
课程总览

 -- Data Structure --

Array

Stack / Queue

PriorityQueue (heap)

LinkedList (single / double)

Tree / Binary Tree

Binary Search Tree

HashTable

Disjoint Set

Trie

BloomFilter

LRU Cache

-- Algorithm --

General Coding

In-order/Pre-order/Post-order traversal

Greedy

Recursion/Backtrace

Breadth-first search

Depth-first search

Divide and Conquer

Dynamic Programming

Binary Search

Graph

Abstract
data	type

Stack Queue Set Map

Vector Linked	List Priority
Queue

Heap

Hash	Set Tree	Set Hash	Map Tree	Map

时间复杂度

空间复杂度

Big O notation

-- What is Big O? --

O(1): Constant Complexity: Constant 常数复杂度

O(log n): Logarithmic Complexity: 对数复杂度

O(n): Linear Complexity: 线性时间复杂度

O(n^2): N square Complexity 平⽅方

O(n^3): N square Complexity ⽴立⽅方

O(2^n): Exponential Growth 指数

O(n!): Factorial 阶乘

O(1) int n = 1000;
System.out.println("Hey - your input is: " + n);

O(?) int n = 1000;
System.out.println("Hey - your input is: " + n);
System.out.println("Hmm.. I'm doing more stuff with: " + n);
System.out.println("And more: " + n);

O(N) for (int = 1; i<=n; i++) {
 System.out.println(“Hey - I'm busy looking at: " + i);
}

O(N^2) for (int i = 1; i <= n; i++) {
 for (int j = 1; j <=n; j++) {
 System.out.println("Hey - I'm busy looking at: " + i + " and " + j);
 }
}

O(log(n)) for (int i = 1; i < n; i = i * 2) {
 System.out.println("Hey - I'm busy looking at: " + i);
}

O(k^n) for (int i = 1; i <= Math.pow(2, n); i++){
 System.out.println("Hey - I'm busy looking at: " + i);
}

O(n!) for (int i = 1; i <= factorial(n); i++){
 System.out.println("Hey - I'm busy looking at: " + i);
}

To calculate: 1 + 2 + 3 + … + n
• 1 + 2 + 3 + … + n (总共累加n次） 
 
y = 0 
for i = 1 to n: 
 y = i + y

•求和公式：n(n+1)/2  
 
 y = n * (n + 1) / 2

What if recursion ?
• Fibonacci array: 1, 1, 2, 3, 5, 8, 13, 21, 34, …  
 
F(n) = F(n-1) + F(n-2)  
 

 def fib(n):
 if n == 0 or n == 1:
 return n
 return fib(n - 1) + fib(n - 2)

Fib(6)

Master Theorem
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms) 
https://zh.wikipedia.org/wiki/%E4%B8%BB%E5%AE%9A%E7%90%86

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
https://zh.wikipedia.org/wiki/%E4%B8%BB%E5%AE%9A%E7%90%86

