

· MaxSizePerMsg（uint64类型）：用于初始化raft.maxMsgSize字段，每条消息的最大字节数，如果是math.MaxUint64则没有上限，如果是0则表示每条消息最多携带一条Entry。

· MaxInflightMsgs（int类型）：用于初始化raft.maxInflight，即已经发送出去且未收到响应的最大消息个数。

· CheckQuorum（bool类型）：是否开启CheckQuorum模式，用于初始化raft.checkQuorum字段，CheckQuorum模式前面已经详细介绍过了，不再赘述。

· PreVote（bool类型）：是否开启PreVote模式，用于初始化raft.preVote字段，PreVote模式前面已经详细介绍过了，不再赘述。

· ReadOnlyOption（ReadOnlyOption类型）：与只读请求的处理相关，后面详细介绍。Config的字段都是公开的，主要用于参数传递，所以没有特殊方法需要介绍。

3.1.2 Storage接口及其实现

在etcd-raft模块中定义了Storage接口，其主要作用就是存储当前节点接收到的Entry记录。下面来分析一下Storage接口的定义，具体实现如下：

MemoryStorage 是 etcd-raft 模块为 Storage 接口提供的一个实现，从名字也能看出，MemoryStorage在内存中维护上述状态信息（hardState字段）、快照数据（snapshot字段）及所有的Entry记录（ents字段，[]raftpb.Entry类型），在MemoryStorage.ents字段中维护了快照数据之后的所有Entry记录。另外需要注意的是，MemoryStorage继承了sync.Mutex，MemoryStorage中的大部分操作是需要加锁同步的。通过这里的介绍，我们大概可以了解MemoryStorage的结构，如图3-1所示。

 图3-1

MemoryStorage.InitialState（）方法会直接返回hardState字段中记录的HardState实例并使用快照的元数据中记录信息创建ConfState实例返回。MemoryStorage的FirstIndex（）方法和LastIndex（）方法分别返回了ents数组中第一个元素的Index字段值和最后一个元素的Index字段值。这几个实现比较简单，这里不再展开介绍。

当 MemoryStorage 需要更新快照数据时，会调用 MemoryStorage.ApplySnapshot（）方法将SnapShot实例保存到MemoryStorage中，例如，在节点重启时，就会通过读取快照文件创建对应的SnapShot实例，然后保存到MemoryStorage中。MemoryStorage.ApplySnapshot（）方法的具体实现如下：

设置完快照数据之后，就可以开始向MemoryStorage 中追加Entry记录了，该功能主要由MemoryStorage.Append（）方法完成，其具体实现如下：

MemoryStorage.Append（）方法的大致原理如图3-2所示。

 图3-2

了解了MemoryStorage设置SnapShot和添加Entry的逻辑之后，下面介绍查询的相关方法。首先是MemoryStorage.Entries（）方法，它负责查询指定范围的Entry，具体实现如下：

MemoryStorage.Term（）方法与 Entries（）方法类似，也会进行一系列边界检测，最终通过MemoryStorage.ents字段读取指定Entry的Term值，该方法的实现比较简单，这里不再展开介绍，感兴趣的读者可以参考源码。

最后需要读者了解的是，随着系统的运行，MemoryStorage.ents中保存的Entry记录会不断增加，为了减小内存的压力，定期创建快照来记录当前节点的状态并压缩 MemoryStorage.ents数组的空间是非常有必要的，这样就可以降低内存使用。这个过程中涉及三个方法，首先是CreateSnapshot（）方法，它会接收当前集群状态，以及SnapShot相关数据来更新snapshot字段，具体实现如下：

新建SnapShot之后，一般会调用MemoryStorage.Compact（）方法将MemoryStorage.ents中指定索引之前的Entry记录全部抛弃，从而实现压缩MemoryStorage.ents的目的，具体实现如下：

最后，上层模块可以通过 MemoryStorage.Snapshot（）方法获取 SnapShot，该方法直接返回MemoryStorage.snapshot字段，实现比较简单，不再展开介绍。

3.1.3 unstable结构体

在etcd-raft模块中，除了上面介绍的Storage，还有一个存储Entry记录的地方，就是本小节要介绍的 unstable 结构体。unstable 使用内存数组维护其中所有的 Entry 记录，对于 Leader节点而言，它维护了客户端请求对应的Entry记录；对于Follower节点而言，它维护的是从Leader节点复制来的Entry记录。无论是Leader节点还是Follower节点，对于刚刚接收到的Entry记录首先都会被存储在unstable中。然后按照Raft协议将unstable中缓存的这些Entry记录交给上层模块进行处理，上层模块会将这些Entry记录发送到集群其他节点或进行保存（写入Storage中）。之后，上层模块会调用Advance（）方法通知底层的etcd-raft模块将unstable中对应的Entry记录删除（因为已经保存到了Storage中）。正因为unstable中保存的Entry记录并未进行持久化，可能会因节点故障而意外丢失，所以被称为unstable。

通过上面的描述，大致可以得到下面这张结构，如图3-3所示。

 图3-3

下面介绍一下unstable中的核心字段。

· entries（[]pb.Entry类型）：用于保存未写入Storage中的Entry记录。

· offset（uint64类型）：entries中的第一条Entry记录的索引值。

· snapshot（*pb.Snapshot类型）：快照数据，该快照数据也是未写入Storage中的。

在unstable中提供了很多与Storage类似的方法，在下一小节介绍的raftLog中，很多方法都是先尝试调用unstable 的相应方法，在其失败后（unstable 的方法返回（0，false）即表示失败），再尝试调用Storage的对应方法。

unstable.maybeFirstIndex（）方法会尝试获取 unstable 的第一条 Entry 记录的索引值，unstable.maybeLastIndex（）方法会尝试获取unstable的最后一条Entry记录的索引值，如果获取失败则返回（0，false），两者的具体实现如下：

unstable.maybeTerm（）方法的主要功能是尝试获取指定Entry记录的Term值，根据条件查找指定的Entry记录的位置，大致如图3-4所示。

 图3-4

unstable.maybeTerm（）方法的具体实现如下：

当unstable.entries中的Entry记录已经被写入Storage之后，会调用unstable.stableTo（）方法清除entries中对应的Entry记录，stableTo（）方法的具体实现如下：

同理，当unstable.snapshot字段指向的快照被写入Storage之后，会调用unstable.stableSnapTo（）方法将snapshot字段清空，实现比较简单，代码就不贴出来了。

unstable.truncateAndAppend（）方法的主要功能是向unstable.entries中追加Entry记录，其实现与 Storage.Append（）方法类似，也会涉及截断的场景。通过图 3-5 可以清晰地了解truncateAndAppend（）方法完成的操作。

 图3-5

unstable.truncateAndAppend（）方法的具体实现如下：

到此为止，unstable的核心字段和方法都已经介绍完了。

3.1.4 raftLog结构体

Raft 协议中日志复制部分的核心就是在集群中各个节点之间完成日志的复制，因此在etcd-raft模块的实现中使用raftLog结构来管理节点上的日志，它依赖于前面介绍的Storage接口和unstable结构体。下面来看一下raftLog中核心字段的含义与功能。

· storage（Storage类型）：实际上就是前面介绍的MemoryStorage实例，其中存储了快照数据及该快照之后的Entry记录。在有的文档中，也将该 MemoryStorage 实例称为“stable storage”。

· unstable（unstable类型）：用于存储未写入Storage的快照数据及Entry记录，在上一小节已经对unstable做了详细分析，这里不再重复介绍。

· committed（uint64类型）：已提交的位置，即已提交的Entry记录中最大的索引值。

· applied（uint64类型）：已应用的位置，即已应用的Entry记录中最大的索引值。其中committed和applied之间始终满足committed≤applied这个不等式关系。

了解了raftLog中核心字段的含义之后，我们来看一下newLog（）函数是如何创建一个raftLog实例的，具体实现如下：

通过newLog（）函数的创建过程，我们可以得到图3-6。

 图3-6

当 Follower 节点或 Candidate 节点需要向 raftLog 中追加 Entry 记录时，会通过raft.handleAppendEntries（）方法调用raftLog.maybeAppend（）方法完成追加Entry记录的功能。

raftLog.maybeAppend（）方法的大致步骤如下。

（1）maybeAppend（）方法的参数：第一个参数index是MsgApp消息携带的第一条Entry的Index值，这里的MsgApp消息是etcd-raft模块中定义的消息类型之一，对应Raft协议中提到的Append Entries消息；第二个参数logTerm是MsgApp消息的LogTerm字段，通过消息中携带的该Term值与当前节点记录的Term进行比较，就可以判断消息是否为过时的消息；第三个参数committed是MsgApp消息的Commit字段，Leader节点通过该字段通知Follower节点当前已提交Entry的位置；第四个参数ents是MsgApp消息中携带的Entry记录，即待追加到raftLog中的Entry记录。

（2）maybeAppend（）方法首先会调用 matchTerm（）方法检测 MsgApp 消息的 Index 字段及LogTerm字段是否合法，raftLog.matchTerm（）方法的实现如下：

raftLog.term（）方法先会去unstable中查找相应的Entry记录，如果查找不到，则再去storage中查找，term（）方法的具体实现如下：

其中，MemoryStorage.Term（）方法和unstable.maybeTerm（）方法在前面已经介绍过了，这里不再重复介绍。

（3）遍历待追加的Entry集合，查找是否与raftLog中已有的Entry发生冲突（Index相同但Term不同），该过程在raftLog.findConflict（）方法中完成，具体实现如下：

需要注意findConflict（）方法的返回值：当待追加的Entry记录在raftLog中不存在时，会返回第一条不存在Entry记录的索引值；raftLog包含全部的待追加记录且没有发生冲突，则返回0，如图3-7所示。

 图3-7

（4）raftLog会根据findConflict（）方法的返回值决定如何进行后续的追加操作，相关的代码片段如下：

raftLog.append（）方法主要通过调用 unstable.truncateAndAppend（）方法完成记录的追加功能，其实现如下：

（5）通过commitTo（）方法更新raftLog.committed字段，图3-8中列举了两种更新commitTo字段的场景，其他场景留给读者考虑。

 图3-8

raftLog.commitTo（）方法的具体实现如下：

了解了具体每一步的实现之后，将它们串起来，就是 raftLog.maybeAppend（）方法的大致逻辑，其具体实现就不再粘贴出来了，读者可以参考上面的分析来查看相应的代码。

raftLog.firstIndex（）和lastIndex（）方法与前面介绍的MemoryStorage的firstIndex（）和lastIndex（）方法类似，它们返回的是raftLog中第一条和最后一条Entry记录的索引值。这两个方法分别先尝试通过unstable.maybeFirstIndex （）和maybeLastIndex（）方法进行查找，如果查找失败，则通过Storage.FirstIndex（）和LastIndex（）方法进行查找。raftLog.firstIndex（）和lastIndex（）方法的实现比较简单，代码就不再粘贴了，感兴趣的读者请参考源码进行学习。

当上层模块需要从raftLog获取Entry记录进行处理时，会先调用hasNextEnts（）方法检测是否有待应用的记录，然后调用nextEnts（）方法将已提交且未应用的Entry记录返回给上层模块处理。这两个方法的具体实现如下：

在Leader节点向Follower节点发送MsgApp消息时，需要根据Follower节点的日志复制（NextIndex和MatchIndex）情况决定发送的Entry记录，此时需要调用raftLog.entries（）方法获取指定的Entry记录，该方法的具体实现如下：

图3-9展示了raftLog.slice（）方法查找Entry记录的几种场景，其他的场景留给读者思考。

 图3-9

在前面介绍 Raft 协议时提到过，Follower 节点在接收到Candidate 节点的选举请求之后，会通过比较Candidate节点的本地日志与自身本地日志的新旧程度，从而决定是否投票。raftLog提供了isUpToDate（）方法用于比较日志的新旧程度，具体实现如下：

到此为止，raftLog中核心方法的具体实现就介绍完了，raftLog中还有几个实现比较简单的方法，请读者参考源码分析。

3.1.5 raft实现

在后面的介绍中我们可以看到，etcd-raft模块中只实现了Raft协议的基本行为，并未实现发送消息的功能（即网络层的相关内容），而是将网络层实现独立成了一个单独的模块，也就是下一章要介绍的etcd-rafthttp模块。在本节的前半部分详细介绍了raft中使用到的组件，本小节将详细介绍raft中的方法，也是etcd-raft模块的核心实现。

1. 初始化

下面先来看newRaft（）函数，它会根据传入的Config实例中携带的参数创建raft实例并初始化raft使用到的相关组件，具体实现如下：

2. 状态切换

raft在特定的场景下（前面介绍Raft协议时已提到过这些场景，例如，选举计时器超时时，Follower节点切换到PreCandidate状态等）会通过调用become*（）方法切换成指定状态的节点，状态转换如图3-10所示。

 图3-10

在newRaft（）函数中完成初始化之后，会调用 becomeFollower（）方法将节点切换成 Follower状态，其中会设置raft实例的多个字段，具体实现如下：

除了becomeFollower（）方法，becomeLeader（）和becomeCandidate（）方法都会调用reset（）方法，在reset（）方法中会重置raft实例的多个字段，其具体实现如下：

当节点变成Follower状态之后，会周期性地调用raft.tickElection（）方法推进electionElapsed并检测是否超时，具体实现如下：

如果当前集群开启了 PreVote 模式，当 Follower 节点的选举计时器超时时，会先调用becomePreCandidate（）方法切换到PreCandidate状态，becomePreCandidate（）方法的具体实现如下：

当节点可以连接到集群中半数以上的节点时，会调用 becomeCandidate（）方法切换到Candidate状态，becomeCandidate（）方法的具体实现如下：

当 Candidate 节点得到集群中半数以上节点的选票时，会调用 becomeLeader（）方法切换成Leader状态，becomeLeader（）方法的具体实现如下：

这里重点看一下raft.appendEntry（）方法，它的主要操作步骤如下：

（1）设置待追加的Entry记录的Term值和Index值。

（2）向当前节点的raftLog中追加Entry记录。

（3）更新当前节点对应的Progress实例。

（4）尝试提交Entry记录，即修改raftLog.committed字段的值。

raft.appendEntry（）方法的具体实现如下：

在Progress.mayUpdate（）方法中，会尝试修改Match字段和Next字段，用来标识对应节点Entry记录复制的情况。Leader节点除了在向自身raftLog中追加记录时（即appendEntry（）方法）会调用该方法，当Leader节点收到Follower节点的MsgAppResp消息（即MsgApp消息的响应消息）时，也会调用该方法尝试修改Follower节点对应的Progress实例。Progress.mayUpdate（）方法的具体实现如下：

如果该Entry记录已经复制到了半数以上的节点中，则在raft.maybeCommit（）方法中会尝试将其提交。除了 appendEntry（）方法，在 Leader 节点每次收到 MsgAppResp 消息时也会调用maybeCommit（）方法，maybeCommit（）方法的具体实现如下：

到此为止，raft中与状态切换相关的方法就分析完了。

3. 消息处理

本小节将会按照前面对Raft协议的介绍方式，分析节点在不同状态下对不同类型消息的不同处理行为。正如前面分析newRaft（）函数时所看到的，当节点的raft实例创建完成之后，当前节点处于Follower状态。为了方便介绍，这里假设集群为新建集群，且集群启动后所有节点都会处于Follower状态。另外，集群中所有节点的WAL日志文件等也都是空的，所以WAL日志重放也不会得到任何信息，节点的初始 Term 值也都是 0。另外，我们还假设当前集群开启了PreVote模式以及CheckQuorum模式。

MsgHup消息

集群启动一段时间之后，会有一个Follower节点的选举计时器超时，此时就会创建MsgHup消息（其中Term为0）并调用raft.Step（）方法（参见前面介绍的raft.tickElection（）方法）。raft.Step（）方法是etcd-raft模块处理各类消息的入口，raft.Step（）方法比较长，我们会根据节点的状态及处理的消息类型将其分成不同的代码片段进行介绍。raft.Step（）方法主要分为两部分：第一部分是根据Term值对消息进行分类处理，第二部分是根据消息的类型进行分类处理。这里先来看一下MsgHup消息的处理流程，raft.Step（）方法中相关的代码片段如下所示。

在raft.campaign（）方法中，除了完成状态切换，还会向集群中的其他节点发送相应类型的消息，例如，如果当前 Follower 节点要切换成 PreCandidate 状态，则会发送 MsgPreVote 消息。raft.campaign（）方法的具体实现如下：

raft.send（）方法会在消息发送之前对不同类型的消息进行合法性检测，然后将待发送的消息追加到raft.msg字段中，其具体实现如下：

这里简单总结一下，Follower 节点在选举计时器超时的行为：首先它会通过 tickElection（）创建MsgHup消息并将其交给raft.Step（）方法进行处理；raft.Step（）方法会将当前Follower节点切换成PreCandidate状态，然后创建MsgPreVote类型的消息，最后将该消息追加到raft.msgs字段中，等待上层模块将其发送出去。

MsgPreVote消息

当集群中其他节点（此时集群中其他节点都处于Follower状态）收到上一小节所述节点发送来的MsgPreVote（其Term字段值为1）消息之后，经过网络层处理及相关验证之后，最终也会调用raft.Step（）方法进行处理。

下面我们回到 raft.Step（）方法中，分析其中关于 MsgPreVote 消息处理的相关代码片段，首先是根据Term值进行分类处理的代码片段：

接下来 raft.Step（）方法会根据消息类型进行分类处理，其中会针对 MsgVote 和 MsgPreVote类型的消息进行单独的处理，相关的代码片段如下：

这里简单总结一下MsgPreVote消息的处理过程：raft.Step（）方法首先检测该MsgPreVote消息是否为 Leader 节点迁移时发出的消息及其他合法性检测，决定当前节点是否参与此次选举；之后当前节点会根据自身的状态决定是否将其选票投给MsgPreVote消息的发送节点。

MsgPreVoteResp消息

继续前面的示例，PreCandidate节点会收到集群中其他节点返回的MsgPreVoteResp消息，其中的Term字段与PreCandidate节点的Term值相同。在raft.Step（）方法中没有对Term值相等的MsgPreVoteResp消息做特殊的处理，而是直接交给了raft.step字段指向的函数进行处理。

在前面分析的状态切换方法（become*（）方法）中，可以看到raft.step字段会根据节点的状态指向不同的消息处理函数，在PreCandidate状态的节点中，该字段指向了stepCandidate（）方法。下面来看一下raft.stepCandidate（）函数对MsgPreVoteResp消息的处理逻辑：

在raft.poll（）方法中会将收到的投票结果记录到raft.votes字段中，之后通过统计该字段从而确定该节点的得票数，具体实现如下：

当 PreCandidate 状态节点收到半数以上的投票时，会通过 r.campaign（）方法发起正式选举，其中会通过raft.becomeCandidate（）方法将当前节点切换成Candidate状态，并向剩余其他节点发送MsgVote消息。raft.campaign（）方法的具体实现在前面已经介绍过，这里不再展开重复介绍。

MsgVote消息

正如上一小节提到的，PreCandidate 状态节点收到半数以上的投票之后，会发起新一轮的选举，即向集群中的其他节点发送 MsgVote 消息。当集群中其他节点收到 MsgVote 消息之后，也是交由 raft.Step（）方法进行处理的，其中根据 Term 值进行分类处理的部分与前面介绍的MsgPreVote处理类似，其相关片段如下：

raft.Step（）方法中根据消息类型进行分类处理的代码片段中，除了检测当前节点是否投票及发送MsgVoteResp消息，还会重置当前节点的选举超时计时器并更新raft.Vote字段，代码比较简单，就不再粘贴出来了。MsgVoteResp消息

与对MsgPreVoteResp消息的处理类似，MsgVoteResp消息也是由raft.stepCandidate（）方法处理的，其相关的代码实现如下：

raft.bcastAppend（）方法主要负责向集群中的其他节点发送MsgApp消息（或MsgSnap消息），具体实现如下：

raft.sendAppend（）方法主要负责向指定的目标节点发送MsgApp消息（或MsgSnap消息），在消息发送之前会检测当前节点的状态，然后查找待发送的Entry记录并封装成MsgApp消息，之后根据对应节点的Progress.State值决定发送消息之后的操作。下面先描述一下Progress.State各值的含义：

· ProgressStateSnapshot状态表示Leader节点正在向目标节点发送快照数据。

· ProgressStateProbe状态表示Leader节点一次不能向目标节点发送多条消息，只能待一条消息被响应之后，才能发送下一条消息。当刚刚复制完快照数据、上次MsgApp消息被拒绝（或是发送失败）或是Leader节点初始化时，都会导致目标节点的Progress切换到该状态。

· ProgressStateReplicate状态表示正常的Entry记录复制状态，Leader节点向目标节点发送完消息之后，无须等待响应，即可开始后续消息的发送。

Progress.State字段的状态转换如图3-11所示。

 图3-11

下面我们继续来看一下raft.sendAppend（）方法的具体实现。

在Progress.IsPaused（）方法中会检测当前节点是否能够向对应的节点发送消息，具体实现如下：

这里简单总结一下MsgVoteResp消息的处理过程：raft.Step（）方法首先检测当前节点是否收到了半数以上的选票，如果是，则将当前节点切换成Leader状态；之后向集群中其他节点发送消息。MsgApp消息

通过对前面的示例描述可知，在MsgVote消息的处理过程中，集群中其他节点已经切换成了Follower状态，并且它们自身记录的Term值与该任期中Leader节点维护的Term值相同。当它们收到当前Leader节点发来的MsgApp消息时，也是交由raft.Step（）方法处理的。下面分析其中相关的代码片段，如下：

继续来看一下raft.stepFollower（）方法中对MsgApp消息的处理，相关代码片段如下：

raft.handleAppendEntries（）方法首先会检测 MsgApp 消息中携带的 Entry记录是否合法，然后将这些Entry记录追加到raftLog中，最后创建相应的MsgAppResp消息。handleAppendEntries（）方法的具体实现如下：

raftLog.maybeAppend（）方法和raft.send（）方法的具体实现在前面已经分析过了，这里不再展开详述。MsgAppResp消息

接下来我们回到Leader节点，当其收到集群中其他Follower节点发送的MsgAppResp响应消息之后，也是交由 raft.Step（）方法进行处理的，其中会调用 raft.step 字段指向的 StepLeader（）函数进行处理的。下面开始分析raft.StepLeader（）方法中处理MsgAppResp消息的代码片段：

stepLeader（）方法关于MsgAppResp消息处理的代码片段中，大部分的调用在前面都详细介绍过了，这里介绍一下两个第一次遇到的方法。首先是Progress.maybeDecrTo（）方法，它会根据对应Progress的状态和MsgAppResp消息携带的提示信息，完成Progress.Next的更新，具体实现如下：

另一个需要介绍的是inflights结构体，Progress.ins字段就指向了一个inflights实例，inflights的主要功能是记录当前节点已发出但未收到响应的MsgApp消息。inflights中各个字段的含义如下。

· buffer（[]uint64类型）：用来记录MsgApp消息相关信息的数组，其中记录的是MsgApp消息中最后一条Entry记录的索引值。

· start（int类型）：inflights.buffer数组被当作一个环形数组使用，start字段中记录buffer中第一条MsgApp消息的下标。

· count（int类型）：当前inflights实例中记录的MsgApp消息个数。

· size（int类型）：当前inflights实例中能够记录的MsgApp消息个数的上限。

在前面介绍MsgApp消息的发送过程时，提到过inflights.add（）方法是用来记录发送出去的MsgApp消息，其具体实现如下：

通过前面分析的内容可知，当Leader节点收到MsgAppResp消息时，会通过inflights.freeTo（）方法将指定消息及其之前的消息全部清空，释放 inflights 空间，让后面的消息继续发送。inflights.freeTo（）方法的具体实现如下：

inflights还提供了一些其他方法，例如，inflights.full（）方法用来判断当前inflights实例是否被填充满了，inflights.freeFirstOne（）方法只释放其中记录的第一条MsgApp消息。这些方法比较简单，不再详细分析，感兴趣的读者可以参考其源码进行学习。MsgBeat消息和MsgCheckQuorum消息

在上述示例中，Leader节点除了向集群中其他Follower节点发送MsgApp消息，还会向这些 Follower 节点发送 MsgBeat 消息。MsgBeat 消息的主要作用是探活，当 Follower 节点收到MsgBeat消息时会重置其选举计时器，从而防止Follower节点发起新一轮选举。

在前面介绍becomeLeader（）方法时提到，当节点切换成Leader状态时，会将raft.tick字段设置成raft.tickHeartbeat（）方法。下面先来看一下tickHeartbeat（）方法的具体实现：

通过raft.tickHeartbeat（）方法的代码可知，MsgCheckQuorum消息和MsgBeat消息的Term字段都为0，所以它们也属于本地消息的一种。raft.Step（）方法并没有对MsgCheckQuorum消息和MsgBeat消息进行特殊的处理，其主要处理是在raft.stepLeader（）方法中，相关代码片段如下：

其中，raft.checkQuorumActive（）方法会检测当前集群中与当前 Leader 节点连通的节点个数是否超过了半数，具体实现如下：

了解了 MsgCheckQuorum 消息的处理过程之后，我们再来了解一下 raft.bcastHeartbeat（）方法，它通过调用 raft.bcastHeartbeatWithCtx（）方法向集群中其他节点发送 MsgHeartbeat 消息。bcastHeartbeatWithCtx（）方法的具体实现如下：

MsgHeartbeat消息和MsgHeartbeatResp消息

当集群中的 Follower 节点收到 Leader 节点发来的 MsgHeartbeat 消息之后，也是通过raft.Step（）方法调用raft.stepFollower（）方法进行处理的，处理完成后会向Leader节点返回相应的MsgHearbeatResp消息作为响应。raft.stepFollower（）方法中的相关代码片段如下：

下面再回到Leader节点中，分析其MsgHearbeatResp消息的相关处理，stepLeader（）方法中的相关代码片段如下：

MsgProp消息

在etcd-raft模块中，客户端发往到集群的写请求是通过MsgProp消息表示的。在前面介绍Raft 协议时提到，Raft 集群中只有 Leader 节点能够响应客户端的写入请求。Leader 节点对于MsgProp消息的主要处理是在raft.stepLeader（）方法中实现的，相关的代码片段如下：

当集群中的 Candidate 节点收到客户端发来的 MsgProp 消息时，会直接忽略该消息。当Follower 节点收到 MsgProp 消息时，会将该 MsgProp 消息转发给当前集群的 Leader 节点，stepFollower（）方法中相关代码片段如下：

MsgReadIndex消息和MsgReadIndexResp消息

在前面介绍Raft协议时提到，客户端的读请求需要读到集群中最新的、已提交的数据（即linearizability语义），而不能读到老数据。在现实场景中也经常会遇到读多写少的情况，如果每次读请求都涉及多个节点的磁盘操作，则性能必然较差。Leader节点保存了整个集群中最新的数据，如果只读请求只访问Leader节点，则Leader节点可以直接将结果返回给客户端，但是在网络分区的场景下，一个旧的Leader节点就可能返回旧数据。

为此，etcd-raft模块使用MsgReadIndex消息来解决上述问题：当Leader节点收到客户端的只读请求时，会将当前请求的编号记录下来，在返回数据给客户端之前，Leader节点需要先确定自己是否依然是当前集群的Leader节点（通过心跳的方式），在确定其依然是Leader节点之后，就可以说明该节点可以响应该请求，只需要等待当前 Leader 节点的提交位置（即raftLog.committed）到达或是超过只读请求的编号即可向客户端返回响应。

在etcd-raft模块中，客户端发往集群的只读请求使用MsgReadIndex消息表示，其中只读请求有两种模式，分别是ReadOnlySafe和ReadOnlyLeaseBased。Leader节点对于MsgReadIndex消息的主要处理也是在raft.stepLeader（）方法中实现的，其相关代码片段如下：

这里涉及raft.readOnly字段（*readOnly类型），该字段的主要作用就是批量处理只读请求。结构体readOnly中的字段含义如下：

· option（ReadOnlyOption 类型）：当前只读请求的处理模式，正如前面介绍的那样，有 ReadOnlySafe和ReadOnlyLeaseBased两种模式。

· pendingReadIndex （map[string]*readIndexStatus 类型）：在 etcd 服务端收到MsgReadIndex消息时，会为期创建一个消息ID（该ID是唯一的），并作为MsgReadIndex消息的第一条 Entry 记录。在 pendingReadIndex 中记录了消息 ID 与对应请求的readIndexStatus实例的映射。readIndexStatus中的字段如下。

req（pb.Message类型）：记录了对应的MsgReadIndex请求。

index （uint64 类型）：该 MsgReadIndex 请求到达时，对应的已提交位置（即raftLog.committed）。

acks（map[uint64]struct{}类型）：记录了该MsgReadIndex相关的MsgHeartbeatrResp响应信息。

· readIndexQueue（[]string类型）：记录了MsgReadIndex请求对应的消息ID。

下面回到raft.stepLeader（）方法中，在ReadOnlySafe模式下首先会通过ReadOnly.addRequest（）方法将已提交位置（raftLog.committed）及 MsgReadIndex 消息的相关信息记录到 raft.readOnly中，ReadOnly.addRequest（）方法的具体实现如下：

之后调用raft.bcastHeartbeatWithCtx（）方法，向集群中其他节点发送MsgHeartbeat消息，此次发送的 MsgHeartbeat 消息中会将上述生成的 ID 作为 Context 字段的值。raft.bcastHeartbeatWithCtx（）方法在前面已经介绍过了，这里不再赘述。

前面介绍MsgHeartbeat消息处理时分析过，Follower节点通过raft.stepFollower（）方法完成对 MsgHeartbeat 消息的处理，这里读者回顾的是，在创建 MsgHeartbeatResp 消息时，会将其Context字段值设置为MsgHeartbeat消息携带的Context值。

接下来回到 raft.stepLeader（）方法对 MsgHeartbeatResp 消息的处理，在前面对MsgHeartbeatResp消息的介绍中，已经介绍了Leader节点对普通MsgHeartbeatResp消息的处理，这里重点来看一下其中对携带Context字段的MsgHeartbeatResp消息的处理，相关代码片段如下：

上述处理过程中，首先会调用 readOnly.recvAck（）方法统计指定的消息 ID 收到了多少MsgHeartbeatResp 响应消息，从而确定在收到对应的 MsgReadIndex 消息的时候，当前 Leader节点是否为集群的Leader节点，readOnly.recvAck（）方法的具体实现片段如下：

当收到的响应消息超过半数以上时，会通过 readOnly.advance（）方法清空指定消息 ID 及其之前的所有相关记录，advance（）方法的具体实现如下：

最后，我们再来简单了解一下Follower节点对MsgReadIndex消息和MsgReadIndexResp消息的处理。在集群中，Follower节点不能直接响应客户端的只读请求，而是转发给Leader节点进行处理，等待Leader节点响应之后，Follower节点才能响应Client。raft.stepFollower（）方法的相关代码片段如下：

ReadOnlySafe模式是etcd作者推荐的模式，在这种模式下的只读请求处理，不会受节点之间时钟差异和网络分区的影响，这也是本节到目前为止一直在介绍的模式。另一种模式是ReadOnlyLeaseBased，虽然该模式并不推荐，但是其相关实现比较简单，读者也可以简单了解一下。stepLeader（）方法中在ReadOnlyLeaseBased模式下处理MsgReadIndex消息的相关代码片段如下：

到此为止，MsgReadIndex消息和MsgReadIndexResp消息的全部内容介绍完了。

MsgSnap消息

通过前面介绍的raft.sendAppend（）方法可知，在Leader节点尝试向集群中的Follower节点发送MsgApp消息时，如果查找不到待发送的Entry记录（即该Follow节点对应的Progress.Next指定的 Entry 记录），则会尝试通过 MsgSnap 消息将快照数据发送到 Follower 节点，Follower节点之后会通过快照数据恢复其自身状态，从而可以与Leader节点进行正常的Entry记录复制。例如，当Follower节点宕机时间比较长，就可能出现上述发送MsgSnap消息的场景。

