
03 | a.x = a = {n:2}：一道被无数人无数次地解释过的经典面试
题
2019-11-15 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 25:23 大小 23.26M



你好，我是周爱民。

在前端的历史中，有很多人都曾经因为同一道面试题而彻夜不眠。这道题出现在 9 年之

前，它的提出者“蔡 mc（蔡美纯）”曾是 JQuery 的提交者之一，如今已经隐去多年，不

复现身于前端。然而这道经典面试题仍然多年长挂于各大论坛，被众多后来者一遍又一遍地

分析。

在 2010 年 10 月，Snandy于 iteye/cnblogs 上发起对这个话题的讨论之后，淘宝的玉

伯（lifesinger）也随即成为这个问题早期的讨论者之一，并写了一篇“a.x = a = { }, 深入



 下载APP 

理解赋值表达式”来专门讨论它。再后来，随着它在各种面试题集中频繁出现，这个问题也

就顺利登上了知乎，成为一桩很有历史的悬案。

蔡 mc 最初提出这个问题时用的标題是“赋值运算符:"=", 写了 10 年 javascript 未必全了

解的"="”，原本的示例代码如下：

蔡 mc 是在阅读 JQuery 代码的过程中发现了这一使用模式：

并置疑，为什么elemData.events需要连续两次赋值。而 Snandy 在转述的时候，换了

一个更经典和更有迷惑性的示例：

Okay，这就是今天的主题。

接下来，我就为你解释一下，为什么在第二行代码之后a.x成了 undefined 值。

与声明语句的不同之处

你可能会想，三行代码中出问题的，为什么不是第 1 行代码？

复制代码
1

2

3

var c = {};
c.a = c = [];
alert(c.a); //c.a 是什么？

复制代码
1

2

3

4

elemData = {}
...
elemData.events = elemData = function(){};
elemData.events = {};

复制代码
1

2

3

var a = {n:1};
a.x = a = {n:2};
alert(a.x); // --> undefined

在上一讲的讨论中，声明语句也可以是一个连等式，例如：

在这个示例中，“var”关键字所声明的，事实上有且仅有“x”一个变量名。

在可能的情况下，变量“y”会因为赋值操作而导致 JavaScript 引擎“意外”创建一个全局

变量。所以，声明语句“var/let/const”的一个关键点在于：语句的关键字 var/let/const

只是用来“声明”变量名 x 的，去除掉“var x”之后剩下的部分，并不是一个严格意义上

的“赋值运算”，而是被称为“初始器（Initializer）”的语法组件，它的词法描述为：

Initializer: =AssignmentExpression

在这个描述中，“=”号并不是运算符，而是一个语法分隔符号。所以，之前我在讲述这个

部分的时候，总是强调它“被实现为一个赋值操作”，而不是直接说“它是一个赋值操

作”，原因就在这里。

如果说在语法“var x = 100”中，“= 100”是向 x 绑定值，那么“var x”就是单纯的标

识符声明。这意味着非常重要的一点——“x”只是一个表达名字的、静态语法分析期作为

标识符来理解的字面文本，而不是一个表达式。

而当我们从相同的代码中去除掉“var”关键字之后：

其中的“x”却是一个表达式了，它被严格地称为“赋值表达式的左手端（lhs）操作数”。

所以，关键的区别在于：（赋值表达式左侧的）操作数可以是另一个表达式——这在专栏

的第一讲里就讲过了，而“var 声明”语句中的等号左边，绝不可能是一个表达式！

复制代码
1 var x = y = 100;

复制代码
1 x = y = 100;

