
1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

1

《编程之美——微软技术面试心得》

《编程之美——微软技术面试心得》（http://www.china-pub.com/38070）是微软亚洲研究院
技术创新组研发主管邹欣继《移山之道——VSTS 软件开发指南》后的最新力作。它传达

给读者：微软重视什么样的能力，需要什么样的人才。但它更深层的意义在于引导读者思考，提倡一种发

现问题、解决问题的思维方式，充分挖掘编程的乐趣，展示编程之美。本书 3月份上市。网上讨论和解答

在：www.msra.cn/bop

题目《让 CPU 占用率曲线听你指挥》

问题

写一个程序，让用户来决定 Windows 任务管理器（Task Manager）的 CPU 占用率。程
序越精简越好，计算机语言不限。例如，可以实现下面三种情况：

1. CPU的占用率固定在50%，为一条直线；

2. CPU的占用率为一条直线，但是具体占用率由命令行参数决定（参数范围1~ 100）；

1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

2

3. CPU的占用率状态是一个正弦曲线。

分析与解法1

有一名学生写了如下的代码：

while (true)
{
 if (busy)
 i++；
 else

}

然后她就陷入了苦苦思索：else 干什么呢？怎么才能让电脑不做事情呢？CPU 使用率为
0 的时候，到底是什么东西在用 CPU？另一名学生花了很多时间构想如何“深入内核，以控
制 CPU 占用率”——可是事情真的有这么复杂么？

MSRA TTG（Microsoft Research Asia, Technology Transfer Group）的一些实习生写了各
种解法，他们写的简单程序可以达到如图 1-1 所示的效果。

图 1-1 编码控制 CPU 占用率呈现正弦曲线形态

看来这并不是不可能完成的任务。让我们仔细地回想一下写程序时曾经碰到的问题，如

1 作者注：当面试的同学听到这个问题的时候，很多人都有点意外。我把我的笔记本电脑交给他们说，这是开

卷考试，你可以上网查资料，干什么都可以。大部分面试者在电脑上的第一个动作就是上网搜索“CPU 控
制 50%”这样的关键字，当然没有找到什么直接的结果。不过这本书出版以后，情况可能就不一样了。

1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

3

果我们不小心写了一个死循环，CPU 占用率就会跳到最高，并且一直保持 100%。我们也可
以打开任务管理器2，实际观测一下它是怎样变动的。凭肉眼观察，它大约是 1 秒钟更新一
次。一般情况下，CPU 使用率会很低。但是，当用户运行一个程序，执行一些复杂操作的
时候，CPU 的使用率会急剧升高。当用户晃动鼠标时，CPU 的使用率也有小幅度的变化。

那当任务管理器报告 CPU 使用率为 0 的时候，谁在使用 CPU 呢？通过任务管理器的“进
程（Process）”一栏可以看到，System Idle Process 占用了 CPU 空闲的时间——这时候大家该
回忆起在“操作系统原理”这门课上学到的一些知识了吧。系统中有那么多进程，它们什么时
候能“闲下来”呢？答案很简单，这些程序或者在等待用户的输入，或者在等待某些事件的发
生（WaitForSingleObject()），或者进入休眠状态（通过 Sleep()来实现）。

在任务管理器的一个刷新周期内，CPU 忙（执行应用程序）的时间和刷新周期总时间的
比率，就是 CPU 的占用率，也就是说，任务管理器中显示的是每个刷新周期内 CPU 占用率
的统计平均值。因此，我们写一个程序，让它在任务管理器的刷新期间内一会儿忙，一会儿
闲，然后通过调节忙/闲的比例，就可以控制任务管理器中显示的 CPU 占用率。