首先看一下Leader节点发送MsgSnap消息的过程，相关的代码片段位于raft.sendApp（）方法中，具体实现如下：

下面转到 Follower 节点，介绍其对 MsgSnap 消息的处理，其相关的代码片段位于raft.stepFollower（）方法中，具体实现如下：

在 raft.handleSnapshot（）方法中，会读取 MsgSnap 消息中的快照数据，并重建当前节点的raftLog，具体实现如下：

在raft.restore（）方法中，会调用raftLog中相应的方法进行检测和重建，其具体实现如下：

这里还有两个本地消息与 MsgSnap 消息相关，它们分别是 MsgSnapStatus 消息和MsgUnreachable消息。如果Leader节点发送MsgSnap消息时出现异常，则会调用Raft接口的ReportUnreachable（）方法和ReportSnapshot（）方法发送MsgUnreachable消息和MsgSnapStatus消息。下面来看一下raft.stepLeader（）方法中关于MsgUnreachable消息和MsgSnapStatus消息的处理代码：

到此为止，etcd-raft模块中关于快照复制的消息处理就介绍完了。

MsgTransferLeader消息和MsgTimeoutNow消息

在前面的介绍中，我们都省略了对Leader节点转移的内容，本小节就重点分析Leader节点转移的过程，其中涉及MsgTransferLeader消息和MsgTimeoutNow消息的处理。Leader节点转移一般是我们指定一个特定的节点作为下一个任期的Leader节点，当前Leader节点会选择一个合适的节点（选择的条件后面详细介绍），然后发送MsgTransferLeader消息（本地消息）。

下面先来分析 Leader 节点对MsgTransferLeader 消息的处理，stepLeader（）方法中的代码片段如下：

在进行Leader节点转移时，Leader节点会停止处理客户端发来的MsgProp消息，这是因为如果客户端不断追加Entry记录，则可能使目标Follower节点与Leader节点的raftLog始终不匹配，从而导致Leader节点的迁移超时。这里回顾一下Leader节点处理MsgProp消息时与Leader节点迁移相关代码片段：

下面我们转到目标 Follower 节点中，分析看看它是如何处理 MsgTimeoutNow 消息的。stepFollower（）方法中相关的代码片段如下：

这里需要读者注意的是，目标 Follower 节点在处理 MsgTimeoutNow 消息时调用的raft.campaign（）方法的参数是 campaignTransfer，该参数会被记录到 MsgVote 消息中并发送到集群中的其他节点，而其他节点在处理MsgVote消息时，会因为该标识立即参与此次选举，读者可以回顾前面对MsgPreVote消息和MsgVote消息处理过程的介绍。

另一个需要读者注意的地方是，前文提到当Leader节点与目标Follower节点的raftLog不匹配时，会通过MsgApp消息进行Entry记录复制，直至两者完全匹配之后，才会向目标Follower节点发送MsgTimeoutNow消息，stepLeader（）方法中相关的代码如下：

到这里，etcd-raft模块中各种类型消息的含义及每种类型消息的处理流程就全部介绍完了，希望读者可以将本节内容与前面介绍的 Raft 协议结合在一起分析，这样可以更加清晰地了解etcd-raft中的实现。

3.2 Node接口

通过上一节对raft结构体及各种消息处理流程的分析可以看出，结构体raft实现了Raft协议中最核心的内容，它也是整个 etcd-raft 模块的核心，但是它并没有实现网络传输、持久化存储（注意与存储Entry记录的raftLog进行区分）等功能，也没有对外提供简单易用的API。

在etcd-raft模块中，结构体Node表示集群中的一个节点，它是在结构体raft之上的一层封装，对外提供相对简单的API接口。下面看一下Node接口提供的方法：

在开始介绍Node接口中各方法的实现之前，有必要先介绍一下Node相关的几个结构体。首先来看一下Ready结构体，Ready内嵌了SoftState和HardState，在SofteState中封装了当前集群的Leader节点ID（Lead字段）及当前节点的角色（RaftState），在HardState中封装了当前节点的任期号（Term字段）、当前节点在该任期投票结果（Vote字段）及当前节点的raftLog的已提交位置。除此之外，Ready实例中每个字段都封装一部分的数据，它们的含义如下所示。

· Entries（[]pb.Entry类型）：该字段中的Entry记录是从unstable中读取出来的，上层模块会将其保存到Storage中。

· CommittedEntries（[]pb.Entry类型）：已提交、待应用的Entry记录，这些Entry记录之前已经保存到了Storage中。

· Snapshot（pb.Snapshot类型）：待持久化的快照数据，raftpb.Snapshot中封装了快照数据及相关元数据，在前面已经详细介绍过了，这里不再重复介绍。

· Messages（[]pb.Message类型）：该字段中保存了当前节点中等待发送到集群其他节点的Message消息。

· ReadStates（[]ReadState类型）：该字段记录了当前节点中等待处理的只读请求。最后需要注意的是，Ready实例只是用来传递数据的，其全部字段都是只读的。

Status是另一个需要介绍的结构体，它也内嵌了HardState和SoftState，除此之外，它还记录了当前节点的ID（ID字段）、已应用的Entry记录的最大索引值（Applied字段）。

如果当前节点是Leader节点在其Progress字段（map[uint64]Progress类型）中还记录了集群中每个节点对应的Progress实例，raft.Progress结构体在前面已经介绍过了，这里不再重复介绍。

3.2.1 node结构体

node结构体是Node接口的实现之一，本小节重点介绍node的具体实现。这里首先来分析node结构体中各个字段的含义，它提供的方法在后面的分析过程中详细介绍。

· propc（chan pb.Message类型）：该通道用于接收MsgProp类型的消息。

· recvc（chan pb.Message类型）：除MsgProp外的其他类型的消息都是由该通道接收的。

· confc（chan pb.ConfChange类型）：当节点收到EntryConfChange类型的Entry记录时，会转换成ConfChange，并写入该通道中等待处理。在ConfChange中封装了其唯一 ID、待处理的节点 ID （NodeID 字段）及处理类型（Type 字段，例如，ConfChangeAddNode类型表示添加节点）等信息。

· confstatec（chan pb.ConfState类型）：在ConfState中封装了当前集群中所有节点的ID，该通道用于向上层模块返回ConfState实例。

· readyc（chan Ready类型）：Ready结构体的功能在上一小节已经介绍过了，该通道用于向上层模块返回Ready实例，即node.Ready（）方法的返回值。

· advancec（chan struct{}类型）：当上层模块处理完通过上述readyc通道获取到的Ready实例之后，会通过node.Advance（）方法向该通道写入信号，从而通知底层raft实例。

· status（chan chan Status类型）：Status结构体在上一小节已经介绍过了，注意该通道的类型，其中传递的元素也是Channel类型，即node.Status（）方法的返回值。

· tickc（chan struct{}类型）：用来接收逻辑时钟发出的信号，之后会根据当前节点的角色推进选举计时器和心跳计时器。

· stop（chan struct{}类型）：当node.Stop（）方法被调用时，会向该通道发送信号，在后续介绍中会提到，有另一个goroutine会尝试读取该通道中的内容，当读取到信息之后，会关闭done通道。

· done（chan struct{}类型）：当检测到done通道关闭后，在其上阻塞的goroutine会继续执行，并进行相应的关闭操作。

3.2.2 初始化

当集群中的节点初次启动时会通过StartNode（）函数启动创建对应的node实例和底层的raft实例。在StartNode（）方法中，主要是根据传入的Config配置创建raft实例并初始化raft使用的相关组件，其具体实现如下：

newRaft（）函数会完成对底层raft实例的初始化，在前面已经详细介绍过了，这里不再重复描述。在上面的newNode（）函数中，会完成node实例的初始化，其中会初始化上面介绍的全部通道，具体实现如下：

当集群中的节点重新启动时，就不是通过 StartNode（）函数创建 node 实例，而是调用RestartNode（）函数，RestartNode（）函数与StartNode（）函数的实现非常类似，其中最主要的区别就是不会根据Config中的配置信息调用raft.addNode（）方法添加节点，因为这些信息会从Storage中恢复。RestartNode（）函数的具体实现如下：

3.2.3 run（）方法

node.run（）方法会处理node结构体中封装的全部通道，它也是node的核心。正是因为在该方法中会对多个通道进行处理，所以本小节会将其中几个比较重要的通道处理过程单独拿出来介绍。node.run（）方法的大致实现如下：

首先看一下newReady（）函数，它会读取底层raft实例中的各项数据及相关状态，并最终封装成Ready实例，该Ready实例最终会返回给上层模块，具体实现如下：

通过newReady（）方法得到Ready实例之后，会通过containsUpdates（）方法检测Ready实例中各个字段是否为空，从而决定此次创建的Ready实例是否有必要交给上层模块处理进行处理。containsUpdates（）方法的具体实现如下：

通过上述 containsUpdates（）方法确定需要将 Ready 实例返回给上层模块之后，会将相应的Ready实例写入readyc通道中，该过程的相关片段如下：

通过上面的分析可知，在向readyc通道写入Ready实例之后，会使用pre*变量记录Ready实例中的相关状态信息，在下次创建 Ready实例时，会根据这些pre*变量判断当前底层的raft实例与上次相比是否已经发生了变化，并由此决定是否设置Ready实例的相应字段。

当上层模块通过readyc通道读取Ready实例之后，会将其中封装数据进行一系列处理，例如，上层模块会应用Ready.CommittedEntries中的Entry记录、持久化Ready.Entries中的记录和快照数据等。当上层模块处理完此次返回的 Ready 实例之后，会通过 node.Advance（）方法向node.advancec通道写入信号，通知etcd-raft模块其此次返回的Ready实例已经被处理完成，具体实现如下：

下面回到 node.run（）方法中介绍 advancec 通道的相关处理，其中会根据 pre*记录的状态更新raftLog的相关字段，具体实现如下：

当上层模块在处理待应用的Entry记录（即Ready.CommittedEntries中保存的记录）时，会对Entry记录进行分类处理，上层模块会将EntryNormal类型的记录（对应一个普通的数据写入操作）应用到自身状态机中，而对于 EntryConfChange 类型的记录（对应一个集群配置更改操作，例如，添加或删除一个节点），上层模块会将其封装成 ConfChange 实例并写入 node.confc通道中，等待底层的raft实例进行处理。

上层模块处理 Entry 记录的过程在后面详细分析，这里我们重点分析 node.run（）方法中对node.confc通道中ConfChange实例的处理，相关代码片段如下：

在前面介绍 raft 结构体时并没有详细分析其如何完成节点增删操作，下面分析rafte.addNode（）方法，具体实现如下：

再来看一下raft.removeNode（）方法是如何实现节点删除的，如下：

最后，我们来看一下 run（）方法中对于 n.status 通道的处理，这里要注意一下，node.status通道中传递的是chan Status类型的通道，相关代码片段如下：

node对外提供了Status（）方法，该方法用于读取当前节点的状态，其实现如下：

下面回到node.run（）方法中，分析一下其中调用的getStatue（）函数是如何将当前节点的状态封装成Status实例的，具体实现如下：

node.run（）方法中对核心通道的处理过程就介绍到这里。

3.2.4 Node接口实现

介绍完node中最核心的run（）方法之后，我们来看一下node结构体实现的Node接口方法。node实现的多个Node接口方法中，例如，Propose（）方法、Campaign（）方法、ReadIndex（）方法和ProposeConfChange（）方法，都是通过调用node.step（）方法实现的，只是传入底层raft实例的消息类型有所不同，从而实现不同功能，上述四个方法对应传入底层的消息类型分别是 MsgProp、MsgHup、MsgReadIndex和MsgProp（其中只有一条EntryConfChange类型的Entry记录）。这四个方法的实现比较简单，代码就不贴出来了，感兴趣的读者可以参考源码进行学习。

node.Step（）方法也是通过调用node.step（）方法实现的，该方法主要处理从其他节点收到的网络消息，而不是本地消息。下面具体分析：

读者可以回顾上一小节对node.run（）方法的介绍，当其收到recvc通道或是propc通道写入的消息之后，会调用raft.Step（）方法将消息传递给底层的raft实例进行处理，相关的实现在前面已经介绍过了，这里不再赘述。

在前面介绍MsgSnap消息时提到过，当Leader节点发送MsgSnap消息时，如果出现异常，则会通过Raft接口的ReportUnreachable（）方法和ReportSnapshot（）方法发送MsgUnreachable消息和MsgSnapStatus消息。在Raft接口的实现中，上述两个方法是通过调用node实例的同名方法实现的。在 node.ReportUnreachable（）和 ReportSnapshot（）方法中，分别会创建 MsgUnreachable和MsgSnapStatus消息，然后直接写入node.recvc通道中等待处理，具体实现如下：

除此之外，node.TransferLeadership（）方法的实现也是通过创建相应类型的消息（MsgTransferLeader类型消息）并写入node.recvc通道实现的，其代码比较简单，不再粘贴出来，感兴趣的读者可以参考源码进行学习。

到此为止，etcd-raft 模块的核心实现就全部介绍完了，在下一节，我们将通过一个示例，分析etcd-raft模块是如何使用的，也为后面介绍分析etcd中的其他模块打下基础。

3.3 raftexample示例分析

在etcd的源码中，自带了一个raftexample示例，在为数不多的资料中，该示例算是学习使用 etcd-raft 模块的最佳实践之一了。在本节中，我们就通过该示例深入分析如何使用 etcd-raft模块，也可以让读者了解etcd-raft模块是如何与其他模块进行协作的。

在开始介绍raftexample示例之前，我们先通过图3-12了解一下raftexample示例的总体架构。raftexample示例的代码在etcd源码的/contrib/raftexample目录中，其中比较核心的组件如下。

 图3-12

· raftNode：rafeNode 是该示例的核心组件（它定义在 raftexample/raft.go 文件中），raftNode是上层模块和底层etcd-raft组件之间衔接的桥梁。raftNode是对上一小节介绍的 etcd-raft 模块的一层封装，对上层模块提供了更加简洁、更方便使用的调用方式，可以让示例中其他部分无须过多关注etcd-raft模块的实现细节，降低了系统耦合程度。除此之外，raftNode还封装了很多其他的功能，例如，前面提到的WAL日志管理、快照管理及网络层相关的功能。在该示例中，raftNode 相对于 etcd-raft 模块来说，扮演了上层模块的角色。

· kvstore：用于存储键值对信息，kvstore扮演了持久化存储的角色。

· httpKVAPI：该示例向外提供的是HTTP接口，用户可以通过调用HTTP接口来模拟客户端的行为。在后面会有专门的一章详细介绍etcd提供的客户端。

3.3.1 raftNode

正如上一小节对raftNode定位的介绍，它底层除了封装了etcd-raft模块，还封装了很多其他相关组件，在raftNode中主要实现的功能如下：

· 将客户端发来的请求传递给底层etcd-raft组件中进行处理。

· 从node.readyc通道中读取Ready实例，并处理其中封装的数据，具体的处理过程在后面详细介绍。

· 管理WAL日志文件。

· 管理快照数据。

· 管理逻辑时钟。

· 将etcd-raft模块返回的待发送消息通过网络组件发送到指定的节点。

下面详细介绍raftNode结构体中核心字段的含义。

· proposeC（＜-chan string类型）：在raftexample示例中，HTTP PUT请求表示添加键值对数据，当收到HTTP PUT请求时，httpKVAPI会将请求中的键值信息通过proposeC通道传递给raftNode实例进行处理。

· confChangeC（＜-chan raftpb.ConfChange类型）：在raftexample示例中，HTTP POST请求表示集群节点修改的请求，当收到POST请求时，httpKVAPI会通过confChangeC通道将修改的节点ID传递给raftNode实例进行处理。

· commitC（chan＜-*string类型）：在创建rafNode实例之后（raftNode实例的创建过程是在newRaftNode（）函数中完成的，其具体实现在后面详细介绍）会返回commitC、errorC、snapshotterReady三个通道。raftNode会将etcd-raft模块返回的待应用Entry记录（封装在Ready实例中）写入commitC通道，另一方面，kvstore会从commitC通道中读取这些待应用的Entry记录并保存其中的键值对信息。

· errorC（chan＜-error类型）：当etcd-raft模块关闭或是出现异常的时候，会通过errorC通道将该信息通知上层模块。

· snapshotterReady（chan*snap.Snapshotter 类型）：主要用于初始化的过程中监听snapshotter实例是否创建完成，snapshotter负责管理etcd-raft模块产生的快照数据，后面会详细介绍。

· id（int类型）：记录当前节点的ID。

· peers（[]string类型）：当前集群中所有节点的地址，当前节点会通过该字段中保存的地址向集群中其他节点发送消息。

· join（bool类型）：当前节点是否为后续加入到一个集群的节点。

· waldir（string类型）：存放WAL日志文件的目录。

· wal（*wal.WAL类型）：负责WAL日志的管理。当节点收到一条Entry记录时，首先会将其保存到raftLog.unstable中，之后会将其封装到Ready实例中并交给上层模块发送给集群中的其他节点，并完成持久化。在 raftexample 示例中，Entry 记录的持久化是将其写入raftLog.storage中。在持久化之前，Entry记录还会被写入WAL日志文件中，这样就可以保证这些Entry记录不会丢失。WAL日志文件是顺序写入的，所以其写入性能不会影响节点的整体性能。

· snapdir（string类型）：存放快照文件的目录。

· snapshotter（*snap.Snapshotter 类型）：负责管理快照数据，etcd-raft 模块并没有完成快照数据的管理，而是将其独立成一个单独的模块，在后面有单独的章节来介绍相关模块。

· snapshotterReady （chan*snap.Snapshotter 类型）：该通道用于通知上层模块snapshotter实例是否已经创建完成。

· snapCount（uint64类型）：两次生成快照之间间隔的Entry记录数，即当前节点每处理一定数量的 Entry 记录，就要触发一次快照数据的创建。每次生成快照时，即可释放掉一定量的WAL日志及raftLog中保存的Entry记录，从而避免大量Entry记录带来的内存压力及大量的 WAL 日志文件带来的磁盘压力；另外，定期创建快照也能减少了节点重启时回放的WAL日志数量，加速了启动时间。

· getSnapshot（func（） （[]byte，error））：用于获取快照数据的函数，在raftexample示例中，该函数会调用 kvstore.getSnapshot（）方法获取 kvstore.kvStore 字段的数据，后面还会提到该函数的功能。

· lastIndex（uint64类型）：当回放WAL日志结束之后，会使用使用该字段记录最后一条Entry记录的索引值。

· confState（raftpb.ConfState类型）：用于记录当前的集群状态，该状态就是从前面介绍的node.confstatec通道中获取的。

· snapshotIndex（uint64 类型）：保存当前快照的相关元数据，即快照所包含的最后一条Entry记录的索引值。

· appliedIndex（uint64类型）：保存上层模块已应用的位置，即已应用的最后一条Entry记录的索引值。

· node（raft.Node类型）：即前面介绍的etcd-raft模块中的node实例，它实现了Node接口，并将etcd-raft模块的API接口暴露给了上层模块。

· raftStorage（*raft.MemoryStorage类型）：前面已经介绍过Storage接口及其具体实现MemoryStorage，这里不再重复介绍。在raftexample 示例中，该MemoryStorage 实例与底层 raftLog.storage 字段指向了同一个实例，在后面介绍 raftNode 初始化时还会提到该实例的初始化过程。

· transport（*rafthttp.Transport 类型）：通过前面介绍可知，节点待发送的消息只是记录到了raft.msgs中，etcd-raft 模块并没有提供网络层的实现，而由上层模块决定两个节点之间如何通信。这样就为网络层的实现提供了更大的灵活性，例如，如果两个节点在同一台服务器中，我们完全可以使用共享内存方式实现两个节点的通信，并不一定非要通过网络设备完成。在后面会有单独的章节介绍etcd-rafthttp模块是如何实现集群内消息的发送。

· httpstopc和httpdonec（chan struct{}类型）：这两个通道相互协作，完成当前节点的关闭工作，两者的工作方式与前面介绍的node.done和node.stop的工作方式类似，在后面介绍raftexample示例中的stoppableListener时再详细介绍。

了解了raftNode的主要功能及其各个字段的含义之后，我们开始分析newRaftNode（）函数，在该函数中主要完成了raftNode的初始化。在该方法中会使用上层模块传入的配置信息（其中包括proposeC通道和confChangeC通道）来创建raftNode实例，同时会创建commitC通道和errorC通道返回给上层模块使用。这样，上层模块就可以通过这几个通道与rafeNode实例进行交互了。另外，newRaftNode（）函数中还会启动一个独立的后台goroutine来完成回放WAL日志、启动网络组件等初始化操作。newRaftNode（）函数的具体实现如下：

下面继续分析startRaft（）函数，其核心步骤如下：

（1）创建Snapshotter，并将该Snapshotter实例返回给上层模块。

（2）创建WAL实例，然后加载快照并回放WAL日志。

（3）创建raft.Config实例，其中包含了启动etcd-raft模块的所有配置，Config中封装的信息在前面已经详细介绍过了，这里不再重复介绍。

（4）初始化底层etcd-raft模块，得到前面介绍的node实例。

（5）创建 Transport 实例，该实例负责集群中各个节点之间的网络通信，其具体实现在rafthttp包中。

（6）建立与集群中其他节点的网络连接。

（7）启动网络组件，其中会监听当前节点与集群中其他节点之间的网络连接，并进行节点之间的消息读写。

（8）启动两个后台goroutine，它们的主要工作都是处理上层模块与底层etcd-raft模块的交互，但处理的具体内容不同，后面会详细介绍这两个goroutine的处理流程。

raftNode.startRaft（）方法的具体实现如下：

介绍完 startRaft（）函数的大致流程之后，我们着重分析其中几个关键步骤的具体实现。raftNode.replayWAL（）方法首先会读取快照数据，在快照的元数据中记录了该快照包含的最后一条Entry记录的Term值和索引值。然后根据该Term值和索引值确定读取WAL日志文件的位置，并进行日志记录的读取。最后将读取到的快照数据、WAL 日志记录和状态信息保存到raftNode.raftStorage（即 etcd-raft 模块中 raftLog.storage）中。raftNode.replayWAL（）方法的具体实现如下：

WAL对日志文件的管理在后面会有单独的章节详细介绍，现在读者只要了解WAL实例的主要功能是读写日志文件即可，这里只是简单看一下raftNode.openWAL（）方法中确定读取WAL日志文件的位置及创建WAL实例的过程：

完成WAL日志回放之后，会创建Config对象并进行etcd-raft模块的初始化，这个过程在前面介绍node结构体时已经介绍过，这里不再展开详述。之后就是rafthttp.Transport的初始化过程，在后面有单独的章节介绍etcd-rafthttp模块，读者这里只需要了解rafthttp.Transport主要负责管理当前节点与集群其他节点的网络连接即可。

在raftNode.startRaft（）方法的最后，启动了两个后台goroutine分别执行了serveRaft（）方法和serveChannels（）方法，其中 serveRaft（）方法负责监听当前节点的地址，完成与其他节点的通信。下面先来看一下serveRaft（）方法的具体实现：

下面再来看一下serveChannels（）方法，其中会单独启动一个后台goroutine来负责上层模块传递给 etcd-raft 模块的数据，主要处理前面介绍的 proposeC、confChangeC 两个通道。serveChannels（）方法的具体实现如下：

另外，serveChannel（）方法还负责处理etcd-raft模块返回给上层模块的数据及其他相关的操作，例如，推进etcd-raft模块的逻辑时钟、处理网络异常等，相关代码片段如下所示。

接下来，我们详细分析一下处理 Ready 实例中封装的各项数据的过程，首先来看一下raftNode.saveSnap（）方法，其中会将新生成的快照数据保存到磁盘上，还会根据快照的元数据释放部分旧WAL日志文件的句柄，其具体实现如下：

在raftNode.publishSnapshot（）方法中，会通知上层模块加载新生成的快照数据，并使用新快照的元数据更新raftNode中的相应字段，具体实现如下：

最后来看一下raftNode是如何处理待应用的Entry记录的，首先是raftNode.entriesToApply（）方法，其中会对Ready实例中携带的待应用记录进行过滤，具体实现如下：

其次就是 raftNode.publishEntries（）方法，在该方法中，raftNode 会将所有待应用记录写入commitC通道中。后续kvstore 就可以读取commitC 通道并保存相应的键值对数据，其具体实现如下：

为了释放底层etcd-raft模块中无用的Entry记录，节点每处理指定条数（默认是10000条）的记录之后，就会触发一次快照生成操作，相关实现在raftNode.maybeTriggerSnapshot（）方法中，如下所示。

到此为止，raftexample示例中最核心的内容已经介绍完了，在本节后续，将简单介绍该示例中其他相关功能组件。

3.3.2 HTTP服务端

在raftexample示例中，会初始化一个简单的HTTP服务端来接收用户发送的HTTP请求，也是raftexample示例与用户交互的唯一途径，本小节就将介绍该服务端的具体实现。在该HTTP服务中只有一个结构体，即httpKVAPI，其核心字段如下。

· store（*kvstore类型）：kvstore实例在raftexample示例中扮演了持久化存储的角色，用于保存用户提交的键值对信息。

· confChangeC（chan＜-raftpb.ConfChange类型）：在raftexample示例中，当用户发送POST （或DELETE）请求时，会被认为是发送了一个集群节点增加（或删除）的请求，httpKVAPI会将该请求的信息写入confChangeC通道，正如上一小节所介绍的，raftNode实例会读取confChange通道并进行相应处理。

httpKVAPI实现了http.Handler接口，在httpKVAPI.ServeHTTP（）方法中，会根据HTTP请求的Method进行分类处理，其中只处理PUT、GET、POST和DELETE四种Method，相关的代码片段如下所示。

· PUT请求表示向kvstore实例中添加（或更新）指定的键值对数据。

· GET请求表示从kvstore实例中读取指定的键值对数据。

· POST请求表示向集群中新增指定的节点。

· DELETE请求表示从集群中删除指定的节点。

在raftexample完成初始化之后，会调用serveHttpKVAPI（）函数，其中会启动一个单独的后台goroutine来监听指定的地址，接收用户发来的HTTP请求。serveHttpKVAPI（）函数的具体实现如下：

3.3.3 kvstore

在raftexample示例中，kvstore扮演了持久化存储和状态机的角色，etcd-raft模块通过Ready实例返回的待应用Entry记录最终都会存储到kvstore中。kvstore中的核心字段如下。

· proposeC（chan＜-string类型）：在前面的章节中提到，httpKVAPI处理HTTP PUT请求时，会调用 kvstore.Propose（）方法将用户请求的数据写入 proposeC 通道中，之后raftNode会从该通道中读取数据并进行处理。

· kvStore（map[string]string类型）：该字段是用来存储键值对的map，其中存储的键值都是string类型的。

· snapshotter（*snap.Snapshotter类型）：该字段负责读取快照文件。

通过前面对raftNode的介绍可知，它会将待应用的Entry记录写入commitC通道中，另外，当需要加载快照数据时，它会向commitC通道写入nil作为信号。在kvstore初始化（newKVStore（）函数）时，会启动一个后台goroutine来执行kvstore.readCommits（），其中就会读取commitC通道，然后将读取到的键值对写入kvStore中，其具体实现如下：

在kvstore.recoverFromSnapshot（）方法中，会将快照数据反序列化得到一个map实例，然后直接替换当前的kvStore实例，具体实现如下：

在httpKVAPI处理HTTP GET请求时，会直接调用kvstore.Lookup（）方法读取kvStore中记录的键值对，其实现比较简单，这里不再展开介绍，感兴趣的读者可以参考源码进行学习。

最后简单说一下，在raftexample示例main（）方法中，会根据配置创建kvstore实例、raftNode实例、简易的HTTP服务端及上述各种通道，并将这些组件组装起来，其具体实现比较简单，代码就不再粘贴出来了，感兴趣的读者可以参考相关代码进行学习。

本章小结

本章首先介绍了etcd-raft模块对Raft协议中相关概念的抽象及其自身实现使用到的基本数据结构，例如，Config、MemoryStorage、unstable、raftLog 等。然后详细介绍了 raft 结构体的实现，它是etcd-raft模块的核心，其中处理了所有Raft协议相关的各种类型的消息，同时也负责节点的状态切换。之后，又介绍了Node接口及其etcd-raft模块中提供的实现（结构体node），它是对底层raft实例的一层封装，对外提供了更简单、更易用的API。

在本章的最后一节中，我们分析了etcd自带的raftexample示例，其中涉及该示例的大致架构、具体实现，以及使用底层etcd-raft模块的方式。希望读者通过本章的阅读，可以加深对Raft协议的理解，了解etcd-raft模块的实现原理，并且能够类似raftexample示例那样使用etcd-raft模块，对外提供基本Raft协议的功能。
第4章 网络层

4.1 Go语言网络编程基础

4.1.1 http.Server

在开始介绍etcd中提供的网络模块之前，需要读者先了解一下Go语言的网络编程，特别是http.Server等组件的使用方法和原理，这里要介绍的就是我们在实际开发中最常用的http库。首先来看其中的几个概念。

· Request：表示客户端请求，负责解析HTTP请求信息。

· Response：表示服务端返回给客户端的响应。

· Conn：表示一次网络链接。

· Handle：其中封装了处理客户端的请求的逻辑及创建返回响应的逻辑。

在前面介绍的raftexample示例中，raftNode.serveRaft（）方法中有一段使用的HTTP库的代码，大致实现如下：

这里创建了一个http.Server实例，它会通过传入的TCPListener实例监听指定地址上的连接请求，当TCPListener实例通过Accept（）方法监听到新连接到来时，会创建对应的net.Conn实例（读者可以将其理解为一个单独的网络连接），http.Server 会为每个连接启动一个独立的后台goroutine，处理该连接上的请求。每个请求的处理逻辑封装在 http.Server.Handler 中（创建http.Server实例时传入），大致原理如图4-1所示。

 图4-1

在raftexample示例中使用的Handler实例是由rafthttp.Transporter.Handler（）方法创建的，其中为多个路径绑定了对应的Handler实例。这里简单看一下该方法的具体实现：

下面我们深入介绍一下 http.Server 是如何与 net.TCPListener 实例配合工作的。首先是http.Server.Serve（）方法，其中通过net.Listener接收新连接，并为每个连接启动一个单独的后台goroutine来处理该连接上的请求。http.Server.Serve（）方法的代码比较长，笔者将其进行了精简，其核心代码如下：

这里以 raftexample 示例中的 stoppableListener 为例来分析 net.Listener 的工作原理，stoppableListener内嵌了net.TCPListener接口，其定义如下：

stoppableListener.Accept（）方法重写了TCPListener.Accept（）方法，具体实现如下：

回到 http.Server.Serve（）方法继续分析，我们进入 http.conn.serve（）方法，看看它是如何处理单个连接及其上请求的，其具体实现如下：

处理单个请求的核心就是 serverHandler.ServeHTTP（）方法，该方法会将请求交给绑定的http.Server.Handler实例进行处理，具体实现如下：

http.ServeMux.ServHttp（）方法会根据请求的具体路径，选择合适的 Handler 实例处理请求，该方法的具体实现如下：

http.Server的大致原理和具体实现就介绍到这里，同时，我们也介绍了raftexample示例中使用http.Server的一个典型实例，也深入介绍了http.Server工作流程。

4.1.2 RoundTripper

在使用net.http库发送HTTP请求的过程中，最后都调用了http.Transport.RoundTrip（）方法，http.Transport即RoundTripper接口的实现之一。

在RoundTripper接口中，定义了RoundTrip（）方法来完成一个HTTP事务，那什么是HTTP事务呢？简单来说就是：客户端发送一个HTTP Request到服务端，服务端处理完请求之后，返回相应的HTTP Response的过程。RoundTripper接口的定义如下：

