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Recursion
1T& n!

nl=1*2*3*..."n

def Factorial(n):
if n <= 1:

return 1
return n x Factorial(n - 1)




Recursive
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Recursion

Fibonacci array: 1, 1, 2, 3, 5, 13, 21, 34, ...

F(n) = F(n-1) + F(n-2)

def fib(n):
1T n=0o0orn=1:

return n
return fib(n - 1) + fib(n - 2)
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def recursion(level, paraml, param2, ...):

# recursion terminator
if level > MAX_LEVEL:
print_result
return

# process logic in current level
process_data(level, data...)

# drill down
self.recursion(level + 1, pl1, ...)

# reverse the current level status if needed
reverse_state(level)
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Divide & Conquer
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def divide_conquer(problem, paraml, param2, ...):

# recursion terminator
if problem is None:
print_result
return

# prepare data
data = prepare_data(problem)
subproblems = split_problem(problem, data)

# conquer subproblems

subresultl = self.divide_conquer(subproblems[@], pl1l, ...)
subresult2 = self.divide_conquer(subproblems([1], pl1, ...)
subresult3 = self.divide_conquer(subproblems[2], p1, ...)

# process and generate the final result
result = process_result(subresultl, subresult2, subresult3, ...)
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1. https://leetcode.com/problems/powx-n/description/

2. https://leetcode.com/problems/maximum-subarray/description/

3. https://leetcode.com/problems/majority-element/description/

4. https://leetcode.com/problems/valid-anagram/#/description

5. https://leetcode.com/problems/find-all-anagrams-in-a-string/#/description

6. https://leetcode.com/problems/anagrams/#/description
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