
37 | 浏览器API（小实验）：动手整理全部API
2019-04-18 winter

重学前端 进入课程

讲述：winter
时长 10:22 大小 9.51M

你好，我是 winter。今天我们来讲讲浏览器 API。

浏览器的 API 数目繁多，我们在之前的课程中，已经一起学习了其中几个比较有体系的部

分：比如之前讲到过的 DOM 和 CSSOM 等等。但是，如果你留意过，会发现我们讲到的

API 仍然是标准中非常小的一部分。

这里，我们不可能把课程变成一本厚厚的 API 参考手册，所以这一节课，我设计了一个实

验，我们一起来给 API 分分类。

我们按照每个 API 所在的标准来分类。所以，我们用代码来反射浏览器环境中全局对象的

属性，然后我们用 JavaScript 的 filter 方法来逐步过滤掉已知的属性。





 下载APP 

接下来，我们整理 API 的方法如下：

重复这个过程，我们可以找到所有的 API 对应的标准。首先我们先把前面已经讲过的 API

过滤掉。

##JavaScript 中规定的 API

大部分的 API 属于 Window 对象（或者说全局对象），我们可以用反射来看一看现行浏览

器中已经实现的 API，我这里使用 Mac 下的 Chrome 72.0.3626.121 版本。

我们首先调用 Object.getOwnPropertyNames(window)。在我的环境中，可以看到，共

有 821 个属性。

这里包含了 JavaScript 标准规定的属性，我们做一下过滤：

这一部分我们已经在 JavaScript 部分讲解过了（JavaScript 对象：你知道全部的对象分类

吗），所以这里我就采用手工的方式过滤出来。

DOM 中的元素构造器

从 Window 的属性中，找到 API 名称；

查阅 MDN 或者 Google，找到 API 所在的标准；

阅读标准，手工或者用代码整理出标准中包含的 API；

用代码在 Window 的属性中过滤掉标准中涉及的 API。

1

2

3

4

5

6

7

{
 let js = new Set();
 let objects = ["BigInt", "BigInt64Array", "BigUint64Array", "Infinity", "NaN", "unde
 objects.forEach(o => js.add(o));
 let names = Object.getOwnPropertyNames(window)
 names = names.filter(e => !js.has(e));
}

复制代码

接下来我们看看已经讲过的 DOM 部分，DOM 部分包含了 document 属性和一系列的构

造器，我们可以用 JavaScript 的 prototype 来过滤构造器。

这里我们把所有 Node 的子类都过滤掉，再把 Node 本身也过滤掉，这是非常大的一批

了。

Window 对象上的属性

接下来我们要找到 Window 对象的定义，我们在下面链接中可以找到。

这里有一个 Window 接口，是使用 WebIDL 定义的，我们手工把其中的函数和属性整理出

来，如下：

接下来，我们编写代码，把这些函数和属性，从浏览器 Window 对象的属性中去掉，

JavaScript 代码如下：

1

2

3

4

5

6

7

 names = names.filter(e => {
 try {
 return !(window[e].prototype instanceof Node)
 } catch(err) {
 return true;
 }
 }).filter(e => e != "Node")

复制代码

https://html.spec.whatwg.org/#window

1

2

 window,self,document,name,location,history,customElements,locationbar,menubar, personal

复制代码

1

2

3

4

{
 let names = Object.getOwnPropertyNames(window)
 let js = new Set();
 let objects = ["BigInt", "BigInt64Array", "BigUint64Array", "Infinity", "NaN", "unde

复制代码

https://html.spec.whatwg.org/#window

我们还要过滤掉所有的事件，也就是 on 开头的属性。

webkit 前缀的私有属性我们也过滤掉：

除此之外，我们在 HTML 标准中还能找到所有的接口，这些我们也过滤掉：

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 objects.forEach(o => js.add(o));
 names = names.filter(e => !js.has(e));

 names = names.filter(e => {
 try {
 return !(window[e].prototype instanceof Node)
 } catch(err) {
 return true;
 }
 }).filter(e => e != "Node")

 let windowprops = new Set();
 objects = ["window", "self", "document", "name", "location", "history", "customEleme
 objects.forEach(o => windowprops.add(o));
 names = names.filter(e => !windowprops.has(e));
}

