
06 | JavaScript对象：面向对象还是基于对象？
2019-01-29 winter

重学前端 进入课程

讲述：winter
时长 15:23 大小 14.10M

你好，我是 winter。

与其它的语言相比，JavaScript 中的“对象”总是显得不那么合群。

一些新人在学习 JavaScript 面向对象时，往往也会有疑惑：

甚至，在一些争论中，有人强调：JavaScript 并非“面向对象的语言”，而是“基于对象

的语言”。这个说法一度流传甚广，而事实上，我至今遇到的持有这一说法的人中，无一能



为什么 JavaScript（直到 ES6）有对象的概念，但是却没有像其他的语言那样，有类的

概念呢；

为什么在 JavaScript 对象里可以自由添加属性，而其他的语言却不能呢？



 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

够回答“如何定义面向对象和基于对象”这个问题。

实际上，基于对象和面向对象两个形容词都出现在了 JavaScript 标准的各个版本当中。

我们可以先看看 JavaScript 标准对基于对象的定义，这个定义的具体内容是：“语言和宿

主的基础设施由对象来提供，并且 JavaScript 程序即是一系列互相通讯的对象集合”。

这里的意思根本不是表达弱化的面向对象的意思，反而是表达对象对于语言的重要性。

那么，在本篇文章中，我会尝试让你去理解面向对象和 JavaScript 中的面向对象究竟是什

么。

什么是面向对象？

我们先来说说什么是对象，因为翻译的原因，中文语境下我们很难理解“对象”的真正含

义。事实上，Object（对象）在英文中，是一切事物的总称，这和面向对象编程的抽象思

维有互通之处。

中文的“对象”却没有这样的普适性，我们在学习编程的过程中，更多是把它当作一个专业

名词来理解。

但不论如何，我们应该认识到，对象并不是计算机领域凭空造出来的概念，它是顺着人类思

维模式产生的一种抽象（于是面向对象编程也被认为是：更接近人类思维模式的一种编程范

式）。

那么，我们先来看看在人类思维模式下，对象究竟是什么。

对象这一概念在人类的幼儿期形成，这远远早于我们编程逻辑中常用的值、

过程等概念。

在幼年期，我们总是先认识到某一个苹果能吃（这里的某一个苹果就是一个

对象），继而认识到所有的苹果都可以吃（这里的所有苹果，就是一个

类），再到后来我们才能意识到三个苹果和三个梨之间的联系，进而产生数

字“3”（值）的概念。

在《面向对象分析与设计》这本书中，Grady Booch 替我们做了总结，他认为，从人类的

认知角度来说，对象应该是下列事物之一：

1. 一个可以触摸或者可以看见的东西；

2. 人的智力可以理解的东西；

3. 可以指导思考或行动（进行想象或施加动作）的东西。

有了对象的自然定义后，我们就可以描述编程语言中的对象了。在不同的编程语言中，设计

者也利用各种不同的语言特性来抽象描述对象，最为成功的流派是使用“类”的方式来描述

对象，这诞生了诸如 C++、Java 等流行的编程语言。

而 JavaScript 早年却选择了一个更为冷门的方式：原型（关于原型，我在下一篇文章会重

点介绍，这里你留个印象就可以了）。这是我在前面说它不合群的原因之一。

然而很不幸，因为一些公司政治原因，JavaScript 推出之时受管理层之命被要求模仿

Java，所以，JavaScript 创始人 Brendan Eich 在“原型运行时”的基础上引入了 new、

this 等语言特性，使之“看起来更像 Java”。

在 ES6 出现之前，大量的 JavaScript 程序员试图在原型体系的基础上，把 JavaScript 变

得更像是基于类的编程，进而产生了很多所谓的“框架”，比如 PrototypeJS、Dojo。

事实上，它们成为了某种 JavaScript 的古怪方言，甚至产生了一系列互不相容的社群，显

然这样做的收益是远远小于损失的。

如果我们从运行时角度来谈论对象，就是在讨论 JavaScript 实际运行中的模型，这是由于

任何代码执行都必定绕不开运行时的对象模型。

不过，幸运的是，从运行时的角度看，可以不必受到这些“基于类的设施”的困扰，这是因

为任何语言运行时类的概念都是被弱化的。

首先我们来了解一下 JavaScript 是如何设计对象模型的。

JavaScript 对象的特征

在我看来，不论我们使用什么样的编程语言，我们都先应该去理解对象的本质特征（参考

Grandy Booch《面向对象分析与设计》）。总结来看，对象有如下几个特点。

防止断
更 请务

必加

首发微
信：1

71614
3665

我们先来看第一个特征，对象具有唯一标识性。一般而言，各种语言的对象唯一标识性都是

用内存地址来体现的， 对象具有唯一标识的内存地址，所以具有唯一的标识。

所以，JavaScript 程序员都知道，任何不同的 JavaScript 对象其实是互不相等的，我们可

