
30 | JavaScript语法（二）：你知道哪些JavaScript语句？
2019-04-02 winter

重学前端 进入课程

讲述：winter
时长 23:33 大小 21.58M

你好，我是 winter。

我们在上一节课中已经讲过了 JavaScript 语法的顶层设计，接下来我们进入到更具体的内

容。

JavaScript 遵循了一般编程语言的‘语句 - 表达式’结构，多数编程语言都是这样设计

的。我们在上节课讲的脚本，或者模块都是由语句列表构成的，这一节课，我们就来一起了

解一下语句。

在 JavaScript 标准中，把语句分成了两种：声明和语句，不过，这里的区分逻辑比较奇

怪，所以，这里我还是按照自己的思路给你整理一下。





 下载APP 

普通语句：

声明型语句：

我们根据上面的分类，来遍历学习一下这些语句。

语句块

我们可以这样去简单理解，语句块就是一对大括号。

语句块的意义和好处在于：让我们可以把多行语句视为同一行语句，这样，if、for 等语句

定义起来就比较简单了。不过，我们需要注意的是，语句块会产生作用域，我们看一个例

子：

1

2

3

4

5

{
 var x, y;
 x = 10;
 y = 20;
}

复制代码

1

2

3

4

{
 let x = 1;
}
console.log(x); // 报错

复制代码

这里我们的 let 声明，仅仅对语句块作用域生效，于是我们在语句块外试图访问语句块内的

变量 x 就会报错。

空语句

空语句就是一个独立的分号，实际上没什么大用。我们来看一下：

空语句的存在仅仅是从语言设计完备性的角度考虑，允许插入多个分号而不抛出错误。

if 语句

if 语句是条件语句。我想，对多数人来说，if 语句都是熟悉的老朋友了，也没有什么特别需

要注意的用法，但是为了我们课程的完备性，这里还是要讲一下。

if 语句示例如下：

if 语句的作用是，在满足条件时执行它的内容语句，这个语句可以是一个语句块，这样就可

以实现有条件地执行多个语句了。

if 语句还有 else 结构，用于不满足条件时执行，一种常见的用法是，利用语句的嵌套能

力，把 if 和 else 连写成多分支条件判断：

1 ;

复制代码

1

2

if(a < b)
 console.log(a);

复制代码

1 if(a < 10) {

复制代码

这段代码表示四个互斥的分支，分别在满足 a<10、a<20、a<30 和其它情况时执行。

switch 语句

switch 语句继承自 Java，Java 中的 switch 语句继承自 C 和 C++，原本 switch 语句是跳

转的变形，所以我们如果要用它来实现分支，必须要加上 break。

其实 switch 原本的设计是类似 goto 的思维。我们看一个例子：

这段代码当 num 为 1 时输出 1 2 3，当 num 为 2 时输出 2 3，当 num 为 3 时输出 3。

如果我们要把它变成分支型，则需要在每个 case 后加上 break。

2

3

4

5

6

7

8

9

 //...
} else if(a < 20) {
 //...
} else if(a < 30) {
 //...
} else {
 //...
}

1

2

3

4

5

6

7

8

switch(num) {
case 1:
 print(1);
case 2:
 print 2;
case 3:
 print 3;
}

复制代码

1

2

3

4

5

6

7

8

switch(num) {
case 1:
 print 1;
 break;
case 2:
 print 2;
 break;
case 3:

复制代码

在 C 时代，switch 生成的汇编代码性能是略优于 if else 的，但是对 JavaScript 来说，则

无本质区别。我个人的看法是，现在 switch 已经完全没有必要使用了，应该用 if else 结构

代替。

循环语句

循环语句应该也是你所熟悉的语句了，这里我们把重点放在一些新用法上。

while 循环和 do while 循环

这两个都是历史悠久的 JavaScript 语法了，示例大概如下：

注意，这里 do while 循环无论如何至少会执行一次。

普通 for 循环

首先我们来看看普通的 for 循环。

9

10

11

 print 3;
 break;
}

1

2

3

4

let a = 100
while(a--) {
 console.log("*");
}

复制代码

1

2

3

4

let a = 101;
do {
 console.log(a);
} while(a < 100)

