
15 | 答疑文章（一）：日志和索引相关问题

2018-12-17 林晓斌

在今天这篇答疑文章更新前，MySQL实战这个专栏已经更新了14篇。在这些文章中，大家在评

论区留下了很多高质量的留言。现在，每篇文章的评论区都有热心的同学帮忙总结文章知识点，

也有不少同学提出了很多高质量的问题，更有一些同学帮忙解答其他同学提出的问题。

在浏览这些留言并回复的过程中，我倍受鼓舞，也尽我所知地帮助你解决问题、和你讨论。可以

说，你们的留言活跃了整个专栏的氛围、提升了整个专栏的质量，谢谢你们。

评论区的大多数留言我都直接回复了，对于需要展开说明的问题，我都拿出小本子记了下来。这

些被记下来的问题，就是我们今天这篇答疑文章的素材了。

到目前为止，我已经收集了47个问题，很难通过今天这一篇文章全部展开。所以，我就先从中

找了几个联系非常紧密的问题，串了起来，希望可以帮你解决关于日志和索引的一些疑惑。而其

他问题，我们就留着后面慢慢展开吧。

日志相关问题

我在第2篇文章《日志系统：一条SQL更新语句是如何执行的？》中，和你讲到binlog（归档日

志）和redo log（重做日志）配合崩溃恢复的时候，用的是反证法，说明了如果没有两阶段提

交，会导致MySQL出现主备数据不一致等问题。

在这篇文章下面，很多同学在问，在两阶段提交的不同瞬间，MySQL如果发生异常重启，是怎

么保证数据完整性的？

https://time.geekbang.org/column/article/68633

现在，我们就从这个问题开始吧。

我再放一次两阶段提交的图，方便你学习下面的内容。

图1 两阶段提交示意图

这里，我要先和你解释一个误会式的问题。有同学在评论区问到，这个图不是一个update语句

的执行流程吗，怎么还会调用commit语句？

他产生这个疑问的原因，是把两个“commit”的概念混淆了：

他说的“commit语句”，是指MySQL语法中，用于提交一个事务的命令。一般跟begin/start

transaction 配对使用。

而我们图中用到的这个“commit步骤”，指的是事务提交过程中的一个小步骤，也是最后一

步。当这个步骤执行完成后，这个事务就提交完成了。

“commit语句”执行的时候，会包含“commit 步骤”。

而我们这个例子里面，没有显式地开启事务，因此这个update语句自己就是一个事务，在执行

完成后提交事务时，就会用到这个“commit步骤“。

接下来，我们就一起分析一下在两阶段提交的不同时刻，MySQL异常重启会出现什么现象。

如果在图中时刻A的地方，也就是写入redo log 处于prepare阶段之后、写binlog之前，发生了崩

溃（crash），由于此时binlog还没写，redo log也还没提交，所以崩溃恢复的时候，这个事务会

回滚。这时候，binlog还没写，所以也不会传到备库。到这里，大家都可以理解。

大家出现问题的地方，主要集中在时刻B，也就是binlog写完，redo log还没commit前发生

crash，那崩溃恢复的时候MySQL会怎么处理？

我们先来看一下崩溃恢复时的判断规则。

1. 如果redo log里面的事务是完整的，也就是已经有了commit标识，则直接提交；

2. 如果redo log里面的事务只有完整的prepare，则判断对应的事务binlog是否存在并完整：

a. 如果是，则提交事务；

b. 否则，回滚事务。

这里，时刻B发生crash对应的就是2(a)的情况，崩溃恢复过程中事务会被提交。

现在，我们继续延展一下这个问题。

追问1：MySQL怎么知道binlog是完整的?

回答：一个事务的binlog是有完整格式的：

statement格式的binlog，最后会有COMMIT；

row格式的binlog，最后会有一个XID event。

另外，在MySQL 5.6.2版本以后，还引入了binlog-checksum参数，用来验证binlog内容的正确

性。对于binlog日志由于磁盘原因，可能会在日志中间出错的情况，MySQL可以通过校验

checksum的结果来发现。所以，MySQL还是有办法验证事务binlog的完整性的。

追问2：redo log 和 binlog是怎么关联起来的?

回答：它们有一个共同的数据字段，叫XID。崩溃恢复的时候，会按顺序扫描redo log：

如果碰到既有prepare、又有commit的redo log，就直接提交；

如果碰到只有parepare、而没有commit的redo log，就拿着XID去binlog找对应的事务。

追问3：处于prepare阶段的redo log加上完整binlog，重启就能恢

复，MySQL为什么要这么设计?

