
更新时间：2020-08-10 14:42:59

04 学会聚合与分组聚合是很有必要的

在我们日常的工作中，“函数” 这个概念肯定不会陌生。例如，我们使用 Java 语言时，可以使用 JDK 自带的函数、

也可以使用依赖的其他 jar 包中的函数、还可以自定义函数等等。为了方便我们的工作，MySQL 同样提供了不同

种类的函数。这一节里，我们来探讨下 MySQL 的 “聚合函数”，以及怎样使用 GROUP BY 语句实现分组聚合。

1 理解聚合函数

想要把聚合函数使用好，首先需要知道什么是聚合函数 ？常用的聚合函数又有哪些 ？它们的使用方法又是怎样的

？下面，我将会介绍聚合函数的概念、常用的聚合函数及语法，再辅以实践案例详细的说明聚合函数。

1.1 聚合函数的概念

在数据库中，函数可以分为两种：单行函数和多行函数。单行函数即函数会针对每一行返回一个结果，而多行函数

则是作用于多行（也可以作用于单行）并返回一个结果。聚合函数则属于多行函数，表中的多行记录会参与计算，

并返回一个数值，且它通常用于分组的相关统计。

1.2 常用的聚合函数

MySQL 的官方文档中给出了非常多的聚合函数，但其中的大多数在我们的日常工作中都是用不到的。常用的聚合

函数有五个：AVG、COUNT、MIN、MAX、SUM。下面，我们来看一看它们的语法及含义。

受苦的人，没有悲观的权利。——尼采

file:///read/71/article/1637
file:///read/71/article/1641

语法 功能 备注

AVG ([DISTINCT] expr) 返回 expr 的平均值 DISTINCT 选项用于去除字段值重复的行记录

COUNT(expr) 统计表中的行数

MIN ([DISTINCT] expr) 返回 expr 的最小值

MAX ([DISTINCT] expr) 返回 expr 的最大值

SUM ([DISTINCT] expr) 返回 expr 的合计值

可以看出，这些聚合函数的定义虽然简单，但是功能强大：选好聚合类型并给定参数（expr）就可以得到聚合结

果。关于这些聚合函数，在使用的过程中需要知道它们的一些共性：

每个聚合函数接受一个参数，参数可以是数据表列，也可以是函数表达式

默认情况下，聚合函数会忽略列值为 NULL 的行，不参与计算

聚合函数不允许嵌套，例如：COUNT(SUM(expr)) 是不合法的

一次查询中可以出现多个聚合函数，例如：SELECT MAX(expr), MIN(expr) FROM …

2 聚合函数的实践

想要更好的理解技术，就一定要去深入实践，理论结合实践才是最好的学习方式。为了更方便的讲解聚合函数的使

用方法，我们假定数据表 worker 中存储了如下的数据。

需要注意的是，id 为3和7的记录中，salary 列值都是 NULL。根据之前讲述的聚合函数的特性，当 expr 传入这一列

时，这两条记录则不会参与计算。

2.1 使用 AVG 计算平均值

AVG 只适用于数值类型的列，因为对于像日期、字符串等类型求平均本身就是没有意义的。例如，我们可以使用

AVG 计算所有 worker salary 的均值。

所有的聚合函数，如果是以列名作为 expr（例如这里的 salary），MySQL 会在计算之前把列值是 NULL 的记录排

除掉。这里需要理解，不能认为 “NULL 是0”，实际是列值为 NULL 的行不会计入分母。

mysql> SELECT id, type, name, salary FROM worker;
+----+------+--------+--------+
| id | type | name | salary |
+----+------+--------+--------+
1	A	tom	1800
2	B	jack	2100
3	C	pony	NULL
4	B	tony	3600
5	B	marry	1900
6	C	tack	1200
7	A	tick	NULL
8	B	clock	2000
9	C	noah	1500
10	C	jarvis	1800
+----+------+--------+--------+

mysql> SELECT AVG(salary) FROM worker;
+-------------+
| AVG(salary) |
+-------------+
| 1987.5000 |
+-------------+

