
Ne#lix	
  Cloud	
  Architecture	
  

Qcon	
  Beijing	
  April	
  9,	
  2011	
  
Adrian	
  Cockcro>	
  

@adrianco	
  #ne#lixcloud	
  hAp://slideshare.net/adrianco	
  
acockcro>@ne#lix.com	
  



(ConHnuing	
  from	
  Keynote	
  Talk)	
  

Who,	
  Why,	
  What	
  

Ne#lix	
  in	
  the	
  Cloud	
  
Cloud	
  Challenges	
  and	
  Learnings	
  

Systems	
  and	
  OperaHons	
  Architecture	
  
	
  



Amazon Cloud Terminology 
See http://aws.amazon.com/ for details 

This is not a full list of Amazon Web Service features 

•  AWS	
  –	
  Amazon	
  Web	
  Services	
  (common	
  name	
  for	
  Amazon	
  cloud)	
  
•  AMI	
  –	
  Amazon	
  Machine	
  Image	
  (archived	
  boot	
  disk,	
  Linux,	
  Windows	
  etc.	
  plus	
  applicaHon	
  code)	
  
•  EC2	
  –	
  ElasHc	
  Compute	
  Cloud	
  

–  Range	
  of	
  virtual	
  machine	
  types	
  m1,	
  m2,	
  c1,	
  cc,	
  cg.	
  Varying	
  memory,	
  CPU	
  and	
  disk	
  configuraHons.	
  
–  Instance	
  –	
  a	
  running	
  computer	
  system.	
  Ephemeral,	
  when	
  it	
  is	
  de-­‐allocated	
  nothing	
  is	
  kept.	
  
–  Reserved	
  Instances	
  –	
  pre-­‐paid	
  to	
  reduce	
  cost	
  for	
  long	
  term	
  usage	
  
–  Availability	
  Zone	
  –	
  datacenter	
  with	
  own	
  power	
  and	
  cooling	
  hosHng	
  cloud	
  instances	
  
–  Region	
  –	
  group	
  of	
  Availability	
  Zones	
  –	
  US-­‐East,	
  US-­‐West,	
  EU-­‐Eire,	
  Asia-­‐Singapore,	
  Asia-­‐Japan	
  

•  ASG	
  –	
  Auto	
  Scaling	
  Group	
  (instances	
  booHng	
  from	
  the	
  same	
  AMI)	
  
•  S3	
  –	
  Simple	
  Storage	
  Service	
  (hAp	
  access)	
  
•  EBS	
  –	
  ElasHc	
  Block	
  Storage	
  (network	
  disk	
  filesystem	
  can	
  be	
  mounted	
  on	
  an	
  instance)	
  
•  RDB	
  –	
  RelaHonal	
  Data	
  Base	
  (managed	
  MySQL	
  master	
  and	
  slaves)	
  
•  SDB	
  –	
  Simple	
  Data	
  Base	
  (hosted	
  hAp	
  based	
  NoSQL	
  data	
  store)	
  
•  SQS	
  –	
  Simple	
  Queue	
  Service	
  (hAp	
  based	
  message	
  queue)	
  
•  SNS	
  –	
  Simple	
  NoHficaHon	
  Service	
  (hAp	
  and	
  email	
  based	
  topics	
  and	
  messages)	
  
•  EMR	
  –	
  ElasHc	
  Map	
  Reduce	
  (automaHcally	
  managed	
  Hadoop	
  cluster)	
  
•  ELB	
  –	
  ElasHc	
  Load	
  Balancer	
  
•  EIP	
  –	
  ElasHc	
  IP	
  (stable	
  IP	
  address	
  mapping	
  assigned	
  to	
  instance	
  or	
  ELB)	
  
•  VPC	
  –	
  Virtual	
  Private	
  Cloud	
  (extension	
  of	
  enterprise	
  datacenter	
  network	
  into	
  cloud)	
  
•  IAM	
  –	
  IdenHty	
  and	
  Access	
  Management	
  (fine	
  grain	
  role	
  based	
  security	
  keys)	
  