也许你会置疑：难道 ECMAScript 6 之后的模板赋值的左侧，也不是表达式？确实，答案

是：如果它用在声明语句中，那么就“不是”。

对于声明语句来说，紧随于“var/let/const”之后的，一定是变量名（标识符），且无论

是一个或多个，都是在 JavaScript 语法分析阶段必须能够识别的。

如果这里是赋值模板，那么“var/let/const”语句也事实上只会解析那些用来声明的变量

名，并在运行期使用“初始器（Initializer）”来为这些名字绑定值。这样，“变量声明语

句”的语义才是确定的，不至于与赋值行为混淆在一起。

因此，根本上来说，在“var 声明”语法中，变量名位置上就是写不成a.x的。例如：

所以，在最初蔡 mc 提出这个问题时，以及其后 Sanady 和玉伯的转述中，都不约而同地

在代码中绕过了第一行的声明，而将问题指向了第二行的连续赋值运算。

来自《JavaScript 权威指南》的解释

有人曾经引述《JavaScript 权威指南》中的一段文字（4.7.7 运算顺序），来解释第二行的

执行过程：

JavaScript 总是严格按照从左至右的顺序来计算表达式。

并且还举了一个例子：

例如，在表达式w = x + y * z中，将首先计算子表达式 w，然后计算 x、y 和 z；然

后，y 的值和 z 的值相乘，再加上 x 的值；最后将其赋值给表达式 w 所指代的变量或属

复制代码
1 var a.x = ... // <- 这里将导致语法出错

复制代码
1

2

3

var a = {n:1}; // 第一行
a.x = a = {n:2}; // 第二行
...

性。

《JavaScript 权威指南》的解释是没有问题的。首先，在这个赋值表达式的右侧x + y*z

中，x与y*z是求和运算的两个操作数，任何运算的操作数都是严格从左至右计算的，因此

x 先被处理，然后才会尝试对y和z求乘积。这里所谓的“x 先被处理”是 JavaScript 中的

一个特异现象，即：

一切都是表达式，一切都是运算。

这一现象在语言中是函数式的特性，类似“一切被操作的对象都是函数求值的结果，一切操

作都是函数”。

这对于以过程式的，或编译型语言为基础的学习者来说是很难理解的，因为在这些传统的模

式或语言范型中，所谓“标识符 / 变量”就是一个计算对象，它可能直接表达为某个内存

地址、指针，或者是一个编译器处理的东西。对于程序员来说，将这个变量直接理解为“操

作对象”就可以了，没有别的、附加的知识概念。例如：

这两个例子中，a、b、c 都是确定的操作数，我们只需要

就可以了，至于引擎怎么处理这三个变量，我们是不管的。

然而在 JavaScript 中，上面一共是有六个操作的。以第二行为例，包括：

复制代码
1

2
a = 100
b * c

将第一行理解为“a 有了值 100”；

将第二行理解为“b 与 c 的乘积”

将b理解为单值表达式，求值并得到GetValue(evalute('b'))；

将c理解为单值表达式，求值并得到GetValue(evalute('c'))；

将上述两个值理解为求积表达式’*'的两个操作数，计算

evalute('*', GetValue(evalute('b')), GetValue(evalute('c')))