另外，使用聚合函数的同时也并不妨碍条件查询，我们同样可以使用 WHERE 条件先对行记录做筛选，再去计算平

均值。例如：

2.2 使用 COUNT 计算表中的行数

COUNT 函数相对于其他聚合函数来说，是比较特殊的，它的使用方法比较多，通常可以看到的使用方法包括：

COUNT(n)、COUNT(*)、COUNT(expr)、COUNT(DISTINCT expr)。所以，接下来我们需要探究下这几种方式的含

义、特性与适用场景。

COUNT(n) 中的 n 可以是任何整数或小数，它与 COUNT(*) 的查询结果是一样的，例如：

另外，从输出中还可以得出结论，COUNT(n) 和 COUNT(*) 统计的总行数是包含 NULL 值的。这两种统计方式从本

质上来说是一样的，而且并不存在哪一种效率更高的说法。这两种统计方法都不会使用全表扫描，而是使用了

PRIMARY 索引优化查询，性能是非常高的。所以，想要查询表中的记录行数，使用它们之中的任何一个都是可以

的。

COUNT(expr) 和 COUNT(DISTINCT expr) 由于需要传入列作为参数，所以，它们统计的是非 NULL 的行数。如果

加上了 DISTINCT，则是统计列值不相同且非 NULL 的行数。验证如下：

由于 id 是3和7的 salary 列值是 NULL，所以，COUNT(salary) 的结果是8。又由于 id是1和10的 salary 值相同，所

以，排除一个，最终 COUNT(DISTINCT salary) 的结果是7。

关于 COUNT 函数，总结如下：

COUNT(n) 和 COUNT(*) 用于统计表中的总行数，不关心列值是否为 NULL

COUNT(expr) 用于统计列值非 NULL 的行记录数

COUNT(DISTINCT expr) 用于统计列值不同且非 NULL 的行记录数

2.3 使用 MIN、MAX 计算最小值、最大值

mysql> SELECT AVG(salary) FROM worker WHERE id < 3;
+-------------+
| AVG(salary) |
+-------------+
| 1950.0000 |
+-------------+

mysql> SELECT COUNT(0), COUNT(1), COUNT(9.9), COUNT(*) FROM worker;
+----------+----------+------------+----------+
| COUNT(0) | COUNT(1) | COUNT(9.9) | COUNT(*) |
+----------+----------+------------+----------+
| 10 | 10 | 10 | 10 |
+----------+----------+------------+----------+

mysql> SELECT COUNT(salary), COUNT(DISTINCT salary) FROM worker;
+---------------+------------------------+
| COUNT(salary) | COUNT(DISTINCT salary) |
+---------------+------------------------+
| 8 | 7 |
+---------------+------------------------+

