
07 | JavaScript对象：我们真的需要模拟类吗？
2019-01-31 winter

重学前端 进入课程

讲述：winter
时长 17:40 大小 16.18M

早期的 JavaScript 程序员一般都有过使用 JavaScript“模拟面向对象”的经历。

在上一篇文章我们已经讲到，JavaScript 本身就是面向对象的，它并不需要模拟，只是它

实现面向对象的方式和主流的流派不太一样，所以才让很多人产生了误会。

那么，随着我们理解的思路继续深入，这些“模拟面向对象”，实际上做的事情就是“模拟

基于类的面向对象”。

尽管我认为，“类”并非面向对象的全部，但我们不应该责备社区出现这样的方案，事实

上，因为一些公司的政治原因，JavaScript 推出之时，管理层就要求它去模仿 Java。





 下载APP 

所以，JavaScript 创始人 Brendan Eich 在“原型运行时”的基础上引入了 new、this 等

语言特性，使之“看起来语法更像 Java”，而 Java 正是基于类的面向对象的代表语言之

一。

但是 JavaScript 这样的半吊子模拟，缺少了继承等关键特性，导致大家试图对它进行修

补，进而产生了种种互不相容的解决方案。

庆幸的是，从 ES6 开始，JavaScript 提供了 class 关键字来定义类，尽管，这样的方案仍

然是基于原型运行时系统的模拟，但是它修正了之前的一些常见的“坑”，统一了社区的方

案，这对语言的发展有着非常大的好处。

实际上，我认为“基于类”并非面向对象的唯一形态，如果我们把视线从“类”移开，

Brendan 当年选择的原型系统，就是一个非常优秀的抽象对象的形式。

我们从头讲起。

什么是原型？

原型是顺应人类自然思维的产物。中文中有个成语叫做“照猫画虎”，这里的猫看起来就是

虎的原型，所以，由此我们可以看出，用原型来描述对象的方法可以说是古已有之。

我们在上一节讲解面向对象的时候提到了：在不同的编程语言中，设计者也利用各种不同的

语言特性来抽象描述对象。

最为成功的流派是使用“类”的方式来描述对象，这诞生了诸如 C++、Java 等流行的编程

语言。这个流派叫做基于类的编程语言。

还有一种就是基于原型的编程语言，它们利用原型来描述对象。我们的 JavaScript 就是其

中代表。

“基于类”的编程提倡使用一个关注分类和类之间关系开发模型。在这类语言中，总是先有

类，再从类去实例化一个对象。类与类之间又可能会形成继承、组合等关系。类又往往与语

言的类型系统整合，形成一定编译时的能力。

与此相对，“基于原型”的编程看起来更为提倡程序员去关注一系列对象实例的行为，而后

才去关心如何将这些对象，划分到最近的使用方式相似的原型对象，而不是将它们分成类。

基于原型的面向对象系统通过“复制”的方式来创建新对象。一些语言的实现中，还允许复

制一个空对象。这实际上就是创建一个全新的对象。

基于原型和基于类都能够满足基本的复用和抽象需求，但是适用的场景不太相同。

这就像专业人士可能喜欢在看到老虎的时候，喜欢用猫科豹属豹亚种来描述它，但是对一些

不那么正式的场合，“大猫”可能更为接近直观的感受一些（插播一个冷知识：比起老虎

来，美洲狮在历史上相当长时间都被划分为猫科猫属，所以性格也跟猫更相似，比较亲

人）。

我们的 JavaScript 并非第一个使用原型的语言，在它之前，self、kevo 等语言已经开始使

用原型来描述对象了。

事实上，Brendan 更是曾透露过，他最初的构想是一个拥有基于原型的面向对象能力的

scheme 语言（但是函数式的部分是另外的故事，这篇文章里，我暂时不做详细讲述）。

在 JavaScript 之前，原型系统就更多与高动态性语言配合，并且多数基于原型的语言提倡

运行时的原型修改，我想，这应该是 Brendan 选择原型系统很重要的理由。

原型系统的“复制操作”有两种实现思路：

历史上的基于原型语言因此产生了两个流派，显然，JavaScript 显然选择了前一种方式。

JavaScript 的原型

如果我们抛开 JavaScript 用于模拟 Java 类的复杂语法设施（如 new、Function Object、

函数的 prototype 属性等），原型系统可以说相当简单，我可以用两条概括：

一个是并不真的去复制一个原型对象，而是使得新对象持有一个原型的引用；

另一个是切实地复制对象，从此两个对象再无关联。

如果所有对象都有私有字段 [[prototype]]，就是对象的原型；

读一个属性，如果对象本身没有，则会继续访问对象的原型，直到原型为空或者找到为

止。

这个模型在 ES 的各个历史版本中并没有很大改变，但从 ES6 以来，JavaScript 提供了一

系列内置函数，以便更为直接地访问操纵原型。三个方法分别为：

利用这三个方法，我们可以完全抛开类的思维，利用原型来实现抽象和复用。我用下面的代

