
29 | 如何判断一个数据库是不是出问题了？
2019-01-18 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 14:28 大小 13.26M

我在第25和27篇文章中，和你介绍了主备切换流程。通过这些内容的讲解，你应该已经很

清楚了：在一主一备的双 M 架构里，主备切换只需要把客户端流量切到备库；而在一主多

从架构里，主备切换除了要把客户端流量切到备库外，还需要把从库接到新主库上。

主备切换有两种场景，一种是主动切换，一种是被动切换。而其中被动切换，往往是因为主

库出问题了，由 HA 系统发起的。

这也就引出了我们今天要讨论的问题：怎么判断一个主库出问题了？

你一定会说，这很简单啊，连上 MySQL，执行个 select 1 就好了。但是 select 1 成功返

回了，就表示主库没问题吗？





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

https://time.geekbang.org/column/article/76795
https://time.geekbang.org/column/article/77427

select 1 判断

实际上，select 1 成功返回，只能说明这个库的进程还在，并不能说明主库没问题。现在，

我们来看一下这个场景。

图 1 查询 blocked

我们设置 innodb_thread_concurrency 参数的目的是，控制 InnoDB 的并发线程上限。

也就是说，一旦并发线程数达到这个值，InnoDB 在接收到新请求的时候，就会进入等待状

态，直到有线程退出。

这里，我把 innodb_thread_concurrency 设置成 3，表示 InnoDB 只允许 3 个线程并行

执行。而在我们的例子中，前三个 session 中的 sleep(100)，使得这三个语句都处于“执

行”状态，以此来模拟大查询。

你看到了， session D 里面，select 1 是能执行成功的，但是查询表 t 的语句会被堵住。

也就是说，如果这时候我们用 select 1 来检测实例是否正常的话，是检测不出问题的。

1

2

3

4

5

6

7

8

9

set global innodb_thread_concurrency=3;

CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `c` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

 insert into t values(1,1)

