
35 | CSS Flex排版：为什么垂直居中这么难？
2019-04-13 winter

重学前端 进入课程

讲述：winter
时长 07:44 大小 7.09M

你好，我是 winter。今天我们来谈谈 Flex 排版。

我们在前面多次讲过，正常流排版的设计来源于数百年来出版行业的排版经验，而 HTML

诞生之初，也确实是作为一种“超文本”存在的。

但是，自上世纪 90 年代以来，Web 标准和各种 Web 应用蓬勃发展，网页的功能逐渐

从“文本信息”向着“软件功能”过渡，这个思路的变化导致了：CSS 的正常流逐渐不满

足人民群众的需求了。

这是因为文字排版的思路是“改变文字和盒的相对位置，把它放进特定的版面中”，而软件

界面的思路则是“改变盒的大小，使得它们的结构保持固定”。





 下载APP 

因此，在早年的 CSS 中，“使盒按照外部尺寸变化”的能力非常弱。在我入行前端的时间

（大约 2006 年），CSS 三大经典问题：垂直居中问题，两列等高问题，自适应宽问题。

这是在其它 UI 系统中最为基本的问题，而到了 CSS 中，却变成了困扰工程师的三座大

山。

机智的前端开发者们，曾经创造了各种黑科技来解决问题，包括著名的 table 布局、负

margin、float 与 clear 等等。在这种情况下，Flex 布局被随着 CSS3 一起提出（最初叫

box 布局），可以说是解决了大问题。

React Native 则更为大胆地使用了纯粹的 Flex 排版，不再支持正常流，最终也很好地支持

了大量的应用界面布局，这一点也证明了 Flex 排版的潜力。

今天，我们就从设计、原理和应用三个方面来学习一下 Flex 布局，我们先从设计开始。

Flex 的设计

Flex 在英文中是可伸缩的意思，一些翻译会把它译作弹性，我觉得有点不太准确，但是确

实中文中没有更好的词。

Flex 排版的核心是 display:flex 和 flex 属性，它们配合使用。具有 display:flex 的元素我

们称为 flex 容器，它的子元素或者盒被称作 flex 项。

flex 项如果有 flex 属性，会根据 flex 方向代替宽 / 高属性，形成“填补剩余尺寸”的特

性，这是一种典型的“根据外部容器决定内部尺寸”的思路，也是我们最常用的 Windows

和 Apple 窗口系统的设计思路。

Flex 的原理

说完了设计，我们再来看看原理，Flex 的实现并不复杂，我曾经写过一个基本实现提交给

spritejs 项目，代码可以参考这里。

下面我们就来讲解一下，如何实现一个 Flex 布局。

首先，Flex 布局支持横向和纵向，这样我们就需要做一个抽象，我们把 Flex 延伸的方向称

为“主轴”，把跟它垂直的方向称为“交叉轴”。这样，flex 项中的 width 和 height 就会

称为交叉轴尺寸或者主轴尺寸。

https://github.com/spritejs/sprite-core/commit/8757b4d3888b4f237b1089e94e075ab58ca952a6#diff-677d382da9f8d81f61d50af24f937b32R32

