
数据分析⼯具 Pandas 介绍
什么是Pandas

Pandas 是做数据分析的基础包，提供了灵活的数据结构和其它⽅便
进⾏向量化计算的⼯具和函数, 使得 Python 也能够像 R 语⾔⼀样⽅
便地⽤于数据分析和处理。在 Pandas 中有两种常⻅数据结构，分别
是 Series 和 DataFrame。

Series 是⼀种增强型的⼀维数组，与 Python 中的列表相似，由
index（索引）和 values（值）组成， Series 中的值是相同的数据
类型。

⽽ DataFrame 是增强型的⼆维数组，就像 Excel 中的表格，有⾏标
签和列表索引，这种数据结构在Pandas 中最为常⽤。

在做数据分析前，我们会约定俗成地引⼊ Numpy 、Pandas、
Matplotlib 三个⼯具包，并使⽤其简称 np，pd，plt。numpy 是科
学计算基础包，pandas 依赖于 numpy，⽽ matplitlib 是绘图⼯
具。(以下代码均在 IPython 中完成，如果你已经成功安装了
Anoconda，那么可以直接运⾏ ipython 命令进⼊)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Series

⽤列表可创建Series对象

In [30]: s = pd.Series(['a','b','c'])

In [31]: s
Out[31]:
0 a
1 b
2 c
dtype: object

Series 和列表⼀样每个元素有对应的索引，默认是0到n（n是列表的
⻓度），也⼿动指定索引名字

In [42]: s = pd.Series(['a','b','c'], index=
['x','y','z'])

In [43]: s
Out[43]:
x a
y b
z c
dtype: object

可以通过索引获取元素

In [50]: s['x']
Out[50]: 'a'

像列表⼀样，⽀持切⽚

In [51]: s[:2]
Out[51]:
x a
y b
dtype: object

可以使⽤字典创建Series（Series也可以看做是⼀个特殊的字典对
象，都是索引到值的映射）

In [272]: s2 = pd.Series({1:"a",2:"b",3:"c"})

In [273]: s2
Out[273]:
1 a
2 b
3 c
dtype: object

DataFrame

有很多⽅法可以创建 DataFrame 对象，可以通过⽤相等⻓度的列表
组成的字典对象来构建 DataFrame

In [52]: data = {'state': ['Ohio', 'Ohio',
'Ohio', 'Nevada', 'Nevada'],
 ...: 'year': [2000, 2001, 2002, 2001,
2002],
 ...: 'pop': [1.5, 1.7, 3.6, 2.4,
2.9]}
 ...:

In [54]: df = pd.DataFrame(data)

In [55]: df
Out[55]:
 pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002

也可以通过 Numpy 的⼆维数组来构建 DataFrame

随机⽣成6⾏4列的⼆维数组
In [58]: df = pd.DataFrame(np.random.randn(6,4))

In [59]: df
Out[59]:
 0 1 2 3
0 0.447964 -0.486327 -1.593023 -0.314114
1 1.004132 -0.058186 0.076479 0.076231
2 0.445284 0.592718 0.214101 -0.322876
3 -0.006924 -0.738673 0.277461 0.448946
4 0.100352 1.416282 0.353527 0.640276
5 0.804352 -0.374634 0.734836 0.247061

还可以从 csv ⽂件、数据库中获取，现在先来熟悉 DataFrame 中常
⽤属性和操作⽅法，以便后续能够灵活运⽤ Pandas。

DataFrame 既有⾏索引（index）也有列索引（columns），构建
DataFrame 时可以指定每⾏的名字和每列的名字，例如下⾯的
DataFrame ⽤时间作为⾏索引，字⺟ A、B、C、D 作为列索引。

In [61]: dates =
pd.date_range('20130101',periods=6)

In [62]: dates
Out[62]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-
01-03', '2013-01-04',
 '2013-01-05', '2013-01-06'],
 dtype='datetime64[ns]', freq='D')

In [63]: df =
pd.DataFrame(np.random.randn(6,4),index=dates,col
umns=list('ABCD'))

