
PY THON/FINANCE

Python for Finance

ISBN: 978-1-491-94528-5

US $44.99	 CAN $47.99

“	Python's readable
syntax, easy integration
with C/C++, and the 	
wide variety of numerical
computing tools make
it a natural choice for
financial analytics. 	
It's rapidly becoming 	
the de-facto replacement
for a patchwork of
languages and tools
at leading financial
institutions.”

—Kirat Singh
cofounder, President and CTO

Washington Square Technologies

Twitter: @oreillymedia
facebook.com/oreilly

The financial industry has adopted Python at a tremendous rate, with
some of the largest investment banks and hedge funds using it to build
core trading and risk management systems. This hands-on guide helps
both developers and quantitative analysts get started with Python, and
guides you through the most important aspects of using Python for
quantitative finance.

Using practical examples throughout the book, author Yves Hilpisch also
shows you how to develop a full-f ledged framework for Monte Carlo
simulation-based derivatives and risk analytics, based on a large, realistic
case study. Much of the book uses interactive IPython Notebooks, with
topics that include:

■■ Fundamentals: Python data structures, NumPy array handling,
time series analysis with pandas, visualization with matplotlib,
high performance I/O operations with PyTables, date/time
information handling, and selected best practices

■■ Financial topics: Mathematical techniques with NumPy, SciPy,
and SymPy, such as regression and optimization; stochastics
for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-
Risk calculations; statistics for normality tests, mean-variance
portfolio optimization, principal component analysis (PCA),
and Bayesian regression

■■ Special topics: Performance Python for financial algorithms,
such as vectorization and parallelization, integrating Python
with Excel, and building financial applications based on Web
technologies

Yves Hilpisch is the founder and managing partner of The Python Quants, an
analytics software provider and financial engineering group. Yves also lectures on
mathematical finance and organizes meetups and conferences about Python for
Quant Finance in New York and London.

Yves Hilpisch

Python
for Finance
ANALYZE BIG FINANCIAL DATA

Python for Finance
H

ilpisch

PY THON/FINANCE

Python for Finance

ISBN: 978-1-491-94528-5

US $44.99	 CAN $47.99

“	Python's readable
syntax, easy integration
with C/C++, and the 	
wide variety of numerical
computing tools make
it a natural choice for
financial analytics. 	
It's rapidly becoming 	
the de-facto replacement
for a patchwork of
languages and tools
at leading financial
institutions.”

—Kirat Singh
cofounder, President and CTO

Washington Square Technologies

Twitter: @oreillymedia
facebook.com/oreilly

The financial industry has adopted Python at a tremendous rate, with
some of the largest investment banks and hedge funds using it to build
core trading and risk management systems. This hands-on guide helps
both developers and quantitative analysts get started with Python, and
guides you through the most important aspects of using Python for
quantitative finance.

Using practical examples throughout the book, author Yves Hilpisch also
shows you how to develop a full-f ledged framework for Monte Carlo
simulation-based derivatives and risk analytics, based on a large, realistic
case study. Much of the book uses interactive IPython Notebooks, with
topics that include:

■■ Fundamentals: Python data structures, NumPy array handling,
time series analysis with pandas, visualization with matplotlib,
high performance I/O operations with PyTables, date/time
information handling, and selected best practices

■■ Financial topics: Mathematical techniques with NumPy, SciPy,
and SymPy, such as regression and optimization; stochastics
for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-
Risk calculations; statistics for normality tests, mean-variance
portfolio optimization, principal component analysis (PCA),
and Bayesian regression

■■ Special topics: Performance Python for financial algorithms,
such as vectorization and parallelization, integrating Python
with Excel, and building financial applications based on Web
technologies

Yves Hilpisch is the founder and managing partner of The Python Quants, an
analytics software provider and financial engineering group. Yves also lectures on
mathematical finance and organizes meetups and conferences about Python for
Quant Finance in New York and London.

Yves Hilpisch

Python
for Finance
ANALYZE BIG FINANCIAL DATA

Python for Finance
H

ilpisch

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY—that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

O’Reilly Ebooks—Your bookshelf on your devices!

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
Android Marketplace, and Amazon.com.

oreilly.comSpreading the knowledge of innovators

iBookstore, the

Python for Finance
by Yves Hilpisch

Copyright © 2015 Yves Hilpisch. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian MacDonald and Meghan Blanchette
Production Editor: Matthew Hacker
Copyeditor: Charles Roumeliotis
Proofreader: Rachel Head

Indexer: Judith McConville
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

December 2014: First Edition

Revision History for the First Edition:

2014-12-09: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491945285 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python for Finance, the cover image of a
Hispaniolan solenodon, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the author have used good faith efforts to ensure that the information and instruc‐
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel‐
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This book is not intended as financial advice. Please consult a qualified professional if you require financial
advice.

ISBN: 978-1-491-94528-5

[LSI]

Table of Contents

Preface. xi

Part I. Python and Finance

1. Why Python for Finance?. 3
What Is Python? 3

Brief History of Python 5
The Python Ecosystem 6
Python User Spectrum 7
The Scientific Stack 8

Technology in Finance 9
Technology Spending 10
Technology as Enabler 10
Technology and Talent as Barriers to Entry 10
Ever-Increasing Speeds, Frequencies, Data Volumes 11
The Rise of Real-Time Analytics 12

Python for Finance 13
Finance and Python Syntax 14
Efficiency and Productivity Through Python 17
From Prototyping to Production 21

Conclusions 22
Further Reading 23

2. Infrastructure and Tools. 25
Python Deployment 26

Anaconda 26
Python Quant Platform 32

Tools 34
Python 34

iii

IPython 35
Spyder 45

Conclusions 47
Further Reading 48

3. Introductory Examples. 49
Implied Volatilities 50
Monte Carlo Simulation 59

Pure Python 61
Vectorization with NumPy 63
Full Vectorization with Log Euler Scheme 65
Graphical Analysis 67

Technical Analysis 68
Conclusions 74
Further Reading 75

Part II. Financial Analytics and Development

4. Data Types and Structures. 79
Basic Data Types 80

Integers 80
Floats 81
Strings 84

Basic Data Structures 86
Tuples 87
Lists 88
Excursion: Control Structures 89
Excursion: Functional Programming 91
Dicts 92
Sets 94

NumPy Data Structures 95
Arrays with Python Lists 96
Regular NumPy Arrays 97
Structured Arrays 101

Vectorization of Code 102
Basic Vectorization 102
Memory Layout 105

Conclusions 106
Further Reading 107

iv | Table of Contents

5. Data Visualization. 109
Two-Dimensional Plotting 109

One-Dimensional Data Set 110
Two-Dimensional Data Set 115
Other Plot Styles 121

Financial Plots 128
3D Plotting 132
Conclusions 135
Further Reading 135

6. Financial Time Series. 137
pandas Basics 138

First Steps with DataFrame Class 138
Second Steps with DataFrame Class 142
Basic Analytics 146
Series Class 149
GroupBy Operations 150

