
17 | Object.setPrototypeOf(x, null)：连Brendan Eich都
认错，但null值还活着
2019-12-23 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 14:26 大小 13.23M



你好，我是周爱民。欢迎回来继续学习 JavaScript。

今天是关于面向对象的最后一讲，上次已经说过，今天这一讲要讨论的是原子对象。关于原

子对象的讨论，我们应该从null值讲起。

null值是一个对象。

null 值



 下载APP 

很多人说 JavaScript 中的null值是一个 BUG 设计，连 JavaScript 之父 Eich 都跳出来对

Undefined+Null 的双设计痛心疾首，说null值的特殊设计是一个“抽象漏洞

（abstraction leak）”。这个东西什么意思呢？很难描述，基本上你可以理解为在概念设

计层面（也就是抽象层）脑袋突然抽抽了，一不小心就写出这么个怪胎。

NOTE：“typeof null”的历史 , JavaScript 的设计失误 。

然而我却总是觉得不尽如此，因为如果你仔细思考过 JavaScript 的类型系统，你就会发现

null值的出现是有一定的道理的（当然 Eich 当年脑子是不是这样犯的抽抽也未为可知）。

怎么讲呢？

早期的 JavaScript 一共有 6 种类型，其中 number、string、boolean、object 和

function 都是有一个确切的“值”的，而第 6 种类型Undefined定义了它们的反面，也就

是“非值”。一般讲 JavaScript 的书大抵上都会这么说：

undefined用于表达一个值 / 数据不存在，也就是“非值（non-value）”，例如

return 没有返回值，或变量声明了但没有绑定数据。

这样一来，”值 + 非值“就构成了一个完整的类型系统。

但是呢，JavaScript 又是一种“面向对象”的语言。那么“对象”作为一个类型系统，在

抽象上是不是也有“非对象”这样的概念呢？有啊，答案就是“null”，它的语义是：

null用于表达一个对象不存在，也就是“非对象”，例如在原型继承中上溯原型链直到

根类——根类没有父类，因此它的原型就指向null。

正如“undefined”是一个值类型一样，“null”值也是一个对象类型。这很对称、很完

美，只要你愿意承认“JavaScript 中存在两套类型系统”，那么上面的一切解释就都行得

通。

事实上，不管你承不承认，这样的两套类型系统都是存在的。也因此，才有了所谓的值类型

的包装类，以及对象的valueOf()这个原型方法。

现在，的确是时候承认typeof(null) === 'object'这个设计的合理性了。

Null 类型

正如 Undefined 是一个类型，而undefined是它唯一的值一样，Null 也是一个类型，且

null是它唯一的值。

你或许已经发现，我在这里其实直接引用了 ECMAScript 对 Null 类型的描述？的确，

ECMAScript 就是这样约定了null值的出处，并且很不幸的是，它还约定了null值是一个

原始值（Primitive values），这是 ECMAScript 的概念与我在前面的叙述中唯一冲突的地

方。

如果你“能 / 愿意”违逆 ECMAScript 对“语言类型（Language types）”的说明，稍

稍“苟同”一下我上述的看法，那么下面的代码一定会让你觉得“豁然开朗”：

所以，Null 类型是一个“对象类型（也就是类）”，是所有对象类型的“元类型”。

而null值，是一个连属性表没有的对象，它是“元类型”系统的第一个实例，你可以称之

为一个原子。

属性表

没有属性表的对象称为 null。而一个原子级别的对象，意味着它只有一个属性表，它不继

承自任何其他既有的对象，因此这个属性表的原型也就指向 null。

复制代码
1

2

3

4

5

6

7

8

9

10

11

// null 是对象
> typeof(null)
'object'

// 类可以派生自 null
> MyClass = class extends null {}
[Function: MyClass]

// 对象可以创建自 null
> x = Object.create(null);
{}

原子对象是“对象”的最原始的形态。它的唯一特点就是“原型为 null”，例如：

但为什么要“变成”原子对象呢？或者说，你为什么需要一个“原子对象”呢？

因为它就是“对象”最真实的、最原始的、最基础抽象的那个数据结构：关联数组。

所谓属性表，就是关联数组。一个空索引数组与空的关联数组在 JavaScript 中是类似的

（都是对象）：

而且本质上来说，空的索引数组只是在它的属性表中默认有一个不可列举的属性，也就是

length。例如：

复制代码
1

2

3

4

5

6

7

JavaScript 中“Object（对象类型）”的原型是一个原子对象
> Object.getPrototypeOf(Object.prototype)
null

