HE4RE
JUC-LiEith

FutureTask

1. 2—Runnable, Erunix

public void run() {
if (state != NEw ||
IUNSAFE . compareAndswapObject(this, runneroffset,
null, Thread.currentThread()))
return;
try {
Ccallable<v> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.callQ; // [1]1 U7 THAKIES
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex); // [3]1 S#il, #EEX

}
if (ran)
set(result); // [2]1 wEFHRE
}
} finally {

// runner must be non-null until state is settled to

// prevent concurrent calls to run()

runner = null;

// state must be re-read after nulling runner to prevent

// Tleaked interrupts

int s = state;

if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);

2. get}5i=RIEHE

Vi
* @throws CancellationException {@inheritDoc}
*/
public v get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, OL); //%f%
return report(s);

af://n191
af://n193
af://n194

private int awaitbDone(boolean timed, Tong nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : OL;
waitNode q = null;
boolean queued = false;

for (G;) { // (1) CRRPERR, SRAWKAEZEW 2, LAHISH WG, MmiEE,
S
if (Thread.interrupted()) {
removewaiter(q);
throw new InterruptedeException();
3
int s = state;
if (s > COMPLETING) {
if (g !'= null)
g.thread = null;
return s;
3
else if (s == COMPLETING) // cannot time out yet
Thread.yield(Q);
else if (q == null)
g = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersoffset,
g.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removewaiter(q) ;
return state;
}
LockSupport.parkNanos(this, nanos);
3
else
Locksupport.park(this); //ib PME&ESER, (2] fHEAC
}
}

3. cancelf0iBig

4.

Vi
* Attempts to cancel execution of this task. This attempt will

* fail if the task has already completed, has already been cancelled,

* or could not be cancelled for some other reason. If successful,

* and this task has not started when {@code cancel} is called,

* this task should never run. 1If the task has already started,

* then the {@code mayInterruptIfRunning} parameter determines

* whether the thread executing this task should be interrupted in

* an attempt to stop the task.

* <p>After this method returns, subsequent calls to {@link #isDone} will
* always return {@code true}. Subsequent calls to {@link #isCancelled}
* will always return {@code true} if this method returned {@code true}.

7':/

4k

public boolean cancel(boolean mayInterruptIfRunning) {
if (! (state == NEW &&
UNSAFE . compareAndSwapInt(this, stateoffset, NEWw,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;

try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {

Thread t = runner;
if (t !'= null)
t.interrupt();
} finally { // final state
UNSAFE.putorderedInt(this, stateoffset, INTERRUPTED);

}
} finally {
finishCcompletion();
}

return true;

ThreadPoolExecutor

submit

Vi
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritboc}
)
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
// UE) B3 TRunnableFuture, Hiffflexecute () Ak
RunnabTleFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;

execute(runnable);

pubTlic void execute(Runnable command) {
if (command == null)
throw new NullPointerException();

* Proceed in 3 steps:

* 1. If fewer than corePoolSize threads are running, try to

* start a new thread with the given command as its first

* task. The call to addworker atomically checks runState and
workercCount, and so prevents false alarms that would add

* threads when it shouldn't, by returning false.

* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread

* (because existing ones died since Tast checking) or that

* the pool shut down since entry into this method. So we
recheck state and if necessary roll back the enqueuing if

af://n207
af://n208
af://n210

* stopped, or start a new thread if there are none.

* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int ¢ = ctl.get();
// (1] Mpi TAELRREVN T2 0858, N TAELTERPUTI%ES
if (workercCountof(c) < corePoolSize) {
if (addworker(command, true))
return;
c = ctl.getQ);
}
// (2) W2 B TAE, WA T, BMAMESF
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// [2-11 ABNFIJG, B AR
if (! isRunning(recheck) && remove(command))
reject(command) ;
else if (workercountof(recheck) == 0)
addworker(null, false);
}
// L3 ARSBAINH T, BEEMAEBITIRG, IR, Wi ik B m R4
else if (!'addworker(command, false))
reject(command) ;

RSN ITEY

The main pool control state, ctl, is an atomic integer packing
two conceptual fields
workercCount, indicating the effective number of threads
runState, indicating whether running, shutting down etc
* (1] 2967 FH T2t 4, wmi3hH TOIRES R
In order to pack them into one int, we Timit workerCount to
* (2A29)-1 (about 500 million) threads rather than (2A31)-1 (2
billion) otherwise representable. If this is ever an issue 1in
the future, the variable can be changed to be an AtomicLong,
and the shift/mask constants below adjusted. But until the need
* arises, this code is a bit faster and simpler using an int.

