
加餐 | 捡豆吃豆的学问（下）：这门课该怎么学？
2019-11-27 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 17:19 大小 15.87M



你好，我是周爱民，在上一讲中讨论了这门课程所学的内容“到底是什么”。接下来，我们

再来看看“怎么学这门课程”。

教的方法

我先来说说这个课的教法。有没有简单、明晰的授课方法呢？有的，你在极客时间上也好，

学校的课程里也好，常见的一个教法套路便是：

开篇立个题，把问题抛出来，说我们今天要讲什么什么，关键点有一二三四；

接下来就讲这一二三四，分析也好，解说也罢，趣谈也可，总之让你听得开心有味；

最后收纳主题，我们讲了一二三四，你看看你听懂没有。



 下载APP 



听不听得懂？能！你认真听下来，只要老师不差，绝对能懂，如果正好是你没听过的内容，

还感觉耳目一开，受用无穷。

但是你仔细想想，你至多知道了老师所讲的，还能知道别的什么吗？几乎不能。清楚明白、

无有疏漏，但也毫无差别，你听到的跟别人听到的，你学到的跟别人学到的，完全一样。

所以，这也就是“一般的”知识。

如同我刚才说过的：你学的跟人家一样，听到的跟人家一样，知道的跟人家一样，充其量学

了个跟老师讲的一模一样的，可不就是“水平一般”么？

核心原理可不可以这样讲？你可不可以这样学？答案是，其实也是可以的。我如果是把这个

课程当成一门功法，一一二二地讲给你听，你全然听去了，一字不落下，那这个核心原理课

也可以讲得如同流水清风，让你很是舒坦。

但是你可记得，我在这门课的开篇词里说到的，学这门课的目的是什么呢？我说过，我希望

你能够构建自己的“语言学习体系”。体系性，才是所有学习中最难得的。如果你有自己学

习的体系，甚至是构建体系的体系，那么学这门课又算什么难事呢？这门课真的在讲什么高

深的佛法，玄妙的奥义么？都不是的，它是在讲“另一个体系”下的东西！

准确地说，这门课程的讲法，与你过去二三十年来的学习方法是两个不同的体系；这门课程

的内容，与你从业经历中所熟悉的语言，也分属于不同的知识体系！既然如此，你怎么可能

指望用你现在的法子，在你的体系中去理解这些知识，又或者为这些知识构建“自己的语言

学习体系”呢？

所以这门课程，一开始的讲法就大不相同。

这门课程的“标题”是一行代码，它通常很奇怪，有可能很有用，也有可能根本就不能用，

它本身或许就难解，就是一个“问题”。然而，你需要知道，这个“标题”，或者这个标题

中的“问题”，其实一点儿也不重要，我讲课不去奔着这个问题去，你学习中也不必奔着这

个问题来。“求解这个问题”根本就是一件没有什么意义的事情。

所以在从一开始听课，一直听到现在的同学中，还有一些是困于第 1 讲的“delete 

0”这行代码的，希望明白这行代码在讲什么、有什么用的同学，可以暂时地收收你的思



想，因为——解决这个问题，其实没有什么大用。

既然“主题没什么用”，那么我怎么讲呢？其实我每一讲的开始，就无非是拿这个标题做个

引子，然后无所谓背景、历史、相关的知识点，以及各种各样的问题纷纷地抛出来，貌似东

讲讲、西讲讲，一直都绕开了这个“标题中的代码”在走。

事实上，我把这整个的过程称为“撒豆子”。

怎么“撒”呢？整个课程大概 2/3 甚至 4/5 的内容，就是一大把豆子！一股脑儿地撒出

来，没什么章法，也没什么技巧，也没有什么道理。只有一个原则，这些豆子，都是围

绕“标题”的这个话题来的，它们或是互有相关性，或者是彼此有相似性，或者……等等等

等。

总之，简单地说：它们是“同一个系统”下的东西。

这是我组织每一节课程的基本原则，这个原则就是：在标题之下，东拉西扯，直到一地豆

子，四处乱滚。

最后我告诉你，学习这门课程的终极秘密：

把这些碎纸片捡起来，捡起来的，就是你的体系。

学的方法

所以，这门课的听法也就不同。

你非要去盯着每节课的标题，把它弄得一清二楚，知道它怎么来的，怎么解释，以及怎么去

应用到项目中，老实说，也无不可，也会有所得。但终究是“捡了芝麻丢了西瓜”。我既然

说了，这“大西瓜”就是这一地的豆子，关键是在于你怎么捡，而不是在于我怎么讲。

所以，我再来讲讲这个“捡豆子”的方法。

1. 设问，列问题



我可能在讲课中会“问”一些问题，但多数情况下，那是为了讲课的上下文连贯，那些问题

本身并没有太明确的指向性。而且，即使是“有指向性”，又能如何呢？你求解了，也不过

