
The Java® Language
Specification

Java SE 8 Edition

James Gosling
Bill Joy

Guy Steele
Gilad Bracha
Alex Buckley

2015-02-13

Specification: JSR-337 Java® SE 8 Release Contents ("Specification")
Version: 8
Status: Maintenance Release
Release: March 2015

Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.
All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

The Specification provided herein is provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

To Maurizio, with deepest thanks.

v

Table of Contents

Preface to the Java SE 8 Edition xix

1 Introduction 1
1.1 Organization of the Specification 2
1.2 Example Programs 6
1.3 Notation 6
1.4 Relationship to Predefined Classes and Interfaces 7
1.5 Feedback 7
1.6 References 7

2 Grammars 9
2.1 Context-Free Grammars 9
2.2 The Lexical Grammar 9
2.3 The Syntactic Grammar 10
2.4 Grammar Notation 10

3 Lexical Structure 15
3.1 Unicode 15
3.2 Lexical Translations 16
3.3 Unicode Escapes 17
3.4 Line Terminators 19
3.5 Input Elements and Tokens 19
3.6 White Space 20
3.7 Comments 21
3.8 Identifiers 22
3.9 Keywords 24
3.10 Literals 24

3.10.1 Integer Literals 25
3.10.2 Floating-Point Literals 31
3.10.3 Boolean Literals 34
3.10.4 Character Literals 34
3.10.5 String Literals 35
3.10.6 Escape Sequences for Character and String Literals 37
3.10.7 The Null Literal 38

3.11 Separators 39
3.12 Operators 39

The Java® Language Specification

vi

4 Types, Values, and Variables 41
4.1 The Kinds of Types and Values 41
4.2 Primitive Types and Values 42

4.2.1 Integral Types and Values 43
4.2.2 Integer Operations 43
4.2.3 Floating-Point Types, Formats, and Values 45
4.2.4 Floating-Point Operations 48
4.2.5 The boolean Type and boolean Values 51

4.3 Reference Types and Values 52
4.3.1 Objects 53
4.3.2 The Class Object 56
4.3.3 The Class String 56
4.3.4 When Reference Types Are the Same 57

4.4 Type Variables 57
4.5 Parameterized Types 59

4.5.1 Type Arguments of Parameterized Types 60
4.5.2 Members and Constructors of Parameterized Types 63

4.6 Type Erasure 64
4.7 Reifiable Types 65
4.8 Raw Types 66
4.9 Intersection Types 70
4.10 Subtyping 71

4.10.1 Subtyping among Primitive Types 71
4.10.2 Subtyping among Class and Interface Types 72
4.10.3 Subtyping among Array Types 73
4.10.4 Least Upper Bound 73

4.11 Where Types Are Used 76
4.12 Variables 80

4.12.1 Variables of Primitive Type 81
4.12.2 Variables of Reference Type 81
4.12.3 Kinds of Variables 83
4.12.4 final Variables 85
4.12.5 Initial Values of Variables 87
4.12.6 Types, Classes, and Interfaces 88

5 Conversions and Contexts 93
5.1 Kinds of Conversion 96

5.1.1 Identity Conversion 96
5.1.2 Widening Primitive Conversion 96
5.1.3 Narrowing Primitive Conversion 98
5.1.4 Widening and Narrowing Primitive Conversion 101
5.1.5 Widening Reference Conversion 101
5.1.6 Narrowing Reference Conversion 101
5.1.7 Boxing Conversion 102
5.1.8 Unboxing Conversion 104
5.1.9 Unchecked Conversion 105
5.1.10 Capture Conversion 105

The Java® Language Specification

vii

5.1.11 String Conversion 107
5.1.12 Forbidden Conversions 108
5.1.13 Value Set Conversion 108

5.2 Assignment Contexts 109
5.3 Invocation Contexts 114
5.4 String Contexts 116
5.5 Casting Contexts 116

5.5.1 Reference Type Casting 120
5.5.2 Checked Casts and Unchecked Casts 124
5.5.3 Checked Casts at Run Time 125

5.6 Numeric Contexts 127
5.6.1 Unary Numeric Promotion 127
5.6.2 Binary Numeric Promotion 128

6 Names 131
6.1 Declarations 132
6.2 Names and Identifiers 139
6.3 Scope of a Declaration 141
6.4 Shadowing and Obscuring 144

6.4.1 Shadowing 146
6.4.2 Obscuring 149

6.5 Determining the Meaning of a Name 150
6.5.1 Syntactic Classification of a Name According to Context 151
6.5.2 Reclassification of Contextually Ambiguous Names 154
6.5.3 Meaning of Package Names 156

6.5.3.1 Simple Package Names 157
6.5.3.2 Qualified Package Names 157

6.5.4 Meaning of PackageOrTypeNames 157
6.5.4.1 Simple PackageOrTypeNames 157
6.5.4.2 Qualified PackageOrTypeNames 157

6.5.5 Meaning of Type Names 157
6.5.5.1 Simple Type Names 158
6.5.5.2 Qualified Type Names 158

6.5.6 Meaning of Expression Names 158
6.5.6.1 Simple Expression Names 158
6.5.6.2 Qualified Expression Names 159

6.5.7 Meaning of Method Names 162
6.5.7.1 Simple Method Names 162

6.6 Access Control 163
6.6.1 Determining Accessibility 164
6.6.2 Details on protected Access 168

6.6.2.1 Access to a protected Member 169
6.6.2.2 Qualified Access to a protected Constructor 169

6.7 Fully Qualified Names and Canonical Names 171

7 Packages 175
7.1 Package Members 175

The Java® Language Specification

viii

7.2 Host Support for Packages 177
7.3 Compilation Units 179
7.4 Package Declarations 180

7.4.1 Named Packages 180
7.4.2 Unnamed Packages 181
7.4.3 Observability of a Package 181

7.5 Import Declarations 182
7.5.1 Single-Type-Import Declarations 182
7.5.2 Type-Import-on-Demand Declarations 185
7.5.3 Single-Static-Import Declarations 186
7.5.4 Static-Import-on-Demand Declarations 186

7.6 Top Level Type Declarations 187

8 Classes 191
8.1 Class Declarations 193

8.1.1 Class Modifiers 193
8.1.1.1 abstract Classes 194
8.1.1.2 final Classes 196
8.1.1.3 strictfp Classes 196

8.1.2 Generic Classes and Type Parameters 196
8.1.3 Inner Classes and Enclosing Instances 199
8.1.4 Superclasses and Subclasses 202
8.1.5 Superinterfaces 204
8.1.6 Class Body and Member Declarations 207

8.2 Class Members 208
8.3 Field Declarations 213

8.3.1 Field Modifiers 217
8.3.1.1 static Fields 218
8.3.1.2 final Fields 221
8.3.1.3 transient Fields 221
8.3.1.4 volatile Fields 222

8.3.2 Field Initialization 223
8.3.3 Forward References During Field Initialization 224

8.4 Method Declarations 227
8.4.1 Formal Parameters 228
8.4.2 Method Signature 232
8.4.3 Method Modifiers 233

8.4.3.1 abstract Methods 234
8.4.3.2 static Methods 236
8.4.3.3 final Methods 236
8.4.3.4 native Methods 237
8.4.3.5 strictfp Methods 237
8.4.3.6 synchronized Methods 238

8.4.4 Generic Methods 239
8.4.5 Method Result 240
8.4.6 Method Throws 240
8.4.7 Method Body 242

The Java® Language Specification

ix

8.4.8 Inheritance, Overriding, and Hiding 243
8.4.8.1 Overriding (by Instance Methods) 243
8.4.8.2 Hiding (by Class Methods) 247
8.4.8.3 Requirements in Overriding and Hiding 248
8.4.8.4 Inheriting Methods with Override-Equivalent

Signatures 252
8.4.9 Overloading 253

8.5 Member Type Declarations 256
8.5.1 Static Member Type Declarations 257

8.6 Instance Initializers 257
8.7 Static Initializers 258
8.8 Constructor Declarations 258

8.8.1 Formal Parameters 259
8.8.2 Constructor Signature 260
8.8.3 Constructor Modifiers 260
8.8.4 Generic Constructors 261
8.8.5 Constructor Throws 262
8.8.6 The Type of a Constructor 262
8.8.7 Constructor Body 262

8.8.7.1 Explicit Constructor Invocations 263
8.8.8 Constructor Overloading 267
8.8.9 Default Constructor 267
8.8.10 Preventing Instantiation of a Class 268

8.9 Enum Types 269
8.9.1 Enum Constants 270
8.9.2 Enum Body Declarations 271
8.9.3 Enum Members 273

9 Interfaces 279
9.1 Interface Declarations 280

9.1.1 Interface Modifiers 280
9.1.1.1 abstract Interfaces 281
9.1.1.2 strictfp Interfaces 281

9.1.2 Generic Interfaces and Type Parameters 281
9.1.3 Superinterfaces and Subinterfaces 282
9.1.4 Interface Body and Member Declarations 284

9.2 Interface Members 284
9.3 Field (Constant) Declarations 285

9.3.1 Initialization of Fields in Interfaces 287
9.4 Method Declarations 288

9.4.1 Inheritance and Overriding 289
9.4.1.1 Overriding (by Instance Methods) 290
9.4.1.2 Requirements in Overriding 291
9.4.1.3 Inheriting Methods with Override-Equivalent

Signatures 291
9.4.2 Overloading 292
9.4.3 Interface Method Body 293

The Java® Language Specification

x

9.5 Member Type Declarations 293
9.6 Annotation Types 294

9.6.1 Annotation Type Elements 295
9.6.2 Defaults for Annotation Type Elements 299
9.6.3 Repeatable Annotation Types 300
9.6.4 Predefined Annotation Types 304

9.6.4.1 @Target 304
9.6.4.2 @Retention 305
9.6.4.3 @Inherited 306
9.6.4.4 @Override 306
9.6.4.5 @SuppressWarnings 307
9.6.4.6 @Deprecated 308
9.6.4.7 @SafeVarargs 309
9.6.4.8 @Repeatable 310
9.6.4.9 @FunctionalInterface 310

9.7 Annotations 310
9.7.1 Normal Annotations 311
9.7.2 Marker Annotations 313
9.7.3 Single-Element Annotations 314
9.7.4 Where Annotations May Appear 315
9.7.5 Multiple Annotations of the Same Type 320

9.8 Functional Interfaces 321
9.9 Function Types 325

10 Arrays 331
10.1 Array Types 332
10.2 Array Variables 332
10.3 Array Creation 335
10.4 Array Access 335
10.5 Array Store Exception 336
10.6 Array Initializers 337
10.7 Array Members 339
10.8 Class Objects for Arrays 340
10.9 An Array of Characters Is Not a String 342

11 Exceptions 343
11.1 The Kinds and Causes of Exceptions 344

11.1.1 The Kinds of Exceptions 344
11.1.2 The Causes of Exceptions 345
11.1.3 Asynchronous Exceptions 346

11.2 Compile-Time Checking of Exceptions 347
11.2.1 Exception Analysis of Expressions 348
11.2.2 Exception Analysis of Statements 349
11.2.3 Exception Checking 350

11.3 Run-Time Handling of an Exception 352

The Java® Language Specification

xi

12 Execution 357
12.1 Java Virtual Machine Startup 357

12.1.1 Load the Class Test 358
12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve 358
12.1.3 Initialize Test: Execute Initializers 359
12.1.4 Invoke Test.main 360

12.2 Loading of Classes and Interfaces 360
12.2.1 The Loading Process 361

12.3 Linking of Classes and Interfaces 362
12.3.1 Verification of the Binary Representation 362
12.3.2 Preparation of a Class or Interface Type 363
12.3.3 Resolution of Symbolic References 363

12.4 Initialization of Classes and Interfaces 364
12.4.1 When Initialization Occurs 365
12.4.2 Detailed Initialization Procedure 367

12.5 Creation of New Class Instances 370
12.6 Finalization of Class Instances 373

12.6.1 Implementing Finalization 375
12.6.2 Interaction with the Memory Model 376

12.7 Unloading of Classes and Interfaces 378
12.8 Program Exit 379

13 Binary Compatibility 381
13.1 The Form of a Binary 382
13.2 What Binary Compatibility Is and Is Not 388
13.3 Evolution of Packages 389
13.4 Evolution of Classes 389

13.4.1 abstract Classes 389
13.4.2 final Classes 389
13.4.3 public Classes 390
13.4.4 Superclasses and Superinterfaces 390
13.4.5 Class Type Parameters 391
13.4.6 Class Body and Member Declarations 392
13.4.7 Access to Members and Constructors 393
13.4.8 Field Declarations 394
13.4.9 final Fields and static Constant Variables 397
13.4.10 static Fields 399
13.4.11 transient Fields 399
13.4.12 Method and Constructor Declarations 400
13.4.13 Method and Constructor Type Parameters 400
13.4.14 Method and Constructor Formal Parameters 401
13.4.15 Method Result Type 402
13.4.16 abstract Methods 402
13.4.17 final Methods 403
13.4.18 native Methods 403
13.4.19 static Methods 404
13.4.20 synchronized Methods 404

The Java® Language Specification

xii

13.4.21 Method and Constructor Throws 404
13.4.22 Method and Constructor Body 404
13.4.23 Method and Constructor Overloading 405
13.4.24 Method Overriding 406
13.4.25 Static Initializers 406
13.4.26 Evolution of Enums 406

13.5 Evolution of Interfaces 406
13.5.1 public Interfaces 406
13.5.2 Superinterfaces 407
13.5.3 Interface Members 407
13.5.4 Interface Type Parameters 407
13.5.5 Field Declarations 408
13.5.6 Interface Method Declarations 408
13.5.7 Evolution of Annotation Types 409

14 Blocks and Statements 411
14.1 Normal and Abrupt Completion of Statements 411
14.2 Blocks 413
14.3 Local Class Declarations 413
14.4 Local Variable Declaration Statements 414

14.4.1 Local Variable Declarators and Types 415
14.4.2 Execution of Local Variable Declarations 416

14.5 Statements 416
14.6 The Empty Statement 418
14.7 Labeled Statements 419
14.8 Expression Statements 420
14.9 The if Statement 421

14.9.1 The if-then Statement 422
14.9.2 The if-then-else Statement 422

14.10 The assert Statement 422
14.11 The switch Statement 425
14.12 The while Statement 429

14.12.1 Abrupt Completion of while Statement 430
14.13 The do Statement 431

14.13.1 Abrupt Completion of do Statement 431
14.14 The for Statement 433

14.14.1 The basic for Statement 433
14.14.1.1 Initialization of for Statement 434
14.14.1.2 Iteration of for Statement 434
14.14.1.3 Abrupt Completion of for Statement 435

14.14.2 The enhanced for statement 436
14.15 The break Statement 438
14.16 The continue Statement 440
14.17 The return Statement 442
14.18 The throw Statement 444
14.19 The synchronized Statement 446
14.20 The try statement 447

The Java® Language Specification

xiii

14.20.1 Execution of try-catch 450
14.20.2 Execution of try-finally and try-catch-finally 452
14.20.3 try-with-resources 454

14.20.3.1 Basic try-with-resources 455
14.20.3.2 Extended try-with-resources 458

14.21 Unreachable Statements 458

15 Expressions 465
15.1 Evaluation, Denotation, and Result 465
15.2 Forms of Expressions 466
15.3 Type of an Expression 467
15.4 FP-strict Expressions 468
15.5 Expressions and Run-Time Checks 468
15.6 Normal and Abrupt Completion of Evaluation 470
15.7 Evaluation Order 472

15.7.1 Evaluate Left-Hand Operand First 472
15.7.2 Evaluate Operands before Operation 474
15.7.3 Evaluation Respects Parentheses and Precedence 475
15.7.4 Argument Lists are Evaluated Left-to-Right 476
15.7.5 Evaluation Order for Other Expressions 477

15.8 Primary Expressions 477
15.8.1 Lexical Literals 478
15.8.2 Class Literals 479
15.8.3 this 480
15.8.4 Qualified this 481
15.8.5 Parenthesized Expressions 481

15.9 Class Instance Creation Expressions 482
15.9.1 Determining the Class being Instantiated 484
15.9.2 Determining Enclosing Instances 486
15.9.3 Choosing the Constructor and its Arguments 487
15.9.4 Run-Time Evaluation of Class Instance Creation

Expressions 490
15.9.5 Anonymous Class Declarations 491

15.9.5.1 Anonymous Constructors 491
15.10 Array Creation and Access Expressions 493

15.10.1 Array Creation Expressions 493
15.10.2 Run-Time Evaluation of Array Creation Expressions 494
15.10.3 Array Access Expressions 497
15.10.4 Run-Time Evaluation of Array Access Expressions 498

15.11 Field Access Expressions 500
15.11.1 Field Access Using a Primary 500
15.11.2 Accessing Superclass Members using super 503

15.12 Method Invocation Expressions 505
15.12.1 Compile-Time Step 1: Determine Class or Interface to

Search 506
15.12.2 Compile-Time Step 2: Determine Method Signature 509

15.12.2.1 Identify Potentially Applicable Methods 515

The Java® Language Specification

xiv

15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable
by Strict Invocation 517

15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable
by Loose Invocation 519

15.12.2.4 Phase 3: Identify Methods Applicable by Variable Arity
Invocation 519

15.12.2.5 Choosing the Most Specific Method 520
15.12.2.6 Method Invocation Type 523

15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? 523
15.12.4 Run-Time Evaluation of Method Invocation 526

15.12.4.1 Compute Target Reference (If Necessary) 527
15.12.4.2 Evaluate Arguments 528
15.12.4.3 Check Accessibility of Type and Method 529
15.12.4.4 Locate Method to Invoke 530
15.12.4.5 Create Frame, Synchronize, Transfer Control 534

15.13 Method Reference Expressions 536
15.13.1 Compile-Time Declaration of a Method Reference 539
15.13.2 Type of a Method Reference 544
15.13.3 Run-Time Evaluation of Method References 546

15.14 Postfix Expressions 549
15.14.1 Expression Names 550
15.14.2 Postfix Increment Operator ++ 550
15.14.3 Postfix Decrement Operator -- 551

15.15 Unary Operators 551
15.15.1 Prefix Increment Operator ++ 553
15.15.2 Prefix Decrement Operator -- 553
15.15.3 Unary Plus Operator + 554
15.15.4 Unary Minus Operator - 554
15.15.5 Bitwise Complement Operator ~ 555
15.15.6 Logical Complement Operator ! 555

15.16 Cast Expressions 556
15.17 Multiplicative Operators 557

15.17.1 Multiplication Operator * 558
15.17.2 Division Operator / 559
15.17.3 Remainder Operator % 561

15.18 Additive Operators 563
15.18.1 String Concatenation Operator + 564
15.18.2 Additive Operators (+ and -) for Numeric Types 566

15.19 Shift Operators 568
15.20 Relational Operators 569

15.20.1 Numerical Comparison Operators <, <=, >, and >= 570
15.20.2 Type Comparison Operator instanceof 571

15.21 Equality Operators 572
15.21.1 Numerical Equality Operators == and != 573
15.21.2 Boolean Equality Operators == and != 574
15.21.3 Reference Equality Operators == and != 574

15.22 Bitwise and Logical Operators 575
15.22.1 Integer Bitwise Operators &, ^, and | 575

The Java® Language Specification

xv

15.22.2 Boolean Logical Operators &, ^, and | 576
15.23 Conditional-And Operator && 577
15.24 Conditional-Or Operator || 577
15.25 Conditional Operator ? : 578

15.25.1 Boolean Conditional Expressions 586
15.25.2 Numeric Conditional Expressions 586
15.25.3 Reference Conditional Expressions 587

15.26 Assignment Operators 588
15.26.1 Simple Assignment Operator = 589
15.26.2 Compound Assignment Operators 595

15.27 Lambda Expressions 601
15.27.1 Lambda Parameters 603
15.27.2 Lambda Body 606
15.27.3 Type of a Lambda Expression 609
15.27.4 Run-Time Evaluation of Lambda Expressions 611

15.28 Constant Expressions 612

16 Definite Assignment 615
16.1 Definite Assignment and Expressions 621

16.1.1 Boolean Constant Expressions 621
16.1.2 Conditional-And Operator && 621
16.1.3 Conditional-Or Operator || 622
16.1.4 Logical Complement Operator ! 622
16.1.5 Conditional Operator ? : 622
16.1.6 Conditional Operator ? : 623
16.1.7 Other Expressions of Type boolean 623
16.1.8 Assignment Expressions 623
16.1.9 Operators ++ and -- 624
16.1.10 Other Expressions 624

16.2 Definite Assignment and Statements 625
16.2.1 Empty Statements 625
16.2.2 Blocks 625
16.2.3 Local Class Declaration Statements 627
16.2.4 Local Variable Declaration Statements 627
16.2.5 Labeled Statements 627
16.2.6 Expression Statements 628
16.2.7 if Statements 628
16.2.8 assert Statements 628
16.2.9 switch Statements 629
16.2.10 while Statements 629
16.2.11 do Statements 630
16.2.12 for Statements 630

16.2.12.1 Initialization Part of for Statement 631
16.2.12.2 Incrementation Part of for Statement 631

16.2.13 break, continue, return, and throw Statements 632
16.2.14 synchronized Statements 632
16.2.15 try Statements 632

The Java® Language Specification

xvi

16.3 Definite Assignment and Parameters 634
16.4 Definite Assignment and Array Initializers 634
16.5 Definite Assignment and Enum Constants 634
16.6 Definite Assignment and Anonymous Classes 635
16.7 Definite Assignment and Member Types 635
16.8 Definite Assignment and Static Initializers 636
16.9 Definite Assignment, Constructors, and Instance Initializers 636

17 Threads and Locks 639
17.1 Synchronization 640
17.2 Wait Sets and Notification 640

17.2.1 Wait 641
17.2.2 Notification 642
17.2.3 Interruptions 643
17.2.4 Interactions of Waits, Notification, and Interruption 643

17.3 Sleep and Yield 644
17.4 Memory Model 645

17.4.1 Shared Variables 648
17.4.2 Actions 648
17.4.3 Programs and Program Order 649
17.4.4 Synchronization Order 650
17.4.5 Happens-before Order 651
17.4.6 Executions 654
17.4.7 Well-Formed Executions 655
17.4.8 Executions and Causality Requirements 655
17.4.9 Observable Behavior and Nonterminating Executions 658

17.5 final Field Semantics 660
17.5.1 Semantics of final Fields 662
17.5.2 Reading final Fields During Construction 662
17.5.3 Subsequent Modification of final Fields 663
17.5.4 Write-Protected Fields 664

17.6 Word Tearing 665
17.7 Non-Atomic Treatment of double and long 666

18 Type Inference 667
18.1 Concepts and Notation 668

18.1.1 Inference Variables 668
18.1.2 Constraint Formulas 669
18.1.3 Bounds 669

18.2 Reduction 671
18.2.1 Expression Compatibility Constraints 671
18.2.2 Type Compatibility Constraints 676
18.2.3 Subtyping Constraints 677
18.2.4 Type Equality Constraints 678
18.2.5 Checked Exception Constraints 679

18.3 Incorporation 681
18.3.1 Complementary Pairs of Bounds 682

The Java® Language Specification

xvii

18.3.2 Bounds Involving Capture Conversion 683
18.4 Resolution 684
18.5 Uses of Inference 686

18.5.1 Invocation Applicability Inference 686
18.5.2 Invocation Type Inference 688
18.5.3 Functional Interface Parameterization Inference 694
18.5.4 More Specific Method Inference 695

19 Syntax 699

Index 725

A Limited License Grant 765

xix

Preface to the Java SE 8 Edition

IN 1996, James Gosling, Bill Joy, and Guy Steele wrote for the First Edition of
The Java® Language Specification:

"We believe that the Java programming language is a mature language, ready for
widespread use. Nevertheless, we expect some evolution of the language in the
years to come. We intend to manage this evolution in a way that is completely
compatible with existing applications."

Java SE 8 represents the single largest evolution of the Java language in its history.
A relatively small number of features - lambda expressions, method references, and
functional interfaces - combine to offer a programming model that fuses the object-
oriented and functional styles. Under the leadership of Brian Goetz, this fusion
has been accomplished in a way that encourages best practices - immutability,
statelessness, compositionality - while preserving "the feel of Java" - readability,
simplicity, universality.

Crucially, the libraries of the Java SE platform have co-evolved with the Java
language. This means that using lambda expressions and method references to
represent behavior - for example, an operation to be applied to each element in
a list - is productive and performant "out of the box". In a similar fashion, the
Java Virtual Machine has co-evolved with the Java language to ensure that default
methods support library evolution as consistently as possible across compile time
and run time, given the constraints of separate compilation.

Initiatives to add first-class functions to the Java language have been around since
the 1990s. The BGGA and CICE proposals circa 2007 brought new energy to
the topic, while the creation of Project Lambda in OpenJDK circa 2009 attracted
unprecedented levels of interest. The addition of method handles to the JVM in
Java SE 7 opened the door to new implementation techniques while retaining
"write once, run anywhere." In time, language changes were overseen by JSR 335,
Lambda Expressions for the Java Programming Language, whose Expert Group
consisted of Joshua Bloch, Kevin Bourrillion, Andrey Breslav, Rémi Forax, Dan
Heidinga, Doug Lea, Bob Lee, David Lloyd, Sam Pullara, Srikanth Sankaran, and
Vladimir Zakharov.

Programming language design typically involves grappling with degrees of
complexity utterly hidden from the language's users. (For this reason, it is often
compared to an iceberg: 90% of it is invisible.) In JSR 335, the greatest complexity

PREFACE TO THE JAVA SE 8 EDITION

xx

lurked in the interaction of implicitly typed lambda expressions with overload
resolution. In this and many other areas, Dan Smith at Oracle did an outstanding
job of thoroughly specifying the desired behavior. His words are to be found
throughout this specification, including an entirely new chapter on type inference.

Another initiative in Java SE 8 has been to enhance the utility of annotations, one
of the most popular features of the Java language. First, the Java grammar has
been extended to allow annotations on types in many language constructs, forming
the basis for novel static analysis tools such as the Checker Framework. This
feature was specified by JSR 308, Annotations on Java Types, led by Michael Ernst
with an Expert Group of myself, Doug Lea, and Srikanth Sankaran. The changes
involved in this specification were wide-ranging, and the unstinting efforts of
Michael Ernst and Werner Dietl over many years are warmly recognized. Second,
annotations may be "repeated" on a language construct, to the great benefit of APIs
that model domain-specific configuration with annotation types. Michael Keith and
Bill Shannon in Java EE initiated and guided this feature.

Many colleagues in the Java Platform Group at Oracle have provided valuable
support to this specification: Leonid Arbouzov, Mandy Chung, Joe Darcy, Robert
Field, Joel Borggrén-Franck, Sonali Goel, Jon Gibbons, Jeannette Hung, Stuart
Marks, Eric McCorkle, Matherey Nunez, Mark Reinhold, Vicente Romero, John
Rose, Georges Saab, Steve Sides, Bernard Traversat, and Michel Trudeau.

Perhaps the greatest acknowledgement must go to the compiler engineers who
turn the specification into real software. Maurizio Cimadamore at Oracle worked
heroically from the earliest days on the design of lambda expressions and their
implementation in javac. Support for Java SE 8 features in Eclipse was contributed
by Jayaprakash Arthanareeswaran, Shankha Banerjee, Anirban Chakraborty,
Andrew Clement, Stephan Herrmann, Markus Keller, Jesper Møller, Manoj Palat,
Srikanth Sankaran, and Olivier Thomann; and in IntelliJ by Anna Kozlova, Alexey
Kudravtsev, and Roman Shevchenko. They deserve the thanks of the entire Java
community.

Java SE 8 is a renaissance for the Java language. While some search for the
"next great language", we believe that programming in Java is more exciting and
productive than ever. We hope that it continues to wear well for you.

Alex Buckley
Santa Clara, California

March, 2014

1

C H A P T E R 1
Introduction

THE Java® programming language is a general-purpose, concurrent, class-
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency in the language. The Java programming language
is related to C and C++ but is organized rather differently, with a number of aspects
of C and C++ omitted and a few ideas from other languages included. It is intended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Java programming language is strongly and statically typed. This specification
clearly distinguishes between the compile-time errors that can and must be detected
at compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is a relatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit deallocation (as in C's free or C++'s delete).
High-performance garbage-collected implementations can have bounded pauses to
support systems programming and real-time applications. The language does not
include any unsafe constructs, such as array accesses without index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecode instruction
set and binary format defined in The Java Virtual Machine Specification, Java SE
8 Edition.

1.1 Organization of the Specification INTRODUCTION

2

1.1 Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two's-complement integers, single- and
double-precision IEEE 754 standard floating-point numbers, a boolean type, and
a Unicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamically created objects that are either
instances of classes or arrays. Many references to each object can exist. All objects
(including arrays) support the methods of the class Object, which is the (single)
root of the class hierarchy. A predefined String class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds a value
of that exact primitive type. A variable of a class type can hold a null reference or
a reference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or a reference to an
instance of any class that implements the interface. A variable of an array type can
hold a null reference or a reference to an array. A variable of class type Object can
hold a null reference or a reference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of a numeric
operator to a common type where an operation can be performed. There are no

INTRODUCTION Organization of the Specification 1.1

3

loopholes in the language; casts on reference types are checked at run time to ensure
type safety.

Chapter 6 describes declarations and names, and how to determine what names
mean (denote). The language does not require types or their members to be declared
before they are used. Declaration order is significant only for local variables, local
classes, and the order of initializers of fields in a class or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes,
and interfaces. This helps in writing large programs by distinguishing the
implementation of a type from its users and those who extend it. Recommended
naming conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages
similar to the modules of Modula. The members of a package are classes, interfaces,
and subpackages. Packages are divided into compilation units. Compilation units
contain type declarations and can import types from other packages to give them
short names. Packages have names in a hierarchical name space, and the Internet
domain name system can usually be used to form unique package names.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Class variables exist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object this during their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementation
of each class is derived from that of a single superclass, and ultimately from the
class Object. Variables of a class type can reference an instance of that class or of
any subclass of that class, allowing new types to be used with existing methods,
polymorphically.

Classes support concurrent programming with synchronized methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptional conditions are handled. Objects
can declare a finalize method that will be invoked before the objects are discarded
by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration "headers" separate from the
implementation of a class nor separate type and class hierarchies.

1.1 Organization of the Specification INTRODUCTION

4

A special form of classes, enums, support the definition of small sets of values and
their manipulation in a type safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference
to any object that implements the interface. Multiple interface inheritance is
supported.

Annotation types are specialized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type Object. The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declares it. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operations in the program detected by the Java Virtual Machine
result in run-time exceptions, such as NullPointerException. Errors result from
failures detected by the Java Virtual Machine, such as OutOfMemoryError. Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normally stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java Virtual Machine, linked to
other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the object

INTRODUCTION Organization of the Specification 1.1

5

is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a class is no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
types on other types that use the changed types but have not been recompiled. These
considerations are of interest to developers of types that are to be widely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no goto statement, but includes labeled break and continue
statements. Unlike C, the Java programming language requires boolean (or
Boolean) expressions in control-flow statements, and does not convert types to
boolean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchronized statement provides basic object-level monitor
locking. A try statement can include catch and finally clauses to protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variables in order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 describes a variety of type inference algorithms used to test applicability
of generic methods and to infer types in a generic method invocation.

Chapter 19 presents a syntactic grammar for the language.

1.2 Example Programs INTRODUCTION

6

1.2 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.print(i == 0 ? args[i] : " " + args[i]);
 System.out.println();
 }
}

On a machine with the Oracle JDK installed, this class, stored in the file Test.java,
can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.3 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using a single identifier N, the intended reference is to the
class or interface named N in the package java.lang. We use the canonical name
(§6.7) for classes or interfaces from packages other than java.lang.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

This is non-normative information. It provides intuition, rationale, advice, examples, etc.

The type system of the Java programming language occasionally relies on the
notion of a substitution. The notation [F1:=T1,...,Fn:=Tn] denotes substitution
of Fi by Ti for 1 ≤ i ≤ n.

INTRODUCTION Relationship to Predefined Classes and Interfaces 1.4

7

1.4 Relationship to Predefined Classes and Interfaces

As noted above, this specification often refers to classes of the Java SE
platform API. In particular, some classes have a special relationship with
the Java programming language. Examples include classes such as Object,
Class, ClassLoader, String, Thread, and the classes and interfaces in package
java.lang.reflect, among others. This specification constrains the behavior of
such classes and interfaces, but does not provide a complete specification for them.
The reader is referred to the Java SE platform API documentation.

Consequently, this specification does not describe reflection in any detail.
Many linguistic constructs have analogs in the Core Reflection API
(java.lang.reflect) and the Language Model API (javax.lang.model), but
these are generally not discussed here. For example, when we list the ways in which
an object can be created, we generally do not include the ways in which the Core
Reflection API can accomplish this. Readers should be aware of these additional
mechanisms even though they are not mentioned in the text.

1.5 Feedback

Readers are invited to report technical errors and ambiguities in The Java®

Language Specification to jls-jvms-spec-comments@openjdk.java.net.

Questions concerning the behavior of javac (the reference compiler for the Java
programming language), and in particular its conformance to this specification,
may be sent to compiler-dev@openjdk.java.net.

1.6 References

Apple Computer. Dylan Reference Manual. Apple Computer Inc., Cupertino, California.
September 29, 1995.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp Object System Specification, X3J13 Document
88-002R, June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp: The Language,
2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770-864.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Massachusetts, 1990, reprinted with corrections October 1992, ISBN
0-201-51459-1.

1.6 References INTRODUCTION

8

Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-Wesley, Reading,
Massachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
0-13-596396.

Hoare, C. A. R. Hints on Programming Language Design. Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Association
for Computing Machinery, New York, October 1973.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Available
from Global Engineering Documents, 15 Inverness Way East, Englewood, Colorado
80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Møller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading,
Massachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet. The Mesa Programming Language,
Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, The. The Unicode Standard, Version 6.2.0. Mountain View, California,
2012, ISBN 978-1-936213-07-8.

9

C H A P T E R 2
Grammars

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the
goal symbol, a given context-free grammar specifies a language, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with a right-hand side of a production for which
the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammar for the Java programming language is given in §3 (Lexical
Structure). This grammar has as its terminal symbols the characters of the Unicode
character set. It defines a set of productions, starting from the goal symbol Input
(§3.5), that describe how sequences of Unicode characters (§3.1) are translated into
a sequence of input elements (§3.5).

These input elements, with white space (§3.6) and comments (§3.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (§3.5). These tokens are the identifiers (§3.8),

2.3 The Syntactic Grammar GRAMMARS

10

keywords (§3.9), literals (§3.10), separators (§3.11), and operators (§3.12) of the
Java programming language.

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has tokens defined by the lexical grammar
as its terminal symbols. It defines a set of productions, starting from the goal
symbol CompilationUnit (§7.3), that describe how sequences of tokens can form
syntactically correct programs.

For convenience, the syntactic grammar is presented all together in Chapter 19.

2.4 Grammar Notation

Terminal symbols are shown in fixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly as written.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by a colon. One
or more alternative definitions for the nonterminal then follow on succeeding lines.

For example, the syntactic production:

IfThenStatement:
if (Expression) Statement

states that the nonterminal IfThenStatement represents the token if, followed by a left
parenthesis token, followed by an Expression, followed by a right parenthesis token,
followed by a Statement.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of x.

For example, the syntactic production:

ArgumentList:
Argument {, Argument}

GRAMMARS Grammar Notation 2.4

11

states that an ArgumentList consists of an Argument, followed by zero or more occurrences
of a comma and an Argument. The result is that an ArgumentList may contain any positive
number of arguments.

The syntax [x] on the right-hand side of a production denotes zero or one
occurrences of x. That is, x is an optional symbol. The alternative which contains
the optional symbol actually defines two alternatives: one that omits the optional
symbol and one that includes it.

This means that:

BreakStatement:
break [Identifier] ;

is a convenient abbreviation for:

BreakStatement:
break ;
break Identifier ;

As another example, it means that:

BasicForStatement:
for ([ForInit] ; [Expression] ; [ForUpdate]) Statement

is a convenient abbreviation for:

BasicForStatement:
for (; [Expression] ; [ForUpdate]) Statement
for (ForInit ; [Expression] ; [ForUpdate]) Statement

which in turn is an abbreviation for:

BasicForStatement:
for (; ; [ForUpdate]) Statement
for (; Expression ; [ForUpdate]) Statement
for (ForInit ; ; [ForUpdate]) Statement
for (ForInit ; Expression ; [ForUpdate]) Statement

which in turn is an abbreviation for:

2.4 Grammar Notation GRAMMARS

12

BasicForStatement:
for (; ;) Statement
for (; ; ForUpdate) Statement
for (; Expression ;) Statement
for (; Expression ; ForUpdate) Statement
for (ForInit ; ;) Statement
for (ForInit ; ; ForUpdate) Statement
for (ForInit ; Expression ;) Statement
for (ForInit ; Expression ; ForUpdate) Statement

so the nonterminal BasicForStatement actually has eight alternative right-hand sides.

A very long right-hand side may be continued on a second line by clearly indenting
the second line.

For example, the syntactic grammar contains this production:

NormalClassDeclaration:
{ClassModifier} class Identifier [TypeParameters]

 [Superclass] [Superinterfaces] ClassBody

which defines one right-hand side for the nonterminal NormalClassDeclaration.

The phrase (one of) on the right-hand side of a production signifies that each of the
terminal symbols on the following line or lines is an alternative definition.

For example, the lexical grammar contains the production:

ZeroToThree:
(one of)
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree:
0
1
2
3

When an alternative in a production appears to be a token, it represents the sequence
of characters that would make up such a token.

Thus, the production:

BooleanLiteral:
(one of)
true false

GRAMMARS Grammar Notation 2.4

13

is shorthand for:

BooleanLiteral:
t r u e
f a l s e

The right-hand side of a production may specify that certain expansions are not
permitted by using the phrase "but not" and then indicating the expansions to be
excluded.

For example:

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

Finally, a few nonterminals are defined by a narrative phrase in roman type where
it would be impractical to list all the alternatives.

For example:

RawInputCharacter:
any Unicode character

15

C H A P T E R 3
Lexical Structure

THIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (§3.1), but lexical translations are provided (§3.2)
so that Unicode escapes (§3.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (§3.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical translations are reduced to a
sequence of input elements (§3.5), which are white space (§3.6), comments (§3.7),
and tokens. The tokens are the identifiers (§3.8), keywords (§3.9), literals (§3.10),
separators (§3.11), and operators (§3.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at http://
www.unicode.org/.

The Java SE platform tracks the Unicode Standard as it evolves. The precise version
of Unicode used by a given release is specified in the documentation of the class
Character.

Versions of the Java programming language prior to JDK 1.1 used Unicode 1.1.5. Upgrades
to newer versions of the Unicode Standard occurred in JDK 1.1 (to Unicode 2.0), JDK 1.1.7
(to Unicode 2.1), Java SE 1.4 (to Unicode 3.0), Java SE 5.0 (to Unicode 4.0), Java SE 7 (to
Unicode 6.0), and Java SE 8 (to Unicode 6.2).

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to allow for characters whose representation
requires more than 16 bits. The range of legal code points is now U+0000
to U+10FFFF, using the hexadecimal U+n notation. Characters whose code

3.2 Lexical Translations LEXICAL STRUCTURE

16

points are greater than U+FFFF are called supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In this encoding, supplementary characters are
represented as pairs of 16-bit code units, the first from the high-surrogates range,
(U+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to U
+DFFF). For characters in the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding.

Some APIs of the Java SE platform, primarily in the Character class, use 32-bit integers
to represent code points as individual entities. The Java SE platform provides methods to
convert between 16-bit and 32-bit representations.

This specification uses the terms code point and UTF-16 code unit where the
representation is relevant, and the generic term character where the representation
is irrelevant to the discussion.

Except for comments (§3.7), identifiers, and the contents of character and string
literals (§3.10.4, §3.10.5), all input elements (§3.5) in a program are formed
only from ASCII characters (or Unicode escapes (§3.3) which result in ASCII
characters).

ASCII (ANSI X3.4) is the American Standard Code for Information Interchange. The first
128 characters of the Unicode UTF-16 encoding are the ASCII characters.

3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of tokens, using the
following three lexical translation steps, which are applied in turn:

1. A translation of Unicode escapes (§3.3) in the raw stream of Unicode characters
to the corresponding Unicode character. A Unicode escape of the form \uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This translation step allows any program to be expressed
using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream of input
characters and line terminators (§3.4).

3. A translation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (§3.5) which, after white space

LEXICAL STRUCTURE Unicode Escapes 3.3

17

(§3.6) and comments (§3.7) are discarded, comprise the tokens (§3.5) that are
the terminal symbols of the syntactic grammar (§2.3).

The longest possible translation is used at each step, even if the result does not
ultimately make a correct program while another lexical translation would. There
is one exception: if lexical translation occurs in a type context (§4.11) and the
input stream has two or more consecutive > characters that are followed by a non->
character, then each > character must be translated to the token for the numerical
comparison operator >.

The input characters a--b are tokenized (§3.5) as a, --, b, which is not part of any
grammatically correct program, even though the tokenization a, -, -, b could be part of a
grammatically correct program.

Without the rule for > characters, two consecutive > brackets in a type such as
List<List<String>> would be tokenized as the signed right shift operator >>, while
three consecutive > brackets in a type such as List<List<List<String>>> would be
tokenized as the unsigned right shift operator >>>. Worse, the tokenization of four or more
consecutive > brackets in a type such as List<List<List<List<String>>>> would be
ambiguous, as various combinations of >, >>, and >>> tokens could represent the >>>>
characters.

3.3 Unicode Escapes

A compiler for the Java programming language ("Java compiler") first recognizes
Unicode escapes in its input, translating the ASCII characters \u followed by four
hexadecimal digits to the UTF-16 code unit (§3.1) for the indicated hexadecimal
value, and passing all other characters unchanged. Representing supplementary
characters requires two consecutive Unicode escapes. This translation step results
in a sequence of Unicode input characters.

UnicodeInputCharacter:
UnicodeEscape
RawInputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u {u}

3.3 Unicode Escapes LEXICAL STRUCTURE

18

HexDigit:
(one of)
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

RawInputCharacter:
any Unicode character

The \, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that is a backslash \, input processing must consider how many other \ characters
contiguously precede it, separating it from a non-\ character or the start of the input
stream. If this number is even, then the \ is eligible to begin a Unicode escape; if
the number is odd, then the \ is not eligible to begin a Unicode escape.

For example, the raw input "\\u2122=\u2122" results in the eleven characters " \ \ u
2 1 2 2 = ™ " (\u2122 is the Unicode encoding of the character ™).

If an eligible \ is not followed by u, then it is treated as a RawInputCharacter and
remains part of the escaped Unicode stream.

If an eligible \ is followed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

The character produced by a Unicode escape does not participate in further Unicode
escapes.

For example, the raw input \u005cu005a results in the six characters \ u 0 0 5 a,
because 005c is the Unicode value for \. It does not result in the character Z, which is
Unicode character 005a, because the \ that resulted from the \u005c is not interpreted as
the start of a further Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapes in the source text of the program to ASCII by adding an extra
u - for example, \uxxxx becomes \uuxxxx - while simultaneously converting non-
ASCII characters in the source text to Unicode escapes containing a single u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multiple u's are present to a
sequence of Unicode characters with one fewer u, while simultaneously converting
each escape sequence with a single u to the corresponding single Unicode character.

LEXICAL STRUCTURE Line Terminators 3.4

19

A Java compiler should use the \uxxxx notation as an output format to display Unicode
characters when a suitable font is not available.

3.4 Line Terminators

A Java compiler next divides the sequence of Unicode input characters into lines
by recognizing line terminators.

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return"
the ASCII CR character followed by the ASCII LF character

InputCharacter:
UnicodeInputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the // form of a comment (§3.7).

The lines defined by line terminators may determine the line numbers produced by a Java
compiler.

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing (§3.3)
and then input line recognition (§3.4) are reduced to a sequence of input elements.

Input:
{InputElement} [Sub]

InputElement:
WhiteSpace
Comment
Token

3.6 White Space LEXICAL STRUCTURE

20

Token:
Identifier
Keyword
Literal
Separator
Operator

Sub:
the ASCII SUB character, also known as "control-Z"

Those input elements that are not white space or comments are tokens. The tokens
are the terminal symbols of the syntactic grammar (§2.3).

White space (§3.6) and comments (§3.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII characters
- and = in the input can form the operator token -= (§3.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the ASCII
SUB character (\u001a, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokens x and y in the resulting input stream. If x precedes y, then we
say that x is to the left of y and that y is to the right of x.

For example, in this simple piece of code:

class Empty {
}

we say that the } token is to the right of the { token, even though it appears, in this two-
dimensional representation, downward and to the left of the { token. This convention about
the use of the words left and right allows us to speak, for example, of the right-hand operand
of a binary operator or of the left-hand side of an assignment.

3.6 White Space

White space is defined as the ASCII space character, horizontal tab character, form
feed character, and line terminator characters (§3.4).

LEXICAL STRUCTURE Comments 3.7

21

WhiteSpace:
the ASCII SP character, also known as "space"
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

3.7 Comments

There are two kinds of comments:

• /* text */

A traditional comment: all the text from the ASCII characters /* to the ASCII
characters */ is ignored (as in C and C++).

• // text

An end-of-line comment: all the text from the ASCII characters // to the end of
the line is ignored (as in C++).

Comment:
TraditionalComment
EndOfLineComment

TraditionalComment:
/ * CommentTail

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:
/

* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacter but not *
LineTerminator

3.8 Identifiers LEXICAL STRUCTURE

22

NotStarNotSlash:
InputCharacter but not * or /
LineTerminator

EndOfLineComment:
/ / {InputCharacter}

These productions imply all of the following properties:

• Comments do not nest.

• /* and */ have no special meaning in comments that begin with //.

• // has no special meaning in comments that begin with /* or /**.

As a result, the following text is a single complete comment:

/* this comment /* // /** ends here: */

The lexical grammar implies that comments do not occur within character literals
(§3.10.4) or string literals (§3.10.5).

3.8 Identifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
JavaLetter {JavaLetterOrDigit}

JavaLetter:
any Unicode character that is a "Java letter"

JavaLetterOrDigit:
any Unicode character that is a "Java letter-or-digit"

A "Java letter" is a character for which the method
Character.isJavaIdentifierStart(int) returns true.

LEXICAL STRUCTURE Identifiers 3.8

23

A "Java letter-or-digit" is a character for which the method
Character.isJavaIdentifierPart(int) returns true.

The "Java letters" include uppercase and lowercase ASCII Latin letters A-Z (\u0041-
\u005a), and a-z (\u0061-\u007a), and, for historical reasons, the ASCII underscore (_,
or \u005f) and dollar sign ($, or \u0024). The $ sign should be used only in mechanically
generated source code or, rarely, to access pre-existing names on legacy systems.

The "Java digits" include the ASCII digits 0-9 (\u0030-\u0039).

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmers to use identifiers in their
programs that are written in their native languages.

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (§3.9), boolean literal (§3.10.3), or the null literal (§3.10.7), or a compile-
time error occurs.

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit. Identifiers that have the same external
appearance may yet be different.

For example, the identifiers consisting of the single letters LATIN CAPITAL LETTER
A (A, \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL
LETTER ALPHA (A, \u0391), CYRILLIC SMALL LETTER A (a, \u0430) and
MATHEMATICAL BOLD ITALIC SMALL A (a, \ud835\udc82) are all different.

Unicode composite characters are different from their canonical equivalent decomposed
characters. For example, a LATIN CAPITAL LETTER A ACUTE (Á, \u00c1) is different
from a LATIN CAPITAL LETTER A (A, \u0041) immediately followed by a NON-
SPACING ACUTE (´, \u0301) in identifiers. See The Unicode Standard, Section 3.11
"Normalization Forms".

Examples of identifiers are:

• String

• i3

• αρετη
• MAX_VALUE

• isLetterOrDigit

3.9 Keywords LEXICAL STRUCTURE

24

3.9 Keywords

50 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (§3.8).

Keyword:
(one of)
abstract continue for new switch

assert default if package synchronized

boolean do goto private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

The keywords const and goto are reserved, even though they are not currently used.
This may allow a Java compiler to produce better error messages if these C++ keywords
incorrectly appear in programs.

While true and false might appear to be keywords, they are technically boolean literals
(§3.10.3). Similarly, while null might appear to be a keyword, it is technically the null
literal (§3.10.7).

3.10 Literals

A literal is the source code representation of a value of a primitive type (§4.2), the
String type (§4.3.3), or the null type (§4.1).

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

LEXICAL STRUCTURE Literals 3.10

25

3.10.1 Integer Literals

An integer literal may be expressed in decimal (base 10), hexadecimal (base 16),
octal (base 8), or binary (base 2).

IntegerLiteral:
DecimalIntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral
BinaryIntegerLiteral

DecimalIntegerLiteral:
DecimalNumeral [IntegerTypeSuffix]

HexIntegerLiteral:
HexNumeral [IntegerTypeSuffix]

OctalIntegerLiteral:
OctalNumeral [IntegerTypeSuffix]

BinaryIntegerLiteral:
BinaryNumeral [IntegerTypeSuffix]

IntegerTypeSuffix:
(one of)
l L

An integer literal is of type long if it is suffixed with an ASCII letter L or l (ell);
otherwise it is of type int (§4.2.1).

The suffix L is preferred, because the letter l (ell) is often hard to distinguish from the digit
1 (one).

Underscores are allowed as separators between digits that denote the integer.

In a hexadecimal or binary literal, the integer is only denoted by the digits after
the 0x or 0b characters and before any type suffix. Therefore, underscores may not
appear immediately after 0x or 0b, or after the last digit in the numeral.

In a decimal or octal literal, the integer is denoted by all the digits in the literal
before any type suffix. Therefore, underscores may not appear before the first digit
or after the last digit in the numeral. Underscores may appear after the initial 0 in
an octal numeral (since 0 is a digit that denotes part of the integer) and after the
initial non-zero digit in a non-zero decimal literal.

3.10 Literals LEXICAL STRUCTURE

26

A decimal numeral is either the single ASCII digit 0, representing the integer zero,
or consists of an ASCII digit from 1 to 9 optionally followed by one or more ASCII
digits from 0 to 9 interspersed with underscores, representing a positive integer.

DecimalNumeral:
0

NonZeroDigit [Digits]
NonZeroDigit Underscores Digits

NonZeroDigit:
(one of)
1 2 3 4 5 6 7 8 9

Digits:
Digit
Digit [DigitsAndUnderscores] Digit

Digit:
0

NonZeroDigit

DigitsAndUnderscores:
DigitOrUnderscore {DigitOrUnderscore}

DigitOrUnderscore:
Digit
_

Underscores:
_ {_}

LEXICAL STRUCTURE Literals 3.10

27

A hexadecimal numeral consists of the leading ASCII characters 0x or 0X followed
by one or more ASCII hexadecimal digits interspersed with underscores, and can
represent a positive, zero, or negative integer.

Hexadecimal digits with values 10 through 15 are represented by the ASCII letters
a through f or A through F, respectively; each letter used as a hexadecimal digit
may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit [HexDigitsAndUnderscores] HexDigit

HexDigit:
(one of)
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

HexDigitsAndUnderscores:
HexDigitOrUnderscore {HexDigitOrUnderscore}

HexDigitOrUnderscore:
HexDigit
_

The HexDigit production above comes from §3.3.

3.10 Literals LEXICAL STRUCTURE

28

An octal numeral consists of an ASCII digit 0 followed by one or more of the ASCII
digits 0 through 7 interspersed with underscores, and can represent a positive, zero,
or negative integer.

OctalNumeral:
0 OctalDigits
0 Underscores OctalDigits

OctalDigits:
OctalDigit
OctalDigit [OctalDigitsAndUnderscores] OctalDigit

OctalDigit:
(one of)
0 1 2 3 4 5 6 7

OctalDigitsAndUnderscores:
OctalDigitOrUnderscore {OctalDigitOrUnderscore}

OctalDigitOrUnderscore:
OctalDigit
_

Note that octal numerals always consist of two or more digits, as 0 alone is always
considered to be a decimal numeral - not that it matters much in practice, for the numerals
0, 00, and 0x0 all represent exactly the same integer value.

LEXICAL STRUCTURE Literals 3.10

29

A binary numeral consists of the leading ASCII characters 0b or 0B followed by one
or more of the ASCII digits 0 or 1 interspersed with underscores, and can represent
a positive, zero, or negative integer.

BinaryNumeral:
0 b BinaryDigits
0 B BinaryDigits

BinaryDigits:
BinaryDigit
BinaryDigit [BinaryDigitsAndUnderscores] BinaryDigit

BinaryDigit:
(one of)
0 1

BinaryDigitsAndUnderscores:
BinaryDigitOrUnderscore {BinaryDigitOrUnderscore}

BinaryDigitOrUnderscore:
BinaryDigit
_

3.10 Literals LEXICAL STRUCTURE

30

The largest decimal literal of type int is 2147483648 (231).

All decimal literals from 0 to 2147483647 may appear anywhere an int literal may
appear. The decimal literal 2147483648 may appear only as the operand of the
unary minus operator - (§15.15.4).

It is a compile-time error if the decimal literal 2147483648 appears anywhere other
than as the operand of the unary minus operator; or if a decimal literal of type int
is larger than 2147483648 (231).

The largest positive hexadecimal, octal, and binary literals of type int - each of
which represents the decimal value 2147483647 (231-1) - are respectively:

• 0x7fff_ffff,

• 0177_7777_7777, and

• 0b0111_1111_1111_1111_1111_1111_1111_1111

The most negative hexadecimal, octal, and binary literals of type int - each of
which represents the decimal value -2147483648 (-231) - are respectively:

• 0x8000_0000,

• 0200_0000_0000, and

• 0b1000_0000_0000_0000_0000_0000_0000_0000

The following hexadecimal, octal, and binary literals represent the decimal value
-1:

• 0xffff_ffff,

• 0377_7777_7777, and

• 0b1111_1111_1111_1111_1111_1111_1111_1111

It is a compile-time error if a hexadecimal, octal, or binary int literal does not fit
in 32 bits.

The largest decimal literal of type long is 9223372036854775808L (263).

All decimal literals from 0L to 9223372036854775807L may appear anywhere a
long literal may appear. The decimal literal 9223372036854775808L may appear
only as the operand of the unary minus operator - (§15.15.4).

It is a compile-time error if the decimal literal 9223372036854775808L appears
anywhere other than as the operand of the unary minus operator; or if a decimal
literal of type long is larger than 9223372036854775808L (263).

LEXICAL STRUCTURE Literals 3.10

31

The largest positive hexadecimal, octal, and binary literals of type long - each
of which represents the decimal value 9223372036854775807L (263-1) - are
respectively:

• 0x7fff_ffff_ffff_ffffL,

• 07_7777_7777_7777_7777_7777L, and

• 0b0111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111L

The most negative hexadecimal, octal, and binary literals of type long - each
of which represents the decimal value -9223372036854775808L (-263) - are
respectively:

• 0x8000_0000_0000_0000L, and

• 010_0000_0000_0000_0000_0000L, and

• 0b1000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000L

The following hexadecimal, octal, and binary literals represent the decimal value
-1L:

• 0xffff_ffff_ffff_ffffL,

• 017_7777_7777_7777_7777_7777L, and

• 0b1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111L

It is a compile-time error if a hexadecimal, octal, or binary long literal does not
fit in 64 bits.

Examples of int literals:

0 2 0372 0xDada_Cafe 1996 0x00_FF__00_FF

Examples of long literals:

0l 0777L 0x100000000L 2_147_483_648L 0xC0B0L

3.10.2 Floating-Point Literals

A floating-point literal has the following parts: a whole-number part, a decimal or
hexadecimal point (represented by an ASCII period character), a fraction part, an
exponent, and a type suffix.

A floating-point literal may be expressed in decimal (base 10) or hexadecimal (base
16).

3.10 Literals LEXICAL STRUCTURE

32

For decimal floating-point literals, at least one digit (in either the whole number or
the fraction part) and either a decimal point, an exponent, or a float type suffix are
required. All other parts are optional. The exponent, if present, is indicated by the
ASCII letter e or E followed by an optionally signed integer.

For hexadecimal floating-point literals, at least one digit is required (in either the
whole number or the fraction part), and the exponent is mandatory, and the float
type suffix is optional. The exponent is indicated by the ASCII letter p or P followed
by an optionally signed integer.

Underscores are allowed as separators between digits that denote the whole-number
part, and between digits that denote the fraction part, and between digits that denote
the exponent.

FloatingPointLiteral:
DecimalFloatingPointLiteral
HexadecimalFloatingPointLiteral

DecimalFloatingPointLiteral:
Digits . [Digits] [ExponentPart] [FloatTypeSuffix]
. Digits [ExponentPart] [FloatTypeSuffix]
Digits ExponentPart [FloatTypeSuffix]
Digits [ExponentPart] FloatTypeSuffix

ExponentPart:
ExponentIndicator SignedInteger

ExponentIndicator:
(one of)
e E

SignedInteger:
[Sign] Digits

Sign:
(one of)
+ -

FloatTypeSuffix:
(one of)
f F d D

LEXICAL STRUCTURE Literals 3.10

33

HexadecimalFloatingPointLiteral:
HexSignificand BinaryExponent [FloatTypeSuffix]

HexSignificand:
HexNumeral [.]
0 x [HexDigits] . HexDigits
0 X [HexDigits] . HexDigits

BinaryExponent:
BinaryExponentIndicator SignedInteger

BinaryExponentIndicator:
(one of)
p P

A floating-point literal is of type float if it is suffixed with an ASCII letter F or f;
otherwise its type is double and it can optionally be suffixed with an ASCII letter
D or d (§4.2.3).

The elements of the types float and double are those values that can be
represented using the IEEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of a floating-
point number to the internal IEEE 754 binary floating-point representation are described
for the methods valueOf of class Float and class Double of the package java.lang.

The largest positive finite literal of type float is 3.4028235e38f.

The smallest positive finite non-zero literal of type float is 1.40e-45f.

The largest positive finite literal of type double is 1.7976931348623157e308.

The smallest positive finite non-zero literal of type double is 4.9e-324.

It is a compile-time error if a non-zero floating-point literal is too large, so that on
rounded conversion to its internal representation, it becomes an IEEE 754 infinity.

A program can represent infinities without producing a compile-time error by using
constant expressions such as 1f/0f or -1d/0d or by using the predefined constants
POSITIVE_INFINITY and NEGATIVE_INFINITY of the classes Float and Double.

It is a compile-time error if a non-zero floating-point literal is too small, so that, on
rounded conversion to its internal representation, it becomes a zero.

3.10 Literals LEXICAL STRUCTURE

34

A compile-time error does not occur if a non-zero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the classes
Float and Double as Float.NaN and Double.NaN.

Examples of float literals:

1e1f 2.f .3f 0f 3.14f 6.022137e+23f

Examples of double literals:

1e1 2. .3 0.0 3.14 1e-9d 1e137

3.10.3 Boolean Literals

The boolean type has two values, represented by the boolean literals true and
false, formed from ASCII letters.

BooleanLiteral:
(one of)
true false

A boolean literal is always of type boolean (§4.2.5).

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence (§3.10.6),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\u0027.)

CharacterLiteral:
' SingleCharacter '
' EscapeSequence '

SingleCharacter:
InputCharacter but not ' or \

See §3.10.6 for the definition of EscapeSequence.

Character literals can only represent UTF-16 code units (§3.1), i.e., they are limited
to values from \u0000 to \uffff. Supplementary characters must be represented

LEXICAL STRUCTURE Literals 3.10

35

either as a surrogate pair within a char sequence, or as an integer, depending on
the API they are used with.

A character literal is always of type char (§4.2.1).

It is a compile-time error for the character following the SingleCharacter or
EscapeSequence to be other than a '.

It is a compile-time error for a line terminator (§3.4) to appear after the opening
' and before the closing '.

As specified in §3.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

The following are examples of char literals:

• 'a'

• '%'

• '\t'

• '\\'

• '\''

• '\u03a9'

• '\uFFFF'

• '\177'

• '™'

Because Unicode escapes are processed very early, it is not correct to write '\u000a'
for a character literal whose value is linefeed (LF); the Unicode escape \u000a is
transformed into an actual linefeed in translation step 1 (§3.3) and the linefeed becomes a
LineTerminator in step 2 (§3.4), and so the character literal is not valid in step 3. Instead,
one should use the escape sequence '\n' (§3.10.6). Similarly, it is not correct to write
'\u000d' for a character literal whose value is carriage return (CR). Instead, use '\r'.

In C and C++, a character literal may contain representations of more than one character,
but the value of such a character literal is implementation-defined. In the Java programming
language, a character literal always represents exactly one character.

3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences (§3.10.6) - one escape
sequence for characters in the range U+0000 to U+FFFF, two escape sequences
for the UTF-16 surrogate code units of characters in the range U+010000 to U
+10FFFF.

3.10 Literals LEXICAL STRUCTURE

36

StringLiteral:
" {StringCharacter} "

StringCharacter:
InputCharacter but not " or \
EscapeSequence

See §3.10.6 for the definition of EscapeSequence.

A string literal is always of type String (§4.3.3).

It is a compile-time error for a line terminator to appear after the opening " and
before the closing matching ".

As specified in §3.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

A long string literal can always be broken up into shorter pieces and written as a (possibly
parenthesized) expression using the string concatenation operator + (§15.18.1).

The following are examples of string literals:

"" // the empty string
"\"" // a string containing " alone
"This is a string" // a string containing 16 characters
"This is a " + // actually a string-valued constant expression,
 "two-line string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to write "\u000a"
for a string literal containing a single linefeed (LF); the Unicode escape \u000a is
transformed into an actual linefeed in translation step 1 (§3.3) and the linefeed becomes
a LineTerminator in step 2 (§3.4), and so the string literal is not valid in step 3. Instead,
one should write "\n" (§3.10.6). Similarly, it is not correct to write "\u000d" for a string
literal containing a single carriage return (CR). Instead, use "\r". Finally, it is not possible
to write "\u0022" for a string literal containing a double quotation mark (").

A string literal is a reference to an instance of class String (§4.3.1, §4.3.3).

Moreover, a string literal always refers to the same instance of class String. This
is because string literals - or, more generally, strings that are the values of constant
expressions (§15.28) - are "interned" so as to share unique instances, using the
method String.intern.

Example 3.10.5-1. String Literals

The program consisting of the compilation unit (§7.3):

package testPackage;

LEXICAL STRUCTURE Literals 3.10

37

class Test {
 public static void main(String[] args) {
 String hello = "Hello", lo = "lo";
 System.out.print((hello == "Hello") + " ");
 System.out.print((Other.hello == hello) + " ");
 System.out.print((other.Other.hello == hello) + " ");
 System.out.print((hello == ("Hel"+"lo")) + " ");
 System.out.print((hello == ("Hel"+lo)) + " ");
 System.out.println(hello == ("Hel"+lo).intern());
 }
}
class Other { static String hello = "Hello"; }

and the compilation unit:

package other;
public class Other { public static String hello = "Hello"; }

produces the output:

true true true true false true

This example illustrates six points:

• Literal strings within the same class (§8 (Classes)) in the same package (§7 (Packages))
represent references to the same String object (§4.3.1).

• Literal strings within different classes in the same package represent references to the
same String object.

• Literal strings within different classes in different packages likewise represent references
to the same String object.

• Strings computed by constant expressions (§15.28) are computed at compile time and
then treated as if they were literals.

• Strings computed by concatenation at run time are newly created and therefore distinct.

• The result of explicitly interning a computed string is the same string as any pre-existing
literal string with the same contents.

3.10.6 Escape Sequences for Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters without using Unicode escapes, as well as the single quote,
double quote, and backslash characters, in character literals (§3.10.4) and string
literals (§3.10.5).

3.10 Literals LEXICAL STRUCTURE

38

EscapeSequence:
\ b (backspace BS, Unicode \u0008)
\ t (horizontal tab HT, Unicode \u0009)
\ n (linefeed LF, Unicode \u000a)
\ f (form feed FF, Unicode \u000c)
\ r (carriage return CR, Unicode \u000d)
\ " (double quote ", Unicode \u0022)
\ ' (single quote ', Unicode \u0027)
\ \ (backslash \, Unicode \u005c)
OctalEscape (octal value, Unicode \u0000 to \u00ff)

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit:
(one of)
0 1 2 3 4 5 6 7

ZeroToThree:
(one of)
0 1 2 3

The OctalDigit production above comes from §3.10.1.

It is a compile-time error if the character following a backslash in an escape
sequence is not an ASCII b, t, n, f, r, ", ', \, 0, 1, 2, 3, 4, 5, 6, or 7. The Unicode
escape \u is processed earlier (§3.3).

Octal escapes are provided for compatibility with C, but can express only Unicode values
\u0000 through \u00FF, so Unicode escapes are usually preferred.

3.10.7 The Null Literal

The null type has one value, the null reference, represented by the null literal null,
which is formed from ASCII characters.

NullLiteral:
null

A null literal is always of the null type (§4.1).

LEXICAL STRUCTURE Separators 3.11

39

3.11 Separators

Twelve tokens, formed from ASCII characters, are the separators (punctuators).

Separator:
(one of)
() { } [] ; , @ ::

3.12 Operators

38 tokens, formed from ASCII characters, are the operators.

Operator:
(one of)
= > < ! ~ ? : ->

== >= <= != && || ++ --

+ - * / & | ^ % << >> >>>

+= -= *= /= &= |= ^= %= <<= >>= >>>=

41

C H A P T E R 4
Types, Values, and Variables

THE Java programming language is a statically typed language, which means
that every variable and every expression has a type that is known at compile time.

The Java programming language is also a strongly typed language, because types
limit the values that a variable (§4.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong static typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (§4.2) are the boolean
type and the numeric types. The numeric types are the integral types byte, short,
int, long, and char, and the floating-point types float and double. The reference
types (§4.3) are class types, interface types, and array types. There is also a special
null type. An object (§4.3.1) is a dynamically created instance of a class type or a
dynamically created array. The values of a reference type are references to objects.
All objects, including arrays, support the methods of class Object (§4.3.2). String
literals are represented by String objects (§4.3.3).

4.1 The Kinds of Types and Values

There are two kinds of types in the Java programming language: primitive types
(§4.2) and reference types (§4.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (§4.2) and reference values (§4.3).

Type:
PrimitiveType
ReferenceType

4.2 Primitive Types and Values TYPES, VALUES, AND VARIABLES

42

There is also a special null type, the type of the expression null (§3.10.7, §15.8.1),
which has no name.

Because the null type has no name, it is impossible to declare a variable of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

The null reference can always be assigned or cast to any reference type (§5.2, §5.3,
§5.5).

In practice, the programmer can ignore the null type and just pretend that null is merely
a special literal that can be of any reference type.

4.2 Primitive Types and Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):

PrimitiveType:
{Annotation} NumericType
{Annotation} boolean

NumericType:
IntegralType
FloatingPointType

IntegralType:
(one of)
byte short int long char

FloatingPointType:
(one of)
float double

Primitive values do not share state with other primitive values.

The numeric types are the integral types and the floating-point types.

The integral types are byte, short, int, and long, whose values are 8-bit, 16-bit,
32-bit and 64-bit signed two's-complement integers, respectively, and char, whose
values are 16-bit unsigned integers representing UTF-16 code units (§3.1).

TYPES, VALUES, AND VARIABLES Primitive Types and Values 4.2

43

The floating-point types are float, whose values include the 32-bit IEEE 754
floating-point numbers, and double, whose values include the 64-bit IEEE 754
floating-point numbers.

The boolean type has exactly two values: true and false.

4.2.1 Integral Types and Values

The values of the integral types are integers in the following ranges:

• For byte, from -128 to 127, inclusive

• For short, from -32768 to 32767, inclusive

• For int, from -2147483648 to 2147483647, inclusive

• For long, from -9223372036854775808 to 9223372036854775807, inclusive

• For char, from '\u0000' to '\uffff' inclusive, that is, from 0 to 65535

4.2.2 Integer Operations

The Java programming language provides a number of operators that act on integral
values:

• The comparison operators, which result in a value of type boolean:

– The numerical comparison operators <, <=, >, and >= (§15.20.1)

– The numerical equality operators == and != (§15.21.1)

• The numerical operators, which result in a value of type int or long:

– The unary plus and minus operators + and - (§15.15.3, §15.15.4)

– The multiplicative operators *, /, and % (§15.17)

– The additive operators + and - (§15.18)

– The increment operator ++, both prefix (§15.15.1) and postfix (§15.14.2)

– The decrement operator --, both prefix (§15.15.2) and postfix (§15.14.3)

– The signed and unsigned shift operators <<, >>, and >>> (§15.19)

– The bitwise complement operator ~ (§15.15.5)

– The integer bitwise operators &, ^, and | (§15.22.1)

• The conditional operator ? : (§15.25)

4.2 Primitive Types and Values TYPES, VALUES, AND VARIABLES

44

• The cast operator (§15.16), which can convert from an integral value to a value
of any specified numeric type

• The string concatenation operator + (§15.18.1), which, when given a String
operand and an integral operand, will convert the integral operand to a String
representing its value in decimal form, and then produce a newly created String
that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byte, Short, Integer, Long, and Character.

If an integer operator other than a shift operator has at least one operand of type
long, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type long. If the other operand is not long, it is first
widened (§5.1.5) to type long by numeric promotion (§5.6).

Otherwise, the operation is carried out using 32-bit precision, and the result of the
numerical operator is of type int. If either operand is not an int, it is first widened
to type int by numeric promotion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type boolean.

See §4.2.5 for an idiom to convert integer expressions to boolean.

The integer operators do not indicate overflow or underflow in any way.

An integer operator can throw an exception (§11 (Exceptions)) for the following
reasons:

• Any integer operator can throw a NullPointerException if unboxing
conversion (§5.1.8) of a null reference is required.

• The integer divide operator / (§15.17.2) and the integer remainder operator %
(§15.17.3) can throw an ArithmeticException if the right-hand operand is zero.

• The increment and decrement operators ++ (§15.14.2, §15.15.1) and --
(§15.14.3, §15.15.2) can throw an OutOfMemoryError if boxing conversion
(§5.1.7) is required and there is not sufficient memory available to perform the
conversion.

Example 4.2.2-1. Integer Operations

class Test {
 public static void main(String[] args) {
 int i = 1000000;
 System.out.println(i * i);
 long l = i;

TYPES, VALUES, AND VARIABLES Primitive Types and Values 4.2

45

 System.out.println(l * l);
 System.out.println(20296 / (l - i));
 }
}

This program produces the output:

-727379968
1000000000000

and then encounters an ArithmeticException in the division by l - i, because l
- i is zero. The first multiplication is performed in 32-bit precision, whereas the second
multiplication is a long multiplication. The value -727379968 is the decimal value of the
low 32 bits of the mathematical result, 1000000000000, which is a value too large for
type int.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types are float and double, which are conceptually associated
with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers that consist
of a sign and magnitude, but also positive and negative zeros, positive and negative
infinities, and special Not-a-Number values (hereafter abbreviated NaN). A NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero. NaN constants of both float and double type are predefined as
Float.NaN and Double.NaN.

Every implementation of the Java programming language is required to support two
standard sets of floating-point values, called the float value set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type float or
double (§5.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed in
the form s ⋅ m ⋅ 2(e - N + 1), where s is +1 or -1, m is a positive integer less than
2N, and e is an integer between Emin = -(2K-1-2) and Emax = 2K-1-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for

4.2 Primitive Types and Values TYPES, VALUES, AND VARIABLES

46

s, m, and e, then if it happened that m were even and e were less than 2K-1, one
could halve m and increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m ≥ 2N-1; otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such a way that m ≥ 2N-1, then the value is said to be a denormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Emin
and Emax) for the two required and two optional floating-point value sets are
summarized in Table 4.2.3-A.

Table 4.2.3-A. Floating-point value set parameters

Parameter float float-extended-

exponent

double double-extended-

exponent

N 24 24 53 53

K 8 ≥ 11 11 ≥ 15

Emax +127 ≥ +1023 +1023 ≥ +16383

Emin -126 ≤ -1022 -1022 ≤ -16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.2.3-A; this value K in turn dictates the values for Emin and Emax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraints in Table 4.2.3-A are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has a larger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard. The
elements of the double value set are exactly the values that can be represented using
the double floating-point format defined in the IEEE 754 standard. Note, however,
that the elements of the float-extended-exponent and double-extended-exponent

TYPES, VALUES, AND VARIABLES Primitive Types and Values 4.2

47

value sets defined here do not correspond to the values that can be represented
using IEEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent a value
of type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set instead.
Similarly, it is always correct for an implementation to use an element of the double
value set to represent a value of type double; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

IEEE 754 allows multiple distinct NaN values for each of its single and double
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE platform treats NaN values of a given type as though
collapsed into a single canonical value, and hence this specification normally refers
to an arbitrary NaN as though to a canonical value.

However, version 1.3 of the Java SE platform introduced methods enabling the
programmer to distinguish between NaN values: the Float.floatToRawIntBits and
Double.doubleToRawLongBits methods. The interested reader is referred to the
specifications for the Float and Double classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0.0 is true and the result of 0.0>-0.0 is false. But other operations can
distinguish positive and negative zero; for example, 1.0/0.0 has the value positive
infinity, while the value of 1.0/-0.0 is negative infinity.

NaN is unordered, so:

• The numerical comparison operators <, <=, >, and >= return false if either or
both operands are NaN (§15.20.1).

• The equality operator == returns false if either operand is NaN.

In particular, (x<y) == !(x>=y) will be false if x or y is NaN.

• The inequality operator != returns true if either operand is NaN (§15.21.1).

4.2 Primitive Types and Values TYPES, VALUES, AND VARIABLES

48

In particular, x!=x is true if and only if x is NaN.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

• The comparison operators, which result in a value of type boolean:

– The numerical comparison operators <, <=, >, and >= (§15.20.1)

– The numerical equality operators == and != (§15.21.1)

• The numerical operators, which result in a value of type float or double:

– The unary plus and minus operators + and - (§15.15.3, §15.15.4)

– The multiplicative operators *, /, and % (§15.17)

– The additive operators + and - (§15.18.2)

– The increment operator ++, both prefix (§15.15.1) and postfix (§15.14.2)

– The decrement operator --, both prefix (§15.15.2) and postfix (§15.14.3)

• The conditional operator ? : (§15.25)

• The cast operator (§15.16), which can convert from a floating-point value to a
value of any specified numeric type

• The string concatenation operator + (§15.18.1), which, when given a String
operand and a floating-point operand, will convert the floating-point operand to
a String representing its value in decimal form (without information loss), and
then produce a newly created String by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Float, Double, and Math.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other is integral.

If at least one of the operands to a numerical operator is of type double, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator is a value of type double. If the other operand is not a double,
it is first widened (§5.1.5) to type double by numeric promotion (§5.6).

Otherwise, the operation is carried out using 32-bit floating-point arithmetic, and
the result of the numerical operator is a value of type float. (If the other operand
is not a float, it is first widened to type float by numeric promotion.)

TYPES, VALUES, AND VARIABLES Primitive Types and Values 4.2

49

Any value of a floating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type boolean.

See §4.2.5 for an idiom to convert floating-point expressions to boolean.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (§15.17.3)). In particular, the Java
programming language requires support of IEEE 754 denormalized floating-point
numbers and gradual underflow, which make it easier to prove desirable properties
of particular numerical algorithms. Floating-point operations do not "flush to zero"
if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic behave
as if every floating-point operator rounded its floating-point result to the result
precision. Inexact results must be rounded to the representable value nearest to the
infinitely precise result; if the two nearest representable values are equally near,
the one with its least significant bit zero is chosen. This is the IEEE 754 standard's
default rounding mode known as round to nearest.

The Java programming language uses round toward zero when converting a
floating value to an integer (§5.1.3), which acts, in this case, as though the number
were truncated, discarding the mantissa bits. Rounding toward zero chooses at its
result the format's value closest to and no greater in magnitude than the infinitely
precise result.

A floating-point operation that overflows produces a signed infinity.

A floating-point operation that underflows produces a denormalized value or a
signed zero.

A floating-point operation that has no mathematically definite result produces NaN.

All numeric operations with NaN as an operand produce NaN as a result.

A floating-point operator can throw an exception (§11 (Exceptions)) for the
following reasons:

• Any floating-point operator can throw a NullPointerException if unboxing
conversion (§5.1.8) of a null reference is required.

• The increment and decrement operators ++ (§15.14.2, §15.15.1) and --
(§15.14.3, §15.15.2) can throw an OutOfMemoryError if boxing conversion
(§5.1.7) is required and there is not sufficient memory available to perform the
conversion.

4.2 Primitive Types and Values TYPES, VALUES, AND VARIABLES

50

Example 4.2.4-1. Floating-point Operations

class Test {
 public static void main(String[] args) {
 // An example of overflow:
 double d = 1e308;
 System.out.print("overflow produces infinity: ");
 System.out.println(d + "*10==" + d*10);
 // An example of gradual underflow:
 d = 1e-305 * Math.PI;
 System.out.print("gradual underflow: " + d + "\n ");
 for (int i = 0; i < 4; i++)
 System.out.print(" " + (d /= 100000));
 System.out.println();
 // An example of NaN:
 System.out.print("0.0/0.0 is Not-a-Number: ");
 d = 0.0/0.0;
 System.out.println(d);
 // An example of inexact results and rounding:
 System.out.print("inexact results with float:");
 for (int i = 0; i < 100; i++) {
 float z = 1.0f / i;
 if (z * i != 1.0f)
 System.out.print(" " + i);
 }
 System.out.println();
 // Another example of inexact results and rounding:
 System.out.print("inexact results with double:");
 for (int i = 0; i < 100; i++) {
 double z = 1.0 / i;
 if (z * i != 1.0)
 System.out.print(" " + i);
 }
 System.out.println();
 // An example of cast to integer rounding:
 System.out.print("cast to int rounds toward 0: ");
 d = 12345.6;
 System.out.println((int)d + " " + (int)(-d));
 }
}

This program produces the output:

overflow produces infinity: 1.0e+308*10==Infinity
gradual underflow: 3.141592653589793E-305
3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0
0.0/0.0 is Not-a-Number: NaN
inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98
cast to int rounds toward 0: 12345 -12345

TYPES, VALUES, AND VARIABLES Primitive Types and Values 4.2

51

This example demonstrates, among other things, that gradual underflow can result in a
gradual loss of precision.

The results when i is 0 involve division by zero, so that z becomes positive infinity, and
z * 0 is NaN, which is not equal to 1.0.

4.2.5 The boolean Type and boolean Values

The boolean type represents a logical quantity with two possible values, indicated
by the literals true and false (§3.10.3).

The boolean operators are:

• The relational operators == and != (§15.21.2)

• The logical complement operator ! (§15.15.6)

• The logical operators &, ^, and | (§15.22.2)

• The conditional-and and conditional-or operators && (§15.23) and || (§15.24)

• The conditional operator ? : (§15.25)

• The string concatenation operator + (§15.18.1), which, when given a String
operand and a boolean operand, will convert the boolean operand to a String
(either "true" or "false"), and then produce a newly created String that is the
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:

• The if statement (§14.9)

• The while statement (§14.12)

• The do statement (§14.13)

• The for statement (§14.14)

A boolean expression also determines which subexpression is evaluated in the
conditional ? : operator (§15.25).

Only boolean and Boolean expressions can be used in control flow statements and
as the first operand of the conditional operator ? :.

An integer or floating-point expression x can be converted to a boolean value,
following the C language convention that any nonzero value is true, by the
expression x!=0.

4.3 Reference Types and Values TYPES, VALUES, AND VARIABLES

52

An object reference obj can be converted to a boolean value, following the C
language convention that any reference other than null is true, by the expression
obj!=null.

A boolean value can be converted to a String by string conversion (§5.4).

A boolean value may be cast to type boolean, Boolean, or Object (§5.5). No other
casts on type boolean are allowed.

4.3 Reference Types and Values

There are four kinds of reference types: class types (§8.1), interface types (§9.1),
type variables (§4.4), and array types (§10.1).

ReferenceType:
ClassOrInterfaceType
TypeVariable
ArrayType

ClassOrInterfaceType:
ClassType
InterfaceType

ClassType:
{Annotation} Identifier [TypeArguments]
ClassOrInterfaceType . {Annotation} Identifier [TypeArguments]

InterfaceType:
ClassType

TypeVariable:
{Annotation} Identifier

ArrayType:
PrimitiveType Dims
ClassOrInterfaceType Dims
TypeVariable Dims

Dims:
{Annotation} [] {{Annotation} []}

TYPES, VALUES, AND VARIABLES Reference Types and Values 4.3

53

The sample code:

class Point { int[] metrics; }
interface Move { void move(int deltax, int deltay); }

declares a class type Point, an interface type Move, and uses an array type int[] (an array
of int) to declare the field metrics of the class Point.

A class or interface type consists of an identifier or a dotted sequence of identifiers,
where each identifier is optionally followed by type arguments (§4.5.1). If type
arguments appear anywhere in a class or interface type, it is a parameterized type
(§4.5).

Each identifier in a class or interface type is classified as a package name or a type
name (§6.5.1). Identifiers which are classified as type names may be annotated. If a
class or interface type has the form T.id (optionally followed by type arguments),
then id must be the simple name of an accessible member type of T (§6.6, §8.5,
§9.5), or a compile-time error occurs. The class or interface type denotes that
member type.

4.3.1 Objects

An object is a class instance or an array.

The reference values (often just references) are pointers to these objects, and a
special null reference, which refers to no object.

A class instance is explicitly created by a class instance creation expression (§15.9).

An array is explicitly created by an array creation expression (§15.10.1).

A new class instance is implicitly created when the string concatenation operator +
(§15.18.1) is used in a non-constant expression (§15.28), resulting in a new object
of type String (§4.3.3).

A new array object is implicitly created when an array initializer expression (§10.6)
is evaluated; this can occur when a class or interface is initialized (§12.4), when
a new instance of a class is created (§15.9), or when a local variable declaration
statement is executed (§14.4).

New objects of the types Boolean, Byte, Short, Character, Integer, Long, Float,
and Double may be implicitly created by boxing conversion (§5.1.7).

Example 4.3.1-1. Object Creation

class Point {
 int x, y;

4.3 Reference Types and Values TYPES, VALUES, AND VARIABLES

54

 Point() { System.out.println("default"); }
 Point(int x, int y) { this.x = x; this.y = y; }

 /* A Point instance is explicitly created at
 class initialization time: */
 static Point origin = new Point(0,0);

 /* A String can be implicitly created
 by a + operator: */
 public String toString() { return "(" + x + "," + y + ")"; }
}

class Test {
 public static void main(String[] args) {
 /* A Point is explicitly created
 using newInstance: */
 Point p = null;
 try {
 p = (Point)Class.forName("Point").newInstance();
 } catch (Exception e) {
 System.out.println(e);
 }

 /* An array is implicitly created
 by an array constructor: */
 Point a[] = { new Point(0,0), new Point(1,1) };

 /* Strings are implicitly created
 by + operators: */
 System.out.println("p: " + p);
 System.out.println("a: { " + a[0] + ", " + a[1] + " }");

 /* An array is explicitly created
 by an array creation expression: */
 String sa[] = new String[2];
 sa[0] = "he"; sa[1] = "llo";
 System.out.println(sa[0] + sa[1]);
 }
}

This program produces the output:

default
p: (0,0)
a: { (0,0), (1,1) }
hello

The operators on references to objects are:

• Field access, using either a qualified name (§6.6) or a field access expression
(§15.11)

• Method invocation (§15.12)

TYPES, VALUES, AND VARIABLES Reference Types and Values 4.3

55

• The cast operator (§5.5, §15.16)

• The string concatenation operator + (§15.18.1), which, when given a String
operand and a reference, will convert the reference to a String by invoking the
toString method of the referenced object (using "null" if either the reference
or the result of toString is a null reference), and then will produce a newly
created String that is the concatenation of the two strings

• The instanceof operator (§15.20.2)

• The reference equality operators == and != (§15.21.3)

• The conditional operator ? : (§15.25).

There may be many references to the same object. Most objects have state, stored
in the fields of objects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the reference in the other
variable.

Example 4.3.1-2. Primitive and Reference Identity

class Value { int val; }

class Test {
 public static void main(String[] args) {
 int i1 = 3;
 int i2 = i1;
 i2 = 4;
 System.out.print("i1==" + i1);
 System.out.println(" but i2==" + i2);
 Value v1 = new Value();
 v1.val = 5;
 Value v2 = v1;
 v2.val = 6;
 System.out.print("v1.val==" + v1.val);
 System.out.println(" and v2.val==" + v2.val);
 }
}

This program produces the output:

i1==3 but i2==4
v1.val==6 and v2.val==6

because v1.val and v2.val reference the same instance variable (§4.12.3) in the one
Value object created by the only new expression, while i1 and i2 are different variables.

4.3 Reference Types and Values TYPES, VALUES, AND VARIABLES

56

Each object is associated with a monitor (§17.1), which is used by synchronized
methods (§8.4.3) and the synchronized statement (§14.19) to provide control over
concurrent access to state by multiple threads (§17 (Threads and Locks)).

4.3.2 The Class Object

The class Object is a superclass (§8.1.4) of all other classes.

All class and array types inherit (§8.4.8) the methods of class Object, which are
summarized as follows:

• The method clone is used to make a duplicate of an object.

• The method equals defines a notion of object equality, which is based on value,
not reference, comparison.

• The method finalize is run just before an object is destroyed (§12.6).

• The method getClass returns the Class object that represents the class of the
object.

A Class object exists for each reference type. It can be used, for example,
to discover the fully qualified name of a class, its members, its immediate
superclass, and any interfaces that it implements.

The type of a method invocation expression of getClass is Class<? extends
|T|>, where T is the class or interface that was searched for getClass (§15.12.1)
and |T| denotes the erasure of T (§4.6).

A class method that is declared synchronized (§8.4.3.6) synchronizes on the
monitor associated with the Class object of the class.

• The method hashCode is very useful, together with the method equals, in
hashtables such as java.util.HashMap.

• The methods wait, notify, and notifyAll are used in concurrent programming
using threads (§17.2).

• The method toString returns a String representation of the object.

4.3.3 The Class String

Instances of class String represent sequences of Unicode code points.

A String object has a constant (unchanging) value.

String literals (§3.10.5) are references to instances of class String.

TYPES, VALUES, AND VARIABLES Type Variables 4.4

57

The string concatenation operator + (§15.18.1) implicitly creates a new String
object when the result is not a constant expression (§15.28).

4.3.4 When Reference Types Are the Same

Two reference types are the same compile-time type if they have the same binary
name (§13.1) and their type arguments, if any, are the same, applying this definition
recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, several reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

• They are both class or both interface types, are defined by the same class loader,
and have the same binary name (§13.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

• They are both array types, and their component types are the same run-time type
(§10 (Arrays)).

4.4 Type Variables

A type variable is an unqualified identifier used as a type in class, interface, method,
and constructor bodies.

A type variable is introduced by the declaration of a type parameter of a generic
class, interface, method, or constructor (§8.1.2, §9.1.2, §8.4.4, §8.8.4).

TypeParameter:
{TypeParameterModifier} Identifier [TypeBound]

TypeParameterModifier:
Annotation

TypeBound:
extends TypeVariable
extends ClassOrInterfaceType {AdditionalBound}

4.4 Type Variables TYPES, VALUES, AND VARIABLES

58

AdditionalBound:
& InterfaceType

The scope of a type variable declared as a type parameter is specified in §6.3.

Every type variable declared as a type parameter has a bound. If no bound is
declared for a type variable, Object is assumed. If a bound is declared, it consists
of either:

• a single type variable T, or

• a class or interface type T possibly followed by interface types I1 & ... & In.

It is a compile-time error if any of the types I1 ... In is a class type or type variable.

The erasures (§4.6) of all constituent types of a bound must be pairwise different,
or a compile-time error occurs.

A type variable must not at the same time be a subtype of two interface types which
are different parameterizations of the same generic interface, or a compile-time
error occurs.

The order of types in a bound is only significant in that the erasure of a type variable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

The members of a type variable X with bound T & I1 & ... & In are the members of
the intersection type (§4.9) T & I1 & ... & In appearing at the point where the type
variable is declared.

Example 4.4-1. Members of a Type Variable

package TypeVarMembers;

class C {
 public void mCPublic() {}
 protected void mCProtected() {}
 void mCPackage() {}
 private void mCPrivate() {}
}

interface I {
 void mI();
}

class CT extends C implements I {
 public void mI() {}
}

class Test {

TYPES, VALUES, AND VARIABLES Parameterized Types 4.5

59

 <T extends C & I> void test(T t) {
 t.mI(); // OK
 t.mCPublic(); // OK
 t.mCProtected(); // OK
 t.mCPackage(); // OK
 t.mCPrivate(); // Compile-time error
 }
}

The type variable T has the same members as the intersection type C & I, which in turn
has the same members as the empty class CT, defined in the same scope with equivalent
supertypes. The members of an interface are always public, and therefore always inherited
(unless overridden). Hence mI is a member of CT and of T. Among the members of C, all
but mCPrivate are inherited by CT, and are therefore members of both CT and T.

If C had been declared in a different package than T, then the call to mCPackage would
give rise to a compile-time error, as that member would not be accessible at the point where
T is declared.

4.5 Parameterized Types

A class or interface declaration that is generic (§8.1.2, §9.1.2) defines a set of
parameterized types.

A parameterized type is a class or interface type of the form C<T1,...,Tn>, where C
is the name of a generic type and <T1,...,Tn> is a list of type arguments that denote
a particular parameterization of the generic type.

A generic type has type parameters F1,...,Fn with corresponding bounds B1,...,Bn.
Each type argument Ti of a parameterized type ranges over all types that are
subtypes of all types listed in the corresponding bound. That is, for each bound
type S in Bi, Ti is a subtype of S[F1:=T1,...,Fn:=Tn] (§4.10).

A parameterized type C<T1,...,Tn> is well-formed if all of the following are true:

• C is the name of a generic type.

• The number of type arguments is the same as the number of type parameters in
the generic declaration of C.

• When subjected to capture conversion (§5.1.10) resulting in the type C<X1,...,Xn>,
each type argument Xi is a subtype of S[F1:=X1,...,Fn:=Xn] for each bound
type S in Bi.

It is a compile-time error if a parameterized type is not well-formed.

4.5 Parameterized Types TYPES, VALUES, AND VARIABLES

60

In this specification, whenever we speak of a class or interface type, we include the
generic version as well, unless explicitly excluded.

Two parameterized types are provably distinct if either of the following is true:

• They are parameterizations of distinct generic type declarations.

• Any of their type arguments are provably distinct.

Given the generic types in the examples of §8.1.2, here are some well-formed parameterized
types:

• Seq<String>

• Seq<Seq<String>>

• Seq<String>.Zipper<Integer>

• Pair<String,Integer>

Here are some incorrect parameterizations of those generic types:

• Seq<int> is illegal, as primitive types cannot be type arguments.

• Pair<String> is illegal, as there are not enough type arguments.

• Pair<String,String,String> is illegal, as there are too many type arguments.

A parameterized type may be an parameterization of a generic class or interface which
is nested. For example, if a non-generic class C has a generic member class D<T>, then
C.D<Object> is a parameterized type. And if a generic class C<T> has a non-generic
member class D, then the member type C<String>.D is a parameterized type, even though
the class D is not generic.

4.5.1 Type Arguments of Parameterized Types

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.

TypeArguments:
< TypeArgumentList >

TypeArgumentList:
TypeArgument {, TypeArgument}

TypeArgument:
ReferenceType
Wildcard

TYPES, VALUES, AND VARIABLES Parameterized Types 4.5

61

Wildcard:
{Annotation} ? [WildcardBounds]

WildcardBounds:
extends ReferenceType
super ReferenceType

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the following syntax, where B is the
bound:

? extends B

Unlike ordinary type variables declared in a method signature, no type inference
is required when using a wildcard. Consequently, it is permissible to declare lower
bounds on a wildcard, using the following syntax, where B is a lower bound:

? super B

The wildcard ? extends Object is equivalent to the unbounded wildcard ?.

Two type arguments are provably distinct if one of the following is true:

• Neither argument is a type variable or wildcard, and the two arguments are not
the same type.

• One type argument is a type variable or wildcard, with an upper bound (from
capture conversion (§5.1.10), if necessary) of S; and the other type argument T
is not a type variable or wildcard; and neither |S| <: |T| nor |T| <: |S| (§4.8, §4.10).

• Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of S and T; and neither |S| <: |T| nor |T| <: |S|.

A type argument T1 is said to contain another type argument T2, written T2 <= T1,
if the set of types denoted by T2 is provably a subset of the set of types denoted
by T1 under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (§4.10)):

• ? extends T <= ? extends S if T <: S

• ? extends T <= ?

• ? super T <= ? super S if S <: T

• ? super T <= ?

• ? super T <= ? extends Object

4.5 Parameterized Types TYPES, VALUES, AND VARIABLES

62

• T <= T

• T <= ? extends T

• T <= ? super T

The relationship of wildcards to established type theory is an interesting one, which we
briefly allude to here. Wildcards are a restricted form of existential types. Given a generic
type declaration G<T extends B>, G<?> is roughly analogous to Some X <: B. G<X>.

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. Readers interested in a more comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi Igarashi and Mirko Viroli, in the
Proceedings of the 16th European Conference on Object Oriented Programming (ECOOP
2002). This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
(Unifying Genericity, ECOOP 99), as well as a long tradition of work on declaration based
variance that goes back to Pierre America's work on POOL (OOPSLA 89).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (§5.1.10) rather than the close
operation described by Igarashi and Viroli. For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

Example 4.5.1-1. Unbounded Wildcards

import java.util.Collection;
import java.util.ArrayList;

class Test {
 static void printCollection(Collection<?> c) {
 // a wildcard collection
 for (Object o : c) {
 System.out.println(o);
 }
 }

 public static void main(String[] args) {
 Collection<String> cs = new ArrayList<String>();
 cs.add("hello");
 cs.add("world");
 printCollection(cs);
 }
}

Note that using Collection<Object> as the type of the incoming parameter, c, would
not be nearly as useful; the method could only be used with an argument expression that
had type Collection<Object>, which would be quite rare. In contrast, the use of an
unbounded wildcard allows any kind of collection to be passed as an argument.

Here is an example where the element type of an array is parameterized by a wildcard:

TYPES, VALUES, AND VARIABLES Parameterized Types 4.5

63

public Method getMethod(Class<?>[] parameterTypes) { ... }

Example 4.5.1-2. Bounded Wildcards

boolean addAll(Collection<? extends E> c)

Here, the method is declared within the interface Collection<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A
natural tendency would be to use Collection<E> as the type of c, but this is unnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> boolean addAll(Collection<T> c)

This version is sufficiently flexible, but note that the type parameter is used only once in the
signature. This reflects the fact that the type parameter is not being used to express any kind
of interdependency between the type(s) of the argument(s), the return type and/or throws
type. In the absence of such interdependency, generic methods are considered bad style,
and wildcards are preferred.

Reference(T referent, ReferenceQueue<? super T> queue)

Here, the referent can be inserted into any queue whose element type is a supertype of the
type T of the referent; T is the lower bound for the wildcard.

4.5.2 Members and Constructors of Parameterized Types

Let C be a generic class or interface declaration with type parameters A1,...,An, and
let C<T1,...,Tn> be a parameterization of C where, for 1 ≤ i ≤ n, Ti is a type (rather
than a wildcard). Then:

• Let m be a member or constructor declaration in C, whose type as declared is T
(§8.2, §8.8.6).

The type of m in C<T1,...,Tn> is T[A1:=T1,...,An:=Tn].

• Let m be a member or constructor declaration in D, where D is a class extended by C
or an interface implemented by C. Let D<U1,...,Uk> be the supertype of C<T1,...,Tn>
that corresponds to D.

The type of m in C<T1,...,Tn> is the type of m in D<U1,...,Uk>.

If any of the type arguments in the parameterization of C are wildcards, then:

• The types of the fields, methods, and constructors in C<T1,...,Tn> are the types
of the fields, methods, and constructors in the capture conversion of C<T1,...,Tn>
(§5.1.10).

4.6 Type Erasure TYPES, VALUES, AND VARIABLES

64

• Let D be a (possibly generic) class or interface declaration in C. Then the type
of D in C<T1,...,Tn> is D where, if D is generic, all type arguments are unbounded
wildcards.

This is of no consequence, as it is impossible to access a member of a parameterized type
without performing capture conversion, and it is impossible to use a wildcard after the
keyword new in a class instance creation expression (§15.9).

The sole exception to the previous paragraph is when a nested parameterized type is used
as the expression in an instanceof operator (§15.20.2), where capture conversion is not
applied.

A static member that is declared in a generic type declaration must be referred
to using the non-generic type that corresponds to the generic type (§6.1, §6.5.5.2,
§6.5.6.2), or a compile-time error occurs.

In other words, it is illegal to refer to a static member declared in a generic type
declaration by using a parameterized type.

4.6 Type Erasure

Type erasure is a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write |T| for the erasure of type T. The erasure mapping is defined as follows:

• The erasure of a parameterized type (§4.5) G<T1,...,Tn> is |G|.

• The erasure of a nested type T.C is |T|.C.

• The erasure of an array type T[] is |T|[].

• The erasure of a type variable (§4.4) is the erasure of its leftmost bound.

• The erasure of every other type is the type itself.

Type erasure also maps the signature (§8.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter types given in s.

The return type of a method (§8.4.5) and the type parameters of a generic method
or constructor (§8.4.4, §8.8.4) also undergo erasure if the method or constructor's
signature is erased.

The erasure of the signature of a generic method has no type parameters.

TYPES, VALUES, AND VARIABLES Reifiable Types 4.7

65

4.7 Reifiable Types

Because some type information is erased during compilation, not all types are
available at run time. Types that are completely available at run time are known
as reifiable types.

A type is reifiable if and only if one of the following holds:

• It refers to a non-generic class or interface type declaration.

• It is a parameterized type in which all type arguments are unbounded wildcards
(§4.5.1).

• It is a raw type (§4.8).

• It is a primitive type (§4.2).

• It is an array type (§10.1) whose element type is reifiable.

• It is a nested type where, for each type T separated by a ".", T itself is reifiable.

For example, if a generic class X<T> has a generic member class Y<U>, then the
type X<?>.Y<?> is reifiable because X<?> is reifiable and Y<?> is reifiable. The type
X<?>.Y<Object> is not reifiable because Y<Object> is not reifiable.

An intersection type is not reifiable.

The decision not to make all generic types reifiable is one of the most crucial, and
controversial design decisions involving the type system of the Java programming
language.

Ultimately, the most important motivation for this decision is compatibility with existing
code. In a naive sense, the addition of new constructs such as generics has no implications
for pre-existing code. The Java programming language, per se, is compatible with earlier
versions as long as every program written in the previous versions retains its meaning in
the new version. However, this notion, which may be termed language compatibility, is
of purely theoretical interest. Real programs (even trivial ones, such as "Hello World")
are composed of several compilation units, some of which are provided by the Java SE
platform (such as elements of java.lang or java.util). In practice, then, the minimum
requirement is platform compatibility - that any program written for the prior version of the
Java SE platform continues to function unchanged in the new version.

One way to provide platform compatibility is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing
Collections hierarchy in java.util, one might introduce a new library utilizing generics.

The disadvantages of such a scheme is that it is extremely difficult for pre-existing clients
of the Collection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versions of their code, to be compatible

4.8 Raw Types TYPES, VALUES, AND VARIABLES

66

with their clients. Libraries that are dependent on other vendors code cannot be modified to
use generics until the supplier's library is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as generics. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibiliy allows the
evolution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility is that a full and sound reification of the generic type
system is not possible, at least while the migration is taking place.

4.8 Raw Types

To facilitate interfacing with non-generic legacy code, it is possible to use as a type
the erasure (§4.6) of a parameterized type (§4.5) or the erasure of an array type
(§10.1) whose element type is a parameterized type. Such a type is called a raw
type.

More precisely, a raw type is defined to be one of:

• The reference type that is formed by taking the name of a generic type declaration
without an accompanying type argument list.

• An array type whose element type is a raw type.

• A non-static member type of a raw type R that is not inherited from a superclass
or superinterface of R.

A non-generic class or interface type is not a raw type.

To see why a non-static type member of a raw type is considered raw, consider the
following example:

class Outer<T>{
 T t;
 class Inner {
 T setOuterT(T t1) { t = t1; return t; }
 }
}

The type of the member(s) of Inner depends on the type parameter of Outer. If Outer is
raw, Inner must be treated as raw as well, as there is no valid binding for T.

TYPES, VALUES, AND VARIABLES Raw Types 4.8

67

This rule applies only to type members that are not inherited. Inherited type members that
depend on type variables will be inherited as raw types as a consequence of the rule that
the supertypes of a raw type are erased, described later in this section.

Another implication of the rules above is that a generic inner class of a raw type can itself
only be used as a raw type:

class Outer<T>{
 class Inner<S> {
 S s;
 }
}

It is not possible to access Inner as a partially raw type (a "rare" type):

Outer.Inner<Double> x = null; // illegal
Double d = x.s;

because Outer itself is raw, hence so are all its inner classes including Inner, and so it is
not possible to pass any type arguments to Inner.

The superclasses (respectively, superinterfaces) of a raw type are the erasures of the
superclasses (superinterfaces) of any of the parameterizations of the generic type.

The type of a constructor (§8.8), instance method (§8.4, §9.4), or non-static field
(§8.3) of a raw type C that is not inherited from its superclasses or superinterfaces
is the raw type that corresponds to the erasure of its type in the generic declaration
corresponding to C.

The type of a static method or static field of a raw type C is the same as its type
in the generic declaration corresponding to C.

It is a compile-time error to pass type arguments to a non-static type member of
a raw type that is not inherited from its superclasses or superinterfaces.

It is a compile-time error to attempt to use a type member of a parameterized type
as a raw type.

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as a raw type:

Outer<Integer>.Inner x = null; // illegal

This is the opposite of the case discussed above. There is no practical justification for this
half-baked type. In legacy code, no type arguments are used. In non-legacy code, we should
use the generic types correctly and pass all the required type arguments.

4.8 Raw Types TYPES, VALUES, AND VARIABLES

68

The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calls to super are treated as method calls on
a raw type.

The use of raw types is allowed only as a concession to compatibility of legacy
code. The use of raw types in code written after the introduction of generics into
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are always flagged, some
accesses to members of a raw type will result in compile-time unchecked warnings.
The rules for compile-time unchecked warnings when accessing members or
constructors of raw types are as follows:

• At an assignment to a field: if the type of the Primary in the field access
expression (§15.11) is a raw type, then a compile-time unchecked warning occurs
if erasure changes the field's type.

• At an invocation of a method or constructor: if the type of the class or interface to
search (§15.12.1) is a raw type, then a compile-time unchecked warning occurs if
erasure changes any of the formal parameter types of the method or constructor.

• No compile-time unchecked warning occurs for a method call when the formal
parameter types do not change under erasure (even if the return type and/or
throws clause changes), for reading from a field, or for a class instance creation
of a raw type.

Note that the unchecked warnings above are distinct from the unchecked warnings possible
from unchecked conversion (§5.1.9), casts (§5.5.2), method declarations (§8.4.1, §8.4.8.3,
§8.4.8.4, §9.4.1.2), and variable arity method invocations (§15.12.4.2).

The warnings here cover the case where a legacy consumer uses a generified library. For
example, the library declares a generic class Foo<T extends String> that has a field f
of type Vector<T>, but the consumer assigns a vector of integers to e.f where e has the
raw type Foo. The legacy consumer receives a warning because it may have caused heap
pollution (§4.12.2) for generified consumers of the generified library.

(Note that the legacy consumer can assign a Vector<String> from the library to its own
Vector variable without receiving a warning. That is, the subtyping rules (§4.10.2) of the
Java programming language make it possible for a variable of a raw type to be assigned a
value of any of the type's parameterized instances.)

The warnings from unchecked conversion cover the dual case, where a generified consumer
uses a legacy library. For example, a method of the library has the raw return type
Vector, but the consumer assigns the result of the method invocation to a variable of type
Vector<String>. This is unsafe, since the raw vector might have had a different element
type than String, but is still permitted using unchecked conversion in order to enable

TYPES, VALUES, AND VARIABLES Raw Types 4.8

69

interfacing with legacy code. The warning from unchecked conversion indicates that the
generified consumer may experience problems from heap pollution at other points in the
program.

Example 4.8-1. Raw Types

class Cell<E> {
 E value;

 Cell(E v) { value = v; }
 E get() { return value; }
 void set(E v) { value = v; }

 public static void main(String[] args) {
 Cell x = new Cell<String>("abc");
 System.out.println(x.value); // OK, has type Object
 System.out.println(x.get()); // OK, has type Object
 x.set("def"); // unchecked warning
 }
}

Example 4.8-2. Raw Types and Inheritance

import java.util.*;
class NonGeneric {
 Collection<Number> myNumbers() { return null; }
}

abstract class RawMembers<T> extends NonGeneric
 implements Collection<String> {
 static Collection<NonGeneric> cng =
 new ArrayList<NonGeneric>();

 public static void main(String[] args) {
 RawMembers rw = null;
 Collection<Number> cn = rw.myNumbers();
 // OK
 Iterator<String> is = rw.iterator();
 // Unchecked warning
 Collection<NonGeneric> cnn = rw.cng;
 // OK, static member
 }
}

In this program (which is not meant to be run), RawMembers<T> inherits the method:

Iterator<String> iterator()

from the Collection<String> superinterface. The raw type RawMembers inherits
iterator() from Collection, the erasure of Collection<String>, which means that
the return type of iterator() in RawMembers is Iterator. As a result, the attempt to

4.9 Intersection Types TYPES, VALUES, AND VARIABLES

70

assign rw.iterator() to Iterator<String> requires an unchecked conversion, so a
compile-time unchecked warning is issued.

In contrast, RawMembers inherits myNumbers() from the NonGeneric class whose
erasure is also NonGeneric. Thus, the return type of myNumbers() in RawMembers is not
erased, and the attempt to assign rw.myNumbers() to Collection<Number> requires no
unchecked conversion, so no compile-time unchecked warning is issued.

Similarly, the static member cng retains its parameterized type even when accessed
through a object of raw type. Note that access to a static member through an instance is
considered bad style and is discouraged.

This example reveals that certain members of a raw type are not erased, namely static
members whose types are parameterized, and members inherited from a non-generic
supertype.

Raw types are closely related to wildcards. Both are based on existential types. Raw types
can be thought of as wildcards whose type rules are deliberately unsound, to accommodate
interaction with legacy code. Historically, raw types preceded wildcards; they were first
introduced in GJ, and described in the paper Making the future safe for the past: Adding
Genericity to the Java Programming Language by Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler, in Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA 98), October 1998.

4.9 Intersection Types

An intersection type takes the form T1 & ... & Tn (n > 0), where Ti (1 ≤ i ≤ n) are types.

Intersection types can be derived from type parameter bounds (§4.4) and cast
expressions (§15.16); they also arise in the processes of capture conversion
(§5.1.10) and least upper bound computation (§4.10.4).

The values of an intersection type are those objects that are values of all of the
types Ti for 1 ≤ i ≤ n.

Every intersection type T1 & ... & Tn induces a notional class or interface for the
purpose of identifying the members of the intersection type, as follows:

• For each Ti (1 ≤ i ≤ n), let Ci be the most specific class or array type such that
Ti <: Ci. Then there must be some Ck such that Ck <: Ci for any i (1 ≤ i ≤ n), or
a compile-time error occurs.

• For 1 ≤ j ≤ n, if Tj is a type variable, then let Tj' be an interface whose members
are the same as the public members of Tj; otherwise, if Tj is an interface, then
let Tj' be Tj.

TYPES, VALUES, AND VARIABLES Subtyping 4.10

71

• If Ck is Object, a notional interface is induced; otherwise, a notional class
is induced with direct superclass Ck. This class or interface has direct
superinterfaces T1', ..., Tn' and is declared in the package in which the intersection
type appears.

The members of an intersection type are the members of the class or interface it
induces.

It is worth dwelling upon the distinction between intersection types and the bounds of type
variables. Every type variable bound induces an intersection type. This intersection type is
often trivial, consisting of a single type. The form of a bound is restricted (only the first
element may be a class or type variable, and only one type variable may appear in the
bound) to preclude certain awkward situations coming into existence. However, capture
conversion can lead to the creation of type variables whose bounds are more general, such
as array types).

4.10 Subtyping

The subtype and supertype relations are binary relations on types.

The supertypes of a type are obtained by reflexive and transitive closure over the
direct supertype relation, written S >1 T, which is defined by rules given later in
this section. We write S :> T to indicate that the supertype relation holds between
S and T.

S is a proper supertype of T, written S > T, if S :> T and S ≠ T.

The subtypes of a type T are all types U such that T is a supertype of U, and the
null type. We write T <: S to indicate that that the subtype relation holds between
types T and S.

T is a proper subtype of S, written T < S, if T <: S and S ≠ T.

T is a direct subtype of S, written T <1 S, if S >1 T.

Subtyping does not extend through parameterized types: T <: S does not imply that
C<T> <: C<S>.

4.10.1 Subtyping among Primitive Types

The following rules define the direct supertype relation among the primitive types:

• double >1 float

• float >1 long

4.10 Subtyping TYPES, VALUES, AND VARIABLES

72

• long >1 int

• int >1 char

• int >1 short

• short >1 byte

4.10.2 Subtyping among Class and Interface Types

Given a non-generic type declaration C, the direct supertypes of the type C are all
of the following:

• The direct superclass of C (§8.1.4).

• The direct superinterfaces of C (§8.1.5).

• The type Object, if C is an interface type with no direct superinterfaces (§9.1.3).

Given a generic type declaration C<F1,...,Fn> (n > 0), the direct supertypes of the
raw type C (§4.8) are all of the following:

• The direct superclass of the raw type C.

• The direct superinterfaces of the raw type C.

• The type Object, if C<F1,...,Fn> is a generic interface type with no direct
superinterfaces (§9.1.2).

Given a generic type declaration C<F1,...,Fn> (n > 0), the direct supertypes of the
generic type C<F1,...,Fn> are all of the following:

• The direct superclass of C<F1,...,Fn>.

• The direct superinterfaces of C<F1,...,Fn>.

• The type Object, if C<F1,...,Fn> is a generic interface type with no direct
superinterfaces.

• The raw type C.

Given a generic type declaration C<F1,...,Fn> (n > 0), the direct supertypes of
the parameterized type C<T1,...,Tn>, where Ti (1 ≤ i ≤ n) is a type, are all of the
following:

• D<U1 θ,...,Uk θ>, where D<U1,...,Uk> is a generic type which is a direct supertype
of the generic type C<T1,...,Tn> and θ is the substitution [F1:=T1,...,Fn:=Tn].

• C<S1,...,Sn>, where Si contains Ti (1 ≤ i ≤ n) (§4.5.1).

TYPES, VALUES, AND VARIABLES Subtyping 4.10

73

• The type Object, if C<F1,...,Fn> is a generic interface type with no direct
superinterfaces.

• The raw type C.

Given a generic type declaration C<F1,...,Fn> (n > 0), the direct supertypes of the
parameterized type C<R1,...,Rn> where at least one of the Ri (1 ≤ i ≤ n) is a wildcard
type argument, are the direct supertypes of the parameterized type C<X1,...,Xn>
which is the result of applying capture conversion to C<R1,...,Rn> (§5.1.10).

The direct supertypes of an intersection type T1 & ... & Tn are Ti (1 ≤ i ≤ n).

The direct supertypes of a type variable are the types listed in its bound.

A type variable is a direct supertype of its lower bound.

The direct supertypes of the null type are all reference types other than the null
type itself.

4.10.3 Subtyping among Array Types

The following rules define the direct supertype relation among array types:

• If S and T are both reference types, then S[] >1 T[] iff S >1 T.

• Object >1 Object[]

• Cloneable >1 Object[]

• java.io.Serializable >1 Object[]

• If P is a primitive type, then:

– Object >1 P[]

– Cloneable >1 P[]

– java.io.Serializable >1 P[]

4.10.4 Least Upper Bound

The least upper bound, or "lub", of a set of reference types is a shared supertype that
is more specific than any other shared supertype (that is, no other shared supertype
is a subtype of the least upper bound). This type, lub(U1, ..., Uk), is determined as
follows.

If k = 1, then the lub is the type itself: lub(U) = U.

Otherwise:

4.10 Subtyping TYPES, VALUES, AND VARIABLES

74

• For each Ui (1 ≤ i ≤ k):

Let ST(Ui) be the set of supertypes of Ui.

Let EST(Ui), the set of erased supertypes of Ui, be:

EST(Ui) = { |W| | W in ST(Ui) } where |W| is the erasure of W.

The reason for computing the set of erased supertypes is to deal with situations where
the set of types includes several distinct parameterizations of a generic type.

For example, given List<String> and List<Object>, simply intersecting the
sets ST(List<String>) = { List<String>, Collection<String>, Object } and
ST(List<Object>) = { List<Object>, Collection<Object>, Object } would
yield a set { Object }, and we would have lost track of the fact that the upper bound
can safely be assumed to be a List.

In contrast, intersecting EST(List<String>) = { List, Collection, Object } and
EST(List<Object>) = { List, Collection, Object } yields { List, Collection,
Object }, which will eventually enable us to produce List<?>.

• Let EC, the erased candidate set for U1 ... Uk, be the intersection of all the sets
EST(Ui) (1 ≤ i ≤ k).

• Let MEC, the minimal erased candidate set for U1 ... Uk, be:

MEC = { V | V in EC, and for all W ≠ V in EC, it is not the case that W <: V }

Because we are seeking to infer more precise types, we wish to filter out any candidates
that are supertypes of other candidates. This is what computing MEC accomplishes. In
our running example, we had EC = { List, Collection, Object }, so MEC = { List
}. The next step is to recover type arguments for the erased types in MEC.

• For any element G of MEC that is a generic type:

Let the "relevant" parameterizations of G, Relevant(G), be:

Relevant(G) = { V | 1 ≤ i ≤ k: V in ST(Ui) and V = G<...> }

In our running example, the only generic element of MEC is List, and Relevant(List)
= { List<String>, List<Object> }. We will now seek to find a type argument for
List that contains (§4.5.1) both String and Object.

This is done by means of the least containing parameterization (lcp) operation defined
below. The first line defines lcp() on a set, such as Relevant(List), as an operation on
a list of the elements of the set. The next line defines the operation on such lists, as a
pairwise reduction on the elements of the list. The third line is the definition of lcp() on
pairs of parameterized types, which in turn relies on the notion of least containing type
argument (lcta). lcta() is defined for all possible cases.

TYPES, VALUES, AND VARIABLES Subtyping 4.10

75

Let the "candidate" parameterization of G, Candidate(G), be the most
specific parameterization of the generic type G that contains all the relevant
parameterizations of G:

Candidate(G) = lcp(Relevant(G))

where lcp(), the least containing invocation, is:

– lcp(S) = lcp(e1, ..., en) where ei (1 ≤ i ≤ n) in S

– lcp(e1, ..., en) = lcp(lcp(e1, e2), e3, ..., en)

– lcp(G<X1, ..., Xn>, G<Y1, ..., Yn>) = G<lcta(X1, Y1), ..., lcta(Xn, Yn)>

– lcp(G<X1, ..., Xn>) = G<lcta(X1), ..., lcta(Xn)>

and where lcta(), the least containing type argument, is: (assuming U and V are
types)

– lcta(U, V) = U if U = V, otherwise ? extends lub(U, V)

– lcta(U, ? extends V) = ? extends lub(U, V)

– lcta(U, ? super V) = ? super glb(U, V)

– lcta(? extends U, ? extends V) = ? extends lub(U, V)

– lcta(? extends U, ? super V) = U if U = V, otherwise ?

– lcta(? super U, ? super V) = ? super glb(U, V)

– lcta(U) = ? if U's upper bound is Object, otherwise ? extends lub(U,Object)

and where glb() is as defined in §5.1.10.

• Let lub(U1 ... Uk) be:

Best(W1) & ... & Best(Wr)

where Wi (1 ≤ i ≤ r) are the elements of MEC, the minimal erased candidate set
of U1 ... Uk;

and where, if any of these elements are generic, we use the candidate
parameterization (so as to recover type arguments):

Best(X) = Candidate(X) if X is generic; X otherwise.

Strictly speaking, this lub() function only approximates a least upper bound.
Formally, there may exist some other type T such that all of U1 ... Uk are subtypes of T
and T is a subtype of lub(U1, ..., Uk). However, a compiler for the Java programming
language must implement lub() as specified above.

4.11 Where Types Are Used TYPES, VALUES, AND VARIABLES

76

It is possible that the lub() function yields an infinite type. This is permissible, and
a compiler for the Java programming language must recognize such situations and
represent them appropriately using cyclic data structures.

The possibility of an infinite type stems from the recursive calls to lub(). Readers familiar
with recursive types should note that an infinite type is not the same as a recursive type.

4.11 Where Types Are Used

Types are used in most kinds of declaration and in certain kinds of expression.
Specifically, there are 16 type contexts where types are used:

• In declarations:

1. A type in the extends or implements clause of a class declaration (§8.1.4,
§8.1.5, §8.5, §9.5)

2. A type in the extends clause of an interface declaration (§9.1.3, §8.5, §9.5)

3. The return type of a method (including the type of an element of an
annotation type) (§8.4.5, §9.4, §9.6.1)

4. A type in the throws clause of a method or constructor (§8.4.6, §8.8.5, §9.4)

5. A type in the extends clause of a type parameter declaration of a generic
class, interface, method, or constructor (§8.1.2, §9.1.2, §8.4.4, §8.8.4)

6. The type in a field declaration of a class or interface (including an enum
constant) (§8.3, §9.3, §8.9.1)

7. The type in a formal parameter declaration of a method, constructor, or
lambda expression (§8.4.1, §8.8.1, §9.4, §15.27.1)

8. The type of the receiver parameter of a method (§8.4.1)

9. The type in a local variable declaration (§14.4, §14.14.1, §14.14.2, §14.20.3)

10. The type in an exception parameter declaration (§14.20)

• In expressions:

11. A type in the explicit type argument list to an explicit constructor invocation
statement or class instance creation expression or method invocation
expression (§8.8.7.1, §15.9, §15.12)

TYPES, VALUES, AND VARIABLES Where Types Are Used 4.11

77

12. In an unqualified class instance creation expression, as the class type to be
instantiated (§15.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (§15.9.5)

13. The element type in an array creation expression (§15.10.1)

14. The type in the cast operator of a cast expression (§15.16)

15. The type that follows the instanceof relational operator (§15.20.2)

16. In a method reference expression (§15.13), as the reference type to search
for a member method or as the class type or array type to construct.

Also, types are used as:

• The element type of an array type in any of the above contexts; and

• A non-wildcard type argument, or a bound of a wildcard type argument, of a
parameterized type in any of the above contexts.

Finally, there are three special terms in the Java programming language which
denote the use of a type:

• An unbounded wildcard (§4.5.1)

• The ... in the type of a variable arity parameter (§8.4.1), to indicate an array type

• The simple name of a type in a constructor declaration (§8.8), to indicate the
class of the constructed object

The meaning of types in type contexts is given by:

• §4.2, for primitive types

• §4.4, for type parameters

• §4.5, for class and interface types that are parameterized, or appear either as type
arguments in a parameterized type or as bounds of wildcard type arguments in
a parameterized type

• §4.8, for class and interface types that are raw

• §4.9, for intersection types in the bounds of type parameters

• §6.5, for class and interface types in contexts where genericity is unimportant
(§6.1)

• §10.1, for array types

Some type contexts restrict how a reference type may be parameterized:

4.11 Where Types Are Used TYPES, VALUES, AND VARIABLES

78

• The following type contexts require that if a type is a parameterized reference
type, it has no wildcard type arguments:

– In an extends or implements clause of a class declaration (§8.1.4, §8.1.5)

– In an extends clause of an interface declaration (§9.1.3)

– In an unqualified class instance creation expression, as the class type to be
instantiated (§15.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (§15.9.5)

– In a method reference expression (§15.13), as the reference type to search for
a member method or as the class type or array type to construct.

In addition, no wildcard type arguments are permitted in the explicit type
argument list to an explicit constructor invocation statement or class instance
creation expression or method invocation expression or method reference
expression (§8.8.7.1, §15.9, §15.12, §15.13).

• The following type contexts require that if a type is a parameterized reference
type, it has only unbounded wildcard type arguments (i.e. it is a reifiable type) :

– As the element type in an array creation expression (§15.10.1)

– As the type that follows the instanceof relational operator (§15.20.2)

• The following type contexts disallow a parameterized reference type altogether,
because they involve exceptions and the type of an exception is non-generic
(§6.1):

– As the type of an exception that can be thrown by a method or constructor
(§8.4.6, §8.8.5, §9.4)

– In an exception parameter declaration (§14.20)

In any type context where a type is used, it is possible to annotate the keyword denoting
a primitive type or the Identifier denoting the simple name of a reference type. It is also
possible to annotate an array type by writing an annotation to the left of the [at the desired
level of nesting in the array type. Annotations in these locations are called type annotations,
and are specified in §9.7.4. Here are some examples:

• @Foo int[] f; annotates the primitive type int

• int @Foo [] f; annotates the array type int[]

• int @Foo [][] f; annotates the array type int[][]

• int[] @Foo [] f; annotates the array type int[] which is the component type of
the array type int[][]

TYPES, VALUES, AND VARIABLES Where Types Are Used 4.11

79

Five of the type contexts which appear in declarations occupy the same syntactic real estate
as a number of declaration contexts (§9.6.4.1):

• The return type of a method (including the type of an element of an annotation type)

• The type in a field declaration of a class or interface (including an enum constant)

• The type in a formal parameter declaration of a method, constructor, or lambda
expression

• The type in a local variable declaration

• The type in an exception parameter declaration

The fact that the same syntactic location in a program can be both a type context and a
declaration context arises because the modifiers for a declaration immediately precede the
type of the declared entity. §9.7.4 explains how an annotation in such a location is deemed
to appear in a type context or a declaration context or both.

Example 4.11-1. Usage of a Type

import java.util.Random;
import java.util.Collection;
import java.util.ArrayList;

class MiscMath<T extends Number> {
 int divisor;
 MiscMath(int divisor) { this.divisor = divisor; }
 float ratio(long l) {
 try {
 l /= divisor;
 } catch (Exception e) {
 if (e instanceof ArithmeticException)
 l = Long.MAX_VALUE;
 else
 l = 0;
 }
 return (float)l;
 }
 double gausser() {
 Random r = new Random();
 double[] val = new double[2];
 val[0] = r.nextGaussian();
 val[1] = r.nextGaussian();
 return (val[0] + val[1]) / 2;
 }
 Collection<Number> fromArray(Number[] na) {
 Collection<Number> cn = new ArrayList<Number>();
 for (Number n : na) cn.add(n);
 return cn;
 }
 <S> void loop(S s) { this.<S>loop(s); }
}

4.12 Variables TYPES, VALUES, AND VARIABLES

80

In this example, types are used in declarations of the following:

• Imported types (§7.5); here the type Random, imported from the type
java.util.Random of the package java.util, is declared

• Fields, which are the class variables and instance variables of classes (§8.3), and
constants of interfaces (§9.3); here the field divisor in the class MiscMath is declared
to be of type int

• Method parameters (§8.4.1); here the parameter l of the method ratio is declared to
be of type long

• Method results (§8.4); here the result of the method ratio is declared to be of type
float, and the result of the method gausser is declared to be of type double

• Constructor parameters (§8.8.1); here the parameter of the constructor for MiscMath is
declared to be of type int

• Local variables (§14.4, §14.14); the local variables r and val of the method gausser
are declared to be of types Random and double[] (array of double)

• Exception parameters (§14.20); here the exception parameter e of the catch clause is
declared to be of type Exception

• Type parameters (§4.4); here the type parameter of MiscMath is a type variable T with
the type Number as its declared bound

• In any declaration that uses a parameterized type; here the type Number is used as a type
argument (§4.5.1) in the parameterized type Collection<Number>.

and in expressions of the following kinds:

• Class instance creations (§15.9); here a local variable r of method gausser is initialized
by a class instance creation expression that uses the type Random

• Generic class (§8.1.2) instance creations (§15.9); here Number is used as a type argument
in the expression new ArrayList<Number>()

• Array creations (§15.10.1); here the local variable val of method gausser is initialized
by an array creation expression that creates an array of double with size 2

• Generic method (§8.4.4) or constructor (§8.8.4) invocations (§15.12); here the method
loop calls itself with an explicit type argument S

• Casts (§15.16); here the return statement of the method ratio uses the float type
in a cast

• The instanceof operator (§15.20.2); here the instanceof operator tests whether e is
assignment-compatible with the type ArithmeticException

4.12 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (§4.2) or a reference type (§4.3).

TYPES, VALUES, AND VARIABLES Variables 4.12

81

A variable's value is changed by an assignment (§15.26) or by a prefix or postfix +
+ (increment) or -- (decrement) operator (§15.14.2, §15.14.3, §15.15.1, §15.15.2).

Compatibility of the value of a variable with its type is guaranteed by the design of
the Java programming language, as long as a program does not give rise to compile-
time unchecked warnings (§4.12.2). Default values (§4.12.5) are compatible and all
assignments to a variable are checked for assignment compatibility (§5.2), usually
at compile time, but, in a single case involving arrays, a run-time check is made
(§10.5).

4.12.1 Variables of Primitive Type

A variable of a primitive type always holds a primitive value of that exact primitive
type.

4.12.2 Variables of Reference Type

A variable of a class type T can hold a null reference or a reference to an instance
of class T or of any class that is a subclass of T.

A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interface.

Note that a variable is not guaranteed to always refer to a subtype of its declared type, but
only to subclasses or subinterfaces of the declared type. This is due to the possibility of
heap pollution discussed below.

If T is a primitive type, then a variable of type "array of T" can hold a null reference
or a reference to any array of type "array of T".

If T is a reference type, then a variable of type "array of T" can hold a null reference
or a reference to any array of type "array of S" such that type S is a subclass or
subinterface of type T.

A variable of type Object[] can hold a reference to an array of any reference type.

A variable of type Object can hold a null reference or a reference to any object,
whether it is an instance of a class or an array.

It is possible that a variable of a parameterized type will refer to an object that is
not of that parameterized type. This situation is known as heap pollution.

Heap pollution can only occur if the program performed some operation involving
a raw type that would give rise to a compile-time unchecked warning (§4.8, §5.1.9,
§5.5.2, §8.4.1, §8.4.8.3, §8.4.8.4, §9.4.1.2, §15.12.4.2), or if the program aliases an

4.12 Variables TYPES, VALUES, AND VARIABLES

82

array variable of non-reifiable element type through an array variable of a supertype
which is either raw or non-generic.

For example, the code:

List l = new ArrayList<Number>();
List<String> ls = l; // Unchecked warning

gives rise to a compile-time unchecked warning, because it is not possible to ascertain,
either at compile time (within the limits of the compile-time type checking rules) or at run
time, whether the variable l does indeed refer to a List<String>.

If the code above is executed, heap pollution arises, as the variable ls, declared to be a
List<String>, refers to a value that is not in fact a List<String>.

The problem cannot be identified at run time because type variables are not reified, and
thus instances do not carry any information at run time regarding the type arguments used
to create them.

In a simple example as given above, it may appear that it should be straightforward to
identify the situation at compile time and give an error. However, in the general (and typical)
case, the value of the variable l may be the result of an invocation of a separately compiled
method, or its value may depend upon arbitrary control flow. The code above is therefore
very atypical, and indeed very bad style.

Furthermore, the fact that Object[] is a supertype of all array types means that unsafe
aliasing can occur which leads to heap pollution. For example, the following code compiles
because it is statically type-correct:

static void m(List<String>... stringLists) {
 Object[] array = stringLists;
 List<Integer> tmpList = Arrays.asList(42);
 array[0] = tmpList; // (1)
 String s = stringLists[0].get(0); // (2)
}

Heap pollution occurs at (1) because a component in the stringLists array that should
refer to a List<String> now refers to a List<Integer>. There is no way to detect this
pollution in the presence of both a universal supertype (Object[]) and a non-reifiable type
(the declared type of the formal parameter, List<String>[]). No unchecked warning is
justified at (1); nevertheless, at run time, a ClassCastException will occur at (2).

A compile-time unchecked warning will be given at any invocation of the method above
because an invocation is considered by the Java programming language's static type system
to create an array whose element type, List<String>, is non-reifiable (§15.12.4.2). If and
only if the body of the method was type-safe with respect to the variable arity parameter,
then the programmer could use the SafeVarargs annotation to silence warnings at
invocations (§9.6.4.7). Since the body of the method as written above causes heap pollution,
it would be completely inappropriate to use the annotation to disable warnings for callers.

TYPES, VALUES, AND VARIABLES Variables 4.12

83

Finally, note that the stringLists array could be aliased through variables of types other
than Object[], and heap pollution could still occur. For example, the type of the array
variable could be java.util.Collection[] - a raw element type - and the body of the
method above would compile without warnings or errors and still cause heap pollution. And
if the Java SE platform defined, say, Sequence as a non-generic supertype of List<T>,
then using Sequence as the type of array would also cause heap pollution.

The variable will always refer to an object that is an instance of a class that
represents the parameterized type.

The value of ls in the example above is always an instance of a class that provides a
representation of a List.

Assignment from an expression of a raw type to a variable of a parameterized type should
only be used when combining legacy code which does not make use of parameterized types
with more modern code that does.

If no operation that requires a compile-time unchecked warning to be issued takes place,
and no unsafe aliasing occurs of array variables with non-reifiable element types, then
heap pollution cannot occur. Note that this does not imply that heap pollution only occurs
if a compile-time unchecked warning actually occurred. It is possible to run a program
where some of the binaries were produced by a compiler for an older version of the Java
programming language, or from sources that explicitly suppressed unchecked warnings.
This practice is unhealthy at best.

Conversely, it is possible that despite executing code that could (and perhaps did)
give rise to a compile-time unchecked warning, no heap pollution takes place. Indeed,
good programming practice requires that the programmer satisfy herself that despite any
unchecked warning, the code is correct and heap pollution will not occur.

4.12.3 Kinds of Variables

There are eight kinds of variables:

1. A class variable is a field declared using the keyword static within a class
declaration (§8.3.1.1), or with or without the keyword static within an
interface declaration (§9.3).

A class variable is created when its class or interface is prepared (§12.3.2) and
is initialized to a default value (§4.12.5). The class variable effectively ceases
to exist when its class or interface is unloaded (§12.7).

2. An instance variable is a field declared within a class declaration without using
the keyword static (§8.3.1.1).

If a class T has a field a that is an instance variable, then a new instance variable
a is created and initialized to a default value (§4.12.5) as part of each newly
created object of class T or of any class that is a subclass of T (§8.1.4). The

4.12 Variables TYPES, VALUES, AND VARIABLES

84

instance variable effectively ceases to exist when the object of which it is a field
is no longer referenced, after any necessary finalization of the object (§12.6)
has been completed.

3. Array components are unnamed variables that are created and initialized to
default values (§4.12.5) whenever a new object that is an array is created (§10
(Arrays), §15.10.2). The array components effectively cease to exist when the
array is no longer referenced.

4. Method parameters (§8.4.1) name argument values passed to a method.

For every parameter declared in a method declaration, a new parameter variable
is created each time that method is invoked (§15.12). The new variable is
initialized with the corresponding argument value from the method invocation.
The method parameter effectively ceases to exist when the execution of the
body of the method is complete.

5. Constructor parameters (§8.8.1) name argument values passed to a
constructor.

For every parameter declared in a constructor declaration, a new parameter
variable is created each time a class instance creation expression (§15.9) or
explicit constructor invocation (§8.8.7) invokes that constructor. The new
variable is initialized with the corresponding argument value from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is complete.

6. Lambda parameters (§15.27.1) name argument values passed to a lambda
expression body (§15.27.2).

For every parameter declared in a lambda expression, a new parameter variable
is created each time a method implemented by the lambda body is invoked
(§15.12). The new variable is initialized with the corresponding argument
value from the method invocation. The lambda parameter effectively ceases to
exist when the execution of the lambda expression body is complete.

7. An exception parameter is created each time an exception is caught by a catch
clause of a try statement (§14.20).

The new variable is initialized with the actual object associated with the
exception (§11.3, §14.18). The exception parameter effectively ceases to exist
when execution of the block associated with the catch clause is complete.

8. Local variables are declared by local variable declaration statements (§14.4).

Whenever the flow of control enters a block (§14.2) or for statement
(§14.14), a new variable is created for each local variable declared in a local

TYPES, VALUES, AND VARIABLES Variables 4.12

85

variable declaration statement immediately contained within that block or for
statement.

A local variable declaration statement may contain an expression which
initializes the variable. The local variable with an initializing expression is not
initialized, however, until the local variable declaration statement that declares
it is executed. (The rules of definite assignment (§16 (Definite Assignment))
prevent the value of a local variable from being used before it has been
initialized or otherwise assigned a value.) The local variable effectively ceases
to exist when the execution of the block or for statement is complete.

Were it not for one exceptional situation, a local variable could always be regarded
as being created when its local variable declaration statement is executed. The
exceptional situation involves the switch statement (§14.11), where it is possible for
control to enter a block but bypass execution of a local variable declaration statement.
Because of the restrictions imposed by the rules of definite assignment (§16 (Definite
Assignment)), however, the local variable declared by such a bypassed local variable
declaration statement cannot be used before it has been definitely assigned a value by
an assignment expression (§15.26).

Example 4.12.3-1. Different Kinds of Variables

class Point {
 static int numPoints; // numPoints is a class variable
 int x, y; // x and y are instance variables
 int[] w = new int[10]; // w[0] is an array component
 int setX(int x) { // x is a method parameter
 int oldx = this.x; // oldx is a local variable
 this.x = x;
 return oldx;
 }
}

4.12.4 final Variables

A variable can be declared final. A final variable may only be assigned to once.
It is a compile-time error if a final variable is assigned to unless it is definitely
unassigned immediately prior to the assignment (§16 (Definite Assignment)).

Once a final variable has been assigned, it always contains the same value. If a
final variable holds a reference to an object, then the state of the object may be
changed by operations on the object, but the variable will always refer to the same
object. This applies also to arrays, because arrays are objects; if a final variable
holds a reference to an array, then the components of the array may be changed by
operations on the array, but the variable will always refer to the same array.

A blank final is a final variable whose declaration lacks an initializer.

4.12 Variables TYPES, VALUES, AND VARIABLES

86

A constant variable is a final variable of primitive type or type String that is
initialized with a constant expression (§15.28). Whether a variable is a constant
variable or not may have implications with respect to class initialization (§12.4.1),
binary compatibility (§13.1, §13.4.9), and definite assignment (§16 (Definite
Assignment)).

Three kinds of variable are implicitly declared final: a field of an interface
(§9.3), a local variable which is a resource of a try-with-resources statement
(§14.20.3), and an exception parameter of a multi-catch clause (§14.20). An
exception parameter of a uni-catch clause is never implicitly declared final, but
may be effectively final.

Example 4.12.4-1. Final Variables

Declaring a variable final can serve as useful documentation that its value will not change
and can help avoid programming errors. In this program:

class Point {
 int x, y;
 int useCount;
 Point(int x, int y) { this.x = x; this.y = y; }
 static final Point origin = new Point(0, 0);
}

the class Point declares a final class variable origin. The origin variable holds a
reference to an object that is an instance of class Point whose coordinates are (0, 0). The
value of the variable Point.origin can never change, so it always refers to the same
Point object, the one created by its initializer. However, an operation on this Point object
might change its state - for example, modifying its useCount or even, misleadingly, its x
or y coordinate.

Certain variables that are not declared final are instead considered effectively
final:

• A local variable whose declarator has an initializer (§14.4.2) is effectively final
if all of the following are true:

– It is not declared final.

– It never occurs as the left hand side in an assignment expression (§15.26).
(Note that the local variable declarator containing the initializer is not an
assignment expression.)

– It never occurs as the operand of a prefix or postfix increment or decrement
operator (§15.14, §15.15).

• A local variable whose declarator lacks an initializer is effectively final if all of
the following are true:

TYPES, VALUES, AND VARIABLES Variables 4.12

87

– It is not declared final.

– Whenever it occurs as the left hand side in an assignment expression, it is
definitely unassigned and not definitely assigned before the assignment; that
is, it is definitely unassigned and not definitely assigned after the right hand
side of the assignment expression (§16 (Definite Assignment)).

– It never occurs as the operand of a prefix or postfix increment or decrement
operator.

• A method, constructor, lambda, or exception parameter (§8.4.1, §8.8.1, §9.4,
§15.27.1, §14.20) is treated, for the purpose of determining whether it is
effectively final, as a local variable whose declarator has an initializer.

If a variable is effectively final, adding the final modifier to its declaration will
not introduce any compile-time errors. Conversely, a local variable or parameter
that is declared final in a valid program becomes effectively final if the final
modifier is removed.

4.12.5 Initial Values of Variables

Every variable in a program must have a value before its value is used:

• Each class variable, instance variable, or array component is initialized with a
default value when it is created (§15.9, §15.10.2):

– For type byte, the default value is zero, that is, the value of (byte)0.

– For type short, the default value is zero, that is, the value of (short)0.

– For type int, the default value is zero, that is, 0.

– For type long, the default value is zero, that is, 0L.

– For type float, the default value is positive zero, that is, 0.0f.

– For type double, the default value is positive zero, that is, 0.0d.

– For type char, the default value is the null character, that is, '\u0000'.

– For type boolean, the default value is false.

– For all reference types (§4.3), the default value is null.

• Each method parameter (§8.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (§15.12).

4.12 Variables TYPES, VALUES, AND VARIABLES

88

• Each constructor parameter (§8.8.1) is initialized to the corresponding argument
value provided by a class instance creation expression (§15.9) or explicit
constructor invocation (§8.8.7).

• An exception parameter (§14.20) is initialized to the thrown object representing
the exception (§11.3, §14.18).

• A local variable (§14.4, §14.14) must be explicitly given a value before it is
used, by either initialization (§14.4) or assignment (§15.26), in a way that can be
verified using the rules for definite assignment (§16 (Definite Assignment)).

Example 4.12.5-1. Initial Values of Variables

class Point {
 static int npoints;
 int x, y;
 Point root;
}

class Test {
 public static void main(String[] args) {
 System.out.println("npoints=" + Point.npoints);
 Point p = new Point();
 System.out.println("p.x=" + p.x + ", p.y=" + p.y);
 System.out.println("p.root=" + p.root);
 }
}

This program prints:

npoints=0
p.x=0, p.y=0
p.root=null

illustrating the default initialization of npoints, which occurs when the class Point is
prepared (§12.3.2), and the default initialization of x, y, and root, which occurs when a new
Point is instantiated. See §12 (Execution) for a full description of all aspects of loading,
linking, and initialization of classes and interfaces, plus a description of the instantiation
of classes to make new class instances.

4.12.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has a type
that can be determined at compile time. The type may be a primitive type or a
reference type. Reference types include class types and interface types. Reference
types are introduced by type declarations, which include class declarations (§8.1)
and interface declarations (§9.1). We often use the term type to refer to either a
class or an interface.

TYPES, VALUES, AND VARIABLES Variables 4.12

89

In the Java Virtual Machine, every object belongs to some particular class: the class
that was mentioned in the creation expression that produced the object (§15.9), or
the class whose Class object was used to invoke a reflective method to produce the
object, or the String class for objects implicitly created by the string concatenation
operator + (§15.18.1). This class is called the class of the object. An object is said
to be an instance of its class and of all superclasses of its class.

Every array also has a class. The method getClass, when invoked for an array
object, will return a class object (of class Class) that represents the class of the
array (§10.8).

The compile-time type of a variable is always declared, and the compile-time type
of an expression can be deduced at compile time. The compile-time type limits the
possible values that the variable can hold at run time or the expression can produce
at run time. If a run-time value is a reference that is not null, it refers to an object
or array that has a class, and that class will necessarily be compatible with the
compile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
type is an interface type can reference any object whose class implements (§8.1.5)
that interface.

Sometimes a variable or expression is said to have a "run-time type". This refers
to the class of the object referred to by the value of the variable or expression at
run time, assuming that the value is not null.

The correspondence between compile-time types and run-time types is incomplete
for two reasons:

1. At run time, classes and interfaces are loaded by the Java Virtual Machine using
class loaders. Each class loader defines its own set of classes and interfaces.
As a result, it is possible for two loaders to load an identical class or interface
definition but produce distinct classes or interfaces at run time. Consequently,
code that compiled correctly may fail at link time if the class loaders that load
it are inconsistent.

See the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng Liang
and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM SIGPLAN
Notices, Volume 33, Number 10, October 1998, pages 36-44, and The Java Virtual
Machine Specification, Java SE 8 Edition for more details.

2. Type variables (§4.4) and type arguments (§4.5.1) are not reified at run
time. As a result, the same class or interface at run time represents multiple
parameterized types (§4.5) from compile time. Specifically, all compile-time

4.12 Variables TYPES, VALUES, AND VARIABLES

90

parameterizations of a given generic type (§8.1.2, §9.1.2) share a single run-
time representation.

Under certain conditions, it is possible that a variable of a parameterized type refers
to an object that is not of that parameterized type. This situation is known as heap
pollution (§4.12.2). The variable will always refer to an object that is an instance of
a class that represents the parameterized type.

Example 4.12.6-1. Type of a Variable versus Class of an Object

interface Colorable {
 void setColor(byte r, byte g, byte b);
}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
 byte r, g, b;
 public void setColor(byte rv, byte gv, byte bv) {
 r = rv; g = gv; b = bv;
 }
}

class Test {
 public static void main(String[] args) {
 Point p = new Point();
 ColoredPoint cp = new ColoredPoint();
 p = cp;
 Colorable c = cp;
 }
}

In this example:

• The local variable p of the method main of class Test has type Point and is initially
assigned a reference to a new instance of class Point.

• The local variable cp similarly has as its type ColoredPoint, and is initially assigned
a reference to a new instance of class ColoredPoint.

• The assignment of the value of cp to the variable p causes p to hold a reference
to a ColoredPoint object. This is permitted because ColoredPoint is a subclass
of Point, so the class ColoredPoint is assignment-compatible (§5.2) with the type
Point. A ColoredPoint object includes support for all the methods of a Point. In
addition to its particular fields r, g, and b, it has the fields of class Point, namely x and y.

• The local variable c has as its type the interface type Colorable, so it can hold a
reference to any object whose class implements Colorable; specifically, it can hold a
reference to a ColoredPoint.

Note that an expression such as new Colorable() is not valid because it is not possible
to create an instance of an interface, only of a class. However, the expression new

TYPES, VALUES, AND VARIABLES Variables 4.12

91

Colorable() { public void setColor... } is valid because it declares an
anonymous class (§15.9.5) that implements the Colorable interface.

93

C H A P T E R 5
Conversions and Contexts

EVERY expression written in the Java programming language either produces no
result (§15.1) or has a type that can be deduced at compile time (§15.3). When an
expression appears in most contexts, it must be compatible with a type expected in
that context; this type is called the target type. For convenience, compatibility of
an expression with its surrounding context is facilitated in two ways:

• First, for some expressions, termed poly expressions (§15.2), the deduced type
can be influenced by the target type. The same expression can have different
types in different contexts.

• Second, after the type of the expression has been deduced, an implicit conversion
from the type of the expression to the target type can sometimes be performed.

If neither strategy is able to produce the appropriate type, a compile-time error
occurs.

The rules determining whether an expression is a poly expression, and if so, its type
and compatibility in a particular context, vary depending on the kind of context and
the form of the expression. In addition to influencing the type of the expression,
the target type may in some cases influence the run time behavior of the expression
in order to produce a value of the appropriate type.

Similarly, the rules determining whether a target type allows an implicit conversion
vary depending on the kind of context, the type of the expression, and, in one special
case, the value of a constant expression (§15.28). A conversion from type S to type
T allows an expression of type S to be treated at compile time as if it had type T
instead. In some cases this will require a corresponding action at run time to check
the validity of the conversion or to translate the run-time value of the expression
into a form appropriate for the new type T.

CONVERSIONS AND CONTEXTS

94

Example 5.0-1. Conversions at Compile Time and Run Time

• A conversion from type Object to type Thread requires a run-time check to make sure
that the run-time value is actually an instance of class Thread or one of its subclasses;
if it is not, an exception is thrown.

• A conversion from type Thread to type Object requires no run-time action; Thread
is a subclass of Object, so any reference produced by an expression of type Thread is
a valid reference value of type Object.

• A conversion from type int to type long requires run-time sign-extension of a 32-bit
integer value to the 64-bit long representation. No information is lost.

• A conversion from type double to type long requires a non-trivial translation from a
64-bit floating-point value to the 64-bit integer representation. Depending on the actual
run-time value, information may be lost.

The conversions possible in the Java programming language are grouped into
several broad categories:

• Identity conversions

• Widening primitive conversions

• Narrowing primitive conversions

• Widening reference conversions

• Narrowing reference conversions

• Boxing conversions

• Unboxing conversions

• Unchecked conversions

• Capture conversions

• String conversions

• Value set conversions

There are six kinds of conversion contexts in which poly expressions may be
influenced by context or implicit conversions may occur. Each kind of context has
different rules for poly expression typing and allows conversions in some of the
categories above but not others. The contexts are:

• Assignment contexts (§5.2, §15.26), in which an expression's value is bound to
a named variable. Primitive and reference types are subject to widening, values
may be boxed or unboxed, and some primitive constant expressions may be
subject to narrowing. An unchecked conversion may also occur.

CONVERSIONS AND CONTEXTS

95

• Strict invocation contexts (§5.3, §15.9, §15.12), in which an argument is bound
to a formal parameter of a constructor or method. Widening primitive, widening
reference, and unchecked conversions may occur.

