
37 | 矩阵（上）：如何使用矩阵操作进行PageRank计算？
2019-03-11 黄申

程序员的数学基础课 进入课程

讲述：黄申
时长 09:44 大小 8.92M

你好，我是黄申。今天我来说说矩阵。

前面我说过，矩阵由多个长度相等的向量组成，其中的每列或者每行就是一个向量。从数据

结构的角度来看，我们可以把向量看作一维数组，把矩阵看作二维数组。

具有了二维数组的特性，矩阵就可以表达二元关系了，例如图中结点的邻接关系，或者是用

户对物品的评分关系。而通过矩阵上的各种运算操作，我们就可以挖掘这些二元关系，在不

同的应用场景下达到不同的目的。今天我就从图的邻接矩阵出发，展示如何使用矩阵计算来

实现 PageRank 算法。

回顾 PageRank 链接分析算法





 下载APP 

在讲马尔科夫模型的时候，我已经介绍了 PageRank 链接分析算法。所以，在展示这个算

法和矩阵操作的关系之前，我们快速回顾一下它的核心思想。

PageRank 是基于马尔科夫链的。它假设了一个“随机冲浪者”模型，冲浪者从某张网页

出发，根据 Web 图中的链接关系随机访问。在每个步骤中，冲浪者都会从当前网页的链出

网页中，随机选取一张作为下一步访问的目标。此外，PageRank 还引入了随机的跳转操

作，这意味着冲浪者不是按 Web 图的拓扑结构走下去，只是随机挑选了一张网页进行跳

转。

基于之前的假设，PageRank 的公式定义如下：

其中， 表示第 张网页， 是 的入链接集合， 是 集合中的第 张网页。

 表示网页 的 PageRank 得分， 表示网页 的出链接数量， 就表示

从网页 跳转到 的概率。 是用户不进行随机跳转的概率， 表示所有网页的数量。

PageRank 的计算是采样迭代法实现的：一开始所有网页结点的初始 PageRank 值都可以

设置为某个相同的数，例如 1，然后我们通过上面这个公式，得到每个结点新的 PageRank

值。每当一张网页的 PageRank 发生了改变，它也会影响它的出链接所指向的网页，因此

我们可以再次使用这个公式，循环地修正每个网页结点的值。由于这是一个马尔科夫过程，

所以我们能从理论上证明，所有网页的 PageRank 最终会达到一个稳定的数值。整个证明

过程很复杂，这里我们只需要知道这个迭代计算的过程就行了。

简化 PageRank 公式

那么，这个计算公式和矩阵操作又有什么联系呢？为了把问题简化，我们暂时不考虑随机跳

转的情况，而只考虑用户按照网页间链接进行随机冲浪。那么 PageRank 的公式就简化

为：

pi i Mi pi pj Mi j

PR()pj
pj L()pj

pj
1

L()pj

pj pi α N

这个公式只包含了原公式中的 部分。我们再来对比看看矩阵点乘的计算公式。

以上两个公式在形式上是基本一致的。因此，我们可以把 的计算，分解为两个矩

阵的点乘。一个矩阵是当前每张网页的 PageRank 得分，另一个矩阵就是邻接矩阵。所谓

邻接矩阵，其实就是表示图结点相邻关系的矩阵。

假设 是矩阵中第 行、第 列的元素，那么我们就可以使用 表示从结点 到结点

 的连接，放到 PageRank 的应用场景， 就表示网页 到网页 的链接。最原始的

邻接矩阵所包含的元素是 0 或 1，0 表示没有链接，而 1 表示有链接。

考虑到 PageRank 里乘积是 ，我们可以对邻接矩阵的每一行进行归一化，用原始的值

（0 或 1）除以 ，而 表示有某张网页 的出链接，正好是矩阵中 这一行的

和。所以，我们可以对原始的邻接矩阵，进行基于行的归一化，这样就能得到每个元素为

 的矩阵，其中 表示矩阵的第 行。注意，这里的归一化是指让所有元素加起来的和

为 1。

为了方便你理解，我用下面这个拓扑图作为例子给你详细解释。

Σ
PR()pj

)L()pj

Σ
PR()pj

)L()pj

xi,j i j xi,j i

j xi,j pi pj

1