【解法一】简单的解法

步骤 1 要操纵 CPU 的 usage 曲线，就需要使 CPU 在一段时间内（根据 Task

 Manager 的采样率）跑 busy 和 idle 两个不同的 loop，从而通过不同的时间
 比例，来获得调节 CPU Usage 的效果。

步骤 2 Busy loop 可以通过执行空循环来实现，idle 可以通过 Sleep()来实现。

问题的关键在于如何控制两个 loop 的时间，方法有二：

Sleep一段时间，然后以for循环n次，估算n的值。

那么对于一个空循环 for(i = 0; i < n; i++)；又该如何来估算这个最合适的 n 值呢？
我们都知道 CPU 执行的是机器指令，而最接近于机器指令的语言是汇编语言，所以我们可
以先把这个空循环简单地写成如下汇编代码后再进行分析：

loop:
mov dx i ;将i置入dx寄存器
inc dx ;将dx寄存器加1
mov i dx ;将dx中的值赋回i
cmp i n ;比较i和n
jl loop ;i小于 n时则重复循环

假设这段代码要运行的 CPU 是 P4 2.4Ghz（2.4 * 10 的 9 次方个时钟周期每秒）。现代
CPU 每个时钟周期可以执行两条以上的代码，那么我们就取平均值两条，于是让（2 400 000

000 * 2）/5=960 000 000（循环/秒），也就是说 CPU 1 秒钟可以运行这个空循环 960 000 000

次。不过我们还是不能简单地将 n = 60 000 000，然后 Sleep(1000)了事。如果我们让 CPU 工

2 如果应聘者从来没有琢磨过任务管理器，那还是不要在简历上说“精通 Windows”为好。

1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

4

作 1 秒钟，然后休息 1 秒钟，波形很有可能就是锯齿状的——先达到一个峰值（大于>50%），
然后跌到一个很低的占用率。

我们尝试着降低两个数量级，令 n = 9 600 000，而睡眠时间相应改为 10 毫秒
（Sleep(10)）。用 10 毫秒是因为它不大也不小，比较接近 Windows 的调度时间片。如果选
得太小（比如 1 毫秒），则会造成线程频繁地被唤醒和挂起，无形中又增加了内核时间的不
确定性影响。最后我们可以得到如下代码：

代码清单 1-1
int main()
{
 for(;;)
 {
 for(int i = 0; i < 9600000; i++);
 Sleep(10);
 }
 return 0;
}

在不断调整 9 600 000 的参数后，我们就可以在一台指定的机器上获得一条大致稳定的
50% CPU 占用率直线。

使用这种方法要注意两点影响：

1. 尽量减少sleep/awake的频率，如果频繁发生，影响则会很大，因为此时优先级更高

的操作系统内核调度程序会占用很多CPU运算时间。

2. 尽量不要调用system call（比如I/O这些privilege instruction），因为它也会导致很多不

可控的内核运行时间。

该方法的缺点也很明显：不能适应机器差异性。一旦换了一个 CPU，我们又得重新估
算 n 值。有没有办法动态地了解 CPU 的运算能力，然后自动调节忙/闲的时间比呢？请看下
一个解法。

【解法二】使用 GetTickCount()和 Sleep()

我们知道 GetTickCount()可以得到“系统启动到现在”的毫秒值，最多能够统计到 49.7

天。另外，利用 Sleep()函数，最多也只能精确到 1 毫秒。因此，可以在“毫秒”这个量级做
操作和比较。具体如下：

利用 GetTickCount()来实现 busy loop的循环，用 Sleep()实现 idle loop。伪代码如下：

代码清单 1-2

int busyTime = 10; //10 ms
int idleTime = busyTime; //same ratio will lead to 50% cpu usage

1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

5

Int64 startTime = 0;
while (true)
{

startTime = GetTickCount();
// busy loop的循环
while ((GetTickCount() - startTime) <= busyTime) ;

 //idle loop
 Sleep(idleTime);
}

这两种解法都是假设目前系统上只有当前程序在运行，但实际上，操作系统中有很多程
序都会在不同时间执行各种各样的任务，如果此刻其他进程使用了 10% 的 CPU，那我们的
程序应该只能使用 40%的 CPU（而不是机械地占用 50%），这样可达到 50%的效果。

怎么做呢？

我们得知道“当前CPU占用率是多少”，这就要用到另一个工具来帮忙——Perfmon.exe。

Perfmon是从Windows NT开始就包含在Windows服务器和台式机操作系统的管理工具
组中的专业监视工具之一（如图 1-2 所示）。Perfmon 可监视各类系统计数器，获取有关操
作系统、应用程序和硬件的统计数字。Perfmon 的用法相当直接，只要选择您所要监视的对
象（比如：处理器、RAM 或硬盘），然后选择所要监视的计数器（比如监视物理磁盘对象
时的平均队列长度）即可。还可以选择所要监视的实例，比如面对一台多 CPU 服务器时，
可以选择监视特定的处理器。

