
14 | count(*)这么慢，我该怎么办？

2018-12-14 林晓斌

在开发系统的时候，你可能经常需要计算一个表的行数，比如一个交易系统的所有变更记录总

数。这时候你可能会想，一条select count(*) from t 语句不就解决了吗？

但是，你会发现随着系统中记录数越来越多，这条语句执行得也会越来越慢。然后你可能就想

了，MySQL怎么这么笨啊，记个总数，每次要查的时候直接读出来，不就好了吗。

那么今天，我们就来聊聊count(*)语句到底是怎样实现的，以及MySQL为什么会这么实现。然

后，我会再和你说说，如果应用中有这种频繁变更并需要统计表行数的需求，业务设计上可以怎

么做。

count(*)的实现方式

你首先要明确的是，在不同的MySQL引擎中，count(*)有不同的实现方式。

MyISAM引擎把一个表的总行数存在了磁盘上，因此执行count(*)的时候会直接返回这个数，

效率很高；

而InnoDB引擎就麻烦了，它执行count(*)的时候，需要把数据一行一行地从引擎里面读出

来，然后累积计数。

这里需要注意的是，我们在这篇文章里讨论的是没有过滤条件的count(*)，如果加了where 条件

的话，MyISAM表也是不能返回得这么快的。



在前面的文章中，我们一起分析了为什么要使用InnoDB，因为不论是在事务支持、并发能力还

是在数据安全方面，InnoDB都优于MyISAM。我猜你的表也一定是用了InnoDB引擎。这就是当

你的记录数越来越多的时候，计算一个表的总行数会越来越慢的原因。

那为什么 InnoDB不跟MyISAM一样，也把数字存起来呢？

这是因为即使是在同一个时刻的多个查询，由于多版本并发控制（MVCC）的原因，InnoDB

表“应该返回多少行”也是不确定的。这里，我用一个算count(*)的例子来为你解释一下。

假设表t中现在有10000条记录，我们设计了三个用户并行的会话。

会话A先启动事务并查询一次表的总行数；

会话B启动事务，插入一行后记录后，查询表的总行数；

会话C先启动一个单独的语句，插入一行记录后，查询表的总行数。

我们假设从上到下是按照时间顺序执行的，同一行语句是在同一时刻执行的。

图1 会话A、B、C的执行流程

你会看到，在最后一个时刻，三个会话A、B、C会同时查询表t的总行数，但拿到的结果却不

同。

这和InnoDB的事务设计有关系，可重复读是它默认的隔离级别，在代码上就是通过多版本并发

控制，也就是MVCC来实现的。每一行记录都要判断自己是否对这个会话可见，因此对于

count(*)请求来说，InnoDB只好把数据一行一行地读出依次判断，可见的行才能够用于计算“基

于这个查询”的表的总行数。

当然，现在这个看上去笨笨的MySQL，在执行count(*)操作的时候还是做了优化的。

备注：如果你对MVCC记忆模糊了，可以再回顾下第3篇文章《事务隔离：为什么你改了我还

看不见？》和第8篇文章《事务到底是隔离的还是不隔离的？》中的相关内容。

https://time.geekbang.org/column/article/68963
https://time.geekbang.org/column/article/70562


