Netflix Cloud Architecture

Qcon Beijing April 9, 2011
Adrian Cockcroft

@adrianco #netflixcloud http://slideshare.net/adrianco
acockcroft@netflix.com

(Continuing from Keynote Talk)

WheWAWhy, What

Netfliv in the Cloud
Cleud-Challengesand-tearnings

Systems and Operations Architecture

Amazon Cloud Terminology

See http://aws.amazon.com/ for details
This is not a full list of Amazon Web Service features

AWS — Amazon Web Services (common name for Amazon cloud)
AMI — Amazon Machine Image (archived boot disk, Linux, Windows etc. plus application code)
EC2 — Elastic Compute Cloud
— Range of virtual machine types m1, m2, c1, cc, cg. Varying memory, CPU and disk configurations.
— Instance — a running computer system. Ephemeral, when it is de-allocated nothing is kept.
— Reserved Instances — pre-paid to reduce cost for long term usage
— Availability Zone — datacenter with own power and cooling hosting cloud instances
— Region — group of Availability Zones — US-East, US-West, EU-Eire, Asia-Singapore, Asia-Japan
ASG — Auto Scaling Group (instances booting from the same AMI)
S3 — Simple Storage Service (http access)
EBS — Elastic Block Storage (network disk filesystem can be mounted on an instance)
RDB — Relational Data Base (managed MySQL master and slaves)
SDB — Simple Data Base (hosted http based NoSQL data store)
SQS - Simple Queue Service (http based message queue)
SNS — Simple Notification Service (http and email based topics and messages)
EMR — Elastic Map Reduce (automatically managed Hadoop cluster)
ELB — Elastic Load Balancer
EIP — Elastic IP (stable IP address mapping assigned to instance or ELB)
VPC — Virtual Private Cloud (extension of enterprise datacenter network into cloud)
IAM — Identity and Access Management (fine grain role based security keys)

amazon NETELIX
webservices”

Netflix Deployed on AWS

_ NS
witramazon
“¥ webservices
Content Logs Play WWW API
— N\Illdeo — S3 — DRM — Search — Metadata
asters
. Movie . .
EC2 EMR Hadoop CDN routing Choosing Device Config
— S3 — Hive — Bookmarks — Ratings v Moyle
Choosing
Content Business . . Mobile
— Delivery — . — Logging — Similars — iPh
Network CDN Intelligence iPhone

Clorner AT Level (3)

Cloud Architecture

Product Trade-off

User Experience Implementation

Consistent Development
Experience complexity

Operational
complexity

Low Latency

Synopsis

The Goals
— Faster, Scalable, Available and Productive

Anti-patterns and Cloud Architecture
— The things we wanted to change and why

Capacity Planning and Monitoring

Next Steps

Netflix Cloud Goals

Faster
— Lower latency than the equivalent datacenter web pages and API calls
— Measured as mean and 99t percentile
— For both first hit (e.g. home page) and in-session hits for the same user

Scalable
— Avoid needing any more datacenter capacity as subscriber count increases

— No central vertically scaled databases
— Leverage AWS elastic capacity effectively

Available
— Substantially higher robustness and availability than datacenter services
— Leverage multiple AWS availability zones
— No scheduled down time, no central database schema to change

Productive
— Optimize agility of a large development team with automation and tools
— Leave behind complex tangled datacenter code base (~8 year old architecture)

— Enforce clean layered interfaces and re-usable components
NETELIX

Old Datacenter vs. New Cloud Arch

Central SQL Database Distributed Key/Value NoSQL

Sl‘icky In-Memory Session Shared Memcached Session

Chatty Protocols Latency Tolerant Protocols
Tangled Service Interfaces Layered Service Interfaces
Instrumented Code Instrumented Service Patterns

Fat Complex Objects Lightweight Serializable Objects

Components as Jar Files Components as Services

NETELIK

The Central SQL Database

 Datacenter has a central database
— Everything in one place is convenient until it fails
— Customers, movies, history, configuration