以看下面的代码，o1 和 o2 初看是两个一模一样的对象，但是打印出来的结果却是 false。

关于对象的第二个和第三个特征“状态和行为”，不同语言会使用不同的术语来抽象描述它

们，比如 C++ 中称它们为“成员变量”和“成员函数”，Java 中则称它们为“属

性”和“方法”。

在 JavaScript 中，将状态和行为统一抽象为“属性”，考虑到 JavaScript 中将函数设计成

一种特殊对象（关于这点，我会在后面的文章中详细讲解，此处先不用细究），所以

JavaScript 中的行为和状态都能用属性来抽象。

下面这段代码其实就展示了普通属性和函数作为属性的一个例子，其中 o 是对象，d 是一

个属性，而函数 f 也是一个属性，尽管写法不太相同，但是对 JavaScript 来说，d 和 f 就

是两个普通属性。

对象具有唯一标识性：即使完全相同的两个对象，也并非同一个对象。

对象有状态：对象具有状态，同一对象可能处于不同状态之下。

对象具有行为：即对象的状态，可能因为它的行为产生变迁。

1

2

3

 var o1 = { a: 1 };
 var o2 = { a: 1 };
 console.log(o1 == o2); // false

复制代码

1

2

3

4

5

6

 var o = {
 d: 1,
 f() {
 console.log(this.d);
 }
 };

复制代码

所以，总结一句话来看，在 JavaScript 中，对象的状态和行为其实都被抽象为了属性。如

果你用过 Java，一定不要觉得奇怪，尽管设计思路有一定差别，但是二者都很好地表现了

对象的基本特征：标识性、状态和行为。

在实现了对象基本特征的基础上, 我认为，JavaScript 中对象独有的特色是：对象具有高

度的动态性，这是因为 JavaScript 赋予了使用者在运行时为对象添改状态和行为的能力。

我来举个例子，比如，JavaScript 允许运行时向对象添加属性，这就跟绝大多数基于类

的、静态的对象设计完全不同。如果你用过 Java 或者其它别的语言，肯定会产生跟我一样

的感受。

下面这段代码就展示了运行时如何向一个对象添加属性，一开始我定义了一个对象 o，定义

完成之后，再添加它的属性 b，这样操作是完全没问题的。

为了提高抽象能力，JavaScript 的属性被设计成比别的语言更加复杂的形式，它提供了数

据属性和访问器属性（getter/setter）两类。

JavaScript 对象的两类属性

对 JavaScript 来说，属性并非只是简单的名称和值，JavaScript 用一组特征（attribute）

来描述属性（property）。

先来说第一类属性，数据属性。它比较接近于其它语言的属性概念。数据属性具有四个特

征。

1

2

3

 var o = { a: 1 };
 o.b = 2;
 console.log(o.a, o.b); //1 2

复制代码

value：就是属性的值。

writable：决定属性能否被赋值。

enumerable：决定 for in 能否枚举该属性。

configurable：决定该属性能否被删除或者改变特征值。

在大多数情况下，我们只关心数据属性的值即可。

第二类属性是访问器（getter/setter）属性，它也有四个特征。

访问器属性使得属性在读和写时执行代码，它允许使用者在写和读属性时，得到完全不同的

值，它可以视为一种函数的语法糖。

我们通常用于定义属性的代码会产生数据属性，其中的 writable、enumerable、

configurable 都默认为 true。我们可以使用内置函数

Object.getOwnPropertyDescripter 来查看，如以下代码所示：

我们在这里使用了两种语法来定义属性，定义完属性后，我们用 JavaScript 的 API 来查看

这个属性，我们可以发现，这样定义出来的属性都是数据属性，writeable、

enumerable、configurable 都是默认值为 true。

如果我们要想改变属性的特征，或者定义访问器属性，我们可以使用

Object.defineProperty，示例如下：

getter：函数或 undefined，在取属性值时被调用。

setter：函数或 undefined，在设置属性值时被调用。

enumerable：决定 for in 能否枚举该属性。

configurable：决定该属性能否被删除或者改变特征值。

1

2

3

4

5

 var o = { a: 1 };
 o.b = 2;
 //a 和 b 皆为数据属性

 Object.getOwnPropertyDescriptor(o,"a") // {value: 1, writable: true, enumerable: tru
 Object.getOwnPropertyDescriptor(o,"b") // {value: 2, writable: true, enumerable: tru

