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你好，我是黄申。

上一节我们已经解释了最小二乘法的核心思想和具体推导过程。今天我们就用实际的数据操

练一下，这样你的印象就会更加深刻。我会使用几个具体的例子，演示一下如何使用最小二

乘法的结论，通过观测到的自变量和因变量值，来推算系数，并使用这个系数来进行新的预

测。

基于最小二乘法的求解

假想我们手头上有一个数据集，里面有 3 条数据记录。每条数据记录有 2 维特征，也就是

2 个自变量，和 1 个因变量。
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如果我们假设这些自变量和因变量都是线性的关系，那么我们就可以使用如下这种线性方

程，来表示数据集中的样本：

 

 

也就是说，我们通过观察数据已知了自变量 、  和因变量 _y_ 的值，而要求解的是 

和  这两个系数。如果我们能求出  和 ，那么在处理新数据的时候，就能根据新的自

变量  和  的取值，来预测  的值。

可是我们说过，由实际项目中的数据集所构成的这类方程组，在绝大多数情况下，都没有精

确解。所以这个时候我们没法使用之前介绍的高斯消元法，而是要考虑最小二乘法。根据上

一节的结论，我们知道对于系数矩阵 ，有：

既然有了这个公式，要求  就不难了，让我们从最基本的几个矩阵开始。
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矩阵  的求解稍微繁琐一点。逆矩阵的求法我还没讲解过，之前我们说过线性方

程组之中，高斯消元和回代的过程，就是把系数矩阵变为单位矩阵的过程。我们可以利用这

点，来求解 。我们把原始的系数矩阵  列在左边，然后把单位矩阵列在右边，像 

 这种形式，

其中  表示单位矩阵。
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然后我们对左侧的矩阵进行高斯消元和回代，把左边矩阵 X 变为单位矩阵。同时，我们也

把这个相应的矩阵操作运用在右侧。这样当左侧变为单位矩阵之后，那么右侧的矩阵就是原

始矩阵  的逆矩阵 ，具体证明如下：

 

 

 

好了，给定下面的  矩阵之后，我们使用上述方法来求  。我把具体的推导

过程列在了这里。

求出  之后，我们就可以使用  来计算矩阵 B。
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最终，我们求出系数矩阵为 ，也就是说 , 。实际上，这两个数值是

精确解。我们用高斯消元也是能获得同样结果的。接下来，让我稍微修改一下  值，让这

个方程组没有精确解。

 

 

你可以尝试高斯消元法对这个方程组求解，你会发现只要两个方程就能求出解，但是无论是

哪两个方程求出的解，都无法满足第三个方程。

那么通过最小二乘法，我们能不能求导一个近似解，保证 _ε_ 足够小呢？下面，让我们遵循

之前求解  的过程，来计算 。
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计算完毕之后，你会发现两个系数的值分别变为 。由于这不是

精确解，所以让我们看看有了这系数矩阵  之后，原有的观测数据中，真实值和预测值的

差别。

首先我们通过系数矩阵  和自变量矩阵  计算出来预测值。

然后是样本数据中的观测值。这里我们假设这些值是真实值。
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根据误差  的定义，我们可以得到：

说到这里，你可能会怀疑，通过最小二乘法所求得的系数  和 ，

是不是能让  最小呢？这里，我们随机的修改一下这两个系数，变为  和 

，然后我们再次计算预测的  值和 。

很明显，0.064 是大于之前的 0.0158。

这两次计算预测值 _y_ 的过程，其实也是我们使用线性回归，对新的数据进行预测的过

程。简短地总结一下，线性回归模型根据大量的训练样本，推算出系数矩阵 ，然后根据

新数据的自变量  向量或者矩阵，计算出因变量的值，作为新数据的预测。

Python 代码实现

这一部分，我们使用 Python 的代码，来验证一下之前的推算结果是不是正确，并看看最小

二乘法和 Python sklearn 库中的线性回归，这两种结果的对比。
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首先，我们使用 Python numpy 库中的矩阵操作来实现最小二乘法。主要的函数操作涉及