* Schema changes require downtime

This Anti-pattern impacts scalability, availability

The Distributed Key-Value Store

* Cloud has many key-value data stores
— More complex to keep track of, do backups etc.
— Each store is much simpler to administer
— Joins take place in java code

osa

* No schema to change, no scheduled downtime

e Latency for Memcached vs. Oracle vs. SimpleDB
— Memcached is dominated by network latency <1ms

— Oracle for simple queries is a few milliseconds
— SimpleDB has replication and REST overheads >10ms

Database Migration

* Why SimpleDB?
— No DBA’s in the cloud, Amazon hosted service
— Work started two years ago, fewer viable options
— Worked with Amazon to speed up and scale SimpleDB

e Alternatives?

— Now rolling out Cassandra as “upgrade” from SimpleDB
— Need several options to match use cases well

* Detailed NoSQL and SimpleDB Advice

— Sid Anand - QConSF Nov 5t — Netflix’ Transition to High Availability
Storage Systems

— Blog - http://practicalcloudcomputing.com/
— Download Paper PDF - http://bit.ly/bhOTLu

Oracle to SimpleDB

(See Sid’s paper for details)

 SimpleDB Domains
— De-normalize multiple tables into a single domain
— Work around size limits (10GB per domain, 1KB per key)
— Shard data across domains to scale

— Key — Use distributed sequence generator, GUID or natural
unique key such as customer-id

— Implement a schema validator to catch bad attributes

* Application layer support
— Do GROUP BY and JOIN operations in the application
— Compose relations in the application layer
— Check constraints on read, and repair data as a side effect

* Do without triggers, PL/SQL, clock operations

The Sticky Session

* Datacenter Sticky Load Balancing
— Efficient caching for low latency
— Tricky session handling code
— Middle tier load balancer has issues in practice

* Encourages concentrated functionality
— one service that does everything

This Anti-pattern impacts productivity, availability

The Shared Session

* Cloud Uses Round-Robin Load Balancing
— Simple request-based code
— External shared caching with memcached

* More flexible fine grain services

— Works better with auto-scaled instance counts

Chatty Opaque and Brittle Protocols

* Datacenter service protocols
— Assumed low latency for many simple requests

e Based on serializing existing java objects
— Inefficient formats
— Incompatible when definitions change

This Anti-pattern causes productivity, latency
and availability issues

Robust and Flexible Protocols

* Cloud service protocols
— JSR311/Jersey is used for REST/HTTP service calls
— Custom client code includes service discovery
— Support complex data types in a single request

* Apache Avro
— Evolved from Protocol Buffers and Thrift
— Includes JSON header defining key/value protocol

— Avro serialization is half the size and several times
faster than Java serialization, more work to code

Persisted Protocols

e Persist Avro in Memcached
— Save space/latency (zigzag encoding, half the size)
— Less brittle across versions
— New keys are ignored
— Missing keys are handled cleanly

* Avro protocol definitions
— Can be written in JSON or generated from POJOs
— It’s hard, needs better tooling

Tangled Service Interfaces

* Datacenter implementation is exposed
— Oracle SQL queries mixed into business logic

 Tangled code
— Deep dependencies, false sharing

e Data providers with sideways dependencies
— Everything depends on everything else

This Anti-pattern affects productivity, availability

Untangled Service Interfaces

* New Cloud Code With Strict Layering
— Compile against interface jar
— Can use spring runtime binding to enforce

* Service interface is the service
— Implementation is completely hidden
— Can be implemented locally or remotely

— Implementation can evolve independently

Untangled Service Interfaces

Two layers:

* SAL - Service Access Library
— Basic serialization and error handling
— REST or POJO’s defined by data provider

e ESL - Extended Service Library
— Caching, conveniences
— Can combine several SALs
— Exposes faceted type system (described later)
— Interface defined by data consumer in many cases

Service Interaction Pattern
Sample Swimlane Diagram

First time request, new user, no cache hits, call cache service first, no need to notify