• Loose invocation contexts (§5.3, §15.9, §15.12), in which, like strict invocation
contexts, an argument is bound to a formal parameter. Method or constructor
invocations may provide this context if no applicable declaration can be found
using only strict invocation contexts. In addition to widening and unchecked
conversions, this context allows boxing and unboxing conversions to occur.

• String contexts (§5.4, §15.18.1), in which a value of any type is converted to an
object of type String.

• Casting contexts (§5.5), in which an expression's value is converted to a type
explicitly specified by a cast operator (§15.16). Casting contexts are more
inclusive than assignment or loose invocation contexts, allowing any specific
conversion other than a string conversion, but certain casts to a reference type
are checked for correctness at run time.

• Numeric contexts (§5.6), in which the operands of a numeric operator may be
widened to a common type so that an operation can be performed.

The term "conversion" is also used to describe, without being specific, any
conversions allowed in a particular context. For example, we say that an expression
that is the initializer of a local variable is subject to "assignment conversion",
meaning that a specific conversion will be implicitly chosen for that expression
according to the rules for the assignment context.

Example 5.0-2. Conversions In Various Contexts

class Test {
 public static void main(String[] args) {
 // Casting conversion (5.4) of a float literal to
 // type int. Without the cast operator, this would
 // be a compile-time error, because this is a
 // narrowing conversion (5.1.3):
 int i = (int)12.5f;

 // String conversion (5.4) of i's int value:
 System.out.println("(int)12.5f==" + i);

 // Assignment conversion (5.2) of i's value to type
 // float. This is a widening conversion (5.1.2):
 float f = i;

 // String conversion of f's float value:
 System.out.println("after float widening: " + f);

 // Numeric promotion (5.6) of i's value to type

5.1 Kinds of Conversion CONVERSIONS AND CONTEXTS

96

 // float. This is a binary numeric promotion.
 // After promotion, the operation is float*float:
 System.out.print(f);
 f = f * i;

 // Two string conversions of i and f:
 System.out.println("*" + i + "==" + f);

 // Invocation conversion (5.3) of f's value
 // to type double, needed because the method Math.sin
 // accepts only a double argument:
 double d = Math.sin(f);

 // Two string conversions of f and d:
 System.out.println("Math.sin(" + f + ")==" + d);
 }
}

This program produces the output:

(int)12.5f==12
after float widening: 12.0
12.0*12==144.0
Math.sin(144.0)==-0.49102159389846934

5.1 Kinds of Conversion

Specific type conversions in the Java programming language are divided into 13
categories.

5.1.1 Identity Conversion

A conversion from a type to that same type is permitted for any type.

This may seem trivial, but it has two practical consequences. First, it is always permitted
for an expression to have the desired type to begin with, thus allowing the simply stated rule
that every expression is subject to conversion, if only a trivial identity conversion. Second,
it implies that it is permitted for a program to include redundant cast operators for the sake
of clarity.

5.1.2 Widening Primitive Conversion

19 specific conversions on primitive types are called the widening primitive
conversions:

• byte to short, int, long, float, or double

CONVERSIONS AND CONTEXTS Kinds of Conversion 5.1

97

• short to int, long, float, or double

• char to int, long, float, or double

• int to long, float, or double

• long to float or double

• float to double

A widening primitive conversion does not lose information about the overall
magnitude of a numeric value in the following cases, where the numeric value is
preserved exactly:

• from an integral type to another integral type

• from byte, short, or char to a floating point type

• from int to double

• from float to double in a strictfp expression (§15.4)

A widening primitive conversion from float to double that is not strictfp may
lose information about the overall magnitude of the converted value.

A widening primitive conversion from int to float, or from long to float, or
from long to double, may result in loss of precision - that is, the result may lose
some of the least significant bits of the value. In this case, the resulting floating-
point value will be a correctly rounded version of the integer value, using IEEE
754 round-to-nearest mode (§4.2.4).

A widening conversion of a signed integer value to an integral type T simply sign-
extends the two's-complement representation of the integer value to fill the wider
format.

A widening conversion of a char to an integral type T zero-extends the
representation of the char value to fill the wider format.

Despite the fact that loss of precision may occur, a widening primitive conversion
never results in a run-time exception (§11.1.1).

Example 5.1.2-1. Widening Primitive Conversion

class Test {
 public static void main(String[] args) {
 int big = 1234567890;
 float approx = big;
 System.out.println(big - (int)approx);
 }
}

5.1 Kinds of Conversion CONVERSIONS AND CONTEXTS

98

This program prints:

-46

thus indicating that information was lost during the conversion from type int to type float
because values of type float are not precise to nine significant digits.

5.1.3 Narrowing Primitive Conversion

22 specific conversions on primitive types are called the narrowing primitive
conversions:

• short to byte or char

• char to byte or short

• int to byte, short, or char

• long to byte, short, char, or int

• float to byte, short, char, int, or long

• double to byte, short, char, int, long, or float

A narrowing primitive conversion may lose information about the overall
magnitude of a numeric value and may also lose precision and range.

A narrowing primitive conversion from double to float is governed by the IEEE
754 rounding rules (§4.2.4). This conversion can lose precision, but also lose range,
resulting in a float zero from a nonzero double and a float infinity from a finite
double. A double NaN is converted to a float NaN and a double infinity is
converted to the same-signed float infinity.

A narrowing conversion of a signed integer to an integral type T simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the sign of the
input value.

A narrowing conversion of a char to an integral type T likewise simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the resulting value to be a negative number, even though
chars represent 16-bit unsigned integer values.

A narrowing conversion of a floating-point number to an integral type T takes two
steps:

CONVERSIONS AND CONTEXTS Kinds of Conversion 5.1

99

1. In the first step, the floating-point number is converted either to a long, if T is
long, or to an int, if T is byte, short, char, or int, as follows:

• If the floating-point number is NaN (§4.2.3), the result of the first step of the
conversion is an int or long 0.

• Otherwise, if the floating-point number is not an infinity, the floating-point
value is rounded to an integer value V, rounding toward zero using IEEE 754
round-toward-zero mode (§4.2.3). Then there are two cases:

a. If T is long, and this integer value can be represented as a long, then the
result of the first step is the long value V.

b. Otherwise, if this integer value can be represented as an int, then the
result of the first step is the int value V.

• Otherwise, one of the following two cases must be true:

a. The value must be too small (a negative value of large magnitude
or negative infinity), and the result of the first step is the smallest
representable value of type int or long.

b. The value must be too large (a positive value of large magnitude
or positive infinity), and the result of the first step is the largest
representable value of type int or long.

2. In the second step:

• If T is int or long, the result of the conversion is the result of the first step.

• If T is byte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (§5.1.3) of the result of the first step.

Despite the fact that overflow, underflow, or other loss of information may occur,
a narrowing primitive conversion never results in a run-time exception (§11.1.1).

Example 5.1.3-1. Narrowing Primitive Conversion

class Test {
 public static void main(String[] args) {
 float fmin = Float.NEGATIVE_INFINITY;
 float fmax = Float.POSITIVE_INFINITY;
 System.out.println("long: " + (long)fmin +
 ".." + (long)fmax);
 System.out.println("int: " + (int)fmin +
 ".." + (int)fmax);
 System.out.println("short: " + (short)fmin +
 ".." + (short)fmax);
 System.out.println("char: " + (int)(char)fmin +
 ".." + (int)(char)fmax);

5.1 Kinds of Conversion CONVERSIONS AND CONTEXTS

100

 System.out.println("byte: " + (byte)fmin +
 ".." + (byte)fmax);
 }
}

This program produces the output:

long: -9223372036854775808..9223372036854775807
int: -2147483648..2147483647
short: 0..-1
char: 0..65535
byte: 0..-1

The results for char, int, and long are unsurprising, producing the minimum and
maximum representable values of the type.

The results for byte and short lose information about the sign and magnitude of the
numeric values and also lose precision. The results can be understood by examining the
low order bits of the minimum and maximum int. The minimum int is, in hexadecimal,
0x80000000, and the maximum int is 0x7fffffff. This explains the short results, which
are the low 16 bits of these values, namely, 0x0000 and 0xffff; it explains the char results,
which also are the low 16 bits of these values, namely, '\u0000' and '\uffff'; and it
explains the byte results, which are the low 8 bits of these values, namely, 0x00 and 0xff.

Example 5.1.3-2. Narrowing Primitive Conversions that lose information

class Test {
 public static void main(String[] args) {
 // A narrowing of int to short loses high bits:
 System.out.println("(short)0x12345678==0x" +
 Integer.toHexString((short)0x12345678));
 // An int value too big for byte changes sign and magnitude:
 System.out.println("(byte)255==" + (byte)255);
 // A float value too big to fit gives largest int value:
 System.out.println("(int)1e20f==" + (int)1e20f);
 // A NaN converted to int yields zero:
 System.out.println("(int)NaN==" + (int)Float.NaN);
 // A double value too large for float yields infinity:
 System.out.println("(float)-1e100==" + (float)-1e100);
 // A double value too small for float underflows to zero:
 System.out.println("(float)1e-50==" + (float)1e-50);
 }
}

This program produces the output:

CONVERSIONS AND CONTEXTS Kinds of Conversion 5.1

101

(short)0x12345678==0x5678
(byte)255==-1
(int)1e20f==2147483647
(int)NaN==0
(float)-1e100==-Infinity
(float)1e-50==0.0

5.1.4 Widening and Narrowing Primitive Conversion

The following conversion combines both widening and narrowing primitive
conversions:

• byte to char

First, the byte is converted to an int via widening primitive conversion (§5.1.2),
and then the resulting int is converted to a char by narrowing primitive conversion
(§5.1.3).

5.1.5 Widening Reference Conversion

A widening reference conversion exists from any reference type S to any reference
type T, provided S is a subtype (§4.10) of T.

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist simply in regarding
a reference as having some other type in a manner that can be proved correct at
compile time.

5.1.6 Narrowing Reference Conversion

Six kinds of conversions are called the narrowing reference conversions:

• From any reference type S to any reference type T, provided that S is a proper
supertype of T (§4.10).

An important special case is that there is a narrowing reference conversion from
the class type Object to any other reference type (§4.12.4).

• From any class type C to any non-parameterized interface type K, provided that
C is not final and does not implement K.

• From any interface type J to any non-parameterized class type C that is not final.

• From any interface type J to any non-parameterized interface type K, provided
that J is not a subinterface of K.

5.1 Kinds of Conversion CONVERSIONS AND CONTEXTS

102

• From the interface types Cloneable and java.io.Serializable to any array
type T[].

• From any array type SC[] to any array type TC[], provided that SC and TC are
reference types and there is a narrowing reference conversion from SC to TC.

Such conversions require a test at run time to find out whether the actual reference
value is a legitimate value of the new type. If not, then a ClassCastException is
thrown.

5.1.7 Boxing Conversion

Boxing conversion converts expressions of primitive type to corresponding
expressions of reference type. Specifically, the following nine conversions are
called the boxing conversions:

• From type boolean to type Boolean

• From type byte to type Byte

• From type short to type Short

• From type char to type Character

• From type int to type Integer

• From type long to type Long

• From type float to type Float

• From type double to type Double

• From the null type to the null type

This rule is necessary because the conditional operator (§15.25) applies boxing
conversion to the types of its operands, and uses the result in further calculations.

At run time, boxing conversion proceeds as follows:

• If p is a value of type boolean, then boxing conversion converts p into a reference
r of class and type Boolean, such that r.booleanValue() == p

• If p is a value of type byte, then boxing conversion converts p into a reference
r of class and type Byte, such that r.byteValue() == p

• If p is a value of type char, then boxing conversion converts p into a reference
r of class and type Character, such that r.charValue() == p

• If p is a value of type short, then boxing conversion converts p into a reference
r of class and type Short, such that r.shortValue() == p

CONVERSIONS AND CONTEXTS Kinds of Conversion 5.1

103

• If p is a value of type int, then boxing conversion converts p into a reference r
of class and type Integer, such that r.intValue() == p

• If p is a value of type long, then boxing conversion converts p into a reference
r of class and type Long, such that r.longValue() == p

• If p is a value of type float then:

– If p is not NaN, then boxing conversion converts p into a reference r of class
and type Float, such that r.floatValue() evaluates to p

– Otherwise, boxing conversion converts p into a reference r of class and type
Float such that r.isNaN() evaluates to true

• If p is a value of type double, then:

– If p is not NaN, boxing conversion converts p into a reference r of class and
type Double, such that r.doubleValue() evaluates to p

– Otherwise, boxing conversion converts p into a reference r of class and type
Double such that r.isNaN() evaluates to true

• If p is a value of any other type, boxing conversion is equivalent to an identity
conversion (§5.1.1).

If the value p being boxed is an integer literal of type int between -128 and 127
inclusive (§3.10.1), or the boolean literal true or false (§3.10.3), or a character
literal between '\u0000' and '\u007f' inclusive (§3.10.4), then let a and b be the
results of any two boxing conversions of p. It is always the case that a == b.

Ideally, boxing a primitive value would always yield an identical reference. In practice, this
may not be feasible using existing implementation techniques. The rule above is a pragmatic
compromise, requiring that certain common values always be boxed into indistinguishable
objects. The implementation may cache these, lazily or eagerly. For other values, the rule
disallows any assumptions about the identity of the boxed values on the programmer's part.
This allows (but does not require) sharing of some or all of these references. Notice that
integer literals of type long are allowed, but not required, to be shared.

This ensures that in most common cases, the behavior will be the desired one, without
imposing an undue performance penalty, especially on small devices. Less memory-limited
implementations might, for example, cache all char and short values, as well as int and
long values in the range of -32K to +32K.

A boxing conversion may result in an OutOfMemoryError if a new instance of one
of the wrapper classes (Boolean, Byte, Character, Short, Integer, Long, Float,
or Double) needs to be allocated and insufficient storage is available.

5.1 Kinds of Conversion CONVERSIONS AND CONTEXTS

104

5.1.8 Unboxing Conversion

Unboxing conversion converts expressions of reference type to corresponding
expressions of primitive type. Specifically, the following eight conversions are
called the unboxing conversions:

• From type Boolean to type boolean

• From type Byte to type byte

• From type Short to type short

• From type Character to type char

• From type Integer to type int

• From type Long to type long

• From type Float to type float

• From type Double to type double

At run time, unboxing conversion proceeds as follows:

• If r is a reference of type Boolean, then unboxing conversion converts r into
r.booleanValue()

• If r is a reference of type Byte, then unboxing conversion converts r into
r.byteValue()

• If r is a reference of type Character, then unboxing conversion converts r into
r.charValue()

• If r is a reference of type Short, then unboxing conversion converts r into
r.shortValue()

• If r is a reference of type Integer, then unboxing conversion converts r into
r.intValue()

• If r is a reference of type Long, then unboxing conversion converts r into
r.longValue()

• If r is a reference of type Float, unboxing conversion converts r into
r.floatValue()

• If r is a reference of type Double, then unboxing conversion converts r into
r.doubleValue()

• If r is null, unboxing conversion throws a NullPointerException

CONVERSIONS AND CONTEXTS Kinds of Conversion 5.1

105

A type is said to be convertible to a numeric type if it is a numeric type (§4.2), or it is
a reference type that may be converted to a numeric type by unboxing conversion.

A type is said to be convertible to an integral type if it is an integral type, or it is a
reference type that may be converted to an integral type by unboxing conversion.

5.1.9 Unchecked Conversion

Let G name a generic type declaration with n type parameters.

There is an unchecked conversion from the raw class or interface type (§4.8) G to
any parameterized type of the form G<T1,...,Tn>.

There is an unchecked conversion from the raw array type G[]k to any array type of
the form G<T1,...,Tn>[]

k. (The notation []k indicates an array type of k dimensions.)

Use of an unchecked conversion causes a compile-time unchecked warning unless
all type arguments Ti (1 ≤ i ≤ n) are unbounded wildcards (§4.5.1), or the unchecked
warning is suppressed by the SuppressWarnings annotation (§9.6.4.5).

Unchecked conversion is used to enable a smooth interoperation of legacy code, written
before the introduction of generic types, with libraries that have undergone a conversion
to use genericity (a process we call generification). In such circumstances (most notably,
clients of the Collections Framework in java.util), legacy code uses raw types (e.g.
Collection instead of Collection<String>). Expressions of raw types are passed as
arguments to library methods that use parameterized versions of those same types as the
types of their corresponding formal parameters.

Such calls cannot be shown to be statically safe under the type system using generics.
Rejecting such calls would invalidate large bodies of existing code, and prevent them from
using newer versions of the libraries. This in turn, would discourage library vendors from
taking advantage of genericity. To prevent such an unwelcome turn of events, a raw type
may be converted to an arbitrary invocation of the generic type declaration to which the raw
type refers. While the conversion is unsound, it is tolerated as a concession to practicality.
An unchecked warning is issued in such cases.

5.1.10 Capture Conversion

Let G name a generic type declaration (§8.1.2, §9.1.2) with n type parameters
A1,...,An with corresponding bounds U1,...,Un.

There exists a capture conversion from a parameterized type G<T1,...,Tn> (§4.5) to
a parameterized type G<S1,...,Sn>, where, for 1 ≤ i ≤ n :

• If Ti is a wildcard type argument (§4.5.1) of the form ?, then Si is a fresh type
variable whose upper bound is Ui[A1:=S1,...,An:=Sn] and whose lower bound
is the null type (§4.1).

5.1 Kinds of Conversion CONVERSIONS AND CONTEXTS

106

• If Ti is a wildcard type argument of the form ? extends Bi, then Si is a fresh
type variable whose upper bound is glb(Bi, Ui[A1:=S1,...,An:=Sn]) and whose
lower bound is the null type.

glb(V1,...,Vm) is defined as V1 & ... & Vm.

It is a compile-time error if, for any two classes (not interfaces) Vi and Vj, Vi is
not a subclass of Vj or vice versa.

• If Ti is a wildcard type argument of the form ? super Bi, then Si is a fresh type
variable whose upper bound is Ui[A1:=S1,...,An:=Sn] and whose lower bound
is Bi.

• Otherwise, Si = Ti.

Capture conversion on any type other than a parameterized type (§4.5) acts as an
identity conversion (§5.1.1).

Capture conversion is not applied recursively.

Capture conversion never requires a special action at run time and therefore never
throws an exception at run time.

Capture conversion is designed to make wildcards more useful. To understand the
motivation, let's begin by looking at the method java.util.Collections.reverse():

public static void reverse(List<?> list);

The method reverses the list provided as a parameter. It works for any type of list, and so the
use of the wildcard type List<?> as the type of the formal parameter is entirely appropriate.

Now consider how one would implement reverse():

public static void reverse(List<?> list) { rev(list); }
private static <T> void rev(List<T> list) {
 List<T> tmp = new ArrayList<T>(list);
 for (int i = 0; i < list.size(); i++) {
 list.set(i, tmp.get(list.size() - i - 1));
 }
}

The implementation needs to copy the list, extract elements from the copy, and insert them
into the original. To do this in a type-safe manner, we need to give a name, T, to the element
type of the incoming list. We do this in the private service method rev(). This requires us
to pass the incoming argument list, of type List<?>, as an argument to rev(). In general,
List<?> is a list of unknown type. It is not a subtype of List<T>, for any type T. Allowing
such a subtype relation would be unsound. Given the method:

public static <T> void fill(List<T> l, T obj)

CONVERSIONS AND CONTEXTS Kinds of Conversion 5.1

107

the following code would undermine the type system:

List<String> ls = new ArrayList<String>();
List<?> l = ls;
Collections.fill(l, new Object()); // not legal - but assume it was!
String s = ls.get(0); // ClassCastException - ls contains
 // Objects, not Strings.

So, without some special dispensation, we can see that the call from reverse() to rev()
would be disallowed. If this were the case, the author of reverse() would be forced to
write its signature as:

public static <T> void reverse(List<T> list)

This is undesirable, as it exposes implementation information to the caller. Worse, the
designer of an API might reason that the signature using a wildcard is what the callers of
the API require, and only later realize that a type safe implementation was precluded.

The call from reverse() to rev() is in fact harmless, but it cannot be justified on the
basis of a general subtyping relation between List<?> and List<T>. The call is harmless,
because the incoming argument is doubtless a list of some type (albeit an unknown one). If
we can capture this unknown type in a type variable X, we can infer T to be X. That is the
essence of capture conversion. The specification of course must cope with complications,
like non-trivial (and possibly recursively defined) upper or lower bounds, the presence of
multiple arguments etc.

Mathematically sophisticated readers will want to relate capture conversion to established
type theory. Readers unfamiliar with type theory can skip this discussion - or else study a
suitable text, such as Types and Programming Languages by Benjamin Pierce, and then
revisit this section.

Here then is a brief summary of the relationship of capture conversion to established
type theoretical notions. Wildcard types are a restricted form of existential types. Capture
conversion corresponds loosely to an opening of a value of existential type. A capture
conversion of an expression e can be thought of as an open of e in a scope that comprises
the top level expression that encloses e.

The classical open operation on existentials requires that the captured type variable must
not escape the opened expression. The open that corresponds to capture conversion is
always on a scope sufficiently large that the captured type variable can never be visible
outside that scope. The advantage of this scheme is that there is no need for a close
operation, as defined in the paper On Variance-Based Subtyping for Parametric Types by
Atsushi Igarashi and Mirko Viroli, in the proceedings of the 16th European Conference on
Object Oriented Programming (ECOOP 2002). For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

5.1.11 String Conversion

Any type may be converted to type String by string conversion.

5.1 Kinds of Conversion CONVERSIONS AND CONTEXTS

108

A value x of primitive type T is first converted to a reference value as if by giving
it as an argument to an appropriate class instance creation expression (§15.9):

• If T is boolean, then use new Boolean(x).

• If T is char, then use new Character(x).

• If T is byte, short, or int, then use new Integer(x).

• If T is long, then use new Long(x).

• If T is float, then use new Float(x).

• If T is double, then use new Double(x).

This reference value is then converted to type String by string conversion.

Now only reference values need to be considered:

• If the reference is null, it is converted to the string "null" (four ASCII characters
n, u, l, l).

• Otherwise, the conversion is performed as if by an invocation of the toString
method of the referenced object with no arguments; but if the result of invoking
the toString method is null, then the string "null" is used instead.

The toString method is defined by the primordial class Object (§4.3.2). Many
classes override it, notably Boolean, Character, Integer, Long, Float, Double,
and String.

See §5.4 for details of the string context.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (§15.4), value set conversion provides
choices to an implementation of the Java programming language:

• If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the value
is replaced by an infinity of the same sign) or underflow (in which case the value

CONVERSIONS AND CONTEXTS Assignment Contexts 5.2

109

may lose precision because it is replaced by a denormalized number or zero of
the same sign).

• If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
double value set. This conversion may result in overflow (in which case the value
is replaced by an infinity of the same sign) or underflow (in which case the value
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

Within an FP-strict expression (§15.4), value set conversion does not provide any
choices; every implementation must behave in the same way:

• If the value is of type float and is not an element of the float value set, then the
implementation must map the value to the nearest element of the float value set.
This conversion may result in overflow or underflow.

• If the value is of type double and is not an element of the double value set, then
the implementation must map the value to the nearest element of the double value
set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
is invoked whose declaration is not FP-strict and the implementation has chosen to
represent the result of the method invocation as an element of an extended-exponent
value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion always
leaves unchanged any value whose type is neither float nor double.

5.2 Assignment Contexts

Assignment contexts allow the value of an expression to be assigned (§15.26) to a
variable; the type of the expression must be converted to the type of the variable.

Assignment contexts allow the use of one of the following:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• a widening reference conversion (§5.1.5)

• a boxing conversion (§5.1.7) optionally followed by a widening reference
conversion

5.2 Assignment Contexts CONVERSIONS AND CONTEXTS

110

• an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting type is a raw
type (§4.8), an unchecked conversion (§5.1.9) may then be applied.

In addition, if the expression is a constant expression (§15.28) of type byte, short,
char, or int:

• A narrowing primitive conversion may be used if the type of the variable is byte,
short, or char, and the value of the constant expression is representable in the
type of the variable.

• A narrowing primitive conversion followed by a boxing conversion may be used
if the type of the variable is:

– Byte and the value of the constant expression is representable in the type byte.

– Short and the value of the constant expression is representable in the type
short.

– Character and the value of the constant expression is representable in the type
char.

The compile-time narrowing of constant expressions means that code such as:

byte theAnswer = 42;

is allowed. Without the narrowing, the fact that the integer literal 42 has type int would
mean that a cast to byte would be required:

byte theAnswer = (byte)42; // cast is permitted but not required

Finally, a value of the null type (the null reference is the only such value) may be
assigned to any reference type, resulting in a null reference of that type.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation (§4.10).

An example of such an illegal chain would be:

Integer, Comparable<Integer>, Comparable, Comparable<String>

The first three elements of the chain are related by widening reference conversion, while
the last entry is derived from its predecessor by unchecked conversion. However, this is
not a valid assignment conversion, because the chain contains two parameterized types,
Comparable<Integer> and Comparable<String>, that are not subtypes.

CONVERSIONS AND CONTEXTS Assignment Contexts 5.2

111

If the type of the expression cannot be converted to the type of the variable by a
conversion permitted in an assignment context, then a compile-time error occurs.

If the type of an expression can be converted to the type of a variable by assignment
conversion, we say the expression (or its value) is assignable to the variable or,
equivalently, that the type of the expression is assignment compatible with the type
of the variable.

If the type of the variable is float or double, then value set conversion (§5.1.13)
is applied to the value v that is the result of the conversion(s):

• If v is of type float and is an element of the float-extended-exponent value set,
then the implementation must map v to the nearest element of the float value set.
This conversion may result in overflow or underflow.

• If v is of type double and is an element of the double-extended-exponent value
set, then the implementation must map v to the nearest element of the double
value set. This conversion may result in overflow or underflow.

The only exceptions that may arise from conversions in an assignment context are:

• A ClassCastException if, after the conversions above have been applied, the
resulting value is an object which is not an instance of a subclass or subinterface
of the erasure (§4.6) of the type of the variable.

This circumstance can only arise as a result of heap pollution (§4.12.2). In practice,
implementations need only perform casts when accessing a field or method of an object
of parameterized type when the erased type of the field, or the erased return type of the
method, differ from its unerased type.

• An OutOfMemoryError as a result of a boxing conversion.

• A NullPointerException as a result of an unboxing conversion on a null
reference.

• An ArrayStoreException in special cases involving array elements or field
access (§10.5, §15.26.1).

Example 5.2-1. Assignment Conversion for Primitive Types

class Test {
 public static void main(String[] args) {
 short s = 12; // narrow 12 to short
 float f = s; // widen short to float
 System.out.println("f=" + f);
 char c = '\u0123';
 long l = c; // widen char to long
 System.out.println("l=0x" + Long.toString(l,16));
 f = 1.23f;
 double d = f; // widen float to double

5.2 Assignment Contexts CONVERSIONS AND CONTEXTS

112

 System.out.println("d=" + d);
 }
}

This program produces the output:

f=12.0
l=0x123
d=1.2300000190734863

The following program, however, produces compile-time errors:

class Test {
 public static void main(String[] args) {
 short s = 123;
 char c = s; // error: would require cast
 s = c; // error: would require cast
 }
}

because not all short values are char values, and neither are all char values short values.

Example 5.2-2. Assignment Conversion for Reference Types

class Point { int x, y; }
class Point3D extends Point { int z; }
interface Colorable { void setColor(int color); }

class ColoredPoint extends Point implements Colorable {
 int color;
 public void setColor(int color) { this.color = color; }
}

class Test {
 public static void main(String[] args) {
 // Assignments to variables of class type:
 Point p = new Point();
 p = new Point3D();
 // OK because Point3D is a subclass of Point
 Point3D p3d = p;
 // Error: will require a cast because a Point
 // might not be a Point3D (even though it is,
 // dynamically, in this example.)

 // Assignments to variables of type Object:
 Object o = p; // OK: any object to Object
 int[] a = new int[3];
 Object o2 = a; // OK: an array to Object

 // Assignments to variables of interface type:
 ColoredPoint cp = new ColoredPoint();
 Colorable c = cp;

CONVERSIONS AND CONTEXTS Assignment Contexts 5.2

113

 // OK: ColoredPoint implements Colorable

 // Assignments to variables of array type:
 byte[] b = new byte[4];
 a = b;
 // Error: these are not arrays of the same primitive type
 Point3D[] p3da = new Point3D[3];
 Point[] pa = p3da;
 // OK: since we can assign a Point3D to a Point
 p3da = pa;
 // Error: (cast needed) since a Point
 // can't be assigned to a Point3D
 }
}

The following test program illustrates assignment conversions on reference values, but fails
to compile, as described in its comments. This example should be compared to the preceding
one.

class Point { int x, y; }
interface Colorable { void setColor(int color); }
class ColoredPoint extends Point implements Colorable {
 int color;
 public void setColor(int color) { this.color = color; }
}

class Test {
 public static void main(String[] args) {
 Point p = new Point();
 ColoredPoint cp = new ColoredPoint();
 // Okay because ColoredPoint is a subclass of Point:
 p = cp;
 // Okay because ColoredPoint implements Colorable:
 Colorable c = cp;
 // The following cause compile-time errors because
 // we cannot be sure they will succeed, depending on
 // the run-time type of p; a run-time check will be
 // necessary for the needed narrowing conversion and
 // must be indicated by including a cast:
 cp = p; // p might be neither a ColoredPoint
 // nor a subclass of ColoredPoint
 c = p; // p might not implement Colorable
 }
}

Example 5.2-3. Assignment Conversion for Array Types

class Point { int x, y; }
class ColoredPoint extends Point { int color; }

class Test {
 public static void main(String[] args) {
 long[] veclong = new long[100];

5.3 Invocation Contexts CONVERSIONS AND CONTEXTS

114

 Object o = veclong; // okay
 Long l = veclong; // compile-time error
 short[] vecshort = veclong; // compile-time error
 Point[] pvec = new Point[100];
 ColoredPoint[] cpvec = new ColoredPoint[100];
 pvec = cpvec; // okay
 pvec[0] = new Point(); // okay at compile time,
 // but would throw an
 // exception at run time
 cpvec = pvec; // compile-time error
 }
}

In this example:

• The value of veclong cannot be assigned to a Long variable, because Long is a class
type other than Object. An array can be assigned only to a variable of a compatible
array type, or to a variable of type Object, Cloneable or java.io.Serializable.

• The value of veclong cannot be assigned to vecshort, because they are arrays of
primitive type, and short and long are not the same primitive type.

• The value of cpvec can be assigned to pvec, because any reference that could be the
value of an expression of type ColoredPoint can be the value of a variable of type
Point. The subsequent assignment of the new Point to a component of pvec then
would throw an ArrayStoreException (if the program were otherwise corrected so
that it could be compiled), because a ColoredPoint array cannot have an instance of
Point as the value of a component.

• The value of pvec cannot be assigned to cpvec, because not every reference that could
be the value of an expression of type ColoredPoint can correctly be the value of a
variable of type Point. If the value of pvec at run time were a reference to an instance of
Point[], and the assignment to cpvec were allowed, a simple reference to a component
of cpvec, say, cpvec[0], could return a Point, and a Point is not a ColoredPoint.
Thus to allow such an assignment would allow a violation of the type system. A cast
may be used (§5.5, §15.16) to ensure that pvec references a ColoredPoint[]:

cpvec = (ColoredPoint[])pvec; // OK, but may throw an
 // exception at run time

5.3 Invocation Contexts

Invocation contexts allow an argument value in a method or constructor invocation
(§8.8.7.1, §15.9, §15.12) to be assigned to a corresponding formal parameter.

Strict invocation contexts allow the use of one of the following:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

CONVERSIONS AND CONTEXTS Invocation Contexts 5.3

115

• a widening reference conversion (§5.1.5)

Loose invocation contexts allow a more permissive set of conversions, because
they are only used for a particular invocation if no applicable declaration can be
found using strict invocation contexts. Loose invocation contexts allow the use of
one of the following:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• a widening reference conversion (§5.1.5)

• a boxing conversion (§5.1.7) optionally followed by widening reference
conversion

• an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion

If, after the conversions listed for an invocation context have been applied, the
resulting type is a raw type (§4.8), an unchecked conversion (§5.1.9) may then be
applied.

A value of the null type (the null reference is the only such value) may be assigned
to any reference type.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation (§4.10).

If the type of the expression cannot be converted to the type of the parameter by
a conversion permitted in a loose invocation context, then a compile-time error
occurs.

If the type of an argument expression is either float or double, then value set
conversion (§5.1.13) is applied after the conversion(s):

• If an argument value of type float is an element of the float-extended-exponent
value set, then the implementation must map the value to the nearest element of
the float value set. This conversion may result in overflow or underflow.

• If an argument value of type double is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

The only exceptions that may arise in an invocation context are:

5.4 String Contexts CONVERSIONS AND CONTEXTS

116

• A ClassCastException if, after the type conversions above have been applied,
the resulting value is an object which is not an instance of a subclass or
subinterface of the erasure (§4.6) of the corresponding formal parameter type.

• An OutOfMemoryError as a result of a boxing conversion.

• A NullPointerException as a result of an unboxing conversion on a null
reference.

Neither strict nor loose invocation contexts include the implicit narrowing of integer
constant expressions which is allowed in assignment contexts. The designers of the Java
programming language felt that including these implicit narrowing conversions would add
additional complexity to the rules of overload resolution (§15.12.2).

Thus, the program:

class Test {
 static int m(byte a, int b) { return a+b; }
 static int m(short a, short b) { return a-b; }
 public static void main(String[] args) {
 System.out.println(m(12, 2)); // compile-time error
 }
}

causes a compile-time error because the integer literals 12 and 2 have type int, so neither
method m matches under the rules of overload resolution. A language that included implicit
narrowing of integer constant expressions would need additional rules to resolve cases like
this example.

5.4 String Contexts

String contexts apply only to an operand of the binary + operator which is not a
String when the other operand is a String.

The target type in these contexts is always String, and a string conversion
(§5.1.11) of the non-String operand always occurs. Evaluation of the + operator
then proceeds as specified in §15.18.1.

5.5 Casting Contexts

Casting contexts allow the operand of a cast operator (§15.16) to be converted to
the type explicitly named by the cast operator.

Casting contexts allow the use of one of:

CONVERSIONS AND CONTEXTS Casting Contexts 5.5

117

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• a narrowing primitive conversion (§5.1.3)

• a widening and narrowing primitive conversion (§5.1.4)

• a widening reference conversion (§5.1.5) optionally followed by either an
unboxing conversion (§5.1.8) or an unchecked conversion (§5.1.9)

• a narrowing reference conversion (§5.1.6) optionally followed by either an
unboxing conversion (§5.1.8) or an unchecked conversion (§5.1.9)

• a boxing conversion (§5.1.7) optionally followed by a widening reference
conversion (§5.1.5)

• an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion (§5.1.2).

Value set conversion (§5.1.13) is applied after the type conversion.

The compile-time legality of a casting conversion is as follows:

• An expression of a primitive type may undergo casting conversion to another
primitive type, by an identity conversion (if the types are the same), or by a
widening primitive conversion, or by a narrowing primitive conversion, or by a
widening and narrowing primitive conversion.

• An expression of a primitive type may undergo casting conversion to a reference
type without error, by boxing conversion.

• An expression of a reference type may undergo casting conversion to a primitive
type without error, by unboxing conversion.

• An expression of a reference type may undergo casting conversion to another
reference type if no compile-time error occurs given the rules in §5.5.1.

The following tables enumerate which conversions are used in certain casting
conversions. Each conversion is signified by a symbol:

• - signifies no casting conversion allowed

• ≈ signifies identity conversion (§5.1.1)

• ω signifies widening primitive conversion (§5.1.2)

• η signifies narrowing primitive conversion (§5.1.3)

• ωη signifies widening and narrowing primitive conversion (§5.1.4)

5.5 Casting Contexts CONVERSIONS AND CONTEXTS

118

• ⇑ signifies widening reference conversion (§5.1.5)

• ⇓ signifies narrowing reference conversion (§5.1.6)

• ⊕ signifies boxing conversion (§5.1.7)

• ⊗ signifies unboxing conversion (§5.1.8)

In the tables, a comma between symbols indicates that a casting conversion uses
one conversion followed by another. The type Object means any reference type
other than the eight wrapper classes Boolean, Byte, Short, Character, Integer,
Long, Float, Double.

CONVERSIONS AND CONTEXTS Casting Contexts 5.5

119

Table 5.5-A. Casting conversions to primitive types

To → byte short char int long float double boolean

From ↓

byte ≈ ω ωη ω ω ω ω -

short η ≈ η ω ω ω ω -

char η η ≈ ω ω ω ω -

int η η η ≈ ω ω ω -

long η η η η ≈ ω ω -

float η η η η η ≈ ω -

double η η η η η η ≈ -

boolean - - - - - - - ≈

Byte ⊗ ⊗,ω - ⊗,ω ⊗,ω ⊗,ω ⊗,ω -

Short - ⊗ - ⊗,ω ⊗,ω ⊗,ω ⊗,ω -

Character - - ⊗ ⊗,ω ⊗,ω ⊗,ω ⊗,ω -

Integer - - - ⊗ ⊗,ω ⊗,ω ⊗,ω -

Long - - - - ⊗ ⊗,ω ⊗,ω -

Float - - - - - ⊗ ⊗,ω -

Double - - - - - - ⊗ -

Boolean - - - - - - - ⊗

Object ⇓,⊗ ⇓,⊗ ⇓,⊗ ⇓,⊗ ⇓,⊗ ⇓,⊗ ⇓,⊗ ⇓,⊗

5.5 Casting Contexts CONVERSIONS AND CONTEXTS

120

Table 5.5-B. Casting conversions to reference types

To → Byte Short CharacterInteger Long Float Double Boolean Object

From ↓

byte ⊕ - - - - - - - ⊕,⇑

short - ⊕ - - - - - - ⊕,⇑

char - - ⊕ - - - - - ⊕,⇑

int - - - ⊕ - - - - ⊕,⇑

long - - - - ⊕ - - - ⊕,⇑

float - - - - - ⊕ - - ⊕,⇑

double - - - - - - ⊕ - ⊕,⇑

boolean - - - - - - - ⊕ ⊕,⇑

Byte ≈ - - - - - - - ⇑

Short - ≈ - - - - - - ⇑

Character - - ≈ - - - - - ⇑

Integer - - - ≈ - - - - ⇑

Long - - - - ≈ - - - ⇑

Float - - - - - ≈ - - ⇑

Double - - - - - - ≈ - ⇑

Boolean - - - - - - - ≈ ⇑

Object ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ≈

5.5.1 Reference Type Casting

Given a compile-time reference type S (source) and a compile-time reference type
T (target), a casting conversion exists from S to T if no compile-time errors occur
due to the following rules.

If S is a class type:

CONVERSIONS AND CONTEXTS Casting Contexts 5.5

121

• If T is a class type, then either |S| <: |T|, or |T| <: |S|. Otherwise, a compile-time
error occurs.

Furthermore, if there exists a supertype X of T, and a supertype Y of S, such
that both X and Y are provably distinct parameterized types (§4.5), and that the
erasures of X and Y are the same, a compile-time error occurs.

• If T is an interface type:

– If S is not a final class (§8.1.1), then, if there exists a supertype X of T, and
a supertype Y of S, such that both X and Y are provably distinct parameterized
types, and that the erasures of X and Y are the same, a compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if S does not
implement T, a subclass of S might).

– If S is a final class (§8.1.1), then S must implement T, or a compile-time error
occurs.

• If T is a type variable, then this algorithm is applied recursively, using the upper
bound of T in place of T.

• If T is an array type, then S must be the class Object, or a compile-time error
occurs.

• If T is an intersection type, T1 & ... & Tn, then it is a compile-time error if there
exists a Ti (1 ≤ i ≤ n) such that S cannot be cast to Ti by this algorithm. That is,
the success of the cast is determined by the most restrictive component of the
intersection type.

If S is an interface type:

• If T is an array type, then S must be the type java.io.Serializable or
Cloneable (the only interfaces implemented by arrays), or a compile-time error
occurs.

• If T is a class or interface type that is not final (§8.1.1), then if there exists a
supertype X of T, and a supertype Y of S, such that both X and Y are provably
distinct parameterized types, and that the erasures of X and Y are the same, a
compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if T does not
implement S, a subclass of T might).

• If T is a class type that is final, then:

– If S is not a parameterized type or a raw type, then T must implement S, or a
compile-time error occurs.

5.5 Casting Contexts CONVERSIONS AND CONTEXTS

122

– Otherwise, S is either a parameterized type that is an invocation of some
generic type declaration G, or a raw type corresponding to a generic type
declaration G. Then there must exist a supertype X of T, such that X is an
invocation of G, or a compile-time error occurs.

Furthermore, if S and X are provably distinct parameterized types then a
compile-time error occurs.

• If T is a type variable, then this algorithm is applied recursively, using the upper
bound of T in place of T.

• If T is an intersection type, T1 & ... & Tn, then it is a compile-time error if there
exists a Ti (1 ≤ i ≤ n) such that S cannot be cast to Ti by this algorithm.

If S is a type variable, then this algorithm is applied recursively, using the upper
bound of S in place of S.

If S is an intersection type A1 & ... & An, then it is a compile-time error if there exists
an Ai (1 ≤ i ≤ n) such that Ai cannot be cast to T by this algorithm. That is, the success
of the cast is determined by the most restrictive component of the intersection type.

If S is an array type SC[], that is, an array of components of type SC:

• If T is a class type, then if T is not Object, then a compile-time error occurs
(because Object is the only class type to which arrays can be assigned).

• If T is an interface type, then a compile-time error occurs unless T is the type
java.io.Serializable or the type Cloneable (the only interfaces implemented
by arrays).

• If T is a type variable, then this algorithm is applied recursively, using the upper
bound of T in place of T.

• If T is an array type TC[], that is, an array of components of type TC, then a
compile-time error occurs unless one of the following is true:

– TC and SC are the same primitive type.

– TC and SC are reference types and type SC can undergo casting conversion to TC.

• If T is an intersection type, T1 & ... & Tn, then it is a compile-time error if there
exists a Ti (1 ≤ i ≤ n) such that S cannot be cast to Ti by this algorithm.

Example 5.5.1-1. Casting Conversion for Reference Types

class Point { int x, y; }
interface Colorable { void setColor(int color); }
class ColoredPoint extends Point implements Colorable {
 int color;

CONVERSIONS AND CONTEXTS Casting Contexts 5.5

123

 public void setColor(int color) { this.color = color; }
}
final class EndPoint extends Point {}

class Test {
 public static void main(String[] args) {
 Point p = new Point();
 ColoredPoint cp = new ColoredPoint();
 Colorable c;
 // The following may cause errors at run time because
 // we cannot be sure they will succeed; this possibility
 // is suggested by the casts:
 cp = (ColoredPoint)p; // p might not reference an
 // object which is a ColoredPoint
 // or a subclass of ColoredPoint
 c = (Colorable)p; // p might not be Colorable
 // The following are incorrect at compile time because
 // they can never succeed as explained in the text:
 Long l = (Long)p; // compile-time error #1
 EndPoint e = new EndPoint();
 c = (Colorable)e; // compile-time error #2
 }
}

Here, the first compile-time error occurs because the class types Long and Point are
unrelated (that is, they are not the same, and neither is a subclass of the other), so a cast
between them will always fail.

The second compile-time error occurs because a variable of type EndPoint can never
reference a value that implements the interface Colorable. This is because EndPoint is
a final type, and a variable of a final type always holds a value of the same run-time
type as its compile-time type. Therefore, the run-time type of variable e must be exactly
the type EndPoint, and type EndPoint does not implement Colorable.

Example 5.5.1-2. Casting Conversion for Array Types

class Point {
 int x, y;
 Point(int x, int y) { this.x = x; this.y = y; }
 public String toString() { return "("+x+","+y+")"; }
}
interface Colorable { void setColor(int color); }
class ColoredPoint extends Point implements Colorable {
 int color;
 ColoredPoint(int x, int y, int color) {
 super(x, y); setColor(color);
 }
 public void setColor(int color) { this.color = color; }
 public String toString() {
 return super.toString() + "@" + color;
 }
}

5.5 Casting Contexts CONVERSIONS AND CONTEXTS

124

class Test {
 public static void main(String[] args) {
 Point[] pa = new ColoredPoint[4];
 pa[0] = new ColoredPoint(2, 2, 12);
 pa[1] = new ColoredPoint(4, 5, 24);
 ColoredPoint[] cpa = (ColoredPoint[])pa;
 System.out.print("cpa: {");
 for (int i = 0; i < cpa.length; i++)
 System.out.print((i == 0 ? " " : ", ") + cpa[i]);
 System.out.println(" }");
 }
}

This program compiles without errors and produces the output:

cpa: { (2,2)@12, (4,5)@24, null, null }

5.5.2 Checked Casts and Unchecked Casts

A cast from a type S to a type T is statically known to be correct if and only if S
<: T (§4.10).

A cast from a type S to a parameterized type (§4.5) T is unchecked unless at least
one of the following is true:

• S <: T

• All of the type arguments (§4.5.1) of T are unbounded wildcards

• T <: S and S has no subtype X other than T where the type arguments of X are not
contained in the type arguments of T.

A cast from a type S to a type variable T is unchecked unless S <: T.

A cast from a type S to an intersection type T1 & ... & Tn is unchecked if there exists
a Ti (1 ≤ i ≤ n) such that a cast from S to Ti is unchecked.

An unchecked cast from S to a non-intersection type T is completely unchecked if
the cast from |S| to |T| is statically known to be correct. Otherwise, it is partially
unchecked.

An unchecked cast from S to an intersection type T1 & ... & Tn is completely
unchecked if, for all i (1 ≤ i ≤ n), a cast from S to Ti is either statically known to be
correct or completely unchecked. Otherwise, it is partially unchecked.

An unchecked cast causes a compile-time unchecked warning, unless suppressed
by the SuppressWarnings annotation (§9.6.4.5).

A cast is checked if it is not statically known to be correct and it is not unchecked.

CONVERSIONS AND CONTEXTS Casting Contexts 5.5

125

If a cast to a reference type is not a compile-time error, there are several cases:

• The cast is statically known to be correct.

No run-time action is performed for such a cast.

• The cast is a completely unchecked cast.

No run-time action is performed for such a cast.

• The cast is a partially unchecked or checked cast to an intersection type.

Where the intersection type is T1 & ... & Tn, then for all i (1 ≤ i ≤ n), any run-
time check required for a cast from S to Ti is also required for the cast to the
intersection type.

• The cast is a partially unchecked cast to a non-intersection type.

Such a cast requires a run-time validity check. The check is performed as if the
cast had been a checked cast between |S| and |T|, as described below.

• The cast is a checked cast to a non-intersection type.

Such a cast requires a run-time validity check. If the value at run time is null,
then the cast is allowed. Otherwise, let R be the class of the object referred to by
the run-time reference value, and let T be the erasure (§4.6) of the type named in
the cast operator. A cast conversion must check, at run time, that the class R is
assignment compatible with the type T, via the algorithm in §5.5.3.

Note that R cannot be an interface when these rules are first applied for any given
cast, but R may be an interface if the rules are applied recursively because the
run-time reference value may refer to an array whose element type is an interface
type.

5.5.3 Checked Casts at Run Time

Here is the algorithm to check whether the run-time type R of an object is
assignment compatible with the type T which is the erasure (§4.6) of the type named
in the cast operator. If a run-time exception is thrown, it is a ClassCastException.

If R is an ordinary class (not an array class):

• If T is a class type, then R must be either the same class (§4.3.4) as T or a subclass
of T, or a run-time exception is thrown.

• If T is an interface type, then R must implement (§8.1.5) interface T, or a run-
time exception is thrown.

• If T is an array type, then a run-time exception is thrown.

5.5 Casting Contexts CONVERSIONS AND CONTEXTS

126

If R is an interface:

• If T is a class type, then T must be Object (§4.3.2), or a run-time exception is
thrown.

• If T is an interface type, then R must be either the same interface as T or a
subinterface of T, or a run-time exception is thrown.

• If T is an array type, then a run-time exception is thrown.

If R is a class representing an array type RC[], that is, an array of components of
type RC:

• If T is a class type, then T must be Object (§4.3.2), or a run-time exception is
thrown.

• If T is an interface type, then a run-time exception is thrown unless T is the type
java.io.Serializable or the type Cloneable (the only interfaces implemented
by arrays).

This case could slip past the compile-time checking if, for example, a reference to an
array were stored in a variable of type Object.

• If T is an array type TC[], that is, an array of components of type TC, then a run-
time exception is thrown unless one of the following is true:

– TC and RC are the same primitive type.

– TC and RC are reference types and type RC can be cast to TC by a recursive
application of these run-time rules for casting.

Example 5.5.3-1. Incompatible Types at Run Time

class Point { int x, y; }
interface Colorable { void setColor(int color); }
class ColoredPoint extends Point implements Colorable {
 int color;
 public void setColor(int color) { this.color = color; }
}

class Test {
 public static void main(String[] args) {
 Point[] pa = new Point[100];

 // The following line will throw a ClassCastException:
 ColoredPoint[] cpa = (ColoredPoint[])pa;
 System.out.println(cpa[0]);
 int[] shortvec = new int[2];
 Object o = shortvec;

 // The following line will throw a ClassCastException:

CONVERSIONS AND CONTEXTS Numeric Contexts 5.6

127

 Colorable c = (Colorable)o;
 c.setColor(0);
 }
}

This program uses casts to compile, but it throws exceptions at run time, because the types
are incompatible.

5.6 Numeric Contexts

Numeric contexts apply to the operands of an arithmetic operator.

Numeric contexts allow the use of:

• an identity conversion (§5.1.1)

• a widening primitive conversion (§5.1.2)

• an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion

A numeric promotion is a process by which, given an arithmetic operator and its
argument expressions, the arguments are converted to an inferred target type T. T
is chosen during promotion such that each argument expression can be converted
to T and the arithmetic operation is defined for values of type T.

The two kinds of numeric promotion are unary numeric promotion (§5.6.1) and
binary numeric promotion (§5.6.2).

5.6.1 Unary Numeric Promotion

Some operators apply unary numeric promotion to a single operand, which must
produce a value of a numeric type:

• If the operand is of compile-time type Byte, Short, Character, or Integer, it
is subjected to unboxing conversion (§5.1.8). The result is then promoted to a
value of type int by a widening primitive conversion (§5.1.2) or an identity
conversion (§5.1.1).

• Otherwise, if the operand is of compile-time type Long, Float, or Double, it is
subjected to unboxing conversion (§5.1.8).

• Otherwise, if the operand is of compile-time type byte, short, or char, it is
promoted to a value of type int by a widening primitive conversion (§5.1.2).

• Otherwise, a unary numeric operand remains as is and is not converted.

5.6 Numeric Contexts CONVERSIONS AND CONTEXTS

128

After the conversion(s), if any, value set conversion (§5.1.13) is then applied.

Unary numeric promotion is performed on expressions in the following situations:

• Each dimension expression in an array creation expression (§15.10.1)

• The index expression in an array access expression (§15.10.3)

• The operand of a unary plus operator + (§15.15.3)

• The operand of a unary minus operator - (§15.15.4)

• The operand of a bitwise complement operator ~ (§15.15.5)

• Each operand, separately, of a shift operator <<, >>, or >>> (§15.19).

A long shift distance (right operand) does not promote the value being shifted
(left operand) to long.

Example 5.6.1-1. Unary Numeric Promotion

class Test {
 public static void main(String[] args) {
 byte b = 2;
 int a[] = new int[b]; // dimension expression promotion
 char c = '\u0001';
 a[c] = 1; // index expression promotion
 a[0] = -c; // unary - promotion
 System.out.println("a: " + a[0] + "," + a[1]);
 b = -1;
 int i = ~b; // bitwise complement promotion
 System.out.println("~0x" + Integer.toHexString(b)
 + "==0x" + Integer.toHexString(i));
 i = b << 4L; // shift promotion (left operand)
 System.out.println("0x" + Integer.toHexString(b)
 + "<<4L==0x" + Integer.toHexString(i));
 }
}

This program produces the output:

a: -1,1
~0xffffffff==0x0
0xffffffff<<4L==0xfffffff0

5.6.2 Binary Numeric Promotion

When an operator applies binary numeric promotion to a pair of operands, each
of which must denote a value that is convertible to a numeric type, the following
rules apply, in order:

CONVERSIONS AND CONTEXTS Numeric Contexts 5.6

129

1. If any operand is of a reference type, it is subjected to unboxing conversion
(§5.1.8).

2. Widening primitive conversion (§5.1.2) is applied to convert either or both
operands as specified by the following rules:

• If either operand is of type double, the other is converted to double.

• Otherwise, if either operand is of type float, the other is converted to float.

• Otherwise, if either operand is of type long, the other is converted to long.

• Otherwise, both operands are converted to type int.

After the conversion(s), if any, value set conversion (§5.1.13) is then applied to
each operand.

Binary numeric promotion is performed on the operands of certain operators:

• The multiplicative operators *, /, and % (§15.17)

• The addition and subtraction operators for numeric types + and - (§15.18.2)

• The numerical comparison operators <, <=, >, and >= (§15.20.1)

• The numerical equality operators == and != (§15.21.1)

• The integer bitwise operators &, ^, and | (§15.22.1)

• In certain cases, the conditional operator ? : (§15.25)

Example 5.6.2-1. Binary Numeric Promotion

class Test {
 public static void main(String[] args) {
 int i = 0;
 float f = 1.0f;
 double d = 2.0;
 // First int*float is promoted to float*float, then
 // float==double is promoted to double==double:
 if (i * f == d) System.out.println("oops");

 // A char&byte is promoted to int&int:
 byte b = 0x1f;
 char c = 'G';
 int control = c & b;
 System.out.println(Integer.toHexString(control));

 // Here int:float is promoted to float:float:
 f = (b==0) ? i : 4.0f;
 System.out.println(1.0/f);
 }
}

5.6 Numeric Contexts CONVERSIONS AND CONTEXTS

130

This program produces the output:

7
0.25

The example converts the ASCII character G to the ASCII control-G (BEL), by masking off
all but the low 5 bits of the character. The 7 is the numeric value of this control character.

131

C H A P T E R 6
Names

NAMES are used to refer to entities declared in a program.

A declared entity (§6.1) is a package, class type (normal or enum), interface
type (normal or annotation type), member (class, interface, field, or method) of
a reference type, type parameter (of a class, interface, method or constructor),
parameter (to a method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of a single identifier, or qualified,
consisting of a sequence of identifiers separated by "." tokens (§6.2).

Every declaration that introduces a name has a scope (§6.3), which is the part of the
program text within which the declared entity can be referred to by a simple name.

A qualified name N.x may be used to refer to a member of a package or reference
type, where N is a simple or qualified name and x is an identifier. If N names a
package, then x is a member of that package, which is either a class or interface
type or a subpackage. If N names a reference type or a variable of a reference type,
then x names a member of that type, which is either a class, an interface, a field,
or a method.

In determining the meaning of a name (§6.5), the context of the occurrence is used
to disambiguate among packages, types, variables, and methods with the same
name.

Access control (§6.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope. Access specifies the part of the program text within which the
declared entity can be referred to by a qualified name. Access to a declared entity is
also relevant in a field access expression (§15.11), a method invocation expression
in which the method is not specified by a simple name (§15.12), a method reference
expression (§15.13), or a qualified class instance creation expression (§15.9). In
the absence of an access modifier, most declarations have package access, allowing

6.1 Declarations NAMES

132

access anywhere within the package that contains its declaration; other possibilities
are public, protected, and private.

Fully qualified and canonical names (§6.7) are also discussed in this chapter.

6.1 Declarations

A declaration introduces an entity into a program and includes an identifier (§3.8)
that can be used in a name to refer to this entity.

A declared entity is one of the following:

• A package, declared in a package declaration (§7.4)

• An imported type, declared in a single-type-import declaration or a type-import-
on-demand declaration (§7.5.1, §7.5.2)

• An imported static member, declared in a single-static-import declaration or a
static-import-on-demand declaration (§7.5.3, §7.5.4)

• A class, declared in a class type declaration (§8.1)

• An interface, declared in an interface type declaration (§9.1)

• A type parameter, declared as part of the declaration of a generic class, interface,
method, or constructor (§8.1.2, §9.1.2, §8.4.4, §8.8.4)

• A member of a reference type (§8.2, §9.2, §8.9.3, §9.6, §10.7), one of the
following:

– A member class (§8.5, §9.5)

– A member interface (§8.5, §9.5)

– An enum constant (§8.9)

– A field, one of the following:

› A field declared in a class type or enum type (§8.3, §8.9.2)

› A field declared in an interface type or annotation type (§9.3, §9.6.1)

› The field length, which is implicitly a member of every array type (§10.7)

– A method, one of the following:

› A method (abstract or otherwise) declared in a class type or enum type
(§8.4, §8.9.2)

NAMES Declarations 6.1

133

› A method (always abstract) declared in an interface type or annotation
type (§9.4, §9.6.1)

• A parameter, one of the following:

– A formal parameter of a method or constructor of a class type or enum type
(§8.4.1, §8.8.1, §8.9.2), or of a lambda expression (§15.27.1)

– A formal parameter of an abstract method of an interface type or annotation
type (§9.4, §9.6.1)

– An exception parameter of an exception handler declared in a catch clause of
a try statement (§14.20)

• A local variable, one of the following:

– A local variable declared in a block (§14.4)

– A local variable declared in a for statement (§14.14)

Constructors (§8.8) are also introduced by declarations, but use the name of the
class in which they are declared rather than introducing a new name.

The declaration of a type which is not generic (class C ...) declares one
entity: a non-generic type (C). A non-generic type is not a raw type, despite the
syntactic similarity. In contrast, the declaration of a generic type (class C<T> ...
or interface C<T> ...) declares two entities: a generic type (C<T>) and a
corresponding non-generic type (C). In this case, the meaning of the term C depends
on the context where it appears:

• If genericity is unimportant, as in the non-generic contexts identified below, the
identifier C denotes the non-generic type C.

• If genericity is important, as in all contexts from §6.5 except the non-generic
contexts, the identifier C denotes either:

– The raw type C which is the erasure (§4.6) of the generic type C<T>; or

– A parameterized type which is a particular parameterization (§4.5) of the
generic type C<T>.

The 13 non-generic contexts are as follows:

1. In a single-type-import declaration (§7.5.1)

2. To the left of the . in a single-static-import declaration (§7.5.3)

3. To the left of the . in a static-import-on-demand declaration (§7.5.4)

4. To the left of the (in a constructor declaration (§8.8)

6.1 Declarations NAMES

134

5. After the @ sign in an annotation (§9.7)

6. To the left of .class in a class literal (§15.8.2)

7. To the left of .this in a qualified this expression (§15.8.4)

8. To the left of .super in a qualified superclass field access expression
(§15.11.2)

9. To the left of .Identifier or .super.Identifier in a qualified method invocation
expression (§15.12)

10. To the left of .super:: in a method reference expression (§15.13)

11. In a qualified expression name in a postfix expression (§15.14.1)

12. In a throws clause of a method or constructor (§8.4.6, §8.8.5, §9.4)

13. In an exception parameter declaration (§14.20)

The first ten non-generic contexts correspond to the first ten syntactic contexts for
a TypeName in §6.5.1. The eleventh non-generic context is a postfix expression,
where a qualified ExpressionName such as C.x may include a TypeName C to
denote static member access. The common use of TypeName is significant: it
indicates that these contexts involve a less-than-first-class use of a type. In contrast,
the twelfth and thirteenth non-generic contexts employ ClassType, indicating that
throws and catch clauses use types in a first-class way, in line with, say, field
declarations. The characterization of these two contexts as non-generic is due to
the fact that an exception type cannot be parameterized.

Note that the ClassType production allows annotations, so it is possible to annotate the
use of a type in a throws or catch clause, whereas the TypeName production disallows
annotations, so it is not possible to annotate the name of a type in, say, a single-type-import
declaration.

Naming Conventions

The class libraries of the Java SE platform attempt to use, whenever possible, names chosen
according to the conventions presented below. These conventions help to make code more
readable and avoid certain kinds of name conflicts.

We recommend these conventions for use in all programs written in the Java programming
language. However, these conventions should not be followed slavishly if long-held
conventional usage dictates otherwise. So, for example, the sin and cos methods of
the class java.lang.Math have mathematically conventional names, even though these
method names flout the convention suggested here because they are short and are not verbs.

Package Names

NAMES Declarations 6.1

135

Developers should take steps to avoid the possibility of two published packages having the
same name by choosing unique package names for packages that are widely distributed.
This allows packages to be easily and automatically installed and catalogued. This
section specifies a suggested convention for generating such unique package names.
Implementations of the Java SE platform are encouraged to provide automatic support for
converting a set of packages from local and casual package names to the unique name
format described here.

If unique package names are not used, then package name conflicts may arise far from the
point of creation of either of the conflicting packages. This may create a situation that is
difficult or impossible for the user or programmer to resolve. The class ClassLoader can
be used to isolate packages with the same name from each other in those cases where the
packages will have constrained interactions, but not in a way that is transparent to a naïve
program.

You form a unique package name by first having (or belonging to an organization that has)
an Internet domain name, such as oracle.com. You then reverse this name, component
by component, to obtain, in this example, com.oracle, and use this as a prefix for
your package names, using a convention developed within your organization to further
administer package names. Such a convention might specify that certain package name
components be division, department, project, machine, or login names.

Example 6.1-1. Unique Package Names

com.nighthacks.java.jag.scrabble
org.openjdk.tools.compiler
net.jcip.annotations
edu.cmu.cs.bovik.cheese
gov.whitehouse.socks.mousefinder

The first component of a unique package name is always written in all-lowercase ASCII
letters and should be one of the top level domain names, such as com, edu, gov, mil, net,
or org, or one of the English two-letter codes identifying countries as specified in ISO
Standard 3166.

The name of a package is not meant to imply where the package is stored on the Internet. The
suggested convention for generating unique package names is merely a way to piggyback
a package naming convention on top of an existing, widely known unique name registry
instead of having to create a separate registry for package names.

For example, a package named edu.cmu.cs.bovik.cheese is not necessarily obtainable
from Internet address cmu.edu or cs.cmu.edu or bovik.cs.cmu.edu.

In some cases, the Internet domain name may not be a valid package name. Here are some
suggested conventions for dealing with these situations:

• If the domain name contains a hyphen, or any other special character not allowed in an
identifier (§3.8), convert it into an underscore.

• If any of the resulting package name components are keywords (§3.9), append an
underscore to them.

6.1 Declarations NAMES

136

• If any of the resulting package name components start with a digit, or any other character
that is not allowed as an initial character of an identifier, have an underscore prefixed
to the component.

Names of packages intended only for local use should have a first identifier that begins with
a lowercase letter, but that first identifier specifically should not be the identifier java;
package names that start with the identifier java are reserved for packages of the Java SE
platform.

Class and Interface Type Names

Names of class types should be descriptive nouns or noun phrases, not overly long, in mixed
case with the first letter of each word capitalized.

Example 6.1-2. Descriptive Class Names

ClassLoader
SecurityManager
Thread
Dictionary
BufferedInputStream

Likewise, names of interface types should be short and descriptive, not overly long, in
mixed case with the first letter of each word capitalized. The name may be a descriptive
noun or noun phrase, which is appropriate when an interface is used as if it were an abstract
superclass, such as interfaces java.io.DataInput and java.io.DataOutput; or it may
be an adjective describing a behavior, as for the interfaces Runnable and Cloneable.

Type Variable Names

Type variable names should be pithy (single character if possible) yet evocative, and should
not include lower case letters. This makes it easy to distinguish type parameters from
ordinary classes and interfaces.

Container types should use the name E for their element type. Maps should use K for the
type of their keys and V for the type of their values. The name X should be used for arbitrary
exception types. We use T for type, whenever there is not anything more specific about the
type to distinguish it. (This is often the case in generic methods.)

If there are multiple type parameters that denote arbitrary types, one should use letters
that neighbor T in the alphabet, such as S. Alternately, it is acceptable to use numeric
subscripts (e.g., T1, T2) to distinguish among the different type variables. In such cases, all
the variables with the same prefix should be subscripted.

If a generic method appears inside a generic class, it is a good idea to avoid using the
same names for the type parameters of the method and class, to avoid confusion. The same
applies to nested generic classes.

Example 6.1-3. Conventional Type Variable Names

public class HashSet<E> extends AbstractSet<E> { ... }

NAMES Declarations 6.1

137

public class HashMap<K,V> extends AbstractMap<K,V> { ... }
public class ThreadLocal<T> { ... }
public interface Functor<T, X extends Throwable> {
 T eval() throws X;
}

When type parameters do not fall conveniently into one of the categories mentioned, names
should be chosen to be as meaningful as possible within the confines of a single letter. The
names mentioned above (E, K, V, X, T) should not be used for type parameters that do not
fall into the designated categories.

Method Names

Method names should be verbs or verb phrases, in mixed case, with the first letter lowercase
and the first letter of any subsequent words capitalized. Here are some additional specific
conventions for method names:

• Methods to get and set an attribute that might be thought of as a variable V should be
named getV and setV. An example is the methods getPriority and setPriority
of class Thread.

• A method that returns the length of something should be named length, as in class
String.

• A method that tests a boolean condition V about an object should be named isV. An
example is the method isInterrupted of class Thread.

• A method that converts its object to a particular format F should be named
toF. Examples are the method toString of class Object and the methods
toLocaleString and toGMTString of class java.util.Date.

Whenever possible and appropriate, basing the names of methods in a new class on names
in an existing class that is similar, especially a class from the Java SE platform API, will
make it easier to use.

Field Names

Names of fields that are not final should be in mixed case with a lowercase first letter
and the first letters of subsequent words capitalized. Note that well-designed classes have
very few public or protected fields, except for fields that are constants (static final
fields).

Fields should have names that are nouns, noun phrases, or abbreviations for nouns.

Examples of this convention are the fields buf, pos, and count of the class
java.io.ByteArrayInputStream and the field bytesTransferred of the class
java.io.InterruptedIOException.

Constant Names

The names of constants in interface types should be, and final variables of class types
may conventionally be, a sequence of one or more words, acronyms, or abbreviations,

6.1 Declarations NAMES

138

all uppercase, with components separated by underscore "_" characters. Constant names
should be descriptive and not unnecessarily abbreviated. Conventionally they may be any
appropriate part of speech.

Examples of names for constants include MIN_VALUE, MAX_VALUE, MIN_RADIX, and
MAX_RADIX of the class Character.

A group of constants that represent alternative values of a set, or, less frequently, masking
bits in an integer value, are sometimes usefully specified with a common acronym as a
name prefix.

For example:

interface ProcessStates {
 int PS_RUNNING = 0;
 int PS_SUSPENDED = 1;
}

Local Variable and Parameter Names

Local variable and parameter names should be short, yet meaningful. They are often short
sequences of lowercase letters that are not words, such as:

• Acronyms, that is the first letter of a series of words, as in cp for a variable holding a
reference to a ColoredPoint

• Abbreviations, as in buf holding a pointer to a buffer of some kind

• Mnemonic terms, organized in some way to aid memory and understanding, typically
by using a set of local variables with conventional names patterned after the names of
parameters to widely used classes. For example:

– in and out, whenever some kind of input and output are involved, patterned
after the fields of System

– off and len, whenever an offset and length are involved, patterned after the
parameters to the read and write methods of the interfaces DataInput and
DataOutput of java.io

One-character local variable or parameter names should be avoided, except for temporary
and looping variables, or where a variable holds an undistinguished value of a type.
Conventional one-character names are:

• b for a byte

• c for a char

• d for a double

• e for an Exception

• f for a float

• i, j, and k for ints

NAMES Names and Identifiers 6.2

139

• l for a long

• o for an Object

• s for a String

• v for an arbitrary value of some type

Local variable or parameter names that consist of only two or three lowercase letters should
not conflict with the initial country codes and domain names that are the first component
of unique package names.

6.2 Names and Identifiers

A name is used to refer to an entity declared in a program.

There are two forms of names: simple names and qualified names.

A simple name is a single identifier.

A qualified name consists of a name, a "." token, and an identifier.

In determining the meaning of a name (§6.5), the context in which the name appears
is taken into account. The rules of §6.5 distinguish among contexts where a name
must denote (refer to) a package (§6.5.3), a type (§6.5.5), a variable or value in an
expression (§6.5.6), or a method (§6.5.7).

Packages and reference types have members which may be accessed by qualified names.
As background for the discussion of qualified names and the determination of the meaning
of names, see the descriptions of membership in §4.4, §4.5.2, §4.8, §4.9, §7.1, §8.2, §9.2,
and §10.7.

Not all identifiers in a program are a part of a name. Identifiers are also used in
the following situations:

• In declarations (§6.1), where an identifier may occur to specify the name by
which the declared entity will be known.

• As labels in labeled statements (§14.7) and in break and continue statements
(§14.15, §14.16) that refer to statement labels.

The identifiers used in labeled statements and their associated break and
continue statements are completely separate from those used in declarations.

• In field access expressions (§15.11), where an identifier occurs after a "." token
to indicate a member of the object denoted by the expression before the "." token,
or the object denoted by the super or TypeName.super before the "." token.

6.2 Names and Identifiers NAMES

140

• In some method invocation expressions (§15.12), wherever an identifier occurs
after a "." token and before a "(" token to indicate a method to be invoked for
the object denoted by the expression before the "." token, or the type denoted
by the TypeName before the "." token, or the object denoted by the super or
TypeName.super before the "." token.

• In some method reference expressions (§15.13), wherever an identifier occurs
after a "::" token to indicate a method of the object denoted by the expression
before the "::" token, or the type denoted by the TypeName before the "::"
token, or the object denoted by the super or TypeName.super before the "::"
token.

• In qualified class instance creation expressions (§15.9), where an identifier
occurs to the right of the new token to indicate a type that is a member of the
compile-time type of the expression preceding the new token.

• In element-value pairs of annotations (§9.7.1), to denote an element of the
corresponding annotation type.

In this program:

class Test {
 public static void main(String[] args) {
 Class c = System.out.getClass();
 System.out.println(c.toString().length() +
 args[0].length() + args.length);
 }
}

the identifiers Test, main, and the first occurrences of args and c are not names. Rather,
they are identifiers used in declarations to specify the names of the declared entities. The
names String, Class, System.out.getClass, System.out.println, c.toString,
args, and args.length appear in the example.

The occurrence of length in args.length is a name because args.length is a qualified
name (§6.5.6.2) and not a field access expression (§15.11). A field access expression, as
well as a method invocation expression, a method reference expression, and a qualified class
instance creation expression, uses an identifier rather than a name to denote the member of
interest. Thus, the occurrence of length in args[0].length() is not a name, but rather
an identifier appearing in a method invocation expression.

One might wonder why these kinds of expression use an identifier rather than a simple
name, which is after all just an identifier. The reason is that a simple expression name is
defined in terms of the lexical environment; that is, a simple expression name must be in the
scope of a variable declaration (§6.5.6.1). On the other hand, field access, qualified method
invocation, method references, and qualified class instance creation all refer to members
whose names are not in the lexical environment. By definition, such names are bound only
in the context provided by the Primary of the field access expression, method invocation
expression, method reference expression, or class instance creation expression; or by the

NAMES Scope of a Declaration 6.3

141

super of the field access expression, method invocation expression, or method reference
expression; and so on. Thus, we denote such members with identifiers rather than simple
names.

To complicate things further, a field access expression is not the only way to denote a
field of an object. For parsing reasons, a qualified name is used to denote a field of an in-
scope variable. (The variable itself is denoted with a simple name, alluded to above.) It is
necessary for access control (§6.6) to apply to both denotations of a field.

6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name, provided it is
visible (§6.4.1).

A declaration is said to be in scope at a particular point in a program if and only
if the declaration's scope includes that point.

The scope of the declaration of an observable (§7.4.3) top level package is all
observable compilation units (§7.3).

The declaration of a package that is not observable is never in scope.

The declaration of a subpackage is never in scope.

The package java is always in scope.

The scope of a type imported by a single-type-import declaration (§7.5.1) or
a type-import-on-demand declaration (§7.5.2) is all the class and interface type
declarations (§7.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a member imported by a single-static-import declaration (§7.5.3) or
a static-import-on-demand declaration (§7.5.4) is all the class and interface type
declarations (§7.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a top level type (§7.6) is all type declarations in the package in which
the top level type is declared.

The scope of a declaration of a member m declared in or inherited by a class type C
(§8.1.6) is the entire body of C, including any nested type declarations.

6.3 Scope of a Declaration NAMES

142

The scope of a declaration of a member m declared in or inherited by an interface
type I (§9.1.4) is the entire body of I, including any nested type declarations.

The scope of an enum constant C declared in an enum type T is the body of T, and
any case label of a switch statement whose expression is of enum type T (§14.11).

The scope of a formal parameter of a method (§8.4.1), constructor (§8.8.1), or
lambda expression (§15.27) is the entire body of the method, constructor, or lambda
expression.

The scope of a class's type parameter (§8.1.2) is the type parameter section of the
class declaration, the type parameter section of any superclass or superinterface of
the class declaration, and the class body.

The scope of an interface's type parameter (§9.1.2) is the type parameter section
of the interface declaration, the type parameter section of any superinterface of the
interface declaration, and the interface body.

The scope of a method's type parameter (§8.4.4) is the entire declaration of the
method, including the type parameter section, but excluding the method modifiers.

The scope of a constructor's type parameter (§8.8.4) is the entire declaration of
the constructor, including the type parameter section, but excluding the constructor
modifiers.

The scope of a local class declaration immediately enclosed by a block (§14.2) is
the rest of the immediately enclosing block, including its own class declaration.

The scope of a local class declaration immediately enclosed by a switch block
statement group (§14.11) is the rest of the immediately enclosing switch block
statement group, including its own class declaration.

The scope of a local variable declaration in a block (§14.4) is the rest of the block
in which the declaration appears, starting with its own initializer and including any
further declarators to the right in the local variable declaration statement.

The scope of a local variable declared in the ForInit part of a basic for statement
(§14.14.1) includes all of the following:

• Its own initializer

• Any further declarators to the right in the ForInit part of the for statement

• The Expression and ForUpdate parts of the for statement

• The contained Statement

The scope of a local variable declared in the FormalParameter part of an enhanced
for statement (§14.14.2) is the contained Statement.

NAMES Scope of a Declaration 6.3

143

The scope of a parameter of an exception handler that is declared in a catch clause
of a try statement (§14.20) is the entire block associated with the catch.

The scope of a variable declared in the ResourceSpecification of a try-with-
resources statement (§14.20.3) is from the declaration rightward over the remainder
of the ResourceSpecification and the entire try block associated with the try-with-
resources statement.

The translation of a try-with-resources statement implies the rule above.

Example 6.3-1. Scope of Type Declarations

These rules imply that declarations of class and interface types need not appear before uses
of the types. In the following program, the use of PointList in class Point is valid,
because the scope of the class declaration PointList includes both class Point and class
PointList, as well as any other type declarations in other compilation units of package
points.

package points;
class Point {
 int x, y;
 PointList list;
 Point next;
}

class PointList {
 Point first;
}

Example 6.3-2. Scope of Local Variable Declarations

The following program causes a compile-time error because the initialization of local
variable x is within the scope of the declaration of local variable x, but the local variable
x does not yet have a value and cannot be used. The field x has a value of 0 (assigned
when Test1 was initialized) but is a red herring since it is shadowed (§6.4.1) by the local
variable x.

class Test1 {
 static int x;
 public static void main(String[] args) {
 int x = x;
 }
}

The following program does compile:

class Test2 {
 static int x;
 public static void main(String[] args) {
 int x = (x=2)*2;

6.4 Shadowing and Obscuring NAMES

144

 System.out.println(x);
 }
}

because the local variable x is definitely assigned (§16 (Definite Assignment)) before it is
used. It prints:

4

In the following program, the initializer for three can correctly refer to the variable two
declared in an earlier declarator, and the method invocation in the next line can correctly
refer to the variable three declared earlier in the block.

class Test3 {
 public static void main(String[] args) {
 System.out.print("2+1=");
 int two = 2, three = two + 1;
 System.out.println(three);
 }
}

This program produces the output:

2+1=3

6.4 Shadowing and Obscuring

A local variable (§14.4), formal parameter (§8.4.1, §15.27.1), exception parameter
(§14.20), and local class (§14.3) can only be referred to using a simple name, not
a qualified name (§6.2).

Some declarations are not permitted within the scope of a local variable, formal
parameter, exception parameter, or local class declaration because it would be
impossible to distinguish between the declared entities using only simple names.

For example, if the name of a formal parameter of a method could be redeclared as the name
of a local variable in the method body, then the local variable would shadow the formal
parameter and the formal parameter would no longer be visible - an undesirable outcome.

It is a compile-time error if the name of a formal parameter is used to declare a new
variable within the body of the method, constructor, or lambda expression, unless
the new variable is declared within a class declaration contained by the method,
constructor, or lambda expression.

NAMES Shadowing and Obscuring 6.4

145

It is a compile-time error if the name of a local variable v is used to declare a new
variable within the scope of v, unless the new variable is declared within a class
whose declaration is within the scope of v.

It is a compile-time error if the name of an exception parameter is used to declare
a new variable within the Block of the catch clause, unless the new variable is
declared within a class declaration contained by the Block of the catch clause.

It is a compile-time error if the name of a local class C is used to declare a new local
class within the scope of C, unless the new local class is declared within another
class whose declaration is within the scope of C.

These rules allow redeclaration of a variable or local class in nested class declarations (local
classes (§14.3) and anonymous classes (§15.9)) that occur in the scope of the variable or
local class. Thus, the declaration of a formal parameter, local variable, or local class may be
shadowed in a class declaration nested within a method, constructor, or lambda expression;
and the declaration of an exception parameter may be shadowed inside a class declaration
nested within the Block of the catch clause.

There are two design alternatives for handling name clashes created by lambda parameters
and other variables declared in lambda expressions. One is to mimic class declarations: like
local classes, lambda expressions introduce a new "level" for names, and all variable names
outside the expression can be redeclared. Another is a "local" strategy: like catch clauses,
for loops, and blocks, lambda expressions operate at the same "level" as the enclosing
context, and local variables outside the expression cannot be shadowed. The above rules
use the local strategy; there is no special dispensation that allows a variable declared in a
lambda expression to shadow a variable declared in an enclosing method.

Note that the rule for local classes does not make an exception for a class of the same name
declared within the local class itself. However, this case is prohibited by a separate rule: a
class cannot have the same name as a class that encloses it (§8.1).

Example 6.4-1. Attempted Shadowing Of A Local Variable

Because a declaration of an identifier as a local variable of a method, constructor, or
initializer block must not appear within the scope of a parameter or local variable of the
same name, a compile-time error occurs for the following program:

class Test1 {
 public static void main(String[] args) {
 int i;
 for (int i = 0; i < 10; i++)
 System.out.println(i);
 }
}

This restriction helps to detect some otherwise very obscure bugs. A similar restriction on
shadowing of members by local variables was judged impractical, because the addition of
a member in a superclass could cause subclasses to have to rename local variables. Related

6.4 Shadowing and Obscuring NAMES

146

considerations make restrictions on shadowing of local variables by members of nested
classes, or on shadowing of local variables by local variables declared within nested classes
unattractive as well.

Hence, the following program compiles without error:

class Test2 {
 public static void main(String[] args) {
 int i;
 class Local {
 {
 for (int i = 0; i < 10; i++)
 System.out.println(i);
 }
 }
 new Local();
 }
}

On the other hand, local variables with the same name may be declared in two separate
blocks or for statements, neither of which contains the other:

class Test3 {
 public static void main(String[] args) {
 for (int i = 0; i < 10; i++)
 System.out.print(i + " ");
 for (int i = 10; i > 0; i--)
 System.out.print(i + " ");
 System.out.println();
 }
}

This program compiles without error and, when executed, produces the output:

0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1

6.4.1 Shadowing

Some declarations may be shadowed in part of their scope by another declaration of
the same name, in which case a simple name cannot be used to refer to the declared
entity.

Shadowing is distinct from hiding (§8.3, §8.4.8.2, §8.5, §9.3, §9.5), which applies
only to members which would otherwise be inherited but are not because of a
declaration in a subclass. Shadowing is also distinct from obscuring (§6.4.2).

A declaration d is said to be visible at point p in a program if the scope of d includes
p, and d is not shadowed by any other declaration at p.

NAMES Shadowing and Obscuring 6.4

147

When the program point we are discussing is clear from context, we will often
simply say that a declaration is visible.

A declaration d of a type named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of a field or formal parameter named n shadows, throughout the
scope of d, the declarations of any other variables named n that are in scope at the
point where d occurs.

A declaration d of a local variable or exception parameter named n shadows,
throughout the scope of d, (a) the declarations of any other fields named n that are
in scope at the point where d occurs, and (b) the declarations of any other variables
named n that are in scope at the point where d occurs but are not declared in the
innermost class in which d is declared.

A declaration d of a method named n shadows the declarations of any other methods
named n that are in an enclosing scope at the point where d occurs throughout the
scope of d.

A package declaration never shadows any other declaration.

A type-import-on-demand declaration never causes any other declaration to be
shadowed.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

A single-type-import declaration d in a compilation unit c of package p that imports
a type named n shadows, throughout c, the declarations of:

• any top level type named n declared in another compilation unit of p

• any type named n imported by a type-import-on-demand declaration in c

• any type named n imported by a static-import-on-demand declaration in c

A single-static-import declaration d in a compilation unit c of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in c, throughout c.

A single-static-import declaration d in a compilation unit c of package p that
imports a method named n with signature s shadows the declaration of any
static method named n with signature s imported by a static-import-on-demand
declaration in c, throughout c.

A single-static-import declaration d in a compilation unit c of package p that
imports a type named n shadows, throughout c, the declarations of:

6.4 Shadowing and Obscuring NAMES

148

• any static type named n imported by a static-import-on-demand declaration in c;

• any top level type (§7.6) named n declared in another compilation unit (§7.3)
of p;

• any type named n imported by a type-import-on-demand declaration (§7.5.2) in
c.

Example 6.4.1-1. Shadowing of a Field Declaration by a Local Variable Declaration

class Test {
 static int x = 1;
 public static void main(String[] args) {
 int x = 0;
 System.out.print("x=" + x);
 System.out.println(", Test.x=" + Test.x);
 }
}

This program produces the output:

x=0, Test.x=1

This program declares:

• a class Test

• a class (static) variable x that is a member of the class Test

• a class method main that is a member of the class Test

• a parameter args of the main method

• a local variable x of the main method

Since the scope of a class variable includes the entire body of the class (§8.2), the class
variable x would normally be available throughout the entire body of the method main.
In this example, however, the class variable x is shadowed within the body of the method
main by the declaration of the local variable x.

A local variable has as its scope the rest of the block in which it is declared (§6.3); in
this case this is the rest of the body of the main method, namely its initializer "0" and the
invocations of System.out.print and System.out.println.

This means that:

• The expression x in the invocation of print refers to (denotes) the value of the local
variable x.

• The invocation of println uses a qualified name (§6.6) Test.x, which uses the class
type name Test to access the class variable x, because the declaration of Test.x is
shadowed at this point and cannot be referred to by its simple name.

NAMES Shadowing and Obscuring 6.4

149

The keyword this can also be used to access a shadowed field x, using the form this.x.
Indeed, this idiom typically appears in constructors (§8.8):

class Pair {
 Object first, second;
 public Pair(Object first, Object second) {
 this.first = first;
 this.second = second;
 }
}

Here, the constructor takes parameters having the same names as the fields to be initialized.
This is simpler than having to invent different names for the parameters and is not too
confusing in this stylized context. In general, however, it is considered poor style to have
local variables with the same names as fields.

Example 6.4.1-2. Shadowing of a Type Declaration by Another Type Declaration

import java.util.*;
class Vector {
 int val[] = { 1 , 2 };
}

class Test {
 public static void main(String[] args) {
 Vector v = new Vector();
 System.out.println(v.val[0]);
 }
}

The program compiles and prints:

1

using the class Vector declared here in preference to the generic class
java.util.Vector (§8.1.2) that might be imported on demand.

6.4.2 Obscuring

A simple name may occur in contexts where it may potentially be interpreted as
the name of a variable, a type, or a package. In these situations, the rules of §6.5
specify that a variable will be chosen in preference to a type, and that a type will
be chosen in preference to a package. Thus, it is may sometimes be impossible to
refer to a visible type or package declaration via its simple name. We say that such
a declaration is obscured.

Obscuring is distinct from shadowing (§6.4.1) and hiding (§8.3, §8.4.8.2, §8.5,
§9.3, §9.5).

6.5 Determining the Meaning of a Name NAMES

150

The naming conventions of §6.1 help reduce obscuring, but if it does occur, here are some
notes about what you can do to avoid it.

When package names occur in expressions:

• If a package name is obscured by a field declaration, then import declarations (§7.5)
can usually be used to make available the type names declared in that package.

• If a package name is obscured by a declaration of a parameter or local variable, then the
name of the parameter or local variable can be changed without affecting other code.

The first component of a package name is normally not easily mistaken for a type name, as a
type name normally begins with a single uppercase letter. (The Java programming language
does not actually rely on case distinctions to determine whether a name is a package name
or a type name.)

Obscuring involving class and interface type names is rare. Names of fields, parameters,
and local variables normally do not obscure type names because they conventionally begin
with a lowercase letter whereas type names conventionally begin with an uppercase letter.

Method names cannot obscure or be obscured by other names (§6.5.7).

Obscuring involving field names is rare; however:

• If a field name obscures a package name, then an import declaration (§7.5) can usually
be used to make available the type names declared in that package.

• If a field name obscures a type name, then a fully qualified name for the type can be used
unless the type name denotes a local class (§14.3).

• Field names cannot obscure method names.

• If a field name is shadowed by a declaration of a parameter or local variable, then the
name of the parameter or local variable can be changed without affecting other code.

Obscuring involving constant names is rare:

• Constant names normally have no lowercase letters, so they will not normally obscure
names of packages or types, nor will they normally shadow fields, whose names typically
contain at least one lowercase letter.

• Constant names cannot obscure method names, because they are distinguished
syntactically.

6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The
determination of the meaning of a name requires three steps:

NAMES Determining the Meaning of a Name 6.5

151

• First, context causes a name syntactically to fall into one of
six categories: PackageName, TypeName, ExpressionName, MethodName,
PackageOrTypeName, or AmbiguousName.

• Second, a name that is initially classified by its context as an AmbiguousName or
as a PackageOrTypeName is then reclassified to be a PackageName, TypeName,
or ExpressionName.

• Third, the resulting category then dictates the final determination of the meaning
of the name (or a compile-time error if the name has no meaning).

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageOrTypeName . Identifier

PackageOrTypeName:
Identifier
PackageOrTypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier

The use of context helps to minimize name conflicts between entities of different
kinds. Such conflicts will be rare if the naming conventions described in §6.1 are
followed. Nevertheless, conflicts may arise unintentionally as types developed by different
programmers or different organizations evolve. For example, types, methods, and fields
may have the same name. It is always possible to distinguish between a method and a field
with the same name, since the context of a use always tells whether a method is intended.

6.5.1 Syntactic Classification of a Name According to Context

A name is syntactically classified as a TypeName in these contexts:

6.5 Determining the Meaning of a Name NAMES

152

• The first ten non-generic contexts (§6.1):

1. In a single-type-import declaration (§7.5.1)

2. To the left of the . in a single-static-import declaration (§7.5.3)

3. To the left of the . in a static-import-on-demand declaration (§7.5.4)

4. To the left of the (in a constructor declaration (§8.8)

5. After the @ sign in an annotation (§9.7)

6. To the left of .class in a class literal (§15.8.2)

7. To the left of .this in a qualified this expression (§15.8.4)

8. To the left of .super in a qualified superclass field access expression
(§15.11.2)

9. To the left of .Identifier or .super.Identifier in a qualified method
invocation expression (§15.12)

10. To the left of .super:: in a method reference expression (§15.13)

• As the Identifier or dotted Identifier sequence that constitutes any ReferenceType
(including a ReferenceType to the left of the brackets in an array type, or to
the left of the < in a parameterized type, or in a non-wildcard type argument
of a parameterized type, or in an extends or super clause of a wildcard type
argument of a parameterized type) in the 16 contexts where types are used
(§4.11):

1. In an extends or implements clause of a class declaration (§8.1.4, §8.1.5,
§8.5, §9.5)

2. In an extends clause of an interface declaration (§9.1.3)

3. The return type of a method (§8.4, §9.4) (including the type of an element
of an annotation type (§9.6.1))

4. In the throws clause of a method or constructor (§8.4.6, §8.8.5, §9.4)

5. In an extends clause of a type parameter declaration of a generic class,
interface, method, or constructor (§8.1.2, §9.1.2, §8.4.4, §8.8.4)

6. The type in a field declaration of a class or interface (§8.3, §9.3)

7. The type in a formal parameter declaration of a method, constructor, or
lambda expression (§8.4.1, §8.8.1, §9.4, §15.27.1)

8. The type of the receiver parameter of a method (§8.4.1)

NAMES Determining the Meaning of a Name 6.5

153

9. The type in a local variable declaration (§14.4, §14.14.1, §14.14.2, §14.20.3)

10. A type in an exception parameter declaration (§14.20)

11. In an explicit type argument list to an explicit constructor invocation
statement or class instance creation expression or method invocation
expression (§8.8.7.1, §15.9, §15.12)

12. In an unqualified class instance creation expression, either as the class type
to be instantiated (§15.9) or as the direct superclass or direct superinterface
of an anonymous class to be instantiated (§15.9.5)

13. The element type in an array creation expression (§15.10.1)

14. The type in the cast operator of a cast expression (§15.16)

15. The type that follows the instanceof relational operator (§15.20.2)

16. In a method reference expression (§15.13), as the reference type to search
for a member method or as the class type or array type to construct.

The extraction of a TypeName from the identifiers of a ReferenceType in the 16 contexts
above is intended to apply recursively to all sub-terms of the ReferenceType, such as its
element type and any type arguments.

For example, suppose a field declaration uses the type p.q.Foo[]. The brackets of the
array type are ignored, and the term p.q.Foo is extracted as a dotted sequence of Identifiers
to the left of the brackets in an array type, and classified as a TypeName. A later step
determines which of p, q, and Foo is a type name or a package name.

As another example, suppose a cast operator uses the type p.q.Foo<? extends String>.
The term p.q.Foo is again extracted as a dotted sequence of Identifier terms, this time
to the left of the < in a parameterized type, and classified as a TypeName. The term
String is extracted as an Identifier in an extends clause of a wildcard type argument of
a parameterized type, and classified as a TypeName.

A name is syntactically classified as an ExpressionName in these contexts:

• As the qualifying expression in a qualified superclass constructor invocation
(§8.8.7.1)

• As the qualifying expression in a qualified class instance creation expression
(§15.9)

• As the array reference expression in an array access expression (§15.10.3)

• As a PostfixExpression (§15.14)

• As the left-hand operand of an assignment operator (§15.26)

6.5 Determining the Meaning of a Name NAMES

154

A name is syntactically classified as a MethodName in this context:

• Before the "(" in a method invocation expression (§15.12)

A name is syntactically classified as a PackageOrTypeName in these contexts:

• To the left of the "." in a qualified TypeName

• In a type-import-on-demand declaration (§7.5.2)

A name is syntactically classified as an AmbiguousName in these contexts:

• To the left of the "." in a qualified ExpressionName

• To the left of the rightmost . that occurs before the "(" in a method invocation
expression

• To the left of the "." in a qualified AmbiguousName

• In the default value clause of an annotation type element declaration (§9.6.2)

• To the right of an "=" in an an element-value pair (§9.7.1)

• To the left of :: in a method reference expression (§15.13)

The effect of syntactic classification is to restrict certain kinds of entities to certain parts
of expressions:

• The name of a field, parameter, or local variable may be used as an expression (§15.14.1).

• The name of a method may appear in an expression only as part of a method invocation
expression (§15.12).

• The name of a class or interface type may appear in an expression only as part of a
class literal (§15.8.2), a qualified this expression (§15.8.4), a class instance creation
expression (§15.9), an array creation expression (§15.10.1), a cast expression (§15.16),
an instanceof expression (§15.20.2), an enum constant (§8.9), or as part of a qualified
name for a field or method.

• The name of a package may appear in an expression only as part of a qualified name
for a class or interface type.

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows.

If the AmbiguousName is a simple name, consisting of a single Identifier:

• If the Identifier appears within the scope (§6.3) of a local variable declaration
(§14.4) or parameter declaration (§8.4.1, §8.8.1, §14.20) or field declaration
(§8.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.

NAMES Determining the Meaning of a Name 6.5

155

• Otherwise, if a field of that name is declared in the compilation unit (§7.3)
containing the Identifier by a single-static-import declaration (§7.5.3), or by
a static-import-on-demand declaration (§7.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

• Otherwise, if the Identifier appears within the scope (§6.3) of a top level
class (§8 (Classes)) or interface type declaration (§9 (Interfaces)), a local class
declaration (§14.3) or member type declaration (§8.5, §9.5) with that name, then
the AmbiguousName is reclassified as a TypeName.

• Otherwise, if a type of that name is declared in the compilation unit (§7.3)
containing the Identifier, either by a single-type-import declaration (§7.5.1), or
by a type-import-on-demand declaration (§7.5.2), or by a single-static-import
declaration (§7.5.3), or by a static-import-on-demand declaration (§7.5.4), then
the AmbiguousName is reclassified as a TypeName.

• Otherwise, the AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

If the AmbiguousName is a qualified name, consisting of a name, a ".", and an
Identifier, then the name to the left of the "." is first reclassified, for it is itself an
AmbiguousName. There is then a choice:

• If the name to the left of the "." is reclassified as a PackageName, then:

– If there is a package whose name is the name to the left of the "." and
that package contains a declaration of a type whose name is the same as the
Identifier, then this AmbiguousName is reclassified as a TypeName.

– Otherwise, this AmbiguousName is reclassified as a PackageName. A later
step determines whether or not a package of that name actually exists.

• If the name to the left of the "." is reclassified as a TypeName, then:

– If the Identifier is the name of a method or field of the type denoted by
TypeName, this AmbiguousName is reclassified as an ExpressionName.

– Otherwise, if the Identifier is the name of a member type of the type denoted
by TypeName, this AmbiguousName is reclassified as a TypeName.

– Otherwise, a compile-time error occurs.

• If the name to the left of the "." is reclassified as an ExpressionName, then let T
be the type of the expression denoted by ExpressionName.

– If the Identifier is the name of a method or field of the type denoted by T, this
AmbiguousName is reclassified as an ExpressionName.

6.5 Determining the Meaning of a Name NAMES

156

– Otherwise, if the Identifier is the name of a member type (§8.5, §9.5) of the
type denoted by T, then this AmbiguousName is reclassified as a TypeName.

– Otherwise, a compile-time error occurs.

Example 6.5.2-1. Reclassification of Contextually Ambiguous Names

Consider the following contrived "library code":

package org.rpgpoet;
import java.util.Random;
public interface Music { Random[] wizards = new Random[4]; }

and then consider this example code in another package:

package bazola;
class Gabriel {
 static int n = org.rpgpoet.Music.wizards.length;
}

First of all, the name org.rpgpoet.Music.wizards.length is classified as an
ExpressionName because it functions as a PostfixExpression. Therefore, each of the names:

org.rpgpoet.Music.wizards
org.rpgpoet.Music
org.rpgpoet
org

is initially classified as an AmbiguousName. These are then reclassified:

• The simple name org is reclassified as a PackageName (since there is no variable or
type named org in scope).

• Next, assuming that there is no class or interface named rpgpoet in any compilation unit
of package org (and we know that there is no such class or interface because package org
has a subpackage named rpgpoet), the qualified name org.rpgpoet is reclassified as
a PackageName.

• Next, because package org.rpgpoet has an accessible (§6.6) interface type named
Music, the qualified name org.rpgpoet.Music is reclassified as a TypeName.

• Finally, because the name org.rpgpoet.Music is a TypeName, the qualified name
org.rpgpoet.Music.wizards is reclassified as an ExpressionName.

6.5.3 Meaning of Package Names

The meaning of a name classified as a PackageName is determined as follows.

NAMES Determining the Meaning of a Name 6.5

157

6.5.3.1 Simple Package Names

If a package name consists of a single Identifier, then this identifier denotes a top
level package named by that identifier.

If no top level package of that name is in scope (§6.3), then a compile-time error
occurs.

6.5.3.2 Qualified Package Names

If a package name is of the form Q.Id, then Q must also be a package name. The
package name Q.Id names a package that is the member named Id within the
package named by Q.

If Q does not name an observable package (§7.4.3), or Id is not the simple name of
an observable subpackage of that package, then a compile-time error occurs.

6.5.4 Meaning of PackageOrTypeNames

6.5.4.1 Simple PackageOrTypeNames

If the PackageOrTypeName, Q, occurs in the scope of a type named Q, then the
PackageOrTypeName is reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOrTypeName is the meaning of the reclassified name.

6.5.4.2 Qualified PackageOrTypeNames

Given a qualified PackageOrTypeName of the form Q.Id, if the type or package
denoted by Q has a member type named Id, then the qualified PackageOrTypeName
name is reclassified as a TypeName.

Otherwise, it is reclassified as a PackageName. The meaning of the qualified
PackageOrTypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of a name classified as a TypeName is determined as follows.

6.5 Determining the Meaning of a Name NAMES

158

6.5.5.1 Simple Type Names

If a type name consists of a single Identifier, then the identifier must occur in the
scope of exactly one visible declaration of a type with this name, or a compile-time
error occurs. The meaning of the type name is that type.

6.5.5.2 Qualified Type Names

If a type name is of the form Q.Id, then Q must be either a type name or a package
name.

If Id names exactly one accessible type (§6.6) that is a member of the type or
package denoted by Q, then the qualified type name denotes that type.

If Id does not name a member type within Q (§8.5, §9.5), or the member type named
Id within Q is not accessible (§6.6), or Id names more than one member type within
Q, then a compile-time error occurs.

Example 6.5.5.2-1. Qualified Type Names

class Test {
 public static void main(String[] args) {
 java.util.Date date =
 new java.util.Date(System.currentTimeMillis());
 System.out.println(date.toLocaleString());
 }
}

This program produced the following output the first time it was run:

Sun Jan 21 22:56:29 1996

In this example, the name java.util.Date must denote a type, so we first use the
procedure recursively to determine if java.util is an accessible type or a package, which
it is, and then look to see if the type Date is accessible in this package.

6.5.6 Meaning of Expression Names

The meaning of a name classified as an ExpressionName is determined as follows.

6.5.6.1 Simple Expression Names

If an expression name consists of a single Identifier, then there must be exactly one
declaration denoting either a local variable, parameter, or field visible (§6.4.1) at
the point at which the Identifier occurs. Otherwise, a compile-time error occurs.

NAMES Determining the Meaning of a Name 6.5

159

If the declaration denotes an instance variable (§8.3), the expression name must
appear within the declaration of an instance method (§8.4), constructor (§8.8),
instance initializer (§8.6), or instance variable initializer (§8.3.2). If the expression
name appears within a static method (§8.4.3.2), static initializer (§8.7), or
initializer for a static variable (§8.3.2, §12.4.2), then a compile-time error occurs.

If the declaration declares a final variable which is definitely assigned before the
simple expression, the meaning of the name is the value of that variable. Otherwise,
the meaning of the expression name is the variable declared by the declaration.

If the expression name appears in an assignment context, invocation context, or
casting context, then the type of the expression name is the declared type of the
field, local variable, or parameter after capture conversion (§5.1.10).

Otherwise, the type of the expression name is the declared type of the field, local
variable or parameter.

That is, if the expression name appears "on the right hand side", its type is subject to capture
conversion. If the expression name is a variable that appears "on the left hand side", its type
is not subject to capture conversion.

Example 6.5.6.1-1. Simple Expression Names

class Test {
 static int v;
 static final int f = 3;
 public static void main(String[] args) {
 int i;
 i = 1;
 v = 2;
 f = 33; // compile-time error
 System.out.println(i + " " + v + " " + f);
 }
}

In this program, the names used as the left-hand-sides in the assignments to i, v, and f
denote the local variable i, the field v, and the value of f (not the variable f, because f is
a final variable). The example therefore produces an error at compile time because the
last assignment does not have a variable as its left-hand side. If the erroneous assignment
is removed, the modified code can be compiled and it will produce the output:

1 2 3

6.5.6.2 Qualified Expression Names

If an expression name is of the form Q.Id, then Q has already been classified as a
package name, a type name, or an expression name.

6.5 Determining the Meaning of a Name NAMES

160

If Q is a package name, then a compile-time error occurs.

If Q is a type name that names a class type (§8 (Classes)), then:

• If there is not exactly one accessible (§6.6) member of the class type that is a
field named Id, then a compile-time error occurs.

• Otherwise, if the single accessible member field is not a class variable (that is, it
is not declared static), then a compile-time error occurs.

• Otherwise, if the class variable is declared final, then Q.Id denotes the value
of the class variable.

The type of the expression Q.Id is the declared type of the class variable after
capture conversion (§5.1.10).

If Q.Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

• Otherwise, Q.Id denotes the class variable.

The type of the expression Q.Id is the declared type of the class variable after
capture conversion (§5.1.10).

Note that this clause covers the use of enum constants (§8.9), since these always have
a corresponding final class variable.

If Q is a type name that names an interface type (§9 (Interfaces)), then:

• If there is not exactly one accessible (§6.6) member of the interface type that is
a field named Id, then a compile-time error occurs.

• Otherwise, Q.Id denotes the value of the field.

The type of the expression Q.Id is the declared type of the field after capture
conversion (§5.1.10).

If Q.Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

If Q is an expression name, let T be the type of the expression Q:

• If T is not a reference type, a compile-time error occurs.

• If there is not exactly one accessible (§6.6) member of the type T that is a field
named Id, then a compile-time error occurs.

• Otherwise, if this field is any of the following:

– A field of an interface type

NAMES Determining the Meaning of a Name 6.5

161

– A final field of a class type (which may be either a class variable or an
instance variable)

– The final field length of an array type (§10.7)

then Q.Id denotes the value of the field, unless it appears in a context that requires
a variable and the field is a definitely unassigned blank final field, in which
case it yields a variable.

The type of the expression Q.Id is the declared type of the field after capture
conversion (§5.1.10).

If Q.Id appears in a context that requires a variable and not a value, and the field
denoted by Q.Id is definitely assigned, then a compile-time error occurs.

• Otherwise, Q.Id denotes a variable, the field Id of class T, which may be either
a class variable or an instance variable.

The type of the expression Q.Id is the type of the field member after capture
conversion (§5.1.10).

Example 6.5.6.2-1. Qualified Expression Names

class Point {
 int x, y;
 static int nPoints;
}

class Test {
 public static void main(String[] args) {
 int i = 0;
 i.x++; // compile-time error
 Point p = new Point();
 p.nPoints(); // compile-time error
 }
}

This program encounters two compile-time errors, because the int variable i has no
members, and because nPoints is not a method of class Point.

Example 6.5.6.2-2. Qualifying an Expression with a Type Name

Note that expression names may be qualified by type names, but not by types in general.
A consequence is that it is not possible to access a class variable through a parameterized
type. For example, given the code:

class Foo<T> {
 public static int classVar = 42;
}

6.5 Determining the Meaning of a Name NAMES

162

the following assignment is illegal:

Foo<String>.classVar = 91; // illegal

Instead, one writes:

Foo.classVar = 91;

This does not restrict the Java programming language in any meaningful way. Type
parameters may not be used in the types of static variables, and so the type arguments
of a parameterized type can never influence the type of a static variable. Therefore, no
expressive power is lost. The type name Foo appears to be a raw type, but it is not; rather,
it is the name of the non-generic type Foo whose static member is to be accessed (§6.1).
Since there is no use of a raw type, there are no unchecked warnings.

6.5.7 Meaning of Method Names

The meaning of a name classified as a MethodName is determined as follows.

6.5.7.1 Simple Method Names

A simple method name appears in the context of a method invocation expression
(§15.12). The simple method name consists of a single Identifier which specifies
the name of the method to be invoked. The rules of method invocation require
that the Identifier either denotes a method that is visible at the point of the method
invocation, or denotes a method imported by a single-static-import declaration or
static-import-on-demand declaration (§7.5.3, §7.5.4).

Example 6.5.7.1-1. Simple Method Names and Visibility

The following program demonstrates the role of method visibility when determining which
method to invoke.

class Super {
 void f2(String s) {}
 void f3(String s) {}
 void f3(int i1, int i2) {}
}

class Test {
 void f1(int i) {}
 void f2(int i) {}
 void f3(int i) {}

 void m() {
 new Super() {
 {
 f1(0); // OK, resolves to Test.f1(int)

NAMES Access Control 6.6

163

 f2(0); // compile-time error
 f3(0); // compile-time error
 }
 };
 }
}

For the invocation f1(0), only one method named f1 is visible. It is the method
Test.f1(int), whose declaration is in scope throughout the body of Test including the
anonymous class declaration. §15.12.1 chooses to search in class Test since the anonymous
class declaration has no member named f1. Eventually, Test.f1(int) is resolved.

For the invocation f2(0), two methods named f2 are visible. First, the declaration of
the method Super.f2(String) is in scope throughout the anonymous class declaration.
Second, the declaration of the method Test.f2(int) is in scope throughout the body of
Test including the anonymous class declaration. §15.12.1 chooses to search in class Super
because it has a member named f2. However, Super.f2(String) is not applicable to
f2(0), so a compile-time error occurs. Note that class Test is not searched.

For the invocation f3(0), three methods named f3 are visible. First and second,
the declarations of the methods Super.f3(String) and Super.f3(int,int) are in
scope throughout the anonymous class declaration. Third, the declaration of the method
Test.f3(int) is in scope throughout the body of Test including the anonymous class
declaration. §15.12.1 chooses to search in class Super because it has a member named f3.
However, Super.f3(String) and Super.f3(int,int) are not applicable to f3(0), so
a compile-time error occurs. Note that class Test is not searched.

Choosing to search a nested class's superclass hierarchy before the lexically enclosing scope
is called the "comb rule" (§15.12.1).

6.6 Access Control

The Java programming language provides mechanisms for access control, to
prevent the users of a package or class from depending on unnecessary details of the
implementation of that package or class. If access is permitted, then the accessed
entity is said to be accessible.

Note that accessibility is a static property that can be determined at compile time;
it depends only on types and declaration modifiers.

Qualified names are a means of access to members of packages and reference
types. When the name of such a member is classified from its context (§6.5.1) as a
qualified type name (denoting a member of a package or reference type, §6.5.5.2)
or a qualified expression name (denoting a member of a reference type, §6.5.6.2),
access control is applied.

6.6 Access Control NAMES

164

For example, a single-type-import statement (§7.5.1) uses a qualified type name, so the
named type must be accessible from the compilation unit containing the import statement.
As another example, a class declaration may use a qualified type name for a superclass
(§8.1.5), and again the named type must be accessible.

Some obvious expressions are "missing" from context classification in §6.5.1: field access
on a Primary (§15.11.1), method invocation on a Primary (§15.12), method reference via
a Primary (§15.13), and the instantiated class in a qualified class instance creation (§15.9).
Each of these expressions uses identifiers, rather than names, for the reason given in §6.2.
Consequently, access control to members (whether fields, methods, or types) is applied
explicitly by field access expressions, method invocation expressions, method reference
expressions, and qualified class instance creation expressions. (Note that access to a field
may also be denoted by a qualified name occuring as a postfix expression.)

In addition, many statements and expressions allow the use of types rather than type
names. For example, a class declaration may use a parameterized type (§4.5) to denote
a superclass. Because a parameterized type is not a qualified type name, it is necessary
for the class declaration to explicitly perform access control for the denoted superclass.
Consequently, most of the statements and expressions that provide contexts in §6.5.1 to
classify a TypeName also perform their own access control checks.

Beyond access to members of a package or reference type, there is the matter of access
to constructors of a reference type. Access control must be checked when a constructor
is invoked explicitly or implicitly. Consequently, access control is checked by an explicit
constructor invocation statement (§8.8.7.1) and by a class instance creation expression
(§15.9.3). Such checks are necessary because §6.5.1 has no mention of explicit constructor
invocation statements (because they reference constructor names indirectly) and is unaware
of the distinction between the class type denoted by an unqualified class instance creation
expression and a constructor of that class type. Also, constructors do not have qualified
names, so we cannot rely on access control being checked during classification of qualified
type names.

Accessibility affects inheritance of class members (§8.2), including hiding and method
overriding (§8.4.8.1).

6.6.1 Determining Accessibility

• A package is always accessible.

• If a class or interface type is declared public, then it may be accessed by
any code, provided that the compilation unit (§7.3) in which it is declared is
observable.

If a class or interface type is declared with package access, then it may be
accessed only from within the package in which it is declared.

A class or interface type declared without an access modifier implicitly has
package access.

• An array type is accessible if and only if its element type is accessible.

NAMES Access Control 6.6

165

• A member (class, interface, field, or method) of a reference type, or a constructor
of a class type, is accessible only if the type is accessible and the member or
constructor is declared to permit access:

– If the member or constructor is declared public, then access is permitted.

All members of interfaces lacking access modifiers are implicitly public.

– Otherwise, if the member or constructor is declared protected, then access is
permitted only when one of the following is true:

› Access to the member or constructor occurs from within the package
containing the class in which the protected member or constructor is
declared.

› Access is correct as described in §6.6.2.

– Otherwise, if the member or constructor is declared with package access, then
access is permitted only when the access occurs from within the package in
which the type is declared.

A class member or constructor declared without an access modifier implicitly
has package access.

– Otherwise, the member or constructor is declared private, and access is
permitted if and only if it occurs within the body of the top level class (§7.6)
that encloses the declaration of the member or constructor.

Example 6.6-1. Access Control

Consider the two compilation units:

package points;
class PointVec { Point[] vec; }

and:

package points;
public class Point {
 protected int x, y;
 public void move(int dx, int dy) { x += dx; y += dy; }
 public int getX() { return x; }
 public int getY() { return y; }
}

which declare two class types in the package points:

• The class type PointVec is not public and not part of the public interface of the
package points, but rather can be used only by other classes in the package.

6.6 Access Control NAMES

166

• The class type Point is declared public and is available to other packages. It is part
of the public interface of the package points.

• The methods move, getX, and getY of the class Point are declared public and so are
available to any code that uses an object of type Point.

• The fields x and y are declared protected and are accessible outside the package
points only in subclasses of class Point, and only when they are fields of objects that
are being implemented by the code that is accessing them.

See §6.6.2 for an example of how the protected access modifier limits access.

Example 6.6-2. Access to public Fields, Methods, and Constructors

A public class member or constructor is accessible throughout the package where it is
declared and from any other package, provided the package in which it is declared is
observable (§7.4.3). For example, in the compilation unit:

package points;
public class Point {
 int x, y;
 public void move(int dx, int dy) {
 x += dx; y += dy;
 moves++;
 }
 public static int moves = 0;
}

the public class Point has as public members the move method and the moves field.
These public members are accessible to any other package that has access to package
points. The fields x and y are not public and therefore are accessible only from within
the package points.

Example 6.6-3. Access to public and Non-public Classes

If a class lacks the public modifier, access to the class declaration is limited to the package
in which it is declared (§6.6). In the example:

package points;
public class Point {
 public int x, y;
 public void move(int dx, int dy) { x += dx; y += dy; }
}
class PointList {
 Point next, prev;
}

two classes are declared in the compilation unit. The class Point is available outside
the package points, while the class PointList is available for access only within the
package. Thus a compilation unit in another package can access points.Point, either by
using its fully qualified name:

NAMES Access Control 6.6

167

package pointsUser;
class Test1 {
 public static void main(String[] args) {
 points.Point p = new points.Point();
 System.out.println(p.x + " " + p.y);
 }
}

or by using a single-type-import declaration (§7.5.1) that mentions the fully qualified name,
so that the simple name may be used thereafter:

package pointsUser;
import points.Point;
class Test2 {
 public static void main(String[] args) {
 Point p = new Point();
 System.out.println(p.x + " " + p.y);
 }
}

However, this compilation unit cannot use or import points.PointList, which is not
declared public and is therefore inaccessible outside package points.

Example 6.6-4. Access to Package-Access Fields, Methods, and Constructors

If none of the access modifiers public, protected, or private are specified, a class
member or constructor has package access: it is accessible throughout the package that
contains the declaration of the class in which the class member is declared, but the class
member or constructor is not accessible in any other package.

If a public class has a method or constructor with package access, then this method or
constructor is not accessible to or inherited by a subclass declared outside this package.

For example, if we have:

package points;
public class Point {
 public int x, y;
 void move(int dx, int dy) { x += dx; y += dy; }
 public void moveAlso(int dx, int dy) { move(dx, dy); }
}

then a subclass in another package may declare an unrelated move method, with the same
signature (§8.4.2) and return type. Because the original move method is not accessible from
package morepoints, super may not be used:

package morepoints;
public class PlusPoint extends points.Point {
 public void move(int dx, int dy) {
 super.move(dx, dy); // compile-time error
 moveAlso(dx, dy);

6.6 Access Control NAMES

168

 }
}

Because move of Point is not overridden by move in PlusPoint, the method moveAlso
in Point never calls the method move in PlusPoint. Thus if you delete the super.move
call from PlusPoint and execute the test program:

import points.Point;
import morepoints.PlusPoint;
class Test {
 public static void main(String[] args) {
 PlusPoint pp = new PlusPoint();
 pp.move(1, 1);
 }
}

it terminates normally. If move of Point were overridden by move in PlusPoint, then
this program would recurse infinitely, until a StackOverflowError occurred.

Example 6.6-5. Access to private Fields, Methods, and Constructors

A private class member or constructor is accessible only within the body of the top level
class (§7.6) that encloses the declaration of the member or constructor. It is not inherited
by subclasses. In the example:

class Point {
 Point() { setMasterID(); }
 int x, y;
 private int ID;
 private static int masterID = 0;
 private void setMasterID() { ID = masterID++; }
}

the private members ID, masterID, and setMasterID may be used only within the body
of class Point. They may not be accessed by qualified names, field access expressions, or
method invocation expressions outside the body of the declaration of Point.

See §8.8.8 for an example that uses a private constructor.

6.6.2 Details on protected Access

A protected member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the
implementation of that object.

NAMES Access Control 6.6

169

6.6.2.1 Access to a protected Member

Let C be the class in which a protected member is declared. Access is permitted
only within the body of a subclass S of C.

In addition, if Id denotes an instance field or instance method, then:

• If the access is by a qualified name Q.Id or a method reference expression Q ::
Id (§15.13), where Q is an ExpressionName, then the access is permitted if and
only if the type of the expression Q is S or a subclass of S.

• If the access is by a field access expression E.Id, or a method invocation
expression E.Id(...), or a method reference expression E :: Id, where E is a
Primary expression (§15.8), then the access is permitted if and only if the type
of E is S or a subclass of S.

• If the access is by a method reference expression T :: Id, where T is a
ReferenceType, then the access is permitted if and only if the type T is S or a
subclass of S.

More information about access to protected members can be found in Checking Access
to Protected Members in the Java Virtual Machine by Alessandro Coglio, in the Journal
of Object Technology, October 2005.

6.6.2.2 Qualified Access to a protected Constructor

Let C be the class in which a protected constructor is declared and let S be the
innermost class in whose declaration the use of the protected constructor occurs.
Then:

• If the access is by a superclass constructor invocation super(...), or a
qualified superclass constructor invocation E.super(...), where E is a Primary
expression, then the access is permitted.

• If the access is by an anonymous class instance creation expression new C(...)
{...}, or a qualified anonymous class instance creation expression E.new
C(...){...}, where E is a Primary expression, then the access is permitted.

• If the access is by a simple class instance creation expression new C(...), or a
qualified class instance creation expression E.new C(...), where E is a Primary
expression, or a method reference expression C :: new, where C is a ClassType,
then the access is not permitted. A protected constructor can be accessed by a
class instance creation expression (that does not declare an anonymous class) or a
method reference expression only from within the package in which it is defined.

6.6 Access Control NAMES

170

Example 6.6.2-1. Access to protected Fields, Methods, and Constructors

Consider this example, where the points package declares:

package points;
public class Point {
 protected int x, y;
 void warp(threePoint.Point3d a) {
 if (a.z > 0) // compile-time error: cannot access a.z
 a.delta(this);
 }
}

and the threePoint package declares:

package threePoint;
import points.Point;
public class Point3d extends Point {
 protected int z;
 public void delta(Point p) {
 p.x += this.x; // compile-time error: cannot access p.x
 p.y += this.y; // compile-time error: cannot access p.y
 }
 public void delta3d(Point3d q) {
 q.x += this.x;
 q.y += this.y;
 q.z += this.z;
 }
}

A compile-time error occurs in the method delta here: it cannot access the protected
members x and y of its parameter p, because while Point3d (the class in which the
references to fields x and y occur) is a subclass of Point (the class in which x and y are
declared), it is not involved in the implementation of a Point (the type of the parameter p).
The method delta3d can access the protected members of its parameter q, because the
class Point3d is a subclass of Point and is involved in the implementation of a Point3d.

The method delta could try to cast (§5.5, §15.16) its parameter to be a Point3d, but this
cast would fail, causing an exception, if the class of p at run time were not Point3d.

A compile-time error also occurs in the method warp: it cannot access the protected
member z of its parameter a, because while the class Point (the class in which the reference
to field z occurs) is involved in the implementation of a Point3d (the type of the parameter
a), it is not a subclass of Point3d (the class in which z is declared).

NAMES Fully Qualified Names and Canonical Names 6.7

171

6.7 Fully Qualified Names and Canonical Names

Every primitive type, named package, top level class, and top level interface has
a fully qualified name:

• The fully qualified name of a primitive type is the keyword for that primitive
type, namely byte, short, char, int, long, float, double, or boolean.

• The fully qualified name of a named package that is not a subpackage of a named
package is its simple name.

• The fully qualified name of a named package that is a subpackage of another
named package consists of the fully qualified name of the containing package,
followed by ".", followed by the simple (member) name of the subpackage.

• The fully qualified name of a top level class or top level interface that is declared
in an unnamed package is the simple name of the class or interface.

• The fully qualified name of a top level class or top level interface that is declared
in a named package consists of the fully qualified name of the package, followed
by ".", followed by the simple name of the class or interface.

Each member class, member interface, and array type may have a fully qualified
name:

• A member class or member interface M of another class or interface C has a fully
qualified name if and only if C has a fully qualified name.

In that case, the fully qualified name of M consists of the fully qualified name of
C, followed by ".", followed by the simple name of M.

• An array type has a fully qualified name if and only if its element type has a
fully qualified name.

In that case, the fully qualified name of an array type consists of the fully
qualified name of the component type of the array type followed by "[]".

A local class does not have a fully qualified name.

Every primitive type, named package, top level class, and top level interface has
a canonical name:

• For every primitive type, named package, top level class, and top level interface,
the canonical name is the same as the fully qualified name.

Each member class, member interface, and array type may have a canonical name:

6.7 Fully Qualified Names and Canonical Names NAMES

172

• A member class or member interface M declared in another class or interface C
has a canonical name if and only if C has a canonical name.

In that case, the canonical name of M consists of the canonical name of C, followed
by ".", followed by the simple name of M.

• An array type has a canonical name if and only if its component type has a
canonical name.

In that case, the canonical name of the array type consists of the canonical name
of the component type of the array type followed by "[]".

A local class does not have a canonical name.

Example 6.7-1. Fully Qualified Names

• The fully qualified name of the type long is "long".

• The fully qualified name of the package java.lang is "java.lang" because it is
subpackage lang of package java.

• The fully qualified name of the class Object, which is defined in the package
java.lang, is "java.lang.Object".

• The fully qualified name of the interface Enumeration, which is defined in the package
java.util, is "java.util.Enumeration".

• The fully qualified name of the type "array of double" is "double[]".

• The fully qualified name of the type "array of array of array of array of String" is
"java.lang.String[][][][]".

In the code:

package points;
class Point { int x, y; }
class PointVec { Point[] vec; }

the fully qualified name of the type Point is "points.Point"; the fully qualified name
of the type PointVec is "points.PointVec"; and the fully qualified name of the type of
the field vec of class PointVec is "points.Point[]".

Example 6.7-2. Fully Qualified Names v. Canonical Name

The difference between a fully qualified name and a canonical name can be seen in code
such as:

package p;
class O1 { class I {} }
class O2 extends O1 {}

NAMES Fully Qualified Names and Canonical Names 6.7

173

Both p.O1.I and p.O2.I are fully qualified names that denote the member class I, but
only p.O1.I is its canonical name.

175

C H A P T E R 7
Packages

PROGRAMS are organized as sets of packages. Each package has its own set of
names for types, which helps to prevent name conflicts.

A top level type is accessible (§6.6) outside the package that declares it only if the
type is declared public.

The naming structure for packages is hierarchical (§7.1). The members of a package
are class and interface types (§7.6), which are declared in compilation units of the
package, and subpackages, which may contain compilation units and subpackages
of their own.

A package can be stored in a file system or in a database (§7.2). Packages that are
stored in a file system may have certain constraints on the organization of their
compilation units to allow a simple implementation to find classes easily.

A package consists of a number of compilation units (§7.3). A compilation unit
automatically has access to all types declared in its package and also automatically
imports all of the public types declared in the predefined package java.lang.

For small programs and casual development, a package can be unnamed (§7.4.2) or
have a simple name, but if code is to be widely distributed, unique package names
should be chosen using qualified names. This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were later to be used in a single program.

7.1 Package Members

The members of a package are its subpackages and all the top level class types
(§7.6, §8 (Classes)) and top level interface types (§9 (Interfaces)) declared in all
the compilation units (§7.3) of the package.

7.1 Package Members PACKAGES

176

For example, in the Java SE platform API:

• The package java has subpackages awt, applet, io, lang, net, and util, but no
compilation units.

• The package java.awt has a subpackage named image, as well as a number of
compilation units containing declarations of class and interface types.

If the fully qualified name (§6.7) of a package is P, and Q is a subpackage of P,
then P.Q is the fully qualified name of the subpackage, and furthermore denotes
a package.

A package may not contain two members of the same name, or a compile-time
error results.

Here are some examples:

• Because the package java.awt has a subpackage image, it cannot (and does not)
contain a declaration of a class or interface type named image.

• If there is a package named mouse and a member type Button in that package (which
then might be referred to as mouse.Button), then there cannot be any package with the
fully qualified name mouse.Button or mouse.Button.Click.

• If com.nighthacks.java.jag is the fully qualified name of a type, then there cannot
be any package whose fully qualified name is either com.nighthacks.java.jag or
com.nighthacks.java.jag.scrabble.

It is however possible for members of different packages to have the same simple name.
For example, it is possible to declare a package:

package vector;
public class Vector { Object[] vec; }

that has as a member a public class named Vector, even though the package java.util
also declares a class named Vector. These two class types are different, reflected by the
fact that they have different fully qualified names (§6.7). The fully qualified name of this
example Vector is vector.Vector, whereas java.util.Vector is the fully qualified
name of the Vector class included in the Java SE platform. Because the package vector
contains a class named Vector, it cannot also have a subpackage named Vector.

The hierarchical naming structure for packages is intended to be convenient for
organizing related packages in a conventional manner, but has no significance in
itself other than the prohibition against a package having a subpackage with the
same simple name as a top level type (§7.6) declared in that package.

For example, there is no special access relationship between a package named oliver and
another package named oliver.twist, or between packages named evelyn.wood and
evelyn.waugh. That is, the code in a package named oliver.twist has no better access
to the types declared within package oliver than code in any other package.

PACKAGES Host Support for Packages 7.2

177

7.2 Host Support for Packages

Each host system determines how packages and compilation units are created and
stored.

Each host system also determines which compilation units are observable (§7.3) in
a particular compilation. The observability of compilation units in turn determines
which packages are observable, and which packages are in scope.

In simple implementations of the Java SE platform, packages and compilation units
may be stored in a local file system. Other implementations may store them using
a distributed file system or some form of database.

If a host system stores packages and compilation units in a database, then the
database must not impose the optional restrictions (§7.6) on compilation units
permissible in file-based implementations.

For example, a system that uses a database to store packages may not enforce a maximum
of one public class or interface per compilation unit.

Systems that use a database must, however, provide an option to convert a
program to a form that obeys the restrictions, for purposes of export to file-based
implementations.

As an extremely simple example of storing packages in a file system, all the packages
and source and binary code in a project might be stored in a single directory and its
subdirectories. Each immediate subdirectory of this directory would represent a top level
package, that is, one whose fully qualified name consists of a single simple name. Each
further level of subdirectory would represent a subpackage of the package represented by
the containing directory, and so on.

The directory might contain the following immediate subdirectories:

com
gls
jag
java
wnj

where directory java would contain the Java SE platform packages; the directories jag,
gls, and wnj might contain packages that three of the authors of this specification created
for their personal use and to share with each other within this small group; and the directory
com would contain packages procured from companies that used the conventions described
in §6.1 to generate unique names for their packages.

Continuing the example, the directory java would contain, among others, the following
subdirectories:

7.2 Host Support for Packages PACKAGES

178

applet
awt
io
lang
net
util

corresponding to the packages java.applet, java.awt, java.io, java.lang,
java.net, and java.util that are defined as part of the Java SE platform API.

Still continuing the example, if we were to look inside the directory util, we might see
the following files:

BitSet.java Observable.java
BitSet.class Observable.class
Date.java Observer.java
Date.class Observer.class
...

where each of the .java files contains the source for a compilation unit (§7.3) that contains
the definition of a class or interface whose binary compiled form is contained in the
corresponding .class file.

Under this simple organization of packages, an implementation of the Java SE platform
would transform a package name into a pathname by concatenating the components of
the package name, placing a file name separator (directory indicator) between adjacent
components.

For example, if this simple organization were used on an operating system where the file
name separator is /, the package name:

jag.scrabble.board

would be transformed into the directory name:

jag/scrabble/board

A package name component or class name might contain a character that cannot correctly
appear in a host file system's ordinary directory name, such as a Unicode character on a
system that allows only ASCII characters in file names. As a convention, the character can
be escaped by using, say, the @ character followed by four hexadecimal digits giving the
numeric value of the character, as in the \uxxxx escape (§3.3).

Under this convention, the package name:

children.activities.crafts.papierM\u00e2ch\u00e9

which can also be written using full Unicode as:

children.activities.crafts.papierMâché

PACKAGES Compilation Units 7.3

179

might be mapped to the directory name:

children/activities/crafts/papierM@00e2ch@00e9

If the @ character is not a valid character in a file name for some given host file system,
then some other character that is not valid in a identifier could be used instead.

7.3 Compilation Units

CompilationUnit is the goal symbol (§2.1) for the syntactic grammar (§2.3) of Java
programs. It is defined by the following productions:

CompilationUnit:
[PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

A compilation unit consists of three parts, each of which is optional:

• A package declaration (§7.4), giving the fully qualified name (§6.7) of the
package to which the compilation unit belongs.

A compilation unit that has no package declaration is part of an unnamed
package (§7.4.2).

• import declarations (§7.5) that allow types from other packages and static
members of types to be referred to using their simple names.

• Top level type declarations (§7.6) of class and interface types.

Every compilation unit implicitly imports every public type name declared in
the predefined package java.lang, as if the declaration import java.lang.*;
appeared at the beginning of each compilation unit immediately after any package
statement. As a result, the names of all those types are available as simple names
in every compilation unit.

All the compilation units of the predefined package java and its subpackages lang
and io are always observable.

For all other packages, the host system determines which compilation units are
observable.

The observability of a compilation unit influences the observability of its package (§7.4.3).

Types declared in different compilation units can depend on each other, circularly.
A Java compiler must arrange to compile all such types at the same time.

7.4 Package Declarations PACKAGES

180

7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the package
to which the compilation unit belongs.

7.4.1 Named Packages

A package declaration in a compilation unit specifies the name (§6.2) of the
package to which the compilation unit belongs.

PackageDeclaration:
{PackageModifier} package Identifier {. Identifier} ;

PackageModifier:
Annotation

The package name mentioned in a package declaration must be the fully qualified
name of the package (§6.7).

The scope and shadowing of a package declaration is specified in §6.3 and §6.4.

The rules for annotation modifiers on a package declaration are specified in §9.7.4
and §9.7.5.

At most one annotated package declaration is permitted for a given package.

The manner in which this restriction is enforced must, of necessity, vary from
implementation to implementation. The following scheme is strongly recommended for
file-system-based implementations: The sole annotated package declaration, if it exists, is
placed in a source file called package-info.java in the directory containing the source
files for the package. This file does not contain the source for a class called package-
info.java; indeed it would be illegal for it to do so, as package-info is not a legal
identifier. Typically package-info.java contains only a package declaration, preceded
immediately by the annotations on the package. While the file could technically contain the
source code for one or more classes with package access, it would be very bad form.

It is recommended that package-info.java, if it is present, take the place of
package.html for javadoc and other similar documentation generation systems. If
this file is present, the documentation generation tool should look for the package
documentation comment immediately preceding the (possibly annotated) package
declaration in package-info.java. In this way, package-info.java becomes the
sole repository for package-level annotations and documentation. If, in future, it becomes
desirable to add any other package-level information, this file should prove a convenient
home for this information.

PACKAGES Package Declarations 7.4

181

7.4.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed package.

Unnamed packages are provided by the Java SE platform principally for
convenience when developing small or temporary applications or when just
beginning development.

An unnamed package cannot have subpackages, since the syntax of a package
declaration always includes a reference to a named top level package.

An implementation of the Java SE platform must support at least one unnamed
package. An implementation may support more than one unnamed package, but
is not required to do so. Which compilation units are in each unnamed package is
determined by the host system.

The compilation unit:

class FirstCall {
 public static void main(String[] args) {
 System.out.println("Mr. Watson, come here. "
 + "I want you.");
 }
}

defines a very simple compilation unit as part of an unnamed package.

In implementations of the Java SE platform that use a hierarchical file system for storing
packages, one typical strategy is to associate an unnamed package with each directory; only
one unnamed package is observable at a time, namely the one that is associated with the
"current working directory". The precise meaning of "current working directory" depends
on the host system.

7.4.3 Observability of a Package

A package is observable if and only if either:

• A compilation unit containing a declaration of the package is observable (§7.3).

• A subpackage of the package is observable.

The packages java, java.lang, and java.io are always observable.

One can conclude this from the rule above and from the rules of observable compilation
units, as follows. The predefined package java.lang declares the class Object, so the
compilation unit for Object is always observable (§7.3). Hence, the java.lang package is
observable (§7.4.3), and the java package also. Furthermore, since Object is observable,
the array type Object[] implicitly exists. Its superinterface java.io.Serializable
(§10.1) also exists, hence the java.io package is observable.

7.5 Import Declarations PACKAGES

182

7.5 Import Declarations

An import declaration allows a named type or a static member to be referred to
by a simple name (§6.2) that consists of a single identifier.

Without the use of an appropriate import declaration, the only way to refer to a
type declared in another package, or a static member of another type, is to use
a fully qualified name (§6.7).

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration
SingleStaticImportDeclaration
StaticImportOnDemandDeclaration

• A single-type-import declaration (§7.5.1) imports a single named type, by
mentioning its canonical name (§6.7).

• A type-import-on-demand declaration (§7.5.2) imports all the accessible types
(§6.6) of a named type or named package as needed, by mentioning the canonical
name of a type or package.

• A single-static-import declaration (§7.5.3) imports all accessible static
members with a given name from a type, by giving its canonical name.

• A static-import-on-demand declaration (§7.5.4) imports all accessible static
members of a named type as needed, by mentioning the canonical name of a type.

The scope and shadowing of a type or member imported by these declarations is
specified in §6.3 and §6.4.

An import declaration makes types or members available by their simple names only
within the compilation unit that actually contains the import declaration. The scope of the
type(s) or member(s) introduced by an import declaration specifically does not include
other compilation units in the same package, other import declarations in the current
compilation unit, or a package declaration in the current compilation unit (except for the
annotations of a package declaration).

7.5.1 Single-Type-Import Declarations

A single-type-import declaration imports a single type by giving its canonical
name, making it available under a simple name in the class and interface
declarations of the compilation unit in which the single-type-import declaration
appears.

PACKAGES Import Declarations 7.5

183

SingleTypeImportDeclaration:
import TypeName ;

The TypeName must be the canonical name of a class type, interface type, enum
type, or annotation type (§6.7).

The name must be qualified (§6.5.5.2), or a compile-time error occurs.

It is a compile-time error if the named type is not accessible (§6.6).

If two single-type-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration is ignored.

If the type imported by the single-type-import declaration is declared in the
compilation unit that contains the import declaration, the import declaration is
ignored.

If a single-type-import declaration imports a type whose simple name is n, and the
compilation unit also declares a top level type (§7.6) whose simple name is n, a
compile-time error occurs.

If a compilation unit contains both a single-type-import declaration that imports a
type whose simple name is n, and a single-static-import declaration (§7.5.3) that
imports a type whose simple name is n, a compile-time error occurs.

Example 7.5.1-1. Single-Type-Import

import java.util.Vector;

causes the simple name Vector to be available within the class and interface declarations
in a compilation unit. Thus, the simple name Vector refers to the type declaration Vector
in the package java.util in all places where it is not shadowed (§6.4.1) or obscured
(§6.4.2) by a declaration of a field, parameter, local variable, or nested type declaration
with the same name.

Note that the actual declaration of java.util.Vector is generic (§8.1.2). Once imported,
the name Vector can be used without qualification in a parameterized type such as
Vector<String>, or as the raw type Vector. A related limitation of the import
declaration is that a nested type declared inside a generic type declaration can be imported,
but its outer type is always erased.

Example 7.5.1-2. Duplicate Type Declarations

This program:

import java.util.Vector;
class Vector { Object[] vec; }

7.5 Import Declarations PACKAGES

184

causes a compile-time error because of the duplicate declaration of Vector, as does:

import java.util.Vector;
import myVector.Vector;

where myVector is a package containing the compilation unit:

package myVector;
public class Vector { Object[] vec; }

Example 7.5.1-3. No Import of a Subpackage

Note that an import statement cannot import a subpackage, only a type.

For example, it does not work to try to import java.util and then use the name
util.Random to refer to the type java.util.Random:

import java.util;
class Test { util.Random generator; }
 // incorrect: compile-time error

Example 7.5.1-4. Importing a Type Name that is also a Package Name

Package names and type names are usually different under the naming conventions
described in §6.1. Nevertheless, in a contrived example where there is an unconventionally-
named package Vector, which declares a public class whose name is Mosquito:

package Vector;
public class Mosquito { int capacity; }

and then the compilation unit:

package strange;
import java.util.Vector;
import Vector.Mosquito;
class Test {
 public static void main(String[] args) {
 System.out.println(new Vector().getClass());
 System.out.println(new Mosquito().getClass());
 }
}

the single-type-import declaration importing class Vector from package java.util does
not prevent the package name Vector from appearing and being correctly recognized in
subsequent import declarations. The example compiles and produces the output:

class java.util.Vector
class Vector.Mosquito

PACKAGES Import Declarations 7.5

185

7.5.2 Type-Import-on-Demand Declarations

A type-import-on-demand declaration allows all accessible types of a named
package or type to be imported as needed.

TypeImportOnDemandDeclaration:
import PackageOrTypeName . * ;

The PackageOrTypeName must be the canonical name (§6.7) of a package, a class
type, an interface type, an enum type, or an annotation type.

If the PackageOrTypeName denotes a type (§6.5.4), then the name must be
qualified (§6.5.5.2), or a compile-time error occurs.

It is a compile-time error if the named package or type is not accessible (§6.6).

It is not a compile-time error to name either java.lang or the named package of the
current compilation unit in a type-import-on-demand declaration. The type-import-
on-demand declaration is ignored in such cases.

Two or more type-import-on-demand declarations in the same compilation unit
may name the same type or package. All but one of these declarations are
considered redundant; the effect is as if that type was imported only once.

If a compilation unit contains both a type-import-on-demand declaration and a
static-import-on-demand declaration (§7.5.4) that name the same type, the effect is
as if the static member types of that type (§8.5, §9.5) were imported only once.

Example 7.5.2-1. Type-Import-on-Demand

import java.util.*;

causes the simple names of all public types declared in the package java.util to be
available within the class and interface declarations of the compilation unit. Thus, the
simple name Vector refers to the type Vector in the package java.util in all places
in the compilation unit where that type declaration is not shadowed (§6.4.1) or obscured
(§6.4.2).

The declaration might be shadowed by a single-type-import declaration of a type whose
simple name is Vector; by a type named Vector and declared in the package to which the
compilation unit belongs; or any nested classes or interfaces.

The declaration might be obscured by a declaration of a field, parameter, or local variable
named Vector.

(It would be unusual for any of these conditions to occur.)

7.5 Import Declarations PACKAGES

186

7.5.3 Single-Static-Import Declarations

A single-static-import declaration imports all accessible static members with a
given simple name from a type. This makes these static members available under
their simple name in the class and interface declarations of the compilation unit in
which the single-static-import declaration appears.

SingleStaticImportDeclaration:
import static TypeName . Identifier ;

The TypeName must be the canonical name (§6.7) of a class type, interface type,
enum type, or annotation type.

The name must be qualified (§6.5.5.2), or a compile-time error occurs.

It is a compile-time error if the named type is not accessible (§6.6).

The Identifier must name at least one static member of the named type. It is a
compile-time error if there is no static member of that name, or if all of the named
members are not accessible.

It is permissible for one single-static-import declaration to import several fields or
types with the same name, or several methods with the same name and signature.

If a single-static-import declaration imports a type whose simple name is n, and
the compilation unit also declares a top level type (§7.6) whose simple name is n,
a compile-time error occurs.

If a compilation unit contains both a single-static-import declaration that imports
a type whose simple name is n, and a single-type-import declaration (§7.5.1) that
imports a type whose simple name is n, a compile-time error occurs.

7.5.4 Static-Import-on-Demand Declarations

A static-import-on-demand declaration allows all accessible static members of
a named type to be imported as needed.

StaticImportOnDemandDeclaration:
import static TypeName . * ;

The TypeName must be the canonical name (§6.7) of a class type, interface type,
enum type, or annotation type.

The name must be qualified (§6.5.5.2), or a compile-time error occurs.

It is a compile-time error if the named type is not accessible (§6.6).

PACKAGES Top Level Type Declarations 7.6

187

Two or more static-import-on-demand declarations in the same compilation unit
may name the same type; the effect is as if there was exactly one such declaration.

Two or more static-import-on-demand declarations in the same compilation unit
may name the same member; the effect is as if the member was imported exactly
once.

It is permissible for one static-import-on-demand declaration to import several
fields or types with the same name, or several methods with the same name and
signature.

If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand declaration (§7.5.2) that name the same type, the effect is
as if the static member types of that type (§8.5, §9.5) were imported only once.

7.6 Top Level Type Declarations

A top level type declaration declares a top level class type (§8 (Classes)) or a top
level interface type (§9 (Interfaces)).

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration
;

Extra ";" tokens appearing at the level of type declarations in a compilation unit have no
effect on the meaning of the compilation unit. Stray semicolons are permitted in the Java
programming language solely as a concession to C++ programmers who are used to placing
";" after a class declaration. They should not be used in new Java code.

In the absence of an access modifier, a top level type has package access: it is
accessible only within compilation units of the package in which it is declared
(§6.6.1). A type may be declared public to grant access to the type from code in
other packages.

It is a compile-time error if a top level type declaration contains any one of the
following access modifiers: protected, private, or static.

It is a compile-time error if the name of a top level type appears as the name of any
other top level class or interface type declared in the same package.

The scope and shadowing of a top level type is specified in §6.3 and §6.4.

The fully qualified name of a top level type is specified in §6.7.

7.6 Top Level Type Declarations PACKAGES

188

Example 7.6-1. Conflicting Top Level Type Declarations

package test;
import java.util.Vector;
class Point {
 int x, y;
}
interface Point { // compile-time error #1
 int getR();
 int getTheta();
}
class Vector { Point[] pts; } // compile-time error #2

Here, the first compile-time error is caused by the duplicate declaration of the name Point
as both a class and an interface in the same package. A second compile-time error is the
attempt to declare the name Vector both by a class type declaration and by a single-type-
import declaration.

Note, however, that it is not an error for the name of a class to also name a type that otherwise
might be imported by a type-import-on-demand declaration (§7.5.2) in the compilation unit
(§7.3) containing the class declaration. Thus, in this program:

package test;
import java.util.*;
class Vector {} // not a compile-time error

the declaration of the class Vector is permitted even though there is also a class
java.util.Vector. Within this compilation unit, the simple name Vector refers to the
class test.Vector, not to java.util.Vector (which can still be referred to by code
within the compilation unit, but only by its fully qualified name).

Example 7.6-2. Scope of Top Level Types

package points;
class Point {
 int x, y; // coordinates
 PointColor color; // color of this point
 Point next; // next point with this color
 static int nPoints;
}
class PointColor {
 Point first; // first point with this color
 PointColor(int color) { this.color = color; }
 private int color; // color components
}

This program defines two classes that use each other in the declarations of their class
members. Because the class types Point and PointColor have all the type declarations
in package points, including all those in the current compilation unit, as their scope, this
program compiles correctly. That is, forward reference is not a problem.

PACKAGES Top Level Type Declarations 7.6

189

Example 7.6-3. Fully Qualified Names

class Point { int x, y; }

In this code, the class Point is declared in a compilation unit with no package statement,
and thus Point is its fully qualified name, whereas in the code:

package vista;
class Point { int x, y; }

the fully qualified name of the class Point is vista.Point. (The package name vista
is suitable for local or personal use; if the package were intended to be widely distributed,
it would be better to give it a unique package name (§6.1).)

An implementation of the Java SE platform must keep track of types within
packages by their binary names (§13.1). Multiple ways of naming a type must be
expanded to binary names to make sure that such names are understood as referring
to the same type.

For example, if a compilation unit contains the single-type-import declaration (§7.5.1):

import java.util.Vector;

then within that compilation unit, the simple name Vector and the fully qualified name
java.util.Vector refer to the same type.

If and only if packages are stored in a file system (§7.2), the host system may
choose to enforce the restriction that it is a compile-time error if a type is not found
in a file under a name composed of the type name plus an extension (such as .java
or .jav) if either of the following is true:

• The type is referred to by code in other compilation units of the package in which
the type is declared.

• The type is declared public (and therefore is potentially accessible from code
in other packages).

This restriction implies that there must be at most one such type per compilation unit.
This restriction makes it easy for a Java compiler to find a named class within a package.
In practice, many programmers choose to put each class or interface type in its own
compilation unit, whether or not it is public or is referred to by code in other compilation
units.

For example, the source code for a public type wet.sprocket.Toad would be found
in a file Toad.java in the directory wet/sprocket, and the corresponding object code
would be found in the file Toad.class in the same directory.

191

C H A P T E R 8
Classes

CLASS declarations define new reference types and describe how they are
implemented (§8.1).

A top level class is a class that is not a nested class.

A nested class is any class whose declaration occurs within the body of another
class or interface.

This chapter discusses the common semantics of all classes - top level (§7.6)
and nested (including member classes (§8.5, §9.5), local classes (§14.3) and
anonymous classes (§15.9.5)). Details that are specific to particular kinds of classes
are discussed in the sections dedicated to these constructs.

A named class may be declared abstract (§8.1.1.1) and must be declared abstract
if it is incompletely implemented; such a class cannot be instantiated, but can be
extended by subclasses. A class may be declared final (§8.1.1.2), in which case it
cannot have subclasses. If a class is declared public, then it can be referred to from
other packages. Each class except Object is an extension of (that is, a subclass of)
a single existing class (§8.1.4) and may implement interfaces (§8.1.5). Classes may
be generic (§8.1.2), that is, they may declare type variables whose bindings may
differ among different instances of the class.

Classes may be decorated with annotations (§9.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (§8.1.6). The
scope (§6.3) of a member (§8.2) is the entire body of the declaration of the class
to which the member belongs. Field, method, member class, member interface,
and constructor declarations may include the access modifiers (§6.6) public,
protected, or private. The members of a class include both declared and
inherited members (§8.2). Newly declared fields can hide fields declared in a
superclass or superinterface. Newly declared class members and interface members

CLASSES

192

can hide class or interface members declared in a superclass or superinterface.
Newly declared methods can hide, implement, or override methods declared in a
superclass or superinterface.

Field declarations (§8.3) describe class variables, which are incarnated once, and
instance variables, which are freshly incarnated for each instance of the class. A
field may be declared final (§8.3.1.2), in which case it can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (§8.5) describe nested classes that are members of the
surrounding class. Member classes may be static, in which case they have no
access to the instance variables of the surrounding class; or they may be inner
classes (§8.1.3).

Member interface declarations (§8.5) describe nested interfaces that are members
of the surrounding class.

Method declarations (§8.4) describe code that may be invoked by method
invocation expressions (§15.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of a class type. A method whose declaration does not indicate how
it is implemented must be declared abstract. A method may be declared final
(§8.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (§8.4.3.4). A synchronized
method (§8.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, as if by use of a synchronized
statement (§14.19), thus allowing its activities to be synchronized with those of
other threads (§17 (Threads and Locks)).

Method names may be overloaded (§8.4.9).

Instance initializers (§8.6) are blocks of executable code that may be used to help
initialize an instance when it is created (§15.9).

Static initializers (§8.7) are blocks of executable code that may be used to help
initialize a class.

Constructors (§8.8) are similar to methods, but cannot be invoked directly by a
method call; they are used to initialize new class instances. Like methods, they may
be overloaded (§8.8.8).

CLASSES Class Declarations 8.1

193

8.1 Class Declarations

A class declaration specifies a new named reference type.

There are two kinds of class declarations: normal class declarations and enum
declarations.

