
07 | 池化技术：如何减少频繁创建数据库连接的性能损耗？
2019-10-02 唐扬

高并发系统设计40问 进入课程

讲述：唐扬
时长 14:47 大小 13.54M

在前面几节课程中，我从宏观的角度带你了解了高并发系统设计的基础知识，你已经知晓

了，我们系统设计的目的是为了获得更好的性能、更高的可用性，以及更强的系统扩展能

力。

那么从这一讲开始，我们正式进入演进篇，我会再从局部出发，带你逐一了解完成这些目标

会使用到的一些方法，这些方法会针对性地解决高并发系统设计中出现的问题。比如，在

15 讲中我会提及布隆过滤器，这个组件就是为了解决存在大量缓存穿透的情况下，如何尽

量提升缓存命中率的问题。

当然，单纯地讲解理论，讲解方案会比较枯燥，所以我将用一个虚拟的系统作为贯穿整个课

程的主线，说明当这个系统到达某一个阶段时，我们会遇到什么问题，然后要采用什么样的

方案应对，应对的过程中又涉及哪些技术点。通过这样的讲述方式，力求以案例引出问题，





 下载APP 



能够让你了解遇到不同问题时，解决思路是怎样的，当然，在这个过程中，我希望你能多加

思考，然后将学到的知识活学活用到实际的项目中。

接下来，让我们正式进入课程。

来想象这样一个场景，一天，公司 CEO 把你叫到会议室，告诉你公司看到了一个新的商业

机会，希望你能带领一名兄弟，迅速研发出一套面向某个垂直领域的电商系统。

在人手紧张，时间不足的情况下，为了能够完成任务，你毫不犹豫地采用了最简单的架构：

前端一台 Web 服务器运行业务代码，后端一台数据库服务器存储业务数据。

这个架构图是我们每个人最熟悉的，最简单的架构原型，很多系统在一开始都是长这样的，

只是随着业务复杂度的提高，架构做了叠加，然后看起来就越来越复杂了。

再说回我们的垂直电商系统，系统一开始上线之后，虽然用户量不大，但运行平稳，你很有

成就感，不过 CEO 觉得用户量太少了，所以紧急调动运营同学做了一次全网的流量推广。

这一推广很快带来了一大波流量，但这时，系统的访问速度开始变慢。

分析程序的日志之后，你发现系统慢的原因出现在和数据库的交互上。因为你们数据库的调

用方式是先获取数据库的连接，然后依靠这条连接从数据库中查询数据，最后关闭连接释放



数据库资源。这种调用方式下，每次执行 SQL 都需要重新建立连接，所以你怀疑，是不是

频繁地建立数据库连接耗费时间长导致了访问慢的问题。

那么为什么频繁创建连接会造成响应时间慢呢？来看一个实际的测试。

我用"tcpdump -i bond0 -nn -tttt port 4490"命令抓取了线上 MySQL 建立连接的网络包

来做分析，从抓包结果来看，整个 MySQL 的连接过程可以分为两部分：

第一部分是前三个数据包。第一个数据包是客户端向服务端发送的一个“SYN”包，第二个

包是服务端回给客户端的“ACK”包以及一个“SYN”包，第三个包是客户端回给服务端

的“ACK”包，熟悉 TCP 协议的同学可以看出这是一个 TCP 的三次握手过程。

第二部分是 MySQL 服务端校验客户端密码的过程。其中第一个包是服务端发给客户端要

求认证的报文，第二和第三个包是客户端将加密后的密码发送给服务端的包，最后两个包是

服务端回给客户端认证 OK 的报文。从图中，你可以看到整个连接过程大概消耗了

4ms（969012-964904）。

那么单条 SQL 执行时间是多少呢？我们统计了一段时间的 SQL 执行时间，发现 SQL 的平

均执行时间大概是 1ms，也就是说相比于 SQL 的执行，MySQL 建立连接的过程是比较耗

时的。这在请求量小的时候其实影响不大，因为无论是建立连接还是执行 SQL，耗时都是

毫秒级别的。可是请求量上来之后，如果按照原来的方式建立一次连接只执行一条 SQL 的