所以，关键在于b和c在表达式计算过程中都并不简单的是“一个变量”，而是“一个单值

表达式的计算结果”。这意味着，在面对 JavaScript 这样的语言时，你需要关注“变量作

为表达式是什么，以及这样的表达式如何求值（以得到变量）”。

那么，现在再比较一下今天这一讲和上一讲的示例：

在这两个例子中，

这就是“语句与表达式”的不同。正如上一讲的所强调的：“var x”从来都不进行计算求

值，所以也就不能写成“var a.x …”。

所以严格地说，在上一讲的例子中，并不存在连续赋值运算，因为“var x = …”是值绑

定操作，而不是“将…赋值给 x”。在代码var x = y = 100;中实际只存在一个赋值

运算，那就是“y = 100”。

两个连续赋值的表达式

所以，今天标题中的这行代码，是真正的、两个连续赋值的表达式：

复制代码
1

2
var x = y = 100;
a.x = a = {n:2}

x 是一个标识符（不是表达式），而 y 和 100 都是表达式，且y = 100是一个赋值表达

式。

a.x 是一个表达式，而a = {n:2}也是表达式，并且后者的每一个操作数（本质上）也

都是表达式。

复制代码
1 a.x = a = {n:2}

并且，按照之前的理解，a.x总是最先被计算求值的（从左至右）。

回顾第一讲的内容，你也应该记得，所谓“a.x”也是一个表达式，其结果是一个“引

用”。这个表达式“a.x”本身也要再计算它的左操作数，也就是“a”。完整地

讲，“a.x”这个表达式的语义是：

表达式“a.x”的计算结果是一个引用，因此通过这个引用保存了一些计算过程中的信息

——例如它保存了“a”这个对象，以备后续操作中“可能会”作为this来使用。所以现

在，在整行代码的前三个表达式计算过程中，“a”是作为一个引用被暂存下来了的。

那么这个“a”现在是什么呢？

从代码中可见，保存在“a.x”这个引用中的“a”是当前的“{n:1}”这个对象。好的，接下

来再继续往下执行：

这里的“a = …”中的a仍然是当前环境中的变量，与上一次暂存的值是相同的。这里仍然

没有问题。

但接下来，发生了赋值：

计算单值表达式a，得到a的引用；

将右侧的名字x理解为一个标识符，并作为“.”运算的右操作数；

计算“a.x”表达式的结果（Result）。

复制代码
1

2
var a = {n:1};
a.x = ...

复制代码
1

2

3

4

var a = {n:1};
a.x = // <- `a` is {n:1}
 a = // <- `a` is {n:1}
...

于是，左操作数a作为一个引用被覆盖了，这个引用仍然是当前上下文中的那个变量a。因

此，这里真实地发生了一次a = {n:2}。

那么现在，表达式最开始被保留在“一个结果值（Result）”中的引用a会更新吗？

不会的。这是因为那是一个“运算结果（Result）”，这个结果有且仅有引擎知道，它现在

是一个引擎才理解的“引用（规范对象）”，对于它的可能操作只有：

当然，如同第一讲里强调的，它也可以被 typeof 和 delete 等操作引用的运算来操作。但

无论如何，在 JavaScript 用户代码层面，能做的主要还是取值和置值。

现在，在整个语句行的最左侧“空悬”了一个已经求值过的“a.x”。当它作为赋值表达式

的左操作数时，它是一个被赋值的引用（这里是指将a.x的整体作为一个引用规范对象）。

而它作为结果（Result）所保留的“a”，是在被第一次赋值操作覆盖之前的、那个“原始

的变量a”。也就是说，如果你试图访问它的“a.n”，那应该是值“1”。

这个被赋值的引用“a.x”其实是一个未创建的属性，赋值操作将使得那个“原始的变量

a”具有一个新属性，于是它变成了下面这样：

复制代码
1

2

3

4

...
a.x = // <- `a` is {n:1}
 a = // <- `a` is {n:1}
 {n:2}; // 赋值，覆盖当前的左操作数（变量`a`）

取值或置值（GetValue/PutValue），以及

作为一个引用向别的地方传递等。

复制代码
1

2

3

4

5

// a.x 中的“原始的变量`a`”
{
 x: {n: 2}, // <- 第一次赋值“a = {n:2}”的结果值
 n: 1
}

这就是第二次赋值操作的结果。

复现现场

上面发生了两次赋值，第一次赋值发生于“a = {n: 2}”，它覆盖了“原始的变量a；第二次

赋值发生于被”a.x”引用暂存的“原始的变量a”。

我可以给出一段简单的代码，来复现这个现场，以便你看清这个结果。例如：

第二次赋值操作中，将尝试向“原始的变量a”添加一个属性“a.x“，且如果它没有冻结的

话，属性“a.x”会指向第一次赋值的结果。

回到标题中的示例

那标题中的这行代码的最终结果是什么呢？答案是：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// 声明“原始的变量 a”
var a = {n:1};

// 使它的属性表冻结（不能再添加属性）
Object.freeze(a);

try {
 // 本节的示例代码
 a.x = a = {n:2};
}
catch (x) {
 // 异常发生，说明第二次赋值“a.x = ...”中操作的`a`正是原始的变量 a
 console.log('第二次赋值导致异常.');
}

