w3, oA
(Recursion, Divide & Conquer)

ATAR

1.Recursion

2.Divide & Conquer

Recursion
%3 — B

8 R R SR A ITRIEEE

1%

1T.MBIE T,

2.1LE

BB

3.JRE

}_‘_9
ZESMilo)

1|

Jdlinl

Recursion
1T& n!

nl=1*2*3*..."n

def Factorial(n):
if n <= 1:

return 1
return n x Factorial(n - 1)

Recursive

factorial(6)

6 * factorial(5)

6 * (5 * factorial(4))

6 * (5 * (4 * factorial(3)))

6 * (5* (4 * (3 * factorial(2))))
6 * (5% (4 * (3* (2 * factorial(l)))))
6*(5*@*(*@*1NN

6 * (5* (4 * (3* 2))

6 * (5* (4 * 6))

6 * (5 * 24)

6 * 120

720

Recursion

Fibonacci array: 1, 1, 2, 3, 5, 13, 21, 34, ...

F(n) = F(n-1) + F(n-2)

def fib(n):
1T n=0o0orn=1:

return n
return fib(n - 1) + fib(n - 2)

Fib(6)

(@) 1

f(2)

f(4)

£(5)

f(1) =1

f(2)

f(1) =1

f(0) = 0

f(1) =1

f(0) = 0

f(é)

f(1) =1

f(6)
f(4)
f(3)
f(2) f(1) = 1 f(2)
f(1) = 1 f(0)= 0 f(1) = 1 f(0) = 0
f(3)
f(1) = 1

f(0) = 0

def recursion(level, paraml, param2, ...):

recursion terminator
if level > MAX_LEVEL:
print_result
return

process logic in current level
process_data(level, data...)

drill down
self.recursion(level + 1, pl1, ...)

reverse the current level status if needed
reverse_state(level)

=

Divde & Conquer

split/ merge

Subproblem Subproblem

split / merge split / merge

Compute Compute Compute Compute
Subproblem Subproblem Subproblem Subproblem

Divide & Conquer

a b c d e f g h i Problem
Divide a b C d e f g h i j Sub-Problem
Conquer A B C D E F G H I J Sub-Solution

Merge A B C D E F G H I Solution

def divide_conquer(problem, paraml, param2, ...):

recursion terminator
if problem is None:
print_result
return

prepare data
data = prepare_data(problem)
subproblems = split_problem(problem, data)

conquer subproblems

subresultl = self.divide_conquer(subproblems[@], pl1l, ...)
subresult2 = self.divide_conquer(subproblems([1], pl1, ...)
subresult3 = self.divide_conquer(subproblems[2], p1, ...)

process and generate the final result
result = process_result(subresultl, subresult2, subresult3, ...)

LAk =2 B

1. https://leetcode.com/problems/powx-n/description/

2. https://leetcode.com/problems/maximum-subarray/description/

3. https://leetcode.com/problems/majority-element/description/

4. https://leetcode.com/problems/valid-anagram/#/description

5. https://leetcode.com/problems/find-all-anagrams-in-a-string/#/description

6. https://leetcode.com/problems/anagrams/#/description

https://leetcode.com/problems/powx-n/description/
https://leetcode.com/problems/maximum-subarray/description/
https://leetcode.com/problems/majority-element/description/
https://leetcode.com/problems/valid-anagram/#/description
https://leetcode.com/problems/find-all-anagrams-in-a-string/#/description
https://leetcode.com/problems/anagrams/#/description