Ne#lix	
  Deployed	
  on	
  AWS	
  

Content	
  

Video	
  
Masters	
  

EC2	
  

S3	
  

Content	
  
Delivery	
  

Network	
  CDN	
  

Logs	
  

S3	
  

EMR	
  Hadoop	
  

Hive	
  

Business	
  
Intelligence	
  

Play	
  

DRM	
  

CDN	
  rouHng	
  

Bookmarks	
  

Logging	
  

WWW	
  

Search	
  

Movie	
  
Choosing	
  

RaHngs	
  

Similars	
  

API	
  

Metadata	
  

Device	
  Config	
  

TV	
  Movie	
  
Choosing	
  

Mobile	
  
iPhone	
  



Cloud	
  Architecture	
  



Product	
  Trade-­‐off	
  

User	
  Experience	
   ImplementaHon	
  

OperaHonal	
  
complexity	
  

Development	
  
complexity	
  

Low	
  Latency	
  

Consistent	
  
Experience	
  



Synopsis	
  

•  The	
  Goals	
  
–  Faster,	
  Scalable,	
  Available	
  and	
  ProducHve	
  

•  AnH-­‐paAerns	
  and	
  Cloud	
  Architecture	
  
–  The	
  things	
  we	
  wanted	
  to	
  change	
  and	
  why	
  

•  Capacity	
  Planning	
  and	
  Monitoring	
  

•  Next	
  Steps	
  



Ne#lix	
  Cloud	
  Goals	
  
•  Faster	
  

–  Lower	
  latency	
  than	
  the	
  equivalent	
  datacenter	
  web	
  pages	
  and	
  API	
  calls	
  
–  Measured	
  as	
  mean	
  and	
  99th	
  percenHle	
  
–  For	
  both	
  first	
  hit	
  (e.g.	
  home	
  page)	
  and	
  in-­‐session	
  hits	
  for	
  the	
  same	
  user	
  

•  Scalable	
  
–  Avoid	
  needing	
  any	
  more	
  datacenter	
  capacity	
  as	
  subscriber	
  count	
  increases	
  
–  No	
  central	
  verHcally	
  scaled	
  databases	
  
–  Leverage	
  AWS	
  elasHc	
  capacity	
  effecHvely	
  

•  Available	
  
–  SubstanHally	
  higher	
  robustness	
  and	
  availability	
  than	
  datacenter	
  services	
  
–  Leverage	
  mulHple	
  AWS	
  availability	
  zones	
  
–  No	
  scheduled	
  down	
  Hme,	
  no	
  central	
  database	
  schema	
  to	
  change	
  

•  ProducHve	
  
–  OpHmize	
  agility	
  of	
  a	
  large	
  development	
  team	
  with	
  automaHon	
  and	
  tools	
  
–  Leave	
  behind	
  complex	
  tangled	
  datacenter	
  code	
  base	
  (~8	
  year	
  old	
  architecture)	
  
–  Enforce	
  clean	
  layered	
  interfaces	
  and	
  re-­‐usable	
  components	
  



Old	
  Datacenter	
  vs.	
  New	
  Cloud	
  Arch	
  

Central	
  SQL	
  Database	
   Distributed	
  Key/Value	
  NoSQL	
  

SHcky	
  In-­‐Memory	
  Session	
   Shared	
  Memcached	
  Session	
  

ChaAy	
  Protocols	
   Latency	
  Tolerant	
  Protocols	
  

Tangled	
  Service	
  Interfaces	
   Layered	
  Service	
  Interfaces	
  

Instrumented	
  Code	
   Instrumented	
  Service	
  PaAerns	
  

Fat	
  Complex	
  Objects	
   Lightweight	
  Serializable	
  Objects	
  

Components	
  as	
  Jar	
  Files	
   Components	
  as	
  Services	
  



The	
  Central	
  SQL	
  Database	
  

•  Datacenter	
  has	
  a	
  central	
  database	
  
– Everything	
  in	
  one	
  place	
  is	
  convenient	
  unHl	
  it	
  fails	
  
– Customers,	
  movies,	
  history,	
  configuraHon	
  
	
  

•  Schema	
  changes	
  require	
  downHme	
  
	
  

This	
  An(-­‐pa,ern	
  impacts	
  scalability,	
  availability	
  



The	
  Distributed	
  Key-­‐Value	
  Store	
  
•  Cloud	
  has	
  many	
  key-­‐value	
  data	
  stores	
  

– More	
  complex	
  to	
  keep	
  track	
  of,	
  do	
  backups	
  etc.	
  