回答：其实，这个问题还是跟我们在反证法中说到的数据与备份的一致性有关。在时刻B，也就

是binlog写完以后MySQL发生崩溃，这时候binlog已经写入了，之后就会被从库（或者用这个

binlog恢复出来的库）使用。

所以，在主库上也要提交这个事务。采用这个策略，主库和备库的数据就保证了一致性。

追问4：如果这样的话，为什么还要两阶段提交呢？干脆先redo log写完，再写

binlog。崩溃恢复的时候，必须得两个日志都完整才可以。是不是一样的逻辑？

回答：其实，两阶段提交是经典的分布式系统问题，并不是MySQL独有的。

如果必须要举一个场景，来说明这么做的必要性的话，那就是事务的持久性问题。

对于InnoDB引擎来说，如果redo log提交完成了，事务就不能回滚（如果这还允许回滚，就可能

覆盖掉别的事务的更新）。而如果redo log直接提交，然后binlog写入的时候失败，InnoDB又回

滚不了，数据和binlog日志又不一致了。

两阶段提交就是为了给所有人一个机会，当每个人都说“我ok”的时候，再一起提交。

追问5：不引入两个日志，也就没有两阶段提交的必要了。只用binlog来支持崩

溃恢复，又能支持归档，不就可以了？

回答：这位同学的意思是，只保留binlog，然后可以把提交流程改成这样：… -> “数据更新到内

存” -> “写 binlog” -> “提交事务”，是不是也可以提供崩溃恢复的能力？

答案是不可以。

如果说历史原因的话，那就是InnoDB并不是MySQL的原生存储引擎。MySQL的原生引擎是

MyISAM，设计之初就有没有支持崩溃恢复。

InnoDB在作为MySQL的插件加入MySQL引擎家族之前，就已经是一个提供了崩溃恢复和事务支

持的引擎了。

InnoDB接入了MySQL后，发现既然binlog没有崩溃恢复的能力，那就用InnoDB原有的redo log

好了。

而如果说实现上的原因的话，就有很多了。就按照问题中说的，只用binlog来实现崩溃恢复的流

程，我画了一张示意图，这里就没有redo log了。

图2 只用binlog支持崩溃恢复

这样的流程下，binlog还是不能支持崩溃恢复的。我说一个不支持的点吧：binlog没有能力恢

复“数据页”。

如果在图中标的位置，也就是binlog2写完了，但是整个事务还没有commit的时候，MySQL发生

了crash。

重启后，引擎内部事务2会回滚，然后应用binlog2可以补回来；但是对于事务1来说，系统已经

认为提交完成了，不会再应用一次binlog1。

但是，InnoDB引擎使用的是WAL技术，执行事务的时候，写完内存和日志，事务就算完成了。

如果之后崩溃，要依赖于日志来恢复数据页。

也就是说在图中这个位置发生崩溃的话，事务1也是可能丢失了的，而且是数据页级的丢失。此

时，binlog里面并没有记录数据页的更新细节，是补不回来的。

你如果要说，那我优化一下binlog的内容，让它来记录数据页的更改可以吗？但，这其实就是又

做了一个redo log出来。

所以，至少现在的binlog能力，还不能支持崩溃恢复。

追问6：那能不能反过来，只用redo log，不要binlog？

回答：如果只从崩溃恢复的角度来讲是可以的。你可以把binlog关掉，这样就没有两阶段提交

了，但系统依然是crash-safe的。

但是，如果你了解一下业界各个公司的使用场景的话，就会发现在正式的生产库上，binlog都是

开着的。因为binlog有着redo log无法替代的功能。

一个是归档。redo log是循环写，写到末尾是要回到开头继续写的。这样历史日志没法保

留，redo log也就起不到归档的作用。

一个就是MySQL系统依赖于binlog。binlog作为MySQL一开始就有的功能，被用在了很多地方。

其中，MySQL系统高可用的基础，就是binlog复制。

还有很多公司有异构系统（比如一些数据分析系统），这些系统就靠消费MySQL的binlog来更新

自己的数据。关掉binlog的话，这些下游系统就没法输入了。

总之，由于现在包括MySQL高可用在内的很多系统机制都依赖于binlog，所以“鸠占鹊巢”redo

log还做不到。你看，发展生态是多么重要。

追问7：redo log一般设置多大？

回答：redo log太小的话，会导致很快就被写满，然后不得不强行刷redo log，这样WAL机制的

能力就发挥不出来了。

所以，如果是现在常见的几个TB的磁盘的话，就不要太小气了，直接将redo log设置为4个文

件、每个文件1GB吧。

