
21 | CSS选择器：伪元素是怎么回事儿？
2019-03-07 winter

重学前端 进入课程

讲述：winter
时长 18:31 大小 16.96M

你好，我是 winter。

在上一篇文章中，我已经给你介绍了一些简单选择器，这一节课我会继续给你介绍选择器的

几个机制：选择器的组合、选择器的优先级和伪元素。

选择器的组合

在 CSS 规则中，选择器部分是一个选择器列表。

选择器列表是用逗号分隔的复杂选择器序列；复杂选择器则是用空格、大于号、波浪线等符

号连接的复合选择器；复合选择器则是连写的简单选择器组合。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

根据选择器列表的语法，选择器的连接方式可以理解为像四则运算一样有优先级。

例如以下选择器：

我们应该理解为这样的结构。

第一优先级

无连接符号

第二优先级

“空格”

“~”

“+”

“>”

“||”

第三优先级

“,”

1

2

3

.c,.a>.b.d {
 /*......*/
}

复制代码

.c,.a>.b.d

.c

.a>.b.d

.a

.b.d

.b

.d

复合选择器表示简单选择器中“且”的关系，例如，例子中的“ .b.d ”，表示选中的元素

必须同时具有 b 和 d 两个 class。

复杂选择器是针对节点关系的选择，它规定了五种连接符号。

我们在实际使用时，比较常用的连接方式是“空格”和“>”。

工程实践中一般会采用设置合理的 class 的方式，来避免过于复杂的选择器结构，这样更有

利于维护和性能。

空格和子代选择器通常用于组件化场景，当组件是独立开发时，很难完全避免 class 重名的

情况，如果为组件的最外层容器元素设置一个特别的 class 名，生成 CSS 规则时，则全部

使用后代或者子代选择器，这样可以有效避免 CSS 规则的命名污染问题。

逗号表示“或”的关系，实际上，可以把它理解为“两条内容一样的 CSS 规则”的一种简

写。如我们开头的例子，可以理解成与下面的代码等效：

“空格”：后代，表示选中所有符合条件的后代节点， 例如“ .a .b ”表示选中所有具有

class 为 a 的后代节点中 class 为 b 的节点。

“>” ：子代，表示选中符合条件的子节点，例如“ .a>.b ”表示：选中所有“具有

class 为 a 的子节点中，class 为 b 的节点”。

“~” : 后继，表示选中所有符合条件的后继节点，后继节点即跟当前节点具有同一个父

元素，并出现在它之后的节点，例如“ .a~.b ”表示选中所有具有 class 为 a 的后继中，

class 为 b 的节点。

“+”：直接后继，表示选中符合条件的直接后继节点，直接后继节点即 nextSlibling。

例如 “.a+.b ”表示选中所有具有 class 为 a 的下一个 class 为 b 的节点。

“||”：列选择器，表示选中对应列中符合条件的单元格。

1

2

3

4

5

6

.c {
 /*......*/
}
.a>.b.d {
 /*......*/
}

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

到这里，我们就讲完了如何用简单选择器组合成复合选择器和复杂选择器，形成选择器列

表，这能够帮助我们应对各种复杂的需求。

CSS 选择器是基于规则生效的，同一个元素命中多条规则是非常常见的事情。不同规则指

定同一个属性为不同值时，就需要一个机制来解决冲突。这个机制，就是接下来我们要讲的

选择器优先级。

选择器的优先级

CSS 标准用一个三元组 (a, b, c) 来构成一个复杂选择器的优先级。

CSS 标准建议用一个足够大的进制，获取“ a-b-c ”来表示选择器优先级。

即：

其中，base 是一个“足够大”的正整数。关于 base，历史中有些趣闻，早年 IE6 采用

256 进制，于是就产生“256 个 class 优先级等于一个 id”这样的奇葩问题，后来扩大到

65536，基本避免了类似的问题。

现代浏览器多采用了更大的数量，我们正常编写的 CSS 规则数量不太可能达到数万，因此

我们可以认为这样的 base 就足够大了。

id 选择器的数目记为 a；

伪类选择器和 class 选择器的数目记为 b；

伪元素选择器和标签选择器数目记为 c；

“*” 不影响优先级。

1

2

specificity = base * base * a + base * b + c

复制代码

行内属性的优先级永远高于 CSS 规则，浏览器提供了一个“口子”，就是在选择器前加

上“!import”。

这个用法非常危险，因为它相当于一个新的优先级，而且此优先级会高于行内属性。

同一优先级的选择器遵循“后面的覆盖前面的”原则，我们可以看一个例子：

调换“.x”和“.y”我们可以得到不同的显示效果。选择器的优先级是针对单条规则的，多

条规则的选择器同时命中元素，优先级不会发生叠加。

1 <div id="my" class="x y">text<div>

复制代码

1

2

3

4

5

6

.x {
 background-color:lightblue;
}
.y {
 background-color:lightgreen;
}

复制代码

1 <div id="my" class="x y z">text<div>

复制代码

1

2

3

4

5

6

7

8

9

.x {
 background-color:lightblue;
}
.z {
 background-color:lightblue;
}
.y {
 background-color:lightgreen;
}