–  Each	
  store	
  is	
  much	
  simpler	
  to	
  administer	
  
–  Joins	
  take	
  place	
  in	
  java	
  code	
  

•  No	
  schema	
  to	
  change,	
  no	
  scheduled	
  downHme	
  

•  Latency	
  for	
  Memcached	
  vs.	
  Oracle	
  vs.	
  SimpleDB	
  
– Memcached	
  is	
  dominated	
  by	
  network	
  latency	
  <1ms	
  
–  Oracle	
  for	
  simple	
  queries	
  is	
  a	
  few	
  milliseconds	
  
–  SimpleDB	
  has	
  replicaHon	
  and	
  REST	
  overheads	
  >10ms	
  

DBA	
  



Database	
  MigraHon	
  
•  Why	
  SimpleDB?	
  

–  No	
  DBA’s	
  in	
  the	
  cloud,	
  Amazon	
  hosted	
  service	
  
–  Work	
  started	
  two	
  years	
  ago,	
  fewer	
  viable	
  opHons	
  
–  Worked	
  with	
  Amazon	
  to	
  speed	
  up	
  and	
  scale	
  SimpleDB	
  

•  AlternaHves?	
  
–  Now	
  rolling	
  out	
  Cassandra	
  as	
  “upgrade”	
  from	
  SimpleDB	
  
–  Need	
  several	
  opHons	
  to	
  match	
  use	
  cases	
  well	
  

•  Detailed	
  NoSQL	
  and	
  SimpleDB	
  Advice	
  
–  Sid	
  Anand	
  	
  -­‐	
  QConSF	
  Nov	
  5th	
  –	
  Ne#lix’	
  TransiHon	
  to	
  High	
  Availability	
  

Storage	
  Systems	
  
–  Blog	
  -­‐	
  hAp://pracHcalcloudcompuHng.com/	
  
–  Download	
  Paper	
  PDF	
  -­‐	
  hAp://bit.ly/bhOTLu	
  



Oracle	
  to	
  SimpleDB	
  
(See	
  Sid’s	
  paper	
  for	
  details)	
  

•  SimpleDB	
  Domains	
  
–  De-­‐normalize	
  mulHple	
  tables	
  into	
  a	
  single	
  domain	
  
–  Work	
  around	
  size	
  limits	
  (10GB	
  per	
  domain,	
  1KB	
  per	
  key)	
  
–  Shard	
  data	
  across	
  domains	
  to	
  scale	
  
–  Key	
  –	
  Use	
  distributed	
  sequence	
  generator,	
  GUID	
  or	
  natural	
  
unique	
  key	
  such	
  as	
  customer-­‐id	
  	
  

–  Implement	
  a	
  schema	
  validator	
  to	
  catch	
  bad	
  aAributes	
  

•  ApplicaHon	
  layer	
  support	
  
–  Do	
  GROUP	
  BY	
  and	
  JOIN	
  operaHons	
  in	
  the	
  applicaHon	
  
–  Compose	
  relaHons	
  in	
  the	
  applicaHon	
  layer	
  
–  Check	
  constraints	
  on	
  read,	
  and	
  repair	
  data	
  as	
  a	
  side	
  effect	
  
	
  

•  Do	
  without	
  triggers,	
  PL/SQL,	
  clock	
  operaHons	
  



The	
  SHcky	
  Session	
  

•  Datacenter	
  SHcky	
  Load	
  Balancing	
  
–  Efficient	
  caching	
  for	
  low	
  latency	
  
–  Tricky	
  session	
  handling	
  code	
  
– Middle	
  Her	
  load	
  balancer	
  has	
  issues	
  in	
  pracHce	
  

•  Encourages	
  concentrated	
  funcHonality	
  
–  one	
  service	
  that	
  does	
  everything	
  

	
  
This	
  An(-­‐pa,ern	
  impacts	
  produc(vity,	
  availability	
  



The	
  Shared	
  Session	
  

•  Cloud	
  Uses	
  Round-­‐Robin	
  Load	
  Balancing	
  
– Simple	
  request-­‐based	
  code	
  
– External	
  shared	
  caching	
  with	
  memcached	
  
	
  