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
{ClassModifier} class Identifier [TypeParameters]

 [Superclass] [Superinterfaces] ClassBody

The rules in this section apply to all class declarations, including enum declarations.
However, special rules apply to enum declarations with regard to class modifiers,
inner classes, and superclasses; these rules are stated in §8.9.

The Identifier in a class declaration specifies the name of the class.

It is a compile-time error if a class has the same simple name as any of its enclosing
classes or interfaces.

The scope and shadowing of a class declaration is specified in §6.3 and §6.4.

8.1.1 Class Modifiers

A class declaration may include class modifiers.

ClassModifier:
(one of)
Annotation public protected private
abstract static final strictfp

The rules for annotation modifiers on a class declaration are specified in §9.7.4
and §9.7.5.

The access modifier public (§6.6) pertains only to top level classes (§7.6) and
member classes (§8.5), not to local classes (§14.3) or anonymous classes (§15.9.5).

The access modifiers protected and private pertain only to member classes
within a directly enclosing class declaration (§8.5).

8.1 Class Declarations CLASSES

194

The modifier static pertains only to member classes (§8.5.1), not to top level or
local or anonymous classes.

It is a compile-time error if the same keyword appears more than once as a modifier
for a class declaration.

If two or more (distinct) class modifiers appear in a class declaration, then it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for ClassModifier.

8.1.1.1 abstract Classes

An abstract class is a class that is incomplete, or to be considered incomplete.

It is a compile-time error if an attempt is made to create an instance of an abstract
class using a class instance creation expression (§15.9.1).

A subclass of an abstract class that is not itself abstract may be instantiated,
resulting in the execution of a constructor for the abstract class and, therefore,
the execution of the field initializers for instance variables of that class.

A normal class may have abstract methods, that is, methods that are declared but
not yet implemented (§8.4.3.1), only if it is an abstract class. It is a compile-time
error if a normal class that is not abstract has an abstract method.

A class C has abstract methods if either of the following is true:

• Any of the member methods (§8.2) of C - either declared or inherited - is
abstract.

• Any of C's superclasses has an abstract method declared with package access,
and there exists no method that overrides the abstract method from C or from
a superclass of C.

It is a compile-time error to declare an abstract class type such that it is not
possible to create a subclass that implements all of its abstract methods. This
situation can occur if the class would have as members two abstract methods
that have the same method signature (§8.4.2) but return types for which no type is
return-type-substitutable with both (§8.4.5).

Example 8.1.1.1-1. Abstract Class Declaration

abstract class Point {
 int x = 1, y = 1;
 void move(int dx, int dy) {
 x += dx;
 y += dy;
 alert();
 }

CLASSES Class Declarations 8.1

195

 abstract void alert();
}
abstract class ColoredPoint extends Point {
 int color;
}
class SimplePoint extends Point {
 void alert() { }
}

Here, a class Point is declared that must be declared abstract, because it contains
a declaration of an abstract method named alert. The subclass of Point named
ColoredPoint inherits the abstract method alert, so it must also be declared
abstract. On the other hand, the subclass of Point named SimplePoint provides an
implementation of alert, so it need not be abstract.

The statement:

Point p = new Point();

would result in a compile-time error; the class Point cannot be instantiated because it is
abstract. However, a Point variable could correctly be initialized with a reference to
any subclass of Point, and the class SimplePoint is not abstract, so the statement:

Point p = new SimplePoint();

would be correct. Instantiation of a SimplePoint causes the default constructor and field
initializers for x and y of Point to be executed.

Example 8.1.1.1-2. Abstract Class Declaration that Prohibits Subclasses

interface Colorable {
 void setColor(int color);
}
abstract class Colored implements Colorable {
 public abstract int setColor(int color);
}

These declarations result in a compile-time error: it would be impossible for any subclass
of class Colored to provide an implementation of a method named setColor, taking one
argument of type int, that can satisfy both abstract method specifications, because the one
in interface Colorable requires the same method to return no value, while the one in class
Colored requires the same method to return a value of type int (§8.4).

A class type should be declared abstract only if the intent is that subclasses can be created
to complete the implementation. If the intent is simply to prevent instantiation of a class,
the proper way to express this is to declare a constructor (§8.8.10) of no arguments, make
it private, never invoke it, and declare no other constructors. A class of this form usually
contains class methods and variables.

The class Math is an example of a class that cannot be instantiated; its declaration looks
like this:

8.1 Class Declarations CLASSES

196

public final class Math {
 private Math() { } // never instantiate this class
 . . . declarations of class variables and methods . . .
}

8.1.1.2 final Classes

A class can be declared final if its definition is complete and no subclasses are
desired or required.

It is a compile-time error if the name of a final class appears in the extends clause
(§8.1.4) of another class declaration; this implies that a final class cannot have
any subclasses.

It is a compile-time error if a class is declared both final and abstract, because
the implementation of such a class could never be completed (§8.1.1.1).

Because a final class never has any subclasses, the methods of a final class are
never overridden (§8.4.8.1).

8.1.1.3 strictfp Classes

The effect of the strictfp modifier is to make all float or double expressions
within the class declaration (including within variable initializers, instance
initializers, static initializers, and constructors) be explicitly FP-strict (§15.4).

This implies that all methods declared in the class, and all nested types declared in
the class, are implicitly strictfp.

8.1.2 Generic Classes and Type Parameters

A class is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the class. The type
parameter section follows the class name and is delimited by angle brackets.

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter {, TypeParameter}

The following productions from §4.4 are shown here for convenience:

TypeParameter:
{TypeParameterModifier} Identifier [TypeBound]

CLASSES Class Declarations 8.1

197

TypeParameterModifier:
Annotation

TypeBound:
extends TypeVariable
extends ClassOrInterfaceType {AdditionalBound}

AdditionalBound:
& InterfaceType

The rules for annotation modifiers on a type parameter declaration are specified
in §9.7.4 and §9.7.5.

In a class's type parameter section, a type variable T directly depends on a type
variable S if S is the bound of T, while T depends on S if either T directly depends on
S or T directly depends on a type variable U that depends on S (using this definition
recursively). It is a compile-time error if a type variable in a class's type parameter
section depends on itself.

The scope and shadowing of a class's type parameter is specified in §6.3 and §6.4.

A generic class declaration defines a set of parameterized types (§4.5), one for each
possible parameterization of the type parameter section by type arguments. All of
these parameterized types share the same class at run time.

For instance, executing the code:

Vector<String> x = new Vector<String>();
Vector<Integer> y = new Vector<Integer>();
boolean b = x.getClass() == y.getClass();

will result in the variable b holding the value true.

It is a compile-time error if a generic class is a direct or indirect subclass of
Throwable (§11.1.1).

This restriction is needed since the catch mechanism of the Java Virtual Machine works
only with non-generic classes.

It is a compile-time error to refer to a type parameter of a generic class C in any
of the following:

• the declaration of a static member of C (§8.3.1.1, §8.4.3.2, §8.5.1).

• the declaration of a static member of any type declaration nested within C.

• a static initializer of C (§8.7), or

• a static initializer of any class declaration nested within C.

8.1 Class Declarations CLASSES

198

Example 8.1.2-1. Mutually Recursive Type Variable Bounds

interface ConvertibleTo<T> {
 T convert();
}
class ReprChange<T extends ConvertibleTo<S>,
 S extends ConvertibleTo<T>> {
 T t;
 void set(S s) { t = s.convert(); }
 S get() { return t.convert(); }
}

Example 8.1.2-2. Nested Generic Classes

class Seq<T> {
 T head;
 Seq<T> tail;

 Seq() { this(null, null); }
 Seq(T head, Seq<T> tail) {
 this.head = head;
 this.tail = tail;
 }
 boolean isEmpty() { return tail == null; }

 class Zipper<S> {
 Seq<Pair<T,S>> zip(Seq<S> that) {
 if (isEmpty() || that.isEmpty()) {
 return new Seq<Pair<T,S>>();
 } else {
 Seq<T>.Zipper<S> tailZipper =
 tail.new Zipper<S>();
 return new Seq<Pair<T,S>>(
 new Pair<T,S>(head, that.head),
 tailZipper.zip(that.tail));
 }
 }
 }
}
class Pair<T, S> {
 T fst; S snd;
 Pair(T f, S s) { fst = f; snd = s; }
}
class Test {
 public static void main(String[] args) {
 Seq<String> strs =
 new Seq<String>(
 "a",
 new Seq<String>("b",
 new Seq<String>()));
 Seq<Number> nums =
 new Seq<Number>(
 new Integer(1),

CLASSES Class Declarations 8.1

199

 new Seq<Number>(new Double(1.5),
 new Seq<Number>()));

 Seq<String>.Zipper<Number> zipper =
 strs.new Zipper<Number>();

 Seq<Pair<String,Number>> combined =
 zipper.zip(nums);
 }
}

8.1.3 Inner Classes and Enclosing Instances

An inner class is a nested class that is not explicitly or implicitly declared static.

An inner class may be a non-static member class (§8.5), a local class (§14.3), or
an anonymous class (§15.9.5). A member class of an interface is implicitly static
(§9.5) so is never considered to be an inner class.

It is a compile-time error if an inner class declares a static initializer (§8.7).

It is a compile-time error if an inner class declares a member that is explicitly or
implicitly static, unless the member is a constant variable (§4.12.4).

An inner class may inherit static members that are not constant variables even
though it cannot declare them.

A nested class that is not an inner class may declare static members freely, in
accordance with the usual rules of the Java programming language.

Example 8.1.3-1. Inner Class Declarations and Static Members

class HasStatic {
 static int j = 100;
}
class Outer {
 class Inner extends HasStatic {
 static final int x = 3; // OK: constant variable
 static int y = 4; // Compile-time error: an inner class
 }
 static class NestedButNotInner{
 static int z = 5; // OK: not an inner class
 }
 interface NeverInner {} // Interfaces are never inner
}

A statement or expression occurs in a static context if and only if the innermost
method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is

8.1 Class Declarations CLASSES

200

a static method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (§8.8.7.1).

An inner class C is a direct inner class of a class or interface O if O is the immediately
enclosing type declaration of C and the declaration of C does not occur in a static
context.

A class C is an inner class of class or interface O if it is either a direct inner class
of O or an inner class of an inner class of O.

It is unusual, but possible, for the immediately enclosing type declaration of an inner class
to be an interface. This only occurs if the class is declared in a default method body (§9.4).
Specifically, it occurs if an anonymous or local class is declared in a default method body,
or a member class is declared in the body of an anonymous class that is declared in a default
method body.

A class or interface O is the zeroth lexically enclosing type declaration of itself.

A class O is the n'th lexically enclosing type declaration of a class C if it is
the immediately enclosing type declaration of the n-1'th lexically enclosing type
declaration of C.

An instance i of a direct inner class C of a class or interface O is associated with an
instance of O, known as the immediately enclosing instance of i. The immediately
enclosing instance of an object, if any, is determined when the object is created
(§15.9.2).

An object o is the zeroth lexically enclosing instance of itself.

An object o is the n'th lexically enclosing instance of an instance i if it is the
immediately enclosing instance of the n-1'th lexically enclosing instance of i.

An instance of an inner class I whose declaration occurs in a static context has
no lexically enclosing instances. However, if I is immediately declared within a
static method or static initializer then I does have an enclosing block, which is the
innermost block statement lexically enclosing the declaration of I.

For every superclass S of C which is itself a direct inner class of a class or interface
SO, there is an instance of SO associated with i, known as the immediately enclosing
instance of i with respect to S. The immediately enclosing instance of an object
with respect to its class' direct superclass, if any, is determined when the superclass
constructor is invoked via an explicit constructor invocation statement (§8.8.7.1).

When an inner class (whose declaration does not occur in a static context) refers to
an instance variable that is a member of a lexically enclosing type declaration, the
variable of the corresponding lexically enclosing instance is used.

CLASSES Class Declarations 8.1

201

Any local variable, formal parameter, or exception parameter used but not declared
in an inner class must either be declared final or be effectively final (§4.12.4), or
a compile-time error occurs where the use is attempted.

Any local variable used but not declared in an inner class must be definitely
assigned (§16 (Definite Assignment)) before the body of the inner class, or a
compile-time error occurs.

Similar rules on variable use apply in the body of a lambda expression (§15.27.2).

A blank final field (§4.12.4) of a lexically enclosing type declaration may not be
assigned within an inner class, or a compile-time error occurs.

Example 8.1.3-2. Inner Class Declarations

class Outer {
 int i = 100;
 static void classMethod() {
 final int l = 200;
 class LocalInStaticContext {
 int k = i; // Compile-time error
 int m = l; // OK
 }
 }
 void foo() {
 class Local { // A local class
 int j = i;
 }
 }
}

The declaration of class LocalInStaticContext occurs in a static context due to being
within the static method classMethod. Instance variables of class Outer are not available
within the body of a static method. In particular, instance variables of Outer are not
available inside the body of LocalInStaticContext. However, local variables from the
surrounding method may be referred to without error (provided they are marked final).

Inner classes whose declarations do not occur in a static context may freely refer to the
instance variables of their enclosing type declaration. An instance variable is always defined
with respect to an instance. In the case of instance variables of an enclosing type declaration,
the instance variable must be defined with respect to an enclosing instance of that declared
type. For example, the class Local above has an enclosing instance of class Outer. As a
further example:

class WithDeepNesting {
 boolean toBe;
 WithDeepNesting(boolean b) { toBe = b; }

 class Nested {
 boolean theQuestion;

8.1 Class Declarations CLASSES

202

 class DeeplyNested {
 DeeplyNested(){
 theQuestion = toBe || !toBe;
 }
 }
 }
}

Here, every instance of WithDeepNesting.Nested.DeeplyNested has an enclosing
instance of class WithDeepNesting.Nested (its immediately enclosing instance) and an
enclosing instance of class WithDeepNesting (its 2nd lexically enclosing instance).

8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Superclass:
extends ClassType

The extends clause must not appear in the definition of the class Object, or a
compile-time error occurs, because it is the primordial class and has no direct
superclass.

The ClassType must name an accessible class type (§6.6), or a compile-time error
occurs.

It is a compile-time error if the ClassType names a class that is final, because
final classes are not allowed to have subclasses (§8.1.1.2).

It is a compile-time error if the ClassType names the class Enum or any invocation
of Enum (§8.9).

If the ClassType has type arguments, it must denote a well-formed parameterized
type (§4.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.

Given a (possibly generic) class declaration C<F1,...,Fn> (n ≥ 0, C ≠ Object), the
direct superclass of the class type C<F1,...,Fn> is the type given in the extends
clause of the declaration of C if an extends clause is present, or Object otherwise.

Given a generic class declaration C<F1,...,Fn> (n > 0), the direct superclass of the
parameterized class type C<T1,...,Tn>, where Ti (1 ≤ i ≤ n) is a type, is D<U1 θ,...,Uk
θ>, where D<U1,...,Uk> is the direct superclass of C<F1,...,Fn> and θ is the substitution
[F1:=T1,...,Fn:=Tn].

CLASSES Class Declarations 8.1

203

A class is said to be a direct subclass of its direct superclass. The direct superclass
is the class from whose implementation the implementation of the current class is
derived.

The subclass relationship is the transitive closure of the direct subclass relationship.
A class A is a subclass of class C if either of the following is true:

• A is the direct subclass of C

• There exists a class B such that A is a subclass of B, and B is a subclass of C,
applying this definition recursively.

Class C is said to be a superclass of class A whenever A is a subclass of C.

Example 8.1.4-1. Direct Superclasses and Subclasses

class Point { int x, y; }
final class ColoredPoint extends Point { int color; }
class Colored3DPoint extends ColoredPoint { int z; } // error

Here, the relationships are as follows:

• The class Point is a direct subclass of Object.

• The class Object is the direct superclass of the class Point.

• The class ColoredPoint is a direct subclass of class Point.

• The class Point is the direct superclass of class ColoredPoint.

The declaration of class Colored3dPoint causes a compile-time error because it attempts
to extend the final class ColoredPoint.

Example 8.1.4-2. Superclasses and Subclasses

class Point { int x, y; }
class ColoredPoint extends Point { int color; }
final class Colored3dPoint extends ColoredPoint { int z; }

Here, the relationships are as follows:

• The class Point is a superclass of class ColoredPoint.

• The class Point is a superclass of class Colored3dPoint.

• The class ColoredPoint is a subclass of class Point.

• The class ColoredPoint is a superclass of class Colored3dPoint.

• The class Colored3dPoint is a subclass of class ColoredPoint.

• The class Colored3dPoint is a subclass of class Point.

8.1 Class Declarations CLASSES

204

A class C directly depends on a type T if T is mentioned in the extends or
implements clause of C either as a superclass or superinterface, or as a qualifier in
the fully qualified form of a superclass or superinterface name.

A class C depends on a reference type T if any of the following is true:

• C directly depends on T.

• C directly depends on an interface I that depends (§9.1.3) on T.

• C directly depends on a class D that depends on T (using this definition
recursively).

It is a compile-time error if a class depends on itself.

If circularly declared classes are detected at run time, as classes are loaded, then a
ClassCircularityError is thrown (§12.2.1).

Example 8.1.4-3. Class Depends on Itself

class Point extends ColoredPoint { int x, y; }
class ColoredPoint extends Point { int color; }

This program causes a compile-time error because class Point depends on itself.

8.1.5 Superinterfaces

The optional implements clause in a class declaration lists the names of interfaces
that are direct superinterfaces of the class being declared.

Superinterfaces:
implements InterfaceTypeList

InterfaceTypeList:
InterfaceType {, InterfaceType}

Each InterfaceType must name an accessible interface type (§6.6), or a compile-
time error occurs.

If an InterfaceType has type arguments, it must denote a well-formed parameterized
type (§4.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.

It is a compile-time error if the same interface is mentioned as a direct
superinterface more than once in a single implements clause. This is true even if
the interface is named in different ways.

CLASSES Class Declarations 8.1

205

Example 8.1.5-1. Illegal Superinterfaces

class Redundant implements java.lang.Cloneable, Cloneable {
 int x;
}

This program results in a compile-time error because the names java.lang.Cloneable
and Cloneable refer to the same interface.

Given a (possibly generic) class declaration C<F1,...,Fn> (n ≥ 0, C ≠ Object), the
direct superinterfaces of the class type C<F1,...,Fn> are the types given in the
implements clause of the declaration of C, if an implements clause is present.

Given a generic class declaration C<F1,...,Fn> (n > 0), the direct superinterfaces of
the parameterized class type C<T1,...,Tn>, where Ti (1 ≤ i ≤ n) is a type, are all types
I<U1 θ,...,Uk θ>, where I<U1,...,Uk> is a direct superinterface of C<F1,...,Fn> and θ is
the substitution [F1:=T1,...,Fn:=Tn].

An interface type I is a superinterface of class type C if any of the following is true:

• I is a direct superinterface of C.

• C has some direct superinterface J for which I is a superinterface, using the
definition of "superinterface of an interface" given in §9.1.3.

• I is a superinterface of the direct superclass of C.

A class can have a superinterface in more than one way.

A class is said to implement all its superinterfaces.

A class may not at the same time be a subtype of two interface types which are
different parameterizations of the same generic interface (§9.1.2), or a subtype of
a parameterization of a generic interface and a raw type naming that same generic
interface, or a compile-time error occurs.

This requirement was introduced in order to support translation by type erasure (§4.6).

Example 8.1.5-2. Superinterfaces

interface Colorable {
 void setColor(int color);
 int getColor();
}
enum Finish { MATTE, GLOSSY }
interface Paintable extends Colorable {
 void setFinish(Finish finish);
 Finish getFinish();
}

8.1 Class Declarations CLASSES

206

class Point { int x, y; }
class ColoredPoint extends Point implements Colorable {
 int color;
 public void setColor(int color) { this.color = color; }
 public int getColor() { return color; }
}
class PaintedPoint extends ColoredPoint implements Paintable {
 Finish finish;
 public void setFinish(Finish finish) {
 this.finish = finish;
 }
 public Finish getFinish() { return finish; }
}

Here, the relationships are as follows:

• The interface Paintable is a superinterface of class PaintedPoint.

• The interface Colorable is a superinterface of class ColoredPoint and of class
PaintedPoint.

• The interface Paintable is a subinterface of the interface Colorable, and Colorable
is a superinterface of Paintable, as defined in §9.1.3.

The class PaintedPoint has Colorable as a superinterface both because it is a
superinterface of ColoredPoint and because it is a superinterface of Paintable.

Example 8.1.5-3. Illegal Multiple Inheritance of an Interface

interface I<T> {}
class B implements I<Integer> {}
class C extends B implements I<String> {}

Class C causes a compile-time error because it attempts to be a subtype of both I<Integer>
and I<String>.

Unless the class being declared is abstract, all the abstract member methods of
each direct superinterface must be implemented (§8.4.8.1) either by a declaration in
this class or by an existing method declaration inherited from the direct superclass
or a direct superinterface, because a class that is not abstract is not permitted to
have abstract methods (§8.1.1.1).

Each default method (§9.4.3) of a superinterface of the class may optionally be
overridden by a method in the class; if not, the default method is typically inherited
and its behavior is as specified by its default body.

It is permitted for a single method declaration in a class to implement methods of
more than one superinterface.

CLASSES Class Declarations 8.1

207

Example 8.1.5-3. Implementing Methods of a Superinterface

interface Colorable {
 void setColor(int color);
 int getColor();
}
class Point { int x, y; };
class ColoredPoint extends Point implements Colorable {
 int color;
}

This program causes a compile-time error, because ColoredPoint is not an abstract
class but fails to provide an implementation of methods setColor and getColor of the
interface Colorable.

In the following program:

interface Fish { int getNumberOfScales(); }
interface Piano { int getNumberOfScales(); }
class Tuna implements Fish, Piano {
 // You can tune a piano, but can you tuna fish?
 public int getNumberOfScales() { return 91; }
}

the method getNumberOfScales in class Tuna has a name, signature, and return type that
matches the method declared in interface Fish and also matches the method declared in
interface Piano; it is considered to implement both.

On the other hand, in a situation such as this:

interface Fish { int getNumberOfScales(); }
interface StringBass { double getNumberOfScales(); }
class Bass implements Fish, StringBass {
 // This declaration cannot be correct,
 // no matter what type is used.
 public ?? getNumberOfScales() { return 91; }
}

it is impossible to declare a method named getNumberOfScales whose signature and
return type are compatible with those of both the methods declared in interface Fish and
in interface StringBass, because a class cannot have multiple methods with the same
signature and different primitive return types (§8.4). Therefore, it is impossible for a single
class to implement both interface Fish and interface StringBass (§8.4.8).

8.1.6 Class Body and Member Declarations

A class body may contain declarations of members of the class, that is, fields (§8.3),
methods (§8.4), classes (§8.5), and interfaces (§8.5).

8.2 Class Members CLASSES

208

A class body may also contain instance initializers (§8.6), static initializers (§8.7),
and declarations of constructors (§8.8) for the class.

ClassBody:
{ {ClassBodyDeclaration} }

ClassBodyDeclaration:
ClassMemberDeclaration
InstanceInitializer
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

The scope and shadowing of a declaration of a member m declared in or inherited
by a class type C is specified in §6.3 and §6.4.

If C itself is a nested class, there may be definitions of the same kind (variable, method, or
type) and name as m in enclosing scopes. (The scopes may be blocks, classes, or packages.)
In all such cases, the member m declared in or inherited by C shadows (§6.4.1) the other
definitions of the same kind and name.

8.2 Class Members

The members of a class type are all of the following:

• Members inherited from its direct superclass (§8.1.4), except in class Object,
which has no direct superclass

• Members inherited from any direct superinterfaces (§8.1.5)

• Members declared in the body of the class (§8.1.6)

Members of a class that are declared private are not inherited by subclasses of
that class.

Only members of a class that are declared protected or public are inherited by
subclasses declared in a package other than the one in which the class is declared.

CLASSES Class Members 8.2

209

Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.

We use the phrase the type of a member to denote:

• For a field, its type.

• For a method, an ordered 4-tuple consisting of:

– type parameters: the declarations of any type parameters of the method
member.

– argument types: a list of the types of the arguments to the method member.

– return type: the return type of the method member.

– throws clause: exception types declared in the throws clause of the method
member.

Fields, methods, and member types of a class type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (§6.5). However, this is discouraged as a matter of style.

Example 8.2-1. Use of Class Members

class Point {
 int x, y;
 private Point() { reset(); }
 Point(int x, int y) { this.x = x; this.y = y; }
 private void reset() { this.x = 0; this.y = 0; }
}
class ColoredPoint extends Point {
 int color;
 void clear() { reset(); } // error
}
class Test {
 public static void main(String[] args) {
 ColoredPoint c = new ColoredPoint(0, 0); // error
 c.reset(); // error
 }
}

This program causes four compile-time errors.

One error occurs because ColoredPoint has no constructor declared with two int
parameters, as requested by the use in main. This illustrates the fact that ColoredPoint
does not inherit the constructors of its superclass Point.

Another error occurs because ColoredPoint declares no constructors, and therefore a
default constructor for it is implicitly declared (§8.8.9), and this default constructor is
equivalent to:

8.2 Class Members CLASSES

210

ColoredPoint() { super(); }

which invokes the constructor, with no arguments, for the direct superclass of the class
ColoredPoint. The error is that the constructor for Point that takes no arguments is
private, and therefore is not accessible outside the class Point, even through a superclass
constructor invocation (§8.8.7).

Two more errors occur because the method reset of class Point is private, and therefore
is not inherited by class ColoredPoint. The method invocations in method clear of class
ColoredPoint and in method main of class Test are therefore not correct.

Example 8.2-2. Inheritance of Class Members with Package Access

Consider the example where the points package declares two compilation units:

package points;
public class Point {
 int x, y;
 public void move(int dx, int dy) { x += dx; y += dy; }
}

and:

package points;
public class Point3d extends Point {
 int z;
 public void move(int dx, int dy, int dz) {
 x += dx; y += dy; z += dz;
 }
}

and a third compilation unit, in another package, is:

import points.Point3d;
class Point4d extends Point3d {
 int w;
 public void move(int dx, int dy, int dz, int dw) {
 x += dx; y += dy; z += dz; w += dw; // compile-time errors
 }
}

Here both classes in the points package compile. The class Point3d inherits the fields
x and y of class Point, because it is in the same package as Point. The class Point4d,
which is in a different package, does not inherit the fields x and y of class Point or the
field z of class Point3d, and so fails to compile.

A better way to write the third compilation unit would be:

import points.Point3d;
class Point4d extends Point3d {

CLASSES Class Members 8.2

211

 int w;
 public void move(int dx, int dy, int dz, int dw) {
 super.move(dx, dy, dz); w += dw;
 }
}

using the move method of the superclass Point3d to process dx, dy, and dz. If Point4d
is written in this way, it will compile without errors.

Example 8.2-3. Inheritance of public and protected Class Members

Given the class Point:

package points;
public class Point {
 public int x, y;
 protected int useCount = 0;
 static protected int totalUseCount = 0;
 public void move(int dx, int dy) {
 x += dx; y += dy; useCount++; totalUseCount++;
 }
}

the public and protected fields x, y, useCount, and totalUseCount are inherited in
all subclasses of Point.

Therefore, this test program, in another package, can be compiled successfully:

class Test extends points.Point {
 public void moveBack(int dx, int dy) {
 x -= dx; y -= dy; useCount++; totalUseCount++;
 }
}

Example 8.2-4. Inheritance of private Class Members

class Point {
 int x, y;
 void move(int dx, int dy) {
 x += dx; y += dy; totalMoves++;
 }
 private static int totalMoves;
 void printMoves() { System.out.println(totalMoves); }
}
class Point3d extends Point {
 int z;
 void move(int dx, int dy, int dz) {
 super.move(dx, dy); z += dz; totalMoves++; // error
 }
}

8.2 Class Members CLASSES

212

Here, the class variable totalMoves can be used only within the class Point; it is not
inherited by the subclass Point3d. A compile-time error occurs because method move of
class Point3d tries to increment totalMoves.

Example 8.2-5. Accessing Members of Inaccessible Classes

Even though a class might not be declared public, instances of the class might be available
at run time to code outside the package in which it is declared by means of a public
superclass or superinterface. An instance of the class can be assigned to a variable of such a
public type. An invocation of a public method of the object referred to by such a variable
may invoke a method of the class if it implements or overrides a method of the public
superclass or superinterface. (In this situation, the method is necessarily declared public,
even though it is declared in a class that is not public.)

Consider the compilation unit:

package points;
public class Point {
 public int x, y;
 public void move(int dx, int dy) {
 x += dx; y += dy;
 }
}

and another compilation unit of another package:

package morePoints;
class Point3d extends points.Point {
 public int z;
 public void move(int dx, int dy, int dz) {
 super.move(dx, dy); z += dz;
 }
 public void move(int dx, int dy) {
 move(dx, dy, 0);
 }
}
public class OnePoint {
 public static points.Point getOne() {
 return new Point3d();
 }
}

An invocation morePoints.OnePoint.getOne() in yet a third package would return
a Point3d that can be used as a Point, even though the type Point3d is not available
outside the package morePoints. The two-argument version of method move could then be
invoked for that object, which is permissible because method move of Point3d is public
(as it must be, for any method that overrides a public method must itself be public,
precisely so that situations such as this will work out correctly). The fields x and y of that
object could also be accessed from such a third package.

CLASSES Field Declarations 8.3

213

While the field z of class Point3d is public, it is not possible to access this field from code
outside the package morePoints, given only a reference to an instance of class Point3d
in a variable p of type Point. This is because the expression p.z is not correct, as p has
type Point and class Point has no field named z; also, the expression ((Point3d)p).z
is not correct, because the class type Point3d cannot be referred to outside package
morePoints.

The declaration of the field z as public is not useless, however. If there were to be, in
package morePoints, a public subclass Point4d of the class Point3d:

package morePoints;
public class Point4d extends Point3d {
 public int w;
 public void move(int dx, int dy, int dz, int dw) {
 super.move(dx, dy, dz); w += dw;
 }
}

then class Point4d would inherit the field z, which, being public, could then be accessed
by code in packages other than morePoints, through variables and expressions of the
public type Point4d.

8.3 Field Declarations

The variables of a class type are introduced by field declarations.

FieldDeclaration:
{FieldModifier} UnannType VariableDeclaratorList ;

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorId [= VariableInitializer]

VariableDeclaratorId:
Identifier [Dims]

VariableInitializer:
Expression
ArrayInitializer

8.3 Field Declarations CLASSES

214

UnannType:
UnannPrimitiveType
UnannReferenceType

UnannPrimitiveType:
NumericType
boolean

UnannReferenceType:
UnannClassOrInterfaceType
UnannTypeVariable
UnannArrayType

UnannClassOrInterfaceType:
UnannClassType
UnannInterfaceType

UnannClassType:
Identifier [TypeArguments]
UnannClassOrInterfaceType . {Annotation} Identifier [TypeArguments]

UnannInterfaceType:
UnannClassType

UnannTypeVariable:
Identifier

UnannArrayType:
UnannPrimitiveType Dims
UnannClassOrInterfaceType Dims
UnannTypeVariable Dims

The following production from §4.3 is shown here for convenience:

Dims:
{Annotation} [] {{Annotation} []}

Each declarator in a FieldDeclaration declares one field. The Identifier in a
declarator may be used in a name to refer to the field.

More than one field may be declared in a single FieldDeclaration by using more
than one declarator; the FieldModifiers and UnannType apply to all the declarators
in the declaration.

CLASSES Field Declarations 8.3

215

The FieldModifier clause is described in §8.3.1.

The declared type of a field is denoted by UnannType if no bracket pairs appear in
UnannType and VariableDeclaratorId, and is specified by §10.2 otherwise.

The scope and shadowing of a field declaration is specified in §6.3 and §6.4.

It is a compile-time error for the body of a class declaration to declare two fields
with the same name.

If the class declares a field with a certain name, then the declaration of that field
is said to hide any and all accessible declarations of fields with the same name in
superclasses, and superinterfaces of the class.

In this respect, hiding of fields differs from hiding of methods (§8.4.8.3), for there is
no distinction drawn between static and non-static fields in field hiding whereas a
distinction is drawn between static and non-static methods in method hiding.

A hidden field can be accessed by using a qualified name (§6.5.6.2) if it is static,
or by using a field access expression that contains the keyword super (§15.11.2)
or a cast to a superclass type.

In this respect, hiding of fields is similar to hiding of methods.

If a field declaration hides the declaration of another field, the two fields need not
have the same type.

A class inherits from its direct superclass and direct superinterfaces all the non-
private fields of the superclass and superinterfaces that are both accessible to code
in the class and not hidden by a declaration in the class.

A private field of a superclass might be accessible to a subclass - for example, if
both classes are members of the same class. Nevertheless, a private field is never
inherited by a subclass.

It is possible for a class to inherit more than one field with the same name. Such a
situation does not in itself cause a compile-time error. However, any attempt within
the body of the class to refer to any such field by its simple name will result in a
compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be inherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

A value stored in a field of type float is always an element of the float value set
(§4.2.3); similarly, a value stored in a field of type double is always an element
of the double value set. It is not permitted for a field of type float to contain an

8.3 Field Declarations CLASSES

216

element of the float-extended-exponent value set that is not also an element of the
float value set, nor for a field of type double to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.

Example 8.3-1. Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from two interfaces or
from its superclass and an interface. A compile-time error occurs on any attempt to refer
to any ambiguously inherited field by its simple name. A qualified name or a field access
expression that contains the keyword super (§15.11.2) may be used to access such fields
unambiguously. In the program:

interface Frob { float v = 2.0f; }
class SuperTest { int v = 3; }
class Test extends SuperTest implements Frob {
 public static void main(String[] args) {
 new Test().printV();
 }
 void printV() { System.out.println(v); }
}

the class Test inherits two fields named v, one from its superclass SuperTest and one
from its superinterface Frob. This in itself is permitted, but a compile-time error occurs
because of the use of the simple name v in method printV: it cannot be determined which
v is intended.

The following variation uses the field access expression super.v to refer to the field named
v declared in class SuperTest and uses the qualified name Frob.v to refer to the field
named v declared in interface Frob:

interface Frob { float v = 2.0f; }
class SuperTest { int v = 3; }
class Test extends SuperTest implements Frob {
 public static void main(String[] args) {
 new Test().printV();
 }
 void printV() {
 System.out.println((super.v + Frob.v)/2);
 }
}

It compiles and prints:

2.5

Even if two distinct inherited fields have the same type, the same value, and are both
final, any reference to either field by simple name is considered ambiguous and results
in a compile-time error. In the program:

interface Color { int RED=0, GREEN=1, BLUE=2; }

CLASSES Field Declarations 8.3

217

interface TrafficLight { int RED=0, YELLOW=1, GREEN=2; }
class Test implements Color, TrafficLight {
 public static void main(String[] args) {
 System.out.println(GREEN); // compile-time error
 System.out.println(RED); // compile-time error
 }
}

it is not astonishing that the reference to GREEN should be considered ambiguous, because
class Test inherits two different declarations for GREEN with different values. The point of
this example is that the reference to RED is also considered ambiguous, because two distinct
declarations are inherited. The fact that the two fields named RED happen to have the same
type and the same unchanging value does not affect this judgment.

Example 8.3-2. Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths, the field is
considered to be inherited only once. It may be referred to by its simple name without
ambiguity. For example, in the code:

interface Colorable {
 int RED = 0xff0000, GREEN = 0x00ff00, BLUE = 0x0000ff;
}
interface Paintable extends Colorable {
 int MATTE = 0, GLOSSY = 1;
}
class Point { int x, y; }
class ColoredPoint extends Point implements Colorable {}
class PaintedPoint extends ColoredPoint implements Paintable {
 int p = RED;
}

the fields RED, GREEN, and BLUE are inherited by the class PaintedPoint both through
its direct superclass ColoredPoint and through its direct superinterface Paintable. The
simple names RED, GREEN, and BLUE may nevertheless be used without ambiguity within
the class PaintedPoint to refer to the fields declared in interface Colorable.

8.3.1 Field Modifiers

FieldModifier:
(one of)
Annotation public protected private
static final transient volatile

The rules for annotation modifiers on a field declaration are specified in §9.7.4 and
§9.7.5.

8.3 Field Declarations CLASSES

218

It is a compile-time error if the same keyword appears more than once as a modifier
for a field declaration.

If two or more (distinct) field modifiers appear in a field declaration, it is customary, though
not required, that they appear in the order consistent with that shown above in the production
for FieldModifier.

8.3.1.1 static Fields

If a field is declared static, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes called a class variable, is incarnated when the class is
initialized (§12.4).

A field that is not declared static (sometimes called a non-static field) is called
an instance variable. Whenever a new instance of a class is created (§12.5), a new
variable associated with that instance is created for every instance variable declared
in that class or any of its superclasses.

Example 8.3.1.1-1. static Fields

class Point {
 int x, y, useCount;
 Point(int x, int y) { this.x = x; this.y = y; }
 static final Point origin = new Point(0, 0);
}
class Test {
 public static void main(String[] args) {
 Point p = new Point(1,1);
 Point q = new Point(2,2);
 p.x = 3;
 p.y = 3;
 p.useCount++;
 p.origin.useCount++;
 System.out.println("(" + q.x + "," + q.y + ")");
 System.out.println(q.useCount);
 System.out.println(q.origin == Point.origin);
 System.out.println(q.origin.useCount);
 }
}

This program prints:

(2,2)
0
true
1

CLASSES Field Declarations 8.3

219

showing that changing the fields x, y, and useCount of p does not affect the fields of q,
because these fields are instance variables in distinct objects. In this example, the class
variable origin of the class Point is referenced both using the class name as a qualifier, in
Point.origin, and using variables of the class type in field access expressions (§15.11),
as in p.origin and q.origin. These two ways of accessing the origin class variable
access the same object, evidenced by the fact that the value of the reference equality
expression (§15.21.3):

q.origin==Point.origin

is true. Further evidence is that the incrementation:

p.origin.useCount++;

causes the value of q.origin.useCount to be 1; this is so because p.origin and
q.origin refer to the same variable.

Example 8.3.1.1-2. Hiding of Class Variables

class Point {
 static int x = 2;
}
class Test extends Point {
 static double x = 4.7;
 public static void main(String[] args) {
 new Test().printX();
 }
 void printX() {
 System.out.println(x + " " + super.x);
 }
}

This program produces the output:

4.7 2

because the declaration of x in class Test hides the definition of x in class Point, so class
Test does not inherit the field x from its superclass Point. Within the declaration of class
Test, the simple name x refers to the field declared within class Test. Code in class Test
may refer to the field x of class Point as super.x (or, because x is static, as Point.x).
If the declaration of Test.x is deleted:

class Point {
 static int x = 2;
}
class Test extends Point {
 public static void main(String[] args) {
 new Test().printX();
 }
 void printX() {
 System.out.println(x + " " + super.x);

8.3 Field Declarations CLASSES

220

 }
}

then the field x of class Point is no longer hidden within class Test; instead, the simple
name x now refers to the field Point.x. Code in class Test may still refer to that same
field as super.x. Therefore, the output from this variant program is:

2 2

Example 8.3.1.1-3. Hiding of Instance Variables

class Point {
 int x = 2;
}
class Test extends Point {
 double x = 4.7;
 void printBoth() {
 System.out.println(x + " " + super.x);
 }
 public static void main(String[] args) {
 Test sample = new Test();
 sample.printBoth();
 System.out.println(sample.x + " " + ((Point)sample).x);
 }
}

This program produces the output:

4.7 2
4.7 2

because the declaration of x in class Test hides the definition of x in class Point, so class
Test does not inherit the field x from its superclass Point. It must be noted, however,
that while the field x of class Point is not inherited by class Test, it is nevertheless
implemented by instances of class Test. In other words, every instance of class Test
contains two fields, one of type int and one of type double. Both fields bear the name
x, but within the declaration of class Test, the simple name x always refers to the field
declared within class Test. Code in instance methods of class Test may refer to the
instance variable x of class Point as super.x.

Code that uses a field access expression to access field x will access the field named x
in the class indicated by the type of reference expression. Thus, the expression sample.x
accesses a double value, the instance variable declared in class Test, because the type of
the variable sample is Test, but the expression ((Point)sample).x accesses an int
value, the instance variable declared in class Point, because of the cast to type Point.

If the declaration of x is deleted from class Test, as in the program:

class Point {
 static int x = 2;
}
class Test extends Point {

CLASSES Field Declarations 8.3

221

 void printBoth() {
 System.out.println(x + " " + super.x);
 }
 public static void main(String[] args) {
 Test sample = new Test();
 sample.printBoth();
 System.out.println(sample.x + " " + ((Point)sample).x);
 }
}

then the field x of class Point is no longer hidden within class Test. Within instance
methods in the declaration of class Test, the simple name x now refers to the field declared
within class Point. Code in class Test may still refer to that same field as super.x. The
expression sample.x still refers to the field x within type Test, but that field is now an
inherited field, and so refers to the field x declared in class Point. The output from this
variant program is:

2 2
2 2

8.3.1.2 final Fields

A field can be declared final (§4.12.4). Both class and instance variables (static
and non-static fields) may be declared final.

A blank final class variable must be definitely assigned by a static initializer of
the class in which it is declared, or a compile-time error occurs (§8.7, §16.8).

A blank final instance variable must be definitely assigned at the end of every
constructor of the class in which it is declared, or a compile-time error occurs (§8.8,
§16.9).

8.3.1.3 transient Fields

Variables may be marked transient to indicate that they are not part of the
persistent state of an object.

Example 8.3.1.3-1. Persistence of transient Fields

If an instance of the class Point:

class Point {
 int x, y;
 transient float rho, theta;
}

were saved to persistent storage by a system service, then only the fields x and y would be
saved. This specification does not specify details of such services; see the specification of
java.io.Serializable for an example of such a service.

8.3 Field Declarations CLASSES

222

8.3.1.4 volatile Fields

The Java programming language allows threads to access shared variables (§17.1).
As a rule, to ensure that shared variables are consistently and reliably updated, a
thread should ensure that it has exclusive use of such variables by obtaining a lock
that, conventionally, enforces mutual exclusion for those shared variables.

The Java programming language provides a second mechanism, volatile fields,
that is more convenient than locking for some purposes.

A field may be declared volatile, in which case the Java Memory Model ensures
that all threads see a consistent value for the variable (§17.4).

It is a compile-time error if a final variable is also declared volatile.

Example 8.3.1.4-1. volatile Fields

If, in the following example, one thread repeatedly calls the method one (but no more than
Integer.MAX_VALUE times in all), and another thread repeatedly calls the method two:

class Test {
 static int i = 0, j = 0;
 static void one() { i++; j++; }
 static void two() {
 System.out.println("i=" + i + " j=" + j);
 }
}

then method two could occasionally print a value for j that is greater than the value of i,
because the example includes no synchronization and, under the rules explained in §17.4,
the shared values of i and j might be updated out of order.

One way to prevent this out-or-order behavior would be to declare methods one and two
to be synchronized (§8.4.3.6):

class Test {
 static int i = 0, j = 0;
 static synchronized void one() { i++; j++; }
 static synchronized void two() {
 System.out.println("i=" + i + " j=" + j);
 }
}

This prevents method one and method two from being executed concurrently, and
furthermore guarantees that the shared values of i and j are both updated before method
one returns. Therefore method two never observes a value for j greater than that for i;
indeed, it always observes the same value for i and j.

Another approach would be to declare i and j to be volatile:

CLASSES Field Declarations 8.3

223

class Test {
 static volatile int i = 0, j = 0;
 static void one() { i++; j++; }
 static void two() {
 System.out.println("i=" + i + " j=" + j);
 }
}

This allows method one and method two to be executed concurrently, but guarantees that
accesses to the shared values for i and j occur exactly as many times, and in exactly the
same order, as they appear to occur during execution of the program text by each thread.
Therefore, the shared value for j is never greater than that for i, because each update to
i must be reflected in the shared value for i before the update to j occurs. It is possible,
however, that any given invocation of method two might observe a value for j that is much
greater than the value observed for i, because method one might be executed many times
between the moment when method two fetches the value of i and the moment when method
two fetches the value of j.

See §17.4 for more discussion and examples.

8.3.2 Field Initialization

If a declarator in a field declaration has a variable initializer, then the declarator
has the semantics of an assignment (§15.26) to the declared variable.

If the declarator is for a class variable (that is, a static field), then the following
rules apply to its initializer:

• It is a compile-time error if a reference by simple name to any instance variable
occurs in the initializer.

• It is a compile-time error if the keyword this (§15.8.3) or the keyword super
(§15.11.2, §15.12) occurs in the initializer.

• At run time, the initializer is evaluated and the assignment performed exactly
once, when the class is initialized (§12.4.2).

Note that static fields that are constant variables (§4.12.4) are initialized before
other static fields (§12.4.2). This also applies in interfaces (§9.3.1). Such fields
will never be observed to have their default initial values (§4.12.5), even by
devious programs.

If the declarator is for an instance variable (that is, a field that is not static), then
the following rules apply to its initializer:

• The initializer may use the simple name of any class variable declared in or
inherited by the class, even one whose declaration occurs textually after the
initializer.

8.3 Field Declarations CLASSES

224

• The initializer may refer to the current object this (§15.8.3) and may use the
keyword super (§15.11.2, §15.12).

• At run time, the initializer is evaluated and the assignment performed each time
an instance of the class is created (§12.5).

Exception checking for a variable initializer in a field declaration is specified in
§11.2.3.

Variable initializers are also used in local variable declaration statements (§14.4), where
the initializer is evaluated and the assignment performed each time the local variable
declaration statement is executed.

Example 8.3.2-1. Field Initialization

class Point {
 int x = 1, y = 5;
}
class Test {
 public static void main(String[] args) {
 Point p = new Point();
 System.out.println(p.x + ", " + p.y);
 }
}

This program produces the output:

1, 5

because the assignments to x and y occur whenever a new Point is created.

Example 8.3.2-2. Forward Reference to a Class Variable

class Test {
 float f = j;
 static int j = 1;
}

This program compiles without error; it initializes j to 1 when class Test is initialized, and
initializes f to the current value of j every time an instance of class Test is created.

8.3.3 Forward References During Field Initialization

Use of class variables whose declarations appear textually after the use is
sometimes restricted, even though these class variables are in scope (§6.3).
Specifically, it is a compile-time error if all of the following are true:

CLASSES Field Declarations 8.3

225

• The declaration of a class variable in a class or interface C appears textually after
a use of the class variable;

• The use is a simple name in either a class variable initializer of C or a static
initializer of C;

• The use is not on the left hand side of an assignment;

• C is the innermost class or interface enclosing the use.

Use of instance variables whose declarations appear textually after the use
is sometimes restricted, even though these instance variables are in scope.
Specifically, it is a compile-time error if all of the following are true:

• The declaration of an instance variable in a class or interface C appears textually
after a use of the instance variable;

• The use is a simple name in either an instance variable initializer of C or an
instance initializer of C;

• The use is not on the left hand side of an assignment;

• C is the innermost class or interface enclosing the use.

Example 8.3.3-1. Restrictions on Field Initialization

A compile-time error occurs for this program:

class Test1 {
 int i = j; // compile-time error:
 // incorrect forward reference
 int j = 1;
}

whereas the following program compiles without error:

class Test2 {
 Test2() { k = 2; }
 int j = 1;
 int i = j;
 int k;
}

even though the constructor for Test2 (§8.8) refers to the field k that is declared three
lines later.

The restrictions above are designed to catch, at compile time, circular or otherwise
malformed initializations. Thus, both:

class Z {

8.3 Field Declarations CLASSES

226

 static int i = j + 2;
 static int j = 4;
}

and:

class Z {
 static { i = j + 2; }
 static int i, j;
 static { j = 4; }
}

result in compile-time errors. Accesses by methods are not checked in this way, so:

class Z {
 static int peek() { return j; }
 static int i = peek();
 static int j = 1;
}
class Test {
 public static void main(String[] args) {
 System.out.println(Z.i);
 }
}

produces the output:

0

because the variable initializer for i uses the class method peek to access the value of the
variable j before j has been initialized by its variable initializer, at which point it still has
its default value (§4.12.5).

A more elaborate example is:

class UseBeforeDeclaration {
 static {
 x = 100;
 // ok - assignment
 int y = x + 1;
 // error - read before declaration
 int v = x = 3;
 // ok - x at left hand side of assignment
 int z = UseBeforeDeclaration.x * 2;
 // ok - not accessed via simple name

 Object o = new Object() {
 void foo() { x++; }
 // ok - occurs in a different class
 { x++; }
 // ok - occurs in a different class

CLASSES Method Declarations 8.4

227

 };
 }

 {
 j = 200;
 // ok - assignment
 j = j + 1;
 // error - right hand side reads before declaration
 int k = j = j + 1;
 // error - illegal forward reference to j
 int n = j = 300;
 // ok - j at left hand side of assignment
 int h = j++;
 // error - read before declaration
 int l = this.j * 3;
 // ok - not accessed via simple name

 Object o = new Object() {
 void foo(){ j++; }
 // ok - occurs in a different class
 { j = j + 1; }
 // ok - occurs in a different class
 };
 }

 int w = x = 3;
 // ok - x at left hand side of assignment
 int p = x;
 // ok - instance initializers may access static fields

 static int u =
 (new Object() { int bar() { return x; } }).bar();
 // ok - occurs in a different class

 static int x;

 int m = j = 4;
 // ok - j at left hand side of assignment
 int o =
 (new Object() { int bar() { return j; } }).bar();
 // ok - occurs in a different class
 int j;
}

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed number
of values as arguments.

8.4 Method Declarations CLASSES

228

MethodDeclaration:
{MethodModifier} MethodHeader MethodBody

MethodHeader:
Result MethodDeclarator [Throws]
TypeParameters {Annotation} Result MethodDeclarator [Throws]

MethodDeclarator:
Identifier ([FormalParameterList]) [Dims]

The following production from §4.3 is shown here for convenience:

Dims:
{Annotation} [] {{Annotation} []}

The FormalParameterList is described in §8.4.1, the MethodModifier clause in
§8.4.3, the TypeParameters clause in §8.4.4, the Result clause in §8.4.5, the Throws
clause in §8.4.6, and the MethodBody in §8.4.7.

The Identifier in a MethodDeclarator may be used in a name to refer to the method
(§6.5.7.1, §15.12).

It is a compile-time error for the body of a class to declare as members two methods
with override-equivalent signatures (§8.4.2).

The scope and shadowing of a method declaration is specified in §6.3 and §6.4.

The declaration of a method that returns an array is allowed to place some or all
of the bracket pairs that denote the array type after the formal parameter list. This
syntax is supported for compatibility with early versions of the Java programming
language. It is very strongly recommended that this syntax is not used in new code.

8.4.1 Formal Parameters

The formal parameters of a method or constructor, if any, are specified by a list
of comma-separated parameter specifiers. Each parameter specifier consists of a
type (optionally preceded by the final modifier and/or one or more annotations)
and an identifier (optionally followed by brackets) that specifies the name of the
parameter.

If a method or constructor has no formal parameters, only an empty pair of
parentheses appears in the declaration of the method or constructor.

CLASSES Method Declarations 8.4

229

FormalParameterList:
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

FormalParameters:
FormalParameter {, FormalParameter}
ReceiverParameter {, FormalParameter}

FormalParameter:
{VariableModifier} UnannType VariableDeclaratorId

VariableModifier:
(one of)
Annotation final

ReceiverParameter:
{Annotation} UnannType [Identifier .] this

LastFormalParameter:
{VariableModifier} UnannType {Annotation} ... VariableDeclaratorId
FormalParameter

The following productions from §4.3 and §8.3 are shown here for convenience:

VariableDeclaratorId:
Identifier [Dims]

Dims:
{Annotation} [] {{Annotation} []}

The last formal parameter of a method or constructor is special: it may be a variable
arity parameter, indicated by an ellipsis following the type.

Note that the ellipsis (...) is a token unto itself (§3.11). It is possible to put whitespace
between it and the type, but this is discouraged as a matter of style.

If the last formal parameter is a variable arity parameter, the method is a variable
arity method. Otherwise, it is a fixed arity method.

The receiver parameter is an optional syntactic device for an instance method or an
inner class's constructor. For an instance method, the receiver parameter represents
the object for which the method is invoked. For an inner class's constructor, the
receiver parameter represents the immediately enclosing instance of the newly

8.4 Method Declarations CLASSES

230

constructed object. Either way, the receiver parameter exists solely to allow the
type of the represented object to be denoted in source code, so that the type may
be annotated. The receiver parameter is not a formal parameter; more precisely,
it is not a declaration of any kind of variable (§4.12.3), it is never bound to any
value passed as an argument in a method invocation expression or qualified class
instance creation expression, and it has no effect whatsoever at run time.

The rules for annotation modifiers on a formal parameter declaration and on a
receiver parameter are specified in §9.7.4 and §9.7.5.

It is a compile-time error if final appears more than once as a modifier for a formal
parameter declaration.

It is a compile-time error to use mixed array notation (§10.2) for a variable arity
parameter.

The scope and shadowing of a formal parameter is specified in §6.3 and §6.4.

It is a compile-time error for a method or constructor to declare two formal
parameters with the same name. (That is, their declarations mention the same
Identifier.)

It is a compile-time error if a formal parameter that is declared final is assigned
to within the body of the method or constructor.

A receiver parameter may appear only in the FormalParameterList of an instance
method or an inner class's constructor; otherwise, a compile-time error occurs.

Where a receiver parameter is allowed, its type and name are specified as follows:

• In an instance method, the type of the receiver parameter must be the class or
interface in which the method is declared, and the name of the receiver parameter
must be this; otherwise, a compile-time error occurs.

• In an inner class's constructor, the type of the receiver parameter must be the
class or interface which is the immediately enclosing type declaration of the inner
class, and the name of the receiver parameter must be Identifier . this where
Identifier is the simple name of the class or interface which is the immediately
enclosing type declaration of the inner class; otherwise, a compile-time error
occurs.

The declared type of a formal parameter depends on whether it is a variable arity
parameter:

• If the formal parameter is not a variable arity parameter, then the declared
type is denoted by UnannType if no bracket pairs appear in UnannType and
VariableDeclaratorId, and specified by §10.2 otherwise.

CLASSES Method Declarations 8.4

231

• If the formal parameter is a variable arity parameter, then the declared type is
specified by §10.2. (Note that "mixed notation" is not permitted for variable arity
parameters.)

If the declared type of a variable arity parameter has a non-reifiable element
type (§4.7), then a compile-time unchecked warning occurs for the declaration
of the variable arity method, unless the method is annotated with @SafeVarargs
(§9.6.4.7) or the unchecked warning is suppressed by @SuppressWarnings
(§9.6.4.5).

When the method or constructor is invoked (§15.12), the values of the actual
argument expressions initialize newly created parameter variables, each of the
declared type, before execution of the body of the method or constructor. The
Identifier that appears in the DeclaratorId may be used as a simple name in the
body of the method or constructor to refer to the formal parameter.

Invocations of a variable arity method may contain more actual argument
expressions than formal parameters. All the actual argument expressions that do
not correspond to the formal parameters preceding the variable arity parameter will
be evaluated and the results stored into an array that will be passed to the method
invocation (§15.12.4.2).

A method or constructor parameter of type float always contains an element of
the float value set (§4.2.3); similarly, a method or constructor parameter of type
double always contains an element of the double value set. It is not permitted for a
method or constructor parameter of type float to contain an element of the float-
extended-exponent value set that is not also an element of the float value set, nor for
a method parameter of type double to contain an element of the double-extended-
exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is
not FP-strict (§15.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent value sets.
Prior to being stored in the parameter variable, the result of such an expression
is mapped to the nearest value in the corresponding standard value set by being
subjected to invocation conversion (§5.3).

Here are some examples of receiver parameters in instance methods and inner classes'
constructors:

class Test {
 Test(/* ?? ?? */) {}
 // No receiver parameter is permitted in the constructor of
 // a top level class, as there is no conceivable type or name.

8.4 Method Declarations CLASSES

232

 void m(Test this) {}
 // OK: receiver parameter in an instance method

 static void n(Test this) {}
 // Illegal: receiver parameter in a static method

 class A {
 A(Test Test.this) {}
 // OK: the receiver parameter represents the instance
 // of Test which immediately encloses the instance
 // of A being constructed.

 void m(A this) {}
 // OK: the receiver parameter represents the instance
 // of A for which A.m() is invoked.

 class B {
 B(Test.A A.this) {}
 // OK: the receiver parameter represents the instance
 // of A which immediately encloses the instance of B
 // being constructed.

 void m(Test.A.B this) {}
 // OK: the receiver parameter represents the instance
 // of B for which B.m() is invoked.
 }
 }
}

B's constructor and instance method show that the type of the receiver parameter may be
denoted with a qualified TypeName like any other type; but that the name of the receiver
parameter in an inner class's constructor must use the simple name of the enclosing class.

8.4.2 Method Signature

Two methods or constructors, M and N, have the same signature if they have the
same name, the same type parameters (if any) (§8.4.4), and, after adapting the
formal parameter types of N to the the type parameters of M, the same formal
parameter types.

The signature of a method m1 is a subsignature of the signature of a method m2 if
either:

• m2 has the same signature as m1, or

• the signature of m1 is the same as the erasure (§4.6) of the signature of m2.

Two method signatures m1 and m2 are override-equivalent iff either m1 is a
subsignature of m2 or m2 is a subsignature of m1.

CLASSES Method Declarations 8.4

233

It is a compile-time error to declare two methods with override-equivalent
signatures in a class.

Example 8.4.2-1. Override-Equivalent Signatures

class Point {
 int x, y;
 abstract void move(int dx, int dy);
 void move(int dx, int dy) { x += dx; y += dy; }
}

This program causes a compile-time error because it declares two move methods with the
same (and hence, override-equivalent) signature. This is an error even though one of the
declarations is abstract.

The notion of subsignature is designed to express a relationship between two methods
whose signatures are not identical, but in which one may override the other. Specifically,
it allows a method whose signature does not use generic types to override any generified
version of that method. This is important so that library designers may freely generify
methods independently of clients that define subclasses or subinterfaces of the library.

Consider the example:

class CollectionConverter {
 List toList(Collection c) {...}
}
class Overrider extends CollectionConverter {
 List toList(Collection c) {...}
}

Now, assume this code was written before the introduction of generics, and now the author
of class CollectionConverter decides to generify the code, thus:

class CollectionConverter {
 <T> List<T> toList(Collection<T> c) {...}
}

Without special dispensation, Overrider.toList would no longer override
CollectionConverter.toList. Instead, the code would be illegal. This would
significantly inhibit the use of generics, since library writers would hesitate to migrate
existing code.

8.4.3 Method Modifiers

MethodModifier:
(one of)
Annotation public protected private
abstract static final synchronized native strictfp

8.4 Method Declarations CLASSES

234

The rules for annotation modifiers on a method declaration are specified in §9.7.4
and §9.7.5.

It is a compile-time error if the same keyword appears more than once as a modifier
for a method declaration.

It is a compile-time error if a method declaration that contains the keyword
abstract also contains any one of the keywords private, static, final, native,
strictfp, or synchronized.

It is a compile-time error if a method declaration that contains the keyword native
also contains strictfp.

If two or more (distinct) method modifiers appear in a method declaration, it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for MethodModifier.

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, providing
its signature (§8.4.2), result (§8.4.5), and throws clause if any (§8.4.6), but does
not provide an implementation (§8.4.7). A method that is not abstract may be
referred to as a concrete method.

The declaration of an abstract method m must appear directly within an abstract
class (call it A) unless it occurs within an enum declaration (§8.9); otherwise a
compile-time error occurs.

Every subclass of A that is not abstract (§8.1.1.1) must provide an implementation
for m, or a compile-time error occurs.

An abstract class can override an abstract method by providing another
abstract method declaration.

This can provide a place to put a documentation comment, to refine the return type, or to
declare that the set of checked exceptions that can be thrown by that method, when it is
implemented by its subclasses, is to be more limited.

An instance method that is not abstract can be overridden by an abstract
method.

Example 8.4.3.1-1. Abstract/Abstract Method Overriding

class BufferEmpty extends Exception {
 BufferEmpty() { super(); }
 BufferEmpty(String s) { super(s); }
}
class BufferError extends Exception {

CLASSES Method Declarations 8.4

235

 BufferError() { super(); }
 BufferError(String s) { super(s); }
}
interface Buffer {
 char get() throws BufferEmpty, BufferError;
}
abstract class InfiniteBuffer implements Buffer {
 public abstract char get() throws BufferError;
}

The overriding declaration of method get in class InfiniteBuffer states that method
get in any subclass of InfiniteBuffer never throws a BufferEmpty exception,
putatively because it generates the data in the buffer, and thus can never run out of data.

Example 8.4.3.1-2. Abstract/Non-Abstract Overriding

We can declare an abstract class Point that requires its subclasses to implement
toString if they are to be complete, instantiable classes:

abstract class Point {
 int x, y;
 public abstract String toString();
}

This abstract declaration of toString overrides the non-abstract toString method
of class Object. (Class Object is the implicit direct superclass of class Point.) Adding
the code:

class ColoredPoint extends Point {
 int color;
 public String toString() {
 return super.toString() + ": color " + color; // error
 }
}

results in a compile-time error because the invocation super.toString() refers to
method toString in class Point, which is abstract and therefore cannot be invoked.
Method toString of class Object can be made available to class ColoredPoint only if
class Point explicitly makes it available through some other method, as in:

abstract class Point {
 int x, y;
 public abstract String toString();
 protected String objString() { return super.toString(); }
}
class ColoredPoint extends Point {
 int color;
 public String toString() {
 return objString() + ": color " + color; // correct
 }
}

8.4 Method Declarations CLASSES

236

8.4.3.2 static Methods

A method that is declared static is called a class method.

It is a compile-time error to use the name of a type parameter of any surrounding
declaration in the header or body of a class method.

A class method is always invoked without reference to a particular object. It is a
compile-time error to attempt to reference the current object using the keyword
this (§15.8.3) or the keyword super (§15.11.2).

A method that is not declared static is called an instance method, and sometimes
called a non-static method.

An instance method is always invoked with respect to an object, which becomes
the current object to which the keywords this and super refer during execution
of the method body.

8.4.3.3 final Methods

A method can be declared final to prevent subclasses from overriding or hiding it.

It is a compile-time error to attempt to override or hide a final method.

A private method and all methods declared immediately within a final class
(§8.1.1.2) behave as if they are final, since it is impossible to override them.

At run time, a machine-code generator or optimizer can "inline" the body of a final
method, replacing an invocation of the method with the code in its body. The inlining
process must preserve the semantics of the method invocation. In particular, if the target of
an instance method invocation is null, then a NullPointerException must be thrown
even if the method is inlined. A Java compiler must ensure that the exception will be thrown
at the correct point, so that the actual arguments to the method will be seen to have been
evaluated in the correct order prior to the method invocation.

Consider the example:

final class Point {
 int x, y;
 void move(int dx, int dy) { x += dx; y += dy; }
}
class Test {
 public static void main(String[] args) {
 Point[] p = new Point[100];
 for (int i = 0; i < p.length; i++) {
 p[i] = new Point();
 p[i].move(i, p.length-1-i);
 }
 }
}

CLASSES Method Declarations 8.4

237

Inlining the method move of class Point in method main would transform the for loop
to the form:

for (int i = 0; i < p.length; i++) {
 p[i] = new Point();
 Point pi = p[i];
 int j = p.length-1-i;
 pi.x += i;
 pi.y += j;
 }

The loop might then be subject to further optimizations.

Such inlining cannot be done at compile time unless it can be guaranteed that Test and
Point will always be recompiled together, so that whenever Point - and specifically its
move method - changes, the code for Test.main will also be updated.

8.4.3.4 native Methods

A method that is native is implemented in platform-dependent code, typically
written in another programming language such as C. The body of a native method
is given as a semicolon only, indicating that the implementation is omitted, instead
of a block (§8.4.7).

For example, the class RandomAccessFile of the package java.io might declare the
following native methods:

package java.io;
public class RandomAccessFile
 implements DataOutput, DataInput {
 . . .
 public native void open(String name, boolean writeable)
 throws IOException;
 public native int readBytes(byte[] b, int off, int len)
 throws IOException;
 public native void writeBytes(byte[] b, int off, int len)
 throws IOException;
 public native long getFilePointer() throws IOException;
 public native void seek(long pos) throws IOException;
 public native long length() throws IOException;
 public native void close() throws IOException;
}

8.4.3.5 strictfp Methods

The effect of the strictfp modifier is to make all float or double expressions
within the method body be explicitly FP-strict (§15.4).

8.4 Method Declarations CLASSES

238

8.4.3.6 synchronized Methods

A synchronized method acquires a monitor (§17.1) before it executes.

For a class (static) method, the monitor associated with the Class object for the
method's class is used.

For an instance method, the monitor associated with this (the object for which the
method was invoked) is used.

Example 8.4.3.6-1. synchronized Monitors

These are the same monitors that can be used by the synchronized statement (§14.19).

Thus, the code:

class Test {
 int count;
 synchronized void bump() {
 count++;
 }
 static int classCount;
 static synchronized void classBump() {
 classCount++;
 }
}

has exactly the same effect as:

class BumpTest {
 int count;
 void bump() {
 synchronized (this) { count++; }
 }
 static int classCount;
 static void classBump() {
 try {
 synchronized (Class.forName("BumpTest")) {
 classCount++;
 }
 } catch (ClassNotFoundException e) {}
 }
}

Example 8.4.3.6-2. synchronized Methods

public class Box {
 private Object boxContents;
 public synchronized Object get() {
 Object contents = boxContents;
 boxContents = null;
 return contents;

CLASSES Method Declarations 8.4

239

 }
 public synchronized boolean put(Object contents) {
 if (boxContents != null) return false;
 boxContents = contents;
 return true;
 }
}

This program defines a class which is designed for concurrent use. Each instance of the
class Box has an instance variable boxContents that can hold a reference to any object.
You can put an object in a Box by invoking put, which returns false if the box is already
full. You can get something out of a Box by invoking get, which returns a null reference
if the box is empty.

If put and get were not synchronized, and two threads were executing methods for
the same instance of Box at the same time, then the code could misbehave. It might, for
example, lose track of an object because two invocations to put occurred at the same time.

8.4.4 Generic Methods

A method is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the method. The form of
the type parameter section of a generic method is identical to the type parameter
section of a generic class (§8.1.2).

A generic method declaration defines a set of methods, one for each possible
invocation of the type parameter section by type arguments. Type arguments may
not need to be provided explicitly when a generic method is invoked, as they can
often be inferred (§18 (Type Inference)).

The scope and shadowing of a method's type parameter is specified in §6.3.

Two methods or constructors M and N have the same type parameters if both of the
following are true:

• M and N have same number of type parameters (possibly zero).

• Where A1, ..., An are the type parameters of M and B1, ..., Bn are the type parameters
of N, let θ=[B1:=A1, ..., Bn:=An]. Then, for all i (1 ≤ i ≤ n), the bound of Ai is the
same type as θ applied to the bound of Bi.

Where two methods or constructors M and N have the same type parameters, a type
mentioned in N can be adapted to the type parameters of M by applying θ, as defined
above, to the type.

8.4 Method Declarations CLASSES

240

8.4.5 Method Result

The result of a method declaration either declares the type of value that the method
returns (the return type), or uses the keyword void to indicate that the method does
not return a value.

Result:
UnannType
void

If the result is not void, then the return type of a method is denoted by UnannType
if no bracket pairs appear after the formal parameter list, and is specified by §10.2
otherwise.

Return types may vary among methods that override each other if the return types
are reference types. The notion of return-type-substitutability supports covariant
returns, that is, the specialization of the return type to a subtype.

A method declaration d1 with return type R1 is return-type-substitutable for another
method d2 with return type R2 iff any of the following is true:

• If R1 is void then R2 is void.

• If R1 is a primitive type then R2 is identical to R1.

• If R1 is a reference type then one of the following is true:

– R1, adapted to the type parameters of d2 (§8.4.4), is a subtype of R2.

– R1 can be converted to a subtype of R2 by unchecked conversion (§5.1.9).

– d1 does not have the same signature as d2 (§8.4.2), and R1 = |R2|.

An unchecked conversion is allowed in the definition, despite being unsound, as a special
allowance to allow smooth migration from non-generic to generic code. If an unchecked
conversion is used to determine that R1 is return-type-substitutable for R2, then R1 is
necessarily not a subtype of R2 and the rules for overriding (§8.4.8.3, §9.4.1) will require
a compile-time unchecked warning.

8.4.6 Method Throws

A throws clause is used to declare any checked exception classes (§11.1.1) that
the statements in a method or constructor body can throw (§11.2.2).

Throws:
throws ExceptionTypeList

CLASSES Method Declarations 8.4

241

ExceptionTypeList:
ExceptionType {, ExceptionType}

ExceptionType:
ClassType
TypeVariable

It is a compile-time error if an ExceptionType mentioned in a throws clause is not
a subtype (§4.10) of Throwable.

Type variables are allowed in a throws clause even though they are not allowed
in a catch clause (§14.20).

It is permitted but not required to mention unchecked exception classes (§11.1.1)
in a throws clause.

The relationship between a throws clause and the exception checking for a method
or constructor body is specified in §11.2.3.

Essentially, for each checked exception that can result from execution of the body of a
method or constructor, a compile-time error occurs unless its exception type or a supertype
of its exception type is mentioned in a throws clause in the declaration of the method or
constructor.

The requirement to declare checked exceptions allows a Java compiler to ensure that code
for handling such error conditions has been included. Methods or constructors that fail to
handle exceptional conditions thrown as checked exceptions in their bodies will normally
cause compile-time errors if they lack proper exception types in their throws clauses. The
Java programming language thus encourages a programming style where rare and otherwise
truly exceptional conditions are documented in this way.

The relationship between the throws clause of a method and the throws clauses of
overridden or hidden methods is specified in §8.4.8.3.

Example 8.4.6-1. Type Variables as Thrown Exception Types

import java.io.FileNotFoundException;
interface PrivilegedExceptionAction<E extends Exception> {
 void run() throws E;
}
class AccessController {
 public static <E extends Exception>
 Object doPrivileged(PrivilegedExceptionAction<E> action) throws E {
 action.run();
 return "success";
 }
}
class Test {
 public static void main(String[] args) {

8.4 Method Declarations CLASSES

242

 try {
 AccessController.doPrivileged(
 new PrivilegedExceptionAction<FileNotFoundException>() {
 public void run() throws FileNotFoundException {
 // ... delete a file ...
 }
 });
 } catch (FileNotFoundException f) { /* Do something */ }
 }
}

8.4.7 Method Body

A method body is either a block of code that implements the method or simply a
semicolon, indicating the lack of an implementation.

MethodBody:
Block
;

The body of a method must be a semicolon if the method is abstract or native
(§8.4.3.1, §8.4.3.4). More precisely:

• It is a compile-time error if a method declaration is either abstract or native
and has a block for its body.

• It is a compile-time error if a method declaration is neither abstract nor native
and has a semicolon for its body.

If an implementation is to be provided for a method declared void, but the implementation
requires no executable code, the method body should be written as a block that contains
no statements: "{ }".

The rules for return statements in a method body are specified in §14.17.

If a method is declared to have a return type (§8.4.5), then a compile-time error
occurs if the body of the method can complete normally (§14.1).

In other words, a method with a return type must return only by using a return statement
that provides a value return; the method is not allowed to "drop off the end of its body".
See §14.17 for the precise rules about return statements in a method body.

It is possible for a method to have a return type and yet contain no return statements.
Here is one example:

class DizzyDean {
 int pitch() { throw new RuntimeException("90 mph?!"); }
}

CLASSES Method Declarations 8.4

243

8.4.8 Inheritance, Overriding, and Hiding

A class C inherits from its direct superclass all concrete methods m (both static
and instance) of the superclass for which all of the following are true:

• m is a member of the direct superclass of C.

• m is public, protected, or declared with package access in the same package
as C.

• No method declared in C has a signature that is a subsignature (§8.4.2) of the
signature of m.

A class C inherits from its direct superclass and direct superinterfaces all abstract
and default (§9.4) methods m for which all of the following are true:

• m is a member of the direct superclass or a direct superinterface, D, of C.

• m is public, protected, or declared with package access in the same package
as C.

• No method declared in C has a signature that is a subsignature (§8.4.2) of the
signature of m.

• No concrete method inherited by C from its direct superclass has a signature that
is a subsignature of the signature of m.

• There exists no method m' that is a member of the direct superclass or a direct
superinterface, D', of C (m distinct from m', D distinct from D'), such that m' from
D' overrides the declaration of the method m.

A class does not inherit static methods from its superinterfaces.

Note that it is possible for an inherited concrete method to prevent the inheritance of an
abstract or default method. (Later we will assert that the concrete method overrides the
abstract or default method "from C".) Also, it is possible for one supertype method to
prevent the inheritance of another supertype method if the former "already" overrides the
latter - this is the same as the rule for interfaces (§9.4.1), and prevents conflicts in which
multiple default methods are inherited and one implementation is clearly meant to supersede
the other.

Note that methods are overridden or hidden on a signature-by-signature basis. If, for
example, a class declares two public methods with the same name (§8.4.9), and a subclass
overrides one of them, the subclass still inherits the other method.

8.4.8.1 Overriding (by Instance Methods)

An instance method mC declared in or inherited by class C, overrides from C another
method mA declared in class A, iff all of the following are true:

8.4 Method Declarations CLASSES

244

• A is a superclass of C.

• C does not inherit mA.

• The signature of mC is a subsignature (§8.4.2) of the signature of mA.

• One of the following is true:

– mA is public.

– mA is protected.

– mA is declared with package access in the same package as C, and either C
declares mC or mA is a member of the direct superclass of C.

– mA is declared with package access and mC overrides mA from some superclass
of C.

– mA is declared with package access and mC overrides a method m' from C (m'
distinct from mC and mA), such that m' overrides mA from some superclass of C.

If a non-abstract method mC overrides an abstract method mA from a class C, then
mC is said to implement mA from C.

An instance method mC declared in or inherited by class C, overrides from C another
method mI declared in an interface I, iff all of the following are true:

• I is a superinterface of C.

• mI is an abstract or default method.

• The signature of mC is a subsignature (§8.4.2) of the signature of mI.

The signature of an overriding method may differ from the overridden one if a formal
parameter in one of the methods has a raw type, while the corresponding parameter in the
other has a parameterized type. This accommodates migration of pre-existing code to take
advantage of generics.

The notion of overriding includes methods that override another from some subclass of
their declaring class. This can happen in two ways:

• A concrete method in a generic superclass can, under certain parameterizations, have
the same signature as an abstract method in that class. In this case, the concrete method
is inherited and the abstract method is not (as described above). The inherited
method should then be considered to override its abstract peer from C. (This scenario is
complicated by package access: if C is in a different package, then mA would not have
been inherited anyway, and should not be considered overridden.)

• A method inherited from a class can override a superinterface method. (Happily, package
access is not a concern here.)

It is a compile-time error if an instance method overrides a static method.

CLASSES Method Declarations 8.4

245

In this respect, overriding of methods differs from hiding of fields (§8.3), for it is
permissible for an instance variable to hide a static variable.

An overridden method can be accessed by using a method invocation expression
(§15.12) that contains the keyword super. A qualified name or a cast to a superclass
type is not effective in attempting to access an overridden method.

In this respect, overriding of methods differs from hiding of fields.

The presence or absence of the strictfp modifier has absolutely no effect on the
rules for overriding methods and implementing abstract methods. For example, it
is permitted for a method that is not FP-strict to override an FP-strict method and
it is permitted for an FP-strict method to override a method that is not FP-strict.

Example 8.4.8.1-1. Overriding

class Point {
 int x = 0, y = 0;
 void move(int dx, int dy) { x += dx; y += dy; }
}
class SlowPoint extends Point {
 int xLimit, yLimit;
 void move(int dx, int dy) {
 super.move(limit(dx, xLimit), limit(dy, yLimit));
 }
 static int limit(int d, int limit) {
 return d > limit ? limit : d < -limit ? -limit : d;
 }
}

Here, the class SlowPoint overrides the declarations of method move of class Point with
its own move method, which limits the distance that the point can move on each invocation
of the method. When the move method is invoked for an instance of class SlowPoint, the
overriding definition in class SlowPoint will always be called, even if the reference to the
SlowPoint object is taken from a variable whose type is Point.

Example 8.4.8.1-2. Overriding

Overriding makes it easy for subclasses to extend the behavior of an existing class, as shown
in this example:

import java.io.OutputStream;
import java.io.IOException;

class BufferOutput {
 private OutputStream o;
 BufferOutput(OutputStream o) { this.o = o; }
 protected byte[] buf = new byte[512];
 protected int pos = 0;

8.4 Method Declarations CLASSES

246

 public void putchar(char c) throws IOException {
 if (pos == buf.length) flush();
 buf[pos++] = (byte)c;
 }
 public void putstr(String s) throws IOException {
 for (int i = 0; i < s.length(); i++)
 putchar(s.charAt(i));
 }
 public void flush() throws IOException {
 o.write(buf, 0, pos);
 pos = 0;
 }
}
class LineBufferOutput extends BufferOutput {
 LineBufferOutput(OutputStream o) { super(o); }
 public void putchar(char c) throws IOException {
 super.putchar(c);
 if (c == '\n') flush();
 }
}
class Test {
 public static void main(String[] args) throws IOException {
 LineBufferOutput lbo = new LineBufferOutput(System.out);
 lbo.putstr("lbo\nlbo");
 System.out.print("print\n");
 lbo.putstr("\n");
 }
}

This program produces the output:

lbo
print
lbo

The class BufferOutput implements a very simple buffered version of an
OutputStream, flushing the output when the buffer is full or flush is invoked. The
subclass LineBufferOutput declares only a constructor and a single method putchar,
which overrides the method putchar of BufferOutput. It inherits the methods putstr
and flush from class BufferOutput.

In the putchar method of a LineBufferOutput object, if the character argument is a
newline, then it invokes the flush method. The critical point about overriding in this
example is that the method putstr, which is declared in class BufferOutput, invokes the
putchar method defined by the current object this, which is not necessarily the putchar
method declared in class BufferOutput.

Thus, when putstr is invoked in main using the LineBufferOutput object lbo, the
invocation of putchar in the body of the putstr method is an invocation of the putchar
of the object lbo, the overriding declaration of putchar that checks for a newline. This
allows a subclass of BufferOutput to change the behavior of the putstr method without
redefining it.

CLASSES Method Declarations 8.4

247

Documentation for a class such as BufferOutput, which is designed to be extended,
should clearly indicate what is the contract between the class and its subclasses, and
should clearly indicate that subclasses may override the putchar method in this way.
The implementor of the BufferOutput class would not, therefore, want to change the
implementation of putstr in a future implementation of BufferOutput not to use the
method putchar, because this would break the pre-existing contract with subclasses. See
the discussion of binary compatibility in §13 (Binary Compatibility), especially §13.2.

8.4.8.2 Hiding (by Class Methods)

If a class C declares or inherits a static method m, then m is said to hide any method
m', where the signature of m is a subsignature (§8.4.2) of the signature of m', in the
superclasses and superinterfaces of C that would otherwise be accessible to code
in C.

It is a compile-time error if a static method hides an instance method.

In this respect, hiding of methods differs from hiding of fields (§8.3), for it is permissible
for a static variable to hide an instance variable. Hiding is also distinct from shadowing
(§6.4.1) and obscuring (§6.4.2).

A hidden method can be accessed by using a qualified name or by using a method
invocation expression (§15.12) that contains the keyword super or a cast to a
superclass type.

In this respect, hiding of methods is similar to hiding of fields.

Example 8.4.8.2-1. Invocation of Hidden Class Methods

A class (static) method that is hidden can be invoked by using a reference whose type
is the class that actually contains the declaration of the method. In this respect, hiding of
static methods is different from overriding of instance methods. The example:

class Super {
 static String greeting() { return "Goodnight"; }
 String name() { return "Richard"; }
}
class Sub extends Super {
 static String greeting() { return "Hello"; }
 String name() { return "Dick"; }
}
class Test {
 public static void main(String[] args) {
 Super s = new Sub();
 System.out.println(s.greeting() + ", " + s.name());
 }
}

produces the output:

8.4 Method Declarations CLASSES

248

Goodnight, Dick

because the invocation of greeting uses the type of s, namely Super, to figure out, at
compile time, which class method to invoke, whereas the invocation of name uses the class
of s, namely Sub, to figure out, at run time, which instance method to invoke.

8.4.8.3 Requirements in Overriding and Hiding

If a method declaration d1 with return type R1 overrides or hides the declaration of
another method d2 with return type R2, then d1 must be return-type-substitutable
(§8.4.5) for d2, or a compile-time error occurs.

This rule allows for covariant return types - refining the return type of a method when
overriding it.

If R1 is not a subtype of R2, a compile-time unchecked warning occurs unless
suppressed by the SuppressWarnings annotation (§9.6.4.5).

A method that overrides or hides another method, including methods that
implement abstract methods defined in interfaces, may not be declared to throw
more checked exceptions than the overridden or hidden method.

In this respect, overriding of methods differs from hiding of fields (§8.3), for it is
permissible for a field to hide a field of another type.

More precisely, suppose that B is a class or interface, and A is a superclass or
superinterface of B, and a method declaration m2 in B overrides or hides a method
declaration m1 in A. Then:

• If m2 has a throws clause that mentions any checked exception types, then m1
must have a throws clause, or a compile-time error occurs.

• For every checked exception type listed in the throws clause of m2, that same
exception class or one of its supertypes must occur in the erasure (§4.6) of the
throws clause of m1; otherwise, a compile-time error occurs.

• If the unerased throws clause of m1 does not contain a supertype of each
exception type in the throws clause of m2 (adapted, if necessary, to the type
parameters of m1), a compile-time unchecked warning occurs.

It is a compile-time error if a type declaration T has a member method m1 and there
exists a method m2 declared in T or a supertype of T such that all of the following
are true:

• m1 and m2 have the same name.

• m2 is accessible from T.

CLASSES Method Declarations 8.4

249

• The signature of m1 is not a subsignature (§8.4.2) of the signature of m2.

• The signature of m1 or some method m1 overrides (directly or indirectly) has the
same erasure as the signature of m2 or some method m2 overrides (directly or
indirectly).

These restrictions are necessary because generics are implemented via erasure. The rule
above implies that methods declared in the same class with the same name must have
different erasures. It also implies that a type declaration cannot implement or extend two
distinct invocations of the same generic interface.

The access modifier (§6.6) of an overriding or hiding method must provide at least
as much access as the overridden or hidden method, as follows:

• If the overridden or hidden method is public, then the overriding or hiding
method must be public; otherwise, a compile-time error occurs.

• If the overridden or hidden method is protected, then the overriding or hiding
method must be protected or public; otherwise, a compile-time error occurs.

• If the overridden or hidden method has package access, then the overriding or
hiding method must not be private; otherwise, a compile-time error occurs.

Note that a private method cannot be hidden or overridden in the technical sense of
those terms. This means that a subclass can declare a method with the same signature as
a private method in one of its superclasses, and there is no requirement that the return
type or throws clause of such a method bear any relationship to those of the private
method in the superclass.

Example 8.4.8.3-1. Covariant Return Types

The following declarations are legal in the Java programming language from Java SE 5.0
onwards:

class C implements Cloneable {
 C copy() throws CloneNotSupportedException {
 return (C)clone();
 }
}
class D extends C implements Cloneable {
 D copy() throws CloneNotSupportedException {
 return (D)clone();
 }
}

The relaxed rule for overriding also allows one to relax the conditions on abstract classes
implementing interfaces.

8.4 Method Declarations CLASSES

250

Example 8.4.8.3-2. Unchecked Warning from Return Type

Consider:

class StringSorter {
 // turns a collection of strings into a sorted list
 List toList(Collection c) {...}
}

and assume that someone subclasses StringSorter:

class Overrider extends StringSorter {
 List toList(Collection c) {...}
}

Now, at some point the author of StringSorter decides to generify the code:

class StringSorter {
 // turns a collection of strings into a sorted list
 List<String> toList(Collection<String> c) {...}
}

An unchecked warning would be given when compiling Overrider against the new
definition of StringSorter because the return type of Overrider.toList is List,
which is not a subtype of the return type of the overridden method, List<String>.

Example 8.4.8.3-3. Incorrect Overriding because of throws

This program uses the usual and conventional form for declaring a new exception type, in
its declaration of the class BadPointException:

class BadPointException extends Exception {
 BadPointException() { super(); }
 BadPointException(String s) { super(s); }
}
class Point {
 int x, y;
 void move(int dx, int dy) { x += dx; y += dy; }
}
class CheckedPoint extends Point {
 void move(int dx, int dy) throws BadPointException {
 if ((x + dx) < 0 || (y + dy) < 0)
 throw new BadPointException();
 x += dx; y += dy;
 }
}

The program results in a compile-time error, because the override of method move in class
CheckedPoint declares that it will throw a checked exception that the move in class Point
has not declared. If this were not considered an error, an invoker of the method move on

CLASSES Method Declarations 8.4

251

a reference of type Point could find the contract between it and Point broken if this
exception were thrown.

Removing the throws clause does not help:

class CheckedPoint extends Point {
 void move(int dx, int dy) {
 if ((x + dx) < 0 || (y + dy) < 0)
 throw new BadPointException();
 x += dx; y += dy;
 }
}

A different compile-time error now occurs, because the body of the method move cannot
throw a checked exception, namely BadPointException, that does not appear in the
throws clause for move.

Example 8.4.8.3-4. Erasure Affects Overriding

A class cannot have two member methods with the same name and type erasure:

class C<T> {
 T id (T x) {...}
}
class D extends C<String> {
 Object id(Object x) {...}
}

This is illegal since D.id(Object) is a member of D, C<String>.id(String) is
declared in a supertype of D, and:

• The two methods have the same name, id

• C<String>.id(String) is accessible to D

• The signature of D.id(Object) is not a subsignature of that of
C<String>.id(String)

• The two methods have the same erasure

Two different methods of a class may not override methods with the same erasure:

class C<T> {
 T id(T x) {...}
}
interface I<T> {
 T id(T x);
}
class D extends C<String> implements I<Integer> {
 public String id(String x) {...}
 public Integer id(Integer x) {...}
}

8.4 Method Declarations CLASSES

252

This is also illegal, since D.id(String) is a member of D, D.id(Integer) is declared
in D, and:

• The two methods have the same name, id

• D.id(Integer) is accessible to D

• The two methods have different signatures (and neither is a subsignature of the other)

• D.id(String) overrides C<String>.id(String) and D.id(Integer) overrides
I.id(Integer) yet the two overridden methods have the same erasure

8.4.8.4 Inheriting Methods with Override-Equivalent Signatures

It is possible for a class to inherit multiple methods with override-equivalent
signatures (§8.4.2).

It is a compile-time error if a class C inherits a concrete method whose signature is
override-equivalent with another method inherited by C.

It is a compile-time error if a class C inherits a default method whose signature
is override-equivalent with another method inherited by C, unless there exists an
abstract method declared in a superclass of C and inherited by C that is override-
equivalent with the two methods.

This exception to the strict default-abstract and default-default conflict rules is made when
an abstract method is declared in a superclass: the assertion of abstract-ness coming from
the superclass hierarchy essentially trumps the default method, making the default method
act as if it were abstract. However, the abstract method from a class does not override
the default method(s), because interfaces are still allowed to refine the signature of the
abstract method coming from the class hierarchy.

Note that the exception does not apply if all override-equivalent abstract methods
inherited by C were declared in interfaces.

Otherwise, the set of override-equivalent methods consists of at least one abstract
method and zero or more default methods; then the class is necessarily an abstract
class and is considered to inherit all the methods.

One of the inherited methods must be return-type-substitutable for every other
inherited method; otherwise, a compile-time error occurs. (The throws clauses do
not cause errors in this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, results in a
compile-time error.

CLASSES Method Declarations 8.4

253

8.4.9 Overloading

If two methods of a class (whether both declared in the same class, or both inherited
by a class, or one declared and one inherited) have the same name but signatures
that are not override-equivalent, then the method name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws
clauses of two methods with the same name, unless their signatures are override-
equivalent.

When a method is invoked (§15.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used,
at compile time, to determine the signature of the method that will be invoked
(§15.12.2). If the method that is to be invoked is an instance method, the actual
method to be invoked will be determined at run time, using dynamic method lookup
(§15.12.4).

Example 8.4.9-1. Overloading

class Point {
 float x, y;
 void move(int dx, int dy) { x += dx; y += dy; }
 void move(float dx, float dy) { x += dx; y += dy; }
 public String toString() { return "("+x+","+y+")"; }
}

Here, the class Point has two members that are methods with the same name, move. The
overloaded move method of class Point chosen for any particular method invocation is
determined at compile time by the overloading resolution procedure given in §15.12.

In total, the members of the class Point are the float instance variables x and y declared in
Point, the two declared move methods, the declared toString method, and the members
that Point inherits from its implicit direct superclass Object (§4.3.2), such as the method
hashCode. Note that Point does not inherit the toString method of class Object
because that method is overridden by the declaration of the toString method in class
Point.

Example 8.4.9-2. Overloading, Overriding, and Hiding

class Point {
 int x = 0, y = 0;
 void move(int dx, int dy) { x += dx; y += dy; }
 int color;
}
class RealPoint extends Point {
 float x = 0.0f, y = 0.0f;
 void move(int dx, int dy) { move((float)dx, (float)dy); }
 void move(float dx, float dy) { x += dx; y += dy; }

8.4 Method Declarations CLASSES

254

}

Here, the class RealPoint hides the declarations of the int instance variables x and y of
class Point with its own float instance variables x and y, and overrides the method move
of class Point with its own move method. It also overloads the name move with another
method with a different signature (§8.4.2).

In this example, the members of the class RealPoint include the instance variable
color inherited from the class Point, the float instance variables x and y declared in
RealPoint, and the two move methods declared in RealPoint.

Which of these overloaded move methods of class RealPoint will be chosen for any
particular method invocation will be determined at compile time by the overloading
resolution procedure described in §15.12.

This following program is an extended variation of the preceding program:

class Point {
 int x = 0, y = 0, color;
 void move(int dx, int dy) { x += dx; y += dy; }
 int getX() { return x; }
 int getY() { return y; }
}
class RealPoint extends Point {
 float x = 0.0f, y = 0.0f;
 void move(int dx, int dy) { move((float)dx, (float)dy); }
 void move(float dx, float dy) { x += dx; y += dy; }
 float getX() { return x; }
 float getY() { return y; }
}

Here, the class Point provides methods getX and getY that return the values of its fields
x and y; the class RealPoint then overrides these methods by declaring methods with the
same signature. The result is two errors at compile time, one for each method, because the
return types do not match; the methods in class Point return values of type int, but the
wanna-be overriding methods in class RealPoint return values of type float.

This program corrects the errors of the preceding program:

class Point {
 int x = 0, y = 0;
 void move(int dx, int dy) { x += dx; y += dy; }
 int getX() { return x; }
 int getY() { return y; }
 int color;
}
class RealPoint extends Point {
 float x = 0.0f, y = 0.0f;
 void move(int dx, int dy) { move((float)dx, (float)dy); }
 void move(float dx, float dy) { x += dx; y += dy; }
 int getX() { return (int)Math.floor(x); }

CLASSES Method Declarations 8.4

255

 int getY() { return (int)Math.floor(y); }
}

Here, the overriding methods getX and getY in class RealPoint have the same return
types as the methods of class Point that they override, so this code can be successfully
compiled.

Consider, then, this test program:

class Test {
 public static void main(String[] args) {
 RealPoint rp = new RealPoint();
 Point p = rp;
 rp.move(1.71828f, 4.14159f);
 p.move(1, -1);
 show(p.x, p.y);
 show(rp.x, rp.y);
 show(p.getX(), p.getY());
 show(rp.getX(), rp.getY());
 }
 static void show(int x, int y) {
 System.out.println("(" + x + ", " + y + ")");
 }
 static void show(float x, float y) {
 System.out.println("(" + x + ", " + y + ")");
 }
}

The output from this program is:

(0, 0)
(2.7182798, 3.14159)
(2, 3)
(2, 3)

The first line of output illustrates the fact that an instance of RealPoint actually contains
the two integer fields declared in class Point; it is just that their names are hidden from
code that occurs within the declaration of class RealPoint (and those of any subclasses
it might have). When a reference to an instance of class RealPoint in a variable of type
Point is used to access the field x, the integer field x declared in class Point is accessed.
The fact that its value is zero indicates that the method invocation p.move(1, -1) did not
invoke the method move of class Point; instead, it invoked the overriding method move
of class RealPoint.

The second line of output shows that the field access rp.x refers to the field x declared in
class RealPoint. This field is of type float, and this second line of output accordingly
displays floating-point values. Incidentally, this also illustrates the fact that the method
name show is overloaded; the types of the arguments in the method invocation dictate which
of the two definitions will be invoked.

8.5 Member Type Declarations CLASSES

256

The last two lines of output show that the method invocations p.getX() and rp.getX()
each invoke the getX method declared in class RealPoint. Indeed, there is no way to
invoke the getX method of class Point for an instance of class RealPoint from outside
the body of RealPoint, no matter what the type of the variable we may use to hold the
reference to the object. Thus, we see that fields and methods behave differently: hiding is
different from overriding.

8.5 Member Type Declarations

A member class is a class whose declaration is directly enclosed in the body of
another class or interface declaration (§8.1.6, §9.1.4).

A member interface is an interface whose declaration is directly enclosed in the
body of another class or interface declaration (§8.1.6, §9.1.4).

The accessibility of a member type in a class or interface declaration is specified
in §6.6.

It is a compile-time error if the same keyword appears more than once as a modifier
for a member type declaration in a class.

The scope and shadowing of a member type is specified in §6.3 and §6.4.

If a class declares a member type with a certain name, then the declaration of that
type is said to hide any and all accessible declarations of member types with the
same name in superclasses and superinterfaces of the class.

In this respect, hiding of member types is similar to hiding of fields (§8.3).

A class inherits from its direct superclass and direct superinterfaces all the
non-private member types of the superclass and superinterfaces that are both
accessible to code in the class and not hidden by a declaration in the class.

A class may inherit two or more type declarations with the same name, either from
two interfaces or from its superclass and an interface. It is a compile-time error to
attempt to refer to any ambiguously inherited class or interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once. It may be referred to by
its simple name without ambiguity.

CLASSES Instance Initializers 8.6

257

8.5.1 Static Member Type Declarations

The static keyword may modify the declaration of a member type C within the
body of a non-inner class or interface T. Its effect is to declare that C is not an inner
class. Just as a static method of T has no current instance of T in its body, C also
has no current instance of T, nor does it have any lexically enclosing instances.

It is a compile-time error if a static class contains a usage of a non-static
member of an enclosing class.

A member interface is implicitly static (§9.1.1). It is permitted for the declaration
of a member interface to redundantly specify the static modifier.

8.6 Instance Initializers

An instance initializer declared in a class is executed when an instance of the class
is created (§12.5, §15.9, §8.8.7.1).

InstanceInitializer:
Block

It is a compile-time error if an instance initializer cannot complete normally
(§14.21).

It is a compile-time error if a return statement (§14.17) appears anywhere within
an instance initializer.

Instance initializers are permitted to refer to the current object via the keyword
this (§15.8.3), to use the keyword super (§15.11.2, §15.12), and to use any type
variables in scope.

Use of instance variables whose declarations appear textually after the use is sometimes
restricted, even though these instance variables are in scope. See §8.3.3 for the precise rules
governing forward reference to instance variables.

Exception checking for an instance initializer is specified in §11.2.3.

8.7 Static Initializers CLASSES

258

8.7 Static Initializers

A static initializer declared in a class is executed when the class is initialized
(§12.4.2). Together with any field initializers for class variables (§8.3.2), static
initializers may be used to initialize the class variables of the class.

StaticInitializer:
static Block

It is a compile-time error if a static initializer cannot complete normally (§14.21).

It is a compile-time error if a return statement (§14.17) appears anywhere within
a static initializer.

It is a compile-time error if the keyword this (§15.8.3) or the keyword super
(§15.11, §15.12) or any type variable declared outside the static initializer, appears
anywhere within a static initializer.

Use of class variables whose declarations appear textually after the use is sometimes
restricted, even though these class variables are in scope. See §8.3.3 for the precise rules
governing forward reference to class variables.

Exception checking for a static initializer is specified in §11.2.3.

8.8 Constructor Declarations

A constructor is used in the creation of an object that is an instance of a class
(§12.5, §15.9).

ConstructorDeclaration:
{ConstructorModifier} ConstructorDeclarator [Throws] ConstructorBody

ConstructorDeclarator:
[TypeParameters] SimpleTypeName ([FormalParameterList])

SimpleTypeName:
Identifier

The rules in this section apply to constructors in all class declarations, including
enum declarations. However, special rules apply to enum declarations with regard

CLASSES Constructor Declarations 8.8

259

to constructor modifiers, constructor bodies, and default constructors; these rules
are stated in §8.9.2.

The SimpleTypeName in the ConstructorDeclarator must be the simple name of
the class that contains the constructor declaration, or a compile-time error occurs.

In all other respects, a constructor declaration looks just like a method declaration
that has no result (§8.4.5).

Constructor declarations are not members. They are never inherited and therefore
are not subject to hiding or overriding.

Constructors are invoked by class instance creation expressions (§15.9), by
the conversions and concatenations caused by the string concatenation operator
+ (§15.18.1), and by explicit constructor invocations from other constructors
(§8.8.7). Access to constructors is governed by access modifiers (§6.6), so it is
possible to prevent instantiation by declaring an inaccessible constructor (§8.8.10).

Constructors are never invoked by method invocation expressions (§15.12).

Example 8.8-1. Constructor Declarations

class Point {
 int x, y;
 Point(int x, int y) { this.x = x; this.y = y; }
}

8.8.1 Formal Parameters

The formal parameters of a constructor are identical in syntax and semantics to
those of a method (§8.4.1).

The constructor of a non-private inner member class implicitly declares, as the
first formal parameter, a variable representing the immediately enclosing instance
of the class (§15.9.2, §15.9.3).

The rationale for why only this kind of class has an implicitly declared constructor
parameter is subtle. The following explanation may be helpful:

1. In a class instance creation expression for a non-private inner member class, §15.9.2
specifies the immediately enclosing instance of the member class. The member class
may have been emitted by a compiler which is different than the compiler of the class
instance creation expression. Therefore, there must be a standard way for the compiler
of the creation expression to pass a reference (representing the immediately enclosing
instance) to the member class's constructor. Consequently, the Java programming
language deems in this section that a non-private inner member class's constructor
implicitly declares an initial parameter for the immediately enclosing instance. §15.9.3
specifies that the instance is passed to the constructor.

8.8 Constructor Declarations CLASSES

260

2. In a class instance creation expression for a local class (not in a static context) or
anonymous class, §15.9.2 specifies the immediately enclosing instance of the local/
anonymous class. The local/anonymous class is necessarily emitted by the same
compiler as the class instance creation expression. That compiler can represent the
immediately enclosing instance how ever it wishes. There is no need for the Java
programming language to implicitly declare a parameter in the local/anonymous
class's constructor.

3. In a class instance creation expression for an anonymous class, and where the
anonymous class's superclass is either inner or local (not in a static context), §15.9.2
specifies the anonymous class's immediately enclosing instance with respect to
the superclass. This instance must be transmitted from the anonymous class to its
superclass, where it will serve as the immediately enclosing instance. Since the
superclass may have been emitted by a compiler which is different than the compiler
of the class instance creation expression, it is necessary to transmit the instance in a
standard way, by passing it as the first argument to the superclass's constructor. Note
that the anonymous class itself is necessarily emitted by the same compiler as the class
instance creation expression, so it would be possible for the compiler to transmit the
immediately enclosing instance with respect to the superclass to the anonymous class
how ever it wishes, before the anonymous class passes the instance to the superclass's
constructor. However, for consistency, the Java programming language deems in
§15.9.5.1 that, in some circumstances, an anonymous class's constructor implicitly
declares an initial parameter for the immediately enclosing instance with respect to
the superclass.

The fact that a non-private inner member class may be accessed by a different compiler
than compiled it, whereas a local or anonymous class is always accessed by the same
compiler that compiled it, explains why the binary name of a non-private inner member
class is defined to be predictable but the binary name of a local or anonymous class is not
(§13.1).

8.8.2 Constructor Signature

It is a compile-time error to declare two constructors with override-equivalent
signatures (§8.4.2) in a class.

It is a compile-time error to declare two constructors whose signatures have the
same erasure (§4.6) in a class.

8.8.3 Constructor Modifiers

ConstructorModifier:
(one of)
Annotation public protected private

The rules for annotation modifiers on a constructor declaration are specified in
§9.7.4 and §9.7.5.

CLASSES Constructor Declarations 8.8

261

It is a compile-time error if the same keyword appears more than once as a modifier
in a constructor declaration.

In a normal class declaration, a constructor declaration with no access modifiers
has package access.

If two or more (distinct) method modifiers appear in a method declaration, it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for MethodModifier.

Unlike methods, a constructor cannot be abstract, static, final, native, strictfp,
or synchronized:

• A constructor is not inherited, so there is no need to declare it final.

• An abstract constructor could never be implemented.

• A constructor is always invoked with respect to an object, so it makes no sense for a
constructor to be static.

• There is no practical need for a constructor to be synchronized, because it would lock
the object under construction, which is normally not made available to other threads until
all constructors for the object have completed their work.

• The lack of native constructors is an arbitrary language design choice that makes it easy
for an implementation of the Java Virtual Machine to verify that superclass constructors
are always properly invoked during object creation.

• The inability to declare a constructor as strictfp (in contrast to a method (§8.4.3))
is an intentional language design choice; it effectively ensures that a constructor is FP-
strict if and only if its class is FP-strict (§15.4).

8.8.4 Generic Constructors

A constructor is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the constructor. The
form of the type parameter section of a generic constructor is identical to the type
parameter section of a generic class (§8.1.2).

It is possible for a constructor to be generic independently of whether the class the
constructor is declared in is itself generic.

A generic constructor declaration defines a set of constructors, one for each
possible invocation of the type parameter section by type arguments. Type
arguments may not need to be provided explicitly when a generic constructor is
invoked, as they can often by inferred (§18 (Type Inference)).

The scope and shadowing of a constructor's type parameter is specified in §6.3 and
§6.4.

8.8 Constructor Declarations CLASSES

262

8.8.5 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to the
throws clause for a method (§8.4.6).

8.8.6 The Type of a Constructor

The type of a constructor consists of its signature and the exception types given
by its throws clause.

8.8.7 Constructor Body

The first statement of a constructor body may be an explicit invocation of another
constructor of the same class or of the direct superclass (§8.8.7.1).

ConstructorBody:
{ [ExplicitConstructorInvocation] [BlockStatements] }

It is a compile-time error for a constructor to directly or indirectly invoke itself
through a series of one or more explicit constructor invocations involving this.

If a constructor body does not begin with an explicit constructor invocation and
the constructor being declared is not part of the primordial class Object, then
the constructor body implicitly begins with a superclass constructor invocation
"super();", an invocation of the constructor of its direct superclass that takes no
arguments.

Except for the possibility of explicit constructor invocations, and the prohibition
on explicitly returning a value (§14.17), the body of a constructor is like the body
of a method (§8.4.7).

A return statement (§14.17) may be used in the body of a constructor if it does
not include an expression.

Example 8.8.7-1. Constructor Bodies

class Point {
 int x, y;
 Point(int x, int y) { this.x = x; this.y = y; }
}
class ColoredPoint extends Point {
 static final int WHITE = 0, BLACK = 1;
 int color;
 ColoredPoint(int x, int y) {
 this(x, y, WHITE);
 }

CLASSES Constructor Declarations 8.8

263

 ColoredPoint(int x, int y, int color) {
 super(x, y);
 this.color = color;
 }
}

Here, the first constructor of ColoredPoint invokes the second, providing an additional
argument; the second constructor of ColoredPoint invokes the constructor of its
superclass Point, passing along the coordinates.

8.8.7.1 Explicit Constructor Invocations

ExplicitConstructorInvocation:
[TypeArguments] this ([ArgumentList]) ;
[TypeArguments] super ([ArgumentList]) ;
ExpressionName . [TypeArguments] super ([ArgumentList]) ;
Primary . [TypeArguments] super ([ArgumentList]) ;

The following productions from §4.5.1 and §15.12 are shown here for convenience:

TypeArguments:
< TypeArgumentList >

ArgumentList:
Expression {, Expression}

Explicit constructor invocation statements are divided into two kinds:

• Alternate constructor invocations begin with the keyword this (possibly
prefaced with explicit type arguments). They are used to invoke an alternate
constructor of the same class.

• Superclass constructor invocations begin with either the keyword super
(possibly prefaced with explicit type arguments) or a Primary expression or an
ExpressionName. They are used to invoke a constructor of the direct superclass.
They are further divided:

– Unqualified superclass constructor invocations begin with the keyword super
(possibly prefaced with explicit type arguments).

– Qualified superclass constructor invocations begin with a Primary expression
or an ExpressionName. They allow a subclass constructor to explicitly specify
the newly created object's immediately enclosing instance with respect to the
direct superclass (§8.1.3). This may be necessary when the superclass is an
inner class.

8.8 Constructor Declarations CLASSES

264

An explicit constructor invocation statement in a constructor body may not refer
to any instance variables or instance methods or inner classes declared in this class
or any superclass, or use this or super in any expression; otherwise, a compile-
time error occurs.

This prohibition on using the current instance explains why an explicit constructor
invocation statement is deemed to occur in a static context (§8.1.3).

If TypeArguments is present to the left of this or super, then it is a compile-time
error if any of the type arguments are wildcards (§4.5.1).

Let C be the class being instantiated, and let S be the direct superclass of C.

If a superclass constructor invocation statement is unqualified, then:

• If S is an inner member class, but S is not a member of a lexically enclosing type
declaration of C, then a compile-time error occurs.

If a superclass constructor invocation statement is qualified, then:

• If S is not an inner class, or if the declaration of S occurs in a static context, then
a compile-time error occurs.

• Otherwise, let p be the Primary expression or the ExpressionName immediately
preceding ".super", and let O be the immediately enclosing class of S. It is a
compile-time error if the type of p is not O or a subclass of O, or if the type of
p is not accessible (§6.6).

The exception types that an explicit constructor invocation statement can throw are
specified in §11.2.2.

Evaluation of an alternate constructor invocation statement proceeds by first
evaluating the arguments to the constructor, left-to-right, as in an ordinary method
invocation; and then invoking the constructor.

Evaluation of a superclass constructor invocation statement proceeds as follows:

1. Let i be the instance being created. The immediately enclosing instance of i
with respect to S (if any) must be determined:

• If S is not an inner class, or if the declaration of S occurs in a static context,
then no immediately enclosing instance of i with respect to S exists.

• If the superclass constructor invocation is unqualified, then S is necessarily
a local class or an inner member class.

Let O be the immediately enclosing class of S, and let n be an integer such
that O is the n'th lexically enclosing type declaration of C.

CLASSES Constructor Declarations 8.8

265

The immediately enclosing instance of i with respect to S is the n'th lexically
enclosing instance of this.

• If the superclass constructor invocation is qualified, then the Primary
expression or the ExpressionName immediately preceding ".super", p, is
evaluated.

If p evaluates to null, a NullPointerException is raised, and the superclass
constructor invocation completes abruptly.

Otherwise, the result of this evaluation is the immediately enclosing instance
of i with respect to S.

2. After determining the immediately enclosing instance of i with respect to S (if
any), evaluation of the superclass constructor invocation statement proceeds
by evaluating the arguments to the constructor, left-to-right, as in an ordinary
method invocation; and then invoking the constructor.

3. Finally, if the superclass constructor invocation statement completes normally,
then all instance variable initializers of C and all instance initializers of C are
executed. If an instance initializer or instance variable initializer I textually
precedes another instance initializer or instance variable initializer J, then I is
executed before J.

Execution of instance variable initializers and instance initializers is performed
regardless of whether the superclass constructor invocation actually appears
as an explicit constructor invocation statement or is provided implicitly. (An
alternate constructor invocation does not perform this additional implicit
execution.)

Example 8.8.7.1-1. Restrictions on Explicit Constructor Invocation Statements

If the first constructor of ColoredPoint in the example from §8.8.7 were changed as
follows:

class Point {
 int x, y;
 Point(int x, int y) { this.x = x; this.y = y; }
}
class ColoredPoint extends Point {
 static final int WHITE = 0, BLACK = 1;
 int color;
 ColoredPoint(int x, int y) {
 this(x, y, color); // Changed to color from WHITE
 }
 ColoredPoint(int x, int y, int color) {
 super(x, y);
 this.color = color;

8.8 Constructor Declarations CLASSES

266

 }
}

then a compile-time error would occur, because the instance variable color cannot be used
by a explicit constructor invocation statement.

Example 8.8.7.1-2. Qualified Superclass Constructor Invocation

In the code below, ChildOfInner has no lexically enclosing type declaration, so
an instance of ChildOfInner has no enclosing instance. However, the superclass of
ChildOfInner (Inner) has a lexically enclosing type declaration (Outer), and an
instance of Inner must have an enclosing instance of Outer. The enclosing instance of
Outer is set when an instance of Inner is created. Therefore, when we create an instance of
ChildOfInner, which is implicitly an instance of Inner, we must provide the enclosing
instance of Outer via a qualified superclass invocation statement in ChildOfInner's
constructor. The instance of Outer is called the immediately enclosing instance of
ChildOfInner with respect to Inner.

class Outer {
 class Inner {}
}
class ChildOfInner extends Outer.Inner {
 ChildOfInner() { (new Outer()).super(); }
}

Perhaps surprisingly, the same instance of Outer may serve as the immediately enclosing
instance of ChildOfInner with respect to Inner for multiple instances of ChildOfInner.
These instances of ChildOfInner are implicitly linked to the same instance of Outer.
The program below achieves this by passing an instance of Outer to the constructor of
ChildOfInner, which uses the instance in a qualified superclass constructor invocation
statement. The rules for an explicit constructor invocation statement do not prohibit using
formal parameters of the constructor that contains the statement.

class Outer {
 int secret = 5;
 class Inner {
 int getSecret() { return secret; }
 void setSecret(int s) { secret = s; }
 }
}
class ChildOfInner extends Outer.Inner {
 ChildOfInner(Outer x) { x.super(); }
}

public class Test {
 public static void main(String[] args) {
 Outer x = new Outer();
 ChildOfInner a = new ChildOfInner(x);
 ChildOfInner b = new ChildOfInner(x);
 System.out.println(b.getSecret());
 a.setSecret(6);

CLASSES Constructor Declarations 8.8

267

 System.out.println(b.getSecret());
 }
}

This program produces the output:

5
6

The effect is that manipulation of instance variables in the common instance of Outer
is visible through references to different instances of ChildOfInner, even though such
references are not aliases in the conventional sense.

8.8.8 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of methods
(§8.4.9). The overloading is resolved at compile time by each class instance
creation expression (§15.9).

8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor is
implicitly declared. The form of the default constructor for a top level class,
member class, or local class is as follows:

• The default constructor has the same accessibility as the class (§6.6).

• The default constructor has no formal parameters, except in a non-private
inner member class, where the default constructor implicitly declares one formal
parameter representing the immediately enclosing instance of the class (§8.8.1,
§15.9.2, §15.9.3).

• The default constructor has no throws clauses.

• If the class being declared is the primordial class Object, then the default
constructor has an empty body. Otherwise, the default constructor simply
invokes the superclass constructor with no arguments.

The form of the default constructor for an anonymous class is specified in §15.9.5.1.

It is a compile-time error if a default constructor is implicitly declared but the
superclass does not have an accessible constructor that takes no arguments and has
no throws clause.

Example 8.8.9-1. Default Constructors

The declaration:

8.8 Constructor Declarations CLASSES

268

public class Point {
 int x, y;
}

is equivalent to the declaration:

public class Point {
 int x, y;
 public Point() { super(); }
}

where the default constructor is public because the class Point is public.

Example 8.8.9-2. Accessibility of Constructors v. Classes

The rule that the default constructor of a class has the same accessibility as the class itself
is simple and intuitive. Note, however, that this does not imply that the constructor is
accessible whenever the class is accessible. Consider:

package p1;
public class Outer {
 protected class Inner {}
}
package p2;
class SonOfOuter extends p1.Outer {
 void foo() {
 new Inner(); // compile-time access error
 }
}

The default constructor for Inner is protected. However, the constructor is protected
relative to Inner, while Inner is protected relative to Outer. So, Inner is accessible
in SonOfOuter, since it is a subclass of Outer. Inner's constructor is not accessible in
SonOfOuter, because the class SonOfOuter is not a subclass of Inner! Hence, even
though Inner is accessible, its default constructor is not.

8.8.10 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from creating
instances of the class by declaring at least one constructor, to prevent the creation
of a default constructor, and by declaring all constructors to be private.

A public class can likewise prevent the creation of instances outside its package
by declaring at least one constructor, to prevent creation of a default constructor
with public access, and by declaring no constructor that is public.

Example 8.8.10-1. Preventing Instantiation via Constructor Accessibility

class ClassOnly {

CLASSES Enum Types 8.9

269

 private ClassOnly() { }
 static String just = "only the lonely";
}

Here, the class ClassOnly cannot be instantiated, while in the following code:

package just;
public class PackageOnly {
 PackageOnly() { }
 String[] justDesserts = { "cheesecake", "ice cream" };
}

the class PackageOnly can be instantiated only within the package just, in which it is
declared.

8.9 Enum Types

An enum declaration specifies a new enum type, a special kind of class type.

EnumDeclaration:
{ClassModifier} enum Identifier [Superinterfaces] EnumBody

It is a compile-time error if an enum declaration has the modifier abstract or
final.

An enum declaration is implicitly final unless it contains at least one enum
constant that has a class body (§8.9.1).

A nested enum type is implicitly static. It is permitted for the declaration of a
nested enum type to redundantly specify the static modifier.

This implies that it is impossible to declare an enum type in the body of an inner class
(§8.1.3), because an inner class cannot have static members except for constant variables.

It is a compile-time error if the same keyword appears more than once as a modifier
for an enum declaration.

The direct superclass of an enum type E is Enum<E> (§8.1.4).

An enum type has no instances other than those defined by its enum constants. It
is a compile-time error to attempt to explicitly instantiate an enum type (§15.9.1).

In addition to the compile-time error, three further mechanisms ensure that no instances of
an enum type exist beyond those defined by its enum constants:

• The final clone method in Enum ensures that enum constants can never be cloned.

8.9 Enum Types CLASSES

270

• Reflective instantiation of enum types is prohibited.

• Special treatment by the serialization mechanism ensures that duplicate instances are
never created as a result of deserialization.

8.9.1 Enum Constants

The body of an enum declaration may contain enum constants. An enum constant
defines an instance of the enum type.

EnumBody:
{ [EnumConstantList] [,] [EnumBodyDeclarations] }

EnumConstantList:
EnumConstant {, EnumConstant}

EnumConstant:
{EnumConstantModifier} Identifier [([ArgumentList])] [ClassBody]

EnumConstantModifier:
Annotation

The following production from §15.12 is shown here for convenience:

ArgumentList:
Expression {, Expression}

The rules for annotation modifiers on an enum constant declaration are specified
in §9.7.4 and §9.7.5.

The Identifier in a EnumConstant may be used in a name to refer to the enum
constant.

The scope and shadowing of an enum constant is specified in §6.3 and §6.4.

An enum constant may be followed by arguments, which are passed to the
constructor of the enum when the constant is created during class initialization as
described later in this section. The constructor to be invoked is chosen using the
normal rules of overload resolution (§15.12.2). If the arguments are omitted, an
empty argument list is assumed.

The optional class body of an enum constant implicitly defines an anonymous class
declaration (§15.9.5) that extends the immediately enclosing enum type. The class
body is governed by the usual rules of anonymous classes; in particular it cannot
contain any constructors. Instance methods declared in these class bodies may be

CLASSES Enum Types 8.9

271

invoked outside the enclosing enum type only if they override accessible methods
in the enclosing enum type (§8.4.8).

It is a compile-time error for the class body of an enum constant to declare an
abstract method.

Because there is only one instance of each enum constant, it is permitted to use the
== operator in place of the equals method when comparing two object references
if it is known that at least one of them refers to an enum constant.

The equals method in Enum is a final method that merely invokes super.equals on
its argument and returns the result, thus performing an identity comparison.

8.9.2 Enum Body Declarations

In addition to enum constants, the body of an enum declaration may contain
constructor and member declarations as well as instance and static initializers.

EnumBodyDeclarations:
; {ClassBodyDeclaration}

The following productions from §8.1.6 are shown here for convenience:

ClassBodyDeclaration:
ClassMemberDeclaration
InstanceInitializer
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

Any constructor or member declarations in the body of an enum declaration apply
to the enum type exactly as if they had been present in the body of a normal class
declaration, unless explicitly stated otherwise.

It is a compile-time error if a constructor declaration in an enum declaration is
public or protected (§6.6).

It is a compile-time error if a constructor declaration in an enum declaration
contains a superclass constructor invocation statement (§8.8.7.1).

8.9 Enum Types CLASSES

272

It is a compile-time error to reference a static field of an enum type from
constructors, instance initializers, or instance variable initializer expressions of the
enum type, unless the field is a constant variable (§4.12.4).

In an enum declaration, a constructor declaration with no access modifiers is
private.

In an enum declaration with no constructor declarations, a default constructor is
implicitly declared. The default constructor is private, has no formal parameters,
and has no throws clause.

In practice, a compiler is likely to mirror the Enum type by declaring String and int
parameters in the default constructor of an enum type. However, these parameters are not
specified as "implicitly declared" because different compilers do not need to agree on the
form of the default constructor. Only the compiler of an enum type knows how to instantiate
the enum constants; other compilers can simply rely on the implicitly declared public
static fields of the enum type (§8.9.3) without regard for how those fields were initialized.

It is a compile-time error if an enum declaration E has an abstract method m as a
member, unless E has at least one enum constant and all of E's enum constants have
class bodies that provide concrete implementations of m.

It is a compile-time error for an enum declaration to declare a finalizer (§12.6). An
instance of an enum type may never be finalized.

Example 8.9.2-1. Enum Body Declarations

enum Coin {
 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);
 Coin(int value) { this.value = value; }

 private final int value;
 public int value() { return value; }
}

Each enum constant arranges for a different value in the field value, passed in via a
constructor. The field represents the value, in cents, of an American coin. Note that there
are no restrictions on the parameters that may be declared by an enum type's constructor.

Example 8.9.2-2. Restriction On Enum Constant Self-Reference

Without the rule on static field access, apparently reasonable code would fail at run time
due to the initialization circularity inherent in enum types. (A circularity exists in any class
with a "self-typed" static field.) Here is an example of the sort of code that would fail:

import java.util.Map;
import java.util.HashMap;

enum Color {

CLASSES Enum Types 8.9

273

 RED, GREEN, BLUE;
 Color() { colorMap.put(toString(), this); }

 static final Map<String,Color> colorMap =
 new HashMap<String,Color>();
}

Static initialization of this enum would throw a NullPointerException because the
static variable colorMap is uninitialized when the constructors for the enum constants
run. The restriction above ensures that such code cannot be compiled. However, the code
can easily be refactored to work properly:

import java.util.Map;
import java.util.HashMap;

enum Color {
 RED, GREEN, BLUE;

 static final Map<String,Color> colorMap =
 new HashMap<String,Color>();
 static {
 for (Color c : Color.values())
 colorMap.put(c.toString(), c);
 }
}

The refactored version is clearly correct, as static initialization occurs top to bottom.

8.9.3 Enum Members

The members of an enum type E are all of the following:

• Members declared in the body of the declaration of E.

• Members inherited from Enum<E>.

• For each enum constant c declared in the body of the declaration of E, E has an
implicitly declared public static final field of type E that has the same name
as c. The field has a variable initializer consisting of c, and is annotated by the
same annotations as c.

These fields are implicitly declared in the same order as the corresponding
enum constants, before any static fields explicitly declared in the body of the
declaration of E.

An enum constant is said to be created when the corresponding implicitly
declared field is initialized.

• The following implicitly declared methods:

8.9 Enum Types CLASSES

274

/**
* Returns an array containing the constants of this enum
* type, in the order they're declared. This method may be
* used to iterate over the constants as follows:
*
* for(E c : E.values())
* System.out.println(c);
*
* @return an array containing the constants of this enum
* type, in the order they're declared
*/
public static E[] values();

/**
* Returns the enum constant of this type with the specified
* name.
* The string must match exactly an identifier used to declare
* an enum constant in this type. (Extraneous whitespace
* characters are not permitted.)
*
* @return the enum constant with the specified name
* @throws IllegalArgumentException if this enum type has no
* constant with the specified name
*/
public static E valueOf(String name);

It follows that the declaration of enum type E cannot contain fields that conflict with the
implicitly declared fields corresponding to E's enum constants, nor contain methods that
conflict with implicitly declared methods or override final methods of class Enum<E>.

Example 8.9.3-1. Iterating Over Enum Constants With An Enhanced for Loop

public class Test {
 enum Season { WINTER, SPRING, SUMMER, FALL }

 public static void main(String[] args) {
 for (Season s : Season.values())
 System.out.println(s);
 }
}

This program produces the output:

WINTER
SPRING
SUMMER
FALL

CLASSES Enum Types 8.9

275

Example 8.9.3-2. Switching Over Enum Constants

A switch statement (§14.11) is useful for simulating the addition of a method to an enum
type from outside the type. This example "adds" a color method to the Coin type from
§8.9.2, and prints a table of coins, their values, and their colors.

class Test {
 enum CoinColor { COPPER, NICKEL, SILVER }

 static CoinColor color(Coin c) {
 switch (c) {
 case PENNY:
 return CoinColor.COPPER;
 case NICKEL:
 return CoinColor.NICKEL;
 case DIME: case QUARTER:
 return CoinColor.SILVER;
 default:
 throw new AssertionError("Unknown coin: " + c);
 }
 }

 public static void main(String[] args) {
 for (Coin c : Coin.values())
 System.out.println(c + "\t\t" +
 c.value() + "\t" + color(c));
 }
}

This program produces the output:

PENNY 1 COPPER
NICKEL 5 NICKEL
DIME 10 SILVER
QUARTER 25 SILVER

Example 8.9.3-3. Enum Constants with Class Bodies

enum Operation {
 PLUS {
 double eval(double x, double y) { return x + y; }
 },
 MINUS {
 double eval(double x, double y) { return x - y; }
 },
 TIMES {
 double eval(double x, double y) { return x * y; }
 },
 DIVIDED_BY {
 double eval(double x, double y) { return x / y; }
 };

8.9 Enum Types CLASSES

276

 // Each constant supports an arithmetic operation
 abstract double eval(double x, double y);

 public static void main(String args[]) {
 double x = Double.parseDouble(args[0]);
 double y = Double.parseDouble(args[1]);
 for (Operation op : Operation.values())
 System.out.println(x + " " + op + " " + y +
 " = " + op.eval(x, y));
 }
}

Class bodies attach behaviors to the enum constants. The program produces the output:

java Operation 2.0 4.0
2.0 PLUS 4.0 = 6.0
2.0 MINUS 4.0 = -2.0
2.0 TIMES 4.0 = 8.0
2.0 DIVIDED_BY 4.0 = 0.5

This pattern is much safer than using a switch statement in the base type (Operation),
as the pattern precludes the possibility of forgetting to add a behavior for a new constant
(since the enum declaration would cause a compile-time error).

Example 8.9.3-4. Multiple Enum Types

In the following program, a playing card class is built atop two simple enums.

import java.util.List;
import java.util.ArrayList;
class Card implements Comparable<Card>,
 java.io.Serializable {
 public enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN,
 EIGHT, NINE, TEN,JACK, QUEEN, KING, ACE }

 public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

 private final Rank rank;
 private final Suit suit;
 public Rank rank() { return rank; }
 public Suit suit() { return suit; }

 private Card(Rank rank, Suit suit) {
 if (rank == null || suit == null)
 throw new NullPointerException(rank + ", " + suit);
 this.rank = rank;
 this.suit = suit;
 }

 public String toString() { return rank + " of " + suit; }

CLASSES Enum Types 8.9

277

 // Primary sort on suit, secondary sort on rank
 public int compareTo(Card c) {
 int suitCompare = suit.compareTo(c.suit);
 return (suitCompare != 0 ?
 suitCompare :
 rank.compareTo(c.rank));
 }

 private static final List<Card> prototypeDeck =
 new ArrayList<Card>(52);

 static {
 for (Suit suit : Suit.values())
 for (Rank rank : Rank.values())
 prototypeDeck.add(new Card(rank, suit));
 }

 // Returns a new deck
 public static List<Card> newDeck() {
 return new ArrayList<Card>(prototypeDeck);
 }
}

The following program exercises the Card class. It takes two integer parameters on the
command line, representing the number of hands to deal and the number of cards in each
hand:

import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
class Deal {
 public static void main(String args[]) {
 int numHands = Integer.parseInt(args[0]);
 int cardsPerHand = Integer.parseInt(args[1]);
 List<Card> deck = Card.newDeck();
 Collections.shuffle(deck);
 for (int i=0; i < numHands; i++)
 System.out.println(dealHand(deck, cardsPerHand));
 }

 /**
 * Returns a new ArrayList consisting of the last n
 * elements of deck, which are removed from deck.
 * The returned list is sorted using the elements'
 * natural ordering.
 */
 public static <E extends Comparable<E>>
 ArrayList<E> dealHand(List<E> deck, int n) {
 int deckSize = deck.size();
 List<E> handView = deck.subList(deckSize - n, deckSize);
 ArrayList<E> hand = new ArrayList<E>(handView);
 handView.clear();
 Collections.sort(hand);

8.9 Enum Types CLASSES

278

 return hand;
 }
}

The program produces the output:

java Deal 4 3
[DEUCE of CLUBS, SEVEN of CLUBS, QUEEN of DIAMONDS]
[NINE of HEARTS, FIVE of SPADES, ACE of SPADES]
[THREE of HEARTS, SIX of HEARTS, TEN of SPADES]
[TEN of CLUBS, NINE of DIAMONDS, THREE of SPADES]

279

C H A P T E R 9
Interfaces

AN interface declaration introduces a new reference type whose members are
classes, interfaces, constants, and methods. This type has no instance variables, and
typically declares one or more abstract methods; otherwise unrelated classes can
implement the interface by providing implementations for its abstract methods.
Interfaces may not be directly instantiated.

A nested interface is any interface whose declaration occurs within the body of
another class or interface.

A top level interface is an interface that is not a nested interface.

We distinguish between two kinds of interfaces - normal interfaces and annotation
types.

This chapter discusses the common semantics of all interfaces - normal interfaces,
both top level (§7.6) and nested (§8.5, §9.5), and annotation types (§9.6). Details
that are specific to particular kinds of interfaces are discussed in the sections
dedicated to these constructs.

Programs can use interfaces to make it unnecessary for related classes to share a
common abstract superclass or to add methods to Object.

An interface may be declared to be a direct extension of one or more other
interfaces, meaning that it inherits all the member types, instance methods, and
constants of the interfaces it extends, except for any members that it may override
or hide.

A class may be declared to directly implement one or more interfaces, meaning
that any instance of the class implements all the abstract methods specified
by the interface or interfaces. A class necessarily implements all the interfaces
that its direct superclasses and direct superinterfaces do. This (multiple) interface
inheritance allows objects to support (multiple) common behaviors without sharing
a superclass.

9.1 Interface Declarations INTERFACES

280

A variable whose declared type is an interface type may have as its value a
reference to any instance of a class which implements the specified interface. It is
not sufficient that the class happen to implement all the abstract methods of the
interface; the class or one of its superclasses must actually be declared to implement
the interface, or else the class is not considered to implement the interface.

9.1 Interface Declarations

An interface declaration specifies a new named reference type. There are two
kinds of interface declarations - normal interface declarations and annotation type
declarations (§9.6).

InterfaceDeclaration:
NormalInterfaceDeclaration
AnnotationTypeDeclaration

NormalInterfaceDeclaration:
{InterfaceModifier} interface Identifier [TypeParameters]

 [ExtendsInterfaces] InterfaceBody

The Identifier in an interface declaration specifies the name of the interface.

It is a compile-time error if an interface has the same simple name as any of its
enclosing classes or interfaces.

The scope and shadowing of an interface declaration is specified in §6.3 and §6.4.

9.1.1 Interface Modifiers

An interface declaration may include interface modifiers.

InterfaceModifier:
(one of)
Annotation public protected private
abstract static strictfp

The rules for annotation modifiers on an interface declaration are specified in §9.7.4
and §9.7.5.

The access modifier public (§6.6) pertains to every kind of interface declaration.

INTERFACES Interface Declarations 9.1

281

The access modifiers protected and private pertain only to member interfaces
whose declarations are directly enclosed by a class declaration (§8.5.1).

The modifier static pertains only to member interfaces (§8.5.1, §9.5), not to top
level interfaces (§7.6).

It is a compile-time error if the same keyword appears more than once as a modifier
for an interface declaration.

If two or more (distinct) interface modifiers appear in an interface declaration, then it is
customary, though not required, that they appear in the order consistent with that shown
above in the production for InterfaceModifier.

9.1.1.1 abstract Interfaces

Every interface is implicitly abstract.

This modifier is obsolete and should not be used in new programs.

9.1.1.2 strictfp Interfaces

The effect of the strictfp modifier is to make all float or double expressions
within the interface declaration be explicitly FP-strict (§15.4).

This implies that all methods declared in the interface, and all nested types declared
in the interface, are implicitly strictfp.

9.1.2 Generic Interfaces and Type Parameters

An interface is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the interface. The type
parameter section follows the interface name and is delimited by angle brackets.

The following productions from §8.1.2 and §4.4 are shown here for convenience:

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter {, TypeParameter}

TypeParameter:
{TypeParameterModifier} Identifier [TypeBound]

TypeParameterModifier:
Annotation

9.1 Interface Declarations INTERFACES

282

TypeBound:
extends TypeVariable
extends ClassOrInterfaceType {AdditionalBound}

AdditionalBound:
& InterfaceType

The rules for annotation modifiers on a type parameter declaration are specified
in §9.7.4 and §9.7.5.

In an interface's type parameter section, a type variable T directly depends on a
type variable S if S is the bound of T, while T depends on S if either T directly
depends on S or T directly depends on a type variable U that depends on S (using this
definition recursively). It is a compile-time error if a type variable in a interface's
type parameter section depends on itself.

The scope and shadowing of an interface's type parameter is specified in §6.3.

It is a compile-time error to refer to a type parameter of an interface I anywhere in
the declaration of a field or type member of I.

A generic interface declaration defines a set of parameterized types (§4.5), one for
each possible parameterization of the type parameter section by type arguments.
All of these parameterized types share the same interface at run time.

9.1.3 Superinterfaces and Subinterfaces

If an extends clause is provided, then the interface being declared extends each of
the other named interfaces and therefore inherits the member types, methods, and
constants of each of the other named interfaces.

These other named interfaces are the direct superinterfaces of the interface being
declared.

Any class that implements the declared interface is also considered to implement
all the interfaces that this interface extends.

ExtendsInterfaces:
extends InterfaceTypeList

The following production from §8.1.5 is shown here for convenience:

InterfaceTypeList:
InterfaceType {, InterfaceType}

Each InterfaceType in the extends clause of an interface declaration must name
an accessible interface type (§6.6), or a compile-time error occurs.

INTERFACES Interface Declarations 9.1

283

If an InterfaceType has type arguments, it must denote a well-formed parameterized
type (§4.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.

Given a (possibly generic) interface declaration I<F1,...,Fn> (n ≥ 0), the direct
superinterfaces of the interface type I<F1,...,Fn> are the types given in the extends
clause of the declaration of I, if an extends clause is present.

Given a generic interface declaration I<F1,...,Fn> (n > 0), the direct superinterfaces
of the parameterized interface type I<T1,...,Tn>, where Ti (1 ≤ i ≤ n) is a type, are
all types J<U1 θ,...,Uk θ>, where J<U1,...,Uk> is a direct superinterface of I<F1,...,Fn>
and θ is the substitution [F1:=T1,...,Fn:=Tn].

The superinterface relationship is the transitive closure of the direct superinterface
relationship. An interface K is a superinterface of interface I if either of the
following is true:

• K is a direct superinterface of I.

• There exists an interface J such that K is a superinterface of J, and J is a
superinterface of I, applying this definition recursively.

Interface I is said to be a subinterface of interface K whenever K is a superinterface
of I.

While every class is an extension of class Object, there is no single interface of
which all interfaces are extensions.

An interface I directly depends on a type T if T is mentioned in the extends clause
of I either as a superinterface or as a qualifier in the fully qualified form of a
superinterface name.

An interface I depends on a reference type T if any of the following is true:

• I directly depends on T.

• I directly depends on a class C that depends on T (§8.1.5).

• I directly depends on an interface J that depends on T (using this definition
recursively).

It is a compile-time error if an interface depends on itself.

If circularly declared interfaces are detected at run time, as interfaces are loaded,
then a ClassCircularityError is thrown (§12.2.1).

9.2 Interface Members INTERFACES

284

9.1.4 Interface Body and Member Declarations

The body of an interface may declare members of the interface, that is, fields (§9.3),
methods (§9.4), classes (§9.5), and interfaces (§9.5).

InterfaceBody:
{ {InterfaceMemberDeclaration} }

InterfaceMemberDeclaration:
ConstantDeclaration
InterfaceMethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

The scope of a declaration of a member m declared in or inherited by an interface
type I is specified in §6.3.

9.2 Interface Members

The members of an interface type are:

• Members declared in the body of the interface (§9.1.4).

• Members inherited from any direct superinterfaces (§9.1.3).

• If an interface has no direct superinterfaces, then the interface implicitly declares
a public abstract member method m with signature s, return type r, and throws
clause t corresponding to each public instance method m with signature s, return
type r, and throws clause t declared in Object, unless an abstract method
with the same signature, same return type, and a compatible throws clause is
explicitly declared by the interface.

It is a compile-time error if the interface explicitly declares such a method m in
the case where m is declared to be final in Object.

It is a compile-time error if the interface explicitly declares a method with a
signature that is override-equivalent (§8.4.2) to a public method of Object, but
which has a different return type, or an incompatible throws clause, or is not
abstract.

INTERFACES Field (Constant) Declarations 9.3

285

The interface inherits, from the interfaces it extends, all members of those
interfaces, except for fields, classes, and interfaces that it hides; abstract or default
methods that it overrides (§9.4.1); and static methods.

Fields, methods, and member types of an interface type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (§6.5). However, this is discouraged as a matter of style.

9.3 Field (Constant) Declarations

ConstantDeclaration:
{ConstantModifier} UnannType VariableDeclaratorList ;

ConstantModifier:
(one of)
Annotation public
static final

See §8.3 for UnannType. The following productions from §4.3 and §8.3 are shown here
for convenience:

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorId [= VariableInitializer]

VariableDeclaratorId:
Identifier [Dims]

Dims:
{Annotation} [] {{Annotation} []}

VariableInitializer:
Expression
ArrayInitializer

The rules for annotation modifiers on an interface field declaration are specified
in §9.7.4 and §9.7.5.

Every field declaration in the body of an interface is implicitly public, static,
and final. It is permitted to redundantly specify any or all of these modifiers for
such fields.

9.3 Field (Constant) Declarations INTERFACES

286

It is a compile-time error if the same keyword appears more than once as a modifier
for a field declaration.

If two or more (distinct) field modifiers appear in a field declaration, it is customary, though
not required, that they appear in the order consistent with that shown above in the production
for ConstantModifier.

The declared type of a field is denoted by UnannType if no bracket pairs appear in
UnannType and VariableDeclaratorId, and is specified by §10.2 otherwise.

The scope and shadowing of an interface field declaration is specified in §6.3 and
§6.4.

It is a compile-time error for the body of an interface declaration to declare two
fields with the same name.

If the interface declares a field with a certain name, then the declaration of that field
is said to hide any and all accessible declarations of fields with the same name in
superinterfaces of the interface.

It is possible for an interface to inherit more than one field with the same name.
Such a situation does not in itself cause a compile-time error. However, any attempt
within the body of the interface to refer to any such field by its simple name will
result in a compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be inherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

Example 9.3-1. Ambiguous Inherited Fields

If two fields with the same name are inherited by an interface because, for example, two
of its direct superinterfaces declare fields with that name, then a single ambiguous member
results. Any use of this ambiguous member will result in a compile-time error. In the
program:

interface BaseColors {
 int RED = 1, GREEN = 2, BLUE = 4;
}
interface RainbowColors extends BaseColors {
 int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;
}
interface PrintColors extends BaseColors {
 int YELLOW = 8, CYAN = 16, MAGENTA = 32;
}
interface LotsOfColors extends RainbowColors, PrintColors {
 int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;
}

INTERFACES Field (Constant) Declarations 9.3

287

the interface LotsOfColors inherits two fields named YELLOW. This is all right as long as
the interface does not contain any reference by simple name to the field YELLOW. (Such a
reference could occur within a variable initializer for a field.)

Even if interface PrintColors were to give the value 3 to YELLOW rather than the value
8, a reference to field YELLOW within interface LotsOfColors would still be considered
ambiguous.

Example 9.3-2. Multiply Inherited Fields

If a single field is inherited multiple times from the same interface because, for example,
both this interface and one of this interface's direct superinterfaces extend the interface that
declares the field, then only a single member results. This situation does not in itself cause
a compile-time error.

In the previous example, the fields RED, GREEN, and BLUE are inherited by interface
LotsOfColors in more than one way, through interface RainbowColors and also through
interface PrintColors, but the reference to field RED in interface LotsOfColors is not
considered ambiguous because only one actual declaration of the field RED is involved.

9.3.1 Initialization of Fields in Interfaces

Every declarator in a field declaration of an interface must have a variable
initializer, or a compile-time error occurs.

The initializer need not be a constant expression (§15.28).

It is a compile-time error if the initializer of an interface field uses the simple name
of the same field or another field whose declaration occurs textually later in the
same interface.

It is a compile-time error if the keyword this (§15.8.3) or the keyword super
(§15.11.2, §15.12) occurs in the initializer of an interface field, unless the
occurrence is within the body of an anonymous class (§15.9.5).

At run time, the initializer is evaluated and the field assignment performed exactly
once, when the interface is initialized (§12.4.2).

Note that interface fields that are constant variables (§4.12.4) are initialized before
other interface fields. This also applies to static fields that are constant variables
in classes (§8.3.2). Such fields will never be observed to have their default initial
values (§4.12.5), even by devious programs.

Example 9.3.1-1. Forward Reference to a Field

interface Test {
 float f = j;
 int j = 1;
 int k = k + 1;

9.4 Method Declarations INTERFACES

288

}

This program causes two compile-time errors, because j is referred to in the initialization
of f before j is declared, and because the initialization of k refers to k itself.

9.4 Method Declarations

InterfaceMethodDeclaration:
{InterfaceMethodModifier} MethodHeader MethodBody

InterfaceMethodModifier:
(one of)
Annotation public
abstract default static strictfp

The following productions from §8.4, §8.4.5, and §8.4.7 are shown here for convenience:

MethodHeader:
Result MethodDeclarator [Throws]
TypeParameters {Annotation} Result MethodDeclarator [Throws]

Result:
UnannType
void

MethodDeclarator:
Identifier ([FormalParameterList]) [Dims]

MethodBody:
Block
;

The rules for annotation modifiers on an interface method declaration are specified
in §9.7.4 and §9.7.5.

Every method declaration in the body of an interface is implicitly public (§6.6). It
is permitted, but discouraged as a matter of style, to redundantly specify the public
modifier for a method declaration in an interface.

A default method is a method that is declared in an interface with the default
modifier; its body is always represented by a block. It provides a default
implementation for any class that implements the interface without overriding the
method. Default methods are distinct from concrete methods (§8.4.3.1), which are
declared in classes.

INTERFACES Method Declarations 9.4

289

An interface can declare static methods, which are invoked without reference to
a particular object.

It is a compile-time error to use the name of a type parameter of any surrounding
declaration in the header or body of a static method of an interface.

The effect of the strictfp modifier is to make all float or double expressions
within the body of a default or static method be explicitly FP-strict (§15.4).

An interface method lacking a default modifier or a static modifier is implicitly
abstract, so its body is represented by a semicolon, not a block. It is permitted,
but discouraged as a matter of style, to redundantly specify the abstract modifier
for such a method declaration.

It is a compile-time error if the same keyword appears more than once as a modifier
for a method declaration in an interface.

It is a compile-time error if a method is declared with more than one of the modifiers
abstract, default, or static.

It is a compile-time error if an abstract method declaration contains the keyword
strictfp.

It is a compile-time error for the body of an interface to declare, explicitly or
implicitly, two methods with override-equivalent signatures (§8.4.2). However, an
interface may inherit several abstract methods with such signatures (§9.4.1).

A method in an interface may be generic. The rules for type parameters of a generic
method in an interface are the same as for a generic method in a class (§8.4.4).

9.4.1 Inheritance and Overriding

An interface I inherits from its direct superinterfaces all abstract and default
methods m for which all of the following are true:

• m is a member of a direct superinterface, J, of I.

• No method declared in I has a signature that is a subsignature (§8.4.2) of the
signature of m.

• There exists no method m' that is a member of a direct superinterface, J', of I (m
distinct from m', J distinct from J'), such that m' overrides from J' the declaration
of the method m.

Note that methods are overridden on a signature-by-signature basis. If, for example, an
interface declares two public methods with the same name (§9.4.2), and a subinterface
overrides one of them, the subinterface still inherits the other method.

9.4 Method Declarations INTERFACES

290

The third clause above prevents a subinterface from re-inheriting a method that has already
been overridden by another of its superinterfaces. For example, in this program:

interface Top {
 default String name() { return "unnamed"; }
}
interface Left extends Top {
 default String name() { return getClass().getName(); }
}
interface Right extends Top {}

interface Bottom extends Left, Right {}

Right inherits name() from Top, but Bottom inherits name() from Left, not Right.
This is because name() from Left overrides the declaration of name() in Top.

An interface does not inherit static methods from its superinterfaces.

If an interface I declares a static method m, and the signature of m is a subsignature
of an instance method m' in a superinterface of I, and m' would otherwise be
accessible to code in I, then a compile-time error occurs.

In essence, a static method in an interface cannot "hide" an instance method in a
superinterface. This is similar to the rule in §8.4.8.2 whereby a static method in a class
cannot hide an instance method in a superclass or superinterface. Note that the rule in
§8.4.8.2 speaks of a class that "declares or inherits a static method", whereas the rule
above speaks only of an interface that "declares a static method", since an interface
cannot inherit a static method. Also note that the rule in §8.4.8.2 allows hiding of
both instance and static methods in superclasses/superinterfaces, whereas the rule above
considers only instance methods in superinterfaces.

9.4.1.1 Overriding (by Instance Methods)

An instance method m1, declared in or inherited by an interface I, overrides from
I another instance method, m2, declared in interface J, iff both of the following are
true:

• I is a subinterface of J.

• The signature of m1 is a subsignature (§8.4.2) of the signature of m2.

The presence or absence of the strictfp modifier has absolutely no effect on the
rules for overriding methods. For example, it is permitted for a method that is not
FP-strict to override an FP-strict method and it is permitted for an FP-strict method
to override a method that is not FP-strict.

An overridden default method can be accessed by using a method invocation expression
(§15.12) that contains the keyword super qualified by a superinterface name.

INTERFACES Method Declarations 9.4

291

9.4.1.2 Requirements in Overriding

The relationship between the return type of an interface method and the return types
of any overridden interface methods is specified in §8.4.8.3.

The relationship between the throws clause of an interface method and the throws
clauses of any overridden interface methods are specified in §8.4.8.3.

The relationship between the signature of an interface method and the signatures
of overridden interface methods are specified in §8.4.8.3.

It is a compile-time error if a default method is override-equivalent with a non-
private method of the class Object, because any class implementing the interface
will inherit its own implementation of the method.

The prohibition against declaring one of the Object methods as a default method may
be surprising. There are, after all, cases like java.util.List in which the behavior of
toString and equals are precisely defined. The motivation becomes clearer, however,
when some broader design decisions are understood:

• First, methods inherited from a superclass are allowed to override methods inherited
from superinterfaces (§8.4.8.1). So, every implementing class would automatically
override an interface's toString default. This is longstanding behavior in the Java
programming language. It is not something we wish to change with the design of
default methods, because that would conflict with the goal of allowing interfaces to
unobtrusively evolve, only providing default behavior when a class doesn't already have
it through the class hierarchy.

• Second, interfaces do not inherit from Object, but rather implicitly declare many of the
same methods as Object (§9.2). So, there is no common ancestor for the toString
declared in Object and the toString declared in an interface. At best, if both were
candidates for inheritance by a class, they would conflict. Working around this problem
would require awkward commingling of the class and interface inheritance trees.

• Third, use cases for declaring Object methods in interfaces typically assume a linear
interface hierarchy; the feature does not generalize very well to multiple inheritance
scenarios.

• Fourth, the Object methods are so fundamental that it seems dangerous to allow an
arbitrary superinterface to silently add a default method that changes their behavior.

An interface is free, however, to define another method that provides behavior useful for
classes that override the Object methods. For example, the java.util.List interface
could declare an elementString method that produces the string described by the contract
of toString; implementors of toString in classes could then delegate to this method.

9.4.1.3 Inheriting Methods with Override-Equivalent Signatures

It is possible for an interface to inherit several methods with override-equivalent
signatures (§8.4.2).

9.4 Method Declarations INTERFACES

292

If an interface I inherits a default method whose signature is override-equivalent
with another method inherited by I, then a compile-time error occurs. (This is the
case whether the other method is abstract or default.)

Otherwise, all the inherited methods are abstract, and the interface is considered
to inherit all the methods.

One of the inherited methods must be return-type-substitutable for every other
inherited method, or else a compile-time error occurs. (The throws clauses do not
cause errors in this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, results in a
compile-time error.