In [64]: df
Out[64]:
 A B C
D
2013-01-01 0.513286 -1.475824 1.939876
-0.163942
2013-01-02 -0.518291 1.345230 0.510746
1.284767
2013-01-03 -0.434865 -0.464227 1.830259
-0.719290
2013-01-04 0.654418 -0.994241 0.162705
2.816623
2013-01-05 1.540274 -0.227124 1.843401
-2.977880
2013-01-06 0.888156 1.932291 0.998568
0.143846

DataFrame 其实就是由3部分组成的，分别是 index、columns、
values

In [79]: df.columns
Out[79]: Index(['A', 'B', 'C', 'D'],
dtype='object')

In [80]: df.index
Out[80]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-
01-03', '2013-01-04',
 '2013-01-05', '2013-01-06'],
 dtype='datetime64[ns]', freq='D')

In [81]: df.values
Out[81]:
array([[0.51328621, -1.475824 , 1.93987575,
-0.16394233],
 [-0.51829132, 1.34522999, 0.51074601,
1.2847668],
 [-0.43486491, -0.46422712, 1.83025914,
-0.71928957],
 [0.65441841, -0.99424111, 0.16270488,
2.81662335],
 [1.54027403, -0.22712424, 1.84340078,
-2.97787999],
 [0.88815632, 1.93229088, 0.99856774,
0.14384553]])

head()

head() 返回 DataFrame 的头部数据（默认返回表格中的前5⾏数
据），也可以指定返回的⾏数

In [70]: df.head(3)
Out[70]:
 A B C
D
2013-01-01 0.513286 -1.475824 1.939876
-0.163942
2013-01-02 -0.518291 1.345230 0.510746
1.284767
2013-01-03 -0.434865 -0.464227 1.830259
-0.719290

tail()

tail() 返回 DataFrame 的尾部数据（默认返回表格中的最后5⾏数
据）

In [72]: df.tail()
Out[72]:
 A B C
D
2013-01-02 -0.518291 1.345230 0.510746
1.284767
2013-01-03 -0.434865 -0.464227 1.830259
-0.719290
2013-01-04 0.654418 -0.994241 0.162705
2.816623
2013-01-05 1.540274 -0.227124 1.843401
-2.977880
2013-01-06 0.888156 1.932291 0.998568
0.143846

按索引排序

按照列索引的降序排列：D->C->B->A
In [96]: df.sort_index(axis=1, ascending=False)
Out[96]:
 D C B
A
2013-01-01 -0.163942 1.939876 -1.475824
0.513286
2013-01-02 1.284767 0.510746 1.345230
-0.518291
2013-01-03 -0.719290 1.830259 -0.464227
-0.434865
2013-01-04 2.816623 0.162705 -0.994241
0.654418
2013-01-05 -2.977880 1.843401 -0.227124
1.540274
2013-01-06 0.143846 0.998568 1.932291
0.888156

按照⾏索引的降序排列：2012-01-06->...->2013-01-01
In [97]: df.sort_index(axis=0, ascending=False)
Out[97]:
 A B C
D
2013-01-06 0.888156 1.932291 0.998568
0.143846
2013-01-05 1.540274 -0.227124 1.843401
-2.977880
2013-01-04 0.654418 -0.994241 0.162705
2.816623
2013-01-03 -0.434865 -0.464227 1.830259
-0.719290
2013-01-02 -0.518291 1.345230 0.510746
1.284767

2013-01-01 0.513286 -1.475824 1.939876
-0.163942

按值排序

根据B列的值的升序排列
In [99]: df.sort_values(by='B')
Out[99]:
 A B C
D
2013-01-01 0.513286 -1.475824 1.939876
-0.163942
2013-01-04 0.654418 -0.994241 0.162705
2.816623
2013-01-03 -0.434865 -0.464227 1.830259
-0.719290
2013-01-05 1.540274 -0.227124 1.843401
-2.977880
2013-01-02 -0.518291 1.345230 0.510746
1.284767
2013-01-06 0.888156 1.932291 0.998568
0.143846

先按A的升序排，再按B的降序排
In [161]: df.sort_values(by=['A','B'], ascending=
[True, False])
Out[161]:
 A B C
D
2013-01-02 -0.518291 1.345230 0.510746
1.284767
2013-01-03 -0.434865 -0.464227 1.830259
-0.719290