结构体http.Transport实现了上面的RoundTripper接口，这里重点关注http.Transport中的几个核心字段。

· idleConn（map[connectMethodKey][]*persistConn类型）：persistConn是在普通网络连接（net.Conn）上的一层封装，一般表示的是TCP长连接（即在建立连接并传输数据完成之后，不调用close（）方法关闭连接，后续即可复用该TCP连接）。http.Transport中的 idleConn 字段保存了从 connectMethodKey 到 persistConn 的映射，其中的connectMethodKey记录了连接的协议、host等信息。

· idleConnCh （map[connectMethodKey]chan*persistConn）：http.Transport 中的idleConnCh字段用来在多个后台 goroutine 之间相互发送persistConn实例，这就可以做到persistConn的复用，如图4-2所示。

· 另一个需要读者了解的字段是 Dial，它是从外部传入的函数指针，该函数负责创建底层的TCP连接。

 图4-2

接下来看一下Transport.RoundTrip（）方法的具体实现，它首先会检测Request的合法性，然后看一下altProto中是否存在请求对应的RoundTripper实现。Transport实际上可以处理不同协议的请求，处理不同协议就要有不同的RoundTripper实现，如果需要处理多种协议，就需要通过RegisterProtocol来注册一些针对不同协议的RoundTrip实现，Transport发送Request之前就是通过该部分逻辑确定到底要使用哪个RoundTripper实现的。之后构建一个connectMethod实例，通过Transport.getConn（）方法获取TCP连接，并调用persistConn.roundTrip（）方法把Request写入TCP中完成请求的发送。Transport.RoundTrip（）方法的具体实现如下：

下面我们继续深入 Transport.getConn（）方法，看一下获取 TCP 长连接的过程。在Transport.getConn（）方法中，首先会调用Transport.getIdleConn（）方法获取可用的空闲连接，如果没有空闲连接，则会启动另外一个后台goroutine负责新建连接，并通过dialc通道将新建的连接实例送回给 getConn（）函数使用。在 Transport.getConn（）方法中通过同时监听多个通道来处理多种复杂的场景。例如，在创建的过程中，一个连接被其他 goroutine 释放了等场景。Transport.getConn（）方法的具体实现如下：

上述过程中，Transport.dialConn（）方法负责新建连接，其具体实现较为复杂，笔者对其进行了简化，这里简单分析一下其大致流程：

在获取到连接之后，Transport.RoundTrip（）方法会调用persistConn.roundTrip（）方法将请求发送出去。在开始分析persistConn.roundTrip（）方法之前，先来分析persistConn结构体中的关键字段，如下所示。

· t（*Transport类型）：当前persistConn实例关联的Transport实例。

· conn（net.Conn类型）：底层封装的连接。

· br（*bufio.Reader类型）：它对底层连接的输入流的封装。

· bw（*bufio.Writer类型）：它对底层连接的输出流的封装。

· reqch（chan requestAndChan类型）：主goroutine向reqch通道写入待读取的响应信息，readLoop从该通道里面接收这些信息并在读取响应之后将其返回。

· writech（chan writeRequest类型）：主goroutine会向writech通道中写入待发送的请求，writeLoop会从该通道中读取待发送的请求。

主goroutine、readLoop和writeLoop之间的关系如图4-3所示。

 图4-3

下面来看一下persistConn.roundTrip（）方法，其大致步骤如下：

（1）检测请求是否已经被取消，如果已被取消，则把persistConn放入putOrCloseIdleConn（）中处理。

（2）对请求头进行处理。

（3）向writech通道写入writeRequest实例（其中封装了待发送的请求），上面介绍过writech通道的接收者是writeLoop goroutine，writeLoop goroutine接收到请求之后就会将请求发送出去，如果发送过程中出现异常，则通过writeErrCh通道返回给主goroutine。

（4）向reqch通道写入requestAndChan实例（其中封装了请求信息及readLoop goroutine返回响应的通道），readloop goroutine负责读取reqch通道中的数据。

（5）persistConn.roundTrip（）方法会监听一些写入错误、响应超时、连接关闭等异常情况，并且等待readLoop goroutine返回的响应。

下面来看一下persistConn.roundTrip（）方法的大致实现，其中省略了很多复杂场景的处理：

通过对persistConn.roundTrip（）方法的分析可知，响应读取是在readLoop goroutine中完成的。readLoop（）方法首先检测当前是否发生了 I/O 错误，然后通过 persistConn.reqch 通道接收主goroutine 写入的 requestAndChan 实例，并从连接中读取相应的响应数据。正如前面介绍的，requestAndChan中还封装了readLoop goroutine和主goroutine进行通信的通道（ch字段）。之后，readLoop goroutine 会对读取到的响应数据进行检查，并进行反序列化，最后通过requestAndChan.ch 通道将响应返回给主 goroutine。readLoop（）方法处理了多种异常场景，实现比较复杂，这里对其进行简化，只介绍关键步骤，大致实现如下：

writeLoop（）方法的实现相对来说就比较简单了，它会从 writech 通道中读取主 goroutine 写入的待发送请求，然后将其写入底层连接。如果写入出现错误，则通知主 goroutine 进行处理。writeLoop（）方法的具体实现如下：

4.2 etcd-rafthttp模块详解

通过上一章对etcd-raft模块的介绍我们知道，etcd-raft模块并未提供网络层的相关实现，而是将待发送的消息封装进Ready实例返回给上层模块，然后由上层模块决定如何将这些消息发送到集群中的其他节点。etcd 将网络层相关的实现独立成一个单独的模块，也就是本节要详细介绍的etcd-rafthttp模块。之所以独立出该模块，是为了降低etcd-raft模块与网络层实现之间的耦合，降低etcd-raft模块和etcd-rafthttp模块实现的成本，提高整个程序的可扩展性。

在etcd集群中，每个节点启动时都会与集群中的其他节点建立网络连接，这里以三个节点的集群为例，最终形成如图4-4所示的网络结构。

 图4-4

在etcd中有多种消息类型，不同类型的消息所能携带的数据大小也不尽相同，其中快照相关消息的数据量就比较大，小至几KB，大至几 GB都是有可能的，而Leader节点到Follower节点之间的心跳消息一般只有几十到几百个字节。因此，etcd 的网络层会创建两个消息传输通道（与Go语言中的Channel并不是一个层面的东西，请读者注意区分），并对etcd-raft模块产生的消息进行分类处理。

上面说的两个消息传输通道也就是本节紧接着要介绍的Stream消息通道和Pipeline消息通道。这两种消息通道的主要区别在于：Stream消息通道维护的HTTP长连接，主要负责传输数据量较小、发送比较频繁的消息，例如，前面介绍的MsgApp消息、MsgHeartbeat消息、MsgVote消息等；而 Pipeline 消息通道在传输数据完成后会立即关闭连接，主要负责传输数据量较大、发送频率较低的消息，例如，MsgSnap消息等。

Stream消息通道是节点启动后，主动与集群中的其他节点建立的。每个Stream消息通道有2个关联的后台goroutine，其中一个用于建立关联的HTTP连接，并从连接上读取数据，然后将这些读取到的数据反序列化成Message实例，传递到etcd-raft模块中进行处理。另外一个后台goroutine会读取etcd-raft模块返回的消息数据并将其序列化，最后写入Stream消息通道。

读者可以回忆一下前面对 raftNode.serveRaft（）方法的介绍，在启动 http.Server 时会通过rafthttp.Transporter.Handler（）方法为指定的URL路径添加相应的Handler实例，其中“/raft/stream/”路径对应的Handler为streamHandler类型，它负责处理Stream消息通道上的请求。相同的“，/raft”路径对应的Handler为pipelineHandler类型，它负责处理Pipeline通道上的请求，“/raft/snapshot”路径对应的Handler为snapshotHandler类型，它负责处理Pipeline通道上的请求。

4.2.1 rafthttp.Transporter接口

在开始分析这些 Handler 的具体实现之前，先来介绍一下 rafthttp.Transporter 接口，它是rafthttp包的核心接口之一，它定义了etcd网络层的核心功能，其具体定义如下：

另外，还有另一个需要重点介绍的接口—Raft，在前面介绍raftexample示例时，也简单提到过该接口，该接口的定义如下：

在后面分析etcd服务端的实现时，还会详细介绍Raft接口的相关实现。

rafthttp.Transport是rafthttp.Transporter接口具体实现，请读者注意区分这里的rafthttp.Transport和前面介绍的 net.http.Transport 接口，两者是完全不同的两个东西。下面来看一下rafthttp.Transport中定义的关键字段：

· ID（types.ID类型）：当前节点自己的ID。

· URLs（types.URLs类型）：当前节点与集群中其他节点交互时使用的URL地址。

· ClusterID（types.ID类型）：当前节点所在的集群的ID。

· Raft（Raft类型）：Raft是一个接口，其实现的底层封装了前面介绍的etcd-raft模块，当rafthttp.Transport收到消息之后，会将其交给Raft实例进行处理。

· Snapshotter（*snap.Snapshotter类型）：Snapshotter负责管理快照文件，后面会详细介绍其实现。

· streamRt（http.RoundTripper类型）：Stream消息通道中使用的http.RoundTripper实例。

· pipelineRt（http.RoundTripper 类型）：Pipeline 消息通道中使用的 http.RoundTripper实例，http.Transport（http.RoundTripper接口的实现）的工作原理在前面已经介绍过了，这里不再重复介绍。

· peers（map[types.ID]Peer类型）：Peer接口是当前节点对集群中其他节点的抽象表示。对于当前节点来说，集群中其他节点在本地都会有一个 Peer 实例与之对应，peers 字段维护了节点ID到对应Peer实例之间的映射关系。

· remotes（map[types.ID]*remote类型）：remote中只封装了pipeline实例，remote主要负责发送快照数据，帮助新加入的节点快速追赶上其他节点的数据。

· prober（probing.Prober类型）：用于探测Pipeline消息通道是否可用。

了解了rafthttp.Transporter接口的定义和rafthttp.Transport中的各个字段的含义之后，我们再来了解一下Transport.Start（）方法中执行的初始化操作，其具体实现如下：

Transport.Handler（）方法主要负责创建 Steam 消息通道和 Pipeline 消息通道用到的 Handler实例，并注册到相应的请求路径上，其具体实现在前面介绍过了，这里不再重复分析。

下面再来看一下 Transport.AddPeer（）方法，其主要工作就是创建并启动对应节点的 Peer 实例，具体实现如下：

在rafthttp.Transport中实现的RemovePeer（）方法会调用peer.stop（）方法关闭底层的连接，同时会停止定时发送的探测消息，RemoveAllPeers（）方法的实现同理；UpdatePeer（）方法则会调用peer.update（）方法更新对端暴露的URL地址，同时更新探测消息发送的目标地址。另外，Transport还实现了rafthttp.peerGetter接口，该接口中定义了一个Get（）方法用于获取指定节点对应的Peer实例。上述四个方法的具体实现比较简单，代码就不在贴出来了，感兴趣的读者请参考源码进行学习。

Transport.Send（）方法负责发送指定的raftpb.Message消息，其中首先尝试使用目标节点对应的Peer实例发送消息，如果没有找到对应的Peer实例，则尝试使用对应的remote实例发送消息。Transport.Send（）方法的具体实现如下：

Transport.SendSnapshot（）方法负责发送指定的 snap.Message 消息（其中封装了对应的MsgSnap消息实例及其他相关信息）。该方法是通过调用peer.sendSnap（）方法完成的，实现比较简单，在下一小节介绍peer.sendSnap（）方法时再详细介绍其具体实现。

4.2.2 Peer接口

通过上一小节的分析我们知道，rafthttp.Transport中的多个方法都是通过调用Peer实例的相应方法实现的。本小节先来介绍一下Peer接口，其具体定义如下：

结构体rafthttp.peer是Peer接口的具体实现，其中各字段的含义如下。

· id（types.ID类型）：该peer实例对应的节点的ID。

· r（Raft类型）：Raft接口，在Raft接口实现的底层封装了etcd-raft模块。

· picker（*urlPicker类型）：每个节点可能提供了多个URL供其他节点访问，当其中一个访问失败时，我们应该可以尝试访问另一个。而urlPicker提供的主要功能就是在这些URL之间进行切换。

· writer（*streamWriter类型）：负责向Stream消息通道写入消息。

· msgAppReader（*streamReader类型）：负责从Stream消息通道读取消息。

· pipeline（*pipeline类型）：Pipeline消息通道。

· snapSender（*snapshotSender类型）：负责发送快照数据。

· recvc（chan raftpb.Message类型）：从Stream消息通道中读取到消息之后，会通过该通道将消息交给Raft接口，然后由它返回给底层etcd-raft模块进行处理。

· propc（chan raftpb.Message类型）：从Stream消息通道中读取到MsgProp类型的消息之后，会通过该通道将MsgProp消息交给Raft接口，然后由它返回给底层etcd-raft模块进行处理。

· paused（bool类型）：是否暂停向对应节点发送消息。

上述字段之间协同工作的原理如图4-5所示。

 图4-5

在 rafthttp.peer.startPeer（）方法中完成了初始化上述字段的工作，同时也启动了关联的后台goroutine。该方法的具体实现如下，其中省略了一些异常处理的代码：

了解了Peer实例的初始化操作之后，再来看其核心方法。首先是peer.send（）方法，前面分析的Transport.Send（）方法就是通过调用该方法实现消息发送功能的，具体实现如下：

在peer.pick（）方法中，会根据消息的类型选择合适的消息通道，并返回相应的通道供send（）方法写入待发送的消息，具体实现如下：

Peer接口及其实现peer结构体的内容暂时先介绍到这里，Peer的其他方法在后面使用到的时候再进行分析。

4.2.3 pipeline

正如本章前面所介绍的，pipeline负责传输快照数据。我们首先来分析pipeline的核心字段。

· peerID（types.ID类型）：该pipeline对应节点的ID。

· tr（*Transport类型）：关联的rafthttp.Transport实例。

· raft（Raft类型）：底层的Raft实例。

· msgc（chan Message类型）：pipeline实例从该通道中获取待发送的消息。

· wg（sync.WaitGroup类型）：负责同步多个goroutine结束。每个pipeline实例会启动多个后台goroutine（默认值是4个）来处理msgc通道中的消息，在pipeline.stop（）方法中必须等待这些goroutine都结束（通过wg.Wait（）方法实现），才能真正关闭该pipeline实例。

pipeline的大致工作原理如图4-6所示。

 图4-6

在pipeline.start（）方法中会初始化上述字段，同时会启动用来发送消息的后台goroutine，其具体实现如下：

在 pipeline.handle（）方法中会从 msgc 通道中读取待发送的 Message 消息，然后调用pipeline.post（）方法将其发送出去，发送结束之后会调用底层Raft接口的相应方法报告发送结果。pipeline.handle（）方法的具体实现如下：

pipeline.post（）方法是真正完成消息发送的地方，其中会启动一个后台goroutine监听控制发送过程及获取发送结果，具体实现如下：

通过上面的分析我们可以大致了解 pipeline 发送消息的大致原理。在前面介绍rafthttp.Transport.Handler（）方法时提到了pipelineHandler这个Handler实现，它负责接收pipeline发送的数据，在后面遇到pipelineHandler时，会详细分析其具体实现。

4.2.4 streamWriter实例

在 peer.start（）方法中，除了创建并启动 pipeline 实例，还会创建并启动了一个 sreamWriter实例。从命名上可以猜出其主要功能就是向 Stream 消息通道写入消息，本节就来详细介绍streamWriter的具体实现。先来看一下streamWriter的核心字段，如下所示。

· peerID（types.ID类型）：对端节点的ID。

· r（Raft类型）：底层的Raft实例。

· closer（io.Closer类型）：负责关闭底层的长连接。

· working（bool 类型）：负责标识当前的 streamWriter 是否可用（底层是否关联了相应的网络连接）。

· msgc（chan Message类型）：通过前面对Peer的分析可知，Peer会将待发送的消息写入该通道，streamWriter则从该通道中读取消息并发送出去。

· connc（chan*outgoingConn类型）：通过该通道获取当前streamWriter实例关联的底层网络连接，outgoingConn 其实是对网络连接的一层封装，其中记录了当前连接使用的协议版本，以及用于关闭连接的Flusher和Closer等信息。

StreamWriter的大致工作原理如图4-7所示。

 图4-7

在peer.start（）方法中是通过调用startStreamWriter（）方法初始化上述字段并启动streamWriter实例的，其中还启动了一个后台goroutine来执行 streamWriter.run（）方法。在streamWriter.run（）方法中，主要完成了下面三件事情：

（1）当其他节点主动与当前节点创建连接（即Stream消息通道底层使用的网络连接）时，该连接实例会写入对应peer.writer.connc通道，在streamWriter.run（）方法中会通过该通道获取该连接实例并进行绑定，之后才能开始后续的消息发送。

（2）定时发送心跳消息，该心跳消息并不是前面介绍etcd-raft模块时提到的MsgHeartbeat消息，而是为了防止底层连接超时的消息，后面会详细介绍该消息的处理过程。

（3）发送除心跳消息外的其他类型的消息。

streamWriter.run（）方法虽然有点长，但是这样拆开来看就不是很复杂了。streamWriter.run（）方法的具体实现如下：

streamWriter中另一个需要读者了解的方法是attach（）方法，该方法会接收outgoingConn实例并写入streamWriter.connc通道中，peer.attachOutgoingConn（）方法就是通过调用该方法实现的。在后面介绍的streamHandler中，也就是通过调用peer.attachOutgoingConn（）方法将底层网络连接传递到streamWriter中的。streamWriter.attach（）方法和peer.attachOutgoingConn（）方法的具体实现如下：

4.2.5 streamReader实例

在 peer.start（）方法中，除了创建前面介绍的 pipeline 和 steamWriter，还创建并启动了一个sreamReader实例。从该结构体的命名和前面对streamWriter的介绍，读者应该可以猜出其主要功能是从Stream通道中读取消息。在本小节中，将详细分析streamReader的具体实现。下面先来分析streamReader的核心字段。

· peerID（types.ID类型）：对应节点的ID。

· typ（streamType类型）：关联的底层连接使用的协议版本信息。

· tr（*Transport类型）： 关联的rafthttp.Transport实例。

· picker（*urlPicker类型）：用于获取对端节点的可用的URL。

· recvc（chan＜-Message 类型）：在前面介绍的 peer.startPeer（）方法中提到，创建streamReader 实例时是使用 peer.recvc 通道初始化该字段的，其中还会启动一个后台goroutine 从 peer.recvc 通道中读取消息。在下面分析中会看到，从对端节点发送来的非MsgProp 类型的消息会首先由streamReader 写入recvc 通道中，然后由peer.start（）启动的后台goroutine读取出来，交由底层的etcd-raft模块进行处理。

· propc（chan＜-raftpb.Message类型）：该通道与上面介绍的recvc通道类似，只不过其中接收的是MsgProp类型的消息。

· paused（bool类型）：是否暂停读取数据。

streamReader的大致工作原理如图4-8所示。

 图4-8

在streamReader.start（）方法中会启动一个单独的后台goroutine来执行streamReader.run（）方法，与streamWriter类似，它也是streamReader的核心。streamReader.run（）方法的具体实现如下：

streamReader.dial（）方法主要负责与对端节点建立连接，其中包含了多种异常情况的处理，这里重点分析其建立连接的主流程，具体实现如下：

decodeLoop（）方法是streamReader中的核心方法，它会从底层的网络连接读取数据并进行反序列化，之后将得到的消息实例写入recvc通道（或propc通道）中，等待Peer进行处理，其具体实现如下：

到此为止，streamReader中核心方法的具体实现就介绍完了。

4.2.6 snapshotSender

在etcd提供的v3版本中，开始使用snapshotSender传输快照数据，在前面介绍的startPeer（）函数中会创建snapshotSender实例。snapshotSender的实现与前面介绍的pipeline类似，下面先介绍其核心字段的含义。

· from和to（types.ID类型）：记录当前节点的ID及对端节点的ID。

· cid（types.ID类型）：记录当前集群的ID。

· tr（*Transport类型）：关联的Transport实例。

· picker（*urlPicker类型）：负责获取对端节点可用的URL地址。

· r（Raft类型）：底层的Raft状态机。

前面介绍的peer实现了Peer接口，其sendSnap（）方法的实现中会单独启动一个线程并调用snapshotSender.send（）方法完成快照数据的发送，具体实现如下：

与pipeline类似，snapshotSender.post（）方法是真正完成快照数据发送的地方，其具体实现如下：

4.3 Handler实例

在前面介绍的rafthttp.Transport.Handler（）方法中，会创建多个Handler实例并与指定的URL路径关联，本节中我们重点关注其中的pipelineHandler和streamHandler两个Handler的具体实现。

4.3.1 pipelineHandler

在前面分析的pipeline.handle（）方法和pipeline.post（）方法中，我们只看到了创建连接和发送请求的逻辑，本小节重点介绍在对端节点的pipelineHandler中是如何读取快照消息的。下面先来看一下pipelineHandler中各个字段的含义。

· tr（Transporter类型）：当前pipeline实例关联的rafthttp.Transport实例。

· r（Raft类型）：底层的Raft实例。

· cid（types.ID类型）：当前集群的ID。

正如前面介绍的那样，在pipelineHandler中实现了http.Server.Handler接口的ServeHTTP（）方法，也是其处理请求的核心方法。pipelineHandler.ServeHTTP（）方法通过读取对端节点发来的请求得到相应的消息实例，然后将其交给底层的 etcd-raft 模块进行处理，该方法的具体大致实现如下：

4.3.2 streamHandler

在前面分析 streamWriter 时介绍了向对端消息发送的基本逻辑，在分析 streamReader 时，我们大致了解了建立连接和读取对端消息的过程。本小节主要介绍streamHandler，它主要负责在接收到对端的网络连接之后，将其与对应的streamWriter实例进行关联。这样，streamWriter就可以开始向对端节点发送消息了。下面来分析streamHandler中各个字段的含义。

· tr（*Transport类型）：关联的rafthttp.Transport实例。

· peerGetter（peerGetter类型）：peerGetter接口在前面简单介绍过，其接口中的Get（）方法会根据指定的节点ID获取对应的peer实例。

· r（Raft类型）：底层的Raft实例。

· id（types.ID类型）：当前节点的ID。

· cid（types.ID类型）：当前集群的ID。

与pipelineHandler类似，streamHandler的核心也是ServeHTTP（）方法，其大致实现如下：

4.3.3 snapshotHandler

snapshotHandler与前面介绍的pipelineHandler类似，用来接收对端节点发来的快照数据。snapshotHandler中各个字段的含义如下所示。

· tr（Transporter类型）：关联的Transporter实例。

· r（Raft类型）：底层的Raft实例。

· snapshotter （*snap.Snapshotter 类型）：负责将快照数据保存到本地文件中，Snapshotter的具体实现在下一章详细介绍。

· cid（types.ID类型）：集群的ID。

snapshotHandler.ServeHTTP（）方法除了读取对端节点发来的快照数据，还会在本地生成相应的快照文件，并将快照数据通过Raft接口传递给底层的etcd-raft模块进行处理，其具体大致实现如下：

本章小结

本章介绍了Go语言中常用的几个网络组件的工作原理，重点介绍etcd-rafthttp模块的功能和实现原理。在本章开始，介绍了Go语言中的http.Server、RoundTripper的基本功能及工作原理。之后介绍了etcd网络模块中的Transporter接口，以及其在etcd-rafthttp模块中的实现—Transport结构体。接着深入分析Transport结构体涉及的多个组件的具体实现，例如，Peer、pipeline、streamWriter、streamReader和snapshotSender，这些组件共同构成了etcd-rafthttp模块完整的功能。最后深入介绍了pipelineHandler、streamHandler和snapshotHandler的具体实现，它们主要用来接收对端节点发来的HTTP请求。希望通过本章的阅读，读者可以了解etcd-rafthttp模块的工作原理。

5chapter
第5章 WAL日志与快照

etcd-raft模块为了保证Raft核心协议实现的简洁，并没有直接提供WAL日志与快照相关的实现逻辑，而是将其实现独立到etcd-wal模块与etcd-snap模块，其中提供了操作WAL日志文件与快照文件的相关实现。上层模块自身调用etcd-wal模块与etcd-snap模块即可完成读写WAL日志文件与快照文件的相关操作。本章将详细介绍etcd-wal模块与etcd-snap模块提供的具体功能及实现。

5.1 WAL日志

WAL（Write-ahead logging）是etcd实现一致性的重要手段之一。下面简单回顾一下处理一条Entry记录的大致流程：

（1）当客户端向 etcd 集群发送了一次请求之后，请求中的封装 Entry 记录会先被交给etcd-raft模块进行处理，其中，etcd-raft模块会先将Entry记录保存到raftLog.unstable中。

（2）etcd-raft模块将该Entry记录封装到前面介绍的Ready实例中，返回给上层模块进行持久化。

（3）当上层模块收到待持久化的Entry记录之后，会先将其记录到WAL日志文件中，然后进行持久化操作，最后通知etcd-raft模块进行处理。

（4）此时etcd-raft模块就会将该Entry记录从unstable移动到storage中保存。

（5）待该Entry记录被复制到集群中的半数以上节点时，该Entry记录会被Leader节点确认为已提交（committed），并封装进Ready实例返回给上层模块。

（6）此时上层模块即可将该Ready实例中携带的待应用Entry记录应用到状态机中。

这就是处理一条Entry记录大致过程，如图5-1所示。

 图5-1

在etcd-wal模块中，首先需要介绍的就是结构体WAL，它对外提供了WAL日志文件管理的核心API。在操纵WAL日志时，对应的WAL实例有read和append两种模式，新创建的WAL实例处于append模式，该模式下只能向WAL中追加日志。当恢复一个节点时（例如，宕机节点的重启），就需要读取WAL日志的内容，此时刚打开的WAL实例处于read模式，它只能读取日志记录，当读取完全部的日志之后，WAL实例转换成append 模式，可以继续向其追加日志记录。

在WAL日志文件中，日志记录是通过Record表示的，该结构体通过Protocol Buffers生成，主要用于序列化和反序列化日志记录，其中各个字段的含义如下。

· Type字段（int64类型）：表示该Record实例的类型。

· Crc字段（uint32类型）：记录该Record实例的校验码。

· Data 字段（[]byte 类型）：记录真正的日志数据，根据日志的类型不同，Data 字段中保存的数据也有所相同。

Record 结构体还提供了一些简单的方法，后面遇到时会进行简单说明。根据 Record.Type字段值，可以将日志记录分为如下几种类型。

· metadataType：该类型日志记录的Data字段中保存了一些元数据，在每个WAL文件的开头，都会记录一条metadataType类型的日志记录。

· entryType：该类型日志记录的Data字段中保存的是Entry记录，也就是客户端发送给服务端处理的数据，例如，raftexample示例中客户端发送的键值对数据。

· stateType：该类型日志记录的Data字段中保存了当前集群的状态信息（即HardState），在每次批量写入entryType类型日志记录之前，都会先写入一条stateType类型的日志记录。

· crcType：该类型的日志记录主要用于数据校验。

· snapshotType：该类型的日志记录中保存了快照数据的相关信息（即walpb.Snapshot，注意，其中不包含完整的快照数据）。

了解了这些基础知识之后，我们回到WAL结构体，先通过一张结构图了解WAL的大致结构，如图5-2所示。

 图5-2

下面来看一下WAL结构体核心字段的含义。

· dir（string类型）：存放WAL日志文件的目录路径。

· dirFile（*os.File类型）：根据dir路径创建的File实例。

· metadata（[]byte类型）：在每个WAL日志文件的头部，都会写入metadata元数据。

· state（raftpb.HardState 类型）：WAL 日志记录的追加是批量的，在每次批量写入entryType类型的日志之后，都会再追加一条stateType类型的日志记录，在HardState中记录了当前的Term、当前节点的投票结果和已提交日志的位置。

· start（walpb.Snapshot类型）：每次读取WAL日志时，并不会每次都从头开始读取，而是通过这里的start字段指定具体的起始位置。walpb.Snapshot中的Index字段记录了对应快照数据所涵盖的最后一条 Entry 记录的索引值，Term 字段则记录了对应 Entry记录的Term值。在读取WAL日志文件时，我们就可以根据这些信息，找到合适的位置并开始读取记录。

· decoder（*decoder类型）：负责在读取WAL日志文件时，将二进制数据反序列化成Record实例。

· encoder（*encoder类型）：负责将写入WAL日志文件的Record实例进行序列化成二进制数据。

· mu（sync.Mutex类型）：读写WAL日志时需要加锁同步。

· enti（uint64类型）：WAL中最后一条Entry记录的索引值。

· locks（[]*fileutil.LockedFile类型）：当前WAL实例管理的所有WAL日志文件对应的句柄。

· fp（*filePipeline类型）：filePipeline实例负责创建新的临时文件。

这里需要特别说明一下 filePipeline，它负责预创建日志文件并为日志文件预分配空间。在filePipeline中会启动一个独立的后台goroutine来创建“.tmp”结尾的临时文件，当进行日志文件切换时，直接将临时文件进行重命名即可使用。结构体filePipeline中各个字段的含义如下。

· dir（string类型）：存放临时文件的目录。

· size （int64 类型）：创建临时文件时预分配空间的大小，默认是 64MB （由wal.SegmentSizeBytes指定，该值也是每个日志文件的大小）。

· count（int类型）：当前filePipeline实例创建的临时文件数。

· filec（chan*fileutil.LockedFile 类型）：新建的临时文件句柄会通过 filec 通道返回给WAL实例使用。

· errc（chan error类型）：当创建临时文件出现异常时，则将异常传递到errc通道中。

· donec（chan struct{}类型）：当filePipeline.Close（）被调用时会关闭donec通道，从而通知filePipeline实例删除最后一次创建的临时文件。

在newFilePipeline（）方法中，除了创建filePipeline实例，还会启动一个后台goroutine来执行filePipeline.run（）方法，该后台goroutine中会创建新的临时文件并将其句柄传递到filec通道中。filePipeline.run（）方法的具体实现如下：

下面来看一下filePipeline.alloc（）方法是如何创建临时文件的，其具体实现如下：

在WAL切换日志文件时会调用filePipeline.Open（）方法，从filec通道中获取之前创建好的临时文件，具体实现如下：

5.1.1 初始化

介绍完filePipeline结构体之后，我们回到WAL继续分析。先来看一下wal.Create（）方法，该方法不仅会创建WAL实例，而是做了很多初始化工作，其大致步骤如下：

（1）创建临时目录，并在临时目录中创建编号为“0-0”的WAL日志文件，WAL日志文件名由两部分组成，一部分是seq（单调递增），另一部分是该日志文件中的第一条日志记录的索引值。

（2）尝试为该WAL日志文件预分配磁盘空间。

（3）向该WAL日志文件中写入一条crcType类型的日志记录、一条metadataType类型的日志记录及一条snapshotType类型的日志记录。

（4）创建WAL实例关联的filePipeline实例。

（5）将临时目录重命名为WAL.dir字段指定的名称。

这里之所以先使用临时目录完成初始化操作再将其重命名的方式，主要是为了让整个初始化过程看上去是一个原子操作。wal.Create（）方法的具体实现如下：

WAL.renameWal（）方法在不同系统平台的操作略有不同，但是主要操作都是重命名临时目录并创建关联的filePipeline实例。下面是针对Linux系统的具体实现（该实现在wal_unix.go中，Window系统对应的实现在wal_windows.go中）：

5.1.2 打开日志

在开始介绍wal.Open*（）方法之前，需要读者注意两个地方：

· 在打开WAL日志文件时，可以指定此次打开日志文件的模式是只读模式还是读写模式。

· 在打开WAL日志文件时，都会指定随后的读取操作的起始index，而不是每次都从第一个日志文件开始读取。

wal模块根据上面两点，提供了Open（）和OpenForRead（）两个函数，两者的区别在于：使用Open（）函数创建的WAL实例读取完全部日志后，可以继续追加日志；而OpenForRead（）函数创建的WAL实例只能用于读取日志，不能追加日志。这两个方法底层都是通过调用openAtIndex（）方法完成的，该方法的具体实现如下：