追问8：正常运行中的实例，数据写入后的最终落盘，是从redo log更新过来的

还是从buffer pool更新过来的呢？

回答：这个问题其实问得非常好。这里涉及到了，“redo log里面到底是什么”的问题。

实际上，redo log并没有记录数据页的完整数据，所以它并没有能力自己去更新磁盘数据页，也

就不存在“数据最终落盘，是由redo log更新过去”的情况。

1. 如果是正常运行的实例的话，数据页被修改以后，跟磁盘的数据页不一致，称为脏页。最终

数据落盘，就是把内存中的数据页写盘。这个过程，甚至与redo log毫无关系。

2. 在崩溃恢复场景中，InnoDB如果判断到一个数据页可能在崩溃恢复的时候丢失了更新，就

会将它读到内存，然后让redo log更新内存内容。更新完成后，内存页变成脏页，就回到了

第一种情况的状态。

追问9：redo log buffer是什么？是先修改内存，还是先写redo log文件？

回答：这两个问题可以一起回答。

在一个事务的更新过程中，日志是要写多次的。比如下面这个事务：

这个事务要往两个表中插入记录，插入数据的过程中，生成的日志都得先保存起来，但又不能在

还没commit的时候就直接写到redo log文件里。

所以，redo log buffer就是一块内存，用来先存redo日志的。也就是说，在执行第一个insert的时

候，数据的内存被修改了，redo log buffer也写入了日志。

但是，真正把日志写到redo log文件（文件名是 ib_logfile+数字），是在执行commit语句的时候

做的。

（这里说的是事务执行过程中不会“主动去刷盘”，以减少不必要的IO消耗。但是可能会出现“被

动写入磁盘”，比如内存不够、其他事务提交等情况。这个问题我们会在后面第22篇文章

《MySQL有哪些“饮鸩止渴”的提高性能的方法？》中再详细展开）。

单独执行一个更新语句的时候，InnoDB会自己启动一个事务，在语句执行完成的时候提交。过

程跟上面是一样的，只不过是“压缩”到了一个语句里面完成。

以上这些问题，就是把大家提过的关于redo log和binlog的问题串起来，做的一次集中回答。如

果你还有问题，可以在评论区继续留言补充。

业务设计问题

接下来，我再和你分享@ithunter 同学在第8篇文章《事务到底是隔离的还是不隔离的？》的评

论区提到的跟索引相关的一个问题。我觉得这个问题挺有趣、也挺实用的，其他同学也可能会碰

上这样的场景，在这里解答和分享一下。

问题是这样的（我文字上稍微做了点修改，方便大家理解）：

begin;

insert into t1 ...

insert into t2 ...

commit;

业务上有这样的需求，A、B两个用户，如果互相关注，则成为好友。设计上是有两张表，一

个是like表，一个是friend表，like表有user_id、liker_id两个字段，我设置为复合唯一索引即

https://time.geekbang.org/column/article/70562
https://time.geekbang.org/column/article/70562
https://time.geekbang.org/column/article/70562

首先，我要先赞一下这样的提问方式。虽然极客时间现在的评论区还不能追加评论，但如果大家

能够一次留言就把问题讲清楚的话，其实影响也不大。所以，我希望你在留言提问的时候，也能

借鉴这种方式。

接下来，我把@ithunter 同学说的表模拟出来，方便我们讨论。

虽然这个题干中，并没有说到friend表的索引结构。但我猜测friend_1_id和friend_2_id也有索

uk_user_id_liker_id。语句执行逻辑是这样的：

以A关注B为例：

第一步，先查询对方有没有关注自己（B有没有关注A）

select * from like where user_id = B and liker_id = A;

如果有，则成为好友

insert into friend;

没有，则只是单向关注关系

insert into like;

但是如果A、B同时关注对方，会出现不会成为好友的情况。因为上面第1步，双方都没关注对

方。第1步即使使用了排他锁也不行，因为记录不存在，行锁无法生效。请问这种情况，在

MySQL锁层面有没有办法处理？

CREATE TABLE `like` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_id` int(11) NOT NULL,