而 Flex 又支持反向排布，这样，我们又需要抽象出交叉轴起点、交叉轴终点、主轴起点、

主轴终点，它们可能是 top、left、bottom、right。

Flex 布局中有一种特殊的情况，那就是 flex 容器没有被指定主轴尺寸，这个时候，实际上

Flex 属性完全没有用了，所有 Flex 尺寸都可以被当做 0 来处理，Flex 容器的主轴尺寸等于

其它所有 flex 项主轴尺寸之和。

接下来我们开始做 Flex 排版。

第一步是把 flex 项分行，有 Flex 属性的 flex 项可以暂且认为主轴尺寸为 0，所以，它可

以一定放进当前行。

接下来我们把 flex 项逐个放入行，不允许换行的话，我们就“无脑地”把 flex 项放进同一

行。允许换行的话，我们就先设定主轴剩余空间为 Flex 容器主轴尺寸，每放入一个就把主

轴剩余空间减掉它的主轴尺寸，直到某个 flex 项放不进去为止，换下一行，重复前面动

作。

分行过程中，我们会顺便对每一行计算两个属性：交叉轴尺寸和主轴剩余空间，交叉轴尺寸

是本行所有交叉轴尺寸的最大值，而主轴剩余空间前面已经说过。

第二步我们来计算每个 flex 项主轴尺寸和位置。

如果 Flex 容器是不允许换行的，并且最后主轴尺寸超出了 Flex 容器，就要做等比缩放。

如果 Flex 容器有多行，那么根据我们前面的分行算法，必然有主轴剩余空间，这时候，我

们要找出本行所有的带 Flex 属性的 flex 项，把剩余空间按 Flex 比例分给他们即可。

做好之后，我们就可以根据主轴排布方向，确定每个 flex 项的主轴位置坐标了。

如果本行完全没有带 flex 属性的 flex 项，justify-content 机制就要生效了，它的几个不同

的值会影响剩余空白如何分配，作为实现者，我们只要在计算 Flex 项坐标的时候，加上一

个数值即可。

例如，如果是 flex-start 就要加到第一个 flex 项身上，如果是 center 就给第一个 flex 项

加一半的尺寸，如果是 space-between，就要给除了第一个以外的每个 flex 项加上“flex

项数减一分之一”。

第三步我们来计算 flex 项的交叉轴尺寸和位置。

交叉轴的计算首先是根据 align-content 计算每一行的位置，这部分跟 justify-content 非

常类似。

再根据 alignItems 和 flex 项的 alignSelf 来确定每个元素在行内的位置。

计算完主轴和交叉轴，每个 flex 项的坐标、尺寸就都确定了，这样我们就完成了整个的

flex 布局。

Flex 的应用

接下来我们来尝试用 flex 排版来解决一下当年的 CSS 三大经典问题（简直易如反掌）。

垂直居中：

1

2

3

4

<div id="parent">
 <div id="child">
 </div>
</div>

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#parent {
 display:flex;
 width:300px;
 height:300px;
 outline:solid 1px;
 justify-content:center;
 align-content:center;
 align-items:center;
}
#child {
 width:100px;
 height:100px;
 outline:solid 1px;
}

复制代码

思路是创建一个只有一行的 flexbox，然后用 align-items:center; 和 align-

content:center; 来保证行位于容器中，元素位于行中。

两列等高：

思路是创建一个只有一行的 flexbox，然后用 stretch 属性让每个元素高度都等于行高。

自适应宽：

1

2

3

4

5

6

7

8

9

10

11

12

13

<div class="parent">
 <div class="child" style="height:300px;">
 </div>
 <div class="child">
 </div>
</div>

<div class="parent">
 <div class="child" >
 </div>
 <div class="child" style="height:300px;">
 </div>
</div>

复制代码

1

2

3

4

5

6

7

8

9

10

11

.parent {
 display:flex;
 width:300px;
 justify-content:center;
 align-content:center;
 align-items:stretch;
}
.child {
 width:100px;
 outline:solid 1px;
}

复制代码

这个就是 Flex 设计的基本能力了，给要自适应的元素添加 flex 属性即可。

总结

今天我们从 Flex 的设计、原理和应用三个方面一起学习了 Flex 排版。

我们先从感性的角度，介绍了 flex 的设计，flex 的设计是一种不同于流布局的，自外而内

的设计思路。

接下来我们讲解了 flex 的实现原理，也就是具体的排版算法。要想理解 flex 排版的原理，

主轴和交叉轴是非常重要的抽象，flex 排版三个步骤：分行、计算主轴、计算交叉轴。

最后我们给出了几个例子，解决了旧时代的 CSS 三大经典问题。

1

2

3

4

5

6

<div class="parent">
 <div class="child1">
 </div>
 <div class="child2">
 </div>
</div>

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

.parent {
 display:flex;
 width:300px;
 height:200px;
 background-color:pink;
}
.child1 {
 width:100px;
 background-color:lightblue;
}
.child2 {
 width:100px;
 flex:1;
 outline:solid 1px;
}

复制代码

最后，给你留一个小问题，请根据我的代码和文字，编写一段使

用“position:absolute”来模拟 flex 布局的 js。大家可以根据自己的水平，简化需求，比

如可以实现一个仅仅支持横向的、单行的、所有 flex 项必须指定高度的 flex 布局。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 34 | HTML小实验：用代码分析HTML标准

下一篇 36 | 浏览器事件：为什么会有捕获过程和冒泡过程？

许童童
2019-04-13

 4

flex好用，gird更好用。会讲一下吗？

展开

阿成
2019-04-15

 3

精选留言 (6)  写留言

https://gist.github.com/aimergenge/e26193440fa38ebbb9a54847540c29c7

展开

favorlm
2019-04-14

 3

自动填充剩余宽度
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" /> …
展开

北拉
2019-04-14

 2

试过好多次，找了很多方法flex兼容ie9以下，每次都失败，有什么好的解决办法吗

cjd
2019-04-15

 1

直接calc(100% - n)

展开

彧豪
2019-04-13

 1

gird布局如果后面winter老师没有讲到，推荐你找找大漠老师的文章来看看，另外阮一峰
老师也写了一篇，二者可以结合起来看看