L()pj

L()pj
L()pj

pj pj

1
L()pj

j j

基于上面这个图，原始矩阵为：

其中第 i 行、第 j 列的元素值表示从结点 i 到 j 是不是存在链接。如果是，那么这个值为

1；否则就为 0。

按照每一行的和，分别对每一行进行归一化之后的矩阵就变为：

有了上述这个邻接矩阵，我们就可以开始最简单的 PageRank 计算。PageRank 的计算是

采样迭代法实现的。这里我把初始值都设为 1，并把第一次计算的结果列在这里。

好了，我们已经成功迈出了第一步，但是还需要考虑随机跳转的可能性。

考虑随机跳转

经过上面的步骤，我们已经求得 部分。不过，PageRank 引入了随机跳转的机

制。这一部分其实也是可以通过矩阵的点乘来实现的。我们把 部分用 表示，

Σ
PR()pj

)L()pj

Σ
PR()pj

)L()pj

A

那么完整的 PageRank 公式就可以表示为：

于是，我们可以把上述公式分解为如下两个矩阵的点乘：

我们仍然使用前面的例子，来看看经过随机跳转之后，PageRank 值变成了多少。这里

取 0.9。

我们前面提到，PageRank 算法需要迭代式计算。为了避免计算后的数值越来越大甚至溢

出，我们可以进行归一化处理，保证所有结点的数值之和为 1。经过这个处理之后，我们得

到第一轮的 PageRank 数值，也就是下面这个行向量：

[0.37027027 0.24864865 0.37027027 0.00540541 0.00540541]

接下来，我们只需要再重复之前的步骤，直到每个结点的值趋于稳定就可以了。

使用 Python 进行实现

P = αA +R()Pi

1−α

N

α

说到这里，我已经把如何把整个 PageRank 的计算，转换成多个矩阵的点乘这个过程讲完

了。这样一来，我们就可以利用 Python 等科学计算语言提供的库，来完成基于

PageRank 的链接分析。为了展示具体的代码，我以之前的拓扑图为例，给你详细讲述每

一步。

首先，我们要进行一些初始化工作，包括设置结点数量、确定随机跳转概率的 、代表拓

扑图的邻接矩阵以及存放所有结点 PageRank 值的数组。下面是一段示例代码，在代码中

我提供了注释供你参考。

之后，我们就能采用迭代法来计算 PageRank 值。一般我们通过比较每个结点最近两次计

算的值是否足够接近，来确定数值是不是已经稳定，以及是不是需要结束迭代。这里为简便

起见，我使用了固定次数的循环来实现。如果你的拓扑图比较复杂，需要更多次迭代，我把

示例代码和注释列在这里。

α

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import numpy as np

设置确定随机跳转概率的 alpha、网页结点数

alpha = 0.9
N = 5

初始化随机跳转概率的矩阵

jump = np.full([2,1], [[alpha], [1-alpha]], dtype=float)

邻接矩阵的构建

adj = np.full([N,N], [[0,0,1,0,0],[1,0,1,0,0],[1,0,0,0,0],[0,0,0,0,0],[0,1,0,0,0]], dtyp

对邻接矩阵进行归一化

row_sums = adj.sum(axis=1) # 对每一行求和

row_sums[row_sums == 0] = 0.1 # 防止由于分母出现 0 而导致的 Nan
adj = adj / row_sums[:, np.newaxis] # 除以每行之和的归一化

初始的 PageRank 值，通常是设置所有值为 1.0
pr = np.full([1,N], 1, dtype=float)

复制代码

1

2

3

4

5

PageRank 算法本身是采样迭代方式进行的，当最终的取值趋于稳定后结束。

for i in range(0, 20):

