










•

•

•

.py



module_var = 1
class module_class:

mc_classattr = 1
def __init__(self, mc_instattr = 1):

self.mc_instattr = mc_instattr
def mc_func(self):

return "Method with a count of {}".format(self.mc_classattr)

def module_func():
print("Module Function")

print("Module Statement")



class module_class:
mc_classattr = 1
def __init__(self, mc_instattr = 1):

self.mc_instattr = mc_instattr
def mc_func(self):

return "Method with a count of {}".format(self.mc_classattr)
def module_func():

print("Module Function")

if __name__ == "__main__":
module_var = 1 
print("Module Statement")



•

•

•



"这是模块描述"

class module_class:

mc_classattr = 1

def __init__(self, mc_instattr = 1):

self.mc_instattr = mc_instattr

def mc_func(self):

return "Method with a count of {}".format(self.mc_classattr)

if __name__ == "__main__":

import sys

mc = module_class(sys.argv[1])

print("Module Statement")



dir()

import m

print(dir(m))

['__builtins__', '__cached__', '__doc__', '__file__', 

'__loader__', '__name__', '__package__', '__spec__', 

'module_class']





•

•

•

•



•

•

•

Regular Packages



pkg

pkg1 pkg2
__init__.py

__init__.py__init__.pym1.py m2.py m1.py



PyCharm



'pkg1 -> m1'
def mecho(any):

print("pkg1-m1: {}".format(any))

'pkg1 -> m2'
def mecho(any):

print("pkg1-m2: {}".format(any))

'pkg2 -> m1'
def mecho(any):

print("pkg2-m1: {}".format(any))

print("[INFO]: 导入pkg模块")

print("[INFO]: 导入pkg1模块")

print("[INFO]: 导入pkg2模块")



import pkg.pkg1.m1

import pkg.pkg1.m2

import pkg.pkg2.m1

pkg.pkg1.m1.mecho(123)

pkg.pkg1.m2.mecho("Python123")

pkg.pkg2.m1.mecho(["Python",123])
[INFO]: 导入pkg模块
[INFO]: 导入pkg1模块
[INFO]: 导入pkg2模块
pkg1-m1: 123
pkg1-m2: Python123
pkg2-m1: ['Python', 123] 每个包仅被导入一次，且包导入按照层次结构进行



import pkg.pkg1

pkg.pkg1.m1.mecho(123)

pkg.pkg1.m2.mecho("Python123")

Traceback (most recent call last):

File "...", line 5, in <module>

pkg.pkg1.m1.mecho(123)

AttributeError: module 'pkg.pkg1' has no attribute 'm1'
直接导入包不行，需要进行到模块层次



from pkg.pkg1import m1,m2

m1.mecho(123)

m2.mecho("Python123")

[INFO]: 导入pkg模块

[INFO]: 导入pkg1模块

pkg1-m1: 123

pkg1-m2: Python123
from..import直接导入具体模块，可以简化调用时命名空间表达



from pkg.pkg1import *

m1.mecho(123)

m2.mecho("Python123")

Traceback (most recent call last):

File "...", line 5, in <module>

m1.mecho(123)

NameError: name 'm1' is not defined from..import * 需要额外代码来编写



•

•

•

__all__ 



'pkg1 -> m1'
def mecho(any):

print("pkg1-m1: {}".format(any))

'pkg1 -> m2'
def mecho(any):

print("pkg1-m2: {}".format(any))

'pkg2 -> m1'
def mecho(any):

print("pkg2-m1: {}".format(any))

print("[INFO]: 导入pkg1模块")

__all__ = ['m1', 'm2']

print("[INFO]: 导入pkg2模块")

__all__ = ['m1']



from pkg.pkg1import *

m1.mecho(123)

m2.mecho("Python123")

[INFO]: 导入pkg模块

[INFO]: 导入pkg1模块

pkg1-m1: 123

pkg1-m2: Python123
__all__属性支持from..import * 功能



•

•

•



• 每个包仅被导入一次，且包导入按照层次结构进行

• 直接导入包不能调用功能，需要导入到模块层次

•

•

import





•

•

•

•



•

•

•



project1

pkg1

m1.py m2.py

pkg2

m1.py

project2

pkg1

m3.py m4.py

pkg2

m3.py



•

•



def mecho(any):
print("pkg1-m1: {}".format(any))

def mecho(any):
print("pkg2-m1: {}".format(any))

'pkg2 -> m1'
def mecho(any):

print("pkg2-m2: {}".format(any))

def mecho(any):
print("pkg1-m3: {}".format(any))

def mecho(any):
print("pkg2-m3: {}".format(any))

'pkg2 -> m1'
def mecho(any):

print("pkg2-m4: {}".format(any))



import sys

sys.path += ['project1', 'project2']

import pkg1.m1
import pkg1.m3

pkg1.m1.mecho(123)
pkg1.m3.mecho("Python")

print(pkg1.__path__)

test.py



import sys

sys.path += ['project1', 'project2']

import pkg1.m1
import pkg1.m3

pkg1.m1.mecho(123)
pkg1.m3.mecho("Python")

print(pkg1.__path__)

将最顶层目录加入sys.path变量



import sys

sys.path += ['project1', 'project2']

import pkg1.m1
import pkg1.m3

pkg1.m1.mecho(123)
pkg1.m3.mecho("Python")

print(pkg1.__path__)

顶层目录内结构成为一个命名空间

pkg1-m1: 123

pkg1-m3: Python



import sys

sys.path += ['project1', 'project2']

import pkg1.m1
import pkg1.m3

pkg1.m1.mecho(123)
pkg1.m3.mecho("Python")

print(pkg1.__path__)

获得pkg1命名空间内变量

_NamespacePath(['project1\\pkg1',

'project2\\pkg1'])



•

•

•

sys.path



•

•

•

__path__

pkg1命名空间的路径：['project1\\pkg1', 'project2\\pkg1']