// 第一次赋值是成功的
console.log(a.n); //

有一个新的a产生，它覆盖了原始的变量a，它的值是{n:2}；

最左侧的“a.x”的计算结果中的“原始的变量a”在引用传递的过程中丢失了，

且“a.x”被同时丢弃。

所以，第二次赋值操作“a.x = …”实际是无意义的。因为它所操作的对象，也就是“原始

的变量a”被废弃了。但是，如果有其它的东西，如变量、属性或者闭包等，持有了这

个“原始的变量a”，那么上面的代码的影响仍然是可见的。

事实上，由于 JavaScript 中支持属性读写器，因此向“a.x”置值的行为总是可能存

在“某种执行效果”，而与“a”对象是否被覆盖或丢弃无关。

例如：

这也解释了最初“蔡 mc”的疑问：连续两次赋值elemData.events有什么用？

如果a（或elemData）总是被重写的旧的变量，那么如下代码：

意味着给旧的变量添加一个指向新变量的属性。因此，一个链表是可以像下面这样来创建

的：

复制代码
1

2

3

4

var a = {n:1}, ref = a;
a.x = a = {n:2};
console.log(a.x); // --> undefined
console.log(ref.x); // {n:2}

复制代码
1 a.x = a = {n:2}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

var i = 10, root = {index: "NONE"}, node = root;

// 创建链表
while (i > 0) {
 node.next = node = new Object;
 node.index = i--; // 这里可以开始给新 node 添加成员
}

// 测试
node = root;
while (node = node.next) {
 console.log(node.index);

最后，我做这道面试题做一点点细节上的补充：

知识回顾

前三讲中，我通过对几行特殊代码的分析，希望能帮助你理解“引用（规范类型）”在

JavaScript 引擎内部的基本运作原理，包括：

复习题

下面有几道复习题，希望你尝试解答一下：

13 }

这道面试题与运算符优先级无关；

这里的运算过程与“栈”操作无关；

这里的“引用”与传统语言中的“指针”没有可比性；

这里没有变量泄露；

这行代码与上一讲的例子有本质的不同；

上一讲的例子“var x = y = 100”严格说来并不是连续赋值。

引用在语言中出现的历史；

引用与值的创建与使用，以及它的销毁（delete）；

表达式（求值）和引用之间的关系；

引用如何在表达式连续运算中传递计算过程的信息；

仔细观察每一个表达式（及其操作数）计算的顺序；

所有声明，以及声明语句的共性。

试解析with ({x:100}) delete x; 将发生什么。1.

试说明(eval)()与(0, eval)()的不同。2.

设“a.x === 0”，试说明“(a.x) = 1”为什么可行。3.

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

希望你喜欢我的分享，也欢迎你把文章分享给你的朋友。

为什么with (obj={}) x = 100; 不会给 obj 添加一个属性’x’？4.

上一篇 02 | var x = y = 100：声明语句与语法改变了JavaScript语言核心性质

下一篇 04 | export default function() {}：你无法导出一个匿名函数表达式

blacknhole
2019-11-15

从内容上其实已经说清楚了，不过在内容表达上还是会让人产生困惑，我觉得问题是出
在“当前上下文中的那个变量a”和“原始的变量a”这样的表述方式上。或许如下表述在
语意上会更加清晰：

1，这里其实只有一个变量，就是a，不存在那个变量a和这个变量a之分，有分别的其实…
展开

作者回复: 赞的！就是这个意思。呵呵~

精选留言 (13)  写留言

  6

Summer
2019-11-15

有的地方描述有点晕，看了好几遍才明白表述的意思，要是有一些动态的图演示的话可能
效果更好点

作者回复: 这个……确实实现起来有难度。我通常在做讲演稿的时候才会用这种方式，但讲演稿的

讲法，跟这里的课程的讲课方法区别还是很大的。

当然，即使不用动态的图，使用流程图或框线图其实也挺好的。不过，总之，以极客时间的“语

音课程”来说，很难讲。——话说回来，如果是需要更深的阅读，以及更丰富的图例，以及表格

等表现形式，那么可以看我的书哦。《JavaScript语言精髓与编程实践》这本书的第三版……快要

出版了吔~ ^^.

