

-- Data Structure --

Array

Stack / Queue
PriorityQueue (heap)
LinkedList (single / double)
Tree / Binary Tree
Binary Search Tree
HashTable

Disjoint Set

Trie

BloomFilter

LRU Cache

-- Algorithm --

General Coding
In-order/Pre-order/Post-order traversal
Greedy

Recursion/Backtrace

Breadth-first search

Depth-first search

Divide and Conquer

Dynamic Programming

Binary Search

Graph

EN

[

[

i8] 8 28
THERE

Big O notation

-- What is Big O? --

O(1): Constant Complexity: Constant 228 &
O(log n): Logarithmic Complexity: SJEE 22 E
O(n): Linear Complexity: &40t 8|8 2~ E
O(n”2): N square Complexity 5

O(n”3): N square Complexity 1Z 5

O(2~n): Exponential Growth g%

O(n!): Factorial [Je

int n = 1000;

System.out.printin("Hey - your input is: " + n);

int n = 1000;

System.out.printin("Hey - your input is: " + n);
System.out.printIn("Hmm.. I'm doing more stuff with: " + n);
System.out.printin("And more: " + n);

O(N) for (int = 1; i<=n; i++) {

System.out.printin(“Hey - I'm busy looking at: " +i);

}

O(N/\Z) for (inti=1;i<=n;i++) {
for (intj=1;j<=n; j++){
System.out.printIn("Hey - I'm busy looking at: " +i+ " and " +j);
}

}

O(log(n))

O(k/n)

O(n!)

for(inti=1;i<n;i=i*2){
System.out.printIn("Hey - I'm busy looking at: " +i);

}

for (inti=1;i<=Math.pow(2, n); i++){
System.out.println("Hey - I'm busy looking at: " +i);

}

for (inti=1;i<=factorial(n); i++){
System.out.printin("Hey - I'm busy looking at: " +i);

}

— 0O(1) — O(log n) O(n) — O(nlogn) — O(n*2) — O(2An) — O(n!)

1000 ’

800

600

400

200

Number of operations for given Big-O Notation

0 1 2 3 4 5 6 7 8 9 10 M i2 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of items in collection

To calculate: 1 +2+3+ ... +n

*1+2+3+..+n(BHEENMnK)
y=0

fori=1ton:
y=i+y

« SRFAZL: n(n+1)/2

v=n*(n+1)/2

What if recursion ?

e Fibonacciarray: 1,1, 2, 3,5, 8, 13, 21, 34, ...

F(n) = F(n-1) + F(n-2)

def fib(n):
fn==0orn==1:
return n
return fib(n - 1) + fib(n - 2)

Fib(6)

f(6)
1®) ((4)
f(3)
(4) \ -
f(3) | f(2) f(1) =1 f(2)
f(2) f(1) =1 f(2)
f(1) = 1 f(0) = 0 f(1) = 1 f(0) = 0
f(1) =1 f(0)=0 f(1) =1 f(0)=0)
f(é) f(1) =1
f(1) = 1 f(0) = 0

Master Theorem

https://en.wikipedia.org/wiki/Master theorem_(analysis_of_algorithms)
https://zh.wikipedia.org/wiki/Y%E4%B8%BB%E5%AE%9A%E7%90%86

Application to common algorithms [edit]

Algorithm Recurrence relationship Run time Comment
Binary search T(n)=T (%) +0(1) O(logn) | Apply Master theorem case ¢ = log, a, where a = 1,b = 2,¢ = 0,k = 05!
Binary tree traversal T(n) =2T (g) +0(1) O(n) Apply Master theorem case ¢ < log; a where a = 2,b = 2, ¢ = 0B
Soep:r::l sorted matrix T(n) = 2T (%) +O(logn) | O(n) g)(p;);l trlelzl;r;Bazzi theorem forp = 1 and g(u) = log(u) to get
Merge sort T(n) =2T (%) + O(n) O(nlogn) | Apply Master theorem case ¢ = log; a, where a = 2,b=2,c =1,k =0

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
https://zh.wikipedia.org/wiki/%E4%B8%BB%E5%AE%9A%E7%90%86