矩阵的转置、点乘和求逆。具体的代码和注释我列在了下方。

通过上述代码，你可以看到每一步的结果，以及最终的矩阵 。你可以把输出结果和之前

手动推算的结果进行对比，看看是不是一致。

除此之外，我们还可把最小二乘法的线性拟合结果和 sklearn 库中的

LinearRegression().fit() 函数的结果相比较，具体的代码和注释我也放在了这里。

其中，test.csv 文件的内容我也列在了这里。
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from numpy import *
 
x = mat([[0,1],[1,-1],[2,8]])
y = mat([[1.4],[-0.48],[13.2]])
 
# 分别求出矩阵 X'、X'X、(X'X) 的逆

# 注意，这里的 I 表示逆矩阵而不是单位矩阵

print("X 矩阵的转置 X'：\n", x.transpose())
print("\nX'点乘 X：\n", x.transpose().dot(x))
print("\nX'X 矩阵的逆\n", (x.transpose().dot(x)).I)
 
print("\nX'X 矩阵的逆点乘 X'\n", (x.transpose().dot(x)).I.dot(x.transpose()))
print("\n 系数矩阵 B：\n", (x.transpose().dot(x)).I.dot(x.transpose()).dot(y))
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import pandas as pd
from sklearn.linear_model import LinearRegression
 
df = pd.read_csv("/Users/shenhuang/Data/test.csv")
df_features = df.drop(['y'], axis=1)     #Dataframe 中除了最后一列，其余列都是特征，或者说自

df_targets = df['y']                     #Dataframe 最后一列是目标变量，或者说因变量

 
print(df_features, df_targets)
regression = LinearRegression().fit(df_features, df_targets)        # 使用特征和目标数据，

print(regression.score(df_features, df_targets))        # 拟合程度的好坏

print(regression.intercept_)
print(regression.coef_)            # 各个特征所对应的系数

复制代码



 

 

 

这样写是为了方便我们使用 pandas 读取 csv 文件并加载为 dataframe。

在最终的结果中，1.0 表示拟合程度非常好，而 -0.014545454545452863 表示一个截

距，[0.94909091 1.41454545] 表示系数  和  的值。这个结果和我们最小二乘法的结

果有所差别，主要原因是 LinearRegression().fit() 默认考虑了有线性函数存在截距的情

况。那么我们使用最小二乘法是不是也可以考虑有截距的情况呢？答案是肯定的，不过我们

首先要略微修改一下方程组和矩阵 。如果我们假设有截距存在，那么线性回归方程就要

改写为：

其中，  表示截距，而我们这里的方程组用例就要改写为：

 

 

而矩阵  要改写为：

然后我们再执行下面这段代码。
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你就会得到：

这个结果和 LinearRegression().fit() 的结果就一致了。

需要注意的是，使用线性回归的时候，我们都有一个前提假设，那就是数据的自变量和因变

量之间现线性关系。如果不是线性关系，那么使用线性模型来拟合的效果一定不好。比如，

之前在解释欠拟合的时候，我用过下面这个例子。
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from numpy import *
 
x = mat([[1,0,1],[1,1,-1],[1,2,8]])
y = mat([[1.4],[-0.48],[13.2]])
 
print("\n 系数矩阵 B：\n", (x.transpose().dot(x)).I.dot(x.transpose()).dot(y))
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 系数矩阵 B：
     [[-0.01454545]
     [ 0.94909091]
     [ 1.41454545]]
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上面这张图的数据分布并没有表达线性关系，所以我们需要对原始的数据进行非线性的变