* The workerCount is the number of workers that have been

* permitted to start and not permitted to stop. The value may be
transiently different from the actual number of Tive threads,
for example when a ThreadFactory fails to create a thread when
asked, and when exiting threads are still performing

* bookkeeping before terminating. The user-visible pool size is

* reported as the current size of the workers set.

%

The runsState provides the main Tifecycle control, taking on values:
* (2] ibHISAIRES
@ RUNNING: Accept new tasks and process queued tasks
* SHUTDOWN: Don't accept new tasks, but process queued tasks
STOP: Don't accept new tasks, don't process queued tasks,
and interrupt in-progress tasks
* TIDYING: A1l tasks have terminated, workerCount is zero,

af://n212

the thread transitioning to state TIDYING

* will run the terminated() hook method
* TERMINATED: terminated() has completed

The numerical order among these values matters, to allow

* ordered comparisons. The runState monotonically increases over
* time, but need not hit each state. The transitions are:

* (3] IRAEFH

* RUNNING -> SHUTDOWN

on invocation of shutdown(), perhaps implicitly in finalize()
(RUNNING or SHUTDOWN) -> STOP
on 1invocation of shutdownNow()

* SHUTDOWN -> TIDYING
& when both queue and pool are empty
* STOP -> TIDYING

when pool 1is empty
TIDYING -> TERMINATED
when the terminated() hook method has completed

Threads waiting in awaitTermination() will return when the
state reaches TERMINATED.

Detecting the transition from SHUTDOWN to TIDYING is less
straightforward than you'd 1ike because the queue may become

* empty after non-empty and vice versa during SHUTDOWN state, but
* we can only terminate if, after seeing that it is empty, we see
* that workerCount is 0 (which sometimes entails a recheck -- see

below) .

7':/

private final AtomicInteger ctl = new AtomicInteger(ctTOf(RUNNING, 0));

e

ThreadFactory

/-.‘:

(&) @it g CiThreadractory, #lLAE#IZkfEfiname, thread group, priority,

daemon status
<dd>New threads are created using a {@link ThreadFactory}. If not

*

*

*

otherwise specified, a {@link Executors#defaultThreadFactory} is

* used, that creates threads to all be in the same {@link

ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
non-daemon status. By supplying a different ThreadFactory, you can
alter the thread's name, thread group, priority, daemon status,
etc. If a {@code ThreadFactory} fails to create a thread when asked
by returning null from {@code newThread}, the executor will

* continue, but might not be able to execute any tasks. Threads

should possess the "modifyThread" {@code RuntimePermission}. If
worker threads or other threads using the pool do not possess this
permission, service may be degraded: configuration changes may not
take effect in a timely manner, and a shutdown pool may remain in a
state in which termination is possible but not completed.</dd>

af://n215
af://n216

RejectedExecutorHandler

/% <dt>Rejected tasks</dt>

CHAR] T ARSRAE T IRESAR 26 0%, W] [AR 4 SR

* <dd>New tasks submitted in method {@link #execute(Runnable)} will be

* rejected when the Executor has been shut down, and also when

* the Executor uses finite bounds for both maximum threads and work queue
* capacity, and is saturated. 1In either case, the {@code execute} method

invokes the {@1ink

* RejectedExecutionHandler#rejectedeExecution(Runnable, ThreadPoolExecutor)}
* method of its {@link RejectedExecutionHandler}. Four predefined handler
* policies are provided:

* <0l>

* <1i> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
* handler throws a runtime {@link RejectedExecutionException} upon
* rejection. </Ti>

<1li> In {@link ThreadpPoolExecutor.CallerRunsPolicy}, the thread

* that invokes {@code execute} itself runs the task. This provides a
* simple feedback control mechanism that will slow down the rate that
* new tasks are submitted. </Ti>

* <1i> In {@link ThreadPoolExecutor.DiscardpPolicy}, a task that
* cannot be executed 1is simply dropped. </1i>