复制代码

在 InnoDB 中，innodb_thread_concurrency 这个参数的默认值是 0，表示不限制并发线

程数量。但是，不限制并发线程数肯定是不行的。因为，一个机器的 CPU 核数有限，线程

全冲进来，上下文切换的成本就会太高。

所以，通常情况下，我们建议把 innodb_thread_concurrency 设置为 64~128 之间的

值。这时，你一定会有疑问，并发线程上限数设置为 128 够干啥，线上的并发连接数动不

动就上千了。

产生这个疑问的原因，是搞混了并发连接和并发查询。

并发连接和并发查询，并不是同一个概念。你在 show processlist 的结果里，看到的几千

个连接，指的就是并发连接。而“当前正在执行”的语句，才是我们所说的并发查询。

并发连接数达到几千个影响并不大，就是多占一些内存而已。我们应该关注的是并发查询，

因为并发查询太高才是 CPU 杀手。这也是为什么我们需要设置

innodb_thread_concurrency 参数的原因。

然后，你可能还会想起我们在第 7 篇文章中讲到的热点更新和死锁检测的时候，如果把

innodb_thread_concurrency 设置为 128 的话，那么出现同一行热点更新的问题时，是不

是很快就把 128 消耗完了，这样整个系统是不是就挂了呢？

实际上，在线程进入锁等待以后，并发线程的计数会减一，也就是说等行锁（也包括间隙

锁）的线程是不算在 128 里面的。

MySQL 这样设计是非常有意义的。因为，进入锁等待的线程已经不吃 CPU 了；更重要的

是，必须这么设计，才能避免整个系统锁死。

为什么呢？假设处于锁等待的线程也占并发线程的计数，你可以设想一下这个场景：

1. 线程 1 执行 begin; update t set c=c+1 where id=1, 启动了事务 trx1， 然后保持这个

状态。这时候，线程处于空闲状态，不算在并发线程里面。

2. 线程 2 到线程 129 都执行 update t set c=c+1 where id=1; 由于等行锁，进入等待状

态。这样就有 128 个线程处于等待状态；

3. 如果处于锁等待状态的线程计数不减一，InnoDB 就会认为线程数用满了，会阻止其他

语句进入引擎执行，这样线程 1 不能提交事务。而另外的 128 个线程又处于锁等待状

防止断
更 请务

必加

首发微
信：1

71614
3665

https://time.geekbang.org/column/article/70215

态，整个系统就堵住了。

下图 2 显示的就是这个状态。

图 2 系统锁死状态（假设等行锁的语句占用并发计数）

这时候 InnoDB 不能响应任何请求，整个系统被锁死。而且，由于所有线程都处于等待状

态，此时占用的 CPU 却是 0，而这明显不合理。所以，我们说 InnoDB 在设计时，遇到进

程进入锁等待的情况时，将并发线程的计数减 1 的设计，是合理而且是必要的。

虽然说等锁的线程不算在并发线程计数里，但如果它在真正地执行查询，就比如我们上面例

子中前三个事务中的 select sleep(100) from t，还是要算进并发线程的计数的。

在这个例子中，同时在执行的语句超过了设置的 innodb_thread_concurrency 的值，这时

候系统其实已经不行了，但是通过 select 1 来检测系统，会认为系统还是正常的。

因此，我们使用 select 1 的判断逻辑要修改一下。

查表判断

为了能够检测 InnoDB 并发线程数过多导致的系统不可用情况，我们需要找一个访问

InnoDB 的场景。一般的做法是，在系统库（mysql 库）里创建一个表，比如命名为

health_check，里面只放一行数据，然后定期执行：

使用这个方法，我们可以检测出由于并发线程过多导致的数据库不可用的情况。

但是，我们马上还会碰到下一个问题，即：空间满了以后，这种方法又会变得不好使。

我们知道，更新事务要写 binlog，而一旦 binlog 所在磁盘的空间占用率达到 100%，那么

所有的更新语句和事务提交的 commit 语句就都会被堵住。但是，系统这时候还是可以正

常读数据的。

因此，我们还是把这条监控语句再改进一下。接下来，我们就看看把查询语句改成更新语句

后的效果。

更新判断

既然要更新，就要放个有意义的字段，常见做法是放一个 timestamp 字段，用来表示最后

一次执行检测的时间。这条更新语句类似于：

节点可用性的检测都应该包含主库和备库。如果用更新来检测主库的话，那么备库也要进行

更新检测。

但，备库的检测也是要写 binlog 的。由于我们一般会把数据库 A 和 B 的主备关系设计为

双 M 结构，所以在备库 B 上执行的检测命令，也要发回给主库 A。

1 mysql> select * from mysql.health_check;

复制代码

1 mysql> update mysql.health_check set t_modified=now();

复制代码

但是，如果主库 A 和备库 B 都用相同的更新命令，就可能出现行冲突，也就是可能会导致

主备同步停止。所以，现在看来 mysql.health_check 这个表就不能只有一行数据了。

为了让主备之间的更新不产生冲突，我们可以在 mysql.health_check 表上存入多行数据，

并用 A、B 的 server_id 做主键。

由于 MySQL 规定了主库和备库的 server_id 必须不同（否则创建主备关系的时候就会报

错），这样就可以保证主、备库各自的检测命令不会发生冲突。

更新判断是一个相对比较常用的方案了，不过依然存在一些问题。其中，“判定慢”一直是

让 DBA 头疼的问题。

你一定会疑惑，更新语句，如果失败或者超时，就可以发起主备切换了，为什么还会有判定

慢的问题呢？

其实，这里涉及到的是服务器 IO 资源分配的问题。

首先，所有的检测逻辑都需要一个超时时间 N。执行一条 update 语句，超过 N 秒后还不

返回，就认为系统不可用。

你可以设想一个日志盘的 IO 利用率已经是 100% 的场景。这时候，整个系统响应非常慢，

已经需要做主备切换了。

但是你要知道，IO 利用率 100% 表示系统的 IO 是在工作的，每个请求都有机会获得 IO

资源，执行自己的任务。而我们的检测使用的 update 命令，需要的资源很少，所以可能在

1

2

3

4

5

6

7

8

mysql> CREATE TABLE `health_check` (
 `id` int(11) NOT NULL,
 `t_modified` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