话，1s 只能执行 200 次数据库的查询，而数据库建立连接的时间占了其中 4/5。

那这时你要怎么做呢？

一番谷歌搜索之后，你发现解决方案也很简单，只要使用连接池将数据库连接预先建立好，

这样在使用的时候就不需要频繁地创建连接了。调整之后，你发现 1s 就可以执行 1000 次

的数据库查询，查询性能大大的提升了。

用连接池预先建立数据库连接



虽然短时间解决了问题，不过你还是想彻底搞明白解决问题的核心原理，于是又开始补课。

其实，在开发过程中我们会用到很多的连接池，像是数据库连接池、HTTP 连接池、Redis

连接池等等。而连接池的管理是连接池设计的核心，我就以数据库连接池为例，来说明一下

连接池管理的关键点。

数据库连接池有两个最重要的配置：最小连接数和最大连接数，它们控制着从连接池中获取

连接的流程：

这个流程你不用死记，非常简单。你可以停下来想想如果你是连接池的设计者你会怎么设

计，有哪些关键点，这个设计思路在我们以后的架构设计中经常会用到。

为了方便你理解性记忆这个流程，我来举个例子。

假设你在机场里经营着一家按摩椅的小店，店里一共摆着 10 台按摩椅（类比最大连接

数），为了节省成本（按摩椅费电），你平时会保持店里开着 4 台按摩椅（最小连接

数），其他 6 台都关着。

有顾客来的时候，如果平时保持启动的 4 台按摩椅有空着的，你直接请他去空着的那台就

好了。但如果顾客来的时候，4 台按摩椅都不空着，那你就会新启动一台，直到你的 10 台

按摩椅都被用完。

那 10 台按摩椅都被用完之后怎么办呢？你会告诉用户，稍等一会儿，我承诺你 5 分钟（等

待时间）之内必定能空出来，然后第 11 位用户就开始等着。这时，会有两个结果：如果 5

分钟之内有空出来的，那顾客直接去空出来的那台按摩椅就可以了，但如果用户等了 5 分

钟都没空出来，那你就得赔礼道歉，让用户去其他店再看看。

如果当前连接数小于最小连接数，则创建新的连接处理数据库请求；

如果连接池中有空闲连接则复用空闲连接；

如果空闲池中没有连接并且当前连接数小于最大连接数，则创建新的连接处理请求；

如果当前连接数已经大于等于最大连接数，则按照配置中设定的时间（C3P0 的连接池配

置是 checkoutTimeout）等待旧的连接可用；

如果等待超过了这个设定时间则向用户抛出错误。



对于数据库连接池，根据我的经验，一般在线上我建议最小连接数控制在 10 左右，最大连

接数控制在 20～30 左右即可。

在这里，你需要注意池子中连接的维护问题，也就是我提到的按摩椅。有的按摩椅虽然开

着，但有的时候会有故障，一般情况下，“按摩椅故障”的原因可能有以下几种：

1. 数据库的域名对应的 IP 发生了变更，池子的连接还是使用旧的 IP，当旧的 IP 下的数据

库服务关闭后，再使用这个连接查询就会发生错误；

2.MySQL 有个参数是“wait_timeout”，控制着当数据库连接闲置多长时间后，数据库会

主动的关闭这条连接。这个机制对于数据库使用方是无感知的，所以当我们使用这个被关闭

的连接时就会发生错误。

那么，作为按摩椅店老板，你怎么保证你启动着的按摩椅一定是可用的呢？

1. 启动一个线程来定期检测连接池中的连接是否可用，比如使用连接发送“select 1”的命

令给数据库看是否会抛出异常，如果抛出异常则将这个连接从连接池中移除，并且尝试关

闭。目前 C3P0 连接池可以采用这种方式来检测连接是否可用，也是我比较推荐的方式。

2. 在获取到连接之后，先校验连接是否可用，如果可用才会执行 SQL 语句。比如 DBCP 连

接池的 testOnBorrow 配置项，就是控制是否开启这个验证。这种方式在获取连接时会引

