
并发编程
JUC-线程池

FutureTask

1. 是一个Runnable， 它的run方法

2. get方法的逻辑

public void run() {

 if (state != NEW ||

 !UNSAFE.compareAndSwapObject(this, runnerOffset,

 null, Thread.currentThread()))

 return;

 try {

 Callable<V> c = callable;

 if (c != null && state == NEW) {

 V result;

 boolean ran;

 try {

 result = c.call(); // 【1】执行了给入的任务

 ran = true;

 } catch (Throwable ex) {

 result = null;

 ran = false;

 setException(ex); // 【3】 异常时，设置Ex

 }

 if (ran)

 set(result); // 【2】 设置结果

 }

 } finally {

 // runner must be non-null until state is settled to

 // prevent concurrent calls to run()

 runner = null;

 // state must be re-read after nulling runner to prevent

 // leaked interrupts

 int s = state;

 if (s >= INTERRUPTING)

 handlePossibleCancellationInterrupt(s);

 }

}

/**

 * @throws CancellationException {@inheritDoc}

 */

public V get() throws InterruptedException, ExecutionException {

 int s = state;

 if (s <= COMPLETING)

 s = awaitDone(false, 0L); //等待

 return report(s);

af://n191
af://n193
af://n194

3. cancel的逻辑

4.

}

 private int awaitDone(boolean timed, long nanos)

 throws InterruptedException {

 final long deadline = timed ? System.nanoTime() + nanos : 0L;

 WaitNode q = null;

 boolean queued = false;

 for (;;) { //【1】 无限循环，来判断条件是否满足，以及中途被中断后、唤醒后，继

续等待

 if (Thread.interrupted()) {

 removeWaiter(q);

 throw new InterruptedException();

 }

 int s = state;

 if (s > COMPLETING) {

 if (q != null)

 q.thread = null;

 return s;

 }

 else if (s == COMPLETING) // cannot time out yet

 Thread.yield();

 else if (q == null)

 q = new WaitNode();

 else if (!queued)

 queued = UNSAFE.compareAndSwapObject(this, waitersOffset,

 q.next = waiters, q);

 else if (timed) {

 nanos = deadline - System.nanoTime();

 if (nanos <= 0L) {

 removeWaiter(q);

 return state;

 }

 LockSupport.parkNanos(this, nanos);

 }

 else

 LockSupport.park(this); //让一个线程等待，【2】阻塞自己

 }

 }

/**

 * Attempts to cancel execution of this task. This attempt will

 * fail if the task has already completed, has already been cancelled,

 * or could not be cancelled for some other reason. If successful,

 * and this task has not started when {@code cancel} is called,

 * this task should never run. If the task has already started,

 * then the {@code mayInterruptIfRunning} parameter determines

 * whether the thread executing this task should be interrupted in

 * an attempt to stop the task.

 *

 * <p>After this method returns, subsequent calls to {@link #isDone} will

 * always return {@code true}. Subsequent calls to {@link #isCancelled}

 * will always return {@code true} if this method returned {@code true}.

 */

ThreadPoolExecutor

submit

execute(runnable);

 public boolean cancel(boolean mayInterruptIfRunning) {

 if (!(state == NEW &&

 UNSAFE.compareAndSwapInt(this, stateOffset, NEW,

 mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))

 return false;

 try { // in case call to interrupt throws exception

 if (mayInterruptIfRunning) {

 try {

 Thread t = runner;

 if (t != null)

 t.interrupt();

 } finally { // final state

 UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);

 }

 }

 } finally {

 finishCompletion();

 }

 return true;

 }

/**

 * @throws RejectedExecutionException {@inheritDoc}

 * @throws NullPointerException {@inheritDoc}

 */

public <T> Future<T> submit(Callable<T> task) {

 if (task == null) throw new NullPointerException();

 //【要点】封装成了RunnableFuture，再调用的execute()方法

 RunnableFuture<T> ftask = newTaskFor(task);

 execute(ftask);

 return ftask;

}

public void execute(Runnable command) {

 if (command == null)

 throw new NullPointerException();

 /*

 * Proceed in 3 steps:

 *

 * 1. If fewer than corePoolSize threads are running, try to

 * start a new thread with the given command as its first

 * task. The call to addWorker atomically checks runState and

 * workerCount, and so prevents false alarms that would add

 * threads when it shouldn't, by returning false.