/* 检测命令 */
insert into mysql.health_check(id, t_modified) values (@@server_id, now()) on duplicate

复制代码

拼课微
信：1

71614
3665

拿到 IO 资源的时候就可以提交成功，并且在超时时间 N 秒未到达之前就返回给了检测系

统。

检测系统一看，update 命令没有超时，于是就得到了“系统正常”的结论。

也就是说，这时候在业务系统上正常的 SQL 语句已经执行得很慢了，但是 DBA 上去一

看，HA 系统还在正常工作，并且认为主库现在处于可用状态。

之所以会出现这个现象，根本原因是我们上面说的所有方法，都是基于外部检测的。外部检

测天然有一个问题，就是随机性。

因为，外部检测都需要定时轮询，所以系统可能已经出问题了，但是却需要等到下一个检测

发起执行语句的时候，我们才有可能发现问题。而且，如果你的运气不够好的话，可能第一

次轮询还不能发现，这就会导致切换慢的问题。

所以，接下来我要再和你介绍一种在 MySQL 内部发现数据库问题的方法。

内部统计

针对磁盘利用率这个问题，如果 MySQL 可以告诉我们，内部每一次 IO 请求的时间，那我

们判断数据库是否出问题的方法就可靠得多了。

其实，MySQL 5.6 版本以后提供的 performance_schema 库，就在

file_summary_by_event_name 表里统计了每次 IO 请求的时间。

file_summary_by_event_name 表里有很多行数据，我们先来看看

event_name='wait/io/file/innodb/innodb_log_file’这一行。

图 3 performance_schema.file_summary_by_event_name 的一行

图中这一行表示统计的是 redo log 的写入时间，第一列 EVENT_NAME 表示统计的类型。

接下来的三组数据，显示的是 redo log 操作的时间统计。

第一组五列，是所有 IO 类型的统计。其中，COUNT_STAR 是所有 IO 的总次数，接下来

四列是具体的统计项， 单位是皮秒；前缀 SUM、MIN、AVG、MAX，顾名思义指的就是

总和、最小值、平均值和最大值。

第二组六列，是读操作的统计。最后一列 SUM_NUMBER_OF_BYTES_READ 统计的是，总

共从 redo log 里读了多少个字节。

第三组六列，统计的是写操作。

最后的第四组数据，是对其他类型数据的统计。在 redo log 里，你可以认为它们就是对

fsync 的统计。

在 performance_schema 库的 file_summary_by_event_name 表里，binlog 对应的是

event_name = "wait/io/file/sql/binlog"这一行。各个字段的统计逻辑，与 redo log 的

各个字段完全相同。这里，我就不再赘述了。

因为我们每一次操作数据库，performance_schema 都需要额外地统计这些信息，所以我

们打开这个统计功能是有性能损耗的。

我的测试结果是，如果打开所有的 performance_schema 项，性能大概会下降 10% 左

右。所以，我建议你只打开自己需要的项进行统计。你可以通过下面的方法打开或者关闭某

个具体项的统计。

如果要打开 redo log 的时间监控，你可以执行这个语句：

假设，现在你已经开启了 redo log 和 binlog 这两个统计信息，那要怎么把这个信息用在

实例状态诊断上呢？

很简单，你可以通过 MAX_TIMER 的值来判断数据库是否出问题了。比如，你可以设定阈

值，单次 IO 请求时间超过 200 毫秒属于异常，然后使用类似下面这条语句作为检测逻

辑。

发现异常后，取到你需要的信息，再通过下面这条语句：

把之前的统计信息清空。这样如果后面的监控中，再次出现这个异常，就可以加入监控累积

值了。

小结

今天，我和你介绍了检测一个 MySQL 实例健康状态的几种方法，以及各种方法存在的问

题和演进的逻辑。

1 mysql> update setup_instruments set ENABLED='YES', Timed='YES' where name like '%wait/io