Financial Data 151
Regression Analysis 157
High-Frequency Data 166
Conclusions 170
Further Reading 171

7. Input/Output Operations. 173
Basic I/O with Python 174

Writing Objects to Disk 174
Reading and Writing Text Files 177
SQL Databases 179
Writing and Reading NumPy Arrays 181

I/O with pandas 183
SQL Database 184
From SQL to pandas 185
Data as CSV File 188
Data as Excel File 189

Fast I/O with PyTables 190
Working with Tables 190
Working with Compressed Tables 196
Working with Arrays 197
Out-of-Memory Computations 198

Conclusions 200
Further Reading 201

Table of Contents | v

8. Performance Python. 203
Python Paradigms and Performance 204
Memory Layout and Performance 207
Parallel Computing 209

The Monte Carlo Algorithm 209
The Sequential Calculation 210
The Parallel Calculation 211
Performance Comparison 214

multiprocessing 215
Dynamic Compiling 217

Introductory Example 217
Binomial Option Pricing 218

Static Compiling with Cython 223
Generation of Random Numbers on GPUs 226
Conclusions 230
Further Reading 231

9. Mathematical Tools. 233
Approximation 234

Regression 234
Interpolation 245

Convex Optimization 249
Global Optimization 250
Local Optimization 251
Constrained Optimization 253

Integration 255
Numerical Integration 256
Integration by Simulation 257

Symbolic Computation 257
Basics 258
Equations 259
Integration 260
Differentiation 261

Conclusions 262
Further Reading 263

10. Stochastics. 265
Random Numbers 266
Simulation 271

Random Variables 271
Stochastic Processes 274
Variance Reduction 287

vi | Table of Contents

Valuation 290
European Options 291
American Options 295

Risk Measures 298
Value-at-Risk 298
Credit Value Adjustments 302

Conclusions 305
Further Reading 305

11. Statistics. 307
Normality Tests 308

Benchmark Case 309
Real-World Data 317

Portfolio Optimization 322
The Data 323
The Basic Theory 324
Portfolio Optimizations 328
Efficient Frontier 330
Capital Market Line 332

Principal Component Analysis 335
The DAX Index and Its 30 Stocks 336
Applying PCA 337
Constructing a PCA Index 338

Bayesian Regression 341
Bayes’s Formula 341
PyMC3 342
Introductory Example 343
Real Data 347

Conclusions 355
Further Reading 355

12. Excel Integration. 357
Basic Spreadsheet Interaction 358

Generating Workbooks (.xls) 359
Generating Workbooks (.xslx) 360
Reading from Workbooks 362
Using OpenPyxl 364
Using pandas for Reading and Writing 366

Scripting Excel with Python 369
Installing DataNitro 369
Working with DataNitro 370

xlwings 379

Table of Contents | vii

Conclusions 379
Further Reading 380

13. Object Orientation and Graphical User Interfaces. 381
Object Orientation 381

Basics of Python Classes 382
Simple Short Rate Class 387
Cash Flow Series Class 391

Graphical User Interfaces 393
Short Rate Class with GUI 394
Updating of Values 396
Cash Flow Series Class with GUI 398

Conclusions 401
Further Reading 401

14. Web Integration. 403
Web Basics 404

ftplib 405
httplib 407
urllib 408

Web Plotting 411
Static Plots 411
Interactive Plots 414
Real-Time Plots 417

Rapid Web Applications 424
Traders’ Chat Room 426
Data Modeling 426
The Python Code 427
Templating 434
Styling 440

Web Services 442
The Financial Model 443
The Implementation 445

Conclusions 451
Further Reading 452

Part III. Derivatives Analytics Library

15. Valuation Framework. 455
Fundamental Theorem of Asset Pricing 455

A Simple Example 456

viii | Table of Contents

The General Results 457
Risk-Neutral Discounting 458

Modeling and Handling Dates 458
Constant Short Rate 460

Market Environments 462
Conclusions 465
Further Reading 466

16. Simulation of Financial Models. 467
Random Number Generation 468
Generic Simulation Class 470
Geometric Brownian Motion 473

The Simulation Class 474
A Use Case 476

Jump Diffusion 478
The Simulation Class 478
A Use Case 481

Square-Root Diffusion 482
The Simulation Class 483
A Use Case 485

Conclusions 486
Further Reading 487

17. Derivatives Valuation. 489
Generic Valuation Class 489
European Exercise 493

The Valuation Class 494
A Use Case 496

American Exercise 500
Least-Squares Monte Carlo 501
The Valuation Class 502
A Use Case 504

Conclusions 507
Further Reading 509

18. Portfolio Valuation. 511
Derivatives Positions 512

The Class 512
A Use Case 514

Derivatives Portfolios 515
The Class 516
A Use Case 520

Table of Contents | ix

Conclusions 525
Further Reading 527

19. Volatility Options. 529
The VSTOXX Data 530

VSTOXX Index Data 530
VSTOXX Futures Data 531
VSTOXX Options Data 533

Model Calibration 534
Relevant Market Data 535
Option Modeling 536
Calibration Procedure 538

American Options on the VSTOXX 542
Modeling Option Positions 543
The Options Portfolio 544

Conclusions 545
Further Reading 546

A. Selected Best Practices. 547

B. Call Option Class. 557

C. Dates and Times. 563

Index. 575

x | Table of Contents

CHAPTER 1

Why Python for Finance?

Banks are essentially technology firms.
— Hugo Banziger

What Is Python?
Python is a high-level, multipurpose programming language that is used in a wide range
of domains and technical fields. On the Python website you find the following executive
summary (cf. https://www.python.org/doc/essays/blurb):

Python is an interpreted, object-oriented, high-level programming language with dy‐
namic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for Rapid Application Development, as well
as for use as a scripting or glue language to connect existing components together.
Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the
cost of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and
can be freely distributed.

This pretty well describes why Python has evolved into one of the major programming
languages as of today. Nowadays, Python is used by the beginner programmer as well
as by the highly skilled expert developer, at schools, in universities, at web companies,
in large corporations and financial institutions, as well as in any scientific field.

Among others, Python is characterized by the following features:
Open source

Python and the majority of supporting libraries and tools available are open source
and generally come with quite flexible and open licenses.

3

Interpreted
The reference CPython implementation is an interpreter of the language that trans‐
lates Python code at runtime to executable byte code.

Multiparadigm
Python supports different programming and implementation paradigms, such as
object orientation and imperative, functional, or procedural programming.

Multipurpose
Python can be used for rapid, interactive code development as well as for building
large applications; it can be used for low-level systems operations as well as for high-
level analytics tasks.