PRESENTATION LAYER - CLIENT

APPLICATION MOVIES ESL LOCAL CACHE
request check local lookup
not found
if miss return miss CACHE SAL
call remote cache serialize
GET key
if miss return miss
call service
result return result
LOCAL CACHE
update local cache store
stop return ok

MOVIES SAL
serialize
call service

deserialize
return result

CACHE SERVICE

CACHE SERVICE
lookup key

return not found

SERVLET
deserialize

MOVIES SERVICE

CACHE SERVICE
store val at key

return ok

CACHE SAL
serialize
PUT key/value

return ok

ENGINE
process request

best effort
start timer

serialize return result

response

save for
next time

stop

NETELLN

Service Architecture Patterns

* |Internal Interfaces Between Services
— Common patterns as templates
— Highly instrumented, observable, analytics
— Service Level Agreements — SLAS

* Library templates for generic features
— Instrumented Netflix Base Servlet template
— Instrumented generic client interface template
— Instrumented S3, SimpleDB, Memcached clients

Inbound
deserialize
start
timestamp

Client network
receive

timestamp

I

Service

network send
timestamp

!\

Service
outbound
serialize end
timestamp

CLIENT
Request Start

Timestamp S Cli
’ ient
Inpoynd Request End outbound
des.erlallze end Timestamp serialize start
timestamp timestamp
- N}
Client
outbound
serialize end
timestamp

y

Client Network

send

Service Request “u-
Instruments Every !
Step in the call

Network

receive
timestamp

/

Service
inbound
serialize start
timestamp
\ S /A
Service Service
outbound inbound
serialize start SERVICE execute serialize end
timestamp | <€ request start timestamp
timestamp,

execute request
end timestamp

NETELTX

Boundary Interfaces

* |solate teams from external dependencies
— Fake SAL built by cloud team
— Real SAL provided by data provider team later
— ESL built by cloud team using faceted objects

* Fake data sources allow development to start
— e.g. Fake ldentity SAL for a test set of customers
— Development solidifies dependencies early
— Helps external team provide the right interface

One Object That Does Everything

* Datacenter uses a few big complex objects
— Movie and Customer objects are the foundation
— Good choice for a small team and one instance
— Problematic for large teams and many instances

* False sharing causes tangled dependencies
— Unproductive re-integration work

Anti-pattern impacting productivity and availability

An Interface For Each Component

* Cloud uses faceted Video and Visitor
— Basic types hold only the identifier
— Facets scope the interface you actually need
— Each component can define its own facets

* No false-sharing and dependency chains
— Type manager converts between facets as needed
— video.asA(PresentationVideo) for www
— video.asA(MerchableVideo) for middle tier

Software Architecture Patterns

* Object Models

— Basic and derived types, facets, serializable
— Pass by reference within a service

— Pass by value between services

 Computation and I/O Models
— Service Execution using Best Effort

— Common thread pool management

Cloud Operations

Model Driven Architecture
Capacity Planning & Monitoring

Tools and Automation

Developer and Build Tools
— Jira, Eclipse, Jeeves, lvy, Artifactory
— Builds, creates .war file, .rpm, bakes AMI and launches

Custom Netflix Application Console
— AWS Features at Enterprise Scale (hide the AWS security keys!)
— Auto Scaler Group is unit of deployment to production

Open Source + Support
— Apache, Tomcat, Cassandra, Hadoop, OpenJDK/SunJDK, CentOS/AmazonLinux

Monitoring Tools
— Keynote — service monitoring and alerting
— AppDynamics — Developer focus for cloud http://appdynamics.com
— EpicNMS — flexible data collection and plots http://epicnms.com
— Nimsoft NMS — ITOps focus for Datacenter + Cloud alerting

Model Driven Architecture

* Datacenter Practices
— Lots of unique hand-tweaked systems
— Hard to enforce patterns

 Model Driven Cloud Architecture
— Perforce/lvy/Jeeves based builds for everything
— Every production instance is a pre-baked AMI
— Every application is managed by an Autoscaler

No exceptions, every change is a new AMI

Model Driven Implications

* Automated “Least Privilege” Security
— Tightly specified security groups
— Fine grain IAM keys to access AWS resources
— Performance tools security and integration

 Model Driven Performance Monitoring
— Hundreds of instances appear in a few minutes...