你知道的，InnoDB是索引组织表，主键索引树的叶子节点是数据，而普通索引树的叶子节点是

主键值。所以，普通索引树比主键索引树小很多。对于count(*)这样的操作，遍历哪个索引树得

到的结果逻辑上都是一样的。因此，MySQL优化器会找到最小的那棵树来遍历。在保证逻辑正

确的前提下，尽量减少扫描的数据量，是数据库系统设计的通用法则之一。

如果你用过show table status 命令的话，就会发现这个命令的输出结果里面也有一个

TABLE_ROWS用于显示这个表当前有多少行，这个命令执行挺快的，那这个TABLE_ROWS能

代替count(*)吗？

你可能还记得在第10篇文章《 MySQL为什么有时候会选错索引？》中我提到过，索引统计的值

是通过采样来估算的。实际上，TABLE_ROWS就是从这个采样估算得来的，因此它也很不准。

有多不准呢，官方文档说误差可能达到40%到50%。所以，show table status命令显示的行

数也不能直接使用。

到这里我们小结一下：

MyISAM表虽然count(*)很快，但是不支持事务；

show table status命令虽然返回很快，但是不准确；

InnoDB表直接count(*)会遍历全表，虽然结果准确，但会导致性能问题。

那么，回到文章开头的问题，如果你现在有一个页面经常要显示交易系统的操作记录总数，到底

应该怎么办呢？答案是，我们只能自己计数。

接下来，我们讨论一下，看看自己计数有哪些方法，以及每种方法的优缺点有哪些。

这里，我先和你说一下这些方法的基本思路：你需要自己找一个地方，把操作记录表的行数存起

来。

用缓存系统保存计数

对于更新很频繁的库来说，你可能会第一时间想到，用缓存系统来支持。

你可以用一个Redis服务来保存这个表的总行数。这个表每被插入一行Redis计数就加1，每被删

除一行Redis计数就减1。这种方式下，读和更新操作都很快，但你再想一下这种方式存在什么

问题吗？

没错，缓存系统可能会丢失更新。

Redis的数据不能永久地留在内存里，所以你会找一个地方把这个值定期地持久化存储起来。但

即使这样，仍然可能丢失更新。试想如果刚刚在数据表中插入了一行，Redis中保存的值也加了

1，然后Redis异常重启了，重启后你要从存储redis数据的地方把这个值读回来，而刚刚加1的这

个计数操作却丢失了。

https://time.geekbang.org/column/article/71173


当然了，这还是有解的。比如，Redis异常重启以后，到数据库里面单独执行一次count(*)获取真

实的行数，再把这个值写回到Redis里就可以了。异常重启毕竟不是经常出现的情况，这一次全

表扫描的成本，还是可以接受的。

但实际上，将计数保存在缓存系统中的方式，还不只是丢失更新的问题。即使Redis正常工

作，这个值还是逻辑上不精确的。

你可以设想一下有这么一个页面，要显示操作记录的总数，同时还要显示最近操作的100条记

录。那么，这个页面的逻辑就需要先到Redis里面取出计数，再到数据表里面取数据记录。

我们是这么定义不精确的：

1. 一种是，查到的100行结果里面有最新插入记录，而Redis的计数里还没加1；

2. 另一种是，查到的100行结果里没有最新插入的记录，而Redis的计数里已经加了1。

这两种情况，都是逻辑不一致的。

我们一起来看看这个时序图。

图2 会话A、B执行时序图

图2中，会话A是一个插入交易记录的逻辑，往数据表里插入一行R，然后Redis计数加1；会话B

就是查询页面显示时需要的数据。

在图2的这个时序里，在T3时刻会话B来查询的时候，会显示出新插入的R这个记录，但是Redis

的计数还没加1。这时候，就会出现我们说的数据不一致。

你一定会说，这是因为我们执行新增记录逻辑时候，是先写数据表，再改Redis计数。而读的时

候是先读Redis，再读数据表，这个顺序是相反的。那么，如果保持顺序一样的话，是不是就没

问题了？我们现在把会话A的更新顺序换一下，再看看执行结果。



图3 调整顺序后，会话A、B的执行时序图

你会发现，这时候反过来了，会话B在T3时刻查询的时候，Redis计数加了1了，但还查不到新插

入的R这一行，也是数据不一致的情况。

在并发系统里面，我们是无法精确控制不同线程的执行时刻的，因为存在图中的这种操作序列，

所以，我们说即使Redis正常工作，这个计数值还是逻辑上不精确的。

在数据库保存计数

根据上面的分析，用缓存系统保存计数有丢失数据和计数不精确的问题。那么，如果我们把这

个计数直接放到数据库里单独的一张计数表C中，又会怎么样呢？

首先，这解决了崩溃丢失的问题，InnoDB是支持崩溃恢复不丢数据的。

然后，我们再看看能不能解决计数不精确的问题。

你会说，这不一样吗？无非就是把图3中对Redis的操作，改成了对计数表C的操作。只要出现图

3的这种执行序列，这个问题还是无解的吧？

这个问题还真不是无解的。

我们这篇文章要解决的问题，都是由于InnoDB要支持事务，从而导致InnoDB表不能把count(*)

