
13 | new X：从构造器到类，为你揭密对象构造的全程
2019-12-13 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 19:18 大小 17.69M



你好，我是周爱民。

今天我只跟你聊一件事，就是 JavaScript 构造器。标题中的这行代码中规中矩，是我这个

专栏题目列表中难得的正经代码。

NOTE：需要稍加说明的是：这行代码在 JavaScript 1.x 的某些版本或具体实现中是不能

使用的。即使 ECMAScript ed1 开始就将它作为标准语法之一，当时也还有许多语言并

不支持它。

构造器这个东西，是 JavaScript 中面向对象系统的核心概念之一。跟“属性”相比，如果

属性是静态的结构，那么“构造器”就是动态的逻辑。



 下载APP 

没有构造器的 JavaScript，就是一个充填了无数数据的、静态的对象空间。这些对象之间

既没有关联，也不能衍生，更不可能发生交互。然而，这却真的就是 JavaScript 1.0 那个

时代的所谓“面向对象系统”的基本面貌。

基于对象的 JavaScript

为什么呢？因为 JavaScript1.0 的时代，也就是最早最早的 JavaScript 其实是没有继承

的。

你可能会说，既然是没有继承的，那么 JavaScript 为什么一开始就能声称自己是“面向对

象”的、“类似 Java”的一门语言呢？其实这个讲法是前半句对，后半句不对。

JavaScript 和 Java 名字相似，但语言特性却大是不同，这就跟北京的“海淀五路

居”和“五路居”一样，差了得有 20 公里。

那前半句为什么是对的呢？JavaScript 1.0 连继承都没有，为什么又能称为面向对象的语言

呢？

其实从我在前两讲中讲过的内容来看，JavaScript 1.0 确实已经可以将函数作为构造器，并

且在函数中向它的实例（也就是this对象）抄写类声明的那些属性。在早期的面向对象理

论里面，就已经可以称这个函数为类，而这个被创建出来的实例为对象了。

所以，有了类、对象，以及一个约定的构造过程，有了这三个东西，JavaScript 就声称了

自己是一门“面向对象”的语言，并且还是一门“有类语言”。

所以 JavaScript 从 1.0 开始就有类，在这个类（也就是构造器）中采用的是所谓“类抄

写”的方案，将类所拥有的属性声明一项一项地抄写到对象上面，而这个对象，就是我们现

在大家都知道的 this 引用。

这样一来，一段声明类和构造对象的代码，大概写出来就是下面这个样子：

复制代码
1

2

3

4

5

6

function Car() {
 this.name = "Car";
 this.color = "Red";
}

var x = new Car();

类与构造器

由于在这样的构造过程中，this是作为new运算所构造出来的那个实例来使用的，因此

JavaScript 1.0 约定全局环境中不能使用this的。因为全局环境与new运算无关，全局环境

中也并不存在一个被new创建出来的实例。

然而随着JavaScript 1.1的到来，JavaScript 支持“原型继承”了，于是“类抄写”成

为了一个过时的方案。对于继承性来说，它显得无用；对于一个具体的实例来说，它又具

有“类‘说明了’实例的结构”这样的语义。

因此，从“原型继承”在 JavaScript 中出现的第一天开始，“类继承 VS 原型继承”之间

就存在不可调和的矛盾。在JavaScript 1.1中，类抄写是可以与原型继承混合使用的：

在这个例子中所创建出来的对象x是“Car()”的一个实例，但是在面向对象编程（OOP）

中，x既是Car()的子类实例，也是“Device()”的子类实例，这是 OOP 的继承性所约定

的基本概念。这正是这门语言很有趣的地方：一方面使用了类继承的基础结构和概念，另一

方面又要实现原型继承和基于原型链检查的逻辑。例如：

7 ...

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

function Device() {
 this.id = 0; // or increment
}

function Car() {
 this.name = "Car";
 this.color = "Red";
}

Car.prototype = new Device();