Naturally, when two different default methods with matching signatures are inherited by a
subinterface, there is a behavioral conflict. We actively detect this conflict and notify the
developer with an error, rather than waiting for the problem to arise when a concrete class
is compiled. The error can be avoided by declaring a new method that overrides, and thus
prevents the inheritance of, all conflicting methods.

Similarly, when an abstract and a default method with matching signatures are inherited,
we produce an error. In this case, it would be possible to give priority to one or the other
- perhaps we would assume that the default method provides a reasonable implementation
for the abstract method, too. But this is risky, since other than the coincidental name and
signature, we have no reason to believe that the default method behaves consistently with
the abstract method's contract - the default method may not have even existed when the
subinterface was originally developed. It is safer in this situation to ask the user to actively
assert that the default implementation is appropriate (via an overriding declaration).

In contrast, the longstanding behavior for inherited concrete methods in classes is that they
override abstract methods declared in interfaces (see §8.4.8). The same argument about
potential contract violation applies here, but in this case there is an inherent imbalance
between classes and interfaces. We prefer, in order to preserve the independent nature of
class hierarchies, to minimize class-interface clashes by simply giving priority to concrete
methods.

9.4.2 Overloading

If two methods of an interface (whether both declared in the same interface, or both
inherited by an interface, or one declared and one inherited) have the same name
but different signatures that are not override-equivalent (§8.4.2), then the method
name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws

INTERFACES Member Type Declarations 9.5

293

clauses of two methods with the same name but different signatures that are not
override-equivalent.

Example 9.4.2-1. Overloading an abstract Method Declaration

interface PointInterface {
 void move(int dx, int dy);
}
interface RealPointInterface extends PointInterface {
 void move(float dx, float dy);
 void move(double dx, double dy);
}

Here, the method named move is overloaded in interface RealPointInterface with three
different signatures, two of them declared and one inherited. Any non-abstract class that
implements interface RealPointInterface must provide implementations of all three
method signatures.

9.4.3 Interface Method Body

A default method has a block body. This block of code provides an implementation
of the method in the event that a class implements the interface but does not provide
its own implementation of the method.

A static method also has a block body, which provides the implementation of
the method.

It is a compile-time error if an interface method declaration is abstract (explicitly
or implicitly) and has a block for its body.

It is a compile-time error if an interface method declaration is default or static
and has a semicolon for its body.

It is a compile-time error for the body of a static method to attempt to reference
the current object using the keyword this or the keyword super.

The rules for return statements in a method body are specified in §14.17.

If a method is declared to have a return type (§8.4.5), then a compile-time error
occurs if the body of the method can complete normally (§14.1).

9.5 Member Type Declarations

Interfaces may contain member type declarations (§8.5).

9.6 Annotation Types INTERFACES

294

A member type declaration in an interface is implicitly public and static. It is
permitted to redundantly specify either or both of these modifiers.

It is a compile-time error if a member type declaration in an interface has the
modifier protected or private.

It is a compile-time error if the same keyword appears more than once as a modifier
for a member type declaration in an interface.

If an interface declares a member type with a certain name, then the declaration of
that type is said to hide any and all accessible declarations of member types with
the same name in superinterfaces of the interface.

An interface inherits from its direct superinterfaces all the non-private member
types of the superinterfaces that are both accessible to code in the interface and not
hidden by a declaration in the interface.

An interface may inherit two or more type declarations with the same name. It
is a compile-time error to attempt to refer to any ambiguously inherited class or
interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once; it may be referred to by
its simple name without ambiguity.

9.6 Annotation Types

An annotation type declaration specifies a new annotation type, a special kind
of interface type. To distinguish an annotation type declaration from a normal
interface declaration, the keyword interface is preceded by an at-sign (@).

AnnotationTypeDeclaration:
{InterfaceModifier} @ interface Identifier AnnotationTypeBody

Note that the at-sign (@) and the keyword interface are distinct tokens. It is possible to
separate them with whitespace, but this is discouraged as a matter of style.

The rules for annotation modifiers on an annotation type declaration are specified
in §9.7.4 and §9.7.5.

The Identifier in an annotation type declaration specifies the name of the annotation
type.

INTERFACES Annotation Types 9.6

295

It is a compile-time error if an annotation type has the same simple name as any
of its enclosing classes or interfaces.

The direct superinterface of every annotation type is
java.lang.annotation.Annotation.

By virtue of the AnnotationTypeDeclaration syntax, an annotation type declaration cannot
be generic, and no extends clause is permitted.

A consequence of the fact that an annotation type cannot explicitly declare a superclass
or superinterface is that a subclass or subinterface of an annotation type is never itself
an annotation type. Similarly, java.lang.annotation.Annotation is not itself an
annotation type.

An annotation type inherits several members from
java.lang.annotation.Annotation, including the implicitly declared methods
corresponding to the instance methods of Object, yet these methods do not define
elements of the annotation type (§9.6.1).

Because these methods do not define elements of the annotation type, it is illegal to use
them in annotations of that type (§9.7). Without this rule, we could not ensure that elements
were of the types representable in annotations, or that accessor methods for them would
be available.

Unless explicitly modified herein, all of the rules that apply to normal interface
declarations apply to annotation type declarations.

For example, annotation types share the same namespace as normal class and interface
types; and annotation type declarations are legal wherever interface declarations are legal,
and have the same scope and accessibility.

9.6.1 Annotation Type Elements

The body of an annotation type may contain method declarations, each of which
defines an element of the annotation type. An annotation type has no elements other
than those defined by the methods it explicitly declares.

AnnotationTypeBody:
{ {AnnotationTypeMemberDeclaration} }

9.6 Annotation Types INTERFACES

296

AnnotationTypeMemberDeclaration:
AnnotationTypeElementDeclaration
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration
;

AnnotationTypeElementDeclaration:
{AnnotationTypeElementModifier} UnannType Identifier () [Dims]

 [DefaultValue] ;

AnnotationTypeElementModifier:
(one of)
Annotation public
abstract

By virtue of the AnnotationTypeElementDeclaration production, a method declaration in an
annotation type declaration cannot have formal parameters, type parameters, or a throws
clause. The following production from §4.3 is shown here for convenience:

Dims:
{Annotation} [] {{Annotation} []}

By virtue of the AnnotationTypeElementModifier production, a method declaration in an
annotation type declaration cannot be default or static. Thus, an annotation type
cannot declare the same variety of methods as a normal interface type. Note that it is still
possible for an annotation type to inherit a default method from its implicit superinterface,
java.lang.annotation.Annotation, though no such default method exists as of Java
SE 8.

By convention, the only AnnotationTypeElementModifiers that should be present on an
annotation type element are annotations.

The return type of a method declared in an annotation type must be one of the
following, or a compile-time error occurs:

• A primitive type

• String

• Class or an invocation of Class (§4.5)

• An enum type

• An annotation type

• An array type whose component type is one of the preceding types (§10.1).

INTERFACES Annotation Types 9.6

297

This rule precludes elements with nested array types, such as:

@interface Verboten {
 String[][] value();
}

The declaration of a method that returns an array is allowed to place the bracket
pair that denotes the array type after the empty formal parameter list. This syntax is
supported for compatibility with early versions of the Java programming language.
It is very strongly recommended that this syntax is not used in new code.

It is a compile-time error if any method declared in an annotation type has a
signature that is override-equivalent to that of any public or protected method
declared in class Object or in the interface java.lang.annotation.Annotation.

It is a compile-time error if an annotation type declaration T contains an element
of type T, either directly or indirectly.

For example, this is illegal:

@interface SelfRef { SelfRef value(); }

and so is this:

@interface Ping { Pong value(); }
@interface Pong { Ping value(); }

An annotation type with no elements is called a marker annotation type.

An annotation type with one element is called a single-element annotation type.

By convention, the name of the sole element in a single-element annotation type
is value. Linguistic support for this convention is provided by single-element
annotations (§9.7.3).

Example 9.6.1-1. Annotation Type Declaration

The following annotation type declaration defines an annotation type with several elements:

/**
 * Describes the "request-for-enhancement" (RFE)
 * that led to the presence of the annotated API element.
 */
@interface RequestForEnhancement {
 int id(); // Unique ID number associated with RFE
 String synopsis(); // Synopsis of RFE
 String engineer(); // Name of engineer who implemented RFE
 String date(); // Date RFE was implemented

9.6 Annotation Types INTERFACES

298

}

Example 9.6.1-2. Marker Annotation Type Declaration

The following annotation type declaration defines a marker annotation type:

/**
 * An annotation with this type indicates that the
 * specification of the annotated API element is
 * preliminary and subject to change.
 */
@interface Preliminary {}

Example 9.6.1-3. Single-Element Annotation Type Declarations

The convention that a single-element annotation type defines an element called value is
illustrated in the following annotation type declaration:

/**
 * Associates a copyright notice with the annotated API element.
 */
@interface Copyright {
 String value();
}

The following annotation type declaration defines a single-element annotation type whose
sole element has an array type:

/**
 * Associates a list of endorsers with the annotated class.
 */
@interface Endorsers {
 String[] value();
}

The following annotation type declaration shows a Class-typed element whose value is
constrained by a bounded wildcard:

interface Formatter {}

// Designates a formatter to pretty-print the annotated class
@interface PrettyPrinter {
 Class<? extends Formatter> value();
}

The following annotation type declaration contains an element whose type is also an
annotation type:

/**

INTERFACES Annotation Types 9.6

299

 * Indicates the author of the annotated program element.
 */
@interface Author {
 Name value();
}
/**
 * A person's name. This annotation type is not designed
 * to be used directly to annotate program elements, but to
 * define elements of other annotation types.
 */
@interface Name {
 String first();
 String last();
}

The grammar for annotation type declarations permits other element declarations besides
method declarations. For example, one might choose to declare a nested enum for use in
conjunction with an annotation type:

@interface Quality {
 enum Level { BAD, INDIFFERENT, GOOD }
 Level value();
}

9.6.2 Defaults for Annotation Type Elements

An annotation type element may have a default value, specified by following the
element's (empty) parameter list with the keyword default and an ElementValue
(§9.7.1).

DefaultValue:
default ElementValue

It is a compile-time error if the type of the element is not commensurate (§9.7) with
the default value specified.

Default values are not compiled into annotations, but rather applied dynamically
at the time annotations are read. Thus, changing a default value affects annotations
even in classes that were compiled before the change was made (presuming these
annotations lack an explicit value for the defaulted element).

Example 9.6.2-1. Annotation Type Declaration With Default Values

Here is a refinement of the RequestForEnhancement annotation type from §9.6.1:

@interface RequestForEnhancementDefault {
 int id(); // No default - must be specified in
 // each annotation

9.6 Annotation Types INTERFACES

300

 String synopsis(); // No default - must be specified in
 // each annotation
 String engineer() default "[unassigned]";
 String date() default "[unimplemented]";
}

9.6.3 Repeatable Annotation Types

An annotation type T is repeatable if its declaration is (meta-)annotated with an
@Repeatable annotation (§9.6.4.8) whose value element indicates a containing
annotation type of T.

An annotation type TC is a containing annotation type of T if all of the following
are true:

1. TC declares a value() method whose return type is T[].

2. Any methods declared by TC other than value() have a default value.

3. TC is retained for at least as long as T, where retention is expressed explicitly
or implicitly with the @Retention annotation (§9.6.4.2). Specifically:

• If the retention of TC is
java.lang.annotation.RetentionPolicy.SOURCE, then the retention of T
is java.lang.annotation.RetentionPolicy.SOURCE.

• If the retention of TC is java.lang.annotation.RetentionPolicy.CLASS,
then the retention of T is either
java.lang.annotation.RetentionPolicy.CLASS or
java.lang.annotation.RetentionPolicy.SOURCE.

• If the retention of TC is
java.lang.annotation.RetentionPolicy.RUNTIME, then the retention
of T is java.lang.annotation.RetentionPolicy.SOURCE,
java.lang.annotation.RetentionPolicy.CLASS, or
java.lang.annotation.RetentionPolicy.RUNTIME.

4. T is applicable to at least the same kinds of program element as TC (§9.6.4.1).
Specifically, if the kinds of program element where T is applicable are denoted
by the set m1, and the kinds of program element where TC is applicable are
denoted by the set m2, then each kind in m2 must occur in m1, except that:

• If the kind in m2 is
java.lang.annotation.ElementType.ANNOTATION_TYPE, then at least
one of java.lang.annotation.ElementType.ANNOTATION_TYPE or
java.lang.annotation.ElementType.TYPE or
java.lang.annotation.ElementType.TYPE_USE must occur in m1.

INTERFACES Annotation Types 9.6

301

• If the kind in m2 is java.lang.annotation.ElementType.TYPE,
then at least one of java.lang.annotation.ElementType.TYPE or
java.lang.annotation.ElementType.TYPE_USE must occur in m1.

• If the kind in m2 is
java.lang.annotation.ElementType.TYPE_PARAMETER, then at least
one of java.lang.annotation.ElementType.TYPE_PARAMETER or
java.lang.annotation.ElementType.TYPE_USE must occur in m1.

This clause implements the policy that an annotation type may be repeatable on only
some of the kinds of program element where it is applicable.

5. If the declaration of T has a (meta-)annotation that corresponds to
java.lang.annotation.Documented, then the declaration of TC must have a
(meta-)annotation that corresponds to java.lang.annotation.Documented.

Note that it is permissible for TC to be @Documented while T is not @Documented.

6. If the declaration of T has a (meta-)annotation that corresponds to
java.lang.annotation.Inherited, then the declaration of TC must have a
(meta)-annotation that corresponds to java.lang.annotation.Inherited.

Note that it is permissible for TC to be @Inherited while T is not @Inherited.

It is a compile-time error if an annotation type T is (meta-)annotated with an
@Repeatable annotation whose value element indicates a type which is not a
containing annotation type of T.

Example 9.6.3-1. Ill-formed Containing Annotation Type

Consider the following declarations:

@Repeatable(FooContainer.class)
@interface Foo {}

@interface FooContainer { Object[] value(); }

Compiling the Foo declaration produces a compile-time error because Foo uses
@Repeatable to attempt to specify FooContainer as its containing annotation type, but
FooContainer is not in fact a containing annotation type of Foo. (The return type of
FooContainer.value() is not Foo[].)

The @Repeatable annotation cannot be repeated, so only one containing annotation
type can be specified by a repeatable annotation type.

9.6 Annotation Types INTERFACES

302

Allowing more than one containing annotation type to be specified would cause an
undesirable choice at compile time, when multiple annotations of the repeatable annotation
type are logically replaced with a container annotation (§9.7.5).

An annotation type can be the containing annotation type of at most one annotation
type.

This is implied by the requirement that if the declaration of an annotation type T specifies
a containing annotation type of TC, then the value() method of TC has a return type
involving T, specifically T[].

An annotation type cannot specify itself as its containing annotation type.

This is implied by the requirement on the value() method of the containing annotation
type. Specifically, if an annotation type A specified itself (via @Repeatable) as its
containing annotation type, then the return type of A's value() method would have to be
A[]; but this would cause a compile-time error since an annotation type cannot refer to itself
in its elements (§9.6.1). More generally, two annotation types cannot specify each other to
be their containing annotation types, because cyclic annotation type declarations are illegal.

An annotation type TC may be the containing annotation type of some annotation
type T while also having its own containing annotation type TC '. That is, a
containing annotation type may itself be a repeatable annotation type.

Example 9.6.3-2. Restricting Where Annotations May Repeat

An annotation whose type declaration indicates a target of
java.lang.annotation.ElementType.TYPE can appear in at least as many
locations as an annotation whose type declaration indicates a target of
java.lang.annotation.ElementType.ANNOTATION_TYPE. For example, given the
following declarations of repeatable and containing annotation types:

@Target(ElementType.TYPE)
@Repeatable(FooContainer.class)
@interface Foo {}

@Target(ElementType.ANNOTATION_TYPE)
@Interface FooContainer {
 Foo[] value();
}

@Foo can appear on any type declaration while @FooContainer can appear on only
annotation type declarations. Therefore, the following annotation type declaration is legal:

@Foo @Foo
@interface X {}

while the following interface declaration is illegal:

INTERFACES Annotation Types 9.6

303

@Foo @Foo
interface X {}

More broadly, if Foo is a repeatable annotation type and FooContainer is its containing
annotation type, then:

• If Foo has no @Target meta-annotation and FooContainer has no @Target meta-
annotation, then @Foo may be repeated on any program element which supports
annotations.

• If Foo has no @Target meta-annotation but FooContainer has an @Target
meta-annotation, then @Foo may only be repeated on program elements where
@FooContainer may appear.

• If Foo has an @Target meta-annotation, then in the judgment of the designers of the
Java programming language, FooContainer must be declared with knowledge of the
Foo's applicability. Specifically, the kinds of program element where FooContainer
may appear must logically be the same as, or a subset of, Foo's kinds.

For example, if Foo is applicable to field and method declarations, then
FooContainer may legitimately serve as Foo's containing annotation type if
FooContainer is applicable to just field declarations (preventing @Foo from
being repeated on method declarations). But if FooContainer is applicable only
to formal parameter declarations, then FooContainer was a poor choice of
containing annotation type by Foo because @FooContainer cannot be implicitly
declared on some program elements where @Foo is repeated.

Similarly, if Foo is applicable to field and method declarations, then
FooContainer cannot legitimately serve as Foo's containing annotation type if
FooContainer is applicable to field and parameter declarations. While it would
be possible to take the intersection of the program elements and make Foo
repeatable on field declarations only, the presence of additional program elements
for FooContainer indicates that FooContainer was not designed as a containing
annotation type for Foo. It would therefore be dangerous for Foo to rely on it.

Example 9.6.3-3. A Repeatable Containing Annotation Type

The following declarations are legal:

// Foo: Repeatable annotation type
@Repeatable(FooContainer.class)
@interface Foo { int value(); }

// FooContainer: Containing annotation type of Foo
// Also a repeatable annotation type itself
@Repeatable(FooContainerContainer.class)
@interface FooContainer { Foo[] value(); }

// FooContainerContainer: Containing annotation type of FooContainer
@interface FooContainerContainer { FooContainer[] value(); }

Thus, an annotation whose type is a containing annotation type may itself be repeated:

9.6 Annotation Types INTERFACES

304

@FooContainer({@Foo(1)}) @FooContainer({@Foo(2)})
class A {}

An annotation type which is both repeatable and containing is subject to the rules on
mixing annotations of repeatable annotation type with annotations of containing annotation
type (§9.7.5). For example, it is not possible to write multiple @Foo annotations alongside
multiple @FooContainer annotations, nor is it possible to write multiple @FooContainer
annotations alongside multiple @FooContainerContainer annotations. However, if the
FooContainerContainer type was itself repeatable, then it would be possible to write
multiple @Foo annotations alongside multiple @FooContainerContainer annotations.

9.6.4 Predefined Annotation Types

Several annotation types are predefined in the libraries of the Java SE platform.
Some of these predefined annotation types have special semantics. These semantics
are specified in this section. This section does not provide a complete specification
for the predefined annotations contained here in; that is the role of the appropriate
API specifications. Only those semantics that require special behavior on the part
of a Java compiler or Java Virtual Machine implementation are specified here.

9.6.4.1 @Target

An annotation of type java.lang.annotation.Target is used on the
declaration of an annotation type T to specify the contexts in which T is
applicable. java.lang.annotation.Target has a single element, value, of type
java.lang.annotation.ElementType[], to specify contexts.

Annotation types may be applicable in declaration contexts, where annotations
apply to declarations, or in type contexts, where annotations apply to types used in
declarations and expressions.

There are eight declaration contexts, each corresponding to an enum constant of
java.lang.annotation.ElementType:

1. Package declarations (§7.4.1)

Corresponds to java.lang.annotation.ElementType.PACKAGE

2. Type declarations: class, interface, enum, and annotation type declarations
(§8.1.1, §9.1.1, §8.5, §9.5, §8.9, §9.6)

Corresponds to java.lang.annotation.ElementType.TYPE

Additionally, annotation type declarations correspond to
java.lang.annotation.ElementType.ANNOTATION_TYPE

INTERFACES Annotation Types 9.6

305

3. Method declarations (including elements of annotation types) (§8.4.3, §9.4,
§9.6.1)

Corresponds to java.lang.annotation.ElementType.METHOD

4. Constructor declarations (§8.8.3)

Corresponds to java.lang.annotation.ElementType.CONSTRUCTOR

5. Type parameter declarations of generic classes, interfaces, methods, and
constructors (§8.1.2, §9.1.2, §8.4.4, §8.8.4)

Corresponds to java.lang.annotation.ElementType.TYPE_PARAMETER

6. Field declarations (including enum constants) (§8.3.1, §9.3, §8.9.1)

Corresponds to java.lang.annotation.ElementType.FIELD

7. Formal and exception parameter declarations (§8.4.1, §9.4, §14.20)

Corresponds to java.lang.annotation.ElementType.PARAMETER

8. Local variable declarations (including loop variables of for statements
and resource variables of try-with-resources statements) (§14.4, §14.14.1,
§14.14.2, §14.20.3)

Corresponds to java.lang.annotation.ElementType.LOCAL_VARIABLE

There are 16 type contexts (§4.11), all represented by the enum constant TYPE_USE
of java.lang.annotation.ElementType.

It is a compile-time error if the same enum constant appears more than once in the
value element of an annotation of type java.lang.annotation.Target.

If an annotation of type java.lang.annotation.Target is not present on the
declaration of an annotation type T, then T is applicable in all declaration contexts
except type parameter declarations, and in no type contexts.

These contexts are the syntactic locations where annotations were allowed in Java SE 7.

9.6.4.2 @Retention

Annotations may be present only in source code, or they may be present in the
binary form of a class or interface. An annotation that is present in the binary form
may or may not be available at run time via the reflection libraries of the Java
SE platform. The annotation type java.lang.annotation.Retention is used to
choose among these possibilities.

9.6 Annotation Types INTERFACES

306

If an annotation a corresponds to a type T, and T has a (meta-)annotation m that
corresponds to java.lang.annotation.Retention, then:

• If m has an element whose value is
java.lang.annotation.RetentionPolicy.SOURCE, then a Java compiler must
ensure that a is not present in the binary representation of the class or interface
in which a appears.

• If m has an element whose value is
java.lang.annotation.RetentionPolicy.CLASS or
java.lang.annotation.RetentionPolicy.RUNTIME, then a Java compiler
must ensure that a is represented in the binary representation of the class or
interface in which a appears, unless m annotates a local variable declaration.

An annotation on a local variable declaration is never retained in the binary
representation.

In addition, if m has an element whose value is
java.lang.annotation.RetentionPolicy.RUNTIME, the reflection libraries of
the Java SE platform must make a available at run time.

If T does not have a (meta-)annotation m that corresponds to
java.lang.annotation.Retention, then a Java compiler must treat T as if
it does have such a meta-annotation m with an element whose value is
java.lang.annotation.RetentionPolicy.CLASS.

9.6.4.3 @Inherited

The annotation type java.lang.annotation.Inherited is used to indicate that
annotations on a class C corresponding to a given annotation type are inherited by
subclasses of C.

9.6.4.4 @Override

Programmers occasionally overload a method declaration when they mean to
override it, leading to subtle problems. The annotation type Override supports
early detection of such problems.

The classic example concerns the equals method. Programmers write the following in
class Foo:

public boolean equals(Foo that) { ... }

when they mean to write:

INTERFACES Annotation Types 9.6

307

public boolean equals(Object that) { ... }

This is perfectly legal, but class Foo inherits the equals implementation from Object,
which can cause some very subtle bugs.

If a method declaration is annotated with the annotation @Override, but the method
does not override or implement a method declared in a supertype, or is not override-
equivalent to a public method of Object, a compile-time error occurs.

This behavior differs from Java SE 5.0, where @Override only caused a compile-time
error if applied to a method that implemented a method from a superinterface that was not
also present in a superclass.

The clause about overriding a public method is motivated by use of @Override in an
interface. Consider the following type declarations:

class Foo { @Override public int hashCode() {..} }
interface Bar { @Override int hashCode(); }

The use of @Override in the class declaration is legal by the first clause, because
Foo.hashCode overrides Object.hashCode (§8.4.8).

For the interface declaration, consider that while an interface does not have Object as
a supertype, an interface does have public abstract members that correspond to the
public members of Object (§9.2). If an interface chooses to declare them explicitly (i.e.
to declare members that are override-equivalent to public methods of Object), then the
interface is deemed to override them (§8.4.8), and use of @Override is allowed.

However, consider an interface that attempts to use @Override on a clone method:
(finalize could also be used in this example)

interface Quux { @Override Object clone(); }

Because Object.clone is not public, there is no member called clone implicitly
declared in Quux. Therefore, the explicit declaration of clone in Quux is not deemed
to "implement" any other method, and it is erroneous to use @Override. (The fact that
Quux.clone is public is not relevant.)

In contrast, a class declaration that declares clone is simply overriding Object.clone,
so is able to use @Override:

class Beep { @Override protected Object clone() {..} }

9.6.4.5 @SuppressWarnings

Java compilers are increasingly capable of issuing helpful "lint-like" warnings.
To encourage the use of such warnings, there should be some way to disable a

9.6 Annotation Types INTERFACES

308

warning in a part of the program when the programmer knows that the warning is
inappropriate.

The annotation type SuppressWarnings supports programmer control over
warnings otherwise issued by a Java compiler. It contains a single element that is
an array of String.

If a program declaration is annotated with the annotation
@SuppressWarnings(value = {S1, ..., Sk}), then a Java compiler must not
report any warning identified by one of S1 ... Sk if that warning would have been
generated as a result of the annotated declaration or any of its parts.

Unchecked warnings are identified by the string "unchecked".

Compiler vendors should document the warning names they support in conjunction with
this annotation type. Vendors are encouraged to cooperate to ensure that the same names
work across multiple compilers.

9.6.4.6 @Deprecated

A program element annotated @Deprecated is one that programmers are
discouraged from using, typically because it is dangerous, or because a better
alternative exists.

A Java compiler must produce a deprecation warning when a type, method, field, or
constructor whose declaration is annotated with @Deprecated is used (overridden,
invoked, or referenced by name) in a construct which is explicitly or implicitly
declared, unless:

• The use is within an entity that is itself annotated with the annotation
@Deprecated; or

• The use is within an entity that is annotated to suppress the warning with the
annotation @SuppressWarnings("deprecation"); or

• The use and declaration are both within the same outermost class.

Use of the @Deprecated annotation on a local variable declaration or on a parameter
declaration has no effect.

The only implicitly declared construct that can cause a deprecation warning is a container
annotation (§9.7.5). Namely, if T is a repeatable annotation type and TC is its containing
annotation type, and TC is deprecated, then repeating the @T annotation will cause a
deprecation warning. The warning is due to the implicit @TC container annotation. It is
strongly discouraged to deprecate a containing annotation type without deprecating the
corresponding repeatable annotation type.

INTERFACES Annotation Types 9.6

309

9.6.4.7 @SafeVarargs

A variable arity parameter with a non-reifiable element type (§4.7) can cause heap
pollution (§4.12.2) and give rise to compile-time unchecked warnings (§5.1.9).
Such warnings are uninformative if the body of the variable arity method is well-
behaved with respect to the variable arity parameter.

The annotation type SafeVarargs, when used to annotate a method or constructor
declaration, makes a programmer assertion that prevents a Java compiler from
reporting unchecked warnings for the declaration or invocation of a variable arity
method or constructor where the compiler would otherwise do so due to the variable
arity parameter having a non-reifiable element type.

The annotation @SafeVarargs has non-local effects because it suppresses unchecked
warnings at method invocation expressions in addition to an unchecked warning pertaining
to the declaration of the variable arity method itself (§8.4.1). In contrast, the annotation
@SuppressWarnings("unchecked") has local effects because it only suppresses
unchecked warnings pertaining to the declaration of a method.

The canonical target for @SafeVarargs is a method like
java.util.Collections.addAll, whose declaration starts with:

public static <T> boolean
 addAll(Collection<? super T> c, T... elements)

The variable arity parameter has declared type T[], which is non-reifiable. However,
the method fundamentally just reads from the input array and adds the elements
to a collection, both of which are safe operations with respect to the array.
Therefore, any compile-time unchecked warnings at method invocation expressions for
java.util.Collections.addAll are arguably spurious and uninformative. Applying
@SafeVarargs to the method declaration prevents generation of these unchecked warnings
at the method invocation expressions.

It is a compile-time error if a fixed arity method or constructor declaration is
annotated with the annotation @SafeVarargs.

It is a compile-time error if a variable arity method declaration that is neither
static nor final is annotated with the annotation @SafeVarargs.

Since @SafeVarargs is only applicable to static methods, final instance methods,
and constructors, the annotation is not usable where method overriding occurs. Annotation
inheritance only works on classes (not methods, interfaces, or constructors), so an
@SafeVarargs-style annotation cannot be passed through instance methods in classes or
through interfaces.

9.7 Annotations INTERFACES

310

9.6.4.8 @Repeatable

The annotation type java.lang.annotation.Repeatable is used on the
declaration of a repeatable annotation type to indicate its containing annotation
type (§9.6.3).

Note that an @Repeatable meta-annotation on the declaration of T, indicating TC, is
not sufficient to make TC the containing annotation type of T. There are numerous well-
formedness rules for TC to be considered the containing annotation type of T.

9.6.4.9 @FunctionalInterface

The annotation type FunctionalInterface is used to indicate that an interface
is meant to be a functional interface (§9.8). It facilitates early detection of
inappropriate method declarations appearing in or inherited by an interface that is
meant to be functional.

It is a compile-time error if an interface declaration is annotated with
@FunctionalInterface but is not, in fact, a functional interface.

Because some interfaces are functional incidentally, it is not necessary or
desirable that all declarations of functional interfaces be annotated with
@FunctionalInterface.

9.7 Annotations

An annotation is a marker which associates information with a program construct,
but has no effect at run time. An annotation denotes a specific invocation of an
annotation type (§9.6) and usually provides values for the elements of that type.

There are three kinds of annotations. The first kind is the most general, while the
other kinds are merely shorthands for the first kind.

Annotation:
NormalAnnotation
MarkerAnnotation
SingleElementAnnotation

Normal annotations are described in §9.7.1, marker annotations in §9.7.2, and
single element annotations in §9.7.3. Annotations may appear at various syntactic
locations in a program, as described in §9.7.4. The number of annotations of the

INTERFACES Annotations 9.7

311

same type that may appear at a location is determined by their type, as described
in §9.7.5.

9.7.1 Normal Annotations

A normal annotation specifies the name of an annotation type and optionally a list
of comma-separated element-value pairs. Each pair contains an element value that
is associated with an element of the annotation type (§9.6.1).

NormalAnnotation:
@ TypeName ([ElementValuePairList])

ElementValuePairList:
ElementValuePair {, ElementValuePair}

ElementValuePair:
Identifier = ElementValue

ElementValue:
ConditionalExpression
ElementValueArrayInitializer
Annotation

ElementValueArrayInitializer:
{ [ElementValueList] [,] }

ElementValueList:
ElementValue {, ElementValue}

Note that the at-sign (@) is a token unto itself (§3.11). It is possible to put whitespace
between it and the TypeName, but this is discouraged as a matter of style.

The TypeName specifies the annotation type corresponding to the annotation. The
annotation is said to be "of" that type.

It is a compile-time error if TypeName does not specify an annotation type that is
accessible (§6.6) at the point where the annotation appears.

The Identifier in an element-value pair must be the simple name of one of the
elements (i.e. methods) of the annotation type, or a compile-time error occurs.

The return type of this method defines the element type of the element-value pair.

9.7 Annotations INTERFACES

312

If the element type is an array type, then it is not required to use curly
braces to specify the element value of the element-value pair. If the element
value is not an ElementValueArrayInitializer, then an array value whose sole
element is the element value is associated with the element. If the element
value is an ElementValueArrayInitializer, then the array value represented by the
ElementValueArrayInitializer is associated with the element.

It is a compile-time error if the element type is not commensurate with the element
value. An element type T is commensurate with an element value V if and only if
one of the following is true:

• T is an array type E[], and either:

– If V is a ConditionalExpression or an Annotation, then V is commensurate with
E; or

– If V is an ElementValueArrayInitializer, then each element value that V
contains is commensurate with E.

An ElementValueArrayInitializer is similar to a normal array initializer (§10.6),
except that an ElementValueArrayInitializer may syntactically contain annotations
as well as expressions and nested initializers. However, nested initializers are
not semantically legal in an ElementValueArrayInitializer because they are never
commensurate with array-typed elements in annotation type declarations (nested array
types not permitted).

• T is not an array type, and the type of V is assignment compatible (§5.2) with
T, and:

– If T is a primitive type or String, then V is a constant expression (§15.28).

– If T is Class or an invocation of Class (§4.5), then V is a class literal (§15.8.2).

– If T is an enum type (§8.9), then V is an enum constant (§8.9.1).

– V is not null.

Note that if T is not an array type or an annotation type, the element value must be a
ConditionalExpression (§15.25). The use of ConditionalExpression rather than a more
general production like Expression is a syntactic trick to prevent assignment expressions
as element values. Since an assignment expression is not a constant expression, it cannot
be a commensurate element value for a primitive or String-typed element.

Formally, it is invalid to speak of an ElementValue as FP-strict (§15.4) because it might be
an annotation or a class literal. Still, we can speak informally of ElementValue as FP-strict
when it is either a constant expression or an array of constant expressions or an annotation
whose element values are (recursively) found to be constant expressions; after all, every
constant expression is FP-strict.

INTERFACES Annotations 9.7

313

A normal annotation must contain an element-value pair for every element of the
corresponding annotation type, except for those elements with default values, or a
compile-time error occurs.

A normal annotation may, but is not required to, contain element-value pairs for
elements with default values.

It is customary, though not required, that element-value pairs in an annotation are presented
in the same order as the corresponding elements in the annotation type declaration.

An annotation on an annotation type declaration is known as a meta-annotation.

An annotation of type T may appear as a meta-annotation on the declaration of type
T itself. More generally, circularities in the transitive closure of the "annotates"
relation are permitted.

For example, it is legal to annotate the declaration of an annotation type S with a meta-
annotation of type T, and to annotate T's own declaration with a meta-annotation of type S.
The pre-defined annotation types contain several such circularities.

Example 9.7.1-1. Normal Annotations

Here is an example of a normal annotation using the annotation type from §9.6.1:

@RequestForEnhancement(
 id = 2868724,
 synopsis = "Provide time-travel functionality",
 engineer = "Mr. Peabody",
 date = "4/1/2004"
)
public static void travelThroughTime(Date destination) { ... }

Here is an example of a normal annotation that takes advantage of default values, using the
annotation type from §9.6.2:

@RequestForEnhancement(
 id = 4561414,
 synopsis = "Balance the federal budget"
)
public static void balanceFederalBudget() {
 throw new UnsupportedOperationException("Not implemented");
}

9.7.2 Marker Annotations

A marker annotation is a shorthand designed for use with marker annotation types
(§9.6.1).

9.7 Annotations INTERFACES

314

MarkerAnnotation:
@ TypeName

It is shorthand for the normal annotation:

@TypeName()

It is legal to use marker annotations for annotation types with elements, so long as
all the elements have default values (§9.6.2).

Example 9.7.2-1. Marker Annotations

Here is an example using the Preliminary marker annotation type from §9.6.1:

@Preliminary public class TimeTravel { ... }

9.7.3 Single-Element Annotations

A single-element annotation, is a shorthand designed for use with single-element
annotation types (§9.6.1).

SingleElementAnnotation:
@ TypeName (ElementValue)

It is shorthand for the normal annotation:

@TypeName(value = ElementValue)

It is legal to use single-element annotations for annotation types with multiple
elements, so long as one element is named value and all other elements have
default values (§9.6.2).

Example 9.7.3-1. Single-Element Annotations

The following annotations all use the single-element annotation types from §9.6.1.

Here is an example of a single-element annotation:

@Copyright("2002 Yoyodyne Propulsion Systems, Inc.")
public class OscillationOverthruster { ... }

Here is an example of an array-valued single-element annotation:

@Endorsers({"Children", "Unscrupulous dentists"})
public class Lollipop { ... }

INTERFACES Annotations 9.7

315

Here is an example of a single-element array-valued single-element annotation: (note that
the curly braces are omitted)

@Endorsers("Epicurus")
public class Pleasure { ... }

Here is an example of a single-element annotation with a Class-typed element whose value
is constrained by a bounded wildcard.

class GorgeousFormatter implements Formatter { ... }

@PrettyPrinter(GorgeousFormatter.class)
public class Petunia { ... }

// Illegal; String is not a subtype of Formatter
@PrettyPrinter(String.class)
public class Begonia { ... }

Here is an example with of a single-element annotation that contains a normal annotation:

@Author(@Name(first = "Joe", last = "Hacker"))
public class BitTwiddle { ... }

Here is an example of a single-element annotation that uses an enum type defined inside
the annotation type:

@Quality(Quality.Level.GOOD)
public class Karma { ... }

9.7.4 Where Annotations May Appear

A declaration annotation is an annotation that applies to a declaration, and whose
own type is applicable in the declaration context (§9.6.4.1) represented by that
declaration.

A type annotation is an annotation that applies to a type (or any part of a type), and
whose own type is applicable in type contexts (§4.11).

For example, given the field declaration:

@Foo int f;

@Foo is a declaration annotation on f if Foo is meta-annotated by
@Target(ElementType.FIELD), and a type annotation on int if Foo is meta-annotated
by @Target(ElementType.TYPE_USE). It is possible for @Foo to be both a declaration
annotation and a type annotation simultaneously.

9.7 Annotations INTERFACES

316

Type annotations can apply to an array type or any component type thereof (§10.1).
For example, assuming that A, B, and C are annotation types meta-annotated with
@Target(ElementType.TYPE_USE), then given the field declaration:

@C int @A [] @B [] f;

@A applies to the array type int[][], @B applies to its component type int[], and @C
applies to the element type int. For more examples, see §10.2.

An important property of this syntax is that, in two declarations that differ only in the
number of array levels, the annotations to the left of the type refer to the same type. For
example, @C applies to the type int in all of the following declarations:

@C int f;
@C int[] f;
@C int[][] f;

It is customary, though not required, to write declaration annotations before all other
modifiers, and type annotations immediately before the type to which they apply.

It is possible for an annotation to appear at a syntactic location in a program where
it could plausibly apply to a declaration, or a type, or both. This can happen in any
of the five declaration contexts where modifiers immediately precede the type of
the declared entity:

• Method declarations (including elements of annotation types)

• Constructor declarations

• Field declarations (including enum constants)

• Formal and exception parameter declarations

• Local variable declarations (including loop variables of for statements and
resource variables of try-with-resources statements)

The grammar of the Java programming language unambiguously treats annotations
at these locations as modifiers for a declaration (§8.3), but that is purely a syntactic
matter. Whether an annotation applies to a declaration or to the type of the declared
entity - and thus, whether the annotation is a declaration annotation or a type
annotation - depends on the applicability of the annotation's type:

• If the annotation's type is applicable in the declaration context corresponding to
the declaration, and not in type contexts, then the annotation is deemed to apply
only to the declaration.

• If the annotation's type is applicable in type contexts, and not in the declaration
context corresponding to the declaration, then the annotation is deemed to apply
only to the type which is closest to the annotation.

INTERFACES Annotations 9.7

317

• If the annotation's type is applicable in the declaration context corresponding to
the declaration and in type contexts, then the annotation is deemed to apply to
both the declaration and the type which is closest to the annotation.

In the second and third cases above, the type which is closest to the annotation is
the type written in source code for the declared entity; if that type is an array type,
then the element type is deemed to be closest to the annotation.

For example, in the field declaration @Foo public static String f;, the type which
is closest to @Foo is String. (If the type of the field declaration had been written as
java.lang.String, then java.lang.String would be the type closest to @Foo, and
later rules would prohibit a type annotation from applying to the package name java.) In
the generic method declaration @Foo <T> int[] m() {...}, the type written for the
declared entity is int[], so @Foo applies to the element type int.

Local variable declarations are similar to formal parameter declarations of lambda
expressions, in that both allow declaration annotations and type annotations in source code,
but only the type annotations can be stored in the class file.

There are two special cases involving method/constructor declarations:

• If an annotation appears before a constructor declaration and is deemed to apply
to the type which is closest to the annotation, that type is the type of the newly
constructed object. The type of the newly constructed object is the fully qualified
name of the type immediately enclosing the constructor declaration. Within that
fully qualified name, the annotation applies to the simple type name indicated
by the constructor declaration.

• If an annotation appears before a void method declaration and is deemed to apply
only to the type which is closest to the annotation, a compile-time error occurs.

It is a compile-time error if an annotation of type T is syntactically a modifier for:

• a package declaration, but T is not applicable to package declarations.

• a class, interface, or enum declaration, but T is not applicable to type declarations
or type contexts; or an annotation type declaration, but T is not applicable to
annotation type declarations or type declarations or type contexts.

• a method declaration (including an element of an annotation type), but T is not
applicable to method declarations or type contexts.

• a constructor declaration, but T is not applicable to constructor declarations or
type contexts.

• a type parameter declaration of a generic class, interface, method, or constructor,
but T is not applicable to type parameter declarations or type contexts.

9.7 Annotations INTERFACES

318

• a field declaration (including an enum constant), but T is not applicable to field
declarations or type contexts.

• a formal or exception parameter declaration, but T is not applicable to either
formal and exception parameter declarations or type contexts.

• a receiver parameter, but T is not applicable to type contexts.

• a local variable declaration (including a loop variable of a for statement or a
resource variable of a try-with-resources statement), but T is not applicable to
local variable declarations or type contexts.

Note that most of the clauses above mention "... or type contexts", because even if an
annotation does not apply to the declaration, it may still apply to the type of the declared
entity.

A type annotation is admissible if both of the following are true:

• The simple name to which the annotation is closest is classified as a TypeName,
not a PackageName.

• If the simple name to which the annotation is closest is followed by "." and
another TypeName - that is, the annotation appears as @Foo T.U - then U denotes
an inner class of T.

The intuition behind the second clause is that if Outer.this is legal in a nested class
enclosed by Outer, then Outer may be annotated because it represents the type of some
object at run time. On the other hand, if Outer.this is not legal - because the class where it
appears has no enclosing instance of Outer at run time - then Outer may not be annotated
because it is logically just a name, akin to components of a package name in a fully qualified
type name.

For example, in the following program, it is not possible to write A.this in the body of B,
as B has no lexically enclosing instances (8.5.1). Therefore, it is not possible to apply @Foo
to A in the type A.B, because A is logically just a name, not a type.

@Target(ElementType.TYPE_USE)
@interface Foo {}

class Test {
 class A {
 static class B {}
 }

 @Foo A.B x; // Illegal
}

On the other hand, in the following program, it is possible to write C.this in the body of
D. Therefore, it is possible to apply @Foo to C in the type C.D, because C represents the
type of some object at run time.

INTERFACES Annotations 9.7

319

@Target(ElementType.TYPE_USE)
@interface Foo {}

class Test {
 static class C {
 class D {}
 }

 @Foo C.D x; // Legal
}

Finally, note that the second clause looks only one level deeper in a qualified type. This is
because a static class may only be nested in a top level class or another static nested
class. It is not possible to write a nest like:

@Target(ElementType.TYPE_USE)
@interface Foo {}

class Test {
 class E {
 class F {
 static class G {}
 }
 }

 @Foo E.F.G x;
}

Assume for a moment that the nest was legal. In the type of field x, E and F would logically
be names qualifying G, as E.F.this would be illegal in the body of G. Then, @Foo should
not be legal next to E. Technically, however, @Foo would be admissible next to E because
the next deepest term F denotes an inner class; but this is moot as the class nest is illegal
in the first place.

It is a compile-time error if an annotation of type T applies to the outermost level of
a type in a type context, and T is not applicable in type contexts or the declaration
context (if any) which occupies the same syntactic location.

It is a compile-time error if an annotation of type T applies to a part of a type (that is,
not the outermost level) in a type context, and T is not applicable in type contexts.

It is a compile-time error if an annotation of type T applies to a type (or any part of
a type) in a type context, and T is applicable in type contexts, and the annotation
is not admissible.

For example, assume an annotation type TA which is meta-annotated with just
@Target(ElementType.TYPE_USE). The terms @TA java.lang.Object and
java.@TA lang.Object are illegal because the simple name to which @TA is closest is
classified as a package name. On the other hand, java.lang.@TA Object is legal.

9.7 Annotations INTERFACES

320

Note that the illegal terms are illegal "everywhere". The ban on annotating package names
applies broadly: to locations which are solely type contexts, such as class ... extends
@TA java.lang.Object {...}, and to locations which are both declaration and type
contexts, such as @TA java.lang.Object f;. (There are no locations which are solely
declaration contexts where a package name could be annotated, as class, package, and type
parameter declarations use only simple names.)

If TA is additionally meta-annotated with @Target(ElementType.FIELD), then the term
@TA java.lang.Object is legal in locations which are both declaration and type contexts,
such as a field declaration @TA java.lang.Object f;. Here, @TA is deemed to apply
to the declaration of f (and not to the type java.lang.Object) because TA is applicable
in the field declaration context.

9.7.5 Multiple Annotations of the Same Type

It is a compile-time error if multiple annotations of the same type T appear in a
declaration context or type context, unless T is repeatable (§9.6.3) and both T and
the containing annotation type of T are applicable in the declaration context or type
context (§9.6.4.1).

It is customary, though not required, for multiple annotations of the same type to appear
contiguously.

If a declaration context or type context has multiple annotations of a repeatable
annotation type T, then it is as if the context has no explicitly declared annotations
of type T and one implicitly declared annotation of the containing annotation type
of T.

The implicitly declared annotation is called the container annotation, and the
multiple annotations of type T which appeared in the context are called the base
annotations. The elements of the (array-typed) value element of the container
annotation are all the base annotations in the left-to-right order in which they
appeared in the context.

It is a compile-time error if, in a declaration context or type context, there are
multiple annotations of a repeatable annotation type T and any annotations of the
containing annotation type of T.

In other words, it is not possible to repeat annotations where an annotation of the same type
as their container also appears. This prohibits obtuse code like:

@Foo(0) @Foo(1) @FooContainer({@Foo(2)})
class A {}

If this code was legal, then multiple levels of containment would be needed: first the
annotations of type Foo would be contained by an implicitly declared container annotation
of type FooContainer, then that annotation and the explicitly declared annotation of

INTERFACES Functional Interfaces 9.8

321

type FooContainer would be contained in yet another implicitly declared annotation.
This complexity is undesirable in the judgment of the designers of the Java programming
language. Another approach, treating the annotations of type Foo as if they had occurred
alongside @Foo(2) in the explicit @FooContainer annotation, is undesirable because it
could change how reflective programs interpret the @FooContainer annotation.

It is a compile-time error if, in a declaration context or type context, there is
one annotation of a repeatable annotation type T and multiple annotations of the
containing annotation type of T.

This rule is designed to allow the following code:

@Foo(1) @FooContainer({@Foo(2)})
class A {}

With only one annotation of the repeatable annotation type Foo, no container annotation
is implicitly declared, even if FooContainer is the containing annotation type of Foo.
However, repeating the annotation of type FooContainer, as in:

@Foo(1) @FooContainer({@Foo(2)}) @FooContainer({@Foo(3)})
class A {}

is prohibited, even if FooContainer is repeatable with a containing annotation type of its
own. It is obtuse to repeat annotations which are themselves containers when an annotation
of the underlying repeatable type is present.

9.8 Functional Interfaces

A functional interface is an interface that has just one abstract method (aside
from the methods of Object), and thus represents a single function contract. This
"single" method may take the form of multiple abstract methods with override-
equivalent signatures inherited from superinterfaces; in this case, the inherited
methods logically represent a single method.

For an interface I, let M be the set of abstract methods that are members of I that
do not have the same signature as any public instance method of the class Object.
Then, I is a functional interface if there exists a method m in M for which both of
the following are true:

• The signature of m is a subsignature (§8.4.2) of every method's signature in M.

• m is return-type-substitutable (§8.4.5) for every method in M.

9.8 Functional Interfaces INTERFACES

322

In addition to the usual process of creating an interface instance by declaring and
instantiating a class (§15.9), instances of functional interfaces can be created with
method reference expressions and lambda expressions (§15.13, §15.27).

The definition of functional interface excludes methods in an interface that are also
public methods in Object. This is to allow functional treatment of an interface like
java.util.Comparator<T> that declares multiple abstract methods of which only
one is really "new" - int compare(T,T). The other method - boolean equals(Object)
- is an explicit declaration of an abstract method that would otherwise be implicitly
declared, and will be automatically implemented by every class that implements the
interface.

Note that if non-public methods of Object, such as clone(), are declared in an interface,
they are not automatically implemented by every class that implements the interface.
The implementation inherited from Object is protected while the interface method is
necessarily public. The only way to implement such an interface would be for a class to
override the non-public Object method with a public method.

Example 9.8-1. Functional Interfaces

A simple example of a functional interface is:

interface Runnable {
 void run();
}

The following interface is not functional because it declares nothing which is not already
a member of Object:

interface NonFunc {
 boolean equals(Object obj);
}

However, its subinterface can be functional by declaring an abstract method which is
not a member of Object:

interface Func extends NonFunc {
 int compare(String o1, String o2);
}

Similarly, the well known interface java.util.Comparator<T> is functional because it
has one abstract non-Object method:

interface Comparator<T> {
 boolean equals(Object obj);
 int compare(T o1, T o2);
}

INTERFACES Functional Interfaces 9.8

323

The following interface is not functional because while it only declares one abstract
method which is not a member of Object, it declares two abstract methods which are
not public members of Object:

interface Foo {
 int m();
 Object clone();
}

Example 9.8-2. Functional Interfaces and Erasure

In the following interface hierarchy, Z is a functional interface because while it inherits two
abstract methods which are not members of Object, they have the same signature, so
the inherited methods logically represent a single method:

interface X { int m(Iterable<String> arg); }
interface Y { int m(Iterable<String> arg); }
interface Z extends X, Y {}

Similarly, Z is a functional interface in the following interface hierarchy because Y.m is a
subsignature of X.m and is return-type-substitutable for X.m:

interface X { Iterable m(Iterable<String> arg); }
interface Y { Iterable<String> m(Iterable arg); }
interface Z extends X, Y {}

The definition of functional interface respects the fact that an interface cannot have two
members which are not subsignatures of each other, yet have the same erasure (§9.4.1.2).
Thus, in the following three interface hierarchies where Z causes a compile-time error, Z
is not a functional interface: (because none of its abstract members are subsignatures of
all other abstract members)

interface X { int m(Iterable<String> arg); }
interface Y { int m(Iterable<Integer> arg); }
interface Z extends X, Y {}

interface X { int m(Iterable<String> arg, Class c); }
interface Y { int m(Iterable arg, Class<?> c); }
interface Z extends X, Y {}

interface X<T> { void m(T arg); }
interface Y<T> { void m(T arg); }
interface Z<A, B> extends X<A>, Y {}

Similarly, the definition of "functional interface" respects the fact that an interface may
only have methods with override-equivalent signatures if one is return-type-substitutable
for all the others. Thus, in the following interface hierarchy where Z causes a compile-time
error, Z is not a functional interface: (because none of its abstract members are return-
type-substitutable for all other abstract members)

9.8 Functional Interfaces INTERFACES

324

interface X { long m(); }
interface Y { int m(); }
interface Z extends X, Y {}

In the following example, the declarations of Foo<T,N> and Bar are legal: in each, the
methods called m are not subsignatures of each other, but do have different erasures. Still,
the fact that the methods in each are not subsignatures means Foo<T,N> and Bar are not
functional interfaces. However, Baz is a functional interface because the methods it inherits
from Foo<Integer,Integer> have the same signature and so logically represent a single
method.

interface Foo<T, N extends Number> {
 void m(T arg);
 void m(N arg);
}
interface Bar extends Foo<String, Integer> {}
interface Baz extends Foo<Integer, Integer> {}

Finally, the following examples demonstrate the same rules as above, but with generic
methods:

interface Exec { <T> T execute(Action<T> a); }
 // Functional

interface X { <T> T execute(Action<T> a); }
interface Y { <S> S execute(Action<S> a); }
interface Exec extends X, Y {}
 // Functional: signatures are logically "the same"

interface X { <T> T execute(Action<T> a); }
interface Y { <S,T> S execute(Action<S> a); }
interface Exec extends X, Y {}
 // Error: different signatures, same erasure

Example 9.8-3. Generic Functional Interfaces

Functional interfaces can be generic, such as java.util.function.Predicate<T>.
Such a functional interface may be parameterized in a way that produces distinct abstract
methods - that is, multiple methods that cannot be legally overridden with a single
declaration. For example:

interface I { Object m(Class c); }
interface J<S> { S m(Class<?> c); }
interface K<T> { T m(Class<?> c); }
interface Functional<S,T> extends I, J<S>, K<T> {}

Functional<S,T> is a functional interface - I.m is return-type-substitutable for J.m
and K.m - but the functional interface type Functional<String,Integer> clearly
cannot be implemented with a single method. However, other parameterizations of
Functional<S,T> which are functional interface types are possible.

INTERFACES Function Types 9.9

325

The declaration of a functional interface allows a functional interface type to be
used in a program. There are four kinds of functional interface type:

• The type of a non-generic (§6.1) functional interface

• A parameterized type that is a parameterization (§4.5) of a generic functional
interface

• The raw type (§4.8) of a generic functional interface

• An intersection type (§4.9) that induces a notional functional interface

In special circumstances, it is useful to treat an intersection type as a functional interface
type. Typically, this will look like an intersection of a functional interface type with one
or more marker interface types, such as Runnable & java.io.Serializable. Such an
intersection can be used in casts (§15.16) that force a lambda expression to conform to a
certain type. If one of the interface types in the intersection is java.io.Serializable,
special run-time support for serialization is triggered (§15.27.4).

9.9 Function Types

The function type of a functional interface I is a method type (§8.2) that can be
used to override (§8.4.8) the abstract method(s) of I.

Let M be the set of abstract methods defined for I. The function type of I consists
of the following:

• Type parameters, formal parameters, and return type:

Let m be a method in M with:

1. a signature that is a subsignature of every method's signature in M; and

2. a return type that is a subtype of every method's return type in M (after
adapting for any type parameters (§8.4.4)).

If no such method exists, then let m be a method in M that:

1. has a signature that is a subsignature of every method's signature in M; and

2. is return-type-substitutable (§8.4.5) for every method in M.

The function type's type parameters, formal parameter types, and return type are
as given by m.

• throws clause:

The function type's throws clause is derived from the throws clauses of the
methods in M. If the function type is generic, these clauses are first adapted to

9.9 Function Types INTERFACES

326

the type parameters of the function type (§8.4.4). If the function type is not
generic but at least one method in M is generic, these clauses are first erased.
Then, the function type's throws clause includes every type, E, which satisfies
the following constraints:

– E is mentioned in one of the throws clauses.

– For each throws clause, E is a subtype of some type named in that clause.

When some return types in M are raw and others are not, the definition of a function type
tries to choose the most specific type, if possible. For example, if the return types are
LinkedList and LinkedList<String>, then the latter is immediately chosen as the
function type's return type. When there is no most specific type, the definition compensates
by finding the most substitutable return type. For example, if there is a third return type,
List<?>, then it is not the case that one of the return types is a subtype of every other
(as raw LinkedList is not a subtype of List<?>); instead, LinkedList<String> is
chosen as the function type's return type because it is return-type-substitutable for both
LinkedList and List<?>.

The goal driving the definition of a function type's thrown exception types is to support
the invariant that a method with the resulting throws clause could override each abstract
method of the functional interface. Per §8.4.6, this means the function type cannot throw
"more" exceptions than any single method in the set M, so we look for as many exception
types as possible that are "covered" by every method's throws clause.

The function type of a functional interface type is specified as follows:

• The function type of the type of a non-generic functional interface I is simply
the function type of the functional interface I, as defined above.

• The function type of a parameterized functional interface type I<A1...An>, where
A1...An are types and the corresponding type parameters of I are P1...Pn, is derived
by applying the substitution [P1:=A1, ..., Pn:=An] to the function type of the
generic functional interface I<P1...Pn>.

• The function type of a parameterized functional interface type I<A1...An>,
where one or more of A1...An is a wildcard, is the function type of the non-
wildcard parameterization of I, I<T1...Tn>. The non-wildcard parameterization
is determined as follows.

Let P1...Pn be the type parameters of I with corresponding bounds B1...Bn. For all
i (1 ≤ i ≤ n), Ti is derived according to the form of Ai:

– If Ai is a type, then Ti = Ai.

– If Ai is a wildcard, and the corresponding type parameter's bound, Bi, mentions
one of P1...Pn, then Ti is undefined and there is no function type.

– Otherwise:

INTERFACES Function Types 9.9

327

› If Ai is an unbound wildcard ?, then Ti = Bi.

› If Ai is a upper-bounded wildcard ? extends Ui, then Ti = glb(Ui, Bi)
(§5.1.10).

› If Ai is a lower-bounded wildcard ? super Li, then Ti = Li.

• The function type of the raw type of a generic functional interface I<...> is the
erasure of the function type of the generic functional interface I<...>.

• The function type of an intersection type that induces a notional functional
interface is the function type of the notional functional interface.

Example 9.9-1. Function Types

Given the following interfaces:

interface X { void m() throws IOException; }
interface Y { void m() throws EOFException; }
interface Z { void m() throws ClassNotFoundException; }

the function type of:

interface XY extends X, Y {}

is:

()->void throws EOFException

while the function type of:

interface XYZ extends X, Y, Z {}

is:

()->void (throws nothing)

Given the following interfaces:

9.9 Function Types INTERFACES

328

interface A {
 List<String> foo(List<String> arg)
 throws IOException, SQLTransientException;
}
interface B {
 List foo(List<String> arg)
 throws EOFException, SQLException, TimeoutException;
}
interface C {
 List foo(List arg) throws Exception;
}

the function type of:

interface D extends A, B {}

is:

(List<String>)->List<String>
 throws EOFException, SQLTransientException

while the function type of:

interface E extends A, B, C {}

is:

(List)->List throws EOFException, SQLTransientException

The function type of a functional interface is defined nondeterministically: while the
signatures in M are "the same", they may be syntactically different (HashMap.Entry and
Map.Entry, for example); the return type may be a subtype of every other return type, but
there may be other return types that are also subtypes (List<?> and List<? extends
Object>, for example); and the order of thrown types is unspecified. These distinctions
are subtle, but they can sometimes be important. However, function types are not used
in the Java programming language in such a way that the nondeterminism matters. Note
that the return type and throws clause of a "most specific method" are also defined
nondeterministically when there are multiple abstract methods (§15.12.2.5).

When a generic functional interface is parameterized by wildcards, there are many
different instantiations that could satisfy the wildcard and produce different function types.
For example, each of Predicate<Integer> (function type Integer -> boolean),
Predicate<Number> (function type Number -> boolean), and Predicate<Object>
(function type Object -> boolean) is a Predicate<? super Integer>. Sometimes, it
is possible to known from the context, such as the parameter types of a lambda expression,
which function type is intended (§15.27.3). Other times, it is necessary to pick one; in
these circumstances, the bounds are used. (This simple strategy cannot guarantee that the
resulting type will satisfy certain complex bounds, so not all complex cases are supported.)

INTERFACES Function Types 9.9

329

Example 9.9-2. Generic Function Types

A function type may be generic, as a functional interface's abstract method may be generic.
For example, in the following interface hierarchy:

interface G1 {
 <E extends Exception> Object m() throws E;
}
interface G2 {
 <F extends Exception> String m() throws Exception;
}
interface G extends G1, G2 {}

the function type of G is:

<F extends Exception> ()->String throws F

A generic function type for a functional interface may be implemented by a method
reference expression (§15.13), but not by a lambda expression (§15.27) as there is no syntax
for generic lambda expressions.

331

C H A P T E R 10
Arrays

IN the Java programming language, arrays are objects (§4.3.1), are dynamically
created, and may be assigned to variables of type Object (§4.3.2). All methods of
class Object may be invoked on an array.

An array object contains a number of variables. The number of variables may be
zero, in which case the array is said to be empty. The variables contained in an
array have no names; instead they are referenced by array access expressions that
use non-negative integer index values. These variables are called the components
of the array. If an array has n components, we say n is the length of the array;
the components of the array are referenced using integer indices from 0 to n - 1,
inclusive.

All the components of an array have the same type, called the component type of
the array. If the component type of an array is T, then the type of the array itself
is written T[].

The value of an array component of type float is always an element of the float
value set (§4.2.3); similarly, the value of an array component of type double is
always an element of the double value set. It is not permitted for the value of an
array component of type float to be an element of the float-extended-exponent
value set that is not also an element of the float value set, nor for the value of an
array component of type double to be an element of the double-extended-exponent
value set that is not also an element of the double value set.

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; this is called the element type of the original array,
and the components at this level of the data structure are called the elements of the
original array.

10.1 Array Types ARRAYS

332

There are some situations in which an element of an array can be an array: if the
element type is Object or Cloneable or java.io.Serializable, then some or all
of the elements may be arrays, because any array object can be assigned to any
variable of these types.

10.1 Array Types

Array types are used in declarations and in cast expressions (§15.16).

An array type is written as the name of an element type followed by some number
of empty pairs of square brackets []. The number of bracket pairs indicates the
depth of array nesting.

Each bracket pair in an array type may be annotated by type annotations (§9.7.4).
An annotation applies to the bracket pair (or ellipsis, in a variable arity parameter
declaration) that follows it.

The element type of an array may be any type, whether primitive or reference. In
particular:

• Arrays with an interface type as the element type are allowed.

An element of such an array may have as its value a null reference or an instance
of any type that implements the interface.

• Arrays with an abstract class type as the element type are allowed.

An element of such an array may have as its value a null reference or an instance
of any subclass of the abstract class that is not itself abstract.

An array's length is not part of its type.

The supertypes of an array type are specified in §4.10.3.

The supertype relation for array types is not the same as the superclass relation. The direct
supertype of Integer[] is Number[] according to §4.10.3, but the direct superclass of
Integer[] is Object according to the Class object for Integer[] (§10.8). This does
not matter in practice, because Object is also a supertype of all array types.

10.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of array
type does not create an array object or allocate any space for array components. It

ARRAYS Array Variables 10.2

333

creates only the variable itself, which can contain a reference to an array. However,
the initializer part of a declarator (§8.3, §9.3, §14.4.1) may create an array, a
reference to which then becomes the initial value of the variable.

Example 10.2-1. Declarations of Array Variables

int[] ai; // array of int
short[][] as; // array of array of short
short s, // scalar short
 aas[][]; // array of array of short
Object[] ao, // array of Object
 otherAo; // array of Object
Collection<?>[] ca; // array of Collection of unknown type

The declarations above do not create array objects. The following are examples of
declarations of array variables that do create array objects:

Exception ae[] = new Exception[3];
Object aao[][] = new Exception[2][3];
int[] factorial = { 1, 1, 2, 6, 24, 120, 720, 5040 };
char ac[] = { 'n', 'o', 't', ' ', 'a', ' ',
 'S', 't', 'r', 'i', 'n', 'g' };
String[] aas = { "array", "of", "String", };

The array type of a variable depends on the bracket pairs that may appear as part of
the type at the beginning of a variable declaration, or as part of the declarator for
the variable, or both. Specifically, in the declaration of a field, formal parameter,
or local variable (§8.3, §8.4.1, §9.3, §9.4, §14.4.1, §14.14.2, §15.27.1), the array
type of the variable is denoted by:

• the element type that appears at the beginning of the declaration; then,

• any bracket pairs that follow the variable's Identifier in the declarator (not
applicable for a variable arity parameter); then,

• any bracket pairs that appear in the type at the beginning of the declaration (where
the ellipsis of a variable arity parameter is treated as a bracket pair).

The return type of a method (§8.4.5) may be an array type. The precise array type
depends on the bracket pairs that may appear as part of the type at the beginning
of the method declaration, or after the method's formal parameter list, or both. The
array type is denoted by:

• the element type that appears in the Result; then,

• any bracket pairs that follow the formal parameter list; then,

• any bracket pairs that appear in the Result.

10.2 Array Variables ARRAYS

334

We do not recommend "mixed notation" in array variable declarations, where
bracket pairs appear on both the type and in declarators; nor in method declarations,
where bracket pairs appear both before and after the formal parameter list.

Example 10.2-2. Array Variables and Array Types

The local variable declaration statement:

byte[] rowvector, colvector, matrix[];

is equivalent to:

byte rowvector[], colvector[], matrix[][];

because the array type of each local variable is unchanged. Similarly, the local variable
declaration statement:

int a, b[], c[][];

is equivalent to the series of declaration statements:

int a;
int[] b;
int[][] c;

Brackets are allowed in declarators as a nod to the tradition of C and C++. The general
rules for variable declaration, however, permit brackets to appear on both the type and in
declarators, so that the local variable declaration statement:

float[][] f[][], g[][][], h[]; // Yechh!

is equivalent to the series of declarations:

float[][][][] f;
float[][][][][] g;
float[][][] h;

Because of how array types are formed, the following parameter declarations have the same
array type:

void m(int @A [] @B [] x) {}
void n(int @A [] @B ... y) {}

And perhaps surprisingly, the following field declarations have the same array type:

int @A [] f @B [];
int @B [] @A [] g;

ARRAYS Array Creation 10.3

335

Once an array object is created, its length never changes. To make an array variable
refer to an array of different length, a reference to a different array must be assigned
to the variable.

A single variable of array type may contain references to arrays of different lengths,
because an array's length is not part of its type.

If an array variable v has type A[], where A is a reference type, then v can hold
a reference to an instance of any array type B[], provided B can be assigned to A
(§5.2). This may result in a run-time exception on a later assignment; see §10.5
for a discussion.

10.3 Array Creation

An array is created by an array creation expression (§15.10.1) or an array initializer
(§10.6).

An array creation expression specifies the element type, the number of levels of
nested arrays, and the length of the array for at least one of the levels of nesting.
The array's length is available as a final instance variable length.

An array initializer creates an array and provides initial values for all its
components.

10.4 Array Access

A component of an array is accessed by an array access expression (§15.10.3) that
consists of an expression whose value is an array reference followed by an indexing
expression enclosed by [and], as in A[i].

All arrays are 0-origin. An array with length n can be indexed by the integers 0
to n-1.

Example 10.4-1. Array Access

class Gauss {
 public static void main(String[] args) {
 int[] ia = new int[101];
 for (int i = 0; i < ia.length; i++) ia[i] = i;
 int sum = 0;
 for (int e : ia) sum += e;
 System.out.println(sum);
 }

10.5 Array Store Exception ARRAYS

336

}

This program produces the output:

5050

The program declares a variable ia that has type array of int, that is, int[]. The variable
ia is initialized to reference a newly created array object, created by an array creation
expression (§15.10.1). The array creation expression specifies that the array should have
101 components. The length of the array is available using the field length, as shown.
The program fills the array with the integers from 0 to 100, sums these integers, and prints
the result.

Arrays must be indexed by int values; short, byte, or char values may also
be used as index values because they are subjected to unary numeric promotion
(§5.6.1) and become int values.

An attempt to access an array component with a long index value results in a
compile-time error.

All array accesses are checked at run time; an attempt to use an index that
is less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to be thrown (§15.10.4).

10.5 Array Store Exception

For an array whose type is A[], where A is a reference type, an assignment to
a component of the array is checked at run time to ensure that the value being
assigned is assignable to the component.

If the type of the value being assigned is not assignment-compatible (§5.2) with
the component type, an ArrayStoreException is thrown.

If the component type of an array were not reifiable (§4.7), the Java Virtual Machine could
not perform the store check described in the preceding paragraph. This is why an array
creation expression with a non-reifiable element type is forbidden (§15.10.1). One may
declare a variable of an array type whose element type is non-reifiable, but assignment of
the result of an array creation expression to the variable will necessarily cause an unchecked
warning (§5.1.9).

Example 10.5-1. ArrayStoreException

class Point { int x, y; }
class ColoredPoint extends Point { int color; }
class Test {
 public static void main(String[] args) {

ARRAYS Array Initializers 10.6

337

 ColoredPoint[] cpa = new ColoredPoint[10];
 Point[] pa = cpa;
 System.out.println(pa[1] == null);
 try {
 pa[0] = new Point();
 } catch (ArrayStoreException e) {
 System.out.println(e);
 }
 }
}

This program produces the output:

true
java.lang.ArrayStoreException: Point

The variable pa has type Point[] and the variable cpa has as its value a reference to an
object of type ColoredPoint[]. A ColoredPoint can be assigned to a Point; therefore,
the value of cpa can be assigned to pa.

A reference to this array pa, for example, testing whether pa[1] is null, will not result in
a run-time type error. This is because the element of the array of type ColoredPoint[]
is a ColoredPoint, and every ColoredPoint can stand in for a Point, since Point is
the superclass of ColoredPoint.

On the other hand, an assignment to the array pa can result in a run-time error. At compile
time, an assignment to an element of pa is checked to make sure that the value assigned is a
Point. But since pa holds a reference to an array of ColoredPoint, the assignment is valid
only if the type of the value assigned at run time is, more specifically, a ColoredPoint.

The Java Virtual Machine checks for such a situation at run time to ensure that the
assignment is valid; if not, an ArrayStoreException is thrown.

10.6 Array Initializers

An array initializer may be specified in a field declaration (§8.3, §9.3) or local
variable declaration (§14.4), or as part of an array creation expression (§15.10.1),
to create an array and provide some initial values.

ArrayInitializer:
{ [VariableInitializerList] [,] }

VariableInitializerList:
VariableInitializer {, VariableInitializer}

The following production from §8.3 is shown here for convenience:

10.6 Array Initializers ARRAYS

338

VariableInitializer:
Expression
ArrayInitializer

An array initializer is written as a comma-separated list of expressions, enclosed
by braces { and }.

A trailing comma may appear after the last expression in an array initializer and
is ignored.

Each variable initializer must be assignment-compatible (§5.2) with the array's
component type, or a compile-time error occurs.

It is a compile-time error if the component type of the array being initialized is not
reifiable (§4.7).

The length of the array to be constructed is equal to the number of variable
initializers immediately enclosed by the braces of the array initializer. Space is
allocated for a new array of that length. If there is insufficient space to allocate
the array, evaluation of the array initializer completes abruptly by throwing an
OutOfMemoryError. Otherwise, a one-dimensional array is created of the specified
length, and each component of the array is initialized to its default value (§4.12.5).

The variable initializers immediately enclosed by the braces of the array initializer
are then executed from left to right in the textual order they occur in the source
code. The n'th variable initializer specifies the value of the n-1'th array component.
If execution of a variable initializer completes abruptly, then execution of the array
initializer completes abruptly for the same reason. If all the variable initializer
expressions complete normally, the array initializer completes normally, with the
value of the newly initialized array.

If the component type is an array type, then the variable initializer specifying a
component may itself be an array initializer; that is, array initializers may be nested.
In this case, execution of the nested array initializer constructs and initializes an
array object by recursive application of the algorithm above, and assigns it to the
component.

Example 10.6-1. Array Initializers

class Test {
 public static void main(String[] args) {
 int ia[][] = { {1, 2}, null };
 for (int[] ea : ia) {
 for (int e: ea) {
 System.out.println(e);
 }
 }
 }

ARRAYS Array Members 10.7

339

}

This program produces the output:

1
2

before causing a NullPointerException in trying to index the second component of the
array ia, which is a null reference.

10.7 Array Members

The members of an array type are all of the following:

• The public final field length, which contains the number of components of
the array. length may be positive or zero.

• The public method clone, which overrides the method of the same name in
class Object and throws no checked exceptions. The return type of the clone
method of an array type T[] is T[].

A clone of a multidimensional array is shallow, which is to say that it creates
only a single new array. Subarrays are shared.

• All the members inherited from class Object; the only method of Object that is
not inherited is its clone method.

See §9.6.4.4 for another situation where the difference between public and non-public
methods of Object requires special care.

An array thus has the same public fields and methods as the following class:

class A<T> implements Cloneable, java.io.Serializable {
 public final int length = X;
 public T[] clone() {
 try {
 return (T[])super.clone();
 } catch (CloneNotSupportedException e) {
 throw new InternalError(e.getMessage());
 }
 }
}

Note that the cast to T[] in the code above would generate an unchecked warning (§5.1.9)
if arrays were really implemented this way.

10.8 Class Objects for Arrays ARRAYS

340

Example 10.7-1. Arrays Are Cloneable

class Test1 {
 public static void main(String[] args) {
 int ia1[] = { 1, 2 };
 int ia2[] = ia1.clone();
 System.out.print((ia1 == ia2) + " ");
 ia1[1]++;
 System.out.println(ia2[1]);
 }
}

This program produces the output:

false 2

showing that the components of the arrays referenced by ia1 and ia2 are different
variables.

Example 10.7-2. Shared Subarrays After A Clone

The fact that subarrays are shared when a multidimensional array is cloned is shown by
this program:

class Test2 {
 public static void main(String[] args) throws Throwable {
 int ia[][] = { {1,2}, null };
 int ja[][] = ia.clone();
 System.out.print((ia == ja) + " ");
 System.out.println(ia[0] == ja[0] && ia[1] == ja[1]);
 }
}

This program produces the output:

false true

showing that the int[] array that is ia[0] and the int[] array that is ja[0] are the same
array.

10.8 Class Objects for Arrays

Every array has an associated Class object, shared with all other arrays with the
same component type.

Although an array type is not a class, the Class object of every array acts as if:

ARRAYS Class Objects for Arrays 10.8

341

• The direct superclass of every array type is Object.

• Every array type implements the interfaces Cloneable and
java.io.Serializable.

Example 10.8-1. Class Object Of Array

class Test1 {
 public static void main(String[] args) {
 int[] ia = new int[3];
 System.out.println(ia.getClass());
 System.out.println(ia.getClass().getSuperclass());
 for (Class<?> c : ia.getClass().getInterfaces())
 System.out.println("Superinterface: " + c);
 }
}

This program produces the output:

class [I
class java.lang.Object
Superinterface: interface java.lang.Cloneable
Superinterface: interface java.io.Serializable

where the string "[I" is the run-time type signature for the Class object "array with
component type int".

Example 10.8-2. Array Class Objects Are Shared

class Test2 {
 public static void main(String[] args) {
 int[] ia = new int[3];
 int[] ib = new int[6];
 System.out.println(ia == ib);
 System.out.println(ia.getClass() == ib.getClass());
 }
}

This program produces the output:

false
true

While ia and ib refer to different arrays, the result of the comparison of the Class objects
demonstrates that all arrays whose components are of type int are instances of the same
array type (namely int[]).

10.9 An Array of Characters Is Not a String ARRAYS

342

10.9 An Array of Characters Is Not a String

In the Java programming language, unlike C, an array of char is not a String,
and neither a String nor an array of char is terminated by '\u0000' (the NUL
character).

A String object is immutable, that is, its contents never change, while an array of
char has mutable elements.

The method toCharArray in class String returns an array of characters containing
the same character sequence as a String. The class StringBuffer implements useful
methods on mutable arrays of characters.

343

C H A P T E R 11
Exceptions

WHEN a program violates the semantic constraints of the Java programming
language, the Java Virtual Machine signals this error to the program as an
exception.

An example of such a violation is an attempt to index outside the bounds of an
array. Some programming languages and their implementations react to such errors
by peremptorily terminating the program; other programming languages allow an
implementation to react in an arbitrary or unpredictable way. Neither of these
approaches is compatible with the design goals of the Java SE platform: to provide
portability and robustness.

Instead, the Java programming language specifies that an exception will be thrown
when semantic constraints are violated and will cause a non-local transfer of control
from the point where the exception occurred to a point that can be specified by the
programmer.

An exception is said to be thrown from the point where it occurred and is said to
be caught at the point to which control is transferred.

Programs can also throw exceptions explicitly, using throw statements (§14.18).

Explicit use of throw statements provides an alternative to the old-fashioned style
of handling error conditions by returning funny values, such as the integer value
-1 where a negative value would not normally be expected. Experience shows that
too often such funny values are ignored or not checked for by callers, leading to
programs that are not robust, exhibit undesirable behavior, or both.

Every exception is represented by an instance of the class Throwable or one of its
subclasses (§11.1). Such an object can be used to carry information from the point
at which an exception occurs to the handler that catches it. Handlers are established
by catch clauses of try statements (§14.20).

11.1 The Kinds and Causes of Exceptions EXCEPTIONS

344

During the process of throwing an exception, the Java Virtual Machine abruptly
completes, one by one, any expressions, statements, method and constructor
invocations, initializers, and field initialization expressions that have begun but not
completed execution in the current thread. This process continues until a handler is
found that indicates that it handles that particular exception by naming the class of
the exception or a superclass of the class of the exception (§11.2). If no such handler
is found, then the exception may be handled by one of a hierarchy of uncaught
exception handlers (§11.3) - thus every effort is made to avoid letting an exception
go unhandled.

The exception mechanism of the Java SE platform is integrated with its
synchronization model (§17.1), so that monitors are unlocked as synchronized
statements (§14.19) and invocations of synchronized methods (§8.4.3.6, §15.12)
complete abruptly.

11.1 The Kinds and Causes of Exceptions

11.1.1 The Kinds of Exceptions

An exception is represented by an instance of the class Throwable (a direct subclass
of Object) or one of its subclasses.

Throwable and all its subclasses are, collectively, the exception classes.

The classes Exception and Error are direct subclasses of Throwable:

• Exception is the superclass of all the exceptions from which ordinary programs
may wish to recover.

The class RuntimeException is a direct subclass of Exception.
RuntimeException is the superclass of all the exceptions which may be thrown
for many reasons during expression evaluation, but from which recovery may
still be possible.

RuntimeException and all its subclasses are, collectively, the run-time exception
classes.

• Error is the superclass of all the exceptions from which ordinary programs are
not ordinarily expected to recover.

Error and all its subclasses are, collectively, the error classes.

The unchecked exception classes are the run-time exception classes and the error
classes.

EXCEPTIONS The Kinds and Causes of Exceptions 11.1

345

The checked exception classes are all exception classes other than the unchecked
exception classes. That is, the checked exception classes are Throwable and all
its subclasses other than RuntimeException and its subclasses and Error and its
subclasses.

Programs can use the pre-existing exception classes of the Java SE platform API in throw
statements, or define additional exception classes as subclasses of Throwable or of any of
its subclasses, as appropriate. To take advantage of compile-time checking for exception
handlers (§11.2), it is typical to define most new exception classes as checked exception
classes, that is, as subclasses of Exception that are not subclasses of RuntimeException.

The class Error is a separate subclass of Throwable, distinct from Exception in the class
hierarchy, to allow programs to use the idiom "} catch (Exception e) {" (§11.2.3)
to catch all exceptions from which recovery may be possible without catching errors from
which recovery is typically not possible.

Note that a subclass of Throwable cannot be generic (§8.1.2).

11.1.2 The Causes of Exceptions

An exception is thrown for one of three reasons:

• A throw statement (§14.18) was executed.

• An abnormal execution condition was synchronously detected by the Java
Virtual Machine, namely:

– evaluation of an expression violates the normal semantics of the Java
programming language (§15.6), such as an integer divide by zero.

– an error occurs while loading, linking, or initializing part of the program
(§12.2, §12.3, §12.4); in this case, an instance of a subclass of LinkageError
is thrown.

– an internal error or resource limitation prevents the Java Virtual Machine from
implementing the semantics of the Java programming language; in this case,
an instance of a subclass of VirtualMachineError is thrown.

These exceptions are not thrown at an arbitrary point in the program, but rather at
a point where they are specified as a possible result of an expression evaluation
or statement execution.

• An asynchronous exception occurred (§11.1.3).

11.1 The Kinds and Causes of Exceptions EXCEPTIONS

346

11.1.3 Asynchronous Exceptions

Most exceptions occur synchronously as a result of an action by the thread in which
they occur, and at a point in the program that is specified to possibly result in such
an exception. An asynchronous exception is, by contrast, an exception that can
potentially occur at any point in the execution of a program.

Asynchronous exceptions occur only as a result of:

• An invocation of the (deprecated) stop method of class Thread or ThreadGroup.

The (deprecated) stop methods may be invoked by one thread to affect another
thread or all the threads in a specified thread group. They are asynchronous
because they may occur at any point in the execution of the other thread or
threads.

• An internal error or resource limitation in the Java Virtual Machine that prevents
it from implementing the semantics of the Java programming language. In this
case, the asynchronous exception that is thrown is an instance of a subclass of
VirtualMachineError.

Note that StackOverflowError, a subclass of VirtualMachineError, may be
thrown synchronously by method invocation (§15.12.4.5) as well as asynchronously
due to native method execution or Java Virtual Machine resource limitations.
Similarly, OutOfMemoryError, another subclass of VirtualMachineError, may be
thrown synchronously during class instance creation (§15.9.4, §12.5), array creation
(§15.10.2, §10.6), class initialization (§12.4.2), and boxing conversion (§5.1.7), as well
as asynchronously.

The Java SE platform permits a small but bounded amount of execution to occur
before an asynchronous exception is thrown.

Asynchronous exceptions are rare, but proper understanding of their semantics is necessary
if high-quality machine code is to be generated.

The delay noted above is permitted to allow optimized code to detect and throw these
exceptions at points where it is practical to handle them while obeying the semantics of
the Java programming language. A simple implementation might poll for asynchronous
exceptions at the point of each control transfer instruction. Since a program has a finite
size, this provides a bound on the total delay in detecting an asynchronous exception. Since
no asynchronous exception will occur between control transfers, the code generator has
some flexibility to reorder computation between control transfers for greater performance.
The paper Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993 Conference
on Functional Programming and Computer Architecture, Copenhagen, Denmark, pp.
179-187, is recommended as further reading.

EXCEPTIONS Compile-Time Checking of Exceptions 11.2

347

11.2 Compile-Time Checking of Exceptions

The Java programming language requires that a program contains handlers for
checked exceptions which can result from execution of a method or constructor
(§8.4.6, §8.8.5). This compile-time checking for the presence of exception handlers
is designed to reduce the number of exceptions which are not properly handled. For
each checked exception which is a possible result, the throws clause for the method
or constructor must mention the class of that exception or one of the superclasses
of the class of that exception (§11.2.3).

The checked exception classes (§11.1.1) named in the throws clause are part of
the contract between the implementor and user of the method or constructor. The
throws clause of an overriding method may not specify that this method will result
in throwing any checked exception which the overridden method is not permitted,
by its throws clause, to throw (§8.4.8.3). When interfaces are involved, more than
one method declaration may be overridden by a single overriding declaration. In
this case, the overriding declaration must have a throws clause that is compatible
with all the overridden declarations (§9.4.1).

The unchecked exception classes (§11.1.1) are exempted from compile-time
checking.

Error classes are exempted because they can occur at many points in the program and
recovery from them is difficult or impossible. A program declaring such exceptions would
be cluttered, pointlessly. Sophisticated programs may yet wish to catch and attempt to
recover from some of these conditions.

Run-time exception classes are exempted because, in the judgment of the designers of the
Java programming language, having to declare such exceptions would not aid significantly
in establishing the correctness of programs. Many of the operations and constructs of the
Java programming language can result in exceptions at run time. The information available
to a Java compiler, and the level of analysis a compiler performs, are usually not sufficient
to establish that such run-time exceptions cannot occur, even though this may be obvious
to the programmer. Requiring such exception classes to be declared would simply be an
irritation to programmers.

For example, certain code might implement a circular data structure that, by construction,
can never involve null references; the programmer can then be certain that a
NullPointerException cannot occur, but it would be difficult for a Java compiler to
prove it. The theorem-proving technology that is needed to establish such global properties
of data structures is beyond the scope of this specification.

We say that a statement or expression can throw an exception class E if, according
to the rules in §11.2.1 and §11.2.2, the execution of the statement or expression
can result in an exception of class E being thrown.

11.2 Compile-Time Checking of Exceptions EXCEPTIONS

348

We say that a catch clause can catch its catchable exception class(es):

• The catchable exception class of a uni-catch clause is the declared type of its
exception parameter (§14.20).

• The catchable exception classes of a multi-catch clause are the alternatives in
the union that denotes the type of its exception parameter.

11.2.1 Exception Analysis of Expressions

A class instance creation expression (§15.9) can throw an exception class E iff
either:

• The expression is a qualified class instance creation expression and the
qualifying expression can throw E; or

• Some expression of the argument list can throw E; or

• E is one of the exception types of the invocation type of the chosen constructor
(§15.12.2.6); or

• The class instance creation expression includes a ClassBody, and some instance
initializer or instance variable initializer in the ClassBody can throw E.

A method invocation expression (§15.12) can throw an exception class E iff either:

• The method invocation expression is of the form Primary . [TypeArguments]
Identifier and the Primary expression can throw E; or

• Some expression of the argument list can throw E; or

• E is one of the exception types of the invocation type of the chosen method
(§15.12.2.6).

A lambda expression (§15.27) can throw no exception classes.

For every other kind of expression, the expression can throw an exception class E
iff one of its immediate subexpressions can throw E.

Note that a method reference expression (§15.13) of the form Primary :: [TypeArguments]
Identifier can throw an exception class if the Primary subexpression can throw an
exception class. In contrast, a lambda expression can throw nothing, and has no immediate
subexpressions on which to perform exception analysis. It is the body of a lambda
expression, containing expressions and statements, that can throw exception classes.

EXCEPTIONS Compile-Time Checking of Exceptions 11.2

349

11.2.2 Exception Analysis of Statements

A throw statement (§14.18) whose thrown expression has static type E and is not
a final or effectively final exception parameter can throw E or any exception class
that the thrown expression can throw.

For example, the statement throw new java.io.FileNotFoundException(); can
throw java.io.FileNotFoundException only. Formally, it is not the case that it "can
throw" a subclass or superclass of java.io.FileNotFoundException.

A throw statement whose thrown expression is a final or effectively final exception
parameter of a catch clause C can throw an exception class E iff:

• E is an exception class that the try block of the try statement which declares
C can throw; and

• E is assignment compatible with any of C's catchable exception classes; and

• E is not assignment compatible with any of the catchable exception classes of the
catch clauses declared to the left of C in the same try statement.

A try statement (§14.20) can throw an exception class E iff either:

• The try block can throw E, or an expression used to initialize a resource (in a
try-with-resources statement) can throw E, or the automatic invocation of the
close() method of a resource (in a try-with-resources statement) can throw E,
and E is not assignment compatible with any catchable exception class of any
catch clause of the try statement, and either no finally block is present or the
finally block can complete normally; or

• Some catch block of the try statement can throw E and either no finally block
is present or the finally block can complete normally; or

• A finally block is present and can throw E.

An explicit constructor invocation statement (§8.8.7.1) can throw an exception
class E iff either:

• Some expression of the constructor invocation's parameter list can throw E; or

• E is determined to be an exception class of the throws clause of the constructor
that is invoked (§15.12.2.6).

Any other statement S can throw an exception class E iff an expression or statement
immediately contained in S can throw E.

11.2 Compile-Time Checking of Exceptions EXCEPTIONS

350

11.2.3 Exception Checking

It is a compile-time error if a method or constructor body can throw some exception
class E when E is a checked exception class and E is not a subclass of some class
declared in the throws clause of the method or constructor.

It is a compile-time error if a lambda body can throw some exception class E when
E is a checked exception class and E is not a subclass of some class declared in the
throws clause of the function type targeted by the lambda expression.

It is a compile-time error if a class variable initializer (§8.3.2) or static initializer
(§8.7) of a named class or interface can throw a checked exception class.

It is a compile-time error if an instance variable initializer (§8.3.2) or instance
initializer (§8.6) of a named class can throw a checked exception class, unless
the named class has at least one explicitly declared constructor and the exception
class or one of its superclasses is explicitly declared in the throws clause of each
constructor.

Note that no compile-time error is due if an instance variable initializer or instance initializer
of an anonymous class (§15.9.5) can throw an exception class. In a named class, it is
the responsibility of the programmer to propagate information about which exception
classes can be thrown by initializers, by declaring a suitable throws clause on any explicit
constructor declaration. This relationship between the checked exception classes thrown
by a class's initializers and the checked exception classes declared by a class's constructors
is assured for an anonymous class declaration, because no explicit constructor declarations
are possible and a Java compiler always generates a constructor with a suitable throws
clause for the anonymous class declaration based on the checked exception classes that its
initializers can throw.

It is a compile-time error if a catch clause can catch checked exception class E1
and it is not the case that the try block corresponding to the catch clause can
throw a checked exception class that is a subclass or superclass of E1, unless E1 is
Exception or a superclass of Exception.

It is a compile-time error if a catch clause can catch an exception class E1 and a
preceding catch clause of the immediately enclosing try statement can catch E1
or a superclass of E1.

A Java compiler is encouraged to issue a warning if a catch clause can catch checked
exception class E1 and the try block corresponding to the catch clause can throw checked
exception class E2, where E2 <: E1, and a preceding catch clause of the immediately
enclosing try statement can catch checked exception class E3, where E2 <: E3 <: E1.

Example 11.2.3-1. Catching Checked Exceptions

import java.io.*;

EXCEPTIONS Compile-Time Checking of Exceptions 11.2

351

class StaticallyThrownExceptionsIncludeSubtypes {
 public static void main(String[] args) {
 try {
 throw new FileNotFoundException();
 } catch (IOException ioe) {
 // "catch IOException" catches IOException
 // and any subtype.
 }

 try {
 throw new FileNotFoundException();
 // Statement "can throw" FileNotFoundException.
 // It is not the case that statement "can throw"
 // a subtype or supertype of FileNotFoundException.
 } catch (FileNotFoundException fnfe) {
 // ... Handle exception ...
 } catch (IOException ioe) {
 // Legal, but compilers are encouraged to give
 // warnings as of Java SE 7, because all subtypes of
 // IOException that the try block "can throw" have
 // already been caught by the prior catch clause.
 }

 try {
 m();
 // m's declaration says "throws IOException", so
 // m "can throw" IOException. It is not the case
 // that m "can throw" a subtype or supertype of
 // IOException (e.g. Exception).
 } catch (FileNotFoundException fnfe) {
 // Legal, because the dynamic type of the exception
 // might be FileNotFoundException.
 } catch (IOException ioe) {
 // Legal, because the dynamic type of the exception
 // might be a different subtype of IOException.
 } catch (Throwable t) {
 // Can always catch Throwable.
 }
 }

 static void m() throws IOException {
 throw new FileNotFoundException();
 }
}

By the rules above, each alternative in a multi-catch clause (§14.20) must be able to catch
some exception class thrown by the try block and uncaught by previous catch clauses.
For example, the second catch clause below would cause a compile-time error because
exception analysis determines that SubclassOfFoo is already caught by the first catch
clause:

11.3 Run-Time Handling of an Exception EXCEPTIONS

352

try { ... }
catch (Foo f) { ... }
catch (Bar | SubclassOfFoo e) { ... }

11.3 Run-Time Handling of an Exception

When an exception is thrown (§14.18), control is transferred from the code that
caused the exception to the nearest dynamically enclosing catch clause, if any, of
a try statement (§14.20) that can handle the exception.

A statement or expression is dynamically enclosed by a catch clause if it appears
within the try block of the try statement of which the catch clause is a part, or
if the caller of the statement or expression is dynamically enclosed by the catch
clause.

The caller of a statement or expression depends on where it occurs:

• If within a method, then the caller is the method invocation expression (§15.12)
that was executed to cause the method to be invoked.

• If within a constructor or an instance initializer or the initializer for an instance
variable, then the caller is the class instance creation expression (§15.9) or the
method invocation of newInstance that was executed to cause an object to be
created.

• If within a static initializer or an initializer for a static variable, then the caller
is the expression that used the class or interface so as to cause it to be initialized
(§12.4).

Whether a particular catch clause can handle an exception is determined by
comparing the class of the object that was thrown to the catchable exception classes
of the catch clause. The catch clause can handle the exception if one of its
catchable exception classes is the class of the exception or a superclass of the class
of the exception.

Equivalently, a catch clause will catch any exception object that is an instanceof
(§15.20.2) one of its catchable exception classes.

The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (§15.6) and statements (§14.1) until a catch clause is
encountered that can handle the exception; execution then continues by executing
the block of that catch clause. The code that caused the exception is never resumed.

EXCEPTIONS Run-Time Handling of an Exception 11.3

353

All exceptions (synchronous and asynchronous) are precise: when the transfer of
control takes place, all effects of the statements executed and expressions evaluated
before the point from which the exception is thrown must appear to have taken
place. No expressions, statements, or parts thereof that occur after the point from
which the exception is thrown may appear to have been evaluated.

If optimized code has speculatively executed some of the expressions or statements which
follow the point at which the exception occurs, such code must be prepared to hide this
speculative execution from the user-visible state of the program.

If no catch clause that can handle an exception can be found, then the current thread
(the thread that encountered the exception) is terminated. Before termination, all
finally clauses are executed and the uncaught exception is handled according to
the following rules:

• If the current thread has an uncaught exception handler set, then that handler is
executed.

• Otherwise, the method uncaughtException is invoked for the ThreadGroup
that is the parent of the current thread. If the ThreadGroup and its parent
ThreadGroups do not override uncaughtException, then the default handler's
uncaughtException method is invoked.

In situations where it is desirable to ensure that one block of code is always executed
after another, even if that other block of code completes abruptly, a try statement with a
finally clause (§14.20.2) may be used.

If a try or catch block in a try-finally or try-catch-finally statement completes
abruptly, then the finally clause is executed during propagation of the exception, even
if no matching catch clause is ultimately found.

If a finally clause is executed because of abrupt completion of a try block and the
finally clause itself completes abruptly, then the reason for the abrupt completion of the
try block is discarded and the new reason for abrupt completion is propagated from there.

The exact rules for abrupt completion and for the catching of exceptions are specified
in detail with the specification of each statement in §14 (Blocks and Statements) and for
expressions in §15 (Expressions) (especially §15.6).

Example 11.3-1. Throwing and Catching Exceptions

The following program declares an exception class TestException. The main method
of class Test invokes the thrower method four times, causing exceptions to be thrown
three of the four times. The try statement in method main catches each exception that
the thrower throws. Whether the invocation of thrower completes normally or abruptly,
a message is printed describing what happened.

11.3 Run-Time Handling of an Exception EXCEPTIONS

354

class TestException extends Exception {
 TestException() { super(); }
 TestException(String s) { super(s); }
}

class Test {
 public static void main(String[] args) {
 for (String arg : args) {
 try {
 thrower(arg);
 System.out.println("Test \"" + arg +
 "\" didn't throw an exception");
 } catch (Exception e) {
 System.out.println("Test \"" + arg +
 "\" threw a " + e.getClass() +
 "\n with message: " +
 e.getMessage());
 }
 }
 }
 static int thrower(String s) throws TestException {
 try {
 if (s.equals("divide")) {
 int i = 0;
 return i/i;
 }
 if (s.equals("null")) {
 s = null;
 return s.length();
 }
 if (s.equals("test")) {
 throw new TestException("Test message");
 }
 return 0;
 } finally {
 System.out.println("[thrower(\"" + s + "\") done]");
 }
 }
}

If we execute the program, passing it the arguments:

divide null not test

it produces the output:

EXCEPTIONS Run-Time Handling of an Exception 11.3

355

[thrower("divide") done]
Test "divide" threw a class java.lang.ArithmeticException
 with message: / by zero
[thrower("null") done]
Test "null" threw a class java.lang.NullPointerException
 with message: null
[thrower("not") done]
Test "not" didn't throw an exception
[thrower("test") done]
Test "test" threw a class TestException
 with message: Test message

The declaration of the method thrower must have a throws clause because it can throw
instances of TestException, which is a checked exception class (§11.1.1). A compile-
time error would occur if the throws clause were omitted.

Notice that the finally clause is executed on every invocation of thrower, whether or
not an exception occurs, as shown by the "[thrower(...) done]" output that occurs
for each invocation.

357

C H A P T E R 12
Execution

THIS chapter specifies activities that occur during execution of a program. It is
organized around the life cycle of the Java Virtual Machine and of the classes,
interfaces, and objects that form a program.

The Java Virtual Machine starts up by loading a specified class and then invoking
the method main in this specified class. Section §12.1 outlines the loading, linking,
and initialization steps involved in executing main, as an introduction to the
concepts in this chapter. Further sections specify the details of loading (§12.2),
linking (§12.3), and initialization (§12.4).

The chapter continues with a specification of the procedures for creation of new
class instances (§12.5); and finalization of class instances (§12.6). It concludes by
describing the unloading of classes (§12.7) and the procedure followed when a
program exits (§12.8).

12.1 Java Virtual Machine Startup

The Java Virtual Machine starts execution by invoking the method main of some
specified class, passing it a single argument, which is an array of strings. In the
examples in this specification, this first class is typically called Test.

The precise semantics of Java Virtual Machine startup are given in Chapter 5 of
The Java Virtual Machine Specification, Java SE 8 Edition. Here we present an
overview of the process from the viewpoint of the Java programming language.

The manner in which the initial class is specified to the Java Virtual Machine is
beyond the scope of this specification, but it is typical, in host environments that
use command lines, for the fully-qualified name of the class to be specified as a
command-line argument and for following command-line arguments to be used as
strings to be provided as the argument to the method main.

12.1 Java Virtual Machine Startup EXECUTION

358

For example, in a UNIX implementation, the command line:

java Test reboot Bob Dot Enzo

will typically start a Java Virtual Machine by invoking method main of class Test (a class
in an unnamed package), passing it an array containing the four strings "reboot", "Bob",
"Dot", and "Enzo".

We now outline the steps the Java Virtual Machine may take to execute Test, as
an example of the loading, linking, and initialization processes that are described
further in later sections.

12.1.1 Load the Class Test

The initial attempt to execute the method main of class Test discovers that the class
Test is not loaded - that is, that the Java Virtual Machine does not currently contain
a binary representation for this class. The Java Virtual Machine then uses a class
loader to attempt to find such a binary representation. If this process fails, then an
error is thrown. This loading process is described further in §12.2.

12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve

After Test is loaded, it must be initialized before main can be invoked. And Test,
like all (class or interface) types, must be linked before it is initialized. Linking
involves verification, preparation, and (optionally) resolution. Linking is described
further in §12.3.

Verification checks that the loaded representation of Test is well-formed, with a
proper symbol table. Verification also checks that the code that implements Test
obeys the semantic requirements of the Java programming language and the Java
Virtual Machine. If a problem is detected during verification, then an error is
thrown. Verification is described further in §12.3.1.

Preparation involves allocation of static storage and any data structures that are
used internally by the implementation of the Java Virtual Machine, such as method
tables. Preparation is described further in §12.3.2.

Resolution is the process of checking symbolic references from Test to other
classes and interfaces, by loading the other classes and interfaces that are mentioned
and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implementation may
resolve symbolic references from a class or interface that is being linked very early,
even to the point of resolving all symbolic references from the classes and interfaces

EXECUTION Java Virtual Machine Startup 12.1

359

that are further referenced, recursively. (This resolution may result in errors from
these further loading and linking steps.) This implementation choice represents one
extreme and is similar to the kind of "static" linkage that has been done for many
years in simple implementations of the C language. (In these implementations,
a compiled program is typically represented as an "a.out" file that contains a
fully-linked version of the program, including completely resolved links to library
routines used by the program. Copies of these library routines are included in the
"a.out" file.)

An implementation may instead choose to resolve a symbolic reference only when
it is actively used; consistent use of this strategy for all symbolic references would
represent the "laziest" form of resolution. In this case, if Test had several symbolic
references to another class, then the references might be resolved one at a time,
as they are used, or perhaps not at all, if these references were never used during
execution of the program.

The only requirement on when resolution is performed is that any errors detected
during resolution must be thrown at a point in the program where some action
is taken by the program that might, directly or indirectly, require linkage to the
class or interface involved in the error. Using the "static" example implementation
choice described above, loading and linkage errors could occur before the program
is executed if they involved a class or interface mentioned in the class Test or
any of the further, recursively referenced, classes and interfaces. In a system that
implemented the "laziest" resolution, these errors would be thrown only when an
incorrect symbolic reference is actively used.

The resolution process is described further in §12.3.3.

12.1.3 Initialize Test: Execute Initializers

In our continuing example, the Java Virtual Machine is still trying to execute the
method main of class Test. This is permitted only if the class has been initialized
(§12.4.1).

Initialization consists of execution of any class variable initializers and static
initializers of the class Test, in textual order. But before Test can be initialized,
its direct superclass must be initialized, as well as the direct superclass of its direct
superclass, and so on, recursively. In the simplest case, Test has Object as its
implicit direct superclass; if class Object has not yet been initialized, then it must
be initialized before Test is initialized. Class Object has no superclass, so the
recursion terminates here.

12.2 Loading of Classes and Interfaces EXECUTION

360

If class Test has another class Super as its superclass, then Super must be
initialized before Test. This requires loading, verifying, and preparing Super if
this has not already been done and, depending on the implementation, may also
involve resolving the symbolic references from Super and so on, recursively.

Initialization may thus cause loading, linking, and initialization errors, including
such errors involving other types.

The initialization process is described further in §12.4.

12.1.4 Invoke Test.main

Finally, after completion of the initialization for class Test (during which other
consequential loading, linking, and initializing may have occurred), the method
main of Test is invoked.

The method main must be declared public, static, and void. It must specify a
formal parameter (§8.4.1) whose declared type is array of String. Therefore, either
of the following declarations is acceptable:

public static void main(String[] args)

public static void main(String... args)

12.2 Loading of Classes and Interfaces

Loading refers to the process of finding the binary form of a class or interface type
with a particular name, perhaps by computing it on the fly, but more typically by
retrieving a binary representation previously computed from source code by a Java
compiler, and constructing, from that binary form, a Class object to represent the
class or interface.

The precise semantics of loading are given in Chapter 5 of The Java Virtual
Machine Specification, Java SE 8 Edition. Here we present an overview of the
process from the viewpoint of the Java programming language.

The binary format of a class or interface is normally the class file format described
in The Java Virtual Machine Specification, Java SE 8 Edition cited above, but other
formats are possible, provided they meet the requirements specified in §13.1. The
method defineClass of class ClassLoader may be used to construct Class objects
from binary representations in the class file format.

Well-behaved class loaders maintain these properties:

EXECUTION Loading of Classes and Interfaces 12.2

361

• Given the same name, a good class loader should always return the same class
object.

• If a class loader L1 delegates loading of a class C to another loader L2, then for
any type T that occurs as the direct superclass or a direct superinterface of C, or
as the type of a field in C, or as the type of a formal parameter of a method or
constructor in C, or as a return type of a method in C, L1 and L2 should return
the same Class object.

A malicious class loader could violate these properties. However, it could not
undermine the security of the type system, because the Java Virtual Machine guards
against this.

For further discussion of these issues, see The Java Virtual Machine Specification, Java
SE 8 Edition and the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng
Liang and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM SIGPLAN
Notices, Volume 33, Number 10, October 1998, pages 36-44. A basic principle of the design
of the Java programming language is that the run-time type system cannot be subverted
by code written in the Java programming language, not even by implementations of such
otherwise sensitive system classes as ClassLoader and SecurityManager.

12.2.1 The Loading Process

The loading process is implemented by the class ClassLoader and its subclasses.

Different subclasses of ClassLoader may implement different loading policies. In
particular, a class loader may cache binary representations of classes and interfaces,
prefetch them based on expected usage, or load a group of related classes together.
These activities may not be completely transparent to a running application if, for
example, a newly compiled version of a class is not found because an older version
is cached by a class loader. It is the responsibility of a class loader, however, to
reflect loading errors only at points in the program where they could have arisen
without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the following
subclasses of class LinkageError will be thrown at any point in the program that
(directly or indirectly) uses the type:

• ClassCircularityError: A class or interface could not be loaded because it
would be its own superclass or superinterface (§8.1.4, §9.1.3, §13.4.4).

• ClassFormatError: The binary data that purports to specify a requested
compiled class or interface is malformed.

• NoClassDefFoundError: No definition for a requested class or interface could
be found by the relevant class loader.

12.3 Linking of Classes and Interfaces EXECUTION

362

Because loading involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3 Linking of Classes and Interfaces

Linking is the process of taking a binary form of a class or interface type and
combining it into the run-time state of the Java Virtual Machine, so that it can be
executed. A class or interface type is always loaded before it is linked.

Three different activities are involved in linking: verification, preparation, and
resolution of symbolic references.

The precise semantics of linking are given in Chapter 5 of The Java Virtual
Machine Specification, Java SE 8 Edition. Here we present an overview of the
process from the viewpoint of the Java programming language.

This specification allows an implementation flexibility as to when linking activities
(and, because of recursion, loading) take place, provided that the semantics of the
Java programming language are respected, that a class or interface is completely
verified and prepared before it is initialized, and that errors detected during linkage
are thrown at a point in the program where some action is taken by the program
that might require linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic reference
in a class or interface individually, only when it is used (lazy or late resolution), or
to resolve them all at once while the class is being verified (static resolution). This
means that the resolution process may continue, in some implementations, after a
class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3.1 Verification of the Binary Representation

Verification ensures that the binary representation of a class or interface is
structurally correct. For example, it checks that every instruction has a valid
operation code; that every branch instruction branches to the start of some other
instruction, rather than into the middle of an instruction; that every method is
provided with a structurally correct signature; and that every instruction obeys the
type discipline of the Java Virtual Machine language.

EXECUTION Linking of Classes and Interfaces 12.3

363

If an error occurs during verification, then an instance of the following subclass
of class LinkageError will be thrown at the point in the program that caused the
class to be verified:

• VerifyError: The binary definition for a class or interface failed to pass a set of
required checks to verify that it obeys the semantics of the Java Virtual Machine
language and that it cannot violate the integrity of the Java Virtual Machine. (See
§13.4.2, §13.4.4, §13.4.9, and §13.4.17 for some examples.)

12.3.2 Preparation of a Class or Interface Type

Preparation involves creating the static fields (class variables and constants) for
a class or interface and initializing such fields to the default values (§4.12.5). This
does not require the execution of any source code; explicit initializers for static
fields are executed as part of initialization (§12.4), not preparation.

Implementations of the Java Virtual Machine may precompute additional data structures
at preparation time in order to make later operations on a class or interface more efficient.
One particularly useful data structure is a "method table" or other data structure that allows
any method to be invoked on instances of a class without requiring a search of superclasses
at invocation time.

12.3.3 Resolution of Symbolic References

The binary representation of a class or interface references other classes and
interfaces and their fields, methods, and constructors symbolically, using the binary
names (§13.1) of the other classes and interfaces (§13.1). For fields and methods,
these symbolic references include the name of the class or interface type of which
the field or method is a member, as well as the name of the field or method itself,
together with appropriate type information.

Before a symbolic reference can be used it must undergo resolution, wherein a
symbolic reference is checked to be correct and, typically, replaced with a direct
reference that can be more efficiently processed if the reference is used repeatedly.

If an error occurs during resolution, then an error will be thrown. Most
typically, this will be an instance of one of the following subclasses of the class
IncompatibleClassChangeError, but it may also be an instance of some other
subclass of IncompatibleClassChangeError or even an instance of the class
IncompatibleClassChangeError itself. This error may be thrown at any point in
the program that uses a symbolic reference to the type, directly or indirectly:

• IllegalAccessError: A symbolic reference has been encountered that specifies
a use or assignment of a field, or invocation of a method, or creation of an

12.4 Initialization of Classes and Interfaces EXECUTION

364

instance of a class, to which the code containing the reference does not have
access because the field or method was declared with private, protected, or
package access (not public), or because the class was not declared public.

This can occur, for example, if a field that is originally declared public is changed to
be private after another class that refers to the field has been compiled (§13.4.7).

• InstantiationError: A symbolic reference has been encountered that is used
in class instance creation expression, but an instance cannot be created because
the reference turns out to refer to an interface or to an abstract class.

This can occur, for example, if a class that is originally not abstract is changed to
be abstract after another class that refers to the class in question has been compiled
(§13.4.1).

• NoSuchFieldError: A symbolic reference has been encountered that refers to a
specific field of a specific class or interface, but the class or interface does not
contain a field of that name.

This can occur, for example, if a field declaration was deleted from a class after another
class that refers to the field was compiled (§13.4.8).

• NoSuchMethodError: A symbolic reference has been encountered that refers to
a specific method of a specific class or interface, but the class or interface does
not contain a method of that signature.

This can occur, for example, if a method declaration was deleted from a class after
another class that refers to the method was compiled (§13.4.12).

Additionally, an UnsatisfiedLinkError, a subclass of LinkageError, may be
thrown if a class declares a native method for which no implementation can be
found. The error will occur if the method is used, or earlier, depending on what
kind of resolution strategy is being used by an implementation of the Java Virtual
Machine (§12.3).

12.4 Initialization of Classes and Interfaces

Initialization of a class consists of executing its static initializers and the initializers
for static fields (class variables) declared in the class.

Initialization of an interface consists of executing the initializers for fields
(constants) declared in the interface.

EXECUTION Initialization of Classes and Interfaces 12.4

365

12.4.1 When Initialization Occurs

A class or interface type T will be initialized immediately before the first occurrence
of any one of the following:

• T is a class and an instance of T is created.

• A static method declared by T is invoked.

• A static field declared by T is assigned.

• A static field declared by T is used and the field is not a constant variable
(§4.12.4).

• T is a top level class (§7.6) and an assert statement (§14.10) lexically nested
within T (§8.1.3) is executed.

When a class is initialized, its superclasses are initialized (if they have not been
previously initialized), as well as any superinterfaces (§8.1.5) that declare any
default methods (§9.4.3) (if they have not been previously initialized). Initialization
of an interface does not, of itself, cause initialization of any of its superinterfaces.

A reference to a static field (§8.3.1.1) causes initialization of only the class or
interface that actually declares it, even though it might be referred to through the
name of a subclass, a subinterface, or a class that implements an interface.

Invocation of certain reflective methods in class Class and in package
java.lang.reflect also causes class or interface initialization.

A class or interface will not be initialized under any other circumstance.

Note that a compiler may generate synthetic default methods in an interface, that is, default
methods that are neither explicitly nor implicitly declared (§13.1). Such methods will
trigger the interface's initialization despite the source code giving no indication that the
interface should be initialized.

The intent is that a class or interface type has a set of initializers that put it in a
consistent state, and that this state is the first state that is observed by other classes.
The static initializers and class variable initializers are executed in textual order,
and may not refer to class variables declared in the class whose declarations appear
textually after the use, even though these class variables are in scope (§8.3.3).
This restriction is designed to detect, at compile time, most circular or otherwise
malformed initializations.

The fact that initialization code is unrestricted allows examples to be constructed
where the value of a class variable can be observed when it still has its initial default
value, before its initializing expression is evaluated, but such examples are rare in

12.4 Initialization of Classes and Interfaces EXECUTION

366

practice. (Such examples can be also constructed for instance variable initialization
(§12.5).) The full power of the Java programming language is available in these
initializers; programmers must exercise some care. This power places an extra
burden on code generators, but this burden would arise in any case because the
Java programming language is concurrent (§12.4.2).

Example 12.4.1-1. Superclasses Are Initialized Before Subclasses

class Super {
 static { System.out.print("Super "); }
}
class One {
 static { System.out.print("One "); }
}
class Two extends Super {
 static { System.out.print("Two "); }
}
class Test {
 public static void main(String[] args) {
 One o = null;
 Two t = new Two();
 System.out.println((Object)o == (Object)t);
 }
}

This program produces the output:

Super Two false

The class One is never initialized, because it not used actively and therefore is never linked
to. The class Two is initialized only after its superclass Super has been initialized.

Example 12.4.1-2. Only The Class That Declares static Field Is Initialized

class Super {
 static int taxi = 1729;
}
class Sub extends Super {
 static { System.out.print("Sub "); }
}
class Test {
 public static void main(String[] args) {
 System.out.println(Sub.taxi);
 }
}

This program prints only:

1729

EXECUTION Initialization of Classes and Interfaces 12.4

367

because the class Sub is never initialized; the reference to Sub.taxi is a reference to a
field actually declared in class Super and does not trigger initialization of the class Sub.

Example 12.4.1-3. Interface Initialization Does Not Initialize Superinterfaces

interface I {
 int i = 1, ii = Test.out("ii", 2);
}
interface J extends I {
 int j = Test.out("j", 3), jj = Test.out("jj", 4);
}
interface K extends J {
 int k = Test.out("k", 5);
}
class Test {
 public static void main(String[] args) {
 System.out.println(J.i);
 System.out.println(K.j);
 }
 static int out(String s, int i) {
 System.out.println(s + "=" + i);
 return i;
 }
}

This program produces the output:

1
j=3
jj=4
3

The reference to J.i is to a field that is a constant variable (§4.12.4); therefore, it does not
cause I to be initialized (§13.4.9).

The reference to K.j is a reference to a field actually declared in interface J that is not a
constant variable; this causes initialization of the fields of interface J, but not those of its
superinterface I, nor those of interface K.

Despite the fact that the name K is used to refer to field j of interface J, interface K is not
initialized.

12.4.2 Detailed Initialization Procedure

Because the Java programming language is multithreaded, initialization of a class
or interface requires careful synchronization, since some other thread may be trying
to initialize the same class or interface at the same time. There is also the possibility
that initialization of a class or interface may be requested recursively as part of the
initialization of that class or interface; for example, a variable initializer in class A

12.4 Initialization of Classes and Interfaces EXECUTION

368

might invoke a method of an unrelated class B, which might in turn invoke a method
of class A. The implementation of the Java Virtual Machine is responsible for
taking care of synchronization and recursive initialization by using the following
procedure.

The procedure assumes that the Class object has already been verified and
prepared, and that the Class object contains state that indicates one of four
situations:

• This Class object is verified and prepared but not initialized.

• This Class object is being initialized by some particular thread T.

• This Class object is fully initialized and ready for use.

• This Class object is in an erroneous state, perhaps because initialization was
attempted and failed.

For each class or interface C, there is a unique initialization lock LC. The mapping
from C to LC is left to the discretion of the Java Virtual Machine implementation.
The procedure for initializing C is then as follows:

1. Synchronize on the initialization lock, LC, for C. This involves waiting until the
current thread can acquire LC.

2. If the Class object for C indicates that initialization is in progress for C by some
other thread, then release LC and block the current thread until informed that
the in-progress initialization has completed, at which time repeat this step.

3. If the Class object for C indicates that initialization is in progress for C by the
current thread, then this must be a recursive request for initialization. Release
LC and complete normally.

4. If the Class object for C indicates that C has already been initialized, then no
further action is required. Release LC and complete normally.

5. If the Class object for C is in an erroneous state, then initialization is not
possible. Release LC and throw a NoClassDefFoundError.

6. Otherwise, record the fact that initialization of the Class object for C is in
progress by the current thread, and release LC.

Then, initialize the static fields of C which are constant variables (§4.12.4,
§8.3.2, §9.3.1).

7. Next, if C is a class rather than an interface, and its superclass has not yet been
initialized, then let SC be its superclass and let SI1, ..., SIn be all superinterfaces
of C that declare at least one default method. The order of superinterfaces is

EXECUTION Initialization of Classes and Interfaces 12.4

369

given by a recursive enumeration over the superinterface hierarchy of each
interface directly implemented by C (in the left-to-right order of C's implements
clause). For each interface I directly implemented by C, the enumeration recurs
on I's superinterfaces (in the left-to-right order of I's extends clause) before
returning I.

For each S in the list [SC, SI1, ..., SIn], recursively perform this entire procedure
for S. If necessary, verify and prepare S first.

If the initialization of S completes abruptly because of a thrown exception, then
acquire LC, label the Class object for C as erroneous, notify all waiting threads,
release LC, and complete abruptly, throwing the same exception that resulted
from initializing S.

8. Next, determine whether assertions are enabled (§14.10) for C by querying its
defining class loader.

9. Next, execute either the class variable initializers and static initializers of the
class, or the field initializers of the interface, in textual order, as though they
were a single block.

10. If the execution of the initializers completes normally, then acquire LC, label
the Class object for C as fully initialized, notify all waiting threads, release LC,
and complete this procedure normally.

11. Otherwise, the initializers must have completed abruptly by throwing some
exception E. If the class of E is not Error or one of its subclasses, then create
a new instance of the class ExceptionInInitializerError, with E as the
argument, and use this object in place of E in the following step. If a new
instance of ExceptionInInitializerError cannot be created because an
OutOfMemoryError occurs, then instead use an OutOfMemoryError object in
place of E in the following step.

12. Acquire LC, label the Class object for C as erroneous, notify all waiting
threads, release LC, and complete this procedure abruptly with reason E or its
replacement as determined in the previous step.

An implementation may optimize this procedure by eliding the lock acquisition in step 1
(and release in step 4/5) when it can determine that the initialization of the class has already
completed, provided that, in terms of the memory model, all happens-before orderings that
would exist if the lock were acquired, still exist when the optimization is performed.

Code generators need to preserve the points of possible initialization of a class or interface,
inserting an invocation of the initialization procedure just described. If this initialization
procedure completes normally and the Class object is fully initialized and ready for use,
then the invocation of the initialization procedure is no longer necessary and it may be

12.5 Creation of New Class Instances EXECUTION

370

eliminated from the code - for example, by patching it out or otherwise regenerating the
code.

Compile-time analysis may, in some cases, be able to eliminate many of the checks
that a type has been initialized from the generated code, if an initialization order for a
group of related types can be determined. Such analysis must, however, fully account for
concurrency and for the fact that initialization code is unrestricted.

12.5 Creation of New Class Instances

A new class instance is explicitly created when evaluation of a class instance
creation expression (§15.9) causes a class to be instantiated.

A new class instance may be implicitly created in the following situations:

• Loading of a class or interface that contains a String literal (§3.10.5) may create
a new String object to represent that literal. (This might not occur if the same
String has previously been interned (§3.10.5).)

• Execution of an operation that causes boxing conversion (§5.1.7). Boxing
conversion may create a new object of a wrapper class associated with one of
the primitive types.

• Execution of a string concatenation operator + (§15.18.1) that is not part of a
constant expression (§15.28) always creates a new String object to represent the
result. String concatenation operators may also create temporary wrapper objects
for a value of a primitive type.

• Evaluation of a method reference expression (§15.13.3) or a lambda expression
(§15.27.4) may require that a new instance of a class that implements a functional
interface type be created.

Each of these situations identifies a particular constructor (§8.8) to be called with
specified arguments (possibly none) as part of the class instance creation process.

Whenever a new class instance is created, memory space is allocated for it with
room for all the instance variables declared in the class type and all the instance
variables declared in each superclass of the class type, including all the instance
variables that may be hidden (§8.3).

If there is not sufficient space available to allocate memory for the object, then
creation of the class instance completes abruptly with an OutOfMemoryError.
Otherwise, all the instance variables in the new object, including those declared in
superclasses, are initialized to their default values (§4.12.5).

EXECUTION Creation of New Class Instances 12.5

371

Just before a reference to the newly created object is returned as the result, the
indicated constructor is processed to initialize the new object using the following
procedure:

1. Assign the arguments for the constructor to newly created parameter variables
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation (§8.8.7.1) of
another constructor in the same class (using this), then evaluate the arguments
and process that constructor invocation recursively using these same five
steps. If that constructor invocation completes abruptly, then this procedure
completes abruptly for the same reason; otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of
another constructor in the same class (using this). If this constructor is for
a class other than Object, then this constructor will begin with an explicit
or implicit invocation of a superclass constructor (using super). Evaluate the
arguments and process that superclass constructor invocation recursively using
these same five steps. If that constructor invocation completes abruptly, then
this procedure completes abruptly for the same reason. Otherwise, continue
with step 4.

4. Execute the instance initializers and instance variable initializers for this class,
assigning the values of instance variable initializers to the corresponding
instance variables, in the left-to-right order in which they appear textually in
the source code for the class. If execution of any of these initializers results
in an exception, then no further initializers are processed and this procedure
completes abruptly with that same exception. Otherwise, continue with step 5.

5. Execute the rest of the body of this constructor. If that execution completes
abruptly, then this procedure completes abruptly for the same reason.
Otherwise, this procedure completes normally.

Unlike C++, the Java programming language does not specify altered rules for
method dispatch during the creation of a new class instance. If methods are
invoked that are overridden in subclasses in the object being initialized, then these
overriding methods are used, even before the new object is completely initialized.

Example 12.5-1. Evaluation of Instance Creation

class Point {
 int x, y;
 Point() { x = 1; y = 1; }
}
class ColoredPoint extends Point {
 int color = 0xFF00FF;

12.5 Creation of New Class Instances EXECUTION

372

}
class Test {
 public static void main(String[] args) {
 ColoredPoint cp = new ColoredPoint();
 System.out.println(cp.color);
 }
}

Here, a new instance of ColoredPoint is created. First, space is allocated for the new
ColoredPoint, to hold the fields x, y, and color. All these fields are then initialized to
their default values (in this case, 0 for each field). Next, the ColoredPoint constructor
with no arguments is first invoked. Since ColoredPoint declares no constructors, a default
constructor of the following form is implicitly declared:

ColoredPoint() { super(); }

This constructor then invokes the Point constructor with no arguments. The Point
constructor does not begin with an invocation of a constructor, so the Java compiler
provides an implicit invocation of its superclass constructor of no arguments, as though it
had been written:

Point() { super(); x = 1; y = 1; }

Therefore, the constructor for Object which takes no arguments is invoked.

The class Object has no superclass, so the recursion terminates here. Next, any instance
initializers and instance variable initializers of Object are invoked. Next, the body of the
constructor of Object that takes no arguments is executed. No such constructor is declared
in Object, so the Java compiler supplies a default one, which in this special case is:

Object() { }

This constructor executes without effect and returns.

Next, all initializers for the instance variables of class Point are executed. As it happens,
the declarations of x and y do not provide any initialization expressions, so no action is
required for this step of the example. Then the body of the Point constructor is executed,
setting x to 1 and y to 1.

Next, the initializers for the instance variables of class ColoredPoint are executed.
This step assigns the value 0xFF00FF to color. Finally, the rest of the body of the
ColoredPoint constructor is executed (the part after the invocation of super); there
happen to be no statements in the rest of the body, so no further action is required and
initialization is complete.

Example 12.5-2. Dynamic Dispatch During Instance Creation

class Super {
 Super() { printThree(); }
 void printThree() { System.out.println("three"); }
}

EXECUTION Finalization of Class Instances 12.6

373

class Test extends Super {
 int three = (int)Math.PI; // That is, 3
 void printThree() { System.out.println(three); }

 public static void main(String[] args) {
 Test t = new Test();
 t.printThree();
 }
}

This program produces the output:

0
3

This shows that the invocation of printThree in the constructor for class Super does
not invoke the definition of printThree in class Super, but rather invokes the overriding
definition of printThree in class Test. This method therefore runs before the field
initializers of Test have been executed, which is why the first value output is 0, the default
value to which the field three of Test is initialized. The later invocation of printThree
in method main invokes the same definition of printThree, but by that point the initializer
for instance variable three has been executed, and so the value 3 is printed.

12.6 Finalization of Class Instances

The class Object has a protected method called finalize; this method can be
overridden by other classes. The particular definition of finalize that can be
invoked for an object is called the finalizer of that object. Before the storage for an
object is reclaimed by the garbage collector, the Java Virtual Machine will invoke
the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed automatically
by an automatic storage manager. In such situations, simply reclaiming the memory
used by an object would not guarantee that the resources it held would be reclaimed.

The Java programming language does not specify how soon a finalizer will be
invoked, except to say that it will happen before the storage for the object is reused.

The Java programming language does not specify which thread will invoke the
finalizer for any given object.

It is important to note that many finalizer threads may be active (this is sometimes needed on
large shared memory multiprocessors), and that if a large connected data structure becomes
garbage, all of the finalize methods for every object in that data structure could be
invoked at the same time, each finalizer invocation running in a different thread.

12.6 Finalization of Class Instances EXECUTION

374

The Java programming language imposes no ordering on finalize method calls.
Finalizers may be called in any order, or even concurrently.

As an example, if a circularly linked group of unfinalized objects becomes unreachable
(or finalizer-reachable), then all the objects may become finalizable together. Eventually,
the finalizers for these objects may be invoked, in any order, or even concurrently
using multiple threads. If the automatic storage manager later finds that the objects are
unreachable, then their storage can be reclaimed.

It is straightforward to implement a class that will cause a set of finalizer-like methods to be
invoked in a specified order for a set of objects when all the objects become unreachable.
Defining such a class is left as an exercise for the reader.

It is guaranteed that the thread that invokes the finalizer will not be holding any
user-visible synchronization locks when the finalizer is invoked.

If an uncaught exception is thrown during the finalization, the exception is ignored
and finalization of that object terminates.

The completion of an object's constructor happens-before (§17.4.5) the execution
of its finalize method (in the formal sense of happens-before).

The finalize method declared in class Object takes no action. The fact that class
Object declares a finalize method means that the finalize method for any class
can always invoke the finalize method for its superclass. This should always
be done, unless it is the programmer's intent to nullify the actions of the finalizer
in the superclass. (Unlike constructors, finalizers do not automatically invoke the
finalizer for the superclass; such an invocation must be coded explicitly.)

For efficiency, an implementation may keep track of classes that do not override the
finalize method of class Object, or override it in a trivial way.

For example:

protected void finalize() throws Throwable {
 super.finalize();
}

We encourage implementations to treat such objects as having a finalizer that is not
overridden, and to finalize them more efficiently, as described in §12.6.1.

A finalizer may be invoked explicitly, just like any other method.

The package java.lang.ref describes weak references, which interact with
garbage collection and finalization. As with any API that has special interactions
with the Java programming language, implementors must be cognizant of any
requirements imposed by the java.lang.ref API. This specification does not

EXECUTION Finalization of Class Instances 12.6

375

discuss weak references in any way. Readers are referred to the API documentation
for details.

12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable, finalizer-
reachable, or unreachable, and it may also be unfinalized, finalizable, or finalized.

A reachable object is any object that can be accessed in any potential continuing
computation from any live thread.

A finalizer-reachable object can be reached from some finalizable object through
some chain of references, but not from any live thread.

An unreachable object cannot be reached by either means.

An unfinalized object has never had its finalizer automatically invoked.

A finalized object has had its finalizer automatically invoked.

A finalizable object has never had its finalizer automatically invoked, but the Java
Virtual Machine may eventually automatically invoke its finalizer.

An object o is not finalizable until its constructor has invoked the constructor
for Object on o and that invocation has completed successfully (that is, without
throwing an exception). Every pre-finalization write to a field of an object must be
visible to the finalization of that object. Furthermore, none of the pre-finalization
reads of fields of that object may see writes that occur after finalization of that
object is initiated.

Optimizing transformations of a program can be designed that reduce the number of
objects that are reachable to be less than those which would naively be considered
reachable. For example, a Java compiler or code generator may choose to set a
variable or parameter that will no longer be used to null to cause the storage for
such an object to be potentially reclaimable sooner.

Another example of this occurs if the values in an object's fields are stored in
registers. The program may then access the registers instead of the object, and never
access the object again. This would imply that the object is garbage. Note that this
sort of optimization is only allowed if references are on the stack, not stored in
the heap.

For example, consider the Finalizer Guardian pattern:

class Foo {
 private final Object finalizerGuardian = new Object() {

12.6 Finalization of Class Instances EXECUTION

376

 protected void finalize() throws Throwable {
 /* finalize outer Foo object */
 }
 }
}

The finalizer guardian forces super.finalize to be called if a subclass overrides
finalize and does not explicitly call super.finalize.

If these optimizations are allowed for references that are stored on the heap, then a Java
compiler can detect that the finalizerGuardian field is never read, null it out, collect
the object immediately, and call the finalizer early. This runs counter to the intent: the
programmer probably wanted to call the Foo finalizer when the Foo instance became
unreachable. This sort of transformation is therefore not legal: the inner class object should
be reachable for as long as the outer class object is reachable.

Transformations of this sort may result in invocations of the finalize method occurring
earlier than might be otherwise expected. In order to allow the user to prevent this, we
enforce the notion that synchronization may keep the object alive. If an object's finalizer
can result in synchronization on that object, then that object must be alive and considered
reachable whenever a lock is held on it.

Note that this does not prevent synchronization elimination: synchronization only keeps
an object alive if a finalizer might synchronize on it. Since the finalizer occurs in another
thread, in many cases the synchronization could not be removed anyway.

12.6.2 Interaction with the Memory Model

It must be possible for the memory model (§17.4) to decide when it can commit
actions that take place in a finalizer. This section describes the interaction of
finalization with the memory model.

Each execution has a number of reachability decision points, labeled di. Each
action either comes-before di or comes-after di. Other than as explicitly mentioned,
the comes-before ordering described in this section is unrelated to all other
orderings in the memory model.

If r is a read that sees a write w and r comes-before di, then w must come-before di.

If x and y are synchronization actions on the same variable or monitor such that
so(x, y) (§17.4.4) and y comes-before di, then x must come-before di.

At each reachability decision point, some set of objects are marked as unreachable,
and some subset of those objects are marked as finalizable. These reachability
decision points are also the points at which references are checked, enqueued, and
cleared according to the rules provided in the API documentation for the package
java.lang.ref.

EXECUTION Finalization of Class Instances 12.6

377

The only objects that are considered definitely reachable at a point di are those that
can be shown to be reachable by the application of these rules:

• An object B is definitely reachable at di from static fields if there exists a write
w1 to a static field v of a class C such that the value written by w1 is a reference
to B, the class C is loaded by a reachable classloader, and there does not exist a
write w2 to v such that hb(w2, w1) is not true and both w1 and w2 come-before di.

• An object B is definitely reachable from A at di if there is a write w1 to an element
v of A such that the value written by w1 is a reference to B and there does not
exist a write w2 to v such that hb(w2, w1) is not true and both w1 and w2 come-
before di.

• If an object C is definitely reachable from an object B, and object B is definitely
reachable from an object A, then C is definitely reachable from A.

If an object X is marked as unreachable at di, then:

• X must not be definitely reachable at di from static fields; and

• All active uses of X in thread t that come-after di must occur in the finalizer
invocation for X or as a result of thread t performing a read that comes-after di
of a reference to X; and

• All reads that come-after di that see a reference to X must see writes to elements
of objects that were unreachable at di, or see writes that came-after di.

An action a is an active use of X if and only if at least one of the following is true:

• a reads or writes an element of X

• a locks or unlocks X and there is a lock action on X that happens-after the
invocation of the finalizer for X

• a writes a reference to X

• a is an active use of an object Y, and X is definitely reachable from Y

If an object X is marked as finalizable at di, then:

• X must be marked as unreachable at di; and

• di must be the only place where X is marked as finalizable; and

• actions that happen-after the finalizer invocation must come-after di.

12.7 Unloading of Classes and Interfaces EXECUTION

378

12.7 Unloading of Classes and Interfaces

An implementation of the Java programming language may unload classes.

A class or interface may be unloaded if and only if its defining class loader may be
reclaimed by the garbage collector as discussed in §12.6.

Classes and interfaces loaded by the bootstrap loader may not be unloaded.

Class unloading is an optimization that helps reduce memory use. Obviously, the semantics
of a program should not depend on whether and how a system chooses to implement an
optimization such as class unloading. To do otherwise would compromise the portability
of programs. Consequently, whether a class or interface has been unloaded or not should
be transparent to a program.

However, if a class or interface C was unloaded while its defining loader was potentially
reachable, then C might be reloaded. One could never ensure that this would not happen.
Even if the class was not referenced by any other currently loaded class, it might be
referenced by some class or interface, D, that had not yet been loaded. When D is loaded by
C's defining loader, its execution might cause reloading of C.

Reloading may not be transparent if, for example, the class has static variables (whose
state would be lost), static initializers (which may have side effects), or native methods
(which may retain static state). Furthermore, the hash value of the Class object is
dependent on its identity. Therefore it is, in general, impossible to reload a class or interface
in a completely transparent manner.

Since we can never guarantee that unloading a class or interface whose loader is potentially
reachable will not cause reloading, and reloading is never transparent, but unloading must
be transparent, it follows that one must not unload a class or interface while its loader is
potentially reachable. A similar line of reasoning can be used to deduce that classes and
interfaces loaded by the bootstrap loader can never be unloaded.

One must also argue why it is safe to unload a class C if its defining class loader can
be reclaimed. If the defining loader can be reclaimed, then there can never be any live
references to it (this includes references that are not live, but might be resurrected by
finalizers). This, in turn, can only be true if there are can never be any live references to any
of the classes defined by that loader, including C, either from their instances or from code.

Class unloading is an optimization that is only significant for applications that load large
numbers of classes and that stop using most of those classes after some time. A prime
example of such an application is a web browser, but there are others. A characteristic of
such applications is that they manage classes through explicit use of class loaders. As a
result, the policy outlined above works well for them.

Strictly speaking, it is not essential that the issue of class unloading be discussed by this
specification, as class unloading is merely an optimization. However, the issue is very
subtle, and so it is mentioned here by way of clarification.

EXECUTION Program Exit 12.8

379

12.8 Program Exit

A program terminates all its activity and exits when one of two things happens:

• All the threads that are not daemon threads terminate.

• Some thread invokes the exit method of class Runtime or class System, and the
exit operation is not forbidden by the security manager.

381

C H A P T E R 13
Binary Compatibility

DEVELOPMENT tools for the Java programming language should support
automatic recompilation as necessary whenever source code is available. Particular
implementations may also store the source and binary of types in a versioning
database and implement a ClassLoader that uses integrity mechanisms of the
database to prevent linkage errors by providing binary-compatible versions of types
to clients.

Developers of packages and classes that are to be widely distributed face a
different set of problems. In the Internet, which is our favorite example of a widely
distributed system, it is often impractical or impossible to automatically recompile
the pre-existing binaries that directly or indirectly depend on a type that is to be
changed. Instead, this specification defines a set of changes that developers are
permitted to make to a package or to a class or interface type while preserving (not
breaking) compatibility with pre-existing binaries.

Within the framework of Release-to-Release Binary Compatibility in SOM
(Forman, Conner, Danforth, and Raper, Proceedings of OOPSLA '95), Java
programming language binaries are binary compatible under all relevant
transformations that the authors identify (with some caveats with respect to the
addition of instance variables). Using their scheme, here is a list of some important
binary compatible changes that the Java programming language supports:

• Reimplementing existing methods, constructors, and initializers to improve
performance.

• Changing methods or constructors to return values on inputs for which they
previously either threw exceptions that normally should not occur or failed by
going into an infinite loop or causing a deadlock.

• Adding new fields, methods, or constructors to an existing class or interface.

• Deleting private fields, methods, or constructors of a class.

13.1 The Form of a Binary BINARY COMPATIBILITY

382

• When an entire package is updated, deleting package access fields, methods, or
constructors of classes and interfaces in the package.

• Reordering the fields, methods, or constructors in an existing type declaration.

• Moving a method upward in the class hierarchy.

• Reordering the list of direct superinterfaces of a class or interface.

• Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guaranteed by
all implementations. The Java programming language guarantees compatibility
when binaries of classes and interfaces are mixed that are not known to be from
compatible sources, but whose sources have been modified in the compatible ways
described here. Note that we are discussing compatibility between releases of an
application. A discussion of compatibility among releases of the Java SE platform
is beyond the scope of this chapter.

We encourage development systems to provide facilities that alert developers to
the impact of changes on pre-existing binaries that cannot be recompiled.

This chapter first specifies some properties that any binary format for the Java
programming language must have (§13.1). It next defines binary compatibility,
explaining what it is and what it is not (§13.2). It finally enumerates a large set
of possible changes to packages (§13.3), classes (§13.4), and interfaces (§13.5),
specifying which of these changes are guaranteed to preserve binary compatibility
and which are not.

Occasionally, references of the form: (JVMS §x.y) are used to indicate concepts
from The Java Virtual Machine Specification, Java SE 8 Edition.

13.1 The Form of a Binary

Programs must be compiled either into the class file format specified by The Java
Virtual Machine Specification, Java SE 8 Edition, or into a representation that can
be mapped into that format by a class loader written in the Java programming
language.

The resulting class file must have certain properties. A number of these properties
are specifically chosen to support source code transformations that preserve binary
compatibility. The required properties are:

BINARY COMPATIBILITY The Form of a Binary 13.1

383

1. The class or interface must be named by its binary name, which must meet the
following constraints:

• The binary name of a top level type (§7.6) is its canonical name (§6.7).

• The binary name of a member type (§8.5, §9.5) consists of the binary name
of its immediately enclosing type, followed by $, followed by the simple
name of the member.

• The binary name of a local class (§14.3) consists of the binary name of
its immediately enclosing type, followed by $, followed by a non-empty
sequence of digits, followed by the simple name of the local class.

• The binary name of an anonymous class (§15.9.5) consists of the binary
name of its immediately enclosing type, followed by $, followed by a non-
empty sequence of digits.

• The binary name of a type variable declared by a generic class or interface
(§8.1.2, §9.1.2) is the binary name of its immediately enclosing type,
followed by $, followed by the simple name of the type variable.

• The binary name of a type variable declared by a generic method (§8.4.4) is
the binary name of the type declaring the method, followed by $, followed
by the descriptor of the method (JVMS §4.3.3), followed by $, followed by
the simple name of the type variable.

• The binary name of a type variable declared by a generic constructor (§8.8.4)
is the binary name of the type declaring the constructor, followed by $,
followed by the descriptor of the constructor (JVMS §4.3.3), followed by $,
followed by the simple name of the type variable.

2. A reference to another class or interface type must be symbolic, using the
binary name of the type.

3. A reference to a field that is a constant variable (§4.12.4) must be resolved at
compile time to the value V denoted by the constant variable's initializer.

If such a field is static, then no reference to the field should be present in the
code in a binary file, including the class or interface which declared the field.
Such a field must always appear to have been initialized (§12.4.2); the default
initial value for the field (if different than V) must never be observed.

If such a field is non-static, then no reference to the field should be present
in the code in a binary file, except in the class containing the field. (It will
be a class rather than an interface, since an interface has only static fields.)
The class should have code to set the field's value to V during instance creation
(§12.5).

13.1 The Form of a Binary BINARY COMPATIBILITY

384

4. Given a legal expression denoting a field access in a class C, referencing a
field named f that is not a constant variable and is declared in a (possibly
distinct) class or interface D, we define the qualifying type of the field reference
as follows:

• If the expression is referenced by a simple name, then if f is a member of the
current class or interface, C, then let T be C. Otherwise, let T be the innermost
lexically enclosing type declaration of which f is a member. In either case,
T is the qualifying type of the reference.

• If the reference is of the form TypeName.f, where TypeName denotes a
class or interface, then the class or interface denoted by TypeName is the
qualifying type of the reference.

• If the expression is of the form ExpressionName.f or Primary.f, then:

– If the compile-time type of ExpressionName or Primary is an intersection
type V1 & ... & Vn (§4.9), then the qualifying type of the reference is V1.

– Otherwise, the compile-time type of ExpressionName or Primary is the
qualifying type of the reference.

• If the expression is of the form super.f, then the superclass of C is the
qualifying type of the reference.

• If the expression is of the form TypeName.super.f, then the superclass of
the class denoted by TypeName is the qualifying type of the reference.

The reference to f must be compiled into a symbolic reference to the erasure
(§4.6) of the qualifying type of the reference, plus the simple name of the
field, f. The reference must also include a symbolic reference to the erasure
of the declared type of the field so that the verifier can check that the type is
as expected.

5. Given a method invocation expression or a method reference expression in
a class or interface C, referencing a method named m declared (or implicitly
declared (§9.2)) in a (possibly distinct) class or interface D, we define the
qualifying type of the method invocation as follows:

• If D is Object then the qualifying type of the expression is Object.

• Otherwise:

– If the method is referenced by a simple name, then if m is a member of the
current class or interface C, let T be C; otherwise, let T be the innermost
lexically enclosing type declaration of which m is a member. In either case,
T is the qualifying type of the method invocation.

BINARY COMPATIBILITY The Form of a Binary 13.1

385

– If the expression is of the form TypeName.m or ReferenceType::m, then
the type denoted by TypeName or ReferenceType is the qualifying type of
the method invocation.

– If the expression is of the form ExpressionName.m or Primary.m or
ExpressionName::m or Primary::m, then:

› If the compile-time type of ExpressionName or Primary is an
intersection type V1 & ... & Vn (§4.9), then the qualifying type of the
method invocation is V1.

› Otherwise, the compile-time type of ExpressionName or Primary is the
qualifying type of the method invocation.

– If the expression is of the form super.m or super::m, then the superclass
of C is the qualifying type of the method invocation.

– If the expression is of the form TypeName.super.m or
TypeName.super::m, then if TypeName denotes a class X, the superclass
of X is the qualifying type of the method invocation; if TypeName denotes
an interface X, X is the qualifying type of the method invocation.

A reference to a method must be resolved at compile time to a symbolic
reference to the erasure (§4.6) of the qualifying type of the invocation, plus the
erasure of the signature (§8.4.2) of the method. The signature of a method must
include all of the following as determined by §15.12.3:

• The simple name of the method

• The number of parameters to the method

• A symbolic reference to the type of each parameter

A reference to a method must also include either a symbolic reference to the
erasure of the return type of the denoted method or an indication that the
denoted method is declared void and does not return a value.

6. Given a class instance creation expression (§15.9) or an explicit constructor
invocation statement (§8.8.7.1) or a method reference expression of the form
ClassType :: new (§15.13) in a class or interface C referencing a constructor m
declared in a (possibly distinct) class or interface D, we define the qualifying
type of the constructor invocation as follows:

• If the expression is of the form new D(...) or ExpressionName.new D(...)
or Primary.new D(...) or D :: new, then the qualifying type of the
invocation is D.

13.1 The Form of a Binary BINARY COMPATIBILITY

386

• If the expression is of the form new D(...){...} or ExpressionName.new
D(...){...} or Primary.new D(...){...}, then the qualifying type of the
expression is the compile-time type of the expression.

• If the expression is of the form super(...) or
ExpressionName.super(...) or Primary.super(...), then the qualifying
type of the expression is the direct superclass of C.

• If the expression is of the form this(...), then the qualifying type of the
expression is C.

A reference to a constructor must be resolved at compile time to a symbolic
reference to the erasure (§4.6) of the qualifying type of the invocation, plus
the signature of the constructor (§8.8.2). The signature of a constructor must
include both:

• The number of parameters of the constructor

• A symbolic reference to the type of each formal parameter

A binary representation for a class or interface must also contain all of the
following:

1. If it is a class and is not Object, then a symbolic reference to the erasure of
the direct superclass of this class.

2. A symbolic reference to the erasure of each direct superinterface, if any.

3. A specification of each field declared in the class or interface, given as the
simple name of the field and a symbolic reference to the erasure of the type
of the field.

4. If it is a class, then the erased signature of each constructor, as described above.

5. For each method declared in the class or interface (excluding, for an interface,
its implicitly declared methods (§9.2)), its erased signature and return type, as
described above.

6. The code needed to implement the class or interface:

• For an interface, code for the field initializers and the implementation of each
default method.

• For a class, code for the field initializers, the instance and static initializers,
and the implementation of each method or constructor.

7. Every type must contain sufficient information to recover its canonical name
(§6.7).

BINARY COMPATIBILITY The Form of a Binary 13.1

387

8. Every member type must have sufficient information to recover its source level
access modifier.

9. Every nested class and nested interface must have a symbolic reference to its
immediately enclosing class (§8.1.3).

10. Every class must contain symbolic references to all of its member types (§8.5),
and to all local and anonymous classes that appear in its methods, constructors,
static initializers, instance initializers, and field initializers.

Every interface must contain symbolic references to all of its member types
(§9.5), and to all local and anonymous classes that appear in its default methods
and field initializers.

11. A construct emitted by a Java compiler must be marked as synthetic if it does
not correspond to a construct declared explicitly or implicitly in source code,
unless the emitted construct is a class initialization method (JVMS §2.9).

12. A construct emitted by a Java compiler must be marked as mandated if it
corresponds to a formal parameter declared implicitly in source code (§8.8.1,
§8.8.9, §8.9.3, §15.9.5.1).

The following formal parameters are declared implicitly in source code:

• The first formal parameter of a constructor of a non-private inner member class
(§8.8.1, §8.8.9).

• The first formal parameter of an anonymous constructor of an anonymous class whose
superclass is inner or local (not in a static context) (§15.9.5.1).

• The formal parameter name of the valueOf method which is implicitly declared in an
enum type (§8.9.3).

For reference, the following constructs are declared implicitly in source code, but are not
marked as mandated because only formal parameters can be so marked in a class file
(JVMS §4.7.22):

• Default constructors of classes and enum types (§8.8.9, §8.9.2)

• Anonymous constructors (§15.9.5.1)

• The values and valueOf methods of enum types (§8.9.3)

• Certain public fields of enum types (§8.9.3)

• Certain public methods of interfaces (§9.2)

• Container annotations (§9.7.5)

The following sections discuss changes that may be made to class and interface type
declarations without breaking compatibility with pre-existing binaries. Under the

13.2 What Binary Compatibility Is and Is Not BINARY COMPATIBILITY

388

translation requirements given above, the Java Virtual Machine and its class file
format support these changes. Any other valid binary format, such as a compressed
or encrypted representation that is mapped back into class files by a class loader
under the above requirements, will necessarily support these changes as well.

13.2 What Binary Compatibility Is and Is Not

A change to a type is binary compatible with (equivalently, does not break binary
compatibility with) pre-existing binaries if pre-existing binaries that previously
linked without error will continue to link without error.

Binaries are compiled to rely on the accessible members and constructors of other
classes and interfaces. To preserve binary compatibility, a class or interface should
treat its accessible members and constructors, their existence and behavior, as a
contract with its users.

The Java programming language is designed to prevent additions to contracts
and accidental name collisions from breaking binary compatibility. Specifically,
addition of more methods overloading a particular method name does not break
compatibility with pre-existing binaries. The method signature that the pre-existing
binary will use for method lookup is chosen by the overload resolution algorithm
at compile time (§15.12.2).