直接存起来，然后查询的时候直接返回形成的。

所谓以子之矛攻子之盾，现在我们就利用“事务”这个特性，把问题解决掉。

备注：关于InnoDB的崩溃恢复，你可以再回顾一下第2篇文章《日志系统：一条SQL更新语句

是如何执行的？》中的相关内容。

https://time.geekbang.org/column/article/68633


图4 会话A、B的执行时序图

我们来看下现在的执行结果。虽然会话B的读操作仍然是在T3执行的，但是因为这时候更新事务

还没有提交，所以计数值加1这个操作对会话B还不可见。

因此，会话B看到的结果里， 查计数值和“最近100条记录”看到的结果，逻辑上就是一致的。

不同的count用法

在前面文章的评论区，有同学留言问到：在select count(?) from t这样的查询语句里

面，count(*)、count(主键id)、count(字段)和count(1)等不同用法的性能，有哪些差别。今天谈

到了count(*)的性能问题，我就借此机会和你详细说明一下这几种用法的性能差别。

需要注意的是，下面的讨论还是基于InnoDB引擎的。

这里，首先你要弄清楚count()的语义。count()是一个聚合函数，对于返回的结果集，一行行地

判断，如果count函数的参数不是NULL，累计值就加1，否则不加。最后返回累计值。

所以，count(*)、count(主键id)和count(1) 都表示返回满足条件的结果集的总行数；而count(字

段），则表示返回满足条件的数据行里面，参数“字段”不为NULL的总个数。

至于分析性能差别的时候，你可以记住这么几个原则：

1. server层要什么就给什么；

2. InnoDB只给必要的值；

3. 现在的优化器只优化了count(*)的语义为“取行数”，其他“显而易见”的优化并没有做。



这是什么意思呢？接下来，我们就一个个地来看看。

对于count(主键 id)来说，InnoDB引擎会遍历整张表，把每一行的id值都取出来，返回给server

层。server层拿到id后，判断是不可能为空的，就按行累加。

对于count(1)来说，InnoDB引擎遍历整张表，但不取值。server层对于返回的每一行，放一个

数字“1”进去，判断是不可能为空的，按行累加。

单看这两个用法的差别的话，你能对比出来，count(1)执行得要比count(主键id)快。因为从引擎

返回id会涉及到解析数据行，以及拷贝字段值的操作。

对于count(字段)来说：

1. 如果这个“字段”是定义为not null的话，一行行地从记录里面读出这个字段，判断不能为

null，按行累加；

2. 如果这个“字段”定义允许为null，那么执行的时候，判断到有可能是null，还要把值取出来再

判断一下，不是null才累加。

也就是前面的第一条原则，server层要什么字段，InnoDB就返回什么字段。

但是count(*)是例外，并不会把全部字段取出来，而是专门做了优化，不取值。count(*)肯定不

是null，按行累加。

看到这里，你一定会说，优化器就不能自己判断一下吗，主键id肯定非空啊，为什么不能按照

count(*)来处理，多么简单的优化啊。

当然，MySQL专门针对这个语句进行优化，也不是不可以。但是这种需要专门优化的情况太多

了，而且MySQL已经优化过count(*)了，你直接使用这种用法就可以了。

所以结论是：按照效率排序的话，count(字段)<count(主键id)<count(1)≈count(*)，所以我建议

你，尽量使用count(*)。

小结

今天，我和你聊了聊MySQL中获得表行数的两种方法。我们提到了在不同引擎中count(*)的实现

方式是不一样的，也分析了用缓存系统来存储计数值存在的问题。

其实，把计数放在Redis里面，不能够保证计数和MySQL表里的数据精确一致的原因，是这两个

不同的存储构成的系统，不支持分布式事务，无法拿到精确一致的视图。而把计数值也放在

MySQL中，就解决了一致性视图的问题。

InnoDB引擎支持事务，我们利用好事务的原子性和隔离性，就可以简化在业务开发时的逻辑。

这也是InnoDB引擎备受青睐的原因之一。



最后，又到了今天的思考题时间了。

在刚刚讨论的方案中，我们用了事务来确保计数准确。由于事务可以保证中间结果不被别的事务

读到，因此修改计数值和插入新记录的顺序是不影响逻辑结果的。但是，从并发系统性能的角度

考虑，你觉得在这个事务序列里，应该先插入操作记录，还是应该先更新计数表呢？

你可以把你的思考和观点写在留言区里，我会在下一篇文章的末尾给出我的参考答案。感谢你的

收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期我给你留的问题是，什么时候使用alter table t engine=InnoDB会让一个表占用的空间反而

变大。

在这篇文章的评论区里面，大家都提到了一个点，就是这个表，本身就已经没有空洞的了，比如

说刚刚做过一次重建表操作。

在DDL期间，如果刚好有外部的DML在执行，这期间可能会引入一些新的空洞。

@飞翔 提到了一个更深刻的机制，是我们在文章中没说的。在重建表的时候，InnoDB不会把整

张表占满，每个页留了1/16给后续的更新用。也就是说，其实重建表之后不是“最”紧凑的。

假如是这么一个过程：

1. 将表t重建一次；

2. 插入一部分数据，但是插入的这些数据，用掉了一部分的预留空间；

3. 这种情况下，再重建一次表t，就可能会出现问题中的现象。

评论区留言点赞板：

@W_T 等同学提到了数据表本身紧凑的情况；

@undifined 提了一个好问题， @帆帆帆帆帆帆帆帆 同学回答了这个问题；

@陈飞 @郜 @wang chen wen 都提了很不错的问题，大家可以去看看。




	14 | count(*)这么慢，我该怎么办？
	count(*)的实现方式
	用缓存系统保存计数
	在数据库保存计数
	不同的count用法
	小结
	上期问题时间