复制代码

在这个例子中，“.x ”和“.z ”都指定了背景色为浅蓝色，但是因为“.y ”规则在最后，

所以最终显示结果为浅绿色。另外一个需要注意的是，选择器的优先级是针对复杂选择器的

优先级，选择器列表不会合并计算优先级。

我们看一个例子：

这里选择器列表“ .x, .z”命中了 div，但是它的两项分别计算优先级，所以最终优先级仍

跟“ .y” 规则相同。

以上就是选择器优先级的相关规则了，虽然我们这里介绍了详细的计算方式，但是我认为选

择器的使用上，如果产生复杂的优先级计算，代码的可读性一定是有问题的。

所以实践中，建议你“根据 id 选单个元素”“class 和 class 的组合选成组元素”“tag 选

择器确定页面风格”这样的简单原则来使用选择器，不要搞出过于复杂的选择器。

伪元素

在上一课，我们有意忽略了一种重要的简单选择器：伪元素。

我之所以没有把它放在简单选择器中，是因为伪元素本身不单单是一种选择规则，它还是一

种机制。

1 <div id="my" class="x y z">text<div>

复制代码

1

2

3

4

5

6

.x, .z {
 background-color:lightblue;
}
.y {
 background-color:lightgreen;
}

复制代码

拼课微
信：1

71614
3665

所以本节课，我就来讲一讲伪元素机制。伪元素的语法跟伪类相似，但是实际产生的效果却

是把不存在的元素硬选出来。

目前兼容性达到可用的伪元素有以下几种。

下面我们就来分别讲讲它们。

::first-line 和 ::first-letter 是比较类似的伪元素，其中一个表示元素的第一行，一个表示

元素的第一个字母。

我们可以看一个示例：

这一段代码把段落的第一行字母变为大写。注意这里的第一行指的是排版后显示的第一行，

跟 HTML 代码中的换行无关。

::first-line

::first-letter

::before

::after

1

2

3

4

5

6

<p>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</p>

复制代码

1

2

3

p::first-line {
 text-transform: uppercase
}

复制代码

::first-letter 则指第一个字母。首字母变大并向左浮动是一个非常常见的排版方式。

虽然听上去很简单，但是实际上，我们遇到的 HTML 结构要更为复杂，一旦元素中不是纯

文本，规则就变得复杂了。

CSS 标准规定了 first-line 必须出现在最内层的块级元素之内。因此，我们考虑以下代码。

1

2

3

4

5

6

<p>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</p>

复制代码

1

2

3

4

5

p::first-letter {
 text-transform: uppercase;
 font-size:2em;
 float:left;
}

复制代码

1

2

3

4

<div>
 <p id=a>First paragraph</p>
 <p>Second paragraph</p>
</div>

复制代码

1

2

3

4

5

6

7

div>p#a {
 color:green;
}

div::first-line {
 color:blue;
}

复制代码

这段代码最终结果第一行是蓝色，因为 p 是块级元素，所以伪元素出现在块级元素之内，

所以内层的 color 覆盖了外层的 color 属性。

如果我们把 p 换成 span，结果就是相反的。

这段代码的最终结果是绿色，这说明伪元素在 span 之外。

::first-letter 的行为又有所不同，它的位置在所有标签之内，我们把前面的代码换成::first-

letter。

1

2

3

4

<div>
 First paragraph

 Second paragraph
</div>

复制代码

1

2

3

4

5

6

7

div>span#a {
 color:green;
}

div::first-line {
 color:blue;
}

复制代码

1

2

3

4

<div>
 First paragraph

 Second paragraph
</div>

复制代码

1

2

div>span#a {
 color:green;

