I E{ftci¥ % (Breadth-First-Search)

TN (B/RSR) PIRBETR

T T

N N
SN SN SN /N

YN U SN S

How the BFS would work

v
TR

4

BFS{ 15

def BFS(graph, start, end):

queue = []
queue.append([start])
visited.add(start)

while queue:
node = queue.pop()
visited.add(node)

process(node)
nodes = generate_related_nodes(node)
queue.push(nodes)

R E 1L 518 & (Depth-First-Search)

How a BFS Would Traverse This Tree

A
TR

4

How a DFS Would Traverse This Tree

-

Breadth
First
Search

DFSfGHEY - A5 A

visited = set()
def dfs(node, visited):
visited.add(node)

for next_node in node.children():
if not next_node in visited:
dfs(next_node, visited)

DFS{EE - dEEA5 A

def DFS(self, tree):

if tree.root is None:
return []

visited, stack = [], [tree.root]

while stack:
node = stack.pop()
visited.add(node)

process(node)
nodes = generate_related_nodes(node)
stack.push(nodes)

DFSfGHEY - A5 A

visited = set()
def dfs(node, visited):
visited.add(node)

for next_node in node.children():
if not next_node in visited:
dfs(next_node, visited)

BFS{ 15

def BFS(graph, start, end):

queue = []
queue.append([start])
visited.add(start)

while queue:
node = queue.pop()
visited.add(node)

process(node)
nodes = generate_related_nodes(node)
queue.push(nodes)