var x = new Car();
console.log(x.id); //

复制代码
1

2
`x`是`Device()`的子类实例吗？
> x instanceof Device

这里的instanceof运算被实现为一个动态地访问原型链的过程：它将从Car.prototype

属性逆向地在原型链中查到你指定的——“原型”。

首先，JavaScript 从对象x的内部结构中取得它的原型。这个原型的存在，与new运算是直

接相关的——在早期的 JavaScript 中，有且仅有new运算会向对象内部写“原型”这个属

性（称为"[[Prototype]]"内部槽）。由于 new 运算是依据它运算时所使用的构造器来填写

这个属性的，所以这意味着如下的效果：

在instanceof运算中，x instanceof AClass表达式的右侧是一个类名（对于之前的

例子来说，它指向构造器 Car），但实际上 JavaScript 是使用AClass.prototype来做比

对，对于“Car() 构造器”来说，就是“Car.prototype”。但是，如果上一个例子需要检

查的是x instanceof Device，也就是“Device.prototype”，那么这二者显然是不等

值的。

所以，instanceof运算会再次取“x.[[Prototype] [[Prototype]]”这个内部原型，也就是

顺着原型链向上查找：

现在，由于在x的原型链上发现了“x instanceof Device”运算右侧

的“Device.prototype”，所以这个表达式将返回 True 值，表明：

3 true

复制代码
1

2
// x = new Car()
x.[[Prototype]] === Car.prototype

复制代码
1

2

3

4

5

6

7

// 因为
x.[[Prototype]] === Car.prototype
// 且
Car.prototype = new Device()

// 所以
x.[[Prototype]].[[Prototype]] === Device.prototype

对象x是Device()或其子类的一个实例。

现在，对于大多数 JavaScript 程序员来说，上述过程应该都不是秘密，也并不是特别难解

的核心技术。但是在它的实现过程中所带有的语言设计方面的这些历史痕迹，却不是那么容

易一望即知的了。

ECMAScript 6 之后的类

在 ECMAScript 6 之前，JavaScript 中的函数、类和构造器这三个概念是混用的。一般来

说，它们都被统一为“函数 Car()”这个基础概念，而当它用作“x = new Car()”这样的

运算，或从x.constructor这样的属性中读取时，它被理解为构造器；当它用作“x

instanceof Car”这样的运算，或者讨论 OOP 的继承关系时，它被理解为类。

习惯上，如果程序要显式地、字面风格地说明一个函数是构造器、或者用作构造过程，那么

它的函数名应该首字母大写。同时，如果一个函数要被明确声明为“静态类（也就不需要创

建实例的类，例如 Math）”，那么它的函数名也应该首字母大写。

NOTE: 仅从函数名的大小写来判断，只是惯例。没有任何方法来确认一个函数是不

是“被设计为”构造器，或者静态类，又或者“事实上”是不是二者之一。

从 ECMAScript 6 开始，JavaScript 有了使用class来声明“类”的语法。例如：

自此之后，JavaScript 的“类”与“函数”有了明确的区别：类只能用 new 运算来创建，

而不能使用“()”来做函数调用。例如：

复制代码
1

2

3

class AClass {
 ...
}

复制代码
1

2

3

4

5

> new AClass()
AClass {}

> AClass()
TypeError: Class constructor AClass cannot be invoked without 'new'

在 ECMAScript 6 之后，JavaScript 内部是明确区分方法与函数的：不能对方法做 new 运

算。例如：

注意这个异常中又出现了关键字“constructor”。这让我们的讨论又一次回到了开始的话

题：什么是构造器？

在 ECMAScript 6 之后，函数可以简单地分为三个大类：

其中，典型的“方法”在内部声明时，有三个主要特征：

后两种特征（没有[[Construct]]内部槽和prototype属性）完全排除了一个普通方法

用作构造器的可能。对照来看，所谓“类”其实也是作为方法来创建的，但它有独立的构造

过程和原型属性。

函数的“.prototype”的属性描述符中的设置比较特殊，它不能删除，但可以修改

（‘writable’ is true）。当这个值被修改成 null 值时，它的子类对象是以 null 值为原型

复制代码
1

2

3

4

5

6

7

声明一个带有方法的对象字面量
> obj = { foo() {} }
{ foo: [Function: foo] }

对方法使用 new 运算会导致异常
> new obj.foo()
TypeError: obj.foo is not a constructor

类：只可以做 new 运算；1.

方法：只可以做调用“()”运算；2.

一般函数：（除部分函数有特殊限制外，）同时可以做 new 和调用运算。3.

具有一个名为“主对象[[HomeObject]]”的内部槽；1.

没有名为“构造器[[Construct]]”的内部槽；2.

没有名为“prototype”的属性。3.