复制代码

执行这段代码，我们可以看到，首字母变成了蓝色，这说明伪元素出现在 span 之内。

CSS 标准只要求 ::first-line 和 ::first-letter 实现有限的几个 CSS 属性，都是文本相关，这

些属性是下面这些。

接下来我们说说 ::before 和 ::after 伪元素。

这两个伪元素跟前面两个不同的是，它不是把已有的内容套上一个元素，而是真正的无中生

有，造出一个元素。

::before 表示在元素内容之前插入一个虚拟的元素，::after 则表示在元素内容之后插入。

这两个伪元素所在的 CSS 规则必须指定 content 属性才会生效，我们看下例子：

3

4

5

6

7

}

div::first-letter {
 color:blue;
}

1 <p class="special">I'm real element</p>

复制代码

这里要注意一点，::before 和 ::after 还支持 content 为 counter，如：

这对于实现一些列表样式是非常有用的。

::before 和 ::after 中支持所有的 CSS 属性。实际开发中，这两个伪元素非常有用，有了这

两个伪元素，一些修饰性元素，可以使用纯粹的 CSS 代码添加进去，这能够很好地保持

HTML 代码中的语义，既完成了显示效果，又不会让 DOM 中出现很多无语义的空元素。

总结

这一课，我们讲了 CSS 选择器的三种机制：选择器的组合、选择器优先级、以及伪元素。

在选择器组合这一部分，我们讲到了，选择器的连接方式像四则运算一样有优先级，

第一优先级是无连接符号；第二优先级是：“空格”“~”“+”“>”“||”；第三优先级

是“,”。

然后我们又介绍了选择器优先级的计算方式。

最后我们为大家介绍了伪元素，我们逐次讲解了

1

2

3

4

p.special::before {
 display: block;
 content: "pseudo! ";
}

复制代码

1

2

3

4

5

<p class="special">I'm real element</p>
p.special::before {
 display: block;
 content: counter(chapno, upper-roman) ". ";
}

复制代码

::first-line

四种伪元素。伪元素的语法跟伪类相似，但是实际产生的效果是把不存在的元素硬选出来。

这一点就与伪类不太一样了。

结合上一节课我们讲的简单选择器，对它们灵活运用，就能够满足大部分 CSS 的使用场景

的需求了。

最后，留给你一个问题，你所在的团队，如何规定 CSS 选择器的编写规范？你觉得它好

吗？

猜你喜欢

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

::first-letter

::before

::after

上一篇 20 | CSS 选择器：如何选中svg里的a元素？

下一篇 22 | 浏览器DOM：你知道HTML的节点有哪几种吗？

Scorpio
2019-03-08

 19

我们团队没有规范。。。

精选留言 (12)  写留言

https://time.geekbang.org/course/intro/163?utm_term=zeusMTA7L&utm_source=app&utm_medium=chongxueqianduan&utm_campaign=163-presell

展开

阿成
2019-03-07

 7

有两个问题想请教一下winter老师：
1. 您对styled-component类似的方案怎么看
2. 您对使用属性选择器代替class怎么看

展开

阿歡。
2019-03-13

 4

老师您好,下面例子中 把
去掉，会变成First paragraph为绿色，Second paragraph
为蓝色，这是为何？
<div>
 First paragraph

 Second paragraph …
展开

Carson
2019-03-07

 4

如果是注重复用的开发，一般采用组件化的形式，给组件一套命名空间；

如果是页面较少的网页开发，不太在意复用和扩展，一般采用 BEM 的规则。

”根据 id 选单个元素，class 和 class 的组合选择成组元素，tag 选择器确定页面风格。…
展开

Lcina
2019-03-18

 3

行内属性的优先级永远高于 CSS 规则，浏览器提供了一个“口子”，就是在选择器前加
上“!import”。应该是 important 吧

靠人品去赢
2019-04-03

 2

我放一个伪类和伪元素的链接吧，这两者属于见过但是没注意更没区分过，估计有人会需
要https://developer.mozilla.org/zh-
CN/docs/Learn/CSS/Introduction_to_CSS/Pseudo-classes_and_pseudo-elements

Ranjay
2019-03-24

 1

BEM规范实际上就已经是很好的实践

展开

qqq
2019-03-22

 1

提醒下：伪元素那部分说的是子元素 color 覆盖父元素 color，而非 CSS 规则覆盖

Geek_8c1d6...
2019-03-07

 1

img、br等不能包含子元素的标签不能创建::before和::after。但一个例外是hr，不知道为
什么。或许是我的理解有问题？

bradleyz...
2019-05-16



MDN 上有一个图解优先级的材料 https://specifishity.com/

展开

旅途。👣...
2019-05-09



评论亦精彩

展开

空山鸟语
2019-04-17



选择器的优先级那块，是不是还缺 属性选择器？
 比如 input[type=text] 等