— Tools have to “garbage collect” dead instances

Netflix App Console

/)

ﬁ Home

@ Apps ‘ ‘E‘ Images @ Auto Scaling J,IL Load Balancers l @ Instances E] EBS L;j RDS E Tasks
| v v v v
Welcome to Netflix Application Console in test
Netflix Abstractions AWS Objects NAC Tasks
Manage Netflix Applications Manage Images Monitor NAC Background Tasks
e Push images to one or more Application AutoScaling Groups
e Configure outbound security access for Applications Manage Auto Scaling Groups

Manage Load Balancers
Manage Launch Configurations
Manage Security Groups
Manage Running Instances

View Reservations

All NAC Links

NAC for test account
Jump to an instance: Go
NAC for prod account

NETELLN

Auto Scale Group Configuration

5. N\ ETELI X Application Console s

@ Home @ Apps \E[Images ‘ @ Auto Scaling é.il Load Balancers ‘ @ Instances
l o v

B s | £ ros Tasks ‘
v o v

Auto Scaling Group Details

Name: merchweb-dev

Launch Configuration: merchweb-dev-201010081534

Min Instances: 1

Max Instances: 1

Desired Capacity: 1

Cool Down: 0

Availablility Zones: [us-east-1a, us-east-1c]
Created Time: 2010-10-08 15:18:15 PDT

Load Balancers:
merchweb-frontend-dev

Instances: Instance Count: 1

i-d0dc31bd | us-east-1a | InService

Activities:
At 2010-10-08T22:38:10Z an instance was started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1. :
Launching a new EC2 instance: i-d0dc31

At 2010-10-08T22:37:38Z an instance was terminated in response to a system health-check. : Terminating EC2 instance i-b2f31edf

At 2010-10-08T22:18:15Z a user request created an AutoScalingGroup changing the desired capacity from 0 to 1. At 2010-10-08T22:20:04Z an instance was
started in response to a difference between desired and actual capacity, increasing the capacity from 0 to 1. : Launching a new EC2 instance: i-b2f31edf

Pattern Matches

Application: merchweb

K
% Edit Auto Scaling Group ﬁ Delete Auto Scaling Group 6. Create a new Launch Config for this Auto Scaling Group @ Prepare to Push Image into Auto Scaling Group

NETELLN

Capacity Planning & Monitoring

Capacity Planning in Clouds

(a few things have changed...)

* Depreciate-assets-over3-years-(reservations!)

Monitoring Issues

* Problem
— Too many tools, each with a good reason to exist
— Hard to get an integrated view of a problem
— Too much manual work building dashboards
— Tools are not discoverable, views are not filtered

* Solution
— Get vendors to add deep linking URLs and APls
— Integration “portal” ties everything together
— Underlying dependency database
— Dynamic portal generation, relevant data, all tools

Data Sources

eExternal URL availability and latency alerts and reports — Keynote

EXte a I Te Sti ng eStress testing - SOASTA

R t T L . eNetflix REST calls — Chukwa to DataOven with GUID transaction identifier
eq ues race 088' ng eGeneric HTTP — AppDynamics service tier aggregation, end to end tracking

A I a I . eTracers and counters — log4j, tracer central, Chukwa to DataOven
p p |Cat| on 088' ng eTrackid and Audit/Debug logging — DataOven, Appdynamics GUID cross reference

J MX M . eApplication specific real time — Nimsoft, Appdynamics, Epic
etrl CS eService and SLA percentiles — Nimsoft, Appdynamics, Epic,logged to DataOven