  2

sprinty
2019-11-15

老是您好：我理解的指针和引用是，指针是存储的地址，引用是存储的别名。

在 js 中的“引用”与传统语言中的“指针”有哪些根本性的区别。

展开

作者回复: 其实我早期也是这么理解的。好象大家理解事物的方式都差不多，就是从相似性出发，

从差异性辨别。

但是我后来发现，与其如此，不如为新东西建个体系，然后在新体系中来看待这个新事物。这一

下子就不同了。

以至于我现在对引用的认识，就不太依赖与比较或比拟。引用就是引用，它就是一个计算的结

果，它存放结果中包括的那几个东西。它是一个数据结构，用在引擎层面来存储计算过程的中间

信息，以及在连续计算中传递这些信息。

 1  2

青史成灰
2019-11-16

老师上面引用《JavaScript权威指南》中说“JavaScript总是严格按照从左到右的顺序计算
表达式”，那为什么下文的2次赋值操作`a.x = a = {n:2}`，是先赋值`a={n:2}`，然后才是`
a.x = a`呢

作者回复: 这个顺序是这样来读的（你仔细看看顺序是不是从左至右）：

第一次

======

a.x = a = {n:2}

^1 ^2

第二次

======

a = { n: 2 }

^3 ^4

第三次

======

{ n: 2 }

^5 ^6

第四次（以下求值然后回传）

======

求值传回(4)

@4 <= ^5, ^6

第五次

======

求值回传(3)

@3 = (^4 <= ^5, ^6)

第六次

======

求值回传（2）

a = @3 = (^4 <= ^5, ^6)

第七次

======

求值回传（1）

a.x = a = @3 = ...

  1

Lambert
2019-11-15

“a.x”这个表达式的语义是：
计算单值表达式a，得到a的引用；
将右侧的名字x理解为一个标识符，并作为“.”运算的右操作数；
计算“a.x”表达式的结果（Result）。
老师请问一下 这个时候 的 Result 是 undefined吗？ 因为还没有进行赋值

展开

作者回复: 这个时候的Result是一个“引用（Reference）”。

如果它在后续运算中被作为lhs，例如 a.x = ...，那么它就是作为“引用”来使用，这样就可以访

问到`x`这个属性，并置值；如果它在后续运算中被作为rhs，例如console.log(a.x)，那么它就会

被GetValue()取值（并作为值来使用），于是console.log()就能打印出它的值来。

a.x整体被作为“一个操作数”，它的用法与它被使用的位置是有关的。但是“得到它（亦即是对

a.x这个表达式求Result）”的过程并没有什么不同。

你可以读一下这个“.”操作在ECMAScript中的规范：

https://tc39.es/ecma262/#sec-property-accessors-runtime-semantics-evaluation

 2  1

早起不吃虫
2019-11-15

作为一名前端，看的一头雾水。。。

展开

  1

天方夜
2019-11-18

1. with ({x:100}) delete x 中 delete 删除的是对象的成员，即 property x；
2. (0, eval) 之中有一步逗号运算；
3. 表达式 (a.x) 的计算结果是 a 对象的属性 x 这个引用，所以可行；
4. with 只指定属性查找的优先级，所以 with 里面 x = 100 还是会泄漏到全局。

展开

 

铭
2019-11-16

反反复复看了几遍，留言区里帮我屡清了思路。

第一句：
var a = {n : 1};
// 变量声明，变量a作为引用，最终指向了等号右侧表达式的计算结果，即一个对象{n : …
展开

作者回复: 除了“a.x = a”导致栈异常之外，这个好象不太对。其它应该没什么问题了。

 

旺旺
2019-11-15

JavaScript果然太灵活，然后感觉好难啊

展开

 

许童童
2019-11-15

1. delete返回true 可以删除
2.会先计算表达式(0, eval)
3.没懂
4.obj={} 是一个表达式，返回的是{}这个值，所以with还是在全局上下文，x会被赋值为wi
ndow的属性

展开

 

许童童
2019-11-15

老师讲得真细啊，学到了很多，谢谢老师。

展开

 

Wiggle Wiggle
2019-11-15

那么“引用”这个数据结构究竟是什么样子呢？在引擎内部是如何实现的呢？老师可否讲
一下或者给个链接？

作者回复: https://tc39.es/ecma262/#sec-reference-specification-type

^^.

 

Smallfly
2019-11-15

文章读起来挺吃力的，可能是 JS 很多设计跟固有思维不一致，也可能是对 EMACScript 规
范不了解，老师能否考虑下放文章中涉及到的规范地址？

展开

作者回复: 好主意！我问问编辑能怎么改。

后面的内容我尽量都加上。多谢提议！

 1 