复制代码

复制代码

这里为了配合新语法，加入了允许 let 和 const，实际上，const 在这里是非常奇葩的东

西，因为这里声明和初始化的变量，按惯例是用于控制循环的，但是它如果是 const 就没

法改了。

我想，这一点可能是从保持 let 和 const 一致性的角度考虑的吧。

for in 循环

for in 循环枚举对象的属性，这里体现了属性的 enumerable 特征。

这段代码中，我们定义了一个对象 o，给它添加了不可枚举的属性 c，之后我们用 for in 循

环枚举它的属性，我们会发现，输出时得到的只有 a 和 b。

如果我们定义 c 这个属性时，enumerable 为 true，则 for in 循环中也能枚举到它。

for of 循环和 for await of 循环

1

2

3

4

5

6

7

8

9

10

11

12

13

14

for(i = 0; i < 100; i++)
 console.log(i);

for(var i = 0; i < 100; i++)
 console.log(i);

for(let i = 0; i < 100; i++)
 console.log(i);

var j = 0;
for(const i = 0; j < 100; j++)
 console.log(i);

1

2

3

4

5

6

let o = { a: 10, b: 20}
Object.defineProperty(o, "c", {enumerable:false, value:30})

for(let p in o)
 console.log(p);

复制代码

for of 循环是非常棒的语法特性。

我们先看下基本用法，它可以用于数组：

但是实际上，它背后的机制是 iterator 机制。

我们可以给任何一个对象添加 iterator，使它可以用于 for of 语句，看下示例：

这段代码展示了如何为一个对象添加 iterator。但是，在实际操作中，我们一般不需要这样

定义 iterator，我们可以使用 generator function。

1

2

for(let e of [1, 2, 3, 4, 5])
 console.log(e);

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

let o = {
 [Symbol.iterator]:() => ({
 _value: 0,
 next(){
 if(this._value == 10)
 return {
 done: true
 }
 else return {
 value: this._value++,
 done: false
 };
 }
 })
}
for(let e of o)
 console.log(e);

复制代码

1

2

3

function* foo(){
 yield 0;
 yield 1;

复制代码

这段代码展示了 generator function 和 foo 的配合。

此外，JavaScript 还为异步生成器函数配备了异步的 for of，我们来看一个例子：

这段代码定义了一个异步生成器函数，异步生成器函数每隔一秒生成一个数字，这是一个无

限的生成器。

接下来，我们使用 for await of 来访问这个异步生成器函数的结果，我们可以看到，这形

成了一个每隔一秒打印一个数字的无限循环。

但是因为我们这个循环是异步的，并且有时间延迟，所以，这个无限循环的代码可以用于显

示时钟等有意义的操作。

return

4

5

6

7

8

 yield 2;
 yield 3;
}
for(let e of foo())
 console.log(e);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

function sleep(duration) {
 return new Promise(function(resolve, reject) {
 setTimeout(resolve,duration);
 })
}
async function* foo(){
 i = 0;
 while(true) {
 await sleep(1000);
 yield i++;
 }

}
for await(let e of foo())
 console.log(e);

复制代码

return 语句用于函数中，它终止函数的执行，并且指定函数的返回值，这是大家非常熟悉

语句了，也没有什么特殊之处。

这段代码展示了 return 的基本用法。它后面可以跟一个表达式，计算结果就是函数返回

值。

break 语句和 continue 语句

break 语句用于跳出循环语句或者 switch 语句，continue 语句用于结束本次循环并继续

循环。

这两个语句都属于控制型语句，用法也比较相似，所以我们就一起讲了。需要注意的是，它

们都有带标签的用法。

带标签的 break 和 continue 可以控制自己被外层的哪个语句结构消费，这可以跳出复杂

的语句结构。

with 语句

with 语句是个非常巧妙的设计，但它把 JS 的变量引用关系变得不可分析，所以一般都认为

这种语句都属于糟粕。

1

2

3

function squre(x){
 return x * x;
}

复制代码

1

2

3

4

5

6

7

8

outer:for(let i = 0; i < 100; i++)
 inner:for(let j = 0; j < 100; j++)
 if(i == 50 && j == 50)
 break outer;
outer:for(let i = 0; i < 100; i++)
 inner:for(let j = 0; j < 100; j++)
 if(i >= 50 && j == 50)
 continue outer;