复制代码

1

2

3

4

 var o = { a: 1 };
 Object.defineProperty(o, "b", {value: 2, writable: false, enumerable: false, configu
 //a 和 b 都是数据属性，但特征值变化了

 Object.getOwnPropertyDescriptor(o,"a"); // {value: 1, writable: true, enumerable: t

复制代码

拼课微
信：1

71614
3665

这里我们使用了 Object.defineProperty 来定义属性，这样定义属性可以改变属性的

writable 和 enumerable。

我们同样用 Object.getOwnPropertyDescriptor 来查看，发现确实改变了 writable 和

enumerable 特征。因为 writable 特征为 false，所以我们重新对 b 赋值，b 的值不会发

生变化。

在创建对象时，也可以使用 get 和 set 关键字来创建访问器属性，代码如下所示：

访问器属性跟数据属性不同，每次访问属性都会执行 getter 或者 setter 函数。这里我们的

getter 函数返回了 1，所以 o.a 每次都得到 1。

这样，我们就理解了，实际上 JavaScript 对象的运行时是一个“属性的集合”，属性以字

符串或者 Symbol 为 key，以数据属性特征值或者访问器属性特征值为 value。

对象是一个属性的索引结构（索引结构是一类常见的数据结构，我们可以把它理解为一个能

够以比较快的速度用 key 来查找 value 的字典）。我们以上面的对象 o 为例，你可以想象

一下“a”是 key。

{writable:true,value:1,configurable:true,enumerable:true}是 value。

我们在前面的类型课程中，已经介绍了 Symbol 类型，能够以 Symbol 为属性名，这是

JavaScript 对象的一个特色。

讲到了这里，如果你理解了对象的特征，也就不难理解我开篇提出来的问题。

5

6

7

 Object.getOwnPropertyDescriptor(o,"b"); // {value: 2, writable: false, enumerable: f
 o.b = 3;
 console.log(o.b); // 2

1

2

3

 var o = { get a() { return 1 } };

 console.log(o.a); // 1

复制代码

你甚至可以理解为什么会有“JavaScript 不是面向对象”这样的说法了。这是由于

JavaScript 的对象设计跟目前主流基于类的面向对象差异非常大。

可事实上，这样的对象系统设计虽然特别，但是 JavaScript 提供了完全运行时的对象系

统，这使得它可以模仿多数面向对象编程范式（下一节课我们会给你介绍 JavaScript 中两

种面向对象编程的范式：基于类和基于原型），所以它也是正统的面向对象语言。

JavaScript 语言标准也已经明确说明，JavaScript 是一门面向对象的语言，我想标准中能

这样说，正是因为 JavaScript 的高度动态性的对象系统。

所以，我们应该在理解其设计思想的基础上充分挖掘它的能力，而不是机械地模仿其它语

言。

结语

要想理解 JavaScript 对象，必须清空我们脑子里“基于类的面向对象”相关的知识，回到

人类对对象的朴素认知和面向对象的语言无关基础理论，我们就能够理解 JavaScript 面向

对象设计的思路。

在这篇文章中，我从对象的基本理论出发，和你理清了关于对象的一些基本概念，分析了

JavaScript 对象的设计思路。接下来又从运行时的角度，介绍了 JavaScript 对象的具体设

计：具有高度动态性的属性集合。

很多人在思考 JavaScript 对象时，会带着已有的“对象”观来看问题，最后的结果当然就

是“剪不断理还乱”了。

在后面的文章中，我会继续带你探索 JavaScript 对象的一些机制，看 JavaScript 如何基于

这样的动态对象模型设计自己的原型系统，以及你熟悉的函数、类等基础设施。

你还知道哪些面向对象语言，它们的面向对象系统是怎样的？请留言告诉我吧！

猜你喜欢

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 05 | JavaScript类型：关于类型，有哪些你不知道的细节？

下一篇 07 | JavaScript对象：我们真的需要模拟类吗？

风清不扬
2019-01-29

 48

php 是世界上最好的編程語言

展开

37°C^boy
2019-01-29

 45

这篇讲的思路太好了，追本溯源，娓娓道来。在这里不光能学到知识活着重温知识，还有
关于学习和讲授的方法lun

莲
2019-01-30

 23

好像winter老师没有回答过同学的提问，是我没看见吗？

展开

hhk
2019-01-30

 16

精选留言 (50)  写留言

https://time.geekbang.org/course/intro/163?utm_term=zeusMTA7L&utm_source=app&utm_medium=chongxueqianduan&utm_campaign=163-presell