•  More	
  flexible	
  fine	
  grain	
  services	
  
– Works	
  beAer	
  with	
  auto-­‐scaled	
  instance	
  counts	
  



ChaAy	
  Opaque	
  and	
  BriAle	
  Protocols	
  

•  Datacenter	
  service	
  protocols	
  
– Assumed	
  low	
  latency	
  for	
  many	
  simple	
  requests	
  

•  Based	
  on	
  serializing	
  exisHng	
  java	
  objects	
  
–  Inefficient	
  formats	
  
–  IncompaHble	
  when	
  definiHons	
  change	
  

	
  
This	
  An(-­‐pa,ern	
  causes	
  produc(vity,	
  latency	
  

and	
  availability	
  issues	
  



Robust	
  and	
  Flexible	
  Protocols	
  

•  Cloud	
  service	
  protocols	
  
–  JSR311/Jersey	
  is	
  used	
  for	
  REST/HTTP	
  service	
  calls	
  
–  Custom	
  client	
  code	
  includes	
  service	
  discovery	
  
–  Support	
  complex	
  data	
  types	
  in	
  a	
  single	
  request	
  

•  Apache	
  Avro	
  
–  Evolved	
  from	
  Protocol	
  Buffers	
  and	
  Thri>	
  
–  Includes	
  JSON	
  header	
  defining	
  key/value	
  protocol	
  
– Avro	
  serializaHon	
  is	
  half	
  the	
  size	
  and	
  several	
  Hmes	
  
faster	
  than	
  Java	
  serializaHon,	
  more	
  work	
  to	
  code	
  



Persisted	
  Protocols	
  

•  Persist	
  Avro	
  in	
  Memcached	
  
– Save	
  space/latency	
  (zigzag	
  encoding,	
  half	
  the	
  size)	
  
– Less	
  briAle	
  across	
  versions	
  
– New	
  keys	
  are	
  ignored	
  
– Missing	
  keys	
  are	
  handled	
  cleanly	
  

•  Avro	
  protocol	
  definiHons	
  
– Can	
  be	
  wriAen	
  in	
  JSON	
  or	
  generated	
  from	
  POJOs	
  
–  It’s	
  hard,	
  needs	
  beAer	
  tooling	
  



Tangled	
  Service	
  Interfaces	
  
•  Datacenter	
  implementaHon	
  is	
  exposed	
  

– Oracle	
  SQL	
  queries	
  mixed	
  into	
  business	
  logic	
  

•  Tangled	
  code	
  
– Deep	
  dependencies,	
  false	
  sharing	
  

•  Data	
  providers	
  with	
  sideways	
  dependencies	
  
–  Everything	
  depends	
  on	
  everything	
  else	
  

This	
  An(-­‐pa,ern	
  affects	
  produc(vity,	
  availability	
  



Untangled	
  Service	
  Interfaces	
  

•  New	
  Cloud	
  Code	
  With	
  Strict	
  Layering	
  
– Compile	
  against	
  interface	
  jar	
  
– Can	
  use	
  spring	
  runHme	
  binding	
  to	
  enforce	
  
	
  

•  Service	
  interface	
  is	
  the	
  service	
  
–  ImplementaHon	
  is	
  completely	
  hidden	
  
– Can	
  be	
  implemented	
  locally	
  or	
  remotely	
  
–  ImplementaHon	
  can	
  evolve	
  independently	
  



Untangled	
  Service	
  Interfaces	
  
Two	
  layers:	
  
•  SAL	
  -­‐	
  Service	
  Access	
  Library	
  

–  Basic	
  serializaHon	
  and	
  error	
  handling	
  
–  REST	
  or	
  POJO’s	
  defined	
  by	
  data	
  provider	
  

•  ESL	
  -­‐	
  Extended	
  Service	
  Library	
  
–  Caching,	
  conveniences	
  
–  Can	
  combine	
  several	
  SALs	
  
–  Exposes	
  faceted	
  type	
  system	
  (described	
  later)	
  