码展示了用原型来抽象猫和虎的例子。

Object.create 根据指定的原型创建新对象，原型可以是 null；

Object.getPrototypeOf 获得一个对象的原型；

Object.setPrototypeOf 设置一个对象的原型。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

var cat = {
 say(){
 console.log("meow~");
 },
 jump(){
 console.log("jump");
 }
}

var tiger = Object.create(cat, {
 say:{
 writable:true,
 configurable:true,
 enumerable:true,
 value:function(){
 console.log("roar!");
 }
 }
})

var anotherCat = Object.create(cat);

anotherCat.say();

var anotherTiger = Object.create(tiger);

anotherTiger.say();

复制代码

这段代码创建了一个“猫”对象，又根据猫做了一些修改创建了虎，之后我们完全可以用

Object.create 来创建另外的猫和虎对象，我们可以通过“原始猫对象”和“原始虎对

象”来控制所有猫和虎的行为。

但是，在更早的版本中，程序员只能通过 Java 风格的类接口来操纵原型运行时，可以说非

常别扭。

考虑到 new 和 prototype 属性等基础设施今天仍然有效，而且被很多代码使用，学习这些

知识也有助于我们理解运行时的原型工作原理，下面我们试着回到过去，追溯一下早年的

JavaScript 中的原型和类。

早期版本中的类与原型

在早期版本的 JavaScript 中，“类”的定义是一个私有属性 [[class]]，语言标准为内置类

型诸如 Number、String、Date 等指定了 [[class]] 属性，以表示它们的类。语言使用者唯

一可以访问 [[class]] 属性的方式是 Object.prototype.toString。

以下代码展示了所有具有内置 class 属性的对象：

因此，在 ES3 和之前的版本，JS 中类的概念是相当弱的，它仅仅是运行时的一个字符串属

性。

在 ES5 开始，[[class]] 私有属性被 Symbol.toStringTag 代替，

Object.prototype.toString 的意义从命名上不再跟 class 相关。我们甚至可以自定义

1

2

3

4

5

6

7

8

9

10

11

 var o = new Object;
 var n = new Number;
 var s = new String;
 var b = new Boolean;
 var d = new Date;
 var arg = function(){ return arguments }();
 var r = new RegExp;
 var f = new Function;
 var arr = new Array;
 var e = new Error;
 console.log([o, n, s, b, d, arg, r, f, arr, e].map(v => Object.prototype.toString.ca

复制代码

Object.prototype.toString 的行为，以下代码展示了使用 Symbol.toStringTag 来自定义

Object.prototype.toString 的行为：

这里创建了一个新对象，并且给它唯一的一个属性 Symbol.toStringTag，我们用字符串加

法触发了 Object.prototype.toString 的调用，发现这个属性最终对

Object.prototype.toString 的结果产生了影响。

但是，考虑到 JavaScript 语法中跟 Java 相似的部分，我们对类的讨论不能用“new 运算

是针对构造器对象，而不是类”来试图回避。

所以，我们仍然要把 new 理解成 JavaScript 面向对象的一部分，下面我就来讲一下 new

操作具体做了哪些事情。

new 运算接受一个构造器和一组调用参数，实际上做了几件事：

new 这样的行为，试图让函数对象在语法上跟类变得相似，但是，它客观上提供了两种方

式，一是在构造器中添加属性，二是在构造器的 prototype 属性上添加属性。

下面代码展示了用构造器模拟类的两种方法:

1

2

 var o = { [Symbol.toStringTag]: "MyObject" }
 console.log(o + "");