是多解了一个问题，于你无益。

真正有用的，是你自己学会“提问题”。

这些仍然不够重要。更重要的设问是：

总之，带着问题来学习，学会从你的问题中求解。这个过程，就已经与你之前的学习方法不

同了。

是你接受“我所讲的知识”好呢？还是你“找到自己的答案”好呢？

2. 求解，在知识域中找答案

既然我在每一个大段落中划了一个知识域，那么上面这些问题也就应该在这个知识域里去求

解。

找一张纸，列一下这个标题给你带来的问题；

列一下在这个主题下面你不知道的，或者你想知道的问题；

列一下听课过程中发现的不解的、难解的问题；

列一下你的理解跟我所讲的内容之间，那些貌似“不可调和”的概念问题。

为什么会有这些问题？

这些问题指向哪个“黑暗未知的方向”？（这个方向是你的知识盲点）

老师为什么要撒这些豆子？（这些豆子有内在的相关性，而这就是我撒他们的目的）

为什么会存在跟既有知识的矛盾？

为什么在 JavaScript 语言的层面“看不到这些问题”？

为什么……要问上面这些问题？

……



比如说你有人生、事业、理想的困惑了，那么你该去找知心小姐姐，非得在这么二十讲的课

程中去寻答案，你肯定是找不到的。所以，上面你可以尽量宽泛地设问，到了这个求解的时

候，却应该把它限定到我们讲的这个问题域里面来。这二十讲一共有四个大主题，每个大主

题是一个领域。所以你得想想，你的问题可以放在哪个领域里，为什么这么放，为什么是这

个领域，为什么不在其他的领域范围内。

总之，多问几个为什么。

求解、答案都可以是错的，没关系，先做着，直到你能得到一个“貌似可能的解”。

3. 推翻，找到反例，精化抽象

有了“貌似可能的解”只是个开头，如果你止步于此，那之前的努力就全部白费了。这

跟“一般的学法”并没有什么不同，甚至还远远不如别的老师的教法，直接给你来个“三段

式”的立题求解。真正对整个学起提到提升效果的，正是这第三步的“推翻”。

问题是你提出的，答案是你找到的，而推翻也由你来行使。

正是因为你提出问题，所以你知道“源起”；正是因为你找的答案，所以你知道“经由”。

你知道一件事情的源起与经由，那么要找到这件事情的关键处，其实只需要看看那些“自相

矛盾”的地方，就好了。你找到你的逻辑的、过程的、结果的任何一处反例，进而重新按上

述过程来思考，重新找到“貌似可能的（第二个）解”。

如此往复，最终你就看了一些事物最初的，以及最终的面貌。

有了这个面貌，你为它命个名字，抽出个概念，于是就得到了一个“抽象”。有了抽象概

念，你就可以在概念的层面上描述事物，以及进行事物的推演。而这，就是架构的基本功。

这件事跟主题有什么关系？

这个东西是哪方面跟其他东西“有关系”？

怎么表达这种关系？

如何把它们放在同一个体系下（逻辑下或者抽象概念下）来解释？

……



有了体系性，有了概念抽象，有了推演过程，你做的，就是体系架构的工作，而不是“写代

码”。代码是你架构的表现方式，仅此而已。

我想这个过程，以及这个过程的可能的结果已经超出了多数同学的“需要”。是的，暂时

的，你并不需要变成“架构师”，我这门课也并不是要教你“做一个用 JavaScript 的架构

师”。

最佳实践

但是，正因为这个最后“收官”的过程比较抽象、比较虚。所以，我给你在第 1 讲的时

候就留了个伏笔，你回顾一下，我在第 1 讲的结束的时候，提过一个问题：

delete x 中，如果 x 根本不存在，会发生什么？

这个问题在“潇潇雨歇”同学的答案后面（他的答案是正确的）。在他的答案里面，我又提

了两个潜在的问题。其一是：

在（如果 x 根本不存在，delete x 什么也不做，返回 true）的这种情况下，x 是什么

呢？它显然是语法可以识别的东西，但如果这样，在语法上它是什么，且在执行环境中

它又是什么？

这个问题其实问得很深，也正是我们这里说的：如果你找到了“貌似可能的解”，那么就进

一步地找一下反例，进一步地“精化抽象”。

为什么呢？

其实啊，我们得问一个很深层的、有些哲学性的问题：不知，是不是“知”的一种？

对于 JavaScript 来说，如果一个标识符 x“根本不存在”，那么就是真正的“不知道它存

在”吗？不是的，JavaScript 必须知道——“这里一个有未知的标识符”。在 JavaScript 

引擎来说，我不能确定它是什么，我的整个引擎中都找不到它，但是我必须把它“标识”出