If the Java programming language had been designed so that the particular method to be
executed was chosen at run time, then such an ambiguity might be detected at run time. Such
a rule would imply that adding an additional overloaded method so as to make ambiguity
possible at a call site could break compatibility with an unknown number of pre-existing
binaries. See §13.4.23 for more discussion.

Binary compatibility is not the same as source compatibility. In particular, the
example in §13.4.6 shows that a set of compatible binaries can be produced from
sources that will not compile all together. This example is typical: a new declaration
is added, changing the meaning of a name in an unchanged part of the source code,
while the pre-existing binary for that unchanged part of the source code retains the
fully-qualified, previous meaning of the name. Producing a consistent set of source
code requires providing a qualified name or field access expression corresponding
to the previous meaning.

BINARY COMPATIBILITY Evolution of Packages 13.3

389

13.3 Evolution of Packages

A new top level class or interface type may be added to a package without breaking
compatibility with pre-existing binaries, provided the new type does not reuse a
name previously given to an unrelated type.

If a new type reuses a name previously given to an unrelated type, then a conflict
may result, since binaries for both types could not be loaded by the same class
loader.

Changes in top level class and interface types that are not public and that are not a
superclass or superinterface, respectively, of a public type, affect only types within
the package in which they are declared. Such types may be deleted or otherwise
changed, even if incompatibilities are otherwise described here, provided that the
affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class and its
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If a class that was not declared abstract is changed to be declared abstract,
then pre-existing binaries that attempt to create new instances of that class will
throw either an InstantiationError at link time, or (if a reflective method is
used) an InstantiationException at run time; such a change is therefore not
recommended for widely distributed classes.

Changing a class that is declared abstract to no longer be declared abstract does
not break compatibility with pre-existing binaries.

13.4.2 final Classes

If a class that was not declared final is changed to be declared final, then a
VerifyError is thrown if a binary of a pre-existing subclass of this class is loaded,
because final classes can have no subclasses; such a change is not recommended
for widely distributed classes.

Changing a class that is declared final to no longer be declared final does not
break compatibility with pre-existing binaries.

13.4 Evolution of Classes BINARY COMPATIBILITY

390

13.4.3 public Classes

Changing a class that is not declared public to be declared public does not break
compatibility with pre-existing binaries.

If a class that was declared public is changed to not be declared public, then an
IllegalAccessError is thrown if a pre-existing binary is linked that needs but no
longer has access to the class type; such a change is not recommended for widely
distributed classes.

13.4.4 Superclasses and Superinterfaces

A ClassCircularityError is thrown at load time if a class would be a superclass
of itself. Changes to the class hierarchy that could result in such a circularity
when newly compiled binaries are loaded with pre-existing binaries are not
recommended for widely distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a class type
will not break compatibility with pre-existing binaries, provided that the total set of
superclasses or superinterfaces, respectively, of the class type loses no members.

If a change to the direct superclass or the set of direct superinterfaces results in any
class or interface no longer being a superclass or superinterface, respectively, then
linkage errors may result if pre-existing binaries are loaded with the binary of the
modified class. Such changes are not recommended for widely distributed classes.

Example 13.4.4-1. Changing A Superclass

Suppose that the following test program:

class Hyper { char h = 'h'; }
class Super extends Hyper { char s = 's'; }
class Test extends Super {
 public static void printH(Hyper h) {
 System.out.println(h.h);
 }
 public static void main(String[] args) {
 printH(new Super());
 }
}

is compiled and executed, producing the output:

h

Suppose that a new version of class Super is then compiled:

BINARY COMPATIBILITY Evolution of Classes 13.4

391

class Super { char s = 's'; }

This version of class Super is not a subclass of Hyper. If we then run the existing binaries
of Hyper and Test with the new version of Super, then a VerifyError is thrown at
link time. The verifier objects because the result of new Super() cannot be passed as an
argument in place of a formal parameter of type Hyper, because Super is not a subclass
of Hyper.

It is instructive to consider what might happen without the verification step: the program
might run and print:

s

This demonstrates that without the verifier, the Java type system could be defeated by
linking inconsistent binary files, even though each was produced by a correct Java compiler.

The lesson is that an implementation that lacks a verifier or fails to use it will not maintain
type safety and is, therefore, not a valid implementation.

The requirement that alternatives in a multi-catch clause (§14.20) not be subclasses or
superclasses of each other is only a source restriction. Assuming the following client code
is legal:

try {
 throwAorB();
} catch(ExceptionA | ExceptionB e) {
 ...
}

where ExceptionA and ExceptionB do not have a subclass/superclass relationship when
the client is compiled, it is binary compatible with respect to the client for ExceptionA
and ExceptionB to have such a relationship when the client is executed.

This is analogous to other situations where a class transformation that is binary compatible
for a client might not be source compatible for the same client.

13.4.5 Class Type Parameters

Adding or removing a type parameter of a class does not, in itself, have any
implications for binary compatibility.

If such a type parameter is used in the type of a field or method, that may have the
normal implications of changing the aforementioned type.

Renaming a type parameter of a class has no effect with respect to pre-existing
binaries.

Changing the first bound of a type parameter of a class may change the erasure
(§4.6) of any member that uses that type parameter in its own type, and this may

13.4 Evolution of Classes BINARY COMPATIBILITY

392

affect binary compatibility. The change of such a bound is analogous to the change
of the first bound of a type parameter of a method or constructor (§13.4.13).

Changing any other bound has no effect on binary compatibility.

13.4.6 Class Body and Member Declarations

No incompatibility with pre-existing binaries is caused by adding an instance
(respectively static) member that has the same name and accessibility (for fields),
or same name and accessibility and signature and return type (for methods), as an
instance (respectively static) member of a superclass or subclass. No error occurs
even if the set of classes being linked would encounter a compile-time error.

Deleting a class member or constructor that is not declared private may cause a
linkage error if the member or constructor is used by a pre-existing binary.

Example 13.4.6-1. Changing A Class Body

class Hyper {
 void hello() { System.out.println("hello from Hyper"); }
}
class Super extends Hyper {
 void hello() { System.out.println("hello from Super"); }
}
class Test {
 public static void main(String[] args) {
 new Super().hello();
 }
}

This program produces the output:

hello from Super

Suppose that a new version of class Super is produced:

class Super extends Hyper {}

Then, recompiling Super and executing this new binary with the original binaries for Test
and Hyper produces the output:

hello from Hyper

as expected.

The super keyword can be used to access a method declared in a
superclass, bypassing any methods declared in the current class. The expression

BINARY COMPATIBILITY Evolution of Classes 13.4

393

super.Identifier is resolved, at compile time, to a method m in the superclass S. If
the method m is an instance method, then the method which is invoked at run time
is the method with the same signature as m that is a member of the direct superclass
of the class containing the expression involving super.

Example 13.4.6-2. Changing A Superclass

class Hyper {
 void hello() { System.out.println("hello from Hyper"); }
}
class Super extends Hyper { }
class Test extends Super {
 public static void main(String[] args) {
 new Test().hello();
 }
 void hello() {
 super.hello();
 }
}

This program produces the output:

hello from Hyper

Suppose that a new version of class Super is produced:

class Super extends Hyper {
 void hello() { System.out.println("hello from Super"); }
}

Then, if Super and Hyper are recompiled but not Test, then running the new binaries with
the existing binary of Test produces the output:

hello from Super

as you might expect.

13.4.7 Access to Members and Constructors

Changing the declared access of a member or constructor to permit less access
may break compatibility with pre-existing binaries, causing a linkage error to be
thrown when these binaries are resolved. Less access is permitted if the access
modifier is changed from package access to private access; from protected
access to package or private access; or from public access to protected,
package, or private access. Changing a member or constructor to permit less
access is therefore not recommended for widely distributed classes.

13.4 Evolution of Classes BINARY COMPATIBILITY

394

Perhaps surprisingly, the binary format is defined so that changing a member or
constructor to be more accessible does not cause a linkage error when a subclass
(already) defines a method to have less access.

Example 13.4.7-1. Changing Accessibility

If the package points defines the class Point:

package points;
public class Point {
 public int x, y;
 protected void print() {
 System.out.println("(" + x + "," + y + ")");
 }
}

used by the program:

class Test extends points.Point {
 public static void main(String[] args) {
 Test t = new Test();
 t.print();
 }
 protected void print() {
 System.out.println("Test");
 }
}

then these classes compile and Test executes to produce the output:

Test

If the method print in class Point is changed to be public, and then only the Point
class is recompiled, and then executed with the previously existing binary for Test, then
no linkage error occurs. This happens even though it is improper, at compile time, for a
public method to be overridden by a protected method (as shown by the fact that the
class Test could not be recompiled using this new Point class unless print in Test were
changed to be public.)

Allowing superclasses to change protected methods to be public without
breaking binaries of pre-existing subclasses helps make binaries less fragile.
The alternative, where such a change would cause a linkage error, would create
additional binary incompatibilities.

13.4.8 Field Declarations

Widely distributed programs should not expose any fields to their clients. Apart
from the binary compatibility issues discussed below, this is generally good

BINARY COMPATIBILITY Evolution of Classes 13.4

395

software engineering practice. Adding a field to a class may break compatibility
with pre-existing binaries that are not recompiled.

Assume a reference to a field f with qualifying type T. Assume further that f is
in fact an instance (respectively static) field declared in a superclass of T, S, and
that the type of f is X.

If a new field of type X with the same name as f is added to a subclass of S that is a
superclass of T or T itself, then a linkage error may occur. Such a linkage error will
occur only if, in addition to the above, either one of the following is true:

• The new field is less accessible than the old one.

• The new field is a static (respectively instance) field.

In particular, no linkage error will occur in the case where a class could no longer
be recompiled because a field access previously referenced a field of a superclass
with an incompatible type. The previously compiled class with such a reference
will continue to reference the field declared in a superclass.

Example 13.4.8-1. Adding A Field Declaration

class Hyper { String h = "hyper"; }
class Super extends Hyper { String s = "super"; }
class Test {
 public static void main(String[] args) {
 System.out.println(new Super().h);
 }
}

This program produces the output:

hyper

Suppose a new version of class Super is produced:

class Super extends Hyper {
 String s = "super";
 int h = 0;
}

Then, recompiling Hyper and Super, and executing the resulting new binaries with the old
binary of Test produces the output:

hyper

The field h of Hyper is output by the original binary of Test. While this may seem
surprising at first, it serves to reduce the number of incompatibilities that occur at run time.
(In an ideal world, all source files that needed recompilation would be recompiled whenever
any one of them changed, eliminating such surprises. But such a mass recompilation is

13.4 Evolution of Classes BINARY COMPATIBILITY

396

often impractical or impossible, especially in the Internet. And, as was previously noted,
such recompilation would sometimes require further changes to the source code.)

As another example, if the program:

class Hyper { String h = "Hyper"; }
class Super extends Hyper { }
class Test extends Super {
 public static void main(String[] args) {
 String s = new Test().h;
 System.out.println(s);
 }
}

is compiled and executed, it produces the output:

Hyper

Suppose that a new version of class Super is then compiled:

class Super extends Hyper { char h = 'h'; }

If the resulting binary is used with the existing binaries for Hyper and Test, then the output
is still:

Hyper

even though compiling the source for these binaries:

class Hyper { String h = "Hyper"; }
class Super extends Hyper { char h = 'h'; }
class Test extends Super {
 public static void main(String[] args) {
 String s = new Test().h;
 System.out.println(s);
 }
}

would result in a compile-time error, because the h in the source code for main would now
be construed as referring to the char field declared in Super, and a char value can't be
assigned to a String.

Deleting a field from a class will break compatibility with any pre-existing binaries
that reference this field, and a NoSuchFieldError will be thrown when such a
reference from a pre-existing binary is linked. Only private fields may be safely
deleted from a widely distributed class.

For purposes of binary compatibility, adding or removing a field f whose type
involves type variables (§4.4) or parameterized types (§4.5) is equivalent to the

BINARY COMPATIBILITY Evolution of Classes 13.4

397

addition (respectively, removal) of a field of the same name whose type is the
erasure (§4.6) of the type of f.

13.4.9 final Fields and static Constant Variables

If a field that was not declared final is changed to be declared final, then it can
break compatibility with pre-existing binaries that attempt to assign new values to
the field.

Example 13.4.9-1. Changing A Variable To Be final

class Super { char s; }
class Test extends Super {
 public static void main(String[] args) {
 Super x = new Super();
 x.s = 'a';
 System.out.println(x.s);
 }
}

This program produces the output:

a

Suppose that a new version of class Super is produced:

class Super { final char s = 'b'; }

If Super is recompiled but not Test, then running the new binary with the existing binary
of Test results in a IllegalAccessError.

Deleting the keyword final or changing the value to which a field is initialized
does not break compatibility with existing binaries.

If a field is a constant variable (§4.12.4), and moreover is static, then deleting
the keyword final or changing its value will not break compatibility with pre-
existing binaries by causing them not to run, but they will not see any new value
for a usage of the field unless they are recompiled. This result is a side-effect of the
decision to support conditional compilation (§14.21). (One might suppose that the
new value is not seen if the usage occurs in a constant expression (§15.28) but is
seen otherwise. This is not so; pre-existing binaries do not see the new value at all.)

Another reason for requiring inlining of values of static constant variables is because of
switch statements. They are the only kind of statement that relies on constant expressions,
namely that each case label of a switch statement must be a constant expression whose
value is different than every other case label. case labels are often references to static
constant variables so it may not be immediately obvious that all the labels have different

13.4 Evolution of Classes BINARY COMPATIBILITY

398

values. If it is proven that there are no duplicate labels at compile time, then inlining the
values into the class file ensures there are no duplicate labels at run time either - a very
desirable property.

Example 13.4.9-2. Conditional Compilation

If the example:

class Flags { static final boolean debug = true; }
class Test {
 public static void main(String[] args) {
 if (Flags.debug)
 System.out.println("debug is true");
 }
}

is compiled and executed, it produces the output:

debug is true

Suppose that a new version of class Flags is produced:

class Flags { static final boolean debug = false; }

If Flags is recompiled but not Test, then running the new binary with the existing binary
of Test produces the output:

debug is true

because the value of debug was a constant expression, and could have been used in
compiling Test without making a reference to the class Flags.

This behavior would not change if Flags were changed to be an interface, as in the modified
example:

interface Flags { boolean debug = true; }
class Test {
 public static void main(String[] args) {
 if (Flags.debug)
 System.out.println("debug is true");
 }
}

Conditional compilation is discussed further at the end of §14.21.

The best way to avoid problems with "inconstant constants" in widely-distributed
code is to use static constant variables only for values which truly are unlikely
ever to change. Other than for true mathematical constants, we recommend that
source code make very sparing use of static constant variables.

BINARY COMPATIBILITY Evolution of Classes 13.4

399

If the read-only nature of final is required, a better choice is to declare a private static
variable and a suitable accessor method to get its value. Thus we recommend:

private static int N;
public static int getN() { return N; }

rather than:

public static final int N = ...;

There is no problem with:

public static int N = ...;

if N need not be read-only.

We recommend, as a general rule, that only constant expressions be assigned to
fields of interfaces.

We note, but do not recommend, that if a field of primitive type of an interface may
change, its value may be expressed idiomatically as in:

interface Flags {
 boolean debug = new Boolean(true).booleanValue();
}

ensuring that this value is not a constant. Similar idioms exist for the other primitive
types.

One other thing to note is that static constant variables must never appear to have
the default initial value for their type (§4.12.5). This means that all such fields
appear to be initialized first during class initialization (§8.3.2, §9.3.1, §12.4.2).

13.4.10 static Fields

If a field that is not declared private was not declared static and is changed
to be declared static, or vice versa, then a linkage error, specifically an
IncompatibleClassChangeError, will result if the field is used by a pre-existing
binary which expected a field of the other kind. Such changes are not recommended
in code that has been widely distributed.

13.4.11 transient Fields

Adding or deleting a transient modifier of a field does not break compatibility
with pre-existing binaries.

13.4 Evolution of Classes BINARY COMPATIBILITY

400

13.4.12 Method and Constructor Declarations

Adding a method or constructor declaration to a class will not break compatibility
with any pre-existing binaries, even in the case where a type could no longer be
recompiled because an invocation previously referenced a method or constructor
of a superclass with an incompatible type. The previously compiled class with
such a reference will continue to reference the method or constructor declared in
a superclass.

Assume a reference to a method m with qualifying type T. Assume further that m is
in fact an instance (respectively static) method declared in a superclass of T, S.

If a new method of type X with the same signature and return type as m is added to
a subclass of S that is a superclass of T or T itself, then a linkage error may occur.
Such a linkage error will occur only if, in addition to the above, either one of the
following is true:

• The new method is less accessible than the old one.

• The new method is a static (respectively instance) method.

Deleting a method or constructor from a class may break compatibility
with any pre-existing binary that referenced this method or constructor; a
NoSuchMethodError may be thrown when such a reference from a pre-existing
binary is linked. Such an error will occur only if no method with a matching
signature and return type is declared in a superclass.

If the source code for a non-inner class contains no declared constructors, then
a default constructor with no parameters is implicitly declared (§8.8.9). Adding
one or more constructor declarations to the source code of such a class will
prevent this default constructor from being implicitly declared, effectively deleting
a constructor, unless one of the new constructors also has no parameters, thus
replacing the default constructor. The default constructor with no parameters is
given the same access modifier as the class of its declaration, so any replacement
should have as much or more access if compatibility with pre-existing binaries is
to be preserved.

13.4.13 Method and Constructor Type Parameters

Adding or removing a type parameter of a method or constructor does not, in itself,
have any implications for binary compatibility.

If such a type parameter is used in the type of the method or constructor, that may
have the normal implications of changing the aforementioned type.

BINARY COMPATIBILITY Evolution of Classes 13.4

401

Renaming a type parameter of a method or constructor has no effect with respect
to pre-existing binaries.

Changing the first bound of a type parameter of a method or constructor may change
the erasure (§4.6) of any member that uses that type parameter in its own type, and
this may affect binary compatibility. Specifically:

• If the type parameter is used as the type of a field, the effect is as if the field was
removed and a field with the same name, whose type is the new erasure of the
type variable, was added.

• If the type parameter is used as the type of any formal parameter of a method, but
not as the return type, the effect is as if that method were removed, and replaced
with a new method that is identical except for the types of the aforementioned
formal parameters, which now have the new erasure of the type parameter as
their type.

• If the type parameter is used as a return type of a method, but not as the type of
any formal parameter of the method, the effect is as if that method were removed,
and replaced with a new method that is identical except for the return type, which
is now the new erasure of the type parameter.

• If the type parameter is used as a return type of a method and as the type of one
or more formal parameters of the method, the effect is as if that method were
removed, and replaced with a new method that is identical except for the return
type, which is now the new erasure of the type parameter, and except for the
types of the aforementioned formal parameters, which now have the new erasure
of the type parameter as their types.

Changing any other bound has no effect on binary compatibility.

13.4.14 Method and Constructor Formal Parameters

Changing the name of a formal parameter of a method or constructor does not
impact pre-existing binaries.

Changing the name of a method, or the type of a formal parameter to a method
or constructor, or adding a parameter to or deleting a parameter from a method or
constructor declaration creates a method or constructor with a new signature, and
has the combined effect of deleting the method or constructor with the old signature
and adding a method or constructor with the new signature (§13.4.12).

Changing the type of the last formal parameter of a method from T[] to a variable
arity parameter (§8.4.1) of type T (i.e. to T...), and vice versa, does not impact
pre-existing binaries.

13.4 Evolution of Classes BINARY COMPATIBILITY

402

For purposes of binary compatibility, adding or removing a method or constructor
m whose signature involves type variables (§4.4) or parameterized types (§4.5)
is equivalent to the addition (respectively, removal) of an otherwise equivalent
method whose signature is the erasure (§4.6) of the signature of m.

13.4.15 Method Result Type

Changing the result type of a method, or replacing a result type with void, or
replacing void with a result type, has the combined effect of deleting the old
method and adding a new method with the new result type or newly void result
(see §13.4.12).

For purposes of binary compatibility, adding or removing a method or constructor
m whose return type involves type variables (§4.4) or parameterized types (§4.5)
is equivalent to the addition (respectively, removal) of the an otherwise equivalent
method whose return type is the erasure (§4.6) of the return type of m.

13.4.16 abstract Methods

Changing a method that is declared abstract to no longer be declared abstract
does not break compatibility with pre-existing binaries.

Changing a method that is not declared abstract to be declared abstract will
break compatibility with pre-existing binaries that previously invoked the method,
causing an AbstractMethodError.

Example 13.4.16-1. Changing A Method To Be abstract

class Super { void out() { System.out.println("Out"); } }
class Test extends Super {
 public static void main(String[] args) {
 Test t = new Test();
 System.out.println("Way ");
 t.out();
 }
}

This program produces the output:

Way
Out

Suppose that a new version of class Super is produced:

abstract class Super {

BINARY COMPATIBILITY Evolution of Classes 13.4

403

 abstract void out();
}

If Super is recompiled but not Test, then running the new binary with the existing binary
of Test results in an AbstractMethodError, because class Test has no implementation
of the method out, and is therefore is (or should be) abstract.

13.4.17 final Methods

Changing a method that is declared final to no longer be declared final does not
break compatibility with pre-existing binaries.

Changing an instance method that is not declared final to be declared final may
break compatibility with existing binaries that depend on the ability to override the
method.

Example 13.4.17-1. Changing A Method To Be final

class Super { void out() { System.out.println("out"); } }
class Test extends Super {
 public static void main(String[] args) {
 Test t = new Test();
 t.out();
 }
 void out() { super.out(); }
}

This program produces the output:

out

Suppose that a new version of class Super is produced:

class Super { final void out() { System.out.println("!"); } }

If Super is recompiled but not Test, then running the new binary with the existing binary
of Test results in a VerifyError because the class Test improperly tries to override the
instance method out.

Changing a class (static) method that is not declared final to be declared final
does not break compatibility with existing binaries, because the method could not
have been overridden.

13.4.18 native Methods

Adding or deleting a native modifier of a method does not break compatibility
with pre-existing binaries.

13.4 Evolution of Classes BINARY COMPATIBILITY

404

The impact of changes to types on pre-existing native methods that are not
recompiled is beyond the scope of this specification and should be provided with
the description of an implementation. Implementations are encouraged, but not
required, to implement native methods in a way that limits such impact.

13.4.19 static Methods

If a method that is not declared private is also declared static (that is, a class
method) and is changed to not be declared static (that is, to an instance method),
or vice versa, then compatibility with pre-existing binaries may be broken, resulting
in a linkage time error, namely an IncompatibleClassChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recommended
in code that has been widely distributed.

13.4.20 synchronized Methods

Adding or deleting a synchronized modifier of a method does not break
compatibility with pre-existing binaries.

13.4.21 Method and Constructor Throws

Changes to the throws clause of methods or constructors do not break compatibility
with pre-existing binaries; these clauses are checked only at compile time.

13.4.22 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility with
pre-existing binaries.

The keyword final on a method does not mean that the method can be safely
inlined; it means only that the method cannot be overridden. It is still possible that a
new version of that method will be provided at link-time. Furthermore, the structure
of the original program must be preserved for purposes of reflection.

Therefore, we note that a Java compiler cannot expand a method inline at compile
time. In general we suggest that implementations use late-bound (run-time) code
generation and optimization.

BINARY COMPATIBILITY Evolution of Classes 13.4

405

13.4.23 Method and Constructor Overloading

Adding new methods or constructors that overload existing methods or constructors
does not break compatibility with pre-existing binaries. The signature to be used
for each invocation was determined when these existing binaries were compiled;
therefore newly added methods or constructors will not be used, even if their
signatures are both applicable and more specific than the signature originally
chosen.

While adding a new overloaded method or constructor may cause a compile-time
error the next time a class or interface is compiled because there is no method or
constructor that is most specific (§15.12.2.5), no such error occurs when a program
is executed, because no overload resolution is done at execution time.

Example 13.4.23-1. Adding An Overloaded Method

class Super {
 static void out(float f) {
 System.out.println("float");
 }
}
class Test {
 public static void main(String[] args) {
 Super.out(2);
 }
}

This program produces the output:

float

Suppose that a new version of class Super is produced:

class Super {
 static void out(float f) { System.out.println("float"); }
 static void out(int i) { System.out.println("int"); }
}

If Super is recompiled but not Test, then running the new binary with the existing binary
of Test still produces the output:

float

However, if Test is then recompiled, using this new Super, the output is then:

int

as might have been naively expected in the previous case.

13.5 Evolution of Interfaces BINARY COMPATIBILITY

406

13.4.24 Method Overriding

If an instance method is added to a subclass and it overrides a method in a
superclass, then the subclass method will be found by method invocations in pre-
existing binaries, and these binaries are not impacted.

If a class method is added to a class, then this method will not be found unless the
qualifying type of the reference is the subclass type.

13.4.25 Static Initializers

Adding, deleting, or changing a static initializer (§8.7) of a class does not impact
pre-existing binaries.

13.4.26 Evolution of Enums

Adding or reordering constants in an enum will not break compatibility with pre-
existing binaries.

If a pre-existing binary attempts to access an enum constant that no longer exists,
the client will fail at run time with a NoSuchFieldError. Therefore such a change
is not recommended for widely distributed enums.

In all other respects, the binary compatibility rules for enums are identical to those
for classes.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interface and
its members on pre-existing binaries.

13.5.1 public Interfaces

Changing an interface that is not declared public to be declared public does not
break compatibility with pre-existing binaries.

If an interface that is declared public is changed to not be declared public, then
an IllegalAccessError is thrown if a pre-existing binary is linked that needs but
no longer has access to the interface type, so such a change is not recommended
for widely distributed interfaces.

BINARY COMPATIBILITY Evolution of Interfaces 13.5

407

13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that changes to
the class hierarchy do, as described in §13.4.4. In particular, changes that result in
any previous superinterface of a class no longer being a superinterface can break
compatibility with pre-existing binaries, resulting in a VerifyError.

13.5.3 Interface Members

Adding an abstract method to an interface does not break compatibility with pre-
existing binaries.

A field added to a superinterface of C may hide a field inherited from
a superclass of C. If the original reference was to an instance field, an
IncompatibleClassChangeError will result. If the original reference was an
assignment, an IllegalAccessError will result.

Deleting a member from an interface may cause linkage errors in pre-existing
binaries.

Example 13.5.3-1. Deleting An Interface Member

interface I { void hello(); }
class Test implements I {
 public static void main(String[] args) {
 I anI = new Test();
 anI.hello();
 }
 public void hello() { System.out.println("hello"); }
}

This program produces the output:

hello

Suppose that a new version of interface I is compiled:

interface I {}

If I is recompiled but not Test, then running the new binary with the existing binary for
Test will result in a NoSuchMethodError.

13.5.4 Interface Type Parameters

The effects of changes to the type parameters of an interface are the same as those
of analogous changes to the type parameters of a class.

13.5 Evolution of Interfaces BINARY COMPATIBILITY

408

13.5.5 Field Declarations

The considerations for changing field declarations in interfaces are the same as
those for static final fields in classes, as described in §13.4.8 and §13.4.9.

13.5.6 Interface Method Declarations

The considerations for changing abstract method declarations in interfaces
include those for abstract methods in classes, as described in §13.4.14, §13.4.15,
§13.4.19, §13.4.21, and §13.4.23.

Adding a default method, or changing a method from abstract to default,
does not break compatibility with pre-existing binaries, but may cause an
IncompatibleClassChangeError if a pre-existing binary attempts to invoke the
method. This error occurs if the qualifying type, T, is a subtype of two interfaces, I
and J, where both I and J declare a default method with the same signature and
result, and neither I nor J is a subinterface of the other.

In other words, adding a default method is a binary-compatible change because it
does not introduce errors at link time, even if it introduces errors at compile time or
invocation time. In practice, the risk of accidental clashes occurring by introducing
a default method are similar to those associated with adding a new method to a
non-final class. In the event of a clash, adding a method to a class is unlikely to
trigger a LinkageError, but an accidental override of the method in a child can lead
to unpredictable method behavior. Both changes can cause errors at compile time.

Example 13.5.6-1. Adding A Default Method

interface Painter {
 default void draw() {
 System.out.println("Here's a picture...");
 }
}

interface Cowboy {}

public class CowboyArtist implements Cowboy, Painter {
 public static void main(String... args) {
 new CowboyArtist().draw();
 }
}

This program produces the output:

Here's a picture...

Suppose that a default method is added to Cowboy:

BINARY COMPATIBILITY Evolution of Interfaces 13.5

409

interface Cowboy {
 default void draw() {
 System.out.println("Bang!");
 }
}

If Cowboy is recompiled but not CowboyArtist, then running the new binary
with the existing binary for CowboyArtist will link without error but cause an
IncompatibleClassChangeError when main attempts to invoke draw().

13.5.7 Evolution of Annotation Types

Annotation types behave exactly like any other interface. Adding or removing an
element from an annotation type is analogous to adding or removing a method.
There are important considerations governing other changes to annotation types,
such as making an annotation type repeatable (§9.6.3), but these have no effect on
the linkage of binaries by the Java Virtual Machine. Rather, such changes affect
the behavior of reflective APIs that manipulate annotations. The documentation
of these APIs specifies their behavior when various changes are made to the
underlying annotation types.

Adding or removing annotations has no effect on the correct linkage of the binary
representations of programs in the Java programming language.

411

C H A P T E R 14
Blocks and Statements

THE sequence of execution of a program is controlled by statements, which are
executed for their effect and do not have values.

Some statements contain other statements as part of their structure; such other
statements are substatements of the statement. We say that statement S immediately
contains statement U if there is no statement T different from S and U such that
S contains T and T contains U. In the same manner, some statements contain
expressions (§15 (Expressions)) as part of their structure.

The first section of this chapter discusses the distinction between normal and
abrupt completion of statements (§14.1). Most of the remaining sections explain
the various kinds of statements, describing in detail both their normal behavior and
any special treatment of abrupt completion.

Blocks are explained first (§14.2), followed by local class declarations (§14.3) and
local variable declaration statements (§14.4).

Next a grammatical maneuver that sidesteps the familiar "dangling else" problem
(§14.5) is explained.

The last section (§14.21) of this chapter addresses the requirement that every
statement be reachable in a certain technical sense.

14.1 Normal and Abrupt Completion of Statements

Every statement has a normal mode of execution in which certain computational
steps are carried out. The following sections describe the normal mode of execution
for each kind of statement.

14.1 Normal and Abrupt Completion of Statements BLOCKS AND STATEMENTS

412

If all the steps are carried out as described, with no indication of abrupt completion,
the statement is said to complete normally. However, certain events may prevent
a statement from completing normally:

• The break (§14.15), continue (§14.16), and return (§14.17) statements cause a
transfer of control that may prevent normal completion of statements that contain
them.

• Evaluation of certain expressions may throw exceptions from the Java Virtual
Machine (§15.6). An explicit throw (§14.18) statement also results in an
exception. An exception causes a transfer of control that may prevent normal
completion of statements.

If such an event occurs, then execution of one or more statements may be
terminated before all steps of their normal mode of execution have completed; such
statements are said to complete abruptly.

An abrupt completion always has an associated reason, which is one of the
following:

• A break with no label

• A break with a given label

• A continue with no label

• A continue with a given label

• A return with no value

• A return with a given value

• A throw with a given value, including exceptions thrown by the Java Virtual
Machine

The terms "complete normally" and "complete abruptly" also apply to the
evaluation of expressions (§15.6). The only reason an expression can complete
abruptly is that an exception is thrown, because of either a throw with a given value
(§14.18) or a run-time exception or error (§11 (Exceptions), §15.6).

If a statement evaluates an expression, abrupt completion of the expression always
causes the immediate abrupt completion of the statement, with the same reason.
All succeeding steps in the normal mode of execution are not performed.

Unless otherwise specified in this chapter, abrupt completion of a substatement
causes the immediate abrupt completion of the statement itself, with the same
reason, and all succeeding steps in the normal mode of execution of the statement
are not performed.

BLOCKS AND STATEMENTS Blocks 14.2

413

Unless otherwise specified, a statement completes normally if all expressions it
evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements, local class declarations, and local variable
declaration statements within braces.

Block:
{ [BlockStatements] }

BlockStatements:
BlockStatement {BlockStatement}

BlockStatement:
LocalVariableDeclarationStatement
ClassDeclaration
Statement

A block is executed by executing each of the local variable declaration statements
and other statements in order from first to last (left to right). If all of these block
statements complete normally, then the block completes normally. If any of these
block statements complete abruptly for any reason, then the block completes
abruptly for the same reason.

14.3 Local Class Declarations

A local class is a nested class (§8 (Classes)) that is not a member of any class and
that has a name (§6.2, §6.7).

All local classes are inner classes (§8.1.3).

Every local class declaration statement is immediately contained by a block
(§14.2). Local class declaration statements may be intermixed freely with other
kinds of statements in the block.

It is a compile-time error if a local class declaration contains any of the access
modifiers public, protected, or private (§6.6), or the modifier static (§8.1.1).

The scope and shadowing of a local class declaration is specified in §6.3 and §6.4.

14.4 Local Variable Declaration Statements BLOCKS AND STATEMENTS

414

Example 14.3-1. Local Class Declarations

Here is an example that illustrates several aspects of the rules given above:

class Global {
 class Cyclic {}

 void foo() {
 new Cyclic(); // create a Global.Cyclic
 class Cyclic extends Cyclic {} // circular definition

 {
 class Local {}
 {
 class Local {} // compile-time error
 }
 class Local {} // compile-time error
 class AnotherLocal {
 void bar() {
 class Local {} // ok
 }
 }
 }
 class Local {} // ok, not in scope of prior Local
 }
}

The first statement of method foo creates an instance of the member class Global.Cyclic
rather than an instance of the local class Cyclic, because the statement appears prior to
the scope of the local class declaration.

The fact that the scope of a local class declaration encompasses its whole declaration (not
only its body) means that the definition of the local class Cyclic is indeed cyclic because it
extends itself rather than Global.Cyclic. Consequently, the declaration of the local class
Cyclic is rejected at compile time.

Since local class names cannot be redeclared within the same method (or constructor or
initializer, as the case may be), the second and third declarations of Local result in compile-
time errors. However, Local can be redeclared in the context of another, more deeply
nested, class such as AnotherLocal.

The final declaration of Local is legal, since it occurs outside the scope of any prior
declaration of Local.

14.4 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variable names.

BLOCKS AND STATEMENTS Local Variable Declaration Statements 14.4

415

LocalVariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
{VariableModifier} UnannType VariableDeclaratorList

See §8.3 for UnannType. The following productions from §4.3, §8.4.1, and §8.3 are shown
here for convenience:

VariableModifier:
(one of)
Annotation final

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorId [= VariableInitializer]

VariableDeclaratorId:
Identifier [Dims]

Dims:
{Annotation} [] {{Annotation} []}

VariableInitializer:
Expression
ArrayInitializer

Every local variable declaration statement is immediately contained by a block.
Local variable declaration statements may be intermixed freely with other kinds of
statements in the block.

Apart from local variable declaration statements, a local variable declaration can
appear in the header of a for statement (§14.14) or try-with-resources statement
(§14.20.3). In these cases, it is executed in the same manner as if it were part of a
local variable declaration statement.

The rules for annotation modifiers on a local variable declaration are specified in
§9.7.4 and §9.7.5.

It is a compile-time error if final appears more than once as a modifier for a local
variable declaration.

14.4.1 Local Variable Declarators and Types

Each declarator in a local variable declaration declares one local variable, whose
name is the Identifier that appears in the declarator.

14.5 Statements BLOCKS AND STATEMENTS

416

If the optional keyword final appears at the start of the declaration, the variable
being declared is a final variable (§4.12.4).

The declared type of a local variable is denoted by UnannType if no bracket
pairs appear in UnannType and VariableDeclaratorId, and is specified by §10.2
otherwise.

A local variable of type float always contains a value that is an element of the
float value set (§4.2.3); similarly, a local variable of type double always contains
a value that is an element of the double value set. It is not permitted for a local
variable of type float to contain an element of the float-extended-exponent value
set that is not also an element of the float value set, nor for a local variable of type
double to contain an element of the double-extended-exponent value set that is not
also an element of the double value set.

The scope and shadowing of a local variable declaration is specified in §6.3 and
§6.4.

14.4.2 Execution of Local Variable Declarations

A local variable declaration statement is an executable statement. Every time it is
executed, the declarators are processed in order from left to right. If a declarator
has an initializer, the initializer is evaluated and its value is assigned to the variable.

If a declarator does not have an initializer, then every reference to the variable must be
preceded by execution of an assignment to the variable, or a compile-time error occurs by
the rules of §16 (Definite Assignment).

Each initializer (except the first) is evaluated only if evaluation of the preceding
initializer completes normally.

Execution of the local variable declaration completes normally only if evaluation
of the last initializer completes normally.

If the local variable declaration contains no initializers, then executing it always
completes normally.

14.5 Statements

There are many kinds of statements in the Java programming language. Most
correspond to statements in the C and C++ languages, but some are unique.

BLOCKS AND STATEMENTS Statements 14.5

417

As in C and C++, the if statement of the Java programming language suffers from
the so-called "dangling else problem," illustrated by this misleadingly formatted
example:

if (door.isOpen())
 if (resident.isVisible())
 resident.greet("Hello!");
else door.bell.ring(); // A "dangling else"

The problem is that both the outer if statement and the inner if statement might
conceivably own the else clause. In this example, one might surmise that the
programmer intended the else clause to belong to the outer if statement.

The Java programming language, like C and C++ and many programming
languages before them, arbitrarily decrees that an else clause belongs to the
innermost if to which it might possibly belong. This rule is captured by the
following grammar:

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf

14.6 The Empty Statement BLOCKS AND STATEMENTS

418

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
AssertStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

The following productions from §14.9 are shown here for convenience:

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

Statements are thus grammatically divided into two categories: those that might
end in an if statement that has no else clause (a "short if statement") and those
that definitely do not.

Only statements that definitely do not end in a short if statement may appear as
an immediate substatement before the keyword else in an if statement that does
have an else clause.

This simple rule prevents the "dangling else" problem. The execution behavior of
a statement with the "no short if" restriction is identical to the execution behavior
of the same kind of statement without the "no short if" restriction; the distinction
is drawn purely to resolve the syntactic difficulty.

14.6 The Empty Statement

An empty statement does nothing.

BLOCKS AND STATEMENTS Labeled Statements 14.7

419

EmptyStatement:
;

Execution of an empty statement always completes normally.

14.7 Labeled Statements

Statements may have label prefixes.

LabeledStatement:
Identifier : Statement

LabeledStatementNoShortIf:
Identifier : StatementNoShortIf

The Identifier is declared to be the label of the immediately contained Statement.

Unlike C and C++, the Java programming language has no goto statement;
identifier statement labels are used with break or continue statements (§14.15,
§14.16) appearing anywhere within the labeled statement.

The scope of a label of a labeled statement is the immediately contained Statement.

It is a compile-time error if the name of a label of a labeled statement is used within
the scope of the label as a label of another labeled statement.

There is no restriction against using the same identifier as a label and as the name
of a package, class, interface, method, field, parameter, or local variable. Use of an
identifier to label a statement does not obscure (§6.4.2) a package, class, interface,
method, field, parameter, or local variable with the same name. Use of an identifier
as a class, interface, method, field, local variable or as the parameter of an exception
handler (§14.20) does not obscure a statement label with the same name.

A labeled statement is executed by executing the immediately contained Statement.

If the statement is labeled by an Identifier and the contained Statement completes
abruptly because of a break with the same Identifier, then the labeled statement
completes normally. In all other cases of abrupt completion of the Statement, the
labeled statement completes abruptly for the same reason.

Example 14.7-1. Labels and Identifiers

The following code was taken from a version of the class String and its method indexOf,
where the label was originally called test. Changing the label to have the same name as

14.8 Expression Statements BLOCKS AND STATEMENTS

420

the local variable i does not obscure the label in the scope of the declaration of i. Thus,
the code is valid.

class Test {
 char[] value;
 int offset, count;
 int indexOf(TestString str, int fromIndex) {
 char[] v1 = value, v2 = str.value;
 int max = offset + (count - str.count);
 int start = offset + ((fromIndex < 0) ? 0 : fromIndex);
 i:
 for (int i = start; i <= max; i++) {
 int n = str.count, j = i, k = str.offset;
 while (n-- != 0) {
 if (v1[j++] != v2[k++])
 continue i;
 }
 return i - offset;
 }
 return -1;
 }
}

The identifier max could also have been used as the statement label; the label would not
obscure the local variable max within the labeled statement.

14.8 Expression Statements

Certain kinds of expressions may be used as statements by following them with
semicolons.

ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PreIncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

An expression statement is executed by evaluating the expression; if the expression
has a value, the value is discarded.

BLOCKS AND STATEMENTS The if Statement 14.9

421

Execution of the expression statement completes normally if and only if evaluation
of the expression completes normally.

Unlike C and C++, the Java programming language allows only certain forms of
expressions to be used as expression statements. For example, it is legal to use a method
invocation expression (§15.12):

System.out.println("Hello world"); // OK

but it is not legal to use a parenthesized expression (§15.8.5):

(System.out.println("Hello world")); // illegal

Note that the Java programming language does not allow a "cast to void" - void is not a
type - so the traditional C trick of writing an expression statement such as:

(void)... ; // incorrect!

does not work. On the other hand, the Java programming language allows all the most useful
kinds of expressions in expression statements, and it does not require a method invocation
used as an expression statement to invoke a void method, so such a trick is almost never
needed. If a trick is needed, either an assignment statement (§15.26) or a local variable
declaration statement (§14.4) can be used instead.

14.9 The if Statement

The if statement allows conditional execution of a statement or a conditional
choice of two statements, executing one or the other but not both.

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

14.10 The assert Statement BLOCKS AND STATEMENTS

422

14.9.1 The if-then Statement

An if-then statement is executed by first evaluating the Expression. If the result
is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the if-then statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

• If the value is true, then the contained Statement is executed; the if-then
statement completes normally if and only if execution of the Statement completes
normally.

• If the value is false, no further action is taken and the if-then statement
completes normally.

14.9.2 The if-then-else Statement

An if-then-else statement is executed by first evaluating the Expression. If the
result is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, then the if-then-else statement completes
abruptly for the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

• If the value is true, then the first contained Statement (the one before the else
keyword) is executed; the if-then-else statement completes normally if and
only if execution of that statement completes normally.

• If the value is false, then the second contained Statement (the one after the else
keyword) is executed; the if-then-else statement completes normally if and
only if execution of that statement completes normally.

14.10 The assert Statement

An assertion is an assert statement containing a boolean expression. An assertion
is either enabled or disabled. If an assertion is enabled, execution of the assertion
causes evaluation of the boolean expression and an error is reported if the
expression evaluates to false. If the assertion is disabled, execution of the assertion
has no effect whatsoever.

BLOCKS AND STATEMENTS The assert Statement 14.10

423

AssertStatement:
assert Expression ;
assert Expression : Expression ;

To ease the presentation, the first Expression in both forms of the assert statement
is referred to as Expression1. In the second form of the assert statement, the
second Expression is referred to as Expression2.

It is a compile-time error if Expression1 does not have type boolean or Boolean.

In the second form of the assert statement, it is a compile-time error if Expression2
is void (§15.1).

An assert statement that is executed after its class or interface has completed
initialization is enabled if and only if the host system has determined that the
top level class or interface that lexically contains the assert statement enables
assertions.

Whether a top level class or interface enables assertions is determined no later
than the earliest of i) the initialization of the top level class or interface, and ii)
the initialization of any class or interface nested in the top level class or interface.
Whether a top level class or interface enables assertions cannot be changed after
it has been determined.

An assert statement that is executed before its class or interface has completed
initialization is enabled.

This rule is motivated by a case that demands special treatment. Recall that the assertion
status of a class is set no later than the time it is initialized. It is possible, though generally
not desirable, to execute methods or constructors prior to initialization. This can happen
when a class hierarchy contains a circularity in its static initialization, as in the following
example:

public class Foo {
 public static void main(String[] args) {
 Baz.testAsserts();
 // Will execute after Baz is initialized.
 }
}
class Bar {
 static {
 Baz.testAsserts();
 // Will execute before Baz is initialized!
 }
}
class Baz extends Bar {
 static void testAsserts() {
 boolean enabled = false;

14.10 The assert Statement BLOCKS AND STATEMENTS

424

 assert enabled = true;
 System.out.println("Asserts " +
 (enabled ? "enabled" : "disabled"));
 }
}

Invoking Baz.testAsserts() causes Baz to be initialized. Before this can happen, Bar
must be initialized. Bar's static initializer again invokes Baz.testAsserts(). Because
initialization of Baz is already in progress by the current thread, the second invocation
executes immediately, though Baz is not initialized (§12.4.2).

Because of the rule above, if the program above is executed without enabling assertions,
it must print:

Asserts enabled
Asserts disabled

A disabled assert statement does nothing. In particular, neither Expression1
nor Expression2 (if it is present) are evaluated. Execution of a disabled assert
statement always completes normally.

An enabled assert statement is executed by first evaluating Expression1. If the
result is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of Expression1 or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the assert statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the value of
Expression1:

• If the value is true, no further action is taken and the assert statement completes
normally.

• If the value is false, the execution behavior depends on whether Expression2
is present:

– If Expression2 is present, it is evaluated. Then:

› If the evaluation completes abruptly for some reason, the assert statement
completes abruptly for the same reason.

› If the evaluation completes normally, an AssertionError instance whose
"detail message" is the resulting value of Expression2 is created. Then:

» If the instance creation completes abruptly for some reason, the assert
statement completes abruptly for the same reason.

BLOCKS AND STATEMENTS The switch Statement 14.11

425

» If the instance creation completes normally, the assert statement
completes abruptly by throwing the newly created AssertionError
object.

– If Expression2 is not present, an AssertionError instance with no "detail
message" is created. Then:

› If the instance creation completes abruptly for some reason, the assert
statement completes abruptly for the same reason.

› If the instance creation completes normally, the assert statement completes
abruptly by throwing the newly created AssertionError object.

Typically, assertion checking is enabled during program development and testing, and
disabled for deployment, to improve performance.

Because assertions may be disabled, programs must not assume that the expressions
contained in assertions will be evaluated. Thus, these boolean expressions should generally
be free of side effects. Evaluating such a boolean expression should not affect any state
that is visible after the evaluation is complete. It is not illegal for a boolean expression
contained in an assertion to have a side effect, but it is generally inappropriate, as it could
cause program behavior to vary depending on whether assertions were enabled or disabled.

In light of this, assertions should not be used for argument checking in public methods.
Argument checking is typically part of the contract of a method, and this contract must be
upheld whether assertions are enabled or disabled.

A secondary problem with using assertions for argument checking is that
erroneous arguments should result in an appropriate run-time exception
(such as IllegalArgumentException, ArrayIndexOutOfBoundsException, or
NullPointerException). An assertion failure will not throw an appropriate exception.
Again, it is not illegal to use assertions for argument checking on public methods, but it
is generally inappropriate. It is intended that AssertionError never be caught, but it is
possible to do so, thus the rules for try statements should treat assertions appearing in a
try block similarly to the current treatment of throw statements.

14.11 The switch Statement

The switch statement transfers control to one of several statements depending on
the value of an expression.

SwitchStatement:
switch (Expression) SwitchBlock

14.11 The switch Statement BLOCKS AND STATEMENTS

426

SwitchBlock:
{ {SwitchBlockStatementGroup} {SwitchLabel} }

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel {SwitchLabel}

SwitchLabel:
case ConstantExpression :
case EnumConstantName :
default :

EnumConstantName:
Identifier

The type of the Expression must be char, byte, short, int, Character, Byte,
Short, Integer, String, or an enum type (§8.9), or a compile-time error occurs.

The body of a switch statement is known as a switch block. Any statement
immediately contained by the switch block may be labeled with one or more switch
labels, which are case or default labels. Every case label has a case constant,
which is either a constant expression or the name of an enum constant. Switch
labels and their case constants are said to be associated with the switch statement.

Given a switch statement, all of the following must be true or a compile-time error
occurs:

• Every case constant associated with the switch statement must be assignment
compatible with the type of the switch statement's Expression (§5.2).

• If the type of the switch statement's Expression is an enum type, then every
case constant associated with the switch statement must be an enum constant
of that type.

• No two of the case constants associated with the switch statement have the
same value.

• No case constant associated with the switch statement is null.

• At most one default label is associated with the switch statement.

The prohibition against using null as a case constant prevents code being written that
can never be executed. If the switch statement's Expression is of a reference type, that is,
String or a boxed primitive type or an enum type, then an exception will be thrown will

BLOCKS AND STATEMENTS The switch Statement 14.11

427

occur if the Expression evaluates to null at run time. In the judgment of the designers of
the Java programming language, this is a better outcome than silently skipping the entire
switch statement or choosing to execute the statements (if any) after the default label
(if any).

A Java compiler is encouraged (but not required) to provide a warning if a switch on an
enum-valued expression lacks a default label and lacks case labels for one or more of
the enum's constants. Such a switch will silently do nothing if the expression evaluates
to one of the missing constants.

In C and C++ the body of a switch statement can be a statement and statements with case
labels do not have to be immediately contained by that statement. Consider the simple loop:

for (i = 0; i < n; ++i) foo();

where n is known to be positive. A trick known as Duff's device can be used in C or C++
to unroll the loop, but this is not valid code in the Java programming language:

int q = (n+7)/8;
switch (n%8) {
 case 0: do { foo(); // Great C hack, Tom,
 case 7: foo(); // but it's not valid here.
 case 6: foo();
 case 5: foo();
 case 4: foo();
 case 3: foo();
 case 2: foo();
 case 1: foo();
 } while (--q > 0);
}

Fortunately, this trick does not seem to be widely known or used. Moreover, it is less needed
nowadays; this sort of code transformation is properly in the province of state-of-the-art
optimizing compilers.

When the switch statement is executed, first the Expression is evaluated. If the
Expression evaluates to null, a NullPointerException is thrown and the entire
switch statement completes abruptly for that reason. Otherwise, if the result is of
a reference type, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the switch statement completes abruptly for
the same reason.

Otherwise, execution continues by comparing the value of the Expression with each
case constant, and there is a choice:

14.11 The switch Statement BLOCKS AND STATEMENTS

428

• If one of the case constants is equal to the value of the expression, then we say
that the case label matches. All statements after the matching case label in the
switch block, if any, are executed in sequence.

If all these statements complete normally, or if there are no statements after the
matching case label, then the entire switch statement completes normally.

• If no case label matches but there is a default label, then all statements after
the default label in the switch block, if any, are executed in sequence.

If all these statements complete normally, or if there are no statements after the
default label, then the entire switch statement completes normally.

• If no case label matches and there is no default label, then no further action is
taken and the switch statement completes normally.

If any statement immediately contained by the Block body of the switch statement
completes abruptly, it is handled as follows:

• If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the switch statement completes normally.

• If execution of the Statement completes abruptly for any other reason, the switch
statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the general
rule for labeled statements (§14.7).

Example 14.11-1. Fall-Through in the switch Statement

As in C and C++, execution of statements in a switch block "falls through labels."

For example, the program:

class TooMany {
 static void howMany(int k) {
 switch (k) {
 case 1: System.out.print("one ");
 case 2: System.out.print("too ");
 case 3: System.out.println("many");
 }
 }
 public static void main(String[] args) {
 howMany(3);
 howMany(2);
 howMany(1);
 }
}

BLOCKS AND STATEMENTS The while Statement 14.12

429

contains a switch block in which the code for each case falls through into the code for
the next case. As a result, the program prints:

many
too many
one too many

If code is not to fall through case to case in this manner, then break statements should
be used, as in this example:

class TwoMany {
 static void howMany(int k) {
 switch (k) {
 case 1: System.out.println("one");
 break; // exit the switch
 case 2: System.out.println("two");
 break; // exit the switch
 case 3: System.out.println("many");
 break; // not needed, but good style
 }
 }
 public static void main(String[] args) {
 howMany(1);
 howMany(2);
 howMany(3);
 }
}

This program prints:

one
two
many

14.12 The while Statement

The while statement executes an Expression and a Statement repeatedly until the
value of the Expression is false.

WhileStatement:
while (Expression) Statement

WhileStatementNoShortIf:
while (Expression) StatementNoShortIf

14.12 The while Statement BLOCKS AND STATEMENTS

430

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

A while statement is executed by first evaluating the Expression. If the result is of
type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the while statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

• If the value is true, then the contained Statement is executed. Then there is a
choice:

– If execution of the Statement completes normally, then the entire while
statement is executed again, beginning by re-evaluating the Expression.

– If execution of the Statement completes abruptly, see §14.12.1.

• If the (possibly unboxed) value of the Expression is false, no further action is
taken and the while statement completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is evaluated,
then the Statement is not executed.

14.12.1 Abrupt Completion of while Statement

Abrupt completion of the contained Statement is handled in the following manner:

• If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the while statement completes normally.

• If execution of the Statement completes abruptly because of a continue with no
label, then the entire while statement is executed again.

• If execution of the Statement completes abruptly because of a continue with
label L, then there is a choice:

– If the while statement has label L, then the entire while statement is executed
again.

– If the while statement does not have label L, the while statement completes
abruptly because of a continue with label L.

• If execution of the Statement completes abruptly for any other reason, the while
statement completes abruptly for the same reason.

BLOCKS AND STATEMENTS The do Statement 14.13

431

The case of abrupt completion because of a break with a label is handled by the general
rule for labeled statements (§14.7).

14.13 The do Statement

The do statement executes a Statement and an Expression repeatedly until the value
of the Expression is false.

DoStatement:
do Statement while (Expression) ;

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

A do statement is executed by first executing the Statement. Then there is a choice:

• If execution of the Statement completes normally, then the Expression is
evaluated. If the result is of type Boolean, it is subject to unboxing conversion
(§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the do statement completes abruptly for the
same reason.

Otherwise, there is a choice based on the resulting value:

– If the value is true, then the entire do statement is executed again.

– If the value is false, no further action is taken and the do statement completes
normally.

• If execution of the Statement completes abruptly, see §14.13.1.

Executing a do statement always executes the contained Statement at least once.

14.13.1 Abrupt Completion of do Statement

Abrupt completion of the contained Statement is handled in the following manner:

• If execution of the Statement completes abruptly because of a break with no
label, then no further action is taken and the do statement completes normally.

14.13 The do Statement BLOCKS AND STATEMENTS

432

• If execution of the Statement completes abruptly because of a continue with
no label, then the Expression is evaluated. Then there is a choice based on the
resulting value:

– If the value is true, then the entire do statement is executed again.

– If the value is false, no further action is taken and the do statement completes
normally.

• If execution of the Statement completes abruptly because of a continue with
label L, then there is a choice:

– If the do statement has label L, then the Expression is evaluated. Then there
is a choice:

› If the value of the Expression is true, then the entire do statement is
executed again.

› If the value of the Expression is false, no further action is taken and the do
statement completes normally.

– If the do statement does not have label L, the do statement completes abruptly
because of a continue with label L.

• If execution of the Statement completes abruptly for any other reason, the do
statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the general
rule for labeled statements (§14.7).

Example 14.13-1. The do Statement

The following code is one possible implementation of the toHexString method of class
Integer:

public static String toHexString(int i) {
 StringBuffer buf = new StringBuffer(8);
 do {
 buf.append(Character.forDigit(i & 0xF, 16));
 i >>>= 4;
 } while (i != 0);
 return buf.reverse().toString();
}

Because at least one digit must be generated, the do statement is an appropriate control
structure.

BLOCKS AND STATEMENTS The for Statement 14.14

433

14.14 The for Statement

The for statement has two forms:

• The basic for statement.

• The enhanced for statement

ForStatement:
BasicForStatement
EnhancedForStatement

ForStatementNoShortIf:
BasicForStatementNoShortIf
EnhancedForStatementNoShortIf

14.14.1 The basic for Statement

The basic for statement executes some initialization code, then executes an
Expression, a Statement, and some update code repeatedly until the value of the
Expression is false.

BasicForStatement:
for ([ForInit] ; [Expression] ; [ForUpdate]) Statement

BasicForStatementNoShortIf:
for ([ForInit] ; [Expression] ; [ForUpdate]) StatementNoShortIf

ForInit:
StatementExpressionList
LocalVariableDeclaration

ForUpdate:
StatementExpressionList

StatementExpressionList:
StatementExpression {, StatementExpression}

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

The scope and shadowing of a local variable declared in the ForInit part of a basic
for statement is specified in §6.3 and §6.4.

14.14 The for Statement BLOCKS AND STATEMENTS

434

14.14.1.1 Initialization of for Statement

A for statement is executed by first executing the ForInit code:

• If the ForInit code is a list of statement expressions (§14.8), the expressions are
evaluated in sequence from left to right; their values, if any, are discarded.

If evaluation of any expression completes abruptly for some reason, the for
statement completes abruptly for the same reason; any ForInit statement
expressions to the right of the one that completed abruptly are not evaluated.

• If the ForInit code is a local variable declaration (§14.4), it is executed as if it
were a local variable declaration statement appearing in a block.

If execution of the local variable declaration completes abruptly for any reason,
the for statement completes abruptly for the same reason.

• If the ForInit part is not present, no action is taken.

14.14.1.2 Iteration of for Statement

Next, a for iteration step is performed, as follows:

• If the Expression is present, it is evaluated. If the result is of type Boolean, it is
subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly, the for statement completes abruptly for the same reason.

Otherwise, there is then a choice based on the presence or absence of the Expression and
the resulting value if the Expression is present; see next bullet.

• If the Expression is not present, or it is present and the value resulting from
its evaluation (including any possible unboxing) is true, then the contained
Statement is executed. Then there is a choice:

– If execution of the Statement completes normally, then the following two steps
are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated
in sequence from left to right; their values, if any, are discarded. If
evaluation of any expression completes abruptly for some reason, the
for statement completes abruptly for the same reason; any ForUpdate
statement expressions to the right of the one that completed abruptly are
not evaluated.

If the ForUpdate part is not present, no action is taken.

BLOCKS AND STATEMENTS The for Statement 14.14

435

2. Second, another for iteration step is performed.

– If execution of the Statement completes abruptly, see §14.14.1.3.

• If the Expression is present and the value resulting from its evaluation (including
any possible unboxing) is false, no further action is taken and the for statement
completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is evaluated,
then the Statement is not executed.

If the Expression is not present, then the only way a for statement can complete
normally is by use of a break statement.

14.14.1.3 Abrupt Completion of for Statement

Abrupt completion of the contained Statement is handled in the following manner:

• If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the for statement completes normally.

• If execution of the Statement completes abruptly because of a continue with no
label, then the following two steps are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded.

If the ForUpdate part is not present, no action is taken.

2. Second, another for iteration step is performed.

• If execution of the Statement completes abruptly because of a continue with
label L, then there is a choice:

– If the for statement has label L, then the following two steps are performed
in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated in
sequence from left to right; their values, if any, are discarded.

If the ForUpdate is not present, no action is taken.

2. Second, another for iteration step is performed.

– If the for statement does not have label L, the for statement completes
abruptly because of a continue with label L.

• If execution of the Statement completes abruptly for any other reason, the for
statement completes abruptly for the same reason.

14.14 The for Statement BLOCKS AND STATEMENTS

436

Note that the case of abrupt completion because of a break with a label is handled by
the general rule for labeled statements (§14.7).

14.14.2 The enhanced for statement

The enhanced for statement has the form:

EnhancedForStatement:
for ({VariableModifier} UnannType VariableDeclaratorId

 : Expression)
 Statement

EnhancedForStatementNoShortIf:
for ({VariableModifier} UnannType VariableDeclaratorId

 : Expression)
 StatementNoShortIf

See §8.3 for UnannType. The following productions from §4.3, §8.4.1, and §8.3 are shown
here for convenience:

VariableModifier:
(one of)
Annotation final

VariableDeclaratorId:
Identifier [Dims]

Dims:
{Annotation} [] {{Annotation} []}

The type of the Expression must be Iterable or an array type (§10.1), or a compile-
time error occurs.

The declared type of the local variable in the header of the enhanced for
statement is denoted by UnannType if no bracket pairs appear in UnannType and
VariableDeclaratorId, and is specified by §10.2 otherwise.

The scope and shadowing of the local variable declared in the header of an
enhanced for statement is specified in §6.3 and §6.4.

The meaning of the enhanced for statement is given by translation into a basic for
statement, as follows:

• If the type of Expression is a subtype of Iterable, then the translation is as
follows.

BLOCKS AND STATEMENTS The for Statement 14.14

437

If the type of Expression is a subtype of Iterable<X> for some type argument
X, then let I be the type java.util.Iterator<X>; otherwise, let I be the raw
type java.util.Iterator.

The enhanced for statement is equivalent to a basic for statement of the form:

for (I #i = Expression.iterator(); #i.hasNext();) {
 {VariableModifier} TargetType Identifier =
 (TargetType) #i.next();
 Statement
}

#i is an automatically generated identifier that is distinct from any other
identifiers (automatically generated or otherwise) that are in scope (§6.3) at the
point where the enhanced for statement occurs.

If the declared type of the local variable in the header of the enhanced for
statement is a reference type, then TargetType is that declared type; otherwise,
TargetType is the upper bound of the capture conversion (§5.1.10) of the type
argument of I, or Object if I is raw.

For example, this code:

List<? extends Integer> l = ...
for (float i : l) ...

will be translated to:

for (Iterator<Integer> #i = l.iterator(); #i.hasNext();) {
 float #i0 = (Integer)#i.next();
 ...

• Otherwise, the Expression necessarily has an array type, T[].

Let L1 ... Lm be the (possibly empty) sequence of labels immediately preceding
the enhanced for statement.

The enhanced for statement is equivalent to a basic for statement of the form:

T[] #a = Expression;
L1: L2: ... Lm:
for (int #i = 0; #i < #a.length; #i++) {
 {VariableModifier} TargetType Identifier = #a[#i];
 Statement
}

14.15 The break Statement BLOCKS AND STATEMENTS

438

#a and #i are automatically generated identifiers that are distinct from any other
identifiers (automatically generated or otherwise) that are in scope at the point
where the enhanced for statement occurs.

TargetType is the declared type of the local variable in the header of the enhanced
for statement.

Example 14.14-1. Enhanced for And Arrays

The following program, which calculates the sum of an integer array, shows how enhanced
for works for arrays:

int sum(int[] a) {
 int sum = 0;
 for (int i : a) sum += i;
 return sum;
}

Example 14.14-2. Enhanced for And Unboxing Conversion

The following program combines the enhanced for statement with auto-unboxing to
translate a histogram into a frequency table:

Map<String, Integer> histogram = ...;
double total = 0;
for (int i : histogram.values())
 total += i;
for (Map.Entry<String, Integer> e : histogram.entrySet())
 System.out.println(e.getKey() + " " + e.getValue() / total);
}

14.15 The break Statement

A break statement transfers control out of an enclosing statement.

BreakStatement:
break [Identifier] ;

A break statement with no label attempts to transfer control to the innermost
enclosing switch, while, do, or for statement of the immediately enclosing
method or initializer; this statement, which is called the break target, then
immediately completes normally.

To be precise, a break statement with no label always completes abruptly, the
reason being a break with no label.

BLOCKS AND STATEMENTS The break Statement 14.15

439

If no switch, while, do, or for statement in the immediately enclosing method,
constructor, or initializer contains the break statement, a compile-time error
occurs.

A break statement with label Identifier attempts to transfer control to the enclosing
labeled statement (§14.7) that has the same Identifier as its label; this statement,
which is called the break target, then immediately completes normally. In this case,
the break target need not be a switch, while, do, or for statement.

To be precise, a break statement with label Identifier always completes abruptly,
the reason being a break with label Identifier.

A break statement must refer to a label within the immediately enclosing method,
constructor, initializer, or lambda body. There are no non-local jumps. If no
labeled statement with Identifier as its label in the immediately enclosing method,
constructor, initializer, or lambda body contains the break statement, a compile-
time error occurs.

It can be seen, then, that a break statement always completes abruptly.

The preceding descriptions say "attempts to transfer control" rather than just "transfers
control" because if there are any try statements (§14.20) within the break target whose try
blocks or catch clauses contain the break statement, then any finally clauses of those
try statements are executed, in order, innermost to outermost, before control is transferred
to the break target. Abrupt completion of a finally clause can disrupt the transfer of
control initiated by a break statement.

Example 14.15-1. The break Statement

In the following example, a mathematical graph is represented by an array of arrays. A
graph consists of a set of nodes and a set of edges; each edge is an arrow that points from
some node to some other node, or from a node to itself. In this example it is assumed that
there are no redundant edges; that is, for any two nodes P and Q, where Q may be the same
as P, there is at most one edge from P to Q.

Nodes are represented by integers, and there is an edge from node i to node edges[i]
[j] for every i and j for which the array reference edges[i][j] does not throw an
ArrayIndexOutOfBoundsException.

The task of the method loseEdges, given integers i and j, is to construct a new graph by
copying a given graph but omitting the edge from node i to node j, if any, and the edge
from node j to node i, if any:

class Graph {
 int edges[][];
 public Graph(int[][] edges) { this.edges = edges; }

 public Graph loseEdges(int i, int j) {

14.16 The continue Statement BLOCKS AND STATEMENTS

440

 int n = edges.length;
 int[][] newedges = new int[n][];
 for (int k = 0; k < n; ++k) {
edgelist:
{
 int z;
search:
{
 if (k == i) {
 for (z = 0; z < edges[k].length; ++z) {
 if (edges[k][z] == j) break search;
 }
 } else if (k == j) {
 for (z = 0; z < edges[k].length; ++z) {
 if (edges[k][z] == i) break search;
 }
 }

 // No edge to be deleted; share this list.
 newedges[k] = edges[k];
 break edgelist;
} //search

 // Copy the list, omitting the edge at position z.
 int m = edges[k].length - 1;
 int ne[] = new int[m];
 System.arraycopy(edges[k], 0, ne, 0, z);
 System.arraycopy(edges[k], z+1, ne, z, m-z);
 newedges[k] = ne;
} //edgelist
 }
 return new Graph(newedges);
 }
}

Note the use of two statement labels, edgelist and search, and the use of break
statements. This allows the code that copies a list, omitting one edge, to be shared between
two separate tests, the test for an edge from node i to node j, and the test for an edge from
node j to node i.

14.16 The continue Statement

A continue statement may occur only in a while, do, or for statement; statements
of these three kinds are called iteration statements. Control passes to the loop-
continuation point of an iteration statement.

ContinueStatement:
continue [Identifier] ;

BLOCKS AND STATEMENTS The continue Statement 14.16

441

A continue statement with no label attempts to transfer control to the innermost
enclosing while, do, or for statement of the immediately enclosing method,
constructor, or initializer; this statement, which is called the continue target, then
immediately ends the current iteration and begins a new one.

To be precise, such a continue statement always completes abruptly, the reason
being a continue with no label.

If no while, do, or for statement of the immediately enclosing method, constructor,
or initializer contains the continue statement, a compile-time error occurs.

A continue statement with label Identifier attempts to transfer control to the
enclosing labeled statement (§14.7) that has the same Identifier as its label; that
statement, which is called the continue target, then immediately ends the current
iteration and begins a new one.

To be precise, a continue statement with label Identifier always completes
abruptly, the reason being a continue with label Identifier.

The continue target must be a while, do, or for statement, or a compile-time error
occurs.

A continue statement must refer to a label within the immediately enclosing
method, constructor, initializer, or lambda body. There are no non-local jumps.
If no labeled statement with Identifier as its label in the immediately enclosing
method, constructor, initializer, or lambda body contains the continue statement,
a compile-time error occurs.

It can be seen, then, that a continue statement always completes abruptly.

See the descriptions of the while statement (§14.12), do statement (§14.13), and for
statement (§14.14) for a discussion of the handling of abrupt termination because of
continue.

The preceding descriptions say "attempts to transfer control" rather than just "transfers
control" because if there are any try statements (§14.20) within the continue target whose
try blocks or catch clauses contain the continue statement, then any finally clauses
of those try statements are executed, in order, innermost to outermost, before control is
transferred to the continue target. Abrupt completion of a finally clause can disrupt the
transfer of control initiated by a continue statement.

Example 14.16-1. The continue Statement

In the Graph class in §14.15, one of the break statements is used to finish execution of
the entire body of the outermost for loop. This break can be replaced by a continue if
the for loop itself is labeled:

class Graph {

14.17 The return Statement BLOCKS AND STATEMENTS

442

 int edges[][];
 public Graph(int[][] edges) { this.edges = edges; }

 public Graph loseEdges(int i, int j) {
 int n = edges.length;
 int[][] newedges = new int[n][];
edgelists:
 for (int k = 0; k < n; ++k) {
 int z;
search:
{
 if (k == i) {
 for (z = 0; z < edges[k].length; ++z) {
 if (edges[k][z] == j) break search;
 }
 } else if (k == j) {
 for (z = 0; z < edges[k].length; ++z) {
 if (edges[k][z] == i) break search;
 }
 }

 // No edge to be deleted; share this list.
 newedges[k] = edges[k];
 continue edgelists;
} //search

 // Copy the list, omitting the edge at position z.
 int m = edges[k].length - 1;
 int ne[] = new int[m];
 System.arraycopy(edges[k], 0, ne, 0, z);
 System.arraycopy(edges[k], z+1, ne, z, m-z);
 newedges[k] = ne;
 } //edgelists
 return new Graph(newedges);
 }
}

Which to use, if either, is largely a matter of programming style.

14.17 The return Statement

A return statement returns control to the invoker of a method (§8.4, §15.12) or
constructor (§8.8, §15.9).

ReturnStatement:
return [Expression] ;

BLOCKS AND STATEMENTS The return Statement 14.17

443

A return statement is contained in the innermost constructor, method, initializer,
or lambda expression whose body encloses the return statement.

It is a compile-time error if a return statement is contained in an instance initializer
or a static initializer (§8.6, §8.7).

A return statement with no Expression must be contained in one of the following,
or a compile-time error occurs:

• A method that is declared, using the keyword void, not to return a value (§8.4.5)

• A constructor (§8.8.7)

• A lambda expression (§15.27)

A return statement with no Expression attempts to transfer control to the invoker
of the method, constructor, or lambda body that contains it. To be precise, a return
statement with no Expression always completes abruptly, the reason being a return
with no value.

A return statement with an Expression must be contained in one of the following,
or a compile-time error occurs:

• A method that is declared to return a value

• A lambda expression

The Expression must denote a variable or a value, or a compile-time error occurs.

When a return statement with an Expression appears in a method declaration, the
Expression must be assignable (§5.2) to the declared return type of the method, or
a compile-time error occurs.

A return statement with an Expression attempts to transfer control to the invoker
of the method or lambda body that contains it; the value of the Expression
becomes the value of the method invocation. More precisely, execution of such a
return statement first evaluates the Expression. If the evaluation of the Expression
completes abruptly for some reason, then the return statement completes abruptly
for that reason. If evaluation of the Expression completes normally, producing a
value V, then the return statement completes abruptly, the reason being a return
with value V.

If the expression is of type float and is not FP-strict (§15.4), then the value may
be an element of either the float value set or the float-extended-exponent value set
(§4.2.3). If the expression is of type double and is not FP-strict, then the value
may be an element of either the double value set or the double-extended-exponent
value set.

14.18 The throw Statement BLOCKS AND STATEMENTS

444

It can be seen, then, that a return statement always completes abruptly.

The preceding descriptions say "attempts to transfer control" rather than just "transfers
control" because if there are any try statements (§14.20) within the method or constructor
whose try blocks or catch clauses contain the return statement, then any finally
clauses of those try statements will be executed, in order, innermost to outermost, before
control is transferred to the invoker of the method or constructor. Abrupt completion of a
finally clause can disrupt the transfer of control initiated by a return statement.

14.18 The throw Statement

A throw statement causes an exception (§11 (Exceptions)) to be thrown. The
result is an immediate transfer of control (§11.3) that may exit multiple statements
and multiple constructor, instance initializer, static initializer and field initializer
evaluations, and method invocations until a try statement (§14.20) is found that
catches the thrown value. If no such try statement is found, then execution of the
thread (§17 (Threads and Locks)) that executed the throw is terminated (§11.3)
after invocation of the uncaughtException method for the thread group to which
the thread belongs.

ThrowStatement:
throw Expression ;

The Expression in a throw statement must either denote a variable or value of a
reference type which is assignable (§5.2) to the type Throwable, or denote the null
reference, or a compile-time error occurs.

The reference type of the Expression will always be a class type (since no interface types
are assignable to Throwable) which is not parameterized (since a subclass of Throwable
cannot be generic (§8.1.2)).

At least one of the following three conditions must be true, or a compile-time error
occurs:

• The type of the Expression is an unchecked exception class (§11.1.1) or the null
type (§4.1).

• The throw statement is contained in the try block of a try statement (§14.20)
and it is not the case that the try statement can throw an exception of the type
of the Expression. (In this case we say the thrown value is caught by the try
statement.)

BLOCKS AND STATEMENTS The throw Statement 14.18

445

• The throw statement is contained in a method or constructor declaration and the
type of the Expression is assignable (§5.2) to at least one type listed in the throws
clause (§8.4.6, §8.8.5) of the declaration.

The exception types that a throw statement can throw are specified in §11.2.2.

A throw statement first evaluates the Expression. Then:

• If evaluation of the Expression completes abruptly for some reason, then the
throw completes abruptly for that reason.

• If evaluation of the Expression completes normally, producing a non-null value
V, then the throw statement completes abruptly, the reason being a throw with
value V.

• If evaluation of the Expression completes normally, producing a null value, then
an instance V' of class NullPointerException is created and thrown instead of
null. The throw statement then completes abruptly, the reason being a throw
with value V'.

It can be seen, then, that a throw statement always completes abruptly.

If there are any enclosing try statements (§14.20) whose try blocks contain the
throw statement, then any finally clauses of those try statements are executed
as control is transferred outward, until the thrown value is caught. Note that abrupt
completion of a finally clause can disrupt the transfer of control initiated by a
throw statement.

If a throw statement is contained in a method declaration or a lambda expression,
but its value is not caught by some try statement that contains it, then the invocation
of the method completes abruptly because of the throw.

If a throw statement is contained in a constructor declaration, but its value is not
caught by some try statement that contains it, then the class instance creation
expression that invoked the constructor will complete abruptly because of the
throw (§15.9.4).

If a throw statement is contained in a static initializer (§8.7), then a compile-time
check (§11.2.3) ensures that either its value is always an unchecked exception or
its value is always caught by some try statement that contains it. If at run time,
despite this check, the value is not caught by some try statement that contains the
throw statement, then the value is rethrown if it is an instance of class Error or one
of its subclasses; otherwise, it is wrapped in an ExceptionInInitializerError
object, which is then thrown (§12.4.2).

14.19 The synchronized Statement BLOCKS AND STATEMENTS

446

If a throw statement is contained in an instance initializer (§8.6), then a compile-
time check (§11.2.3) ensures that either its value is always an unchecked exception
or its value is always caught by some try statement that contains it, or the type
of the thrown exception (or one of its superclasses) occurs in the throws clause of
every constructor of the class.

By convention, user-declared throwable types should usually be declared to be subclasses
of class Exception, which is a subclass of class Throwable (§11.1.1).

14.19 The synchronized Statement

A synchronized statement acquires a mutual-exclusion lock (§17.1) on behalf of
the executing thread, executes a block, then releases the lock. While the executing
thread owns the lock, no other thread may acquire the lock.

SynchronizedStatement:
synchronized (Expression) Block

The type of Expression must be a reference type, or a compile-time error occurs.

A synchronized statement is executed by first evaluating the Expression. Then:

• If evaluation of the Expression completes abruptly for some reason, then the
synchronized statement completes abruptly for the same reason.

• Otherwise, if the value of the Expression is null, a NullPointerException is
thrown.

• Otherwise, let the non-null value of the Expression be V. The executing thread
locks the monitor associated with V. Then the Block is executed, and then there
is a choice:

– If execution of the Block completes normally, then the monitor is unlocked
and the synchronized statement completes normally.

– If execution of the Block completes abruptly for any reason, then the monitor
is unlocked and the synchronized statement completes abruptly for the same
reason.

The locks acquired by synchronized statements are the same as the locks that
are acquired implicitly by synchronized methods (§8.4.3.6). A single thread may
acquire a lock more than once.

BLOCKS AND STATEMENTS The try statement 14.20

447

Acquiring the lock associated with an object does not in itself prevent other threads
from accessing fields of the object or invoking un-synchronized methods on the
object. Other threads can also use synchronized methods or the synchronized
statement in a conventional manner to achieve mutual exclusion.

Example 14.19-1. The synchronized Statement

class Test {
 public static void main(String[] args) {
 Test t = new Test();
 synchronized(t) {
 synchronized(t) {
 System.out.println("made it!");
 }
 }
 }
}

This program produces the output:

made it!

Note that this program would deadlock if a single thread were not permitted to lock a
monitor more than once.

14.20 The try statement

A try statement executes a block. If a value is thrown and the try statement has
one or more catch clauses that can catch it, then control will be transferred to the
first such catch clause. If the try statement has a finally clause, then another
block of code is executed, no matter whether the try block completes normally or
abruptly, and no matter whether a catch clause is first given control.

TryStatement:
try Block Catches
try Block [Catches] Finally
TryWithResourcesStatement

Catches:
CatchClause {CatchClause}

CatchClause:
catch (CatchFormalParameter) Block

14.20 The try statement BLOCKS AND STATEMENTS

448

CatchFormalParameter:
{VariableModifier} CatchType VariableDeclaratorId

CatchType:
UnannClassType {| ClassType}

Finally:
finally Block

See §8.3 for UnannClassType. The following productions from §4.3, §8.3, and §8.4.1 are
shown here for convenience:

VariableModifier:
(one of)
Annotation final

VariableDeclaratorId:
Identifier [Dims]

Dims:
{Annotation} [] {{Annotation} []}

The Block immediately after the keyword try is called the try block of the try
statement.

The Block immediately after the keyword finally is called the finally block of
the try statement.

A try statement may have catch clauses, also called exception handlers.

A catch clause declares exactly one parameter, which is called an exception
parameter.

It is a compile-time error if final appears more than once as a modifier for an
exception parameter declaration.

The scope and shadowing of an exception parameter is specified in §6.3 and §6.4.

An exception parameter may denote its type as either a single class type or a union
of two or more class types (called alternatives). The alternatives of a union are
syntactically separated by |.

A catch clause whose exception parameter is denoted as a single class type is
called a uni-catch clause.

A catch clause whose exception parameter is denoted as a union of types is called
a multi-catch clause.

BLOCKS AND STATEMENTS The try statement 14.20

449

Each class type used in the denotation of the type of an exception parameter must
be the class Throwable or a subclass of Throwable, or a compile-time error occurs.

It is a compile-time error if a type variable is used in the denotation of the type of
an exception parameter.

It is a compile-time error if a union of types contains two alternatives Di and Dj (i
≠ j) where Di is a subtype of Dj (§4.10.2).

The declared type of an exception parameter that denotes its type with a single class
type is that class type.

The declared type of an exception parameter that denotes its type as a union with
alternatives D1 | D2 | ... | Dn is lub(D1, D2, ..., Dn).

An exception parameter of a multi-catch clause is implicitly declared final if it
is not explicitly declared final.

It is a compile-time error if an exception parameter that is implicitly or explicitly
declared final is assigned to within the body of the catch clause.

An exception parameter of a uni-catch clause is never implicitly declared final,
but it may be explicitly declared final or be effectively final (§4.12.4).

An implicitly final exception parameter is final by virtue of its declaration, while an
effectively final exception parameter is (as it were) final by virtue of how it is used. An
exception parameter of a multi-catch clause is implicitly declared final, so will never
occur as the left-hand operand of an assignment operator, but it is not considered effectively
final.

If an exception parameter is effectively final (in a uni-catch clause) or implicitly final
(in a multi-catch clause), then adding an explicit final modifier to its declaration will
not introduce any compile-time errors. On the other hand, if the exception parameter
of a uni-catch clause is explicitly declared final, then removing the final modifier
may introduce compile-time errors because the exception parameter, now considered to
be effectively final, can no longer longer be referenced by anonymous and local class
declarations in the body of the catch clause. If there are no compile-time errors, it is
possible to further change the program so that the exception parameter is re-assigned in the
body of the catch clause and thus will no longer be considered effectively final.

The exception types that a try statement can throw are specified in §11.2.2.

The relationship of the exceptions thrown by the try block of a try statement and
caught by the catch clauses (if any) of the try statement is specified in §11.2.3.

Exception handlers are considered in left-to-right order: the earliest possible catch
clause accepts the exception, receiving as its argument the thrown exception object,
as specified in §11.3.

14.20 The try statement BLOCKS AND STATEMENTS

450

A multi-catch clause can be thought of as a sequence of uni-catch clauses. That is, a
catch clause where the type of the exception parameter is denoted as a union D1|D2|...|Dn
is equivalent to a sequence of n catch clauses where the types of the exception parameters
are class types D1, D2, ..., Dn respectively. In the Block of each of the n catch clauses, the
declared type of the exception parameter is lub(D1, D2, ..., Dn). For example, the following
code:

try {
 ... throws ReflectiveOperationException ...
}
catch (ClassNotFoundException | IllegalAccessException ex) {
 ... body ...
}

is semantically equivalent to the following code:

try {
 ... throws ReflectiveOperationException ...
}
catch (final ClassNotFoundException ex1) {
 final ReflectiveOperationException ex = ex1;
 ... body ...
}
catch (final IllegalAccessException ex2) {
 final ReflectiveOperationException ex = ex2;
 ... body ...
}

where the multi-catch clause with two alternatives has been translated into two uni-catch
clauses, one for each alternative. A Java compiler is neither required nor recommended to
compile a multi-catch clause by duplicating code in this manner, since it is possible to
represent the multi-catch clause in a class file without duplication.

A finally clause ensures that the finally block is executed after the try block
and any catch block that might be executed, no matter how control leaves the try
block or catch block. Handling of the finally block is rather complex, so the two
cases of a try statement with and without a finally block are described separately
(§14.20.1, §14.20.2).

A try statement is permitted to omit catch clauses and a finally clause if it is a
try-with-resources statement (§14.20.3).

14.20.1 Execution of try-catch

A try statement without a finally block is executed by first executing the try
block. Then there is a choice:

BLOCKS AND STATEMENTS The try statement 14.20

451

• If execution of the try block completes normally, then no further action is taken
and the try statement completes normally.

• If execution of the try block completes abruptly because of a throw of a value
V, then there is a choice:

– If the run-time type of V is assignment compatible with (§5.2) a catchable
exception class of any catch clause of the try statement, then the first
(leftmost) such catch clause is selected. The value V is assigned to the
parameter of the selected catch clause, and the Block of that catch clause is
executed, and then there is a choice:

› If that block completes normally, then the try statement completes
normally.

› If that block completes abruptly for any reason, then the try statement
completes abruptly for the same reason.

– If the run-time type of V is not assignment compatible with a catchable
exception class of any catch clause of the try statement, then the try
statement completes abruptly because of a throw of the value V.

• If execution of the try block completes abruptly for any other reason, then the
try statement completes abruptly for the same reason.

Example 14.20.1-1. Catching An Exception

class BlewIt extends Exception {
 BlewIt() { }
 BlewIt(String s) { super(s); }
}
class Test {
 static void blowUp() throws BlewIt { throw new BlewIt(); }

 public static void main(String[] args) {
 try {
 blowUp();
 } catch (RuntimeException r) {
 System.out.println("Caught RuntimeException");
 } catch (BlewIt b) {
 System.out.println("Caught BlewIt");
 }
 }
}

Here, the exception BlewIt is thrown by the method blowUp. The try-catch statement
in the body of main has two catch clauses. The run-time type of the exception is BlewIt
which is not assignable to a variable of type RuntimeException, but is assignable to a
variable of type BlewIt, so the output of the example is:

14.20 The try statement BLOCKS AND STATEMENTS

452

Caught BlewIt

14.20.2 Execution of try-finally and try-catch-finally

A try statement with a finally block is executed by first executing the try block.
Then there is a choice:

• If execution of the try block completes normally, then the finally block is
executed, and then there is a choice:

– If the finally block completes normally, then the try statement completes
normally.

– If the finally block completes abruptly for reason S, then the try statement
completes abruptly for reason S.

• If execution of the try block completes abruptly because of a throw of a value
V, then there is a choice:

– If the run-time type of V is assignment compatible with a catchable exception
class of any catch clause of the try statement, then the first (leftmost) such
catch clause is selected. The value V is assigned to the parameter of the
selected catch clause, and the Block of that catch clause is executed. Then
there is a choice:

› If the catch block completes normally, then the finally block is executed.
Then there is a choice:

» If the finally block completes normally, then the try statement
completes normally.

» If the finally block completes abruptly for any reason, then the try
statement completes abruptly for the same reason.

› If the catch block completes abruptly for reason R, then the finally block
is executed. Then there is a choice:

» If the finally block completes normally, then the try statement
completes abruptly for reason R.

» If the finally block completes abruptly for reason S, then the try
statement completes abruptly for reason S (and reason R is discarded).

– If the run-time type of V is not assignment compatible with a catchable
exception class of any catch clause of the try statement, then the finally
block is executed. Then there is a choice:

BLOCKS AND STATEMENTS The try statement 14.20

453

› If the finally block completes normally, then the try statement completes
abruptly because of a throw of the value V.

› If the finally block completes abruptly for reason S, then the try statement
completes abruptly for reason S (and the throw of value V is discarded and
forgotten).

• If execution of the try block completes abruptly for any other reason R, then the
finally block is executed, and then there is a choice:

– If the finally block completes normally, then the try statement completes
abruptly for reason R.

– If the finally block completes abruptly for reason S, then the try statement
completes abruptly for reason S (and reason R is discarded).

Example 14.20.2-1. Handling An Uncaught Exception With finally

class BlewIt extends Exception {
 BlewIt() { }
 BlewIt(String s) { super(s); }
}
class Test {
 static void blowUp() throws BlewIt {
 throw new NullPointerException();
 }
 public static void main(String[] args) {
 try {
 blowUp();
 } catch (BlewIt b) {
 System.out.println("Caught BlewIt");
 } finally {
 System.out.println("Uncaught Exception");
 }
 }
}

This program produces the output:

Uncaught Exception
Exception in thread "main" java.lang.NullPointerException
 at Test.blowUp(Test.java:7)
 at Test.main(Test.java:11)

The NullPointerException (which is a kind of RuntimeException) that is
thrown by method blowUp is not caught by the try statement in main, because a
NullPointerException is not assignable to a variable of type BlewIt. This causes the
finally clause to execute, after which the thread executing main, which is the only thread
of the test program, terminates because of an uncaught exception, which typically results in

14.20 The try statement BLOCKS AND STATEMENTS

454

printing the exception name and a simple backtrace. However, a backtrace is not required
by this specification.

The problem with mandating a backtrace is that an exception can be created at one point in
the program and thrown at a later one. It is prohibitively expensive to store a stack trace in
an exception unless it is actually thrown (in which case the trace may be generated while
unwinding the stack). Hence we do not mandate a back trace in every exception.

14.20.3 try-with-resources

A try-with-resources statement is parameterized with variables (known as
resources) that are initialized before execution of the try block and closed
automatically, in the reverse order from which they were initialized, after execution
of the try block. catch clauses and a finally clause are often unnecessary when
resources are closed automatically.

TryWithResourcesStatement:
try ResourceSpecification Block [Catches] [Finally]

ResourceSpecification:
(ResourceList [;])

ResourceList:
Resource {; Resource}

Resource:
{VariableModifier} UnannType VariableDeclaratorId = Expression

See §8.3 for UnannType. The following productions from §4.3, §8.3, and §8.4.1 are shown
here for convenience:

VariableModifier:
(one of)
Annotation final

VariableDeclaratorId:
Identifier [Dims]

Dims:
{Annotation} [] {{Annotation} []}

A resource specification declares one or more local variables with initializer
expressions to act as resources for the try statement.

It is a compile-time error for a resource specification to declare two variables with
the same name.

BLOCKS AND STATEMENTS The try statement 14.20

455

It is a compile-time error if final appears more than once as a modifier for each
variable declared in a resource specification.

A variable declared in a resource specification is implicitly declared final
(§4.12.4) if it is not explicitly declared final.

The type of a variable declared in a resource specification must be a subtype of
AutoCloseable, or a compile-time error occurs.

The scope and shadowing of a variable declared in a resource specification is
specified in §6.3 and §6.4.

Resources are initialized in left-to-right order. If a resource fails to initialize (that is,
its initializer expression throws an exception), then all resources initialized so far by
the try-with-resources statement are closed. If all resources initialize successfully,
the try block executes as normal and then all non-null resources of the try-with-
resources statement are closed.

Resources are closed in the reverse order from that in which they were initialized.
A resource is closed only if it initialized to a non-null value. An exception from
the closing of one resource does not prevent the closing of other resources. Such
an exception is suppressed if an exception was thrown previously by an initializer,
the try block, or the closing of a resource.

A try-with-resources statement whose resource specification declares multiple
resources is treated as if it were multiple try-with-resources statements, each of
which has a resource specification that declares a single resource. When a try-
with-resources statement with n resources (n > 1) is translated, the result is a try-
with-resources statement with n-1 resources. After n such translations, there are n
nested try-catch-finally statements, and the overall translation is complete.

14.20.3.1 Basic try-with-resources

A try-with-resources statement with no catch clauses or finally clause is called
a basic try-with-resources statement.

The meaning of a basic try-with-resources statement:

try ({VariableModifier} R Identifier = Expression ...)
 Block

is given by the following translation to a local variable declaration and a try-catch-
finally statement:

14.20 The try statement BLOCKS AND STATEMENTS

456

{
 final {VariableModifierNoFinal} R Identifier = Expression;
 Throwable #primaryExc = null;

 try ResourceSpecification_tail
 Block
 catch (Throwable #t) {
 #primaryExc = #t;
 throw #t;
 } finally {
 if (Identifier != null) {
 if (#primaryExc != null) {
 try {
 Identifier.close();
 } catch (Throwable #suppressedExc) {
 #primaryExc.addSuppressed(#suppressedExc);
 }
 } else {
 Identifier.close();
 }
 }
 }
}

{VariableModifierNoFinal} is defined as {VariableModifier} without final, if
present.

#t, #primaryExc, and #suppressedExc are automatically generated identifiers that
are distinct from any other identifiers (automatically generated or otherwise) that
are in scope at the point where the try-with-resources statement occurs.

If the resource specification declares one resource, then ResourceSpecification_tail
is empty (and the try-catch-finally statement is not itself a try-with-resources
statement).

If the resource specification declares n > 1 resources, then
ResourceSpecification_tail consists of the 2nd, 3rd, ..., n'th resources declared in
resource specification, in the same order (and the try-catch-finally statement is
itself a try-with-resources statement).

Reachability and definite assignment rules for the basic try-with-resources
statement are implicitly specified by the translation above.

In a basic try-with-resources statement that manages a single resource:

• If the initialization of the resource completes abruptly because of a throw of a
value V, then the try-with-resources statement completes abruptly because of a
throw of the value V.

BLOCKS AND STATEMENTS The try statement 14.20

457

• If the initialization of the resource completes normally, and the try block
completes abruptly because of a throw of a value V, then:

– If the automatic closing of the resource completes normally, then the try-with-
resources statement completes abruptly because of a throw of the value V.

– If the automatic closing of the resource completes abruptly because of a
throw of a value V2, then the try-with-resources statement completes abruptly
because of a throw of value V with V2 added to the suppressed exception list
of V.

• If the initialization of the resource completes normally, and the try block
completes normally, and the automatic closing of the resource completes
abruptly because of a throw of a value V, then the try-with-resources statement
completes abruptly because of a throw of the value V.

In a basic try-with-resources statement that manages multiple resources:

• If the initialization of a resource completes abruptly because of a throw of a
value V, then:

– If the automatic closings of all successfully initialized resources (possibly
zero) complete normally, then the try-with-resources statement completes
abruptly because of a throw of the value V.

– If the automatic closings of all successfully initialized resources (possibly
zero) complete abruptly because of throws of values V1...Vn, then the try-
with-resources statement completes abruptly because of a throw of the value V
with any remaining values V1...Vn added to the suppressed exception list of V.

• If the initialization of all resources completes normally, and the try block
completes abruptly because of a throw of a value V, then:

– If the automatic closings of all initialized resources complete normally, then
the try-with-resources statement completes abruptly because of a throw of
the value V.

– If the automatic closings of one or more initialized resources complete abruptly
because of throws of values V1...Vn, then the try-with-resources statement
completes abruptly because of a throw of the value V with any remaining
values V1...Vn added to the suppressed exception list of V.

• If the initialization of every resource completes normally, and the try block
completes normally, then:

– If one automatic closing of an initialized resource completes abruptly because
of a throw of value V, and all other automatic closings of initialized resources

14.21 Unreachable Statements BLOCKS AND STATEMENTS

458

complete normally, then the try-with-resources statement completes abruptly
because of a throw of the value V.

– If more than one automatic closing of an initialized resource completes
abruptly because of throws of values V1...Vn, then the try-with-resources
statement completes abruptly because of a throw of the value V1 with any
remaining values V2...Vn added to the suppressed exception list of V1 (where
V1 is the exception from the rightmost resource failing to close and Vn is the
exception from the leftmost resource failing to close).

14.20.3.2 Extended try-with-resources

A try-with-resources statement with at least one catch clause and/or a finally
clause is called an extended try-with-resources statement.

The meaning of an extended try-with-resources statement:

try ResourceSpecification
 Block
[Catches]
[Finally]

is given by the following translation to a basic try-with-resources statement nested
inside a try-catch or try-finally or try-catch-finally statement:

try {
 try ResourceSpecification
 Block
}
[Catches]
[Finally]

The effect of the translation is to put the resource specification "inside" the try
statement. This allows a catch clause of an extended try-with-resources statement
to catch an exception due to the automatic initialization or closing of any resource.

Furthermore, all resources will have been closed (or attempted to be closed) by
the time the finally block is executed, in keeping with the intent of the finally
keyword.

14.21 Unreachable Statements

It is a compile-time error if a statement cannot be executed because it is
unreachable.

BLOCKS AND STATEMENTS Unreachable Statements 14.21

459

This section is devoted to a precise explanation of the word "reachable." The idea is that
there must be some possible execution path from the beginning of the constructor, method,
instance initializer, or static initializer that contains the statement to the statement itself.
The analysis takes into account the structure of statements. Except for the special treatment
of while, do, and for statements whose condition expression has the constant value true,
the values of expressions are not taken into account in the flow analysis.

For example, a Java compiler will accept the code:

{
 int n = 5;
 while (n > 7) k = 2;
}

even though the value of n is known at compile time and in principle it can be known at
compile time that the assignment to k can never be executed.

The rules in this section define two technical terms:

• whether a statement is reachable

• whether a statement can complete normally

The definitions here allow a statement to complete normally only if it is reachable.

To shorten the description of the rules, the customary abbreviation "iff" is used to
mean "if and only if."

A reachable break statement exits a statement if, within the break target, either
there are no try statements whose try blocks contain the break statement, or there
are try statements whose try blocks contain the break statement and all finally
clauses of those try statements can complete normally.

This definition is based on the logic around "attempts to transfer control" in §14.15.

A continue statement continues a do statement if, within the do statement, either
there are no try statements whose try blocks contain the continue statement, or
there are try statements whose try blocks contain the continue statement and all
finally clauses of those try statements can complete normally.

The rules are as follows:

• The block that is the body of a constructor, method, instance initializer, or static
initializer is reachable.

• An empty block that is not a switch block can complete normally iff it is
reachable.

14.21 Unreachable Statements BLOCKS AND STATEMENTS

460

A non-empty block that is not a switch block can complete normally iff the last
statement in it can complete normally.

The first statement in a non-empty block that is not a switch block is reachable
iff the block is reachable.

Every other statement S in a non-empty block that is not a switch block is
reachable iff the statement preceding S can complete normally.

• A local class declaration statement can complete normally iff it is reachable.

• A local variable declaration statement can complete normally iff it is reachable.

• An empty statement can complete normally iff it is reachable.

• A labeled statement can complete normally if at least one of the following is true:

– The contained statement can complete normally.

– There is a reachable break statement that exits the labeled statement.

The contained statement is reachable iff the labeled statement is reachable.

• An expression statement can complete normally iff it is reachable.

• An if-then statement can complete normally iff it is reachable.

The then-statement is reachable iff the if-then statement is reachable.

An if-then-else statement can complete normally iff the then-statement can
complete normally or the else-statement can complete normally.

The then-statement is reachable iff the if-then-else statement is reachable.

The else-statement is reachable iff the if-then-else statement is reachable.

This handling of an if statement, whether or not it has an else part, is rather unusual.
The rationale is given at the end of this section.

• An assert statement can complete normally iff it is reachable.

• A switch statement can complete normally iff at least one of the following is
true:

– The switch block is empty or contains only switch labels.

– The last statement in the switch block can complete normally.

– There is at least one switch label after the last switch block statement group.

– The switch block does not contain a default label.

– There is a reachable break statement that exits the switch statement.

BLOCKS AND STATEMENTS Unreachable Statements 14.21

461

• A switch block is reachable iff its switch statement is reachable.

• A statement in a switch block is reachable iff its switch statement is reachable
and at least one of the following is true:

– It bears a case or default label.

– There is a statement preceding it in the switch block and that preceding
statement can complete normally.

• A while statement can complete normally iff at least one of the following is true:

– The while statement is reachable and the condition expression is not a constant
expression (§15.28) with value true.

– There is a reachable break statement that exits the while statement.

The contained statement is reachable iff the while statement is reachable and the
condition expression is not a constant expression whose value is false.

• A do statement can complete normally iff at least one of the following is true:

– The contained statement can complete normally and the condition expression
is not a constant expression (§15.28) with value true.

– The do statement contains a reachable continue statement with no label, and
the do statement is the innermost while, do, or for statement that contains that
continue statement, and the continue statement continues that do statement,
and the condition expression is not a constant expression with value true.

– The do statement contains a reachable continue statement with a label L, and
the do statement has label L, and the continue statement continues that do
statement, and the condition expression is not a constant expression with value
true.

– There is a reachable break statement that exits the do statement.

The contained statement is reachable iff the do statement is reachable.

• A basic for statement can complete normally iff at least one of the following
is true:

– The for statement is reachable, there is a condition expression, and the
condition expression is not a constant expression (§15.28) with value true.

– There is a reachable break statement that exits the for statement.

The contained statement is reachable iff the for statement is reachable and the
condition expression is not a constant expression whose value is false.

14.21 Unreachable Statements BLOCKS AND STATEMENTS

462

• An enhanced for statement can complete normally iff it is reachable.

• A break, continue, return, or throw statement cannot complete normally.

• A synchronized statement can complete normally iff the contained statement
can complete normally.

The contained statement is reachable iff the synchronized statement is
reachable.

• A try statement can complete normally iff both of the following are true:

– The try block can complete normally or any catch block can complete
normally.

– If the try statement has a finally block, then the finally block can complete
normally.

• The try block is reachable iff the try statement is reachable.

• A catch block C is reachable iff both of the following are true:

– Either the type of C's parameter is an unchecked exception type or Exception
or a superclass of Exception, or some expression or throw statement in the try
block is reachable and can throw a checked exception whose type is assignable
to the type of C's parameter. (An expression is reachable iff the innermost
statement containing it is reachable.)

See §15.6 for normal and abrupt completion of expressions.

– There is no earlier catch block A in the try statement such that the type of C's
parameter is the same as or a subclass of the type of A's parameter.

• The Block of a catch block is reachable iff the catch block is reachable.

• If a finally block is present, it is reachable iff the try statement is reachable.

One might expect the if statement to be handled in the following manner:

• An if-then statement can complete normally iff at least one of the following is true:

– The if-then statement is reachable and the condition expression is not a
constant expression whose value is true.

– The then-statement can complete normally.

The then-statement is reachable iff the if-then statement is reachable and the
condition expression is not a constant expression whose value is false.

• An if-then-else statement can complete normally iff the then-statement can
complete normally or the else-statement can complete normally.

BLOCKS AND STATEMENTS Unreachable Statements 14.21

463

The then-statement is reachable iff the if-then-else statement is reachable and
the condition expression is not a constant expression whose value is false.

The else-statement is reachable iff the if-then-else statement is reachable and
the condition expression is not a constant expression whose value is true.

This approach would be consistent with the treatment of other control structures. However,
in order to allow the if statement to be used conveniently for "conditional compilation"
purposes, the actual rules differ.

As an example, the following statement results in a compile-time error:

while (false) { x=3; }

because the statement x=3; is not reachable; but the superficially similar case:

if (false) { x=3; }

does not result in a compile-time error. An optimizing compiler may realize that the
statement x=3; will never be executed and may choose to omit the code for that statement
from the generated class file, but the statement x=3; is not regarded as "unreachable" in
the technical sense specified here.

The rationale for this differing treatment is to allow programmers to define "flag variables"
such as:

static final boolean DEBUG = false;

and then write code such as:

if (DEBUG) { x=3; }

The idea is that it should be possible to change the value of DEBUG from false to true
or from true to false and then compile the code correctly with no other changes to the
program text.

This ability to "conditionally compile" has no relationship to binary compatibility (§13
(Binary Compatibility)). If a set of classes that use such a "flag" variable are compiled and
conditional code is omitted, it does not suffice later to distribute just a new version of the
class or interface that contains the definition of the flag. The classes that use the flag will not
see its new value, so their behavior may be surprising, but no LinkageError will occur.
A change to the value of a flag is, therefore, binary compatible with pre-existing binaries,
but not behaviorally compatible.

465

C H A P T E R 15
Expressions

MUCH of the work in a program is done by evaluating expressions, either for
their side effects, such as assignments to variables, or for their values, which can
be used as arguments or operands in larger expressions, or to affect the execution
sequence in statements, or both.

This chapter specifies the meanings of expressions and the rules for their
evaluation.

15.1 Evaluation, Denotation, and Result

When an expression in a program is evaluated (executed), the result denotes one
of three things:

• A variable (§4.12) (in C, this would be called an lvalue)

• A value (§4.2, §4.3)

• Nothing (the expression is said to be void)

If an expression denotes a variable, and a value is required for use in further
evaluation, then the value of that variable is used. In this context, if the expression
denotes a variable or a value, we may speak simply of the value of the expression.

Value set conversion (§5.1.13) is applied to the result of every expression that
produces a value, including when the value of a variable of type float or double
is used.

An expression denotes nothing if and only if it is a method invocation (§15.12)
that invokes a method that does not return a value, that is, a method declared void
(§8.4). Such an expression can be used only as an expression statement (§14.8) or
as the single expression of a lambda body (§15.27.2), because every other context
in which an expression can appear requires the expression to denote something. An

15.2 Forms of Expressions EXPRESSIONS

466

expression statement or lambda body that is a method invocation may also invoke
a method that produces a result; in this case the value returned by the method is
quietly discarded.

Evaluation of an expression can produce side effects, because expressions may
contain embedded assignments, increment operators, decrement operators, and
method invocations.

An expression occurs in either:

• The declaration of some (class or interface) type that is being declared: in a
field initializer, in a static initializer, in an instance initializer, in a constructor
declaration, in a method declaration, or in an annotation.

• An annotation on a package declaration or on a top level type declaration.

15.2 Forms of Expressions

Expressions can be broadly categorized into one of the following syntactic forms:

• Expression names (§6.5.6)

• Primary expressions (§15.8 - §15.13)

• Unary operator expressions (§15.14 - §15.16)

• Binary operator expressions (§15.17 - §15.24, and §15.26)

• Ternary operator expressions (§15.25)

• Lambda expressions (§15.27)

Precedence among operators is managed by a hierarchy of grammar productions.
The lowest precedence operator is the arrow of a lambda expression (->), followed
by the assignment operators. Thus, all expressions are syntactically included in the
LambdaExpression and AssignmentExpression nonterminals:

Expression:
LambdaExpression
AssignmentExpression

When some expressions appear in certain contexts, they are considered poly
expressions. The following forms of expressions may be poly expressions:

• Parenthesized expressions (§15.8.5)

EXPRESSIONS Type of an Expression 15.3

467

• Class instance creation expressions (§15.9)

• Method invocation expressions (§15.12)

• Method reference expressions (§15.13)

• Conditional expressions (§15.25)

• Lambda expressions (§15.27)

The rules determining whether an expression of one of these forms is a poly
expression are given in the individual sections that specify these forms of
expressions.

Expressions that are not poly expressions are standalone expressions. Standalone
expressions are expressions of the forms above when determined not to be poly
expressions, as well as all expressions of all other forms. Expressions of all other
forms are said to have a standalone form.

Some expressions have a value that can be determined at compile time. These are
constant expressions (§15.28).

15.3 Type of an Expression

If an expression denotes a variable or a value, then the expression has a type known
at compile time. The type of a standalone expression can be determined entirely
from the contents of the expression; in contrast, the type of a poly expression may
be influenced by the expression's target type (§5 (Conversions and Contexts)). The
rules for determining the type of an expression are explained separately below for
each kind of expression.

The value of an expression is assignment compatible (§5.2) with the type of the
expression, unless heap pollution occurs (§4.12.2).

Likewise, the value stored in a variable is always compatible with the type of the
variable, unless heap pollution occurs.

In other words, the value of an expression whose type is T is always suitable for
assignment to a variable of type T.

Note that an expression whose type is a class type F that is declared final is
guaranteed to have a value that is either a null reference or an object whose class
is F itself, because final types have no subclasses.

15.4 FP-strict Expressions EXPRESSIONS

468

15.4 FP-strict Expressions

If the type of an expression is float or double, then there is a question as to what
value set (§4.2.3) the value of the expression is drawn from. This is governed by
the rules of value set conversion (§5.1.13); these rules in turn depend on whether
or not the expression is FP-strict.

Every constant expression (§15.28) is FP-strict.

If an expression is not a constant expression, then consider all the class declarations,
interface declarations, and method declarations that contain the expression. If any
such declaration bears the strictfp modifier (§8.1.1.3, §8.4.3.5, §9.1.1.2), then
the expression is FP-strict.

If a class, interface, or method, X, is declared strictfp, then X and any class,
interface, method, constructor, instance initializer, static initializer, or variable
initializer within X is said to be FP-strict.

Note that an annotation's element value (§9.7) is always FP-strict, because it is always a
constant expression.

It follows that an expression is not FP-strict if and only if it is not a constant
expression and it does not appear within any declaration that has the strictfp
modifier.

Within an FP-strict expression, all intermediate values must be elements of the
float value set or the double value set, implying that the results of all FP-
strict expressions must be those predicted by IEEE 754 arithmetic on operands
represented using single and double formats.

Within an expression that is not FP-strict, some leeway is granted for an
implementation to use an extended exponent range to represent intermediate
results; the net effect, roughly speaking, is that a calculation might produce "the
correct answer" in situations where exclusive use of the float value set or double
value set might result in overflow or underflow.

15.5 Expressions and Run-Time Checks

If the type of an expression is a primitive type, then the value of the expression is
of that same primitive type.

EXPRESSIONS Expressions and Run-Time Checks 15.5

469

If the type of an expression is a reference type, then the class of the referenced
object, or even whether the value is a reference to an object rather than null, is not
necessarily known at compile time. There are a few places in the Java programming
language where the actual class of a referenced object affects program execution
in a manner that cannot be deduced from the type of the expression. They are as
follows:

• Method invocation (§15.12). The particular method used for an invocation
o.m(...) is chosen based on the methods that are part of the class or interface
that is the type of o. For instance methods, the class of the object referenced by
the run-time value of o participates because a subclass may override a specific
method already declared in a parent class so that this overriding method is
invoked. (The overriding method may or may not choose to further invoke the
original overridden m method.)

• The instanceof operator (§15.20.2). An expression whose type is a reference
type may be tested using instanceof to find out whether the class of the object
referenced by the run-time value of the expression is assignment compatible
(§5.2) with some other reference type.

• Casting (§5.5, §15.16). The class of the object referenced by the run-time value
of the operand expression might not be compatible with the type specified by
the cast. For reference types, this may require a run-time check that throws an
exception if the class of the referenced object, as determined at run time, is not
assignment compatible (§5.2) with the target type.

• Assignment to an array component of reference type (§10.5, §15.13, §15.26.1).
The type-checking rules allow the array type S[] to be treated as a subtype of
T[] if S is a subtype of T, but this requires a run-time check for assignment to an
array component, similar to the check performed for a cast.

• Exception handling (§14.20). An exception is caught by a catch clause only if
the class of the thrown exception object is an instanceof the type of the formal
parameter of the catch clause.

Situations where the class of an object is not statically known may lead to run-time
type errors.

In addition, there are situations where the statically known type may not be accurate
at run time. Such situations can arise in a program that gives rise to compile-time
unchecked warnings. Such warnings are given in response to operations that cannot
be statically guaranteed to be safe, and cannot immediately be subjected to dynamic
checking because they involve non-reifiable types (§4.7). As a result, dynamic

15.6 Normal and Abrupt Completion of Evaluation EXPRESSIONS

470

checks later in the course of program execution may detect inconsistencies and
result in run-time type errors.

A run-time type error can occur only in these situations:

• In a cast, when the actual class of the object referenced by the value of the
operand expression is not compatible with the target type specified by the cast
operator (§5.5, §15.16); in this case a ClassCastException is thrown.

• In an automatically generated cast introduced to ensure the validity of an
operation on a non-reifiable type (§4.7).

• In an assignment to an array component of reference type, when the actual class
of the object referenced by the value to be assigned is not compatible with the
actual run-time component type of the array (§10.5, §15.13, §15.26.1); in this
case an ArrayStoreException is thrown.

• When an exception is not caught by any catch clause of a try statement
(§14.20); in this case the thread of control that encountered the exception first
attempts to invoke an uncaught exception handler (§11.3) and then terminates.

15.6 Normal and Abrupt Completion of Evaluation

Every expression has a normal mode of evaluation in which certain computational
steps are carried out. The following sections describe the normal mode of
evaluation for each kind of expression.

If all the steps are carried out without an exception being thrown, the expression
is said to complete normally.

If, however, evaluation of an expression throws an exception, then the expression is
said to complete abruptly. An abrupt completion always has an associated reason,
which is always a throw with a given value.

Run-time exceptions are thrown by the predefined operators as follows:

• A class instance creation expression (§15.9.4), array creation expression
(§15.10.2), method reference expression (§15.13.3), array initializer expression
(§10.6), string concatenation operator expression (§15.18.1), or lambda
expression (§15.27.4) throws an OutOfMemoryError if there is insufficient
memory available.

EXPRESSIONS Normal and Abrupt Completion of Evaluation 15.6

471

• An array creation expression (§15.10.2) throws a
NegativeArraySizeException if the value of any dimension expression is less
than zero.

• An array access expression (§15.10.4) throws a NullPointerException if the
value of the array reference expression is null.

• An array access expression (§15.10.4) throws an
ArrayIndexOutOfBoundsException if the value of the array index expression
is negative or greater than or equal to the length of the array.

• A field access expression (§15.11) throws a NullPointerException if the value
of the object reference expression is null.

• A method invocation expression (§15.12) that invokes an instance method
throws a NullPointerException if the target reference is null.

• A cast expression (§15.16) throws a ClassCastException if a cast is found to
be impermissible at run time.

• An integer division (§15.17.2) or integer remainder (§15.17.3) operator throws
an ArithmeticException if the value of the right-hand operand expression is
zero.

• An assignment to an array component of reference type (§15.26.1), a method
invocation expression (§15.12), or a prefix or postfix increment (§15.14.2,
§15.15.1) or decrement operator (§15.14.3, §15.15.2) may all throw an
OutOfMemoryError as a result of boxing conversion (§5.1.7).

• An assignment to an array component of reference type (§15.26.1) throws an
ArrayStoreException when the value to be assigned is not compatible with the
component type of the array (§10.5).

A method invocation expression can also result in an exception being thrown if an
exception occurs that causes execution of the method body to complete abruptly.

A class instance creation expression can also result in an exception being thrown if
an exception occurs that causes execution of the constructor to complete abruptly.

Various linkage and virtual machine errors may also occur during the evaluation
of an expression. By their nature, such errors are difficult to predict and difficult
to handle.

If an exception occurs, then evaluation of one or more expressions may be
terminated before all steps of their normal mode of evaluation are complete; such
expressions are said to complete abruptly.

15.7 Evaluation Order EXPRESSIONS

472

If evaluation of an expression requires evaluation of a subexpression, then abrupt
completion of the subexpression always causes the immediate abrupt completion
of the expression itself, with the same reason, and all succeeding steps in the normal
mode of evaluation are not performed.

The terms "complete normally" and "complete abruptly" are also applied to the
execution of statements (§14.1). A statement may complete abruptly for a variety
of reasons, not just because an exception is thrown.

15.7 Evaluation Order

The Java programming language guarantees that the operands of operators appear
to be evaluated in a specific evaluation order, namely, from left to right.

It is recommended that code not rely crucially on this specification. Code is usually clearer
when each expression contains at most one side effect, as its outermost operation, and when
code does not depend on exactly which exception arises as a consequence of the left-to-
right evaluation of expressions.

15.7.1 Evaluate Left-Hand Operand First

The left-hand operand of a binary operator appears to be fully evaluated before any
part of the right-hand operand is evaluated.

If the operator is a compound-assignment operator (§15.26.2), then evaluation of
the left-hand operand includes both remembering the variable that the left-hand
operand denotes and fetching and saving that variable's value for use in the implied
binary operation.

If evaluation of the left-hand operand of a binary operator completes abruptly, no
part of the right-hand operand appears to have been evaluated.

Example 15.7.1-1. Left-Hand Operand Is Evaluated First

In the following program, the * operator has a left-hand operand that contains an assignment
to a variable and a right-hand operand that contains a reference to the same variable. The
value produced by the reference will reflect the fact that the assignment occurred first.

class Test1 {
 public static void main(String[] args) {
 int i = 2;
 int j = (i=3) * i;
 System.out.println(j);
 }
}

EXPRESSIONS Evaluation Order 15.7

473

This program produces the output:

9

It is not permitted for evaluation of the * operator to produce 6 instead of 9.

Example 15.7.1-2. Implicit Left-Hand Operand In Operator Of Compound Assigment

In the following program, the two assignment statements both fetch and remember the value
of the left-hand operand, which is 9, before the right-hand operand of the addition operator
is evaluated, at which point the variable is set to 3.

class Test2 {
 public static void main(String[] args) {
 int a = 9;
 a += (a = 3); // first example
 System.out.println(a);
 int b = 9;
 b = b + (b = 3); // second example
 System.out.println(b);
 }
}

This program produces the output:

12
12

It is not permitted for either assignment (compound for a, simple for b) to produce the
result 6.

See also the example in §15.26.2.

Example 15.7.1-3. Abrupt Completion of Evaluation of the Left-Hand Operand

class Test3 {
 public static void main(String[] args) {
 int j = 1;
 try {
 int i = forgetIt() / (j = 2);
 } catch (Exception e) {
 System.out.println(e);
 System.out.println("Now j = " + j);
 }
 }
 static int forgetIt() throws Exception {
 throw new Exception("I'm outta here!");
 }
}

15.7 Evaluation Order EXPRESSIONS

474

This program produces the output:

java.lang.Exception: I'm outta here!
Now j = 1

That is, the left-hand operand forgetIt() of the operator / throws an exception before
the right-hand operand is evaluated and its embedded assignment of 2 to j occurs.

15.7.2 Evaluate Operands before Operation

The Java programming language guarantees that every operand of an operator
(except the conditional operators &&, ||, and ? :) appears to be fully evaluated
before any part of the operation itself is performed.

If the binary operator is an integer division / (§15.17.2) or integer remainder
% (§15.17.3), then its execution may raise an ArithmeticException, but this
exception is thrown only after both operands of the binary operator have been
evaluated and only if these evaluations completed normally.

Example 15.7.2-1. Evaluation of Operands Before Operation

class Test {
 public static void main(String[] args) {
 int divisor = 0;
 try {
 int i = 1 / (divisor * loseBig());
 } catch (Exception e) {
 System.out.println(e);
 }
 }
 static int loseBig() throws Exception {
 throw new Exception("Shuffle off to Buffalo!");
 }
}

This program produces the output:

java.lang.Exception: Shuffle off to Buffalo!

and not:

java.lang.ArithmeticException: / by zero

since no part of the division operation, including signaling of a divide-by-zero exception,
may appear to occur before the invocation of loseBig completes, even though the
implementation may be able to detect or infer that the division operation would certainly
result in a divide-by-zero exception.

EXPRESSIONS Evaluation Order 15.7

475

15.7.3 Evaluation Respects Parentheses and Precedence

The Java programming language respects the order of evaluation indicated
explicitly by parentheses and implicitly by operator precedence.

An implementation of the Java programming language may not take advantage of algebraic
identities such as the associative law to rewrite expressions into a more convenient
computational order unless it can be proven that the replacement expression is equivalent
in value and in its observable side effects, even in the presence of multiple threads of
execution (using the thread execution model in §17 (Threads and Locks)), for all possible
computational values that might be involved.

In the case of floating-point calculations, this rule applies also for infinity and not-
a-number (NaN) values.

For example, !(x<y) may not be rewritten as x>=y, because these expressions have
different values if either x or y is NaN or both are NaN.

Specifically, floating-point calculations that appear to be mathematically
associative are unlikely to be computationally associative. Such computations must
not be naively reordered.

For example, it is not correct for a Java compiler to rewrite 4.0*x*0.5 as 2.0*x; while
roundoff happens not to be an issue here, there are large values of x for which the first
expression produces infinity (because of overflow) but the second expression produces a
finite result.

So, for example, the test program:

strictfp class Test {
 public static void main(String[] args) {
 double d = 8e+307;
 System.out.println(4.0 * d * 0.5);
 System.out.println(2.0 * d);
 }
}

prints:

Infinity
1.6e+308

because the first expression overflows and the second does not.

In contrast, integer addition and multiplication are provably associative in the Java
programming language.

15.7 Evaluation Order EXPRESSIONS

476

For example a+b+c, where a, b, and c are local variables (this simplifying assumption
avoids issues involving multiple threads and volatile variables), will always produce
the same answer whether evaluated as (a+b)+c or a+(b+c); if the expression b+c occurs
nearby in the code, a smart Java compiler may be able to use this common subexpression.

15.7.4 Argument Lists are Evaluated Left-to-Right

In a method or constructor invocation or class instance creation expression,
argument expressions may appear within the parentheses, separated by commas.
Each argument expression appears to be fully evaluated before any part of any
argument expression to its right.

If evaluation of an argument expression completes abruptly, no part of any
argument expression to its right appears to have been evaluated.

Example 15.7.4-1. Evaluation Order At Method Invocation

class Test1 {
 public static void main(String[] args) {
 String s = "going, ";
 print3(s, s, s = "gone");
 }
 static void print3(String a, String b, String c) {
 System.out.println(a + b + c);
 }
}

This program produces the output:

going, going, gone

because the assignment of the string "gone" to s occurs after the first two arguments to
print3 have been evaluated.

Example 15.7.4-2. Abrupt Completion of Argument Expression

class Test2 {
 static int id;
 public static void main(String[] args) {
 try {
 test(id = 1, oops(), id = 3);
 } catch (Exception e) {
 System.out.println(e + ", id=" + id);
 }
 }
 static int test(int a, int b, int c) {
 return a + b + c;
 }
 static int oops() throws Exception {
 throw new Exception("oops");

EXPRESSIONS Primary Expressions 15.8

477

 }
}

This program produces the output:

java.lang.Exception: oops, id=1

because the assignment of 3 to id is not executed.

15.7.5 Evaluation Order for Other Expressions

The order of evaluation for some expressions is not completely covered by these
general rules, because these expressions may raise exceptional conditions at times
that must be specified. See the detailed explanations of evaluation order for the
following kinds of expressions:

• class instance creation expressions (§15.9.4)

• array creation expressions (§15.10.2)

• array access expressions (§15.10.4)

• method invocation expressions (§15.12.4)

• method reference expressions (§15.13.3)

• assignments involving array components (§15.26)

• lambda expressions (§15.27.4)

15.8 Primary Expressions

Primary expressions include most of the simplest kinds of expressions, from
which all others are constructed: literals, object creations, field accesses, method
invocations, method references, and array accesses. A parenthesized expression is
also treated syntactically as a primary expression.

Primary:
PrimaryNoNewArray
ArrayCreationExpression

15.8 Primary Expressions EXPRESSIONS

478

PrimaryNoNewArray:
Literal
ClassLiteral
this

TypeName . this
(Expression)
ClassInstanceCreationExpression
FieldAccess
ArrayAccess
MethodInvocation
MethodReference

This part of the grammar of the Java programming language is unusual, in two ways. First,
one might expect simple names, such as names of local variables and method parameters,
to be primary expressions. For technical reasons, names are grouped together with primary
expressions a little later when postfix expressions are introduced (§15.14).

The technical reasons have to do with allowing left-to-right parsing of Java programs with
only one-token lookahead. Consider the expressions (z[3]) and (z[]). The first is a
parenthesized array access (§15.10.3) and the second is the start of a cast (§15.16). At
the point that the look-ahead symbol is [, a left-to-right parse will have reduced the z
to the nonterminal Name. In the context of a cast we prefer not to have to reduce the
name to a Primary, but if Name were one of the alternatives for Primary, then we could
not tell whether to do the reduction (that is, we could not determine whether the current
situation would turn out to be a parenthesized array access or a cast) without looking
ahead two tokens, to the token following the [. The grammar presented here avoids the
problem by keeping Name and Primary separate and allowing either in certain other syntax
rules (those for ClassInstanceCreationExpression, MethodInvocation, ArrayAccess, and
PostfixExpression, but not for FieldAccess because this uses an identifier directly). This
strategy effectively defers the question of whether a Name should be treated as a Primary
until more context can be examined.

The second unusual feature avoids a potential grammatical ambiguity in the expression
"new int[3][3]" which in Java always means a single creation of a multidimensional
array, but which, without appropriate grammatical finesse, might also be interpreted as
meaning the same as "(new int[3])[3]".

This ambiguity is eliminated by splitting the expected definition of Primary into Primary
and PrimaryNoNewArray. (This may be compared to the splitting of Statement into
Statement and StatementNoShortIf (§14.5) to avoid the "dangling else" problem.)

15.8.1 Lexical Literals

A literal (§3.10) denotes a fixed, unchanging value.

The following production from §3.10 is shown here for convenience:

EXPRESSIONS Primary Expressions 15.8

479

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

The type of a literal is determined as follows:

• The type of an integer literal (§3.10.1) that ends with L or l is long (§4.2.1).

The type of any other integer literal is int (§4.2.1).

• The type of a floating-point literal (§3.10.2) that ends with F or f is float and
its value must be an element of the float value set (§4.2.3).

The type of any other floating-point literal is double and its value must be an
element of the double value set (§4.2.3).

• The type of a boolean literal (§3.10.3) is boolean (§4.2.5).

• The type of a character literal (§3.10.4) is char (§4.2.1).

• The type of a string literal (§3.10.5) is String (§4.3.3).

• The type of the null literal null (§3.10.7) is the null type (§4.1); its value is the
null reference.

Evaluation of a lexical literal always completes normally.

15.8.2 Class Literals

A class literal is an expression consisting of the name of a class, interface, array,
or primitive type, or the pseudo-type void, followed by a '.' and the token class.

ClassLiteral:
TypeName {[]} . class
NumericType {[]} . class
boolean {[]} . class
void . class

The type of C.class, where C is the name of a class, interface, or array type (§4.3),
is Class<C>.

The type of p.class, where p is the name of a primitive type (§4.2), is Class,
where B is the type of an expression of type p after boxing conversion (§5.1.7).

The type of void.class (§8.4.5) is Class<Void>.

15.8 Primary Expressions EXPRESSIONS

480

It is a compile-time error if the named type is a type variable (§4.4) or a
parameterized type (§4.5) or an array whose element type is a type variable or
parameterized type.

It is a compile-time error if the named type does not denote a type that is accessible
(§6.6) and in scope (§6.3) at the point where the class literal appears.

A class literal evaluates to the Class object for the named type (or for void) as
defined by the defining class loader (§12.2) of the class of the current instance.

15.8.3 this

The keyword this may be used only in the following contexts:

• in the body of an instance method or default method (§8.4.7, §9.4.3)

• in the body of a constructor of a class (§8.8.7)

• in an instance initializer of a class (§8.6)

• in the initializer of an instance variable of a class (§8.3.2)

• to denote a receiver parameter (§8.4.1)

If it appears anywhere else, a compile-time error occurs.

The keyword this may be used in a lambda expression only if it is allowed in the
context in which the lambda expression appears. Otherwise, a compile-time error
occurs.

When used as a primary expression, the keyword this denotes a value that is
a reference to the object for which the instance method or default method was
invoked (§15.12), or to the object being constructed. The value denoted by this in
a lambda body is the same as the value denoted by this in the surrounding context.

The keyword this is also used in explicit constructor invocation statements (§8.8.7.1).

The type of this is the class or interface type T within which the keyword this
occurs.

Default methods provide the unique ability to access this inside an interface. (All other
interface methods are either abstract or static, so provide no access to this.) As a
result, it is possible for this to have an interface type.

At run time, the class of the actual object referred to may be T, if T is a class type,
or a class that is a subtype of T.

EXPRESSIONS Primary Expressions 15.8

481

Example 15.8.3-1. The this Expression

class IntVector {
 int[] v;
 boolean equals(IntVector other) {
 if (this == other)
 return true;
 if (v.length != other.v.length)
 return false;
 for (int i = 0; i < v.length; i++) {
 if (v[i] != other.v[i]) return false;
 }
 return true;
 }
}

Here, the class IntVector implements a method equals, which compares two vectors.
If the other vector is the same vector object as the one for which the equals method was
invoked, then the check can skip the length and value comparisons. The equals method
implements this check by comparing the reference to the other object to this.

15.8.4 Qualified this

Any lexically enclosing instance (§8.1.3) can be referred to by explicitly qualifying
the keyword this.

Let T be the type denoted by TypeName. Let n be an integer such that T is the n'th
lexically enclosing type declaration of the class or interface in which the qualified
this expression appears.

The value of an expression of the form TypeName.this is the n'th lexically
enclosing instance of this.

The type of the expression is T.

It is a compile-time error if the expression occurs in a class or interface which is
not an inner class of class T or T itself.

15.8.5 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type of the
contained expression and whose value at run time is the value of the contained
expression. If the contained expression denotes a variable then the parenthesized
expression also denotes that variable.

The use of parentheses affects only the order of evaluation, except for a corner
case whereby (-2147483648) and (-9223372036854775808L) are legal but -
(2147483648) and -(9223372036854775808L) are illegal.

15.9 Class Instance Creation Expressions EXPRESSIONS

482

This is because the decimal literals 2147483648 and 9223372036854775808L are
allowed only as an operand of the unary minus operator (§3.10.1).

In particular, the presence or absence of parentheses around an expression does not
(except for the case noted above) affect in any way:

• the choice of value set (§4.2.3) for the value of an expression of type float or
double.

• whether a variable is definitely assigned, definitely assigned when true,
definitely assigned when false, definitely unassigned, definitely unassigned
when true, or definitely unassigned when false (§16 (Definite Assignment)).

If a parenthesized expression appears in a context of a particular kind with target
type T (§5 (Conversions and Contexts)), its contained expression similarly appears
in a context of the same kind with target type T.

If the contained expression is a poly expression (§15.2), the parenthesized
expression is also a poly expression. Otherwise, it is a standalone expression.

15.9 Class Instance Creation Expressions

A class instance creation expression is used to create new objects that are instances
of classes.

ClassInstanceCreationExpression:
UnqualifiedClassInstanceCreationExpression
ExpressionName . UnqualifiedClassInstanceCreationExpression
Primary . UnqualifiedClassInstanceCreationExpression

UnqualifiedClassInstanceCreationExpression:
new [TypeArguments]

 ClassOrInterfaceTypeToInstantiate ([ArgumentList]) [ClassBody]

ClassOrInterfaceTypeToInstantiate:
{Annotation} Identifier {. {Annotation} Identifier}

 [TypeArgumentsOrDiamond]

TypeArgumentsOrDiamond:
TypeArguments
<>

The following production from §15.12 is shown here for convenience:

EXPRESSIONS Class Instance Creation Expressions 15.9

483

ArgumentList:
Expression {, Expression}

A class instance creation expression specifies a class to be instantiated, possibly
followed by type arguments (§4.5.1) or a diamond (<>) if the class being
instantiated is generic (§8.1.2), followed by (a possibly empty) list of actual value
arguments to the constructor.

If the type argument list to the class is empty — the diamond form <> — the type
arguments of the class are inferred. It is legal, though strongly discouraged as a
matter of style, to have white space between the "<" and ">" of a diamond.

If the constructor is generic (§8.8.4), the type arguments to the constructor may
similarly either be inferred or passed explicitly. If passed explicitly, the type
arguments to the constructor immediately follow the keyword new.

It is a compile-time error if a class instance creation expression provides type
arguments to a constructor but uses the diamond form for type arguments to the
class.

This rule is introduced because inference of a generic class's type arguments may influence
the constraints on a generic constructor's type arguments.

If TypeArguments is present immediately after new, or immediately before (, then
it is a compile-time error if any of the type arguments are wildcards (§4.5.1).

The exception types that a class instance creation expression can throw are
specified in §11.2.1.

Class instance creation expressions have two forms:

• Unqualified class instance creation expressions begin with the keyword new.

An unqualified class instance creation expression may be used to create an
instance of a class, regardless of whether the class is a top level (§7.6), member
(§8.5, §9.5), local (§14.3), or anonymous class (§15.9.5).

• Qualified class instance creation expressions begin with a Primary expression
or an ExpressionName.

A qualified class instance creation expression enables the creation of instances
of inner member classes and their anonymous subclasses.

Both unqualified and qualified class instance creation expressions may optionally
end with a class body. Such a class instance creation expression declares an
anonymous class (§15.9.5) and creates an instance of it.

15.9 Class Instance Creation Expressions EXPRESSIONS

484

A class instance creation expression is a poly expression (§15.2) if it uses the
diamond form for type arguments to the class, and it appears in an assignment
context or an invocation context (§5.2, §5.3). Otherwise, it is a standalone
expression.

We say that a class is instantiated when an instance of the class is created by a class
instance creation expression. Class instantiation involves determining the class
to be instantiated (§15.9.1), the enclosing instances (if any) of the newly created
instance (§15.9.2), and the constructor to be invoked to create the new instance
(§15.9.3).

15.9.1 Determining the Class being Instantiated

If the class instance creation expression ends in a class body, then the class being
instantiated is an anonymous class. Then:

• If the class instance creation expression is unqualified:

The ClassOrInterfaceTypeToInstantiate must denote a class that is accessible,
non-final, and not an enum type; or denote an interface that is accessible.
Otherwise a compile-time error occurs.

If ClassOrInterfaceTypeToInstantiate ends with <>, then a compile-time error
occurs.

If ClassOrInterfaceTypeToInstantiate ends with TypeArguments, then
ClassOrInterfaceTypeToInstantiate must denote a well-formed parameterized
type (§4.5), or a compile-time error occurs.

Let T be the type denoted by ClassOrInterfaceTypeToInstantiate. If T denotes
a class, then an anonymous direct subclass of T is declared. If T denotes an
interface, then an anonymous direct subclass of Object that implements T is
declared. In either case, the body of the subclass is the ClassBody given in the
class instance creation expression.

The class being instantiated is the anonymous subclass.

• If the class instance creation expression is qualified:

The ClassOrInterfaceTypeToInstantiate must unambiguously denote an inner
class that is accessible, non-final, not an enum type, and a member of the
compile-time type of the Primary expression or the ExpressionName. Otherwise,
a compile-time error occurs.

If ClassOrInterfaceTypeToInstantiate ends with <>, then a compile-time error
occurs.

EXPRESSIONS Class Instance Creation Expressions 15.9

485

If ClassOrInterfaceTypeToInstantiate ends with TypeArguments, then
ClassOrInterfaceTypeToInstantiate must denote a well-formed parameterized
type, or a compile-time error occurs.

Let T be the type denoted by ClassOrInterfaceTypeToInstantiate. An anonymous
direct subclass of T is declared. The body of the subclass is the ClassBody given
in the class instance creation expression.

The class being instantiated is the anonymous subclass.

If a class instance creation expression does not declare an anonymous class, then:

• If the class instance creation expression is unqualified:

The ClassOrInterfaceTypeToInstantiate must denote a class that is accessible,
non-abstract, and not an enum type. Otherwise, a compile-time error occurs.

If ClassOrInterfaceTypeToInstantiate ends with <>, but the class denoted by
ClassOrInterfaceTypeToInstantiate is not generic, then a compile-time error
occurs.

If ClassOrInterfaceTypeToInstantiate ends with TypeArguments, then
ClassOrInterfaceTypeToInstantiate must denote a well-formed parameterized
class, or a compile-time error occurs.

The class being instantiated is the class denoted by
ClassOrInterfaceTypeToInstantiate.

• If the class instance creation expression is qualified:

The ClassOrInterfaceTypeToInstantiate must unambiguously denote an inner
class that is accessible, non-abstract, not an enum type, and a member of the
compile-time type of the Primary expression or the ExpressionName.

If ClassOrInterfaceTypeToInstantiate ends with <>, and the class denoted by
ClassOrInterfaceTypeToInstantiate is not generic, then a compile-time error
occurs.

If ClassOrInterfaceTypeToInstantiate ends with TypeArguments, then
ClassOrInterfaceTypeToInstantiate must denote a well-formed parameterized
class, or a compile-time error occurs.

The class being instantiated is the class denoted by
ClassOrInterfaceTypeToInstantiate.

15.9 Class Instance Creation Expressions EXPRESSIONS

486

15.9.2 Determining Enclosing Instances

Let C be the class being instantiated, and let i be the instance being created. If
C is an inner class, then i may have an immediately enclosing instance (§8.1.3),
determined as follows:

• If C is an anonymous class, then:

– If the class instance creation expression occurs in a static context, then i has
no immediately enclosing instance.

– Otherwise, the immediately enclosing instance of i is this.

• If C is a local class, then:

– If C occurs in a static context, then i has no immediately enclosing instance.

– Otherwise, if the class instance creation expression occurs in a static context,
then a compile-time error occurs.

– Otherwise, let O be the immediately enclosing class of C. Let n be an integer
such that O is the n'th lexically enclosing type declaration of the class in which
the class instance creation expression appears.

The immediately enclosing instance of i is the n'th lexically enclosing instance
of this.

• If C is an inner member class, then:

– If the class instance creation expression is unqualified, then:

› If the class instance creation expression occurs in a static context, then a
compile-time error occurs.

› Otherwise, if C is a member of a class enclosing the class in which the class
instance creation expression appears, then let O be the immediately enclosing
class of which C is a member. Let n be an integer such that O is the n'th
lexically enclosing type declaration of the class in which the class instance
creation expression appears.

The immediately enclosing instance of i is the n'th lexically enclosing
instance of this.

› Otherwise, a compile-time error occurs.

– If the class instance creation expression is qualified, then the immediately
enclosing instance of i is the object that is the value of the Primary expression
or the ExpressionName.

EXPRESSIONS Class Instance Creation Expressions 15.9

487

If C is an anonymous class, and its direct superclass S is an inner class, then i may
have an immediately enclosing instance with respect to S, determined as follows:

• If S is a local class, then:

– If S occurs in a static context, then i has no immediately enclosing instance
with respect to S.

– Otherwise, if the class instance creation expression occurs in a static context,
then a compile-time error occurs.

– Otherwise, let O be the immediately enclosing class of S. Let n be an integer
such that O is the n'th lexically enclosing type declaration of the class in which
the class instance creation expression appears.

The immediately enclosing instance of i with respect to S is the n'th lexically
enclosing instance of this.

• If S is an inner member class, then:

– If the class instance creation expression is unqualified, then:

› If the class instance creation expression occurs in a static context, then a
compile-time error occurs.

› Otherwise, if S is a member of a class enclosing the class in which the class
instance creation expression appears, then let O be the immediately enclosing
class of which S is a member. Let n be an integer such that O is the n'th
lexically enclosing type declaration of the class in which the class instance
creation expression appears.

The immediately enclosing instance of i with respect to S is the n'th lexically
enclosing instance of this.

› Otherwise, a compile-time error occurs.

– If the class instance creation expression is qualified, then the immediately
enclosing instance of i with respect to S is the object that is the value of the
Primary expression or the ExpressionName.

15.9.3 Choosing the Constructor and its Arguments

Let C be the class being instantiated. To create an instance of C, i, a constructor of
C is chosen at compile time by the following rules:

First, the actual arguments to the constructor invocation are determined:

• If C is an anonymous class with direct superclass S, then:

15.9 Class Instance Creation Expressions EXPRESSIONS

488

– If S is not an inner class, or if S is a local class that occurs in a static context,
then the arguments to the constructor are the arguments in the argument list
of the class instance creation expression, if any, in the order they appear in
the expression.

– Otherwise, the first argument to the constructor is the immediately enclosing
instance of i with respect to S (§15.9.2), and the subsequent arguments to the
constructor are the arguments in the argument list of the class instance creation
expression, if any, in the order they appear in the class instance creation
expression.

• If C is a local class or a private inner member class, then the arguments to
the constructor are the arguments in the argument list of the class instance
creation expression, if any, in the order they appear in the class instance creation
expression.

• If C is a non-private inner member class, then the first argument to the
constructor is the immediately enclosing instance of i (§8.8.1, §15.9.2), and the
subsequent arguments to its constructor are the arguments in the argument list
of the class instance creation expression, if any, in the order they appear in the
class instance creation expression.

• Otherwise, the arguments to the constructor are the arguments in the argument
list of the class instance creation expression, if any, in the order they appear in
the expression.

Second, a constructor of C and corresponding return type and throws clause are
determined:

• If the class instance creation expression uses <> to elide class type arguments, a
list of methods m1...mn is defined for the purpose of overload resolution and type
argument inference.

Let c1...cn be the constructors of class C. Let #m be an automatically generated
name that is distinct from all constructor and method names in C. For all j (1 ≤
j ≤ n), mj is defined in terms of cj as follows:

– A substitution θj is first defined to instantiate the types in cj.

Let F1...Fp be the type parameters of C, and let G1...Gq be the type parameters
(if any) of cj. Let X1...Xp and Y1...Yq be type variables with distinct names that
are not in scope in the body of C.

θj is [F1:=X1, ..., Fp:=Xp, G1:=Y1, ..., Gq:=Yq].

– The modifiers of mj are those of cj.

EXPRESSIONS Class Instance Creation Expressions 15.9

489

– The type parameters of mj are X1...Xp,Y1...Yq. The bound of each parameter, if
any, is θj applied to the corresponding parameter bound in C or cj.

– The return type of mj is θj applied to C<F1,...,Fp>.

– The name of mj is #m.

– The (possibly empty) list of argument types of mj is θj applied to the argument
types of cj.

– The (possibly empty) list of thrown types of mj is θj applied to the thrown
types of cj.

– The body of mj is irrelevant.

To choose a constructor, we temporarily consider m1...mn to be members of C.
Then one of m1...mn is selected, as determined by the class instance creation's
argument expressions, using the process specified in §15.12.2.

If there is no unique most specific method that is both applicable and accessible,
then a compile-time error occurs.

Otherwise, where mj is the selected method, cj is the chosen constructor. The
return type and throws clause of cj are the same as the return type and throws
clause determined for mj (§15.12.2.6).

• Otherwise, the class instance creation expression does not use <> to elide class
type arguments.

Let T be the type denoted by C followed by any class type arguments in the
expression. The process specified in §15.12.2, modified to handle constructors,
is used to select one of the constructors of T and determine its throws clause.

If there is no unique most-specific constructor that is both applicable and
accessible, then a compile-time error occurs (as in method invocations).

Otherwise, the return type is T.

It is a compile-time error if an argument to a class instance creation expression is not
compatible with its target type, as derived from the invocation type (§15.12.2.6).

If the compile-time declaration is applicable by variable arity invocation
(§15.12.2.4), then where the last formal parameter type of the invocation type of
the constructor is Fn[], it is a compile-time error if the type which is the erasure of
Fn is not accessible at the point of invocation.

The type of the class instance creation expression is the return type of the chosen
constructor, as defined above.

15.9 Class Instance Creation Expressions EXPRESSIONS

490

Note that the type of the class instance creation expression may be an anonymous
class type, in which case the constructor being invoked is an anonymous
constructor (§15.9.5.1).

15.9.4 Run-Time Evaluation of Class Instance Creation Expressions

At run time, evaluation of a class instance creation expression is as follows.

First, if the class instance creation expression is a qualified class instance creation
expression, the qualifying primary expression is evaluated. If the qualifying
expression evaluates to null, a NullPointerException is raised, and the class
instance creation expression completes abruptly. If the qualifying expression
completes abruptly, the class instance creation expression completes abruptly for
the same reason.

Next, space is allocated for the new class instance. If there is insufficient space to
allocate the object, evaluation of the class instance creation expression completes
abruptly by throwing an OutOfMemoryError.

The new object contains new instances of all the fields declared in the specified
class type and all its superclasses. As each new field instance is created, it is
initialized to its default value (§4.12.5).

Next, the actual arguments to the constructor are evaluated, left-to-right. If any of
the argument evaluations completes abruptly, any argument expressions to its right
are not evaluated, and the class instance creation expression completes abruptly for
the same reason.

Next, the selected constructor of the specified class type is invoked. This results in
invoking at least one constructor for each superclass of the class type. This process
can be directed by explicit constructor invocation statements (§8.8) and is specified
in detail in §12.5.

The value of a class instance creation expression is a reference to the newly created
object of the specified class. Every time the expression is evaluated, a fresh object
is created.

Example 15.9.4-1. Evaluation Order and Out-Of-Memory Detection

If evaluation of a class instance creation expression finds there is insufficient memory to
perform the creation operation, then an OutOfMemoryError is thrown. This check occurs
before any argument expressions are evaluated.

So, for example, the test program:

class List {

EXPRESSIONS Class Instance Creation Expressions 15.9

491

 int value;
 List next;
 static List head = new List(0);
 List(int n) { value = n; next = head; head = this; }
}
class Test {
 public static void main(String[] args) {
 int id = 0, oldid = 0;
 try {
 for (;;) {
 ++id;
 new List(oldid = id);
 }
 } catch (Error e) {
 List.head = null;
 System.out.println(e.getClass() + ", " + (oldid==id));
 }
 }
}

prints:

class java.lang.OutOfMemoryError, false

because the out-of-memory condition is detected before the argument expression oldid
= id is evaluated.

Compare this to the treatment of array creation expressions, for which the out-of-memory
condition is detected after evaluation of the dimension expressions (§15.10.2).

15.9.5 Anonymous Class Declarations

An anonymous class declaration is automatically derived from a class instance
creation expression by the Java compiler.

An anonymous class is never abstract (§8.1.1.1).

An anonymous class is always implicitly final (§8.1.1.2).

An anonymous class is always an inner class (§8.1.3); it is never static (§8.1.1,
§8.5.1).

15.9.5.1 Anonymous Constructors

An anonymous class cannot have an explicitly declared constructor. Instead, an
anonymous constructor is implicitly declared for an anonymous class. The form
of the anonymous constructor for an anonymous class C with direct superclass S
is as follows:

15.9 Class Instance Creation Expressions EXPRESSIONS

492

• If S is not an inner class, or if S is a local class that occurs in a static context, then
the anonymous constructor has one formal parameter for each actual argument
to the class instance creation expression in which C is declared.

The actual arguments to the class instance creation expression are used to
determine a constructor cs of S, using the same rules as for method invocations
(§15.12). The type of each formal parameter of the anonymous constructor must
be identical to the corresponding formal parameter of cs.

The constructor body consists of an explicit constructor invocation (§8.8.7.1) of
the form super(...), where the actual arguments are the formal parameters of
the constructor, in the order they were declared.

• Otherwise, the first formal parameter of the constructor of C represents the
value of the immediately enclosing instance of i with respect to S (§15.9.2,
§15.9.3). The type of this parameter is the class type that immediately encloses
the declaration of S.

The constructor has an additional formal parameter for each actual argument to
the class instance creation expression that declared the anonymous class. The
n'th formal parameter e corresponds to the n-1'th actual argument.

The actual arguments to the class instance creation expression are used to
determine a constructor cs of S, using the same rules as for method invocations
(§15.12). The type of each formal parameter of the anonymous constructor must
be identical to the corresponding formal parameter of cs.

The constructor body consists of an explicit constructor invocation (§8.8.7.1) of
the form o.super(...), where o is the first formal parameter of the constructor,
and the actual arguments are the subsequent formal parameters of the constructor,
in the order they were declared.

In all cases, the throws clause of an anonymous constructor must list all the
checked exceptions thrown by the explicit superclass constructor invocation
statement contained within the anonymous constructor, and all checked exceptions
thrown by any instance initializers or instance variable initializers of the
anonymous class.

Note that it is possible for the signature of the anonymous constructor to refer
to an inaccessible type (for example, if such a type occurred in the signature of
the superclass constructor cs). This does not, in itself, cause any errors at either
compile-time or run-time.

EXPRESSIONS Array Creation and Access Expressions 15.10

493

15.10 Array Creation and Access Expressions

15.10.1 Array Creation Expressions

An array creation expression is used to create new arrays (§10 (Arrays)).

ArrayCreationExpression:
new PrimitiveType DimExprs [Dims]
new ClassOrInterfaceType DimExprs [Dims]
new PrimitiveType Dims ArrayInitializer
new ClassOrInterfaceType Dims ArrayInitializer

DimExprs:
DimExpr {DimExpr}

DimExpr:
{Annotation} [Expression]

The following production from §4.3 is shown here for convenience:

Dims:
{Annotation} [] {{Annotation} []}

An array creation expression creates an object that is a new array whose elements
are of the type specified by the PrimitiveType or ClassOrInterfaceType.