 `liker_id` int(11) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `uk_user_id_liker_id` (`user_id`,`liker_id`)

) ENGINE=InnoDB;

CREATE TABLE `friend` (

 id` int(11) NOT NULL AUTO_INCREMENT,

 `friend_1_id` int(11) NOT NULL,

 `firned_2_id` int(11) NOT NULL,

 UNIQUE KEY `uk_friend` (`friend_1_id`,`firned_2_id`)

 PRIMARY KEY (`id`)

) ENGINE=InnoDB;

引，为便于描述，我给加上唯一索引。

顺便说明一下，“like”是关键字，我一般不建议使用关键字作为库名、表名、字段名或索引名。

我把他的疑问翻译一下，在并发场景下，同时有两个人，设置为关注对方，就可能导致无法成功

加为朋友关系。

现在，我用你已经熟悉的时刻顺序表的形式，把这两个事务的执行语句列出来：

图3 并发“喜欢”逻辑操作顺序

由于一开始A和B之间没有关注关系，所以两个事务里面的select语句查出来的结果都是空。

因此，session 1的逻辑就是“既然B没有关注A，那就只插入一个单向关注关系”。session 2也同

样是这个逻辑。

这个结果对业务来说就是bug了。因为在业务设定里面，这两个逻辑都执行完成以后，是应该在

friend表里面插入一行记录的。

如提问里面说的，“第1步即使使用了排他锁也不行，因为记录不存在，行锁无法生效”。不过，

我想到了另外一个方法，来解决这个问题。

首先，要给“like”表增加一个字段，比如叫作 relation_ship，并设为整型，取值1、2、3。

值是1的时候，表示user_id 关注 liker_id;

值是2的时候，表示liker_id 关注 user_id;

值是3的时候，表示互相关注。

然后，当 A关注B的时候，逻辑改成如下所示的样子：

应用代码里面，比较A和B的大小，如果A<B，就执行下面的逻辑

如果A>B，则执行下面的逻辑

这个设计里，让“like”表里的数据保证user_id < liker_id，这样不论是A关注B，还是B关注A，在

操作“like”表的时候，如果反向的关系已经存在，就会出现行锁冲突。

然后，insert … on duplicate语句，确保了在事务内部，执行了这个SQL语句后，就强行占住了这

个行锁，之后的select 判断relation_ship这个逻辑时就确保了是在行锁保护下的读操作。

操作符 “|” 是按位或，连同最后一句insert语句里的ignore，是为了保证重复调用时的幂等性。

这样，即使在双方“同时”执行关注操作，最终数据库里的结果，也是like表里面有一条关于A和B

的记录，而且relation_ship的值是3， 并且friend表里面也有了A和B的这条记录。

mysql> begin; /*启动事务*/

insert into `like`(user_id, liker_id, relation_ship) values(A, B, 1) on duplicate key update relation_ship=relation_ship | 1;

select relation_ship from `like` where user_id=A and liker_id=B;

/*代码中判断返回的 relation_ship，

 如果是1，事务结束，执行 commit

 如果是3，则执行下面这两个语句：

 */

insert ignore into friend(friend_1_id, friend_2_id) values(A,B);

commit;

mysql> begin; /*启动事务*/

insert into `like`(user_id, liker_id, relation_ship) values(B, A, 2) on duplicate key update relation_ship=relation_ship | 2;

select relation_ship from `like` where user_id=B and liker_id=A;

/*代码中判断返回的 relation_ship，

 如果是2，事务结束，执行 commit

 如果是3，则执行下面这两个语句：

*/

insert ignore into friend(friend_1_id, friend_2_id) values(B,A);

commit;