来，只有把它标识出来，我才能处理它！

所以，在语法概念上，词法记号（Tokens）是比标记（Identifer）更底层的抽象概念——

也就是更“精化”的抽象。



但在 JavaScript 中，不需要理解所谓“词法记号”，因为它不需要在这种引擎层面的“对

代码文本的理解”。而在引擎层面，是将代码文本解析成词法记号序列的：它认为，所有这

样的序列——也就是一串字符，要么能解释成标识符，要么就是一个不能识别的序列。

当“不能识别的序列”出现的时候，就是语法解析期错误，简单地说，就是代码错了。接下

来，当词法记号是有效的标记时，它可能是能识别的、环境中有的，也就是说它是能被引擎

从环境中发现（Resolve）到的引用，因此它就称为“可发现引用

（ResolvableReference）”，反之——例如上面提到的“未声明的 x”，就称为“不可发

现的引用（IsUnresolvableReference）”。

注意，这些概念不是我生造的，你在读 ECMAScript 规范时就会看到这些概念名词。只

是 ECMAScript 并不解释这些概念的由来，以及它们之间的抽象关系。

所以，引擎必须能识别“不能识别的标识符”。能识别才能处理，即使这个处理“仅仅

是”抛出一个异常。

你想想，要是不能识别、不能抛出异常，那么这个引擎就该出现完全未知的逻辑了，这种情

况下，引擎的更外层，例如宿主程序，又例如操作系统就会无法处理了，就会中止进程。引

擎要么抛出一个异常，然后退出程序；要么操作系统直接将引擎杀死，连异常也没有。

我们都是有经验的程序员，上面哪种处理更好，是一目了然的事情。而上溯整个处理过程，

就在于在“精化抽象”的过程中，有没有处理“不可发现的引用”，又或者说，“未发

现”是不是被当成了一个需要处理的抽象概念。

少了一个抽象概念，少了一个处理逻辑，你的程序就“莫名其妙”地退出了。如果这是一个

框架，或者这是一个库，一个平台系统，这个抽象概念一少掉，那么就没有人会去使用它

了。因为，你知道的，系统中怕的不是出错，而是，出了错却不知道。

“知未知”，就是这个概念系统中最顶层的抽象了。

这是一个在“概念完整性”方面的实践。

对于一个体系来说，概念完整性是很重要的，如果缺乏关键概念，那么这个体系构建就

会出现漏洞。习惯性上，人们用“概念对称性”来解决这个完整性的问题，例如“能发



现的 vs. 不能发现的”，这两个概念在抽象层面上，就是指“所有的”；又例如，索引数

组对应连续存储，而关联数组对应非连续存储，所以“连续的 vs. 非连续的”，就意味

着“数组能处理所有存储（的数据）”。

别担心，还有

到这里，可能就有同学说了，这个讲课的方法是很新颖，学习的方法看起来也可行，但是我

就是这么做的呀，问题我想不到“有效的解”啊。

对啊，如果你一次两次就能想到有效的解了，一遍两遍就学成收工了，那也只能说明这个东

西还是“一般的东西”，这个方法也就是“一般的方法”，而照着这个路子做下去，你也就

还是个“一般的你”。

所以，不要担心，你没学明白也正常，上面的做法找不到“有效的解”也正常，这门课听到

现在，以及后面要听的内容，都无非是给你一个“使用这种学习方法”的训练营，你在这个

过程中，多练多试，多出错多反思，就成了。

学习要“知味”，你一旦从这个过程中得到了收获，你就如同食髓，乐此不疲了。所以，不

要气馁，放松心态，坚持就好了。

并且呢，这门课程后续还为大家准备了更“丰盛”的加餐。按照编辑们为你制定好的学习计

划，我还会在第 10 讲之后，给大家再补一个加餐。这份加餐跟今天的大有不同。我会将前 

10 讲的课程串联起来，精讲每一讲的主题，对内容详加梳理，列提纲、划重点（敲黑

板），也就是帮你把豆子们都找出来、串起来。

当然，我需要在这里强调的事情是，这件事情一做过，就意味着“你自己找豆子”就结束

了。豆子是你找来的，还是我拿给你看的，大不相同。

所以我觉得啊，你还是自己多努力找找。如果你需要补补课，加强一些基础概念方面的知

识，那么我希望你有时间读一下《程序原本》，限于这堂课要讲的内容，你只需要读一

下《程序原本》前 10 章的内容就可以了，并且，有许多内容可以跳过去。是的，即使不

懂、“不求甚解”也是可以的。有些东西就可以先“存而不论”，而这些等到你将来回头来

看时，便可以立时了然。



© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