关键点在于是否可以在运行时动态改变对象

结合文章通篇看下来，觉得 JS 的 OO 和他基于类的 OO 不同之处，在于 JS 可以在运行时
修改对象，而 class based 的类只能预先全部定义好，我们并不能在运行时动态修改类。
在我理解来说，条条大路通罗马，面向对象是罗马，class based 是一条路，prototype…
展开

bitmxy
2019-01-29

 15

JS的設計者原本是個Lisp程序員而且不怎麼喜歡Java面向對象，所以採用了原型。在當時
基於原型比基於類的做法要靈活很多。

张汉桂-东...
2019-01-31

 12

var o = { get a() { return 1 } };
 console.log(o.a); // 1

看到这段我就感到值了。我目前在用layui框架，根据layui文档的描述，只有执行var form
= layui.form;这一句时才会下载form.js这个文件，我一直没能理解。这篇文章解除了我…
展开

_(:з」∠...
2019-02-02

 9

太难了(눈_눈)
完全没看懂面向对象，有没有更加数学一点更加精确一点的定义啊。
(•̥́ ˍ •̀�)

展开

mone
2019-02-12

 8

请问“运行时”是指什么？一开始我以为是指“程序执行的时候”这一时间状态，但是在
正文倒数第三段又有“但是 JavaScript 提供了完全运行时的对象系统，这使得它可以模仿
多数面向对象编程范式”这一句，这里的“完全运行时”是什么意思？我上网查了一下，
好像没有比较符合的解析。

无羡
2019-02-01

 6

这才理解数值属性和访问器属性！赞

展开

庖丁
2019-01-29

 6

我们应该在理解其设计思想的基础上充分挖掘它的能力，而不是机械地模仿其它语言。

王小宏musi...
2019-03-19

 5

var o = { get a() { return 1 } }
console.log(o.a); // 1
肯定有同学对这里有疑问，解释一下吧， 这里边应用到了ES6的getter,setter属性， 为啥
o.a，没写小括号呢？ 因为每次访问get，函数返回为1，作为一个value返回的，而非Obj
中，调用某个方法，所以才没写成Obj.fun()的方式， 另外 老师下边有一句总结，很容易…
展开

Carson
2019-01-29

 5

我暂时接触的编程有限，JavaScript 是我接触的第一个面向对象语言。

由于缺少对其他语言的了解，winter 老师在文中的横向对比，感觉能让我更容易理解
JavaScript 的设计思路，以及 Object 这么设计的原因。
 …
展开

如斯
2019-02-13

 4

有个疑惑哈，讲道理symbolObj对象也是对象。也可以调用symbolObj.toString方法（
symbolObj.toString() // "Symbol(a)" ）。
但为什么会 symbolObj+'' 会报错呢。
Uncaught TypeError: Cannot convert a Symbol value to a string at
<anonymous>:1:10

展开

作者回复: 这个问题问的很好，是这个东西在作怪：

typeof Object(Symbol("a"))[Symbol.toPrimitive]()

Error
2019-01-30

 4

老师是否按照犀牛书的顺序讲解😁

展开

朋友
2019-02-22

 3

getter setter实际应用的例子有哪些？ vue的数据，视图双向绑定算吗？

展开

作者回复: vue2.0确实用到了这个。

小七
2019-01-29

 3

我理解的js和java等高级语言的设计差别不在于面向对象，getter setter ，可写可便利等
这些属性的定义在高级语言里也都有的。目前我感受到的差别是强类型弱类型，解释性编
译型，单线程多线程这些，不知道大家怎么看

展开

快乐奔跑
2019-02-14

 2

个人感觉JavaScript基于原型的面向对象设计比Java基于类的面向对象设计灵活

Smallfly
2019-01-29

 2

基于类的面向对象使用的是继承，而 Javascript 更像是组合。

展开

cnzhujie
2019-04-04

 1

个人理解：面向对象就是万物皆为类，离开了类就活不了；比如Java里面，就算只写个
main函数也要用class包裹起来。而基于对象说的是这门语言可以使用类和对象，但不使用
类和对象也照样玩的转，比如c++、php、js。

展开

作者回复: 不是的，基于类的面相对象只是一个派系。

桂马
2019-03-09

 1

js是一个具有动态性的面向对象的语言，ES2015前主要以“prototype”面向对象编程，
ES2015问世后主要以“class”实现面向对象编程，我想super也是借鉴Java的，以后js可
能还会有interface，那就更灵活了

展开