5.1.3 读取日志

通过Open（）函数或OpenForRead（）函数创建WAL实例之后，就可以调用其ReadAll（）方法读取日志了。WAL.ReadAll（）方法首先从WAL.start字段指定的位置开始读取日志记录，读取完毕之后，会根据读取的情况进行一系列异常处理。然后根据当前 WAL 实例的模式进行不同的处理：如果处于读写模式，则需要先对后续的WAL日志文件进行填充并初始化WAL.encoder字段，为后面写入日志做准备；如果处于只读模式下，则需要关闭所有的日志文件。另外需要注意的是，WAL.ReadAll（）方法的几个返回值都是从日志记录中读取到的。WAL.ReadAll（）方的具体实现如下：

实际读取 WAL 日志的功能是在 decoder.decode（）的方法中完成的，下面简单介绍一下decoder的实现，先来看一下decoder的核心字段，如下所示。

· mu（sync.Mutex类型）：在decoder开始读取日志文件时，需要加锁同步。

· brs（[]*bufio.Reader类型）：该decoder实例通过该字段中记录的Reader实例读取相应的日志文件，这些日志文件就是在前面介绍的 wal.openAtIndex（）方法中打开的日志文件。

· lastValidOff（int64类型）：读取日志记录的指针。

· crc（hash.Hash32类型）：校验码。

decoder.decode（）方法底层是通过调用 decoder.decodeRecord（）方法实现的，该方法的具体实现如下：

5.1.4 追加日志

正如上一小节介绍，通过WAL.ReadAll（）方法读取完全部日志记录之后，WAL.encoder字段才会被初始化，自此之后，我们才能通过该WAL实例向日志文件中追加日志记录。WAL对外提供了追加日志的方法，分别是Save（）方法和SaveSnapshot（）方法。

WAL.Save（）方法先将待写入的Entry记录封装成entryType类型的Record实例，然后将其序列化并追加到日志段文件中，之后将HardState封装成stateType类型的Record实例，并序列化写入日志段文件中，最后将这些日志记录同步刷新到磁盘。WAL.Save（）方法的具体实现如下：

在WAL.Save（）方法中追加日志记录的操作分别由saveEntry（）方法和saveState（）方法完成，两者的实现非常相似，saveState（）方法留给读者自己进行分析，这里简单介绍saveEntry（）方法的实现，如下所示。

WAL.Save（）在完成日志记录的追加之后，会调用sync（）方法将日志同步刷新到磁盘上，其具体实现如下：

通过本节的介绍可知，encoder.encode（）方法是真正完成日志写入功能的地方，这里简单介绍一下encoder的实现，先来看一下encoder的核心字段。

· mu（sync.Mutex类型）：在进行读写文件的时候，需要加锁同步。

· bw（*ioutil.PageWriter类型）：PageWriter是带有缓冲区的Writer，在写入时，每写满一个 Page 大小的缓冲区，就会自动触发一次 Flush 操作，将数据同步刷新到磁盘上。每个Page的大小是由walPageBytes常量指定的。

· buf（[]byte类型）：日志序列化之后，会暂存在该缓冲区中，该缓冲区会被复用，这就防止了每次序列化创建缓冲区带来的开销。

· uint64buf（[]byte类型）：在写入一条日志记录时，该缓冲区用来暂存一个Frame的长度的数据（Frame由日志数据和填充数据构成）。

在encoder.encode（）方法中，会对日志记录进行序列化，并完成8字节对齐，具体实现如下所示。

5.1.5 文件切换

随着 WAL 日志文件的不断写入，单个日志文件会不断变大。在前面提到过，每个日志文件的大小是有上限的，该阈值由SegmentSizeBytes指定（默认值是64MB），该值也是日志文件预分配磁盘空间的大小。当单个日志文件的大小超过该值时，就会触发日志文件的切换，该切换过程是在 WAL.cut（）方法中实现的，在上一小节读 WAL.Save（）方法的分析中，也看到了该方法的身影。

WAL.cut（）方法首先通过 filePipeline 获取一个新建的临时文件，然后写入 crcType 类型、metaType类型、stateType类型等必要日志记录（这个步骤与前面介绍的Create（）方法类似），然后将临时文件重命名成符合WAL日志命名规范的新日志文件，并创建对应的encoder实例更新到WAL.encoder字段。WAL.cut（）方法的具体实现如下：

到这里为止，etcd-wal 模块的核心实现就已经全部介绍完了。在下一节中，我们将开始介绍快照存储相关的内容。

5.2 SnapShotter

随着节点的运行，会处理客户端和集群中其他节点发来的大量请求，相应的 WAL 日志量会不断增加，会产生大量的WAL日志文件，另外etcd-raft模块中的raftLog中也会存储大量的Entry记录，这就会导致资源浪费。当节点宕机之后，如果要恢复其状态，则需要从头读取全部的WAL日志文件，这显然是非常耗时的。为了解决这些问题，etcd会定期创建快照并将其保存到本地磁盘中，在恢复节点状态时会先加载快照文件，使用该快照数据将节点恢复到对应的状态，之后从快照数据之后的相应位置开始读取WAL日志文件，最终将节点恢复到正确的状态。

与WAL日志的管理类似，etcd并未在etcd-raft模块中实现将快照管理，而是将其独立到了snap 模块中。其中 SnapShotter 通过文件的方式管理快照数据，它是 snapshot 模块的核心。在SnapShotter结构体中只有一个dir字段（string类型），该字段指定了存储快照文件的目录位置。

Snapshotter.SaveSnap（）方法的主要功能就是将快照数据保存到快照文件中，其底层是通过调用save（）方法实现的。save（）方法的具体实现如下：

下面再来看一下 Snapshotter.Load（）方法，该方法会读取指定目录下的全部快照文件，并查找其中最近的可用快照文件，然后通过Snapshotter.loadSnap（）方法加载其中的快照数据，其具体实现如下：

另外，Snapshotter.SaveDBFrom（）方法和DBFilePath（）方法提供了另一套读写快照数据的方式，生成的快照文件名称也与上述方式不同。下面先来看一下SaveDBFrom（）方法的具体实现：

Snapshotter.DBFilePath（）方法是在dbFilePath（）方法之上实现的，用于查找指定的快照db文件，具体实现如下所示。

本章小结

在本章中，我们主要介绍了etcd中wal模块和snap模块的主要功能和具体实现。在本章的开始，我们介绍了WAL日志的相关内容，首先是记录WAL日志的意义，然后详细分析了WAL的结构及其主要功能的实现，例如，WAL日志文件的模式、读写WAL日志文件、切换日志文件等功能，最后介绍了snap模块是如何实现快照数据的存储和加载。

希望通过本章的阅读，读者可以了解 WAL 日志和快照的基本工作原理，也帮助读者更清晰地理解前面介绍的etcd-raft模块和后续介绍的etcd-server模块的内容。
第6章 storage

随着etcd功能的不断完善及开源社区的不断壮大，etcd于2016年6月发布了v3.0.0版本，从此进入了etcd v3时代。在etcd v2和etcd v3中，使用的etcd-raft模块变化不大，但使用的后端存储有很多不同之处。

在etcd v2和v3两个版本中，都使用了前面介绍的etcd-raft模块实现Raft协议相关的功能，但是它们底层使用的存储不同，对外提供的接口也不同。更重要的是，这两个版本的后端存储并不具有兼容性，实现也是相互独立的。也就是说，v3版本的后端存储并不是由v2版本发展、升级而来的。另外，这两个版本的后端存储中的数据也是互相隔离的，这样在启动一个etcd节点之后，通过v2版本接口写入的数据只存在于v2版本的后端存储中，也只能通过v2版本的接口进行访问；而通过v3版本接口写入的数据只存在于v3版本的后端存储中，当然也只能通过v3版本的接口访问这些数据。

6.1 etcd v2版本存储

etcd v2版本的存储是一版完全基于内存的存储，它并没有将数据实时地写入到磁盘。在其需要进行持久化时，会将整个存储的数据序列化成JSON格式的数据并写入磁盘文件。在etcd v2版本的存储中，数据是以树形结构保存在内存中的，图6-1展示了etcd v2版本存储的大致结构。

在 etcd v2 版本的存储中，有一个全局的 currentIndex，每次出现数据变更的时候，该currentIndex会加1，每个event都会关联到currentIndex。当客户端调用watch接口（参数中增加wait参数）时，如果请求参数中有waitIndex，并且waitIndex小于currentIndex，则从EventHistroy表中查询index小于或等于waitIndex，并且和watch key匹配的event。如果有数据，则直接返回。如果EventHistroy表中没有或者请求没有带waitIndex，则放入WatchHub中，每个key会关联一个watcher列表。当有变更操作时，变更生成的event会放入EventHistroy表中，同时通知和该key相关的watcher。

 图6-1

这里有几个影响使用的细节问题：

· EventHistroy 表是有长度限制的，默认情况下，其最大长度是 1000。也就是说，如果客户端停了较长时间，然后重新“watch”的时候，可能和该 waitIndex 相关的 event实例已经被淘汰了，这种情况下就会丢失变更。

· 如果通知watcher的时候，出现了阻塞（每个watcher关联的channel有100个缓冲空间），则etcd会直接把watcher删除，会导致wait请求的连接中断，客户端需要重新连接。

· 为了防止内存被撑爆，etcd v2版本存储的绝大多数node中都会设置过期时间，并通过定时清理的机制进行清理。

从而可以看出etcd v2的一些限制：

· 过期时间只能设置到每个key上，因此多个key要保证生命周期一致则比较困难。

· watcher只能监听某一个key及其子节点（通过参数 recursive）。

· 很难通过watcher机制来实现完整的数据同步（因为有丢失变更的风险），所以当前的大多数使用方式是通过watcher得知变更，然后通过get重新获取数据的，并不完全依赖于watcher机制。

6.1.1 node

本小节主要介绍etcd v2版本存储中涉及的基本概念。结构体node是v2版本存储中最基本的元素，通过前面的介绍我们知道，v2版本存储是树形结构的，node既可以表示其中的一个键值对（叶子节点），也可以表示一个目录（非叶子节点）。下面介绍node中各个字段的含义。

· Path（string类型）：当前节点的路径，格式类似“/dir1/dir2/key”。

· CreatedIndex（uint64类型）：记录创建当前节点时对应的CurrentIndex值。

· ModifiedIndex（uint64类型）：记录最后一次更新当前节点时对应的CurrentIndex值。

· Parent（*node类型）：指向父节点的指针。

· ExpireTime（time.Time 类型）：当前节点的过期时间，如果该字段被设置为 0，则表示当前节点是一个“永久节点”（即不会被过期删除）。node.IsPermanent（）方法通过检查该字段判断当前节点是否为“永久节点”。

· Value（string类型）：如果当前节点表示一个键值对，则该字段记录了对应的值。

· Children（map[string]*node 类型）：如果当前节点表示一个目录节点，则该字段记录了其子节点。node.IsDir（）方法通过检查该字段判断当前节点是否为目录节点。

· store（*store类型）：记录当前节点关联的v2版本存储实例。

对于键值对和目录两种不同类型的节点，v2版本存储分别提供了newKV（）和newDir（）两个不同的函数进行创建，这两个函数会创建node实例并初始化相应的字段，其实现比较简单，代码不再贴出来，感兴趣的读者可以参考代码进行学习。

对于键值对节点，node提供了Read（）和Write（）方法用来读写对应的值，需要注意的是，只能读写键值对节点，它们的具体实现如下：

当其他模块调用v2存储的Storage接口获取节点数据时，v2存储并不会直接将相应的node实例暴露出去，而是会将node实例封装成NodeExtern实例之后再返回。结构体NodeExtern中除了包含node中的核心数据，还包含了一些扩展字段，这里先简单介绍一下NodeExtern中的核心字段含义。

· Key（string 类型）：对应 node 实例中的 Path 字段。为了实现排序功能，NodeExtern实现了sort接口，在其Less（）方法实现中比较的就是Key字段。

· Value（*string类型）：对应键值对节点中的Value字段。

· Dir（bool类型）：对应节点是否为目录节点。

· Expiration（*time.Time 类型）：对应节点的过期时间。如果对应节点是“永久节点”，则该字段值为nil。

· TTL（int64 类型）：对应节点的剩余存活时间，单位是秒。如果对应节点是“永久节点”，则该字段值为0。

· Nodes（NodeExterns类型）：子节点对应的NodeExtern实例。

· ModifiedIndex（uint64类型）：对应节点的ModifiedIndex字段值。

· CreatedIndex（uint64类型）：对应节点的CreatedIndex字段值。

在node.Repr（）方法中，会将当前节点和子节点（根据参数决定是否递归处理子节点以及子节点是否排序）转换成NodeExtern实例返回，其具体实现如下：

node.expirationAndTTL（）方法提供了计算当前节点存活时间的功能，其具体实现如下：

node结构体不仅提供了List（）方法获取当前节点的全部子节点，还提供了GetChild（）方法获取指定的子节点，该方法直接从 Child 字段中获取相应的节点，实现比较简单，感兴趣的读者可以参考源码进行学习。

下面来分析node.Add（）和Remove（）方法，Add（）方法的主要功能是在当前节点下添加子节点，具体实现如下：

Remove（）方法负责将当前节点从其父节点中删除，其中会根据参数决定是否递归删除当前节点的子节点，其具体实现如下：

node 结构体提供的最后一个需要介绍的方法是 UpdateTTL（）方法，该方法会更新指定节点的过期时间，另外还会更新该节点在TTLKeyHeap中的排序，具体实现如下：

除了上述的普通的节点，v2 存储将以下画线开头的节点定义为“隐藏节点”。在后面介绍storage.Get（）时可以看到，它会将隐藏节点从查找的结果集中过滤掉，其中通过 node.IsHidden（）方法判断某个节点是否为“隐藏节点”，具体实现如下：

6.1.2 Event

当v2存储收到调用请求之后，会进行相应的处理，在处理完成之后，会将处理结果及相关信息封装成Event实例返回。这里先来介绍一下Event中各个字段的含义。

· Action（string类型）：该Event实例对应的操作，可选项有Get、Create、Set、Update、Delete、CompareAndSwap、CompareAndDelete和Expire。

· Node（*NodeExtern类型）：当前操作节点对应的NodeExtern实例。

· PrevNode（*NodeExtern 类型）：如果是更新操作，则记录该节点之前状态对应的NodeExtern实例。

· EtcdIndex（uint64类型）：记录操作完成之后的CurrentIndex值。

· Refresh（bool类型）：如果是Set、Update、CompareAndSwap三种涉及值更新的操作，则该字段都有可能被设置true。当该字段被设置为true 时，表示该Event实例对应的修改操作只进行刷新操作（例如，只修改了节点的过期时间），并没有改变节点的值，不会触发相关的watcher。

Event提供的方法都比较简单，这里就不再展开进行详细分析了，感兴趣的读者可以参考源码进行学习。

另外两个与Event相关的结构体分别是eventQueue和EventHistory。eventQueue是一个先进先出的、环形的Event队列，其中各个字段的含义如下。

· Events（[]*Event类型）：底层真正存储Event实例的数组。

· Capacity（int类型）：Events字段的长度。

· Size（int类型）：当前Events字段中存储的Event实例个数。

· Front（int类型）：eventQueue队列中第一个元素的下标值。

· Back（int类型）：eventQueue队列中最后一个元素的下标值。

还有一点需要注意的是，当eventQueue被填满之后，继续向其中添加Event，则会导致最先添加的Event实例被覆盖，这一点在eventQueue.insert（）方法的代码中就可以看出，其具体实现如下：

EventHistory是对eventQueue的一层封装，其中字段的含义如下。

· Queue（eventQueue类型）：用来存储Event实例的eventQueue实例。

· StartIndex（uint64 类型）：当前 EventHistory 实例中记录的第一个 Event 实例的ModifiedIndex字段值。

· LastIndex（uint64 类型）：当前 EventHistory 实例中记录的最后一个 Event 实例的ModifiedIndex字段值，从而可知，EventHistory只记录了从StartIndex～LastIndex之间的Event。

· rwl（sync.RWMutex类型）：在添加或读取Event实例时，都需要通过该锁进行同步。

EventHistory.addEvent（）方法提供了添加新Event实例的功能，其具体实现如下，

EventHistory.scan（）方法会从index参数指定的位置开始查找EventHistory中是否记录了参数key指定节点对应的Event实例，其具体实现如下：

6.1.3 watcher和watcherHub

watcher是客户端用来监听etcd服务端数据变化的一种手段，在ZooKeeper等项目中也有类似的设计。在客户端对指定路径节点添加watcher之后，如果该节点数据发生变化，则etcd服务端会通知相应的客户端。

下面我们来看一下结构体watcher中各个字段的含义，如下所示。

· eventChan（chan*Event 类型）：当该watcher实例被修改操作触发时，会将对应的Event实例写入到该通道中，后续由网络层读取该通道，并通知客户端此次修改。在后面介绍watcherHub实现时会看到，在创建watcher实例时会将该通道的缓冲区设置成100。

· hub（*watcherHub类型）：在watcherHub中维护了该watcher实例与其监听的节点路径的映射关系，watcherHub的具体实现在后面详细分析。

· sinceIndex（uint64类型）：标识该watcher实例从哪个CurrentIndex值开始监听对应的节点。

· startIndex（uint64类型）：记录创建该watcher实例时对应的CurrentIndex值。

· recursive（bool类型）：标识当前watcher实例是否监听目标节点的子节点。

· removed（bool类型）：标记当前watcher实例是否已经被删除。

· remove（func（）类型）：用于删除当前watcher实例的回调函数，具体的调用时机在后面详细介绍。

· stream（bool类型）：标识当前watcher是否为stream类型的，当前stream watcher被触发一次后，并不会被自动删除，而是继续保持监听，并返回一系列监听到的Event。但是笔者从GitHub中的讨论来看，etcd v2版本对stream watcher的支持并不是很好，如果有类似需求，笔者建议使用etcd v3版本实现。

watcher 最核心的方法是 notify（）方法，该方法负责将触发该 watcher 的 Event 实例写入eventChan通道中，在如下三种场景下当前watcher会被触发：

· 当修改操作发生在当前watcher实例监听的节点上时，会触发该watcher实例。

· 当前 watcher 实例不仅监听当前节点的变化，同时也监听其子节点的变化，当修改操作发生在子节点上时，也会触发该watcher实例。

· 当删除某个目录节点时，需要通知在其子节点上监听的全部watcher实例。

watcher.notify（）方法的具体实现如下：

接下来，我们来分析一下watcherHub的大致实现，下面先通过图6-2了解watcherHub的结构。

 图6-2

结构体watcherHub中各个字段的含义如下所示。

· count（int64类型）：当前watcherHub实例中保存的watcher实例个数。

· watchers（map[string]*list.List 类型）：维护节点与监听该节点的 watcher 实例的对应关系，其中key是node.Path字段值，value则是监听该节点的watcher实例列表。

· EventHistory（*EventHistory类型）：保存最近发生的修改操作对应的Event实例，在前面的介绍中也提到过，当EventHistory的容量达到上限之后，继续向其中添加Event实例，则会自动删除最早添加的Event实例。

当客户端请求etcd服务端为某个指定的节点添加watcher时，是通过调用watcherHub.watch（）方法完成的。在添加watcher之前，会先查找EventHistory确定sinceIndex～CurrentIndex之间是否发生了触发待添加watcher的操作。watcherHub.watch（）方法的具体实现如下所示。

介绍完添加 watcher 的逻辑之后，我们来分析发生修改操作时对应的处理逻辑。storage 会通过watcherHub.notify（）方法触发监听对应节点的watcher，其具体实现如下：

接下来继续分析watcher.notifyWatchers（）方法，该方法会查找节点对应的watcher列表，并逐一触发列表中的watcher实例，当watcher实例（stream watcher除外）被成功触发之后，则会将其清除，notifyWatchers（）方法的具体实现如下：

6.1.4 Store

本小节主要介绍Store接口及其相关实现，Store接口是v2存储对外暴露的API接口，其中定义了v2存储的主要行为。在本小节中分析Store接口实现时，会详细介绍Store接口中每个方法的含义，这里不再单独罗列这些方法的定义。

结构体store实现了这里的Store接口，其中各字段的含义如下所示。

· Root（*node 类型）：在前文中提到，v2 存储是纯内存实现，它以树形结构将全部数据维护在内存中，树中的每个节点都是前面介绍的node实例。该字段记录了此树型结构的根节点。

· WatcherHub （*watcherHub 类型）：watcherHub 的主要功能是管理客户端添加的watcher监听和Event实例，其具体实现在上一小节中已经详细介绍过了，这里不再赘述。

· CurrentIndex（uint64 类型）：该字段是修改操作的唯一标识，每出现一次修改操作，该字段就会自增一次。

· ttlKeyHeap（*ttlKeyHeap 类型）：ttlKeyHeap 的主要功能是将全部节点按照过期时间进行排序，形成一个最小堆。ttlKeyHeap中有两个字段，这里简单介绍一下。

array（[]*node类型）：在ttlKeyHeap底层就是通过该数组维护其最小堆的结构，其中存储了全部的节点。

keyMap（map[*node]int类型）：为了快速更新排序或是删除节点，在该map中维护了node节点到其下标索引的映射关系。

ttlKeyHeap 提供的其他方法都比较简单，这里不再展开详细介绍，感兴趣的读者可以参考代码。

· worldLock（sync.RWMutex类型）：在store进行任何操作之前，都需要获取该锁进行同步。

· readonlySet（types.Set类型）：记录了哪些节点是只读节点，这些节点都无法被修改。在下面的几个小节中，我们将重点介绍store结构体提供的方法。

1.Get方法

我们首先来分析store.Get（）方法，该方法的主要功能就是在树形结构中查找指定路径对应的node节点，其中会根据recursive参数和sorted参数决定是否加载子节点，以及是否对子节点进行排序，Get（）方法的具体实现如下：

store.Get（）方法查找指定 node 节点的功能是通过 internalGet（）方法实现的。在 internalGet（）方法中，会根据给定的路径从Root节点逐层查找，直至查找到目标node节点，其具体实现如下：

2.Create方法

store.Create（）方法对外提供了创建 node 节点的功能，在其创建指定节点的过程中，还会同时创建中间不存在的目录节点（这些目录节点会被设置成永久的）。store.Create（）方法的具体实现如下：

store.internalCreate（）方法是创建节点的核心，先来了解该方法中各个参数的含义，如下所示。

· nodePath：待创建节点的完整路径。

· dir：此次创建的节点是否为目录节点。

· value：如果此次创建的节点为键值对节点，则value为其值。

· unique：是否要创建一个唯一节点。

· replace：待创建的节点已存在，是否要对其进行替换。注意，这里只能替换已存在的键值对节点，不能替换已存在的目录节点。

· expireTime：待创建节点的过期时间。

下面我们深入internalCreate（）方法的具体实现进行分析，如下所示。

store.walk（）方法在前面已经分析过了，它会遍历指定路径上的每个目录节点，并调用传入的walkFunc（）函数，这里不再赘述。在这里传入的walkFunc（）函数是store.checkDir（），该方法负责查找指定节点下的指定子节点，如果子节点不存在，则创建对应的目录节点。store.checkDir（）方法的具体实现如下：

3.Set方法

store.Set（）方法对外提供了创建（或更新）node节点的功能，如果指定的节点已存在，则会将其替换。store.Set（）方法首先会调用internalGet（）方法查找指定节点，然后根据expireOpts参数决定此次修改操作的类型，之后调用internalCreate（）方法替换现有节点，最后将此次操作的相关信息封装成Event实例保存，并决定是否触发相关watcher实例。store.Set（）方法具体实现如下：

4.Update方法

store.Update（）方法对外提供了更新 node 节点的功能。如果待更新节点是一个键值对节点，那么我们可以同时更新其 Value 值和过期时间。如果待更新的节点时一个目录节点，那么我们只能更新其过期时间。store.Update（）方法的具体实现如下：

5.Delete方法

store.Delete（）方法对外提供了删除指定 node 节点的功能。如果待删除节点是目录节点，则需要将recursive参数设置为true，才能递归删除其子节点，并最终删除该目录节点。store.Delete（）方法的具体实现如下：

6.CompareAndSwap方法

store.CompareAndSwap（）方法对外提供了 CAS 操作，其主要流程是先查找待处理节点，然后比较节点的当前值与传入的 prevValue，同时会比较当前节点的 ModifiedIndex 与传入的prevIndex，如果相等则表示当前节点没有被修改过，此时就会对节点的值进行修改；如果不相等则表示当前节点已经被别人修改过，此时不应该对其进行修改。store.CompareAndSwap（）方法的具体实现如下：

store.CompareAndDelete（）方法与CompareAndSwap（）方法的原理及具体实现大致相同，这里不再展开介绍，感兴趣的读者可以参考源码进行学习。

7.DeleteExpiredKeys方法

store.DeleteExpiredKeys（）方法的主要功能是删除过期节点。前面介绍过 ttlKeyHeap 的主要功能和实现，DeleteExpiredKeys（）方法通过其维护的最小堆来按序清理过期节点。DeleteExpiredKeys（）方法的具体实现如下：

在store结构体中还提供了Save（）和Recovery（）两个方法，前者负责将整个store实例序列化成JSON格式，后者负责将JSON格式的数据反序列化成store实例。这两个方法的实现比较简单，这里不再赘述，感兴趣的读者可以参考源码进行学习。

至此，etcd v2版本的后端存储的具体实现就介绍完了。在etcd 3.2版本中，依然支持使用v2版本的后端存储保存数据。v2版本后端存储存存在的缺陷在前面也详细介绍过了，当其无法满足需求时，推荐使用etcd v3版本的后端存储。在下一节将对etcd v3版本的后端存储进行详细的介绍。

6.2 etcd v3版本存储

通过上一节对etcd v2版本后端存储的介绍我们知道，其实现是基于内存的，也没有提供事务相关的功能。另外，它最大的问题就是EventHistroy表的长度限制，以及触发watcher时的缓冲区大小限制，这两点都可能会造成相关的事件丢失。这些问题与其基于内存的实现方式有着莫大的关系，所以完全依赖其watcher机制来实现数据同步存在很大的风险。

6.2.1 backend

v3 版本的后端存储在一定程度上解决了上述问题，v3 版本存储的具体实现在 mvcc 包中。在v3版本存储中，将watcher监听和持久化存储分开进行实现，下面先来分析store的相关实现。store分为两部分：

· 第一部分是backend store，在etcd v3的设计中，backend store可以使用多种不同的存储，默认使用的是BoltDB。BoltDB是一个单机的支持事务的键值对存储，etcd v3存储中提供的事务就是基于BoltDB的事务实现的。

· 第二部分是内存索引，核心实现是keyIndex。keyIndex是基于Google开源的一个btree实现的。

1.BoltDB简介

BoltDB是根据LMDB项目开发的一个的Go语言版的Key/Value存储，它的目标是为应用提供一个简单、高效、可靠的嵌入式数据库存储，而不是一个完整的数据库服务。按照BoltDB官方文档的介绍，BoltDB之所以具有较高的性能，与其底层实现息息相关：

· 为了让数据读取更加高效，BoltDB使用操作系统提供的mmap技术，避免I/O操作。mmap 是一种内存映射磁盘文件的技术，它会将一个文件映射到应用程序的地址空间中，实现文件的磁盘地址与进程中的一段虚拟地址一一映射。这样，应用程序无须再调用read、write等系统调用进行文件的读写（先将文件内容复制到内核空间，然后将数据从内核空间复制到用户空间），而是通过指针直接读写该段内存即可，底层的操作系统会自动将脏页写回到对应的文件中。mmap 技术减少了文件内容的复制次数，从而提高了文件读写的效率。这里不再深入介绍mmap的实现原理，感兴趣的读者可以参考相关文章进行学习。

· 为了提高读操作的并发，使用写时复制技术（Copy On Write）。

· 为了提高随机读操作的性能，内部使用B+树实现索引。

· BoltDB使用Go语言开发，而且曾经被InfluxDB用做底层存储。

通过与其他同类产品的比较，可以帮助我们快速了解一个新产品的目标和定位。这里就将BoltDB与LevelDB进行简单的比较，LevelDB及其衍生产品（例如，RocksDB、HyperLevelDB等）都与 BoltDB 类似，它们都是绑定到应用程序中的数据库，但是它们底层依赖的数据结构与 BoltDB 有所不同。前者主要依赖 LSM 树实现，LSM 树通过使用日志和多层、排序的文件SSTables来优化随机写入，而BoltDB在内部使用B+树，且它只有一个文件。如果在实践中随机写吞吐量较高，那么使用LevelDB是一个不错的选择。但是如果实践场景是读多写少，或者要进行大量的范围扫描操作，那么 BoltDB 可能是一个不错的选择。另一点需要注意的是，LevelDB 是没有事务的，虽然它可以批量写入键值对，但它不会安全地进行比较和交换操作，BoltDB则支持完全序列化的ACID事务。LevelDB是C++写的，但是也有些Go语言的实现方式，如syndtr/goleveldb、leveldb-go。

在本小节介绍BoltDB的使用时，会涉及BoltDB中的几个数据结构，分别是DB、Bucket、Tx、Cursor、node、inode和page。其中，DB表示数据库中所有Bucket集合，Bucket表示数据库中的键值对集合，好比DB是MySQL，Bucket是MySQL中的一张表，键值对则对应MySQL表中的一行数据。Cursor 表示一个迭代器，该迭代器可以按顺序遍历Bucket 中的所有键值对，这与关系型数据库中的游标有类似之处。Tx表示数据库中的一个只读或读写事务，只读事务可以用来创建Cursor读取数据。而读写事务除了读取数据，还可以创建、删除Bucket和键值对。node表示一个在内存中的反序列化的page，inode是一个node中的内部节点，可以用来指向page中的元素或者还未被被添加到page中的元素。通常说的键值对就对应一个inode。

在BoltDB中，无论是添加、删除还是读取，都需要先打开数据库文件，并获取一个事务。在只读事务中，不允许进行任更改，只能查找Bucket和键值对。在读写事务中则是可以进行数据修改的。在读写事务结束时，如果没有异常则提交事务，对应的数据将被更改，如果出现异常，则事务会回滚，该事务中所有的更改都会被丢弃。不管是读取、删除还是写入，都需要先通过Cursor来找到对应Key的位置，比如读取操作，需要先比较对应位置的键和目标键是否相等，如果相等则查找结束并且返回。

在BoltDB 中维护了B+树索引，B+树可以加速读操作。在提交事务时，如果有删除操作，则检查是否需要重新平衡该B+树索引，如果有数据更改，则写入Dirty Page，写入时还需要检测是否有node需要拆分，其中着重说明的是，有数据更新并且数据长度不一致，很可能导致数据所在Page的改变（默认情况下，BoltDB的Page在使用率到达50%时就会切页，大数据块也可能占据连续的几页，让使用率达到100%）。

从源码的角度来看，BoltDB 的代码写得非常好，尤其是其中 B+树索引的相关代码，非常值得一读，可以让读者对B+树的使用及数据存储有更深刻的认识，也会对数据库系统有更进一步的认识。

接下来将介绍BoltDB的API及简单使用。首先，我们通过BoltDB提供的Open（）方法可以创建BoltDB数据库，如下所示。

其中第一个参数为数据库文件路径，如果数据库文件不存在则创建对应文件；第二个是操作数据库文件的权限；第三个参数是可选的，可以设置操作此数据库文件是否为只读模式、打开数据库文件的超时时间等参数。

需要特别注意的是，BoltDB.Open（）方法会获取上述数据文件的文件锁，所以打开一个已经被打开的BoltDB文件会导致进程被挂起，直到另一个进程关闭释放对应的数据库文件，因此不能多进程同时打开同一数据库。另外，为了防止进程长时间的等待，在 Open（）方法的第三个参数中设置超时时间，例如，我们可以将打开数据库文件的超时时间设置成一秒，具体如下所示。

在打开数据库之后，我们可以获取一个读写事务，然后进行一系列读写操作，并在相应的操作完成之后提交事务，这样，事务中的修改就可以持久化到数据库文件。需要特别注意的是，BoltDB一次只允许一个读写事务，如果同时启动两个读写事务，则第二个读写事务会被阻塞，直至前者关闭为止。