Cross-platform
Python is available for the most important operating systems, such as Windows,
Linux, and Mac OS; it is used to build desktop as well as web applications; it can be
used on the largest clusters and most powerful servers as well as on such small
devices as the Raspberry Pi (cf. http://www.raspberrypi.org).

Dynamically typed
Types in Python are in general inferred during runtime and not statically declared
as in most compiled languages.

Indentation aware
In contrast to the majority of other programming languages, Python uses inden‐
tation for marking code blocks instead of parentheses, brackets, or semicolons.

Garbage collecting
Python has automated garbage collection, avoiding the need for the programmer
to manage memory.

When it comes to Python syntax and what Python is all about, Python Enhancement
Proposal 20—i.e., the so-called “Zen of Python”—provides the major guidelines. It can
be accessed from every interactive shell with the command import this:

$ ipython
Python 2.7.6 |Anaconda 1.9.1 (x86_64)| (default, Jan 10 2014, 11:23:15)
Type "copyright", "credits" or "license" for more information.

IPython 2.0.0--An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: import this

The Zen of Python, by Tim Peters

4 | Chapter 1: Why Python for Finance?

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one--and preferably only one--obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea--let's do more of those!

Brief History of Python
Although Python might still have the appeal of something new to some people, it has
been around for quite a long time. In fact, development efforts began in the 1980s by
Guido van Rossum from the Netherlands. He is still active in Python development and
has been awarded the title of Benevolent Dictator for Life by the Python community (cf.
http://en.wikipedia.org/wiki/History_of_Python). The following can be considered
milestones in the development of Python:

• Python 0.9.0 released in 1991 (first release)
• Python 1.0 released in 1994
• Python 2.0 released in 2000
• Python 2.6 released in 2008
• Python 2.7 released in 2010
• Python 3.0 released in 2008
• Python 3.3 released in 2010
• Python 3.4 released in 2014

It is remarkable, and sometimes confusing to Python newcomers, that there are two
major versions available, still being developed and, more importantly, in parallel use
since 2008. As of this writing, this will keep on for quite a while since neither is there
100% code compatibility between the versions, nor are all popular libraries available for
Python 3.x. The majority of code available and in production is still Python 2.6/2.7,

What Is Python? | 5

and this book is based on the 2.7.x version, although the majority of code examples
should work with versions 3.x as well.

The Python Ecosystem
A major feature of Python as an ecosystem, compared to just being a programming
language, is the availability of a large number of libraries and tools. These libraries and
tools generally have to be imported when needed (e.g., a plotting library) or have to be
started as a separate system process (e.g., a Python development environment). Im‐
porting means making a library available to the current namespace and the current
Python interpreter process.

Python itself already comes with a large set of libraries that enhance the basic interpreter
in different directions. For example, basic mathematical calculations can be done
without any importing, while more complex mathematical functions need to be im‐
ported through the math library:

In [2]: 100 * 2.5 + 50

Out[2]: 300.0

In [3]: log(1)

...

NameError: name 'log' is not defined

In [4]: from math import *

In [5]: log(1)

Out[5]: 0.0

Although the so-called “star import” (i.e., the practice of importing everything from a
library via from library import *) is sometimes convenient, one should generally use
an alternative approach that avoids ambiguity with regard to name spaces and rela‐
tionships of functions to libraries. This then takes on the form:

In [6]: import math

In [7]: math.log(1)

Out[7]: 0.0

While math is a standard Python library available with any installation, there are many
more libraries that can be installed optionally and that can be used in the very same
fashion as the standard libraries. Such libraries are available from different (web) sour‐
ces. However, it is generally advisable to use a Python distribution that makes sure that
all libraries are consistent with each other (see Chapter 2 for more on this topic).

6 | Chapter 1: Why Python for Finance?

The code examples presented so far all use IPython (cf. http://www.ipython.org), which
is probably the most popular interactive development environment (IDE) for Python.
Although it started out as an enhanced shell only, it today has many features typically
found in IDEs (e.g., support for profiling and debugging). Those features missing are
typically provided by advanced text/code editors, like Sublime Text (cf. http://
www.sublimetext.com). Therefore, it is not unusual to combine IPython with one’s text/
code editor of choice to form the basic tool set for a Python development process.

IPython is also sometimes called the killer application of the Python ecosystem. It en‐
hances the standard interactive shell in many ways. For example, it provides improved
command-line history functions and allows for easy object inspection. For instance, the
help text for a function is printed by just adding a ? behind the function name
(adding ?? will provide even more information):

In [8]: math.log?

Type: builtin_function_or_method
String Form:<built-in function log>
Docstring:
log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.

In [9]:

IPython comes in three different versions: a shell version, one based on a QT graphical
user interface (the QT console), and a browser-based version (the Notebook). This is
just meant as a teaser; there is no need to worry about the details now since Chapter 2
introduces IPython in more detail.

Python User Spectrum
Python does not only appeal to professional software developers; it is also of use for the
casual developer as well as for domain experts and scientific developers.

Professional software developers find all that they need to efficiently build large appli‐
cations. Almost all programming paradigms are supported; there are powerful devel‐
opment tools available; and any task can, in principle, be addressed with Python. These
types of users typically build their own frameworks and classes, also work on the fun‐
damental Python and scientific stack, and strive to make the most of the ecosystem.

Scientific developers or domain experts are generally heavy users of certain libraries and
frameworks, have built their own applications that they enhance and optimize over time,
and tailor the ecosystem to their specific needs. These groups of users also generally
engage in longer interactive sessions, rapidly prototyping new code as well as exploring
and visualizing their research and/or domain data sets.

What Is Python? | 7

1. Python, for example, is a major language used in the Master of Financial Engineering program at Baruch
College of the City University of New York (cf. http://mfe.baruch.cuny.edu).

2. Cf. http://wiki.python.org/moin/BeginnersGuide, where you will find links to many valuable resources for
both developers and nondevelopers getting started with Python.

Casual programmers like to use Python generally for specific problems they know that
Python has its strengths in. For example, visiting the gallery page of matplotlib, copying
a certain piece of visualization code provided there, and adjusting the code to their
specific needs might be a beneficial use case for members of this group.

There is also another important group of Python users: beginner programmers, i.e., those
that are just starting to program. Nowadays, Python has become a very popular language
at universities, colleges, and even schools to introduce students to programming.1 A
major reason for this is that its basic syntax is easy to learn and easy to understand, even
for the nondeveloper. In addition, it is helpful that Python supports almost all pro‐
gramming styles.2

The Scientific Stack
There is a certain set of libraries that is collectively labeled the scientific stack. This stack
comprises, among others, the following libraries:
NumPy

NumPy provides a multidimensional array object to store homogenous or hetero‐
geneous data; it also provides optimized functions/methods to operate on this array
object.

SciPy

SciPy is a collection of sublibraries and functions implementing important stan‐
dard functionality often needed in science or finance; for example, you will find
functions for cubic splines interpolation as well as for numerical integration.

matplotlib

This is the most popular plotting and visualization library for Python, providing
both 2D and 3D visualization capabilities.