–  Interface	
  defined	
  by	
  data	
  consumer	
  in	
  many	
  cases	
  



Service	
  InteracHon	
  PaAern	
  
Sample	
  Swimlane	
  Diagram	
  



Service	
  Architecture	
  PaAerns	
  

•  Internal	
  Interfaces	
  Between	
  Services	
  
– Common	
  paAerns	
  as	
  templates	
  
– Highly	
  instrumented,	
  observable,	
  analyHcs	
  
– Service	
  Level	
  Agreements	
  –	
  SLAs	
  
	
  

•  Library	
  templates	
  for	
  generic	
  features	
  
–  Instrumented	
  Ne#lix	
  Base	
  Servlet	
  template	
  
–  Instrumented	
  generic	
  client	
  interface	
  template	
  
–  Instrumented	
  S3,	
  SimpleDB,	
  Memcached	
  clients	
  



Service	
  Request	
  
Instruments	
  Every	
  
Step	
  in	
  the	
  call	
  

CLIENT	
  
Request	
  Start	
  
Timestamp,	
  
Request	
  End	
  
Timestamp	
  

Client	
  
outbound	
  

serialize	
  start	
  
Hmestamp	
  

Client	
  
outbound	
  

serialize	
  end	
  
Hmestamp	
  

Client	
  Network	
  
send	
  

Hmestamp	
  

Service	
  
Network	
  
receive	
  

Hmestamp	
  

Service	
  
inbound	
  

serialize	
  start	
  
Hmestamp	
  

Service	
  
inbound	
  

serialize	
  end	
  
Hmestamp	
  

SERVICE	
  execute	
  
request	
  start	
  
Hmestamp,	
  

execute	
  request	
  
end	
  Hmestamp	
  

Service	
  
outbound	
  

serialize	
  start	
  
Hmestamp	
  

Service	
  
outbound	
  

serialize	
  end	
  
Hmestamp	
  

Service	
  
network	
  send	
  
Hmestamp	
  

Client	
  network	
  
receive	
  

Hmestamp	
  

Inbound	
  
deserialize	
  

start	
  
Hmestamp	
  

Inbound	
  
deserialize	
  end	
  
Hmestamp	
  



Boundary	
  Interfaces	
  

•  Isolate	
  teams	
  from	
  external	
  dependencies	
  
– Fake	
  SAL	
  built	
  by	
  cloud	
  team	
  
– Real	
  SAL	
  provided	
  by	
  data	
  provider	
  team	
  later	
  
– ESL	
  built	
  by	
  cloud	
  team	
  using	
  faceted	
  objects	
  

•  Fake	
  data	
  sources	
  allow	
  development	
  to	
  start	
  
– e.g.	
  Fake	
  IdenHty	
  SAL	
  for	
  a	
  test	
  set	
  of	
  customers	
  
– Development	
  solidifies	
  dependencies	
  early	
  
– Helps	
  external	
  team	
  provide	
  the	
  right	
  interface	
  



One	
  Object	
  That	
  Does	
  Everything	
  

•  Datacenter	
  uses	
  a	
  few	
  big	
  complex	
  objects	
  
– Movie	
  and	
  Customer	
  objects	
  are	
  the	
  foundaHon	
  
– Good	
  choice	
  for	
  a	
  small	
  team	
  and	
  one	
  instance	
  
–  ProblemaHc	
  for	
  large	
  teams	
  and	
  many	
  instances	
  

•  False	
  sharing	
  causes	
  tangled	
  dependencies	
  
– UnproducHve	
  re-­‐integraHon	
  work	
  

	
  
An(-­‐pa,ern	
  impac(ng	
  produc(vity	
  and	
  availability	
  



An	
  Interface	
  For	
  Each	
  Component	
  

•  Cloud	
  uses	
  faceted	
  Video	
  and	
  Visitor	
  
– Basic	
  types	
  hold	
  only	
  the	
  idenHfier	
  
– Facets	
  scope	
  the	
  interface	
  you	
  actually	
  need	
  
– Each	
  component	
  can	
  define	
  its	
  own	
  facets	
  

•  No	
  false-­‐sharing	
  and	
  dependency	
  chains	
  
– Type	
  manager	
  converts	
  between	
  facets	
  as	
  needed	
  
– video.asA(PresentaHonVideo)	
  for	
  www	
  
– video.asA(MerchableVideo)	
  for	
  middle	
  Her	
  



So>ware	
  Architecture	
  PaAerns	
  

•  Object	
  Models	
  
– Basic	
  and	
  derived	
  types,	
  facets,	
  serializable	
  
– Pass	
  by	
  reference	
  within	
  a	
  service	
  
– Pass	
  by	
  value	
  between	
  services	
  
	
  