* <1i>In {@link ThreadPoolExecutor.DiscardoldestpPolicy}, if the
* executor is not shut down, the task at the head of the work queue
* is dropped, and then execution is retried (which can fail again,

causing this to be repeated.) </1i>

*

* It is possible to define and use other kinds of {@link
* RejectedExecutionHandler} classes. Doing so requires some care
* especially when policies are designed to work only under particular

capacity or queuing policies. </dd>

ThreadPoolExecutor B9 B

*

<dt>Hook methods</dt>

* [BH] 74T 77% beforeExecute afterExecute terminated

*

*

*

*

<dd>This class provides {@code protected} overridable
{@1ink #beforeExecute(Thread, Runnable)} and
{@1ink #afterexecute(Runnable, Throwable)} methods that are called

* before and after execution of each task. These can be used to

manipulate the execution environment; for example, reinitializing
ThreadLocals, gathering statistics, or adding log entries.

* Additionally, method {@link #terminated} can be overridden to perform

any special processing that needs to be done once the Executor has
fully terminated.

<p>If hook or callback methods throw exceptions, internal worker
threads may in turn fail and abruptly terminate.</dd>

af://n219
af://n222

H&nE

ZERZE

1§

2 [RF

3 AQS

ReentrantLock #] Semaphore IS/

CEIEIR

1. BN, FFRFRT, ERRJLAEELAE
2. BRRICEIRRRISAZTLAAAT, BAZIRIHERA int 10

ReentrantLock 45 , RATLAE— N&iEIh 5, Semaphore 35 AJLAZNMEEZRESE (ATHS
HFEHE

ReentrantLock Tock = new ReentrantLock ()

LD
Tock.Tock();
HfE2:
Tock.Tock();

Semaphore semap = nwe Semaphore(10);
HE1:

semap.acquire();

LF22:

semap.acquire();

124

MSHPARE R (KKREIREN: HMRINIIRSER) | JUCEHREN— P ETFIFOFRTISSCIE
EPFNLAZR TR (Wsemaphores) AIEZR, MTASHEBTBNMREFintEBREFNSHELSES,
XA EWIRTT R — N FRE R RRIERT.

2 BAERTE
1 AQSHEX B AR ARAK:

e publichfinalFFik, XIIMYITA
e protected T HE, HFEREEXREHMNEBINtAMERELIRTXMIIFRAacquire, releasefy
B, HAEXY, XPMEPIEMS AR TIEHEAFIBR S,

af://n225
af://n228
af://n229
af://n230
af://n231
af://n243
af://n246

2 FEMZEX EpublickIREREIFE, BTSEHEIARNELSEME. BFRISHRIRXAIEL
P RIERERAAQSHI T RN ENIRI AT E.

3, MSSTSROARGIRAMESRAPH—PHAEA. EREETREES, BEthEAE=itasRETA
B, ZEFERIHEETGREAIRE (BFA—E) Al EAREN FEFILAE=ERAIFIFORATY,
BE, FERFEIISFFHEP—MMEL, BB CIERMIMEIN, ReadWriteLock, R3ZFRPRAEL
HEEH R F AT EE AR ERENTTIE.

4, AQSHENXT—/1AHikAIConditionObject3, mIiEFMAIEConditionAYSEM. %541
ReentrantLockfdnewCondition()/3;%,

5. HERMSRHFFIMRSREBRTNENINGE, FILARFIMLESE, SFEFIR=M. BT HX—

\\\\\

6. FHELMESU Tprotected EFiEAYTELM:

tryAcquire

tryRelease
tryAcquireShared int
tryReleaseShared
isHeTdExclusively

1. FEE protected T5AR(#FEA getstate . setstate #[] compareAndsetstate FiAER{ERR
ESRSHIntE

2. XETTERFHRRIEEEERTEN, REIFEENEERE

3. iERtryAcquireShared 5iAANREIERint (HfttEboolean): TaFERREAM; 0F:AIN, FMEE
IRFEHFRASAEIREN; K TF0RKTh, FHERBIRAEHEPALAZIREY,

7. AQSEZEETABPHIFIFORNFISHERARTY, (EEHABEEHIFIFO, 1 IRAEICHI IR :

* Acquire:

while (!tryAcquire(arg)) {
enqueue thread if it is not already queued;
possibly block current thread;