PyTables

PyTables is a popular wrapper for the HDF5 data storage library (cf. http://
www.hdfgroup.org/HDF5/); it is a library to implement optimized, disk-based I/O
operations based on a hierarchical database/file format.

8 | Chapter 1: Why Python for Finance?

pandas

pandas builds on NumPy and provides richer classes for the management and anal‐
ysis of time series and tabular data; it is tightly integrated with matplotlib for
plotting and PyTables for data storage and retrieval.

Depending on the specific domain or problem, this stack is enlarged by additional li‐
braries, which more often than not have in common that they build on top of one or
more of these fundamental libraries. However, the least common denominator or basic
building block in general is the NumPy ndarray class (cf. Chapter 4).

Taking Python as a programming language alone, there are a number of other languages
available that can probably keep up with its syntax and elegance. For example, Ruby is
quite a popular language often compared to Python. On the language’s website you find
the following description:

A dynamic, open source programming language with a focus on simplicity and produc‐
tivity. It has an elegant syntax that is natural to read and easy to write.

The majority of people using Python would probably also agree with the exact same
statement being made about Python itself. However, what distinguishes Python for many
users from equally appealing languages like Ruby is the availability of the scientific stack.
This makes Python not only a good and elegant language to use, but also one that is
capable of replacing domain-specific languages and tool sets like Matlab or R. In addi‐
tion, it provides by default anything that you would expect, say, as a seasoned web
developer or systems administrator.

Technology in Finance
Now that we have some rough ideas of what Python is all about, it makes sense to step
back a bit and to briefly contemplate the role of technology in finance. This will put us
in a position to better judge the role Python already plays and, even more importantly,
will probably play in the financial industry of the future.

In a sense, technology per se is nothing special to financial institutions (as compared,
for instance, to industrial companies) or to the finance function (as compared to other
corporate functions, like logistics). However, in recent years, spurred by innovation and
also regulation, banks and other financial institutions like hedge funds have evolved
more and more into technology companies instead of being just financial intermedia‐
ries. Technology has become a major asset for almost any financial institution around
the globe, having the potential to lead to competitive advantages as well as disadvantages.
Some background information can shed light on the reasons for this development.

Technology in Finance | 9

Technology Spending
Banks and financial institutions together form the industry that spends the most on
technology on an annual basis. The following statement therefore shows not only that
technology is important for the financial industry, but that the financial industry is also
really important to the technology sector:

Banks will spend 4.2% more on technology in 2014 than they did in 2013, according to
IDC analysts. Overall IT spend in financial services globally will exceed $430 billion in
2014 and surpass $500 billion by 2020, the analysts say.

— Crosman 2013

Large, multinational banks today generally employ thousands of developers that main‐
tain existing systems and build new ones. Large investment banks with heavy techno‐
logical requirements show technology budgets often of several billion USD per year.

Technology as Enabler
The technological development has also contributed to innovations and efficiency im‐
provements in the financial sector:

Technological innovations have contributed significantly to greater efficiency in the de‐
rivatives market. Through innovations in trading technology, trades at Eurex are today
executed much faster than ten years ago despite the strong increase in trading volume
and the number of quotes … These strong improvements have only been possible due to
the constant, high IT investments by derivatives exchanges and clearing houses.

— Deutsche Börse Group 2008

As a side effect of the increasing efficiency, competitive advantages must often be looked
for in ever more complex products or transactions. This in turn inherently increases
risks and makes risk management as well as oversight and regulation more and more
difficult. The financial crisis of 2007 and 2008 tells the story of potential dangers re‐
sulting from such developments. In a similar vein, “algorithms and computers gone
wild” also represent a potential risk to the financial markets; this materialized dramat‐
ically in the so-called flash crash of May 2010, where automated selling led to large
intraday drops in certain stocks and stock indices (cf. http://en.wikipedia.org/wiki/
2010_Flash_Crash).

Technology and Talent as Barriers to Entry
On the one hand, technology advances reduce cost over time, ceteris paribus. On the
other hand, financial institutions continue to invest heavily in technology to both gain
market share and defend their current positions. To be active in certain areas in finance
today often brings with it the need for large-scale investments in both technology and
skilled staff. As an example, consider the derivatives analytics space (see also the case
study in Part III of the book):

10 | Chapter 1: Why Python for Finance?

Aggregated over the total software lifecycle, firms adopting in-house strategies for OTC
[derivatives] pricing will require investments between $25 million and $36 million alone
to build, maintain, and enhance a complete derivatives library.

— Ding 2010

Not only is it costly and time-consuming to build a full-fledged derivatives analytics
library, but you also need to have enough experts to do so. And these experts have to
have the right tools and technologies available to accomplish their tasks.

Another quote about the early days of Long-Term Capital Management (LTCM), for‐
merly one of the most respected quantitative hedge funds—which, however, went bust
in the late 1990s—further supports this insight about technology and talent:

Meriwether spent $20 million on a state-of-the-art computer system and hired a crack
team of financial engineers to run the show at LTCM, which set up shop in Greenwich,
Connecticut. It was risk management on an industrial level.

— Patterson 2010

The same computing power that Meriwether had to buy for millions of dollars is today
probably available for thousands. On the other hand, trading, pricing, and risk man‐
agement have become so complex for larger financial institutions that today they need
to deploy IT infrastructures with tens of thousands of computing cores.

Ever-Increasing Speeds, Frequencies, Data Volumes
There is one dimension of the finance industry that has been influenced most by tech‐
nological advances: the speed and frequency with which financial transactions are de‐
cided and executed. The recent book by Lewis (2014) describes so-called flash trading
—i.e., trading at the highest speeds possible—in vivid detail.

On the one hand, increasing data availability on ever-smaller scales makes it necessary
to react in real time. On the other hand, the increasing speed and frequency of trading
let the data volumes further increase. This leads to processes that reinforce each other
and push the average time scale for financial transactions systematically down:

Renaissance’s Medallion fund gained an astonishing 80 percent in 2008, capitalizing on
the market’s extreme volatility with its lightning-fast computers. Jim Simons was the
hedge fund world’s top earner for the year, pocketing a cool $2.5 billion.

— Patterson 2010

Thirty years’ worth of daily stock price data for a single stock represents roughly 7,500
quotes. This kind of data is what most of today’s finance theory is based on. For example,
theories like the modern portfolio theory (MPT), the capital asset pricing model
(CAPM), and value-at-risk (VaR) all have their foundations in daily stock price data.

In comparison, on a typical trading day the stock price of Apple Inc. (AAPL) is quoted
around 15,000 times—two times as many quotes as seen for end-of-day quoting over a
time span of 30 years. This brings with it a number of challenges:

Technology in Finance | 11

Data processing
It does not suffice to consider and process end-of-day quotes for stocks or other
financial instruments; “too much” happens during the day for some instruments
during 24 hours for 7 days a week.