 *

 * 2. If a task can be successfully queued, then we still need

 * to double-check whether we should have added a thread

 * (because existing ones died since last checking) or that

 * the pool shut down since entry into this method. So we

 * recheck state and if necessary roll back the enqueuing if

af://n207
af://n208
af://n210

池状态和线程计数

 * stopped, or start a new thread if there are none.

 *

 * 3. If we cannot queue task, then we try to add a new

 * thread. If it fails, we know we are shut down or saturated

 * and so reject the task.

 */

 int c = ctl.get();

 //【1】当前工作线程数小于核心线程数，添加工作线程来执行该任务

 if (workerCountOf(c) < corePoolSize) {

 if (addWorker(command, true))

 return;

 c = ctl.get();

 }

 //【2】池是否在工作，如果在工作，放入任务队列

 if (isRunning(c) && workQueue.offer(command)) {

 int recheck = ctl.get();

 //【2-1】放入队列后，再次检查池状态

 if (! isRunning(recheck) && remove(command))

 reject(command);

 else if (workerCountOf(recheck) == 0)

 addWorker(null, false);

 }

 //【3】 任务队列满了，或者池不在运行状态，添加线程，如果已达到最大线程数

 else if (!addWorker(command, false))

 reject(command);

}

/**

 * The main pool control state, ctl, is an atomic integer packing

 * two conceptual fields

 * workerCount, indicating the effective number of threads

 * runState, indicating whether running, shutting down etc

 *【1】低29位用于线程计数，高3位用于状态表示

 * In order to pack them into one int, we limit workerCount to

 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2

 * billion) otherwise representable. If this is ever an issue in

 * the future, the variable can be changed to be an AtomicLong,

 * and the shift/mask constants below adjusted. But until the need

 * arises, this code is a bit faster and simpler using an int.

 *

 * The workerCount is the number of workers that have been

 * permitted to start and not permitted to stop. The value may be

 * transiently different from the actual number of live threads,

 * for example when a ThreadFactory fails to create a thread when

 * asked, and when exiting threads are still performing

 * bookkeeping before terminating. The user-visible pool size is

 * reported as the current size of the workers set.

 *

 * The runState provides the main lifecycle control, taking on values:

 *【2】池的5个状态

 * RUNNING: Accept new tasks and process queued tasks

 * SHUTDOWN: Don't accept new tasks, but process queued tasks

 * STOP: Don't accept new tasks, don't process queued tasks,

 * and interrupt in-progress tasks

 * TIDYING: All tasks have terminated, workerCount is zero,

af://n212

扩展

ThreadFactory

 * the thread transitioning to state TIDYING

 * will run the terminated() hook method

 * TERMINATED: terminated() has completed

 *

 * The numerical order among these values matters, to allow

 * ordered comparisons. The runState monotonically increases over

 * time, but need not hit each state. The transitions are:

 *【3】状态转换

 * RUNNING -> SHUTDOWN

 * On invocation of shutdown(), perhaps implicitly in finalize()

 * (RUNNING or SHUTDOWN) -> STOP

 * On invocation of shutdownNow()

 * SHUTDOWN -> TIDYING

 * When both queue and pool are empty

 * STOP -> TIDYING

 * When pool is empty

 * TIDYING -> TERMINATED

 * When the terminated() hook method has completed

 *

 * Threads waiting in awaitTermination() will return when the

 * state reaches TERMINATED.

 *

 * Detecting the transition from SHUTDOWN to TIDYING is less

 * straightforward than you'd like because the queue may become

 * empty after non-empty and vice versa during SHUTDOWN state, but

 * we can only terminate if, after seeing that it is empty, we see

 * that workerCount is 0 (which sometimes entails a recheck -- see

 * below).

