
mysql> show global status;

可以列出MySQL服务器运行各种状态值
一、慢查询

mysql> show variables like '%slow%';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| log_slow_queries | ON |
| slow_launch_time | 2 |
+------------------+-------+
mysql> show global status like '%slow%';
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| Slow_launch_threads | 0 |
| Slow_queries | 4148 |
+---------------------+-------+
打开慢查询日志会对系统性能有一点点影响，如果MySQL是主－从结构，可以考虑打开其中
一台从服务器的慢查询日志，这样既可以监控慢查询，对系统性能影响又小，mysql有自带
的命令mysqldumpslow可进行查询，例下列命令可以查出访问次数最多的20个sql语句
mysqldumpslow -s c -t 20 host-slow.log
二、连接数

经常会遇见”MySQL: ERROR 1040: Too manyconnections”的情况，一种是访问量确实很
高，MySQL服务器抗不住，这个时候就要考虑增加从服务器分散读压力，另外一种情况是
MySQL配置文件中max_connections值过小：
mysql> show variables like 'max_connections';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_connections | 256 |
+-----------------+-------+
这台MySQL服务器最大连接数是256，然后查询一下服务器响应的最大连接数：
mysql> show global status like 'Max_used_connections';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| Max_used_connections | 245 |
+----------------------+-------+
MySQL服务器过去的最大连接数是245，没有达到服务器连接数上限256，应该没有出现1040
错误，比较理想的设置是：
Max_used_connections / max_connections * 100% ≈ 85%
最大连接数占上限连接数的85％左右，如果发现比例在10%以下，MySQL服务器连接数上限设
置的过高了。
三、Key_buffer_size

key_buffer_size是对MyISAM表性能影响最大的一个参数，下面一台以MyISAM为主要存储引
擎服务器的配置：
mysql> show variables like 'key_buffer_size';

+-----------------+------------+
| Variable_name | Value |
+-----------------+------------+
| key_buffer_size | 536870912 |
+-----------------+------------+
分配了512MB内存给key_buffer_size，再看一下key_buffer_size的使用情况：
mysql> show global status like 'key_read%';
+------------------------+-------------+
| Variable_name | Value |
+------------------------+-------------+
| Key_read_requests | 27813678764 |
| Key_reads | 6798830 |
+------------------------+-------------+
一共有27813678764个索引读取请求，有6798830个请求在内存中没有找到直接从硬盘读取索
引，计算索引未命中缓存的概率：
key_cache_miss_rate ＝ Key_reads / Key_read_requests * 100%
比如上面的数据，key_cache_miss_rate为0.0244%，4000个索引读取请求才有一个直接读硬
盘，已经很BT 了，key_cache_miss_rate在0.1%以下都很好（每1000个请求有一个直接读硬
盘），如果key_cache_miss_rate在 0.01%以下的话，key_buffer_size分配的过多，可以适
当减少。
MySQL服务器还提供了key_blocks_*参数：
mysql> show global status like 'key_blocks_u%';
+------------------------+-------------+
| Variable_name | Value |
+------------------------+-------------+
| Key_blocks_unused | 0 |
| Key_blocks_used | 413543 |
+------------------------+-------------+
Key_blocks_unused 表示未使用的缓存簇(blocks)数，Key_blocks_used表示曾经用到的最
大的blocks数，比如这台服务器，所有的缓存都用到了，要么 增加key_buffer_size，要么
就是过渡索引了，把缓存占满了。比较理想的设置：Key_blocks_used /
(Key_blocks_unused + Key_blocks_used) * 100% ≈ 80%

四、临时表

mysql> show global status like 'created_tmp%';
+-------------------------+---------+
| Variable_name | Value |
+-------------------------+---------+
Created_tmp_disk_tables	21197
Created_tmp_files	58
Created_tmp_tables	1771587
+-------------------------+---------+
每次创建临时表，Created_tmp_tables增加，如果是在磁盘上创建临时表，
Created_tmp_disk_tables也增加,Created_tmp_files表示MySQL服务创建的临时文件文件
数，比较理想的配置是：
Created_tmp_disk_tables / Created_tmp_tables * 100% <= 25%
比如上面的服务器Created_tmp_disk_tables / Created_tmp_tables * 100% ＝ 1.20%，应
该相当好了。我们再看一下MySQL服务器对临时表的配置：