入多余的开销，在线上系统中还是尽量不要开启，在测试服务上可以使用。

至此，你彻底搞清楚了连接池的工作原理。可是，当你刚想松一口气的时候，CEO 又提出

了一个新的需求。你分析了一下这个需求，发现在一个非常重要的接口中，你需要访问 3

次数据库。根据经验判断，你觉得这里未来肯定会成为系统瓶颈。

进一步想，你觉得可以创建多个线程来并行处理与数据库之间的交互，这样速度就能快了。

不过，因为有了上次数据库的教训，你想到在高并发阶段，频繁创建线程的开销也会很大，

于是顺着之前的思路继续想，猜测到了线程池。

用线程池预先创建线程

果不其然，JDK 1.5 中引入的 ThreadPoolExecutor 就是一种线程池的实现，它有两个重要

的参数：coreThreadCount 和 maxThreadCount，这两个参数控制着线程池的执行过



程。它的执行原理类似上面我们说的按摩椅店的模式，我这里再给你描述下，以加深你的记

忆：

这个任务处理流程看似简单，实际上有很多坑，你在使用的时候一定要注意。

首先， JDK 实现的这个线程池优先把任务放入队列暂存起来，而不是创建更多的线程，它

比较适用于执行 CPU 密集型的任务，也就是需要执行大量 CPU 运算的任务。这是为什么

如果线程池中的线程数少于 coreThreadCount 时，处理新的任务时会创建新的线程；

如果线程数大于 coreThreadCount 则把任务丢到一个队列里面，由当前空闲的线程执

行；

当队列中的任务堆积满了的时候，则继续创建线程，直到达到 maxThreadCount；

当线程数达到 maxTheadCount 时还有新的任务提交，那么我们就不得不将它们丢弃

了。



呢？因为执行 CPU 密集型的任务时 CPU 比较繁忙，因此只需要创建和 CPU 核数相当的线

程就好了，多了反而会造成线程上下文切换，降低任务执行效率。所以当当前线程数超过核

心线程数时，线程池不会增加线程，而是放在队列里等待核心线程空闲下来。

但是，我们平时开发的 Web 系统通常都有大量的 IO 操作，比方说查询数据库、查询缓存

等等。任务在执行 IO 操作的时候 CPU 就空闲了下来，这时如果增加执行任务的线程数而

不是把任务暂存在队列中，就可以在单位时间内执行更多的任务，大大提高了任务执行的吞

吐量。所以你看 Tomcat 使用的线程池就不是 JDK 原生的线程池，而是做了一些改造，当

线程数超过 coreThreadCount 之后会优先创建线程，直到线程数到达

maxThreadCount，这样就比较适合于 Web 系统大量 IO 操作的场景了，你在实际运用过

程中也可以参考借鉴。

其次，线程池中使用的队列的堆积量也是我们需要监控的重要指标，对于实时性要求比较高

的任务来说，这个指标尤为关键。

我在实际项目中就曾经遇到过任务被丢给线程池之后，长时间都没有被执行的诡异问题。最

初，我认为这是代码的 Bug 导致的，后来经过排查发现，是因为线程池的

coreThreadCount 和 maxThreadCount 设置的比较小，导致任务在线程池里面大量的堆

积，在调大了这两个参数之后问题就解决了。跳出这个坑之后，我就把重要线程池的队列任

务堆积量，作为一个重要的监控指标放到了系统监控大屏上。

最后，如果你使用线程池请一定记住不要使用无界队列（即没有设置固定大小的队列）。也

许你会觉得使用了无界队列后，任务就永远不会被丢弃，只要任务对实时性要求不高，反正

早晚有消费完的一天。但是，大量的任务堆积会占用大量的内存空间，一旦内存空间被占满

就会频繁地触发 Full GC，造成服务不可用，我之前排查过的一次 GC 引起的宕机，起因就

是系统中的一个线程池使用了无界队列。

