
49 | 推荐系统（上）：如何实现基于相似度的协同过滤？
2019-04-08 黄申

程序员的数学基础课 进入课程

讲述：黄申
时长 08:02 大小 7.37M

你好，我是黄申。

个性化推荐这种技术在各大互联网站点已经普遍使用了，系统会根据用户的使用习惯，主动

提出一些建议，帮助他们发现一些可能感兴趣的电影、书籍或者是商品等等。在这方面，最

经典的案例应该是美国的亚马逊电子商务网站，它是全球最大的 B2C 电商网站之一。在公

司创立之初，最为出名的就是其丰富的图书品类，以及相应的推荐技术。亚马逊的推荐销售

占比可以达到整体销售的 30% 左右。可见，对于公司来说，推荐系统也是销售的绝好机

会。因此，接下来的两节，我会使用一个经典的数据集，带你进行推荐系统核心模块的设计

和实现。

MovieLens 数据集





 下载APP 

在开始之前，我们先来认识一个知名的数据集，MovieLens。你可以在它的主页查看详细

的信息。这个数据集最核心的内容是多位用户对不同电影的评分，此外，它也包括了一些电

影和用户的属性信息，便于我们研究推荐结果是不是合理。因此，这个数据集经常用来做推

荐系统、或者其他机器学习算法的测试集。

时至今日，这个数据集已经延伸出几个不同的版本，有不同的数据规模和更新日期。我这里

使用的是一个最新的小规模数据集，包含了 600 位用户对于 9000 部电影的约 10 万条评

分，最后更新于 2018 年 9 月。你可以在这里下载：

http://files.grouplens.org/datasets/movielens/ml-latest-small.zip。

解压了这个 zip 压缩包之后，你会看到 readme 文件和四个 csv 文件（ratings、movies、

links 和 tags）。其中最重要的是 ratings，它包含了 10 万条评分，每条记录有 4 个字

段，包括 userId、movieId、rating、timestamp。userId 表示每位用户的 id，movieId

是每部电影的 ID，

rating 是这位用户对这部电影的评分，取值为 0-5 分。timestamp 是时间戳。而 movies

包含了电影的主要属性信息，title 和 genres 分别表示电影的标题和类型，一部电影可以属

于多种类型。links 和 tags 则包含了电影的其他属性信息。我们的实验主要使用 ratings 和

movies 里的数据。

设计的整体思路

有了用于实验的数据，接下来就要开始考虑如何设计这个推荐系统。我在第 38 期讲解了什

么是协同过滤推荐算法、基于用户的协同过滤和基于物品的协同过滤。这一节我们就以协同

过滤为基础，分别实现基于用户和物品的过滤。

根据协同过滤算法的核心思想，整个系统可以分为三个大的步骤。

第一步，用户评分的标准化。因为有些用户的打分比较宽松，而有些用户打分则比较挑剔。

所以，我们需要使用标准化或者归一化，让不同用户的打分具有可比性，这里我会使用z 分

数标准化。

第二步，衡量和其他用户或者物品之间的相似度。我们这里的物品就是电影。在基于用户的

过滤中，我们要找到相似的用户。在基于物品的过滤中，我们要找到相似的电影。我这里列

出计算用户之间相似度 和物品之间相似度 的公式。之前我们讲过，这些都可以通过

矩阵操作来实现。

us is

http://files.grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip

我们以基于用户的过滤为例。假设我们使用夹角余弦来衡量相似度，那么我们就可以采用用

户评分的矩阵点乘自身的转置来计算余弦夹角。用户评分的矩阵 中，每一行是某位用户

的行向量，每个分量表示这位用户对某部电影的打分。而矩阵 的每一列是某个用户的

列向量，每个分量表示用户对某部电影的打分。

我们假设 的结果为矩阵 ，那么 就表示用户 和用户 这两者喜好度向量的点

乘结果，它就是夹角余弦公式中的分子。如果 等于 ，那么这个计算值也是夹角余弦公式

分母的一部分。从矩阵的角度来看， 中任何一个元素都可能用于夹角余弦公式的分子，

而对角线上的值会用于夹角余弦公式的分母。因此，我们可以利用 来计算任何两个用户

之间的相似度。

之前我们使用了一个示例讲解过对于基于用户的协同过滤，如何计算矩阵 ，以及如何使

用 来计算余弦夹角，我这里列出来给你参考。

X

X ′

XX ′ Y yi,j i j

i j

Y

Y

Y

Y

第三步，根据相似的用户或物品，给出预测的得分 p。

之前我们也解释过如何使用矩阵操作来实现这一步。还是以基于用户的过滤为例。假设通过

第二步，我们已经得到用户相似度矩阵 ， 和评分矩阵 的点乘结果为矩阵

。沿用前面的示例，结果就是下面这样。

US US X

USP

然后对 按行求和，获得矩阵 。

最终，我们使用 和 的元素对应除法，就可以求得任意用户对任意电影的评分

矩阵 。

有了这个设计的思路，下面我们就可以使用 Python 进行实践了。

核心 Python 代码

USP USR

USP USR

P

在实现上述设计的三个主要步骤之前，我们还需要把解压后的 csv 文件加载到数组，并转

为矩阵。下面我列出了主要的步骤和注释。需要注意的是，由于这个数据集中的用户和电影

ID 都是从 1 开始而不是从 0 开始，所以需要减去 1，才能和 Python 数组中的索引一致。

加载了数据之后，第一步就是对矩阵中的数据，以行为维度，进行标准化。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

import pandas as pd
from numpy import *

加载用户对电影的评分数据

df = pd.read_csv("/Users/shenhuang/Data/ml-latest-small/ratings.csv")