mysql> show variables where Variable_name in ('tmp_table_size',
'max_heap_table_size');
+---------------------+-----------+
| Variable_name | Value |
+---------------------+-----------+
| max_heap_table_size | 268435456 |
| tmp_table_size | 536870912 |
+---------------------+-----------+
只有256MB以下的临时表才能全部放内存，超过的就会用到硬盘临时表。
五、Open Table情况

mysql> show global status like 'open%tables%';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Open_tables | 919 |
| Opened_tables | 1951 |
+---------------+-------+
Open_tables 表示打开表的数量，Opened_tables表示打开过的表数量，如果Opened_tables
数量过大，说明配置中 table_cache(5.1.3之后这个值叫做table_open_cache)值可能太
小，我们查询一下服务器table_cache值：
mysql> show variables like 'table_cache';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| table_cache | 2048 |
+---------------+-------+
比较合适的值为：
Open_tables / Opened_tables * 100% >= 85%
Open_tables / table_cache * 100% <= 95%
六、线程使用情况

mysql> show global status like 'Thread%';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
Threads_cached	46
Threads_connected	2
Threads_created	570
Threads_running	1
+-------------------+-------+	
如果我们在MySQL服务器配置文件中设置了thread_cache_size，当客户端断开之后，服务器	
处理此客户的线程将会缓存起来以响应下一个客户 而不是销毁（前提是缓存数未达上	
限）。Threads_created表示创建过的线程数，如果发现Threads_created值过大的话，表明	
MySQL服务器一直在创建线程，这也是比较耗资源，可以适当增加配置文件中	
thread_cache_size值，查询服务器 thread_cache_size配置：	
mysql> show variables like 'thread_cache_size';	
+-------------------+-------+	
Variable_name	Value
+-------------------+-------+	
thread_cache_size	64

+-------------------+-------+
七、查询缓存(query cache)

mysql> show global status like 'qcache%';
+-------------------------+-----------+
| Variable_name | Value |
+-------------------------+-----------+
Qcache_free_blocks	22756
Qcache_free_memory	76764704
Qcache_hits	213028692
Qcache_inserts	208894227
Qcache_lowmem_prunes	4010916
Qcache_not_cached	13385031
Qcache_queries_in_cache	43560
Qcache_total_blocks	111212
+-------------------------+-----------+	
MySQL查询缓存变量解释：	
Qcache_free_blocks：缓存中相邻内存块的个数。数目大说明可能有碎片。FLUSH QUERY	
CACHE会对缓存中的碎片进行整理，从而得到一个空闲块	
Qcache_free_memory：缓存中的空闲内存	
Qcache_hits：每次查询在缓存中命中时就增大	
Qcache_inserts：每次插入一个查询时就增大。命中次数除以插入次数就是不中比率	
Qcache_lowmem_prunes： 缓存出现内存不足并且必须要进行清理以便为更多查询提供空间	
的次数。这个数字最好长时间来看；如果这个数字在不断增长，就表示可能碎片非常严重，	
或者内存 很少。（上面的 free_blocks和free_memory可以告诉您属于哪种情况）	
Qcache_not_cached：不适合进行缓存的查询的数量，通常是由于这些查询不是 SELECT 语	
句或者用了now()之类的函数。	
Qcache_queries_in_cache：当前缓存的查询（和响应）的数量。	
Qcache_total_blocks：缓存中块的数量。	
查询一下服务器关于query_cache的配置：	
mysql> show variables like 'query_cache%';	
+------------------------------+-----------+	
Variable_name	Value
+------------------------------+-----------+	
query_cache_limit	2097152
query_cache_min_res_unit	4096
query_cache_size	203423744
query_cache_type	ON
query_cache_wlock_invalidate	OFF
+------------------------------+-----------+
各字段的解释：
query_cache_limit：超过此大小的查询将不缓存
query_cache_min_res_unit：缓存块的最小大小
query_cache_size：查询缓存大小
query_cache_type：缓存类型，决定缓存什么样的查询，示例中表示不缓存 select
sql_no_cache 查询
query_cache_wlock_invalidate：当有其他客户端正在对MyISAM表进行写操作时，如果查询
在query cache中，是否返回cache结果还是等写操作完成再读表获取结果。
query_cache_min_res_unit的配置是一柄”双刃剑”，默认是4KB，设置值大对大数据查询
有好处，但如果你的查询都是小数据查询，就容易造成内存碎片和浪费。