理解了线程池的关键要点，你在系统里加上了这个特性，至此，系统稳定，你圆满完成了公

司给你的研发任务。

这时，你回顾一下这两种技术，会发现它们都有一个共同点：它们所管理的对象，无论是连

接还是线程，它们的创建过程都比较耗时，也比较消耗系统资源。所以，我们把它们放在一

个池子里统一管理起来，以达到提升性能和资源复用的目的。



这是一种常见的软件设计思想，叫做池化技术，它的核心思想是空间换时间，期望使用预先

创建好的对象来减少频繁创建对象的性能开销，同时还可以对对象进行统一的管理，降低了

对象的使用的成本，总之是好处多多。

不过，池化技术也存在一些缺陷，比方说存储池子中的对象肯定需要消耗多余的内存，如果

对象没有被频繁使用，就会造成内存上的浪费。再比方说，池子中的对象需要在系统启动的

时候就预先创建完成，这在一定程度上增加了系统启动时间。

可这些缺陷相比池化技术的优势来说就比较微不足道了，只要我们确认要使用的对象在创建

时确实比较耗时或者消耗资源，并且这些对象也确实会被频繁地创建和销毁，我们就可以使

用池化技术来优化。

课程小结

本节课，我模拟了研发垂直电商系统最原始的场景，在遇到数据库查询性能下降的问题时，

我们使用数据库连接池解决了频繁创建连接带来的性能问题，后面又使用线程池提升了并行

查询数据库的性能。

其实，连接池和线程池你并不陌生，不过你可能对它们的原理和使用方式上还存在困惑或者

误区，�我在面试时，就发现有很多的同学对线程池的基本使用方式都不了解。借用这节

课，我想再次强调的重点是：

思考时间

在实际的项目中，你可能会用到其他的池化技术，那么结合今天的内容，你可以和我分享一

下在研发过程中，还使用过哪些其它池化技术吗？又因池化技术踩过哪些坑，当时你是怎么

解决的？欢迎在留言区和我一起讨论，或者将你的实战经验分享给更多的人。

池子的最大值和最小值的设置很重要，初期可以依据经验来设置，后面还是需要根据实际

运行情况做调整。

池子中的对象需要在使用之前预先初始化完成，这叫做池子的预热，比方说使用线程池时

就需要预先初始化所有的核心线程。如果池子未经过预热可能会导致系统重启后产生比较

多的慢请求。

池化技术核心是一种空间换时间优化方法的实践，所以要关注空间占用情况，避免出现空

间过度使用出现内存泄露或者频繁垃圾回收等问题。



最后，感谢你的阅读，如果这篇文章让你有所收获，也欢迎你将它分享给更多的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 06 | 面试现场第一期：当问到组件实现原理时，面试官是在刁难你吗？

下一篇 08 | 数据库优化方案（一）：查询请求增加时，如何做主从分离？

每天晒白牙
2019-10-02

1.老师我想请教下文中说的线程池预热，既初始化核心线程数的线程，我看jdk的源码没看
到预热过程。 
而且请求过来，如果线程数小于核心线程数，就创建线程处理，如果线程数大于核心线程
数，就往队列中添加，如果是有界队列，则判断队列是否满了，如果满了，且线程数没有
达到最大线程数就继续创建线程，是这样的流程，没有在初始化时就创建核心线程数这…
展开

作者回复: 1. ThreadpoolExecutor提供了prestartAllCoreThreads方法可以预先启动核心线程 

2. 如果使用无界队列的话，最大线程数就没有意义了，因为永远不会用到，所以尽量不要使用无

精选留言 (12)  写留言



界队列 

 4  5

tyul
2019-10-02

重要线程池的队列任务堆积量，请问下老师，这个指标怎么监控。

作者回复: jdk的ThreadPoolExecutor可以调用executor.getQueue().size()