要启动一个读写事务，可以通过Update（）方法实现，具体示例如下：

在这个闭包中包含了读写事务中的全部数据库操作，我们可以在结束时返回nil来提交该读写事务，也可以通过返回一个错误来回滚该读写事务。

我们可以使用View（）方法启动一个只读事务，具体示例如下：

在这个闭包中，我们可以得到一个数据库的一致视图，需要注意的是，在只读事务中不允许进行任何写操作，只能进行查找操作或是复制数据库。提交和回滚只读事务的方式与前面介绍的提交和回滚读写事务的方式相同。

每次开启一个新的读写事务时，都要等待上一次读写事务结束，在提交读写事务的时候，会进行 I/O 操作将提交的修改写入磁盘。我们通过批处理读写事务，将并发的多个小事务合并到一起，这样就可以减少读写事务的串行等待时间事务提交时等待磁盘带来的开销。开启批处理读写事务是通过调用Batch（）方法完成的，具体示例如下：

这里需要特别注意的是，并发的批处理事务组合成更大的事务是随机的，所以只有当多个goroutine调用时，批处理事务才是有效的。另外，如果批处理事务中的部分操作失败了，则该批处理事务会尝试多次调用给定的函数，如果多次调用成功则整个事务成功，所以该函数必须具有幂等性。

上面介绍的View（）方法、Update（）方法和Batch（）方法是BoltDB官网推荐的事务使用方式。这些方法是对Begin（）方法的封装，实际上它们底层会调用Begin（）方法启动事务，然后执行一个函数，最后安全地关闭事务（回滚或是提交）。但是在有些场景下，用户需要手动启动和结束事务，这种场景下我们可以直接调用Begin（）方法，具体示例如下：

通过上述示例代码可以看出，在BoltDB中手动管理事务与其他数据库类似。

了解了BoltDB的事务之后，下面介绍如何查询BoltDB中的数据。在BoltDB中，Bucket表示的是数据库中键值对的集合，类似于MySQL中表的概念，在Bucket中的键类似于MySQL中的主键，必须是唯一的。通过 CreateBucket（）方法可以创建一个 Bucket 实例，具体示例代码如下：

除了 CreateBucket（）方法，我们还可以使用 CreateBucketIfNotExists（）方法在 Bucket 实例不存在的情况下才创建 Bucket 实例，其使用方式与 CreateBucket（）方法类似。如果需要删除一个Bucket实例，则可以调用DeleteBucket（）方法完成删除。

要在Bucket实例中保存一个键值对，可以通过Bucket.Put（）函数完成，具体示例代码如下：

要从 Bucket 实例中获取某个键值对时，可以通过 Bucket.Get（）方法实现，具体示例代码如下：

需要特别注意的是，从Get（）方法中返回的值只有在事务打开时才有效，如果需要在事务之外使用该值，则必须将其复制一份。

除了Get（）方法和Put（）方法，Bucket还提供了Delete（）方法来删除一个键值对，其使用方式比较简单，这里不再展示其实例代码。

熟悉其他数据库产品（例如，MySQL、Oracle等）的读者可能知道，在实际开发中经常会使用其自增主键作为主键。在BoltDB中可以通过Bucket.NextSequence（）方法提供一个自增序列，该序列可以作为混入键值对的唯一标识符，该方法的使用示例如下：

Bucket中的Key是按顺序排列的，我们可以使用Cursor遍历Bucket中所有的键值对，该方法的使用示例如下：

BoltDB中的Curser与其他数据库产品的游标很类似，但是它允许快速定位到某些指定的键值对或是前后移动，Curser提供了如下方法。

· First（）方法：移动到Bucket中的第一条键值对。

· Last（）方法：移动到Bucket中的最后一条键值对。

· Seek（）方法：移动到指定Key对应的键值对。

· Next（）方法：移动到下一条键值对。

· Prev（）方法：移动到上一条键值对。

这些函数都会返回对应键值对的信息（其中的Key和Value都是[]byte类型），当迭代到末尾时，Next（）方法返回的Key为nil。正如上面实例展示的那样，在调用Next（）方法或Prev（）方法之前，必须使用First（）方法、Last（）方法或Seek（）方法进行定位，如果不找到一个开始迭代的位置，那么Next（）方法和Prev（）方法将始终返回nil。在迭代过程中，如果返回的Key不是nil，而对应的Value为nil，则意味着该Key在该Bucket中不存在对应的Value。

前面提到，我们可以通过Tx.Bucket（）方法获取指定的Bucket实例。在Bucket中也提供了Bucket（）方法，该方法用来获取当前 Bucket 实例中的子 Bucket 实例，该方法的使用比较简单，这里不再举例说明。

在有些场景下，我们需要获取以某个字符串为前缀的所有键值对，类似于在SQL语句中的“like"xxx%"”的语句，此时就可以利用Bucket中键值对有序这一特性，通过Seek（）方法直接定位到前缀的位置，然后开始后续遍历，具体示例如下：

另一个常见操作是范围扫描，例如，扫描一个给定的时间范围，具体示例代码如下：

最后一个需要介绍的函数是 Bucket.ForEach（），其功能也是遍历给定 Bucket 实例中的所有键值对，具体示例实现如下所示。

BoltDB 作为一个单文件的数据库，备份整个数据库是十分简单的。我们可以使用Tx.WriteTo（）方法将数据库的一致视图写入指定的 Writer 中。建议在一个只读事务中调用该方法完成备份，这样不会阻塞其他的读写操作。Tx.WriteTo（）方法的使用比较简单，这里不再举例介绍。

通过本小节的介绍，我们简单了解了BoltDB 的特性及其常用 API 接口。在实践中挑选合适的数据库，除了要了解数据库的优点，还要评估其限制及使用时的注意事项：

· BoltDB在数据库文件上使用了独占的写锁，因此同一数据库不能被多个进程共享。

· BoltDB适合读多写少的场景，顺序写性能也比较快速，但是随机写的速度会比较慢。

· BoltDB在内部索引使用了B+树的数据结构，因此会有较多的随机页面访问。在SSD磁盘上，BoltDB的性能有显著提高。

· 尽量避免长期运行的事务。长时间执行的读写事务，会导致其他读写事务挂起等待。正如前面提到的，BoltDB中使用写时复制技术，如果存在长时间的只读事务，则会导致脏页面不能被回收，因为可能有只读事务正在使用它们。

· 在查询数据时需要注意，BoltDB返回的键值对数据只在事务期间有效。一旦事务被提交或回滚，那么它们指向的内存可以被重用，所以如果需要在事务之外使用，则需要对数据进行复制。

· 对于具有随机插入的Bucket使用时要小心，注意设置其页面利用率，防止其中出现大量利用率较低的页面。

· 批量加载大量随机写入一个Bucket中可能会很慢，因为在事务提交之前，页面不会分裂。不建议在单个事务中随机插入超过100000个键值对到单个新bucket中。

· BoltDB底层使用操作系统提供的mmap技术映射数据库文件，因此底层操作系统会处理进行缓存。通常，操作系统会在内存中缓存尽可能多的文件，这意味着数据库较大时，BoltDB会占用很大的内存，同时操作系统将根据需要释放内存。只要它的内存映射适合于进程虚拟地址空间，BoltDB可以处理比可用物理RAM大得多的数据，故不建议使用32位操作系统。

2.backend store实现

在开始介绍backend store的具体实现之前，先介绍etcd是如何使用BoltDB实现数据存储的，同时会简单介绍BoltDB中保存的键值对数据的大致结构。etcd在BoltDB中存储的Key是revision，Value是etcd自定义的键值对组合。也就是说，etcd会将键值对的每个版本都保存到BoltDB中，这也是etcd实现多版本机制的基础。

下面通过一个示例简单说明一下etcd的多版本机制，假设现在我们通过批量接口写入了两个键值对，分别是（key1，value1）和（key2，value2），之后我们再调用批量更新接口更新这两个键值对，更新后为（key1，update1）和（key2，update2）。此时在BoltDB中实际上记录了如下四条数据：

其中，revision主要由两部分组成，第一部分是main revision，每次事务递增一；第二部分是sub revision，同一个事务中的每次操作都会递增1，两者结合就可以保证Key唯一且递增。在上述示例中，第一个事务的main revision是1，第二个事务的main revision是2，在第一个事务中，两次操作的sub revision分别是0和1。etcd提供了压缩相关的配置选项，可以定时清理陈旧键值对，同时为Put操作提供了相关参数，用于设置某个Key的历史版本数。

从backend store保存的数据格式我们可以看出，如果要从BoltDB中查询键值对，必须通过revision进行查找。但客户端只知道具体的键值对中的Key值，并不清楚每个键值对对应的revision信息，所以在v3版本存储的内存索引（kvIndex）中保存的就是Key与revision之前的映射关系。索引相关的原理和实现在后面详细介绍，下面先分析backend store的具体实现。

这里首先需要介绍的是Backend接口，根据v3版本存储的设计，其底层的存储是可以进行切换的。Backend 接口的主要功能就是将底层存储与上层进行解耦，其中定义底层存储需要对上层提供的接口，其核心方法的定义如下：

结构体backend是v3版本存储提供的Backend接口的默认实现，其底层存储使用的就是上面介绍的BoltDB。下面先来介绍一下其核心字段的含义。

· db（*bolt.DB类型）：底层的BoltDB存储。

· size（int64类型）：当前backend实例已存储的总字节数。

· commits（int64类型）：从启动到目前为止，已经提交的事务数。

· batchInterval（time.Duration类型）：两次批量读写事务提交的最大时间差。

· batchLimit（int类型）：指定一次批量事务中最大的操作数，当超过该阈值时，当前的批量事务会自动提交。

· batchTx（*batchTxBuffered类型）：批量读写事务，batchTxBuffered是在batchTx的基础上添加了缓存功能，两者都实现了前面提到的 BatchTx 接口，batchTx 和batchTxBuffered的具体实现会在后面会详细介绍。

· readTx（*readTx类型）：只读事务，readTx实现了前面提到的ReadTx接口。

在backend中涉及另外两个比较重要的接口—ReadTx和BatchTx，它们分别是etcd对只读事务和批量读写事务的抽象。我们先来看一下ReadTx接口的定义：

接下来看一下BatchTx接口的定义：

了解完这些重要的接口之后，我们再回到 backend 结构体来分析其提供的功能。首先来看NewDefaultBackend（）和newBackend（），这两个函数都是用来初始化backend实例的，前者使用了默认的配置参数并且其底层是调用后者实现的，这些配置参数被封装成了 BackendConfig 结构体，其中各个字段的含义如下。

· Path（string类型）：BoltDB数据库文件的路径。

· BatchInterval（time.Duration 类型）：提交两次批量事务的最大时间差，用来初始化backend实例中的batchInterval字段，默认值是100ms。

· BatchLimit（int类型）：指定每个批量读写事务能包含的最多的操作个数，当超过这个阈值之后，当前批量读写事务会自动提交。该字段用来初始化backend中的batchLimit字段，默认值是10000。

· MmapSize（uint64类型）：在前面提到，BoltDB使用了mmap技术对数据库文件进行映射，该字段用来设置 mmap 中使用的内存大小，该字段会在创建 BoltDB 实例时使用。

接下来，我们深入分析newBackend（）函数的具体实现。

在backend.run（）方法中，会按照batchInterval指定的时间间隔，定时提交批量读写数据，在提交之后会立即开启一个新的批量读写事务。backend.run（）方法的具体实现如下：

backend.ReadTx（）方法和BatchTx（）方法分别返回了backend中的 readTx字段和batchTx字段。backend.ForceCommit（）方法会提交当前的读写事务并立即开启新的读写事务。backend.Size（）方法返回的是backend.size字段值。backend.Commits（）方法返回的是backend.commits字段。这些方法的实现比较简单，这里不再贴出具体代码。

backend.Snapshot（）方法的主要功能是用当前的BoltDB中的数据创建相应的快照，其中使用前面提到的Tx.WriteTo（）方法备份整个BoltDB数据库的数据，具体实现如下：

这里简单介绍一下 backend.Snapshot（）方法返回的 backend.snapshot，该结构体实现了backend.Snapshot接口，该接口中最重要的接口就是WriteTo（）方法。backend.snapshot中内嵌了bolt.Tx，backend.snapshot.WriteTo（）方法就是通过Tx.WriteTo（）方法实现的。

通过名称也能看出，backend.Defrag（）方法的主要功能就是整理当前BoltDB实例中的碎片，其实就是提高其中Bucket的填充率。整理碎片实际上是创建新的BoltDB数据库文件并将旧数据库文件的数据写入新数据库文件中。因为在写入新数据库文件时是顺序写入的，所以会提高填充比例（FillPercent），从而达到整理碎片的目的。需要注意的是，在整理碎片的过程中，需要持有readTx、batchTx和backend的锁。下面来看一下backend.Defrag（）方法的具体实现：

backend.defrag（）的重载方法主要完成了从旧数据库文件向新数据库文件的复制键值对的功能，具体实现如下：

ReadTx

ReadTx 接口的定义在上一小节中已经详细介绍过了，这里不再赘述。本小节主要介绍ReadTx接口的具体实现—结构体ReadTx。下面先介绍ReadTx结构体中各个字段的含义：

· buf（txReadBuffer类型）：该buffer主要用来缓存Bucket与其中键值对集合的映射关系。

· mu（sync.RWMutex类型）：在读写buf中的缓存区数据时，需要获取该锁进行同步。

· tx（*bolt.Tx类型）：该readTx实例底层封装的bolt.Tx实例，即BoltDB层面的只读事务。

· txmu（sync.Mutex类型）：在进行查询之前，需要获取该锁进行同步。

下面先分析 readTx 中实现的 UnsafeRange（）方法，通过名称也可以推断出其主要功能就是进行范围查询。在该方法的实现中，我们只能对safeRangeBucket（即名称为“key”的Bucket，该Bucket中的key就是前面介绍的revision，value为键值对）进行真正的范围查询，对其他Bucket的查询只能返回单个键值对。readTx.UnsafeRange（）方法的具体实现如下所示。

这里需要介绍一下 readTx 和 batchTx 使用到的缓存，它们分别是 txReadBuffer 和txWriteBuffer，两者都内嵌了结构体txBuffer。下面先来看一下txBuffer结构体的大致实现，它只有一个字段（buckets，map[string]*bucketBuffer 类型），其中记录了 Bucket 名称与对应bucketBuffer的映射关系。在bucketBuffer中缓存了对应Bucket中的键值对数据。上述结构体之间的关系大致如图6-3所示。

 图6-3

结构体bucketBuffer中各个字段的含义如下所示。

· buf（[]kv类型）：每个元素都表示一个键值对，kv.key和kv.value都是[]byte类型。在初始化时，该切片的默认大小是512。

· used（int类型）：该字段记录buf中目前使用的下标位置。

下面来看一下bucketBuffer 提供的方法，首先是Range（）方法，前面介绍的readTx.Range（）方法就会先调用该方法查找缓存，bucketBuffer.Range（）方法的具体实现如下：

bucketBuffer.ForEach（）方法提供了遍历当前bucketBuffer实例缓存的所有键值对的功能，其中会调用传入的visitor（）函数处理每个键值对，其具体实现如下所示。

bucketBuffer.add（）方法提供了添加键值对缓存的功能，当buf的空间被用尽时，会进行扩容，具体实现如下所示。

bucketBuffer.merge（）方法主要负责将传入的bbsrc（bucketBuffer实例）与当前的bucketBuffer进行合并，之后会对合并结果进行排序和去重，具体实现如下所示。

介绍完bucketBuffer之后，我们回头来看一下txBuffer，它只提供了一个reset（）方法，该方法负责清空buckets字段中的全部内容，其具体实现如下：

readTx中的缓存（buf字段）的类型是txReadBuffer，在txReadBuffer中内嵌了txBuffer。txReadBuffer提供了Range（）和ForEach（）两个方法，这两个方法都是依赖txBuffer实现的，具体实现如下：

在后面介绍的 batchTxBuffered 中使用的缓存（buf 字段）类型是 txWriteBuffer，在txWriteBuffer中内嵌了txBuffer，另外txWriteBuffer中还有一个seq字段（bool类型），用于标记写入当前txWriteBuffer的键值对是否为顺序的。下面看一下txWriteBuffer.putSeq（）方法，该方法完成了向指定bucketBuffer添加键值对的功能，具体实现如下：

txWriteBuffer.put（）方法底层调用了putSeq（）方法，同时将seq字段设置为false，表示非顺序写入，具体实现如下：

最后，我们来看一下 txWriteBuffer.writeback（）方法，该方法会将当前 txWriteBuffer 中键值对合并到指定的txReadBuffer 实例中，这样就可以达到更新只读事务缓存的效果，其具体实现如下所示。

介绍完txBuffer的相关实现之后，读者应该清楚地了解了readTx.unsafeRange（）方法查询缓存的过程。下面介绍unsafeRange（）函数，readTx.unsafeRange（）方法通过调用该函数完成对BoltDB的查询，具体实现如下：

接下来，我们看一下 readTx.UnsafeForEach（）方法，该方法会遍历指定 Bucket 的缓存和Bucket中的全部键值对，并通过visitor回调函数处理这些遍历到的键值对，其具体实现如下：

在unsafeForEach（）函数中，会调用前面介绍的Bucket.ForEach（）方法实现对BoltDB中键值对的遍历，具体实现如下：

BatchTx

BatchTx 接口的定义在前面已经详细介绍过了，这里不再赘述。下面主要介绍 BatchTx 接口的具体实现—batchTx和batchTxBuffered。在前面提到过，batchTxBuffered中内嵌了batchTx结构体，同时还包含一个buf字段（txWriteBuffer）作为缓存，在backend使用的是batchTxBuffered实例，而不是直接使用 batchTx 实例。另外，在 batchTx 结构体中内嵌了 sync.Mutex，并且在batchTx和batchTxBuffered中都重写了其Unlock（）方法。

下面介绍batchTx结构体中各个字段的含义。

· tx（*bolt.Tx类型）：该batchTx实例底层封装的bolt.Tx实例，即BoltDB层面的读写事务。

· backend（*backend类型）：该batchTx实例关联的backend实例。

· pending（int类型）：当前事务中执行的修改操作个数，在当前读写事务提交时，该值会被重置为0。

了解了batchTx和batchTxBuffered的结构之后，我们来看一下batchTxBuffered和batchTx的初始化过程，该过程是在newBatchTxBuffered（）函数中完成的，具体实现如下：

batchTxBuffered.Commit（）方法是通过调用 batchTxBuffered.unsafeCommit（false）方法实现的，它会先回滚当前的只读事务，提交当前的读写事务，然后开启新的只读事务和读写事务。注意，在Commit（）方法中需要更新readTx和batchTxBuffered的字段（例如，tx字段、buf字段及其他的统计字段等），所以需要先获取 readTx 和 batchTxBuffered 的锁进行同步。batchTxBuffered.unsafeCommit（）方法的具体实现如下：

开启新的只读事务或读写事务都是通过 backend.begin（）方法实现的，该方法除了会开启事务（根据参数决定开启哪种类型的事务），还会更新backend中的相关字段，其具体实现如下：

介绍完初始化过程之后，再来看一下 batchTx.UnsafeCreateBucket（）方法，其中是直接调用BoltDB的API创建了相应的Bucket实例，其具体实现比较简单，这里不再展开详述，感兴趣的读者可以参考源码进行学习。

结构体 batchTx 实现的 UnsafePut（）方法和 UnsafeSeqPut（）方法都是通过调用batchTx.unsafePut（）方法实现的，两者是通过seq参数进行区分的。batchTx.unsafePut（）方法的具体实现如下：

上述UnsafePut*（）方法和batchTx.UnsafeDelete（）方法在执行之前，先要获取batchTxBuffered的锁才能正确执行。batchTx.UnsafeDelete（）方法先通过BoltDB API查找到对应的Bucket实例，然后通过其Delete（）方法删除键值对，其实现比较简单，这里不再贴出代码，感兴趣的读者可以参考相关代码进行学习。

batchTx实现的UnsafeRange（）方法和UnsafeForEach（）方法分别是通过调用unsafeRange（）函数和unsafeForEach（）方法实现的，前面介绍的readTx中的对应方法时，已经分析了这两个函数的具体实现，这里不再赘述。

接下来看一下 batchTxBuffered 提供的方法，在 batchTxBuffered.UnsafePut（）方法和UnsafeSeqPut（）方法中，除了调用batchTx中对应的方法将键值对写入BoltDB，还会调用其buf字段（txWriteBuffer类型）的方法，将键值对写入batchTxBuffered的缓存中，具体实现如下：

最后，需要详细说明的是 batchTx 和 batchTxBuffered 的 Unlock（）方法，在 batchTx 和batchTxBuffered中都重写了内嵌的sync.Mutex的Unlock（）方法（但是它们并没有重新Lock（）方法）。首先来看一下batchTx.Unlock（）方法的具体实现，如下所示。

在batchTxBuffered.Unlock（）方法中，除了调用batchTx.Unlock（）方法实现解锁，还会将当前batchTxBuffered中缓存的键值对更新到 readTx 缓存中 （即 通 过 前 面 介 绍 的txWriteBuffer.writeback（）方法），从而实现只读事务的缓存更新。这也是前面UnsafePut*（）等方法在执行前必须获取锁的原因。batchTxBuffered.Unlock（）方法的具体实现如下：

至此，backend store的相关实现就介绍完了，下面将介绍backend中内存索引的原理及相关实现。

3.backend索引实现

在介绍backend store实现之前提到，它实现了多版本的机制，也就是说，键值对的每一次更新操作都被单独记录下来了。在BoltDB中存储的键值对中，key实际上是revision（由main revision和sub revision两部分组成）。这样，要从BoltDB中检索数据就必须通过revision完成，为了将客户端提供的原始键值对信息与revision 关联起来，backend 在内存索引实现中，为每个客户端提供的原始Key关联了一个keyIndex实例，其中维护了多版本信息。

从整体上来看，客户端在查找指定键值对时，会先通过内存中维护的B树索引（该B树索引中维护了原始Key值到keyIndex的映射关系）查找到对应的keyIndex实例，然后通过keyIndex查找到对应的 revision 信息（keyIndex 内维护了多个版本的 revision 信息），最后通过 revision映射到磁盘中的BoltDB查找并返回真正的键值对数据。大致流程如图6-4所示。

 图6-4

keyIndex

下面详细介绍keyIndex中每个字段的含义。

· key（[]byte类型）：客户端提供的原始Key值。

· modified（revision类型）：记录该Key值最后一次修改对应的revision信息。在revision结构体中有如下两个字段。

main（int64类型）：前面介绍的main revision。

sub（int64类型）：前面介绍的sub revision。

另外，在revision中还提供了排序、比较（GreaterThan（）方法）、序列化等相关的方法，其实现都比较简单，这里不再赘述。

· generations（[]generations类型）：当第一次创建客户端给定的Key值时，对应的第0 代版本信息（即 generations[0]项）也会被创建，所以每个 Key 值至少对应一个generation实例（如果没有，则表示当前Key值应该被删除），每代中包含多个revision信息。当客户端后续不断修改该Key时，generation[0]中会不断追加revision信息，如图6-5所示。

 图6-5

当向generation实例中追加一个Tombstone时，表示删除当前Key值，此时就会结束当前的generation，后续不再向该generation实例中追加revision信息，同时会创建新的generation实例，如图6-6所示。读者可以认为generation对应了当前Key一次从创建到删除的生命周期。

 图6-6

下面看一下generation结构体中各个字段的含义。

created（revision类型）：记录创建当前generation实例时对应的revision信息。

revs（[]revision类型）：当客户端不断更新该键值对时，revs数组会不断追加每次更新对应revision信息。

ver（int64类型）：记录当前generation所包含的修改次数，即revs数组的长度。

了解了keyIndex中核心字段的含义之后，我们来看一下keyIndex中的提供的相关方法。首先来看keyIndex.put（）方法，该方法负责向keyIndex中追加新的revision信息，具体实现如下：

接下来看一下keyIndex.tombstone（）方法，该方法会在当前generation中追加一个revision实例，然后新建一个generation实例，具体实现如下：

keyIndex.get（）方法会在当前keyIndex实例中查找小于指定的main revision的最大revision，具体实现如下：

在查找指定 main revision 所在的 generation 实例时，keyIndex.get（）方法是通过调用keyIndex.findGeneration（）方法实现的，findGeneration（）方法的具体实现如下所示。

有时keyIndex.findGeneration（）方法无法查询到指定的main revision所在的generation实例，假设当前的main revision是5，当前keyIndex.generations的状态如图6-7所示，因为main revision为 4～7 这段时间内，该Key被删除了，所以无法查找到其所在的 generation 实例，此时findGeneration（）方法会返回nil。

 图6-7

在查找到指定main revision所在的generation实例之后，会调用generation.walk（）方法查找从该generation实例中查找符合条件的revision实例，其具体实现如下：

keyIndex结构体还提供了since（）方法用于批量查找revision，该方法负责返回当前keyIndex实例中 main 部分大于指定值的 revision 实例，如果查询结果中包含了多个 main 部分相同的revision实例，则只返回其中sub部分最大的实例。keyIndex.since（）方法的具体实现如下：

随着客户端不断修改键值对，keyIndex中记录的revision实例和generation实例会不断增加，我们可以通过调用compact（）方法对keyIndex进行压缩。在压缩时会将main 部分小于指定值的全部revision实例全部删除。在压缩过程中，如果出现了空的generation实例，则会将其删除。如果keyIndx中全部的generation实例都被清除了，则该keyIndex实例也会被删除。这里通过一个简单的实例介绍一下压缩keyIndex的原理（compact（n）表示压缩掉revision.main≤n的所有版本），假设当前keyIndex中generations字段的结构如图6-8（A）所示。假设之后调用compact（4）对当前keyIndex实例进行压缩，得到的结果如图6-8（B）所示。假设之后又调用compact（5）对当前keyIndex实例进行压缩，得到的结果如图6-8（C）所示。此时，generations数组为空，则该keyIndex实例也应该被删除。

 图6-8

keyIndex.compact（）方法的具体实现如下：

treeIndex

etcd v3版本存储在内存中维护的BTree索引（在很多其他的数据库产品中都可以看到BTree索引的身影）实际上是使用了 Google 开源的一个 Go 语言 BTree 实现（http：//godoc.org/github.com/google/btree）。本小节后续将会简单介绍该BTree实现的相关API，至于BTree的原理及具体实现不打算进行详细分析，需要了解这部分内容的读者请查阅相关文档。

下面简单介绍一下后续会涉及的BTree API的含义。首先在Google开源的BTree实现中，我们可以通过调用btree.New（）函数来创建BTree实例。在BTree中提供了Ascend*方法用于正序遍历BTree中的元素，其中Ascend（iterator ItemIterator）方法会正序遍历并处理当前BTree中的所有元素，AscendGreaterOrEqual（pivot Item，iterator ItemIterator）方法只会处理比pivot大的元素（正序），AscendLessThan（pivot Item，iterator ItemIterator）方法只会处理比pivot小的元素（正序），AscendRange（greaterOrEqual，lessThan Item，iterator ItemIterator）方法只会处理greaterOrEqual 到 lessThan 之间的元素（正序）。BTree 还提供了 Descend*（）方法用于逆序处理BTree中的元素，其含义与Ascend*（）方法类似，这里不再赘述。

BTree.ReplaceOrInsert（item Item）方法主要负责向该BTree中添加元素并返回nil，如果待添加的元素已存在，则将其删除并返回。BTree.Get（）方法和Has（）方法分别用来获取当前BTree实例中的指定元素，以及检测其中是否包含指定的元素。

BTree.Delete*（）方法用于删除当前BTree实例中的元素，其中Delete（item Item）方法会删除参数指定的元素，DeleteMax（）方法、DeleteMin（）方法分别删除该BTree中的最大元素和最小元素。BTree.Clear（）方法会清空当前BTree中的全部元素，该方法会根据参数决定是否需要将所有元素先添加到FreeList中保存。最后，BTree.Len（）、Max（）和Min（）方法分别获取该BTree中的元素个数、最大元素和最小元素。

在etcd中，对Google开源的BTree实现进行了一层封装，对外提供了index接口，该接口的定义如下：

结构体treeIndex是v3版本存储提供的index接口实现，其中内嵌了sync.RWMutex，在进行更新操作时，例如，Insert（）、Compact（）方法中，都需要获取该锁。在treeIndex中最重要的就是tree字段（*btree.BTree），通过该字段可以操作前面介绍的开源BTree实现。在newTreeIndex（）函数中完成了对tree字段的初始化，具体实现如下：

下面看一下treeIndex.Put（）方法，其中主要完成两项操作，一是向BTree中添加keyIndex实例，二是向keyIndex中追加revision信息。Put（）方法的具体实现如下：

在treeIndex中还有一个Insert（）方法，它直接调用BTree.ReplaceOrInsert（）方法插入keyIndex实例，其实现比较简单，这里不再赘述。

介绍完向BTree添加元素的逻辑，下面介绍treeIndex.Get（）方法，该方法负责从BTree中查询revision信息，具体实现如下：

treeIndex.keyIndex（）方法通过BTree.Get（）方法查询指定的元素，除了treeIndex.Get（）方法依赖于该方法，treeIndex.KeyIndex（）方法也依赖于该方法，其具体实现如下：

treeIndex还提供了范围查询的功能，先来看其中的Range（）方法，该方法负责查询BTree中key～end之间元素中指定revision信息，具体实现如下：

再来看一下 treeIndex.RangeSince（）方法，该方法会查询了 key～end 的元素，并从中查询main revision部分大于指定值的revision信息。注意，最终返回的revision实例不是按照key进行排序的，而是按照revision.GreaterThan（）排序的。RangeSince（）方法的具体实现如下：

介绍完 treeIndex 的读写方法之后，再来分析 treeIndex.Compact（）方法，其中会遍历 BTree中所有的keyIndex实例，并调用keyIndex.compact（）方法对其中的generations进行压缩，具体实现如下：

在keyIndex.compact（）方法中完成了具体的压缩操作，并记录了generations为空的keyIndex实例（即待删除的keyIndex），具体实现如下：

最后需要简单提一下的是treeIndex.Tombstone（）方法，该方法会先在BTree中查找指定的keyIndex实例，然后调用keyIndex.tombstone（）方法结束其当前generation实例并创建新的generation实例。Tombstone（）方法的实现比较简单，这里不再赘述。

4.mvcc.store

前面介绍了底层BoltDB存储和内存BTree索引的原理和相关实现，下面主要看一下mvcc.store如何将这些组件组合成一个整体并对外提供完整的服务。在开始介绍之前，先来介绍涉及的几个核心接口，它们之间的结构关系如图6-9所示。

 图6-9

首先看一下ReadView接口，该接口定义了只读事务相关的视图方法，其定义如下所示。

TxnRead 接口表示一个只读事务，其中内嵌了 ReadView 接口，并在其基础上扩展了一个End（）方法，该End（）方法用来表示当前事务已经完成，并准备提交。

WriteView接口中定义了读写事务相关的方法，其定义如下所示。

TxnWrite接口表示一个读写事务，其中内嵌了TxnRead接口和WriteView接口，并在两者的基础上扩展了一个Changes（）方法，该方法会返回自事务开启之后修改的键值对信息。

KV接口是最后一个要介绍的核心接口，其中内嵌了ReadView接口和WriteView接口，KV接口的定义如下所示。

下面看一下上述接口的具体实现，首先是readView结构体，该结构体实现了ReadView接口。结构体readView中只有一个kv字段（KV类型），结构体readView实现FirstRev（）方法、Rev（）方法和Range（）方法的方式基本类似：先调用kv.Read（）获取只读事务（TxnRead实例），然后调用TxnRead实例的对应方法完成相应操作，最后调用TxnRead.End（）方法结束事务。

结构体writeView实现了WriteView接口，其中也是只有一个kv字段（KV类型）。writeView实现DeleteRange（）、Put（）的方式与上面介绍的readView.FirstRev（）方法等类似，这里不再展开描述了。

