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How the BFS would work
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def BFS(graph, start, end):

queue = []
queue.append( [start])
visited.add(start)

while queue:
node = queue.pop()
visited.add(node)

process(node)
nodes = generate_related_nodes(node)
queue.push(nodes)
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How a BFS Would Traverse This Tree
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How a DFS Would Traverse This Tree
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visited = set()
def dfs(node, visited):
visited.add(node)

for next_node in node.children():
if not next_node in visited:
dfs(next_node, visited)
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def DFS(self, tree):

if tree.root is None:
return []

visited, stack = [], [tree.root]

while stack:
node = stack.pop()
visited.add(node)

process(node)
nodes = generate_related_nodes(node)
stack.push(nodes)
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visited = set()
def dfs(node, visited):
visited.add(node)

for next_node in node.children():
if not next_node in visited:
dfs(next_node, visited)
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def BFS(graph, start, end):

queue = []
queue.append( [start])
visited.add(start)

while queue:
node = queue.pop()
visited.add(node)

process(node)
nodes = generate_related_nodes(node)
queue.push(nodes)