复制代码

1 mysql> select event_name,MAX_TIMER_WAIT FROM performance_schema.file_summary_by_event_n

复制代码

1 mysql> truncate table performance_schema.file_summary_by_event_name;

复制代码

你看完后可能会觉得，select 1 这样的方法是不是已经被淘汰了呢，但实际上使用非常广泛

的 MHA（Master High Availability），默认使用的就是这个方法。

MHA 中的另一个可选方法是只做连接，就是 “如果连接成功就认为主库没问题”。不过

据我所知，选择这个方法的很少。

其实，每个改进的方案，都会增加额外损耗，并不能用“对错”做直接判断，需要你根据业

务实际情况去做权衡。

我个人比较倾向的方案，是优先考虑 update 系统表，然后再配合增加检测

performance_schema 的信息。

最后，又到了我们的思考题时间。

今天，我想问你的是：业务系统一般也有高可用的需求，在你开发和维护过的服务中，你是

怎么判断服务有没有出问题的呢？

你可以把你用到的方法和分析写在留言区，我会在下一篇文章中选取有趣的方案一起来分享

和分析。感谢你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是，如果使用 GTID 等位点的方案做读写分离，在对大表做 DDL 的时候会怎么

样。

假设，这条语句在主库上要执行 10 分钟，提交后传到备库就要 10 分钟（典型的大事

务）。那么，在主库 DDL 之后再提交的事务的 GTID，去备库查的时候，就会等 10 分钟

才出现。

这样，这个读写分离机制在这 10 分钟之内都会超时，然后走主库。

这种预期内的操作，应该在业务低峰期的时候，确保主库能够支持所有业务查询，然后把读

请求都切到主库，再在主库上做 DDL。等备库延迟追上以后，再把读请求切回备库。

通过这个思考题，我主要想让关注的是，大事务对等位点方案的影响。

当然了，使用 gh-ost 方案来解决这个问题也是不错的选择。

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

@曾剑、@max 同学提到的备库先做，再切主库的方法也是可以的。

上一篇 28 | 读写分离有哪些坑？

下一篇 30 | 答疑文章（二）：用动态的观点看加锁

某、人
2019-01-20

 10

目前是只有一台服务器来做判断,是否数据库出问题了,就是采用的update的方式。如果是
主从架构就一条语句,如果是双主的话就是两条update语句。但是这种方式有很大的弊端,
只有一个进程来判断数据库出问题的话,会出现单点判断的问题。所以后续准备多个单数进
程来做判断,如果超过了半数以上的监控进程都认为数据库出问题,才做切换。

精选留言 (22)  写留言

老师我有两个问题: …
展开

作者回复: 1. 虽然理论上是核数的2倍左右最好，但是现在很多人把MySQL创建在虚拟机上，就分

1~2个核，我怕那么写，有同学会认为innodb_thread_concurrency建议设置成4。。

2. 空间满本身是不会导致连不上的。但是因为空间满，事务无法提交，可能会导致接下来外部事

务重试，新重试的业务还是堵在提交阶段，持续累积可能会把连接数用满

kid
2019-02-16

 2

老师，我有个疑问，您说外部检测是采用定时轮询的方式。那内部检测通过'mysql>
select event_name,MAX_TIMER_WAIT FROM
performance_schema.file_summary_by_event_name where event_name in
('wait/io/file/innodb/innodb_log_file','wait/io/file/sql/binlog') and
MAX_TIMER_WAIT>200*1000000000; …
展开

作者回复: 对，但是这个方法本质上是“内部把一段时间内的统计信息存在这里”，只是“定期来

取”，去到的是“一段时间内的信息”

而前面的几种方法，都是“检测那个时间点的信息”

IceGeek17
2019-01-29

 2

对于使用 GTID 等位点的方案做读写分离，对大表做DDL的问题，
有一种做法是先在从库上设置 set_log_bin = off，在从库上先做DDL，完成后做一下主从
切换。然后再在之前的主库上同样操作一遍。
但这会有一个问题，当先在从库上做DDL（大表DDL时间会比较长，比如10分钟），在这
段时间内，此时如果读写请求都走主库的话，如果写请求对于DDL的改动是有依赖的，…
展开