换，或者是使用非线性的模型来拟合。

那么，我们如何判断一个数据集是不是能用线性模型表示呢？在线性回归中，我们可以使用

决定系数 R2。这个统计指标使用了回归平方和与总平方和之比，是反映模型拟合度的重要

指标。它的取值在 0 到 1 之间，越接近于 1 表示拟合的程度越好、数据分布越接近线性关

系。随着自变量个数的增加，R2 将不断增大，因此我们还需要考虑方程所包含的自变量个

数对 R2 的影响，这个时候可使用校正的决定系数 Rc2。所以，在使用各种科学计算库进行

线性回归时，你需要关注 R2 或者 Rc2，来看看是不是一个好的线性拟合。在之前的代码实

践中，我们提到的 regression.score 函数，其实就是返回了线性回归的 R2。

总结



今天我们使用了具体的案例来推导最小二乘法的计算过程，并用 Python 代码进行了验证。

通过最近 3 节的讲解，相信你对线性方程组求精确解、求近似解、以及如何在线性回归中

运用这些方法，有了更加深入的理解。

实际上，从广义上来说，最小二乘法不仅可以用于线性回归，还可以用于非线性的回归。其

主要思想还是要确保误差ε最小，但是由于现在的函数是非线性的，所以不能使用求多元方

程求解的办法来得到参数估计值，而需要采用迭代的优化算法来求解，比如梯度下降法、随

机梯度下降法和牛顿法。

思考题

我这里给出一个新的方程组，请通过最小二乘法推算出系数的近似解，并使用你熟悉的语言

进行验证。

 

 

 

欢迎留言和我分享，也欢迎你在留言区写下今天的学习笔记。你可以点击“请朋友读”，把

今天的内容分享给你的好友，和他一起精进。

+ ⋅ 3 + ⋅ (−7) = −7.5b1 b2 b3

⋅ 2 + ⋅ 5 + ⋅ 4 = 5.2b1 b2 b3

⋅ (−3) + ⋅ (−7) + ⋅ (−2) = −7.5b1 b2 b3

⋅ 1 + ⋅ 4 + ⋅ (−12) = −15b1 b2 b3
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上一篇 40 | 线性回归（中）：如何使用最小二乘法进行直线拟合？

下一篇 42 | PCA主成分分析（上）：如何利用协方差矩阵来降维？

余泽锋
2019-04-24



import numpy as np 
X = np.mat([[1, 3, -7], [2, 5, 4], [-3, -7, -2], [1, 4, -12]]) 
Y = np.mat([[-7.5], [5.2], [-7.5], [-15]]) 
B1 = X.transpose().dot(X).I 
B2 = B1.dot(X.transpose()) …
展开

叮当猫
2019-04-17



文中有提到，如何判断一个数据集是否可以用线性模型来表示，可以使用决定系数R2，随
着自变量个数不断增加，R2将不断增大，这时需要用Rc2，而其中R2就是
regression.score，那请问Rc2是库里面的什么呢？

作者回复: 这是个好问题，我查了sklearn.linear_mode好像不提供这个数据。 

 

你可以尝试一下statsmodels.api.OLS这个包，里面应该可以返回rsquared_adj

qinggeouy...
2019-03-30
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""" 
思考题同理 
""" 
x = np.mat([[1, 3, -7], [2, 5, 4], [-3, -7, -2], [1, 4, -12]]) 
y = np.mat([[-7.5], [5.2], [-7.5], [-15]]) …

精选留言 (5)  写留言



展开

Cest la ...
2019-03-25



老师好! 后面可以来一节PLS偏最小二乘的原理讲解和应用么

作者回复: 可以考虑到后面加餐的时候来一篇

Joe
2019-03-21



回答与疑问： 
1. 非线性关系的数据拟合，可以先将自变量转为非线性。如转化为多项式（sklearn的
PolynomialFeatures）。再用线性回归的方法去拟合。 
2. 请问老师对于求解逆矩阵有没有什么高效的方法？ 
附上以前写的polyfit方法，请老师指点。谢谢 …
展开

作者回复: 写得很好，至于逆矩阵更好的求法，我要查一下资料看看有无更优的解。