复制代码

但是历史无法改写，现在已经无法去除 with 了。我们来了解一下它的基本用法即可。

with 语句把对象的属性在它内部的作用域内变成变量。

try 语句和 throw 语句

try 语句和 throw 语句用于处理异常。它们是配合使用的，所以我们就放在一起讲了。在大

型应用中，异常机制非常重要。

一般来说，throw 用于抛出异常，但是单纯从语言的角度，我们可以抛出任何值，也不一

定是异常逻辑，但是为了保证语义清晰，不建议用 throw 表达任何非异常逻辑。

try 语句用于捕获异常，用 throw 抛出的异常，可以在 try 语句的结构中被处理掉：try 部

分用于标识捕获异常的代码段，catch 部分则用于捕获异常后做一些处理，而 finally 则是

用于执行后做一些必须执行的清理工作。

catch 结构会创建一个局部的作用域，并且把一个变量写入其中，需要注意，在这个作用

域，不能再声明变量 e 了，否则会出错。

1

2

3

4

let o = {a:1, b:2}
with(o){
 console.log(a, b);
}

复制代码

1

2

3

4

5

6

7

8

try {
 throw new Error("error");
} catch(e) {
 console.log(e);
} finally {
 console.log("finally");
}

复制代码

在 catch 中重新抛出错误的情况非常常见，在设计比较底层的函数时，常常会这样做，保

证抛出的错误能被理解。

finally 语句一般用于释放资源，它一定会被执行，我们在前面的课程中已经讨论过一些

finally 的特征，即使在 try 中出现了 return，finally 中的语句也一定要被执行。（你可以

参考第 19 讲）

debugger 语句

debugger 语句的作用是：通知调试器在此断点。在没有调试器挂载时，它不产生任何效

果。

介绍完普通语句，我们再来看看声明型语句。声明型语句跟普通语句最大区别就是声明型语

句响应预处理过程，普通语句只有执行过程。

var

var 声明语句是古典的 JavaScript 中声明变量的方式。而现在，在绝大多数情况下，let 和

const 都是更好的选择。

我们在上一节课已经讲解了 var 声明对全局作用域的影响，它是一种预处理机制。

如果我们仍然想要使用 var，我的个人建议是，把它当做一种“保障变量是局部”的逻辑，

遵循以下三条规则：

例如：

声明同时必定初始化；

尽可能在离使用的位置近处声明；

不要在意重复声明。

1

2

3

4

5

var x = 1, y = 2;
doSth(x, y);

for(var x = 0; x < 10; x++)
 doSth2(x);

复制代码

这个例子中，两次声明了变量 x，完成了两段逻辑，这两个 x 意义上可能不一定相关，这

样，不论我们把代码复制粘贴在哪里，都不会出错。

当然，更好的办法是使用 let 改造，我们看看如何改造：

这里我用代码块限制了第一个 x 的作用域，这样就更难发生变量命名冲突引起的错误了。

let 和 const

let 和 const 是都是变量的声明，它们的特性非常相似，所以我们放在一起讲了。let 和

const 是新设计的语法，所以没有什么硬伤，非常地符合直觉。let 和 const 的作用范围是

if、for 等结构型语句。

我们看下基本用法：

这里的代码先在全局声明了变量 a，接下来又在 if 内声明了 a，if 内构成了一个独立的作用

域。

1

2

3

4

5

6

7

{
 let x = 1, y = 2;
 doSth(x, y);
}

for(let x = 0; x < 10; x++)
 doSth2(x);

复制代码

1

2

3

4

5

6

const a = 2;
if(true){
 const a = 1;
 console.log(a);
}
console.log(a);

复制代码

const 和 let 语句在重复声明时会抛错，这能够有效地避免变量名无意中冲突：

这段代码中，先用 let 声明了 a，接下来又试图使用 const 声明变量 a，这时，就会产生错

误。

let 和 const 声明虽然看上去是执行到了才会生效，但是实际上，它们还是会被预处理。如

果当前作用域内有声明，就无法访问到外部的变量。我们来看这段代码：

这里在 if 的作用域中，变量 a 声明执行到之前，我们访问了变量 a，这时会抛出一个错

误，这说明 const 声明仍然是有预处理机制的。

在执行到 const 语句前，我们的 JavaScript 引擎就已经知道后面的代码将会声明变量 a，

从而不允许我们访问外层作用域中的 a。

class 声明

我们在之前的课程中，已经了解过 class 相关的用法。这里我们再从语法的角度来看一遍：

1

2

let a = 2
const a = 1;