It is a compile-time error if the ClassOrInterfaceType does not denote a reifiable
type (§4.7). Otherwise, the ClassOrInterfaceType may name any named reference
type, even an abstract class type (§8.1.1.1) or an interface type.

The rules above imply that the element type in an array creation expression cannot be a
parameterized type, unless all type arguments to the parameterized type are unbounded
wildcards.

The type of each dimension expression within a DimExpr must be a type that is
convertible (§5.1.8) to an integral type, or a compile-time error occurs.

Each dimension expression undergoes unary numeric promotion (§5.6.1). The
promoted type must be int, or a compile-time error occurs.

The type of the array creation expression is an array type that can denoted by a copy
of the array creation expression from which the new keyword and every DimExpr
expression and array initializer have been deleted.

For example, the type of the creation expression:

15.10 Array Creation and Access Expressions EXPRESSIONS

494

new double[3][3][]

is:

double[][][]

15.10.2 Run-Time Evaluation of Array Creation Expressions

At run time, evaluation of an array creation expression behaves as follows:

• If there are no dimension expressions, then there must be an array initializer. A
newly allocated array will be initialized with the values provided by the array
initializer as described in §10.6. The value of the array initializer becomes the
value of the array creation expression.

• Otherwise, there is no array initializer, and:

– First, the dimension expressions are evaluated, left-to-right. If any of the
expression evaluations completes abruptly, the expressions to the right of it
are not evaluated.

– Next, the values of the dimension expressions are checked. If the value of any
DimExpr expression is less than zero, then a NegativeArraySizeException
is thrown.

– Next, space is allocated for the new array. If there is insufficient space
to allocate the array, evaluation of the array creation expression completes
abruptly by throwing an OutOfMemoryError.

– Then, if a single DimExpr appears, a one-dimensional array is created of the
specified length, and each component of the array is initialized to its default
value (§4.12.5).

– Otherwise, if n DimExpr expressions appear, then array creation effectively
executes a set of nested loops of depth n-1 to create the implied arrays of
arrays.

A multidimensional array need not have arrays of the same length at each level.

Example 15.10.2-1. Array Creation Evaluation

In an array creation expression with one or more dimension expressions, each dimension
expression is fully evaluated before any part of any dimension expression to its right. Thus:

class Test1 {
 public static void main(String[] args) {
 int i = 4;
 int ia[][] = new int[i][i=3];

EXPRESSIONS Array Creation and Access Expressions 15.10

495

 System.out.println(
 "[" + ia.length + "," + ia[0].length + "]");
 }
}

prints:

[4,3]

because the first dimension is calculated as 4 before the second dimension expression sets
i to 3.

If evaluation of a dimension expression completes abruptly, no part of any dimension
expression to its right will appear to have been evaluated. Thus:

class Test2 {
 public static void main(String[] args) {
 int[][] a = { { 00, 01 }, { 10, 11 } };
 int i = 99;
 try {
 a[val()][i = 1]++;
 } catch (Exception e) {
 System.out.println(e + ", i=" + i);
 }
 }
 static int val() throws Exception {
 throw new Exception("unimplemented");
 }
}

prints:

java.lang.Exception: unimplemented, i=99

because the embedded assignment that sets i to 1 is never executed.

Example 15.10.2-2. Multi-Dimensional Array Creation

The declaration:

float[][] matrix = new float[3][3];

is equivalent in behavior to:

float[][] matrix = new float[3][];
for (int d = 0; d < matrix.length; d++)
 matrix[d] = new float[3];

and:

15.10 Array Creation and Access Expressions EXPRESSIONS

496

Age[][][][][] Aquarius = new Age[6][10][8][12][];

is equivalent to:

Age[][][][][] Aquarius = new Age[6][][][][];
for (int d1 = 0; d1 < Aquarius.length; d1++) {
 Aquarius[d1] = new Age[10][][][];
 for (int d2 = 0; d2 < Aquarius[d1].length; d2++) {
 Aquarius[d1][d2] = new Age[8][][];
 for (int d3 = 0; d3 < Aquarius[d1][d2].length; d3++) {
 Aquarius[d1][d2][d3] = new Age[12][];
 }
 }
}

with d, d1, d2, and d3 replaced by names that are not already locally declared. Thus, a
single new expression actually creates one array of length 6, 6 arrays of length 10, 6x10
= 60 arrays of length 8, and 6x10x8 = 480 arrays of length 12. This example leaves the
fifth dimension, which would be arrays containing the actual array elements (references to
Age objects), initialized only to null references. These arrays can be filled in later by other
code, such as:

Age[] Hair = { new Age("quartz"), new Age("topaz") };
Aquarius[1][9][6][9] = Hair;

A triangular matrix may be created by:

float triang[][] = new float[100][];
for (int i = 0; i < triang.length; i++)
 triang[i] = new float[i+1];

If evaluation of an array creation expression finds there is insufficient memory to
perform the creation operation, then an OutOfMemoryError is thrown. If the array
creation expression does not have an array initializer, then this check occurs only
after evaluation of all dimension expressions has completed normally. If the array
creation expression does have an array initializer, then an OutOfMemoryError can
occur when an object of reference type is allocated during evaluation of a variable
initializer expression, or when space is allocated for an array to hold the values of
a (possibly nested) array initializer.

Example 15.10.2-3. OutOfMemoryError and Dimension Expression Evaluation

class Test3 {
 public static void main(String[] args) {
 int len = 0, oldlen = 0;
 Object[] a = new Object[0];
 try {
 for (;;) {
 ++len;
 Object[] temp = new Object[oldlen = len];

EXPRESSIONS Array Creation and Access Expressions 15.10

497

 temp[0] = a;
 a = temp;
 }
 } catch (Error e) {
 System.out.println(e + ", " + (oldlen==len));
 }
 }
}

This program produces the output:

java.lang.OutOfMemoryError, true

because the out-of-memory condition is detected after the dimension expression oldlen
= len is evaluated.

Compare this to class instance creation expressions (§15.9), which detect the out-of-
memory condition before evaluating argument expressions (§15.9.4).

15.10.3 Array Access Expressions

An array access expression refers to a variable that is a component of an array.

ArrayAccess:
ExpressionName [Expression]
PrimaryNoNewArray [Expression]

An array access expression contains two subexpressions, the array reference
expression (before the left bracket) and the index expression (within the brackets).

Note that the array reference expression may be a name or any primary expression that is
not an array creation expression (§15.10).

The type of the array reference expression must be an array type (call it T[], an
array whose components are of type T), or a compile-time error occurs.

The index expression undergoes unary numeric promotion (§5.6.1). The promoted
type must be int, or a compile-time error occurs.

The type of the array access expression is the result of applying capture conversion
(§5.1.10) to T.

The result of an array access expression is a variable of type T, namely the variable
within the array selected by the value of the index expression.

This resulting variable, which is a component of the array, is never considered
final, even if the array reference expression denoted a final variable.

15.10 Array Creation and Access Expressions EXPRESSIONS

498

15.10.4 Run-Time Evaluation of Array Access Expressions

At run time, evaluation of an array access expression behaves as follows:

• First, the array reference expression is evaluated. If this evaluation completes
abruptly, then the array access completes abruptly for the same reason and the
index expression is not evaluated.

• Otherwise, the index expression is evaluated. If this evaluation completes
abruptly, then the array access completes abruptly for the same reason.

• Otherwise, if the value of the array reference expression is null, then a
NullPointerException is thrown.

• Otherwise, the value of the array reference expression indeed refers to an array.
If the value of the index expression is less than zero, or greater than or equal to
the array's length, then an ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the result of the array access is the variable of type T, within the array,
selected by the value of the index expression.

Example 15.10.4-1. Array Reference Is Evaluated First

In an array access, the expression to the left of the brackets appears to be fully evaluated
before any part of the expression within the brackets is evaluated. For example, in the
(admittedly monstrous) expression a[(a=b)[3]], the expression a is fully evaluated
before the expression (a=b)[3]; this means that the original value of a is fetched and
remembered while the expression (a=b)[3] is evaluated. This array referenced by the
original value of a is then subscripted by a value that is element 3 of another array (possibly
the same array) that was referenced by b and is now also referenced by a.

Thus, the program:

class Test1 {
 public static void main(String[] args) {
 int[] a = { 11, 12, 13, 14 };
 int[] b = { 0, 1, 2, 3 };
 System.out.println(a[(a=b)[3]]);
 }
}

prints:

14

because the monstrous expression's value is equivalent to a[b[3]] or a[3] or 14.

EXPRESSIONS Array Creation and Access Expressions 15.10

499

Example 15.10.4-2. Abrupt Completion of Array Reference Evaluation

If evaluation of the expression to the left of the brackets completes abruptly, no part of the
expression within the brackets will appear to have been evaluated. Thus, the program:

class Test2 {
 public static void main(String[] args) {
 int index = 1;
 try {
 skedaddle()[index=2]++;
 } catch (Exception e) {
 System.out.println(e + ", index=" + index);
 }
 }
 static int[] skedaddle() throws Exception {
 throw new Exception("Ciao");
 }
}

prints:

java.lang.Exception: Ciao, index=1

because the embedded assignment of 2 to index never occurs.

Example 15.10.4-3. null Array Reference

If the array reference expression produces null instead of a reference to an array, then a
NullPointerException is thrown at run time, but only after all parts of the array access
expression have been evaluated and only if these evaluations completed normally. Thus,
the program:

class Test3 {
 public static void main(String[] args) {
 int index = 1;
 try {
 nada()[index=2]++;
 } catch (Exception e) {
 System.out.println(e + ", index=" + index);
 }
 }
 static int[] nada() { return null; }
}

prints:

java.lang.NullPointerException, index=2

because the embedded assignment of 2 to index occurs before the check for a null array
reference expression. As a related example, the program:

15.11 Field Access Expressions EXPRESSIONS

500

class Test4 {
 public static void main(String[] args) {
 int[] a = null;
 try {
 int i = a[vamoose()];
 System.out.println(i);
 } catch (Exception e) {
 System.out.println(e);
 }
 }
 static int vamoose() throws Exception {
 throw new Exception("Twenty-three skidoo!");
 }
}

always prints:

java.lang.Exception: Twenty-three skidoo!

A NullPointerException never occurs, because the index expression must be
completely evaluated before any further part of the array access occurs, and that includes
the check as to whether the value of the array reference expression is null.

15.11 Field Access Expressions

A field access expression may access a field of an object or array, a reference to
which is the value of either an expression or the special keyword super.

FieldAccess:
Primary . Identifier
super . Identifier
TypeName . super . Identifier

The meaning of a field access expression is determined using the same rules as for
qualified names (§6.5.6.2), but limited by the fact that an expression cannot denote
a package, class type, or interface type.

It is also possible to refer to a field of the current instance or current class by using
a simple name (§6.5.6.1).

15.11.1 Field Access Using a Primary

The type of the Primary must be a reference type T, or a compile-time error occurs.

The meaning of the field access expression is determined as follows:

EXPRESSIONS Field Access Expressions 15.11

501

• If the identifier names several accessible (§6.6) member fields in type T, then the
field access is ambiguous and a compile-time error occurs.

• If the identifier does not name an accessible member field in type T, then the
field access is undefined and a compile-time error occurs.

• Otherwise, the identifier names a single accessible member field in type T, and
the type of the field access expression is the type of the member field after capture
conversion (§5.1.10).

At run time, the result of the field access expression is computed as follows:
(assuming that the program is correct with respect to definite assignment analysis,
i.e. every blank final variable is definitely assigned before access)

• If the field is static:

– The Primary expression is evaluated, and the result is discarded. If evaluation
of the Primary expression completes abruptly, the field access expression
completes abruptly for the same reason.

– If the field is a non-blank final field, then the result is the value of the
specified class variable in the class or interface that is the type of the Primary
expression.

– If the field is not final, or is a blank final and the field access occurs in
a static initializer or class variable initializer, then the result is a variable,
namely, the specified class variable in the class that is the type of the Primary
expression.

• If the field is not static:

– The Primary expression is evaluated. If evaluation of the Primary expression
completes abruptly, the field access expression completes abruptly for the
same reason.

– If the value of the Primary is null, then a NullPointerException is thrown.

– If the field is a non-blank final, then the result is the value of the named
member field in type T found in the object referenced by the value of the
Primary.

– If the field is not final, or is a blank final and the field access occurs in a
constructor or instance variable initializer, then the result is a variable, namely
the named member field in type T found in the object referenced by the value
of the Primary.

Note that only the type of the Primary expression, not the class of the actual object
referred to at run time, is used in determining which field to use.

15.11 Field Access Expressions EXPRESSIONS

502

Example 15.11.1-1. Static Binding for Field Access

class S { int x = 0; }
class T extends S { int x = 1; }
class Test1 {
 public static void main(String[] args) {
 T t = new T();
 System.out.println("t.x=" + t.x + when("t", t));
 S s = new S();
 System.out.println("s.x=" + s.x + when("s", s));
 s = t;
 System.out.println("s.x=" + s.x + when("s", s));
 }
 static String when(String name, Object t) {
 return " when " + name + " holds a "
 + t.getClass() + " at run time.";
 }
}

This program produces the output:

t.x=1 when t holds a class T at run time.
s.x=0 when s holds a class S at run time.
s.x=0 when s holds a class T at run time.

The last line shows that, indeed, the field that is accessed does not depend on the run-
time class of the referenced object; even if s holds a reference to an object of class T, the
expression s.x refers to the x field of class S, because the type of the expression s is S.
Objects of class T contain two fields named x, one for class T and one for its superclass S.

This lack of dynamic lookup for field accesses allows programs to be run efficiently with
straightforward implementations. The power of late binding and overriding is available, but
only when instance methods are used. Consider the same example using instance methods
to access the fields:

class S { int x = 0; int z() { return x; } }
class T extends S { int x = 1; int z() { return x; } }
class Test2 {
 public static void main(String[] args) {
 T t = new T();
 System.out.println("t.z()=" + t.z() + when("t", t));
 S s = new S();
 System.out.println("s.z()=" + s.z() + when("s", s));
 s = t;
 System.out.println("s.z()=" + s.z() + when("s", s));
 }
 static String when(String name, Object t) {
 return " when " + name + " holds a "
 + t.getClass() + " at run time.";
 }
}

EXPRESSIONS Field Access Expressions 15.11

503

Now the output is:

t.z()=1 when t holds a class T at run time.
s.z()=0 when s holds a class S at run time.
s.z()=1 when s holds a class T at run time.

The last line shows that, indeed, the method that is accessed does depend on the run-
time class of the referenced object; when s holds a reference to an object of class T, the
expression s.z() refers to the z method of class T, despite the fact that the type of the
expression s is S. Method z of class T overrides method z of class S.

Example 15.11.1-2. Receiver Variable Is Irrelevant For static Field Access

The following program demonstrates that a null reference may be used to access a class
(static) variable without causing an exception:

class Test3 {
 static String mountain = "Chocorua";
 static Test3 favorite(){
 System.out.print("Mount ");
 return null;
 }
 public static void main(String[] args) {
 System.out.println(favorite().mountain);
 }
}

It compiles, executes, and prints:

Mount Chocorua

Even though the result of favorite() is null, a NullPointerException is not thrown.
That "Mount " is printed demonstrates that the Primary expression is indeed fully evaluated
at run time, despite the fact that only its type, not its value, is used to determine which field
to access (because the field mountain is static).

15.11.2 Accessing Superclass Members using super

The form super.Identifier refers to the field named Identifier of the current object,
but with the current object viewed as an instance of the superclass of the current
class.

The form T.super.Identifier refers to the field named Identifier of the lexically
enclosing instance corresponding to T, but with that instance viewed as an instance
of the superclass of T.

15.11 Field Access Expressions EXPRESSIONS

504

The forms using the keyword super are valid only in an instance method, instance
initializer, or constructor of a class, or in the initializer of an instance variable of a
class. If they appear anywhere else, a compile-time error occurs.

These are exactly the same situations in which the keyword this may be used in a class
declaration (§15.8.3).

It is a compile-time error if the forms using the keyword super appear in the
declaration of class Object, since Object has no superclass.

Suppose that a field access expression super.f appears within class C, and the
immediate superclass of C is class S. If f in S is accessible from class C (§6.6), then
super.f is treated as if it had been the expression this.f in the body of class S.
Otherwise, a compile-time error occurs.

Thus, super.f can access the field f that is accessible in class S, even if that field is hidden
by a declaration of a field f in class C.

Suppose that a field access expression T.super.f appears within class C, and the
immediate superclass of the class denoted by T is a class whose fully qualified name
is S. If f in S is accessible from C, then T.super.f is treated as if it had been the
expression this.f in the body of class S. Otherwise, a compile-time error occurs.

Thus, T.super.f can access the field f that is accessible in class S, even if that field is
hidden by a declaration of a field f in class T.

It is a compile-time error if the current class is not an inner class of class T or T itself.

Example 15.11.2-1. The super Expression

interface I { int x = 0; }
class T1 implements I { int x = 1; }
class T2 extends T1 { int x = 2; }
class T3 extends T2 {
 int x = 3;
 void test() {
 System.out.println("x=\t\t" + x);
 System.out.println("super.x=\t\t" + super.x);
 System.out.println("((T2)this).x=\t" + ((T2)this).x);
 System.out.println("((T1)this).x=\t" + ((T1)this).x);
 System.out.println("((I)this).x=\t" + ((I)this).x);
 }
}
class Test {
 public static void main(String[] args) {
 new T3().test();
 }
}

EXPRESSIONS Method Invocation Expressions 15.12

505

This program produces the output:

x= 3
super.x= 2
((T2)this).x= 2
((T1)this).x= 1
((I)this).x= 0

Within class T3, the expression super.x has the same effect as ((T2)this).x when x
has package access. Note that super.x is not specified in terms of a cast, due to difficulties
around access to protected members of the superclass.

15.12 Method Invocation Expressions

A method invocation expression is used to invoke a class or instance method.

MethodInvocation:
MethodName ([ArgumentList])
TypeName . [TypeArguments] Identifier ([ArgumentList])
ExpressionName . [TypeArguments] Identifier ([ArgumentList])
Primary . [TypeArguments] Identifier ([ArgumentList])
super . [TypeArguments] Identifier ([ArgumentList])
TypeName . super . [TypeArguments] Identifier ([ArgumentList])

ArgumentList:
Expression {, Expression}

Resolving a method name at compile time is more complicated than resolving a
field name because of the possibility of method overloading. Invoking a method at
run time is also more complicated than accessing a field because of the possibility
of instance method overriding.

Determining the method that will be invoked by a method invocation expression
involves several steps. The following three sections describe the compile-time
processing of a method invocation. The determination of the type of the method
invocation expression is specified in §15.12.3.

The exception types that a method invocation expression can throw are specified
in §11.2.1.

It is a compile-time error if the name to the left of the rightmost "." that occurs
before the (in a MethodInvocation cannot be classified as a TypeName or an
ExpressionName (§6.5.2).

15.12 Method Invocation Expressions EXPRESSIONS

506

If TypeArguments is present to the left of Identifier, then it is a compile-time error
if any of the type arguments are wildcards (§4.5.1).

A method invocation expression is a poly expression if all of the following are true:

• The invocation appears in an assignment context or an invocation context (§5.2,
§5.3).

• If the invocation is qualified (that is, any form of MethodInvocation except for
the first), then the invocation elides TypeArguments to the left of the Identifier.

• The method to be invoked, as determined by the following subsections, is generic
(§8.4.4) and has a return type that mentions at least one of the method's type
parameters.

Otherwise, the method invocation expression is a standalone expression.

15.12.1 Compile-Time Step 1: Determine Class or Interface to Search

The first step in processing a method invocation at compile time is to figure out
the name of the method to be invoked and which class or interface to search for
definitions of methods of that name.

The name of the method is specified by the MethodName or Identifier which
immediately precedes the left parenthesis of the MethodInvocation.

For the class or interface to search, there are six cases to consider, depending on
the form that precedes the left parenthesis of the MethodInvocation:

• If the form is MethodName, that is, just an Identifier, then:

If the Identifier appears in the scope of a visible method declaration with that
name (§6.3, §6.4.1), then:

– If there is an enclosing type declaration of which that method is a member, let
T be the innermost such type declaration. The class or interface to search is T.

This search policy is called the "comb rule". It effectively looks for methods in a
nested class's superclass hierarchy before looking for methods in an enclosing class
and its superclass hierarchy. See §6.5.7.1 for an example.

– Otherwise, the visible method declaration may be in scope due to one or
more single-static-import or static-import-on-demand declarations. There is
no class or interface to search, as the method to be invoked is determined later
(§15.12.2.1).

• If the form is TypeName . [TypeArguments] Identifier, then the type to search
is the type denoted by TypeName.

EXPRESSIONS Method Invocation Expressions 15.12

507

• If the form is ExpressionName . [TypeArguments] Identifier, then the class
or interface to search is the declared type T of the variable denoted by
ExpressionName if T is a class or interface type, or the upper bound of T if T is
a type variable.

• If the form is Primary . [TypeArguments] Identifier, then let T be the type of the
Primary expression. The class or interface to search is T if T is a class or interface
type, or the upper bound of T if T is a type variable.

It is a compile-time error if T is not a reference type.

• If the form is super . [TypeArguments] Identifier, then the class to search is the
superclass of the class whose declaration contains the method invocation.

Let T be the type declaration immediately enclosing the method invocation. It is
a compile-time error if T is the class Object or T is an interface.

• If the form is TypeName . super . [TypeArguments] Identifier, then:

– It is a compile-time error if TypeName denotes neither a class nor an interface.

– If TypeName denote a class, C, then the class to search is the superclass of C.

It is a compile-time error if C is not a lexically enclosing type declaration of
the current class, or if C is the class Object.

Let T be the type declaration immediately enclosing the method invocation. It
is a compile-time error if T is the class Object.

– Otherwise, TypeName denotes the interface to be searched, I.

Let T be the type declaration immediately enclosing the method invocation. It
is a compile-time error if I is not a direct superinterface of T, or if there exists
some other direct superclass or direct superinterface of T, J, such that J is a
subtype of I.

The TypeName . super syntax is overloaded: traditionally, the TypeName refers to a
lexically enclosing type declaration which is a class, and the target is the superclass of
this class, as if the invocation were an unqualified super in the lexically enclosing type
declaration.

15.12 Method Invocation Expressions EXPRESSIONS

508

class Superclass {
 void foo() { System.out.println("Hi"); }
}

class Subclass1 extends Superclass {
 void foo() { throw new UnsupportedOperationException(); }

 Runnable tweak = new Runnable() {
 void run() {
 Subclass1.super.foo(); // Gets the 'println' behavior
 }
 };
}

To support invocation of default methods in superinterfaces, the TypeName may also
refer to a direct superinterface of the current class or interface, and the target is that
superinterface.

interface Superinterface {
 default void foo() { System.out.println("Hi"); }
}

class Subclass2 implements Superinterface {
 void foo() { throw new UnsupportedOperationException(); }

 void tweak() {
 Superinterface.super.foo(); // Gets the 'println' behavior
 }
}

No syntax supports a combination of these forms, that is, invoking a superinterface method
of a lexically enclosing type declaration which is a class, as if the invocation were of the
form InterfaceName . super in the lexically enclosing type declaration.

class Subclass3 implements Superinterface {
 void foo() { throw new UnsupportedOperationException(); }

 Runnable tweak = new Runnable() {
 void run() {
 Subclass3.Superinterface.super.foo(); // Illegal
 }
 };
}

A workaround is to introduce a private method in the lexically enclosing type declaration,
that performs the interface super call.

EXPRESSIONS Method Invocation Expressions 15.12

509

15.12.2 Compile-Time Step 2: Determine Method Signature

The second step searches the type determined in the previous step for member
methods. This step uses the name of the method and the argument expressions to
locate methods that are both accessible and applicable, that is, declarations that
can be correctly invoked on the given arguments.

There may be more than one such method, in which case the most specific one is
chosen. The descriptor (signature plus return type) of the most specific method is
the one used at run time to perform the method dispatch.

A method is applicable if it is applicable by one of strict invocation (§15.12.2.2),
loose invocation (§15.12.2.3), or variable arity invocation (§15.12.2.4).

Certain argument expressions that contain implicitly typed lambda expressions
(§15.27.1) or inexact method references (§15.13.1) are ignored by the applicability
tests, because their meaning cannot be determined until a target type is selected.

Although the method invocation may be a poly expression, only its argument
expressions - not the invocation's target type - influence the selection of applicable
methods.

The process of determining applicability begins by determining the potentially
applicable methods (§15.12.2.1).

The remainder of the process is split into three phases, to ensure compatibility with
versions of the Java programming language prior to Java SE 5.0. The phases are:

1. The first phase (§15.12.2.2) performs overload resolution without permitting
boxing or unboxing conversion, or the use of variable arity method invocation.
If no applicable method is found during this phase then processing continues
to the second phase.

This guarantees that any calls that were valid in the Java programming language
before Java SE 5.0 are not considered ambiguous as the result of the introduction of
variable arity methods, implicit boxing and/or unboxing. However, the declaration of
a variable arity method (§8.4.1) can change the method chosen for a given method
method invocation expression, because a variable arity method is treated as a fixed
arity method in the first phase. For example, declaring m(Object...) in a class which
already declares m(Object) causes m(Object) to no longer be chosen for some
invocation expressions (such as m(null)), as m(Object[]) is more specific.

2. The second phase (§15.12.2.3) performs overload resolution while allowing
boxing and unboxing, but still precludes the use of variable arity method
invocation. If no applicable method is found during this phase then processing
continues to the third phase.

15.12 Method Invocation Expressions EXPRESSIONS

510

This ensures that a method is never chosen through variable arity method invocation
if it is applicable through fixed arity method invocation.

3. The third phase (§15.12.2.4) allows overloading to be combined with variable
arity methods, boxing, and unboxing.

Deciding whether a method is applicable will, in the case of generic methods
(§8.4.4), require an analysis of the type arguments. Type arguments may be passed
explicitly or implicitly. If they are passed implicitly, bounds of the type arguments
must be inferred (§18 (Type Inference)) from the argument expressions.

If several applicable methods have been identified during one of the three phases
of applicability testing, then the most specific one is chosen, as specified in section
§15.12.2.5.

To check for applicability, the types of an invocation's arguments cannot, in general, be
inputs to the analysis. This is because:

• The arguments to a method invocation may be poly expressions

• Poly expressions cannot be typed in the absence of a target type

• Overload resolution has to be completed before the arguments' target types will be known

Instead, the input to the applicability check is a list of argument expressions, which can
be checked for compatibility with potential target types, even if the ultimate types of the
expressions are unknown.

Note that overload resolution is independent of a target type. This is for two reasons:

• First, it makes the user model more accessible and less error-prone. The meaning of
a method name (i.e., the declaration corresponding to the name) is too fundamental to
the meaning of a program to depend on subtle contextual hints. (In contrast, other poly
expressions may have different behavior depending on a target type; but the variation in
behavior is always limited and essentially equivalent, while no such guarantees can be
made about the behavior of an arbitrary set of methods that share a name and arity.)

• Second, it allows other properties - such as whether or not the method is a poly expression
(§15.12) or how to categorize a conditional expression (§15.25) - to depend on the
meaning of the method name, even before a target type is known.

Example 15.12.2-1. Method Applicability

class Doubler {
 static int two() { return two(1); }
 private static int two(int i) { return 2*i; }
}
class Test extends Doubler {
 static long two(long j) { return j+j; }

EXPRESSIONS Method Invocation Expressions 15.12

511

 public static void main(String[] args) {
 System.out.println(two(3));
 System.out.println(Doubler.two(3)); // compile-time error
 }
}

For the method invocation two(1) within class Doubler, there are two accessible methods
named two, but only the second one is applicable, and so that is the one invoked at run time.

For the method invocation two(3) within class Test, there are two applicable methods,
but only the one in class Test is accessible, and so that is the one to be invoked at run time
(the argument 3 is converted to type long).

For the method invocation Doubler.two(3), the class Doubler, not class Test, is
searched for methods named two; the only applicable method is not accessible, and so this
method invocation causes a compile-time error.

Another example is:

class ColoredPoint {
 int x, y;
 byte color;
 void setColor(byte color) { this.color = color; }
}
class Test {
 public static void main(String[] args) {
 ColoredPoint cp = new ColoredPoint();
 byte color = 37;
 cp.setColor(color);
 cp.setColor(37); // compile-time error
 }
}

Here, a compile-time error occurs for the second invocation of setColor, because no
applicable method can be found at compile time. The type of the literal 37 is int, and
int cannot be converted to byte by invocation conversion. Assignment conversion, which
is used in the initialization of the variable color, performs an implicit conversion of the
constant from type int to byte, which is permitted because the value 37 is small enough to
be represented in type byte; but such a conversion is not allowed for invocation conversion.

If the method setColor had, however, been declared to take an int instead of a byte, then
both method invocations would be correct; the first invocation would be allowed because
invocation conversion does permit a widening conversion from byte to int. However, a
narrowing cast would then be required in the body of setColor:

void setColor(int color) { this.color = (byte)color; }

Here is an example of overloading ambiguity. Consider the program:

class Point { int x, y; }
class ColoredPoint extends Point { int color; }

15.12 Method Invocation Expressions EXPRESSIONS

512

class Test {
 static void test(ColoredPoint p, Point q) {
 System.out.println("(ColoredPoint, Point)");
 }
 static void test(Point p, ColoredPoint q) {
 System.out.println("(Point, ColoredPoint)");
 }
 public static void main(String[] args) {
 ColoredPoint cp = new ColoredPoint();
 test(cp, cp); // compile-time error
 }
}

This example produces an error at compile time. The problem is that there are two
declarations of test that are applicable and accessible, and neither is more specific than
the other. Therefore, the method invocation is ambiguous.

If a third definition of test were added:

static void test(ColoredPoint p, ColoredPoint q) {
 System.out.println("(ColoredPoint, ColoredPoint)");
}

then it would be more specific than the other two, and the method invocation would no
longer be ambiguous.

Example 15.12.2-2. Return Type Not Considered During Method Selection

class Point { int x, y; }
class ColoredPoint extends Point { int color; }
class Test {
 static int test(ColoredPoint p) {
 return p.color;
 }
 static String test(Point p) {
 return "Point";
 }
 public static void main(String[] args) {
 ColoredPoint cp = new ColoredPoint();
 String s = test(cp); // compile-time error
 }
}

Here, the most specific declaration of method test is the one taking a parameter of type
ColoredPoint. Because the result type of the method is int, a compile-time error occurs
because an int cannot be converted to a String by assignment conversion. This example
shows that the result types of methods do not participate in resolving overloaded methods,
so that the second test method, which returns a String, is not chosen, even though it has
a result type that would allow the example program to compile without error.

EXPRESSIONS Method Invocation Expressions 15.12

513

Example 15.12.2-3. Choosing The Most Specific Method

The most specific method is chosen at compile time; its descriptor determines what method
is actually executed at run time. If a new method is added to a class, then source code that
was compiled with the old definition of the class might not use the new method, even if a
recompilation would cause this method to be chosen.

So, for example, consider two compilation units, one for class Point:

package points;
public class Point {
 public int x, y;
 public Point(int x, int y) { this.x = x; this.y = y; }
 public String toString() { return toString(""); }
 public String toString(String s) {
 return "(" + x + "," + y + s + ")";
 }
}

and one for class ColoredPoint:

package points;
public class ColoredPoint extends Point {
 public static final int
 RED = 0, GREEN = 1, BLUE = 2;
 public static String[] COLORS =
 { "red", "green", "blue" };

 public byte color;
 public ColoredPoint(int x, int y, int color) {
 super(x, y);
 this.color = (byte)color;
 }

 /** Copy all relevant fields of the argument into
 this ColoredPoint object. */
 public void adopt(Point p) { x = p.x; y = p.y; }

 public String toString() {
 String s = "," + COLORS[color];
 return super.toString(s);
 }
}

Now consider a third compilation unit that uses ColoredPoint:

import points.*;
class Test {
 public static void main(String[] args) {
 ColoredPoint cp =
 new ColoredPoint(6, 6, ColoredPoint.RED);

15.12 Method Invocation Expressions EXPRESSIONS

514

 ColoredPoint cp2 =
 new ColoredPoint(3, 3, ColoredPoint.GREEN);
 cp.adopt(cp2);
 System.out.println("cp: " + cp);
 }
}

The output is:

cp: (3,3,red)

The programmer who coded class Test has expected to see the word green, because the
actual argument, a ColoredPoint, has a color field, and color would seem to be a
"relevant field". (Of course, the documentation for the package points ought to have been
much more precise!)

Notice, by the way, that the most specific method (indeed, the only applicable method) for
the method invocation of adopt has a signature that indicates a method of one parameter,
and the parameter is of type Point. This signature becomes part of the binary representation
of class Test produced by the Java compiler and is used by the method invocation at run
time.

Suppose the programmer reported this software error and the maintainer of the points
package decided, after due deliberation, to correct it by adding a method to class
ColoredPoint:

public void adopt(ColoredPoint p) {
 adopt((Point)p);
 color = p.color;
}

If the programmer then runs the old binary file for Test with the new binary file for
ColoredPoint, the output is still:

cp: (3,3,red)

because the old binary file for Test still has the descriptor "one parameter, whose type
is Point; void" associated with the method call cp.adopt(cp2). If the source code for
Test is recompiled, the Java compiler will then discover that there are now two applicable
adopt methods, and that the signature for the more specific one is "one parameter, whose
type is ColoredPoint; void"; running the program will then produce the desired output:

cp: (3,3,green)

With forethought about such problems, the maintainer of the points package could fix the
ColoredPoint class to work with both newly compiled and old code, by adding defensive
code to the old adopt method for the sake of old code that still invokes it on ColoredPoint
arguments:

public void adopt(Point p) {
 if (p instanceof ColoredPoint)

EXPRESSIONS Method Invocation Expressions 15.12

515

 color = ((ColoredPoint)p).color;
 x = p.x; y = p.y;
}

Ideally, source code should be recompiled whenever code that it depends on is
changed. However, in an environment where different classes are maintained by different
organizations, this is not always feasible. Defensive programming with careful attention
to the problems of class evolution can make upgraded code much more robust. See §13
(Binary Compatibility) for a detailed discussion of binary compatibility and type evolution.

15.12.2.1 Identify Potentially Applicable Methods

The class or interface determined by compile-time step 1 (§15.12.1) is searched
for all member methods that are potentially applicable to this method invocation;
members inherited from superclasses and superinterfaces are included in this
search.

In addition, if the form of the method invocation expression is MethodName -
that is, a single Identifier - then the search for potentially applicable methods
also examines all member methods that are imported by single-static-import
declarations and static-import-on-demand declarations of the compilation unit
where the method invocation occurs (§7.5.3, §7.5.4) and that are not shadowed at
the point where the method invocation appears.

A member method is potentially applicable to a method invocation if and only if
all of the following are true:

• The name of the member is identical to the name of the method in the method
invocation.

• The member is accessible (§6.6) to the class or interface in which the method
invocation appears.

Whether a member method is accessible at a method invocation depends on the access
modifier (public, protected, no modifier (package access), or private) in the
member's declaration and on where the method invocation appears.

• If the member is a fixed arity method with arity n, the arity of the method
invocation is equal to n, and for all i (1 ≤ i ≤ n), the i'th argument of the method
invocation is potentially compatible, as defined below, with the type of the i'th
parameter of the method.

• If the member is a variable arity method with arity n, then for all i (1 ≤ i ≤ n-1),
the i'th argument of the method invocation is potentially compatible with the type
of the i'th parameter of the method; and, where the nth parameter of the method
has type T[], one of the following is true:

15.12 Method Invocation Expressions EXPRESSIONS

516

– The arity of the method invocation is equal to n-1.

– The arity of the method invocation is equal to n, and the nth argument of the
method invocation is potentially compatible with either T or T[].

– The arity of the method invocation is m, where m > n, and for all i (n ≤ i ≤ m),
the i'th argument of the method invocation is potentially compatible with T.

• If the method invocation includes explicit type arguments, and the member is a
generic method, then the number of type arguments is equal to the number of
type parameters of the method.

This clause implies that a non-generic method may be potentially applicable to an
invocation that supplies explicit type arguments. Indeed, it may turn out to be applicable.
In such a case, the type arguments will simply be ignored.

This rule stems from issues of compatibility and principles of substitutability. Since
interfaces or superclasses may be generified independently of their subtypes, we may
override a generic method with a non-generic one. However, the overriding (non-
generic) method must be applicable to calls to the generic method, including calls that
explicitly pass type arguments. Otherwise the subtype would not be substitutable for its
generified supertype.

If the search does not yield at least one method that is potentially applicable, then
a compile-time error occurs.

An expression is potentially compatible with a target type according to the
following rules:

• A lambda expression (§15.27) is potentially compatible with a functional
interface type (§9.8) if all of the following are true:

– The arity of the target type's function type is the same as the arity of the lambda
expression.

– If the target type's function type has a void return, then the lambda body is
either a statement expression (§14.8) or a void-compatible block (§15.27.2).

– If the target type's function type has a (non-void) return type, then the lambda
body is either an expression or a value-compatible block (§15.27.2).

• A method reference expression (§15.13) is potentially compatible with a
functional interface type if, where the type's function type arity is n, there exists
at least one potentially applicable method for the method reference expression
with arity n (§15.13.1), and one of the following is true:

EXPRESSIONS Method Invocation Expressions 15.12

517

– The method reference expression has the form ReferenceType ::

[TypeArguments] Identifier and at least one potentially applicable method is
i) static and supports arity n, or ii) not static and supports arity n-1.

– The method reference expression has some other form and at least one
potentially applicable method is not static.

• A lambda expression or a method reference expression is potentially compatible
with a type variable if the type variable is a type parameter of the candidate
method.

• A parenthesized expression (§15.8.5) is potentially compatible with a type if its
contained expression is potentially compatible with that type.

• A conditional expression (§15.25) is potentially compatible with a type if each
of its second and third operand expressions are potentially compatible with that
type.

• A class instance creation expression, a method invocation expression, or an
expression of a standalone form (§15.2) is potentially compatible with any type.

The definition of potential applicability goes beyond a basic arity check to also take
into account the presence and "shape" of functional interface target types. In some cases
involving type argument inference, a lambda expression appearing as a method invocation
argument cannot be properly typed until after overload resolution. These rules allow the
form of the lambda expression to still be taken into account, discarding obviously incorrect
target types that might otherwise cause ambiguity errors.

15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable by Strict
Invocation

An argument expression is considered pertinent to applicability for a potentially
applicable method m unless it has one of the following forms:

• An implicitly typed lambda expression (§15.27.1).

• An inexact method reference expression (§15.13.1).

• If m is a generic method and the method invocation does not provide explicit type
arguments, an explicitly typed lambda expression or an exact method reference
expression for which the corresponding target type (as derived from the signature
of m) is a type parameter of m.

• An explicitly typed lambda expression whose body is an expression that is not
pertinent to applicability.

15.12 Method Invocation Expressions EXPRESSIONS

518

• An explicitly typed lambda expression whose body is a block, where at least one
result expression is not pertinent to applicability.

• A parenthesized expression (§15.8.5) whose contained expression is not
pertinent to applicability.

• A conditional expression (§15.25) whose second or third operand is not pertinent
to applicability.

Let m be a potentially applicable method (§15.12.2.1) with arity n and formal
parameter types F1 ... Fn, and let e1, ..., en be the actual argument expressions of
the method invocation. Then:

• If m is a generic method and the method invocation does not provide explicit type
arguments, then the applicability of the method is inferred as specified in §18.5.1.

• If m is a generic method and the method invocation provides explicit type
arguments, then let R1 ... Rp (p ≥ 1) be the type parameters of m, let Bl be the
declared bound of Rl (1 ≤ l ≤ p), and let U1, ..., Up be the explicit type arguments
given in the method invocation. Then m is applicable by strict invocation if both
of the following are true:

– For 1 ≤ i ≤ n, if ei is pertinent to applicability then ei is compatible in a strict
invocation context with Fi[R1:=U1, ..., Rp:=Up].

– For 1 ≤ l ≤ p, Ul <: Bl[R1:=U1, ..., Rp:=Up].

• If m is not a generic method, then m is applicable by strict invocation if, for 1 ≤
i ≤ n, either ei is compatible in a strict invocation context with Fi or ei is not
pertinent to applicability.

If no method applicable by strict invocation is found, the search for applicable
methods continues with phase 2 (§15.12.2.3).

Otherwise, the most specific method (§15.12.2.5) is chosen among the methods
that are applicable by strict invocation.

The meaning of an implicitly typed lambda expression or an inexact method reference
expression is sufficiently vague prior to resolving a target type that arguments containing
these expressions are not considered pertinent to applicability; they are simply ignored
(except for their expected arity) until overload resolution is finished.

EXPRESSIONS Method Invocation Expressions 15.12

519

15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable by Loose
Invocation

Let m be a potentially applicable method (§15.12.2.1) with arity n and formal
parameter types F1, ..., Fn, and let e1, ..., en be the actual argument expressions of
the method invocation. Then:

• If m is a generic method and the method invocation does not provide explicit type
arguments, then the applicability of the method is inferred as specified in §18.5.1.

• If m is a generic method and the method invocation provides explicit type
arguments, then let R1 ... Rp (p ≥ 1) be the type parameters of m, let Bl be the
declared bound of Rl (1 ≤ l ≤ p), and let U1 ... Up be the explicit type arguments
given in the method invocation. Then m is applicable by loose invocation if both
of the following are true:

– For 1 ≤ i ≤ n, if ei is pertinent to applicability (§15.12.2.2) then ei is compatible
in a loose invocation context with Fi[R1:=U1, ..., Rp:=Up].

– For 1 ≤ l ≤ p, Ul <: Bl[R1:=U1, ..., Rp:=Up].

• If m is not a generic method, then m is applicable by loose invocation if, for 1 ≤
i ≤ n, either ei is compatible in a loose invocation context with Fi or ei is not
pertinent to applicability.

If no method applicable by loose invocation is found, the search for applicable
methods continues with phase 3 (§15.12.2.4).

Otherwise, the most specific method (§15.12.2.5) is chosen among the methods
that are applicable by loose invocation.

15.12.2.4 Phase 3: Identify Methods Applicable by Variable Arity Invocation

Where a variable arity method has formal parameter types F1, ..., Fn-1, Fn[], let the
i'th variable arity parameter type of the method be defined as follows:

• For i ≤ n-1, the i'th variable arity parameter type is Fi.

• For i ≥ n, the i'th variable arity parameter type is Fn.

Let m be a potentially applicable method (§15.12.2.1) with variable arity, let T1, ...,
Tk be the first k variable arity parameter types of m, and let e1, ..., ek be the actual
argument expressions of the method invocation. Then:

• If m is a generic method and the method invocation does not provide explicit type
arguments, then the applicability of the method is inferred as specified in §18.5.1.

15.12 Method Invocation Expressions EXPRESSIONS

520

• If m is a generic method and the method invocation provides explicit type
arguments, then let R1 ... Rp (p ≥ 1) be the type parameters of m, let Bl be the
declared bound of Rl (1 ≤ l ≤ p), and let U1 ... Up be the explicit type arguments
given in the method invocation. Then m is applicable by variable arity invocation
if:

– For 1 ≤ i ≤ k, if ei is pertinent to applicability (§15.12.2.2) then ei is compatible
in a loose invocation context with Ti[R1:=U1, ..., Rp:=Up].

– For 1 ≤ l ≤ p, Ul <: Bl[R1:=U1, ..., Rp:=Up].

• If m is not a generic method, then m is applicable by variable arity invocation if,
for 1 ≤ i ≤ k, either ei is compatible in a loose invocation context with Ti or ei
is not pertinent to applicability.

If no method applicable by variable arity invocation is found, then a compile-time
error occurs.

Otherwise, the most specific method (§15.12.2.5) is chosen among the methods
applicable by variable arity invocation.

15.12.2.5 Choosing the Most Specific Method

If more than one member method is both accessible and applicable to a method
invocation, it is necessary to choose one to provide the descriptor for the run-
time method dispatch. The Java programming language uses the rule that the most
specific method is chosen.

The informal intuition is that one method is more specific than another if any
invocation handled by the first method could be passed on to the other one without
a compile-time error. In cases such as an explicitly typed lambda expression
argument (§15.27.1) or a variable arity invocation (§15.12.2.4), some flexibility is
allowed to adapt one signature to the other.

One applicable method m1 is more specific than another applicable method m2, for
an invocation with argument expressions e1, ..., ek, if any of the following are true:

• m2 is generic, and m1 is inferred to be more specific than m2 for argument
expressions e1, ..., ek by §18.5.4.

• m2 is not generic, and m1 and m2 are applicable by strict or loose invocation, and
where m1 has formal parameter types S1, ..., Sn and m2 has formal parameter types
T1, ..., Tn, the type Si is more specific than Ti for argument ei for all i (1 ≤ i ≤
n, n = k).

EXPRESSIONS Method Invocation Expressions 15.12

521

• m2 is not generic, and m1 and m2 are applicable by variable arity invocation, and
where the first k variable arity parameter types of m1 are S1, ..., Sk and the first k
variable arity parameter types of m2 are T1, ..., Tk, the type Si is more specific than
Ti for argument ei for all i (1 ≤ i ≤ k). Additionally, if m2 has k+1 parameters, then
the k+1'th variable arity parameter type of m1 is a subtype of the k+1'th variable
arity parameter type of m2.

The above conditions are the only circumstances under which one method may be
more specific than another.

A type S is more specific than a type T for any expression if S <: T (§4.10).

A functional interface type S is more specific than a functional interface type T for
an expression e if T is not a subtype of S and one of the following is true (where
U1 ... Uk and R1 are the parameter types and return type of the function type of the
capture of S, and V1 ... Vk and R2 are the parameter types and return type of the
function type of T):

• If e is an explicitly typed lambda expression (§15.27.1), then one of the following
is true:

– R2 is void.

– R1 <: R2.

– R1 and R2 are functional interface types, and there is at least one result
expression, and R1 is more specific than R2 for each result expression of e.

(The result expression of a lambda expression with a block body is defined
in §15.27.2; the result expression of a lambda expression with an expression
body is simply the body itself.)

– R1 is a primitive type, and R2 is a reference type, and there is at least one result
expression, and each result expression of e is a standalone expression (§15.2)
of a primitive type.

– R1 is a reference type, and R2 is a primitive type, and there is at least one result
expression, and each result expression of e is either a standalone expression
of a reference type or a poly expression.

• If e is an exact method reference expression (§15.13.1), then i) for all i (1 ≤ i ≤
k), Ui is the same as Vi, and ii) one of the following is true:

– R2 is void.

– R1 <: R2.

15.12 Method Invocation Expressions EXPRESSIONS

522

– R1 is a primitive type, R2 is a reference type, and the compile-time declaration
for the method reference has a return type which is a primitive type.

– R1 is a reference type, R2 is a primitive type, and the compile-time declaration
for the method reference has a return type which is a reference type.

• If e is a parenthesized expression, then one of these conditions applies recursively
to the contained expression.

• If e is a conditional expression, then for each of the second and third operands,
one of these conditions applies recursively.

A method m1 is strictly more specific than another method m2 if and only if m1 is
more specific than m2 and m2 is not more specific than m1.

A method is said to be maximally specific for a method invocation if it is accessible
and applicable and there is no other method that is applicable and accessible that
is strictly more specific.

If there is exactly one maximally specific method, then that method is in fact
the most specific method; it is necessarily more specific than any other accessible
method that is applicable. It is then subjected to some further compile-time checks
as specified in §15.12.3.

It is possible that no method is the most specific, because there are two or more
methods that are maximally specific. In this case:

• If all the maximally specific methods have override-equivalent signatures
(§8.4.2), then:

– If exactly one of the maximally specific methods is concrete (that is, non-
abstract or default), it is the most specific method.

– Otherwise, if all the maximally specific methods are abstract or default, and
the signatures of all of the maximally specific methods have the same erasure
(§4.6), then the most specific method is chosen arbitrarily among the subset
of the maximally specific methods that have the most specific return type.

In this case, the most specific method is considered to be abstract. Also, the
most specific method is considered to throw a checked exception if and only
if that exception or its erasure is declared in the throws clauses of each of the
maximally specific methods.

• Otherwise, the method invocation is ambiguous, and a compile-time error occurs.

EXPRESSIONS Method Invocation Expressions 15.12

523

15.12.2.6 Method Invocation Type

The invocation type of a most specific accessible and applicable method is a method
type (§8.2) expressing the target types of the invocation arguments, the result
(return type or void) of the invocation, and the exception types of the invocation.
It is determined as follows:

• If the chosen method is generic and the method invocation does not provide
explicit type arguments, the invocation type is inferred as specified in §18.5.2.

• If the chosen method is generic and the method invocation provides explicit type
arguments, let Pi be the type parameters of the method and let Ti be the explicit
type arguments provided for the method invocation (1 ≤ i ≤ p). Then:

– If unchecked conversion was necessary for the method to be applicable, then
the invocation type's parameter types are obtained by applying the substitution
[P1:=T1, ..., Pp:=Tp] to the parameter types of the method's type, and the
invocation type's return type and thrown types are given by the erasure of the
return type and thrown types of the method's type.

– If unchecked conversion was not necessary for the method to be applicable,
then the invocation type is obtained by applying the substitution [P1:=T1, ...,
Pp:=Tp] to the method's type.

• If the chosen method is not generic, then:

– If unchecked conversion was necessary for the method to be applicable, the
parameter types of the invocation type are the parameter types of the method's
type, and the return type and thrown types are given by the erasures of the
return type and thrown types of the method's type.

– Otherwise, if the chosen method is the getClass method of the class Object
(§4.3.2), the invocation type is the same as the method's type, except that the
return type is Class<? extends |T|>, where T is the type that was searched, as
determined by §15.12.1, and |T| denotes the erasure of T (§4.6).

– Otherwise, the invocation type is the same as the method's type.

15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate?

If there is a most specific method declaration for a method invocation, it is called
the compile-time declaration for the method invocation.

It is a compile-time error if an argument to a method invocation is not compatible
with its target type, as derived from the invocation type of the compile-time
declaration.

15.12 Method Invocation Expressions EXPRESSIONS

524

If the compile-time declaration is applicable by variable arity invocation, then
where the last formal parameter type of the invocation type of the method is Fn[],
it is a compile-time error if the type which is the erasure of Fn is not accessible at
the point of invocation.

If the compile-time declaration is void, then the method invocation must be a top
level expression (that is, the Expression in an expression statement or in the ForInit
or ForUpdate part of a for statement), or a compile-time error occurs. Such a
method invocation produces no value and so must be used only in a situation where
a value is not needed.

In addition, whether the compile-time declaration is appropriate may depend on the
form of the method invocation expression before the left parenthesis, as follows:

• If the form is MethodName - that is, just an Identifier - and the compile-time
declaration is an instance method, then:

– It is a compile-time error if the method invocation occurs in a static context
(§8.1.3).

– Otherwise, let C be the immediately enclosing class of which the compile-time
declaration is a member. If the method invocation is not directly enclosed by
C or an inner class of C, then a compile-time error occurs.

• If the form is TypeName . [TypeArguments] Identifier, then the compile-time
declaration must be static, or a compile-time error occurs.

• If the form is ExpressionName . [TypeArguments] Identifier or Primary .
[TypeArguments] Identifier, then the compile-time declaration must not be a
static method declared in an interface, or a compile-time error occurs.

• If the form is super . [TypeArguments] Identifier, then:

– It is a compile-time error if the compile-time declaration is abstract.

– It is a compile-time error if the method invocation occurs in a static context.

• If the form is TypeName . super . [TypeArguments] Identifier, then:

– It is a compile-time error if the compile-time declaration is abstract.

– It is a compile-time error if the method invocation occurs in a static context.

– If TypeName denotes a class C, then if the method invocation is not directly
enclosed by C or an inner class of C, a compile-time error occurs.

– If TypeName denotes an interface, let T be the type declaration immediately
enclosing the method invocation. A compile-time error occurs if there exists a

EXPRESSIONS Method Invocation Expressions 15.12

525

method, distinct from the compile-time declaration, that overrides (§9.4.1) the
compile-time declaration from a direct superclass or direct superinterface of T.

In the case that a superinterface overrides a method declared in a grandparent
interface, this rule prevents the child interface from "skipping" the override by simply
adding the grandparent to its list of direct superinterfaces. The appropriate way to
access functionality of a grandparent is through the direct superinterface, and only
if that interface chooses to expose the desired behavior. (Alternately, the developer
is free to define his own additional superinterface that exposes the desired behavior
with a super method invocation.)

The compile-time parameter types and compile-time result are determined as
follows:

• If the compile-time declaration for the method invocation is not a signature
polymorphic method, then the compile-time parameter types are the types of the
formal parameters of the compile-time declaration, and the compile-time result
is the result chosen for the compile-time declaration (§15.12.2.6).

• If the compile-time declaration for the method invocation is a signature
polymorphic method, then:

– The compile-time parameter types are the static types of the actual argument
expressions. An argument expression which is the null literal null (§3.10.7)
is treated as having the static type Void.

– The compile-time result is determined as follows:

› If the method invocation expression is an expression statement, the compile-
time result is void.

› Otherwise, if the method invocation expression is the operand of a cast
expression (§15.16), the compile-time result is the erasure of the type of the
cast expression (§4.6).

› Otherwise, the compile-time result is the signature polymorphic method's
declared return type, Object.

A method is signature polymorphic if all of the following are true:

• It is declared in the java.lang.invoke.MethodHandle class.

• It takes a single variable arity parameter (§8.4.1) whose declared type is
Object[].

• It has a return type of Object.

• It is native.

15.12 Method Invocation Expressions EXPRESSIONS

526

In Java SE 8, the only signature polymorphic methods are the invoke and invokeExact
methods of the class java.lang.invoke.MethodHandle.

The following compile-time information is then associated with the method
invocation for use at run time:

• The name of the method.

• The qualifying type of the method invocation (§13.1).

• The number of parameters and the compile-time parameter types, in order.

• The compile-time result, or void.

• The invocation mode, computed as follows:

– If the qualifying type of the method declaration is a class, then:

› If the compile-time declaration has the static modifier, then the invocation
mode is static.

› Otherwise, if the compile-time declaration has the private modifier, then
the invocation mode is nonvirtual.

› Otherwise, if the part of the method invocation before the left parenthesis is
of the form super . Identifier or of the form TypeName . super . Identifier,
then the invocation mode is super.

› Otherwise, the invocation mode is virtual.

– If the qualifying type of the method invocation is an interface, then the
invocation mode is interface.

If the result of the invocation type of the compile-time declaration is not void,
then the type of the method invocation expression is obtained by applying capture
conversion (§5.1.10) to the return type of the invocation type of the compile-time
declaration.

15.12.4 Run-Time Evaluation of Method Invocation

At run time, method invocation requires five steps. First, a target reference may be
computed. Second, the argument expressions are evaluated. Third, the accessibility
of the method to be invoked is checked. Fourth, the actual code for the method to
be executed is located. Fifth, a new activation frame is created, synchronization is
performed if necessary, and control is transferred to the method code.

EXPRESSIONS Method Invocation Expressions 15.12

527

15.12.4.1 Compute Target Reference (If Necessary)

There are six cases to consider, depending on the form of the method invocation:

• If the form is MethodName - that is, just an Identifier - then:

– If the invocation mode is static, then there is no target reference.

– Otherwise, let T be the enclosing type declaration of which the method is a
member, and let n be an integer such that T is the n'th lexically enclosing type
declaration of the class whose declaration immediately contains the method
invocation. The target reference is the n'th lexically enclosing instance of this.

It is a compile-time error if the n'th lexically enclosing instance of this does
not exist.

• If the form is TypeName . [TypeArguments] Identifier, then there is no target
reference.

• If form is ExpressionName . [TypeArguments] Identifier, then:

– If the invocation mode is static, then there is no target reference. The
ExpressionName is evaluated, but the result is then discarded.

– Otherwise, the target reference is the value denoted by ExpressionName.

• If the form is Primary . [TypeArguments] Identifier involved, then:

– If the invocation mode is static, then there is no target reference. The Primary
expression is evaluated, but the result is then discarded.

– Otherwise, the Primary expression is evaluated and the result is used as the
target reference.

In either case, if the evaluation of the Primary expression completes abruptly,
then no part of any argument expression appears to have been evaluated, and the
method invocation completes abruptly for the same reason.

• If the form is super . [TypeArguments] Identifier, then the target reference is
the value of this.

• If the form is TypeName . super . [TypeArguments] Identifier, then if
TypeName denotes a class, the target reference is the value of TypeName.this;
otherwise, the target reference is the value of this.

Example 15.12.4.1-1. Target References and static Methods

When a target reference is computed and then discarded because the invocation mode is
static, the reference is not examined to see whether it is null:

15.12 Method Invocation Expressions EXPRESSIONS

528

class Test1 {
 static void mountain() {
 System.out.println("Monadnock");
 }
 static Test1 favorite(){
 System.out.print("Mount ");
 return null;
 }
 public static void main(String[] args) {
 favorite().mountain();
 }
}

which prints:

Mount Monadnock

Here favorite() returns null, yet no NullPointerException is thrown.

Example 15.12.4.1-2. Evaluation Order During Method Invocation

As part of an instance method invocation (§15.12), there is an expression that denotes the
object to be invoked. This expression appears to be fully evaluated before any part of any
argument expression to the method invocation is evaluated.

So, for example, in:

class Test2 {
 public static void main(String[] args) {
 String s = "one";
 if (s.startsWith(s = "two"))
 System.out.println("oops");
 }
}

the occurrence of s before ".startsWith" is evaluated first, before the argument
expression s = "two". Therefore, a reference to the string "one" is remembered as the
target reference before the local variable s is changed to refer to the string "two". As a
result, the startsWith method is invoked for target object "one" with argument "two",
so the result of the invocation is false, as the string "one" does not start with "two". It
follows that the test program does not print "oops".

15.12.4.2 Evaluate Arguments

The process of evaluating the argument list differs, depending on whether the
method being invoked is a fixed arity method or a variable arity method (§8.4.1).

EXPRESSIONS Method Invocation Expressions 15.12

529

If the method being invoked is a variable arity method m, it necessarily has n > 0
formal parameters. The final formal parameter of m necessarily has type T[] for
some T, and m is necessarily being invoked with k ≥ 0 actual argument expressions.

If m is being invoked with k ≠ n actual argument expressions, or, if m is being
invoked with k = n actual argument expressions and the type of the k'th argument
expression is not assignment compatible with T[], then the argument list (e1, ...,
en-1, en, ..., ek) is evaluated as if it were written as (e1, ..., en-1, new |T[]| { en, ...,
ek }), where |T[]| denotes the erasure (§4.6) of T[].

The preceding paragraph is crafted to handle the interaction of parameterized types and
array types that occurs in a Java Virtual Machine with erased generics. Namely, if the
element type T of the variable array parameter is non-reifiable, e.g. List<String>, then
special care must be taken with the array creation expression (§15.10) because the created
array's element type must be reifiable. By erasing the array type of the final expression
in the argument list, we are guaranteed to obtain a reifiable element type. Then, since the
array creation expression appears in an invocation context (§5.3), an unchecked conversion
is possible from the array type with reifiable element type to an array type with non-
reifiable element type, specifically that of the variable arity parameter. A Java compiler is
required to give a compile-time unchecked warning at this conversion. Oracle's reference
implementation of a Java compiler identifies the unchecked warning here as a more
informative unchecked generic array creation.

The argument expressions (possibly rewritten as described above) are now
evaluated to yield argument values. Each argument value corresponds to exactly
one of the method's n formal parameters.

The argument expressions, if any, are evaluated in order, from left to right. If the
evaluation of any argument expression completes abruptly, then no part of any
argument expression to its right appears to have been evaluated, and the method
invocation completes abruptly for the same reason. The result of evaluating the
j'th argument expression is the j'th argument value, for 1 ≤ j ≤ n. Evaluation then
continues, using the argument values, as described below.

15.12.4.3 Check Accessibility of Type and Method

Let C be the class containing the method invocation, and let T be the qualifying
type of the method invocation (§13.1), and let m be the name of the method as
determined at compile time (§15.12.3).

An implementation of the Java programming language must ensure, as part of
linkage, that the method m still exists in the type T. If this is not true, then a
NoSuchMethodError (which is a subclass of IncompatibleClassChangeError)
occurs.

15.12 Method Invocation Expressions EXPRESSIONS

530

If the invocation mode is interface, then the implementation must also
check that the target reference type still implements the specified interface.
If the target reference type does not still implement the interface, then an
IncompatibleClassChangeError occurs.

The implementation must also ensure, during linkage, that the type T and the
method m are accessible:

• For the type T:

– If T is in the same package as C, then T is accessible.

– If T is in a different package than C, and T is public, then T is accessible.

– If T is in a different package than C, and T is protected, then T is accessible
if and only if C is a subclass of T.

• For the method m:

– If m is public, then m is accessible. (All members of interfaces are public
(§9.2).)

– If m is protected, then m is accessible if and only if either T is in the same
package as C, or C is T or a subclass of T.

– If m has package access, then m is accessible if and only if T is in the same
package as C.

– If m is private, then m is accessible if and only if C is T, or C encloses T, or T
encloses C, or T and C are both enclosed by a third class.

If either T or m is not accessible, then an IllegalAccessError occurs (§12.3).

15.12.4.4 Locate Method to Invoke

The strategy for method lookup depends on the invocation mode.

If the invocation mode is static, no target reference is needed and overriding is
not allowed. Method m of class T is the one to be invoked.

Otherwise, an instance method is to be invoked and there is a target reference.
If the target reference is null, a NullPointerException is thrown at this point.
Otherwise, the target reference is said to refer to a target object and will be used as
the value of the keyword this in the invoked method. The other four possibilities
for the invocation mode are then considered.

If the invocation mode is nonvirtual, overriding is not allowed. Method m of class
T is the one to be invoked.

EXPRESSIONS Method Invocation Expressions 15.12

531

Otherwise, if the invocation mode is virtual, and T and m jointly indicate a
signature polymorphic method (§15.12.3), then the target object is an instance
of java.lang.invoke.MethodHandle. The method handle encapsulates a type
which is matched against the information associated with the method invocation
at compile time (§15.12.3). Details of this matching are given in The Java Virtual
Machine Specification, Java SE 8 Edition and the Java SE platform API. If
matching succeeds, the target method encapsulated by the method handle is directly
and immediately invoked, and the procedure in §15.12.4.5 is not executed.

Otherwise, the invocation mode is interface, virtual, or super, and overriding
may occur. A dynamic method lookup is used. The dynamic lookup process starts
from a class S, determined as follows:

• If the invocation mode is interface or virtual, then S is initially the actual
run-time class R of the target object.

This is true even if the target object is an array instance. (Note that for invocation mode
interface, R necessarily implements T; for invocation mode virtual, R is necessarily
either T or a subclass of T.)

• If the invocation mode is super, then S is initially the qualifying type (§13.1)
of the method invocation.

The dynamic method lookup uses the following procedure to search class S, and
then the superclasses and superinterfaces of class S, as necessary, for method m.

Let X be the compile-time type of the target reference of the method invocation.
Then:

1. If class S contains a declaration for a method named m with the same descriptor
(same number of parameters, the same parameter types, and the same return
type) required by the method invocation as determined at compile time
(§15.12.3), then:

• If the invocation mode is super or interface, then this is the method to be
invoked, and the procedure terminates.

• If the invocation mode is virtual, and the declaration in S overrides X.m
(§8.4.8.1), then the method declared in S is the method to be invoked, and
the procedure terminates.

2. Otherwise, if S has a superclass, the lookup procedure of steps 1 and 2 is
performed recursively using the direct superclass of S in place of S; the method
to be invoked, if any, is the result of the recursive invocation of this lookup
procedure.

15.12 Method Invocation Expressions EXPRESSIONS

532

3. If no method is found by the previous two steps, the superinterfaces of S are
searched for a suitable method.

A set of candidate methods is considered with the following properties: i)
each method is declared in a (direct or indirect) superinterface of S; ii) each
method has the name and descriptor required by the method invocation; iii)
each method is non-static; iv) for each method, where the method's declaring
interface is I, there is no other method satisfying (i) through (iii) that is declared
in a subinterface of I.

If this set contains a default method, one such method is the method to be
invoked. Otherwise, an abstract method in the set is selected as the method
to be invoked.

Dynamic method lookup may cause the following errors to occur:

• If the method to be invoked is abstract, an AbstractMethodError is thrown.

• If the method to be invoked is default, and more than one default method appears
in the set of candidates in step 3 above, an IncompatibleClassChangeError is
thrown.

• If the invocation mode is interface and the selected method is not public, an
IllegalAccessError is thrown.

The above procedure (if it terminates without error) will find a non-abstract,
accessible method to invoke, provided that all classes and interfaces in the program
have been consistently compiled. However, if this is not the case, then various
errors may occur, as specified above; additional details about the behavior of the
Java Virtual Machine under these circumstances are given by The Java Virtual
Machine Specification, Java SE 8 Edition.

The dynamic lookup process, while described here explicitly, will often be implemented
implicitly, for example as a side-effect of the construction and use of per-class method
dispatch tables, or the construction of other per-class structures used for efficient dispatch.

Example 15.12.4.4-1. Overriding and Method Invocation

class Point {
 final int EDGE = 20;
 int x, y;
 void move(int dx, int dy) {
 x += dx; y += dy;
 if (Math.abs(x) >= EDGE || Math.abs(y) >= EDGE)
 clear();
 }
 void clear() {
 System.out.println("\tPoint clear");

EXPRESSIONS Method Invocation Expressions 15.12

533

 x = 0; y = 0;
 }
}
class ColoredPoint extends Point {
 int color;
 void clear() {
 System.out.println("\tColoredPoint clear");
 super.clear();
 color = 0;
 }
}

Here, the subclass ColoredPoint extends the clear abstraction defined by its superclass
Point. It does so by overriding the clear method with its own method, which invokes the
clear method of its superclass, using the form super.clear().

This method is then invoked whenever the target object for an invocation of clear is
a ColoredPoint. Even the method move in Point invokes the clear method of class
ColoredPoint when the class of this is ColoredPoint, as shown by the output of this
test program:

class Test1 {
 public static void main(String[] args) {
 Point p = new Point();
 System.out.println("p.move(20,20):");
 p.move(20, 20);

 ColoredPoint cp = new ColoredPoint();
 System.out.println("cp.move(20,20):");
 cp.move(20, 20);

 p = new ColoredPoint();
 System.out.println("p.move(20,20), p colored:");
 p.move(20, 20);
 }
}

which is:

p.move(20,20):
 Point clear
cp.move(20,20):
 ColoredPoint clear
 Point clear
p.move(20,20), p colored:
 ColoredPoint clear
 Point clear

Overriding is sometimes called "late-bound self-reference"; in this example it means that
the reference to clear in the body of Point.move (which is really syntactic shorthand for
this.clear) invokes a method chosen "late" (at run time, based on the run-time class of
the object referenced by this) rather than a method chosen "early" (at compile time, based

15.12 Method Invocation Expressions EXPRESSIONS

534

only on the type of this). This provides the programmer a powerful way of extending
abstractions and is a key idea in object-oriented programming.

Example 15.12.4.4-2. Method Invocation Using super

An overridden instance method of a superclass may be accessed by using the keyword
super to access the members of the immediate superclass, bypassing any overriding
declaration in the class that contains the method invocation.

When accessing an instance variable, super means the same as a cast of this (§15.11.2),
but this equivalence does not hold true for method invocation. This is demonstrated by the
example:

class T1 {
 String s() { return "1"; }
}
class T2 extends T1 {
 String s() { return "2"; }
}
class T3 extends T2 {
 String s() { return "3"; }
 void test() {
 System.out.println("s()=\t\t" + s());
 System.out.println("super.s()=\t" + super.s());
 System.out.println("((T2)this).s()=\t" + ((T2)this).s());
 System.out.println("((T1)this).s()=\t" + ((T1)this).s());
 }
}
class Test2 {
 public static void main(String[] args) {
 T3 t3 = new T3();
 t3.test();
 }
}

which produces the output:

s()= 3
super.s()= 2
((T2)this).s()= 3
((T1)this).s()= 3

The casts to types T1 and T2 do not change the method that is invoked, because the instance
method to be invoked is chosen according to the run-time class of the object referred to
by this. A cast does not change the class of an object; it only checks that the class is
compatible with the specified type.

15.12.4.5 Create Frame, Synchronize, Transfer Control

A method m in some class S has been identified as the one to be invoked.

EXPRESSIONS Method Invocation Expressions 15.12

535

Now a new activation frame is created, containing the target reference (if any) and
the argument values (if any), as well as enough space for the local variables and
stack for the method to be invoked and any other bookkeeping information that may
be required by the implementation (stack pointer, program counter, reference to
previous activation frame, and the like). If there is not sufficient memory available
to create such an activation frame, a StackOverflowError is thrown.

The newly created activation frame becomes the current activation frame. The
effect of this is to assign the argument values to corresponding freshly created
parameter variables of the method, and to make the target reference available as
this, if there is a target reference. Before each argument value is assigned to its
corresponding parameter variable, it is subjected to invocation conversion (§5.3),
which includes any required value set conversion (§5.1.13).

If the erasure (§4.6) of the type of the method being invoked differs in its signature
from the erasure of the type of the compile-time declaration for the method
invocation (§15.12.3), then if any of the argument values is an object which is not
an instance of a subclass or subinterface of the erasure of the corresponding formal
parameter type in the compile-time declaration for the method invocation, then a
ClassCastException is thrown.

If the method m is a native method but the necessary native, implementation-
dependent binary code has not been loaded or otherwise cannot be dynamically
linked, then an UnsatisfiedLinkError is thrown.

If the method m is not synchronized, control is transferred to the body of the
method m to be invoked.

If the method m is synchronized, then an object must be locked before the transfer
of control. No further progress can be made until the current thread can obtain
the lock. If there is a target reference, then the target object must be locked;
otherwise the Class object for class S, the class of the method m, must be locked.
Control is then transferred to the body of the method m to be invoked. The object is
automatically unlocked when execution of the body of the method has completed,
whether normally or abruptly. The locking and unlocking behavior is exactly as if
the body of the method were embedded in a synchronized statement (§14.19).

Example 15.12.4.5-1. Invoked Method Signature Has Different Erasure Than Compile-

Time Method Signature

Consider the declarations:

abstract class C<T> {
 abstract T id(T x);
}

15.13 Method Reference Expressions EXPRESSIONS

536

class D extends C<String> {
 String id(String x) { return x; }
}

Now, given an invocation:

C c = new D();
c.id(new Object()); // fails with a ClassCastException

The erasure of the actual method being invoked, D.id(), differs in its signature from that
of the compile-time method declaration, C.id(). The former takes an argument of type
String while the latter takes an argument of type Object. The invocation fails with a
ClassCastException before the body of the method is executed.

Such situations can only arise if the program gives rise to a compile-time unchecked
warning (§4.8, §5.1.9, §5.5.2, §8.4.1, §8.4.8.3, §8.4.8.4, §9.4.1.2, §15.12.4.2).

Implementations can enforce these semantics by creating bridge methods. In the above
example, the following bridge method would be created in class D:

Object id(Object x) { return id((String) x); }

This is the method that would actually be invoked by the Java Virtual Machine in response
to the call c.id(new Object()) shown above, and it will execute the cast and fail, as
required.

15.13 Method Reference Expressions

A method reference expression is used to refer to the invocation of a method
without actually performing the invocation. Certain forms of method reference
expression also allow class instance creation (§15.9) or array creation (§15.10) to
be treated as if it were a method invocation.

MethodReference:
ExpressionName :: [TypeArguments] Identifier
ReferenceType :: [TypeArguments] Identifier
Primary :: [TypeArguments] Identifier
super :: [TypeArguments] Identifier
TypeName . super :: [TypeArguments] Identifier
ClassType :: [TypeArguments] new
ArrayType :: new

If TypeArguments is present to the right of ::, then it is a compile-time error if any
of the type arguments are wildcards (§4.5.1).

EXPRESSIONS Method Reference Expressions 15.13

537

If a method reference expression has the form ExpressionName ::

[TypeArguments] Identifier or Primary :: [TypeArguments] Identifier, it is a
compile-time error if the type of the ExpressionName or Primary is not a reference
type.

If a method reference expression has the form super :: [TypeArguments]
Identifier, let T be the type declaration immediately enclosing the method reference
expression. It is a compile-time error if T is the class Object or T is an interface.

If a method reference expression has the form TypeName . super ::

[TypeArguments] Identifier, then:

• If TypeName denotes a class, C, then it is a compile-time error if C is not a lexically
enclosing class of the current class, or if C is the class Object.

• If TypeName denotes an interface, I, then let T be the type declaration
immediately enclosing the method reference expression. It is a compile-time
error if I is not a direct superinterface of T, or if there exists some other direct
superclass or direct superinterface of T, J, such that J is a subtype of I.

• If TypeName denotes a type variable, then a compile-time error occurs.

If a method reference expression has the form super :: [TypeArguments] Identifier
or TypeName . super :: [TypeArguments] Identifier, it is a compile-time error if
the expression occurs in a static context.

If a method reference expression has the form ClassType :: [TypeArguments] new,
then:

• ClassType must denote a class that is accessible, non-abstract, and not an enum
type, or a compile-time error occurs.

• If ClassType denotes a parameterized type (§4.5), then it is a compile-time error
if any of its type arguments are wildcards.

• If ClassType denotes a raw type (§4.8), then it is a compile-time error if
TypeArguments is present after the ::.

If a method reference expression has the form ArrayType :: new, then ArrayType
must denote a type that is reifiable (§4.7), or a compile-time error occurs.

The target reference of an instance method (§15.12.4.1) may be provided by the
method reference expression using an ExpressionName, a Primary, or super, or
it may be provided later when the method is invoked. The immediately enclosing
instance of a new inner class instance (§15.9.2) is provided by a lexically enclosing
instance of this (§8.1.3).

15.13 Method Reference Expressions EXPRESSIONS

538

When more than one member method of a type has the same name, or when a class
has more than one constructor, the appropriate method or constructor is selected
based on the functional interface type targeted by the expression, as specified in
§15.13.1.

If a method or constructor is generic, the appropriate type arguments may either
be inferred or provided explicitly. Similarly, the type arguments of a generic
type mentioned by the method reference expression may be provided explicitly or
inferred.

Method reference expressions are always poly expressions (§15.2).

It is a compile-time error if a method reference expression occurs in a program in
someplace other than an assignment context (§5.2), an invocation context (§5.3),
or a casting context (§5.5).

Evaluation of a method reference expression produces an instance of a functional
interface type (§9.8). Method reference evaluation does not cause the execution
of the corresponding method; instead, this may occur at a later time when an
appropriate method of the functional interface is invoked.

Here are some method reference expressions, first with no target reference and then with
a target reference:

String::length // instance method
System::currentTimeMillis // static method
List<String>::size // explicit type arguments for generic type
List::size // inferred type arguments for generic type
int[]::clone
T::tvarMember

System.out::println
"abc"::length
foo[x]::bar
(test ? list.replaceAll(String::trim) : list) :: iterator
super::toString

Here are some more method reference expressions:

String::valueOf // overload resolution needed
Arrays::sort // type arguments inferred from context
Arrays::<String>sort // explicit type arguments

Here are some method reference expressions that represent a deferred creation of an object
or an array:

EXPRESSIONS Method Reference Expressions 15.13

539

ArrayList<String>::new // constructor for parameterized type
ArrayList::new // inferred type arguments
 // for generic class
Foo::<Integer>new // explicit type arguments
 // for generic constructor
Bar<String>::<Integer>new // generic class, generic constructor
Outer.Inner::new // inner class constructor
int[]::new // array creation

It is not possible to specify a particular signature to be matched, for example,
Arrays::sort(int[]). Instead, the functional interface provides argument types that
are used as input to the overload resolution algorithm (§15.12.2). This should satisfy the
vast majority of use cases; when the rare need arises for more precise control, a lambda
expression can be used.

The use of type argument syntax in the class name before a delimiter
(List<String>::size) raises the parsing problem of distinguishing between < as a type
argument bracket and < as a less-than operator. In theory, this is no worse than allowing
type arguments in cast expressions; however, the difference is that the cast case only comes
up when a (token is encountered; with the addition of method reference expressions, the
start of every expression is potentially a parameterized type.

15.13.1 Compile-Time Declaration of a Method Reference

The compile-time declaration of a method reference is the method to which the
expression refers. In special cases, the compile-time declaration does not actually
exist, but is a notional method that represents a class instance creation or an
array creation. The choice of compile-time declaration depends on a function
type targeted by the expression, just as the compile-time declaration of a method
invocation depends on the invocation's arguments (§15.12).

The search for a compile-time declaration mirrors the process for method
invocations in §15.12.1 and §15.12.2, as follows:

• First, a type to search is determined:

– If the method reference expression has the form ExpressionName ::
[TypeArguments] Identifier or Primary :: [TypeArguments] Identifier, the
type to search is the type of the expression preceding the :: token.

– If the method reference expression has the form ReferenceType ::

[TypeArguments] Identifier, the type to search is the result of capture
conversion (§5.1.10) applied to ReferenceType.

– If the method reference expression has the form super :: [TypeArguments]
Identifier, the type to search is the superclass type of the class whose
declaration contains the method reference.

15.13 Method Reference Expressions EXPRESSIONS

540

– If the method reference expression has the form TypeName . super ::
[TypeArguments] Identifier, then if TypeName denotes a class, the type to
search is the superclass type of the named class; otherwise, TypeName denotes
an interface, and the corresponding superinterface type of the class or interface
whose declaration contains the method reference is the type to search.

– For the two other forms (involving :: new), the referenced method is notional
and there is no type to search.

• Second, given a targeted function type with n parameters, a set of potentially
applicable methods is identified:

– If the method reference expression has the form ReferenceType ::

[TypeArguments] Identifier, the potentially applicable methods are the
member methods of the type to search that have an appropriate name (given
by Identifier), accessibility, arity (n or n-1), and type argument arity (derived
from [TypeArguments]), as specified in §15.12.2.1.

Two different arities, n and n-1, are considered, to account for the possibility that this
form refers to either a static method or an instance method.

– If the method reference expression has the form ClassType ::

[TypeArguments] new, the potentially applicable methods are a set of notional
methods corresponding to the constructors of ClassType.

If ClassType is a raw type, but is not a non-static member type of a raw type,
the candidate notional member methods are those specified in §15.9.3 for a
class instance creation expression that uses <> to elide the type arguments to
a class.

Otherwise, the candidate notional member methods are the constructors of
ClassType, treated as if they were methods with return type ClassType. Among
these candidates, the methods with appropriate accessibility, arity (n), and type
argument arity (derived from [TypeArguments]) are selected, as specified in
§15.12.2.1.

– If the method reference expression has the form ArrayType :: new, a single
notional method is considered. The method has a single parameter of type int,
returns the ArrayType, and has no throws clause. If n = 1, this is the only
potentially applicable method; otherwise, there are no potentially applicable
methods.

– For all other forms, the potentially applicable methods are the member
methods of the type to search that have an appropriate name (given by

EXPRESSIONS Method Reference Expressions 15.13

541

Identifier), accessibility, arity (n), and type argument arity (derived from
[TypeArguments]), as specified in §15.12.2.1.

• Finally, if there are no potentially applicable methods, then there is no compile-
time declaration.

Otherwise, given a targeted function type with parameter types P1, ..., Pn and a
set of potentially applicable methods, the compile-time declaration is selected
as follows:

– If the method reference expression has the form ReferenceType ::

[TypeArguments] Identifier, then two searches for a most specific applicable
method are performed. Each search is as specified in §15.12.2.2 through
§15.12.2.5, with the clarifications below. Each search may produce a method
or, in the case of an error as specified in §15.12.2.2 through §15.12.2.5, no
result.

In the first search, the method reference is treated as if it were an invocation
with argument expressions of types P1, ..., Pn; the type arguments, if any, are
given by the method reference expression.

In the second search, if P1, ..., Pn is not empty and P1 is a subtype of
ReferenceType, then the method reference expression is treated as if it were
a method invocation expression with argument expressions of types P2, ...,
Pn. If ReferenceType is a raw type, and there exists a parameterization of this
type, G<...>, that is a supertype of P1, the type to search is the result of capture
conversion (§5.1.10) applied to G<...>; otherwise, the type to search is the same
as the type of the first search. Again, the type arguments, if any, are given by
the method reference expression.

If the first search produces a static method, and no non-static method is
applicable by §15.12.2.2, §15.12.2.3, or §15.12.2.4 during the second search,
then the compile-time declaration is the result of the first search.

Otherwise, if no static method is applicable by §15.12.2.2, §15.12.2.3, or
§15.12.2.4 during the first search, and the second search produces a non-
static method, then the compile-time declaration is the result of the second
search.

Otherwise, there is no compile-time declaration.

– For all other forms of method reference expression, one search for a most
specific applicable method is performed. The search is as specified in
§15.12.2.2 through §15.12.2.5, with the clarifications below.

15.13 Method Reference Expressions EXPRESSIONS

542

The method reference is treated as if it were an invocation with argument
expressions of types P1, ..., Pn; the type arguments, if any, are given by the
method reference expression.

If the search results in an error as specified in §15.12.2.2 through §15.12.2.5,
or if the most specific applicable method is static, there is no compile-time
declaration.

Otherwise, the compile-time declaration is the most specific applicable
method.

It is a compile-time error if a method reference expression has the form
ReferenceType :: [TypeArguments] Identifier, and the compile-time declaration is
static, and ReferenceType is not a simple or qualified name (§6.2).

It is a compile-time error if the method reference expression has the form super ::
[TypeArguments] Identifier or TypeName . super :: [TypeArguments] Identifier,
and the compile-time declaration is abstract.

It is a compile-time error if the method reference expression has the form
TypeName . super :: [TypeArguments] Identifier, and TypeName denotes an
interface, and there exists a method, distinct from the compile-time declaration,
that overrides (§8.4.8, §9.4.1) the compile-time declaration from a direct superclass
or direct superinterface of the type whose declaration immediately encloses the
method reference expression.

It is a compile-time error if the method reference expression is of the form
ClassType :: [TypeArguments] new and a compile-time error would occur when
determining an enclosing instance for ClassType as specified in §15.9.2 (treating
the method reference expression as if it were an unqualified class instance creation
expression).

A method reference expression of the form ReferenceType :: [TypeArguments] Identifier
can be interpreted in different ways. If Identifier refers to an instance method, then the
implicit lambda expression has an extra parameter compared to if Identifier refers to a
static method. It is possible for ReferenceType to have both kinds of applicable methods,
so the search algorithm described above identifies them separately, since there are different
parameter types for each case.

An example of ambiguity is:

interface Fun<T,R> { R apply(T arg); }

class C {
 int size() { return 0; }
 static int size(Object arg) { return 0; }

EXPRESSIONS Method Reference Expressions 15.13

543

 void test() {
 Fun<C, Integer> f1 = C::size;
 // Error: instance method size()
 // or static method size(Object)?
 }
}

This ambiguity cannot be resolved by providing an applicable instance method which is
more specific than an applicable static method:

interface Fun<T,R> { R apply(T arg); }

class C {
 int size() { return 0; }
 static int size(Object arg) { return 0; }
 int size(C arg) { return 0; }

 void test() {
 Fun<C, Integer> f1 = C::size;
 // Error: instance method size()
 // or static method size(Object)?
 }
}

The search is smart enough to ignore ambiguities in which all the applicable methods (from
both searches) are instance methods:

interface Fun<T,R> { R apply(T arg); }

class C {
 int size() { return 0; }
 int size(Object arg) { return 0; }
 int size(C arg) { return 0; }

 void test() {
 Fun<C, Integer> f1 = C::size;
 // OK: reference is to instance method size()
 }
}

For convenience, when the name of a generic type is used to refer to an instance
method (where the receiver becomes the first parameter), the target type is used to
determine the type arguments. This facilitates usage like Pair::first in place of
Pair<String,Integer>::first. Similarly, a method reference like Pair::new is
treated like a "diamond" instance creation (new Pair<>()). Because the "diamond" is
implicit, this form does not instantiate a raw type; in fact, there is no way to express a
reference to the constructor of a raw type.

For some method reference expressions, there is only one possible compile-time
declaration with only one possible invocation type (§15.12.2.6), regardless of the

15.13 Method Reference Expressions EXPRESSIONS

544

targeted function type. Such method reference expressions are said to be exact. A
method reference expression that is not exact is said to be inexact.

A method reference expression ending with Identifier is exact if it satisfies all of
the following:

• If the method reference expression has the form ReferenceType ::

[TypeArguments] Identifier, then ReferenceType does not denote a raw type.

• The type to search has exactly one member method with the name Identifier that
is accessible to the class or interface in which the method reference expression
appears.

• This method is not variable arity (§8.4.1).

• If this method is generic (§8.4.4), then the method reference expression provides
TypeArguments.

A method reference expression of the form ClassType :: [TypeArguments] new is
exact if it satisfies all of the following:

• The type denoted by ClassType is not raw, or is a non-static member type of
a raw type.

• The type denoted by ClassType has exactly one constructor that is accessible to
the class or interface in which the method reference expression appears.

• This constructor is not variable arity.

• If this constructor is generic, then the method reference expression provides
TypeArguments.

A method reference expression of the form ArrayType :: new is always exact.

15.13.2 Type of a Method Reference

A method reference expression is compatible in an assignment context, invocation
context, or casting context with a target type T if T is a functional interface type
(§9.8) and the expression is congruent with the function type of the ground target
type derived from T.

The ground target type is derived from T as follows:

• If T is a wildcard-parameterized functional interface type, then the ground target
type is the non-wildcard parameterization (§9.9) of T.

• Otherwise, the ground target type is T.

EXPRESSIONS Method Reference Expressions 15.13

545

A method reference expression is congruent with a function type if both of the
following are true:

• The function type identifies a single compile-time declaration corresponding to
the reference.

• One of the following is true:

– The result of the function type is void.

– The result of the function type is R, and the result of applying capture
conversion (§5.1.10) to the return type of the invocation type (§15.12.2.6) of
the chosen compile-time declaration is R' (where R is the target type that may
be used to infer R'), and neither R nor R' is void, and R' is compatible with R
in an assignment context.

A compile-time unchecked warning occurs if unchecked conversion was necessary
for the compile-time declaration to be applicable, and this conversion would cause
an unchecked warning in an invocation context.

A compile-time unchecked warning occurs if unchecked conversion was necessary
for the return type R', described above, to be compatible with the function type's
return type, R, and this conversion would cause an unchecked warning in an
assignment context.

If a method reference expression is compatible with a target type T, then the type
of the expression, U, is the ground target type derived from T.

It is a compile-time error if any class or interface mentioned by either U or the
function type of U is not accessible from the class or interface in which the method
reference expression appears.

For each non-static member method m of U, if the function type of U has a
subsignature of the signature of m, then a notional method whose method type is the
function type of U is said to override m, and any compile-time error or unchecked
warning specified in §8.4.8.3 may occur.

For each checked exception type X listed in the throws clause of the invocation
type of the compile-time declaration, X or a superclass of X must be mentioned in
the throws clause of the function type of U, or a compile-time error occurs.

The key idea driving the compatibility definition is that a method reference is compatible if
and only if the equivalent lambda expression (x, y, z) -> exp.<T1, T2>method(x,
y, z) is compatible. (This is informal, and there are issues that make it difficult or
impossible to formally define the semantics in terms of such a rewrite.)

These compatibility rules provide a convenient facility for converting from one functional
interface to another:

15.13 Method Reference Expressions EXPRESSIONS

546

Task t = () -> System.out.println("hi");
Runnable r = t::invoke;

The implementation may be optimized so that when a lambda-derived object is passed
around and converted to various types, this does not result in many levels of adaptation
logic around the core lambda body.

Unlike a lambda expression, a method reference can be congruent with a generic function
type (that is, a function type that has type parameters). This is because the lambda
expression would need to be able to declare type parameters, and no syntax supports this;
while for a method reference, no such declaration is necessary. For example, the following
program is legal:

interface ListFactory {
 <T> List<T> make();
}

ListFactory lf = ArrayList::new;
List<String> ls = lf.make();
List<Number> ln = lf.make();

15.13.3 Run-Time Evaluation of Method References

At run time, evaluation of a method reference expression is similar to evaluation
of a class instance creation expression, insofar as normal completion produces a
reference to an object. Evaluation of a method reference expression is distinct from
invocation of the method itself.

First, if the method reference expression begins with an ExpressionName or a
Primary, this subexpression is evaluated. If the subexpression evaluates to null, a
NullPointerException is raised, and the method reference expression completes
abruptly. If the subexpression completes abruptly, the method reference expression
completes abruptly for the same reason.

Next, either a new instance of a class with the properties below is allocated and
initialized, or an existing instance of a class with the properties below is referenced.
If a new instance is to be created, but there is insufficient space to allocate
the object, evaluation of the method reference expression completes abruptly by
throwing an OutOfMemoryError.

The value of a method reference expression is a reference to an instance of a class
with the following properties:

• The class implements the targeted functional interface type and, if the target type
is an intersection type, every other interface type mentioned in the intersection.

EXPRESSIONS Method Reference Expressions 15.13

547

• Where the method reference expression has type U, for each non-static member
method m of U:

If the function type of U has a subsignature of the signature of m, then the class
declares an invocation method that overrides m. The invocation method's body
invokes the referenced method, creates a class instance, or creates an array, as
described below. If the invocation method's result is not void, then the body
returns the result of the method invocation or object creation, after any necessary
assignment conversions (§5.2).

If the erasure of the type of a method being overridden differs in its signature
from the erasure of the function type of U, then before the method invocation or
object creation, an invocation method's body checks that each argument value
is an instance of a subclass or subinterface of the erasure of the corresponding
parameter type in the function type of U; if not, a ClassCastException is thrown.

• The class overrides no other methods of the functional interface type or other
interface types mentioned above, although it may override methods of the Object
class.

The body of an invocation method depends on the form of the method reference
expression, as follows:

• If the form is ExpressionName :: [TypeArguments] Identifier or Primary ::
[TypeArguments] Identifier, then the body of the invocation method has the
effect of a method invocation expression for a compile-time declaration which
is the compile-time declaration of the method reference expression. Run-time
evaluation of the method invocation expression is as specified in §15.12.4.3,
§15.12.4.4, and §15.12.4.5, where:

– The invocation mode is derived from the compile-time declaration as specified
in §15.12.3.

– The target reference is the value of ExpressionName or Primary, as determined
when the method reference expression was evaluated.

– The arguments to the method invocation expression are the formal parameters
of the invocation method.

• If the form is ReferenceType :: [TypeArguments] Identifier, the body of the
invocation method similarly has the effect of a method invocation expression for
a compile-time declaration which is the compile-time declaration of the method
reference expression. Run-time evaluation of the method invocation expression
is as specified in §15.12.4.3, §15.12.4.4, and §15.12.4.5, where:

15.13 Method Reference Expressions EXPRESSIONS

548

– The invocation mode is derived from the compile-time declaration as specified
in §15.12.3.

– If the compile-time declaration is an instance method, then the target reference
is the first formal parameter of the invocation method. Otherwise, there is no
target reference.

– If the compile-time declaration is an instance method, then the arguments
to the method invocation expression (if any) are the second and subsequent
formal parameters of the invocation method. Otherwise, the arguments to the
method invocation expression are the formal parameters of the invocation
method.

• If the form is super :: [TypeArguments] Identifier or TypeName . super ::
[TypeArguments] Identifier, the body of the invocation method has the effect
of a method invocation expression for a compile-time declaration which is
the compile-time declaration of the method reference expression. Run-time
evaluation of the method invocation expression is as specified in §15.12.4.3,
§15.12.4.4, and §15.12.4.5, where:

– The invocation mode is super.

– If the method reference expression begins with a TypeName that names a class,
the target reference is the value of TypeName . this at the point at which the
method reference is evaluated. Otherwise, the target reference is the value of
this at the point at which the method reference is evaluated.

– The arguments to the method invocation expression are the formal parameters
of the invocation method.

• If the form is ClassType :: [TypeArguments] new, the body of the invocation
method has the effect of a class instance creation expression of the form new
[TypeArguments] ClassType(A1, ..., An), where the arguments A1, ..., An are the
formal parameters of the invocation method, and where:

– The enclosing instance for the new object, if any, is derived from the site of
the method reference expression, as specified in §15.9.2.

– The constructor to invoke is the constructor that corresponds to the compile-
time declaration of the method reference (§15.13.1).

• If the form is Type[]k :: new (k ≥ 1), then the body of the invocation method
has the same effect as an array creation expression of the form new Type [size]
[]

k-1, where size is the invocation method's single parameter. (The notation []k

indicates a sequence of k bracket pairs.)

EXPRESSIONS Postfix Expressions 15.14

549

If the body of the invocation method has the effect of a method invocation
expression, then the compile-time parameter types and the compile-time result of
the method invocation are determined as specified in §15.12.3. For the purpose
of determining the compile-time result, the method invocation expression is an
expression statement if the invocation method's result is void, and the Expression
of a return statement if the invocation method's result is non-void.

The effect of this determination when the compile-time declaration of the method reference
is signature polymorphic is that:

• The types of the parameters for the method invocation are the types of the corresponding
arguments.

• The method invocation is either void or has a return type of Object, depending on
whether the invocation method which encloses the method invocation is void or has a
return type.

The timing of method reference expression evaluation is more complex than that of lambda
expressions (§15.27.4). When a method reference expression has an expression (rather than
a type) preceding the :: separator, that subexpression is evaluated immediately. The result
of evaluation is stored until the method of the corresponding functional interface type is
invoked; at that point, the result is used as the target reference for the invocation. This means
the expression preceding the :: separator is evaluated only when the program encounters
the method reference expression, and is not re-evaluated on subsequent invocations on the
functional interface type.

It is interesting to contrast the treatment of null here with its treatment during method
invocation. When a method invocation expression is evaluated, it is possible for the Primary
that qualifies the invocation to evaluate to null but for no NullPointerException to
be raised. This occurs when the invoked method is static (despite the syntax of the
invocation suggesting an instance method). Since the applicable method for a method
reference expression qualified by a Primary is prohibited from being static (§15.13.1),
the evaluation of the method reference expression is simpler - a null Primary always raises
a NullPointerException.

15.14 Postfix Expressions

Postfix expressions include uses of the postfix ++ and -- operators. Names are not
considered to be primary expressions (§15.8), but are handled separately in the
grammar to avoid certain ambiguities. They become interchangeable only here, at
the level of precedence of postfix expressions.

15.14 Postfix Expressions EXPRESSIONS

550

PostfixExpression:
Primary
ExpressionName
PostIncrementExpression
PostDecrementExpression

15.14.1 Expression Names

The rules for evaluating expression names are given in §6.5.6.

15.14.2 Postfix Increment Operator ++

A postfix expression followed by a ++ operator is a postfix increment expression.

PostIncrementExpression:
PostfixExpression ++

The result of the postfix expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the postfix increment expression is the type of the variable. The result
of the postfix increment expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (§5.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3) and/
or subjected to boxing conversion (§5.1.7) to the type of the variable before it is
stored. The value of the postfix increment expression is the value of the variable
before the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing conversion
(§5.1.8) and value set conversion (§5.1.13). If necessary, value set conversion is applied to
the sum prior to its being stored in the variable.

A variable that is declared final cannot be incremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix increment operator.

EXPRESSIONS Unary Operators 15.15

551

15.14.3 Postfix Decrement Operator --

A postfix expression followed by a -- operator is a postfix decrement expression.

PostDecrementExpression:
PostfixExpression --

The result of the postfix expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the postfix decrement expression is the type of the variable. The result
of the postfix decrement expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the postfix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (§5.6.2) is performed on the value 1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
conversion (§5.1.3) and/or subjected to boxing conversion (§5.1.7) to the type of
the variable before it is stored. The value of the postfix decrement expression is the
value of the variable before the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing conversion
(§5.1.8) and value set conversion (§5.1.13). If necessary, value set conversion is applied to
the difference prior to its being stored in the variable.

A variable that is declared final cannot be decremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15 Unary Operators

The operators +, -, ++, --, ~, !, and the cast operator (§15.16) are called the unary
operators.

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

15.15 Unary Operators EXPRESSIONS

552

PreIncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

The following production from §15.16 is shown here for convenience:

CastExpression:
(PrimitiveType) UnaryExpression
(ReferenceType {AdditionalBound}) UnaryExpressionNotPlusMinus
(ReferenceType {AdditionalBound}) LambdaExpression

Expressions with unary operators group right-to-left, so that -~x means the same
as -(~x).

This portion of the grammar contains some tricks to avoid two potential syntactic
ambiguities.

The first potential ambiguity would arise in expressions such as (p)+q, which looks, to a
C or C++ programmer, as though it could be either a cast to type p of a unary + operating
on q, or a binary addition of two quantities p and q. In C and C++, the parser handles this
problem by performing a limited amount of semantic analysis as it parses, so that it knows
whether p is the name of a type or the name of a variable.

Java takes a different approach. The result of the + operator must be numeric, and all
type names involved in casts on numeric values are known keywords. Thus, if p is
a keyword naming a primitive type, then (p)+q can make sense only as a cast of a
unary expression. However, if p is not a keyword naming a primitive type, then (p)+q
can make sense only as a binary arithmetic operation. Similar remarks apply to the
- operator. The grammar shown above splits CastExpression into two cases to make
this distinction. The nonterminal UnaryExpression includes all unary operators, but the
nonterminal UnaryExpressionNotPlusMinus excludes uses of all unary operators that could
also be binary operators, which in Java are + and -.

The second potential ambiguity is that the expression (p)++ could, to a C or C++
programmer, appear to be either a postfix increment of a parenthesized expression or the
beginning of a cast, for example, in (p)++q. As before, parsers for C and C++ know
whether p is the name of a type or the name of a variable. But a parser using only one-token
lookahead and no semantic analysis during the parse would not be able to tell, when ++ is
the lookahead token, whether (p) should be considered a Primary expression or left alone
for later consideration as part of a CastExpression.

EXPRESSIONS Unary Operators 15.15

553

In Java, the result of the ++ operator must be numeric, and all type names involved in casts
on numeric values are known keywords. Thus, if p is a keyword naming a primitive type,
then (p)++ can make sense only as a cast of a prefix increment expression, and there had
better be an operand such as q following the ++. However, if p is not a keyword naming a
primitive type, then (p)++ can make sense only as a postfix increment of p. Similar remarks
apply to the -- operator. The nonterminal UnaryExpressionNotPlusMinus therefore also
excludes uses of the prefix operators ++ and --.

15.15.1 Prefix Increment Operator ++

A unary expression preceded by a ++ operator is a prefix increment expression.

The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the prefix increment expression is the type of the variable. The result
of the prefix increment expression is not a variable, but a value.

At run time, if evaluation of the operand expression completes abruptly, then
the prefix increment expression completes abruptly for the same reason and no
incrementation occurs. Otherwise, the value 1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary numeric
promotion (§5.6.2) is performed on the value 1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3) and/
or subjected to boxing conversion (§5.1.7) to the type of the variable before it is
stored. The value of the prefix increment expression is the value of the variable
after the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing conversion
(§5.1.8) and value set conversion (§5.1.13). If necessary, value set conversion is applied to
the sum prior to its being stored in the variable.

A variable that is declared final cannot be incremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a prefix increment operator.

15.15.2 Prefix Decrement Operator --

A unary expression preceded by a -- operator is a prefix decrement expression.

The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs.

The type of the prefix decrement expression is the type of the variable. The result
of the prefix decrement expression is not a variable, but a value.

15.15 Unary Operators EXPRESSIONS

554

At run time, if evaluation of the operand expression completes abruptly, then
the prefix decrement expression completes abruptly for the same reason and no
decrementation occurs. Otherwise, the value 1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtraction,
binary numeric promotion (§5.6.2) is performed on the value 1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
conversion (§5.1.3) and/or subjected to boxing conversion (§5.1.7) to the type of
the variable before it is stored. The value of the prefix decrement expression is the
value of the variable after the new value is stored.

Note that the binary numeric promotion mentioned above may include unboxing conversion
(§5.1.8) and value set conversion (§5.1.13). If necessary, format conversion is applied to
the difference prior to its being stored in the variable.

A variable that is declared final cannot be decremented because when an access of
such a final variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a prefix decrement operator.

15.15.3 Unary Plus Operator +

The type of the operand expression of the unary + operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

Unary numeric promotion (§5.6.1) is performed on the operand. The type of the
unary plus expression is the promoted type of the operand. The result of the unary
plus expression is not a variable, but a value, even if the result of the operand
expression is a variable.

At run time, the value of the unary plus expression is the promoted value of the
operand.

15.15.4 Unary Minus Operator -

The type of the operand expression of the unary - operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

Unary numeric promotion (§5.6.1) is performed on the operand.

The type of the unary minus expression is the promoted type of the operand.

Note that unary numeric promotion performs value set conversion (§5.1.13).
Whatever value set the promoted operand value is drawn from, the unary negation
operation is carried out and the result is drawn from that same value set. That result
is then subject to further value set conversion.

EXPRESSIONS Unary Operators 15.15

555

At run time, the value of the unary minus expression is the arithmetic negation of
the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. The Java
programming language uses two's-complement representation for integers, and the
range of two's-complement values is not symmetric, so negation of the maximum
negative int or long results in that same maximum negative number. Overflow
occurs in this case, but no exception is thrown. For all integer values x, -x equals
(~x)+1.

For floating-point values, negation is not the same as subtraction from zero, because
if x is +0.0, then 0.0-x is +0.0, but -x is -0.0. Unary minus merely inverts the
sign of a floating-point number. Special cases of interest:

• If the operand is NaN, the result is NaN. (Recall that NaN has no sign (§4.2.3).)

• If the operand is an infinity, the result is the infinity of opposite sign.

• If the operand is a zero, the result is the zero of opposite sign.

15.15.5 Bitwise Complement Operator ~

The type of the operand expression of the unary ~ operator must be a type that is
convertible (§5.1.8) to a primitive integral type, or a compile-time error occurs.

Unary numeric promotion (§5.6.1) is performed on the operand. The type of the
unary bitwise complement expression is the promoted type of the operand.

At run time, the value of the unary bitwise complement expression is the bitwise
complement of the promoted value of the operand. In all cases, ~x equals (-x)-1.

15.15.6 Logical Complement Operator !

The type of the operand expression of the unary ! operator must be boolean or
Boolean, or a compile-time error occurs.

The type of the unary logical complement expression is boolean.

At run time, the operand is subject to unboxing conversion (§5.1.8) if necessary.
The value of the unary logical complement expression is true if the (possibly
converted) operand value is false, and false if the (possibly converted) operand
value is true.

15.16 Cast Expressions EXPRESSIONS

556

15.16 Cast Expressions

A cast expression converts, at run time, a value of one numeric type to a similar
value of another numeric type; or confirms, at compile time, that the type of an
expression is boolean; or checks, at run time, that a reference value refers to an
object whose class is compatible with a specified reference type or list of reference
types.

The parentheses and the type or list of types they contain are sometimes called the
cast operator.

CastExpression:
(PrimitiveType) UnaryExpression
(ReferenceType {AdditionalBound}) UnaryExpressionNotPlusMinus
(ReferenceType {AdditionalBound}) LambdaExpression

The following production from §4.4 is shown here for convenience:

AdditionalBound:
& InterfaceType

If the cast operator contains a list of types - that is, a ReferenceType followed by
one or more AdditionalBound terms - then all of the following must be true, or a
compile-time error occurs:

• ReferenceType must denote a class or interface type.

• The erasures (§4.6) of all the listed types must be pairwise different.

• No two listed types may be subtypes of different parameterizations of the same
generic interface.

The target type for the casting context (§5.5) introduced by the cast expression is
either the PrimitiveType or the ReferenceType (if not followed by AdditionalBound
terms) appearing in the cast operator, or the intersection type denoted by the
ReferenceType and AdditionalBound terms appearing in the cast operator.

The type of a cast expression is the result of applying capture conversion (§5.1.10)
to this target type.

Casts can be used to explicitly "tag" a lambda expression or a method reference expression
with a particular target type. To provide an appropriate degree of flexibility, the target type
may be a list of types denoting an intersection type, provided the intersection induces a
functional interface (§9.8).

EXPRESSIONS Multiplicative Operators 15.17

557

The result of a cast expression is not a variable, but a value, even if the result of
the operand expression is a variable.

A cast operator has no effect on the choice of value set (§4.2.3) for a value of type
float or type double. Consequently, a cast to type float within an expression that
is not FP-strict (§15.4) does not necessarily cause its value to be converted to an
element of the float value set, and a cast to type double within an expression that
is not FP-strict does not necessarily cause its value to be converted to an element
of the double value set.

It is a compile-time error if the compile-time type of the operand may never be
cast to the type specified by the cast operator according to the rules of casting
conversion (§5.5).

Otherwise, at run time, the operand value is converted (if necessary) by casting
conversion to the type specified by the cast operator.

A ClassCastException is thrown if a cast is found at run time to be impermissible.

Some casts result in an error at compile time. Some casts can be proven, at compile time,
always to be correct at run time. For example, it is always correct to convert a value of a
class type to the type of its superclass; such a cast should require no special action at run
time. Finally, some casts cannot be proven to be either always correct or always incorrect
at compile time. Such casts require a test at run time. See §5.5 for details.

15.17 Multiplicative Operators

The operators *, /, and % are called the multiplicative operators.

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

The multiplicative operators have the same precedence and are syntactically left-
associative (they group left-to-right).

The type of each of the operands of a multiplicative operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

Binary numeric promotion is performed on the operands (§5.6.2).

15.17 Multiplicative Operators EXPRESSIONS

558

Note that binary numeric promotion performs value set conversion (§5.1.13) and may
perform unboxing conversion (§5.1.8).

The type of a multiplicative expression is the promoted type of its operands.

If the promoted type is int or long, then integer arithmetic is performed.

If the promoted type is float or double, then floating-point arithmetic is
performed.

15.17.1 Multiplication Operator *

The binary * operator performs multiplication, producing the product of its
operands.

Multiplication is a commutative operation if the operand expressions have no side
effects.

Integer multiplication is associative when the operands are all of the same type.

Floating-point multiplication is not associative.

If an integer multiplication overflows, then the result is the low-order bits of the
mathematical product as represented in some sufficiently large two's-complement
format. As a result, if overflow occurs, then the sign of the result may not be the
same as the sign of the mathematical product of the two operand values.

The result of a floating-point multiplication is determined by the rules of IEEE 754
arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed infinity. The sign
is determined by the rule stated above.

• In the remaining cases, where neither an infinity nor NaN is involved, the exact
mathematical product is computed. A floating-point value set is then chosen:

– If the multiplication expression is FP-strict (§15.4):

› If the type of the multiplication expression is float, then the float value set
must be chosen.

EXPRESSIONS Multiplicative Operators 15.17

559

› If the type of the multiplication expression is double, then the double value
set must be chosen.

– If the multiplication expression is not FP-strict:

› If the type of the multiplication expression is float, then either the float
value set or the float-extended-exponent value set may be chosen, at the
whim of the implementation.

› If the type of the multiplication expression is double, then either the double
value set or the double-extended-exponent value set may be chosen, at the
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the product.

If the magnitude of the product is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the product is rounded to the nearest value in the chosen value
set using IEEE 754 round-to-nearest mode. The Java programming language
requires support of gradual underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a multiplication operator * never throws a run-time exception.

15.17.2 Division Operator /

The binary / operator performs division, producing the quotient of its operands.
The left-hand operand is the dividend and the right-hand operand is the divisor.

Integer division rounds toward 0. That is, the quotient produced for operands n and
d that are integers after binary numeric promotion (§5.6.2) is an integer value q
whose magnitude is as large as possible while satisfying |d ⋅ q| ≤ |n|. Moreover, q
is positive when |n| ≥ |d| and n and d have the same sign, but q is negative when
|n| ≥ |d| and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of largest possible magnitude for its type, and the divisor is -1, then integer
overflow occurs and the result is equal to the dividend. Despite the overflow, no
exception is thrown in this case. On the other hand, if the value of the divisor in an
integer division is 0, then an ArithmeticException is thrown.

The result of a floating-point division is determined by the rules of IEEE 754
arithmetic:

• If either operand is NaN, the result is NaN.

15.17 Multiplicative Operators EXPRESSIONS

560

• If the result is not NaN, the sign of the result is positive if both operands have
the same sign, and negative if the operands have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity. The sign is
determined by the rule stated above.

• Division of a finite value by an infinity results in a signed zero. The sign is
determined by the rule stated above.

• Division of a zero by a zero results in NaN; division of zero by any other finite
value results in a signed zero. The sign is determined by the rule stated above.

• Division of a nonzero finite value by a zero results in a signed infinity. The sign
is determined by the rule stated above.

• In the remaining cases, where neither an infinity nor NaN is involved, the exact
mathematical quotient is computed. A floating-point value set is then chosen:

– If the division expression is FP-strict (§15.4):

› If the type of the division expression is float, then the float value set must
be chosen.

› If the type of the division expression is double, then the double value set
must be chosen.

– If the division expression is not FP-strict:

› If the type of the division expression is float, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim of
the implementation.

› If the type of the division expression is double, then either the double value
set or the double-extended-exponent value set may be chosen, at the whim
of the implementation.

Next, a value must be chosen from the chosen value set to represent the quotient.

If the magnitude of the quotient is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the quotient is rounded to the nearest value in the chosen value
set using IEEE 754 round-to-nearest mode. The Java programming language
requires support of gradual underflow as defined by IEEE 754 (§4.2.4).

EXPRESSIONS Multiplicative Operators 15.17

561

Despite the fact that overflow, underflow, division by zero, or loss of information
may occur, evaluation of a floating-point division operator / never throws a run-
time exception.

15.17.3 Remainder Operator %

The binary % operator is said to yield the remainder of its operands from an implied
division; the left-hand operand is the dividend and the right-hand operand is the
divisor.

In C and C++, the remainder operator accepts only integral operands, but in the
Java programming language, it also accepts floating-point operands.

The remainder operation for operands that are integers after binary numeric
promotion (§5.6.2) produces a result value such that (a/b)*b+(a%b) is equal to a.

This identity holds even in the special case that the dividend is the negative integer
of largest possible magnitude for its type and the divisor is -1 (the remainder is 0).

It follows from this rule that the result of the remainder operation can be negative
only if the dividend is negative, and can be positive only if the dividend is positive.
Moreover, the magnitude of the result is always less than the magnitude of the
divisor.

If the value of the divisor for an integer remainder operator is 0, then an
ArithmeticException is thrown.

Example 15.17.3-1. Integer Remainder Operator

class Test1 {
 public static void main(String[] args) {
 int a = 5%3; // 2
 int b = 5/3; // 1
 System.out.println("5%3 produces " + a +
 " (note that 5/3 produces " + b + ")");

 int c = 5%(-3); // 2
 int d = 5/(-3); // -1
 System.out.println("5%(-3) produces " + c +
 " (note that 5/(-3) produces " + d + ")");

 int e = (-5)%3; // -2
 int f = (-5)/3; // -1
 System.out.println("(-5)%3 produces " + e +
 " (note that (-5)/3 produces " + f + ")");

 int g = (-5)%(-3); // -2
 int h = (-5)/(-3); // 1
 System.out.println("(-5)%(-3) produces " + g +

15.17 Multiplicative Operators EXPRESSIONS

562

 " (note that (-5)/(-3) produces " + h + ")");
 }
}

This program produces the output:

5%3 produces 2 (note that 5/3 produces 1)
5%(-3) produces 2 (note that 5/(-3) produces -1)
(-5)%3 produces -2 (note that (-5)/3 produces -1)
(-5)%(-3) produces -2 (note that (-5)/(-3) produces 1)

The result of a floating-point remainder operation as computed by the % operator
is not the same as that produced by the remainder operation defined by IEEE
754. The IEEE 754 remainder operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous to that
of the usual integer remainder operator. Instead, the Java programming language
defines % on floating-point operations to behave in a manner analogous to that of
the integer remainder operator; this may be compared with the C library function
fmod. The IEEE 754 remainder operation may be computed by the library routine
Math.IEEEremainder.

The result of a floating-point remainder operation is determined by the rules of
IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result equals the sign of the dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

• If the dividend is finite and the divisor is an infinity, the result equals the
dividend.

• If the dividend is a zero and the divisor is finite, the result equals the dividend.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved,
the floating-point remainder r from the division of a dividend n by a divisor d
is defined by the mathematical relation r = n - (d ⋅ q) where q is an integer that
is negative only if n/d is negative and positive only if n/d is positive, and whose
magnitude is as large as possible without exceeding the magnitude of the true
mathematical quotient of n and d.

Evaluation of a floating-point remainder operator % never throws a run-time
exception, even if the right-hand operand is zero. Overflow, underflow, or loss of
precision cannot occur.

Example 15.17.3-2. Floating-Point Remainder Operator

class Test2 {

EXPRESSIONS Additive Operators 15.18

563

 public static void main(String[] args) {
 double a = 5.0%3.0; // 2.0
 System.out.println("5.0%3.0 produces " + a);

 double b = 5.0%(-3.0); // 2.0
 System.out.println("5.0%(-3.0) produces " + b);

 double c = (-5.0)%3.0; // -2.0
 System.out.println("(-5.0)%3.0 produces " + c);

 double d = (-5.0)%(-3.0); // -2.0
 System.out.println("(-5.0)%(-3.0) produces " + d);
 }
}

This program produces the output:

5.0%3.0 produces 2.0
5.0%(-3.0) produces 2.0
(-5.0)%3.0 produces -2.0
(-5.0)%(-3.0) produces -2.0

15.18 Additive Operators

The operators + and - are called the additive operators.

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

The additive operators have the same precedence and are syntactically left-
associative (they group left-to-right).

If the type of either operand of a + operator is String, then the operation is string
concatenation.

Otherwise, the type of each of the operands of the + operator must be a type that is
convertible (§5.1.8) to a primitive numeric type, or a compile-time error occurs.

In every case, the type of each of the operands of the binary - operator must be
a type that is convertible (§5.1.8) to a primitive numeric type, or a compile-time
error occurs.

15.18 Additive Operators EXPRESSIONS

564

15.18.1 String Concatenation Operator +

If only one operand expression is of type String, then string conversion (§5.1.11)
is performed on the other operand to produce a string at run time.

The result of string concatenation is a reference to a String object that is the
concatenation of the two operand strings. The characters of the left-hand operand
precede the characters of the right-hand operand in the newly created string.

The String object is newly created (§12.5) unless the expression is a constant
expression (§15.28).

An implementation may choose to perform conversion and concatenation in one step
to avoid creating and then discarding an intermediate String object. To increase the
performance of repeated string concatenation, a Java compiler may use the StringBuffer
class or a similar technique to reduce the number of intermediate String objects that are
created by evaluation of an expression.

For primitive types, an implementation may also optimize away the creation of a wrapper
object by converting directly from a primitive type to a string.

Example 15.18.1-1. String Concatenation

The example expression:

"The square root of 2 is " + Math.sqrt(2)

produces the result:

"The square root of 2 is 1.4142135623730952"

The + operator is syntactically left-associative, no matter whether it is determined by
type analysis to represent string concatenation or numeric addition. In some cases care is
required to get the desired result. For example, the expression:

a + b + c

is always regarded as meaning:

(a + b) + c

Therefore the result of the expression:

1 + 2 + " fiddlers"

is:

"3 fiddlers"

EXPRESSIONS Additive Operators 15.18

565

but the result of:

"fiddlers " + 1 + 2

is:

"fiddlers 12"

Example 15.18.1-2. String Concatenation and Conditionals

In this jocular little example:

class Bottles {
 static void printSong(Object stuff, int n) {
 String plural = (n == 1) ? "" : "s";
 loop: while (true) {
 System.out.println(n + " bottle" + plural
 + " of " + stuff + " on the wall,");
 System.out.println(n + " bottle" + plural
 + " of " + stuff + ";");
 System.out.println("You take one down "
 + "and pass it around:");
 --n;
 plural = (n == 1) ? "" : "s";
 if (n == 0)
 break loop;
 System.out.println(n + " bottle" + plural
 + " of " + stuff + " on the wall!");
 System.out.println();
 }
 System.out.println("No bottles of " +
 stuff + " on the wall!");
 }

 public static void main(String[] args) {
 printSong("slime", 3);
 }
}

the method printSong will print a version of a children's song. Popular values for stuff
include "pop" and "beer"; the most popular value for n is 100. Here is the output that
results from running the program:

15.18 Additive Operators EXPRESSIONS

566

3 bottles of slime on the wall,
3 bottles of slime;
You take one down and pass it around:
2 bottles of slime on the wall!

2 bottles of slime on the wall,
2 bottles of slime;
You take one down and pass it around:
1 bottle of slime on the wall!

1 bottle of slime on the wall,
1 bottle of slime;
You take one down and pass it around:
No bottles of slime on the wall!

In the code, note the careful conditional generation of the singular "bottle" when
appropriate rather than the plural "bottles"; note also how the string concatenation
operator was used to break the long constant string:

"You take one down and pass it around:"

into two pieces to avoid an inconveniently long line in the source code.

15.18.2 Additive Operators (+ and -) for Numeric Types

The binary + operator performs addition when applied to two operands of numeric
type, producing the sum of the operands.

The binary - operator performs subtraction, producing the difference of two
numeric operands.

Binary numeric promotion is performed on the operands (§5.6.2).

Note that binary numeric promotion performs value set conversion (§5.1.13) and may
perform unboxing conversion (§5.1.8).

The type of an additive expression on numeric operands is the promoted type of
its operands.

If this promoted type is int or long, then integer arithmetic is performed.

If this promoted type is float or double, then floating-point arithmetic is
performed.

Addition is a commutative operation if the operand expressions have no side
effects.

Integer addition is associative when the operands are all of the same type.

Floating-point addition is not associative.

EXPRESSIONS Additive Operators 15.18

567

If an integer addition overflows, then the result is the low-order bits of the
mathematical sum as represented in some sufficiently large two's-complement
format. If overflow occurs, then the sign of the result is not the same as the sign of
the mathematical sum of the two operand values.

The result of a floating-point addition is determined using the following rules of
IEEE 754 arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two zeros of opposite sign is positive zero.

• The sum of two zeros of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero operand.

• The sum of two nonzero finite values of the same magnitude and opposite sign
is positive zero.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved,
and the operands have the same sign or have different magnitudes, the exact
mathematical sum is computed. A floating-point value set is then chosen:

– If the addition expression is FP-strict (§15.4):

› If the type of the addition expression is float, then the float value set must
be chosen.

› If the type of the addition expression is double, then the double value set
must be chosen.

– If the addition expression is not FP-strict:

› If the type of the addition expression is float, then either the float value
set or the float-extended-exponent value set may be chosen, at the whim of
the implementation.

› If the type of the addition expression is double, then either the double value
set or the double-extended-exponent value set may be chosen, at the whim
of the implementation.

Next, a value must be chosen from the chosen value set to represent the sum.

15.19 Shift Operators EXPRESSIONS

568

If the magnitude of the sum is too large to represent, we say the operation
overflows; the result is then an infinity of appropriate sign.

Otherwise, the sum is rounded to the nearest value in the chosen value set using
IEEE 754 round-to-nearest mode. The Java programming language requires
support of gradual underflow as defined by IEEE 754 (§4.2.4).

The binary - operator performs subtraction when applied to two operands of
numeric type, producing the difference of its operands; the left-hand operand is the
minuend and the right-hand operand is the subtrahend.

For both integer and floating-point subtraction, it is always the case that a-b
produces the same result as a+(-b).

Note that, for integer values, subtraction from zero is the same as negation.
However, for floating-point operands, subtraction from zero is not the same as
negation, because if x is +0.0, then 0.0-x is +0.0, but -x is -0.0.

Despite the fact that overflow, underflow, or loss of information may occur,
evaluation of a numeric additive operator never throws a run-time exception.

15.19 Shift Operators

The operators << (left shift), >> (signed right shift), and >>> (unsigned right shift)
are called the shift operators. The left-hand operand of a shift operator is the value
to be shifted; the right-hand operand specifies the shift distance.

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

The shift operators are syntactically left-associative (they group left-to-right).

Unary numeric promotion (§5.6.1) is performed on each operand separately.
(Binary numeric promotion (§5.6.2) is not performed on the operands.)

It is a compile-time error if the type of each of the operands of a shift operator,
after unary numeric promotion, is not a primitive integral type.

The type of the shift expression is the promoted type of the left-hand operand.

EXPRESSIONS Relational Operators 15.20

569

If the promoted type of the left-hand operand is int, then only the five lowest-order
bits of the right-hand operand are used as the shift distance. It is as if the right-hand
operand were subjected to a bitwise logical AND operator & (§15.22.1) with the
mask value 0x1f (0b11111). The shift distance actually used is therefore always in
the range 0 to 31, inclusive.

If the promoted type of the left-hand operand is long, then only the six lowest-
order bits of the right-hand operand are used as the shift distance. It is as if the
right-hand operand were subjected to a bitwise logical AND operator & (§15.22.1)
with the mask value 0x3f (0b111111). The shift distance actually used is therefore
always in the range 0 to 63, inclusive.

At run time, shift operations are performed on the two's-complement integer
representation of the value of the left operand.

The value of n << s is n left-shifted s bit positions; this is equivalent (even if
overflow occurs) to multiplication by two to the power s.

The value of n >> s is n right-shifted s bit positions with sign-extension. The
resulting value is floor(n / 2s). For non-negative values of n, this is equivalent to
truncating integer division, as computed by the integer division operator /, by two
to the power s.

The value of n >>> s is n right-shifted s bit positions with zero-extension, where:

• If n is positive, then the result is the same as that of n >> s.

• If n is negative and the type of the left-hand operand is int, then the result is
equal to that of the expression (n >> s) + (2 << ~s).

• If n is negative and the type of the left-hand operand is long, then the result is
equal to that of the expression (n >> s) + (2L << ~s).

The added term (2 << ~s) or (2L << ~s) cancels out the propagated sign bit.

Note that, because of the implicit masking of the right-hand operand of a shift operator,
~s as a shift distance is equivalent to 31-s when shifting an int value and to 63-s when
shifting a long value.

15.20 Relational Operators

The numerical comparison operators <, >, <=, and >=, and the instanceof operator,
are called the relational operators.

15.20 Relational Operators EXPRESSIONS

570

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ReferenceType

The relational operators are syntactically left-associative (they group left-to-right).

However, this fact is not useful. For example, a<b<c parses as (a<b)<c, which is always
a compile-time error, because the type of a<b is always boolean and < is not an operator
on boolean values.

The type of a relational expression is always boolean.

15.20.1 Numerical Comparison Operators <, <=, >, and >=

The type of each of the operands of a numerical comparison operator must be a
type that is convertible (§5.1.8) to a primitive numeric type, or a compile-time error
occurs.

Binary numeric promotion is performed on the operands (§5.6.2).

Note that binary numeric promotion performs value set conversion (§5.1.13) and may
perform unboxing conversion (§5.1.8).

If the promoted type of the operands is int or long, then signed integer comparison
is performed.

If the promoted type is float or double, then floating-point comparison is
performed.

Comparison is carried out accurately on floating-point values, no matter what value
sets their representing values were drawn from.

The result of a floating-point comparison, as determined by the specification of the
IEEE 754 standard, is:

• If either operand is NaN, then the result is false.

• All values other than NaN are ordered, with negative infinity less than all finite
values, and positive infinity greater than all finite values.

• Positive zero and negative zero are considered equal.

EXPRESSIONS Relational Operators 15.20

571

For example, -0.0<0.0 is false, but -0.0<=0.0 is true.

Note, however, that the methods Math.min and Math.max treat negative zero as being
strictly smaller than positive zero.

Subject to these considerations for floating-point numbers, the following rules then
hold for integer operands or for floating-point operands other than NaN:

• The value produced by the < operator is true if the value of the left-hand operand
is less than the value of the right-hand operand, and otherwise is false.

• The value produced by the <= operator is true if the value of the left-hand
operand is less than or equal to the value of the right-hand operand, and otherwise
is false.

• The value produced by the > operator is true if the value of the left-hand operand
is greater than the value of the right-hand operand, and otherwise is false.

• The value produced by the >= operator is true if the value of the left-hand
operand is greater than or equal to the value of the right-hand operand, and
otherwise is false.

15.20.2 Type Comparison Operator instanceof

The type of the RelationalExpression operand of the instanceof operator must be
a reference type or the null type; otherwise, a compile-time error occurs.

It is a compile-time error if the ReferenceType mentioned after the instanceof
operator does not denote a reference type that is reifiable (§4.7).

If a cast (§15.16) of the RelationalExpression to the ReferenceType would be
rejected as a compile-time error, then the instanceof relational expression
likewise produces a compile-time error. In such a situation, the result of the
instanceof expression could never be true.

At run time, the result of the instanceof operator is true if the value of
the RelationalExpression is not null and the reference could be cast to the
ReferenceType without raising a ClassCastException. Otherwise the result is
false.

Example 15.20.2-1. The instanceof Operator

class Point { int x, y; }
class Element { int atomicNumber; }
class Test {
 public static void main(String[] args) {
 Point p = new Point();

15.21 Equality Operators EXPRESSIONS

572

 Element e = new Element();
 if (e instanceof Point) { // compile-time error
 System.out.println("I get your point!");
 p = (Point)e; // compile-time error
 }
 }
}

This program results in two compile-time errors. The cast (Point)e is incorrect because no
instance of Element or any of its possible subclasses (none are shown here) could possibly
be an instance of any subclass of Point. The instanceof expression is incorrect for
exactly the same reason. If, on the other hand, the class Point were a subclass of Element
(an admittedly strange notion in this example):

class Point extends Element { int x, y; }

then the cast would be possible, though it would require a run-time check, and the
instanceof expression would then be sensible and valid. The cast (Point)e would never
raise an exception because it would not be executed if the value of e could not correctly
be cast to type Point.

15.21 Equality Operators

The operators == (equal to) and != (not equal to) are called the equality operators.

EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

The equality operators are syntactically left-associative (they group left-to-right).

However, this fact is essentially never useful. For example, a==b==c parses as (a==b)==c.
The result type of a==b is always boolean, and c must therefore be of type boolean or
a compile-time error occurs. Thus, a==b==c does not test to see whether a, b, and c are
all equal.

The equality operators are commutative if the operand expressions have no side
effects.

The equality operators are analogous to the relational operators except for their
lower precedence. Thus, a<b==c<d is true whenever a<b and c<d have the same
truth value.

The equality operators may be used to compare two operands that are convertible
(§5.1.8) to numeric type, or two operands of type boolean or Boolean, or two

EXPRESSIONS Equality Operators 15.21

573

operands that are each of either reference type or the null type. All other cases result
in a compile-time error.

The type of an equality expression is always boolean.

In all cases, a!=b produces the same result as !(a==b).

15.21.1 Numerical Equality Operators == and !=

If the operands of an equality operator are both of numeric type, or one is of
numeric type and the other is convertible (§5.1.8) to numeric type, binary numeric
promotion is performed on the operands (§5.6.2).

Note that binary numeric promotion performs value set conversion (§5.1.13) and may
perform unboxing conversion (§5.1.8).

If the promoted type of the operands is int or long, then an integer equality test
is performed.

If the promoted type is float or double, then a floating-point equality test is
performed.

Comparison is carried out accurately on floating-point values, no matter what value
sets their representing values were drawn from.

Floating-point equality testing is performed in accordance with the rules of the
IEEE 754 standard:

• If either operand is NaN, then the result of == is false but the result of != is true.

Indeed, the test x!=x is true if and only if the value of x is NaN.

The methods Float.isNaN and Double.isNaN may also be used to test whether a
value is NaN.

• Positive zero and negative zero are considered equal.

For example, -0.0==0.0 is true.

• Otherwise, two distinct floating-point values are considered unequal by the
equality operators.

In particular, there is one value representing positive infinity and one value
representing negative infinity; each compares equal only to itself, and each
compares unequal to all other values.

Subject to these considerations for floating-point numbers, the following rules then
hold for integer operands or for floating-point operands other than NaN:

15.21 Equality Operators EXPRESSIONS

574

• The value produced by the == operator is true if the value of the left-hand
operand is equal to the value of the right-hand operand; otherwise, the result is
false.

• The value produced by the != operator is true if the value of the left-hand
operand is not equal to the value of the right-hand operand; otherwise, the result
is false.

15.21.2 Boolean Equality Operators == and !=

If the operands of an equality operator are both of type boolean, or if one operand
is of type boolean and the other is of type Boolean, then the operation is boolean
equality.

The boolean equality operators are associative.

If one of the operands is of type Boolean, it is subjected to unboxing conversion
(§5.1.8).

The result of == is true if the operands (after any required unboxing conversion)
are both true or both false; otherwise, the result is false.

The result of != is false if the operands are both true or both false; otherwise,
the result is true.

Thus != behaves the same as ^ (§15.22.2) when applied to boolean operands.

15.21.3 Reference Equality Operators == and !=

If the operands of an equality operator are both of either reference type or the null
type, then the operation is object equality.

It is a compile-time error if it is impossible to convert the type of either operand
to the type of the other by a casting conversion (§5.5). The run-time values of the
two operands would necessarily be unequal (ignoring the case where both values
are null).

At run time, the result of == is true if the operand values are both null or both
refer to the same object or array; otherwise, the result is false.

The result of != is false if the operand values are both null or both refer to the
same object or array; otherwise, the result is true.

While == may be used to compare references of type String, such an equality test
determines whether or not the two operands refer to the same String object. The
result is false if the operands are distinct String objects, even if they contain the

EXPRESSIONS Bitwise and Logical Operators 15.22

575

same sequence of characters (§3.10.5). The contents of two strings s and t can be
tested for equality by the method invocation s.equals(t).

15.22 Bitwise and Logical Operators

The bitwise operators and logical operators include the AND operator &, exclusive
OR operator ^, and inclusive OR operator |.

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

These operators have different precedence, with & having the highest precedence
and | the lowest precedence.

Each of these operators is syntactically left-associative (each groups left-to-right).

Each operator is commutative if the operand expressions have no side effects.

Each operator is associative.

The bitwise and logical operators may be used to compare two operands of numeric
type or two operands of type boolean. All other cases result in a compile-time error.

15.22.1 Integer Bitwise Operators &, ^, and |

When both operands of an operator &, ̂ , or | are of a type that is convertible (§5.1.8)
to a primitive integral type, binary numeric promotion is first performed on the
operands (§5.6.2).

The type of the bitwise operator expression is the promoted type of the operands.

For &, the result value is the bitwise AND of the operand values.

For ^, the result value is the bitwise exclusive OR of the operand values.

15.22 Bitwise and Logical Operators EXPRESSIONS

576

For |, the result value is the bitwise inclusive OR of the operand values.

For example, the result of the expression:

0xff00 & 0xf0f0

is:

0xf000

The result of the expression:

0xff00 ^ 0xf0f0

is:

0x0ff0

The result of the expression:

0xff00 | 0xf0f0

is:

0xfff0

15.22.2 Boolean Logical Operators &, ^, and |

When both operands of a &, ^, or | operator are of type boolean or Boolean, then
the type of the bitwise operator expression is boolean. In all cases, the operands
are subject to unboxing conversion (§5.1.8) as necessary.

For &, the result value is true if both operand values are true; otherwise, the result
is false.

For ^, the result value is true if the operand values are different; otherwise, the
result is false.

For |, the result value is false if both operand values are false; otherwise, the
result is true.

EXPRESSIONS Conditional-And Operator && 15.23

577

15.23 Conditional-And Operator &&

The conditional-and operator && is like & (§15.22.2), but evaluates its right-hand
operand only if the value of its left-hand operand is true.

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

The conditional-and operator is syntactically left-associative (it groups left-to-
right).

The conditional-and operator is fully associative with respect to both side effects
and result value. That is, for any expressions a, b, and c, evaluation of the
expression ((a) && (b)) && (c) produces the same result, with the same side
effects occurring in the same order, as evaluation of the expression (a) && ((b)
&& (c)).

Each operand of the conditional-and operator must be of type boolean or Boolean,
or a compile-time error occurs.

The type of a conditional-and expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if the result has
type Boolean, it is subjected to unboxing conversion (§5.1.8).

If the resulting value is false, the value of the conditional-and expression is false
and the right-hand operand expression is not evaluated.

If the value of the left-hand operand is true, then the right-hand expression is
evaluated; if the result has type Boolean, it is subjected to unboxing conversion
(§5.1.8). The resulting value becomes the value of the conditional-and expression.

Thus, && computes the same result as & on boolean operands. It differs only in that
the right-hand operand expression is evaluated conditionally rather than always.

15.24 Conditional-Or Operator ||

The conditional-or operator || operator is like | (§15.22.2), but evaluates its right-
hand operand only if the value of its left-hand operand is false.

15.25 Conditional Operator ? : EXPRESSIONS

578

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

The conditional-or operator is syntactically left-associative (it groups left-to-right).

The conditional-or operator is fully associative with respect to both side effects and
result value. That is, for any expressions a, b, and c, evaluation of the expression
((a) || (b)) || (c) produces the same result, with the same side effects
occurring in the same order, as evaluation of the expression (a) || ((b) || (c)).

Each operand of the conditional-or operator must be of type boolean or Boolean,
or a compile-time error occurs.

The type of a conditional-or expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if the result has
type Boolean, it is subjected to unboxing conversion (§5.1.8).

If the resulting value is true, the value of the conditional-or expression is true and
the right-hand operand expression is not evaluated.

If the value of the left-hand operand is false, then the right-hand expression is
evaluated; if the result has type Boolean, it is subjected to unboxing conversion
(§5.1.8). The resulting value becomes the value of the conditional-or expression.

Thus, || computes the same result as | on boolean or Boolean operands. It differs
only in that the right-hand operand expression is evaluated conditionally rather than
always.

15.25 Conditional Operator ? :

The conditional operator ? : uses the boolean value of one expression to decide
which of two other expressions should be evaluated.

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression
ConditionalOrExpression ? Expression : LambdaExpression

The conditional operator is syntactically right-associative (it groups right-to-left).
Thus, a?b:c?d:e?f:g means the same as a?b:(c?d:(e?f:g)).

EXPRESSIONS Conditional Operator ? : 15.25

579

The conditional operator has three operand expressions. ? appears between the first
and second expressions, and : appears between the second and third expressions.

The first expression must be of type boolean or Boolean, or a compile-time error
occurs.

It is a compile-time error for either the second or the third operand expression to
be an invocation of a void method.

In fact, by the grammar of expression statements (§14.8), it is not permitted for a conditional
expression to appear in any context where an invocation of a void method could appear.

There are three kinds of conditional expressions, classified according to the
second and third operand expressions: boolean conditional expressions, numeric
conditional expressions, and reference conditional expressions. The classification
rules are as follows:

• If both the second and the third operand expressions are boolean expressions,
the conditional expression is a boolean conditional expression.

For the purpose of classifying a conditional, the following expressions are
boolean expressions:

– An expression of a standalone form (§15.2) that has type boolean or Boolean.

– A parenthesized boolean expression (§15.8.5).

– A class instance creation expression (§15.9) for class Boolean.

– A method invocation expression (§15.12) for which the chosen most specific
method (§15.12.2.5) has return type boolean or Boolean.

Note that, for a generic method, this is the type before instantiating the method's type
arguments.

– A boolean conditional expression.

• If both the second and the third operand expressions are numeric expressions,
the conditional expression is a numeric conditional expression.

For the purpose of classifying a conditional, the following expressions are
numeric expressions:

– An expression of a standalone form (§15.2) with a type that is convertible to
a numeric type (§4.2, §5.1.8).

– A parenthesized numeric expression (§15.8.5).

15.25 Conditional Operator ? : EXPRESSIONS

580

– A class instance creation expression (§15.9) for a class that is convertible to
a numeric type.

– A method invocation expression (§15.12) for which the chosen most specific
method (§15.12.2.5) has a return type that is convertible to a numeric type.

– A numeric conditional expression.

• Otherwise, the conditional expression is a reference conditional expression.

The process for determining the type of a conditional expression depends on the
kind of conditional expression, as outlined in the following sections.

The following tables summarize the rules above by giving the type of a conditional
expression for all possible types of its second and third operands. bnp(..) means to
apply binary numeric promotion. The form "T | bnp(..)" is used where one operand
is a constant expression of type int and may be representable in type T, where
binary numeric promotion is used if the operand is not representable in type T. The
operand type Object means any reference type other than the null type and the
eight wrapper classes Boolean, Byte, Short, Character, Integer, Long, Float,
Double.

EXPRESSIONS Conditional Operator ? : 15.25

581

Table 15.25-A. Conditional expression type (Primitive 3rd operand, Part I)

3rd → byte short char int

2nd ↓

byte byte short bnp(byte,char) byte | bnp(byte,int)

Byte byte short bnp(Byte,char) byte | bnp(Byte,int)

short short short bnp(short,char) short | bnp(short,int)

Short short short bnp(Short,char) short | bnp(Short,int)

char bnp(char,byte) bnp(char,short) char char | bnp(char,int)

Character bnp(Character,byte) bnp(Character,short) char char | bnp(Character,int)

int byte | bnp(int,byte) short | bnp(int,short) char | bnp(int,char) int

Integer bnp(Integer,byte) bnp(Integer,short) bnp(Integer,char) int

long bnp(long,byte) bnp(long,short) bnp(long,char) bnp(long,int)

Long bnp(Long,byte) bnp(Long,short) bnp(Long,char) bnp(Long,int)

float bnp(float,byte) bnp(float,short) bnp(float,char) bnp(float,int)

Float bnp(Float,byte) bnp(Float,short) bnp(Float,char) bnp(Float,int)

double bnp(double,byte) bnp(double,short) bnp(double,char) bnp(double,int)

Double bnp(Double,byte) bnp(Double,short) bnp(Double,char) bnp(Double,int)

boolean lub(Boolean,Byte) lub(Boolean,Short) lub(Boolean,Character) lub(Boolean,Integer)

Boolean lub(Boolean,Byte) lub(Boolean,Short) lub(Boolean,Character) lub(Boolean,Integer)

null lub(null,Byte) lub(null,Short) lub(null,Character) lub(null,Integer)

Object lub(Object,Byte) lub(Object,Short) lub(Object,Character) lub(Object,Integer)

15.25 Conditional Operator ? : EXPRESSIONS

582

Table 15.25-B. Conditional expression type (Primitive 3rd operand, Part II)

3rd → long float double boolean

2nd ↓

byte bnp(byte,long) bnp(byte,float) bnp(byte,double) lub(Byte,Boolean)

Byte bnp(Byte,long) bnp(Byte,float) bnp(Byte,double) lub(Byte,Boolean)

short bnp(short,long) bnp(short,float) bnp(short,double) lub(Short,Boolean)

Short bnp(Short,long) bnp(Short,float) bnp(Short,double) lub(Short,Boolean)

char bnp(char,long) bnp(char,float) bnp(char,double) lub(Character,Boolean)

Character bnp(Character,long) bnp(Character,float) bnp(Character,double) lub(Character,Boolean)

int bnp(int,long) bnp(int,float) bnp(int,double) lub(Integer,Boolean)

Integer bnp(Integer,long) bnp(Integer,float) bnp(Integer,double) lub(Integer,Boolean)

long long bnp(long,float) bnp(long,double) lub(Long,Boolean)

Long long bnp(Long,float) bnp(Long,double) lub(Long,Boolean)

float bnp(float,long) float bnp(float,double) lub(Float,Boolean)

Float bnp(Float,long) float bnp(Float,double) lub(Float,Boolean)

double bnp(double,long) bnp(double,float) double lub(Double,Boolean)

Double bnp(Double,long) bnp(Double,float) double lub(Double,Boolean)

boolean lub(Boolean,Long) lub(Boolean,Float) lub(Boolean,Double) boolean

Boolean lub(Boolean,Long) lub(Boolean,Float) lub(Boolean,Double) boolean

null lub(null,Long) lub(null,Float) lub(null,Double) lub(null,Boolean)

Object lub(Object,Long) lub(Object,Float) lub(Object,Double) lub(Object,Boolean)

EXPRESSIONS Conditional Operator ? : 15.25

583

Table 15.25-C. Conditional expression type (Reference 3rd operand, Part I)

3rd → Byte Short Character Integer

2nd ↓

byte byte short bnp(byte,Character) bnp(byte,Integer)

Byte Byte short bnp(Byte,Character) bnp(Byte,Integer)

short short short bnp(short,Character) bnp(short,Integer)

Short short Short bnp(Short,Character) bnp(Short,Integer)

char bnp(char,Byte) bnp(char,Short) char bnp(char,Integer)

Character bnp(Character,Byte) bnp(Character,Short) Character bnp(Character,Integer)

int byte | bnp(int,Byte) short | bnp(int,Short) char | bnp(int,Character) int

Integer bnp(Integer,Byte) bnp(Integer,Short) bnp(Integer,Character) Integer

long bnp(long,Byte) bnp(long,Short) bnp(long,Character) bnp(long,Integer)

Long bnp(Long,Byte) bnp(Long,Short) bnp(Long,Character) bnp(Long,Integer)

float bnp(float,Byte) bnp(float,Short) bnp(float,Character) bnp(float,Integer)

Float bnp(Float,Byte) bnp(Float,Short) bnp(Float,Character) bnp(Float,Integer)

double bnp(double,Byte) bnp(double,Short) bnp(double,Character) bnp(double,Integer)

Double bnp(Double,Byte) bnp(Double,Short) bnp(Double,Character) bnp(Double,Integer)

boolean lub(Boolean,Byte) lub(Boolean,Short) lub(Boolean,Character) lub(Boolean,Integer)

Boolean lub(Boolean,Byte) lub(Boolean,Short) lub(Boolean,Character) lub(Boolean,Integer)

null Byte Short Character Integer

Object lub(Object,Byte) lub(Object,Short) lub(Object,Character) lub(Object,Integer)

15.25 Conditional Operator ? : EXPRESSIONS

584

Table 15.25-D. Conditional expression type (Reference 3rd operand, Part II)

3rd → Long Float Double Boolean

2nd ↓

byte bnp(byte,Long) bnp(byte,Float) bnp(byte,Double) lub(Byte,Boolean)

Byte bnp(Byte,Long) bnp(Byte,Float) bnp(Byte,Double) lub(Byte,Boolean)

short bnp(short,Long) bnp(short,Float) bnp(short,Double) lub(Short,Boolean)

Short bnp(Short,Long) bnp(Short,Float) bnp(Short,Double) lub(Short,Boolean)

char bnp(char,Long) bnp(char,Float) bnp(char,Double) lub(Character,Boolean)

Character bnp(Character,Long) bnp(Character,Float) bnp(Character,Double) lub(Character,Boolean)

int bnp(int,Long) bnp(int,Float) bnp(int,Double) lub(Integer,Boolean)

Integer bnp(Integer,Long) bnp(Integer,Float) bnp(Integer,Double) lub(Integer,Boolean)

long long bnp(long,Float) bnp(long,Double) lub(Long,Boolean)

Long Long bnp(Long,Float) bnp(Long,Double) lub(Long,Boolean)

float bnp(float,Long) float bnp(float,Double) lub(Float,Boolean)

Float bnp(Float,Long) Float bnp(Float,Double) lub(Float,Boolean)

double bnp(double,Long) bnp(double,Float) double lub(Double,Boolean)

Double bnp(Double,Long) bnp(Double,Float) Double lub(Double,Boolean)

boolean lub(Boolean,Long) lub(Boolean,Float) lub(Boolean,Double) boolean

Boolean lub(Boolean,Long) lub(Boolean,Float) lub(Boolean,Double) Boolean

null Long Float Double Boolean

Object lub(Object,Long) lub(Object,Float) lub(Object,Double) lub(Object,Boolean)

EXPRESSIONS Conditional Operator ? : 15.25

585

Table 15.25-E. Conditional expression type (Reference 3rd operand, Part III)

3rd → null Object

2nd ↓

byte lub(Byte,null) lub(Byte,Object)

Byte Byte lub(Byte,Object)

short lub(Short,null) lub(Short,Object)

Short Short lub(Short,Object)

char lub(Character,null) lub(Character,Object)

Character Character lub(Character,Object)

int lub(Integer,null) lub(Integer,Object)

Integer Integer lub(Integer,Object)

long lub(Long,null) lub(Long,Object)

Long Long lub(Long,Object)

float lub(Float,null) lub(Float,Object)

Float Float lub(Float,Object)

double lub(Double,null) lub(Double,Object)

Double Double lub(Double,Object)

boolean lub(Boolean,null) lub(Boolean,Object)

Boolean Boolean lub(Boolean,Object)

null null lub(null,Object)

Object Object Object

At run time, the first operand expression of the conditional expression is evaluated
first. If necessary, unboxing conversion is performed on the result.

The resulting boolean value is then used to choose either the second or the third
operand expression:

• If the value of the first operand is true, then the second operand expression is
chosen.

• If the value of the first operand is false, then the third operand expression is
chosen.

15.25 Conditional Operator ? : EXPRESSIONS

586

The chosen operand expression is then evaluated and the resulting value is
converted to the type of the conditional expression as determined by the rules stated
below.

This conversion may include boxing or unboxing conversion (§5.1.7, §5.1.8).

The operand expression not chosen is not evaluated for that particular evaluation
of the conditional expression.

15.25.1 Boolean Conditional Expressions

Boolean conditional expressions are standalone expressions (§15.2).

The type of a boolean conditional expression is determined as follows:

• If the second and third operands are both of type Boolean, the conditional
expression has type Boolean.

• Otherwise, the conditional expression has type boolean.

15.25.2 Numeric Conditional Expressions

Numeric conditional expressions are standalone expressions (§15.2).

The type of a numeric conditional expression is determined as follows:

• If the second and third operands have the same type, then that is the type of the
conditional expression.

• If one of the second and third operands is of primitive type T, and the type of the
other is the result of applying boxing conversion (§5.1.7) to T, then the type of
the conditional expression is T.