T t d A h I eStdout logs — S3 — DataOven, Nimsoft alerting
omcat an pa che 035 eStandard format Access and Error logs — S3 — DataOven, Nimsoft Alerting

eGarbage Collection — Nimsoft, Appdynamics
eMemory usage, call stacks, resource/call - AppDynamics

esystem CPU/Net/RAM/Disk metrics — AppDynamics, Epic, Nimsoft Alerting
*SNMP metrics — Epic, Network flows - Fastip

eLoad balancer traffic — Amazon Cloudwatch, SimpleDB usage stats
eSystem configuration - CPU count/speed and RAM size, overall usage - AWS

Integrated Dashboards

Dashboards Architecture

* |Integrated Dashboard View
— Single web page containing content from many tools
— Filtered to highlight most “interesting” data

* Relevance Controller
— Drill in, add and remove content interactively

— Given an application, alert or problem area, dynamically
build a dashboard relevant to your role and needs

 Dependency and Incident Model
— Model Driven - Interrogates tools and AWS APIs
— Document store to capture dependency tree and states

Dashboard Prototype

(not everything is integrated yet)

MERCHWEB NETELIX
Last Updated on 3/3/11 11:18 PM
Legends I Time Periods (Past 3 hours) ¥ @ Graph Size (600x200) ¥ ’ \}-‘5 Edit Dashboard ‘
Latency Metrics Request Metrics Load Balancers EVCache Usage S3 Metrics | App Dynamics | Tracers and Counters System
| |
AddToQueuel Avg Week over Week m
-
]J—‘]j‘l,—ﬂ.r‘\ o
300
200
100
Y 0 »
B 23:00 20:20 20:40 21: 00 21:20 21:40 22:00 22:20 22:40 23:00
AddToQueuel 95% Week over Week
o I

AppDynamics

How to look deep inside your cloud applications

* Automatic Monitoring
— Base AMI includes all monitoring tools
— Outbound calls only — no discovery/polling issues
— Inactive instances removed after a few days

* |Incident Alarms (deviation from baseline)
— Business Transaction latency and error rate
— Alarm thresholds discover their own baseline
— Email contains URL to Incident Workbench Ul

Using AppDynamics

(simple example from early 2010)

,':. AppDynamics
ff <« » O Applications » AWS Production Account
Applications Actions v View Options w | Overview

» Business Transactions *

Request Snapshots |

AWS Production Account

BUSINESS TRANSACTION DASHBOARD

VHTT 0.4-msT0 I(“

1@

I2& pashboard Transaction Flow Map

& Business Transactions 19

1, Infrastructure

cryptexservice

& Incidents A mefchweb I

J{ Errors HTTP 101,5ms (15 g RT TV

¥ Events) 4

i Infor.mation Points @ HTTP ;TTF) 4%‘1]?]';3_ H—m—p IBBIHTTE Bd2ms (9
|/< Metric Browser -

IB Policies S3port443

R Baselines 4 ~

1{ Configuration (‘A

qgservice
SimpleDB

Explain th
Load

404 calls/min

1000

576967 calls last 1 day

Infrastructure
600

200

&

7:00 AM

11:00 AM 4:00 PM S:00PM 2:00 AM

starz

HTTP~8-ms_ (0 %)

HTTP Q.ms {0

i 4

PresentationTracks ‘2‘;”’-' 15.8-m r‘ 7’1% . <1 @TF’H A ‘m

SimpleDBport443

Avg Response Time (ms)
6 7 6 ms average

2200
1800
1400
1000

600

11:00 AM 4:00 PM S:00 PM 2:00 AM

Applications Infrastructure Settings Help Logout (bob)
NetflixDispatcher.serviceAction
2) [TIME RANGE last 1 day v
aring against Bassline data r/‘_\\". No Incidents in the Al
.\ /| time range
Request Summary sw Request Snapshots b
ow by Nodes p
Normal | 55
Slow | 5
([ou) ;
R
3 Errors l 0
videggnetadata Stalls ' 0.0
HTTP 0ms (0%) | Recent Request Snapshots with ~ View Ay
) Call Graphs
‘ /7 Timestamp Exe. Time(ms)
[:
wCs 499
108
All I
Errors in Request -