% }

* Release:

* if (tryRelease(arg))
unblock the first queued thread;

MEAFH, BHFEEryAcquirel5EHhRIREL,

8. AQSHKET Abstractownablesynchronizer Bi2H T IRERIE GESESANFELIZENTG L, AILME
FReskisiEimsi TRV E B AP RERE IRILE.

9. CEERRM—Eeet)TiE, TLEABHAEIEFNER, BT THE(N]

10, AQSIRIt T — BTy ENELEM, THERSEER: LUK Int state, acquirefl
releaseSHLAR RERFIFOEAEFINRELSES. JIXEABE, BILUFRARTE. FECHEEN
java.util.QueueZEfLockSupportfEEST I MNRIER BIEEE L8,

3 WASZHSHRINFS
tryAcquire(long time)
TRIRE

// CANCELLED: HH-THERTERWT, S S Bos . 9 s — B0 T 2 B ORGSR, BUE A
P ZFEAN 2> T PH ZE

static final int CANCELLED = 1;

// SIGNAL: L5 s M e (ERRPK #ifHIE Gaidpark) , KIS HG s 7ERE BEEUE I 26 20 T f5
THI R A

// R TERTES, acquire i VAR HT T I AL AUE SIGNALIRES, AAEHEIE Facquire, 2575
FH %€

static final int SIGNAL = -1;

// AT YRR SRR B . AR IE W CONDITION Y pii 2 15 7% 80 B — ANMREIR IR SR AR S5 A5 A B (LR IRZS S 152
BN , BHBIZMHNA S EHENRFP S o (AR ES F B AL ST, (EfE T HL
file)

static final int CONDITION = -2;

/ /165 No¥sreleaseSharedfEE I A4 5. iXZ&7EdoReleaseSharedH B 1) (&R TSk
D), Dt Rkakst, BRI A HALERIEN N

static final int PROPAGATE = -3;

//0: UL EEHE I ARIZE T HES AL] . AR AR AT ERME T Frel, KEHUCRDATE Zh Ay

ERME, RFERERS.
/X TIERFEE AR, 2T B N0; X TR, ST BIshiossit. EREHCASBSK

4 Synchronized|FIE
1 TH#Esynchronized ¥ RMAIF T

javap -verbose SynchroinzedDemo.class

HiRA:
1. 755& Efnsynchronized, 27E755AEH7 LN ACC_SYNCHRONIZED

2. synchronized(obj), XRAIFT5FEE monitorenter monitorexit

af://n280
af://n286
af://n287

aload_0

dup

astore_2

monitorenter

getstatic #2 // Field c:I
iload_1

iadd

putstatic #2 // Field c:I
: aload_2

: monitorexit

! goto 22

: astore_3

O 00 N » W N RE O

R R R
N wN

BIRR: {aI/o s faRE?
I A s M AR SRSE TR
A ANEE?
2 MonitoriiBg
BEEE: synchronizedf9%ERReentrantLock2—#£A9, BBAsynchronized LI ESHRIBEBRNIZ
=—1FRY?

1. Z8ERE

2. BENITH

3. BREZEHEBARAT

4. BwaitFRFAG

5. VMRS AT AR A B /R E?

vmtbEiER, EEEENERFRS, SHLMERRFRRREHIELIERLRE: mutex BERFEM

semaphore F8& ;
WA LUETFCASBMERRIERE.

6. MEEAAIEmonitor, monitorZHA?

HRE, J02 Monitor, WUEHEITEAUIEMAR”, monitor AEEBIREAETR" LR AL
A7, AR AR A . e BT A 2

AL mutex BHATIEAEHIN, FHEEFRAER /NOHEH mutex [down A1 up
1B, BNIRZ 5 S M . N 7 R S s S M IERIE R AL, FibE mutex Al
semaphore FyFEft b, 1T EHEERAESFIE monitor, AFEEENE, #FERGEAG A
HE monitor ML, KPR E, monitor JEJET4mFHESMENE, MMM monitor B, &7
it — B S A G R HF monitor BiE, #lf C EEEMALEF monitor, Java EE L
monitor.
— &) monitor SEPUEFRMIEIE S VS RIREHEVENE, i Sl monitor ML, WJE T4
TR, Java HiRXaTH.