 1  4

高源
2019-10-02

老师理论听的挺明白，还是需要动手实战啊，有些东西理解起来很模糊，但实践上有可能
一下子就明白了😊

作者回复: 😄

  3

Jxin
2019-10-03

1.先回答课后题，池化的应用。池化就是空间换时间。万物皆对象，而java里面的对象是有
生命周期的。对象的生死对应着有生时资源申请和死时资源释放这两步操作，而这些操作
是有时间开销的。这个时候如果想降低这些开销，那么就要少生对象少死对象，而要少生
少死就得复用，即干完继续干不准死，即延长对象生命周期并重用之。那么就可以采用池
化，用的时候往里面拿，用完放回去。所以就出现了对象池，而对象即万物。也就是说…
展开

作者回复: 线程在等待io操作的时候确实会让出CPU时间片，可以说说你是如何测试的吗~ 

 3  2

周鸣
2019-10-04

请教老师，为什么是先判断最小连接数，而不是先判断空闲，如果最小连接数是10，目前
连接数是9但是其中有一个是空闲的为什么不先用这个空闲的而是先去创建一个。这样是不



是不太合理。

 

大卫
2019-10-04

我在设计一个产品要求的专辑详情页中使用到了自定义的线程池。 
 
专辑详情页中包含多个板块，部分几个板块要求动态请求搜索或者推荐接口获取数据，板
块与板块之间要求内容去重，搜索推荐对于本系统来说属于第三方接口。 
 …
展开

作者回复: 👍

 

约书亚
2019-10-03

另外，jdk线程池为什么设计得如此奇怪，这问题以前也求证过，都没有信服的答案，今天
看到这个解释，比较合理，而且有种灯火阑珊处的感觉，特意感谢一下

展开

作者回复: ：）

 

约书亚
2019-10-03

还有一种是内存池，用的地方相对较少，基本都是重型武器才有，比如netty这种。 
这门课总会提到实际工作中遇到的坑，还挺不错

展开

作者回复: 是的，内存池也是一种常见的池化技术的常见实现

 

learn more
2019-10-02



请问老师的示意图是用什么软件绘制的，感觉简洁且清晰。

作者回复: 就是用mac原生的keynote

 

mickey
2019-10-02

老师好，我有两个问题： 
 
1.能讲讲怎样分析程序的日志发现数据库慢吗？怎样监控数据库和线程池的一些指标呢？
或者有没有关于全面监控并优化系统的课程呢？ 
2.怎样启动一个线程来定期检测连接池中的连接是否可用？是否会增加数据库的负担？ …
展开

作者回复: 1. 在后面的课程中会有一讲专门讲到监控 

2. 定期检查没有那么大的压力，其实还好，你想就是每隔几分钟向数据库发几十个请求，相比于

业务请求来说很少了

 

jc9090kkk
2019-10-02

国庆打卡，感谢老师的分享，对于这篇文章存有个疑问，希望老师能解答一下： 
1.文中说的最小连接数是10和最大连接数是20-30，这个数是如何计算出来的？有没有参考
标准或者计算公式？根据具体的业务场景或者规模，有什么可以套用的配置经验吗？ 
2.这个最大连接数跟mysql配置参数中的max_connections有什么联系吗？如果连接池的
最大连接数设置成100，最后的连接请求还是会打到mysql上，如果max_connections这…
展开

作者回复: 1. 其实这些是经验所得，这个数值需要在实际运行中来调整，初期可以按照这个来设置 

2. 连接池的最大连接数肯定要小于max_connections的，你的理解没错~

 

饭团
2019-10-02

老师，像php这种需要，如果需要使用线程池，是不是得借助第三方 



作者回复: php不太了解，不过应该是的

 