• If one of the operands is of type byte or Byte and the other is of type short or
Short, then the type of the conditional expression is short.

• If one of the operands is of type T where T is byte, short, or char, and the
other operand is a constant expression (§15.28) of type int whose value is
representable in type T, then the type of the conditional expression is T.

• If one of the operands is of type T, where T is Byte, Short, or Character, and the
other operand is a constant expression of type int whose value is representable
in the type U which is the result of applying unboxing conversion to T, then the
type of the conditional expression is U.

EXPRESSIONS Conditional Operator ? : 15.25

587

• Otherwise, binary numeric promotion (§5.6.2) is applied to the operand types,
and the type of the conditional expression is the promoted type of the second
and third operands.

Note that binary numeric promotion performs value set conversion (§5.1.13) and may
perform unboxing conversion (§5.1.8).

15.25.3 Reference Conditional Expressions

A reference conditional expression is a poly expression if it appears in an
assignment context or an invocation context (§5.2. §5.3). Otherwise, it is a
standalone expression.

Where a poly reference conditional expression appears in a context of a particular
kind with target type T, its second and third operand expressions similarly appear
in a context of the same kind with target type T.

The type of a poly reference conditional expression is the same as its target type.

The type of a standalone reference conditional expression is determined as follows:

• If the second and third operands have the same type (which may be the null type),
then that is the type of the conditional expression.

• If the type of one of the second and third operands is the null type, and the type of
the other operand is a reference type, then the type of the conditional expression
is that reference type.

• Otherwise, the second and third operands are of types S1 and S2 respectively.
Let T1 be the type that results from applying boxing conversion to S1, and let T2
be the type that results from applying boxing conversion to S2. The type of the
conditional expression is the result of applying capture conversion (§5.1.10) to
lub(T1, T2).

Because reference conditional expressions can be poly expressions, they can "pass
down" context to their operands. This allows lambda expressions and method reference
expressions to appear as operands:

return ... ? (x -> x) : (x -> -x);

It also allows use of extra information to improve type checking of generic method
invocations. Prior to Java SE 8, this assignment was well-typed:

List<String> ls = Arrays.asList();

but this was not:

15.26 Assignment Operators EXPRESSIONS

588

List<String> ls = ... ? Arrays.asList() : Arrays.asList("a","b");

The rules above allow both assignments to be considered well-typed.

Note that a reference conditional expression does not have to contain a poly expression as
an operand in order to be a poly expression. It is a poly expression simply by virtue of the
context in which it appears. For example, in the following code, the conditional expression
is a poly expression, and each operand is considered to be in an assignment context targeting
Class<? super Integer>:

Class<? super Integer> choose(boolean b,
 Class<Integer> c1,
 Class<Number> c2) {
 return b ? c1 : c2;
}

If the conditional expression was not a poly expression, then a compile-time error would
occur, as its type would be lub(Class<Integer>, Class<Number>) = Class<? extends
Number> which is incompatible with the return type of choose.

15.26 Assignment Operators

There are 12 assignment operators; all are syntactically right-associative (they
group right-to-left). Thus, a=b=c means a=(b=c), which assigns the value of c to
b and then assigns the value of b to a.

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator Expression

LeftHandSide:
ExpressionName
FieldAccess
ArrayAccess

AssignmentOperator:
(one of)
= *= /= %= += -= <<= >>= >>>= &= ^= |=

The result of the first operand of an assignment operator must be a variable, or a
compile-time error occurs.

EXPRESSIONS Assignment Operators 15.26

589

This operand may be a named variable, such as a local variable or a field of the
current object or class, or it may be a computed variable, as can result from a field
access (§15.11) or an array access (§15.10.3).

The type of the assignment expression is the type of the variable after capture
conversion (§5.1.10).

At run time, the result of the assignment expression is the value of the variable
after the assignment has occurred. The result of an assignment expression is not
itself a variable.

A variable that is declared final cannot be assigned to (unless it is definitely
unassigned (§16 (Definite Assignment))), because when an access of such a final
variable is used as an expression, the result is a value, not a variable, and so it
cannot be used as the first operand of an assignment operator.

15.26.1 Simple Assignment Operator =

A compile-time error occurs if the type of the right-hand operand cannot be
converted to the type of the variable by assignment conversion (§5.2).

At run time, the expression is evaluated in one of three ways.

If the left-hand operand expression is a field access expression e.f (§15.11),
possibly enclosed in one or more pairs of parentheses, then:

• First, the expression e is evaluated. If evaluation of e completes abruptly, the
assignment expression completes abruptly for the same reason.

• Next, the right hand operand is evaluated. If evaluation of the right hand
expression completes abruptly, the assignment expression completes abruptly
for the same reason.

• Then, if the field denoted by e.f is not static and the result of the evaluation
of e above is null, then a NullPointerException is thrown.

• Otherwise, the variable denoted by e.f is assigned the value of the right hand
operand as computed above.

If the left-hand operand is an array access expression (§15.10.3), possibly enclosed
in one or more pairs of parentheses, then:

• First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason; the index

15.26 Assignment Operators EXPRESSIONS

590

subexpression (of the left-hand operand array access expression) and the right-
hand operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same reason
and no assignment occurs.

• Otherwise, if the value of the array reference subexpression is null, then no
assignment occurs and a NullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a component of
the array referred to by the value of the array reference subexpression.

This component is a variable; call its type SC. Also, let TC be the type of the left-
hand operand of the assignment operator as determined at compile time. Then
there are two possibilities:

– If TC is a primitive type, then SC is necessarily the same as TC.

The value of the right-hand operand is converted to the type of the selected
array component, is subjected to value set conversion (§5.1.13) to the
appropriate standard value set (not an extended-exponent value set), and the
result of the conversion is stored into the array component.

– If TC is a reference type, then SC may not be the same as TC, but rather a type
that extends or implements TC.

Let RC be the class of the object referred to by the value of the right-hand
operand at run time.

A Java compiler may be able to prove at compile time that the array component
will be of type TC exactly (for example, TC might be final). But if a Java
compiler cannot prove at compile time that the array component will be of
type TC exactly, then a check must be performed at run time to ensure that the
class RC is assignment compatible (§5.2) with the actual type SC of the array
component.

EXPRESSIONS Assignment Operators 15.26

591

This check is similar to a narrowing cast (§5.5, §15.16), except that if the check fails,
an ArrayStoreException is thrown rather than a ClassCastException.

If class RC is not assignable to type SC, then no assignment occurs and an
ArrayStoreException is thrown.

Otherwise, the reference value of the right-hand operand is stored into the
selected array component.

Otherwise, three steps are required:

• First, the left-hand operand is evaluated to produce a variable. If this evaluation
completes abruptly, then the assignment expression completes abruptly for the
same reason; the right-hand operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation completes
abruptly, then the assignment expression completes abruptly for the same reason
and no assignment occurs.

• Otherwise, the value of the right-hand operand is converted to the type of the left-
hand variable, is subjected to value set conversion (§5.1.13) to the appropriate
standard value set (not an extended-exponent value set), and the result of the
conversion is stored into the variable.

Example 15.26.1-1. Simple Assignment To An Array Component

class ArrayReferenceThrow extends RuntimeException { }
class IndexThrow extends RuntimeException { }
class RightHandSideThrow extends RuntimeException { }

class IllustrateSimpleArrayAssignment {
 static Object[] objects = { new Object(), new Object() };
 static Thread[] threads = { new Thread(), new Thread() };

 static Object[] arrayThrow() {
 throw new ArrayReferenceThrow();
 }
 static int indexThrow() {
 throw new IndexThrow();
 }
 static Thread rightThrow() {
 throw new RightHandSideThrow();
 }
 static String name(Object q) {
 String sq = q.getClass().getName();
 int k = sq.lastIndexOf('.');
 return (k < 0) ? sq : sq.substring(k+1);
 }

15.26 Assignment Operators EXPRESSIONS

592

 static void testFour(Object[] x, int j, Object y) {
 String sx = x == null ? "null" : name(x[0]) + "s";
 String sy = name(y);
 System.out.println();
 try {
 System.out.print(sx + "[throw]=throw => ");
 x[indexThrow()] = rightThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sx + "[throw]=" + sy + " => ");
 x[indexThrow()] = y;
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sx + "[" + j + "]=throw => ");
 x[j] = rightThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sx + "[" + j + "]=" + sy + " => ");
 x[j] = y;
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 }

 public static void main(String[] args) {
 try {
 System.out.print("throw[throw]=throw => ");
 arrayThrow()[indexThrow()] = rightThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[throw]=Thread => ");
 arrayThrow()[indexThrow()] = new Thread();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[1]=throw => ");
 arrayThrow()[1] = rightThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[1]=Thread => ");
 arrayThrow()[1] = new Thread();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }

 testFour(null, 1, new StringBuffer());
 testFour(null, 9, new Thread());
 testFour(objects, 1, new StringBuffer());
 testFour(objects, 1, new Thread());
 testFour(objects, 9, new StringBuffer());

EXPRESSIONS Assignment Operators 15.26

593

 testFour(objects, 9, new Thread());
 testFour(threads, 1, new StringBuffer());
 testFour(threads, 1, new Thread());
 testFour(threads, 9, new StringBuffer());
 testFour(threads, 9, new Thread());
 }
}

This program produces the output:

15.26 Assignment Operators EXPRESSIONS

594

throw[throw]=throw => ArrayReferenceThrow
throw[throw]=Thread => ArrayReferenceThrow
throw[1]=throw => ArrayReferenceThrow
throw[1]=Thread => ArrayReferenceThrow

null[throw]=throw => IndexThrow
null[throw]=StringBuffer => IndexThrow
null[1]=throw => RightHandSideThrow
null[1]=StringBuffer => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=Thread => IndexThrow
null[9]=throw => RightHandSideThrow
null[9]=Thread => NullPointerException

Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow
Objects[1]=throw => RightHandSideThrow
Objects[1]=StringBuffer => Okay!

Objects[throw]=throw => IndexThrow
Objects[throw]=Thread => IndexThrow
Objects[1]=throw => RightHandSideThrow
Objects[1]=Thread => Okay!

Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow
Objects[9]=throw => RightHandSideThrow
Objects[9]=StringBuffer => ArrayIndexOutOfBoundsException

Objects[throw]=throw => IndexThrow
Objects[throw]=Thread => IndexThrow
Objects[9]=throw => RightHandSideThrow
Objects[9]=Thread => ArrayIndexOutOfBoundsException

Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=StringBuffer => ArrayStoreException

Threads[throw]=throw => IndexThrow
Threads[throw]=Thread => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=Thread => Okay!

Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=StringBuffer => ArrayIndexOutOfBoundsException

Threads[throw]=throw => IndexThrow
Threads[throw]=Thread => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=Thread => ArrayIndexOutOfBoundsException

EXPRESSIONS Assignment Operators 15.26

595

The most interesting case of the lot is thirteenth from the end:

Threads[1]=StringBuffer => ArrayStoreException

which indicates that the attempt to store a reference to a StringBuffer into an array whose
components are of type Thread throws an ArrayStoreException. The code is type-
correct at compile time: the assignment has a left-hand side of type Object[] and a right-
hand side of type Object. At run time, the first actual argument to method testFour is a
reference to an instance of "array of Thread" and the third actual argument is a reference
to an instance of class StringBuffer.

15.26.2 Compound Assignment Operators

A compound assignment expression of the form E1 op= E2 is equivalent to E1
= (T) ((E1) op (E2)), where T is the type of E1, except that E1 is evaluated
only once.

For example, the following code is correct:

short x = 3;
x += 4.6;

and results in x having the value 7 because it is equivalent to:

short x = 3;
x = (short)(x + 4.6);

At run time, the expression is evaluated in one of two ways.

If the left-hand operand expression is not an array access expression, then:

• First, the left-hand operand is evaluated to produce a variable. If this evaluation
completes abruptly, then the assignment expression completes abruptly for the
same reason; the right-hand operand is not evaluated and no assignment occurs.

• Otherwise, the value of the left-hand operand is saved and then the right-hand
operand is evaluated. If this evaluation completes abruptly, then the assignment
expression completes abruptly for the same reason and no assignment occurs.

• Otherwise, the saved value of the left-hand variable and the value of the
right-hand operand are used to perform the binary operation indicated by
the compound assignment operator. If this operation completes abruptly, then
the assignment expression completes abruptly for the same reason and no
assignment occurs.

• Otherwise, the result of the binary operation is converted to the type of the left-
hand variable, subjected to value set conversion (§5.1.13) to the appropriate

15.26 Assignment Operators EXPRESSIONS

596

standard value set (not an extended-exponent value set), and the result of the
conversion is stored into the variable.

If the left-hand operand expression is an array access expression (§15.10.3), then:

• First, the array reference subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason; the index
subexpression (of the left-hand operand array access expression) and the right-
hand operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array access
expression is evaluated. If this evaluation completes abruptly, then the
assignment expression completes abruptly for the same reason and the right-hand
operand is not evaluated and no assignment occurs.

• Otherwise, if the value of the array reference subexpression is null, then no
assignment occurs and a NullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers to an
array. If the value of the index subexpression is less than zero, or greater
than or equal to the length of the array, then no assignment occurs and an
ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a component
of the array referred to by the value of the array reference subexpression. The
value of this component is saved and then the right-hand operand is evaluated.
If this evaluation completes abruptly, then the assignment expression completes
abruptly for the same reason and no assignment occurs.

For a simple assignment operator, the evaluation of the right-hand operand occurs before
the checks of the array reference subexpression and the index subexpression, but for a
compound assignment operator, the evaluation of the right-hand operand occurs after
these checks.

• Otherwise, consider the array component selected in the previous step, whose
value was saved. This component is a variable; call its type S. Also, let T be
the type of the left-hand operand of the assignment operator as determined at
compile time.

– If T is a primitive type, then S is necessarily the same as T.

The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation indicated by the compound
assignment operator.

EXPRESSIONS Assignment Operators 15.26

597

If this operation completes abruptly (the only possibility is an integer division
by zero - see §15.17.2), then the assignment expression completes abruptly for
the same reason and no assignment occurs.

Otherwise, the result of the binary operation is converted to the type of the
selected array component, subjected to value set conversion (§5.1.13) to the
appropriate standard value set (not an extended-exponent value set), and the
result of the conversion is stored into the array component.

– If T is a reference type, then it must be String. Because class String is a
final class, S must also be String.

Therefore the run-time check that is sometimes required for the simple assignment
operator is never required for a compound assignment operator.

The saved value of the array component and the value of the right-hand
operand are used to perform the binary operation (string concatenation)
indicated by the compound assignment operator (which is necessarily +=). If
this operation completes abruptly, then the assignment expression completes
abruptly for the same reason and no assignment occurs.

Otherwise, the String result of the binary operation is stored into the array
component.

Example 15.26.2-1. Compound Assignment To An Array Component

class ArrayReferenceThrow extends RuntimeException { }
class IndexThrow extends RuntimeException { }
class RightHandSideThrow extends RuntimeException { }

class IllustrateCompoundArrayAssignment {
 static String[] strings = { "Simon", "Garfunkel" };
 static double[] doubles = { Math.E, Math.PI };

 static String[] stringsThrow() {
 throw new ArrayReferenceThrow();
 }
 static double[] doublesThrow() {
 throw new ArrayReferenceThrow();
 }
 static int indexThrow() {
 throw new IndexThrow();
 }
 static String stringThrow() {
 throw new RightHandSideThrow();
 }
 static double doubleThrow() {
 throw new RightHandSideThrow();
 }

15.26 Assignment Operators EXPRESSIONS

598

 static String name(Object q) {
 String sq = q.getClass().getName();
 int k = sq.lastIndexOf('.');
 return (k < 0) ? sq : sq.substring(k+1);
 }

 static void testEight(String[] x, double[] z, int j) {
 String sx = (x == null) ? "null" : "Strings";
 String sz = (z == null) ? "null" : "doubles";
 System.out.println();
 try {
 System.out.print(sx + "[throw]+=throw => ");
 x[indexThrow()] += stringThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sz + "[throw]+=throw => ");
 z[indexThrow()] += doubleThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sx + "[throw]+=\"heh\" => ");
 x[indexThrow()] += "heh";
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sz + "[throw]+=12345 => ");
 z[indexThrow()] += 12345;
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sx + "[" + j + "]+=throw => ");
 x[j] += stringThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sz + "[" + j + "]+=throw => ");
 z[j] += doubleThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sx + "[" + j + "]+=\"heh\" => ");
 x[j] += "heh";
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print(sz + "[" + j + "]+=12345 => ");
 z[j] += 12345;
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 }

 public static void main(String[] args) {

EXPRESSIONS Assignment Operators 15.26

599

 try {
 System.out.print("throw[throw]+=throw => ");
 stringsThrow()[indexThrow()] += stringThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[throw]+=throw => ");
 doublesThrow()[indexThrow()] += doubleThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[throw]+=\"heh\" => ");
 stringsThrow()[indexThrow()] += "heh";
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[throw]+=12345 => ");
 doublesThrow()[indexThrow()] += 12345;
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[1]+=throw => ");
 stringsThrow()[1] += stringThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[1]+=throw => ");
 doublesThrow()[1] += doubleThrow();
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[1]+=\"heh\" => ");
 stringsThrow()[1] += "heh";
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 try {
 System.out.print("throw[1]+=12345 => ");
 doublesThrow()[1] += 12345;
 System.out.println("Okay!");
 } catch (Throwable e) { System.out.println(name(e)); }
 testEight(null, null, 1);
 testEight(null, null, 9);
 testEight(strings, doubles, 1);
 testEight(strings, doubles, 9);
 }
}

This program produces the output:

15.26 Assignment Operators EXPRESSIONS

600

throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+="heh" => ArrayReferenceThrow
throw[throw]+=12345 => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+="heh" => ArrayReferenceThrow
throw[1]+=12345 => ArrayReferenceThrow

null[throw]+=throw => IndexThrow
null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
null[throw]+=12345 => IndexThrow
null[1]+=throw => NullPointerException
null[1]+=throw => NullPointerException
null[1]+="heh" => NullPointerException
null[1]+=12345 => NullPointerException

null[throw]+=throw => IndexThrow
null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
null[throw]+=12345 => IndexThrow
null[9]+=throw => NullPointerException
null[9]+=throw => NullPointerException
null[9]+="heh" => NullPointerException
null[9]+=12345 => NullPointerException

Strings[throw]+=throw => IndexThrow
doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
doubles[throw]+=12345 => IndexThrow
Strings[1]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow
Strings[1]+="heh" => Okay!
doubles[1]+=12345 => Okay!

Strings[throw]+=throw => IndexThrow
doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
doubles[throw]+=12345 => IndexThrow
Strings[9]+=throw => ArrayIndexOutOfBoundsException
doubles[9]+=throw => ArrayIndexOutOfBoundsException
Strings[9]+="heh" => ArrayIndexOutOfBoundsException
doubles[9]+=12345 => ArrayIndexOutOfBoundsException

The most interesting cases of the lot are eleventh and twelfth from the end:

Strings[1]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow

They are the cases where a right-hand side that throws an exception actually gets to throw
the exception; moreover, they are the only such cases in the lot. This demonstrates that

EXPRESSIONS Lambda Expressions 15.27

601

the evaluation of the right-hand operand indeed occurs after the checks for a null array
reference value and an out-of-bounds index value.

Example 15.26.2-2. Value Of Left-Hand Side Of Compound Assignment Is Saved Before

Evaluation Of Right-Hand Side

class Test {
 public static void main(String[] args) {
 int k = 1;
 int[] a = { 1 };
 k += (k = 4) * (k + 2);
 a[0] += (a[0] = 4) * (a[0] + 2);
 System.out.println("k==" + k + " and a[0]==" + a[0]);
 }
}

This program produces the output:

k==25 and a[0]==25

The value 1 of k is saved by the compound assignment operator += before its right-hand
operand (k = 4) * (k + 2) is evaluated. Evaluation of this right-hand operand then
assigns 4 to k, calculates the value 6 for k + 2, and then multiplies 4 by 6 to get 24. This
is added to the saved value 1 to get 25, which is then stored into k by the += operator. An
identical analysis applies to the case that uses a[0].

In short, the statements:

k += (k = 4) * (k + 2);
a[0] += (a[0] = 4) * (a[0] + 2);

behave in exactly the same manner as the statements:

k = k + (k = 4) * (k + 2);
a[0] = a[0] + (a[0] = 4) * (a[0] + 2);

15.27 Lambda Expressions

A lambda expression is like a method: it provides a list of formal parameters and
a body - an expression or block - expressed in terms of those parameters.

LambdaExpression:
LambdaParameters -> LambdaBody

Lambda expressions are always poly expressions (§15.2).

15.27 Lambda Expressions EXPRESSIONS

602

It is a compile-time error if a lambda expression occurs in a program in someplace
other than an assignment context (§5.2), an invocation context (§5.3), or a casting
context (§5.5).

Evaluation of a lambda expression produces an instance of a functional interface
(§9.8). Lambda expression evaluation does not cause the execution of the
expression's body; instead, this may occur at a later time when an appropriate
method of the functional interface is invoked.

Here are some examples of lambda expressions:

() -> {} // No parameters; result is void
() -> 42 // No parameters, expression body
() -> null // No parameters, expression body
() -> { return 42; } // No parameters, block body with return
() -> { System.gc(); } // No parameters, void block body

() -> { // Complex block body with returns
 if (true) return 12;
 else {
 int result = 15;
 for (int i = 1; i < 10; i++)
 result *= i;
 return result;
 }
}

(int x) -> x+1 // Single declared-type parameter
(int x) -> { return x+1; } // Single declared-type parameter
(x) -> x+1 // Single inferred-type parameter
x -> x+1 // Parentheses optional for
 // single inferred-type parameter

(String s) -> s.length() // Single declared-type parameter
(Thread t) -> { t.start(); } // Single declared-type parameter
s -> s.length() // Single inferred-type parameter
t -> { t.start(); } // Single inferred-type parameter

(int x, int y) -> x+y // Multiple declared-type parameters
(x, y) -> x+y // Multiple inferred-type parameters
(x, int y) -> x+y // Illegal: can't mix inferred and declared types
(x, final y) -> x+y // Illegal: no modifiers with inferred types

This syntax has the advantage of minimizing bracket noise around simple lambda
expressions, which is especially beneficial when a lambda expression is an argument to
a method, or when the body is another lambda expression. It also clearly distinguishes
between its expression and statement forms, which avoids ambiguities or over-reliance on
';' tokens. When some extra bracketing is needed to visually distinguish either the full
lambda expression or its body expression, parentheses are naturally supported (just as in
other cases in which operator precedence is unclear).

EXPRESSIONS Lambda Expressions 15.27

603

The syntax has some parsing challenges. The Java programming language has always
required arbitrary lookahead to distinguish between types and expressions after a '(' token:
what follows may be a cast or a parenthesized expression. This was made worse when
generics reused the binary operators '<' and '>' in types. Lambda expressions introduce a
new possibility: the tokens following '(' may describe a type, an expression, or a lambda
parameter list. Some tokens immediately indicate a parameter list (annotations, final);
in other cases there are certain patterns that must be interpreted as parameter lists (two
names in a row, a ',' not nested inside of '<' and '>'); and sometimes, the decision cannot
be made until a '->' is encountered after a ')'. The simplest way to think of how this might
be efficiently parsed is with a state machine: each state represents a subset of possible
interpretations (type, expression, or parameters), and when the machine transitions to a state
in which the set is a singleton, the parser knows which case it is. This does not map very
elegantly to a fixed-lookahead grammar, however.

There is no special nullary form: a lambda expression with zero arguments is expressed as
() -> The obvious special-case syntax, -> ..., does not work because it introduces
an ambiguity between argument lists and casts: (x) ->

Lambda expressions cannot declare type parameters. While it would make sense
semantically to do so, the natural syntax (preceding the parameter list with a type parameter
list) introduces messy ambiguities. For example, consider:

foo((x) < y , z > (w) -> v)

This could be an invocation of foo with one argument (a generic lambda cast to type x),
or it could be an invocation of foo with two arguments, both the results of comparisons,
the second comparing z with a lambda expression. (Strictly speaking, a lambda expression
is meaningless as an operand to the relational operator >, but that is a tenuous assumption
on which to build the grammar.)

There is a precedent for ambiguity resolution involving casts, which essentially prohibits
the use of - and + following a non-primitive cast (§15.15), but to extend that approach to
generic lambdas would involve invasive changes to the grammar.

15.27.1 Lambda Parameters

The formal parameters of a lambda expression may have either declared types
or inferred types. These styles cannot be mixed: it is not possible for a lambda
expression to declare the types of some of its parameters but leave others to be
inferred. Only parameters with declared types can have modifiers.

LambdaParameters:
Identifier
([FormalParameterList])
(InferredFormalParameterList)

InferredFormalParameterList:
Identifier {, Identifier}

15.27 Lambda Expressions EXPRESSIONS

604

The following productions from §4.3, §8.3, and §8.4.1 are shown here for convenience:

FormalParameterList:
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

FormalParameters:
FormalParameter {, FormalParameter}
ReceiverParameter {, FormalParameter}

FormalParameter:
{VariableModifier} UnannType VariableDeclaratorId

LastFormalParameter:
{VariableModifier} UnannType {Annotation} ... VariableDeclaratorId
FormalParameter

VariableModifier:
(one of)
Annotation final

VariableDeclaratorId:
Identifier [Dims]

Dims:
{Annotation} [] {{Annotation} []}

Receiver parameters are not permitted in the FormalParameters of a lambda expression,
as specified in §8.4.1.

A lambda expression whose formal parameters have declared types is said to be
explicitly typed, while a lambda expression whose formal parameters have inferred
types is said to be implicitly typed. A lambda expression with zero parameters is
explicitly typed.

If the formal parameters have inferred types, then these types are derived (§15.27.3)
from the functional interface type targeted by the lambda expression.

The syntax for formal parameters with declared types is the same as the syntax for
the parameters of a method declaration (§8.4.1).

The declared type of a formal parameter depends on whether it is a variable arity
parameter:

• If the formal parameter is not a variable arity parameter, then the declared
type is denoted by UnannType if no bracket pairs appear in UnannType and
VariableDeclaratorId, and specified by §10.2 otherwise.

EXPRESSIONS Lambda Expressions 15.27

605

• If the formal parameter is a variable arity parameter, then the declared type is
specified by §10.2. (Note that "mixed notation" is not permitted for variable arity
parameters.)

No distinction is made between the following lambda parameter lists:

(int... x) -> ..
(int[] x) -> ..

Consistent with the rules for overriding, either can be used, whether the functional
interface's abstract method is fixed arity or variable arity. Since lambda expressions are
never directly invoked, introducing int... where the functional interface uses int[] can
have no impact on the surrounding program. In a lambda body, a variable arity parameter
is treated just like an array-typed parameter.

The rules for annotation modifiers on a formal parameter declaration are specified
in §9.7.4 and §9.7.5.

It is a compile-time error if final appears more than once as a modifier for a formal
parameter declaration.

It is a compile-time error to use mixed array notation (§10.2) for a variable arity
parameter.

The scope and shadowing of a formal parameter declaration is specified in §6.3
and §6.4.

It is a compile-time error for a lambda expression to declare two formal parameters
with the same name. (That is, their declarations mention the same Identifier.)

It is a compile-time error if a lambda parameter has the name _ (that is, a single
underscore character).

The use of the variable name _ in any context is discouraged. Future versions of the
Java programming language may reserve this name as a keyword and/or give it special
semantics.

It is a compile-time error if a receiver parameter (§8.4.1) appears in the
FormalParameters of a lambda expression.

It is a compile-time error if a formal parameter that is declared final is assigned
to within the body of the lambda expression.

When the lambda expression is invoked (via a method invocation expression
(§15.12)), the values of the actual argument expressions initialize newly created
parameter variables, each of the declared or inferred type, before execution of
the lambda body. The Identifier that appears in the VariableDeclaratorId or the

15.27 Lambda Expressions EXPRESSIONS

606

InferredFormalParameterList may be used as a simple name in the lambda body
to refer to the formal parameter.

A lambda parameter of type float always contains an element of the float value set
(§4.2.3); similarly, a lambda parameter of type double always contains an element
of the double value set. It is not permitted for a lambda parameter of type float
to contain an element of the float-extended-exponent value set that is not also an
element of the float value set, nor for a lambda parameter of type double to contain
an element of the double-extended-exponent value set that is not also an element
of the double value set.

When the parameter types of a lambda expression are inferred, the same lambda body can
be interpreted in different ways, depending on the context in which it appears. Specifically,
the types of expressions in the body, the checked exceptions thrown by the body, and the
type correctness of code in the body all depend on the parameters' inferred types. This
implies that inference of parameter types must occur "before" attempting to type-check the
body of the lambda expression.

15.27.2 Lambda Body

A lambda body is either a single expression or a block (§14.2). Like a method body,
a lambda body describes code that will be executed whenever an invocation occurs.

LambdaBody:
Expression
Block

Unlike code appearing in anonymous class declarations, the meaning of names
and the this and super keywords appearing in a lambda body, along with the
accessibility of referenced declarations, are the same as in the surrounding context
(except that lambda parameters introduce new names).

The transparency of this (both explicit and implicit) in the body of a lambda expression
- that is, treating it the same as in the surrounding context - allows more flexibility for
implementations, and prevents the meaning of unqualified names in the body from being
dependent on overload resolution.

Practically speaking, it is unusual for a lambda expression to need to talk about itself (either
to call itself recursively or to invoke its other methods), while it is more common to want
to use names to refer to things in the enclosing class that would otherwise be shadowed
(this, toString()). If it is necessary for a lambda expression to refer to itself (as if via
this), a method reference or an anonymous inner class should be used instead.

A block lambda body is void-compatible if every return statement in the block has
the form return;.

EXPRESSIONS Lambda Expressions 15.27

607

A block lambda body is value-compatible if it cannot complete normally (§14.21)
and every return statement in the block has the form return Expression;.

It is a compile-time error if a block lambda body is neither void-compatible nor
value-compatible.

In a value-compatible block lambda body, the result expressions are any
expressions that may produce an invocation's value. Specifically, for each
statement of the form return Expression ; contained by the body, the Expression
is a result expression.

The following lambda bodies are void-compatible:

() -> {}
() -> { System.out.println("done"); }

These are value-compatible:

() -> { return "done"; }
() -> { if (...) return 1; else return 0; }

These are both:

() -> { throw new RuntimeException(); }
() -> { while (true); }

This is neither:

() -> { if (...) return "done"; System.out.println("done"); }

The handling of void/value-compatible and the meaning of names in the body jointly serve
to minimize the dependency on a particular target type in the given context, which is
useful both for implementations and for programmer comprehension. While expressions
can be assigned different types during overload resolution depending on the target type, the
meaning of unqualified names and the basic structure of the lambda body do not change.

Note that the void/value-compatible definition is not a strictly structural property: "can
complete normally" depends on the values of constant expressions, and these may include
names that reference constant variables.

Any local variable, formal parameter, or exception parameter used but not declared
in a lambda expression must either be declared final or be effectively final
(§4.12.4), or a compile-time error occurs where the use is attempted.

Any local variable used but not declared in a lambda body must be definitely
assigned (§16 (Definite Assignment)) before the lambda body, or a compile-time
error occurs.

15.27 Lambda Expressions EXPRESSIONS

608

Similar rules on variable use apply in the body of an inner class (§8.1.3). The restriction to
effectively final variables prohibits access to dynamically-changing local variables, whose
capture would likely introduce concurrency problems. Compared to the final restriction,
it reduces the clerical burden on programmers.

The restriction to effectively final variables includes standard loop variables, but not
enhanced-for loop variables, which are treated as distinct for each iteration of the loop
(§14.14.2).

The following lambda bodies demonstrate use of effectively final variables.

void m1(int x) {
 int y = 1;
 foo(() -> x+y);
 // Legal: x and y are both effectively final.
}

void m2(int x) {
 int y;
 y = 1;
 foo(() -> x+y);
 // Legal: x and y are both effectively final.
}

void m3(int x) {
 int y;
 if (...) y = 1;
 foo(() -> x+y);
 // Illegal: y is effectively final, but not definitely assigned.
}

void m4(int x) {
 int y;
 if (...) y = 1; else y = 2;
 foo(() -> x+y);
 // Legal: x and y are both effectively final.
}

void m5(int x) {
 int y;
 if (...) y = 1;
 y = 2;
 foo(() -> x+y);
 // Illegal: y is not effectively final.
}

void m6(int x) {
 foo(() -> x+1);
 x++;
 // Illegal: x is not effectively final.
}

EXPRESSIONS Lambda Expressions 15.27

609

void m7(int x) {
 foo(() -> x=1);
 // Illegal: x is not effectively final.
}

void m8() {
 int y;
 foo(() -> y=1);
 // Illegal: y is not definitely assigned before the lambda.
}

void m9(String[] arr) {
 for (String s : arr) {
 foo(() -> s);
 // Legal: s is effectively final
 // (it is a new variable on each iteration)
 }
}

void m10(String[] arr) {
 for (int i = 0; i < arr.length; i++) {
 foo(() -> arr[i]);
 // Illegal: i is not effectively final
 // (it is not final, and is incremented)
 }
}

15.27.3 Type of a Lambda Expression

A lambda expression is compatible in an assignment context, invocation context,
or casting context with a target type T if T is a functional interface type (§9.8) and
the expression is congruent with the function type of the ground target type derived
from T.

The ground target type is derived from T as follows:

• If T is a wildcard-parameterized functional interface type and the lambda
expression is explicitly typed, then the ground target type is inferred as described
in §18.5.3.

• If T is a wildcard-parameterized functional interface type and the lambda
expression is implicitly typed, then the ground target type is the non-wildcard
parameterization (§9.9) of T.

• Otherwise, the ground target type is T.

A lambda expression is congruent with a function type if all of the following are
true:

• The function type has no type parameters.

15.27 Lambda Expressions EXPRESSIONS

610

• The number of lambda parameters is the same as the number of parameter types
of the function type.

• If the lambda expression is explicitly typed, its formal parameter types are the
same as the parameter types of the function type.

• If the lambda parameters are assumed to have the same types as the function
type's parameter types, then:

– If the function type's result is void, the lambda body is either a statement
expression (§14.8) or a void-compatible block.

– If the function type's result is a (non-void) type R, then either i) the lambda
body is an expression that is compatible with R in an assignment context, or
ii) the lambda body is a value-compatible block, and each result expression
(§15.27.2) is compatible with R in an assignment context.

If a lambda expression is compatible with a target type T, then the type of the
expression, U, is the ground target type derived from T.

It is a compile-time error if any class or interface mentioned by either U or the
function type of U is not accessible from the class or interface in which the lambda
expression appears.

For each non-static member method m of U, if the function type of U has a
subsignature of the signature of m, then a notional method whose method type is the
function type of U is deemed to override m, and any compile-time error or unchecked
warning specified in §8.4.8.3 may occur.

A checked exception that can be thrown in the body of the lambda expression may
cause a compile-time error, as specified in §11.2.3.

The parameter types of explicitly typed lambdas are required to exactly match those of
the function type. While it would be possible to be more flexible - allow boxing or
contravariance, for example - this kind of generality seems unnecessary, and is inconsistent
with the way overriding works in class declarations. A programmer ought to know exactly
what function type is being targeted when writing a lambda expression, so he should thus
know exactly what signature must be overridden. (In contrast, this is not the case for
method references, and so more flexibility is allowed when they are used.) In addition,
more flexibility with parameter types would add to the complexity of type inference and
overload resolution.

Note that while boxing is not allowed in a strict invocation context, boxing of lambda
result expressions is always allowed - that is, the result expression appears in an assignment
context, regardless of the context enclosing the lambda expression. However, if an
explicitly typed lambda expression is an argument to an overloaded method, a method
signature that avoids boxing or unboxing the lambda result is preferred by the most specific
check (§15.12.2.5).

EXPRESSIONS Lambda Expressions 15.27

611

If the body of a lambda is a statement expression (that is, an expression that would be
allowed to stand alone as a statement), it is compatible with a void-producing function
type; any result is simply discarded. So, for example, both of the following are legal:

// Predicate has a boolean result
java.util.function.Predicate<String> p = s -> list.add(s);
// Consumer has a void result
java.util.function.Consumer<String> c = s -> list.add(s);

Generally speaking, a lambda of the form () -> expr, where expr is a statement expression,
is interpreted as either () -> { return expr; } or () -> { expr; }, depending on the
target type.

15.27.4 Run-Time Evaluation of Lambda Expressions

At run time, evaluation of a lambda expression is similar to evaluation of a class
instance creation expression, insofar as normal completion produces a reference
to an object. Evaluation of a lambda expression is distinct from execution of the
lambda body.

Either a new instance of a class with the properties below is allocated and
initialized, or an existing instance of a class with the properties below is referenced.
If a new instance is to be created, but there is insufficient space to allocate the
object, evaluation of the lambda expression completes abruptly by throwing an
OutOfMemoryError.

The value of a lambda expression is a reference to an instance of a class with the
following properties:

• The class implements the targeted functional interface type and, if the target type
is an intersection type, every other interface type mentioned in the intersection.

• Where the lambda expression has type U, for each non-static member method
m of U:

If the function type of U has a subsignature of the signature of m, then the class
declares a method that overrides m. The method's body has the effect of evaluating
the lambda body, if it is an expression, or of executing the lambda body, if it is
a block; if a result is expected, it is returned from the method.

If the erasure of the type of a method being overridden differs in its signature
from the erasure of the function type of U, then before evaluating or executing the
lambda body, the method's body checks that each argument value is an instance
of a subclass or subinterface of the erasure of the corresponding parameter type
in the function type of U; if not, a ClassCastException is thrown.

15.28 Constant Expressions EXPRESSIONS

612

• The class overrides no other methods of the targeted functional interface type
or other interface types mentioned above, although it may override methods of
the Object class.

These rules are meant to offer flexibility to implementations of the Java programming
language, in that:

• A new object need not be allocated on every evaluation.

• Objects produced by different lambda expressions need not belong to different classes
(if the bodies are identical, for example).

• Every object produced by evaluation need not belong to the same class (captured local
variables might be inlined, for example).

• If an "existing instance" is available, it need not have been created at a previous lambda
evaluation (it might have been allocated during the enclosing class's initialization, for
example).

If the targeted functional interface type is a subtype of java.io.Serializable, the
resulting object will automatically be an instance of a serializable class. Making an object
derived from a lambda expression serializable can have extra run time overhead and security
implications, so lambda-derived objects are not required to be serializable "by default".

15.28 Constant Expressions

ConstantExpression:
Expression

A constant expression is an expression denoting a value of primitive type or a
String that does not complete abruptly and is composed using only the following:

• Literals of primitive type and literals of type String (§3.10.1, §3.10.2, §3.10.3,
§3.10.4, §3.10.5)

• Casts to primitive types and casts to type String (§15.16)

• The unary operators +, -, ~, and ! (but not ++ or --) (§15.15.3, §15.15.4, §15.15.5,
§15.15.6)

• The multiplicative operators *, /, and % (§15.17)

• The additive operators + and - (§15.18)

• The shift operators <<, >>, and >>> (§15.19)

• The relational operators <, <=, >, and >= (but not instanceof) (§15.20)

• The equality operators == and != (§15.21)

EXPRESSIONS Constant Expressions 15.28

613

• The bitwise and logical operators &, ^, and | (§15.22)

• The conditional-and operator && and the conditional-or operator || (§15.23,
§15.24)

• The ternary conditional operator ? : (§15.25)

• Parenthesized expressions (§15.8.5) whose contained expression is a constant
expression.

• Simple names (§6.5.6.1) that refer to constant variables (§4.12.4).

• Qualified names (§6.5.6.2) of the form TypeName . Identifier that refer to
constant variables (§4.12.4).

Constant expressions of type String are always "interned" so as to share unique
instances, using the method String.intern.

A constant expression is always treated as FP-strict (§15.4), even if it occurs in a
context where a non-constant expression would not be considered to be FP-strict.

Constant expressions are used as case labels in switch statements (§14.11) and have
a special significance for assignment conversion (§5.2) and initialization of a class or
interface (§12.4.2). They may also govern the ability of a while, do, or for statement
to complete normally (§14.21), and the type of a conditional operator ? : with numeric
operands.

Example 15.28-1. Constant Expressions

true
(short)(1*2*3*4*5*6)
Integer.MAX_VALUE / 2
2.0 * Math.PI
"The integer " + Long.MAX_VALUE + " is mighty big."

615

C H A P T E R 16
Definite Assignment

EACH local variable (§14.4) and every blank final field (§4.12.4, §8.3.1.2) must
have a definitely assigned value when any access of its value occurs.

An access to its value consists of the simple name of the variable (or, for a field, the
simple name of the field qualified by this) occurring anywhere in an expression
except as the left-hand operand of the simple assignment operator = (§15.26.1).

For every access of a local variable or blank final field x, x must be definitely
assigned before the access, or a compile-time error occurs.

Similarly, every blank final variable must be assigned at most once; it must be
definitely unassigned when an assignment to it occurs.

Such an assignment is defined to occur if and only if either the simple name of the
variable (or, for a field, its simple name qualified by this) occurs on the left hand
side of an assignment operator.

For every assignment to a blank final variable, the variable must be definitely
unassigned before the assignment, or a compile-time error occurs.

The remainder of this chapter is devoted to a precise explanation of the words
"definitely assigned before" and "definitely unassigned before".

The idea behind definite assignment is that an assignment to the local variable
or blank final field must occur on every possible execution path to the access.
Similarly, the idea behind definite unassignment is that no other assignment to the
blank final variable is permitted to occur on any possible execution path to an
assignment.

The analysis takes into account the structure of statements and expressions; it also
provides a special treatment of the expression operators !, &&, ||, and ? :, and of
boolean-valued constant expressions.

DEFINITE ASSIGNMENT

616

Except for the special treatment of the conditional boolean operators &&, ||, and
? : and of boolean-valued constant expressions, the values of expressions are not
taken into account in the flow analysis.

Example 16-1. Definite Assignment Considers Structure of Statements and Expressions

A Java compiler recognizes that k is definitely assigned before its access (as an argument
of a method invocation) in the code:

{
 int k;
 if (v > 0 && (k = System.in.read()) >= 0)
 System.out.println(k);
}

because the access occurs only if the value of the expression:

v > 0 && (k = System.in.read()) >= 0

is true, and the value can be true only if the assignment to k is executed (more properly,
evaluated).

Similarly, a Java compiler will recognize that in the code:

{
 int k;
 while (true) {
 k = n;
 if (k >= 5) break;
 n = 6;
 }
 System.out.println(k);
}

the variable k is definitely assigned by the while statement because the condition
expression true never has the value false, so only the break statement can cause the
while statement to complete normally, and k is definitely assigned before the break
statement.

On the other hand, the code:

{
 int k;
 while (n < 4) {
 k = n;
 if (k >= 5) break;
 n = 6;
 }
 System.out.println(k); /* k is not "definitely assigned"
 before this statement */

DEFINITE ASSIGNMENT

617

}

must be rejected by a Java compiler, because in this case the while statement is not
guaranteed to execute its body as far as the rules of definite assignment are concerned.

Example 16-2. Definite Assignment Does Not Consider Values of Expressions

A Java compiler must produce a compile-time error for the code:

{
 int k;
 int n = 5;
 if (n > 2)
 k = 3;
 System.out.println(k); /* k is not "definitely assigned"
 before this statement */
}

even though the value of n is known at compile time, and in principle it can be known at
compile time that the assignment to k will always be executed (more properly, evaluated).
A Java compiler must operate according to the rules laid out in this section. The rules
recognize only constant expressions; in this example, the expression n > 2 is not a constant
expression as defined in §15.28.

As another example, a Java compiler will accept the code:

void flow(boolean flag) {
 int k;
 if (flag)
 k = 3;
 else
 k = 4;
 System.out.println(k);
}

as far as definite assignment of k is concerned, because the rules outlined in this section
allow it to tell that k is assigned no matter whether the flag is true or false. But the
rules do not accept the variation:

void flow(boolean flag) {
 int k;
 if (flag)
 k = 3;
 if (!flag)
 k = 4;
 System.out.println(k); /* k is not "definitely assigned"
 before this statement */
}

and so compiling this program must cause a compile-time error to occur.

DEFINITE ASSIGNMENT

618

Example 16-3. Definite Unassignment

A Java compiler will accept the code:

void unflow(boolean flag) {
 final int k;
 if (flag) {
 k = 3;
 System.out.println(k);
 }
 else {
 k = 4;
 System.out.println(k);
 }
}

as far as definite unassignment of k is concerned, because the rules outlined in this section
allow it to tell that k is assigned at most once (indeed, exactly once) no matter whether the
flag is true or false. But the rules do not accept the variation:

void unflow(boolean flag) {
 final int k;
 if (flag) {
 k = 3;
 System.out.println(k);
 }
 if (!flag) {
 k = 4;
 System.out.println(k); /* k is not "definitely unassigned"
 before this statement */
 }
}

and so compiling this program must cause a compile-time error to occur.

In order to precisely specify all the cases of definite assignment, the rules in this
section define several technical terms:

• whether a variable is definitely assigned before a statement or expression;

• whether a variable is definitely unassigned before a statement or expression;

• whether a variable is definitely assigned after a statement or expression; and

• whether a variable is definitely unassigned after a statement or expression.

For boolean-valued expressions, the last two are refined into four cases:

• whether a variable is definitely assigned after the expression when true;

• whether a variable is definitely unassigned after the expression when true;

DEFINITE ASSIGNMENT

619

• whether a variable is definitely assigned after the expression when false; and

• whether a variable is definitely unassigned after the expression when false.

Here, when true and when false refer to the value of the expression.

For example, the local variable k is definitely assigned a value after evaluation of the
expression:

a && ((k=m) > 5)

when the expression is true but not when the expression is false (because if a is false,
then the assignment to k is not necessarily executed (more properly, evaluated)).

The phrase "V is definitely assigned after X" (where V is a local variable and X is
a statement or expression) means "V is definitely assigned after X if X completes
normally". If X completes abruptly, the assignment need not have occurred, and the
rules stated here take this into account.

A peculiar consequence of this definition is that "V is definitely assigned after break;" is
always true! Because a break statement never completes normally, it is vacuously true that
V has been assigned a value if the break statement completes normally.

The statement "V is definitely unassigned after X" (where V is a variable and X is a
statement or expression) means "V is definitely unassigned after X if X completes
normally".

An even more peculiar consequence of this definition is that "V is definitely unassigned
after break;" is always true! Because a break statement never completes normally, it
is vacuously true that V has not been assigned a value if the break statement completes
normally. (For that matter, it is also vacuously true that the moon is made of green cheese
if the break statement completes normally.)

In all, there are four possibilities for a variable V after a statement or expression
has been executed:

• V is definitely assigned and is not definitely unassigned.

(The flow analysis rules prove that an assignment to V has occurred.)

• V is definitely unassigned and is not definitely assigned.

(The flow analysis rules prove that an assignment to V has not occurred.)

• V is not definitely assigned and is not definitely unassigned.

(The rules cannot prove whether or not an assignment to V has occurred.)

• V is definitely assigned and is definitely unassigned.

DEFINITE ASSIGNMENT

620

(It is impossible for the statement or expression to complete normally.)

To shorten the rules, the customary abbreviation "iff" is used to mean "if and
only if". We also use an abbreviation convention: if a rule contains one or
more occurrences of "[un]assigned" then it stands for two rules, one with every
occurrence of "[un]assigned" replaced by "definitely assigned" and one with every
occurrence of "[un]assigned" replaced by "definitely unassigned".

For example:

• V is [un]assigned after an empty statement iff it is [un]assigned before the empty
statement.

should be understood to stand for two rules:

• V is definitely assigned after an empty statement iff it is definitely assigned before the
empty statement.

• V is definitely unassigned after an empty statement iff it is definitely unassigned before
the empty statement.

Throughout the rest of this chapter, we will, unless explicitly stated otherwise,
write V to represent a local variable or blank final field which is in scope (§6.3).
Likewise, we will use a, b, c, and e to represent expressions, and S and T to represent
statements. We will use the phrase "a is V" to mean that a is either the simple name
of the variable V, or V's simple name qualified by this (ignoring parentheses). We
will use the phrase "a is not V" to mean the negation of "a is V".

The definite unassignment analysis of loop statements raises a special problem. Consider
the statement while (e) S. In order to determine whether V is definitely unassigned within
some subexpression of e, we need to determine whether V is definitely unassigned before
e. One might argue, by analogy with the rule for definite assignment (§16.2.10), that V is
definitely unassigned before e iff it is definitely unassigned before the while statement.
However, such a rule is inadequate for our purposes. If e evaluates to true, the statement
S will be executed. Later, if V is assigned by S, then in the following iteration(s) V will
have already been assigned when e is evaluated. Under the rule suggested above, it would
be possible to assign V multiple times, which is exactly what we have sought to avoid by
introducing these rules.

A revised rule would be: "V is definitely unassigned before e iff it is definitely unassigned
before the while statement and definitely unassigned after S". However, when we
formulate the rule for S, we find: "V is definitely unassigned before S iff it is definitely
unassigned after e when true". This leads to a circularity. In effect, V is definitely unassigned
before the loop condition e only if it is unassigned after the loop as a whole!

We break this vicious circle using a hypothetical analysis of the loop condition and body.
For example, if we assume that V is definitely unassigned before e (regardless of whether V

DEFINITE ASSIGNMENT Definite Assignment and Expressions 16.1

621

really is definitely unassigned before e), and can then prove that V was definitely unassigned
after e then we know that e does not assign V. This is stated more formally as:

Assuming V is definitely unassigned before e, V is definitely unassigned after e.

Variations on the above analysis are used to define well founded definite unassignment
rules for all loop statements in the Java programming language.

16.1 Definite Assignment and Expressions

16.1.1 Boolean Constant Expressions

• V is [un]assigned after any constant expression (§15.28) whose value is true
when false.

• V is [un]assigned after any constant expression whose value is false when true.

• V is [un]assigned after any constant expression whose value is true when true
iff V is [un]assigned before the constant expression.

• V is [un]assigned after any constant expression whose value is false when false
iff V is [un]assigned before the constant expression.

• V is [un]assigned after a boolean-valued constant expression e iff V is
[un]assigned after e when true and V is [un]assigned after e when false.

This is equivalent to saying that V is [un]assigned after e iff V is [un]assigned before e.

Because a constant expression whose value is true never has the value false, and a
constant expression whose value is false never has the value true, the first two rules are
vacuously satisfied. They are helpful in analyzing expressions involving the operators &&
(§16.1.2), || (§16.1.3), ! (§16.1.4), and ? : (§16.1.5).

16.1.2 Conditional-And Operator &&

• V is [un]assigned after a && b (§15.23) when true iff V is [un]assigned after b
when true.

• V is [un]assigned after a && b when false iff V is [un]assigned after a when false
and V is [un]assigned after b when false.

• V is [un]assigned before a iff V is [un]assigned before a && b.

• V is [un]assigned before b iff V is [un]assigned after a when true.

16.1 Definite Assignment and Expressions DEFINITE ASSIGNMENT

622

• V is [un]assigned after a && b iff V is [un]assigned after a && b when true and V
is [un]assigned after a && b when false.

16.1.3 Conditional-Or Operator ||

• V is [un]assigned after a || b (§15.24) when true iff V is [un]assigned after a
when true and V is [un]assigned after b when true.

• V is [un]assigned after a || b when false iff V is [un]assigned after b when false.

• V is [un]assigned before a iff V is [un]assigned before a || b.

• V is [un]assigned before b iff V is [un]assigned after a when false.

• V is [un]assigned after a || b iff V is [un]assigned after a || b when true and V
is [un]assigned after a || b when false.

16.1.4 Logical Complement Operator !

• V is [un]assigned after !a (§15.15.6) when true iff V is [un]assigned after a when
false.

• V is [un]assigned after !a when false iff V is [un]assigned after a when true.

• V is [un]assigned before a iff V is [un]assigned before !a.

• V is [un]assigned after !a iff V is [un]assigned after !a when true and V is
[un]assigned after !a when false.

This is equivalent to saying that V is [un]assigned after !a iff V is [un]assigned after a.

16.1.5 Conditional Operator ? :

Suppose that b and c are boolean-valued expressions.

• V is [un]assigned after a ? b : c (§15.25) when true iff V is [un]assigned after b
when true and V is [un]assigned after c when true.

• V is [un]assigned after a ? b : c when false iff V is [un]assigned after b when
false and V is [un]assigned after c when false.

• V is [un]assigned before a iff V is [un]assigned before a ? b : c.

• V is [un]assigned before b iff V is [un]assigned after a when true.

• V is [un]assigned before c iff V is [un]assigned after a when false.

DEFINITE ASSIGNMENT Definite Assignment and Expressions 16.1

623

• V is [un]assigned after a ? b : c iff V is [un]assigned after a ? b : c when true
and V is [un]assigned after a ? b : c when false.

16.1.6 Conditional Operator ? :

Suppose that b and c are expressions that are not boolean-valued.

• V is [un]assigned after a ? b : c (§15.25) iff V is [un]assigned after b and V is
[un]assigned after c.

• V is [un]assigned before a iff V is [un]assigned before a ? b : c.

• V is [un]assigned before b iff V is [un]assigned after a when true.

• V is [un]assigned before c iff V is [un]assigned after a when false.

16.1.7 Other Expressions of Type boolean

Suppose that e is an expression of type boolean and is not a boolean constant
expression, logical complement expression !a, conditional-and expression a && b,
conditional-or expression a || b, or conditional expression a ? b : c.

• V is [un]assigned after e when true iff V is [un]assigned after e.

• V is [un]assigned after e when false iff V is [un]assigned after e.

16.1.8 Assignment Expressions

Consider an assignment expression a = b, a += b, a -= b, a *= b, a /= b, a %= b, a
<<= b, a >>= b, a >>>= b, a &= b, a |= b, or a ^= b (§15.26).

• V is definitely assigned after the assignment expression iff either:

– a is V, or

– V is definitely assigned after b.

• V is definitely unassigned after the assignment expression iff a is not V and V is
definitely unassigned after b.

• V is [un]assigned before a iff V is [un]assigned before the assignment expression.

• V is [un]assigned before b iff V is [un]assigned after a.

Note that if a is V and V is not definitely assigned before a compound assignment such as a
&= b, then a compile-time error will necessarily occur. The first rule for definite assignment
stated above includes the disjunct "a is V" even for compound assignment expressions, not
just simple assignments, so that V will be considered to have been definitely assigned at

16.1 Definite Assignment and Expressions DEFINITE ASSIGNMENT

624

later points in the code. Including the disjunct "a is V" does not affect the binary decision
as to whether a program is acceptable or will result in a compile-time error, but it affects
how many different points in the code may be regarded as erroneous, and so in practice it
can improve the quality of error reporting. A similar remark applies to the inclusion of the
conjunct "a is not V" in the first rule for definite unassignment stated above.

16.1.9 Operators ++ and --

• V is definitely assigned after ++a (§15.15.1), --a (§15.15.2), a++ (§15.14.2),
or a-- (§15.14.3) iff either a is V or V is definitely assigned after the operand
expression.

• V is definitely unassigned after ++a, --a, a++, or a-- iff a is not V and V is
definitely unassigned after the operand expression.

• V is [un]assigned before a iff V is [un]assigned before ++a, --a, a++, or a--.

16.1.10 Other Expressions

If an expression is not a boolean constant expression, and is not a preincrement
expression ++a, predecrement expression --a, postincrement expression a++,
postdecrement expression a--, logical complement expression !a, conditional-and
expression a && b, conditional-or expression a || b, conditional expression a ? b :
c, or assignment expression, then the following rules apply:

• If the expression has no subexpressions, V is [un]assigned after the expression
iff V is [un]assigned before the expression.

This case applies to literals, names, this (both qualified and unqualified), unqualified
class instance creation expressions with no arguments, initialized array creation
expressions whose initializers contain no expressions, unqualified superclass field access
expressions, named method invocations with no arguments, and unqualified superclass
method invocations with no arguments.

• If the expression has subexpressions, V is [un]assigned after the expression iff V
is [un]assigned after its rightmost immediate subexpression.

There is a piece of subtle reasoning behind the assertion that a variable V can be known
to be definitely unassigned after a method invocation. Taken by itself, at face value and
without qualification, such an assertion is not always true, because an invoked method
can perform assignments. But it must be remembered that, for the purposes of the Java
programming language, the concept of definite unassignment is applied only to blank
final variables. If V is a blank final local variable, then only the method to which its
declaration belongs can perform assignments to V. If V is a blank final field, then only
a constructor or an initializer for the class containing the declaration for V can perform
assignments to V; no method can perform assignments to V. Finally, explicit constructor
invocations (§8.8.7.1) are handled specially (§16.9); although they are syntactically similar

DEFINITE ASSIGNMENT Definite Assignment and Statements 16.2

625

to expression statements containing method invocations, they are not expression statements
and therefore the rules of this section do not apply to explicit constructor invocations.

For any immediate subexpression y of an expression x, V is [un]assigned before y
iff one of the following is true:

• y is the leftmost immediate subexpression of x and V is [un]assigned before x.

• y is the right-hand operand of a binary operator and V is [un]assigned after the
left-hand operand.

• x is an array access, y is the subexpression within the brackets, and V is
[un]assigned after the subexpression before the brackets.

• x is a primary method invocation expression, y is the first argument expression
in the method invocation expression, and V is [un]assigned after the primary
expression that computes the target object.

• x is a method invocation expression or a class instance creation expression; y is
an argument expression, but not the first; and V is [un]assigned after the argument
expression to the left of y.

• x is a qualified class instance creation expression, y is the first argument
expression in the class instance creation expression, and V is [un]assigned after
the primary expression that computes the qualifying object.

• x is an array instance creation expression; y is a dimension expression, but not
the first; and V is [un]assigned after the dimension expression to the left of y.

• x is an array instance creation expression initialized via an array initializer; y is
the array initializer in x; and V is [un]assigned after the dimension expression
to the left of y.

16.2 Definite Assignment and Statements

16.2.1 Empty Statements

• V is [un]assigned after an empty statement (§14.6) iff it is [un]assigned before
the empty statement.

16.2.2 Blocks

• A blank final member field V is definitely assigned (and moreover is not
definitely unassigned) before the block (§14.2) that is the body of any method in

16.2 Definite Assignment and Statements DEFINITE ASSIGNMENT

626

the scope of V and before the declaration of any class declared within the scope
of V.

• A local variable V is definitely unassigned (and moreover is not definitely
assigned) before the block that is the body of the constructor, method, instance
initializer or static initializer that declares V.

• Let C be a class declared within the scope of V. Then V is definitely assigned
before the block that is the body of any constructor, method, instance initializer,
or static initializer declared in C iff V is definitely assigned before the declaration
of C.

Note that there are no rules that would allow us to conclude that V is definitely unassigned
before the block that is the body of any constructor, method, instance initializer, or static
initializer declared in C. We can informally conclude that V is not definitely unassigned
before the block that is the body of any constructor, method, instance initializer, or static
initializer declared in C, but there is no need for such a rule to be stated explicitly.

• V is [un]assigned after an empty block iff V is [un]assigned before the empty
block.

• V is [un]assigned after a non-empty block iff V is [un]assigned after the last
statement in the block.

• V is [un]assigned before the first statement of the block iff V is [un]assigned
before the block.

• V is [un]assigned before any other statement S of the block iff V is [un]assigned
after the statement immediately preceding S in the block.

We say that V is definitely unassigned everywhere in a block B iff:

• V is definitely unassigned before B.

• V is definitely assigned after e in every assignment expression V = e, V += e, V
-= e, V *= e, V /= e, V %= e, V <<= e, V >>= e, V >>>= e, V &= e, V |= e, or V ^=
e that occurs in B.

• V is definitely assigned before every expression ++V, --V, V++, or V-- that occurs
in B.

These conditions are counterintuitive and require some explanation. Consider a simple
assignment V = e. If V is definitely assigned after e, then either:

• The assignment occurs in dead code, and V is vacuously definitely assigned. In this
case, the assignment will not actually take place, and we can assume that V is not being
assigned by the assignment expression. Or:

• V was already assigned by an earlier expression prior to e. In this case the current
assignment will cause a compile-time error.

DEFINITE ASSIGNMENT Definite Assignment and Statements 16.2

627

So, we can conclude that if the conditions are met by a program that causes no compile
time error, then any assignments to V in B will not actually take place at run time.

16.2.3 Local Class Declaration Statements

• V is [un]assigned after a local class declaration statement (§14.3) iff V is
[un]assigned before the local class declaration statement.

16.2.4 Local Variable Declaration Statements

• V is [un]assigned after a local variable declaration statement (§14.4) that contains
no variable initializers iff V is [un]assigned before the local variable declaration
statement.

• V is definitely assigned after a local variable declaration statement that contains
at least one variable initializer iff either V is definitely assigned after the last
variable initializer in the local variable declaration statement or the last variable
initializer in the declaration is in the declarator that declares V.

• V is definitely unassigned after a local variable declaration statement that
contains at least one variable initializer iff V is definitely unassigned after the last
variable initializer in the local variable declaration statement and the last variable
initializer in the declaration is not in the declarator that declares V.

• V is [un]assigned before the first variable initializer in a local variable declaration
statement iff V is [un]assigned before the local variable declaration statement.

• V is definitely assigned before any variable initializer e other than the first one
in the local variable declaration statement iff either V is definitely assigned after
the variable initializer to the left of e or the initializer expression to the left of e
is in the declarator that declares V.

• V is definitely unassigned before any variable initializer e other than the first one
in the local variable declaration statement iff V is definitely unassigned after the
variable initializer to the left of e and the initializer expression to the left of e is
not in the declarator that declares V.

16.2.5 Labeled Statements

• V is [un]assigned after a labeled statement L : S (where L is a label) (§14.7) iff V
is [un]assigned after S and V is [un]assigned before every break statement that
may exit the labeled statement L : S.

• V is [un]assigned before S iff V is [un]assigned before L : S.

16.2 Definite Assignment and Statements DEFINITE ASSIGNMENT

628

16.2.6 Expression Statements

• V is [un]assigned after an expression statement e; (§14.8) iff it is [un]assigned
after e.

• V is [un]assigned before e iff it is [un]assigned before e;.

16.2.7 if Statements

The following rules apply to a statement if (e) S (§14.9.1):

• V is [un]assigned after if (e) S iff V is [un]assigned after S and V is [un]assigned
after e when false.

• V is [un]assigned before e iff V is [un]assigned before if (e) S.

• V is [un]assigned before S iff V is [un]assigned after e when true.

The following rules apply to a statement if (e) S else T (§14.9.2):

• V is [un]assigned after if (e) S else T iff V is [un]assigned after S and V is
[un]assigned after T.

• V is [un]assigned before e iff V is [un]assigned before if (e) S else T.

• V is [un]assigned before S iff V is [un]assigned after e when true.

• V is [un]assigned before T iff V is [un]assigned after e when false.

16.2.8 assert Statements

The following rules apply both to a statement assert e1 and to a statement assert
e1 : e2 (§14.10):

• V is [un]assigned before e1 iff V is [un]assigned before the assert statement.

• V is definitely assigned after the assert statement iff V is definitely assigned
before the assert statement.

• V is definitely unassigned after the assert statement iff V is definitely unassigned
before the assert statement and V is definitely unassigned after e1 when true.

The following rule applies to a statement assert e1 : e2 :

• V is [un]assigned before e2 iff V is [un]assigned after e1 when false.

DEFINITE ASSIGNMENT Definite Assignment and Statements 16.2

629

16.2.9 switch Statements

• V is [un]assigned after a switch statement (§14.11) iff all of the following are
true:

– Either there is a default label in the switch block or V is [un]assigned after
the switch expression.

– Either there are no switch labels in the switch block that do not begin a block-
statement-group (that is, there are no switch labels immediately before the "}"
that ends the switch block) or V is [un]assigned after the switch expression.

– Either the switch block contains no block-statement-groups or V is
[un]assigned after the last block-statement of the last block-statement-group.

– V is [un]assigned before every break statement that may exit the switch
statement.

• V is [un]assigned before the switch expression iff V is [un]assigned before the
switch statement.

If a switch block contains at least one block-statement-group, then the following
rules also apply:

• V is [un]assigned before the first block-statement of the first block-statement-
group in the switch block iff V is [un]assigned after the switch expression.

• V is [un]assigned before the first block-statement of any block-statement-group
other than the first iff V is [un]assigned after the switch expression and V is
[un]assigned after the preceding block-statement.

16.2.10 while Statements

• V is [un]assigned after while (e) S (§14.12) iff V is [un]assigned after e when
false and V is [un]assigned before every break statement for which the while
statement is the break target.

• V is definitely assigned before e iff V is definitely assigned before the while
statement.

• V is definitely unassigned before e iff all of the following are true:

– V is definitely unassigned before the while statement.

– Assuming V is definitely unassigned before e, V is definitely unassigned after S.

– Assuming V is definitely unassigned before e, V is definitely unassigned before
every continue statement for which the while statement is the continue target.

16.2 Definite Assignment and Statements DEFINITE ASSIGNMENT

630

• V is [un]assigned before S iff V is [un]assigned after e when true.

16.2.11 do Statements

• V is [un]assigned after do S while (e); (§14.13) iff V is [un]assigned after e
when false and V is [un]assigned before every break statement for which the do
statement is the break target.

• V is definitely assigned before S iff V is definitely assigned before the do
statement.

• V is definitely unassigned before S iff all of the following are true:

– V is definitely unassigned before the do statement.

– Assuming V is definitely unassigned before S, V is definitely unassigned after
e when true.

• V is [un]assigned before e iff V is [un]assigned after S and V is [un]assigned before
every continue statement for which the do statement is the continue target.

16.2.12 for Statements

The rules herein cover the basic for statement (§14.14.1). Since the enhanced for
statement (§14.14.2) is defined by translation to a basic for statement, no special
rules need to be provided for it.

• V is [un]assigned after a for statement iff both of the following are true:

– Either a condition expression is not present or V is [un]assigned after the
condition expression when false.

– V is [un]assigned before every break statement for which the for statement
is the break target.

• V is [un]assigned before the initialization part of the for statement iff V is
[un]assigned before the for statement.

• V is definitely assigned before the condition part of the for statement iff V is
definitely assigned after the initialization part of the for statement.

• V is definitely unassigned before the condition part of the for statement iff all
of the following are true:

– V is definitely unassigned after the initialization part of the for statement.

DEFINITE ASSIGNMENT Definite Assignment and Statements 16.2

631

– Assuming V is definitely unassigned before the condition part of the for
statement, V is definitely unassigned after the contained statement.

– Assuming V is definitely unassigned before the contained statement, V is
definitely unassigned before every continue statement for which the for
statement is the continue target.

• V is [un]assigned before the contained statement iff either of the following is true:

– A condition expression is present and V is [un]assigned after the condition
expression when true.

– No condition expression is present and V is [un]assigned after the initialization
part of the for statement.

• V is [un]assigned before the incrementation part of the for statement iff V is
[un]assigned after the contained statement and V is [un]assigned before every
continue statement for which the for statement is the continue target.

16.2.12.1 Initialization Part of for Statement

• If the initialization part of the for statement is a local variable declaration
statement, the rules of §16.2.4 apply.

• Otherwise, if the initialization part is empty, then V is [un]assigned after the
initialization part iff V is [un]assigned before the initialization part.

• Otherwise, three rules apply:

– V is [un]assigned after the initialization part iff V is [un]assigned after the last
expression statement in the initialization part.

– V is [un]assigned before the first expression statement in the initialization part
iff V is [un]assigned before the initialization part.

– V is [un]assigned before an expression statement S other than the first in
the initialization part iff V is [un]assigned after the expression statement
immediately preceding S.

16.2.12.2 Incrementation Part of for Statement

• If the incrementation part of the for statement is empty, then V is [un]assigned
after the incrementation part iff V is [un]assigned before the incrementation part.

• Otherwise, three rules apply:

16.2 Definite Assignment and Statements DEFINITE ASSIGNMENT

632

– V is [un]assigned after the incrementation part iff V is [un]assigned after the
last expression statement in the incrementation part.

– V is [un]assigned before the first expression statement in the incrementation
part iff V is [un]assigned before the incrementation part.

– V is [un]assigned before an expression statement S other than the first in
the incrementation part iff V is [un]assigned after the expression statement
immediately preceding S.

16.2.13 break, continue, return, and throw Statements

• By convention, we say that V is [un]assigned after any break, continue, return,
or throw statement (§14.15, §14.16, §14.17, §14.18).

The notion that a variable is "[un]assigned after" a statement or expression really
means "is [un]assigned after the statement or expression completes normally". Because a
break, continue, return, or throw statement never completes normally, it vacuously
satisfies this notion.

• In a return statement with an expression e or a throw statement with an
expression e, V is [un]assigned before e iff V is [un]assigned before the return
or throw statement.

16.2.14 synchronized Statements

• V is [un]assigned after synchronized (e) S (§14.19) iff V is [un]assigned after S.

• V is [un]assigned before e iff V is [un]assigned before the statement
synchronized (e) S.

• V is [un]assigned before S iff V is [un]assigned after e.

16.2.15 try Statements

These rules apply to every try statement (§14.20), whether or not it has a finally
block:

• V is [un]assigned before the try block iff V is [un]assigned before the try
statement.

• V is definitely assigned before a catch block iff V is definitely assigned before
the try block.

• V is definitely unassigned before a catch block iff all of the following are true:

DEFINITE ASSIGNMENT Definite Assignment and Statements 16.2

633

– V is definitely unassigned after the try block.

– V is definitely unassigned before every return statement that belongs to the
try block.

– V is definitely unassigned after e in every statement of the form throw e that
belongs to the try block.

– V is definitely unassigned after every assert statement that occurs in the try
block.

– V is definitely unassigned before every break statement that belongs to the try
block and whose break target contains (or is) the try statement.

– V is definitely unassigned before every continue statement that belongs to the
try block and whose continue target contains the try statement.

If a try statement does not have a finally block, then this rule also applies:

• V is [un]assigned after the try statement iff V is [un]assigned after the try block
and V is [un]assigned after every catch block in the try statement.

If a try statement does have a finally block, then these rules also apply:

• V is definitely assigned after the try statement iff at least one of the following
is true:

– V is definitely assigned after the try block and V is definitely assigned after
every catch block in the try statement.

– V is definitely assigned after the finally block.

– V is definitely unassigned after a try statement iff V is definitely unassigned
after the finally block.

• V is definitely assigned before the finally block iff V is definitely assigned
before the try statement.

• V is definitely unassigned before the finally block iff all of the following are
true:

– V is definitely unassigned after the try block.

– V is definitely unassigned before every return statement that belongs to the
try block.

– V is definitely unassigned after e in every statement of the form throw e that
belongs to the try block.

16.3 Definite Assignment and Parameters DEFINITE ASSIGNMENT

634

– V is definitely unassigned after every assert statement that occurs in the try
block.

– V is definitely unassigned before every break statement that belongs to the try
block and whose break target contains (or is) the try statement.

– V is definitely unassigned before every continue statement that belongs to the
try block and whose continue target contains the try statement.

– V is definitely unassigned after every catch block of the try statement.

16.3 Definite Assignment and Parameters

• A formal parameter V of a method or constructor (§8.4.1, §8.8.1) is definitely
assigned (and moreover is not definitely unassigned) before the body of the
method or constructor.

• An exception parameter V of a catch clause (§14.20) is definitely assigned (and
moreover is not definitely unassigned) before the body of the catch clause.

16.4 Definite Assignment and Array Initializers

• V is [un]assigned after an empty array initializer (§10.6) iff V is [un]assigned
before the empty array initializer.

• V is [un]assigned after a non-empty array initializer iff V is [un]assigned after the
last variable initializer in the array initializer.

• V is [un]assigned before the first variable initializer of the array initializer iff V
is [un]assigned before the array initializer.

• V is [un]assigned before any other variable initializer e of the array initializer iff V
is [un]assigned after the variable initializer to the left of e in the array initializer.

16.5 Definite Assignment and Enum Constants

The rules determining when a variable is definitely assigned or definitely
unassigned before an enum constant (§8.9.1) are given in §16.8.

DEFINITE ASSIGNMENT Definite Assignment and Anonymous Classes 16.6

635

This is because an enum constant is essentially a static final field (§8.3.1.1, §8.3.1.2)
that is initialized with a class instance creation expression (§15.9).

• V is definitely assigned before the declaration of a class body of an enum constant
with no arguments that is declared within the scope of V iff V is definitely assigned
before the enum constant.

• V is definitely assigned before the declaration of a class body of an enum constant
with arguments that is declared within the scope of V iff V is definitely assigned
after the last argument expression of the enum constant

The definite assignment/unassignment status of any construct within the class body
of an enum constant is governed by the usual rules for classes.

• V is [un]assigned before the first argument to an enum constant iff it is
[un]assigned before the enum constant.

• V is [un]assigned before y (an argument of an enum constant, but not the first)
iff V is [un]assigned after the argument to the left of y.

16.6 Definite Assignment and Anonymous Classes

• V is definitely assigned before an anonymous class declaration (§15.9.5) that is
declared within the scope of V iff V is definitely assigned after the class instance
creation expression that declares the anonymous class.

It should be clear that if an anonymous class is implicitly defined by an enum constant, the
rules of §16.5 apply.

16.7 Definite Assignment and Member Types

Let C be a class, and let V be a blank final member field of C. Then:

• V is definitely assigned (and moreover, not definitely unassigned) before the
declaration of any member type (§8.5, §9.5) of C.

Let C be a class declared within the scope of V. Then:

• V is definitely assigned before a member type declaration of C iff V is definitely
assigned before the declaration of C.

16.8 Definite Assignment and Static Initializers DEFINITE ASSIGNMENT

636

16.8 Definite Assignment and Static Initializers

Let C be a class declared within the scope of V. Then:

• V is definitely assigned before an enum constant (§8.9.1) or static variable
initializer (§8.3.2) of C iff V is definitely assigned before the declaration of C.

Note that there are no rules that would allow us to conclude that V is definitely unassigned
before a static variable initializer or enum constant. We can informally conclude that V
is not definitely unassigned before any static variable initializer of C, but there is no need
for such a rule to be stated explicitly.

Let C be a class, and let V be a blank static final member field of C, declared
in C. Then:

• V is definitely unassigned (and moreover is not definitely assigned) before the
leftmost enum constant, static initializer (§8.7), or static variable initializer of C.

• V is [un]assigned before an enum constant, static initializer, or static variable
initializer of C other than the leftmost iff V is [un]assigned after the preceding
enum constant, static initializer, or static variable initializer of C.

Let C be a class, and let V be a blank static final member field of C, declared
in a superclass of C. Then:

• V is definitely assigned (and moreover is not definitely unassigned) before every
enum constant of C.

• V is definitely assigned (and moreover is not definitely unassigned) before the
block that is the body of a static initializer of C.

• V is definitely assigned (and moreover is not definitely unassigned) before every
static variable initializer of C.

16.9 Definite Assignment, Constructors, and Instance
Initializers

Let C be a class declared within the scope of V. Then:

• V is definitely assigned before an instance variable initializer (§8.3.2) of C iff V
is definitely assigned before the declaration of C.

Note that there are no rules that would allow us to conclude that V is definitely unassigned
before an instance variable initializer. We can informally conclude that V is not definitely

DEFINITE ASSIGNMENT Definite Assignment, Constructors, and Instance Initializers 16.9

637

unassigned before any instance variable initializer of C, but there is no need for such a
rule to be stated explicitly.

Let C be a class, and let V be a blank final non-static member field of C, declared
in C. Then:

• V is definitely unassigned (and moreover is not definitely assigned) before the
leftmost instance initializer (§8.6) or instance variable initializer of C.

• V is [un]assigned before an instance initializer or instance variable initializer of C
other than the leftmost iff V is [un]assigned after the preceding instance initializer
or instance variable initializer of C.

The following rules hold within the constructors (§8.8.7) of class C:

• V is definitely assigned (and moreover is not definitely unassigned) after an
alternate constructor invocation (§8.8.7.1).

• V is definitely unassigned (and moreover is not definitely assigned) before an
explicit or implicit superclass constructor invocation (§8.8.7.1).

• If C has no instance initializers or instance variable initializers, then V is not
definitely assigned (and moreover is definitely unassigned) after an explicit or
implicit superclass constructor invocation.

• If C has at least one instance initializer or instance variable initializer then V is
[un]assigned after an explicit or implicit superclass constructor invocation iff V is
[un]assigned after the rightmost instance initializer or instance variable initializer
of C.

Let C be a class, and let V be a blank final member field of C, declared in a
superclass of C. Then:

• V is definitely assigned (and moreover is not definitely unassigned) before the
block that is the body of a constructor or instance initializer of C.

• V is definitely assigned (and moreover is not definitely unassigned) before every
instance variable initializer of C.

639

C H A P T E R 17
Threads and Locks

WHILE most of the discussion in the preceding chapters is concerned only with
the behavior of code as executed a single statement or expression at a time, that is,
by a single thread, the Java Virtual Machine can support many threads of execution
at once. These threads independently execute code that operates on values and
objects residing in a shared main memory. Threads may be supported by having
many hardware processors, by time-slicing a single hardware processor, or by time-
slicing many hardware processors.

Threads are represented by the Thread class. The only way for a user to create
a thread is to create an object of this class; each thread is associated with such
an object. A thread will start when the start() method is invoked on the
corresponding Thread object.

The behavior of threads, particularly when not correctly synchronized, can
be confusing and counterintuitive. This chapter describes the semantics of
multithreaded programs; it includes rules for which values may be seen by a read of
shared memory that is updated by multiple threads. As the specification is similar to
the memory models for different hardware architectures, these semantics are known
as the Java programming language memory model. When no confusion can arise,
we will simply refer to these rules as "the memory model".

These semantics do not prescribe how a multithreaded program should be executed.
Rather, they describe the behaviors that multithreaded programs are allowed
to exhibit. Any execution strategy that generates only allowed behaviors is an
acceptable execution strategy.

17.1 Synchronization THREADS AND LOCKS

640

17.1 Synchronization

The Java programming language provides multiple mechanisms for
communicating between threads. The most basic of these methods is
synchronization, which is implemented using monitors. Each object in Java is
associated with a monitor, which a thread can lock or unlock. Only one thread at
a time may hold a lock on a monitor. Any other threads attempting to lock that
monitor are blocked until they can obtain a lock on that monitor. A thread t may
lock a particular monitor multiple times; each unlock reverses the effect of one
lock operation.

The synchronized statement (§14.19) computes a reference to an object; it then
attempts to perform a lock action on that object's monitor and does not proceed
further until the lock action has successfully completed. After the lock action has
been performed, the body of the synchronized statement is executed. If execution
of the body is ever completed, either normally or abruptly, an unlock action is
automatically performed on that same monitor.

A synchronized method (§8.4.3.6) automatically performs a lock action when it is
invoked; its body is not executed until the lock action has successfully completed. If
the method is an instance method, it locks the monitor associated with the instance
for which it was invoked (that is, the object that will be known as this during
execution of the body of the method). If the method is static, it locks the monitor
associated with the Class object that represents the class in which the method is
defined. If execution of the method's body is ever completed, either normally or
abruptly, an unlock action is automatically performed on that same monitor.

The Java programming language neither prevents nor requires detection of
deadlock conditions. Programs where threads hold (directly or indirectly) locks
on multiple objects should use conventional techniques for deadlock avoidance,
creating higher-level locking primitives that do not deadlock, if necessary.

Other mechanisms, such as reads and writes of volatile variables and the use
of classes in the java.util.concurrent package, provide alternative ways of
synchronization.

17.2 Wait Sets and Notification

Every object, in addition to having an associated monitor, has an associated wait
set. A wait set is a set of threads.

THREADS AND LOCKS Wait Sets and Notification 17.2

641

When an object is first created, its wait set is empty. Elementary actions that
add threads to and remove threads from wait sets are atomic. Wait sets are
manipulated solely through the methods Object.wait, Object.notify, and
Object.notifyAll.

Wait set manipulations can also be affected by the interruption status of a thread,
and by the Thread class's methods dealing with interruption. Additionally, the
Thread class's methods for sleeping and joining other threads have properties
derived from those of wait and notification actions.

17.2.1 Wait

Wait actions occur upon invocation of wait(), or the timed forms wait(long
millisecs) and wait(long millisecs, int nanosecs).

A call of wait(long millisecs) with a parameter of zero, or a call of wait(long
millisecs, int nanosecs) with two zero parameters, is equivalent to an invocation
of wait().

A thread returns normally from a wait if it returns without throwing an
InterruptedException.

Let thread t be the thread executing the wait method on object m, and let n be the
number of lock actions by t on m that have not been matched by unlock actions.
One of the following actions occurs:

• If n is zero (i.e., thread t does not already possess the lock for target m), then an
IllegalMonitorStateException is thrown.

• If this is a timed wait and the nanosecs argument is not in the range of 0-999999
or the millisecs argument is negative, then an IllegalArgumentException is
thrown.

• If thread t is interrupted, then an InterruptedException is thrown and t's
interruption status is set to false.

• Otherwise, the following sequence occurs:

1. Thread t is added to the wait set of object m, and performs n unlock actions
on m.

2. Thread t does not execute any further instructions until it has been removed
from m's wait set. The thread may be removed from the wait set due to any
one of the following actions, and will resume sometime afterward:

17.2 Wait Sets and Notification THREADS AND LOCKS

642

– A notify action being performed on m in which t is selected for removal
from the wait set.

– A notifyAll action being performed on m.

– An interrupt action being performed on t.

– If this is a timed wait, an internal action removing t from m's wait set that
occurs after at least millisecs milliseconds plus nanosecs nanoseconds
elapse since the beginning of this wait action.

– An internal action by the implementation. Implementations are permitted,
although not encouraged, to perform "spurious wake-ups", that is, to
remove threads from wait sets and thus enable resumption without explicit
instructions to do so.

Notice that this provision necessitates the Java coding practice of using wait
only within loops that terminate only when some logical condition that the thread
is waiting for holds.

Each thread must determine an order over the events that could cause it to
be removed from a wait set. That order does not have to be consistent with
other orderings, but the thread must behave as though those events occurred
in that order.

For example, if a thread t is in the wait set for m, and then both an interrupt
of t and a notification of m occur, there must be an order over these events.
If the interrupt is deemed to have occurred first, then t will eventually return
from wait by throwing InterruptedException, and some other thread in
the wait set for m (if any exist at the time of the notification) must receive
the notification. If the notification is deemed to have occurred first, then t
will eventually return normally from wait with an interrupt still pending.

3. Thread t performs n lock actions on m.

4. If thread t was removed from m's wait set in step 2 due to an interrupt,
then t's interruption status is set to false and the wait method throws
InterruptedException.

17.2.2 Notification

Notification actions occur upon invocation of methods notify and notifyAll.

Let thread t be the thread executing either of these methods on object m, and let
n be the number of lock actions by t on m that have not been matched by unlock
actions. One of the following actions occurs:

THREADS AND LOCKS Wait Sets and Notification 17.2

643

• If n is zero, then an IllegalMonitorStateException is thrown.

This is the case where thread t does not already possess the lock for target m.

• If n is greater than zero and this is a notify action, then if m's wait set is not
empty, a thread u that is a member of m's current wait set is selected and removed
from the wait set.

There is no guarantee about which thread in the wait set is selected. This removal
from the wait set enables u's resumption in a wait action. Notice, however, that
u's lock actions upon resumption cannot succeed until some time after t fully
unlocks the monitor for m.

• If n is greater than zero and this is a notifyAll action, then all threads are
removed from m's wait set, and thus resume.

Notice, however, that only one of them at a time will lock the monitor required
during the resumption of wait.

17.2.3 Interruptions

Interruption actions occur upon invocation of Thread.interrupt, as well as
methods defined to invoke it in turn, such as ThreadGroup.interrupt.

Let t be the thread invoking u.interrupt, for some thread u, where t and u may
be the same. This action causes u's interruption status to be set to true.

Additionally, if there exists some object m whose wait set contains u, then u is
removed from m's wait set. This enables u to resume in a wait action, in which case
this wait will, after re-locking m's monitor, throw InterruptedException.

Invocations of Thread.isInterrupted can determine a thread's interruption
status. The static method Thread.interrupted may be invoked by a thread to
observe and clear its own interruption status.

17.2.4 Interactions of Waits, Notification, and Interruption

The above specifications allow us to determine several properties having to do with
the interaction of waits, notification, and interruption.

If a thread is both notified and interrupted while waiting, it may either:

• return normally from wait, while still having a pending interrupt (in other words,
a call to Thread.interrupted would return true)

• return from wait by throwing an InterruptedException

17.3 Sleep and Yield THREADS AND LOCKS

644

The thread may not reset its interrupt status and return normally from the call to
wait.

Similarly, notifications cannot be lost due to interrupts. Assume that a set s of
threads is in the wait set of an object m, and another thread performs a notify on
m. Then either:

• at least one thread in s must return normally from wait, or

• all of the threads in s must exit wait by throwing InterruptedException

Note that if a thread is both interrupted and woken via notify, and that thread
returns from wait by throwing an InterruptedException, then some other thread
in the wait set must be notified.

17.3 Sleep and Yield

Thread.sleep causes the currently executing thread to sleep (temporarily cease
execution) for the specified duration, subject to the precision and accuracy of
system timers and schedulers. The thread does not lose ownership of any monitors,
and resumption of execution will depend on scheduling and the availability of
processors on which to execute the thread.

It is important to note that neither Thread.sleep nor Thread.yield have any
synchronization semantics. In particular, the compiler does not have to flush
writes cached in registers out to shared memory before a call to Thread.sleep
or Thread.yield, nor does the compiler have to reload values cached in registers
after a call to Thread.sleep or Thread.yield.

For example, in the following (broken) code fragment, assume that this.done is a non-
volatile boolean field:

while (!this.done)
 Thread.sleep(1000);

The compiler is free to read the field this.done just once, and reuse the cached value in
each execution of the loop. This would mean that the loop would never terminate, even if
another thread changed the value of this.done.

THREADS AND LOCKS Memory Model 17.4

645

17.4 Memory Model

A memory model describes, given a program and an execution trace of that
program, whether the execution trace is a legal execution of the program. The
Java programming language memory model works by examining each read in an
execution trace and checking that the write observed by that read is valid according
to certain rules.

The memory model describes possible behaviors of a program. An implementation
is free to produce any code it likes, as long as all resulting executions of a program
produce a result that can be predicted by the memory model.

This provides a great deal of freedom for the implementor to perform a myriad of
code transformations, including the reordering of actions and removal of unnecessary
synchronization.

Example 17.4-1. Incorrectly Synchronized Programs May Exhibit Surprising Behavior

The semantics of the Java programming language allow compilers and microprocessors to
perform optimizations that can interact with incorrectly synchronized code in ways that
can produce behaviors that seem paradoxical. Here are some examples of how incorrectly
synchronized programs may exhibit surprising behaviors.

Consider, for example, the example program traces shown in Table 17.4-A. This program
uses local variables r1 and r2 and shared variables A and B. Initially, A == B == 0.

Table 17.4-A. Surprising results caused by statement reordering - original code

Thread 1 Thread 2

1: r2 = A; 3: r1 = B;

2: B = 1; 4: A = 2;

It may appear that the result r2 == 2 and r1 == 1 is impossible. Intuitively, either
instruction 1 or instruction 3 should come first in an execution. If instruction 1 comes first,
it should not be able to see the write at instruction 4. If instruction 3 comes first, it should
not be able to see the write at instruction 2.

If some execution exhibited this behavior, then we would know that instruction 4 came
before instruction 1, which came before instruction 2, which came before instruction 3,
which came before instruction 4. This is, on the face of it, absurd.

However, compilers are allowed to reorder the instructions in either thread, when this
does not affect the execution of that thread in isolation. If instruction 1 is reordered with
instruction 2, as shown in the trace in Table 17.4-B, then it is easy to see how the result
r2 == 2 and r1 == 1 might occur.

17.4 Memory Model THREADS AND LOCKS

646

Table 17.4-B. Surprising results caused by statement reordering - valid compiler

transformation

Thread 1 Thread 2

B = 1; r1 = B;

r2 = A; A = 2;

To some programmers, this behavior may seem "broken". However, it should be noted that
this code is improperly synchronized:

• there is a write in one thread,

• a read of the same variable by another thread,

• and the write and read are not ordered by synchronization.

This situation is an example of a data race (§17.4.5). When code contains a data race,
counterintuitive results are often possible.

Several mechanisms can produce the reordering in Table 17.4-B. A Just-In-Time compiler
in a Java Virtual Machine implementation may rearrange code, or the processor. In addition,
the memory hierarchy of the architecture on which a Java Virtual Machine implementation
is run may make it appear as if code is being reordered. In this chapter, we shall refer to
anything that can reorder code as a compiler.

Another example of surprising results can be seen in Table 17.4-C. Initially, p == q and
p.x == 0. This program is also incorrectly synchronized; it writes to shared memory
without enforcing any ordering between those writes.

Table 17.4-C. Surprising results caused by forward substitution

Thread 1 Thread 2

r1 = p; r6 = p;

r2 = r1.x; r6.x = 3;

r3 = q;

r4 = r3.x;

r5 = r1.x;

One common compiler optimization involves having the value read for r2 reused for r5:
they are both reads of r1.x with no intervening write. This situation is shown in Table 17.4-
D.

THREADS AND LOCKS Memory Model 17.4

647

Table 17.4-D. Surprising results caused by forward substitution

Thread 1 Thread 2

r1 = p; r6 = p;

r2 = r1.x; r6.x = 3;

r3 = q;

r4 = r3.x;

r5 = r2;

Now consider the case where the assignment to r6.x in Thread 2 happens between the
first read of r1.x and the read of r3.x in Thread 1. If the compiler decides to reuse the
value of r2 for the r5, then r2 and r5 will have the value 0, and r4 will have the value
3. From the perspective of the programmer, the value stored at p.x has changed from 0
to 3 and then changed back.

The memory model determines what values can be read at every point in the
program. The actions of each thread in isolation must behave as governed by the
semantics of that thread, with the exception that the values seen by each read are
determined by the memory model. When we refer to this, we say that the program
obeys intra-thread semantics. Intra-thread semantics are the semantics for single-
threaded programs, and allow the complete prediction of the behavior of a thread
based on the values seen by read actions within the thread. To determine if the
actions of thread t in an execution are legal, we simply evaluate the implementation
of thread t as it would be performed in a single-threaded context, as defined in the
rest of this specification.

Each time the evaluation of thread t generates an inter-thread action, it must match
the inter-thread action a of t that comes next in program order. If a is a read, then
further evaluation of t uses the value seen by a as determined by the memory model.

This section provides the specification of the Java programming language memory
model except for issues dealing with final fields, which are described in §17.5.

The memory model specified herein is not fundamentally based in the object-oriented
nature of the Java programming language. For conciseness and simplicity in our
examples, we often exhibit code fragments without class or method definitions, or explicit
dereferencing. Most examples consist of two or more threads containing statements with
access to local variables, shared global variables, or instance fields of an object. We
typically use variables names such as r1 or r2 to indicate variables local to a method or
thread. Such variables are not accessible by other threads.

17.4 Memory Model THREADS AND LOCKS

648

17.4.1 Shared Variables

Memory that can be shared between threads is called shared memory or heap
memory.

All instance fields, static fields, and array elements are stored in heap memory.
In this chapter, we use the term variable to refer to both fields and array elements.

Local variables (§14.4), formal method parameters (§8.4.1), and exception handler
parameters (§14.20) are never shared between threads and are unaffected by the
memory model.

Two accesses to (reads of or writes to) the same variable are said to be conflicting
if at least one of the accesses is a write.

17.4.2 Actions

An inter-thread action is an action performed by one thread that can be detected or
directly influenced by another thread. There are several kinds of inter-thread action
that a program may perform:

• Read (normal, or non-volatile). Reading a variable.

• Write (normal, or non-volatile). Writing a variable.

• Synchronization actions, which are:

– Volatile read. A volatile read of a variable.

– Volatile write. A volatile write of a variable.

– Lock. Locking a monitor

– Unlock. Unlocking a monitor.

– The (synthetic) first and last action of a thread.

– Actions that start a thread or detect that a thread has terminated (§17.4.4).

• External Actions. An external action is an action that may be observable outside
of an execution, and has a result based on an environment external to the
execution.

• Thread divergence actions (§17.4.9). A thread divergence action is only
performed by a thread that is in an infinite loop in which no memory,
synchronization, or external actions are performed. If a thread performs a thread
divergence action, it will be followed by an infinite number of thread divergence
actions.

THREADS AND LOCKS Memory Model 17.4

649

Thread divergence actions are introduced to model how a thread may cause all other
threads to stall and fail to make progress.

This specification is only concerned with inter-thread actions. We do not need to
concern ourselves with intra-thread actions (e.g., adding two local variables and
storing the result in a third local variable). As previously mentioned, all threads
need to obey the correct intra-thread semantics for Java programs. We will usually
refer to inter-thread actions more succinctly as simply actions.

An action a is described by a tuple < t, k, v, u >, comprising:

• t - the thread performing the action

• k - the kind of action

• v - the variable or monitor involved in the action.

For lock actions, v is the monitor being locked; for unlock actions, v is the
monitor being unlocked.

If the action is a (volatile or non-volatile) read, v is the variable being read.

If the action is a (volatile or non-volatile) write, v is the variable being written.

• u - an arbitrary unique identifier for the action

An external action tuple contains an additional component, which contains the
results of the external action as perceived by the thread performing the action. This
may be information as to the success or failure of the action, and any values read
by the action.

Parameters to the external action (e.g., which bytes are written to which socket) are
not part of the external action tuple. These parameters are set up by other actions
within the thread and can be determined by examining the intra-thread semantics.
They are not explicitly discussed in the memory model.

In non-terminating executions, not all external actions are observable. Non-
terminating executions and observable actions are discussed in §17.4.9.

17.4.3 Programs and Program Order

Among all the inter-thread actions performed by each thread t, the program order
of t is a total order that reflects the order in which these actions would be performed
according to the intra-thread semantics of t.

17.4 Memory Model THREADS AND LOCKS

650

A set of actions is sequentially consistent if all actions occur in a total order (the
execution order) that is consistent with program order, and furthermore, each read
r of a variable v sees the value written by the write w to v such that:

• w comes before r in the execution order, and

• there is no other write w' such that w comes before w' and w' comes before r in
the execution order.

Sequential consistency is a very strong guarantee that is made about visibility and
ordering in an execution of a program. Within a sequentially consistent execution,
there is a total order over all individual actions (such as reads and writes) which is
consistent with the order of the program, and each individual action is atomic and
is immediately visible to every thread.

If a program has no data races, then all executions of the program will appear to
be sequentially consistent.

Sequential consistency and/or freedom from data races still allows errors arising
from groups of operations that need to be perceived atomically and are not.

If we were to use sequential consistency as our memory model, many of the compiler and
processor optimizations that we have discussed would be illegal. For example, in the trace
in Table 17.4-C, as soon as the write of 3 to p.x occurred, subsequent reads of that location
would be required to see that value.

17.4.4 Synchronization Order

Every execution has a synchronization order. A synchronization order is a total
order over all of the synchronization actions of an execution. For each thread t,
the synchronization order of the synchronization actions (§17.4.2) in t is consistent
with the program order (§17.4.3) of t.

Synchronization actions induce the synchronized-with relation on actions, defined
as follows:

• An unlock action on monitor m synchronizes-with all subsequent lock actions on
m (where "subsequent" is defined according to the synchronization order).

• A write to a volatile variable v (§8.3.1.4) synchronizes-with all subsequent
reads of v by any thread (where "subsequent" is defined according to the
synchronization order).

• An action that starts a thread synchronizes-with the first action in the thread it
starts.

THREADS AND LOCKS Memory Model 17.4

651

• The write of the default value (zero, false, or null) to each variable
synchronizes-with the first action in every thread.

Although it may seem a little strange to write a default value to a variable before the
object containing the variable is allocated, conceptually every object is created at the
start of the program with its default initialized values.

• The final action in a thread T1 synchronizes-with any action in another thread T2
that detects that T1 has terminated.

T2 may accomplish this by calling T1.isAlive() or T1.join().

• If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point
where any other thread (including T2) determines that T2 has been interrupted (by
having an InterruptedException thrown or by invoking Thread.interrupted
or Thread.isInterrupted).

The source of a synchronizes-with edge is called a release, and the destination is
called an acquire.

17.4.5 Happens-before Order

Two actions can be ordered by a happens-before relationship. If one action
happens-before another, then the first is visible to and ordered before the second.

If we have two actions x and y, we write hb(x, y) to indicate that x happens-before y.

• If x and y are actions of the same thread and x comes before y in program order,
then hb(x, y).

• There is a happens-before edge from the end of a constructor of an object to the
start of a finalizer (§12.6) for that object.

• If an action x synchronizes-with a following action y, then we also have hb(x, y).

• If hb(x, y) and hb(y, z), then hb(x, z).

The wait methods of class Object (§17.2.1) have lock and unlock actions
associated with them; their happens-before relationships are defined by these
associated actions.

It should be noted that the presence of a happens-before relationship between
two actions does not necessarily imply that they have to take place in that order
in an implementation. If the reordering produces results consistent with a legal
execution, it is not illegal.

17.4 Memory Model THREADS AND LOCKS

652

For example, the write of a default value to every field of an object constructed by a thread
need not happen before the beginning of that thread, as long as no read ever observes that
fact.

More specifically, if two actions share a happens-before relationship, they do not
necessarily have to appear to have happened in that order to any code with which
they do not share a happens-before relationship. Writes in one thread that are in
a data race with reads in another thread may, for example, appear to occur out of
order to those reads.

The happens-before relation defines when data races take place.

A set of synchronization edges, S, is sufficient if it is the minimal set such that the
transitive closure of S with the program order determines all of the happens-before
edges in the execution. This set is unique.

It follows from the above definitions that:

• An unlock on a monitor happens-before every subsequent lock on that monitor.

• A write to a volatile field (§8.3.1.4) happens-before every subsequent read of
that field.

• A call to start() on a thread happens-before any actions in the started thread.

• All actions in a thread happen-before any other thread successfully returns from
a join() on that thread.

• The default initialization of any object happens-before any other actions (other
than default-writes) of a program.

When a program contains two conflicting accesses (§17.4.1) that are not ordered
by a happens-before relationship, it is said to contain a data race.

The semantics of operations other than inter-thread actions, such as reads of array
lengths (§10.7), executions of checked casts (§5.5, §15.16), and invocations of
virtual methods (§15.12), are not directly affected by data races.

Therefore, a data race cannot cause incorrect behavior such as returning the wrong length
for an array.

A program is correctly synchronized if and only if all sequentially consistent
executions are free of data races.

If a program is correctly synchronized, then all executions of the program will
appear to be sequentially consistent (§17.4.3).

THREADS AND LOCKS Memory Model 17.4

653

This is an extremely strong guarantee for programmers. Programmers do not need to
reason about reorderings to determine that their code contains data races. Therefore they
do not need to reason about reorderings when determining whether their code is correctly
synchronized. Once the determination that the code is correctly synchronized is made, the
programmer does not need to worry that reorderings will affect his or her code.

A program must be correctly synchronized to avoid the kinds of counterintuitive behaviors
that can be observed when code is reordered. The use of correct synchronization does
not ensure that the overall behavior of a program is correct. However, its use does allow
a programmer to reason about the possible behaviors of a program in a simple way;
the behavior of a correctly synchronized program is much less dependent on possible
reorderings. Without correct synchronization, very strange, confusing and counterintuitive
behaviors are possible.

We say that a read r of a variable v is allowed to observe a write w to v if, in the
happens-before partial order of the execution trace:

• r is not ordered before w (i.e., it is not the case that hb(r, w)), and

• there is no intervening write w' to v (i.e. no write w' to v such that hb(w, w') and
hb(w', r)).

Informally, a read r is allowed to see the result of a write w if there is no happens-
before ordering to prevent that read.

A set of actions A is happens-before consistent if for all reads r in A, where W(r)
is the write action seen by r, it is not the case that either hb(r, W(r)) or that there
exists a write w in A such that w.v = r.v and hb(W(r), w) and hb(w, r).

In a happens-before consistent set of actions, each read sees a write that it is allowed
to see by the happens-before ordering.

Example 17.4.5-1. Happens-before Consistency

For the trace in Table 17.4.5-A, initially A == B == 0. The trace can observe r2 == 0
and r1 == 0 and still be happens-before consistent, since there are execution orders that
allow each read to see the appropriate write.

Table 17.4.5-A. Behavior allowed by happens-before consistency, but not sequential

consistency.

Thread 1 Thread 2

B = 1; A = 2;

r2 = A; r1 = B;

Since there is no synchronization, each read can see either the write of the initial value or
the write by the other thread. An execution order that displays this behavior is:

17.4 Memory Model THREADS AND LOCKS

654

1: B = 1;
3: A = 2;
2: r2 = A; // sees initial write of 0
4: r1 = B; // sees initial write of 0

Another execution order that is happens-before consistent is:

1: r2 = A; // sees write of A = 2
3: r1 = B; // sees write of B = 1
2: B = 1;
4: A = 2;

In this execution, the reads see writes that occur later in the execution order. This may seem
counterintuitive, but is allowed by happens-before consistency. Allowing reads to see later
writes can sometimes produce unacceptable behaviors.

17.4.6 Executions

An execution E is described by a tuple < P, A, po, so, W, V, sw, hb >, comprising:

• P - a program

• A - a set of actions

• po - program order, which for each thread t, is a total order over all actions
performed by t in A

• so - synchronization order, which is a total order over all synchronization actions
in A

• W - a write-seen function, which for each read r in A, gives W(r), the write action
seen by r in E.

• V - a value-written function, which for each write w in A, gives V(w), the value
written by w in E.

• sw - synchronizes-with, a partial order over synchronization actions

• hb - happens-before, a partial order over actions

Note that the synchronizes-with and happens-before elements are uniquely
determined by the other components of an execution and the rules for well-formed
executions (§17.4.7).

An execution is happens-before consistent if its set of actions is happens-before
consistent (§17.4.5).

THREADS AND LOCKS Memory Model 17.4

655

17.4.7 Well-Formed Executions

We only consider well-formed executions. An execution E = < P, A, po, so, W, V,
sw, hb > is well formed if the following are true:

1. Each read sees a write to the same variable in the execution.

All reads and writes of volatile variables are volatile actions. For all reads r
in A, we have W(r) in A and W(r).v = r.v. The variable r.v is volatile if and
only if r is a volatile read, and the variable w.v is volatile if and only if w is
a volatile write.

2. The happens-before order is a partial order.

The happens-before order is given by the transitive closure of synchronizes-
with edges and program order. It must be a valid partial order: reflexive,
transitive and antisymmetric.

3. The execution obeys intra-thread consistency.

For each thread t, the actions performed by t in A are the same as would
be generated by that thread in program-order in isolation, with each write w
writing the value V(w), given that each read r sees the value V(W(r)). Values
seen by each read are determined by the memory model. The program order
given must reflect the program order in which the actions would be performed
according to the intra-thread semantics of P.

4. The execution is happens-before consistent (§17.4.6).

5. The execution obeys synchronization-order consistency.

For all volatile reads r in A, it is not the case that either so(r, W(r)) or that there
exists a write w in A such that w.v = r.v and so(W(r), w) and so(w, r).

17.4.8 Executions and Causality Requirements

We use f|d to denote the function given by restricting the domain of f to d. For all x in d,
f|d(x) = f(x), and for all x not in d, f|d(x) is undefined.

We use p|d to represent the restriction of the partial order p to the elements in d. For all x,y in
d, p(x,y) if and only if p|d(x,y). If either x or y are not in d, then it is not the case that p|d(x,y).

A well-formed execution E = < P, A, po, so, W, V, sw, hb > is validated by
committing actions from A. If all of the actions in A can be committed, then the
execution satisfies the causality requirements of the Java programming language
memory model.

17.4 Memory Model THREADS AND LOCKS

656

Starting with the empty set as C0, we perform a sequence of steps where we take
actions from the set of actions A and add them to a set of committed actions Ci to
get a new set of committed actions Ci+1. To demonstrate that this is reasonable,
for each Ci we need to demonstrate an execution E containing Ci that meets certain
conditions.

Formally, an execution E satisfies the causality requirements of the Java
programming language memory model if and only if there exist:

• Sets of actions C0, C1, ... such that:

– C0 is the empty set

– Ci is a proper subset of Ci+1

– A = ∪ (C0, C1, ...)

If A is finite, then the sequence C0, C1, ... will be finite, ending in a set Cn = A.

If A is infinite, then the sequence C0, C1, ... may be infinite, and it must be the
case that the union of all elements of this infinite sequence is equal to A.

• Well-formed executions E1, ..., where Ei = < P, Ai, poi, soi, Wi, Vi, swi, hbi >.

Given these sets of actions C0, ... and executions E1, ... , every action in Ci must
be one of the actions in Ei. All actions in Ci must share the same relative happens-
before order and synchronization order in both Ei and E. Formally:

1. Ci is a subset of Ai

2. hbi|Ci = hb|Ci

3. soi|Ci = so|Ci

The values written by the writes in Ci must be the same in both Ei and E. Only the
reads in Ci-1 need to see the same writes in Ei as in E. Formally:

4. Vi|Ci = V|Ci

5. Wi|Ci-1 = W|Ci-1

All reads in Ei that are not in Ci-1 must see writes that happen-before them. Each
read r in Ci - Ci-1 must see writes in Ci-1 in both Ei and E, but may see a different
write in Ei from the one it sees in E. Formally:

6. For any read r in Ai - Ci-1, we have hbi(Wi(r), r)

7. For any read r in (Ci - Ci-1), we have Wi(r) in Ci-1 and W(r) in Ci-1

THREADS AND LOCKS Memory Model 17.4

657

Given a set of sufficient synchronizes-with edges for Ei, if there is a release-acquire
pair that happens-before (§17.4.5) an action you are committing, then that pair must
be present in all Ej, where j ≥ i. Formally:

8. Let sswi be the swi edges that are also in the transitive reduction of hbi but not
in po. We call sswi the sufficient synchronizes-with edges for Ei. If sswi(x, y)
and hbi(y, z) and z in Ci, then swj(x, y) for all j ≥ i.

If an action y is committed, all external actions that happen-before y are also
committed.

9. If y is in Ci, x is an external action and hbi(x, y), then x in Ci.

Example 17.4.8-1. Happens-before Consistency Is Not Sufficient

Happens-before consistency is a necessary, but not sufficient, set of constraints. Merely
enforcing happens-before consistency would allow for unacceptable behaviors - those that
violate the requirements we have established for programs. For example, happens-before
consistency allows values to appear "out of thin air". This can be seen by a detailed
examination of the trace in Table 17.4.8-A.

Table 17.4.8-A. Happens-before consistency is not sufficient

Thread 1 Thread 2

r1 = x; r2 = y;

if (r1 != 0) y = 1; if (r2 != 0) x = 1;

The code shown in Table 17.4.8-A is correctly synchronized. This may seem surprising,
since it does not perform any synchronization actions. Remember, however, that a program
is correctly synchronized if, when it is executed in a sequentially consistent manner, there
are no data races. If this code is executed in a sequentially consistent way, each action will
occur in program order, and neither of the writes will occur. Since no writes occur, there
can be no data races: the program is correctly synchronized.

Since this program is correctly synchronized, the only behaviors we can allow are
sequentially consistent behaviors. However, there is an execution of this program that is
happens-before consistent, but not sequentially consistent:

r1 = x; // sees write of x = 1
y = 1;
r2 = y; // sees write of y = 1
x = 1;

This result is happens-before consistent: there is no happens-before relationship that
prevents it from occurring. However, it is clearly not acceptable: there is no sequentially
consistent execution that would result in this behavior. The fact that we allow a read to see
a write that comes later in the execution order can sometimes thus result in unacceptable
behaviors.

17.4 Memory Model THREADS AND LOCKS

658

Although allowing reads to see writes that come later in the execution order is sometimes
undesirable, it is also sometimes necessary. As we saw above, the trace in Table 17.4.5-
A requires some reads to see writes that occur later in the execution order. Since the reads
come first in each thread, the very first action in the execution order must be a read. If that
read cannot see a write that occurs later, then it cannot see any value other than the initial
value for the variable it reads. This is clearly not reflective of all behaviors.

We refer to the issue of when reads can see future writes as causality, because of issues
that arise in cases like the one found in Table 17.4.8-A. In that case, the reads cause the
writes to occur, and the writes cause the reads to occur. There is no "first cause" for the
actions. Our memory model therefore needs a consistent way of determining which reads
can see writes early.

Examples such as the one found in Table 17.4.8-A demonstrate that the specification must
be careful when stating whether a read can see a write that occurs later in the execution
(bearing in mind that if a read sees a write that occurs later in the execution, it represents
the fact that the write is actually performed early).

The memory model takes as input a given execution, and a program, and determines
whether that execution is a legal execution of the program. It does this by gradually building
a set of "committed" actions that reflect which actions were executed by the program.
Usually, the next action to be committed will reflect the next action that can be performed by
a sequentially consistent execution. However, to reflect reads that need to see later writes,
we allow some actions to be committed earlier than other actions that happen-before them.

Obviously, some actions may be committed early and some may not. If, for example, one of
the writes in Table 17.4.8-A were committed before the read of that variable, the read could
see the write, and the "out-of-thin-air" result could occur. Informally, we allow an action to
be committed early if we know that the action can occur without assuming some data race
occurs. In Table 17.4.8-A, we cannot perform either write early, because the writes cannot
occur unless the reads see the result of a data race.

17.4.9 Observable Behavior and Nonterminating Executions

For programs that always terminate in some bounded finite period of time,
their behavior can be understood (informally) simply in terms of their allowable
executions. For programs that can fail to terminate in a bounded amount of time,
more subtle issues arise.

The observable behavior of a program is defined by the finite sets of external
actions that the program may perform. A program that, for example, simply prints
"Hello" forever is described by a set of behaviors that for any non-negative integer
i, includes the behavior of printing "Hello" i times.

Termination is not explicitly modeled as a behavior, but a program can easily
be extended to generate an additional external action executionTermination that
occurs when all threads have terminated.

THREADS AND LOCKS Memory Model 17.4

659

We also define a special hang action. If behavior is described by a set of external
actions including a hang action, it indicates a behavior where after the external
actions are observed, the program can run for an unbounded amount of time without
performing any additional external actions or terminating. Programs can hang if all
threads are blocked or if the program can perform an unbounded number of actions
without performing any external actions.

A thread can be blocked in a variety of circumstances, such as when it is attempting
to acquire a lock or perform an external action (such as a read) that depends on
external data.

An execution may result in a thread being blocked indefinitely and the execution's
not terminating. In such cases, the actions generated by the blocked thread must
consist of all actions generated by that thread up to and including the action that
caused the thread to be blocked, and no actions that would be generated by the
thread after that action.

To reason about observable behaviors, we need to talk about sets of observable
actions.

If O is a set of observable actions for an execution E, then set O must be a subset of
E's actions, A, and must contain only a finite number of actions, even if A contains
an infinite number of actions. Furthermore, if an action y is in O, and either hb(x,
y) or so(x, y), then x is in O.

Note that a set of observable actions are not restricted to external actions. Rather,
only external actions that are in a set of observable actions are deemed to be
observable external actions.

A behavior B is an allowable behavior of a program P if and only if B is a finite
set of external actions and either:

• There exists an execution E of P, and a set O of observable actions for E, and B
is the set of external actions in O (If any threads in E end in a blocked state and
O contains all actions in E, then B may also contain a hang action); or

• There exists a set O of actions such that B consists of a hang action plus all the
external actions in O and for all k ≥ | O |, there exists an execution E of P with
actions A, and there exists a set of actions O' such that:

– Both O and O' are subsets of A that fulfill the requirements for sets of
observable actions.

– O ⊆ O' ⊆ A

– | O' | ≥ k

17.5 final Field Semantics THREADS AND LOCKS

660

– O' - O contains no external actions

Note that a behavior B does not describe the order in which the external actions in B are
observed, but other (internal) constraints on how the external actions are generated and
performed may impose such constraints.

17.5 final Field Semantics

Fields declared final are initialized once, but never changed under normal
circumstances. The detailed semantics of final fields are somewhat different from
those of normal fields. In particular, compilers have a great deal of freedom to
move reads of final fields across synchronization barriers and calls to arbitrary or
unknown methods. Correspondingly, compilers are allowed to keep the value of a
final field cached in a register and not reload it from memory in situations where
a non-final field would have to be reloaded.

final fields also allow programmers to implement thread-safe immutable objects
without synchronization. A thread-safe immutable object is seen as immutable
by all threads, even if a data race is used to pass references to the immutable
object between threads. This can provide safety guarantees against misuse of an
immutable class by incorrect or malicious code. final fields must be used correctly
to provide a guarantee of immutability.

An object is considered to be completely initialized when its constructor finishes. A
thread that can only see a reference to an object after that object has been completely
initialized is guaranteed to see the correctly initialized values for that object's final
fields.

The usage model for final fields is a simple one: Set the final fields for an
object in that object's constructor; and do not write a reference to the object being
constructed in a place where another thread can see it before the object's constructor
is finished. If this is followed, then when the object is seen by another thread, that
thread will always see the correctly constructed version of that object's final fields.
It will also see versions of any object or array referenced by those final fields that
are at least as up-to-date as the final fields are.

Example 17.5-1. final Fields In The Java Memory Model

The program below illustrates how final fields compare to normal fields.

class FinalFieldExample {
 final int x;
 int y;

THREADS AND LOCKS final Field Semantics 17.5

661

 static FinalFieldExample f;

 public FinalFieldExample() {
 x = 3;
 y = 4;
 }

 static void writer() {
 f = new FinalFieldExample();
 }

 static void reader() {
 if (f != null) {
 int i = f.x; // guaranteed to see 3
 int j = f.y; // could see 0
 }
 }
}

The class FinalFieldExample has a final int field x and a non-final int field y. One
thread might execute the method writer and another might execute the method reader.

Because the writer method writes f after the object's constructor finishes, the reader
method will be guaranteed to see the properly initialized value for f.x: it will read the
value 3. However, f.y is not final; the reader method is therefore not guaranteed to
see the value 4 for it.

Example 17.5-2. final Fields For Security

final fields are designed to allow for necessary security guarantees. Consider the
following program. One thread (which we shall refer to as thread 1) executes:

Global.s = "/tmp/usr".substring(4);

while another thread (thread 2) executes

String myS = Global.s;
if (myS.equals("/tmp"))System.out.println(myS);

String objects are intended to be immutable and string operations do not perform
synchronization. While the String implementation does not have any data races, other
code could have data races involving the use of String objects, and the memory model
makes weak guarantees for programs that have data races. In particular, if the fields of the
String class were not final, then it would be possible (although unlikely) that thread 2
could initially see the default value of 0 for the offset of the string object, allowing it to
compare as equal to "/tmp". A later operation on the String object might see the correct
offset of 4, so that the String object is perceived as being "/usr". Many security features
of the Java programming language depend upon String objects being perceived as truly
immutable, even if malicious code is using data races to pass String references between
threads.

17.5 final Field Semantics THREADS AND LOCKS

662

17.5.1 Semantics of final Fields

Let o be an object, and c be a constructor for o in which a final field f is written.
A freeze action on final field f of o takes place when c exits, either normally or
abruptly.

Note that if one constructor invokes another constructor, and the invoked
constructor sets a final field, the freeze for the final field takes place at the end
of the invoked constructor.

For each execution, the behavior of reads is influenced by two additional partial
orders, the dereference chain dereferences() and the memory chain mc(), which are
considered to be part of the execution (and thus, fixed for any particular execution).
These partial orders must satisfy the following constraints (which need not have
a unique solution):

• Dereference Chain: If an action a is a read or write of a field or element of an
object o by a thread t that did not initialize o, then there must exist some read r
by thread t that sees the address of o such that r dereferences(r, a).

• Memory Chain: There are several constraints on the memory chain ordering:

– If r is a read that sees a write w, then it must be the case that mc(w, r).

– If r and a are actions such that dereferences(r, a), then it must be the case that
mc(r, a).

– If w is a write of the address of an object o by a thread t that did not initialize
o, then there must exist some read r by thread t that sees the address of o such
that mc(r, w).

Given a write w, a freeze f, an action a (that is not a read of a final field), a read
r1 of the final field frozen by f, and a read r2 such that hb(w, f), hb(f, a), mc(a, r1),
and dereferences(r1, r2), then when determining which values can be seen by r2,
we consider hb(w, r2). (This happens-before ordering does not transitively close
with other happens-before orderings.)

Note that the dereferences order is reflexive, and r1 can be the same as r2.

For reads of final fields, the only writes that are deemed to come before the read
of the final field are the ones derived through the final field semantics.

17.5.2 Reading final Fields During Construction

A read of a final field of an object within the thread that constructs that object is
ordered with respect to the initialization of that field within the constructor by the

THREADS AND LOCKS final Field Semantics 17.5

663

usual happens-before rules. If the read occurs after the field is set in the constructor,
it sees the value the final field is assigned, otherwise it sees the default value.

17.5.3 Subsequent Modification of final Fields

In some cases, such as deserialization, the system will need to change the final
fields of an object after construction. final fields can be changed via reflection
and other implementation-dependent means. The only pattern in which this has
reasonable semantics is one in which an object is constructed and then the final
fields of the object are updated. The object should not be made visible to other
threads, nor should the final fields be read, until all updates to the final fields
of the object are complete. Freezes of a final field occur both at the end of the
constructor in which the final field is set, and immediately after each modification
of a final field via reflection or other special mechanism.

Even then, there are a number of complications. If a final field is initialized to
a constant expression (§15.28) in the field declaration, changes to the final field
may not be observed, since uses of that final field are replaced at compile time
with the value of the constant expression.

Another problem is that the specification allows aggressive optimization of final
fields. Within a thread, it is permissible to reorder reads of a final field with those
modifications of a final field that do not take place in the constructor.

Example 17.5.3-1. Aggressive Optimization of final Fields

class A {
 final int x;
 A() {
 x = 1;
 }

 int f() {
 return d(this,this);
 }

 int d(A a1, A a2) {
 int i = a1.x;
 g(a1);
 int j = a2.x;
 return j - i;
 }

 static void g(A a) {
 // uses reflection to change a.x to 2
 }
}

17.5 final Field Semantics THREADS AND LOCKS

664

In the d method, the compiler is allowed to reorder the reads of x and the call to g freely.
Thus, new A().f() could return -1, 0, or 1.

An implementation may provide a way to execute a block of code in a final-field-
safe context. If an object is constructed within a final-field-safe context, the reads
of a final field of that object will not be reordered with modifications of that final
field that occur within that final-field-safe context.

A final-field-safe context has additional protections. If a thread has seen an
incorrectly published reference to an object that allows the thread to see the default
value of a final field, and then, within a final-field-safe context, reads a properly
published reference to the object, it will be guaranteed to see the correct value of
the final field. In the formalism, code executed within a final-field-safe context
is treated as a separate thread (for the purposes of final field semantics only).

In an implementation, a compiler should not move an access to a final field into
or out of a final-field-safe context (although it can be moved around the execution
of such a context, so long as the object is not constructed within that context).

One place where use of a final-field-safe context would be appropriate is in an executor
or thread pool. By executing each Runnable in a separate final-field-safe context, the
executor could guarantee that incorrect access by one Runnable to a object o will not
remove final field guarantees for other Runnables handled by the same executor.

17.5.4 Write-Protected Fields

Normally, a field that is final and static may not be modified. However,
System.in, System.out, and System.err are static final fields that, for
legacy reasons, must be allowed to be changed by the methods System.setIn,
System.setOut, and System.setErr. We refer to these fields as being write-
protected to distinguish them from ordinary final fields.

The compiler needs to treat these fields differently from other final fields. For
example, a read of an ordinary final field is "immune" to synchronization: the
barrier involved in a lock or volatile read does not have to affect what value is read
from a final field. Since the value of write-protected fields may be seen to change,
synchronization events should have an effect on them. Therefore, the semantics
dictate that these fields be treated as normal fields that cannot be changed by user
code, unless that user code is in the System class.

THREADS AND LOCKS Word Tearing 17.6

665

17.6 Word Tearing

One consideration for implementations of the Java Virtual Machine is that every
field and array element is considered distinct; updates to one field or element must
not interact with reads or updates of any other field or element. In particular, two
threads that update adjacent elements of a byte array separately must not interfere
or interact and do not need synchronization to ensure sequential consistency.

Some processors do not provide the ability to write to a single byte. It would be
illegal to implement byte array updates on such a processor by simply reading an
entire word, updating the appropriate byte, and then writing the entire word back to
memory. This problem is sometimes known as word tearing, and on processors that
cannot easily update a single byte in isolation some other approach will be required.

Example 17.6-1. Detection of Word Tearing

The following program is a test case to detect word tearing:

public class WordTearing extends Thread {
 static final int LENGTH = 8;
 static final int ITERS = 1000000;
 static byte[] counts = new byte[LENGTH];
 static Thread[] threads = new Thread[LENGTH];

 final int id;
 WordTearing(int i) {
 id = i;
 }

 public void run() {
 byte v = 0;
 for (int i = 0; i < ITERS; i++) {
 byte v2 = counts[id];
 if (v != v2) {
 System.err.println("Word-Tearing found: " +
 "counts[" + id + "] = "+ v2 +
 ", should be " + v);
 return;
 }
 v++;
 counts[id] = v;
 }
 }

 public static void main(String[] args) {
 for (int i = 0; i < LENGTH; ++i)
 (threads[i] = new WordTearing(i)).start();
 }
}

17.7 Non-Atomic Treatment of double and long THREADS AND LOCKS

666

This makes the point that bytes must not be overwritten by writes to adjacent bytes.

17.7 Non-Atomic Treatment of double and long

For the purposes of the Java programming language memory model, a single write
to a non-volatile long or double value is treated as two separate writes: one to each
32-bit half. This can result in a situation where a thread sees the first 32 bits of a
64-bit value from one write, and the second 32 bits from another write.

Writes and reads of volatile long and double values are always atomic.

Writes to and reads of references are always atomic, regardless of whether they are
implemented as 32-bit or 64-bit values.

Some implementations may find it convenient to divide a single write action on a 64-bit
long or double value into two write actions on adjacent 32-bit values. For efficiency's
sake, this behavior is implementation-specific; an implementation of the Java Virtual
Machine is free to perform writes to long and double values atomically or in two parts.

Implementations of the Java Virtual Machine are encouraged to avoid splitting 64-bit values
where possible. Programmers are encouraged to declare shared 64-bit values as volatile
or synchronize their programs correctly to avoid possible complications.

667

C H A P T E R 18
Type Inference

A variety of compile-time analyses require reasoning about types that are not yet
known. Principal among these are generic method applicability testing (§18.5.1)
and generic method invocation type inference (§18.5.2). In general, we refer to the
process of reasoning about unknown types as type inference.

At a high level, type inference can be decomposed into three processes:

• Reduction takes a compatibility assertion about an expression or type, called
a constraint formula, and reduces it to a set of bounds on inference variables.
Often, a constraint formula reduces to other constraint formulas, which must
be recursively reduced. A procedure is followed to identify these additional
constraint formulas and, ultimately, to express via a bound set the conditions
under which the choices for inferred types would render each constraint formula
true.

• Incorporation maintains a set of inference variable bounds, ensuring that these
are consistent as new bounds are added. Because the bounds on one variable
can sometimes impact the possible choices for another variable, this process
propagates bounds between such interdependent variables.

• Resolution examines the bounds on an inference variable and determines an
instantiation that is compatible with those bounds. It also decides the order in
which interdependent inference variables are to be resolved.

These processes interact closely: reduction can trigger incorporation; incorporation
may lead to further reduction; and resolution may cause further incorporation.

• §18.1 more precisely defines the concepts used as intermediate results and the
notation used to express them.

• §18.2 describes reduction in detail.

• §18.3 describes incorporation in detail.

18.1 Concepts and Notation TYPE INFERENCE

668

• §18.4 describes resolution in detail.

• §18.5 defines how these inference tools are used to solve certain compile-time
analysis problems.

In comparison to the Java SE 7 Edition of The Java® Language Specification, important
changes to inference include:

• Adding support for lambda expressions and method references as method invocation
arguments.

• Generalizing to define inference in terms of poly expressions, which may not have well-
defined types until after inference is complete. This has the notable effect of improving
inference for nested generic method and diamond constructor invocations.

• Describing how inference is used to handle wildcard-parameterized functional interface
target types and most specific method analysis.

• Clarifying the distinction between invocation applicability testing (which involves only
the invocation arguments) and invocation type inference (which incorporates a target
type).

• Delaying resolution of all inference variables, even those with lower bounds, until
invocation type inference, in order to get better results.

• Improving inference behavior for interdependent (or self-dependent) variables.

• Eliminating bugs and potential sources of confusion. This revision more carefully and
precisely handles the distinction between specific conversion contexts and subtyping,
and describes reduction by paralleling the corresponding non-inference relations. Where
there are intentional departures from the non-inference relations, these are explicitly
identified as such.

• Laying a foundation for future evolution: enhancements to or new applications of
inference will be easier to integrate into the specification.

18.1 Concepts and Notation

This section defines inference variables, constraint formulas, and bounds, as the
terms will be used throughout this chapter. It also presents notation.

18.1.1 Inference Variables

Inference variables are meta-variables for types - that is, they are special names
that allow abstract reasoning about types. To distinguish them from type variables,
inference variables are represented with Greek letters, principally α.

The term "type" is used loosely in this chapter to include type-like syntax
that contains inference variables. The term proper type excludes such "types"

TYPE INFERENCE Concepts and Notation 18.1

669

that mention inference variables. Assertions that involve inference variables are
assertions about every proper type that can be produced by replacing each inference
variable with a proper type.

18.1.2 Constraint Formulas

Constraint formulas are assertions of compatibility or subtyping that may involve
inference variables. The formulas may take one of the following forms:

• ‹Expression → T›: An expression is compatible in a loose invocation context
with type T (§5.3).

• ‹S → T›: A type S is compatible in a loose invocation context with type T (§5.3).

• ‹S <: T›: A reference type S is a subtype of a reference type T (§4.10).

• ‹S <= T›: A type argument S is contained by a type argument T (§4.5.1).

• ‹S = T›: A type S is the same as a type T (§4.3.4), or a type argument S is the
same as type argument T.

• ‹LambdaExpression →throws T›: The checked exceptions thrown by the body of
the LambdaExpression are declared by the throws clause of the function type
derived from T.

• ‹MethodReference →throws T›: The checked exceptions thrown by the referenced
method are declared by the throws clause of the function type derived from T.

Examples of constraint formulas:

• From Collections.singleton("hi"), we have the constraint formula ‹"hi" → α›.
Through reduction, this will become the constraint formula: ‹String <: α›.

• From Arrays.asList(1, 2.0), we have the constraint formulas ‹1 → α› and ‹2.0
→ α›. Through reduction, these will become the constraint formulas ‹int → α› and
‹double → α›, and then ‹Integer <: α› and ‹Double <: α›.

• From the target type of the constructor invocation List<Thread> lt = new
ArrayList<>(), we have the constraint formula ‹ArrayList<α> → List<Thread>›.
Through reduction, this will become the constraint formula ‹α <= Thread›, and then
‹α = Thread›.

18.1.3 Bounds

During the inference process, a set of bounds on inference variables is maintained.
A bound has one of the following forms:

• S = T, where at least one of S or T is an inference variable: S is the same as T.

18.1 Concepts and Notation TYPE INFERENCE

670

• S <: T, where at least one of S or T is an inference variable: S is a subtype of T.

• false: No valid choice of inference variables exists.

• G<α1, ..., αn> = capture(G<A1, ..., An>): The variables α1, ..., αn represent the result
of capture conversion (§5.1.10) applied to G<A1, ..., An> (where A1, ..., An may be
types or wildcards and may mention inference variables).

• throws α: The inference variable α appears in a throws clause.

A bound is satisfied by an inference variable substitution if, after applying the
substitution, the assertion is true. The bound false can never be satisfied.

Some bounds relate an inference variable to a proper type. Let T be a proper type.
Given a bound of the form α = T or T = α, we say T is an instantiation of α. Similarly,
given a bound of the form α <: T, we say T is a proper upper bound of α, and given
a bound of the form T <: α, we say T is a proper lower bound of α.

Other bounds relate two inference variables, or an inference variable to a type that
contains inference variables. Such bounds, of the form S = T or S <: T, are called
dependencies.

A bound of the form G<α1, ..., αn> = capture(G<A1, ..., An>) indicates that α1, ..., αn

are placeholders for the results of capture conversion. This is necessary because
capture conversion can only be performed on a proper type, and the inference
variables in A1, ..., An may not yet be resolved.

A bound of the form throws α is purely informational: it directs resolution to
optimize the instantiation of α so that, if possible, it is not a checked exception type.

An important intermediate result of inference is a bound set. It is sometimes
convenient to refer to an empty bound set with the symbol true; this is merely out
of convenience, and the two are interchangeable.

Examples of bound sets:

• { α = String } contains a single bound, instantiating α as String.

• { Integer <: α, Double <: α, α <: Object } describes two proper lower bounds and
one proper upper bound for α.

• { α <: Iterable<?>, β <: Object, α <: List<β> } describes a proper upper bound
for each of α and β, along with a dependency between them.

• { } contains no bounds nor dependencies, and can be referred to as true.

• { false } expresses the fact that no satisfactory instantiation exists.

TYPE INFERENCE Reduction 18.2

671

When inference begins, a bound set is typically generated from a list of type
parameter declarations P1, ..., Pp and associated inference variables α1, ..., αp. Such
a bound set is constructed as follows. For each l (1 ≤ l ≤ p):

• If Pl has no TypeBound, the bound αl <: Object appears in the set.

• Otherwise, for each type T delimited by & in the TypeBound, the bound αl <:
T[P1:=α1, ..., Pp:=αp] appears in the set; if this results in no proper upper bounds
for αl (only dependencies), then the bound αl <: Object also appears in the set.

18.2 Reduction

Reduction is the process by which a set of constraint formulas (§18.1.2) is
simplified to produce a bound set (§18.1.3).

Each constraint formula is considered in turn. The rules in this section specify how
the formula is reduced to one or both of:

• A bound or bound set, which is to be incorporated with the "current" bound set.
Initially, the current bound set is empty.

• Further constraint formulas, which are to be reduced recursively.

Reduction completes when no further constraint formulas remain to be reduced.

The results of a reduction step are always soundness-preserving: if an inference variable
instantiation satisfies the reduced constraints and bounds, it will also satisfy the original
constraint. On the other hand, reduction is not completeness-preserving: there may exist
inference variable instantiations that satisfy the original constraint but do not satisfy a
reduced constraint or bound. This is due to inherent limitations of the algorithm, along with
a desire to avoid undue complexity. One effect is that there are expressions for which type
argument inference fails to find a solution, but that can be well-typed if the programmer
explicitly inserts appropriate types.

18.2.1 Expression Compatibility Constraints

A constraint formula of the form ‹Expression → T› is reduced as follows:

• If T is a proper type, the constraint reduces to true if the expression is compatible
in a loose invocation context with T (§5.3), and false otherwise.

• Otherwise, if the expression is a standalone expression (§15.2) of type S, the
constraint reduces to ‹S → T›.

• Otherwise, the expression is a poly expression (§15.2). The result depends on
the form of the expression:

18.2 Reduction TYPE INFERENCE

672

– If the expression is a parenthesized expression of the form (Expression'), the
constraint reduces to ‹Expression' → T›.

– If the expression is a class instance creation expression or a method invocation
expression, the constraint reduces to the bound set B3 which would be used
to determine the expression's invocation type when targeting T, as defined in
§18.5.2. (For a class instance creation expression, the corresponding "method"
used for inference is defined in §15.9.3).

This bound set may contain new inference variables, as well as dependencies
between these new variables and the inference variables in T.

– If the expression is a conditional expression of the form e1 ? e2 : e3, the
constraint reduces to two constraint formulas, ‹e2 → T› and ‹e3 → T›.

– If the expression is a lambda expression or a method reference expression, the
result is specified below.

By treating nested generic method invocations as poly expressions, we improve the
behavior of inference for nested invocations. For example, the following is illegal in Java
SE 7 but legal in Java SE 8:

ProcessBuilder b = new ProcessBuilder(Collections.emptyList());
 // ProcessBuilder's constructor expects a List<String>

When both the outer and the nested invocation require inference, the problem is more
difficult. For example:

List<String> ls = new ArrayList<>(Collections.emptyList());

Our approach is to "lift" the bounds inferred for the nested invocation (simply { α <:
Object } in the case of emptyList) into the outer inference process (in this case, trying

to infer β where the constructor is for type ArrayList<β>). We also infer dependencies
between the nested inference variables and the outer inference variables (the constraint

‹List<α> → Collection<β>› would reduce to the dependency α = β). In this way,
resolution of the inference variables in the nested invocation can wait until additional

information can be inferred from the outer invocation (based on the assignment target, β
= String).

A constraint formula of the form ‹LambdaExpression → T›, where T mentions at
least one inference variable, is reduced as follows:

• If T is not a functional interface type (§9.8), the constraint reduces to false.

• Otherwise, let T' be the ground target type derived from T, as specified in
§15.27.3. If §18.5.3 is used to derive a functional interface type which is

TYPE INFERENCE Reduction 18.2

673

parameterized, then the test that F<A'1, ..., A'm> is a subtype of F<A1, ..., Am> is
not performed (instead, it is asserted with a constraint formula below). Let the
target function type for the lambda expression be the function type of T'. Then:

– If no valid function type can be found, the constraint reduces to false.

– Otherwise, the congruence of LambdaExpression with the target function type
is asserted as follows:

› If the number of lambda parameters differs from the number of parameter
types of the function type, the constraint reduces to false.

› If the lambda expression is implicitly typed and one or more of the function
type's parameter types is not a proper type, the constraint reduces to false.

This condition never arises in practice, due to the handling of implicitly typed
lambda expressions in §18.5.1 and the substitution applied to the target type in
§18.5.2.

› If the function type's result is void and the lambda body is neither a
statement expression nor a void-compatible block, the constraint reduces to
false.

› If the function type's result is not void and the lambda body is a block that
is not value-compatible, the constraint reduces to false.

› Otherwise, the constraint reduces to all of the following constraint formulas:

» If the lambda parameters have explicitly declared types F1, ..., Fn and the
function type has parameter types G1, ..., Gn, then i) for all i (1 ≤ i ≤ n),
‹Fi = Gi›, and ii) ‹T' <: T›.

» If the function type's return type is a (non-void) type R, assume the
lambda's parameter types are the same as the function type's parameter
types. Then:

• If R is a proper type, and if the lambda body or some result expression
in the lambda body is not compatible in an assignment context with R,
then false.

• Otherwise, if R is not a proper type, then where the lambda body has the
form Expression, the constraint ‹Expression → R›; or where the lambda
body is a block with result expressions e1, ..., em, for all i (1 ≤ i ≤ m),
‹ei → R›.

The key piece of information to derive from a compatibility constraint involving a lambda
expression is the set of bounds on inference variables appearing in the target function

18.2 Reduction TYPE INFERENCE

674

type's return type. This is crucial, because functional interfaces are often generic, and many
methods operating on these types are generic, too.

In the simplest case, a lambda expression may simply provide a lower bound for an
inference variable:

<T> List<T> makeThree(Factory<T> factory) { ... }
String s = makeThree(() -> "abc").get(2);

In more complex cases, a result expression may be a poly expression - perhaps even
another lambda expression - and so the inference variable might be passed through multiple
constraint formulas with different target types before a bound is produced.

Most of the work described in this section precedes assertions about the result expressions;
its purpose is to derive the lambda expression's function type, and to check for expressions
that are clearly disqualified from compatibility.

We do not attempt to produce bounds on inference variables that appear in the target
function type's throws clause. This is because exception containment is not part of
compatibility (§15.27.3) - in particular, it must not influence method applicability (§18.5.1).
However, we do get bounds on these variables later, because invocation type inference
(§18.5.2) produces exception containment constraint formulas (§18.2.5).

Note that if the target type is an inference variable, or if the target type's parameter types
contain inference variables, we produce false. During invocation type inference (§18.5.2),
extra substitutions are performed in order to instantiate these inference variables, thus
avoiding this scenario. (In other words, reduction will, in practice, never be "invoked" with
a target type of one of these forms.)

Finally, note that the result expressions of a lambda expression are required by §15.27.3
to be compatible in an assignment context with the target type's return type, R. If R
is a proper type, such as Byte derived from Function<α,Byte>, then assignability is

easy enough to test, and reduction does so above. If R is not a proper type, such as α
derived from Function<String,α>, then we make the simplifying assumption above
that loose invocation compatibility will be sufficient. The difference between assignment
compatibility and loose invocation compatibility is that only assignment allows narrowing
of constant expressions, such as Byte b = 100;. Consequently, our simplifying

assumption is not completeness-preserving: given target return type α and an integer literal

result expression 100, it is conceivable that α could be instantiated to Byte, but reduction
will not in fact produce such a bound.

A constraint formula of the form ‹MethodReference → T›, where T mentions at
least one inference variable, is reduced as follows:

• If T is not a functional interface type, or if T is a functional interface type that
does not have a function type (§9.9), the constraint reduces to false.

• Otherwise, if there does not exist a potentially applicable method for the method
reference when targeting T, the constraint reduces to false.

TYPE INFERENCE Reduction 18.2

675

• Otherwise, if the method reference is exact (§15.13.1), then let P1, ..., Pn be the
parameter types of the function type of T, and let F1, ..., Fk be the parameter
types of the potentially applicable method. The constraint reduces to a new set
of constraints, as follows:

– In the special case where n = k+1, the parameter of type P1 is to act as the target
reference of the invocation. The method reference expression necessarily
has the form ReferenceType :: [TypeArguments] Identifier. The constraint
reduces to ‹P1 <: ReferenceType› and, for all i (2 ≤ i ≤ n), ‹Pi → Fi-1›.

In all other cases, n = k, and the constraint reduces to, for all i (1 ≤ i ≤ n),
‹Pi → Fi›.

– If the function type's result is not void, let R be its return type. Then, if the result
of the potentially applicable compile-time declaration is void, the constraint
reduces to false. Otherwise, the constraint reduces to ‹R' → R›, where R' is
the result of applying capture conversion (§5.1.10) to the return type of the
potentially applicable compile-time declaration.

• Otherwise, the method reference is inexact, and:

– If one or more of the function type's parameter types is not a proper type, the
constraint reduces to false.

This condition never arises in practice, due to the handling of inexact method
references in §18.5.1 and the substitution applied to the target type in §18.5.2.

– Otherwise, a search for a compile-time declaration is performed, as specified
in §15.13.1. If there is no compile-time declaration for the method reference,
the constraint reduces to false. Otherwise, there is a compile-time declaration,
and:

› If the result of the function type is void, the constraint reduces to true.

› Otherwise, if the method reference expression elides TypeArguments, and
the compile-time declaration is a generic method, and the return type of
the compile-time declaration mentions at least one of the method's type
parameters, then the constraint reduces to the bound set B3 which would be
used to determine the method reference's invocation type when targeting the
return type of the function type, as defined in §18.5.2. B3 may contain new
inference variables, as well as dependencies between these new variables
and the inference variables in T.

› Otherwise, let R be the return type of the function type, and let R' be the result
of applying capture conversion (§5.1.10) to the return type of the invocation

18.2 Reduction TYPE INFERENCE

676

type (§15.12.2.6) of the compile-time declaration. If R' is void, the constraint
reduces to false; otherwise, the constraint reduces to ‹R' → R›.

The strategy used to determine a return type for a generic referenced method follows
the same pattern as for generic method invocations (§18.2.1). This may involve "lifting"
bounds into the outer context and inferring dependencies between the two sets of inference
variables.

18.2.2 Type Compatibility Constraints

A constraint formula of the form ‹S → T› is reduced as follows:

• If S and T are proper types, the constraint reduces to true if S is compatible in a
loose invocation context with T (§5.3), and false otherwise.

• Otherwise, if S is a primitive type, let S' be the result of applying boxing
conversion (§5.1.7) to S. Then the constraint reduces to ‹S' → T›.

• Otherwise, if T is a primitive type, let T' be the result of applying boxing
conversion (§5.1.7) to T. Then the constraint reduces to ‹S = T'›.

• Otherwise, if T is a parameterized type of the form G<T1, ..., Tn>, and there exists
no type of the form G<...> that is a supertype of S, but the raw type G is a supertype
of S, then the constraint reduces to true.

• Otherwise, if T is an array type of the form G<T1, ..., Tn>[]
k, and there exists no

type of the form G<...>[]k that is a supertype of S, but the raw type G[]k is a
supertype of S, then the constraint reduces to true. (The notation []k indicates
an array type of k dimensions.)

• Otherwise, the constraint reduces to ‹S <: T›.

The fourth and fifth cases are implicit uses of unchecked conversion (§5.1.9).
These, along with any use of unchecked conversion in the first case, may result in
compile-time unchecked warnings, and may influence a method's invocation type
(§15.12.2.6).

Boxing T to T' is not completeness-preserving; for example, if T were long, S might be
instantiated to Integer, which is not a subtype of Long but could be unboxed and then
widened to long. We avoid this problem in most cases by giving special treatment to
inference-variable return types that we know are already constrained to be certain boxed
primitive types. See §18.5.2.

Similarly, the treatment of unchecked conversion sacrifices completeness in cases in which
T is not a parameterized type (for example, if T is an inference variable). It is not usually
clear in such situations whether the unchecked conversion is necessary or not. Since
unchecked conversions introduce unchecked warnings, inference prefers to avoid them
unless it is clearly necessary.

TYPE INFERENCE Reduction 18.2

677

18.2.3 Subtyping Constraints

A constraint formula of the form ‹S <: T› is reduced as follows:

• If S and T are proper types, the constraint reduces to true if S is a subtype of T
(§4.10), and false otherwise.

• Otherwise, if S is the null type, the constraint reduces to true.

• Otherwise, if T is the null type, the constraint reduces to false.

• Otherwise, if S is an inference variable, α, the constraint reduces to the bound
α <: T.

• Otherwise, if T is an inference variable, α, the constraint reduces to the bound
S <: α.

• Otherwise, the constraint is reduced according to the form of T:

– If T is a parameterized class or interface type, or an inner class type of a
parameterized class or interface type (directly or indirectly), let A1, ..., An be
the type arguments of T. Among the supertypes of S, a corresponding class
or interface type is identified, with type arguments B1, ..., Bn. If no such type
exists, the constraint reduces to false. Otherwise, the constraint reduces to the
following new constraints: for all i (1 ≤ i ≤ n), ‹Bi <= Ai›.

– If T is any other class or interface type, then the constraint reduces to true if T
is among the supertypes of S, and false otherwise.

– If T is an array type, T'[], then among the supertypes of S that are array types,
a most specific type is identified, S'[] (this may be S itself). If no such array
type exists, the constraint reduces to false. Otherwise:

› If neither S' nor T' is a primitive type, the constraint reduces to ‹S' <: T'›.

› Otherwise, the constraint reduces to true if S' and T' are the same primitive
type, and false otherwise.

– If T is a type variable, there are three cases:

› If S is an intersection type of which T is an element, the constraint reduces
to true.

› Otherwise, if T has a lower bound, B, the constraint reduces to ‹S <: B›.

› Otherwise, the constraint reduces to false.

– If T is an intersection type, I1 & ... & In, the constraint reduces to the following
new constraints: for all i (1 ≤ i ≤ n), ‹S <: Ii›.

18.2 Reduction TYPE INFERENCE

678

A constraint formula of the form ‹S <= T›, where S and T are type arguments
(§4.5.1), is reduced as follows:

• If T is a type:

– If S is a type, the constraint reduces to ‹S = T›.

– If S is a wildcard, the constraint reduces to false.

• If T is a wildcard of the form ?, the constraint reduces to true.

• If T is a wildcard of the form ? extends T':

– If S is a type, the constraint reduces to ‹S <: T'›.

– If S is a wildcard of the form ?, the constraint reduces to ‹Object <: T'›.

– If S is a wildcard of the form ? extends S', the constraint reduces to ‹S' <: T'›.

– If S is a wildcard of the form ? super S', the constraint reduces to ‹Object
= T'›.

• If T is a wildcard of the form ? super T':

– If S is a type, the constraint reduces to ‹T' <: S›.

– If S is a wildcard of the form ? super S', the constraint reduces to ‹T' <: S'›.

– Otherwise, the constraint reduces to false.

18.2.4 Type Equality Constraints

A constraint formula of the form ‹S = T›, where S and T are types, is reduced as
follows:

• If S and T are proper types, the constraint reduces to true if S is the same as T
(§4.3.4), and false otherwise.

• Otherwise, if S or T is the null type, the constraint reduces to false.

• Otherwise, if S is an inference variable, α, and T is not a primitive type, the
constraint reduces to the bound α = T.

• Otherwise, if T is an inference variable, α, and S is not a primitive type, the
constraint reduces to the bound S = α.

• Otherwise, if S and T are class or interface types with the same erasure, where S
has type arguments B1, ..., Bn and T has type arguments A1, ..., An, the constraint
reduces to the following new constraints: for all i (1 ≤ i ≤ n), ‹Bi = Ai›.

TYPE INFERENCE Reduction 18.2

679

• Otherwise, if S and T are array types, S'[] and T'[], the constraint reduces to
‹S' = T'›.

• Otherwise, the constraint reduces to false.

Note that we do not address intersection types above, because it is impossible for reduction
to encounter an intersection type that is not a proper type.

A constraint formula of the form ‹S = T›, where S and T are type arguments (§4.5.1),
is reduced as follows:

• If S and T are types, the constraint is reduced as described above.

• If S has the form ? and T has the form ?, the constraint reduces to true.

• If S has the form ? and T has the form ? extends T', the constraint reduces to
‹Object = T'›.

• If S has the form ? extends S' and T has the form ?, the constraint reduces to
‹S' = Object›.

