
⾃定义业务错误信息

本节核⼼内容

如何⾃定义业务⾃⼰的错误信息
实际开发中是如何处理错误的
实际开发中常⻅的错误类型
通过引⼊新包 errno 来实现此功能，会展示该包的如下⽤
法：

如何新建 Err 类型的错误
如何从 Err 类型的错误中获取 code 和 message

本⼩节源码下载路径：demo05
(https://github.com/lexkong/apiserver_demos/tree/master/demo05)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo04
(https://github.com/lexkong/apiserver_demos/tree/master/demo04)
来开发的。

为什么要定制业务⾃⼰的错误码

在实际开发中引⼊错误码有如下好处：

可以⾮常⽅便地定位问题和定位代码⾏（看到错误码知道什么
意思，grep 错误码可以定位到错误码所在⾏）
如果 API 对外开放，有个错误码会更专业些

https://github.com/lexkong/apiserver_demos/tree/master/demo05
https://github.com/lexkong/apiserver_demos/tree/master/demo04

错误码包含⼀定的信息，通过错误码可以判断出错误级别、错
误模块和具体错误信息
在实际业务开发中，⼀个条错误信息需要包含两部分内容：直
接展示给⽤户的 message 和⽤于开发⼈员 debug 的 error
。message 可能会直接展示给⽤户，error 是⽤于 debug 的
错误信息，可能包含敏感/内部信息，不宜对外展示
业务开发过程中，可能需要判断错误是哪种类型以便做相应的
逻辑处理，通过定制的错误码很容易做到这点，例如：

 if err == errno.ErrBind {
 ...
 }

Go 中的 HTTP 服务器开发都是引⽤ net/http 包，该包中只
有 60 个错误码，基本都是跟 HTTP 请求相关的。在⼤型系统
中，这些错误码完全不够⽤，⽽且跟业务没有任何关联，满⾜
不了业务需求。

在 apiserver 中引⼊错误码

我们通过⼀个新包 errno 来做错误码的定制，详⻅
demo05/pkg/errno
(https://github.com/lexkong/apiserver_demos/tree/master/demo05/pkg/errno)

$ ls pkg/errno/
code.go errno.go

errno 包由两个 Go ⽂件组成：code.go 和
errno.go。code.go ⽤来统⼀存⾃定义的错误码，code.go 的代
码为：

https://github.com/lexkong/apiserver_demos/tree/master/demo05/pkg/errno

package errno

var (
 // Common errors
 OK = &Errno{Code: 0,
Message: "OK"}
 InternalServerError = &Errno{Code: 10001,
Message: "Internal server error"}
 ErrBind = &Errno{Code: 10002,
Message: "Error occurred while binding the
request body to the struct."}

 // user errors
 ErrUserNotFound = &Errno{Code: 20102,
Message: "The user was not found."}
)

代码解析

在实际开发中，⼀个错误类型通常包含两部分：Code 部分，⽤来唯
⼀标识⼀个错误；Message 部分，⽤来展示错误信息，这部分错误
信息通常供前端直接展示。这两部分映射在 errno 包中即为
&Errno{Code: 0, Message: "OK"}。

错误码设计

⽬前错误码没有⼀个统⼀的设计标准，笔者研究了 BAT 和新浪开放
平台对外公布的错误码设计，参考新浪开放平台 Error code
(http://open.weibo.com/wiki/Error_code) 的设计，如下是设计
说明：

错误返回值格式：

http://open.weibo.com/wiki/Error_code

{
 "code": 10002,
 "message": "Error occurred while binding the
request body to the struct."
}

错误代码说明：

服务级别错误：1 为系统级错误；2 为普通错误，通常是由⽤
户⾮法操作引起的
服务模块为两位数：⼀个⼤型系统的服务模块通常不超过两位
数，如果超过，说明这个系统该拆分了
错误码为两位数：防⽌⼀个模块定制过多的错误码，后期不好
维护
code = 0 说明是正确返回，code > 0 说明是错误返回
错误通常包括系统级错误码和服务级错误码
建议代码中按服务模块将错误分类
错误码均为 >= 0 的数
在 apiserver 中 HTTP Code 固定为 http.StatusOK，错误
码通过 code 来表示。