MIN、MAX 函数适用于任何能够排序的数据，注意，不同于 AVG，它们的适用范围不只是数值类型，日期类型、

字符串类型也同样是允许的。由于这两个函数的功能、使用方法相对来说比较简单，这里给出一个例子，不再多做

说明。

2.4 使用 SUM 计算合计值

SUM 函数正如同这个单词的字面意思，用于计算列的合计值（总值）。它几乎与 AVG 有一样的性质：只能用于数

值类型的列，且会忽略值为 NULL 的列。例如：

另外，大家可能会看到 SUM(1) 这样的语法，它的作用与 COUNT(n) 或 COUNT(*) 是相同的，都是用来统计行记录

数。但是，从效率上来说，SUM(1) 是非常慢的，我们应该尽量避免这种用法。

同时，需要注意，SUM(2) 或者是其他的数字，得到的并不是行记录数。你可以简单的理解为：SUM 操作会遍历整

个表，遇到一条记录，就会执行一次加 N 的操作，最终返回累加和，即行记录数的 N 倍。

3 掌握分组聚合

分组的意思就是数据根据某一列或者某几列分类，MySQL 中可以使用 GROUP BY 子句实现这一功能。GROUP

BY 结合聚合函数就可以实现将表数据分类再汇总的效果，这在报表型的数据统计任务中是非常常见的需求。

GROUP BY 子句的语法如下：

GROUP BY 子句中的列称为聚合列或分组列。下面，我将用一些实例说明分组聚合的含义、使用方法、特性与需

要注意的地方（同样使用之前的 worker 表作为示例数据）。

mysql> SELECT MIN(salary), MAX(salary) FROM worker;
+-------------+-------------+
| MIN(salary) | MAX(salary) |
+-------------+-------------+
| 1200 | 3600 |
+-------------+-------------+

mysql> SELECT SUM(salary) FROM worker WHERE id < 5;
+-------------+
| SUM(salary) |
+-------------+
| 7500 |
+-------------+

mysql> SELECT SUM(1) FROM worker;
+--------+
| SUM(1) |
+--------+
| 10 |
+--------+

SELECT
 <列名1>,
 <列名2>......
 FROM
 <表名>
 WHERE

 GROUP BY
 <列名1>,
 <列名2>......;

3.1 按照 type 分组对数据进行统计

对于 worker 表来说，我们可以按照 type 对数据记录进行分组，分组之后再按照想要统计的类型进行聚合操作。例

如：

使用 GROUP BY 对 type 字段值进行分组，结果有三类：A、B、C。分组之后，AVG、COUNT 等聚合函数再按照

自身的特性对每一组数据进行聚合统计，最后，打印如上结果。

需要注意的是，出现在 SELECT 子句中的单独列（非聚合列，示例中的即为 type），必须出现在 GROUP BY 子

句中作为分组列。但是反过来，分组列是可以不出现在 SELECT 子句中的。

3.2 对分组聚合结果进行排序

分组聚合的结果没有什么特殊之处，当然也是可以指定排序的。指定排序的列可以是分组列，也可以不是分组列。

例如，我们可以按照 SUM(salary) 实现排序：

有一种特殊情况，当排序列与分组列相同时，则可以合并 GROUP BY 和 ORDER BY 子句，即只需要在 GROUP

BY 子句的后面添加 DESC 或 ASC。例如：

3.3 对分组结果进行过滤

这个标题其实是有误导性的，大家需要仔细审题。这里过滤的是分组后的聚合结果，而不是数据表中的原始记录。

在 MySQL 中，使用 AVG、COUNT 等聚合函数对表记录进行统计操作后，可以使用 HAVING 子句对结果进行过

滤，且 HAVING 子句需要写在 GROUP BY 子句之后。例如，我们按照 type 对 worker 表中的数据分组之后，想要

获取 SUM(salary) 大于 4000 的分组，可以这样做：

mysql> SELECT type, AVG(salary), COUNT(1), MIN(salary), MAX(salary), SUM(salary) FROM worker GROUP BY type;
+------+-------------+----------+-------------+-------------+-------------+
| type | AVG(salary) | COUNT(1) | MIN(salary) | MAX(salary) | SUM(salary) |
+------+-------------+----------+-------------+-------------+-------------+
A	1800.0000	2	1800	1800	1800
B	2400.0000	4	1900	3600	9600
C	1500.0000	4	1200	1800	4500
+------+-------------+----------+-------------+-------------+-------------+

mysql> SELECT type, SUM(salary) as sum_s FROM worker GROUP BY type ORDER BY sum_s desc;
+------+-------+
| type | sum_s |
+------+-------+
B	9600
C	4500
A	1800
+------+-------+

mysql> SELECT type, AVG(salary), COUNT(1), MIN(salary), MAX(salary), SUM(salary) FROM worker GROUP BY type DESC;
+------+-------------+----------+-------------+-------------+-------------+
| type | AVG(salary) | COUNT(1) | MIN(salary) | MAX(salary) | SUM(salary) |
+------+-------------+----------+-------------+-------------+-------------+
C	1500.0000	4	1200	1800	4500
B	2400.0000	4	1900	3600	9600
A	1800.0000	2	1800	1800	1800
+------+-------------+----------+-------------+-------------+-------------+