• If S has the form ? extends S' and T has the form ? extends T', the constraint
reduces to ‹S' = T'›.

• If S has the form ? super S' and T has the form ? super T', the constraint reduces
to ‹S' = T'›.

• Otherwise, the constraint reduces to false.

18.2.5 Checked Exception Constraints

A constraint formula of the form ‹LambdaExpression →throws T› is reduced as
follows:

• If T is not a functional interface type (§9.8), the constraint reduces to false.

• Otherwise, let the target function type for the lambda expression be determined
as specified in §15.27.3. If no valid function type can be found, the constraint
reduces to false.

• Otherwise, if the lambda expression is implicitly typed, and one or more of the
function type's parameter types is not a proper type, the constraint reduces to
false.

This condition never arises in practice, due to the substitution applied to the target type
in §18.5.2.

18.2 Reduction TYPE INFERENCE

680

• Otherwise, if the function type's return type is neither void nor a proper type,
the constraint reduces to false.

This condition never arises in practice, due to the substitution applied to the target type
in §18.5.2.

• Otherwise, let E1, ..., En be the types in the function type's throws clause that are
not proper types. If the lambda expression is implicitly typed, let its parameter
types be the function type's parameter types. If the lambda body is a poly
expression or a block containing a poly result expression, let the targeted return
type be the function type's return type. Let X1, ..., Xm be the checked exception
types that the lambda body can throw (§11.2). Then there are two cases:

– If n = 0 (the function type's throws clause consists only of proper types), then
if there exists some i (1 ≤ i ≤ m) such that Xi is not a subtype of any proper type
in the throws clause, the constraint reduces to false; otherwise, the constraint
reduces to true.

– If n > 0, the constraint reduces to a set of subtyping constraints: for all i (1 ≤
i ≤ m), if Xi is not a subtype of any proper type in the throws clause, then the
constraints include, for all j (1 ≤ j ≤ n), ‹Xi <: Ej›. In addition, for all j (1 ≤ j
≤ n), the constraint reduces to the bound throws Ej.

A constraint formula of the form ‹MethodReference →throws T› is reduced as
follows:

• If T is not a functional interface type, or if T is a functional interface type but
does not have a function type (§9.9), the constraint reduces to false.

• Otherwise, let the target function type for the method reference expression be
the function type of T. If the method reference is inexact (§15.13.1) and one or
more of the function type's parameter types is not a proper type, the constraint
reduces to false.

• Otherwise, if the method reference is inexact and the function type's result is
neither void nor a proper type, the constraint reduces to false.

• Otherwise, let E1, ..., En be the types in the function type's throws clause that
are not proper types. Let X1, ..., Xm be the checked exceptions in the throws
clause of the invocation type of the method reference's compile-time declaration
(§15.13.2) (as derived from the function type's parameter types and return type).
Then there are two cases:

– If n = 0 (the function type's throws clause consists only of proper types), then
if there exists some i (1 ≤ i ≤ m) such that Xi is not a subtype of any proper type

TYPE INFERENCE Incorporation 18.3

681

in the throws clause, the constraint reduces to false; otherwise, the constraint
reduces to true.

– If n > 0, the constraint reduces to a set of subtyping constraints: for all i (1 ≤
i ≤ m), if Xi is not a subtype of any proper type in the throws clause, then the
constraints include, for all j (1 ≤ j ≤ n), ‹Xi <: Ej›. In addition, for all j (1 ≤ j
≤ n), the constraint reduces to the bound throws Ej.

Constraints on checked exceptions are handled separately from constraints on return
types, because return type compatibility influences applicability of methods (§18.5.1),
while exceptions only influence the invocation type after overload resolution is complete
(§18.5.2). This could be simplified by including exception compatibility in the definition
of lambda expression compatibility (§15.27.3), but this would lead to possibly surprising
cases in which exceptions that can be thrown by an explicitly typed lambda body change
overload resolution.

The exceptions thrown by a lambda body cannot be determined until i) the parameter
types of the lambda are known, and ii) the target type of result expressions in the body is
known. (The second requirement is to account for generic method invocations in which,
for example, the same type parameter appears in the return type and the throws clause.)
Hence, we require both of these, as derived from the target type T, to be proper types.

One consequence is that lambda expressions returned from other lambda expressions
cannot generate constraints from their thrown exceptions. These constraints can only be
generated from top-level lambda expressions.

Note that the handling of the case in which more than one inference variable appears in a
function type's throws clause is not completeness-preserving. Either variable may, on its
own, satisfy the constraint that each checked exception be declared, but we cannot be sure
which one is intended. So, for predictability, we constrain them both.

18.3 Incorporation

As bound sets are constructed and grown during inference, it is possible that new
bounds can be inferred based on the assertions of the original bounds. The process
of incorporation identifies these new bounds and adds them to the bound set.

Incorporation can happen in two scenarios. One scenario is that the bound set
contains complementary pairs of bounds; this implies new constraint formulas,
as specified in §18.3.1. The other scenario is that the bound set contains a
bound involving capture conversion; this implies new bounds and may imply new
constraint formulas, as specified in §18.3.2. In both scenarios, any new constraint
formulas are reduced, and any new bounds are added to the bound set. This may
trigger further incorporation; ultimately, the set will reach a fixed point and no
further bounds can be inferred.

18.3 Incorporation TYPE INFERENCE

682

If incorporation of a bound set has reached a fixed point, and the set does not contain
the bound false, then the bound set has the following properties:

• For each combination of a proper lower bound L and a proper upper bound U of
an inference variable, L <: U.

• If every inference variable mentioned by a bound has an instantiation, the bound
is satisfied by the corresponding substitution.

• Given a dependency α = β, every bound of α matches a bound of β, and vice
versa.

• Given a dependency α <: β, every lower bound of α is a lower bound of β, and
every upper bound of β is an upper bound of α.

The assertion that incorporation reaches a fixed point oversimplifies the matter slightly.
Building on the work of Kennedy and Pierce, On Decidability of Nominal Subtyping with
Variance, this property can be proven by making the argument that the set of types that
may appear in the bound set is finite. The argument relies on two assumptions:

• New capture variables are not generated when reducing subtyping constraints (§18.2.3).

• Expansive inheritance paths are not pursued.

This specification does not currently guarantee these properties (it is imprecise about the
handling of wildcards when reducing subtyping constraints, and does not detect expansive
inheritance paths), but may do so in a future version. (This is not a new problem: the Java
subtyping algorithm is also at risk of non-termination.)

18.3.1 Complementary Pairs of Bounds

(In this section, S and T are inference variables or types, and U is a proper type. For
conciseness, a bound of the form α = T may also match a bound of the form T = α.)

When a bound set contains a pair of bounds that match one of the following rules,
a new constraint formula is implied:

• α = S and α = T imply ‹S = T›

• α = S and α <: T imply ‹S <: T›

• α = S and T <: α imply ‹T <: S›

• S <: α and α <: T imply ‹S <: T›

• α = U and S = T imply ‹S[α:=U] = T[α:=U]›

• α = U and S <: T imply ‹S[α:=U] <: T[α:=U]›

http://research.microsoft.com/apps/pubs/default.aspx?id=64041
http://research.microsoft.com/apps/pubs/default.aspx?id=64041

TYPE INFERENCE Incorporation 18.3

683

When a bound set contains a pair of bounds α <: S and α <: T, and there exists a
supertype of S of the form G<S1, ..., Sn> and a supertype of T of the form G<T1, ...,
Tn> (for some generic class or interface, G), then for all i (1 ≤ i ≤ n), if Si and Ti are
types (not wildcards), the constraint formula ‹Si = Ti› is implied.

18.3.2 Bounds Involving Capture Conversion

When a bound set contains a bound of the form G<α1, ..., αn> = capture(G<A1, ...,
An>), new bounds are implied and new constraint formulas may be implied, as
follows.

Let P1, ..., Pn represent the type parameters of G and let B1, ..., Bn represent the bounds
of these type parameters. Let θ represent the substitution [P1:=α1, ..., Pn:=αn]. Let
R be a type that is not an inference variable (but is not necessarily a proper type).

A set of bounds on α1, ..., αn is implied, constructed from the declared bounds of
P1, ..., Pn as specified in §18.1.3.

In addition, for all i (1 ≤ i ≤ n):

• If Ai is not a wildcard, then the bound αi = Ai is implied.

• If Ai is a wildcard of the form ?:

– αi = R implies the bound false

– αi <: R implies the constraint formula ‹Bi θ <: R›

– R <: αi implies the bound false

• If Ai is a wildcard of the form ? extends T:

– αi = R implies the bound false

– If Bi is Object, then αi <: R implies the constraint formula ‹T <: R›

– If T is Object, then αi <: R implies the constraint formula ‹Bi θ <: R›

– R <: αi implies the bound false

• If Ai is a wildcard of the form ? super T:

– αi = R implies the bound false

– αi <: R implies the constraint formula ‹Bi θ <: R›

– R <: αi implies the constraint formula ‹R <: T›

18.4 Resolution TYPE INFERENCE

684

18.4 Resolution

Given a bound set that does not contain the bound false, a subset of the inference
variables mentioned by the bound set may be resolved. This means that a
satisfactory instantiation may be added to the set for each inference variable, until
all the requested variables have instantiations.

Dependencies in the bound set may require that the variables be resolved in
a particular order, or that additional variables be resolved. Dependencies are
specified as follows:

• Given a bound of one of the following forms, where T is either an inference
variable β or a type that mentions β:

– α = T

– α <: T

– T = α

– T <: α

If α appears on the left-hand side of another bound of the form G<..., α, ...> =
capture(G<...>), then β depends on the resolution of α. Otherwise, α depends on
the resolution of β.

• An inference variable α appearing on the left-hand side of a bound of the form
G<..., α, ...> = capture(G<...>) depends on the resolution of every other inference
variable mentioned in this bound (on both sides of the = sign).

• An inference variable α depends on the resolution of an inference variable β if
there exists an inference variable γ such that α depends on the resolution of γ and
γ depends on the resolution of β.

• An inference variable α depends on the resolution of itself.

Given a set of inference variables to resolve, let V be the union of this set and all
variables upon which the resolution of at least one variable in this set depends.

If every variable in V has an instantiation, then resolution succeeds and this
procedure terminates.

Otherwise, let { α1, ..., αn } be a non-empty subset of uninstantiated variables in
V such that i) for all i (1 ≤ i ≤ n), if αi depends on the resolution of a variable β,
then either β has an instantiation or there is some j such that β = αj; and ii) there
exists no non-empty proper subset of { α1, ..., αn } with this property. Resolution

TYPE INFERENCE Resolution 18.4

685

proceeds by generating an instantiation for each of α1, ..., αn based on the bounds
in the bound set:

• If the bound set does not contain a bound of the form G<..., αi, ...> =
capture(G<...>) for all i (1 ≤ i ≤ n), then a candidate instantiation Ti is defined
for each αi:

– If αi has one or more proper lower bounds, L1, ..., Lk, then Ti = lub(L1, ...,
Lk) (§4.10.4).

– Otherwise, if the bound set contains throws αi, and the proper upper
bounds of αi are, at most, Exception, Throwable, and Object, then Ti =
RuntimeException.

– Otherwise, where αi has proper upper bounds U1, ..., Uk, Ti = glb(U1, ..., Uk)
(§5.1.10).

The bounds α1 = T1, ..., αn = Tn are incorporated with the current bound set.

If the result does not contain the bound false, then the result becomes the
new bound set, and resolution proceeds by selecting a new set of variables to
instantiate (if necessary), as described above.

Otherwise, the result contains the bound false, so a second attempt is made to
instantiate { α1, ..., αn } by performing the step below.

• If the bound set contains a bound of the form G<..., αi, ...> = capture(G<...>) for
some i (1 ≤ i ≤ n), or;

If the bound set produced in the step above contains the bound false;

then let Y1, ..., Yn be fresh type variables whose bounds are as follows:

– For all i (1 ≤ i ≤ n), if αi has one or more proper lower bounds L1, ..., Lk, then
let the lower bound of Yi be lub(L1, ..., Lk); if not, then Yi has no lower bound.

– For all i (1 ≤ i ≤ n), where αi has upper bounds U1, ..., Uk, let the upper bound
of Yi be glb(U1 θ, ..., Uk θ), where θ is the substitution [α1:=Y1, ..., αn:=Yn].

If the type variables Y1, ..., Yn do not have well-formed bounds (that is, a lower
bound is not a subtype of an upper bound, or an intersection type is inconsistent),
then resolution fails.

Otherwise, for all i (1 ≤ i ≤ n), all bounds of the form G<..., αi, ...> =
capture(G<...>) are removed from the current bound set, and the bounds α1 =
Y1, ..., αn = Yn are incorporated.

18.5 Uses of Inference TYPE INFERENCE

686

If the result does not contain the bound false, then the result becomes the
new bound set, and resolution proceeds by selecting a new set of variables to
instantiate (if necessary), as described above.

Otherwise, the result contains the bound false, and resolution fails.

The first method of instantiating an inference variable derives the instantiation from that
variable's bounds. Sometimes, however, complex dependencies mean that the result is not
within the variable's bounds. In that case, a different method of instantiation is performed,
analogous to capture conversion (§5.1.10): fresh type variables are introduced, with bounds
derived from the bounds of the inference variables. Note that the lower bounds of these
"capture" variables are computed using only proper types: this is important in order to avoid
attempts to perform typing computations on uninstantiated type variables.

18.5 Uses of Inference

Using the inference processes defined above, the following analyses are performed
at compile time.

18.5.1 Invocation Applicability Inference

Given a method invocation that provides no explicit type arguments, the process
to determine whether a potentially applicable generic method m is applicable is as
follows:

• Where P1, ..., Pp (p ≥ 1) are the type parameters of m, let α1, ..., αp be inference
variables, and let θ be the substitution [P1:=α1, ..., Pp:=αp].

• An initial bound set, B0, is constructed from the declared bounds of P1, ..., Pp, as
described in §18.1.3.

• For all i (1 ≤ i ≤ p), if Pi appears in the throws clause of m, then the bound throws
αi is implied. These bounds, if any, are incorporated with B0 to produce a new
bound set, B1.

• A set of constraint formulas, C, is constructed as follows.

Let F1, ..., Fn be the formal parameter types of m, and let e1, ..., ek be the actual
argument expressions of the invocation. Then:

– To test for applicability by strict invocation:

If k ≠ n, or if there exists an i (1 ≤ i ≤ n) such that ei is pertinent to applicability
(§15.12.2.2) and either i) ei is a standalone expression of a primitive type but

TYPE INFERENCE Uses of Inference 18.5

687

Fi is a reference type, or ii) Fi is a primitive type but ei is not a standalone
expression of a primitive type; then the method is not applicable and there is
no need to proceed with inference.

Otherwise, C includes, for all i (1 ≤ i ≤ k) where ei is pertinent to applicability,
‹ei → Fi θ›.

– To test for applicability by loose invocation:

If k ≠ n, the method is not applicable and there is no need to proceed with
inference.

Otherwise, C includes, for all i (1 ≤ i ≤ k) where ei is pertinent to applicability,
‹ei → Fi θ›.

– To test for applicability by variable arity invocation:

Let F'1, ..., F'k be the first k variable arity parameter types of m (§15.12.2.4). C
includes, for all i (1 ≤ i ≤ k) where ei is pertinent to applicability, ‹ei → F'i θ›.

• C is reduced (§18.2) and the resulting bounds are incorporated with B1 to produce
a new bound set, B2.

• Finally, the method m is applicable if B2 does not contain the bound false and
resolution of all the inference variables in B2 succeeds (§18.4).

Consider the following method invocation and assignment:

List<Number> ln = Arrays.asList(1, 2.0);

A most specific applicable method for the invocation must be identified as described in
§15.12. The only potentially applicable method (§15.12.2.1) is declared as follows:

public static <T> List<T> asList(T... a)

Trivially (because of its arity), this method is neither applicable by strict invocation
(§15.12.2.2) nor applicable by loose invocation (§15.12.2.3). But since there are no other
candidates, in a third phase the method is checked for applicability by variable arity
invocation.

The initial bound set, B, is a trivial upper bound for a single inference variable, α:

{ α <: Object }

The initial constraint formula set is as follows:

{ ‹1 → α›, ‹2.0 → α› }

18.5 Uses of Inference TYPE INFERENCE

688

These are reduced to a new bound set, B1:

{ α <: Object, Integer <: α, Double <: α }

Then, to test whether the method is applicable, we attempt to resolve these bounds. We
succeed, producing the rather complex instantiation

α = Number & Comparable<? extends Number & Comparable<?>>

We have thus demonstrated that the method is applicable; since no other candidates exist,
it is the most specific applicable method. Still, the type of the method invocation, and its
compatibility with the target type in the assignment, is not determined until further inference
can occur, as described in the next section.

18.5.2 Invocation Type Inference

Given a method invocation that provides no explicit type arguments, and a
corresponding most specific applicable generic method m, the process to infer the
invocation type (§15.12.2.6) of the chosen method is as follows:

• Let θ be the substitution [P1:=α1, ..., Pp:=αp] defined in §18.5.1 to replace the
type parameters of m with inference variables.

• Let B2 be the bound set produced by reduction in order to demonstrate that m is
applicable in §18.5.1. (While it was necessary in §18.5.1 to demonstrate that the
inference variables in B2 could be resolved, in order to establish applicability, the
instantiations produced by this resolution step are not considered part of B2.)

• If the invocation is not a poly expression, let the bound set B3 be the same as B2.

If the invocation is a poly expression, let the bound set B3 be derived from B2
as follows. Let R be the return type of m, let T be the invocation's target type,
and then:

– If unchecked conversion was necessary for the method to be applicable during
constraint set reduction in §18.5.1, the constraint formula ‹|R| → T› is reduced
and incorporated with B2.

– Otherwise, if R θ is a parameterized type, G<A1, ..., An>, and one of A1, ..., An is
a wildcard, then, for fresh inference variables β1, ..., βn, the constraint formula
‹G<β1, ..., βn> → T› is reduced and incorporated, along with the bound G<β1, ...,
βn> = capture(G<A1, ..., An>), with B2.

– Otherwise, if R θ is an inference variable α, and one of the following is true:

› T is a reference type, but is not a wildcard-parameterized type, and either
i) B2 contains a bound of one of the forms α = S or S <: α, where S is a

TYPE INFERENCE Uses of Inference 18.5

689

wildcard-parameterized type, or ii) B2 contains two bounds of the forms S1
<: α and S2 <: α, where S1 and S2 have supertypes that are two different
parameterizations of the same generic class or interface.

› T is a parameterization of a generic class or interface, G, and B2 contains a
bound of one of the forms α = S or S <: α, where there exists no type of the
form G<...> that is a supertype of S, but the raw type |G<...>| is a supertype
of S.

› T is a primitive type, and one of the primitive wrapper classes mentioned in
§5.1.7 is an instantiation, upper bound, or lower bound for α in B2.

then α is resolved in B2, and where the capture of the resulting instantiation of
α is U, the constraint formula ‹U → T› is reduced and incorporated with B2.

– Otherwise, the constraint formula ‹R θ → T› is reduced and incorporated with
B2.

• A set of constraint formulas, C, is constructed as follows.

Let e1, ..., ek be the actual argument expressions of the invocation. If m is
applicable by strict or loose invocation, let F1, ..., Fk be the formal parameter
types of m; if m is applicable by variable arity invocation, let F1, ..., Fk the first k
variable arity parameter types of m (§15.12.2.4). Then:

– For all i (1 ≤ i ≤ k), if ei is not pertinent to applicability, C contains ‹ei → Fi θ›.

– For all i (1 ≤ i ≤ k), additional constraints may be included, depending on the
form of ei:

› If ei is a LambdaExpression, C contains ‹LambdaExpression →throws Fi θ›.

In addition, the lambda body is searched for additional constraints:

» For a block lambda body, the search is applied recursively to each result
expression.

» For a poly class instance creation expression (§15.9) or a poly method
invocation expression (§15.12), C contains all the constraint formulas that
would appear in the set C generated by §18.5.2 when inferring the poly
expression's invocation type.

» For a parenthesized expression, the search is applied recursively to the
contained expression.

» For a conditional expression, the search is applied recursively to the
second and third operands.

18.5 Uses of Inference TYPE INFERENCE

690

» For a lambda expression, the search is applied recursively to the lambda
body.

› If ei is a MethodReference, C contains ‹MethodReference →throws Fi θ›.

› If ei is a poly class instance creation expression (§15.9) or a poly method
invocation expression (§15.12), C contains all the constraint formulas that
would appear in the set C generated by §18.5.2 when inferring the poly
expression's invocation type.

› If ei is a parenthesized expression, these rules are applied recursively to the
contained expression.

› If ei is a conditional expression, these rules are applied recursively to the
second and third operands.

• While C is not empty, the following process is repeated, starting with the bound
set B3 and accumulating new bounds into a "current" bound set, ultimately
producing a new bound set, B4:

1. A subset of constraints is selected in C, satisfying the property that, for each
constraint, no input variable can influence an output variable of another
constraint in C. The terms input variable and output variable are defined
below. An inference variable α can influence an inference variable β if α
depends on the resolution of β (§18.4), or vice versa; or if there exists a third
inference variable γ such that α can influence γ and γ can influence β.

If this subset is empty, then there is a cycle (or cycles) in the graph of
dependencies between constraints. In this case, all constraints are considered
that participate in a dependency cycle (or cycles) and do not depend on any
constraints outside of the cycle (or cycles). A single constraint is selected
from the considered constraints, as follows:

– If any of the considered constraints have the form ‹Expression → T›,
then the selected constraint is the considered constraint of this form that
contains the expression to the left (§3.5) of the expression of every other
considered constraint of this form.

– If no considered constraint has the form ‹Expression → T›, then the
selected constraint is the considered constraint that contains the expression
to the left of the expression of every other considered constraint.

2. The selected constraint(s) are removed from C.

3. The input variables α1, ..., αm of all the selected constraint(s) are resolved.

TYPE INFERENCE Uses of Inference 18.5

691

4. Where T1, ..., Tm are the instantiations of α1, ..., αm, the substitution
[α1:=T1, ..., αm:=Tm] is applied to every constraint.

5. The constraint(s) resulting from substitution are reduced and incorporated
with the current bound set.

• Finally, if B4 does not contain the bound false, the inference variables in B4 are
resolved.

If resolution succeeds with instantiations T1, ..., Tp for inference variables α1, ...,
αp, let θ' be the substitution [P1:=T1, ..., Pp:=Tp]. Then:

– If unchecked conversion was necessary for the method to be applicable during
constraint set reduction in §18.5.1, then the parameter types of the invocation
type of m are obtained by applying θ' to the parameter types of m's type, and
the return type and thrown types of the invocation type of m are given by the
erasure of the return type and thrown types of m's type.

– If unchecked conversion was not necessary for the method to be applicable,
then the invocation type of m is obtained by applying θ' to the type of m.

If B4 contains the bound false, or if resolution fails, then a compile-time error
occurs.

Invocation type inference may require carefully sequencing the reduction of
constraint formulas of the forms ‹Expression → T›, ‹LambdaExpression →throws T›,
and ‹MethodReference →throws T›. To facilitate this sequencing, the input variables
of these constraints are defined as follows:

• For ‹LambdaExpression → T›:

– If T is an inference variable, it is the (only) input variable.

– If T is a functional interface type, and a function type can be derived from
T (§15.27.3), then the input variables include i) if the lambda expression
is implicitly typed, the inference variables mentioned by the function type's
parameter types; and ii) if the function type's return type, R, is not void, then
for each result expression e in the lambda body (or for the body itself if it is
an expression), the input variables of ‹e → R›.

– Otherwise, there are no input variables.

• For ‹LambdaExpression →throws T›:

– If T is an inference variable, it is the (only) input variable.

– If T is a functional interface type, and a function type can be derived, as
described in §15.27.3, the input variables include i) if the lambda expression

18.5 Uses of Inference TYPE INFERENCE

692

is implicitly typed, the inference variables mentioned by the function type's
parameter types; and ii) the inference variables mentioned by the function
type's return type.

– Otherwise, there are no input variables.

• For ‹MethodReference → T›:

– If T is an inference variable, it is the (only) input variable.

– If T is a functional interface type with a function type, and if the method
reference is inexact (§15.13.1), the input variables are the inference variables
mentioned by the function type's parameter types.

– Otherwise, there are no input variables.

• For ‹MethodReference →throws T›:

– If T is an inference variable, it is the (only) input variable.

– If T is a functional interface type with a function type, and if the method
reference is inexact (§15.13.1), the input variables are the inference variables
mentioned by the function type's parameter types and the function type's return
type.

– Otherwise, there are no input variables.

• For ‹Expression → T›, if Expression is a parenthesized expression:

Where the contained expression of Expression is Expression', the input variables
are the input variables of ‹Expression' → T›.

• For ‹ConditionalExpression → T›:

Where the conditional expression has the form e1 ? e2 : e3, the input variables
are the input variables of ‹e2 → T› and ‹e3 → T›.

• For all other constraint formulas, there are no input variables.

The output variables of these constraints are all inference variables mentioned by
the type on the right-hand side of the constraint, T, that are not input variables.

It is important to note that two "rounds" of inference are involved in finding the type of
a method invocation. This is necessary to allow a target type to influence the type of the
invocation without allowing it to influence the choice of an applicable method. The first
round produces a bound set and tests that a resolution exists, but does not commit to that
resolution. The second round reduces additional constraints and then performs a second
resolution, this time "for real".

Consider the example from the previous section:

TYPE INFERENCE Uses of Inference 18.5

693

List<Number> ln = Arrays.asList(1, 2.0);

The most specific applicable method was identified as:

public static <T> List<T> asList(T... a)

In order to complete type-checking of the method invocation, we must determine whether
it is compatible with its target type, List<Number>.

The bound set used to demonstrate applicability in the previous section, B2, was:

{ α <: Object, Integer <: α, Double <: α }

The new constraint formula set is as follows:

{ ‹List<α> → List<Number>› }

This compatibility constraint produces an equality bound for α, which is included in the
new bound set, B3:

{ α <: Object, Integer <: α, Double <: α, α = Number }

These bounds are trivially resolved:

α = Number

Finally, we perform a substitution on the declared return type of asList to determine that
the method invocation has type List<Number>; clearly, this is compatible with the target
type.

This inference strategy is different than the Java SE 7 Edition of The Java® Language

Specification, which would have instantiated α based on its lower bounds (before even
considering the invocation's target type), as we did in the previous section. This would
result in a type error, since the resulting type is not a subtype of List<Number>.

Under various special circumstances, based on the bounds appearing in B2, we eagerly
resolve an inference variable that appears as the return type of the invocation. This is to

avoid unfortunate situations in which the usual constraint, ‹R θ → T›, is not completeness-
preserving. It is, unfortunately, possible that by eagerly resolving the variable, we are unable
to make use of bounds that would be inferred later. It is also possible that, in some cases,
bounds that will later be inferred from the invocation arguments (such as implicitly typed
lambda expressions) would have caused a different outcome if they had been present in B2.
Despite these limitations, the strategy allows for reasonable outcomes in typical use cases,
and is backwards compatible with the algorithm in the Java SE 7 Edition of The Java®

Language Specification.

18.5 Uses of Inference TYPE INFERENCE

694

18.5.3 Functional Interface Parameterization Inference

Where a lambda expression with explicit parameter types P1, ..., Pn targets a
functional interface type F<A1, ..., Am> with at least one wildcard type argument,
then a parameterization of F may be derived as the ground target type of the lambda
expression as follows.

Let Q1, ..., Qk be the parameter types of the function type of the type F<α1, ..., αm>,
where α1, ..., αm are fresh inference variables.

If n ≠ k, no valid parameterization exists. Otherwise, a set of constraint formulas is
formed with, for all i (1 ≤ i ≤ n), ‹Pi = Qi›. This constraint formula set is reduced
to form the bound set B.

If B contains the bound false, no valid parameterization exists. Otherwise, a new
parameterization of the functional interface type, F<A'1, ..., A'm>, is constructed as
follows, for 1 ≤ i ≤ m:

• If B contains an instantiation (§18.1.3) for αi, T, then A'i = T.

• Otherwise, A'i = Ai.

If F<A'1, ..., A'm> is not a well-formed type (that is, the type arguments are
not within their bounds), or if F<A'1, ..., A'm> is not a subtype of F<A1, ...,
Am>, no valid parameterization exists. Otherwise, the inferred parameterization is
either F<A'1, ..., A'm>, if all the type arguments are types, or the non-wildcard
parameterization (§9.9) of F<A'1, ..., A'm>, if one or more type arguments are still
wildcards.

In order to determine the function type of a wildcard-parameterized functional interface,
we have to "instantiate" the wildcard type arguments with specific types. The "default"
approach is to simply replace the wildcards with their bounds, as described in §9.8, but this
produces spurious errors in cases where a lambda expression has explicit parameter types
that do not correspond to the wildcard bounds. For example:

Predicate<? super Integer> p = (Number n) -> n.equals(23);

The lambda expression is a Predicate<Number>, which is a subtype of Predicate<?
super Integer> but not Predicate<Integer>. The analysis in this section is used to
infer that Number is an appropriate choice for the type argument to Predicate.

That said, the analysis here, while described in terms of general type inference, is
intentionally quite simple. The only constraints are equality constraints, which means that
reduction amounts to simple pattern matching. A more powerful strategy might also infer
constraints from the body of the lambda expression. But, given possible interactions with
inference for surrounding and/or nested generic method invocations, this would introduce
a lot of extra complexity.

TYPE INFERENCE Uses of Inference 18.5

695

18.5.4 More Specific Method Inference

When testing that one applicable method is more specific than another (§15.12.2.5),
where the second method is generic, it is necessary to test whether some
instantiation of the second method's type parameters can be inferred to make the
first method more specific than the second.

Let m1 be the first method and m2 be the second method. Where m2 has type
parameters P1, ..., Pp, let α1, ..., αp be inference variables, and let θ be the
substitution [P1:=α1, ..., Pp:=αp].

Let e1, ..., ek be the argument expressions of the corresponding invocation. Then:

• If m1 and m2 are applicable by strict or loose invocation (§15.12.2.2, §15.12.2.3),
then let S1, ..., Sk be the formal parameter types of m1, and let T1, ..., Tk be the
result of θ applied to the formal parameter types of m2.

• If m1 and m2 are applicable by variable arity invocation (§15.12.2.4), then let S1, ...,
Sk be the first k variable arity parameter types of m1, and let T1, ..., Tk be the result
of θ applied to the first k variable arity parameter types of m2.

Note that no substitution is applied to S1, ..., Sk; even if m1 is generic, the type parameters
of m1 are treated as type variables, not inference variables.

The process to determine if m1 is more specific than m2 is as follows:

• First, an initial bound set, B, is constructed from the declared bounds of P1, ...,
Pp, as specified in §18.1.3.

• Second, for all i (1 ≤ i ≤ k), a set of constraint formulas or bounds is generated.

If Ti is a proper type, the result is true if Si is more specific than Ti for ei
(§15.12.2.5), and false otherwise. (Note that Si is always a proper type.)

Otherwise, if Ti is not a functional interface type, the constraint formula ‹Si <:
Ti› is generated.

Otherwise, Ti is a parameterization of a functional interface, I. It must be
determined whether Si satisfies the following five conditions:

– Si is a functional interface type.

– Si is not a superinterface of I, nor a parameterization of a superinterface of I.

– Si is not a subinterface of I, nor a parameterization of a subinterface of I.

– If Si is an intersection type, at least one element of the intersection is not a
superinterface of I, nor a parameterization of a superinterface of I.

18.5 Uses of Inference TYPE INFERENCE

696

– If Si is an intersection type, no element of the intersection is a subinterface of
I, nor a parameterization of a subinterface of I.

If all five conditions are true, then the following constraint formulas or bounds
are generated (where U1 ... Uk and R1 are the parameter types and return type of
the function type of the capture of Si, and V1 ... Vk and R2 are the parameter types
and return type of the function type of Ti):

– If ei is an explicitly typed lambda expression:

› For all j (1 ≤ j ≤ k), ‹Uj = Vj›.

› If R2 is void, true.

› Otherwise, if R1 and R2 are functional interface types, and neither interface
is a subinterface of the other, and ei has at least one result expression, then
these rules are applied recursively to R1 and R2, for each result expression
in ei.

› Otherwise, if R1 is a primitive type and R2 is not, and ei has at least one
result expression, and each result expression of ei is a standalone expression
(§15.2) of a primitive type, true.

› Otherwise, if R2 is a primitive type and R1 is not, and ei has at least one result
expression, and each result expression of ei is either a standalone expression
of a reference type or a poly expression, true.

› Otherwise, ‹R1 <: R2›.

– If ei is an exact method reference:

› For all j (1 ≤ j ≤ k), ‹Uj = Vj›.

› If R2 is void, true.

› Otherwise, if R1 is a primitive type and R2 is not, and the compile-time
declaration for ei has a primitive return type, true.

› Otherwise if R2 is a primitive type and R1 is not, and the compile-time
declaration for ei has a reference return type, true.

› Otherwise, ‹R1 <: R2›.

– If ei is a parenthesized expression, these rules are applied recursively to the
contained expression.

– If ei is a conditional expression, these rules are applied recursively to each of
the second and third operands.

TYPE INFERENCE Uses of Inference 18.5

697

– Otherwise, false.

If the five constraints on Si are not satisfied, the constraint formula ‹Si <: Ti›
is generated instead.

• Third, if m2 is applicable by variable arity invocation and has k+1 parameters,
then where Sk+1 is the k+1'th variable arity parameter type of m1 and Tk+1 is the
result of θ applied to the k+1'th variable arity parameter type of m2, the constraint
‹Sk+1 <: Tk+1› is generated.

• Fourth, the generated bounds and constraint formulas are reduced and
incorporated with B to produce a bound set B'.

If B' does not contain the bound false, and resolution of all the inference variables
in B' succeeds, then m1 is more specific than m2.

Otherwise, m1 is not more specific than m2.

699

C H A P T E R 19
Syntax

THIS chapter repeats the syntactic grammar given in Chapters 4, 6-10, 14, and
15, as well as key parts of the lexical grammar from Chapter 3, using the notation
from §2.4.

Productions from §3 (Lexical Structure)

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
JavaLetter {JavaLetterOrDigit}

JavaLetter:
any Unicode character that is a "Java letter"

JavaLetterOrDigit:
any Unicode character that is a "Java letter-or-digit"

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

SYNTAX

700

Productions from §4 (Types, Values, and Variables)

Type:
PrimitiveType
ReferenceType

PrimitiveType:
{Annotation} NumericType
{Annotation} boolean

NumericType:
IntegralType
FloatingPointType

IntegralType:
(one of)
byte short int long char

FloatingPointType:
(one of)
float double

ReferenceType:
ClassOrInterfaceType
TypeVariable
ArrayType

ClassOrInterfaceType:
ClassType
InterfaceType

ClassType:
{Annotation} Identifier [TypeArguments]
ClassOrInterfaceType . {Annotation} Identifier [TypeArguments]

InterfaceType:
ClassType

TypeVariable:
{Annotation} Identifier

SYNTAX

701

ArrayType:
PrimitiveType Dims
ClassOrInterfaceType Dims
TypeVariable Dims

Dims:
{Annotation} [] {{Annotation} []}

TypeParameter:
{TypeParameterModifier} Identifier [TypeBound]

TypeParameterModifier:
Annotation

TypeBound:
extends TypeVariable
extends ClassOrInterfaceType {AdditionalBound}

AdditionalBound:
& InterfaceType

TypeArguments:
< TypeArgumentList >

TypeArgumentList:
TypeArgument {, TypeArgument}

TypeArgument:
ReferenceType
Wildcard

Wildcard:
{Annotation} ? [WildcardBounds]

WildcardBounds:
extends ReferenceType
super ReferenceType

SYNTAX

702

Productions from §6 (Names)

TypeName:
Identifier
PackageOrTypeName . Identifier

PackageOrTypeName:
Identifier
PackageOrTypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
Identifier

PackageName:
Identifier
PackageName . Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier

SYNTAX

703

Productions from §7 (Packages)

CompilationUnit:
[PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

PackageDeclaration:
{PackageModifier} package Identifier {. Identifier} ;

PackageModifier:
Annotation

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration
SingleStaticImportDeclaration
StaticImportOnDemandDeclaration

SingleTypeImportDeclaration:
import TypeName ;

TypeImportOnDemandDeclaration:
import PackageOrTypeName . * ;

SingleStaticImportDeclaration:
import static TypeName . Identifier ;

StaticImportOnDemandDeclaration:
import static TypeName . * ;

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration
;

SYNTAX

704

Productions from §8 (Classes)

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
{ClassModifier} class Identifier [TypeParameters]

 [Superclass] [Superinterfaces] ClassBody

ClassModifier:
(one of)
Annotation public protected private
abstract static final strictfp

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter {, TypeParameter}

Superclass:
extends ClassType

Superinterfaces:
implements InterfaceTypeList

InterfaceTypeList:
InterfaceType {, InterfaceType}

ClassBody:
{ {ClassBodyDeclaration} }

ClassBodyDeclaration:
ClassMemberDeclaration
InstanceInitializer
StaticInitializer
ConstructorDeclaration

SYNTAX

705

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

FieldDeclaration:
{FieldModifier} UnannType VariableDeclaratorList ;

FieldModifier:
(one of)
Annotation public protected private
static final transient volatile

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorId [= VariableInitializer]

VariableDeclaratorId:
Identifier [Dims]

VariableInitializer:
Expression
ArrayInitializer

SYNTAX

706

UnannType:
UnannPrimitiveType
UnannReferenceType

UnannPrimitiveType:
NumericType
boolean

UnannReferenceType:
UnannClassOrInterfaceType
UnannTypeVariable
UnannArrayType

UnannClassOrInterfaceType:
UnannClassType
UnannInterfaceType

UnannClassType:
Identifier [TypeArguments]
UnannClassOrInterfaceType . {Annotation} Identifier [TypeArguments]

UnannInterfaceType:
UnannClassType

UnannTypeVariable:
Identifier

UnannArrayType:
UnannPrimitiveType Dims
UnannClassOrInterfaceType Dims
UnannTypeVariable Dims

SYNTAX

707

MethodDeclaration:
{MethodModifier} MethodHeader MethodBody

MethodModifier:
(one of)
Annotation public protected private
abstract static final synchronized native strictfp

MethodHeader:
Result MethodDeclarator [Throws]
TypeParameters {Annotation} Result MethodDeclarator [Throws]

Result:
UnannType
void

MethodDeclarator:
Identifier ([FormalParameterList]) [Dims]

FormalParameterList:
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

FormalParameters:
FormalParameter {, FormalParameter}
ReceiverParameter {, FormalParameter}

FormalParameter:
{VariableModifier} UnannType VariableDeclaratorId

VariableModifier:
(one of)
Annotation final

LastFormalParameter:
{VariableModifier} UnannType {Annotation} ... VariableDeclaratorId
FormalParameter

ReceiverParameter:
{Annotation} UnannType [Identifier .] this

SYNTAX

708

Throws:
throws ExceptionTypeList

ExceptionTypeList:
ExceptionType {, ExceptionType}

ExceptionType:
ClassType
TypeVariable

MethodBody:
Block
;

InstanceInitializer:
Block

StaticInitializer:
static Block

ConstructorDeclaration:
{ConstructorModifier} ConstructorDeclarator [Throws] ConstructorBody

ConstructorModifier:
(one of)
Annotation public protected private

ConstructorDeclarator:
[TypeParameters] SimpleTypeName ([FormalParameterList])

SimpleTypeName:
Identifier

ConstructorBody:
{ [ExplicitConstructorInvocation] [BlockStatements] }

ExplicitConstructorInvocation:
[TypeArguments] this ([ArgumentList]) ;
[TypeArguments] super ([ArgumentList]) ;
ExpressionName . [TypeArguments] super ([ArgumentList]) ;
Primary . [TypeArguments] super ([ArgumentList]) ;

SYNTAX

709

EnumDeclaration:
{ClassModifier} enum Identifier [Superinterfaces] EnumBody

EnumBody:
{ [EnumConstantList] [,] [EnumBodyDeclarations] }

EnumConstantList:
EnumConstant {, EnumConstant}

EnumConstant:
{EnumConstantModifier} Identifier [([ArgumentList])] [ClassBody]

EnumConstantModifier:
Annotation

EnumBodyDeclarations:
; {ClassBodyDeclaration}

SYNTAX

710

Productions from §9 (Interfaces)

InterfaceDeclaration:
NormalInterfaceDeclaration
AnnotationTypeDeclaration

NormalInterfaceDeclaration:
{InterfaceModifier} interface Identifier [TypeParameters]

 [ExtendsInterfaces] InterfaceBody

InterfaceModifier:
(one of)
Annotation public protected private
abstract static strictfp

ExtendsInterfaces:
extends InterfaceTypeList

InterfaceBody:
{ {InterfaceMemberDeclaration} }

InterfaceMemberDeclaration:
ConstantDeclaration
InterfaceMethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

ConstantDeclaration:
{ConstantModifier} UnannType VariableDeclaratorList ;

ConstantModifier:
(one of)
Annotation public
static final

InterfaceMethodDeclaration:
{InterfaceMethodModifier} MethodHeader MethodBody

SYNTAX

711

InterfaceMethodModifier:
(one of)
Annotation public
abstract default static strictfp

AnnotationTypeDeclaration:
{InterfaceModifier} @ interface Identifier AnnotationTypeBody

AnnotationTypeBody:
{ {AnnotationTypeMemberDeclaration} }

AnnotationTypeMemberDeclaration:
AnnotationTypeElementDeclaration
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration
;

AnnotationTypeElementDeclaration:
{AnnotationTypeElementModifier} UnannType Identifier () [Dims]

 [DefaultValue] ;

AnnotationTypeElementModifier:
(one of)
Annotation public
abstract

DefaultValue:
default ElementValue

SYNTAX

712

Annotation:
NormalAnnotation
MarkerAnnotation
SingleElementAnnotation

NormalAnnotation:
@ TypeName ([ElementValuePairList])

ElementValuePairList:
ElementValuePair {, ElementValuePair}

ElementValuePair:
Identifier = ElementValue

ElementValue:
ConditionalExpression
ElementValueArrayInitializer
Annotation

ElementValueArrayInitializer:
{ [ElementValueList] [,] }

ElementValueList:
ElementValue {, ElementValue}

MarkerAnnotation:
@ TypeName

SingleElementAnnotation:
@ TypeName (ElementValue)

SYNTAX

713

Productions from §10 (Arrays)

ArrayInitializer:
{ [VariableInitializerList] [,] }

VariableInitializerList:
VariableInitializer {, VariableInitializer}

SYNTAX

714

Productions from §14 (Blocks and Statements)

Block:
{ [BlockStatements] }

BlockStatements:
BlockStatement {BlockStatement}

BlockStatement:
LocalVariableDeclarationStatement
ClassDeclaration
Statement

LocalVariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
{VariableModifier} UnannType VariableDeclaratorList

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf

SYNTAX

715

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
AssertStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

EmptyStatement:
;

LabeledStatement:
Identifier : Statement

LabeledStatementNoShortIf:
Identifier : StatementNoShortIf

ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PreIncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

SYNTAX

716

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

AssertStatement:
assert Expression ;
assert Expression : Expression ;

SwitchStatement:
switch (Expression) SwitchBlock

SwitchBlock:
{ {SwitchBlockStatementGroup} {SwitchLabel} }

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel {SwitchLabel}

SwitchLabel:
case ConstantExpression :
case EnumConstantName :
default :

EnumConstantName:
Identifier

WhileStatement:
while (Expression) Statement

WhileStatementNoShortIf:
while (Expression) StatementNoShortIf

DoStatement:
do Statement while (Expression) ;

SYNTAX

717

ForStatement:
BasicForStatement
EnhancedForStatement

ForStatementNoShortIf:
BasicForStatementNoShortIf
EnhancedForStatementNoShortIf

BasicForStatement:
for ([ForInit] ; [Expression] ; [ForUpdate]) Statement

BasicForStatementNoShortIf:
for ([ForInit] ; [Expression] ; [ForUpdate]) StatementNoShortIf

ForInit:
StatementExpressionList
LocalVariableDeclaration

ForUpdate:
StatementExpressionList

StatementExpressionList:
StatementExpression {, StatementExpression}

EnhancedForStatement:
for ({VariableModifier} UnannType VariableDeclaratorId

 : Expression)
 Statement

EnhancedForStatementNoShortIf:
for ({VariableModifier} UnannType VariableDeclaratorId

 : Expression)
 StatementNoShortIf

BreakStatement:
break [Identifier] ;

ContinueStatement:
continue [Identifier] ;

ReturnStatement:
return [Expression] ;

SYNTAX

718

ThrowStatement:
throw Expression ;

SynchronizedStatement:
synchronized (Expression) Block

TryStatement:
try Block Catches
try Block [Catches] Finally
TryWithResourcesStatement

Catches:
CatchClause {CatchClause}

CatchClause:
catch (CatchFormalParameter) Block

CatchFormalParameter:
{VariableModifier} CatchType VariableDeclaratorId

CatchType:
UnannClassType {| ClassType}

Finally:
finally Block

TryWithResourcesStatement:
try ResourceSpecification Block [Catches] [Finally]

ResourceSpecification:
(ResourceList [;])

ResourceList:
Resource {; Resource}

Resource:
{VariableModifier} UnannType VariableDeclaratorId = Expression

SYNTAX

719

Productions from §15 (Expressions)

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
ClassLiteral
this

TypeName . this
(Expression)
ClassInstanceCreationExpression
FieldAccess
ArrayAccess
MethodInvocation
MethodReference

ClassLiteral:
TypeName {[]} . class
NumericType {[]} . class
boolean {[]} . class
void . class

ClassInstanceCreationExpression:
UnqualifiedClassInstanceCreationExpression
ExpressionName . UnqualifiedClassInstanceCreationExpression
Primary . UnqualifiedClassInstanceCreationExpression

UnqualifiedClassInstanceCreationExpression:
new [TypeArguments]

 ClassOrInterfaceTypeToInstantiate ([ArgumentList]) [ClassBody]

ClassOrInterfaceTypeToInstantiate:
{Annotation} Identifier {. {Annotation} Identifier}

 [TypeArgumentsOrDiamond]

TypeArgumentsOrDiamond:
TypeArguments
<>

SYNTAX

720

FieldAccess:
Primary . Identifier
super . Identifier
TypeName . super . Identifier

ArrayAccess:
ExpressionName [Expression]
PrimaryNoNewArray [Expression]

MethodInvocation:
MethodName ([ArgumentList])
TypeName . [TypeArguments] Identifier ([ArgumentList])
ExpressionName . [TypeArguments] Identifier ([ArgumentList])
Primary . [TypeArguments] Identifier ([ArgumentList])
super . [TypeArguments] Identifier ([ArgumentList])
TypeName . super . [TypeArguments] Identifier ([ArgumentList])

ArgumentList:
Expression {, Expression}

MethodReference:
ExpressionName :: [TypeArguments] Identifier
ReferenceType :: [TypeArguments] Identifier
Primary :: [TypeArguments] Identifier
super :: [TypeArguments] Identifier
TypeName . super :: [TypeArguments] Identifier
ClassType :: [TypeArguments] new
ArrayType :: new

ArrayCreationExpression:
new PrimitiveType DimExprs [Dims]
new ClassOrInterfaceType DimExprs [Dims]
new PrimitiveType Dims ArrayInitializer
new ClassOrInterfaceType Dims ArrayInitializer

DimExprs:
DimExpr {DimExpr}

DimExpr:
{Annotation} [Expression]

SYNTAX

721

Expression:
LambdaExpression
AssignmentExpression

LambdaExpression:
LambdaParameters -> LambdaBody

LambdaParameters:
Identifier
([FormalParameterList])
(InferredFormalParameterList)

InferredFormalParameterList:
Identifier {, Identifier}

LambdaBody:
Expression
Block

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator Expression

LeftHandSide:
ExpressionName
FieldAccess
ArrayAccess

AssignmentOperator:
(one of)
= *= /= %= += -= <<= >>= >>>= &= ^= |=

SYNTAX

722

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression
ConditionalOrExpression ? Expression : LambdaExpression

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ReferenceType

SYNTAX

723

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

PostfixExpression:
Primary
ExpressionName
PostIncrementExpression
PostDecrementExpression

SYNTAX

724

PostIncrementExpression:
PostfixExpression ++

PostDecrementExpression:
PostfixExpression --

CastExpression:
(PrimitiveType) UnaryExpression
(ReferenceType {AdditionalBound}) UnaryExpressionNotPlusMinus
(ReferenceType {AdditionalBound}) LambdaExpression

ConstantExpression:
Expression

725

Index

Symbols

= operator, 589
assignment contexts, 111
expressions and run-time checks, 469, 470
normal and abrupt completion of evaluation,

471, 471
@Deprecated, 308
@FunctionalInterface, 310
@Inherited, 306
@Override, 306
@Repeatable, 310

repeatable annotation types, 300
@Retention, 305

repeatable annotation types, 300
@SafeVarargs, 309

formal parameters, 231
@SuppressWarnings, 307

checked casts and unchecked casts, 124
formal parameters, 231
requirements in overriding and hiding, 248
unchecked conversion, 105

@Target, 304
multiple annotations of the same type, 320
repeatable annotation types, 300
where annotations may appear, 315

A

abrupt completion of do statement, 431
do statement, 431

abrupt completion of for statement, 435

iteration of for statement, 435
abrupt completion of while statement, 430

while statement, 430
abstract classes, 194, 389

abstract methods, 234
anonymous class declarations, 491
array creation expressions, 493
final classes, 196
superinterfaces, 206

abstract interfaces, 281
abstract methods, 234, 402

abstract classes, 194
method body, 242
method declarations, 288

access control, 163
accessing superclass members using super,

504
class literals, 480
class modifiers, 193
constructor declarations, 259
default constructor, 267
enum body declarations, 271
explicit constructor invocations, 264
field access using a primary, 501
identify potentially applicable methods, 515
import declarations, 182
interface modifiers, 280
local class declarations, 413
member type declarations, 256
method declarations, 288
normal annotations, 311
objects, 54
qualified expression names, 160, 160, 160

INDEX

726

qualified type names, 158, 158
reference types and values, 53
requirements in overriding and hiding, 249
single-static-import declarations, 186
single-type-import declarations, 183
static-import-on-demand declarations, 186
superclasses and subclasses, 202
superinterfaces, 204
superinterfaces and subinterfaces, 282
type-import-on-demand declarations, 185

access to a protected member, 169
access to members and constructors, 393
accessing superclass members using super,

503
declarations, 134
field declarations, 215
field initialization, 223, 224
initialization of fields in interfaces, 287
instance initializers, 257
static methods, 236
syntactic classification of a name according

to context, 152
actions, 648

synchronization order, 650
additive operators, 563

constant expressions, 612
integer operations, 43

additive operators (+ and -) for numeric types,

566
binary numeric promotion, 129
floating-point operations, 48

an array of characters is not a String, 342
annotation type elements, 295

@Target, 305
annotation types, 295
declarations, 132, 133, 133
marker annotations, 313
normal annotations, 311

single-element annotations, 314
syntactic classification of a name according

to context, 152
where types are used, 76

annotation types, 294
@Target, 304
annotations, 310
declarations, 132
interface declarations, 280

annotations, 310
declarations, 134
defaults for annotation type elements, 299
syntactic classification of a name according

to context, 152
anonymous class declarations, 491

class instance creation expressions, 483, 483
class modifiers, 193
definite assignment and anonymous classes,

635
enum constants, 270
form of a binary, 383
initialization of fields in interfaces, 287
inner classes and enclosing instances, 199
syntactic classification of a name according

to context, 153
where types are used, 77, 78

anonymous constructors, 491
choosing the constructor and its arguments,

490
default constructor, 267
form of a binary, 387

argument lists are evaluated left-to-right, 476
array access, 335
array access expressions, 497

array access, 335
assignment operators, 589
compound assignment operators, 596
simple assignment operator =, 589

INDEX

727

syntactic classification of a name according

to context, 153
unary numeric promotion, 128

array creation, 335
array creation and access expressions, 493

method reference expressions, 536
array creation expressions, 493

array creation, 335
array initializers, 337
objects, 53
syntactic classification of a name according

to context, 153
unary numeric promotion, 128
where types are used, 77, 78

array initializers, 337
array creation, 335
definite assignment and array initializers,

634
normal and abrupt completion of evaluation,

470
objects, 53
run-time evaluation of array creation

expressions, 494
array members, 339

declarations, 132, 132
happens-before order, 652
qualified expression names, 161

array store exception, 336
array variables, 335
assignment contexts, 111
expressions and run-time checks, 469, 470
normal and abrupt completion of evaluation,

471
variables, 81

array types, 332
annotation type elements, 296
enhanced for statement, 436
raw types, 66

reference types and values, 52
reifiable types, 65
where types are used, 77

array variables, 332
enhanced for statement, 436
field (constant) declarations, 286
field declarations, 215
formal parameters, 230, 230, 231
lambda parameters, 604, 605, 605
local variable declarators and types, 416
method result, 240

arrays, 331
array creation expressions, 493
kinds of variables, 84
when reference types are the same, 57

assert statement, 422
assert statements, 628
detailed initialization procedure, 369
when initialization occurs, 365

assert statements, 628
assignment contexts, 109

array initializers, 338
array store exception, 336
array variables, 335
class instance creation expressions, 484
execution of try-catch, 451
expressions and run-time checks, 469, 469
kinds of types and values, 42
lambda expressions, 602
method invocation expressions, 506
method reference expressions, 538
normal annotations, 312
reference conditional expressions, 587
return statement, 443
run-time evaluation of method references,

547
simple assignment operator =, 589, 590
switch statement, 426

INDEX

728

throw statement, 444, 445
type of an expression, 467
variables, 81

assignment expressions, 623
assignment operators, 588

assignment contexts, 109
assignment expressions, 623
evaluation order for other expressions, 477
field initialization, 223
final variables, 86
forms of expressions, 466
initial values of variables, 88
syntactic classification of a name according

to context, 153
variables, 81

asynchronous Exceptions, 346
causes of Exceptions, 345

B

basic for statement, 433
@Target, 305
for statements, 630
scope of a declaration, 142
syntactic classification of a name according

to context, 153
where types are used, 76

basic try-with-resources, 455
binary compatibility, 381
binary numeric promotion, 128

additive operators (+ and -) for numeric types,

566
division operator /, 559
integer bitwise operators &, ^, and |, 575
multiplicative operators, 557
numeric conditional expressions, 587
numeric contexts, 127

numerical comparison operators <, <=, >, and

>=, 570
numerical equality operators == and !=, 573
postfix decrement operator --, 551
postfix increment operator ++, 550
prefix decrement operator --, 554
prefix increment operator ++, 553
remainder operator %, 561
shift operators, 568

bitwise and logical operators, 575
constant expressions, 613

bitwise complement operator ~, 555
constant expressions, 612
integer operations, 43
unary numeric promotion, 128

blocks, 413, 625
blocks, 625
kinds of variables, 84
lambda body, 606
local class declarations, 413
scope of a declaration, 142

blocks and statements, 411
boolean conditional expressions, 586
boolean constant expressions, 621
boolean equality operators == and !=, 574

boolean type and boolean values, 51
boolean literals, 34

boolean type and boolean values, 51
boxing conversion, 103
constant expressions, 612
identifiers, 23
lexical literals, 479

boolean logical operators &, ^, and |, 576
boolean type and boolean values, 51
conditional-and operator &&, 577
conditional-or operator ||, 577

boolean type and boolean values, 51
boolean literals, 34

INDEX

729

lexical literals, 479
bounds, 669

bounds involving capture conversion, 683
functional interface parameterization

inference, 694
invocation applicability inference, 686
more specific method inference, 695
reduction, 671

bounds involving capture conversion, 683
incorporation, 681

boxing conversion, 102
assignment contexts, 109
casting contexts, 117
class literals, 479
conditional operator ? :, 586
creation of new class instances, 370
floating-point operations, 49
integer operations, 44
invocation contexts, 115
invocation type inference, 689
normal and abrupt completion of evaluation,

471
numeric conditional expressions, 586
objects, 53
postfix decrement operator --, 551
postfix increment operator ++, 550
prefix decrement operator --, 554
prefix increment operator ++, 553
type compatibility constraints, 676, 676

break statement, 438
break, continue, return, and throw statements,

632
labeled statements, 419
names and identifiers, 139
normal and abrupt completion of statements,

412
break, continue, return, and throw

statements, 632

C

capture conversion, 105
array access expressions, 497
assignment operators, 589
bounds, 670
cast expressions, 556
compile-time declaration of a method

reference, 539, 541
compile-time step 3: is the chosen method

appropriate?, 526
enhanced for statement, 437
expression compatibility constraints, 675,

675
field access using a primary, 501
function types, 327
intersection types, 70
least upper bound, 75
members and constructors of parameterized

types, 63
parameterized types, 59
qualified expression names, 160, 160, 160,

161, 161
reference conditional expressions, 587
resolution, 685
simple expression names, 159
subtyping among class and interface types,

73
type arguments of parameterized types, 61
type of a method reference, 545

cast expressions, 556
array types, 332
casting contexts, 116
compile-time step 3: is the chosen method

appropriate?, 525
constant expressions, 612
expressions and run-time checks, 469, 470
floating-point operations, 48
forms of expressions, 466

INDEX

730

happens-before order, 652
integer operations, 44
intersection types, 70
normal and abrupt completion of evaluation,

471
objects, 55
syntactic classification of a name according

to context, 153
type comparison operator instanceof, 571
unary operators, 551
where types are used, 77

casting contexts, 116
boolean type and boolean values, 52
cast expressions, 556, 557
expressions and run-time checks, 469, 470
happens-before order, 652
kinds of types and values, 42
lambda expressions, 602
method reference expressions, 538
objects, 55
reference equality operators == and !=, 574

casting conversions to primitive types, 119
casting conversions to reference types, 120
causes of Exceptions, 345
character literals, 34

boxing conversion, 103
comments, 22
constant expressions, 612
escape sequences for character and String

literals, 37
lexical literals, 479
unicode, 16

check accessibility of type and method, 529
run-time evaluation of method references,

547, 547, 548
checked casts and unchecked casts, 124

variables of reference type, 81
checked casts at run time, 125

checked casts and unchecked casts, 125
checked exception constraints, 679
choosing the constructor and its arguments,

487
anonymous constructors, 492
class instance creation expressions, 484
compile-time declaration of a method

reference, 540
default constructor, 267
expression compatibility constraints, 672
formal parameters, 259

choosing the most specific method, 520
compile-time declaration of a method

reference, 541, 541, 542
compile-time step 2: determine method

Signature, 510
conditional operator ? :, 579, 580
method and constructor overloading, 405
more specific method inference, 695, 695
phase 1: identify matching arity methods

applicable by strict invocation, 518
phase 2: identify matching arity methods

applicable by loose invocation, 519
phase 3: identify methods applicable by

variable arity invocation, 520
class body and member declarations, 207, 392

class members, 208
member type declarations, 256, 256
scope of a declaration, 141
what binary compatibility is and is not, 388

class declarations, 193
declarations, 132
reference types and values, 52
types, classes, and interfaces, 88

class instance creation expressions, 482
conditional operator ? :, 579, 580
constructor declarations, 258, 259
constructor overloading, 267

INDEX

731

creation of new class instances, 370
exception analysis of expressions, 348
form of a binary, 385
forms of expressions, 467
functional interfaces, 322
initial values of variables, 87, 88
instance initializers, 257
invocation contexts, 114
invocation type inference, 689, 690
kinds of variables, 84
method reference expressions, 536
names and identifiers, 140
objects, 53, 53
return statement, 442
run-time handling of an exception, 352
String conversion, 108
syntactic classification of a name according

to context, 153, 153, 153
types, classes, and interfaces, 89
where types are used, 76, 77, 78, 78

class literals, 479
declarations, 134
normal annotations, 312
syntactic classification of a name according

to context, 152
class loading, 360

causes of Exceptions, 345
class literals, 480
load the class test, 358

class members, 208
abstract classes, 194
declarations, 132
function types, 325
members and constructors of parameterized

types, 63
method invocation type, 523

class modifiers, 193
@Target, 304

anonymous class declarations, 491
local class declarations, 413
reference type casting, 121, 121, 121

class Object, 56
checked casts at run time, 126, 126
method invocation type, 523

class objects for arrays, 340
types, classes, and interfaces, 89

class String, 56
lexical literals, 479
literals, 24
objects, 53
String literals, 36, 36

class type parameters, 391
classes, 191

local class declarations, 413
package members, 175
qualified expression names, 160
reclassification of contextually ambiguous

names, 155
top level type declarations, 187

comments, 21
input elements and tokens, 20
lexical grammar, 9
lexical translations, 16
line terminators, 19
unicode, 16

compilation units, 179
determining accessibility, 164
host support for packages, 177
observability of a package, 181
package members, 175
reclassification of contextually ambiguous

names, 155, 155
scope of a declaration, 141
shadowing, 148
syntactic grammar, 10

compile-time checking of Exceptions, 347

INDEX

732

checked exception constraints, 680
compile-time declaration of a method

reference, 539
checked exception constraints, 680
choosing the most specific method, 521
compile-time step 2: determine method

Signature, 509
expression compatibility constraints, 675,

675
identify potentially applicable methods, 516
invocation type inference, 692, 692
method reference expressions, 538
phase 1: identify matching arity methods

applicable by strict invocation, 517
run-time evaluation of method references,

548
compile-time step 1: determine class or

interface to search, 506
class Object, 56
compile-time declaration of a method

reference, 539
identify potentially applicable methods, 515
method invocation type, 523
raw types, 68

compile-time step 2: determine method

Signature, 509
choosing the constructor and its arguments,

489, 489
compile-time declaration of a method

reference, 539
enum constants, 270
overloading, 253
what binary compatibility is and is not, 388

compile-time step 3: is the chosen method

appropriate?, 523
check accessibility of type and method, 529
choosing the most specific method, 522
create frame, synchronize, transfer control,

535

form of a binary, 385
locate method to invoke, 531, 531
method invocation expressions, 505
run-time evaluation of method references,

547, 548, 549
complementary pairs of bounds, 682

incorporation, 681
compound assignment operators, 595

evaluate left-hand operand first, 472
compute target reference (if necessary), 527

method reference expressions, 537
concepts and notation, 668
conditional expression type (primitive 3rd

operand, part i), 581
conditional expression type (primitive 3rd

operand, part ii), 582
conditional expression type (reference 3rd

operand, part i), 583
conditional expression type (reference 3rd

operand, part ii), 584
conditional expression type (reference 3rd

operand, part iii), 585
conditional operator ? :, 578, 622, 623

binary numeric promotion, 129
boolean type and boolean values, 51, 51
conditional operator ? :, 622, 623
constant expressions, 613
floating-point operations, 48
forms of expressions, 466, 467
identify potentially applicable methods, 517
integer operations, 43
objects, 55
phase 1: identify matching arity methods

applicable by strict invocation, 518
conditional-and operator &&, 577, 621

boolean type and boolean values, 51
conditional-and operator &&, 621
constant expressions, 613

INDEX

733

conditional-or operator ||, 577, 622
boolean type and boolean values, 51
conditional-or operator ||, 622
constant expressions, 613
forms of expressions, 466

constant expressions, 612
assignment contexts, 110
boolean constant expressions, 621
class String, 57
creation of new class instances, 370
final fields and static constant variables, 397
final variables, 86
forms of expressions, 467
fp-strict expressions, 468
initialization of fields in interfaces, 287
normal annotations, 312
numeric conditional expressions, 586
objects, 53
String concatenation operator +, 564
String literals, 36
subsequent modification of final fields, 663
unreachable statements, 461, 461, 461

constraint formulas, 669
reduction, 671

constructor body, 262
constructor declarations, 259
definite assignment, constructors, and

instance initializers, 637
initial values of variables, 88
kinds of variables, 84
return statement, 443
this, 480

constructor declarations, 258
class body and member declarations, 208
creation of new class instances, 370
declarations, 133, 133
final fields, 221
raw types, 67

return statement, 442
run-time evaluation of class instance creation

expressions, 490
simple expression names, 159
syntactic classification of a name according

to context, 152
where types are used, 77

constructor modifiers, 260
@Target, 305

constructor overloading, 267
constructor Signature, 260

form of a binary, 386
constructor throws, 262

compile-time checking of Exceptions, 347
declarations, 134
syntactic classification of a name according

to context, 152
throw statement, 445
where types are used, 76, 78

context-free grammars, 9
compilation units, 179

continue statement, 440
break, continue, return, and throw statements,

632
labeled statements, 419
names and identifiers, 139
normal and abrupt completion of statements,

412
conversions and contexts, 93

parenthesized expressions, 482
type of an expression, 467

create frame, synchronize, transfer control,

534
run-time evaluation of method references,

547, 547, 548
creation of new class instances, 370

constructor declarations, 258
field initialization, 224

INDEX

734

form of a binary, 383
instance initializers, 257
run-time evaluation of class instance creation

expressions, 490
static fields, 218
String concatenation operator +, 564
when initialization occurs, 365

D

declarations, 132
functional interfaces, 325
members and constructors of parameterized

types, 64
names and identifiers, 139
syntactic classification of a name according

to context, 152
where types are used, 77, 78

default constructor, 267
form of a binary, 387
method and constructor declarations, 400

defaults for annotation type elements, 299
marker annotations, 314
single-element annotations, 314
syntactic classification of a name according

to context, 154
definite assignment, 615

assignment operators, 589
final variables, 85, 86, 87
initial values of variables, 88
inner classes and enclosing instances, 201
kinds of variables, 85
lambda body, 607
parenthesized expressions, 482

definite assignment and anonymous classes,

635
definite assignment and array initializers, 634
definite assignment and enum constants, 634

definite assignment and expressions, 621
definite assignment and member types, 635
definite assignment and parameters, 634
definite assignment and statements, 625
definite assignment and static initializers, 636

definite assignment and enum constants, 634
final fields, 221

definite assignment, constructors, and

instance initializers, 636
final fields, 221

detailed initialization procedure, 367
field initialization, 223, 223
final fields and static constant variables, 399
form of a binary, 383
initialization of fields in interfaces, 287
simple expression names, 159
static initializers, 258
throw statement, 445
when initialization occurs, 365

details on protected access, 168
determining accessibility, 165

determining accessibility, 164
top level type declarations, 187

determining enclosing instances, 486
anonymous constructors, 492
choosing the constructor and its arguments,

488, 488
class instance creation expressions, 484
compile-time declaration of a method

reference, 542
default constructor, 267
formal parameters, 259
inner classes and enclosing instances, 200
method reference expressions, 537
run-time evaluation of method references,

548
determining the class being instantiated, 484

abstract classes, 194

INDEX

735

class instance creation expressions, 484
enum types, 269

determining the meaning of a name, 150
class members, 209
declarations, 133
interface members, 285
names and identifiers, 139
obscuring, 149
where types are used, 77

division operator /, 559
compound assignment operators, 597
evaluate operands before operation, 474
integer operations, 44
normal and abrupt completion of evaluation,

471
do statement, 431

boolean type and boolean values, 51
do statements, 630

do statements, 630

E

empty statement, 418
empty statements, 625

empty statements, 625
enhanced for statement, 436

@Target, 305
array variables, 333
for statements, 630
scope of a declaration, 142
syntactic classification of a name according

to context, 153
where types are used, 76

enum body declarations, 271
constructor declarations, 258
declarations, 132, 132, 133

enum constants, 270
@Target, 305

definite assignment and enum constants, 634
definite assignment and static initializers,

636
enum types, 269
normal annotations, 312
where types are used, 76

enum members, 273
declarations, 132
form of a binary, 387

enum types, 269
@Target, 304
abstract methods, 234
class declarations, 193
declarations, 132
normal annotations, 312
superclasses and subclasses, 202
switch statement, 426

equality operators, 572
constant expressions, 612

erasure, 64
assignment contexts, 111
cast expressions, 556
checked casts and unchecked casts, 125
checked casts at run time, 125
choosing the most specific method, 522
class Object, 56
class type parameters, 391
compile-time step 3: is the chosen method

appropriate?, 525
constructor Signature, 260
create frame, synchronize, transfer control,

535
declarations, 133
evaluate arguments, 529
field declarations, 396
form of a binary, 384, 385, 386
invocation contexts, 116

INDEX

736

method and constructor formal parameters,

402
method and constructor type parameters, 401
method invocation type, 523
method result type, 402
method Signature, 232
raw types, 66
requirements in overriding and hiding, 248
type variables, 58

escape sequences for character and String

literals, 37
character literals, 34
String literals, 35

evaluate arguments, 528
formal parameters, 231
variables of reference type, 81

evaluate left-hand operand first, 472
evaluate operands before operation, 474
evaluation order, 472
evaluation order for other expressions, 477
evaluation respects parentheses and

precedence, 475
evaluation, denotation, and result, 465

assert statement, 423
evolution of annotation types, 409
evolution of classes, 389
evolution of enums, 406
evolution of interfaces, 406
evolution of packages, 389
example programs, 6
exception analysis of expressions, 348

class instance creation expressions, 483
compile-time checking of Exceptions, 347
method invocation expressions, 505

exception analysis of statements, 349
compile-time checking of Exceptions, 347
explicit constructor invocations, 264
method throws, 240

throw statement, 445
try statement, 449

exception checking, 350
compile-time checking of Exceptions, 347
field initialization, 224
instance initializers, 257
method throws, 241
static initializers, 258
throw statement, 445, 446
try statement, 449
type of a lambda expression, 610

Exceptions, 343
floating-point operations, 49
integer operations, 44
normal and abrupt completion of statements,

412
throw statement, 444

execution, 357
execution of local variable declarations, 416

final variables, 86
execution of try-catch, 450

try statement, 450
execution of try-finally and try-catch-finally,

452
try statement, 450

executions, 654
well-formed executions, 655

executions and causality requirements, 655
explicit constructor invocations, 263

anonymous constructors, 492, 492
constructor body, 262
creation of new class instances, 371
definite assignment, constructors, and

instance initializers, 637, 637
enum body declarations, 271
exception analysis of statements, 349
form of a binary, 385

INDEX

737

inner classes and enclosing instances, 199,

200
instance initializers, 257
invocation contexts, 114
syntactic classification of a name according

to context, 153, 153
where types are used, 76, 78

expression compatibility constraints, 671
expression names, 550

declarations, 134
expression statements, 420, 628

evaluation, denotation, and result, 465
expression statements, 628
identify potentially applicable methods, 516
initialization of for statement, 434
type of a lambda expression, 610

expressions, 465
expressions and run-time checks, 468
extended try-with-resources, 458

F

feedback, 7
field (constant) declarations, 285

@Target, 305
array initializers, 337
array variables, 332, 333
declarations, 132
final variables, 86
interface body and member declarations, 284
kinds of variables, 83
obscuring, 149
shadowing, 146
syntactic classification of a name according

to context, 152
where types are used, 76

field access expressions, 500
assignment operators, 589

names and identifiers, 139
normal and abrupt completion of evaluation,

471
objects, 54
raw types, 68
simple assignment operator =, 589
static initializers, 258

field access using a primary, 500
field declarations, 213, 394, 408

array initializers, 337
array variables, 332, 333
class body and member declarations, 207
creation of new class instances, 370
declarations, 132
field declarations, 408
obscuring, 149
raw types, 67
reclassification of contextually ambiguous

names, 154
shadowing, 146
simple expression names, 159
syntactic classification of a name according

to context, 152
where annotations may appear, 316
where types are used, 76

field initialization, 223
definite assignment and static initializers,

636
definite assignment, constructors, and

instance initializers, 636
detailed initialization procedure, 368
exception checking, 350, 350
final fields and static constant variables, 399
initialization of fields in interfaces, 287
simple expression names, 159
static initializers, 258
this, 480

field modifiers, 217

INDEX

738

@Target, 305
field declarations, 215

final classes, 196, 389
anonymous class declarations, 491
final methods, 236
superclasses and subclasses, 202
verification of the binary representation, 363

final field semantics, 660
memory model, 647

final fields, 221
final fields and static constant variables, 397

field declarations, 408
final variables, 86
verification of the binary representation, 363

final methods, 236, 403
verification of the binary representation, 363

final variables, 85
constant expressions, 613, 613
detailed initialization procedure, 368
enum body declarations, 272
field initialization, 223
final fields, 221
final fields and static constant variables, 397
form of a binary, 383
initialization of fields in interfaces, 287
inner classes and enclosing instances, 199,

201, 201
lambda body, 607
local variable declarators and types, 416
narrowing reference conversion, 101
try statement, 449
try-with-resources, 455
when initialization occurs, 365

finalization of class instances, 373
class Object, 56
enum body declarations, 272
happens-before order, 651
kinds of variables, 83

unloading of classes and interfaces, 378
floating-point literals, 31

constant expressions, 612
lexical literals, 479

floating-point operations, 48
additive operators (+ and -) for numeric types,

568
division operator /, 560
multiplication operator *, 559
narrowing primitive conversion, 98
widening primitive conversion, 97

floating-point types, formats, and values, 45
cast expressions, 557
field declarations, 215
floating-point literals, 33
formal parameters, 231
fp-strict expressions, 468
lambda parameters, 606
lexical literals, 479, 479
local variable declarators and types, 416
narrowing primitive conversion, 99, 99
parenthesized expressions, 482
return statement, 443
unary minus operator -, 555

floating-point value set parameters, 46
floating-point types, formats, and values, 46,

46, 46
for statement, 433

boolean type and boolean values, 51
declarations, 133
initial values of variables, 88
kinds of variables, 84
local variable declaration statements, 415

for statements, 630
forbidden conversions, 108
form of a binary, 382

check accessibility of type and method, 529

INDEX

739

compile-time step 3: is the chosen method

appropriate?, 526
final variables, 86
loading of classes and interfaces, 360
locate method to invoke, 531
resolution of symbolic references, 363
top level type declarations, 189
when reference types are the same, 57, 57

formal parameters, 228, 259
@Target, 305
array variables, 333
choosing the constructor and its arguments,

488
compile-time declaration of a method

reference, 544
compile-time step 3: is the chosen method

appropriate?, 525
declarations, 133, 133
default constructor, 267
definite assignment and parameters, 634,

634
evaluate arguments, 528
final variables, 87, 87
form of a binary, 387
formal parameters, 259
initial values of variables, 87, 88
invoke test.main, 360
kinds of variables, 84, 84
lambda parameters, 604, 605
method and constructor formal parameters,

401
method declarations, 228
reclassification of contextually ambiguous

names, 154, 154
scope of a declaration, 142, 142
shadowing and obscuring, 144
shared variables, 648

syntactic classification of a name according

to context, 152, 152, 152
this, 480
variables of reference type, 81
where types are used, 76, 76, 76, 77

forms of expressions, 466
boolean conditional expressions, 586
choosing the most specific method, 521
class instance creation expressions, 484
conditional operator ? :, 579, 579
expression compatibility constraints, 671,

671
identify potentially applicable methods, 517
lambda expressions, 601
method reference expressions, 538
more specific method inference, 696
numeric conditional expressions, 586
parenthesized expressions, 482

forward references during field initialization,

224
when initialization occurs, 365

fp-strict expressions, 468
additive operators (+ and -) for numeric types,

567
cast expressions, 557
constant expressions, 613
division operator /, 560
floating-point types, formats, and values, 45
formal parameters, 231
method declarations, 289
multiplication operator *, 558
return statement, 443
strictfp classes, 196
strictfp interfaces, 281
strictfp methods, 237
value set conversion, 108, 109
widening primitive conversion, 97

INDEX

740

fully qualified names and canonical names,

171
compilation units, 179
form of a binary, 383, 386
import declarations, 182, 182
local class declarations, 413
named packages, 180
notation, 6
package members, 176
single-static-import declarations, 186
single-type-import declarations, 183
static-import-on-demand declarations, 186
top level type declarations, 187
type-import-on-demand declarations, 185

function types, 325
checked exception constraints, 680
expression compatibility constraints, 674
functional interface parameterization

inference, 694
type of a lambda expression, 609
type of a method reference, 544

functional interface parameterization

inference, 694
expression compatibility constraints, 672
type of a lambda expression, 609

functional interfaces, 321
@FunctionalInterface, 310
checked exception constraints, 679
expression compatibility constraints, 672
identify potentially applicable methods, 516
lambda expressions, 602
method reference expressions, 538
type of a lambda expression, 609
type of a method reference, 544

G

generic classes and type parameters, 196

@Target, 305
capture conversion, 105
class instance creation expressions, 483
declarations, 132
form of a binary, 383
generic constructors, 261
generic methods, 239
parameterized types, 59
scope of a declaration, 142
syntactic classification of a name according

to context, 152
type variables, 57
types, classes, and interfaces, 89
where types are used, 76

generic constructors, 261
@Target, 305
class instance creation expressions, 483
declarations, 132
form of a binary, 383
scope of a declaration, 142
syntactic classification of a name according

to context, 152
type erasure, 64
type variables, 57
where types are used, 76

generic interfaces and type parameters, 281
@Target, 305
capture conversion, 105
declarations, 132
form of a binary, 383
parameterized types, 59
scope of a declaration, 142
subtyping among class and interface types,

72
superinterfaces, 205
syntactic classification of a name according

to context, 152
type variables, 57

INDEX

741

types, classes, and interfaces, 89
where types are used, 76

generic methods, 239
@Target, 305
compile-time declaration of a method

reference, 544
compile-time step 2: determine method

Signature, 510
declarations, 132
form of a binary, 383
function types, 325, 325
method declarations, 228, 289
method invocation expressions, 506
method result, 240
method Signature, 232
scope of a declaration, 142
syntactic classification of a name according

to context, 152
type erasure, 64
type variables, 57
where types are used, 76

grammar notation, 10
grammars, 9

H

happens-before order, 651
executions, 654
executions and causality requirements, 657
finalization of class instances, 374

hiding (by class methods), 247
obscuring, 149
shadowing, 146

host support for packages, 177
top level type declarations, 189

I

identifiers, 22
declarations, 132
keywords, 24
lexical grammar, 9

identify potentially applicable methods, 515
compile-time declaration of a method

reference, 540, 540, 540
compile-time step 1: determine class or

interface to search, 506
compile-time step 2: determine method

Signature, 509
phase 1: identify matching arity methods

applicable by strict invocation, 518
phase 2: identify matching arity methods

applicable by loose invocation, 519
phase 3: identify methods applicable by

variable arity invocation, 519
identity conversion, 96

assignment contexts, 109
boxing conversion, 103
capture conversion, 106
casting contexts, 117
invocation contexts, 114, 115
numeric contexts, 127
unary numeric promotion, 127

if statement, 421
boolean type and boolean values, 51

if statements, 628
if-then statement, 422

if statements, 628
if-then-else statement, 422

if statements, 628
implementing finalization, 375
import declarations, 182

compilation units, 179
incorporation, 681
incrementation part of for statement, 631

INDEX

742

inference variables, 668
inheritance and overriding, 289

compile-time checking of Exceptions, 347
compile-time declaration of a method

reference, 542
compile-time step 3: is the chosen method

appropriate?, 524
interface members, 285
method declarations, 289

inheritance, overriding, and hiding, 243
class Object, 56
compile-time declaration of a method

reference, 542
enum constants, 270
function types, 325

inheriting methods with override-equivalent

signatures, 252, 291
variables of reference type, 81

initial values of variables, 87
array initializers, 338
creation of new class instances, 370
field initialization, 223
final fields and static constant variables, 399
initialization of fields in interfaces, 287
kinds of variables, 83, 83, 84
preparation of a class or interface type, 363
run-time evaluation of array creation

expressions, 494
run-time evaluation of class instance creation

expressions, 490
variables, 81

initialization of classes and interfaces, 364
causes of Exceptions, 345
initialize test: execute initializers, 360
objects, 53
preparation of a class or interface type, 363
run-time handling of an exception, 352
static fields, 218

initialization of fields in interfaces, 287
detailed initialization procedure, 368
field initialization, 223
final fields and static constant variables, 399

initialization of for statement, 434
initialization part of for statement, 631
initialize test: execute initializers, 359
inner classes and enclosing instances, 199

anonymous class declarations, 491
compile-time step 3: is the chosen method

appropriate?, 524
determining enclosing instances, 486
explicit constructor invocations, 263
form of a binary, 387
local class declarations, 413
method reference expressions, 537
qualified this, 481
when initialization occurs, 365

input elements and tokens, 19
invocation type inference, 690
lexical grammar, 9, 9
lexical translations, 16
unicode, 16

instance creation, 370, 482
conditional operator ? :, 579, 580
constructor declarations, 258, 258, 259
constructor overloading, 267
creation of new class instances, 370
exception analysis of expressions, 348
field initialization, 224
form of a binary, 383, 385
forms of expressions, 467
functional interfaces, 322
initial values of variables, 87, 88
instance initializers, 257, 257
invocation contexts, 114
invocation type inference, 689, 690
kinds of variables, 84

INDEX

743

method reference expressions, 536
names and identifiers, 140
objects, 53, 53
return statement, 442
run-time evaluation of class instance creation

expressions, 490
run-time handling of an exception, 352
static fields, 218
String concatenation operator +, 564
String conversion, 108
syntactic classification of a name according

to context, 153, 153, 153
types, classes, and interfaces, 89
when initialization occurs, 365
where types are used, 76, 77, 78, 78

instance initializers, 257
class body and member declarations, 208
definite assignment, constructors, and

instance initializers, 637
exception checking, 350
return statement, 443
simple expression names, 159
this, 480
throw statement, 446

instanceof operator, 571
expressions and run-time checks, 469
objects, 55
syntactic classification of a name according

to context, 153
where types are used, 77, 78

integer bitwise operators &, ^, and |, 575
binary numeric promotion, 129
integer operations, 43
shift operators, 569, 569

integer literals, 25
boxing conversion, 103
constant expressions, 612
lexical literals, 479

integer operations, 43
integral types and values, 43

character literals, 35
integer literals, 25
lexical literals, 479, 479, 479

interaction with the memory model, 376
interactions of waits, notification, and

interruption, 643
interface body and member declarations, 284

interface members, 284
member type declarations, 256, 256
scope of a declaration, 142

interface declarations, 280
declarations, 132
reference types and values, 52
types, classes, and interfaces, 88

interface members, 284, 407
check accessibility of type and method, 530
declarations, 132
form of a binary, 384, 386

interface method body, 293
superinterfaces, 206
this, 480
when initialization occurs, 365

interface method declarations, 408
interface methods, 288

@Target, 305, 305
array variables, 333
declarations, 133, 133, 134
final variables, 87
inheritance, overriding, and hiding, 243
interface body and member declarations, 284
raw types, 67
syntactic classification of a name according

to context, 152, 152, 152
where types are used, 76, 76, 76, 78

interface modifiers, 280
@Target, 304

INDEX

744

static member type declarations, 257
interface type parameters, 407
interfaces, 279

package members, 175
qualified expression names, 160
reclassification of contextually ambiguous

names, 155
top level type declarations, 187

interruptions, 643
intersection types, 70

form of a binary, 384, 385
functional interfaces, 325
type variables, 58
where types are used, 77

introduction, 1
invocation applicability inference, 686

invocation type inference, 688, 688, 688,

691
phase 1: identify matching arity methods

applicable by strict invocation, 518
phase 2: identify matching arity methods

applicable by loose invocation, 519
phase 3: identify methods applicable by

variable arity invocation, 519
invocation contexts, 114

class instance creation expressions, 484
constraint formulas, 669, 669
create frame, synchronize, transfer control,

535
expression compatibility constraints, 671
formal parameters, 231
kinds of types and values, 42
lambda expressions, 602
method invocation expressions, 506
method reference expressions, 538
reference conditional expressions, 587
type compatibility constraints, 676

invocation type inference, 688

expression compatibility constraints, 672,

675
invocation type inference, 689, 690
method invocation type, 523

invoke test.main, 360
iteration of for statement, 434

J

Java Virtual Machine startup, 357

K

keywords, 24
identifiers, 23
lexical grammar, 9
primitive types and values, 42

kinds and causes of Exceptions, 344
kinds of conversion, 96
kinds of Exceptions, 344

compile-time checking of Exceptions, 347,

347
generic classes and type parameters, 197
method throws, 240, 241
narrowing primitive conversion, 99
throw statement, 444
widening primitive conversion, 97

kinds of types and values, 41
capture conversion, 105
lexical literals, 479
literals, 24
null literal, 38
throw statement, 444

kinds of variables, 83
formal parameters, 229

INDEX

745

L

labeled statements, 419, 627
break statement, 439
continue statement, 441
labeled statements, 627
names and identifiers, 139

lambda body, 606
choosing the most specific method, 521
evaluation, denotation, and result, 465
identify potentially applicable methods, 516,

516
kinds of variables, 84
type of a lambda expression, 610

lambda expressions, 601
exception analysis of expressions, 348
forms of expressions, 466, 467
functional interfaces, 322
identify potentially applicable methods, 516
return statement, 443
scope of a declaration, 142

lambda parameters, 603
array variables, 333
choosing the most specific method, 520, 521
compile-time step 2: determine method

Signature, 509
declarations, 133
final variables, 87
kinds of variables, 84
phase 1: identify matching arity methods

applicable by strict invocation, 517
shadowing and obscuring, 144
syntactic classification of a name according

to context, 152
where types are used, 76

least upper bound, 73
intersection types, 70
resolution, 685

lexical grammar, 9

lexical literals, 478
kinds of types and values, 42

lexical structure, 15
lexical grammar, 9

lexical translations, 16
line terminators, 19

character literals, 35
input elements and tokens, 19
lexical translations, 16
white space, 20

link test: verify, prepare, (optionally) resolve,

358
linking of classes and interfaces, 362

causes of Exceptions, 345
check accessibility of type and method, 530
link test: verify, prepare, (optionally) resolve,

358
resolution of symbolic references, 364

literals, 24
lexical grammar, 9
lexical literals, 478

load the class test, 358
loading of classes and interfaces, 360

causes of Exceptions, 345
class literals, 480
load the class test, 358

loading process, 361
superclasses and subclasses, 204
superinterfaces and subinterfaces, 283

local class declaration statements, 627
local class declarations, 413

class instance creation expressions, 483
class modifiers, 193
form of a binary, 383
inner classes and enclosing instances, 199
local class declaration statements, 627
reclassification of contextually ambiguous

names, 155

INDEX

746

shadowing and obscuring, 144
local variable declaration statements, 414,

627
@Target, 305
array initializers, 337
declarations, 133
initial values of variables, 88
initialization of for statement, 434
initialization part of for statement, 631
kinds of variables, 84
local variable declaration statements, 627
objects, 53
reclassification of contextually ambiguous

names, 154
scope of a declaration, 142
shadowing and obscuring, 144
shared variables, 648
syntactic classification of a name according

to context, 153
where types are used, 76

local variable declarators and types, 415
array variables, 332, 333

locate method to invoke, 530
run-time evaluation of method references,

547, 547, 548
logical complement operator !, 555, 622

boolean type and boolean values, 51
constant expressions, 612
logical complement operator !, 622

M

marker annotations, 313
annotations, 310

meaning of expression names, 158
expression names, 550
forms of expressions, 466
names and identifiers, 139

meaning of method names, 162
names and identifiers, 139

meaning of package names, 156
names and identifiers, 139

meaning of packageortypenames, 157
type-import-on-demand declarations, 185

meaning of type names, 157
names and identifiers, 139

member type declarations, 256, 293
@Target, 304, 304
class body and member declarations, 207
class instance creation expressions, 483, 483
class modifiers, 193, 193
declarations, 132, 132, 132, 132
definite assignment and member types, 635,

635
form of a binary, 383, 383, 387, 387
inner classes and enclosing instances, 199,

199
interface body and member declarations, 284
interface modifiers, 281
member type declarations, 293
obscuring, 149, 149
qualified type names, 158, 158
reclassification of contextually ambiguous

names, 155, 155, 156, 156
reference types and values, 53, 53
shadowing, 146, 146
static-import-on-demand declarations, 187,

187
syntactic classification of a name according

to context, 152, 152
type-import-on-demand declarations, 185,

185
where types are used, 76, 76, 76, 76

members and constructors of parameterized

types, 63
memory model, 645

INDEX

747

interaction with the memory model, 376
volatile fields, 222

method and constructor body, 404
method and constructor declarations, 400

method and constructor formal parameters,

401
method result type, 402

method and constructor formal parameters,

401
interface method declarations, 408

method and constructor overloading, 405
interface method declarations, 408

method and constructor throws, 404
interface method declarations, 408

method and constructor type parameters, 400
class type parameters, 391

method body, 242
abstract methods, 234
constructor body, 262
method declarations, 228
native methods, 237
this, 480

method declarations, 227, 288
@Target, 305, 305
array variables, 333
class body and member declarations, 207
declarations, 132, 133, 133, 134
evaluation, denotation, and result, 465
final variables, 87
inheritance, overriding, and hiding, 243
interface body and member declarations, 284
raw types, 67, 67
return statement, 442
simple expression names, 159
syntactic classification of a name according

to context, 152, 152, 152, 152
where types are used, 76, 76, 76, 78

method invocation expressions, 505

anonymous constructors, 492, 492
compile-time declaration of a method

reference, 539
conditional operator ? :, 579, 580
constructor declarations, 259
declarations, 134
evaluation, denotation, and result, 465
exception analysis of expressions, 348
expressions and run-time checks, 469
field initialization, 223, 224
formal parameters, 231
forms of expressions, 467
happens-before order, 652
hiding (by class methods), 247
initial values of variables, 87
initialization of fields in interfaces, 287
instance initializers, 257
invocation contexts, 114
invocation type inference, 689, 690
kinds of variables, 84, 84
lambda parameters, 605
method declarations, 228
names and identifiers, 140
normal and abrupt completion of evaluation,

471, 471
objects, 54
overloading, 253
overriding (by instance methods), 245
return statement, 442
run-time handling of an exception, 352
simple method names, 162
static initializers, 258
syntactic classification of a name according

to context, 152, 153, 154
this, 480
where types are used, 76, 78

method invocation type, 523

INDEX

748

choosing the constructor and its arguments,

489, 489
compile-time declaration of a method

reference, 543
compile-time step 3: is the chosen method

appropriate?, 525
exception analysis of expressions, 348, 348
exception analysis of statements, 349
expression compatibility constraints, 675
invocation type inference, 688
type compatibility constraints, 676
type of a method reference, 545

method modifiers, 233
@Target, 305
method declarations, 228
objects, 56

method overriding, 406
method reference expressions, 536

access to a protected member, 169
declarations, 134
expressions and run-time checks, 469, 470
form of a binary, 385
forms of expressions, 466, 467
functional interfaces, 322
identify potentially applicable methods, 516
names and identifiers, 140
syntactic classification of a name according

to context, 152, 153, 154
where types are used, 77, 78, 78

method result, 240
abstract classes, 194
abstract methods, 234
array variables, 333
class literals, 479
constructor declarations, 259
function types, 325
functional interfaces, 321
interface method body, 293

method body, 242
method declarations, 228
requirements in overriding and hiding, 248
return statement, 443
type erasure, 64
where types are used, 76

method result type, 402
interface method declarations, 408

method Signature, 232
abstract classes, 194
abstract methods, 234
choosing the most specific method, 522
constructor Signature, 260
form of a binary, 385
functional interfaces, 321
hiding (by class methods), 247
inheritance and overriding, 289
inheritance, overriding, and hiding, 243, 243
inheriting methods with override-equivalent

signatures, 252, 291
interface members, 284
method declarations, 228, 289
method result, 240
overloading, 292
overriding (by instance methods), 244, 244,

290
requirements in overriding and hiding, 249
type erasure, 64

method throws, 240
abstract methods, 234
compile-time checking of Exceptions, 347
constructor throws, 262
declarations, 134
method declarations, 228
syntactic classification of a name according

to context, 152
throw statement, 445
where types are used, 76, 78

INDEX

749

more specific method inference, 695
choosing the most specific method, 520

multiple annotations of the same type, 320
annotation types, 294
annotations, 310
class modifiers, 193
constructor modifiers, 260
enum constants, 270
field (constant) declarations, 285
field modifiers, 217
formal parameters, 230
generic classes and type parameters, 197
generic interfaces and type parameters, 282
interface modifiers, 280
lambda parameters, 605
local variable declaration statements, 415
method declarations, 288
method modifiers, 234
named packages, 180

multiplication operator *, 558
multiplicative operators, 557

binary numeric promotion, 129
constant expressions, 612
floating-point operations, 48
forms of expressions, 466
integer operations, 43

N

name classification, 151
access control, 163
declarations, 134
reference types and values, 53

name reclassification, 154
method invocation expressions, 505

named packages, 180
@Target, 304

names, 131

names and identifiers, 139
compile-time declaration of a method

reference, 542
import declarations, 182
local class declarations, 413
named packages, 180
shadowing and obscuring, 144

narrowing primitive conversion, 98
casting contexts, 117
floating-point operations, 49
narrowing primitive conversion, 99
postfix decrement operator --, 551
postfix increment operator ++, 550
prefix decrement operator --, 554
prefix increment operator ++, 553
widening and narrowing primitive

conversion, 101
narrowing reference conversion, 101

casting contexts, 117
native methods, 237, 403

method body, 242
new keyword, 482

conditional operator ? :, 579, 580
constructor declarations, 258, 259
constructor overloading, 267
creation of new class instances, 370
exception analysis of expressions, 348
form of a binary, 385
forms of expressions, 467
functional interfaces, 322
initial values of variables, 87, 88
instance initializers, 257
invocation contexts, 114
invocation type inference, 689, 690
kinds of variables, 84
method reference expressions, 536
names and identifiers, 140
objects, 53, 53

INDEX

750

return statement, 442
run-time handling of an exception, 352
String conversion, 108
syntactic classification of a name according

to context, 153, 153, 153
types, classes, and interfaces, 89
where types are used, 76, 77, 78, 78

non-atomic treatment of double and long, 666
normal and abrupt completion of evaluation,

470
causes of Exceptions, 345
normal and abrupt completion of statements,

412, 412
run-time handling of an exception, 352

normal and abrupt completion of statements,

411
interface method body, 293
method body, 242
normal and abrupt completion of evaluation,

472
run-time handling of an exception, 352

normal annotations, 311
annotations, 310
defaults for annotation type elements, 299
names and identifiers, 140
syntactic classification of a name according

to context, 154
notation, 6
notification, 642
null literal, 38

compile-time step 3: is the chosen method

appropriate?, 525
identifiers, 23
kinds of types and values, 42
lexical literals, 479

numeric conditional expressions, 586
numeric contexts, 127

floating-point operations, 48

integer operations, 44
numerical comparison operators <, <=, >, and

>=, 570
binary numeric promotion, 129
floating-point operations, 48
floating-point types, formats, and values, 47
integer operations, 43

numerical equality operators == and !=, 573
binary numeric promotion, 129
floating-point operations, 48
floating-point types, formats, and values, 47
integer operations, 43

O

object creation, 370
constructor declarations, 258
field initialization, 224
form of a binary, 383
instance initializers, 257
run-time evaluation of class instance creation

expressions, 490
static fields, 218
String concatenation operator +, 564
when initialization occurs, 365

objects, 53, 56
checked casts at run time, 126, 126
method invocation type, 523
String literals, 36

obscuring, 149
labeled statements, 419
shadowing, 146

observability of a package, 181
qualified package names, 157
scope of a declaration, 141

observable behavior and nonterminating

executions, 658
actions, 648, 649

INDEX

751

operators, 39
input elements and tokens, 20
lexical grammar, 9

operators ++ and --, 624
organization of the specification, 2
other expressions, 624
other expressions of type boolean, 623
overload resolution, 509, 515, 517, 519, 519,

520
choosing the constructor and its arguments,

489, 489, 489
choosing the most specific method, 520
compile-time declaration of a method

reference, 539, 540, 540, 540, 541, 541,

541, 541, 541, 541, 541, 541, 541, 541,

542, 542
compile-time step 1: determine class or

interface to search, 506
compile-time step 2: determine method

Signature, 509, 509, 509, 509, 509, 509,

510, 510
conditional operator ? :, 579, 580
enum constants, 270
invocation applicability inference, 686, 687
invocation type inference, 689
method and constructor overloading, 405
more specific method inference, 695, 695,

695, 695, 695
overloading, 253
phase 1: identify matching arity methods

applicable by strict invocation, 518, 518,

518
phase 2: identify matching arity methods

applicable by loose invocation, 519, 519,

519, 519
phase 3: identify methods applicable by

variable arity invocation, 519, 520, 520
what binary compatibility is and is not, 388

overloading, 253, 292
constructor overloading, 267

overriding (by instance methods), 243, 290
final classes, 196
locate method to invoke, 531
superinterfaces, 206

P

package declarations, 180
compilation units, 179
declarations, 132

package members, 175
packages, 175
parameterized types, 59

annotation type elements, 296
capture conversion, 105, 106
checked casts and unchecked casts, 124
class literals, 480
declarations, 133
determining the class being instantiated, 484
field declarations, 396
functional interfaces, 325
generic classes and type parameters, 197
generic interfaces and type parameters, 282
method and constructor formal parameters,

402
method reference expressions, 537
method result type, 402
normal annotations, 312
raw types, 66
reference type casting, 121
reference types and values, 53
superclasses and subclasses, 202
superinterfaces, 204
superinterfaces and subinterfaces, 283
type erasure, 64
types, classes, and interfaces, 89

INDEX

752

where types are used, 77
parenthesized expressions, 481

conditional operator ? :, 579, 579
constant expressions, 613
forms of expressions, 466
identify potentially applicable methods, 517
phase 1: identify matching arity methods

applicable by strict invocation, 518
phase 1: identify matching arity methods

applicable by strict invocation, 517
compile-time declaration of a method

reference, 541, 541, 541, 541, 542
compile-time step 2: determine method

Signature, 509, 509
invocation applicability inference, 686
more specific method inference, 695
phase 2: identify matching arity methods

applicable by loose invocation, 519
phase 3: identify methods applicable by

variable arity invocation, 520
phase 2: identify matching arity methods

applicable by loose invocation, 519
compile-time declaration of a method

reference, 541, 541
compile-time step 2: determine method

Signature, 509, 509
more specific method inference, 695
phase 1: identify matching arity methods

applicable by strict invocation, 518
phase 3: identify methods applicable by

variable arity invocation, 519
choosing the constructor and its arguments,

489
choosing the most specific method, 520
compile-time declaration of a method

reference, 541, 541
compile-time step 2: determine method

Signature, 509, 510
invocation applicability inference, 687

invocation type inference, 689
more specific method inference, 695
phase 2: identify matching arity methods

applicable by loose invocation, 519
poly expressions, 466

boolean conditional expressions, 586
choosing the most specific method, 521
class instance creation expressions, 484
conditional operator ? :, 579, 579
expression compatibility constraints, 671,

671
identify potentially applicable methods, 517
lambda expressions, 601
method reference expressions, 538
more specific method inference, 696
numeric conditional expressions, 586
parenthesized expressions, 482

postfix decrement operator --, 551
floating-point operations, 48, 49
integer operations, 43, 44
normal and abrupt completion of evaluation,

471
operators ++ and --, 624
variables, 81

postfix expressions, 549
final variables, 86
forms of expressions, 466
syntactic classification of a name according

to context, 153
postfix increment operator ++, 550

floating-point operations, 48, 49
integer operations, 43, 44
normal and abrupt completion of evaluation,

471
operators ++ and --, 624
variables, 81

potentially applicable methods, 515

INDEX

753

compile-time declaration of a method

reference, 540, 540, 540
compile-time step 1: determine class or

interface to search, 506
compile-time step 2: determine method

Signature, 509
phase 1: identify matching arity methods

applicable by strict invocation, 518
phase 2: identify matching arity methods

applicable by loose invocation, 519
phase 3: identify methods applicable by

variable arity invocation, 519
predefined annotation types, 304
prefix decrement operator --, 553

floating-point operations, 48, 49
integer operations, 43, 44
normal and abrupt completion of evaluation,

471
operators ++ and --, 624
variables, 81

prefix increment operator ++, 553
floating-point operations, 48, 49
integer operations, 43, 44
normal and abrupt completion of evaluation,

471
operators ++ and --, 624
variables, 81

preparation of a class or interface type, 363
kinds of variables, 83
link test: verify, prepare, (optionally) resolve,

358
preventing instantiation of a class, 268

constructor declarations, 259
primary expressions, 477

access to a protected member, 169
forms of expressions, 466
postfix expressions, 549

primitive types and values, 42
class literals, 479

conditional operator ? :, 579
evaluation, denotation, and result, 465
kinds of types and values, 41
literals, 24
reifiable types, 65
unboxing conversion, 105
variables, 80
where types are used, 77

program exit, 379
programs and program order, 649

happens-before order, 652
synchronization order, 650

public classes, 390
public interfaces, 406

Q

qualified access to a protected constructor,

169
qualified expression names, 159

access control, 163
constant expressions, 613
field access expressions, 500
field declarations, 215
members and constructors of parameterized

types, 64
qualified package names, 157
qualified packageortypenames, 157
qualified this, 481

declarations, 134
syntactic classification of a name according

to context, 152
qualified type names, 158

access control, 163
members and constructors of parameterized

types, 64
single-static-import declarations, 186
single-type-import declarations, 183

INDEX

754

static-import-on-demand declarations, 186
type-import-on-demand declarations, 185

R

raw types, 66
assignment contexts, 110
functional interfaces, 325
invocation contexts, 115
method reference expressions, 537
reifiable types, 65
subtyping among class and interface types,

72
type arguments of parameterized types, 61
unchecked conversion, 105
variables of reference type, 81
where types are used, 77

reading final fields during construction, 662
reclassification of contextually ambiguous

names, 154
method invocation expressions, 505

reduction, 671
invocation applicability inference, 687

reference conditional expressions, 587
reference equality operators == and !=, 574

objects, 55
reference type casting, 120

casting contexts, 117
reference types and values, 52

class literals, 479
evaluation, denotation, and result, 465
initial values of variables, 87
kinds of types and values, 41
variables, 80

references, 7
reifiable types, 65

@SafeVarargs, 309
array creation expressions, 493

array initializers, 338
expressions and run-time checks, 469, 470
formal parameters, 231
method reference expressions, 537
type comparison operator instanceof, 571

relational operators, 569
constant expressions, 612

relationship to predefined classes and

interfaces, 7
remainder operator %, 561

evaluate operands before operation, 474
floating-point operations, 49
integer operations, 44
normal and abrupt completion of evaluation,

471
repeatable annotation types, 300

@Repeatable, 310
evolution of annotation types, 409
multiple annotations of the same type, 320

requirements in overriding, 291
variables of reference type, 81

requirements in overriding and hiding, 248
compile-time checking of Exceptions, 347
method throws, 241
requirements in overriding, 291, 291, 291
type of a lambda expression, 610
type of a method reference, 545
variables of reference type, 81

resolution, 684
invocation applicability inference, 687
invocation type inference, 690

resolution of symbolic references, 363
link test: verify, prepare, (optionally) resolve,

359
return statement, 442

break, continue, return, and throw statements,

632
constructor body, 262, 262

INDEX

755

instance initializers, 257
interface method body, 293
method body, 242
normal and abrupt completion of statements,

412
static initializers, 258

run-time evaluation of array access

expressions, 498
array access, 336
evaluation order for other expressions, 477
normal and abrupt completion of evaluation,

471, 471
run-time evaluation of array creation

expressions, 494
evaluation order for other expressions, 477
initial values of variables, 87
kinds of variables, 84
normal and abrupt completion of evaluation,

470, 471
run-time evaluation of class instance creation

expressions, 490
evaluation order for other expressions, 477
normal and abrupt completion of evaluation,

470
throw statement, 445

run-time evaluation of lambda expressions,

611
creation of new class instances, 370
evaluation order for other expressions, 477
normal and abrupt completion of evaluation,

470
run-time evaluation of method invocation,

526
evaluation order for other expressions, 477
overloading, 253

run-time evaluation of method references,

546
creation of new class instances, 370
evaluation order for other expressions, 477

normal and abrupt completion of evaluation,

470
run-time handling of an exception, 352

expressions and run-time checks, 470
initial values of variables, 88
kinds of variables, 84
throw statement, 444
try statement, 449

S

scope of a declaration, 141
basic for statement, 433
class body and member declarations, 208
class declarations, 193
class literals, 480
compile-time step 1: determine class or

interface to search, 506
enhanced for statement, 436, 437
enum constants, 270
field (constant) declarations, 286
field declarations, 215
formal parameters, 230
forward references during field initialization,

224
generic classes and type parameters, 197
generic constructors, 261
generic interfaces and type parameters, 282
generic methods, 239
import declarations, 182
interface body and member declarations, 284
interface declarations, 280
lambda parameters, 605
local class declarations, 413
local variable declarators and types, 416
member type declarations, 256
method declarations, 228
named packages, 180

INDEX

756

reclassification of contextually ambiguous

names, 154, 155
simple package names, 157
top level type declarations, 187
try statement, 448
try-with-resources, 455
type variables, 58

semantics of final fields, 662
separators, 39

lexical grammar, 9
shadowing, 146

compile-time step 1: determine class or

interface to search, 506
obscuring, 149
scope of a declaration, 141
simple expression names, 158

shadowing and obscuring, 144
basic for statement, 433
class body and member declarations, 208
class declarations, 193
enhanced for statement, 436
enum constants, 270
field (constant) declarations, 286
field declarations, 215
formal parameters, 230
generic classes and type parameters, 197
generic constructors, 261
import declarations, 182
interface declarations, 280
lambda parameters, 605
local class declarations, 413
local variable declarators and types, 416
member type declarations, 256
method declarations, 228
named packages, 180
top level type declarations, 187
try statement, 448
try-with-resources, 455

shared variables, 648
happens-before order, 652

shift operators, 568
constant expressions, 612
integer operations, 43
unary numeric promotion, 128

simple assignment operator =, 589
assignment contexts, 111
expressions and run-time checks, 469, 470
normal and abrupt completion of evaluation,

471, 471
simple expression names, 158

constant expressions, 613
field access expressions, 500

simple method names, 162
method declarations, 228

simple package names, 157
simple packageortypenames, 157
simple type names, 158
single-element annotations, 314

annotation type elements, 297
annotations, 310

single-static-import declarations, 186
declarations, 132, 133
identify potentially applicable methods, 515
import declarations, 182
reclassification of contextually ambiguous

names, 155, 155
scope of a declaration, 141
simple method names, 162
single-type-import declarations, 183
syntactic classification of a name according

to context, 152
single-type-import declarations, 182

declarations, 132, 133
import declarations, 182
reclassification of contextually ambiguous

names, 155

INDEX

757

scope of a declaration, 141
single-static-import declarations, 186
syntactic classification of a name according

to context, 152
sleep and yield, 644
standalone expressions, 466

boolean conditional expressions, 586
choosing the most specific method, 521
class instance creation expressions, 484
conditional operator ? :, 579, 579
expression compatibility constraints, 671,

671
identify potentially applicable methods, 517
lambda expressions, 601
method reference expressions, 538
more specific method inference, 696
numeric conditional expressions, 586
parenthesized expressions, 482

statements, 416
static fields, 218, 399

generic classes and type parameters, 197
kinds of variables, 83, 83
when initialization occurs, 365

static initializers, 258, 406
class body and member declarations, 208
definite assignment and static initializers,

636
exception checking, 350
final fields, 221
generic classes and type parameters, 197
inner classes and enclosing instances, 199
return statement, 443
simple expression names, 159
static initializers, 406
throw statement, 445

static member type declarations, 257
anonymous class declarations, 491
class modifiers, 194

generic classes and type parameters, 197
interface modifiers, 281, 281

static methods, 236, 404
generic classes and type parameters, 197
interface method declarations, 408
simple expression names, 159

static-import-on-demand declarations, 186
declarations, 132, 133
identify potentially applicable methods, 515
import declarations, 182
reclassification of contextually ambiguous

names, 155, 155
scope of a declaration, 141
simple method names, 162
syntactic classification of a name according

to context, 152
type-import-on-demand declarations, 185

strictfp classes, 196
fp-strict expressions, 468

strictfp interfaces, 281
fp-strict expressions, 468

strictfp methods, 237
fp-strict expressions, 468

String concatenation operator +, 564
boolean type and boolean values, 51
class String, 57
constructor declarations, 259
creation of new class instances, 370
floating-point operations, 48
integer operations, 44
normal and abrupt completion of evaluation,

470
objects, 53, 55
String contexts, 116
types, classes, and interfaces, 89

String contexts, 116
boolean type and boolean values, 52

String conversion, 107

INDEX

758

String concatenation operator +, 564
String contexts, 116

String literals, 35
class String, 56
comments, 22
constant expressions, 612
creation of new class instances, 370
escape sequences for character and String

literals, 37
lexical literals, 479
reference equality operators == and !=, 574
unicode, 16

strings, 56
lexical literals, 479
literals, 24
objects, 53
String literals, 36, 36

subsequent modification of final fields, 663
subtyping, 71

assignment contexts, 110
checked casts and unchecked casts, 124
choosing the most specific method, 521
constraint formulas, 669
invocation contexts, 115
method throws, 241
narrowing reference conversion, 101
parameterized types, 59
subtyping constraints, 677
type arguments of parameterized types, 61,

61
widening reference conversion, 101

subtyping among array types, 73
array types, 332

subtyping among class and interface types, 72
try statement, 449

subtyping among primitive types, 71
subtyping constraints, 677
superclasses and subclasses, 202

class members, 208
class Object, 56
enum types, 269
final classes, 196
kinds of variables, 83
loading process, 361
subtyping among class and interface types,

72
syntactic classification of a name according

to context, 152
where types are used, 76, 78

superclasses and superinterfaces, 390
loading process, 361
superinterfaces, 407
verification of the binary representation, 363

superinterfaces, 204, 407
checked casts at run time, 125
class members, 208
subtyping among class and interface types,

72
superinterfaces and subinterfaces, 283
syntactic classification of a name according

to context, 152
types, classes, and interfaces, 89
when initialization occurs, 365
where types are used, 76, 78

superinterfaces and subinterfaces, 282
interface members, 284
loading process, 361
subtyping among class and interface types,

72
superclasses and subclasses, 204
superinterfaces, 205
syntactic classification of a name according

to context, 152
where types are used, 76, 78

switch statement, 425
scope of a declaration, 142, 142

INDEX

759

switch statements, 629
switch statements, 629
synchronization, 640

objects, 56
synchronized methods, 238
synchronized statement, 446
volatile fields, 222

synchronization order, 650
actions, 648
interaction with the memory model, 376

synchronized methods, 238, 404
class Object, 56
synchronization, 640
synchronized statement, 446

synchronized statement, 446
create frame, synchronize, transfer control,

535
objects, 56
synchronization, 640
synchronized statements, 632

synchronized statements, 632
syntactic classification of a name according to

context, 151
access control, 163
declarations, 134
reference types and values, 53

syntactic grammar, 10
compilation units, 179
input elements and tokens, 20
lexical translations, 16

syntax, 699

T

this, 480
field initialization, 223, 224
initialization of fields in interfaces, 287
instance initializers, 257

static initializers, 258
static methods, 236

threads and locks, 639
objects, 56
throw statement, 444

throw statement, 444
break, continue, return, and throw statements,

632
causes of Exceptions, 345
exception analysis of statements, 349
initial values of variables, 88
kinds of variables, 84
normal and abrupt completion of statements,

412, 412
run-time handling of an exception, 352

top level type declarations, 187
class instance creation expressions, 483
class modifiers, 193
compilation units, 179
determining accessibility, 165
form of a binary, 383
host support for packages, 177
interface modifiers, 281
package members, 175, 176
scope of a declaration, 141, 141, 141
shadowing, 148
single-static-import declarations, 186
single-type-import declarations, 183
when initialization occurs, 365

transient fields, 221, 399
try statement, 447

@Target, 305
compile-time checking of Exceptions, 348
declarations, 133, 134
definite assignment and parameters, 634
exception analysis of statements, 349
expressions and run-time checks, 469, 470
final variables, 86, 87

INDEX

760

initial values of variables, 88
kinds of variables, 84
labeled statements, 419
method throws, 241
reclassification of contextually ambiguous

names, 154
run-time handling of an exception, 352
scope of a declaration, 143
shadowing and obscuring, 144
shared variables, 648
syntactic classification of a name according

to context, 153
throw statement, 444, 444, 445
try statements, 632
where types are used, 76, 78

try statements, 632
try-catch statement, 450

try statement, 450
try-catch-finally statement, 452

try statement, 450
try-finally statement, 452

try statement, 450
try-with-resources, 454

@Target, 305
final variables, 86
local variable declaration statements, 415
scope of a declaration, 143
syntactic classification of a name according

to context, 153
try statement, 450
where types are used, 76

try-with-resources (basic), 455
try-with-resources (extended), 458
type arguments of parameterized types, 60

capture conversion, 105
checked casts and unchecked casts, 124
class instance creation expressions, 483, 483
constraint formulas, 669

explicit constructor invocations, 264
method invocation expressions, 506
method reference expressions, 536
reference types and values, 53
reifiable types, 65
subtyping among class and interface types,

72
subtyping constraints, 678
type equality constraints, 679
types, classes, and interfaces, 89
unchecked conversion, 105
where types are used, 77

type comparison operator instanceof, 571
expressions and run-time checks, 469
objects, 55
syntactic classification of a name according

to context, 153
where types are used, 77, 78

type compatibility constraints, 676
type equality constraints, 678
type erasure, 64

assignment contexts, 111
cast expressions, 556
checked casts and unchecked casts, 125
checked casts at run time, 125
choosing the most specific method, 522
class Object, 56
class type parameters, 391
compile-time step 3: is the chosen method

appropriate?, 525
constructor Signature, 260
create frame, synchronize, transfer control,

535
declarations, 133
evaluate arguments, 529
field declarations, 396
form of a binary, 384, 385, 386
invocation contexts, 116

INDEX

761

method and constructor formal parameters,

402
method and constructor type parameters, 401
method invocation type, 523
method result type, 402
method Signature, 232
raw types, 66
requirements in overriding and hiding, 248
type variables, 58

type inference, 667
compile-time step 2: determine method

Signature, 510
generic constructors, 261
generic methods, 239

type of a constructor, 262
members and constructors of parameterized

types, 63
type of a lambda expression, 609

checked exception constraints, 679
expression compatibility constraints, 672
invocation type inference, 691, 691
lambda parameters, 604

type of a method reference, 544
checked exception constraints, 680

type of an expression, 467
type variables, 57

class literals, 480
field declarations, 396
generic classes and type parameters, 196
generic constructors, 261
generic interfaces and type parameters, 281
generic methods, 239
intersection types, 70
method and constructor formal parameters,

402
method result type, 402
reference types and values, 52
type erasure, 64

types, classes, and interfaces, 89
where types are used, 77

type-import-on-demand declarations, 185
declarations, 132
import declarations, 182
reclassification of contextually ambiguous

names, 155
scope of a declaration, 141
shadowing, 148
static-import-on-demand declarations, 187
syntactic classification of a name according

to context, 154
types, 41

capture conversion, 105
lexical literals, 479
literals, 24
null literal, 38
throw statement, 444

types, classes, and interfaces, 88
types, values, and variables, 41

U

unary minus operator -, 554
constant expressions, 612
floating-point operations, 48
integer literals, 30, 30
integer operations, 43
unary numeric promotion, 128

unary numeric promotion, 127
array access, 336
array access expressions, 497
array creation expressions, 493
bitwise complement operator ~, 555
numeric contexts, 127
shift operators, 568
unary minus operator -, 554
unary plus operator +, 554

INDEX

762

unary operators, 551
final variables, 86

unary plus operator +, 554
constant expressions, 612
floating-point operations, 48
integer operations, 43
unary numeric promotion, 128

unboxing conversion, 104
additive operators, 563, 563
array creation expressions, 493
assert statement, 424
assignment contexts, 110
binary numeric promotion, 129
bitwise complement operator ~, 555
boolean equality operators == and !=, 574
boolean logical operators &, ^, and |, 576
casting contexts, 117, 117, 117
conditional operator ? :, 579, 586
conditional-and operator &&, 577, 577
conditional-or operator ||, 578, 578
do statement, 431
equality operators, 572
floating-point operations, 49
if-then statement, 422
if-then-else statement, 422
integer bitwise operators &, ^, and |, 575
integer operations, 44
invocation contexts, 115
iteration of for statement, 434
logical complement operator !, 555
multiplicative operators, 557
numeric contexts, 127
numerical comparison operators <, <=, >, and

>=, 570
numerical equality operators == and !=, 573
postfix decrement operator --, 551
postfix increment operator ++, 550
prefix decrement operator --, 553

prefix increment operator ++, 553
switch statement, 427
unary minus operator -, 554
unary numeric promotion, 127, 127
unary plus operator +, 554
while statement, 430

unchecked conversion, 105
@SafeVarargs, 309
assignment contexts, 110
casting contexts, 117, 117
invocation contexts, 115
method result, 240
type compatibility constraints, 676
variables of reference type, 81

unicode, 15
character literals, 34
lexical grammar, 9
primitive types and values, 42
unicode escapes, 17

unicode escapes, 17
escape sequences for character and String

literals, 38
input elements and tokens, 19
lexical translations, 16
unicode, 16

unloading of classes and interfaces, 378
kinds of variables, 83

unnamed packages, 181
compilation units, 179

unreachable statements, 458
final fields and static constant variables, 397
instance initializers, 257
lambda body, 607
static initializers, 258

uses of inference, 686

INDEX

763

V

value set conversion, 108
assignment contexts, 111
binary numeric promotion, 129
casting contexts, 117
compound assignment operators, 595, 597
create frame, synchronize, transfer control,

535
evaluation, denotation, and result, 465
floating-point types, formats, and values, 45
fp-strict expressions, 468
invocation contexts, 115
simple assignment operator =, 590, 591
unary minus operator -, 554
unary numeric promotion, 128

variables, 80
evaluation, denotation, and result, 465

variables of primitive type, 81
variables of reference type, 81

@SafeVarargs, 309
type of an expression, 467
variables, 81

verification of the binary representation, 362
link test: verify, prepare, (optionally) resolve,

358
volatile fields, 222

happens-before order, 652
synchronization order, 650

W

wait, 641
happens-before order, 651

wait sets and notification, 640
class Object, 56

well-formed executions, 655
executions, 654

what binary compatibility is and is not, 388
when initialization occurs, 365

final variables, 86
initialize test: execute initializers, 359

when reference types are the same, 57
checked casts at run time, 125
constraint formulas, 669
type equality constraints, 678

where annotations may appear, 315
annotation types, 294
annotations, 310
array types, 332
class modifiers, 193
constructor modifiers, 260
enum constants, 270
field (constant) declarations, 285
field modifiers, 217
formal parameters, 230
generic classes and type parameters, 197
generic interfaces and type parameters, 282
interface modifiers, 280
lambda parameters, 605
local variable declaration statements, 415
method declarations, 288
method modifiers, 234
named packages, 180

where types are used, 76
@Target, 305
lexical translations, 17
syntactic classification of a name according

to context, 152
where annotations may appear, 315

while statement, 429
boolean type and boolean values, 51
while statements, 629

while statements, 629
white space, 20

input elements and tokens, 20

INDEX

764

lexical grammar, 9
lexical translations, 16

widening and narrowing primitive

conversion, 101
casting contexts, 117

widening primitive conversion, 96
assignment contexts, 109
binary numeric promotion, 129
casting contexts, 117, 117
invocation contexts, 114, 115
numeric contexts, 127
unary numeric promotion, 127, 127
widening and narrowing primitive

conversion, 101
widening reference conversion, 101

assignment contexts, 109
casting contexts, 117, 117
floating-point operations, 48
integer operations, 44
invocation contexts, 115, 115

word tearing, 665
write-protected fields, 664

765

Appendix A. Limited License Grant

Specification: JSR-337 Java® SE 8 Release Contents ("Specification")
Version: 8
Status: Maintenance Release
Release: March 2015

Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Oracle hereby grants you a fully-paid,
non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under Oracle's applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not
themselves implement any portion(s) of the Specification, and (ii) discussing
the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification
provided that such excerpts do not in the aggregate constitute a significant portion
of the Specification.

2. License for the Distribution of Compliant Implementations. Oracle also grants
you a perpetual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty
free, limited license (without the right to sublicense) under any applicable
copyrights or, subject to the provisions of subsection 4 below, patent rights it
may have covering the Specification to create and/or distribute an Independent
Implementation of the Specification that: (a) fully implements the Specification
including all its required interfaces and functionality; (b) does not modify, subset,
superset or otherwise extend the Licensor Name Space, or include any public
or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented; and (c) passes the Technology Compatibility
Kit (including satisfying the requirements of the applicable TCK Users Guide)
for such Specification ("Compliant Implementation"). In addition, the foregoing

LIMITED LICENSE GRANT

766

license is expressly conditioned on your not acting outside its scope. No license
is granted hereunder for any other purpose (including, for example, modifying
the Specification, other than to the extent of your fair use rights, or distributing
the Specification to third parties). Also, no right, title, or interest in or to any
trademarks, service marks, or trade names of Oracle or Oracle's licensors is granted
hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Oracle in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the
previous paragraph or any other particular "pass through" requirements in any
license You grant concerning the use of your Independent Implementation
or products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations (a)-(c)
from the previous paragraph, You may neither: (a) grant or otherwise pass through
to your licensees any licenses under Oracle's applicable intellectual property
rights; nor (b) authorize your licensees to make any claims concerning their
implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under
subparagraph 2 above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned upon your
offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under
Your patent rights which are or would be infringed by all technically feasible
implementations of the Specification to develop, distribute and use a Compliant
Implementation.

b. With respect to any patent claims owned by Oracle and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided in
a technically feasible manner when implementing the Specification, such license
shall terminate with respect to such claims if You initiate a claim against Oracle
that it has, in the course of performing its responsibilities as the Specification Lead,
induced any other entity to infringe Your patent rights.

c. Also with respect to any patent claims owned by Oracle and covered by the
license granted under subparagraph 2 above, where the infringement of such
claims can be avoided in a technically feasible manner when implementing the
Specification such license, with respect to such claims, shall terminate if You
initiate a claim against Oracle that its making, having made, using, offering to sell,
selling or importing a Compliant Implementation infringes Your patent rights.

LIMITED LICENSE GRANT

767

5. Definitions. For the purposes of this Agreement: "Independent Implementation"
shall mean an implementation of the Specification that neither derives from any
of Oracle's source code or binary code materials nor, except with an appropriate
and separate license from Oracle, includes any of Oracle's source code or
binary code materials; "Licensor Name Space" shall mean the public class or
interface declarations whose names begin with "java", "javax", "com.sun" or their
equivalents in any subsequent naming convention adopted by Oracle through the
Java Community Process, or any recognized successors or replacements thereof;
and "Technology Compatibility Kit" or "TCK" shall mean the test suite and
accompanying TCK User's Guide provided by Oracle which corresponds to the
Specification and that was available either (i) from Oracle 120 days before the first
release of Your Independent Implementation that allows its use for commercial
purposes, or (ii) more recently than 120 days from such release but against which
You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Oracle if you
breach the Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". ORACLE MAKES
NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE
OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE. This document does not represent any commitment to release or
implement any portion of the Specification in any product. In addition, the
Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL
ORACLE OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL
OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY
WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE
SPECIFICATION, EVEN IF ORACLE AND/OR ITS LICENSORS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

LIMITED LICENSE GRANT

768

You will indemnify, hold harmless, and defend Oracle and its licensors from any
claims arising or resulting from: (i) your use of the Specification; (ii) the use or
distribution of your Java application, applet and/or implementation; and/or (iii)
any claims that later versions or releases of any Specification furnished to you are
incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor
(at any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Oracle with any comments or suggestions concerning the
Specification ("Feedback"), you hereby: (i) agree that such Feedback is provided
on a non-proprietary and non-confidential basis, and (ii) grant Oracle a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use
without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and
controlling U.S. federal law. The U.N. Convention for the International Sale of
Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export
or import regulations in other countries. Licensee agrees to comply strictly with all
such laws and regulations and acknowledges that it has the responsibility to obtain
such licenses to export, re-export or import as may be required after delivery to
Licensee.

This Agreement is the parties' entire agreement relating to its subject matter.
It supersedes all prior or contemporaneous oral or written communications,
proposals, conditions, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term
of this Agreement. No modification to this Agreement will be binding, unless in
writing and signed by an authorized representative of each party.

	The Java® Language Specification
	Table of Contents
	Preface to the Java SE 8 Edition
	1. Introduction
	1.1. Organization of the Specification
	1.2. Example Programs
	1.3. Notation
	1.4. Relationship to Predefined Classes and Interfaces
	1.5. Feedback
	1.6. References
	Bibliography

	2. Grammars
	2.1. Context-Free Grammars
	2.2. The Lexical Grammar
	2.3. The Syntactic Grammar
	2.4. Grammar Notation

	3. Lexical Structure
	3.1. Unicode
	3.2. Lexical Translations
	3.3. Unicode Escapes
	3.4. Line Terminators
	3.5. Input Elements and Tokens
	3.6. White Space
	3.7. Comments
	3.8. Identifiers
	3.9. Keywords
	3.10. Literals
	3.10.1. Integer Literals
	3.10.2. Floating-Point Literals
	3.10.3. Boolean Literals
	3.10.4. Character Literals
	3.10.5. String Literals
	3.10.6. Escape Sequences for Character and String Literals
	3.10.7. The Null Literal

	3.11. Separators
	3.12. Operators

	4. Types, Values, and Variables
	4.1. The Kinds of Types and Values
	4.2. Primitive Types and Values
	4.2.1. Integral Types and Values
	4.2.2. Integer Operations
	4.2.3. Floating-Point Types, Formats, and Values
	4.2.4. Floating-Point Operations
	4.2.5. The boolean Type and boolean Values

	4.3. Reference Types and Values
	4.3.1. Objects
	4.3.2. The Class Object
	4.3.3. The Class String
	4.3.4. When Reference Types Are the Same

	4.4. Type Variables
	4.5. Parameterized Types
	4.5.1. Type Arguments of Parameterized Types
	4.5.2. Members and Constructors of Parameterized Types

	4.6. Type Erasure
	4.7. Reifiable Types
	4.8. Raw Types
	4.9. Intersection Types
	4.10. Subtyping
	4.10.1. Subtyping among Primitive Types
	4.10.2. Subtyping among Class and Interface Types
	4.10.3. Subtyping among Array Types
	4.10.4. Least Upper Bound

	4.11. Where Types Are Used
	4.12. Variables
	4.12.1. Variables of Primitive Type
	4.12.2. Variables of Reference Type
	4.12.3. Kinds of Variables
	4.12.4. final Variables
	4.12.5. Initial Values of Variables
	4.12.6. Types, Classes, and Interfaces

	5. Conversions and Contexts
	5.1. Kinds of Conversion
	5.1.1. Identity Conversion
	5.1.2. Widening Primitive Conversion
	5.1.3. Narrowing Primitive Conversion
	5.1.4. Widening and Narrowing Primitive Conversion
	5.1.5. Widening Reference Conversion
	5.1.6. Narrowing Reference Conversion
	5.1.7. Boxing Conversion
	5.1.8. Unboxing Conversion
	5.1.9. Unchecked Conversion
	5.1.10. Capture Conversion
	5.1.11. String Conversion
	5.1.12. Forbidden Conversions
	5.1.13. Value Set Conversion

	5.2. Assignment Contexts
	5.3. Invocation Contexts
	5.4. String Contexts
	5.5. Casting Contexts
	5.5.1. Reference Type Casting
	5.5.2. Checked Casts and Unchecked Casts
	5.5.3. Checked Casts at Run Time

	5.6. Numeric Contexts
	5.6.1. Unary Numeric Promotion
	5.6.2. Binary Numeric Promotion

	6. Names
	6.1. Declarations
	6.2. Names and Identifiers
	6.3. Scope of a Declaration
	6.4. Shadowing and Obscuring
	6.4.1. Shadowing
	6.4.2. Obscuring

	6.5. Determining the Meaning of a Name
	6.5.1. Syntactic Classification of a Name According to Context
	6.5.2. Reclassification of Contextually Ambiguous Names
	6.5.3. Meaning of Package Names
	6.5.3.1. Simple Package Names
	6.5.3.2. Qualified Package Names

	6.5.4. Meaning of PackageOrTypeNames
	6.5.4.1. Simple PackageOrTypeNames
	6.5.4.2. Qualified PackageOrTypeNames

	6.5.5. Meaning of Type Names
	6.5.5.1. Simple Type Names
	6.5.5.2. Qualified Type Names

	6.5.6. Meaning of Expression Names
	6.5.6.1. Simple Expression Names
	6.5.6.2. Qualified Expression Names

	6.5.7. Meaning of Method Names
	6.5.7.1. Simple Method Names

	6.6. Access Control
	6.6.1. Determining Accessibility
	6.6.2. Details on protected Access
	6.6.2.1. Access to a protected Member
	6.6.2.2. Qualified Access to a protected Constructor

	6.7. Fully Qualified Names and Canonical Names

	7. Packages
	7.1. Package Members
	7.2. Host Support for Packages
	7.3. Compilation Units
	7.4. Package Declarations
	7.4.1. Named Packages
	7.4.2. Unnamed Packages
	7.4.3. Observability of a Package

	7.5. Import Declarations
	7.5.1. Single-Type-Import Declarations
	7.5.2. Type-Import-on-Demand Declarations
	7.5.3. Single-Static-Import Declarations
	7.5.4. Static-Import-on-Demand Declarations

	7.6. Top Level Type Declarations

	8. Classes
	8.1. Class Declarations
	8.1.1. Class Modifiers
	8.1.1.1. abstract Classes
	8.1.1.2. final Classes
	8.1.1.3. strictfp Classes

	8.1.2. Generic Classes and Type Parameters
	8.1.3. Inner Classes and Enclosing Instances
	8.1.4. Superclasses and Subclasses
	8.1.5. Superinterfaces
	8.1.6. Class Body and Member Declarations

	8.2. Class Members
	8.3. Field Declarations
	8.3.1. Field Modifiers
	8.3.1.1. static Fields
	8.3.1.2. final Fields
	8.3.1.3. transient Fields
	8.3.1.4. volatile Fields

	8.3.2. Field Initialization
	8.3.3. Forward References During Field Initialization

	8.4. Method Declarations
	8.4.1. Formal Parameters
	8.4.2. Method Signature
	8.4.3. Method Modifiers
	8.4.3.1. abstract Methods
	8.4.3.2. static Methods
	8.4.3.3. final Methods
	8.4.3.4. native Methods
	8.4.3.5. strictfp Methods
	8.4.3.6. synchronized Methods

	8.4.4. Generic Methods
	8.4.5. Method Result
	8.4.6. Method Throws
	8.4.7. Method Body
	8.4.8. Inheritance, Overriding, and Hiding
	8.4.8.1. Overriding (by Instance Methods)
	8.4.8.2. Hiding (by Class Methods)
	8.4.8.3. Requirements in Overriding and Hiding
	8.4.8.4. Inheriting Methods with Override-Equivalent Signatures

	8.4.9. Overloading

	8.5. Member Type Declarations
	8.5.1. Static Member Type Declarations

	8.6. Instance Initializers
	8.7. Static Initializers
	8.8. Constructor Declarations
	8.8.1. Formal Parameters
	8.8.2. Constructor Signature
	8.8.3. Constructor Modifiers
	8.8.4. Generic Constructors
	8.8.5. Constructor Throws
	8.8.6. The Type of a Constructor
	8.8.7. Constructor Body
	8.8.7.1. Explicit Constructor Invocations

	8.8.8. Constructor Overloading
	8.8.9. Default Constructor
	8.8.10. Preventing Instantiation of a Class

	8.9. Enum Types
	8.9.1. Enum Constants
	8.9.2. Enum Body Declarations
	8.9.3. Enum Members

	9. Interfaces
	9.1. Interface Declarations
	9.1.1. Interface Modifiers
	9.1.1.1. abstract Interfaces
	9.1.1.2. strictfp Interfaces

	9.1.2. Generic Interfaces and Type Parameters
	9.1.3. Superinterfaces and Subinterfaces
	9.1.4. Interface Body and Member Declarations

	9.2. Interface Members
	9.3. Field (Constant) Declarations
	9.3.1. Initialization of Fields in Interfaces

	9.4. Method Declarations
	9.4.1. Inheritance and Overriding
	9.4.1.1. Overriding (by Instance Methods)
	9.4.1.2. Requirements in Overriding
	9.4.1.3. Inheriting Methods with Override-Equivalent Signatures

	9.4.2. Overloading
	9.4.3. Interface Method Body

	9.5. Member Type Declarations
	9.6. Annotation Types
	9.6.1. Annotation Type Elements
	9.6.2. Defaults for Annotation Type Elements
	9.6.3. Repeatable Annotation Types
	9.6.4. Predefined Annotation Types
	9.6.4.1. @Target
	9.6.4.2. @Retention
	9.6.4.3. @Inherited
	9.6.4.4. @Override
	9.6.4.5. @SuppressWarnings
	9.6.4.6. @Deprecated
	9.6.4.7. @SafeVarargs
	9.6.4.8. @Repeatable
	9.6.4.9. @FunctionalInterface

	9.7. Annotations
	9.7.1. Normal Annotations
	9.7.2. Marker Annotations
	9.7.3. Single-Element Annotations
	9.7.4. Where Annotations May Appear
	9.7.5. Multiple Annotations of the Same Type

	9.8. Functional Interfaces
	9.9. Function Types

	10. Arrays
	10.1. Array Types
	10.2. Array Variables
	10.3. Array Creation
	10.4. Array Access
	10.5. Array Store Exception
	10.6. Array Initializers
	10.7. Array Members
	10.8. Class Objects for Arrays
	10.9. An Array of Characters Is Not a String

	11. Exceptions
	11.1. The Kinds and Causes of Exceptions
	11.1.1. The Kinds of Exceptions
	11.1.2. The Causes of Exceptions
	11.1.3. Asynchronous Exceptions

	11.2. Compile-Time Checking of Exceptions
	11.2.1. Exception Analysis of Expressions
	11.2.2. Exception Analysis of Statements
	11.2.3. Exception Checking

	11.3. Run-Time Handling of an Exception

	12. Execution
	12.1. Java Virtual Machine Startup
	12.1.1. Load the Class Test
	12.1.2. Link Test: Verify, Prepare, (Optionally) Resolve
	12.1.3. Initialize Test: Execute Initializers
	12.1.4. Invoke Test.main

	12.2. Loading of Classes and Interfaces
	12.2.1. The Loading Process

	12.3. Linking of Classes and Interfaces
	12.3.1. Verification of the Binary Representation
	12.3.2. Preparation of a Class or Interface Type
	12.3.3. Resolution of Symbolic References

	12.4. Initialization of Classes and Interfaces
	12.4.1. When Initialization Occurs
	12.4.2. Detailed Initialization Procedure

	12.5. Creation of New Class Instances
	12.6. Finalization of Class Instances
	12.6.1. Implementing Finalization
	12.6.2. Interaction with the Memory Model

	12.7. Unloading of Classes and Interfaces
	12.8. Program Exit

	13. Binary Compatibility
	13.1. The Form of a Binary
	13.2. What Binary Compatibility Is and Is Not
	13.3. Evolution of Packages
	13.4. Evolution of Classes
	13.4.1. abstract Classes
	13.4.2. final Classes
	13.4.3. public Classes
	13.4.4. Superclasses and Superinterfaces
	13.4.5. Class Type Parameters
	13.4.6. Class Body and Member Declarations
	13.4.7. Access to Members and Constructors
	13.4.8. Field Declarations
	13.4.9. final Fields and static Constant Variables
	13.4.10. static Fields
	13.4.11. transient Fields
	13.4.12. Method and Constructor Declarations
	13.4.13. Method and Constructor Type Parameters
	13.4.14. Method and Constructor Formal Parameters
	13.4.15. Method Result Type
	13.4.16. abstract Methods
	13.4.17. final Methods
	13.4.18. native Methods
	13.4.19. static Methods
	13.4.20. synchronized Methods
	13.4.21. Method and Constructor Throws
	13.4.22. Method and Constructor Body
	13.4.23. Method and Constructor Overloading
	13.4.24. Method Overriding
	13.4.25. Static Initializers
	13.4.26. Evolution of Enums

	13.5. Evolution of Interfaces
	13.5.1. public Interfaces
	13.5.2. Superinterfaces
	13.5.3. Interface Members
	13.5.4. Interface Type Parameters
	13.5.5. Field Declarations
	13.5.6. Interface Method Declarations
	13.5.7. Evolution of Annotation Types

	14. Blocks and Statements
	14.1. Normal and Abrupt Completion of Statements
	14.2. Blocks
	14.3. Local Class Declarations
	14.4. Local Variable Declaration Statements
	14.4.1. Local Variable Declarators and Types
	14.4.2. Execution of Local Variable Declarations

	14.5. Statements
	14.6. The Empty Statement
	14.7. Labeled Statements
	14.8. Expression Statements
	14.9. The if Statement
	14.9.1. The if-then Statement
	14.9.2. The if-then-else Statement

	14.10. The assert Statement
	14.11. The switch Statement
	14.12. The while Statement
	14.12.1. Abrupt Completion of while Statement

	14.13. The do Statement
	14.13.1. Abrupt Completion of do Statement

	14.14. The for Statement
	14.14.1. The basic for Statement
	14.14.1.1. Initialization of for Statement
	14.14.1.2. Iteration of for Statement
	14.14.1.3. Abrupt Completion of for Statement

	14.14.2. The enhanced for statement

	14.15. The break Statement
	14.16. The continue Statement
	14.17. The return Statement
	14.18. The throw Statement
	14.19. The synchronized Statement
	14.20. The try statement
	14.20.1. Execution of try-catch
	14.20.2. Execution of try-finally and try-catch-finally
	14.20.3. try-with-resources
	14.20.3.1. Basic try-with-resources
	14.20.3.2. Extended try-with-resources

	14.21. Unreachable Statements

	15. Expressions
	15.1. Evaluation, Denotation, and Result
	15.2. Forms of Expressions
	15.3. Type of an Expression
	15.4. FP-strict Expressions
	15.5. Expressions and Run-Time Checks
	15.6. Normal and Abrupt Completion of Evaluation
	15.7. Evaluation Order
	15.7.1. Evaluate Left-Hand Operand First
	15.7.2. Evaluate Operands before Operation
	15.7.3. Evaluation Respects Parentheses and Precedence
	15.7.4. Argument Lists are Evaluated Left-to-Right
	15.7.5. Evaluation Order for Other Expressions

	15.8. Primary Expressions
	15.8.1. Lexical Literals
	15.8.2. Class Literals
	15.8.3. this
	15.8.4. Qualified this
	15.8.5. Parenthesized Expressions

	15.9. Class Instance Creation Expressions
	15.9.1. Determining the Class being Instantiated
	15.9.2. Determining Enclosing Instances
	15.9.3. Choosing the Constructor and its Arguments
	15.9.4. Run-Time Evaluation of Class Instance Creation Expressions
	15.9.5. Anonymous Class Declarations
	15.9.5.1. Anonymous Constructors

	15.10. Array Creation and Access Expressions
	15.10.1. Array Creation Expressions
	15.10.2. Run-Time Evaluation of Array Creation Expressions
	15.10.3. Array Access Expressions
	15.10.4. Run-Time Evaluation of Array Access Expressions

	15.11. Field Access Expressions
	15.11.1. Field Access Using a Primary
	15.11.2. Accessing Superclass Members using super

	15.12. Method Invocation Expressions
	15.12.1. Compile-Time Step 1: Determine Class or Interface to Search
	15.12.2. Compile-Time Step 2: Determine Method Signature
	15.12.2.1. Identify Potentially Applicable Methods
	15.12.2.2. Phase 1: Identify Matching Arity Methods Applicable by Strict Invocation
	15.12.2.3. Phase 2: Identify Matching Arity Methods Applicable by Loose Invocation
	15.12.2.4. Phase 3: Identify Methods Applicable by Variable Arity Invocation
	15.12.2.5. Choosing the Most Specific Method
	15.12.2.6. Method Invocation Type

	15.12.3. Compile-Time Step 3: Is the Chosen Method Appropriate?
	15.12.4. Run-Time Evaluation of Method Invocation
	15.12.4.1. Compute Target Reference (If Necessary)
	15.12.4.2. Evaluate Arguments
	15.12.4.3. Check Accessibility of Type and Method
	15.12.4.4. Locate Method to Invoke
	15.12.4.5. Create Frame, Synchronize, Transfer Control

	15.13. Method Reference Expressions
	15.13.1. Compile-Time Declaration of a Method Reference
	15.13.2. Type of a Method Reference
	15.13.3. Run-Time Evaluation of Method References

	15.14. Postfix Expressions
	15.14.1. Expression Names
	15.14.2. Postfix Increment Operator ++
	15.14.3. Postfix Decrement Operator --

	15.15. Unary Operators
	15.15.1. Prefix Increment Operator ++
	15.15.2. Prefix Decrement Operator --
	15.15.3. Unary Plus Operator +
	15.15.4. Unary Minus Operator -
	15.15.5. Bitwise Complement Operator ~
	15.15.6. Logical Complement Operator !

	15.16. Cast Expressions
	15.17. Multiplicative Operators
	15.17.1. Multiplication Operator *
	15.17.2. Division Operator /
	15.17.3. Remainder Operator %

	15.18. Additive Operators
	15.18.1. String Concatenation Operator +
	15.18.2. Additive Operators (+ and -) for Numeric Types

	15.19. Shift Operators
	15.20. Relational Operators
	15.20.1. Numerical Comparison Operators <, <=, >, and >=
	15.20.2. Type Comparison Operator instanceof

	15.21. Equality Operators
	15.21.1. Numerical Equality Operators == and !=
	15.21.2. Boolean Equality Operators == and !=
	15.21.3. Reference Equality Operators == and !=

	15.22. Bitwise and Logical Operators
	15.22.1. Integer Bitwise Operators &, ^, and |
	15.22.2. Boolean Logical Operators &, ^, and |

	15.23. Conditional-And Operator &&
	15.24. Conditional-Or Operator ||
	15.25. Conditional Operator ? :
	15.25.1. Boolean Conditional Expressions
	15.25.2. Numeric Conditional Expressions
	15.25.3. Reference Conditional Expressions

	15.26. Assignment Operators
	15.26.1. Simple Assignment Operator =
	15.26.2. Compound Assignment Operators

	15.27. Lambda Expressions
	15.27.1. Lambda Parameters
	15.27.2. Lambda Body
	15.27.3. Type of a Lambda Expression
	15.27.4. Run-Time Evaluation of Lambda Expressions

	15.28. Constant Expressions

	16. Definite Assignment
	16.1. Definite Assignment and Expressions
	16.1.1. Boolean Constant Expressions
	16.1.2. Conditional-And Operator &&
	16.1.3. Conditional-Or Operator ||
	16.1.4. Logical Complement Operator !
	16.1.5. Conditional Operator ? :
	16.1.6. Conditional Operator ? :
	16.1.7. Other Expressions of Type boolean
	16.1.8. Assignment Expressions
	16.1.9. Operators ++ and --
	16.1.10. Other Expressions

	16.2. Definite Assignment and Statements
	16.2.1. Empty Statements
	16.2.2. Blocks
	16.2.3. Local Class Declaration Statements
	16.2.4. Local Variable Declaration Statements
	16.2.5. Labeled Statements
	16.2.6. Expression Statements
	16.2.7. if Statements
	16.2.8. assert Statements
	16.2.9. switch Statements
	16.2.10. while Statements
	16.2.11. do Statements
	16.2.12. for Statements
	16.2.12.1. Initialization Part of for Statement
	16.2.12.2. Incrementation Part of for Statement

	16.2.13. break, continue, return, and throw Statements
	16.2.14. synchronized Statements
	16.2.15. try Statements

	16.3. Definite Assignment and Parameters
	16.4. Definite Assignment and Array Initializers
	16.5. Definite Assignment and Enum Constants
	16.6. Definite Assignment and Anonymous Classes
	16.7. Definite Assignment and Member Types
	16.8. Definite Assignment and Static Initializers
	16.9. Definite Assignment, Constructors, and Instance Initializers

	17. Threads and Locks
	17.1. Synchronization
	17.2. Wait Sets and Notification
	17.2.1. Wait
	17.2.2. Notification
	17.2.3. Interruptions
	17.2.4. Interactions of Waits, Notification, and Interruption

	17.3. Sleep and Yield
	17.4. Memory Model
	17.4.1. Shared Variables
	17.4.2. Actions
	17.4.3. Programs and Program Order
	17.4.4. Synchronization Order
	17.4.5. Happens-before Order
	17.4.6. Executions
	17.4.7. Well-Formed Executions
	17.4.8. Executions and Causality Requirements
	17.4.9. Observable Behavior and Nonterminating Executions

	17.5. final Field Semantics
	17.5.1. Semantics of final Fields
	17.5.2. Reading final Fields During Construction
	17.5.3. Subsequent Modification of final Fields
	17.5.4. Write-Protected Fields

	17.6. Word Tearing
	17.7. Non-Atomic Treatment of double and long

	18. Type Inference
	18.1. Concepts and Notation
	18.1.1. Inference Variables
	18.1.2. Constraint Formulas
	18.1.3. Bounds

	18.2. Reduction
	18.2.1. Expression Compatibility Constraints
	18.2.2. Type Compatibility Constraints
	18.2.3. Subtyping Constraints
	18.2.4. Type Equality Constraints
	18.2.5. Checked Exception Constraints

	18.3. Incorporation
	18.3.1. Complementary Pairs of Bounds
	18.3.2. Bounds Involving Capture Conversion

	18.4. Resolution
	18.5. Uses of Inference
	18.5.1. Invocation Applicability Inference
	18.5.2. Invocation Type Inference
	18.5.3. Functional Interface Parameterization Inference
	18.5.4. More Specific Method Inference

	19. Syntax
	Index
	A. Limited License Grant