 # 进行点乘，计算Σ(PR(pj)/L(pj))
 pr = np.dot(pr, adj)

复制代码

如果成功运行了上述两段代码，你就能看到每个结点最终获得的 PageRank 分数是多少。

Python 中还有一些很不错的库，提供了直接构建拓扑图和计算 PageRank 的功能，例如

networkx（https://networkx.github.io/）。你可以尝试使用这种库，构建样例拓扑图并

计算每个结点的 PageRank 得分，最后和上述代码所计算的 PageRank 得分进行比较，验

证一下上述代码的结果是不是合理。

总结

我们可以把向量看作一维数组，把矩阵看作二维数组。矩阵的点乘，是由若干个向量的点乘

组成的，所以我们可以通过矩阵的点乘操作，挖掘多组向量两两之间的关系。

今天我们讲了矩阵的点乘操作在 PageRank 算法中的应用。通过表示网页的邻接二元关

系，我们可以使用矩阵来计算 PageRank 的得分。在这个应用场景下，矩阵点乘体现了多

个马尔科夫过程中的状态转移。

矩阵点乘和其他运算操作，还可以运用在很多其他的领域。例如，我在上一节介绍 K 均值

聚类算法时，就提到了需要计算某个数据点向量、其他数据点向量之间的距离或者相似度，

以及使用多个数据点向量的平均值来获得质心点的向量，这些都可以通过矩阵操作来完成。

另外，在协同过滤的推荐中，我们可以使用矩阵点乘，来实现多个用户或者物品之间的相似

程度，以及聚集后的相似程度所导致的最终推荐结果。下一节，我会使用矩阵来表示用户和

物品的二元关系，并通过矩阵来计算协同过滤的结果。

6

7

8

9

10

11

12

13

14

15

16

17

18

 # 转置保存Σ(PR(pj)/L(pj)) 结果的矩阵，并增加长度为 N 的列向量，其中每个元素的值为 1/N，便

 pr_jump = np.full([N, 2], [[0, 1/N]])
 pr_jump[:,:-1] = pr.transpose()

 # 进行点乘，计算α(Σ(PR(pj)/L(pj))) + (1-α)/N)
 pr = np.dot(pr_jump, jump)

 # 归一化 PageRank 得分

 pr = pr.transpose()
 pr = pr / pr.sum()

 print("round", i + 1, pr)

https://networkx.github.io/

思考题

在介绍 PageRank 算法时，我提到了它的计算是一个迭代的过程。这一节我使用了固定次

数的循环来实现这一点。请尝试使用计算前后两次 PageRank 数值的差，来判断是否需要

结束迭代。（提示：你可以使用矩阵元素对应的减法，以及在第 3 讲和加餐 2 中提到的相

对误差。）

欢迎留言和我分享，也欢迎你在留言区写下今天的学习笔记。你可以点击“请朋友读”，把

今天的内容分享给你的好友，和他一起精进。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 36 | 文本聚类：如何过滤冗余的新闻？

下一篇 38 | 矩阵（下）：如何使用矩阵操作进行协同过滤推荐？

拉欧
2019-03-11

 1

精选留言 (3)  写留言

一直想搞明白pagerank的计算流程，这节课真值

展开

qinggeouy...
2019-03-23



思考题
https://github.com/qinggeouye/GeekTime/blob/master/MathematicProgrammer/3

 # 计算前后两次的 PageRank 数值的误差，判断是否需要结束迭代
 delta = list(map(abs, (pr/pr_tmp))) # pr_tmp 是前一次的值 …
展开

作者回复: 代码实现的很简洁，赞一个

晨曦后浪
2019-03-11



使用networkx中的pagerank函数,计算出来的数值和直接基于矩阵计算出来的数值有一点
点差别,但相对大小还是一样的

import networkx as nx
import matplotlib.pyplot as plt …
展开

作者回复: 赞一下实践精神，确实我也发现了这点，估计是具体实现上有所区别。