BISEE— 1 monitor, jvmesEiNEIsCIIIgRmonitorfy

openjdk\hotspot\src\share\vm\runtime\objectMonitor.hpp
openjdk\hotspot\src\share\vm\runtime\objectMonitor.cpp

hpp# LASTRR:

af://n299

//

// The ObjectMonitor class is used to implement JavaMonitors which have

// transformed from the Tightweight structure of the thread stack to a

// heavy weight lock due to contention

ObjectMonitorfA T8 javamonitor, javamonitor/e b 2&F2 4 T LR HE A% 152 i R 45 44
HIN R B

// It is also used as RawMonitor by the JVMTI

class ObjectMonitor {

BEBIR, THREMR

// [1]1 Nix B 7% F|semaphore

// initialize the monitor, exception the semaphore, all other fields
// are simple integers or pointers
ObjectMonitor() {

_header = NULL;
_count = 0;
_waiters =0,
_recursions = 0; [/ ERFEE N IREL
_object = NULL;
_owner = NULL; //FRiR#5 1Zmoni torf&fs
_waitset = NULL; //ZfSRREA R fEHR R, _waitSet@H A1
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
—CXq = NULL ; / /2 BRETE GBI NI ()) B R
FreeNext = NULL ;
_EntryList = NULL ; //_owner M izAF{EHaER P BELEFE4E i, _EntryListi
A
_SpinFreq =0 ;
_SpinClock =0 ;
ownerIsThread = 0 ;
_previous_owner_tid = 0;
3
BTN
bool try_enter (TRAPS) ;
void enter(TRAPS) ;
void exit(bool not_suspended, TRAPS);
void wait(jlong millis, bool interruptable, TRAPS);
void notify(TRAPS);
void notifyAl1(TRAPS);

3 $RYifIL

af://n326

1 BhES BiERBbE

HEBA. PEZE. MRERECLVARERIEY. SNRBAINIEALRTEREREEBAI+, setBR(FRRAL, XHEAVRIFER
REATLASeRk, RIRXBSMLER, NEAAIMNEETETLUBIITER (BiE) A TVEIRE T
F—T, XFEFNEEESELN. XABEEt (BEE) . jdk1.4.25|\, BIAXE, jdk1.68508
BN, FFRESE:

-XX:+UseSpinning

R R :

ERMEREK, BIefRHEE, FHALERNE. MRS RERE, BEFEIUER
SRR, k2, BIeNSEESOERENERTR, RMSWHRIEE LIRS, EIBEFEFE
VREE—EARE. BHEREMRNABER10IX, AiEiESE -xx:preBlockspin KEX.

/ /A EN B
HEBA

FH %€

g e

//

/ /AN
int i = 0;
whiTe(i++ < 10);
/ /R
/ /HEA B
HEBA

FH 28

it

//

jdk1.65p5INT BENAIENE, BENEHEBINREABERE Y, MEHRR—RER—M MR
IERS AR SAUF A ERIINSRRE. MRER—M IR L, BieFHRIRRIEAEIMN, FEFEMH
LR EFEIE T, BARMIMSIANXRBIEBRETTERRMNT), HMESRITEiESFEIKAY
RYIE), EEAN100MEER. 55b, WMREIERDKRIEREM, BEUEEERRX M HINETEaKizaE
i, LigRiREMERER. 57 HENEN, MEEFETLERRERINATE, EUTR
BUEPIRITE TN S SRR

2 fiiEkR

BSERD TR INESURAMIRBRINEIEERFHUE GINLERBIRFENSIA) MEFE
B LB ET . BUEEINSEREREX M.

3 fitEE

BEBRT, ATRIZSLERNGIHE, SEXREMIEFEUNRRSTEE (RERIMERTE
EIRHERE/N——REXZEIRRISLIMEBE A HTRL.) .
REOERT, LERNRUEZERN. BRNR—FIFNEHE FEBE— MR EBFIES,

EENNSHRMFREIMAEREIMARR, BRERBSERS, MEMHTERELEFEESHRINERN
MEREIRFE. FTLAVMA S X AIE R THIE AL,

af://n327
af://n335
af://n338

4 RER

jdk 1.6 INAIFRELBIING, “RER BT Fmonitor{F R ERSERELIMSHI, Eitmonitor

BB EERB, EObjectMonitorfSiERPIHAILEE: BERZANEERM. BAIRERAIZAX
BNEELN, METRESHIERFHIRIET, MMEREERIERRMFRFEREERIMAEH

#E.