2013-01-01 0.513286 -1.475824 1.939876
-0.163942
2013-01-04 0.654418 -0.994241 0.162705
2.816623
2013-01-06 0.888156 1.932291 0.998568
0.143846
2013-01-05 1.540274 -0.227124 1.843401
-2.977880

选择数据

选择⼀列，返回 Series 对象
In [100]: df['A']
Out[100]:
2013-01-01 0.513286
2013-01-02 -0.518291
2013-01-03 -0.434865
2013-01-04 0.654418
2013-01-05 1.540274
2013-01-06 0.888156
Freq: D, Name: A, dtype: float64

选择多列，返回 DataFrame 对象
In [102]: df[['A','B']]
Out[102]:
 A B
2013-01-01 0.513286 -1.475824
2013-01-02 -0.518291 1.345230
2013-01-03 -0.434865 -0.464227
2013-01-04 0.654418 -0.994241
2013-01-05 1.540274 -0.227124
2013-01-06 0.888156 1.932291

切⽚操作

In [101]: df[0:3]
Out[101]:
 A B C
D
2013-01-01 0.513286 -1.475824 1.939876
-0.163942
2013-01-02 -0.518291 1.345230 0.510746
1.284767
2013-01-03 -0.434865 -0.464227 1.830259
-0.719290

通过loc、.iloc ⾼效获取数据

通过⾏索引切⽚获取指定列数据
In [145]: df.loc["2013-01-01":"2013-01-03",
['A','B']]
Out[145]:
 A B
2013-01-01 0.513286 -1.475824
2013-01-02 -0.518291 1.345230
2013-01-03 -0.434865 -0.464227

通过⾏号切⽚获取（1到4⾏，0到2列）数据
In [149]: df.iloc[1:4, 0:2]
Out[149]:
 A B
2013-01-02 -0.518291 1.345230
2013-01-03 -0.434865 -0.464227
2013-01-04 0.654418 -0.994241

通过条件过滤数据

In [104]: df[df.A>0]
Out[104]:
 A B C
D
2013-01-01 0.513286 -1.475824 1.939876
-0.163942
2013-01-04 0.654418 -0.994241 0.162705
2.816623
2013-01-05 1.540274 -0.227124 1.843401
-2.977880
2013-01-06 0.888156 1.932291 0.998568
0.143846

求和

In [115]: df.sum()
Out[115]:
A 2.642979
B 0.116104
C 7.285554
D 0.384124

求平均值

In [121]: df.mean()
Out[121]:
A 0.440496
B 0.019351
C 1.214259
D 0.064021
dtype: float64

求最⼤/⼩值

In [157]: df.max()
Out[157]:
A 1.540274
B 1.932291
C 1.939876
D 2.816623

In [159]: df.min()
Out[159]:
A -0.518291
B -1.475824
C 0.162705
D -2.977880
dtype: float64

分组 groupby

In [252]: df.groupby('A').size()
Out[252]:
A
-0.518291 1
-0.434865 1
 0.513286 1
 0.654418 1
 0.888156 1
 1.000000 1
 1.540274 1

groupby 的参数还可以是函数

添加E为时间列，根据时间的年进⾏分组
In [255]: df['E'] = df.index

In [256]: df
Out[256]:
 A B C
D E
2013-01-01 00:00:00 0.513286 -1.475824 1.939876
-0.163942 2013-01-01
2013-01-02 00:00:00 -0.518291 1.345230 0.510746
1.284767 2013-01-02
2013-01-03 00:00:00 -0.434865 -0.464227 1.830259
-0.719290 2013-01-03
2013-01-04 00:00:00 0.654418 -0.994241 0.162705
2.816623 2013-01-04
2013-01-05 00:00:00 1.540274 -0.227124 1.843401
-2.977880 2013-01-05
2013-01-06 00:00:00 0.888156 1.932291 0.998568
0.143846 2013-01-06
2014-01-06 00:00:00 1.000000 1.000000 1.000000
1.000000 2014-01-06

In [257]: df.groupby(lambda x :
df.E[x].year).size()
Out[257]:
2013 6
2014 1
dtype: int64

关于Pandas更多详细的⽤法可以参考Pandas官⽅⽂
档https://pandas.pydata.org (https://pandas.pydata.org)，下
⼀节我们将正式进⼊数据分析环节。

https://pandas.pydata.org/