获取用户的数量和电影的数量

user_num = df["userId"].max()
movie_num = df["movieId"].max()

构造用户对电影的二元关系矩阵

user_rating = [[0.0] * movie_num for i in range(user_num)]

i = 0
for index, row in df.iterrows(): # 获取每行的 index、row

 # 由于用户和电影的 ID 都是从 1 开始，为了和 Python 的索引一致，减去 1
 userId = int(row["userId"]) - 1
 movieId = int(row["movieId"]) - 1

 # 设置用户对电影的评分

 user_rating[userId][movieId] = row["rating"]

 # 显示进度

 i += 1
 if i % 10000 == 0:
 print(i)

把二维数组转化为矩阵

x = mat(user_rating)
print(x)

复制代码

第二步是计算表示用户之间相似度的矩阵 US。其中，y 变量保存了矩阵 X 左乘转置矩阵

X’的结果。而利用 y 变量中的元素，我们很容易就可以得到不同向量之间的夹角余弦。

在最后一步中，我们就可以进行基于用户的协同过滤推荐了。需要注意的是，我们还需要使

用元素对应的除法来实现归一化。

1

2

3

4

5

6

7

标准化每位用户的评分数据

from sklearn.preprocessing import scale

对每一行的数据，进行标准化

x_s = scale(x, with_mean=True, with_std=True, axis=1)
print(" 标准化后的矩阵：", x_s)

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

获取 XX'
y = x_s.dot(x_s.transpose())
print("XX'的结果是'：", y)

获得用户相似度矩阵 US
us = [[0.0] * user_num for i in range(user_num)]
for userId1 in range(user_num):
 for userId2 in range(user_num):
 # 通过矩阵 Y 中的元素，计算夹角余弦

 us[userId1][userId2] = y[userId1][userId2] / sqrt((y[userId1][userId1] * y[userI

复制代码

1

2

3

4

5

6

7

8

9

10

11

通过用户之间的相似度，计算 USP 矩阵

usp = mat(us).dot(x_s)

求用于归一化的分母

usr = [0.0] * user_num
for userId in range(user_num):
 usr[userId] = sum(us[userId])

进行元素对应的除法，完成归一化

复制代码

我们可以来看一个展示推荐效果的例子。在原始的评分数据中，我们看到 ID 为 1 的用户并

没有对 ID 为 2 的电影进行评分。而在最终的矩阵 P 中，我们可以看系统对用户 1 给电影

2 的评分做出了较高的预测，换句话说，系统认为用户 1 很可能会喜好电影 2。进一步研究

电影的标题和类型，我们会发现用户 1 对《玩具总动员》（1995 年）这类冒险类和动作类

的题材更感兴趣，所以推荐电影 2《勇敢者的游戏》（1995 年）也是合理的。

总结

在今天的内容中，我通过一个常用的实验数据，设计并实现了最简单的基于用户的协同过

滤。我们最关心的是这个数据中，用户对电影的评分。有了这种二元关系，我们就能构建矩

阵，并通过矩阵的操作来发现用户或物品之间的相似度，并进行基于用户或者物品的协同过

滤。对于最终的计算结果，你可以尝试分析针对不同用户的推荐，看看协同过滤推荐的效果

是不是合理。

在你分析推荐结果的时候，可能会参考 movie.csv 这个文件中所描述的电影类型。这些电

影类型都是一开始人工标注好的。那么，有没有可能在没有这种标注数据的情况下，在一定

程度上自动分析哪些电影属于同一个或者近似的类型呢？如果可以，有没有可能在这种自动

划分电影类型的基础之上，给出电影的推荐呢？下一节，我会通过 SVD 奇异值分解，来进

行这个方向的尝试。

思考题

今天我使用 Python 代码实现了基于用户的协同过滤。类似地，我们也可以采用矩阵操作来

实现基于物品的协同过滤，请使用你擅长的语言来实现试试。

欢迎留言和我分享，也欢迎你在留言区写下今天的学习笔记。你可以点击“请朋友读”，把

今天的内容分享给你的好友，和他一起精进。

12 p = divide(usp, mat(usr).transpose()

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 48 | 搜索引擎（下）：如何通过查询的分类，让电商平台的搜索结果更相关？

下一篇 50 | 推荐系统（下）：如何通过SVD分析用户和物品的矩阵？

qinggeouy...
2019-04-21

 2

优化了一下，运行时间减少一半以上
#
https://github.com/qinggeouye/GeekTime/blob/master/MathematicProgrammer/4

import numpy as np …
展开

作者回复: 感谢代码的优化🙏

精选留言 (3)  写留言

CarreyWan...
2019-04-08

 1

您好，对于上面的代码有三个问题
第一：
设置用户对电影的评分
 i += 1
 if i % 10000 == 0: …
展开

作者回复: 第1个只是为了显示加载进度，因为在我的机器上有点慢。

第2个是很好的点，可以让分母加一个很小的值避免分母为0

第3个确实漏了一个括号，回头补上

感谢看得这么仔细，帮我找出了2个笔误 🤝

冄～
2019-04-28



老师好，感觉按照公式来看，USR作为分母，第一行应该是US的第一行元素求和
（1+0.482+0.671＋0＝2.153），而不是USP的第一行求和
（0.500+0.790+0.496=1.786）。否则会像文中一样，p矩阵每行求和为1也是因为USR这
样计算导致的。代码部分usr[userId] = sum(us[userId])应该是对的。不知我理解得对不
对？

展开

作者回复: 我回头仔细看一下，可能是个笔误