1 names = names.filter(e => !e.match(/^on/))

复制代码

1 names = names.filter(e => !e.match(/^webkit/))

复制代码

1

2

3

4

5

6

7

 let interfaces = new Set();
 objects = ["ApplicationCache", "AudioTrack", "AudioTrackList", "BarProp", "BeforeUnl
 objects.forEach(o => interfaces.add(o));

 names = names.filter(e => !interfaces.has(e));

复制代码

这样过滤之后，我们已经过滤掉了所有的事件、Window 对象、JavaScript 全局对象和

DOM 相关的属性，但是，竟然还剩余了很多属性！你是不是很惊讶呢？好了，接下来我们

才进入今天的正题。

其它属性

这些既不属于 Window 对象，又不属于 JavaScript 语言的 Global 对象的属性，它们究竟

是什么呢？

我们可以一个一个来查看这些属性，来发现一些我们以前没有关注过的标准。

首先，我们要把过滤的代码做一下抽象，写成一个函数：

每次执行完 filter 函数，都会剩下一些属性，接下来，我们找到剩下的属性来看一看。

ECMAScript 2018 Internationalization API

在我的浏览器环境中，第一个属性是：Intl。

查找这些属性来历的最佳文档是 MDN，当然，你也可以使用 Google。

总之，经过查阅，我发现，它属于 ECMA402 标准，这份标准是 JavaScript 的一个扩展，

它包含了国际化相关的内容：

ECMA402 中，只有一个全局属性 Intl，我们也把它过滤掉：

1

2

3

4

5

function filterOut(names, props) {
 let set = new Set();
 props.forEach(o => set.add(o));
 return names.filter(e => !set.has(e));
}

复制代码

http://www.ecma-international.org/ecma-402/5.0/index.html#Title

http://www.ecma-international.org/ecma-402/5.0/index.html#Title

再来看看还有什么属性。

Streams 标准

接下来我看到的属性是： ByteLengthQueuingStrategy。

同样经过查阅，它来自 WHATWG 的 Streams 标准：

https://streams.spec.whatwg.org/#blqs-class

不过，跟 ECMA402 不同，Streams 标准中还有一些其它属性，这里我手工查阅了这份标

准，并做了整理。

接下来，我们用代码把它们跟 ByteLengthQueuingStrategy 一起过滤掉：

好了，过滤之后，又少了一些属性，我们继续往下看。

WebGL

接下来我看到的属性是：WebGLContext Event。

显然，这个属性来自 WebGL 标准：

我们在这份标准中找到了一些别的属性，我们把它一起过滤掉：

1 names = names.filter(e => e != "Intl")

复制代码

1 names = filterOut(names, ["ReadableStream", "ReadableStreamDefaultReader", "ReadableStre

复制代码

https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.15

复制代码

https://streams.spec.whatwg.org/#blqs-class
https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.15

过滤掉 WebGL，我们继续往下看。

Web Audio API

下一个属性是 WaveShaperNode。这个属性名听起来就跟声音有关，这个属性来自 W3C

的 Web Audio API 标准。

我们来看一下标准：

Web Audio API 中有大量的属性，这里我用代码做了过滤。得到了以下列表：

于是我们把它们也过滤掉：

我们继续看下一个属性。

Encoding 标准

在我的环境中，下一个属性是 TextDecoder，经过查阅得知，这个属性也来自一份

WHATWG 的标准，Encoding：

1 names = filterOut(names, ["WebGLContextEvent","WebGLObject", "WebGLBuffer", "WebGLFrameb

https://www.w3.org/TR/webaudio/

1 ["AudioContext", "AudioNode", "AnalyserNode", "AudioBuffer", "AudioBufferSourceNode", "A

复制代码

1

2

names = filterOut(names, ["AudioContext", "AudioNode", "AnalyserNode", "AudioBuffer", "A

复制代码

https://encoding.spec.whatwg.org/#dom-textencoder

https://www.w3.org/TR/webaudio/
https://encoding.spec.whatwg.org/#dom-textencoder