复制代码

以构造器的 prototype 属性（注意与私有字段 [[prototype]] 的区分）为原型，创建新

对象；

将 this 和调用参数传给构造器，执行；

如果构造器返回的是对象，则返回，否则返回第一步创建的对象。

1

2

3

4

5

function c1(){
 this.p1 = 1;
 this.p2 = function(){
 console.log(this.p1);

复制代码

第一种方法是直接在构造器中修改 this，给 this 添加属性。

第二种方法是修改构造器的 prototype 属性指向的对象，它是从这个构造器构造出来的所

有对象的原型。

没有 Object.create、Object.setPrototypeOf 的早期版本中，new 运算是唯一一个可以指

定 [[prototype]] 的方法（当时的 mozilla 提供了私有属性 __proto__，但是多数环境并不

支持），所以，当时已经有人试图用它来代替后来的 Object.create，我们甚至可以用它来

实现一个 Object.create 的不完整的 polyfill，见以下代码：

这段代码创建了一个空函数作为类，并把传入的原型挂在了它的 prototype，最后创建了

一个它的实例，根据 new 的行为，这将产生一个以传入的第一个参数为原型的对象。

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 }
}
var o1 = new c1;
o1.p2();

function c2(){
}
c2.prototype.p1 = 1;
c2.prototype.p2 = function(){
 console.log(this.p1);
}

var o2 = new c2;
o2.p2();

1

2

3

4

5

Object.create = function(prototype){
 var cls = function(){}
 cls.prototype = prototype;
 return new cls;
}

复制代码

这个函数无法做到与原生的 Object.create 一致，一个是不支持第二个参数，另一个是不支

持 null 作为原型，所以放到今天意义已经不大了。

ES6 中的类

好在 ES6 中加入了新特性 class，new 跟 function 搭配的怪异行为终于可以退休了（虽然

运行时没有改变），在任何场景，我都推荐使用 ES6 的语法来定义类，而令 function 回归

原本的函数语义。下面我们就来看一下 ES6 中的类。

ES6 中引入了 class 关键字，并且在标准中删除了所有 [[class]] 相关的私有属性描述，类

的概念正式从属性升级成语言的基础设施，从此，基于类的编程方式成为了 JavaScript 的

官方编程范式。

我们先看下类的基本写法：

在现有的类语法中，getter/setter 和 method 是兼容性最好的。

我们通过 get/set 关键字来创建 getter，通过括号和大括号来创建方法，数据型成员最好

写在构造器里面。

类的写法实际上也是由原型运行时来承载的，逻辑上 JavaScript 认为每个类是有共同原型

的一组对象，类中定义的方法和属性则会被写在原型对象之上。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

class Rectangle {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
 // Getter
 get area() {
 return this.calcArea();
 }
 // Method
 calcArea() {
 return this.height * this.width;
 }
}

复制代码

此外，最重要的是，类提供了继承能力。我们来看一下下面的代码。

以上代码创造了 Animal 类，并且通过 extends 关键字让 Dog 继承了它，展示了最终调用

子类的 speak 方法获取了父类的 name。

比起早期的原型模拟方式，使用 extends 关键字自动设置了 constructor，并且会自动调

用父类的构造函数，这是一种更少坑的设计。

所以当我们使用类的思想来设计代码时，应该尽量使用 class 来声明类，而不是用旧语法，

拿函数来模拟对象。

一些激进的观点认为，class 关键字和箭头运算符可以完全替代旧的 function 关键字，它

更明确地区分了定义函数和定义类两种意图，我认为这是有一定道理的。

总结

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

class Animal {
 constructor(name) {
 this.name = name;
 }

 speak() {
 console.log(this.name + ' makes a noise.');
 }
}

class Dog extends Animal {
 constructor(name) {
 super(name); // call the super class constructor and pass in the name parameter
 }

 speak() {
 console.log(this.name + ' barks.');
 }
}

let d = new Dog('Mitzie');
d.speak(); // Mitzie barks.