查询缓存碎片率 = Qcache_free_blocks / Qcache_total_blocks * 100%
如果查询缓存碎片率超过20%，可以用FLUSH QUERY CACHE整理缓存碎片，或者试试减小
query_cache_min_res_unit，如果你的查询都是小数据量的话。
查询缓存利用率 = (query_cache_size - Qcache_free_memory) / query_cache_size *
100%
查询缓存利用率在25%以下的话说明query_cache_size设置的过大，可适当减小；查询缓存
利用率在80％以上而且Qcache_lowmem_prunes > 50的话说明query_cache_size可能有点
小，要不就是碎片太多。
查询缓存命中率 = (Qcache_hits - Qcache_inserts) / Qcache_hits * 100%
示例服务器 查询缓存碎片率 ＝ 20.46％，查询缓存利用率 ＝ 62.26％，查询缓存命中率
＝ 1.94％，命中率很差，可能写操作比较频繁，而且可能有些碎片。
八、排序使用情况

mysql> show global status like 'sort%';
+-------------------+------------+
| Variable_name | Value |
+-------------------+------------+
Sort_merge_passes	29
Sort_range	37432840
Sort_rows	9178691532
Sort_scan	1860569
+-------------------+------------+
Sort_merge_passes 包括两步。MySQL 首先会尝试在内存中做排序，使用的内存大小由系统
变量Sort_buffer_size 决定，如果它的大小不够把所有的记录都读到内存中，MySQL 就会
把每次在内存中排序的结果存到临时文件中，等MySQL 找到所有记录之后，再把临时文件中
的记录做一次排序。这再次排序就会增加 Sort_merge_passes。实际上，MySQL会用另一个
临时文件来存再次排序的结果，所以通常会看到 Sort_merge_passes增加的数值是建临时文
件数的两倍。因为用到了临时文件，所以速度可能会比较慢，增加 Sort_buffer_size 会减
少Sort_merge_passes 和 创建临时文件的次数，但盲目的增加Sort_buffer_size 并不一定
能提高速度
九、文件打开数(open_files)

mysql> show global status like 'open_files';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Open_files | 1410 |
+---------------+-------+
mysql> show variables like 'open_files_limit';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| open_files_limit | 4590 |
+------------------+-------+
比较合适的设置：Open_files / open_files_limit * 100% <= 75％
十、表锁情况

mysql> show global status like 'table_locks%';
+-----------------------+-----------+
| Variable_name | Value |
+-----------------------+-----------+
| Table_locks_immediate | 490206328 |

| Table_locks_waited | 2084912 |
+-----------------------+-----------+
Table_locks_immediate 表示立即释放表锁数，Table_locks_waited表示需要等待的表锁
数，如果Table_locks_immediate / Table_locks_waited >5000，最好采用InnoDB引擎，因
为InnoDB是行锁而MyISAM是表锁，对于高并发写入的应用InnoDB效果会好些。示例中的服务
器Table_locks_immediate / Table_locks_waited ＝ 235，MyISAM就足够了。
十一、表扫描情况

mysql> show global status like 'handler_read%';
+-----------------------+-------------+
| Variable_name | Value |
+-----------------------+-------------+
Handler_read_first	5803750
Handler_read_key	6049319850
Handler_read_next	94440908210
Handler_read_prev	34822001724
Handler_read_rnd	405482605
Handler_read_rnd_next	18912877839
+-----------------------+-------------+	
mysql> show global status like 'com_select';	
+---------------+-----------+	
Variable_name	Value
+---------------+-----------+	
Com_select	222693559
+---------------+-----------+
计算表扫描率：
表扫描率 ＝ Handler_read_rnd_next / Com_select
如果表扫描率超过4000，说明进行了太多表扫描，很有可能索引没有建好，增加
read_buffer_size值会有一些好处，但最好不要超过8MB。