任何对象都可以通过将原型置为 null 来“变成”原子对象
> Object.setPrototypeOf(new Object, null)
{}

复制代码
1

2

3

4

5

6

7

空索引数组
> a = Object.setPrototypeOf(new Array, null)
{}

空关联数组
> x = Object.setPrototypeOf(new Object, null)
{}

复制代码
1

2

3

4

5

6

7

8

9

（续上例）

数组的长度
> a.length
0

索引数组的属性
> Object.getOwnPropertyDescriptors(a)
{ length:

正因为数组有一个默认的、隐含的“length”属性，所以它才能被迭代器列举（以及适用

于数组展开语法），因为迭代器需要“额外地维护一个值的索引”，这种情况

下“length”属性成了有效的参考，以便于在迭代器中将“0…length-1”作为迭代的中止

条件。

而一个原子的、支持迭代的索引数组也可通过添加“Symbol.iterator”属性来得到。例

如：

现在，整个 JavaScript 的对象系统被还原到了两张简单的属性表，它们是两个原子对象，

一个用于表达索引数组，另一个用于表达关联数组。

当然，还有一个对象，也是所有原子对象的父类实例：null。

派生自原子的类

JavaScript 中的类，本质上是原型继承的一个封装。而原型继承，则可以理解为多层次的

关联数组的链（原型链就是属性表的链）。之所以在这里说它是“多层次的”，是因为在面

向对象技术出现的早期，在《结构程序设计》这本由三位图灵奖得主合写的经典著作

中，“面向对象编程”就被称为“层次结构程序设计”。所以，“层次设计”其实是从数据

结构的视角对面向对象中继承特性的一个精准概括。

10

11

12

13

 { value: 0,
 writable: true,
 enumerable: false,
 configurable: false } }

复制代码
1

2

3

4

5

6

7

8

9

（续上例）

使索引数组支持迭代
> a[Symbol.iterator] = Array.prototype[Symbol.iterator]
[Function: values]

展开语法（以及其他运算）
> [...a]
[]

类声明将“extends”指向 null 值，并表明该类派生自 null。为了使这样的类（例如

MyClass）能创建出具有原子特性的实例，JavaScript 给它赋予了一个特性：

MyClass.prototype 的原型指向 null。这个性质也与 JavaScript 中的 Object() 构造器类

似。例如：

也就是说，这里的 MyClass() 类可以作为与 Object() 类处于类似层次的“根类”。通常而

言，称为“（所有对象的）祖先类”。这种类，是在 JavaScript 中构建元类继承体系的基

础。不过元类以及相关的话题，这里不就再展开讲述了。

这里希望你能关注的点，仅仅是在“层次结构”中，这样声明出来的类，与 Object() 处在

相同的层级。

通过“extends null”来声明的类，是不能直接创建实例的，因为它的父类是 null，所以在

默认构造器中的“SuperCall（也就是 super()）”将无法找到可用的父类来创建实例。因

此，通常情况下使用“extends null”来声明的类，都由用户来声明一个自己的构造方法。

但是也有例外，你思考一下这个问题：如果 MyClass.prototype 指向 null，而 super 指向

一个有效的父类，其结果如何呢？

是的，这样就得到了一个能创建“具有父类特性（例如父类的私有槽）”的原子对象。例

如：

复制代码
1

2

3

4

5

6

> class MyClass extends null {}
> Object.getPrototypeOf(MyClass.prototype)
null

> Object.getPrototypeOf(Object.prototype)
null

复制代码
1

2

3

4

5

6

7

> class MyClass extends null {}

这是一个原子的函数类
> Object.setPrototypeOf(MyClass, Function);

f() 是一个函数，并且是原子的
> f = new MyClass;