的；当它被修改成非对象值时，它的子类对象是以 Object.prototype 为原型的；否则，当

它是一个对象类型的值时，它的子类才会使用该对象作为原型来创建实例。

运算符“new”总是依照这一规则来创建对象实例this。

不过，对于“类”和一般的“构造器（函数）”，这个创建过程会略有不同。

创建this的顺序问题

如前所述，如果对 ECMAScript 6 之前的构造器函数（例如f）使用new运算，那么这个

new 运算会使用f.prototype作为原型来创建一个this对象，然后才是调用f()函数，

并将这个函数的执行过程理解为“类抄写（向用户实例抄写类所声明的属性）”。从用户代

码的视角上来看，这个新对象就是由当前new运算所操作的那个函数f()创建的。

这在语义上非常简洁明了：由于f()是 this 的类，因此f.prototype决定了 this 的原

型，而f()执行过程决定了初始化 this 实例的方式。但是它带了一个问题：从 JavaScript

1.1 开始至今都困扰 JavaScript 程序员的问题：

无法创建一个有特殊性质的对象，也无法声明一个具有这类特殊性质的类。

这是什么意思呢？比如说，所有的函数有一个公共的父类 / 祖先类，称为Function()。

所以你可以用new Function()来创建一个普通函数，这个普通函数也是可以调用的，例

如：

你也确实可以用传统方法写一个Function()的子类，但这样的子类创建的实例就不能调

用。例如：

复制代码
1

2

3

4

5

6

7

> f = new Function;

> f instanceof Function
true

> f()
undefine

至于原因，你可能也已经知道了：JavaScript 所谓的函数，其实是“一个有[[Call]]内部

槽的对象”。而Function()作为 JavaScript 原生的函数构造器，它能够在创建的对象

（例如this）中添加这个内部槽，而当使用上面的继承逻辑时，用户代码（例如

MyFunction()）就只是创建了一个普通的对象，因为用户代码没有能力操作 JavaScript

引擎层面才支持的那些“内部槽”。

所以，有一些“类 / 构造器”在 ECMAScript 6 之前是不能派生子类的，例如 Function，

又例如 Date。

而到了 ECMAScript 6，它的“类声明”采用了不同的构造逻辑。ECMAScript 6 要求所有

子类的构造过程都不得创建这个this实例，并主动的把这个创建的权力“交还”给父类、

乃至祖先类。这也就是 ECMAScript 6 中类的两个著名特性的由来，即，如果类声明中通

过 extends 指定了父类，那么：

显然，真实的this创建就通过层层的super()交给了父类或祖先类中支持创建这个实例的

构造过程。这样一来，子类中也能得到一个“拥有父类所创建的带有内部槽的”实例，因此

上述的Function()和Date()等等的子类也就可以实现了。例如：

复制代码
1

2

3

4

5

6

7

8

9

10

11

> MyFunction = function() {};

> MyFunction.prototype = new Function;

> f = new MyFunction;

> [f instanceof MyFunction, f instanceof Functcion]
[true, true]

> f()
TypeError: f is not a funct

必须在构造器方法（constructor）中显式地使用super()来调用父类的构造过程；1.

在上述调用结束之前，是不能使用this引用的。2.

复制代码
1

2
> class MyFunction extends Function { }

在上面个例子中，MyFunction()的类声明中缺省了“constructor()”构造方法。这种情

况下 JavaScript 会为它自动创建一个，并且其内部也仅有一个“super()”代码。关于这些

过程的细节，我将留待下一讲再具体地与你解析。在这里，你最应该关注的是这个过程带来

的必然结果：

ECMAScript 6 的类是由父类或祖先类创建this实例的。

不过仍然有一点是需要补充的：如果类声明class中不带有extends子句，那么它所创建

出来的类与传统 JavaScript 的函数 / 构造器是一样的，也就是由自己来创建this对象。很

显然，这是因为它无法找到一个显式指示的父类。不过关于这种情况，仍然隐藏了许多实现

细节，我将会在下一讲中与你一起来学习它。

用户返回 new 的结果

在 JavaScript 中关于 new 运算与构造函数的最后一个有趣的设计，就是用户代码可以干涉

new 运算的结果值。默认情况下，这个结果就是上述过程所创建出来的this对象实例，但

是用户可以通过在构造器函数 / 方法中使用return语句来显式地重置它。

这也是从 JavaScript 1.0 就开始具有的特性。因为 JavaScript 1.x 中的函数、类与构造器

是混用的，所以用户代码在函数中“返回些什么东西”是正常的语法，也是正常的逻辑需

求。但是 JavaScript 要求在构造器中返回的数据必须是一个对象，否则就将抛出一个运行

期的异常。

从 ECMAScript ed3 开始，检测构造器返回值的逻辑从new运算符中移到了

[[Construct]]的处理过程中，并且重新约定：当构造器返回无效值（非对象值或 null）

时，使用原有已经创建的this对象作为构造过程[[Constuct]]的返回值。

因此到了 ECMAScript 6 之后，那些一般函数，以及非派生类，就延续了这一约定：使用

已经创建的this对象来替代返回的无效值。这意味着它们总是能返回一个对象，要么是

3

4

5

6

> f = new MyFunction;