可以看到，HAVING 的使用方法与 WHERE 是相似的，只是它们执行的时机不同。总结下来，它们有以下两个区

别：

WHERE 子句在分组前对记录进行过滤

HAVING 子句在分组后对记录进行过滤

分组聚合的精髓在于数据分组，可以把每一个分组都认为是单独的数据表记录，最终的聚合结果则是将每一个单独

数据表聚合之后 merge 而成的。另外，需要知道，聚合函数可以在 SELECT 、HAVING 和 ORDER BY 子句中使

用，但是不能在 WHERE 子句中使用。

4 工作中的实例

学以致用的最佳应用场景肯定是在工作中，这里我将给出一些实例，同时也是我在平时的工作中所遇到的一些需

求，并使用聚合与分组聚合解决的案例。首先，我将给出表的创建语句，以此能够知道表结构组成。

当前表中存储的数据如下：

4.1 查询某个 /所有用户的最大 /小预算

mysql> SELECT type, AVG(salary), COUNT(1), SUM(salary) FROM worker GROUP BY type HAVING SUM(salary) > 4000;
+------+-------------+----------+-------------+
| type | AVG(salary) | COUNT(1) | SUM(salary) |
+------+-------------+----------+-------------+
| B | 2400.0000 | 4 | 9600 |
| C | 1500.0000 | 4 | 4500 |
+------+-------------+----------+-------------+

CREATE TABLE `ad_unit` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '自增主键',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '标记当前记录所属用户',
 `unit_name` varchar(48) NOT NULL COMMENT '推广单元名称',
 `unit_status` tinyint(4) NOT NULL DEFAULT '0' COMMENT '推广单元状态: 0-正常, 1-失效',
 `position_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '广告位类型(1,2,3)',
 `budget` bigint(20) NOT NULL COMMENT '预算(单位: 元)',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='广告-推广单元表';

mysql> SELECT * FROM ad_unit;
+----+---------+-----------------+-------------+---------------+--------+
| id | user_id | unit_name | unit_status | position_type | budget |
+----+---------+-----------------+-------------+---------------+--------+
1	1001	推广单元-1	0	1	1200
2	1001	推广单元-2	0	1	1500
3	1001	推广单元-3	0	2	1700
4	1001	推广单元-4	1	1	2500
5	1002	推广单元-5	0	1	2000
6	1002	推广单元-6	0	3	1000
7	1003	推广单元-7	0	1	3400
8	1003	推广单元-8	0	2	2100
9	1004	推广单元-9	0	1	1600
10	1004	推广单元-10	0	1	1100
11	1004	推广单元-11	0	2	3500
12	1004	推广单元-12	0	3	1900
13	1004	推广单元-13	0	3	3200
+----+---------+-----------------+-------------+---------------+--------+