一般函数 / 构造器

由于一般函数可以直接作为构造器，你可能也已经习惯了这种从 ECMAScript 6 之前的

JavaScript 沿袭下来的风格。一般情况下，这样的构造器也可以被称为“（传统的）

类”，并且在 ECMAScript 6 中，所谓“非派生类（没有 extends 声明的类）”实际上也

是用这样的函数 / 构造器来实现的。

这样的函数 / 构造器 / 非派生类其实是相同性质的东西，并且都是基于 ECMAScript 6 之

前的构造器概念来实现类的实例化——也就是构造过程的。出于这样的原因，它们都不能

调用 SuperCall（也就是super()）来创建this实例。不过，旧式风格的构造过程将总是

使用构造器的.prototype属性来创建实例。因而，让它们创建原子对象的方法也就变得

非常简单：把它们的原型变成原子，就可以了。例如：

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

> f(); // 可以调用
> typeof f; // 是 "function" 类型

这是一个原子的日期类
> Object.setPrototypeOf(MyClass, Date);

d 是一个日期对象，并且也是原子的
> d = new MyClass;
> Date.prototype.toString.call(d); // 它有内部槽用于存放日期值
'Mon Nov 04 2019 18:27:27 GMT+0800 (CST)'

a 是一个原子的数组类
> Object.setPrototypeOf(MyClass, Array);
> a = new MyClass;
...

复制代码
1

2

3

4

5

6

7

8

9

10

11

非派生类（没有 extends 声明的类）
> class MyClass {}
> Object.setPrototypeOf(MyClass.prototype, null)
> new MyClass
{}

一般函数 / 构造器
> function AClass() {}
> Object.setPrototypeOf(AClass.prototype, null)
> new MyClass
{}

原子行为

直接施加于原子对象上的最终行为，可以称为原子行为。如同 LISP 中的表只有 7 个基本操

作符一样，原子行为的数量也是很少的。准确地说，对于 JavaScript 来说，它只有 13

个，可以分成三类，其中包括：

讲到这里，你可能已经意识到了，所谓“代理对象（Proxy）”的陷阱方法，也正好就是这

13 个。这同样也可以理解为：代理对象就是接管一个对象的原子行为，将它转发给被代理

行为处理。

正因为 JavaScript 的对象有且仅有这 13 个原子行为，所以代理才能“无缝且全面地”代

理任何对象。

这也是在 ECMAScript 中的代理变体对象（proxy object is an exotic object ）只有 15

个内部槽的原因：包括上述 13 个原子行为的内部槽，其他两个内部槽分别指向被代理对象

（ProxyTarget）和用户代码设置的陷阱列表（ProxyHandler）。总共 15 个，不多不少。

NOTE: 如果更详细地考察 13 个代理方法，其实严格地说来只有 8 个原子行为，其实其

他 5 个行为是有相互依赖的，而非原子级别的操作。这 5 个“非原子行为”的代理方法

是 DefineOwnProperty、 HasProperty、Get、Set 和 Delete，它们会调用其他原子

行为来检查原型或属性描述符。

知识回顾

任何一个对象都可以通过标题中的语法变成原子对象，它可以被理解为关联数组；并且，如

果它有一个称为“length”的属性，那么它就可以被理解为索引数组。我们在上一讲中说

过，所有的数据，在本质上来说都可以看成“连续的一堆”，或“不连续的一堆”，所

以“索引数组 + 关联数组”在数据结构上就可以表达“所有的数据”。

如果你对有关 JavaScript 的类型系统，尤其是隐于其中的原子类型和元类型等相关知识感

兴趣，可以阅读我的另外一篇博客文章《元类型系统是对 JavaScript 内建概念的补

操作原型的，3 个，分别用于读写内部原型槽，以及基于原型链检索；

操作属性表的，8 个，包括冻结、检索、置值和查找等（类似于数据库的增删查改）；

操作函数行为的，2 个，分别用于函数调用和对象构造。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

充》。

好了，今天的课程就到这里。很高兴你能一路坚持着将之前的十七讲听完，不过对于

JavaScript 语言最独特的那些设计，我们其实才初窥门径。现在，尽管你已经在原子层面

掌握了“数据”，但从计算机语言的角度上来看，你只拥了一个静态的系统，最重要的、也

是现在最缺乏的，是让它们“动起来”。

从下一讲开始，我会与你聊聊“动态语言”，希望你喜欢我的分享，也欢迎你把文章分享给

你的朋友。

上一篇 16 | [a, b] = {a, b}：让你从一行代码看到对象的本质

下一篇 加餐 | 捡豆吃豆的学问（上）：这门课讲的是什么？

行问
2019-12-23

多看看技术在历史上是怎么出现的，怎么解决问题的，溯源这种“原型链”让我大呼过

精选留言 (1)  写留言

瘾。一路学习下来，有完全不懂，有闻所未闻，有懵逼，有茅塞顿开等。今天的这一讲，
让我理解了 "null" 在实际开发中的合理运用。

展开

  1