另外，如果你的英语还不错，那么仍然推荐你看看《ECMAScript 规范》，一些概念上它

定义得严谨得多。不过这些概念背后的东西，就得你自己去体会了，ECMAScript 里面是不

讲的。这里还有一份W3C 组织的中文译本，虽然只是 ECMAScript5 的，而且还不完

整，但是要达到“补概念”这个目的，还是够用了。

其他

最后呢，按照课程的习惯啊，我还是给你留个思考题。不过，跟以前不同，这道题，你答不

答得出来，都是不要紧的，就算“想着玩儿”就好了。问题是这样的：

这个问题，就留给你了。我想啊，要知道什么是“懂”，大概才真的算是“会吃”了。

我今天的课程就聊到这里。希望你吃得好，胃口好，好好消化这一份专属的加餐，然后我们

下一讲，再继续学习。

按照前面说的，所谓“会吃”，有三件事情，是食材、味道和“懂”这一个字儿。食

材，我们讲了，是课程的内容；味道，我们也讲了，是课程中的教与学的法子，以

及“形成体系性”这样的潜在目的。那么，什么是“懂”呢？



上一篇 加餐 | 捡豆吃豆的学问（上）：这门课讲的是什么？

潇潇雨歇
2019-11-27

我这样理解的，懂呢，就是知道要怎么吃，什么好吃，为什么这么吃好吃，对于食材和味
道都很讲究，好的食材，好的味道，然后加上自己懂，那就是会吃了。

展开

  3

Smallfly
2019-11-27

学习过程中的确有很多内容与已有的知识体系冲突，又找不出原因，看到老师的加餐又重
拾了学习的信心，准备从第一讲开始重来过……

展开

  3

TongObama
2019-11-29

 
授人以鱼不如授人以渔，“捡豆子”这件事儿就是教我们自己“钓鱼”。好的老师会告诉
你考点让你的分数有所谓的增加，像爱民老师这样的老师（我心目中最优秀的老师之一）
会教给你如何独立去思考，以便自己能够独立找到隐藏在考点后面的秘密。所谓“懂”，
我理解是建立自己的认知与思维模式的架构，无论是学习JavaScript还是任何东西都可以…
展开

 1  1

Marvin
2019-11-28

用其长避其短，放下自己的功利心，还原其本来的味道，并将之发挥到极致。这里
的“懂”这个字，我觉得很形而上了。把目标看成朋友，认真了解和相处，对其负责，这
种心态可能操作性更强。

作者回复: 👍

  1

精选留言 (13)  写留言



kittyE
2019-11-28

老师，小学数学老师对您影响很大吗？

展开

作者回复: 一是我对数学的兴趣起源于小学；二是这位小学数学老师非常好，值得尊敬；三是那本

书中，所用到的数学知识，止于小学足矣。 

:)

  1

三叶草
2019-11-28

假设在去捡西瓜路上，也不是一下就能捡起西瓜，而是经过不断锻炼，也是通过捡豆子开
始，一步步让自己有能力去捡西瓜。大道至简，悟性无法控制，但是努力和坚持可以控
制。一遍不理解那就两遍

 

zcdll
2019-11-28

多问几个“为什么”！ 
我理解的“懂”应该是除了基本的，要懂为什么要用这个食材，为什么用这个食材会产生
这个味道，为什么要产生这个味道。 
多问“为什么”

展开

 

佳民
2019-11-27

我对懂的理解是，能把握核心，洞察本质，例如每篇文章标题中的语句对应的原理是什
么，又如这个专栏是编程语言层面知识，而不是工程使用的内容。我理解的懂吃是知道菜
有哪些做法，为什么要这么做，以及应该配什么佐料和辅材。

展开

 

MarlboroKay
2019-11-27

a.x = a = {n:2} 这讲到目前为止读了三遍，每次都会有新的收获，像是挖宝藏一样； 
还记得一年前读《你不知道的JavaScript》上，中卷，当时的感觉就是哇，原来是这样，原
来还可以这么操作。 



读老师的课程，更多的会问自己为什么是这样，返列是什么样。反正豆子就在那里，要靠
自己的努力去捡起来。

展开

作者回复: 赞的！^^.

 

许童童
2019-11-27

懂就是形成自己吃的体系，换一个食材，可以自己品出味道，好味道坏味道，以及未知的
味道，甚至不吃也知道什么味道

展开

 

穿秋裤的男孩
2019-11-27

破而后立？

展开

 

2019
2019-11-27

我这个后端都心动了

展开

 

Mr_Liu
2019-11-27

懂得如何用现有‘食材’ ‘吃’出它的真实味道，如何用这种方式去吃其他‘食材’

 