这份标准仅仅包含四个接口，我们把它们过滤掉：

我们继续来看下一个属性。

Web Background Synchronization

下一个属性是 SyncManager，这个属性比较特殊，它并没有被标准化，但是我们仍然可以

找到它的来源文档：

这个属性我们就不多说了，过滤掉就好了。

Web Cryptography API

我们继续看下去，下一个属性是 SubtleCrypto，这个属性来自 Web Cryptography API，

也是 W3C 的标准。

这份标准中规定了三个 Class 和一个 Window 对象的扩展，给 Window 对象添加了一个

属性 crypto。

我们继续来看。

Media Source Extensions

下一个属性是 SourceBufferList，它来自于：

1 names = filterOut(names, ["TextDecoder", "TextEncoder", "TextDecoderStream", "TextEncode

复制代码

https://wicg.github.io/BackgroundSync/spec/#sync-manager-interface

https://www.w3.org/TR/WebCryptoAPI/

1 names = filterOut(names, ["CryptoKey", "SubtleCrypto", "Crypto", "crypto"]);

复制代码

https://wicg.github.io/BackgroundSync/spec/#sync-manager-interface
https://www.w3.org/TR/WebCryptoAPI/

这份标准中包含了三个接口，这份标准还扩展了一些接口，但是没有扩展 window。

我们继续看下一个属性。

The Screen Orientation API

下一个属性是 ScreenOrientation，它来自 W3C 的 The Screen Orientation API 标准：

它里面只有 ScreenOrientation 一个接口，也是可以过滤掉的。

结语

到 Screen Orientation API，我这里看到还剩 300 余个属性没有处理，剩余部分，我想把

它留给大家自己来完成。

我们可以看到，在整理 API 的过程中，我们可以找到各种不同组织的标准，比如：

浏览器环境的 API，正是这样复杂的环境。我们平时编程面对的环境也是这样的一个环境。

https://www.w3.org/TR/media-source/

1 names = filterOut(names, ["MediaSource", "SourceBuffer", "SourceBufferList"]);

复制代码

https://www.w3.org/TR/screen-orientation/

ECMA402 标准来自 ECMA；

Encoding 标准来自 WHATWG；

WebGL 标准来自 Khronos；

Web Cryptography 标准来自 W3C；

还有些 API，根本没有被标准化。

https://www.w3.org/TR/media-source/
https://www.w3.org/TR/screen-orientation/

所以，面对如此繁复的 API，我建议在系统掌握 DOM、CSSOM 的基础上，你可以仅仅做

大概的浏览和记忆，根据实际工作需要，选择其中几个来深入学习。

做完这个实验，你对 Web API 的理解应该会有很大提升。

这一节课的问题就是完成所有的 API 到标准的归类，不同的浏览器环境应该略有不同，欢

迎你把自己的结果留言一起讨论。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 36 | 浏览器事件：为什么会有捕获过程和冒泡过程？

下一篇 38 | CSS动画与交互：为什么动画要用贝塞尔曲线这么奇怪的东西？

阿成
2019-04-19

 8

整理的过程中，我发现我对翻阅标准的恐惧心降低了... 而且大概了解了一下这些spec都在
干些啥(虽然也有很多并不知道他们是在干啥)...

精选留言 (4)  写留言

就是花的时间有点长... 都整理完太累了... 有些词实在是检索不到spec，只能在一些犄角旮
旯的地方甚至源码里看到引用... …
展开

Carson
2019-04-24

 7

经过几天的整理，终于穷尽了 Chrome 下的 API。记得之前看别人文章中介绍的各种 API
一头雾水，现在回头看，多了不少熟悉感，而且每个 API 都能落在知识树的一个节点上。

分享整理所得：
 …
展开

mfist
2019-04-18

 2

1. 通过老师的课，感觉慢慢会去翻标准了，之前学习没有见过的API，只是到MDN为止。
2. 浏览器器中大多数的对象都原型继承自Object，是否可以根据原型继承关系 将window
上面的api绘制成一颗树？有了这些继承关系 是否更容易理清这些全局属性呢。

展开

🐳李小博...
2019-05-08

 1

有一个疑惑是，大小写的两个属性有什么区别
Screen，screen
Event，event

展开