错误信息处理

通过 errno.go 来对⾃定义的错误进⾏处理，errno.go 的代码
为：

package errno

import "fmt"

type Errno struct {
 Code int
 Message string
}

func (err Errno) Error() string {
 return err.Message
}

// Err represents an error
type Err struct {
 Code int
 Message string
 Err error
}

func New(errno *Errno, err error) *Err {
 return &Err{Code: errno.Code, Message:
errno.Message, Err: err}
}

func (err *Err) Add(message string) error {
 err.Message += " " + message
 return err
}

func (err *Err) Addf(format string, args
...interface{}) error {
 err.Message += " " + fmt.Sprintf(format,
args...)
 return err
}

func (err *Err) Error() string {
 return fmt.Sprintf("Err - code: %d, message:
%s, error: %s", err.Code, err.Message, err.Err)
}

func IsErrUserNotFound(err error) bool {
 code, _ := DecodeErr(err)
 return code == ErrUserNotFound.Code
}

func DecodeErr(err error) (int, string) {
 if err == nil {
 return OK.Code, OK.Message
 }

 switch typed := err.(type) {
 case *Err:
 return typed.Code, typed.Message
 case *Errno:
 return typed.Code, typed.Message
 default:
 }

 return InternalServerError.Code, err.Error()
}

代码解析

errno.go 源码⽂件中有两个核⼼函数 New() 和 DecodeErr()，
⼀个⽤来新建定制的错误，⼀个⽤来解析定制的错误，稍后会介绍如
何使⽤。

errno.go 同时也提供了 Add() 和 Addf() 函数，如果想对外展示
更多的信息可以调⽤此函数，使⽤⽅法下⾯有介绍。

错误码实战

上⾯介绍了错误码的⼀些知识，这⼀部分讲开发中是如何使⽤
errno 包来处理错误信息的。为了演示，我们新增⼀个创建⽤户的
API：

1. router/router.go 中添加路由，详⻅
demo05/router/router.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo05/router/router.go)

2. handler ⽬录下增加业务处理函数
handler/user/create.go，详⻅
demo05/handler/user/create.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo05/handler/user/create.go)

https://github.com/lexkong/apiserver_demos/blob/master/demo05/router/router.go
https://github.com/lexkong/apiserver_demos/blob/master/demo05/handler/user/create.go

编译并运⾏

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo05 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo05/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

测试验证

启动 apiserver：./apiserver

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user

{
 "code": 10002,
 "message": "Error occurred while binding the
request body to the struct."
}

因为没有传⼊任何参数，所以返回 errno.ErrBind 错误。

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user -
d'{"username":"admin"}'

{
 "code": 10001,
 "message": "password is empty"
}

因为没有传⼊ password，所以返回 fmt.Errorf("password
is empty") 错误，该错误信息不是定制的错误类
型，errno.DecodeErr(err) 解析时会解析为默认的
errno.InternalServerError 错误，所以返回结果中 code 为
10001，message 为 err.Error()。

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user -
d'{"password":"admin"}'

{
 "code": 20102,
 "message": "The user was not found. This is add
message."
}

因为没有传⼊ username，所以返回 errno.ErrUserNotFound
错误信息，并通过 Add() 函数在 message 信息后追加了 This is
add message. 信息。

通过

 if errno.IsErrUserNotFound(err) {
 log.Debug("err type is ErrUserNotFound")
 }

演示了如何通过定制错误⽅便地对⽐是不是某个错误，在该请求中，
apiserver 会输出如下错误：

可以看到在后台⽇志中会输出敏感信息 username can not
found in db: xx.xx.xx.xx，但是返回给⽤户的 message
（{"code":20102,"message":"The user was not found.
This is add message."}）不包含这些敏感信息，可以供前端
直接对外展示。

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user -
d'{"username":"admin","password":"admin"}'

{
 "code": 0,
 "message": "OK"
}

如果 err = nil，则 errno.DecodeErr(err) 会返回成功的
code: 0 和 message: OK。

如果 API 是对外的，错误信息数量有限，则制定错误码
⾮常容易，强烈建议使⽤错误码。如果是内部系统，特
别是庞⼤的系统，内部错误会⾮常多，这时候没必要为
每⼀个错误制定错误码，⽽只需为常⻅的错误制定错误
码，对于普通的错误，系统在处理时会统⼀作为
InternalServerError 处理。

⼩结

本⼩节详细介绍了实际开发中是如何处理业务错误信息的，并给出了
笔者倾向的错误码规范供读者参考，最后通过⼤量的实例来展示如何
通过 errno 包来处理不同场景的错误。