Analytics speed
Decisions often have to be made in milliseconds or even faster, making it necessary
to build the respective analytics capabilities and to analyze large amounts of data
in real time.

Theoretical foundations
Although traditional finance theories and concepts are far from being perfect, they
have been well tested (and sometimes well rejected) over time; for the millisecond
scales important as of today, consistent concepts and theories that have proven to
be somewhat robust over time are still missing.

All these challenges can in principle only be addressed by modern technology. Some‐
thing that might also be a little bit surprising is that the lack of consistent theories often
is addressed by technological approaches, in that high-speed algorithms exploit market
microstructure elements (e.g., order flow, bid-ask spreads) rather than relying on some
kind of financial reasoning.

The Rise of Real-Time Analytics
There is one discipline that has seen a strong increase in importance in the finance
industry: financial and data analytics. This phenomenon has a close relationship to the
insight that speeds, frequencies, and data volumes increase at a rapid pace in the in‐
dustry. In fact, real-time analytics can be considered the industry’s answer to this trend.

Roughly speaking, “financial and data analytics” refers to the discipline of applying
software and technology in combination with (possibly advanced) algorithms and
methods to gather, process, and analyze data in order to gain insights, to make decisions,
or to fulfill regulatory requirements, for instance. Examples might include the estima‐
tion of sales impacts induced by a change in the pricing structure for a financial product
in the retail branch of a bank. Another example might be the large-scale overnight
calculation of credit value adjustments (CVA) for complex portfolios of derivatives
trades of an investment bank.

There are two major challenges that financial institutions face in this context:
Big data

Banks and other financial institutions had to deal with massive amounts of data
even before the term “big data” was coined; however, the amount of data that has
to be processed during single analytics tasks has increased tremendously over time,
demanding both increased computing power and ever-larger memory and storage
capacities.

12 | Chapter 1: Why Python for Finance?

3. Chapter 8 provides an example for the benefits of using modern GPGPUs in the context of the generation of
random numbers.

Real-time economy
In the past, decision makers could rely on structured, regular planning, decision,
and (risk) management processes, whereas they today face the need to take care of
these functions in real time; several tasks that have been taken care of in the past
via overnight batch runs in the back office have now been moved to the front office
and are executed in real time.

Again, one can observe an interplay between advances in technology and financial/
business practice. On the one hand, there is the need to constantly improve analytics
approaches in terms of speed and capability by applying modern technologies. On the
other hand, advances on the technology side allow new analytics approaches that were
considered impossible (or infeasible due to budget constraints) a couple of years or even
months ago.

One major trend in the analytics space has been the utilization of parallel architectures
on the CPU (central processing unit) side and massively parallel architectures on the
GPGPU (general-purpose graphical processing units) side. Current GPGPUs often have
more than 1,000 computing cores, making necessary a sometimes radical rethinking of
what parallelism might mean to different algorithms. What is still an obstacle in this
regard is that users generally have to learn new paradigms and techniques to harness
the power of such hardware.3

Python for Finance
The previous section describes some selected aspects characterizing the role of tech‐
nology in finance:

• Costs for technology in the finance industry
• Technology as an enabler for new business and innovation
• Technology and talent as barriers to entry in the finance industry
• Increasing speeds, frequencies, and data volumes
• The rise of real-time analytics

In this section, we want to analyze how Python can help in addressing several of the
challenges implied by these aspects. But first, on a more fundamental level, let us ex‐
amine Python for finance from a language and syntax standpoint.

Python for Finance | 13

Finance and Python Syntax
Most people who make their first steps with Python in a finance context may attack an
algorithmic problem. This is similar to a scientist who, for example, wants to solve a
differential equation, wants to evaluate an integral, or simply wants to visualize some
data. In general, at this stage, there is only little thought spent on topics like a formal
development process, testing, documentation, or deployment. However, this especially
seems to be the stage when people fall in love with Python. A major reason for this might
be that the Python syntax is generally quite close to the mathematical syntax used to
describe scientific problems or financial algorithms.

We can illustrate this phenomenon by a simple financial algorithm, namely the valuation
of a European call option by Monte Carlo simulation. We will consider a Black-Scholes-
Merton (BSM) setup (see also Chapter 3) in which the option’s underlying risk factor
follows a geometric Brownian motion.

Suppose we have the following numerical parameter values for the valuation:

• Initial stock index level S0 = 100
• Strike price of the European call option K = 105
• Time-to-maturity T = 1 year
• Constant, riskless short rate r = 5%
• Constant volatility 𝜎 = 20%

In the BSM model, the index level at maturity is a random variable, given by Equation 1-1
with z being a standard normally distributed random variable.

Equation 1-1. Black-Scholes-Merton (1973) index level at maturity

ST = S0exp r − 1
2 σ2 T +σ Tz

The following is an algorithmic description of the Monte Carlo valuation procedure:

1. Draw I (pseudo)random numbers z(i), i ∈ {1, 2, …, I}, from the standard normal
distribution.

2. Calculate all resulting index levels at maturity ST(i) for given z(i) and Equation 1-1.
3. Calculate all inner values of the option at maturity as hT(i) = max(ST(i) – K,0).
4. Estimate the option present value via the Monte Carlo estimator given in

Equation 1-2.

14 | Chapter 1: Why Python for Finance?

4. The output of such a numerical simulation depends on the pseudorandom numbers used. Therefore, results
might vary.

Equation 1-2. Monte Carlo estimator for European option

C0 ≈ e−rT 1
I ∑

I
hT i

We are now going to translate this problem and algorithm into Python code. The reader
might follow the single steps by using, for example, IPython—this is, however, not really
necessary at this stage.

First, let us start with the parameter values. This is really easy:

S0 = 100.
K = 105.
T = 1.0
r = 0.05
sigma = 0.2

Next, the valuation algorithm. Here, we will for the first time use NumPy, which makes
life quite easy for our second task:

from numpy import *

I = 100000

z = random.standard_normal(I)
ST = S0 * exp((r - 0.5 * sigma ** 2) * T + sigma * sqrt(T) * z)
hT = maximum(ST - K, 0)
C0 = exp(-r * T) * sum(hT) / I

Third, we print the result:

print "Value of the European Call Option %5.3f" % C0

The output might be:4

Value of the European Call Option 8.019

Three aspects are worth highlighting:
Syntax

The Python syntax is indeed quite close to the mathematical syntax, e.g., when it
comes to the parameter value assignments.

Translation
Every mathematical and/or algorithmic statement can generally be translated into
a single line of Python code.

Python for Finance | 15

Vectorization
One of the strengths of NumPy is the compact, vectorized syntax, e.g., allowing for
100,000 calculations within a single line of code.

