

◼

◼

◼

➢

➢

➢

➢

◼

线程A：
content = initContent(); //(1)
isInit = true; //(2)

线程B：
if (isInit) { //(3)

content.operation(); //(4)
}

线程A：
isInit = true; //(2)
content = initContent(); //(1)

◼

◼

◼

◼

◼

◼

◼

◼

AQS实现锁语义的逻辑

写state值，volatile特性会刷新主内存。

读state值，volatile特性会使得线程从主内存读取，其他线程的修改变得可见。

锁的获取和释放都需要使得状态的变化在线程间同步

设计思想

⚫ JVM实现

Monitorenter、Monitorexit

⚫处理器实现，汇编指令

lock cmpxchg %r15, 0x16(%r10) 和 lock cmpxchg %r10, (%r11)

前面了解到，cmpxchg是CAS的汇编指令，上面汇

编指令的含义是

➢ 先用lock指令对总线和缓存上锁，

➢ 然后用cmpxchg CAS操作设置对象头中的

synchronized标志位

➢ CAS完成后释放锁，把缓存刷新到主内存。

理解synchronized的可见性和原子性

synchronized的底层操作含义是

➢ 先对对象头的锁标志位用lock cmpxchg的方式设置成“锁

住“状态

➢ 释放锁时，再用lock cmpxchg的方式修改对象头的锁标志

位为”释放“状态，写操作都立刻写回主内存。

➢ JVM会进一步对synchronized时CAS失败的那些线程进行阻

塞操作，这部分的逻辑没有体现在lock cmpxchg指令上。

lock cmpxchg指令前者保证了可见性和防止重排序，后者保

证了操作的原子性。