复制代码

1

2

3

4

5

const a = 2;
if(true){
 console.log(a); // 抛错

 const a = 1;
}

复制代码

1

2

3

class a {

}

复制代码

class 最基本的用法只需要 class 关键字、名称和一对大括号。它的声明特征跟 const 和

let 类似，都是作用于块级作用域，预处理阶段则会屏蔽外部变量。

class 内部，可以使用 constructor 关键字来定义构造函数。还能定义 getter/setter 和方

法。

这个例子来自 MDN，它展示了构造函数、getter 和方法的定义。

以目前的兼容性，class 中的属性只能写在构造函数中，相关标准正在 TC39 讨论。

需要注意，class 默认内部的函数定义都是 strict 模式的。

函数声明

1

2

3

4

5

6

7

const a = 2;
if(true){
 console.log(a); // 抛错

 class a {

 }
}

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

class Rectangle {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
 // Getter
 get area() {
 return this.calcArea();
 }
 // Method
 calcArea() {
 return this.height * this.width;
 }
}

复制代码

函数声明使用 function 关键字。

在上一节课中，我们已经讨论过函数声明对全局作用域的影响了。这一节课，我们来看看函

数声明具体的内容，我们先看一下函数声明的几种类型

带 * 的函数是 generator，我们在前面的部分已经见过它了。生成器函数可以理解为返回

一个序列的函数，它的底层是 iterator 机制。

async 函数是可以暂停执行，等待异步操作的函数，它的底层是 Promise 机制。

异步生成器函数则是二者的结合。

函数的参数，可以只写形参名，现在还可以写默认参数和指定多个参数，看下例子：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

function foo(){

}

function* foo(){
 yield 1;
 yield 2;
 yield 3;
}

async function foo(){
 await sleep(3000);

}

async function* foo(){
 await sleep(3000);
 yield 1;
}

复制代码

1

2

3

4

function foo(a = 1, ...other) {
 console.log(a, other)
}

复制代码

这个形式可以代替一些对参数的处理代码，表意会更加清楚。

结语

今天我们一起学习了语句家族，语句分成了普通语句和声明型语句。

普通语句部分，建议你把重点放在循环语句上面。声明型语句我觉得都很重要，尤其是它们

的行为。熟练掌握了它们，我们就可以在工作中去综合运用它们，从而减少代码中的错误。

新特性大多可以帮助我们发现代码中的错误。

最后留一个小作业，请你找出所有具有 Symbol.iterator 的原生对象，并且看看它们的 for

of 遍历行为。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 期中答疑 | name(){}与name: function() {}，两种写法有什么区别吗？

下一篇 31 | JavaScript语法（三）：什么是表达式语句？

mfist
2019-04-04

 7

遍历了下window上面的全局对象，上面有Symbol.iterator的原生属性有15个，主要
Array Set Map String相关的。当然还有很多宿主环境提供的全局对象有Symbol.iterator
属性，他们有个共同的特征：都是些集合性质的数据结构。
0: "Array"
1: "String" …
展开

阿成
2019-04-02

 7

大概就这些？
Array, Map, Set, String, Float32Array, Float64Array, Int8Array, Int16Array,
Int32Array, Uint8Array, Uint16Array, Uint32Array, Uint8ClampedArray

timik
2019-05-07

 1

老师，我记得有的书上或者是资料上说超过五次的if else 就最好用 switch case来替换。这
样效率更好。您这里为什么说不用这个呢？

K4SHIFZ
2019-04-02

 1

为什么和第十九节中的分类不一样啊？

展开

许童童
2019-04-02

 1

Some built-in types have a default iteration behavior, while other types (such as
Object) do not. The built-in types with a @@iterator method are:
Array.prototype[@@iterator]()
TypedArray.prototype[@@iterator]()
String.prototype[@@iterator]() …

精选留言 (10)  写留言

展开

让时间说真...
2019-04-12



Map，set，arguments

展开

翰弟
2019-04-04



Array、Map、Set、String、TypedArray、函数的arguments、NodeList对象

qqq
2019-04-03



catch 中可以使用 var 重新声明

展开

Format
2019-04-02



请问老师后面可以讲讲，例如手淘购物车这种较复杂的功能吗？详细的那种，封装方法，
兼容，处理特殊情况之类的

K4SHIFZ
2019-04-02



请问老师，规范中的Statement和Declaration到底有什么区别？不都是声明的意思吗？

作者回复: Statement是语句，Declaration是声明，但是我觉得这个分类不好，因为语句里还有

var语句也是声明性质的。