HIE—REF R AT E.
EEEEMREHFBIER THIMEE.

BE: NMERRERFEERE, IBEARRBIFIET (BF) ?
&E: CAS, BERMFIANSLPRImark wordskE FHIHT.

: Mark Word (64 bits) : R :
: unused:25 | identity hashcode:31 | unused:1 | age:4 | biased lock:0 | lock: 01: IEE :
: thread:54 | epoch:2 | unused:1 | age:4 | biased lock:1 | lock: 01: ek :
: ptr_to_lock record:62 | lock: 00: BEgE :
: ptr to heavyweight monitor:62 | lock: 10: EEgH :
: | lock:11 ! cokRid :
I |

LA ER)avaXdRET SHARIRERS, Mark WordshedMURIFRIZ A, EES—TARNSRATER
WSHIRIEF . Hh&EtoiiasanT:

lock:2SIHVBIIRSHRC I, BFHERRAR/ NI ERTNRaIfeZER., FrLlgE T lockirig,
ZARCHIEARE, B MMark WordZRrIE N ARE, biased_lockflock—ite, TAMIBHRESES T :

biased_lock lock IR7Z&
0 01 7ot

101 {mFH

00 BRI
10 o B 24
11 GChrid

biased_lock: XSREEFARASHNE, RA1MNTHEIN, ARFIRERREE, SRR
588 mRA. lockflbiased_lockHEFEFRRIWGLTFHABIRTE,

age: AfffjavafiS ey, EGCH, WMENSTESUrvivorRESI—R, g, Sk FhgEN
REN, BeaEAREENR., BABRT, FHIGCHEREREN1S, HAGCHIERRIE 6, MTage
RBEAM, FRLAEXER15, XFE-XX:MaxTenuringThresholditIRE AE 1 5H9ERE,

identity_hashcode: 31{A9%3SFRIRhashCode, RAFERINERA. BRI
System.identityHashCode()it&, HEBERSRIZISLF, MRMeE (RE. BREHK. =8
%) ., MarkWordf9=15:%88 Biaaia{FfFhashCode, EIZELBIEIEFEMonitor,

thread: FBRAMAIZLIED.

epoch: {REHAIRTIEIER,

ptr_to_lock_record: BRERFUAST, ERAEPIHICRATEST,
ptr_to_heavyweight_monitor: EERPRET, FEREIKENEEMonitoriIiEETt.
BRERYROERERE:

af://n342

1. CASIEBImark word HY lock#miRA00, BRINZREH, LKMNEE=S, BiE, BigkBArR, &
FNEELRM. mark word dN{aIZE{L?

| ptr_to_lock record:62 | lock:00]| EERH |
- -l |
I ptr_to_heavyweight_monitor:62 | lock:10] EESHE |
B B I

2. BRI ERMEEmark word (RIFEIITIR L, BHESCASERENISEL E, BERRMT), B%E
REFERR, KRNI, NWRTESIECHBESS 7, WMESSEE, Bmark word EHl45

—

bo

Light-weight Locking: After

Execution T
stack Object
Method . stack pointer
activation o
=
hash | age | 01

RERUEEIRARSHRIEER: WTEASoIH, EBINESEPREEAFERS, X2
—MNRRHIE, WRFE, SPREETHRIRERET. WRFEMRS, WIRSLEERMER.

5 (w4

BZERH, EErAes. SfmarkwordiUEiE, jdk1.6FREFH—ILSIN T RABERIUIISF ARTRY
tERE. REBRMRZIRGERIZAE, TBHLHIT.

RAMTLUESHERSELRFAERFLE, CRERTENENEMTRINE. Rk, BHF
—ELENMEFEITEN, NREFPASHIIMUCERSNEIENE, MROEIMESHRAY, A
AR SHERRABIIN, RMATLARTHERE.