不知道你会不会吐槽：之前明明还说尽量不要使用唯一索引，结果这个例子一上来我就创建了两

个。这里我要再和你说明一下，之前文章我们讨论的，是在“业务开发保证不会插入重复记录”的

情况下，着重要解决性能问题的时候，才建议尽量使用普通索引。

而像这个例子里，按照这个设计，业务根本就是保证“我一定会插入重复数据，数据库一定要要

有唯一性约束”，这时就没啥好说的了，唯一索引建起来吧。

小结

这是专栏的第一篇答疑文章。

我针对前14篇文章，大家在评论区中的留言，从中摘取了关于日志和索引的相关问题，串成了

今天这篇文章。这里我也要再和你说一声，有些我答应在答疑文章中进行扩展的话题，今天这篇

文章没来得及扩展，后续我会再找机会为你解答。所以，篇幅所限，评论区见吧。

最后，虽然这篇是答疑文章，但课后问题还是要有的。

我们创建了一个简单的表t，并插入一行，然后对这一行做修改。

这时候，表t里有唯一的一行数据(1,2)。假设，我现在要执行：

你会看到这样的结果：

结果显示，匹配(rows matched)了一行，修改(Changed)了0行。

仅从现象上看，MySQL内部在处理这个命令的时候，可以有以下三种选择：

1. 更新都是先读后写的，MySQL读出数据，发现a的值本来就是2，不更新，直接返回，执行

mysql> CREATE TABLE `t` (

`id` int(11) NOT NULL primary key auto_increment,

`a` int(11) DEFAULT NULL

) ENGINE=InnoDB;

insert into t values(1,2);

mysql> update t set a=2 where id=1;

结束；

2. MySQL调用了InnoDB引擎提供的“修改为(1,2)”这个接口，但是引擎发现值与原来相同，不

更新，直接返回；

3. InnoDB认真执行了“把这个值修改成(1,2)"这个操作，该加锁的加锁，该更新的更新。

你觉得实际情况会是以上哪种呢？你可否用构造实验的方式，来证明你的结论？进一步地，可以

思考一下，MySQL为什么要选择这种策略呢？

你可以把你的验证方法和思考写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是，用一个计数表记录一个业务表的总行数，在往业务表插入数据的时候，需要给计

数值加1。

逻辑实现上是启动一个事务，执行两个语句：

1. insert into 数据表；

2. update 计数表，计数值加1。

从系统并发能力的角度考虑，怎么安排这两个语句的顺序。

这里，我直接复制 @阿建 的回答过来供你参考：

评论区有同学说，应该把update计数表放后面，因为这个计数表可能保存了多个业务表的计数

值。如果把update计数表放到事务的第一个语句，多个业务表同时插入数据的话，等待时间会

更长。

这个答案的结论是对的，但是理解不太正确。即使我们用一个计数表记录多个业务表的行数，也

肯定会给表名字段加唯一索引。类似于下面这样的表结构：

并发系统性能的角度考虑，应该先插入操作记录，再更新计数表。

知识点在《行锁功过：怎么减少行锁对性能的影响？》

因为更新计数表涉及到行锁的竞争，先插入再更新能最大程度地减少事务之间的锁等待，提升

并发度。

https://time.geekbang.org/column/article/70215

在更新计数表的时候，一定会传入where table_name=$table_name，使用主键索引，更新加行

锁只会锁在一行上。

而在不同业务表插入数据，是更新不同的行，不会有行锁。

评论区留言点赞板：

CREATE TABLE `rows_stat` (

 `table_name` varchar(64) NOT NULL,

 `row_count` int(10) unsigned NOT NULL,

 PRIMARY KEY (`table_name`)

) ENGINE=InnoDB;

@北天魔狼、@斜面镜子 Bil 和@Bin 等同学，都给出了正确答案；

@果然如此 同学提了一个好问题，虽然引入事务，避免看到”业务上还没提交的更新”，但是

Redis的计数被提前看到了。核心原因还是两个系统，不支持一致性视图；

@ 帆帆帆帆帆帆帆帆 同学的问题提醒了大家，count(id)也是可以走普通索引得到的。

	15 | 答疑文章（一）：日志和索引相关问题
	日志相关问题
	追问1：MySQL怎么知道binlog是完整的?
	追问2：redo log 和 binlog是怎么关联起来的?
	追问3：处于prepare阶段的redo log加上完整binlog，重启就能恢复，MySQL为什么要这么设计?
	追问4：如果这样的话，为什么还要两阶段提交呢？干脆先redo log写完，再写binlog。崩溃恢复的时候，必须得两个日志都完整才可以。是不是一样的逻辑？
	追问5：不引入两个日志，也就没有两阶段提交的必要了。只用binlog来支持崩溃恢复，又能支持归档，不就可以了？
	追问6：那能不能反过来，只用redo log，不要binlog？
	追问7：redo log一般设置多大？
	追问8：正常运行中的实例，数据写入后的最终落盘，是从redo log更新过来的还是从buffer pool更新过来的呢？
	追问9：redo log buffer是什么？是先修改内存，还是先写redo log文件？

	业务设计问题
	小结
	上期问题时间