复制代码

在新的 ES 版本中，我们不再需要模拟类了：我们有了光明正大的新语法。而原型体系同时

作为一种编程范式和运行时机制存在。

我们可以自由选择原型或者类作为代码的抽象风格，但是无论我们选择哪种，理解运行时的

原型系统都是很有必要的一件事。

在你的工作中，是使用 class 还是仍然在用 function 来定义“类”？为什么这么做？如何

把使用 function 定义类的代码改造到 class 的新语法？

欢迎给我留言，我们一起讨论。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 06 | JavaScript对象：面向对象还是基于对象？

下一篇 08 | JavaScript对象：你知道全部的对象分类吗？

精选留言 (72)  写留言

浩明啦 置顶
2019-01-31 

73

这些知识真的不止这个价格了， 感谢老师

展开

Youngwell
2019-01-31

 72

感觉是像在听天书，前端工作快三年了，悲催了

展开

ashen1129
2019-02-01

 45

本篇厘清了一些我对面向对象的理解误区，说明了“基于类”和“基于原型”作为两种编
程范式的区别，感谢。

不过感觉本篇在写的时候有一些地方讲的不够严谨：
 …
展开

来碗绿豆汤
2019-02-01

 13

如果说运行时还是基于prototype的，那是不是可以理解为class其实是个语法糖，它最终
还是被翻译成功prototype形式来执行？或者说prototype形式写的代码执行起来更高效。

展开

简单
2019-02-14

 11

老师，我听了几遍为什么觉得什么都不懂，越听越复杂，不理解也记不住😂

展开

乐亦栗
2019-02-27

 10

有像我一样平常根本不用面向对象写代码的吗……

展开

拾迹
2019-01-31

 6

老师对贺老反对'class fileds'持什么看法？虽然听了两次贺老的演讲，仍然还是有点没搞明
白。链接：https://github.com/hax/js-class-fields-chinese-discussion

展开

胡永
2019-02-19

 5

这篇文章读一遍有一遍新的体会，厉害了

展开

Rickyshin
2019-01-31

 4

平时用react的话，class还是比较多的，那么想问一下，现在的react不推荐写
constructer，而是推荐使用箭头函数直接写方法，是不是constructer会在未来变的不是
那么重要呢

展开

辉子
2019-02-02

 3

所以为什么typescript火起来了，是ES6的超集，也对Java后端开发者更友好了。

dearfat
2019-02-02

 3

感谢winter，总之就是通透，这个境界太难了

展开

石
2019-01-31

 3

let和var的应用场景区分，老师可以提炼下本质吗，各位朋友平时let用的多吗

展开

阿成  3

2019-01-31

讲得很好，今天是不是因为放假了，人好像有点少...平时写代码，基本上没写过class，都
是function，体积大了就拆成小的...可能还是没遇到复杂的场景吧...而且vue等框架本身就
解决了一定的复杂度

展开

王小宏musi...
2019-03-20

 2

有些东西，真的是，工作好几年可能都摸不透的，高手跟大牛之间，差距就是在于理解的
通透性！

让时间说真...
2019-02-11

 2

在es6里面使用class，extends关键字实现面向对象编程，使开发者更容易理解类的继承。
本篇从es5之前版本讲起过度到es6总体逻辑很清楚。

莲
2019-02-01

 2

写class多，抽象化以后，用class 看着更规整得多，易读性也更好

给微信小程序写的第一个拖拽排序的插件就是class写的，new Sortable就完事了

37°C^boy
2019-01-31

 2

mvvm，class
utils ， function

lt-零度
2019-01-31

 2

老师，我的留言都没回复过我，伤心

展开

编辑回复: 别伤心，给你安排

Nina.
2019-05-17

 1

winter的文章很适合反复去听，每次都有新的领悟。
今年毕业啦，选择了前端，去实习时有接触到winter所说的知识，但是我只能略懂，单词
我懂，哈哈。
虽然现在还是前端渣渣，但是我相信，通过自己的努力，一定可以成为大神级的程序媛，
相信我嘛~哈哈哈

展开

羲
2019-02-13

 1

winter老师，有一些浏览器对es6语法部分不兼容，一般开发中依旧用新的es6语法，然后
找插件转换成浏览器支持的语法，想问下，你对这种做法怎么看？这样做是不是有点兜圈
子了，直接用旧语法也可以写，但又有些想尝试用新的语法

作者回复: 我比较支持这个做法，尽早使用新语法，可以享受它们带来的好处，也可以让团队始终

保持技术领先。

当然了，少数情况下，没法完美翻译，我就不建议急着用了。