 */

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

/* 【用途】通过提供自己的ThreadFactory，可以控制线程的name, thread group, priority,

daemon status

<dd>New threads are created using a {@link ThreadFactory}. If not

* otherwise specified, a {@link Executors#defaultThreadFactory} is

* used, that creates threads to all be in the same {@link

* ThreadGroup} and with the same {@code NORM_PRIORITY} priority and

* non-daemon status. By supplying a different ThreadFactory, you can

* alter the thread's name, thread group, priority, daemon status,

* etc. If a {@code ThreadFactory} fails to create a thread when asked

* by returning null from {@code newThread}, the executor will

* continue, but might not be able to execute any tasks. Threads

* should possess the "modifyThread" {@code RuntimePermission}. If

* worker threads or other threads using the pool do not possess this

* permission, service may be degraded: configuration changes may not

* take effect in a timely manner, and a shutdown pool may remain in a

* state in which termination is possible but not completed.</dd>

af://n215
af://n216

RejectedExecutorHandler

ThreadPoolExecutor 本身的扩展

/* <dt>Rejected tasks</dt>

* 【目标】了解提供了哪些拒绝策略，可自定义拒绝策略

* <dd>New tasks submitted in method {@link #execute(Runnable)} will be

* rejected when the Executor has been shut down, and also when

* the Executor uses finite bounds for both maximum threads and work queue

* capacity, and is saturated. In either case, the {@code execute} method

* invokes the {@link

* RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}

* method of its {@link RejectedExecutionHandler}. Four predefined handler

* policies are provided:

*

*

*

* In the default {@link ThreadPoolExecutor.AbortPolicy}, the

* handler throws a runtime {@link RejectedExecutionException} upon

* rejection.

*

* In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread

* that invokes {@code execute} itself runs the task. This provides a

* simple feedback control mechanism that will slow down the rate that

* new tasks are submitted.

*

* In {@link ThreadPoolExecutor.DiscardPolicy}, a task that

* cannot be executed is simply dropped.

*

* In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the

* executor is not shut down, the task at the head of the work queue

* is dropped, and then execution is retried (which can fail again,

* causing this to be repeated.)

*

*

*

* It is possible to define and use other kinds of {@link

* RejectedExecutionHandler} classes. Doing so requires some care

* especially when policies are designed to work only under particular

* capacity or queuing policies. </dd>

* <dt>Hook methods</dt>

*【要点】了解钩子方法 beforeExecute afterExecute terminated

* <dd>This class provides {@code protected} overridable

* {@link #beforeExecute(Thread, Runnable)} and

* {@link #afterExecute(Runnable, Throwable)} methods that are called

* before and after execution of each task. These can be used to

* manipulate the execution environment; for example, reinitializing

* ThreadLocals, gathering statistics, or adding log entries.

* Additionally, method {@link #terminated} can be overridden to perform

* any special processing that needs to be done once the Executor has

* fully terminated.

*

* <p>If hook or callback methods throw exceptions, internal worker

* threads may in turn fail and abruptly terminate.</dd>

af://n219
af://n222

并发协同

线程安全

1 锁

2 原子类

3 AQS

ReentrantLock 和 Semaphore 的异同

相同：

1. 都支持公平、非公平模式，都可以阻塞线程
2. 都是抢到资源的线程可以执行，抢不到的排队 int 10

不同点：

ReentrantLock 对象 ，只可以被一个线程独占，Semaphore 对象 可以多个线程拿到信号量（可被多个
线程共享）

1 是什么

抽象排队同步器（大家都称它为：抽象队列同步器），JUC包中提供的一个基于FIFO等待队列来实现阻
塞锁和线程同步器（如semaphores）的框架。对于大多数依赖于单个原子int值来表示状态的同步器，
这个类被设计成一个非常有用的基础。

2 怎么使用它

1 AQS中定义的方法分为两大类：

public的final方法，对外的行为
protected 的空方法，由子类重写来更新内部的int状态值来实现对这个对象的acquire、release的
含义。给定这些，这个类中的其他方法执行所有排队和阻塞机制。

ReentrantLock lock = new ReentrantLock ()

线程1：

lock.lock();

线程2：

lock.lock();

Semaphore semap = nwe Semaphore(10);

线程1：

semap.acquire();

线程2：

semap.acquire();

af://n225
af://n228
af://n229
af://n230
af://n231
af://n243
af://n246

2 子类应该定义为非public的内部助手类，用于实现其封闭类的同步属性。具体的锁和相关的同步器可
以根据需要调用AQS的方法来实现它们的公共方法。

3、此类支持默认独占模式和共享模式中的一个或两个。在独占模式下获取时，其他线程尝试的获取无法
成功。多线程的共享模式获取可能（但不一定）成功。在不同模式下等待的线程共享相同的FIFO队列。
通常，子类只需实现支持其中一种模式，但也可实现使用两种模式，如ReadWriteLock。只支持独占或
共享模式的子类不需要定义支持未使用模式的方法。

4、AQS中定义了一个内嵌的ConditionObject类，可被子类用作Condition的实现。举例
ReentrantLock的newCondition()方法。