•  ComputaHon	
  and	
  I/O	
  Models	
  
– Service	
  ExecuHon	
  using	
  Best	
  Effort	
  
– Common	
  thread	
  pool	
  management	
  



Cloud	
  OperaHons	
  

Model	
  Driven	
  Architecture	
  
Capacity	
  Planning	
  &	
  Monitoring	
  



Tools	
  and	
  AutomaHon	
  
•  Developer	
  and	
  Build	
  Tools	
  

–  Jira,	
  Eclipse,	
  Jeeves,	
  Ivy,	
  ArHfactory	
  
–  Builds,	
  creates	
  .war	
  file,	
  .rpm,	
  bakes	
  AMI	
  and	
  launches	
  

•  Custom	
  Ne#lix	
  ApplicaHon	
  Console	
  
–  AWS	
  Features	
  at	
  Enterprise	
  Scale	
  (hide	
  the	
  AWS	
  security	
  keys!)	
  
–  Auto	
  Scaler	
  Group	
  is	
  unit	
  of	
  deployment	
  to	
  producHon	
  

•  Open	
  Source	
  +	
  Support	
  
–  Apache,	
  Tomcat,	
  Cassandra,	
  Hadoop,	
  OpenJDK/SunJDK,	
  CentOS/AmazonLinux	
  
	
  

•  Monitoring	
  Tools	
  
–  Keynote	
  –	
  service	
  monitoring	
  and	
  alerHng	
  
–  AppDynamics	
  –	
  Developer	
  focus	
  for	
  cloud	
  hAp://appdynamics.com	
  
–  EpicNMS	
  –	
  flexible	
  data	
  collecHon	
  and	
  plots	
  hAp://epicnms.com	
  
–  Nimso>	
  NMS	
  –	
  ITOps	
  focus	
  for	
  Datacenter	
  +	
  Cloud	
  alerHng	
  



Model	
  Driven	
  Architecture	
  

•  Datacenter	
  PracHces	
  
–  Lots	
  of	
  unique	
  hand-­‐tweaked	
  systems	
  
– Hard	
  to	
  enforce	
  paAerns	
  

•  Model	
  Driven	
  Cloud	
  Architecture	
  
–  Perforce/Ivy/Jeeves	
  based	
  builds	
  for	
  everything	
  
–  Every	
  producHon	
  instance	
  is	
  a	
  pre-­‐baked	
  AMI	
  
–  Every	
  applicaHon	
  is	
  managed	
  by	
  an	
  Autoscaler	
  

No	
  excep(ons,	
  every	
  change	
  is	
  a	
  new	
  AMI	
  



Model	
  Driven	
  ImplicaHons	
  

•  Automated	
  “Least	
  Privilege”	
  Security	
  
– Tightly	
  specified	
  security	
  groups	
  
– Fine	
  grain	
  IAM	
  keys	
  to	
  access	
  AWS	
  resources	
  
– Performance	
  tools	
  security	
  and	
  integraHon	
  

•  Model	
  Driven	
  Performance	
  Monitoring	
  
– Hundreds	
  of	
  instances	
  appear	
  in	
  a	
  few	
  minutes…	
  
– Tools	
  have	
  to	
  “garbage	
  collect”	
  dead	
  instances	
  	
  



Ne#lix	
  App	
  Console	
  



Auto	
  Scale	
  Group	
  ConfiguraHon	
  



Capacity	
  Planning	
  &	
  Monitoring	
  



Capacity	
  Planning	
  in	
  Clouds	
  
(a	
  few	
  things	
  have	
  changed…)	
  

•  Capacity	
  is	
  expensive	
  
•  Capacity	
  takes	
  Hme	
  to	
  buy	
  and	
  provision	
  
•  Capacity	
  only	
  increases,	
  can’t	
  be	
  shrunk	
  easily	
  
•  Capacity	
  comes	
  in	
  big	
  chunks,	
  paid	
  up	
  front	
  
•  Planning	
  errors	
  can	
  cause	
  big	
  problems	
  
•  Systems	
  are	
  clearly	
  defined	
  assets	
  
•  Systems	
  can	
  be	
  instrumented	
  in	
  detail	
  
•  Depreciate	
  assets	
  over	
  3	
  years	
  (reservaHons!)	
  



