






•

•



•

•

•





•

•

•

numpy PIL





import numpy as np
from PIL import Image

class ImageObject:
def __init__(self, path = ""):

self.path = path
try:

self.data = np.array(Image.open(path))
except:

self.data = None

def __add__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data + other.data, 255)
except:

image.data = self.data
return image

def __sub__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data - other.data, 255)
except:

image.data = self.data
return image

def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")



import numpy as np
from PIL import Image

class ImageObject:
def __init__(self, path = ""):

self.path = path
try:

self.data = np.array(Image.open(path))
except:

self.data = None

def __add__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data + other.data, 255)
except:

image.data = self.data
return image

def __sub__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data - other.data, 255)
except:

image.data = self.data
return image

def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")



import numpy as np
from PIL import Image

class ImageObject:
def __init__(self, path = ""):

self.path = path
try:

self.data = np.array(Image.open(path))
except:

self.data = None

def __add__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data + other.data, 255)
except:

image.data = self.data
return image

def __sub__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data - other.data, 255)
except:

image.data = self.data
return image



import numpy as np
from PIL import Image

class ImageObject:
def __init__(self, path = ""):

self.path = path
try:

self.data = np.array(Image.open(path))
except:

self.data = None

def __add__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data + other.data, 255)
except:

image.data = self.data
return image

def __sub__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data - other.data, 255)
except:

image.data = self.data
return image



import numpy as np
from PIL import Image

class ImageObject:
def __init__(self, path = ""):

self.path = path
try:

self.data = np.array(Image.open(path))
except:

self.data = None

def __add__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data + other.data, 255)
except:

image.data = self.data
return image

def __sub__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data - other.data, 255)
except:

image.data = self.data
return image



import numpy as np
from PIL import Image

class ImageObject:
def __init__(self, path = ""):

self.path = path
try:

self.data = np.array(Image.open(path))
except:

self.data = None

def __add__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data + other.data, 255)
except:

image.data = self.data
return image

def __sub__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data - other.data, 255)
except:

image.data = self.data
return image



import numpy as np
from PIL import Image

class ImageObject:
def __init__(self, path = ""):

self.path = path
try:

self.data = np.array(Image.open(path))
except:

self.data = None

def __add__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data + other.data, 255)
except:

image.data = self.data
return image

def __sub__(self, other):
image = ImageObject()
try:

image.data = np.mod(self.data - other.data, 255)
except:

image.data = self.data
return image



def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")



def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")



def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")



def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")



def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")



def __mul__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data * factor, 255)
except:

image.data = self.data
return image

def __truediv__(self, factor):
image = ImageObject()
try:

image.data = np.mod(self.data // factor, 255)
except:

image.data = self.data
return image

def saveImage(self, path):
try:

im = Image.fromarray(self.data)
im.save(path)
return True

except:
return False

a = ImageObject("earth.jpg")
b = ImageObject("gray.png")
(a + b).saveImage("result_add.png")
(a - b).saveImage("result_sub.png")
(a * 2).saveImage("result_mul.png")
(a / 2).saveImage("result_div.png")