这是个很常见的需求，目的就是想看看广告主（对应到表中的 user_id）预算的极值。同时，这个需求也是非常简

单的：某个用户的话使用 WHERE 子句先去筛选用户记录即可；所有用户的话，首先根据 user_id 做好分组，再去

使用聚合函数即可。SQL 语句实现如下：

4.2 查询所有用户的分类广告位类型最大 /小预算

对于需求中的所有用户来说，我们并不陌生，只需要使用 GROUP BY 子句按照 user_id 分组即可。但是注意到，

这里除了分组用户之外，还需要对广告位类型进行分组。这其实也很简单，因为 GROUP BY 子句的语法是支持对

多个列进行分组的。如下：

4.3 查询总预算超过 5000 的用户

显然这个需求是要计算 budget 的合计值，且在计算聚合（SUM）之前需要先对记录按照 user_id 进行分组。另

外，需求中的 5000（可以是任意数字）指的是聚合之后的值，所以，应该想到这里需要对结果执行 HAVING 计

算。如下：

-- 查询 user_id 是 1004 的最大/小预算, 需要排除无效的记录
mysql> SELECT user_id, MAX(budget), MIN(budget) FROM ad_unit WHERE user_id = 1004 AND unit_status = 0;
+---------+-------------+-------------+
| user_id | MAX(budget) | MIN(budget) |
+---------+-------------+-------------+
| 1004 | 3500 | 1100 |
+---------+-------------+-------------+

-- 查询所有用户的最大/最小预算, 需要排除无效的记录
mysql> SELECT user_id, MAX(budget), MIN(budget) FROM ad_unit WHERE unit_status = 0 GROUP BY user_id;
+---------+-------------+-------------+
| user_id | MAX(budget) | MIN(budget) |
+---------+-------------+-------------+
1001	1700	1200
1002	2000	1000
1003	3400	2100
1004	3500	1100
+---------+-------------+-------------+

mysql> SELECT user_id, position_type, MAX(budget), MIN(budget) FROM ad_unit WHERE unit_status = 0 GROUP BY user_id, position_type;
+---------+---------------+-------------+-------------+
| user_id | position_type | MAX(budget) | MIN(budget) |
+---------+---------------+-------------+-------------+
1001	1	1500	1200
1001	2	1700	1700
1002	1	2000	2000
1002	3	1000	1000
1003	1	3400	3400
1003	2	2100	2100
1004	1	1600	1100
1004	2	3500	3500
1004	3	3200	1900
+---------+---------------+-------------+-------------+

mysql> SELECT user_id, SUM(budget) FROM ad_unit WHERE unit_status = 0 GROUP BY user_id HAVING SUM(budget) > 5000;
+---------+-------------+
| user_id | SUM(budget) |
+---------+-------------+
| 1003 | 5500 |
| 1004 | 11300 |
+---------+-------------+


03 Schema 设计规范是什么样的
？ 

05 很有用的条件判断函数与系统
函数

从以上几个实例中可以看出，需求本身往往都不会很复杂，只要理解了聚合与分组聚合的核心知识点，剩下的就是

按步骤拆解需求，选择正确的聚合函数与执行子句就可以了。

5 总结

聚合与分组聚合是 MySQL 基础知识中非常重要的部分，它们大量的出现在报表型应用中，做 OLAP 操作。想要学

好聚合函数，先要把每一个聚合函数的概念、适用场景搞清楚，再去理解它们的特性，最后多做实践。而分组聚合

是先分组再聚合，本质上说，还是对多行数据做聚合统计操作。所以，更重要的是理解分组的含义。

6 问题

为什么说 SUM(1) 的执行效率要比 COUNT(n) 或 COUNT(*) 低很多呢 ？

SELECT、FROM、WHERE、HAVING、GROUP BY、ORDER BY 这些子句的正确书写顺序应该是怎样的 ？

7 参考资料

MySQL 官方文档

}

https://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html

	1 理解聚合函数
	1.1 聚合函数的概念
	1.2 常用的聚合函数

	2 聚合函数的实践
	2.1 使用 AVG 计算平均值
	2.2 使用 COUNT 计算表中的行数
	2.3 使用 MIN、MAX 计算最小值、最大值
	2.4 使用 SUM 计算合计值

	3 掌握分组聚合
	3.1 按照 type 分组对数据进行统计
	3.2 对分组聚合结果进行排序
	3.3 对分组结果进行过滤

	4 工作中的实例
	4.1 查询某个/所有用户的最大/小预算
	4.2 查询所有用户的分类广告位类型最大/小预算
	4.3 查询总预算超过 5000 的用户

	5 总结
	6 问题
	7 参考资料