Monitoring	
  Issues	
  
•  Problem	
  

–  Too	
  many	
  tools,	
  each	
  with	
  a	
  good	
  reason	
  to	
  exist	
  
– Hard	
  to	
  get	
  an	
  integrated	
  view	
  of	
  a	
  problem	
  
–  Too	
  much	
  manual	
  work	
  building	
  dashboards	
  
–  Tools	
  are	
  not	
  discoverable,	
  views	
  are	
  not	
  filtered	
  

•  SoluHon	
  
– Get	
  vendors	
  to	
  add	
  deep	
  linking	
  URLs	
  and	
  APIs	
  
–  IntegraHon	
  “portal”	
  Hes	
  everything	
  together	
  
– Underlying	
  dependency	
  database	
  
– Dynamic	
  portal	
  generaHon,	
  relevant	
  data,	
  all	
  tools	
  



Data	
  Sources	
  
• External	
  URL	
  availability	
  and	
  latency	
  alerts	
  and	
  reports	
  –	
  Keynote	
  
• Stress	
  tesHng	
  -­‐	
  SOASTA	
  External	
  TesHng	
  

• Ne#lix	
  REST	
  calls	
  –	
  Chukwa	
  to	
  DataOven	
  with	
  GUID	
  transacHon	
  idenHfier	
  
• Generic	
  HTTP	
  –	
  AppDynamics	
  service	
  Her	
  aggregaHon,	
  end	
  to	
  end	
  tracking	
  Request	
  Trace	
  Logging	
  

• Tracers	
  and	
  counters	
  –	
  log4j,	
  tracer	
  central,	
  Chukwa	
  to	
  DataOven	
  
• Trackid	
  and	
  Audit/Debug	
  logging	
  –	
  DataOven,	
  Appdynamics	
  	
  GUID	
  cross	
  reference	
  ApplicaHon	
  logging	
  

• ApplicaHon	
  specific	
  real	
  Hme	
  –	
  Nimso>,	
  Appdynamics,	
  Epic	
  
• Service	
  and	
  SLA	
  percenHles	
  –	
  Nimso>,	
  Appdynamics,	
  Epic,logged	
  to	
  DataOven	
  JMX	
  	
  Metrics	
  

• Stdout	
  logs	
  –	
  S3	
  –	
  DataOven,	
  Nimso>	
  alerHng	
  
• Standard	
  format	
  Access	
  and	
  Error	
  logs	
  –	
  S3	
  –	
  DataOven,	
  Nimso>	
  AlerHng	
  Tomcat	
  and	
  Apache	
  logs	
  

• Garbage	
  CollecHon	
  –	
  Nimso>,	
  Appdynamics	
  
• Memory	
  usage,	
  call	
  stacks,	
  resource/call	
  -­‐	
  AppDynamics	
  JVM	
  

• system	
  CPU/Net/RAM/Disk	
  metrics	
  –	
  AppDynamics,	
  Epic,	
  Nimso>	
  AlerHng	
  
• SNMP	
  metrics	
  –	
  Epic,	
  Network	
  flows	
  -­‐	
  FasHp	
  Linux	
  

• Load	
  balancer	
  traffic	
  –	
  Amazon	
  Cloudwatch,	
  SimpleDB	
  usage	
  stats	
  
• System	
  configuraHon	
  	
  -­‐	
  CPU	
  count/speed	
  and	
  RAM	
  size,	
  overall	
  usage	
  -­‐	
  AWS	
  AWS	
  