This code can be used in an interactive environment like IPython. However, code that
is meant to be reused regularly typically gets organized in so-called modules (or
scripts), which are single Python (i.e., text) files with the suffix .py. Such a module could
in this case look like Example 1-1 and could be saved as a file named bsm_mcs_euro.py.

Example 1-1. Monte Carlo valuation of European call option
#
Monte Carlo valuation of European call option
in Black-Scholes-Merton model
bsm_mcs_euro.py
#
import numpy as np

Parameter Values
S0 = 100. # initial index level
K = 105. # strike price
T = 1.0 # time-to-maturity
r = 0.05 # riskless short rate
sigma = 0.2 # volatility

I = 100000 # number of simulations

Valuation Algorithm
z = np.random.standard_normal(I) # pseudorandom numbers
ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * np.sqrt(T) * z)
 # index values at maturity
hT = np.maximum(ST - K, 0) # inner values at maturity
C0 = np.exp(-r * T) * np.sum(hT) / I # Monte Carlo estimator

Result Output
print "Value of the European Call Option %5.3f" % C0

The rather simple algorithmic example in this subsection illustrates that Python, with
its very syntax, is well suited to complement the classic duo of scientific languages,
English and Mathematics. It seems that adding Python to the set of scientific languages
makes it more well rounded. We have

• English for writing, talking about scientific and financial problems, etc.
• Mathematics for concisely and exactly describing and modeling abstract aspects,

algorithms, complex quantities, etc.
• Python for technically modeling and implementing abstract aspects, algorithms,

complex quantities, etc.

16 | Chapter 1: Why Python for Finance?

Mathematics and Python Syntax
There is hardly any programming language that comes as close to
mathematical syntax as Python. Numerical algorithms are therefore
simple to translate from the mathematical representation into the
Pythonic implementation. This makes prototyping, development,
and code maintenance in such areas quite efficient with Python.

In some areas, it is common practice to use pseudocode and therewith to introduce a
fourth language family member. The role of pseudocode is to represent, for example,
financial algorithms in a more technical fashion that is both still close to the mathe‐
matical representation and already quite close to the technical implementation. In ad‐
dition to the algorithm itself, pseudocode takes into account how computers work in
principle.

This practice generally has its cause in the fact that with most programming languages
the technical implementation is quite “far away” from its formal, mathematical repre‐
sentation. The majority of programming languages make it necessary to include so many
elements that are only technically required that it is hard to see the equivalence between
the mathematics and the code.

Nowadays, Python is often used in a pseudocode way since its syntax is almost analogous
to the mathematics and since the technical “overhead” is kept to a minimum. This is
accomplished by a number of high-level concepts embodied in the language that not
only have their advantages but also come in general with risks and/or other costs. How‐
ever, it is safe to say that with Python you can, whenever the need arises, follow the same
strict implementation and coding practices that other languages might require from the
outset. In that sense, Python can provide the best of both worlds: high-level abstraction
and rigorous implementation.

Efficiency and Productivity Through Python
At a high level, benefits from using Python can be measured in three dimensions:
Efficiency

How can Python help in getting results faster, in saving costs, and in saving time?

Productivity
How can Python help in getting more done with the same resources (people,
assets, etc.)?

Quality
What does Python allow us to do that we could not do with alternative technologies?

A discussion of these aspects can by nature not be exhaustive. However, it can highlight
some arguments as a starting point.

Python for Finance | 17

Shorter time-to-results

A field where the efficiency of Python becomes quite obvious is interactive data analytics.
This is a field that benefits strongly from such powerful tools as IPython and libraries
like pandas.

Consider a finance student, writing her master’s thesis and interested in Google stock
prices. She wants to analyze historical stock price information for, say, five years to see
how the volatility of the stock price has fluctuated over time. She wants to find evidence
that volatility, in contrast to some typical model assumptions, fluctuates over time and
is far from being constant. The results should also be visualized. She mainly has to do
the following:

• Download Google stock price data from the Web.
• Calculate the rolling standard deviation of the log returns (volatility).
• Plot the stock price data and the results.

These tasks are complex enough that not too long ago one would have considered them
to be something for professional financial analysts. Today, even the finance student can
easily cope with such problems. Let us see how exactly this works—without worrying
about syntax details at this stage (everything is explained in detail in subsequent
chapters).

First, make sure to have available all necessary libraries:

In [1]: import numpy as np
 import pandas as pd
 import pandas.io.data as web

Second, retrieve the data from, say, Google itself:

In [2]: goog = web.DataReader('GOOG', data_source='google',
 start='3/14/2009', end='4/14/2014')
 goog.tail()

Out[2]: Open High Low Close Volume
 Date
 2014-04-08 542.60 555.00 541.61 554.90 3152406
 2014-04-09 559.62 565.37 552.95 564.14 3324742
 2014-04-10 565.00 565.00 539.90 540.95 4027743
 2014-04-11 532.55 540.00 526.53 530.60 3916171
 2014-04-14 538.25 544.10 529.56 532.52 2568020

 5 rows × 5 columns

Third, implement the necessary analytics for the volatilities:

In [3]: goog['Log_Ret'] = np.log(goog['Close'] / goog['Close'].shift(1))
 goog['Volatility'] = pd.rolling_std(goog['Log_Ret'],
 window=252) * np.sqrt(252)

18 | Chapter 1: Why Python for Finance?

Fourth, plot the results. To generate an inline plot, we use the IPython magic command
%matplotlib with the option inline:

In [4]: %matplotlib inline
 goog[['Close', 'Volatility']].plot(subplots=True, color='blue',
 figsize=(8, 6))

Figure 1-1 shows the graphical result of this brief interactive session with IPython. It
can be considered almost amazing that four lines of code suffice to implement three
rather complex tasks typically encountered in financial analytics: data gathering, com‐
plex and repeated mathematical calculations, and visualization of results. This example
illustrates that pandas makes working with whole time series almost as simple as doing
mathematical operations on floating-point numbers.

Figure 1-1. Google closing prices and yearly volatility

Translated to a professional finance context, the example implies that financial analysts
can—when applying the right Python tools and libraries, providing high-level abstrac‐
tion—focus on their very domain and not on the technical intrinsicalities. Analysts can
react faster, providing valuable insights almost in real time and making sure they are
one step ahead of the competition. This example of increased efficiency can easily trans‐
late into measurable bottom-line effects.

Ensuring high performance

In general, it is accepted that Python has a rather concise syntax and that it is relatively
efficient to code with. However, due to the very nature of Python being an interpreted
language, the prejudice persists that Python generally is too slow for compute-intensive
tasks in finance. Indeed, depending on the specific implementation approach, Python

Python for Finance | 19

can be really slow. But it does not have to be slow—it can be highly performing in almost
any application area. In principle, one can distinguish at least three different strategies
for better performance:
Paradigm

In general, many different ways can lead to the same result in Python, but with
rather different performance characteristics; “simply” choosing the right way (e.g.,
a specific library) can improve results significantly.