5、此类对象的序列化只会保留表示状态的int值，所以反序列化回来，线程队列是空的。请了解这一
点。

6、子类实现重写如下protected 空方法的注意实现：

1. 子类重写 protected 空方法时使用 getState、 setState和 compareAndSetState方法操作表示

同步状态的int值
2. 这些方法内部需保证是线程安全的，应是非阻塞的短操作
3. 注意tryAcquireShared方法的返回值是int（其他是boolean)：负数表示失败；0表示成功，不传播
唤醒排队线程获取；大于0成功，并传播唤醒排队线程获取。

7、AQS虽是基于内部的FIFO队列来排队的，但它并不自动强制FIFO。如 独占模式的核心代码如下：

如需公平性，需由子类在tryAcquire方法中来提供。

8、AQS继承了 AbstractOwnableSynchronizer ,它提供了跟踪独占同步器的持有线程的方法，可以使
用它来监控和诊断工具中帮助用户确定持有锁的线程。

9、它里面还提供一些get方法，可以获取排队线程等的信息，自行了解它们

tryAcquire

tryRelease

tryAcquireShared int

tryReleaseShared

isHeldExclusively

* Acquire:

 * while (!tryAcquire(arg)) {

 * enqueue thread if it is not already queued;

 * possibly block current thread;

 * }

 *

 * Release:

 * if (tryRelease(arg))

 * unblock the first queued thread;

10、AQS提供了一个高效的和可扩展的同步基础，它的使用范围是：可以依赖int state、acquire和
release参数以及内部FIFO等待队列的同步器。当这还不够时，您可以使用原子类、您自己的自定义
java.util.Queue类和LockSupport阻塞支持从较低级别构建同步器。

3 如何支持带超时等待

tryAcquire(long time)

节点状态

4 Synchronized原理

1 了解synchronized对应的字节码

说明：

1. 方法上加synchronized，是在方法修饰符上加 ACC_SYNCHRONIZED

2. synchronized(obj)，对应的字节码是 monitorenter monitorexit

// CANCELLED：由于超时或中断，此节点被取消。节点一旦被取消了就不会再改变状态。特别是，取消节点

的线程不会再阻塞。

static final int CANCELLED = 1;

// SIGNAL:此节点后面的节点已（或即将）被阻止（通过park），因此当前节点在释放或取消时必须断开后

面的节点

// 为了避免竞争，acquire方法时前面的节点必须是SIGNAL状态，然后重试原子acquire，然后在失败时

阻塞。

static final int SIGNAL = -1;

// 此节点当前在条件队列中。标记为CONDITION的节点会被移动到一个特殊的条件等待队列（此时状态将设

置为0），直到条件时才会被重新移动到同步等待队列 。（此处使用此值与字段的其他用途无关，但简化了机

制。）

static final int CONDITION = -2;

//传播：应将releaseShared传播到其他节点。这是在doReleaseShared中设置的（仅适用于头部节

点），以确保传播继续，即使此后有其他操作介入。

static final int PROPAGATE = -3;

//0:以上数值均未按数字排列以简化使用。非负值表示节点不需要发出信号。所以，大多数代码不需要检查特

定的值，只需要检查符号。

//对于正常同步节点，该字段初始化为0；对于条件节点，该字段初始化为条件。它是使用CAS修改的

javap -verbose SynchroinzedDemo.class

af://n280
af://n286
af://n287

问题： 何为监视器锁？

利用监视器来实现的锁

那何为监视器？

2 Monitor说明

请思考：synchronized的效果和ReentrantLock是一样的，那么synchronized实现同步的原理是否应该
是一样的？

1. 要有互斥量

2. 有重入计数

3. 有阻塞排队队列

4. 有wait等待队列

5. JVM在实现时可以使用什么做互斥量？

jvm也是程序，它直接面对操作系统，它可以使用操作系统提供的线程同步原语：mutex 互斥量和
semaphore 信号量 ;