结构体store（package mvcc）实现了KV接口，其中各个字段的含义如下所示。

· mu（sync.RWMutex类型）：在开启只读/读写事务时，需要获取该读锁进行同步，即在 Read（）方法和 Write（）方法中获取该读锁，在 End（）方法中释放。在进行压缩等非事务性的操作时，需要加写锁进行同步。

· b（backend.Backend类型）：当前store实例关联的后端存储，Backend接口及其具体实现（backend结构体）在前面已经详细介绍过了，这里不再赘述。

· kvindex（index 类型）：当前 store 实例关联的内存索引，index 接口及其具体实现（treeIndex）在前面的小节中已经详细介绍过了，这里不再赘述。

· currentRev（int64类型）：该字段记录当前的revision信息（main revision部分的值）。

· compactMainRev（int64类型）：该字段记录最近一次压缩后最小的revision信息（main revision部分的值）。

· revMu（sync.RWMutex类型）：在修改currentRev字段和compactMainRev字段时，需要获取该锁进行同步。

· bytesBuf8（[]byte 类型）：索引缓冲区，主要用于记录 ConsistentIndex，在后面介绍saveIndex（）方法时，还会介绍该字段的作用。

· fifoSched（schedule.Scheduler类型）：FIFO调度器，在后面会详细介绍其具体实现。

· le（lease.Lessor类型）：租约相关的内容，后面详细介绍lease相关的内容。

另外，store还内嵌了ReadView接口和WriteView接口。下面先分析NewStore（）函数，其中完成了store实例的初始化过程，具体实现如下：

Read

下面看一下store结构体实现的Read（）方法，在store.Read（）方法中会返回一个storeTxnRead实例（实现了TxnRead接口），其具体实现如下：

结构体storeTxnRead中的具体字段如下所示。

· s（*store类型）：该storeTxnrRead实例关联的store实例。

· tx（backend.ReadTx类型）：该storeTxnrRead实例关联的ReadTx实例。

· firstRev和rev（int64类型）：对应于关联的store实例的firstRev和rev字段。

storeTxnRead中实现的FirstRev（）和Rev（）方法比较简单，直接返回了firstRev字段和rev字段，这里不再展开介绍。

storeTxnRead.Range（）方法是通过调用其 rangeKeys（）方法实现的。在开始介绍storeTxnRead.rangeKeys（）方法的具体实现之前，先来了解其参数和返回值。首先是结构体RangeOptions，它是rangeKeys（）方法的参数之一，其中封装的信息如下所示。

· Limit（int64类型）：此次查询返回的键值对个数的上限。

· Rev（int64类型）：扫描内存索引时使用到的main revision部分的值。

· Count（bool类型）：如果将该值设置为true，则只返回键值对个数，并不返回具体的键值对数据。

storeTxnRead.rangeKeys（）方法的返回值类型是RangeResult，其中封装的核心信息如下所示。

· KVs（[]mvccpb.KeyValue类型）：此次查询得到的键值对数据集合。

· Count（int类型）：此次查询返回的键值对个数。

最后来看一下KeyValue结构体，从名字就能看出，KeyValue中封装了原始的键值对数据，其中各个字段的含义如下所示。

· Key（[]byte类型）：原始的Key值。

· CreateRevision（int64类型）：最近一次创建当前键值对时的main revision值。

· ModRevision（int64类型）：最近一次修改当前键值对时的main revision值。

· Version（int64类型）：当前键值对的版本，每当修改当前键值对时，都会使得该字段递增。当删除当前键值对时，该值会重置为0。

· Value（[]byte类型）：原始的Value值。

· Lease（int64）：关联的Lease实例ID，当关联的Lease实例过期，则当前键值对也会被删除。如果该字段为0，则表示没有Lease实例与当前键值对关联。关于Lease的内容，后面会详细介绍。

了解了具体的参数和返回值之后，我们再看一下storeTxnRead.rangeKeys（）方法的具体实现。该方法的大致流程是：首先扫描内存索引（即前面介绍的treeIndex），得到对应的revision，然后通过 revision 查询 BoltDB 得到真正的键值对数据，最后将键值对数据反序列化成 KeyValue并封装成RangeResult实例返回。storeTxnRead.rangeKeys（）方法的具体实现如下所示。

这里简单说明revBytesRange（）函数是如何将一个revision实例转换成两个key的，具体实现如下：

在storeTxnRead.End（）方法中，会释放在store.Read（）方法中获取的store.mu上的读锁和底层只读事务上的锁，前面已经介绍过readTx.Unlock（）方法的具体实现，这里不再展开详细介绍。

Write

介绍完 store.Read（）方法相关的内容之后，再来分析 store.Write（）方法的实现。store.Write（）方法会返回storeTxnWrite实例，其具体实现如下所示。

结构体storeTxnWrite实现了TxnWrite接口，其中内嵌了storeTxnRead，其他字段的含义如下所示。

· tx（backend.BatchTx类型）：当前storeTxnWrite实例关联的读写事务。

· beginRev（int64类型）：记录创建当前storeTxnWrite实例时store.currentRev字段的值。

· changes（[]mvccpb.KeyValue类型）：在当前读写事务中发生改动的键值对信息。

下面先看一下storeTxnWrite.Put（）方法的实现，该方法实现了向存储中追加一个键值对数据的功能，其底层是通过调用storeTxnWrite.put（）方法实现的，具体实现如下所示。

storeTxnWrite.Range（）方法也是调用其 rangeKeys（）方法实现的，与 storeTxnRead.Range（）方法的主要区别在于传入的rev参数。storeTxnWrite.Range（）方法的具体实现如下：

在 storeTxnWrite.deleteRange（）方法中，首先会从内存索引查询待删除的 Key 和对应的revision实例，然后会调用storeTxnWrite.delete（）方法逐个删除，其具体实现如下：

在storeTxnWrite.delete（）方法中会向BoltDB 和内存索引中添加tombstone 键值对，两者对tombstone 键值对的处理在前面已经详细分析过了，这里不再赘述。这里重点来看storeTxnWrite.delete（）方法的具体实现：

storeTxnWrite.Changes（）方法直接返回其 changes 字段，实现比较简单，这里不再赘述。在storeTxnWrite 中最后一个要介绍的是 End（）方法，其中主要完成三个操作，一是递增store.currentRev，二是将ConsistentIndex记录到名为“meta”的Bucket中，三是调用Unlock（）方法提交当前事务并开启新的读写事务。storeTxnWrite.End（）方法的具体实现如下：

Compact

从该方法的名字就可以看出，store.Compact（）方法主要用于实现键值对的压缩。该方法首先将传入的参数转换成revision实例，然后在meta Bucket中记录此次压缩的键值对信息（Key为scheduledCompactRev，Value为revision），之后调用treeIndex.Compact（）方法完成对内存索引的压缩，最后通过FIFO Scheduler异步完成对BoltDB的压缩操作。下面紧接着分析store.Compact（）方法的具体实现：

store.scheduleCompaction（）方法中完成了对 BoltDB 中储存的键值对的压缩，在该方法会通过UnsafeRange（）方法批量查询待删除的Key（revision），然后逐个调用UnsafeDelete（）方法进行删除，全部的待压缩Key被处理完成之后，会向mete Bucket中写入此次压缩的相关信息，其中Key为“finishedCompactRev”。scheduleCompaction（）方法的具体实现如下：

Restore

在介绍Raft协议时提到，Follower节点在收到快照数据时，会使用快照数据恢复当前节点的状态。在这个恢复过程中就会调用store.Restore（）方法完成内存索引和store中其他状态的恢复，其具体实现如下：

store.restore（）方法恢复内存索引的大致逻辑是：首先批量读取BoltDB中所有的键值对数据，然后将每个键值对封装成revKeyValue实例，并写入一个通道中，最后由另一个单独的goroutine读取该通道，并完成内存索引的恢复。过程如图6-10所示。

 图6-10

在开始分析store.restore（）方法之前，先来了解一下结构体revKeyValue，其中字段的含义如下所示。

· key（[]byte类型）：BoltDB中的Key值，可以转换得到的revision实例。

· kv（mvccpb.KeyValue类型）：BoltDB中保存的Value值。

· kstr（string类型）：原始的Key值。

store.restore（）方法的具体实现如下：

在store.restore（）方法中，通过UnsafeRange（）方法从BoltDB中查询到的键值对，然后通过restoreChunk（）函数转换成 revKeyValue 实例，并写入 rkvc 通道中。store.restore（）方法的具体实现如下所示。

启动一个后台的goroutine，读取rkvc通道中的revKeyValue实例，并将其中的键值对数据恢复到内存索引中等一系列操作，都是在restoreIntoIndex （）函数中完成的，其具体实现如下所示。

既然结构体store实现了KV接口，当然也实现了KV.Commit（）方法，该方法除了会提交事务，还会调用前面介绍的 saveIndex（）方法记录 ConsistentIndex，其实现比较简单，留给读者自己进行分析。到此为止，store中比较核心的方法就全部介绍完了。v3版本存储中关于后端存储和内存索引的原理及实现也全部分析完了。

6.2.2 watcher机制

在上一节中，我们已经完整地分析了v3存储中的内存索引和后端存储的原理及具体实现。在本节中，我们重点介绍v3版本存储中的watcher机制的相关实现。

在v3版本存储中，watcher机制支持监听某个固定的Key值，也支持监听一个范围，这有点类似于v2版本存储中监听一个目录节点及其子节点的效果（读者可以回顾前面关于v2版本的后端存储的相关内容）。

1.watcher、Event、WatchResponse

我们先来看一下watcher结构体，它是整个Watcher机制的基础，其中各个字段的含义如下所示。

· id（WatchID类型）：当前watcher实例的唯一标识。

· key（[]byte类型）：该watcher实例监听的原始Key值。

· end（[]byte类型）：该watcher实例监听的结束位置（也是一个原始Key值）。如果该字段有值，则当前 watcher 实例是一个范围 watcher。如果该字段未设置值，则当前watcher只监听上面的key字段对应的键值对。

· ch（chan＜-WatchResponse类型）：当前watcher实例被触发之后，会向该通道中写入WatchResponse。该通道可能是由多个watcher实例共享的。

· victim（bool类型）：当上述ch通道阻塞时，会将该字段设置成true。

· compacted（bool类型）：如果该字段被设置为true，则表示当前watcher已经因为发生了压缩操作而被删除。

· minRev（int64类型）：能够触发当前watcher实例的最小revision值。发生在该revision之前的更新操作是无法触发该watcher实例。

· fcs（[]FilterFunc 类型）：过滤器。触发当前 wathcer 实例的事件（后面介绍的 Event结构体就是对“事件”的抽象）需要经过这些过滤器的过滤才能封装进响应（后面介绍的WatchResponse就是对“响应”的抽象）中。

当 watcher 实例监听的 Key 发生了变化，则使用一个 Event 实例进行表示。结构体 Event中各个字段的含义如下。

· Type（int32类型）：如果该字段为0，则该Event实例对应一个PUT事件，即对应的键值对发生了新增或更新；如果该字段为1，则该Event实例对应一个DELETE事件，即对应的键值对被删除。

· Kv（*KeyValue类型）：该字段记录发生此次事件之后的键值对数据。

· PrevKv（*KeyValue类型）：该字段记录发生此次事件之前的键值对数据。

为了提高效率，etcd的服务端一般会批量处理watcher事件，在结构体eventBatch中可以封装多个Event实例，其中各个字段的含义如下。

· evs（[]mvccpb.Event类型）：其中记录的Event实例是按照revision排序的。

· revs（int 类型）：记录当前 eventBatch 中记录的 Event 实例来自多少个不同的 main revision，特别注意，是不相同的main revision值的个数。

· moreRev（int64类型）：由于当前eventBatch中记录的Event个数达到上限之后，后续Event实例无法加入该eventBatch中，该字段记录了无法加入该eventBatch实例的第一个Event实例对应的main revision值。

eventBatch.add（）方法实现了将Event实例添加到eventBatch中保存的功能，其具体实现如下：

WatchResponse表示一次响应，其中封装了多个Event实例，watchResponse中各个字段的含义如下。

· WatchID（WatchID类型）：被触发的watcher实例的唯一标识。

· Events（[]mvccpb.Event类型）：触发对应watcher事件集合。

· Revision（int64类型）：当前watchResponse实例创建时对应的revision值，后面会详细介绍该字段的取值。

· CompactRevision（int64类型）：如果因为压缩操作对应watcher实例被取消了，则该字段设置为压缩操作对应的revision。

2.watchableStore

介绍完 watcher 机制中使用到的结构体之后，我们来分析 watchableStore 的具体实现。watchableStore结构体完成了注册watcher实例、管理watcher实例，以及发送触发watcher之后的响应等核心功能。在结构体watchableStore中内嵌了store，其它字段的含义如下所示。

· synced和unsynced（watcherGroup类型）：在结构体watchableStore中包含两个watcherGroup实例，即synced字段和unsynced字段。synced watcherGroup中全部的watcher实例都已经同步完毕，并等待新的更新操作；synced watcherGroup中的watcher实例都落后于当前最新更新操作，并且有一个单独的后台 goroutine 帮助其进行追赶。当 etcd服务端收到客户端的watch请求时，如果请求携带了revision参数，则比较该请求的revision信息和store.currentRev信息：如果请求中的revision信息较大，则放入synced watcherGroup中，否则放入unsynced watcherGroup。在后面的分析中会看到，watchableStore实例会启动一个后台的goroutine持续同步unsynced watcherGroup，然后将完成同步的watcher实例迁移到synced watcherGroup中储存。

· victims（[]watcherBatch类型）：如果watcher实例关联的ch通道被阻塞了，则对应的watcherBatch实例会暂时记录到该字段中。在watchableStore实例中还会启动一个后台goroutine 来处理该字段中保存的 watcherBatch 实例。watcherBatch 实际上就是map[*watcher]*eventBatch类型，watcherBatch只提供了一个add（）方法，用来添加被触发的watcher实例与其eventBatch之间的映射关系。

· victimc（chan struct{}类型）：当有新的watcherBatch实例添加到victims字段中时，会向该通道中发送一个空结构体作为信号。

· mu（sync.RWMutex类型）：在修改synced watcherGroup、unsynced watcherGroup等字段时，需要获取该锁进行同步。

· wg（sync.WaitGroup类型）：在watchableStore实例中会启动两个后台goroutine，在watchableStore.Close（）方法中会通过该sync.WaitGroup实例实现等待两个后台goroutine执行完成的功能。

接下来分析 newWatchableStore（）函数的具体实现。newWatchableStore（）函数完成了watchableStore实例的初始化，其中会启动上面提到的两个后台goroutine，其具体实现如下：

在开始介绍watchableStore结构体提供的方法之前，我们需要先了解一下watcherGroup结构体，其各个字段的含义如下所示。

· watchers（watcherSet 类型）：该字段中记录了当前 watcherGroup 实例中全部的watcher实例，这里的watcherSet实际上就是map[*watcher]struct{}类型。在watcherSet中定义了add（）、delete（）和union（）三个方法，分别用来添加、删除watcher实例和合并其他watcherSet实例，这些方法的实现并不复杂，这里不再展开分析，感兴趣的读者可以查看源码进行学习。

· keyWatchers（watcherSetByKey类型）：该字段记录监听单个Key的watcher实例，watcherSetByKey实际上就是map[string]watcherSet类型，该map中的key就是监听的原始Key值。watcherSetByKey提供了add（）和delete（）两个方法，分别用来添加和删除指定的 watcher 实例，其实现比较简单，这里不再赘述，感兴趣的读者可以查看源码进行学习。

· ranges（adt.IntervalTree类型）：该字段记录进行范围监听的watcher实例，IntervalTree （线段树）是二叉树的一种变形，线段树将一个区间划分成一些单元区间，每一个区间对应线段树的一个叶节点。假设在线段树中一个非叶子节点[a，b]，那么它的左儿子节点表示的区间范围为是[a，（a+b）/2]，右儿子节点表示的区间范围为[（a+b）/2+1，b]。线段树的结构大致如图6-11所示，其所有叶子节点连接起来就表示整个线段的长度。

 图6-11

这里不再展开介绍IntervalTree的具体实现，需要了解其实现的读者可以参考源码进行学习。

Watch方法

下面介绍watchableStore结构体中提供的核心功能。首先是添加watcher实例的功能，该功能是在其watch（）方法中实现的，具体实现如下：

在向（un）synced watcherGroup中添加watcher实例时，都是通过调用watcherGroup.add（）方法实现的，其具体实现如下：

cancelWatcher方法

watchableStore.watch（）方法返回的取消 watcher 实例的回调函数是通过调用watchableStore.cancelWatcher（）方法实现的，下面简单看一下该方法的具体实现：

syncWatchersLoop方法

通过前面对newWatchableStore（）函数的介绍我们知道，在初始化watchableStore实例时会启动两个后台 goroutine，其中一个 goroutine 执行 watchableStore.syncWatchersLoop（）方法，该goroutine的主要作用是每隔100ms对unsynced watcherGroup进行一次批量的同步，其具体实现如下：

从上面对 syncWatchersLoop （）方法的分析可以看出，syncWatchers（）方法是批量同步unsynced watcherGroup的核心，该方法的大致步骤如下：

（1）从unsynced watcherGroup中选择一批watcher实例，作为此次需要进行同步的watcher实例。

（2）从该批watcher实例中查找最小的minRev字段值。

（3）在BoltDB中进行范围查询，查询minRev～currentRev（当前revision值）的所有键值对。

（4）过滤掉该批 watcher 实例中因 minRev～currentRev 之间发生压缩操作而被清除的watcher实例。

（5）遍历步骤3中查询到的键值对，将其中的更新操作转换为 Event 事件，然后封装成WatchResponse，并写入对应的 watcher.ch 通道中。如果 watcher.ch 通道被填充满，则将 Event事件记录到watchableStore.victims中，并由另一个后台goroutine处理该字段中积累的Event事件。

（6）将已经完成同步的watcher实例记录到synced watcherGroup中，同时将其中unsynced watcherGroup中删除。

了解了 watchableStore.syncWatchers（）方法的大致步骤之后，再来分析其实现就会相对简单点，如下所示。

在 watchableStore.syncWatchers（）方法中，有几个方法我们需要详细介绍一下，首先是watcherGroup.choose（）方法。该方法会根据unsynced watcherGroup中记录的watcher个数对其进行分批返回。另外，它还会获取该批 watcher 实例中查找最小的 minRev 字段。watcherGroup.choose（）方法的具体实现如下所示。

紧接着进入 watcherGroup.chooseAll（）方法，它会遍历 watcherGroup 中记录的全部 watcher实例，记录其中最小的minRev字段值并返回，其具体实现如下：

在watchableStore.syncWatchers（）方法中另一个需要详细介绍的是 kvsToEvents（）函数，它负责将前面从BoltDB中查询到的键值对信息转换成相应的Event实例，具体实现如下：

syncWatchersLoop（）方法在完成 Event 实例的转换之后，会将 Event 实例封装成watchResponse 实例，并调用 watcher.send（）方法将其写入 watcher.ch 通道中。在 watcher.send（）方法中会使用watcher.fcs中记录的过滤器对Event进行过滤，只有通过过滤的Event实例才能被放出去，具体实现如下所示。

如果上述 watcher.ch 通道阻塞了，则会将 watchResponse 中记录的 Event 实例组织成watcherBatch，并添加到watchableStore.victims字段中等待处理。另外会向watchableStore.victimc通道中发送一个信号，通知其他后台goroutine来处理victims字段中积累的watcherBatch实例。这里简单看一下watchableStore.addVictim（）方法的实现：

syncVictimsLoop方法

在初始化watchableStore实例时启动的另一个后台goroutine会执行syncVictimsLoop（）方法，在该方法中会定期处理 watchableStore.victims 中缓存的 watcherBatch 实例。syncVictimsLoop（）方法的具体实现如下：

watchableStore.moveVictims（）方法是处理victims的核心，该方法会遍历victims字段中记录的watchBatch实例，并尝试将其中的Event实例封装成watchResponse重新发送。如果发送依然失败，则将其放回victims字段中保存，等待下一次重试；如果发送成功，则根据相应的watcher的同步情况，将watcher实例迁移到（un）synced watcherGroup中。watchableStore.moveVictims（）方法的具体实现如下：

Write与notify

前面介绍watchableStore时提到其内嵌了*store，并且在watchableStore中重写了Write（）方法。在watchableStore.Write（）方法中返回的是watchableStoreTxnWrite实例，watchableStoreTxn-Write中封装了前面介绍的storeTxnWrite和关联的watchableStore实例。watchableStoreTxnWrite重写了End（）方法，如果当前读写事务中存在更新操作，则会在End（）方法中触发相应的watcher实例，具体实现如下：

接着来看一下watchableStore.notify（）方法是如何发送上述Event事件的，其具体实现如下：

3.WatchStream

前面介绍了watchableStore提供的主要功能，watchableStore实现了Watchable接口，该接口中定义了NewWatchStream（）方法，该方法会新建并返回watchStream实例。结构体watchStream实现了WatchStream接口，该接口中定义的具体方法在下面介绍watchStream的功能时会详细介绍。

下面先看一下结构体watchStream中各个字段的含义：

· watchable（watchable类型）：用来记录关联的watchableStore实例。

· ch（chan WatchResponse类型）：通过该watchStream实例创建的watcher实例在被触发时，都会将Event事件写入该通道中。

· nextID（WatchID类型）：在当前watchStream实例中添加watcher实例时，会为其分配唯一标识，该字段就用来生成该唯一标识。

· watchers（map[WatchID]*watcher类型）：该字段记录唯一标识与对应watcher实例之间的映射关系。

· cancels（map[WatchID]cancelFunc类型）：该字段记录唯一标识与取消对应watcher的回调函数之间的映射关系。

watchStream.Watch（）方法中会创建watcher实例监听指定的Key（或是范围监听[key，end）），其中startRev参数则指定了该watcher实例监听的起始revision，如果startRev参数小于等于0，则表示从当前revision开始监听，fcs参数则是前面介绍的Event事件过滤器。watchStream.Watch（）方法的具体实现如下：

watchStream.Cancel（）方法中会查找并调用指定watcher实例对应的取消回调函数，具体实现如下：

watchStream.RequestProgress（）方法用来检测指定 watcher 的处理进度（progress，即当前watcher正在处理哪个revision中的更新操作）。只有当watcher完全同步时，调用该方法才会创建一个空的watchResponse，并写入watcher.ch通道中，其具体实现如下：

到此为止，etcd v3版本存储中的watcher机制的原理及具体实现就介绍完了。

6.2.3 Lessor

在前面介绍 etcd v2 的存储时我们看到，非永久节点中都记录了节点的存活时间（ExpireTime），并且通过ttlKeyHeap将节点按照过期时间进行了排序。在下一章介绍etcd服务端时会看到，服务端会定时发送 SYNC 请求，该请求主要用于触发 v2 存储调用前面分析的DeleteExpiredKeys（）方法清理过期的节点。

在etcd v3存储中并没有提供类似的过期时间的设置，而是通过Lease（租约）实现键值对过期的效果。在Lessor接口中定义了授权、撤销、修改Lease的相关方法，其具体定义如下所示。

Lessor接口有两个实现，从名字也可以看出，FakeLessor实现是一个空实现，如图6-12所示。这里重点介绍lessor实现，其中各个字段的含义如下所示。

 图6-12

· leaseMap（map[LeaseID]*Lease类型）：记录id到Lease实例之间的映射。在Lease结构体中记录了如下内容。

ID（int64类型）：该Lease实例的唯一标识。

ttl（int64类型）：该Lease实例的存活时长。

expiry（monotime.Time类型）：该Lease实例过期的时间戳。

itemSet（map[LeaseItem]struct{}类型）：该map中的Key是与当前Lease实例绑定的LeaseItem实例，Value始终为空结构体。

revokec（chan struct{}类型）：该Lease实例被撤销时会关闭该通道，从而实现通知监听该通道的goroutine的效果。

· itemMap（map[LeaseItem]LeaseID类型）：记录LeaseItem到Lease实例id的映射。

· rd（RangeDeleter类型）：RangeDeleter接口主要用于从底层的存储中删除过期的lease实例。

· b（backend.Backend类型）：底层持久化Lease的存储，具体持久化哪些信息，在后面会详细介绍。

· minLeaseTTL（int64类型）：Lease实例过期时间的最小值。

· expiredC（chan []*Lease类型）：过期的Lease实例会被写入该通道中，并等待其他goroutine进行处理。

· demotec（chan struct{}类型）：用于判断当前lessor实例是否为主lessor（primary lessor）。如果当前lessor是主Lessor实例，则会开启该通道，当节点切换成非Leader状态时，会关闭该通道。

1. 初始化

在newLessor（）函数中会创建lessor实例，并调用initAndRecover（）方法完成初始化操作，同时还会启动一个后台goroutine查找当前lessor中是否存在过期的lease实例。下面我们先来看一下lessor.initAndRecover（）方法的具体实现，如下所示。

在newLessor（）函数中启动的后台goroutine执行的是lessor.runLoop（）方法，其中会根据当前lessor实例是否为主lessor，决定是否检测过期Lease实例，其具体实现如下所示。

在 lessor.findExpiredLeases（）方法中会遍历 leaseMap 中全部的 Lease 实例，并调用Lease.expired（）方法检测其是否过期，具体实现如下所示。

2.Grant方法

lessor.Grant（）方法会根据指定的id和过期时长新建 Lease实例，然后将其保存到 leaseMap中并进行持久化，其具体实现如下所示。

3.Revoke方法

lessor.Revoke（）方法负责撤销指定 id 对应的 Lease 实例，其中会关闭 Lease 实例对应的revokec通道，并将Lease实例从lessor.leaseMap和存储中删除。需要注意的是，除了删除Lease实例本身，还需要删除与该Lease实例关联的键值对。lessor.Revoke（）方法的具体实现如下所示。

4.Renew方法

lessor.Renew（）方法负责续租一个已经存在的Lease实例，当然，只有当前节点是Leader时才能完成该续租操作。Renew（）方法的具体实现如下所示。

5.Attach&Detach方法

lessor.Attach（）方法负责将指定的 Lease 实例和键值对绑定，Detach（）方法负责解绑指定的Lease 实例和键值对解绑。这里简单介绍 Attach（）方法，Detach（）方法留给读者自己分析。lessor.Attach（）方法的具体实现如下：

6.v3存储中的应用

在前面介绍etcd v3存储时省略了Lease相关的代码，这里回过头来简单分析一下。先来看一下storeTxnWrite.Put（）方法，它在执行更新操作之前会先将Key值封装成LeaseItem实例，之后通过lessor.GetLease（）方法查找对应的Lease实例，然后完成对键值对的更新操作，最后将更新的键值对与原来的 Lease 实例解绑，并与新指定的 Lease 实例绑定。相关的代码片段如下所示。

在storeTxnWrite.Delete（）方法中除了添加Tombstone，还会解绑键值对与Lease实例，具体实现如下所示。

最后看一下 store.restore（）方法，其中除了恢复内存索引，还会重新为键值对绑定相关的Lease实例。这里读者可以先回顾一下restoreChunk （）方法，其中会将键值对和Lease实例的绑定关系记录到keyToLease这个map中，其大致代码片段如下：

在restore（）方法中就会应用keyToLease这个map中记录的对应关系，完成相应的恢复操作，相关的代码实现如下：

本章小结

本章主要介绍了etcd v2版本存储和etcd v3版本存储的原理及具体实现。etcd v2版本存储是完全的内存实现，其数据以树形结构的方式维护在内存中。其持久化方式是将整个存储的数据序列化成JSON格式的数据，并写入磁盘文件中。

v2版本存储中两个比较明显的弊端：一是EventHistroy表的长度限制，这会导致更新事件的丢失；二是如果watcher被触发后发送事件时出现了阻塞，则etcd 会直接把watcher删除，并需要客户端重新连接。尽管如此，v2 版本存储并没有被 v3 版本存储完全替换，etcd 服务端在某些场景下还是会使用v2版本存储，在后面分析服务端实现时还会见到其身影。

在v3版本的存储中，键值对数据是持久化到BoltDB中，在BoltDB中记录的Key是revision信息（由main revision和sub revision两部分构成），Value是KeyValue实例序列化之后的内容，在KeyValue中包含了客户端发送的原始Key和Value值。为了加快查询，v3版本存储使用Google开源的BTree实现建立了内存索引，其中维护了原始Key值与revision信息之间的映射关系。在客户端查询键值对时，就可以先查询内存中的 BTree 索引，将原始的 Key 值转换成对应的revision信息，然后通过revision查询BoltDB中保存的真正的键值对数据。另外，v3存储也支持前缀方式的查询和范围查询。

etcd v3 存储的 watcher 机制是基于上述存储方式的，在 watchableStore 中维护了 synced watcherGroup和unsynced watcherGroup，这两个集合分别用于记录已经完全同步的watcher实例和未完全同步的watcher实例。当watcher实例被触发时，会发送相应的Event事件，如果发送出现阻塞（例如，网络阻塞或是客户端读取慢等情况），则会将其记录到watchableStore.victims中。而watchableStore会启动两个后台goroutine，一个负责定时同步unsynced watcherGroup中的watcher实例，另一个负责重新发送watchableStore.victims中积累的Event事件。

v3存储通过前面介绍的synced watcherGroup、synced watcherGroup和backend的持久化存储，可以支持从任意版本开始监听数据，从而解决了v2存储中EventHistroy表的长度限制所带来的问题。当然，这是在没有压缩操作的前提下，如果出现压缩操作，则会清理掉指定revision之前的版本，也就无法对这些版本的修改进行监听了。另外，v3存储通过watchableStore.victims缓存暂时发送失败的Event事件，并在稍后通过后台goroutine重试，也在一定程度上解决了v2版本中第二个弊端。虽然在etcd v3存储中废弃了树形的存储结构，但是我们依然可以通过前缀的方式，模拟出与v2版本存储类似的树形结构。

最后，希望通过本章的描述，读者能够了解etcd v2和v3版本存储的原理和大致实现，能够了解v2版本存储有哪些问题，以及v3版本存储是如何解决的，也为后面分析etcd服务端打下基础。
第7章 etcd-server详解

7.1 raftNode结构体

通过前面对raftexample示例的介绍我们知道，在该示例中有一个名为raftNode的结构体。在etcd-server模块中，有一个与之同名的结构体，两者的主要作用也非常相似，都是充当etcd-raft模块与上层模块之间交互的桥梁。如果没有特殊说明，则本章中所说的raftNode就是指etcd-server模块中定义的raftNode结构体。

下面先来看一下raftNode中各个字段的含义。

· term（uint64类型）：当前节点已应用Entry记录的最大任期号，在后面分析的过程中我们会看到，对term、index和lead三个字段的读写都是原子操作。

· index（uint64类型）：当前节点中已应用Entry记录的最大索引值。

· lead（uint64类型）：记录当前集群中Leader节点的ID值。

· msgSnapC（chan raftpb.Message 类型）：在前面分析中提到，etcd-raft 模块通过返回Ready实例与上层模块进行交互，其中Ready.Message字段记录了待发送的消息，其中可能会包含MsgSnap类型的消息，该类型消息中封装了需要发送到其他节点的快照数据。当raftNode收到MsgSnap消息之后，会将其写入msgSnapC通道中，并等待上层模块进行发送。

· applyc（chan apply类型）：正如前文所述，在etcd-raft模块返回的Ready实例中，除了封装了待持久化的Entry记录和待持久化的快照数据，还封装了待应用的Entry记录。raftNode会将待应用的记录和快照数据封装成apply实例（apply的相关内容后面的章节中会详细分析），之后写入applyc通道等待上层模块处理。

· readStateC（chan raft.ReadState类型）：Readyc.ReadStates中封装了只读请求相关的ReadState实例，其中的最后一项将会被写入readStateC通道中等待上层模块处理。