作者回复: 是这样的，我们说DDL，一般是指加减索引，增加字段在最后一列，这种操作…

alias cd=...
2019-02-12

 1

1、判断进程是否可用：ping的方案（类似select 1）
2、根据业务的需求一般会设置一个阈值以及策略（如：单位时间失败的次数，响应时间超
过多少阈值）如何进行熔断、扩容等方案。

Mr.Strive...
2019-01-22

 1

老师您好：
关于 主备同步停止 的问题，看了您的回复。
我是这么理解的：
insert into mysql.health_check(id, t_modified) values (1, now()) on duplicate key
update t_modified=now(); …
展开

作者回复: 啊 主键冲突为啥没关系？

是这样的，这两个语句如果同时执行，那么在主库和备库上就都是“insert行为”

写到binlog里面就都是Write rows event

这个冲突就会导致主备同步停止哦

Mr.Strive...
2019-01-22

 1

老师您好：

本章有个疑惑：
”外部检测的时候，主备使用同一条更新语句，造成行冲突，导致主备同步停止”
 …
展开

作者回复: 比如两个表刚开始都是空表，

然后第一个语句执行

insert into mysql.health_check(id, t_modified) values (1, now()) on duplicate key update

t_modified=now();

就会两边各写入一个insert语句的binlog日志，传到对面就导致同步停止了

慧鑫coming
2019-01-22

 1

老师，文中提到的“但是，如果主库 A 和备库 B 都用相同的更新命令，就可能出现行冲
突，也就是可能会导致主备同步停止。”，这个能展开说一下吗，这个行冲突指什么？它
们会都更新各自检测表的同一字段我觉得会带来不准确的问题，怎么导致主从同步停止了
呢？

展开

作者回复: 好问题

比如两个表刚开始都是空表，

然后第一个语句执行

insert into mysql.health_check(id, t_modified) values (1, now()) on duplicate key update

t_modified=now();

就会两边各写入一个insert语句的binlog日志，传到对面就导致同步停止了

heat nan
2019-01-19

 1

老师，一直有个疑问，想咨询下。innodb buffer 会缓存表的数据页和索引页。现在我想
知道如何确认一个查询的行已经被缓存在内存中了。 我想了一下，第一种方法是直接去内
存中遍历这个表相关的数据页。这样的话，因为内存中的页可能是分散的，可能不构成一
个完成的索引结构，可能不能利用b+树叶子节点的路由功能。 这里有点模糊，希望老师有
空可以解释一下

展开

作者回复: “因为内存中的页可能是分散的，可能不构成一个完成的索引结构，可能不能利用b+树

叶子节点的路由功能。”

这里不对哈

放在内存里是b+树组织的，可以利用b+树叶子节点的路由功能的

One day
2019-01-18

 1

作为一个开发我也很想了解一下我们自己生产库上的监控情况，接触到最多的就是
Datasource,以及user，password,port（基本上是基于连接那种级别，最多就是加锁），
等等参数，大部分都是基于业务开发。站在个人层面或者业务开发层面（很少能接触到
DBA，以及看到DBA是怎么设置这些参数情况，除非库挂掉了就会和DBA一起看这些）怎
么去修改和观看以及使用这些参数鸭

展开

作者回复: 有DBA就不要自己去修改线上的参数啦

如果说观察，一个比较好的管控系统，是会能够让你看到这些值的

如果没有，就让dba给你一份线上的my.cnf的配置，然后你在测试环境自己用这个配置启动实例

来观察

老杨同志
2019-01-18

 1

现在很多公司都是使用dubbo或者类似dubbo的rpc调用。说说我对dubbo的理解
dubbo 存活检测感觉分为下面三个层面
服务端与注册中心的链接状态
 通常注册中心是zookeeper，服务端注册临时节点，客户端注册这个节点的watch事
件，一但服务端失联， …
展开