也可以基于CAS操作来充当互斥量。

6. 而它使用的是monitor，monitor是什么？

每个对象都有一个monitor，jvm中是如何实现对象monitor的

hpp类上的注释：

 0: aload_0

 1: dup

 2: astore_2

 3: monitorenter

 4: getstatic #2 // Field c:I

 7: iload_1

 8: iadd

 9: putstatic #2 // Field c:I

 12: aload_2

 13: monitorexit

 14: goto 22

 17: astore_3

 管程，英文是 Monitor，也常被翻译为“监视器”，monitor 不管是翻译为“管程”还是“监视

器”，都是比较晦涩难懂。它到底是什么？

 在使用基本的 mutex 进行并发控制时，需要程序员非常小心地控制 mutex 的 down 和 up 操

作，否则很容易引起死锁等问题。为了更容易地编写出正确的并发程序，所以在 mutex 和

semaphore 的基础上，提出了更高层次的同步原语 monitor，不过需要注意的是，操作系统本身并不

支持 monitor 机制，实际上，monitor 是属于编程语言的范畴，当你想要使用 monitor 时，先了

解一下语言本身是否支持 monitor 原语，例如 C 语言它就不支持 monitor，Java 语言支持

monitor。

一般的 monitor 实现模式是编程语言在语法上提供语法糖，而如何实现 monitor 机制，则属于编译

器的工作，Java 就是这么干的。

openjdk\hotspot\src\share\vm\runtime\objectMonitor.hpp

openjdk\hotspot\src\share\vm\runtime\objectMonitor.cpp

af://n299

看结构体，了解其构成

看下方法

3 锁的优化

//

// The ObjectMonitor class is used to implement JavaMonitors which have

// transformed from the lightweight structure of the thread stack to a

// heavy weight lock due to contention

ObjectMonitor类用于实现javamonitor，javamonitor是由于线程争用而从线程堆栈的轻量级结构

转换为的重量级锁

// It is also used as RawMonitor by the JVMTI

class ObjectMonitor {

 //【1】从这里可看到semaphore

// initialize the monitor, exception the semaphore, all other fields

 // are simple integers or pointers

 ObjectMonitor() {

 _header = NULL;

 _count = 0;

 _waiters = 0,

 _recursions = 0; //线程的重入次数

 _object = NULL;

 _owner = NULL; //标识拥有该monitor的线程

 _WaitSet = NULL; //等待线程组成的双向循环链表，_WaitSet是第一个节点

 _WaitSetLock = 0 ;

 _Responsible = NULL ;

 _succ = NULL ;

 _cxq = NULL ; //多线程竞争锁进入时的单向链表

 FreeNext = NULL ;

 _EntryList = NULL ; //_owner从该双向循环链表中唤醒线程结点，_EntryList是

第一个节点

 _SpinFreq = 0 ;

 _SpinClock = 0 ;

 OwnerIsThread = 0 ;

 _previous_owner_tid = 0;

 }

 bool try_enter (TRAPS) ;

 void enter(TRAPS);

 void exit(bool not_suspended, TRAPS);

 void wait(jlong millis, bool interruptable, TRAPS);

 void notify(TRAPS);

 void notifyAll(TRAPS);

af://n326

1 自旋锁与自适应自旋

排队、阻塞、唤醒是比较耗时的。如果我们的使用场景中都是简单的++，set操作需同步，这样的操作很
快就可以完成，同时又有多个处理器，则抢不到锁的线程完全可以通过忙循环（自旋）的方式在那里”稍
等一下“，这样程序的性能会更好。这成为自旋优化（自旋锁）。jdk1.4.2引入，默认关闭，jdk1.6改为
默认开启，开关参数：

优缺点说明：

对处理器数量有要求，自旋不是阻塞，需占用处理器时间。如果锁被占用的时间很短，自旋等待的效果
会非常好，反之，自旋的线程会白白耗费处理器资源，反而会带来性能上的浪费。因此自旋等待的时间
必须要有一定的限度。自旋次数的默认值是10次，可通过参数 -XX:PreBlockSpin来更改。

jdk1.6中引入了自适应的自旋，自适应意味着自旋的时间不再固定了，而是由前一次在同一个锁上的自
旋时间及锁的持有者的状态来决定。如果在同一个锁对象上，自旋等待刚刚成功获得过锁，并且持有锁
的线程正在运行中，那么虚拟机就会认为这次自旋也很有可能再次成功，进而它将允许自旋等待更长的
时间，比如100个循环。另外，如果自旋很少成功获得锁，那在以后要去抢这个锁时将可能省略掉自旋
过程，以避免浪费处理器资源。有了自适应自旋，随着程序运行和性能监控信息的不断完善，虚拟机对
锁的状况预测就会越来越准确。