Compiling
Nowadays, there are several performance libraries available that provide compiled
versions of important functions or that compile Python code statically or dynami‐
cally (at runtime or call time) to machine code, which can be orders of magnitude
faster; popular ones are Cython and Numba.

Parallelization
Many computational tasks, in particular in finance, can strongly benefit from par‐
allel execution; this is nothing special to Python but something that can easily be
accomplished with it.

Performance Computing with Python
Python per se is not a high-performance computing technology.
However, Python has developed into an ideal platform to access cur‐
rent performance technologies. In that sense, Python has become
something like a glue language for performance computing.

Later chapters illustrate all three techniques in detail. For the moment, we want to stick
to a simple, but still realistic, example that touches upon all three techniques.

A quite common task in financial analytics is to evaluate complex mathematical ex‐
pressions on large arrays of numbers. To this end, Python itself provides everything
needed:

In [1]: loops = 25000000
 from math import *
 a = range(1, loops)
 def f(x):
 return 3 * log(x) + cos(x) ** 2
 %timeit r = [f(x) for x in a]

Out[1]: 1 loops, best of 3: 15 s per loop

The Python interpreter needs 15 seconds in this case to evaluate the function f
25,000,000 times.

The same task can be implemented using NumPy, which provides optimized (i.e., pre-
compiled), functions to handle such array-based operations:

20 | Chapter 1: Why Python for Finance?

In [2]: import numpy as np
 a = np.arange(1, loops)
 %timeit r = 3 * np.log(a) + np.cos(a) ** 2

Out[2]: 1 loops, best of 3: 1.69 s per loop

Using NumPy considerably reduces the execution time to 1.7 seconds.

However, there is even a library specifically dedicated to this kind of task. It is called
numexpr, for “numerical expressions.” It compiles the expression to improve upon the
performance of NumPy’s general functionality by, for example, avoiding in-memory
copies of arrays along the way:

In [3]: import numexpr as ne
 ne.set_num_threads(1)
 f = '3 * log(a) + cos(a) ** 2'
 %timeit r = ne.evaluate(f)

Out[3]: 1 loops, best of 3: 1.18 s per loop

Using this more specialized approach further reduces execution time to 1.2 seconds.
However, numexpr also has built-in capabilities to parallelize the execution of the re‐
spective operation. This allows us to use all available threads of a CPU:

In [4]: ne.set_num_threads(4)
 %timeit r = ne.evaluate(f)

Out[4]: 1 loops, best of 3: 523 ms per loop

This brings execution time further down to 0.5 seconds in this case, with two cores and
four threads utilized. Overall, this is a performance improvement of 30 times. Note, in
particular, that this kind of improvement is possible without altering the basic problem/
algorithm and without knowing anything about compiling and parallelization issues.
The capabilities are accessible from a high level even by nonexperts. However, one has
to be aware, of course, of which capabilities exist.

The example shows that Python provides a number of options to make more out of
existing resources—i.e., to increase productivity. With the sequential approach, about
21 mn evaluations per second are accomplished, while the parallel approach allows for
almost 48 mn evaluations per second—in this case simply by telling Python to use all
available CPU threads instead of just one.

From Prototyping to Production
Efficiency in interactive analytics and performance when it comes to execution speed
are certainly two benefits of Python to consider. Yet another major benefit of using
Python for finance might at first sight seem a bit subtler; at second sight it might present
itself as an important strategic factor. It is the possibility to use Python end to end, from
prototyping to production.

Python for Finance | 21

Today’s practice in financial institutions around the globe, when it comes to financial
development processes, is often characterized by a separated, two-step process. On the
one hand, there are the quantitative analysts (“quants”) responsible for model devel‐
opment and technical prototyping. They like to use tools and environments like Matlab
and R that allow for rapid, interactive application development. At this stage of the
development efforts, issues like performance, stability, exception management, sepa‐
ration of data access, and analytics, among others, are not that important. One is mainly
looking for a proof of concept and/or a prototype that exhibits the main desired features
of an algorithm or a whole application.

Once the prototype is finished, IT departments with their developers take over and are
responsible for translating the existing prototype code into reliable, maintainable, and
performant production code. Typically, at this stage there is a paradigm shift in that
languages like C++ or Java are now used to fulfill the requirements for production. Also,
a formal development process with professional tools, version control, etc. is applied.

This two-step approach has a number of generally unintended consequences:
Inefficiencies

Prototype code is not reusable; algorithms have to be implemented twice; redundant
efforts take time and resources.

Diverse skill sets
Different departments show different skill sets and use different languages to im‐
plement “the same things.”

Legacy code
Code is available and has to be maintained in different languages, often using dif‐
ferent styles of implementation (e.g., from an architectural point of view).

Using Python, on the other hand, enables a streamlined end-to-end process from the
first interactive prototyping steps to highly reliable and efficiently maintainable pro‐
duction code. The communication between different departments becomes easier. The
training of the workforce is also more streamlined in that there is only one major lan‐
guage covering all areas of financial application building. It also avoids the inherent
inefficiencies and redundancies when using different technologies in different steps of
the development process. All in all, Python can provide a consistent technological frame‐
work for almost all tasks in financial application development and algorithm
implementation.

Conclusions
Python as a language—but much more so as an ecosystem—is an ideal technological
framework for the financial industry. It is characterized by a number of benefits, like an
elegant syntax, efficient development approaches, and usability for prototyping and

22 | Chapter 1: Why Python for Finance?

production, among others. With its huge amount of available libraries and tools, Python
seems to have answers to most questions raised by recent developments in the financial
industry in terms of analytics, data volumes and frequency, compliance, and regulation,
as well as technology itself. It has the potential to provide a single, powerful, consistent
framework with which to streamline end-to-end development and production efforts
even across larger financial institutions.

Further Reading
There are two books available that cover the use of Python in finance:

• Fletcher, Shayne and Christopher Gardner (2009): Financial Modelling in Python.
John Wiley & Sons, Chichester, England.

• Hilpisch, Yves (2015): Derivatives Analytics with Python. Wiley Finance, Chiches‐
ter, England. http://derivatives-analytics-with-python.com.

The quotes in this chapter are taken from the following resources:

• Crosman, Penny (2013): “Top 8 Ways Banks Will Spend Their 2014 IT Budgets.”
Bank Technology News.

• Deutsche Börse Group (2008): “The Global Derivatives Market—An Introduction.”
White paper.

• Ding, Cubillas (2010): “Optimizing the OTC Pricing and Valuation Infrastructure.”
Celent study.

• Lewis, Michael (2014): Flash Boys. W. W. Norton & Company, New York.
• Patterson, Scott (2010): The Quants. Crown Business, New York.