作者回复: 很好的实践分享。

是不是还有配套一些服务的RT时间的报告？

毕竟echo是一个比较轻量的调用，正确率可能比实际业务调用的正确率高

强哥
2019-01-18

 1

1.基础监控，包括硬盘，CPU，网络，内存等。
2.服务监控，包括jvm，服务端口，接入上下游服务的超时监控等。
3.业务监控，主要是监控业务的流程是否出现问题。

作者回复: 👍，这里的“超时监控”，是怎么得到的？

是单独有命令检测，还是去看业务请求的返回时间？

Ryoma
2019-01-18

 1

现在的服务中只加了一个healthCheck的接口，和MySQL中使用select判断比较类似。当
服务依赖的MySQL及Redis等第三方资源发生问题时，还是不能有效的判断

长杰
2019-01-18

 1

老师请教一个问题，在gtid模式下，对于大的ddl操作，采用在备库执行sql_log_bin=0的
方式先执行，然后再切换主备的方式在主库再执行，这种情况下，ddl操作是不记录binlog
的，不知道对gtid的计数有什么影响，是按顺序递增还是会跳过这个序列号？
另外补充一下有些dl操作是不适合这个主备切换的方式，比如drop一个列，如果先在备库
执行就可能导致主备同步异常。这个场景适合osc方式或把读请求切到主库，先在主库执…
展开

作者回复: 如果set sql_log_bin=0， 就不记录binlog，就不会给这个事务分配gtid。

你说得对，drop列是很麻烦的，尽量不做。毕竟业务代码直接无视这个列就好了。。

路平
2019-04-23



你好，这两天一路看下来，收获不少。
提个表设计相关的问题：
用一个表存储文件全路径，删除某个文件（一行记录）时使用逻辑删除。怎么设计表及其
索引（如果有）？
需要考虑： …
展开

作者回复: 如果你是要保存“历史”，可以加两个字段：版本号和状态（表示是否删除）

【编辑跟我说会有提醒~】

简海青2019-04-14 

我的mysql版本是percona 5.7.24-27

展开

简海青
2019-04-14



老师，请教您一个问题，我现在遇到一个线上MySQL无法建连的情况：
1. tcp建连后，没有把数据包上交给mysql, 抓包可以看到，只有syn 包，没有向客户端要
密码。
2. strace 建连过程可以看到，mysql已经分配线程了，但之后就没消息
3. 当然mysql 有5000+的线程数，异常之前报过too many connections, 经过一夜，连…
展开

专栏用户
2019-03-30



问个和本课不太相关的问题，自己开了general log，然后看到有很多set autocommit=0,
之后set autocommit=1的日志，查了一下，看说是关闭/开启自动提交模式，所以就有点
不懂为何会爱挨着出现这两个语句？

作者回复: 这个是框架做的吧？

我知道有些框架喜欢用

set autocommit=0, 表示开启事务

set autocommit=1，表示提交事务

虽然也对，

但比较建议用begin 和 commit

专栏用户
2019-03-30



我是初入门的开发（当然也不是DBA），遇到过一次select没问题但update有问题的情
况，当时就是两眼一摸黑。。。

展开

一大只😴
2019-01-21 

老师，我想问下，我的ECS上是8核CPU，只跑一个MySQL实例，那
innodb_thread_concurrency如果设成2倍，那就是16哈。看并发查询的数量，是不是关
注Threads_running是否超过innodb_thread_concurrency就可以了。

展开

作者回复: Thread running 是包含“锁等待”状态的线程的，

超过点也没事😄

小橙橙
2019-01-18



老师，我工作中遇到一个奇怪的问题，java客户端执行查询语句报错：ResultSet is from
UPDATE. No Data。用navicat执行相同语句，很快就查询结束，但是没有结果显示。请
问可能什么问题造成的呢？

作者回复: ？这两个不是一致的吗

意思就是你要upate的语句找不到呀

你把update改成select，先确定一下是不是能看到你要更新的数据（根据你这个描述，应该是没

有）