2 锁消除

通过逃逸分析发现其实根本就没有别的线程产生竞争的可能（别的线程没有临界量的引用），而“自作多
情”地给自己加上了锁。有可能虚拟机会直接去掉这个锁。

3 锁粗化

通常情况下，为了保证多线程间的有效并发，会要求每个线程持有锁的时间尽可能短（同步块的作用范
围限制得尽量小——只在共享数据的实际作用域中才进行同步。）。

大部分情况下，上面的原则都是正确的。但是如果一系列的连续操作都对同一个对象反复加锁和解锁，
甚至加锁操作是出现在循环体中的，那即使没有线程竞争，频繁地进行互斥同步操作也会带来不必要的
性能损耗。所以JVM中会针对这样的情况进行锁粗化优化。

-XX:+UseSpinning

//抢不到锁

排队

阻塞

唤醒

//

//抢不到锁

int i = 0;

while(i++ < 10);

//尝试抢锁

//抢不到锁

排队

阻塞

唤醒

//

af://n327
af://n335
af://n338

4 轻量级锁

jdk1.6中加入的新型锁机制，“轻量级”是相对于monitor使用操作系统互斥量实现而言的，因此monitor
锁成为”重量级锁“，在ObjectMonitor的注释中我们也看到：轻量级转为重量级锁。也即轻量级不是用来
替代重量级的，而是在没有多线程竞争的前提下，减少传统重量级锁使用操作系统互斥量产生的性能消
耗。

出现同一时间争抢情况不严重。

它主要是优化没有锁争用情况下的性能。

思考：不使用操作系统互斥量，那怎么达成抢锁判断（互斥）？

答案：CAS。轻量级锁利用对象头中的mark word来做互斥判断。

以上是Java对象处于5种不同状态时，Mark Word中64个位的表现形式，上面每一行代表对象处于某种
状态时的样子。其中各部分的含义如下：

lock:2位的锁状态标记位，由于希望用尽可能少的二进制位表示尽可能多的信息，所以设置了lock标记。
该标记的值不同，整个Mark Word表示的含义不同。biased_lock和lock一起，表达的锁状态含义如下：

biased_lock lock 状态

0 01 无锁

1 01 偏向锁

biased_lock：对象是否启用偏向锁标记，只占1个二进制位。为1时表示对象启用偏向锁，为0时表示对
象没有偏向锁。lock和biased_lock共同表示对象处于什么锁状态。

age：4位的Java对象年龄。在GC中，如果对象在Survivor区复制一次，年龄增加1。当对象达到设定的
阈值时，将会晋升到老年代。默认情况下，并行GC的年龄阈值为15，并发GC的年龄阈值为6。由于age
只有4位，所以最大值为15，这就是-XX:MaxTenuringThreshold选项最大值为15的原因。

identity_hashcode：31位的对象标识hashCode，采用延迟加载技术。调用方法
System.identityHashCode()计算，并会将结果写到该对象头中。当对象加锁后（偏向、轻量级、重量
级），MarkWord的字节没有足够的空间保存hashCode，因此该值会移动到管程Monitor中。

thread：持有偏向锁的线程ID。

epoch：偏向锁的时间戳。

ptr_to_lock_record：轻量级锁状态下，指向栈中锁记录的指针。

ptr_to_heavyweight_monitor：重量级锁状态下，指向对象监视器Monitor的指针。

轻量级锁的使用过程：

 00 轻量级锁

 10 重量级锁

 11 GC标记

af://n342

1. CAS修改mark word 的 lock标识为00，成功获得锁，失败则是有竞争，自旋，自旋获取不到，转
为重量级锁。mark word 如何变化？

2. 抢到轻量级锁后将mark word 保存到执行栈上，释放时CAS还原到对象头上，能还原成功，意味着
没线程争用，还原不成功，则表示有线程抢且阻塞等待了，唤醒等待线程，将mark word 复制给
它。

轻量级锁能提升同步性能的依据是：”对于绝大部分的锁，在整个同步周期内都是不存在竞争的“，这是
一个经验数据，如果满足，当然能带来性能提升。如果存在锁竞争，则可能会比重量级锁更慢。

5 偏向锁

轻量级锁，毕竟还有抢锁、复制markword的过程，jdk1.6中更进一步引入了偏向锁来优化无争用时的
性能。偏向即偏爱获得它的线程，无锁化执行。

偏向锁可以提高带有同步但无竞争的程序性能，它同样是带有效益权衡性质的优化。也就是说，它并不
一定总是对程序运行有利，如果程序中大多数的锁总是被多个线程访问，那偏向模式就是多余的，此时
可用如下参数禁用偏向锁优化，反而可以提升性能。