Further Reading | 23

oreilly.comSpreading the knowledge of innovators

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Python and Finance
	Chapter 1. Why Python for Finance?
	What Is Python?
	Brief History of Python
	The Python Ecosystem
	Python User Spectrum
	The Scientific Stack

	Technology in Finance
	Technology Spending
	Technology as Enabler
	Technology and Talent as Barriers to Entry
	Ever-Increasing Speeds, Frequencies, Data Volumes
	The Rise of Real-Time Analytics

	Python for Finance
	Finance and Python Syntax
	Efficiency and Productivity Through Python
	From Prototyping to Production

	Conclusions
	Further Reading

	Chapter 2. Infrastructure and Tools
	Python Deployment
	Anaconda
	Python Quant Platform

	Tools
	Python
	IPython
	Spyder

	Conclusions
	Further Reading

	Chapter 3. Introductory Examples
	Implied Volatilities
	Monte Carlo Simulation
	Pure Python
	Vectorization with NumPy
	Full Vectorization with Log Euler Scheme
	Graphical Analysis

	Technical Analysis
	Conclusions
	Further Reading

	Part II. Financial Analytics and Development
	Chapter 4. Data Types and Structures
	Basic Data Types
	Integers
	Floats
	Strings

	Basic Data Structures
	Tuples
	Lists
	Excursion: Control Structures
	Excursion: Functional Programming
	Dicts
	Sets

	NumPy Data Structures
	Arrays with Python Lists
	Regular NumPy Arrays
	Structured Arrays

	Vectorization of Code
	Basic Vectorization
	Memory Layout

	Conclusions
	Further Reading

	Chapter 5. Data Visualization
	Two-Dimensional Plotting
	One-Dimensional Data Set
	Two-Dimensional Data Set
	Other Plot Styles

	Financial Plots
	3D Plotting
	Conclusions
	Further Reading

	Chapter 6. Financial Time Series
	pandas Basics
	First Steps with DataFrame Class
	Second Steps with DataFrame Class
	Basic Analytics
	Series Class
	GroupBy Operations

	Financial Data
	Regression Analysis
	High-Frequency Data
	Conclusions
	Further Reading

	Chapter 7. Input/Output Operations
	Basic I/O with Python
	Writing Objects to Disk
	Reading and Writing Text Files
	SQL Databases
	Writing and Reading NumPy Arrays

	I/O with pandas
	SQL Database
	From SQL to pandas
	Data as CSV File
	Data as Excel File

	Fast I/O with PyTables
	Working with Tables
	Working with Compressed Tables
	Working with Arrays
	Out-of-Memory Computations

	Conclusions
	Further Reading

	Chapter 8. Performance Python
	Python Paradigms and Performance
	Memory Layout and Performance
	Parallel Computing
	The Monte Carlo Algorithm
	The Sequential Calculation
	The Parallel Calculation
	Performance Comparison

	multiprocessing
	Dynamic Compiling
	Introductory Example
	Binomial Option Pricing

	Static Compiling with Cython
	Generation of Random Numbers on GPUs
	Conclusions
	Further Reading

	Chapter 9. Mathematical Tools
	Approximation
	Regression
	Interpolation

	Convex Optimization
	Global Optimization
	Local Optimization
	Constrained Optimization

	Integration
	Numerical Integration
	Integration by Simulation

	Symbolic Computation
	Basics
	Equations
	Integration
	Differentiation

	Conclusions
	Further Reading

	Chapter 10. Stochastics
	Random Numbers
	Simulation
	Random Variables
	Stochastic Processes
	Variance Reduction

	Valuation
	European Options
	American Options

	Risk Measures
	Value-at-Risk
	Credit Value Adjustments

	Conclusions
	Further Reading

	Chapter 11. Statistics
	Normality Tests
	Benchmark Case
	Real-World Data

	Portfolio Optimization
	The Data
	The Basic Theory
	Portfolio Optimizations
	Efficient Frontier
	Capital Market Line

	Principal Component Analysis
	The DAX Index and Its 30 Stocks
	Applying PCA
	Constructing a PCA Index

	Bayesian Regression
	Bayes’s Formula
	PyMC3
	Introductory Example
	Real Data

	Conclusions
	Further Reading

	Chapter 12. Excel Integration
	Basic Spreadsheet Interaction
	Generating Workbooks (.xls)
	Generating Workbooks (.xslx)
	Reading from Workbooks
	Using OpenPyxl
	Using pandas for Reading and Writing

	Scripting Excel with Python
	Installing DataNitro
	Working with DataNitro

	xlwings
	Conclusions
	Further Reading

	Chapter 13. Object Orientation and Graphical User Interfaces
	Object Orientation
	Basics of Python Classes
	Simple Short Rate Class
	Cash Flow Series Class

	Graphical User Interfaces
	Short Rate Class with GUI
	Updating of Values
	Cash Flow Series Class with GUI

	Conclusions
	Further Reading

	Chapter 14. Web Integration
	Web Basics
	ftplib
	httplib
	urllib

	Web Plotting
	Static Plots
	Interactive Plots
	Real-Time Plots

	Rapid Web Applications
	Traders’ Chat Room
	Data Modeling
	The Python Code
	Templating
	Styling

	Web Services
	The Financial Model
	The Implementation

	Conclusions
	Further Reading

	Part III. Derivatives Analytics Library
	Chapter 15. Valuation Framework
	Fundamental Theorem of Asset Pricing
	A Simple Example
	The General Results

	Risk-Neutral Discounting
	Modeling and Handling Dates
	Constant Short Rate

	Market Environments
	Conclusions
	Further Reading

	Chapter 16. Simulation of Financial Models
	Random Number Generation
	Generic Simulation Class
	Geometric Brownian Motion
	The Simulation Class
	A Use Case

	Jump Diffusion
	The Simulation Class
	A Use Case

	Square-Root Diffusion
	The Simulation Class
	A Use Case

	Conclusions
	Further Reading

	Chapter 17. Derivatives Valuation
	Generic Valuation Class
	European Exercise
	The Valuation Class
	A Use Case

	American Exercise
	Least-Squares Monte Carlo
	The Valuation Class
	A Use Case

	Conclusions
	Further Reading

	Chapter 18. Portfolio Valuation
	Derivatives Positions
	The Class
	A Use Case

	Derivatives Portfolios
	The Class
	A Use Case

	Conclusions
	Further Reading

	Chapter 19. Volatility Options
	The VSTOXX Data
	VSTOXX Index Data
	VSTOXX Futures Data
	VSTOXX Options Data

	Model Calibration
	Relevant Market Data
	Option Modeling
	Calibration Procedure

	American Options on the VSTOXX
	Modeling Option Positions
	The Options Portfolio

	Conclusions
	Further Reading

	Appendix A. Selected Best Practices
	Python Syntax
	Documentation
	Unit Testing

	Appendix B. Call Option Class
	Appendix C. Dates and Times
	Python
	NumPy
	pandas

	Index
	About the Author