-XX:-UseBiasedLocking

6 BiRF LRI

af://n373
af://n378

allocate object

if biased locking is enabled for the class if biased |ocking is disabled for the class

| 0 |epuch| age |1|U1| hash code | age |[]|[]1|-1—
[unlocked and unbiased but biasable object) (unlacked non-biasable object)

initial lock l T rebias thin lock l recursive lock

if currently unlocked

revoke bias ST
| Ihrlead ID. |epuch | age [1 |U1 l i currently locked){ pu:mter tlu lock remrfl]Uf]| —
iblased object, locked or unlocked) {lightweight locked object)
~ A inflate lock
lock { unlock

| pointer to heavyweight monitar |1EI | e
(heavyweight locked object)

5 ThreadLocal
=ta

Vi

LRAMA R, VR EARHARE?

* This class provides thread-local variables. These variables differ from

* their normal counterparts in that each thread that accesses one (via its
{@code get} or {@code set} method) has its own, independently initialized
copy of the variable. {@code ThreadLocal} instances are typically private
static fields in classes that wish to associate state with a thread (e.g.,
* a user ID or Transaction ID).

TR EFREL?
. BERTEsERe

class A {
void dosomel(){
int a = 10;
int x = Thread.currentThread().get("x");
3

void doSsome2() {
int a = 11;
int x = Thread.currentThread().getXx();

void dosome3(){
Thread.currentThread() .set("x",10);
dosomel();
dosome2();

af://n381
af://n382

o 2FTE LEATEN, FENMEL AR

class A {
public static int Count = 1;
}
SFE AT E
HERNTE, ELEHITERES, BideLAREEE
AILUEHRENE?

class Thread {
private Map<String,Object> datas;

public Object get(String name){
return datas.get(name);

pubTlic void set(String name,Object value){
datas.put(name,value);

static final ThreadLocal threadid R#A—4IH%
tl:
threadid.get();
tl.threadLocas (t1f9ThreadLocalmap)
tl.threadLocas(threadid)
t2:
threadid.get();
t2.threadLocas (t2f9ThreadLocalmap)
t2.threadLocas(threadId)

LR T ERLERERG?

S
Rt R -

static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;

Entry(ThreadLocal<?> k, Object v) {

super(k);
value = v;
}
}
//3EIE R

Map &Ll ThreadLocal*t% (] weakrReference 553|f Nkey

SIS Het R EY A E Big &1FRdE

525|F P MRE—AIRE JIVME LI TR LE

51/ SREFEARRS MRERF REARBRIELLE

5551/ IERE R EIWEY RER B EW LR E

KESIF IEE LR EKRT PRERISSRAVEIIR BT RSB =
IEff{ER

e {§FH ThreadlLocal B9FHR, RFEFIRAESHY;
e (§FF5E ThreadlLocal , —EFFNAER remove() /5i%. BRIATEESEL:
1. BEH S
2. BfFtEE
3. EFERWE NN (A& II&TE, webBSEAFEMPAFR) | TJaeiErkEAIREBIIRE
iR, SmllSiBiE,
a0 LR EIAY Session BIFIF, WRAEIZEESSIT SRS PR, MY aTReHIINFithRIaRT,
MBS 5524E;

IERAIFRERE
private static final ThreadLocal<> varl = new ThreadLcoal<>();

try {
threadLocal.set(a);
//PATIEEE, BiER getOfE
Hinally{
/IR e, TERR
threadLocal.remove();

HEESE
FINES:

1. BEREARIAPI B FER
2. BBt)R AR EIE T 2aRAY
3. MHEERRIFHY, WIMEIRY

Queue

af://n459
af://n479
af://n496

DelayQueue

SERIBAF

Map
HashMap JF&iE% e

HashTable Z&i2%e

af://n502
af://n511

	并发编程
	JUC-线程池
	FutureTask
	ThreadPoolExecutor
	submit
	execute(runnable);
	池状态和线程计数
	扩展
	ThreadFactory
	RejectedExecutorHandler
	ThreadPoolExecutor 本身的扩展

	并发协同
	线程安全
	1 锁
	2 原子类
	3 AQS
	1 是什么
	2 怎么使用它
	3 如何支持带超时等待

	4 Synchronized原理
	1 了解synchronized对应的字节码
	2 Monitor说明
	3 锁的优化
	1 自旋锁与自适应自旋
	2 锁消除
	3 锁粗化
	4 轻量级锁
	5 偏向锁
	6 锁的升级过程

	5 ThreadLocal
	是什么
	正确使用

	并发集合类
	Queue
	DelayQueue
	Map