· ticker（*time.Ticker类型）：该定时器就是逻辑时钟，每触发一次就会推进一次底层的选举计时器和心跳计时器。

· td（*contention.TimeoutDetector类型）：检测发往同一节点的两次心跳消息是否超时，如果超时，则会打印相关警告信息。

另外需要读者注意的是，结构体 raftNode 中内嵌了 raftNodeConfig，而在结构体raftNodeConfig 中又内嵌了前面介绍的 etcd-raft 模块中的 Node。这样 raftNode 实例就可以与etcd-raft模块完成交互。结构体raftNodeConfig中各字段的含义如下。

· isIDRemoved（func（id uint64） bool类型）：该函数用来检测指定节点是否已经被移出当前集群。

· raftStorage（*raft.MemoryStorage 类型）：与前面介绍的 raftLog.storage 字段指向的MemoryStorage为同一实例，主要用来保存持久化的Entry记录和快照数据。

· storage（etcdserver.Storage类型）：注意该字段的类型，在etcd-raft模块中有一个与之同名的接口（raft.Storage接口），MemoryStorage就是raft.Storage接口的实现之一。如果没有特殊说明，在本章中提到的 Storage 接口都是指 etcdserver.Storage。etcdserver.Storage接口的定义如下：

· transport （rafthttp.Transporter 类型）：通过网络将消息发送到集群中其他节点，Transporter 的工作原理及其相关实现在前面已经详细分析过了，这里不再重复介绍，读者可以回顾前面的章节。

· heartbeat（time.Duration类型）：逻辑时钟的刻度，在后面介绍raftNode实例的初始化过程时，还会提到该字段的作用。

介绍完 raftNode 结构体中各个字段的含义及其相关组件的结构之后，我们接下来分析newRaftNode（）函数，其参数是前面介绍的raftNodeConfig实例，该函数的主要功能就是创建上面介绍的各种通道，以及创建raftNode实例，其具体实现如下：

start方法详解

完成raftNode实例的创建之后，就可以通过raftNode.start（）方法启动相关服务，在该方法中会启动一个独立的后台goroutine，在该后台goroutine中完成了绝大部分与底层etcd-raft模块交互的功能，其大致实现如下：

图7-1展示了raftNode对Ready实例中各个字段的处理。

 图7-1

下面分析raftNode.start（）方法对etcd-raft模块返回的Ready实例中的SoftState字段，以及ReadStates字段的处理过程，这两个字段的含义在前面的章节中已经介绍过了，这里不再赘述，相关代码片段如下：

这里简单介绍一下raftReadyHandler的功能：在结构体EtcdServer中记录了当前节点的状态信息，例如，当前是否是 Leader 节点、Entry 记录的提交位置（committedIndex 字段）等。在raftNode.start（）方法处理 Ready 实例的过程中，会涉及这些信息的修改，raftReadyHandler 中封装了updateLeadership和updateCommittedIndex两个回调函数，这样就可以在raftNode中通过这两个回调函数，修改EtcdServer中的相应字段了。在后面会详细介绍上述两个回调函数的具体实现。

接下来看一下raftNode.start（）方法对Ready实例中待应用的Entry记录，以及快照数据的处理流程，相关的代码片段如下：

如果当前节点处于Leader状态，则raftNode.start（）方法会先调用raftNode.processMessages（）方法对待发送的消息进行过滤，然后调用rafNode.transport.Send（）方法完成消息的发送，相关的代码片段如下：

rafthttp.Transporter 的具体实现在前面介绍过，这里不再赘述。raftNode.processMessages（）方法处理待发送消息的逻辑比较清晰，它首先会对消息进行过滤，去除目标节点已被移出集群的消息，然后分别过滤MsgAppResp消息、MsgSnap消息和MsgHeartbeat消息，其具体实现如下：

这里简单介绍一下TimeoutDetector的实现，在TimeoutDetector中最重要的字段是records （map[uint64]time.Time类型），在该map中记录了上一次向目标节点发送心跳消息的时间（key是节点ID，value是具体时间）。TimeoutDetector.Observe（）方法检测两次发送心跳消息的时间间隔，其具体实现如下：

最后看一下raftNode对Ready中待持久化的Entry记录，以及快照数据的处理，相关代码片段如下：

这里我们先来看一下Storage接口的具体实现，etcd-server模块提供了一个storage结构体，其中内嵌了前面介绍的WAL和Snapshotter，其定义如下：

上面保存的HardState及待持久化Entry记录时调用的storage.Save（）方法，实际就是前面介绍的WAL.Save（）方法。storage中重新实现了SaveSnap（）方法，具体实现如下：

我们需要简单了解一下WAL.ReleaseLockTo（）方法的实现。读者先回顾一下上一章介绍的相关内容，WAL日志的文件名中包含了该文件中第一条Entry记录的索引值，WAL.locks字段中记录了当前WAL实例正在使用的WAL文件句柄。在WAL.ReleaseLockTo（）方法中，会根据WAL日志的文件名和快照的元数据，将比较旧的 WAL 日志文件句柄从 WAL.locks 中清除，具体实现如下：

7.2 RaftCluster

在集群的每个节点中，都会使用RaftCluster记录当前集群的状态，其中各个字段的含义如下所示。

· id（types.ID类型）：当前集群的ID。

· token（string类型）：当前集群的token。

·members（map[types.ID]*Member类型）：集群中每个节点都会有一个唯一ID，同时对应一个Member实例，该map中记录了节点ID与其Member实例的对应关系。在Member中记录了对应节点暴露给集群其他节点的URL地址（RaftAttributes.PeerURLs）及与客户端交互的URL地址（Attributes.ClientURLs）。

· store（store.Store类型）：用来持久化上述节点信息的etcd v2存储。

· be（backend.Backend类型）：用来持久化上述节点信息的etcd v3存储。

· removed（map[types.ID]bool类型）：从当前集群中移除的节点的ID，在后续添加新节点时，这些ID不能被再次使用。

RaftCluster 中提供了一些操纵上述字段中的简单方法，这里只简单介绍其主要功能，具体实现留给读者分析，每个方法的大致功能如下所示。

· Members（）方法：返回当前RaftCluster.members字段。

· Member（）、MemberByName（）方法：分别根据节点的 ID 和节点的名称查找对应的Member实例。

· PeerURLs（）方法：将所有 Member 实例中的 PeerURLs 保存到一个集合中后返回。ClientURLs（）方法类似，不再赘述。

在后面分析应用EntryConfChange类型记录的过程（EtcdServer.applyConfChange（）方法）时会看到，其中会调用 RaftCluster 相关的方法完成新增/删除/更新节点对应的 Member，这里以AddMember（）方法为例进行分析，剩余的RemoveMember（）、UpdateAttributes（） 和UpdateRaftAttributes（）等方法留给读者自己分析。RaftCluster.AddMember（）方法的具体实现如下所示。

7.3 EtcdServer

etcdserver.Server是etcd 服务端的核心接口，其中定义了etcd服务端的主要功能，其具体定义如下：

结构体EtcdServer实现了Server接口，EtcdServer中的字段比较多，下面介绍其中核心字段的含义，如下所示。

· Cfg（*ServerConfig类型）：封装了配置信息，后面会详细介绍其中各个配置项。

· inflightSnapshots（int64类型）：当前已发送出去但未收到响应的快照个数。

· appliedIndex（uint64类型）：当前节点已应用的Entry记录的最大索引值。

· committedIndex（uint64类型）：当前已提交的Entry记录的索引值。

· readych（chan struct{}类型）：当前节点将自身的信息推送到集群中其他节点之后，会将该通道关闭，也作为当前EtcdServer实例，可以对外提供服务的一个信号。

· r（raftNode 类型）：即前面介绍的 etcdserver.raftNode，它是 EtcdServer 实例与底层etcd-raft模块通信的桥梁。

· snapCount（uint64类型）：当前EtcdServer实例每应用snapCount条数的Entry记录，就会触发一次生成快照的操作。

· w（wait.Wait类型）：Wait主要负责协调多个后台goroutine之间的执行。在Wait实例中维护了一个map（map[uint64]chan interface{}类型），我们可以通过Wait.Register（id uint64）为指定的ID创建一个对应的通道，ID与通道的映射关系会记录在上述map中。之后，可以通过Trigger（id uint64，x interface{}）方法将参数x写入id对应的通道中，其他监听该通道的goroutine就可以获取该参数x。Wait的具体实现并不复杂，这里不再介绍其具体实现，感兴趣的读者可以参考代码进行学习。

· applyWait（wait.WaitTime类型）：WaitTime是在上面介绍的Wait之上的一层扩展。在WaitTime中记录的ID是有序的，我们可以通过WaitTime.Wait（）方法创建指定ID与通道之间的映射关系。WaitTime.Trigger（）方法会将小于指定值的 ID 对应的通道关闭，这样就可以通知监听相应通道的goroutine了。WaitTime的具体实现并不复杂，感兴趣的读者可以参考代码进行学习。

· readwaitc（chan struct{}类型）和readNotifier（*notifier类型）：这两个字段主要用来协调Linearizable Read相关的goroutine，后面介绍EtcdServer.linearizableReadLoop（）方法时，再详细介绍这两个字段的功能。

· stop、stopping、done（chan struct{}类型）：在EtcdServer.start（）方法中会启动多个后台goroutine，其中一个后台goroutine会执行EtcdServer.run（）方法，监听stop通道。在EtcdServer.Stop（）方法中会将 stop 通道关闭，触发该 run goroutine 的结束。在 run goroutine结束之前还会将关闭stopping和done通道，从而触发其他后台goroutine的关闭。

· id（types.ID类型）：记录当前节点的ID。

· attributes（membership.Attributes 类型）：记录当前节点的名称及接收集群中其他节点请求的URL地址。

· cluster（*membership.RaftCluster类型）：记录当前集群中全部节点的信息。

· store（store.Store类型）：前面介绍的etcd v2版本存储。

· snapshotter（*snap.Snapshotter类型）：用来读写快照文件，前面已经详细介绍过其具体实现，这里不再赘述。

· applyV2（Applierv2类型）：Applierv2接口主要功能是应用v2版本的Entry记录，其底层封装了前面介绍的v2存储。

· applyV3、applyV3Base（applierv3类型）：applierV3接口主要功能是应用v3版本的Entry记录，其底层封装了前面介绍的v3存储。

· be（backend.Backend类型）：v3版本的后端存储，在前面介绍已经详细介绍过其具体实现了，这里不再赘述。

· kv（mvcc.ConsistentWatchableKV类型）：etcd v3版本的存储（当然，其中支持前面介绍的watch机制）。

· authStore（auth.AuthStore类型）：在backend.Backend（即这里的be字段）之上封装的一层存储，用于记录权限控制相关的信息，其具体实现在后面详细介绍。

· alarmStore（*alarm.AlarmStore类型）：在backend.Backend之上封装的一层存储，用于记录报警相关的信息，其具体实现在后面详细介绍。

· SyncTicker（*time.Ticker类型）：用来控制Leader节点定期发送SYNC消息的频率。

· compactor（*compactor.Periodic类型）：Leader节点会对存储进行定期压缩，该字段用于控制定期压缩的频率。

· reqIDGen（*idutil.Generator类型）：用于生成请求的唯一标识。

· wg（sync.WaitGroup类型）：在EtcdServer.Stop（）方法中会通过该字段等待所有的后台goroutine全部退出。

· leadElectedTime（time.Time类型）：记录当前节点最近一次转换成 Leader 状态的时间戳。

7.3.1 初始化

在NewServer（）函数中会完成EtcdServer的初始化，也是etcd服务端生命周期的起始。该初始化的大致流程如下：

（1）定义初始化过程中使用的变量，创建当前节点使用的目录，相关代码如下所示。

（2）根据配置项初始化etcd-raft模块使用到的相关组件，例如，检测当前wal目录下是否存在 WAL 日志文件、初始化 v2 存储、查找 BoltDB 数据库文件、创建 Backend 实例、创建RoundTripper实例等。相关的代码片段如下所示。

这里需要简单介绍一下openBackend（）函数，在该函数中会启动一个后台goroutine完成Backend实例的初始化，具体实现如下：

（3）根据前面对WAL日志文件的查找结果及当前节点启动时的配置信息，初始化etcd-raft模块中的Node实例，大致分为如下三种场景。

场景一：首先分析第一种场景，即当前节点的wal目录下不存在WAL日志文件，当前节点正在加入一个正在运行的集群。该场景的相关代码如下所示。

先介绍NewClusterFromURLsMap（）函数，在ServerConfig.InitialPeerURLsMap中封装了集群中每个节点的名称与其提供的URL之间的映射，在NewClusterFromURLsMap（）函数中会根据该映射关系创建相应的Member实例和RaftCluster实例，其具体实现如下所示。

getRemotePeerURLs（）函数会过滤掉当前节点提供的 URL 地址，然后排序集群中其他节点暴露的URL地址并返回，其具体实现如下：

GetClusterFromRemotePeers（）函数底层通过调用 getClusterFromRemotePeers（）函数实现，其中会从集群中其他节点请求当前集群的信息，然后封装成RaftCluster实例返回，具体实现如下：

在从远端获取到RaftCluster实例之后会调用ValidateClusterAndAssignIDs（）函数，将其与本地生成的RaftCluster实例进行比较，具体的比较过程如下：

完成上述检测之后，会设置更新本地RaftCluster实例的相关字段。最后，调用startNode（）函数初始化前面介绍的etcd-raft模块中的Node实例，startNode（）方法的具体实现如下：

场景二：紧接着分析第二个场景的处理过程，即当前节点的wal目录下不存在WAL日志文件且当前集群是新建的，相关代码如下所示。

这里简单介绍 ServerConfig.VerifyBootstrap（）方法，其中主要检测当前配置中是否包含当前节点，检测当前节点提供的URL与initial-advertise-peer-urls配置项是否相同，检测集群配置中是否存在重复的URL地址，等等，具体实现比较简单，感兴趣的读者可以参考其代码。

另一个需要简单介绍的是isMemberBootstrapped（）函数，该函数会请求远端节点，然后检测当前集群中是否已存在相同的节点，具体实现如下：

场景三：最后一个场景就是wal目录下存在WAL日志文件的场景，其相关的代码片段如下所示。

该场景主要是通过快照数据恢复当前节点的v2和v3存储，然后恢复etcd-raft模块中的Node实例，其中v2存储的恢复比较简单，就是加载快照文件中的JSON数据，这里不再展开介绍。重点来看v3存储的恢复，该过程是在recoverSnapshotBackend（）函数中实现的，其中会检测前面创建的Backend实例是否可用（即包含了快照数据所包含的全部Entry记录），如果可用则继续使用该 Backend 实例，如果不可用则根据快照的元数据查找可用的 BoltDB 数据库文件，并创建新的 Backend 实例。其中查找可用的 BoltDB 数据库文件和新建 Backend 实例等操作是在openSnapshotBackend（）函数中完成的，整个过程的具体实现如下：

restartNode（）函数会根据配置信息和加载的快照数据，重启etcd-raft模块的Node实例，其具体实现如下：

（4）创建EtcdServer实例，并初始化其各个字段，具体实现如下所示。

到此为止，EtcdServer实例的初始化流程就介绍完了。

7.3.2 注册Handler

在执行完EtcdServer.NewServer（）方法之后，Transport实例已经启动，我们可以在其上注册多个 Handler 实例，这些 Handler 实例主要用于集群内部各节点之间的通信。该过程在NewPeerHandler（）函数中完成，其具体实现如下所示。

当前节点可以向集群中其他节点提供多个URL地址用于交互，当前节点会为每个对外使用的URL地址创建一个peerListener实例，其中封装了上述注册的Handler，以及启动和关闭HTTP服务的回调函数，相关代码片段如下：

7.3.3 启动

在执行完 EtcdServer.NewServer（）、注册 Handler 等初始化操作之后，下面会紧接着调用EtcdServer.Start（）方法启动当前节点，对外提供服务。EtcdServer.Start（）方法的具体实现如下所示。

1.start

下面先简单介绍一下EtcdServer.start（）方法，该方法会初始化EtcdServer实例中剩余的未初始化字段，然后启动后台 goroutine 来执行 EtcdServer.run（）方法（为了后面便于描述，将该goroutine 称为“run goroutine”）。run（）方法是 EtcdServer 启动的核心，其中会启动前面介绍的etcdserver.raftNode实例，然后处理etcd-raft模块返回的Ready实例，EtcdServer.run（）方法的具体实现如下（由于篇幅限制，省略了加锁解锁和错误处理的相关代码）：

在开始深入介绍 EtcdServer.applyAll（）方法对 apply 实例的处理之前，先来分析EtcdServer.Start（）方法中启动的后台 goroutine 都完成了哪些操作。在 EtcdServer.goAttach（）方法中会启动一个后台goroutine执行传入的函数，其具体实现如下所示。

2.publish

在 EtcdServer.Start（）方法中会启动一个后台 goroutine 将当前节点的相关信息发送到集群其他节点（即将当前节点注册到集群当中），相应的逻辑位于 EtcdServer.publish（）方法中，其具体实现如下：

在EtcdServer.Do（）方法中会根据请求的Method字段值进行分类处理，其大致实现如下：在EtcdServer实现的v2API接口的方法中，除了Get（）方法和Head（）方法，其他方法都是通过调用 processRaftRequest（）方法实现的。在 processRaftRequest（）方法中会将请求交给 etcd-raft模块进行处理，并且阻塞等待请求处理结束，具体实现如下：

3.purgeFile

在EtcdServer.Start（）方法中会启动两个后台goroutine，其中一个后台goroutine负责定期清理 WAL 日志文件，另一个后台 goroutine 负责定期清理快照文件，相应的逻辑位于EtcdServer.purgeFile（）方法中，具体实现如下：

在 fileutil.PurgeFile（）函数中会定期查询指定的目录，并统计指定后缀的文件个数，如果文件个数超过指定的上限，则进行清理操作，具体如下所示。

4.linearizableReadLoop

在EtcdServer.Start（）方法中还会启动一个后台goroutine负责处理linearizable Read相关的请求，相应的逻辑位于 EtcdServer.linearizableReadLoop（）方法中。为后续描述方便，我们将该goroutine称为“linearizableReadLoop goroutine”。

在开始介绍linearizableReadLoop（）方法之前，先来介绍另一个与linearizable Read密切相关的方法，即 EtcdServer.linearizableReadNotify（）方法，从图 7-2 中可以看出，当客户端发起linearizable Read请求时会先调用linearizableReadNotify（）方法，该方法会通知linearizableRead-Loop goroutine进行linearizable Read相关的处理并阻塞等待其处理结束。

 图7-2

EtcdServer.linearizableReadNotify（）方法的具体实现如下所示。

上面使用到的EtcdServer.readNotifier字段的类型是notifier，该结构体中最重要的字段是c （chan struct{}类型），在notifier提供了一个notify（）方法，其中会关闭notifier.c通道，在即将介绍的linearizableReadLoop goroutine中可以看到该方法的调用。

紧接着来看一下 EtcdServer.linearizableReadLoop（）方法，该方法首先会阻塞等待 readwaitc通道上的信号，readwaitc通道的功能不再赘述。然后记录当前的EtcdServer.readNotifier字段并进行更新，在上面的 linearizableReadNotify（）方法中就会监听该 Notifier 实例中封装的通道（c字段）。之后发送MsgReadIndex消息并交由etcd-raft模块进行处理，其处理过程在前面的章节已经介绍过了，这里不再展开分析。在前面介绍raftNode对Ready实例的处理时提到，raftNode会将其中记录的ReadState写入readStateC通道中。linearizableReadLoop goroutine最后会监听readStateC 通道，等待之前的 MsgReadIndex 消息处理结束。linearizableReadLoop（）方法的具体实现如下：

5.apply*

介绍完 EtcdServer.Start（）方法中启动的后台 goroutine 的具体功能之后，我们回头来看一下EtcdServer.start（）方法中启动的run goroutine的功能。run goroutine会监听raftNode.applyc通道，并调用EtcdServer.applyAll（）方法处理从中读取到的apply实例。在前面介绍raftNode时提到，在apply实例中封装了待应用的Entry记录、待应用的快照数据和notifyc通道。

applySnapshot

在EtcdServer.applyAll（）方法中，首先会调用EtcdServer.applySnapshot（）方法处理apply实例中的快照数据。EtcdServer.applySnapshot（）方法会先等待 raftNode 将快照数据持久化到磁盘中，之后根据快照元数据查找 BoltDB 数据库文件并重建 Backend 实例，最后根据重建后的存储更新本地RaftCluster实例。applySnapshot（）方法的具体实现如下所示。

applyEntries

应用完快照数据之后，run goroutine紧接着会调用EtcdServer.applyEntries（）方法处理待应用的Entry记录，具体实现如下所示。

上述applyEntries（）方法最终会通过EtcdServer.apply（）方法完成Entry记录的应用，在apply（）方法中会遍历ents中的全部Entry记录，并根据Entry的类型进行不同的处理。apply（）方法的具体实现如下：

applyEntryNormal

这里我们介绍一下EtcdServer.applyEntryNormal（）方法处理 EntryNormal 记录的具体过程。applyEntryNormal（）方法首先会尝试将Entry.Data反序列化成InternalRaftRequest实例，如果失败，则将其反序列化成etcdserverpb.Request实例，之后根据反序列化的结果调用EtcdServer的相应方法进行处理（具体的解析过程后面中会展开详细介绍），最后将处理结果写入Entry对应的通道中。applyEntryNormal（）方法的具体实现如下：

applyConfChange

EntryConfChange类型的Entry记录主要是通过EtcdServer.applyConfChange（）方法进行处理的，在applyConfChange（）方法中会根据ConfChange的类型进行分类处理，其具体实现如下：

在上面的 RaftCluster.ValidateConfigurationChange（）方法中，会检测待修改的节点信息是否合法，例如，新增节点提供的URL是否与集群中现有节点的URL冲突，待删除的节点是否存在，等等。下面简单分析RaftCluster.ValidateConfigurationChange（）方法的实现：

到此为止，EtcdServer.applyEntries（）方法对待应用的Entry的处理流程就介绍完了。下面我们回到EtcdServer.applyAll（）方法继续进行分析。applyAll

在EtcdServer.applyAll（）方法中首先调用applySnapshot（）方法处理apply实例中记录的快照数据，然后调用applyEntries（）方法处理apply实例中的Entry记录，之后根据apply实例的处理结果检测是否需要生成新的快照文件，最后处理MsgSnap消息。EtcdServer.applyAll（）方法的具体实现如下：

先简单介绍 EtcdServer.triggerSnapshot（）方法对是否需要生成新快照文件的判定，其具体实现如下：

EtcdServer.snapshot（）方法是真正生成快照文件的地方，其中会启动一个单独的后台goroutine来完成新快照文件的生成，主要是序列化v2存储中的数据并持久化到文件中，触发相应的压缩操作，其具体实现如下：

介绍完 snap 快照文件的生成，再来分析对 msgSnapC 通道的处理。首先分析EtcdServer.createMergedSnapshotMessage（）方法，该方法中会将v2版本存储和v3版本存储封装成snap.Message实例，具体实现如下所示。

创建完 snap.Message 实例之后会调用 EtcdServer.sendMergedSnap（）方法将其发送到指定节点，其具体实现如下：

6.SYNC消息

在EtcdServer启动的run goroutine中，另一个需要介绍的功能是定时发送SYNC消息。SYNC消息的主要作用是定义通知节点，清理过期v2存储中的过期节点。在前面介绍raftReadyHandler时提到，当节点成为Leader时，会调用setSyncC（）回调函数设置一个定时器，用来触发SYNC消息的定期发送。

而在 run goroutine 中会通过 getSyncC（）函数监听该定时器，当定时器到期时会调用EtcdServer.sync（）方法发送SYNC消息，该方法的具体如下：

7.expiredLeaseC

前面的章节中提到，在 lessor 实例初始化的过程中会启动一个后台 goroutine，该后台goroutine会定时扫描lessor.leaseMap字段，并将过期的Lease实例写入expireLeaseC通道中等待处理。

在EtcdServer启动的run goroutine中，最后一个需要介绍的功能就是监听expireLeaseC通道，当监听到过期Lease实例之后会启动一个后台goroutine进行处理，相关代码片段的实现如下：接下来介绍EtcdServer.LeaseRevoke（）方法，其中会将LeaseRevokeRequest请求中的信息封装成MsgProp消息，并发送到集群中的其他节点，具体实现如下所示。

其中的raftRequestOnce（）方法比较简单（前面发送AlarmRequest请求时使用的raftRequest（）方法，底层就是调用该方法实现的），其中直接调用了processInternalRaftRequestOnce（）方法，下面直接分析processInternalRaftRequestOnce（）方法，如下所示。

待上述LeaseRevokeRequest请求对应的Entry记录成功经过Raft协议处理之后，会经过前面介绍的applyEntryNormal（）方法的处理，其中会调用applierV3.LeaseRevoke（）方法，该方法实际上是调用EtcdServer.lessor.LeaseRevoke（）方法，该方法会删除对应的Lease实例及其绑定的键值对，其具体实现在前面的章节中介绍过了，这里不再赘述。

7.4 ApplierV2和applierV3

7.4.1 ApplierV2

通过上一节的分析我们知道，在EtcdServer.applyEntryNormal（）方法中完成了对EntryNormal类型记录的处理，其中会调用 applyV2Request（）方法处理 v2 版本的消息。在 applyV2Request（）方法中会根据请求的类型进行分类处理，该方法具体实现如下所示。

在 ApplierV2 接口中定义了处理 v2 版本消息的方法，即 applyV2Request（）方法中调用的Post（）、Put（）、Delete（）、QGet（）、Sync（）等方法。结构体 applierV2store 实现 ApplierV2 接口，EtcdServer.applyV2字段就是applierV2store类型。applierV2store中最重要的就是store字段，它指向当前节点的v2存储。

首先看一下applierV2store.Put（）方法，其中根据请求内容进行分类处理，具体实现如下所示。

applierV2store中的Post（）、Delete（）、QGet（）方法实现比较简单，分别调用了store的Create（）、Delete（）（或是 CompareAndDelete（））、Get（）方法，这里不再展开介绍。在前面介绍 EtcdServer启动的run goroutine时提到，它会定期向集群中发送SYNC消息，当消息经过etcd-raft模块处理并最终应用时，就是由applierV2store.Sync（）方法处理的，其中会调用store.DeleteExpiredKeys（）方法清理v2存储中已经过期的节点，该清理过程在前面已经介绍过了，这里不再赘述。

7.4.2 applierV3

对应于上一节介绍的ApplierV2接口，applierV3接口定义了在v3存储之上应用Entry记录的功能。相较于ApplierV2接口，applierV3接口提供了更加强大且复杂的功能。applierV3接口中定义的核心方法如下：

这里实现了 applierV3 接口的结构体比较多，如图 7-3 所示，其中 quotaApplierV3、applierV3Capped、authApplierV3 都是在 applierV3backend 的基础上进行的扩展，在结构体applierV3backend中实现了真正应用Entry记录并完成相应的存储功能。

 图7-3

这里简单介绍applierV3backend之外的其他applierV3接口实现的功能。

· quotaApplierV3：在applierV3backend的基础上提供了限流功能，即底层的BoltDB数据库文件的大小增大到上限之后，就会触发限流操作。

· applierV3Capped：在quotaApplierV3触发限流操作之后，就会创建applierV3Capped实例替换EtcdServer当前使用的applierV3接口实现。通过applierV3Capped实例执行任何写入操作都会失败（例如，Put（）方法等），这样就可以保证底层存储中的数据量不再增加。

· authApplierV3：在applierV3backend的基础上扩展出了权限控制的功能。

1.applierV3backend

applierV3backend结构体是applierV3接口的核心实现，在applierV3backend中只有一个指向当前EtcdServer实例的字段。在applierV3backend.Apply（）方法中会根据请求的类型进行分类处理，大致实现如下：

本节后面的部分，我们将逐个分析applierV3backend中比较核心的方法。

Put

在开始分析applierV3backend.Put（）方法之前，先介绍一下PutRequest封装的信息，其中各个字段的含义如下所示。

· Key（[]byte类型）：此次请求的目标Key值。

· Value（[]byte类型）：此次请求更新后的Value值。

· PreKv（bool类型）：如果该字段设置为true，则在进行修改之前会获取原始的键值对，并将其封装到PutResponse中。

· IgnoreValue（bool 类型）：如果该字段设置为 true，则表示此次请求不会更新 Value值。如果此次请求中指定的Key不存在，则返回ErrKeyNotFound错误。

· IgnoreLease（bool类型）：如果该字段设置为true，则表示此次请求不会更新对应键值对的lease。如果此次请求中指定的Key不存在，则返回ErrKeyNotFound错误。

接下来分析applierV3backend.Put（）方法的具体实现，如下所示。

Range

在RangeRequest中封装applierV3backend.Range（）方法进行查询时用到的相关参数，其中各字段的含义如下所示。

· Key（[]byte类型）：查询的起始Key值。

· RangeEnd（[]byte类型）：查询的结束Key值。

· Limit（int64类型）：查询返回键值对的限制数，如果将其设置为0，则表示无限制。

· Revision（int64类型）：查询在指定的Revision时的键值对信息。

· SortOrder（RangeRequest_SortOrder类型）：查询结果集的排序方式（0表示不进行排序，1表示正序排序，2表示反向排序）。

· SortTarget（RangeRequest_SortTarget 类型）：查询结果集按照哪个字段进行排序（0～4依次表示按照Key、Version、Create、Mod、Value进行排序）。

· Serializable（bool类型）：默认的读操作都是前面介绍的Linearizable Read，如果不需要Linearizable Read这种一致性，则可以将该字段设置为true，实现Local Read。

· KeysOnly（bool 类型）：如果将该字段设置成 true，则查询结果集中只包含键值对中的Key值，不包含Value值。

· CountOnly（bool类型）：如果将该字段设置为true，则查询结果只返回符合查询条件的键值对个数，而不包含键值对的其他信息。

· MinModRevision、MaxModRevision（int64类型）：指定查询结果的revision范围。

· MinCreateRevision、MaxCreateRevision（int64类型）：指定查询结果的CreateRevision范围。

applierV3backend.Range（）方法会根据RangeRequest中指定的条件进行查询，并且对结果集进行过滤，其具体实现如下：

DeleteRange

在 DeleteRangeRequest 中封装了 applierV3backend.DeleteRange（）方法删除键值对时使用到的参数，其中各个字段的含义如下所示。

· Key（[]byte类型）：删除的起始Key值。

· RangeEnd（[]byte类型）：删除的结束Key值，如果未指定该值，则表示只删除上面的Key字段指定的键值对。

· PrevKv（bool类型）：如果该字段设置为true，则会返回删除前的键值对信息。

applierV3backend.DeleteRange（）方法会根据DeleteRangeRequest中的条件删除指定的键值对信息，具体实现如下：

Txn

上面介绍的方法都是处理单个请求，applierV3backend.Txn（）方法提供了批量操作的功能。在 TxnRequest 中封装了批量操作需要的相关信息，其中有三个字段，分别是 Compare （[]*Compare类型）、Success（[]*RequestOp类型）和Failure（[]*RequestOp类型），每个字段中都封装了多个操作。在Txn（）方法中，首先会执行该字段中指定的比较操作，如果比较操作都返回true，则执行Success字段中记录的操作，反之，则执行Failure字段中的操作。

applierV3backend.Txn（）方法的具体实现如下：

在compareToOps（）函数中，会遍历TxnRequest.Compare字段并逐个调用applyCompare（）函数完成检测，如果其中任意一次比较返回false，则compareToOps（）函数返回TxnRequest.Failure，反之，则返回 TxnRequest.Success。下面简单分析 applyCompare（）函数的实现，其中还会介绍Compare中各字段的含义：

最后看一下applierV3backend.applyUnion（）方法，其中会根据传入的操作类型进行分类处理，这里的操作有Range、Put和DeleteRange三种类型。applierV3backend.applyUnion（）方法的具体实现如下：