Integrated	
  Dashboards	
  



Dashboards	
  Architecture	
  
•  Integrated	
  Dashboard	
  View	
  

–  Single	
  web	
  page	
  containing	
  content	
  from	
  many	
  tools	
  
–  Filtered	
  to	
  highlight	
  most	
  “interesHng”	
  data	
  

•  Relevance	
  Controller	
  
–  Drill	
  in,	
  add	
  and	
  remove	
  content	
  interacHvely	
  
–  Given	
  an	
  applicaHon,	
  alert	
  or	
  problem	
  area,	
  dynamically	
  
build	
  a	
  dashboard	
  relevant	
  to	
  your	
  role	
  and	
  needs	
  

•  Dependency	
  and	
  Incident	
  Model	
  
– Model	
  Driven	
  -­‐	
  Interrogates	
  tools	
  and	
  AWS	
  APIs	
  
–  Document	
  store	
  to	
  capture	
  dependency	
  tree	
  and	
  states	
  



Dashboard	
  Prototype	
  
(not	
  everything	
  is	
  integrated	
  yet)	
  



AppDynamics	
  
How	
  to	
  look	
  deep	
  inside	
  your	
  cloud	
  applicaHons	
  

•  AutomaHc	
  Monitoring	
  
– Base	
  AMI	
  includes	
  all	
  monitoring	
  tools	
  
– Outbound	
  calls	
  only	
  –	
  no	
  discovery/polling	
  issues	
  
–  InacHve	
  instances	
  removed	
  a>er	
  a	
  few	
  days	
  
	
  

•  Incident	
  Alarms	
  (deviaHon	
  from	
  baseline)	
  
– Business	
  TransacHon	
  latency	
  and	
  error	
  rate	
  
– Alarm	
  thresholds	
  discover	
  their	
  own	
  baseline	
  
– Email	
  contains	
  URL	
  to	
  Incident	
  Workbench	
  UI	
  



Using	
  AppDynamics	
  
(simple	
  example	
  from	
  early	
  2010)	
  



Assess	
  Impact	
  using	
  AppDynamics	
  
View	
  actual	
  call	
  graph	
  on	
  producHon	
  systems	
  



Monitoring	
  Summary	
  

•  Broken	
  datacenter	
  oriented	
  tools	
  is	
  a	
  big	
  problem	
  

•  IntegraHng	
  many	
  different	
  tools	
  
–  They	
  are	
  not	
  designed	
  to	
  be	
  integrated	
  
– We	
  have	
  “persuaded”	
  vendors	
  to	
  add	
  APIs	
  

•  If	
  you	
  can’t	
  see	
  deep	
  inside	
  your	
  app,	
  you’re	
  L	
  



Wrap	
  Up	
  



Next	
  Few	
  Years…	
  
•  “System	
  of	
  Record”	
  moves	
  to	
  Cloud	
  (now)	
  

–  Master	
  copies	
  of	
  data	
  live	
  only	
  in	
  the	
  cloud,	
  with	
  backups	
  
–  Cut	
  the	
  datacenter	
  to	
  cloud	
  replicaHon	
  link	
  

•  InternaHonal	
  Expansion	
  –	
  Global	
  Clouds	
  (later	
  in	
  2011)	
  
–  Rapid	
  deployments	
  to	
  new	
  markets	
  

•  Cloud	
  StandardizaHon?	
  
–  Cloud	
  features	
  and	
  APIs	
  should	
  be	
  a	
  commodity	
  not	
  a	
  differenHator	
  
–  DifferenHate	
  on	
  scale	
  and	
  quality	
  of	
  service	
  
–  CompeHHon	
  also	
  drives	
  cost	
  down	
  
–  Higher	
  resilience	
  and	
  scalability	
  

	
  
We	
  would	
  prefer	
  to	
  be	
  an	
  insignificant	
  customer	
  in	
  a	
  giant	
  cloud	
  



Takeaway	
  

	
  
NeAlix	
  is	
  path-­‐finding	
  the	
  use	
  of	
  public	
  AWS	
  
cloud	
  to	
  replace	
  in-­‐house	
  IT	
  for	
  non-­‐trivial	
  

applica(ons	
  with	
  hundreds	
  of	
  developers	
  and	
  
thousands	
  of	
  systems.	
  

	
  
acockcro>@ne#lix.com	
  

hAp://www.linkedin.com/in/adriancockcro>	
  
@adrianco	
  #ne#lixcloud	
  