SocketTimeoutException at
Errors in Request
[SocketTimeoutException at
Errors in Request
[SocketTimeoutException at

Errors in Request
[SocketTimeoutE
Errors in Request v

otion at

7:00 AM _ 05/26/10

NETELIX

Assess Impact using AppDynamics
View actual call graph on production systems

Request Snapshot Viewer - NetflixDispatcher.serviceAction

3 Normal Request ™ REQUEST EXECUTION TIME REQUEST TIMESTAMP Time Sampling Policy - Every 1 minutes, the next snapshot will be after Wed May 26 18:26:38 UTC
Has Call Graph 1561 ms 05/26/10 11:25:38 AM AL
SUMMARY Execution Time: 1561 ms. Node i-e15e708a. Timestamp: 05/26/10 11:25:38 AM. ?)
Callgraph navigation help Show Filters v |\
PHYSICAL VIEW
Name Time (ms) Extemal Calls Details
CALL GRAPH v n HTTPServlet:service:717 Oms(selfy | 0% View Details =l
vnJSPBaseer'.'[et:ser'.'ice:?o Oms(selfy | 0% Details
HOT SPOTS
>=Servlet - yuiDocTemplate.jsp:_jspService:62 61 ms (total) | 3.9% HTTP Details
SQL CALLS vcom.netﬂix.acsm,cloud.AcsmHeIper:unbindFromRequest:134 Oms(selfy | 0% View Details
v B com.nefflix.videoPresentations Tracker.VideoPresentationsState ObjectFactory:unbindF 0 ms (self) | 0% Details
HTTP PARAMS
v B com.nefflix.videoPresentationsTracker.VideoPresentationsTrackerimpl:flush:76 Oms(selfy | 0% Details
COOKIES v B com.netflix.videoPresentations Tracker.VideoPresentations Trackerimpl:fetchVide Oms(self)y | 0% View Details
v B com.nefflix.videoPresentationsTracker.VideoPresentationsPersister:fetch:6! Oms(selfy | 0% Details
USER DATA
v i com.netflix.videoPresentationsTracker.VideoPresentationsPersisterCacl Oms(selfy | 0% \ Details
JVM / HARDWARE v B com.netflix.evcache . EVCachelmpl:get:176 Oms(self) | 0% View Details
v net.spy.memcached.MemcachedCIient:get:B-tB Oms(selfy | 0% View Details
vnet.spy.memcached.intcrnaI.GctFuture:get:37 Oms(selfy | 0% Details
net.spy.rnemcached.internal.OperationFuture:get:58 2 ms (total) 01% Details
v B com.netflix.videoPresentationsTracker.VideoPresentationsPersister:persist:54 Oms(selfy | 0% View Details
vcom.netﬂix.videoPresentationsTracker.\.’ideoF’resentationsPersisters3zput:4 Oms(selfy | 0% View Details
1265 ms (self) [N View Details
(close

€) * Some packages have been excluded from this Call Graph

Monitoring Summary

* Broken datacenter oriented tools is a big problem

* Integrating many different tools

— They are not designed to be integrated
— We have “persuaded” vendors to add APlIs

 |If you can’t see deep inside your app, you're ®

Wrap Up

Next Few Years...

e “System of Record” moves to Cloud (now)

— Master copies of data live only in the cloud, with backups
— Cut the datacenter to cloud replication link

* International Expansion — Global Clouds (later in 2011)
— Rapid deployments to new markets

e Cloud Standardization?
— Cloud features and APIs should be a commodity not a differentiator
— Differentiate on scale and quality of service
— Competition also drives cost down

— Higher resilience and scalability You must be this tall
to ride this ride:

— I —L—1—]—1—1—1—

We would prefer to be an insignificant customer in a giant cloud

Takeaway

Netflix is path-finding the use of public AWS
cloud to replace in-house IT for non-trivial
applications with hundreds of developers and
thousands of systems.

acockcroft@netflix.com

http://www.linkedin.com/in/adriancockcroft

@adrianco #netflixcloud

amazon NETELIX
webservices"