Compact

applierV3backend.Compact（）方法是用来处理CompactionRequest请求的，其底层会调用前面介绍的v3存储的Compact（）方法完成压缩，具体实现如下：

applierV3backend中剩余的其他方法都是调用EtcdServer中的相应字段的相应方法完成的。· applierV3backend.Lease*（）方法委托给了EtcdServer.lessor；

· applierV3backend.Alarm（）方法委托给了EtcdServer.alarmStore；

· applierV3backend.Auth*（）、User*（）方法和Role*（）方法都委托给了EtcdServer.authStore。这些方法的具体实现比较简单，后面也会简单介绍，这里就不再赘述。

2.quotaApplierV3和applierV3Capped

quotaApplierV3是applierV3接口的另一实现，也是一个装饰器，在原有applierV3实现的基础上添加了限流功能。在quatoApplierV3中除了内嵌了applierV3接口，还封装了一个Quota实例。Quota接口定义了实现限流功能的核心，其具体定义如下所示。

结构体backendQuota是Quota接口的实现之一，它主要用于限制底层BoltDB中的数据量，其中封装了当前节点的EtcdServer实例（即s字段）和BoltDB数据量的上限值（maxBackendBytes字段）。

首先看一下 NewBackendQuota（）函数，其中会根据传入的参数初始化相应的 Quota 实例，其具体实现如下：

backendQuota.Available（）方法中会将当前BoltDB中的数据量、此次请求的数据量之和与上限阈值进行比较，从而决定此次请求是否触发限流，具体实现如下所示。

请求的数据量是通过Cost（）方法得到的，在其Cost（）方法实现中，会根据请求的类型进行分类计算，具体实现如下所示。

costPut（）方法会计算请求的Key值、Value值和相关元数据的字节数之和，costTxn（）方法则是调用costPut（）方法计算TxnRequest.Success和TxnRequest.Failure，它们的具体实现比较简单，如下所示。

在quatoApplierV3中，为写操作（例如，Put（）方法、Txn（）方法等）添加了限流的功能，这里以Put（）方法为例进行介绍，其他的方法实现类似，留给读者分析。在quatoApplierV3.Put（）方法中，首先会调用Quota.Available（）方法检测此次请求是否会触发限流，如果未触发，则委托给底层的applierV3实现完成真正的Put操作，具体实现如下所示。

注意，在这里触发限流之后会返回 ErrNoSpace 错误。读者可以回顾一下前面介绍的EtcdServer.applyEntryNormal（）方法，当收到applierV3.Apply（）方法返回的ErrNoSpace错误之后，会向集群其他节点发送AlarmRequest请求。当该请求经过Raft协议提交之后，集群中各个节点在应用该请求时，就会新建一个applierV3Capped实例，并将当前EtcdServer.applyV3字段指向该实例。

applierV3Capped是applierV3接口的另一实现，其中所有的写操作都会返回ErrNoSpace错误，从而保证底层的BoltDB库中的数据量不再增加。applierV3Capped的实现比较简单，这里不再展开介绍。

3.authApplierV3

最后看一下applierV3接口的另一个实现—authApplierV3，它也是一个装饰器，其中内嵌了其他 applierV3 实现，并在其基础上添加了权限控制的功能。authApplierV3 中各个字段的含义如下所示。

· as（auth.AuthStore 类型）：AuthStore 接口中定义与权限管理相关操作，后面会详细介绍其具体实现。

· authInfo（auth.AuthInfo类型）：在处理每个请求时，都会使用该字段记录该请求头中的权限信息，AuthInfo 结构体中有两个字段，分别记录了请求头中携带的 Username和Revision信息。

在authApplierV3实现中重写了Apply（）方法，其中首先记录请求头中携带的权限信息，然后对此次请求是否需要Admin权限进行检测，最后调用底层applierV3实现的Apply（）方法完成请求的分发。authApplierV3.Apply（）方法的具体实现如下：

在authApplierV3中重写了Put（）、Range（）和Txn（）等方法，并在其中添加了权限检查的相关逻辑，这些方法的实现大致类似，这里以Put（）方法为例进行分析，其他方法留给读者分析。

至此，applierV3 接口的实现就全部介绍完了。最后，我们看一下 EtcdServer 中相关字段，从前面分析的 EtcdServer 初始化过程（NewServer（）函数）中可以看到，applyV3Base 字段实际上是指向了本节介绍的applierV3backend实例，applyV3字段指向了authApplierV3实例，而该authApplierV3实例底层封装了quatoApplierV3实例。

7.5 AlarmStore

在本章前面介绍quotaApplierV3时，分析了AlarmStore与quotaApplierV3配合实现限流功能的具体实现。本节将详细介绍AlarmStore的具体实现，首先看一下AlarmStore中各个字段的含义。

· types（map[pb.AlarmType]alarmSet类型）：在该map字段中记录了每种AlarmType对应的 AlarmMember 实例。AlarmType 现在只有 AlarmType_NONE 和 AlarmType_NOSPACE两种类型。alarmSet类型实际上是map[types.ID]*pb.AlarmMember类型，其中记录了节点ID与AlarmMember之间的映射关系。

· bg（BackendGetter类型）：BackendGetter接口用于返回该AlarmStore实例使用的存储。EtcdServer就是BackendGetter接口的实现之一，返回的就是其底层使用的backend实例。

在前面介绍quotaApplierV3时我们提到，当首次触发限流时会创建AlarmRequest请求并封装成MsgProp消息发送到集群当中，在AlarmRequest中封装的信息如下所示。

· Action （AlarmRequest_AlarmAction 类型）：该字段有 AlarmRequest_GET、AlarmRequest_ACTIVATE 和 AlarmRequest_DEACTIVATE 三种值，分别对应使用AlarmStore.Get（）、Activate（）和Deactivate（）方法三个方法进行该AlarmRequest请求。

· MemberID（uint64类型）：记录发出该AlarmRequest请求的节点ID。

· Alarm（AlarmType类型）：记录该AlarmRequest请求相关的Alarm类型。

当AlarmRequest请求经过Raft协议提交之后，会调用applierV3backend.Alarm（）方法应用相应的Entry记录，该方法会根据AlarmRequest.Action字段分类处理，具体实现如下：

下面看一下 AlarmStore.Get（）方法，如果传入的参数为 AlarmType_NONE，则返回该AlarmStore实例中的全部AlarmMember实例，具体实现如下：

AlarmStore.Activate（）方法负责新建AlarmMember实例，并将其记录到AlarmStore.types字段和底层存储中，具体实现如下：

AlarmStore.Deactivate（）方法负责从types字段和底层存储中删除指定的AlarmMember实例，具体实现如下：

本章小结

本章主要介绍了etcd-server模块的具体实现。在etcd-server模块中，使用RaftCluster维护当前集群中的节点信息，任何节点信息的修改都会修改其中记录的 Member 信息，并持久化到底层存储中。etcd-server模块中定义的raftNode是etcd-server模块与底层etcd-raft模块交互的桥梁，它主要负责处理etcd-raft模块返回的Ready实例，例如，调用Transport发送Ready实例中携带的待发送消息，将Ready实例中携带的待应用Entry记录返回给EtcdServer处理，等等。

结构体EtcdServer是etcd-server模块的核心，它会启动并协调多个后台goroutine的工作。在EtcdServer初始化时，会根据配置项初始化etcd-raft模块，其中涉及WAL日志文件的初始化、etcd v2存储和etcd v3存储的初始化，以及网络层RoundTripper实例的初始化。初始化完成之后，EtcdServer实例会注册集群通信使用的Handler实例，也会将当前节点的URL发布到集群当中。除此之外，EtcdServer启动的多个后台goroutine 会完成定期清理WAL日志文件，以及快照文件、处理Linearizable Read请求等功能。

最后，我们详细介绍了ApplierV2接口和applierV3接口的具体实现，它们是EtcdServer处理待应用Entry记录的核心。ApplierV2底层依赖的是etcd v2存储，applierV3接口的实现底层依赖的是etcd v3存储。在applierV3接口的实现中，applierV3backend是最基础的实现，提供了最基础的持久化和查询的功能；quotaApplierV3和applierV3Capped首先都是装饰器，它们相互配合工作，在原来的applierV3backend之上实现限流的功能；authApplierV3实现也是装饰器，在原有applierV3实现的基础上提供了权限控制的功能。

希望通过本章的介绍，读者可以了解 etcd-server 模块的工作原理和具体实现，了解etcd-server模块如何组装其他模块并协调它们的工作。
第8章 etcd客户端详解

在etcd v2版本中，客户端采用的是HTTP+JSON的方式与Server端进行交互。在etcd v3版本中，客户端采用的是GRPC的方式与Server端进行交互。相比之下，Client v2的交互方式更加简单快捷，我们甚至可以直接使用浏览器或Post Man等工具与etcd v2集群进行交互。Client v3使用GRPC进行通信，底层的协议消息通过Google Protocol Buffer定义，它可以简化RPC客户端存根代码的生成和管理。另外，GRPC 在处理网络连接方面优势比较明显，GRPC 使用单一连接的HTTP2，实现多路复用的RPC调用，而HTTP+JSON的客户端实现则必须为每个请求建立一个连接。

8.1 GRPC基础

在开始介绍etcd对GRPC的应用之前，我们先来介绍一下GRPC的基础使用方式。在本节中，我们将简单介绍在Golang中使用GRPC的基本流程，并介绍GRPC自带的route_guide示例。使用GRPC编写一个服务分为如下三步：

（1）编写一个“.proto”文件，在该“.proto”文件中定义相关服务。

（2）用Protocol Buffer编译器生成服务端和客户端的存根代码。

（3）使用GRPC的Go API为服务实现一个简单的客户端和服务器。

8.1.1 定义proto文件

这里我们以GRPC自带的route_guide示例介绍GRPC的基本使用方法。首先，我们需要获取GRPC的代码，具体命令如下：

之后，我们可以跳转到route_guide实例的目录中，具体命令如下：

在 route_guide 目录下，我们可以看到一个名为“route_guide.proto”的文件，在其中定义RouteGuide服务，具体内容如下所示。

在route_guide.proto文件中，除了定义RouteGuide服务，还定义了该服务中使用到的消息，如下所示。

完成“.proto”文件的定义之后，我们可以通过 protoc（Protocol Buffer 的编译器）和一个特殊的GRPC-Go插件来生成GRPC客户端和服务器端的接口。在Mac系统上安装protoc的步骤如下，其他系统的读者可以查阅相关资料进行学习。

（1）从Protocol Buffers官方网站（https：//github.com/google/protobuf/releases）下载最新的Protocol Buffers压缩包，并解压缩。

（2）将命令行跳转到解压后的目录中，并执行“./configure”命令。

（3）依次执行“make”命令、“make check”命令、“sudo make install”命令。

（4）通过“protoc-version”命令检测安装是否成功。

完成 protoc 的安装之后，我们回到前面介绍的 route_guide 目录下并执行“protoc--go_out=plugins=grpc：.route_guide.proto”命令，即可在当前目录中得到一个名为“route_guide.pb.go”文件。在该文件中包括如下内容：

· 所有用于填充、序列化和获取上述定义的请求和响应消息类型的Protocol Buffers代码。

· 一个为客户端调用定义的接口（RouteGuideClient接口）。

· 一个为服务端定义的接口，其中定义了前面介绍的 RouteGuide 服务中的全部方法（RouteGuideServer接口）。

8.1.2 服务端

接下来，我们需要创建一个 RouteGuide 服务器。首先需要做的就是实现前面生成的RouteGuideServer接口。在route_guide示例的server/server.go文件中，我们可以看到routeGuideServer结构体，它就是我们需要的 RouteGuideServer 接口实现。这里简单介绍一下其中的几个方法实现。

首先是routeGuideServer.GetFeature（）方法，该方法的第一个参数是RPC的上下文对象，第二个参数是客户端传递的Point消息，返回了一个包含响应信息的Feature消息和一个错误信息。该方法的大致实现如下：

下面再看一下 routeGuideServer.ListFeatures（）方法，它是一个流式 RPC，可以返回多个Feature 消息给客户端。该方法的第一个参数是客户端发送的 Rectangle 消息；第二个参数是RouteGuide_ListFeaturesServer实例，它是用来写入响应消息的，在该方法中我们可以创建任意个数的Feature实例，然后通过Send（）方法把它们写入RouteGuide_ListFeaturesServer中。在该方法的最后，我们返回了一个 nil 告诉GRPC响应的写入已经完成。如果在调用过程中发生任何错误，我们可以返回一个非nil的错误信息通知GRPC层。routeGuideServer.ListFeatures（）方法的具体实现如下：

接下来看一下 routeGuideServer.RecordRoute（）方法，这个方法只有一个 RouteGuide_RecordRouteServer 流作为其参数，服务端可以用它来读写消息。服务端可以用其RouteGuide_RecordRouteServer.Recv（）方法接收客户端的消息，也可以用其SendAndClose（）方法返回它的单个响应。RecordRoute（）方法的具体实现如下：

最后看一下 routeGuideServer.RouteChat（）方法，这个方法与上面的介绍的 RecordRoute（）方法很类似，该方法的唯一参数是 RouteGuide_RouteChatServer 流，它可以用来读写消息。与RecordRoute（）方法的区别在于，当客户端还在往其中写入消息时，服务端同时可以通过 Send（）方法返回消息，这样就可以返回多个消息。RouteChat（）方法的具体实现如下：

了解完routeGuideServer结构体的实现，为服务端生成代码之后，我们还需要启动一个GRPC服务器，这样客户端才可以使用上述服务。在route_guide示例中的server/server.go文件中，我们可以看到main（）函数，其大致实现如下所示。

8.1.3 创建客户端

在route_guide.pb.go 文件中，除了有 RouteGuideServer 接口，还有另一个供客户端使用的RouteGuideClient 接口，并且提供了相应实现ü　结构体 routeGuideClient，其具体实现中涉及的GRPC使用方式与前面介绍的routeGuideServer有很多类似之处，这里不再展开描述。

接下来，我们开始搭建RouteGuide 服务的Go客户端，在route_guide示例中的client/client.go文件中，我们可以看到其客户端的完整实现。这里重点关注其中的 main（）方法，为了调用服务端方法，需要创建一个GRPC channel 和服务端进行交互，具体实现如下：

到此为止，GRPC的基础使用和route_guide示例的实现就全部介绍完了。在后面介绍etcd的Client v3时，还会提到GRPC的相关内容。

8.2 Client v3

正如前面介绍的那样，在etcd 3.2中的客户端使用GRPC实现与服务端的交互。我们依旧按照上一节的介绍 GRPC 使用流程，先来看一下 proto 文件文件的定义，如图 8-1 所示，在etcdserver/etcdserverpb目录中的rpc.proto文件中里定义了六个服务。

 图8-1

下面先分析KV服务，其中定义了五个客户端最基本、最常用的RPC方法，分别是Range（）方法、Put（）方法、Txn（）方法、DeleteRange（）方法和 Compact（）方法，这些方法都是普通的 RPC方法，没有使用前面介绍的流式操作，其具体定义如下所示。

在 rpc.proto 文件的同一目录下，有一个名为“rpc.pb.go”文件，其中就包含了通过 protoc命令生成的服务端代码，定义了 KVServer 接口及该接口使用到的消息等内容。在 etcd-server模块中提供了KVServer接口实现，如图8-2所示。

 图8-2

8.2.1 kvServer

接下来，我们深入分析结构体kvServer的具体实现，其中封装了两个字段，具体含义如下所示。

· hdr（header类型）：用于填充响应消息的头信息。

· kv（etcdserver.RaftKV类型）：如图8-2所示，该RaftKV接口继承了KVServer接口。在 NewKVServer（）函数中我们可以看到，kvServer.kv 字段实际指向了前面介绍的EtcdServer实例。

kvServer 结构体处理请求的大致步骤如下：首先会对请求消息进行各方面的检查，检查完成之后会将所有的请求交给其内封装的 RaftKV 接口实现进行处理，待处理完成得到响应消息之后，会通过 header.fill（）方法填充响应的头信息，最终将完整的响应消息返回给客户端，整个请求的处理流程结束。下面以kvServer.Range（）方法为例进行介绍，其具体实现如下所示。

kvServer中其他方法的实现与Range（）方法的处理流程基本一致，这里不再逐个展开描述了，感兴趣的读者可以参考源码进行学习。

8.2.2 EtcdServer

前面介绍的EtcdServer结构体是RaftKV接口的实现之一，在结构体kvServer中kv字段就指向了EtcdServer示例。在本节中，我们将重点介绍EtcdServer对RaftKV接口的实现。

1.Range方法

我们先来看一下EtcdServer.Range（）方法，它首先会将根据RangeRequest请求决定此次请求是serializable类型还是linearizable类型，这两种类型的读请求在前面也多次提到过，这里简单回顾一下，serializable read请求会直接读取当前节点的数据并返回给客户端，它并不保证返回给客户端的数据是集群中最新的，例如，当前出现了网络分区，响应请求的节点是上一个Term的Leader节点。而linearizable read请求的处理过程会通过Raft协议保证返回给客户端最新数据，具体的过程在前面已经介绍过了，这里不再展开描述。之后，Range（）会进行权限检查，检查通过之后会调用 EtcdServer.applyV3Base.Range（）方法完成键值对的查询，最后，将键值对数据封装成RangeResponse消息返回给客户端。EtcdServer.Range（）方法的具体实现如下所示。

在EtcdServer.doSerialize（）方法中，会使用Range（）方法中定义的回调函数，完成权限检测以及键值对数据的查询，其具体实现如下：

2.Put&DeleteRange

接下来，我们简单分析EtcdServer.Put（）和DeleteRange（）方法的具体实现。两者都会直接调用EtcdServer.raftRequest（）方法向集群发送MsgProp消息，并阻塞等待其中的Entry记录被应用。raftRequest（）方法底层是调用raftRequestOnce（）方法实现的，如下：

raftRequestOnce（）方法是通过调用 processInternalRaftRequestOnce（）方法实现的，而processInternalRaftRequestOnce（）方法的具体实现在上一章中已经详细分析过了，这里不再展开介绍。

3.Txn

在介绍applierV3backend.Txn（）方法时也提到，在TxnRequest中可以封装多个操作，这些操作将会批量执行。EtcdServer.Txn（）方法就用来处理客户端发送的 TxnRequest，其中会根据TxnRequest中封装的操作类型进行分类处理。如果TxnRequest中封装的都是只读操作，则其处理流程与前面介绍 Range（）方法类似；如果TxnRequest 中包含写操作，则其处理流程与前面介绍的Put（）方法类似。Txn（）方法的具体实现如下：

4.Compact

在前面的章节中提到，如果待应用的 Entry 记录中封装了 CompactionRequest，会调用applierV3backend.Compact（）方法处理，在其中会将压缩操作放入FIFO调度器中执行。该方法还会返回一个通道，当压缩操作真正完成之后，会关闭该通道实现通知的效果。

回顾完 applierV3 接口中压缩相关的操作之后，下面看一下 EtcdServer.Compact（）方法的具体实现：

5. 启动服务

介绍完EtcdServer对RaftKV接口的实现之后，我们看一下服务端的启动流程，其中就包含了启动GRPC服务端的相关代码。

在 etcd.go 文件中的 StartEtcd（）函数负责启动 etcd 的服务端，每个节点都会对外提供两组URL地址，一组是与集群中其他节点交互的URL地址（Peer URL），另一组是与客户端交互的URL地址（Client URL）。StartEtcd（）函数首先会为每个URL地址创建相应的Listener实例并记录到指定的字段中，然后调用前文介绍的 etcdserver.NewServer（）函数创建 EtcdServer 实例，之后调用EtcdServer.Start（）方法启动该实例，最后调用Etcd.serve（）方法对外提供服务。StartEtcd（）函数的具体实现如下所示。

接下来介绍startPeerListeners（）函数，该函数中会为每个Peer URL创建相应的Listener实例。后面会使用这些 Listener 创建相应的 http.Server 实例，从而监听 Peer URL 上的请求。startPeerListeners（）函数的具体实现如下：

下面看一下startClientListeners（）函数，其中会为每个Client URL地址创建相应的serverCtx实例。在serverCtx实例中记录了对应的Client URL、相应的Listener实例和用户自定义Handler等信息。startClientListeners（）函数的具体实现如下所示。

最后是Etcd.serve（）方法，该方法中会启动Peer URL对应的http.Server实例，开始监听来自集群中其他节点的请求，另外还会启动GRPC服务，开始接收客户端的请求，该方法的具体实现如下所示。

下面我们进入 serveCtx.serve（）方法进行进一步分析。在上一章介绍 EtcdServer 时提到，当前其完全初始化之后会关闭 EtcdServer.readych 通道，serveCtx.serve（）方法在开始处就会阻塞监听该通道是否关闭，从而决定是否继续对外提供服务。serveCtx.serve（）方法的具体实现如下所示。

最后简单介绍一下v3rpc.Server（）函数，这里是完成gRPC服务的注册的地方，在该函数中不仅完成了KVServer服务的注册，还完成了WatcherServer和LeaseServer多个其他服务的注册，其具体实现如下：

8.2.3 Client

在本节前面的内容中，我们介绍了protoc生成的服务端代码，以及我们如何使用这些生成的代码搭建一个GRPC服务。在此我们将来介绍protoc生成的客户端代码，以及如何使用这些代码搭建一个客户端。

首先，在上一节介绍的 rpc.pb.go 文件中会为客户端生一个名为 KVClient 的接口，同时也会生成该接口的实现ü　结构体kVClient，如图8-3所示。在etcd-clientv3中还有提供了另外两个KVClient接口的实现，在后面我们会一一介绍。

 图8-3

etcd V3版本的客户端中的核心结构体是Client，在其中嵌套了多个接口，这里简单介绍每个接口的含义。

· KV接口：负责处理键值对操作，例如，增删改查键值对数据、触发压缩操作等。

· Cluster接口：负责完成集群节点的管理操作，例如，增删改查集群中的节点信息。

· Lease接口：负责租约相关的操作，例如，新建和回收租约、为租约续期等。

· Watcher接口：负责为指定的Key添加Watcher。

· Auth接口：负责权限相关的操作，例如，添加用户或角色、为用户分配角色等。

· Maintenance接口：提供了获取Alarm列表、关闭 Alarm的功能，该接口还提供了读取指定节点状态的功能、触发指定节点进行压缩的功能，以及读取指定节点快照的功能。

在本节中，我们重点以KV接口为例进行介绍，其具体定义如下：

结构体Client中其他关键字段的具体含义如下所示。

· conn（*grpc.ClientConn类型）：与服务端交互的连接，在前面使用过，不再赘述。

· cfg（Config类型）：Client的相关配置都封装在该字段中。

· balancer（*simpleBalancer类型）：simpleBalancer继承了GRPC中的Balancer接口，它会选择合适的地址并相应的gRPC连接，实现了负载均衡的功能。

· retryWrapper（retryRpcFunc类型）：retryRpcFunc主要负责重试。

· Username 和 Password（string 类型）：当前客户端的用户名和密码，当客户端正式发起请求之前，会先通过用户名和密码检测相应权限。

1. 初始化

Client 实例的初始化过程是在 newClient（）函数中完成的，该方法首先会创建 Client 实例，然后创建grpc.ClientConn实例，最后初始化前面介绍的GRPC服务的客户端。newClient（）函数的具体实现如下所示。

接下来我们分析Client.dial（）方法是如何建立网络连接的，其具体实现如下：

最后，我们来看一下 newClient（）函数中启动的后台 goroutine，该 goroutine 执行的是Client.autoSync（）方法，具体实现如下：

在 Client.Sync（）方法中会向集群请求当前的节点列表，并更新本地的缓存，其具体实现如下所示。

2.kv

前面提到，Client中内嵌了KV接口，在Client实例的初始化过程可以看到，其中由NewKV（）函数创建了kv实例。在kv中只有一个remote字段，该字段实际上指向一个RetryKVClient实例（RetryKVClient实现了KV接口）。

结构体kv中的Put（）、Get（）和Delete（）三个方法的实现比较简单，直接调用kv.Do（）方法实现。在kv.Do（）方法的实现中会循环调用kv.do（）方法，具体实现如下所示。

在kv.do（）方法中会根据此次操作的类型，分别调用KVClient相应的方法向集群发送请求，具体实现如下所示。

kv.Compact（）方法的实现比较简单，是直接调用了KVClient.Compact（）方法实现的，这里不再赘述。kv.Txn（）方法的实现也比较简单，直接返回了一个txn实例，在txn实例中封装了多个操作。结构体txn实现了Txn接口，Txn接口的定义如下：

接下来看一下结构体txn中的各个字段的含义。

· kv（*kv类型）：关联的kv实例。

· cmps（[]*pb.Compare类型）：用于记录Compare条件的集合。

· sus（[]*pb.RequestOp类型）：全部Compare条件通过之后执行的操作列表。

· fas（[]*pb.RequestOp类型）：任一Compare条件检测失败之后执行的操作列表。

· cif（bool类型）：是否设置Compare条件，设置一次则该字段就会被设置为true。

· cthen（bool类型）：是否向上面的sus集合中添加了操作。

· celse（bool类型）：是否向上面的fas集合中添加操作。

· isWrite（bool类型）：如果当前txn实例中记录的操作全部是读操作，则该字段为false，否则为true。

txn.If（）、Then（）和Else（）方法会将操作添加到指定的集合中，其中If（）方法会将Compare条件添加到cmps集合中，Then（）方法会将操作添加到sus集合中并同时更新isWrite字段，Else（）方法会将操作添加到fas集合中并同时更新isWrite字段。

这里重点看一下txn.Commit（）方法，该方法最终会调用KVClient.Txn（）方法进行处理，具体实现如下所示。

3.RetryKVClient

在上一小节的介绍中提到，kv.remote 字段实际上指向一个 RetryKVClient 实例。结构体RetryKVClient中内嵌了retryWriteKVClient，而在结构体retryWriteKVClient中内嵌了KVClient接口并且封装了一个retryRpcFunc回调函数（retryf字段）。

在RetryKVClient实例初始化时，会将retryRpcFunc字段指向Client.retryWrapper字段，而 Client.retryWrapper 字段指向的回调函数则是在 newRetryWrapper（）中定义的，具体实现如下所示。

在retryWriteKVClient的实现中，都是通过上述回调函数完成RPC调用的，这样就可以实现重试的功能，这里以Put（）方法为例进行介绍：

retryWriteKVClient中实现的其他方法与Put（）方法类似，这里不再赘述，感兴趣的读者可以分析相应代码。

到目前为止，Client v3中KV服务的整个运作流程，以及涉及的具体实现就全部介绍完了。除了KV服务的其他服务，例如，Cluster、Auth、Lease、Maintenance和Watch等，与KV服务的运转流程很类似，只不过是服务端底层调用了不同的组件，支持了不同方面的功能而已，这里不再一一展开介绍。在了解了KV服务的整个流程之后，读者可以很轻松地完成其他服务的代码分析。

8.3 Client v2

etcd v2版本的Client的代码位于client包中，它是通过HTTP+JSON方式实现的。在上一节介绍etcd服务端启动的过程中，我们可以也看到其中专门添加了一个Handler用于Client v2请求，读者可以回顾上一章对etcd服务端的介绍。

8.3.1 KeysAPI接口

我们首先需要了解的是KeysAPI接口，该接口中定义了Client v2对键值对操作的方法，其具体定义如下所示。

结构体httpKeysAPI是KeysAPI接口的实现，其中封装了httpClient实例（client字段），该httpKeysAPI 中所有方法的实现都是通过委托给 httpClient.Do（）方法实现的。这里以httpKeysAPI.Set（）方法为例进行介绍，其具体实现如下：

httpKeysAPI其他方法与Set（）方法类似，这里不再一一展开介绍。

8.3.2 httpClient接口

httpClient接口中只定义了一个Do（）方法，正如上一小节所示，所有的请求都会经过该方法处理。httpClient接口的相关实现如图8-4所示。

 图8-4

1.httpClusterClient

首先分析结构体 httpClusterClient，httpKeysAPI.client 字段实际上也指向 httpClusterClient实例。httpClusterClient中各个字段的含义如下所示。

· clientFactory（httpClientFactory类型）：工厂函数，用于创建底层的httpClient实例。

· endpoints（[]url.URL类型）：记录集群中所有节点的暴露给客户端的URL地址。

· pinned（int类型）：用于选择重试的URL地址。

· rand（*rand.Rand类型）：随机数，用于选择重试的URL地址。

· selectionMode（EndpointSelectionMode 类型）：更新 endpoints 字段的模式，目前有两个可选值，分别是EndpointSelectionRandom和EndpointSelectionPrioritizeLeader。

下面看一下httpClusterClient.Do（）方法，其中会从endpoints字段中选择合适的URL地址并建立连接，然后发送相应的请求，具体实现如下所示。

在Client v2中也有与Client v3类似的同步机制，其主要实现在httpClusterClient.Sync（）方法中。Sync（）方法首先会请求当前集群中所有节点提供的 ClientURL 地址，然后根据当前selectionMode字段指定的模式修改pinned字段值，最后更新endpoints字段中记录的ClientURL地址。Sync（）方法发具体实现如下所示。

httpClusterClient.clientFactory字段指向了一个newHTTPClientFactory（）工厂函数，该函数负责根据指定的ClientURL创建httprClient实例，具体实现如下：

2.redirectFollowingHTTPClient

httpClusterClient.clientFactory 工厂函数返回的是 redirectFollowingHTTPClient 实例，redirectFollowingHTTPClient也实现了httpClient接口，其Do（）方法主要处理Redirect跳转的响应，具体实现如下：

3.simpleHTTPClient

在前面介绍的 newHTTPClientFactory（）工厂函数中可以看到，redirectFollowingHTTP-Client.client字段指向了一个simpleHTTPClient实例，结构体simpleHTTPClient也是httpClient接口的实现之一。simpleHTTPClient 是功能最简单，也是最基础的 httpClient 接口实现。simpleHTTPClient中各个字段的含义如下所示。

· transport（CancelableTransport 类型）：内嵌了 http.RoundTripper，用于发送 HTTP请求并获取相应的响应。

· endpoint（url.URL类型）：请求的URL地址。

· headerTimeout（time.Duration类型）：请求的超时时间。

接下来看一下simpleHTTPClient.Do（）方法的具体实现如下：

除了KeysAPI，Client v2中其他的服务，例如，MembersAPI等，底层也是依赖httpClient接口向服务端发送HTTP请求并获取响应的，这里不再一一展开介绍。

本章小结

本章主要介绍了etcd客户端的具体实现，其中包括v3和v2两个版本的客户端实现。Client v3的具体实现在client v3包中，Client v3是通过GRPC的方式与服务端进行交互的。在本章开始，我们介绍了GRPC的基本使用方式，其中包括proto文件的定义、protoc编译器的使用，以及在生成代码的基础上完成客户端和服务端。

随后我们详细分析了Client v3中KV服务的内容，首先是proto文件的服务定义，以及生成的客户端和服务端的接口，然后介绍了服务端的EtcdServer结构体对KV接口等的实现，最后详细分析了客户端的实现。

在本章的最后一节，我们简单介绍了 Client v2 的大致实现。v2 版本的客户端是通过HTTP+JSON的方式与服务端进行通信的。这里我们只是简单介绍了KeysAPI接口、底层使用的httpClient接口及具体实现，其他的接口留给读者自行分析。

希望通过本章的介绍，读者不仅了解如何使用etcd的客户端，还能够深入了解其工作原理。
参考文献

参考书籍

[1] Ongaro D,Ousterhout J.In search of an understandable consensus algorithm[J].Draft of October,2014.

[2] Brian Ketelsen,Erica Martin,William Kennedy.Go In Action.

[3] Alan A.A.Donovan.Brian W.Kernighan.The Go Programming Language.

参考网络资源

Raft协议：http：//raftconsensus.github.io

etcd官方文档：https：//coreos.com/etcd/

neverchanje的博客：http：//blog.neverchanje.com/

云溪社区：https：//yq.aliyun.com/
EPUB/cover.jpg
dview’

www.broadview.com.cn

etcd
B R 5

BER / RE

......................

EPUB/cover.xhtml
[image: Cover]