> f()
undefine

new 运算按规则创建的 this，要么是用户代码返回的对象。

NOTE: 关于为什么非派生类也支持这一约定的问题，我后续的课程中会再次讲到。基本

上来说，你可以认为这是为了让它与一般构造器保持足够的“相似性”。

然而严格来说，引擎是不能理解“为什么用户代码会在构造器中返回一个一般的值类型数

据”的。因为对于类的预期是返回一个对象，返回这种“无效值”是与预期矛盾的。因此，

对于那些派生的子类（即声明中使用了extends子句的类），ECMAScript 要求严格遵

循“不得在构造器中返回非对象值（以及 null 值）”的设计约定，并在这种情况下直接抛

出异常。例如：

知识回顾

今天这一讲的一些知识点，是与你学习后续的专栏内容有关的。包括：

复制代码
1

2

3

4

5

6

7

8

9

10

11

(注：ES3 之前将抛出异常）
> new (function() {return 1});
{}

非派生类的构造方法返回无效值
> new (class { constructor() { return 1 } })
{}

派生类的构造方法返回无效值
> new (class extends Object { constructor() { return 1 } })
TypeError: Derived constructors may only return object or undefine

在使用类声明来创建对象时，对象是由父类或祖先类创建的实例，并使用this引用传递

到当前（子级的）类的。

1.

在类的构造方法和一般构造器（函数）中返回值，是可以影响 new 运算的结果的，但

JavaScript 确保 new 运算不会得到一个非对象值。

2.

类或构造器（函数）的首字母大写是一种惯例，而不是语言规范层面的约束。3.

类继承过程也依赖内部构造过程（[[Contruct]]）和原型属性（prototype），并且

类继承实际上是原型继承的应用与扩展，不同于早期 JavaScript1.0 使用的类抄写。

4.

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

无论如何，从 JavaScript 1.0 开始的“类抄写”这一特性依然是可用的。无论是在普通函

数、类还是构造器中，都可以向this引用上抄写属性，但这个过程变得与“如何实现继承

性”完全无关。这里的this可以是函数调用时传入的，而不再仅仅来自于 new 运算的内置

的构造过程创建。

思考题

这些问题既是对本小节内容的回顾，也是下一阶段的课程中会用到的一些基础知识。建议你

好好的寻求一下答案。

最后，希望你喜欢我的分享，也欢迎你把文章分享给你的朋友。

除使用 new X 运算，还有什么方法可以创建新的对象？1.

在 ECMAScript 6 之后，除了 new X 之外，还有哪些方法可以操作原型 / 原型链？2.

上一篇 12 | 1 in 1..constructor：这行代码的结果值，既可能是true，也可能是false

下一篇 14 | super.xxx()：虽然直到ES10还是个半吊子实现，却也值得一讲

行问
2019-12-13

谈谈今天的理解：

在 instanceof 运算中，x instanceof AClass 表达式的右侧是一个类名（对于 instanceof
的理解之前是有误解，今天才领悟到）
 …
展开

作者回复: 这个this实例的确是由父类或祖先类创建的。但它不是“继承”来的，因为“继承”这

个说法严格来说在JavaScript中就是原型继承，而这个this不是靠原型继承来“传递到”子类的。

在super()调用之前，当前函数——例如子类的构造器——无法访问this，是它的作用域里面没有t

his这个名字（因为还没有被创建出来嘛）。而super()调用之后，JavaScript引擎会把this“动态

地添加到”作用域中，于是this就能访问了。

这个“动态的添加”其实很简单，因为super是子类向父类调用的，所以显然父类调用结束并退出

时的当前作用域（或环境）就是子类的，因此ECMAScript约定在退出super()的时候就把已经创

建好的this直接“抄写”给当前环境就可以了。这里大概只有一两行代码，很简单的。^^.

  2

行问
2019-12-13

Object.create()
Object.defineProperty()
ES6 的 proxy 和 Reflect

展开

  2

潇潇雨歇
2019-12-17

ES6操作原型/原型链方法：Obejct.create()、Object.setPrototypeOf()、Object.getProt
otypeOf()

  1

潇潇雨歇

精选留言 (5)  写留言

2019-12-16

1、Object.create()

展开

 

sprinty
2019-12-13

function X() {
 this.x = 4
}
 …
展开

 