6 锁的升级过程

-XX:-UseBiasedLocking

af://n373
af://n378

5 ThreadLocal

是什么

变量的作用域？

局部变量 线程安全

/**

线程本地变量。 何为线程本地变量？

 * This class provides thread-local variables. These variables differ from

 * their normal counterparts in that each thread that accesses one (via its

 * {@code get} or {@code set} method) has its own, independently initialized

 * copy of the variable. {@code ThreadLocal} instances are typically private

 * static fields in classes that wish to associate state with a thread (e.g.,

 * a user ID or Transaction ID).

 *

class A {

 void doSome1(){

 int a = 10;

 int x = Thread.currentThread().get("x");

 }

 void doSome2() {

 int a = 11;

 int x = Thread.currentThread().getX();

 }

 void doSome3(){

 Thread.currentThread().set("x",10);

 doSome1();

 doSome2();

 }

}

af://n381
af://n382

全局变量 线程不安全的，需要加同步控制才能安全

线程本地变量

线程的变量，在线程的执行过程中，随时可以去访问它

可以怎样去定义它？

线程本地变量是线程安全的吗？

当然

内存泄露问题：

class A {

 public static int Count = 1;

}

class Thread {

 private Map<String,Object> datas;

 public Object get(String name){

 return datas.get(name);

 }

 public void set(String name,Object value){

 datas.put(name,value);

 }

}

static final ThreadLocal threadId 只有一个对象

 t1:

 threadid.get();

 t1.threadLocas (t1的ThreadLocalMap)

 t1.threadLocas(threadId)

 t2:

 threadid.get();

 t2.threadLocas (t2的ThreadLocalMap)

 t2.threadLocas(threadId)

static class Entry extends WeakReference<ThreadLocal<?>> {

 /** The value associated with this ThreadLocal. */

 Object value;

 Entry(ThreadLocal<?> k, Object v) {

 super(k);

 value = v;

 }

}

//得到的信息：

Map 是以 ThreadLocal对象的 WeakReference 弱引用为key

引用类型 被垃圾回收时间 用途 生存时间

强引用 从来不会 对象的一般状态 JVM停止运行时终止

软引用 当内存不足时 对象缓存 内存不足时终止

弱引用 正常垃圾回收时 对象缓存 垃圾回收后终止

虚引用 正常垃圾回收时 跟踪对象的垃圾回收 垃圾回收后终止

正确使用

使用 ThreadLocal 的时候，最好要声明为静态的；

使用完 ThreadLocal ，一定手动调用 remove() 方法。否则可能导致：

1. 内存被占用
2. 内存泄露
3. 线程是被复用的时（如线程池中的线程，web容器线程池中线程），可能会造成使用遗留的脏
数据、影响业务逻辑。

例如上面说到的 Session 的例子，如果不在拦截器或过滤器中处理，不仅可能出现内存泄漏问题，
而且会影响业务逻辑；

正确的标准用法

并发集合类
学习的要点：

1. 熟悉基本的API,满足使用
2. 明白他们是如何解决线程安全问题的
3. 性能是很好的，如何做到的

Queue

private static final ThreadLocal<> var1 = new ThreadLcoal<>();

try {

 threadLocal.set(a);

 //执行业务逻辑，逻辑中 get()值

}finally{

 //确保用完后，清除

 threadLocal.remove();

}

af://n459
af://n479
af://n496

DelayQueue

延时队列

Map

HashMap 非线程安全

HashTable 线程安全

af://n502
af://n511

	并发编程
	JUC-线程池
	FutureTask
	ThreadPoolExecutor
	submit
	execute(runnable);
	池状态和线程计数
	扩展
	ThreadFactory
	RejectedExecutorHandler
	ThreadPoolExecutor 本身的扩展

	并发协同
	线程安全
	1 锁
	2 原子类
	3 AQS
	1 是什么
	2 怎么使用它
	3 如何支持带超时等待

	4 Synchronized原理
	1 了解synchronized对应的字节码
	2 Monitor说明
	3 锁的优化
	1 自旋锁与自适应自旋
	2 锁消除
	3 锁粗化
	4 轻量级锁
	5 偏向锁
	6 锁的升级过程

	5 ThreadLocal
	是什么
	正确使用

	并发集合类
	Queue
	DelayQueue
	Map