图 1-2 系统监视器（Perfmon）

我们可以写程序来查询 Perfmon 的值， Microsoft .Net Framework 提供了
PerformanceCounter()这一类型，从而可以方便地拿到当前各种计算机性能数据，包括 CPU

的使用率。例如下面这个程序——

【解法三】能动态适应的解法

1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

6

代码清单 1-3
//C# code
static void MakeUsage(float level)
{
 PerformanceCounter p = new PerformanceCounter("Processor", "% Processor Time",

"_Total");

 while (true)
 {
 if (p.NextValue() > level)
 System.Threading.Thread.Sleep(10);
 }
}

可以看到，上面的解法能方便地处理各种 CPU 使用率参数。这个程序可以解答前面提
到的问题 2。

有了前面的积累，我们应该可以让任务管理器画出优美的正弦曲线了，见下面的代码。

【解法四】正弦曲线

代码清单 1-4
//C++ code to make task manager generate sine graph
#include "Windows.h"
#include "stdlib.h"
#include "math.h"

const double SPLIT = 0.01;
const int COUNT = 200;
const double PI = 3.14159265;
const int INTERVAL = 300;

int _tmain(int argc, _TCHAR* argv[])
{
 DWORD busySpan[COUNT]; //array of busy times
 DWORD idleSpan[COUNT]; //array of idle times
 int half = INTERVAL / 2;
 double radian = 0.0;
 for(int i = 0; i < COUNT; i++)
 {
 busySpan[i] = (DWORD)(half + (sin(PI * radian) * half));
 idleSpan[i] = INTERVAL - busySpan[i];
 radian += SPLIT;
 }

 DWORD startTime = 0;
 int j = 0;
 while (true)
 {
 j = j % COUNT;
 startTime = GetTickCount();
 while ((GetTickCount() - startTime) <= busySpan[j]) ;
 Sleep(idleSpan[j]);
 j++;
 }
 return 0;
}

1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

7

讨论

如果机器是多 CPU，上面的程序会出现什么结果？如何在多个 CPU 时显示同样的状
态？例如，在双核的机器上，如果让一个单线程的程序死循环，能让两个 CPU 的使用率达
到 50%的水平么？为什么？

多 CPU 的问题首先需要获得系统的 CPU 信息。可以使用 GetProcessorInfo()获得多
处理器的信息 ,然后指定进程在哪一个处理器上运行。其中指定运行使用的是
SetThreadAffinityMask()函数。

另外，还可以使用 RDTSC 指令获取当前 CPU 核心运行周期数。

在 x86 平台上定义函数：

inline __int64 GetCPUTickCount()
{
 __asm
 {
 rdtsc;
 }
}

在 x64 平台上定义：

#define GetCPUTickCount() __rdtsc()

使用CallNtPowerInformation API 得到CPU 频率，从而将周期数转化为毫秒数，例如：

代码清单 1-5
_PROCESSOR_POWER_INFORMATION info;

CallNTPowerInformation(11, //query processor power information
 NULL, //no input buffer
 0, //input buffer size is zero
 &info, //output buffer
 Sizeof(info)); //outbuf size

 __int64 t_begin = GetCPUTickCount();

 //do something

 __int64 t_end = GetCPUTickCount();
 double millisec = ((double)t_end –
 (double)t_begin)/(double)info.CurrentMhz;

RDTSC 指令读取当前 CPU 的周期数，在多 CPU 系统中，这个周期数在不同的 CPU 之
间基数不同，频率也有可能不同。用从两个不同的 CPU 得到的周期数作计算会得出没有意
义的值。如果线程在运行中被调度到了不同的 CPU，就会出现上述情况。可用
SetThreadAffinityMask 避免线程迁移。另外，CPU 的频率会随系统供电及负荷情况有所调整。

总结

能帮助你了解当前线程/进程/系统效能的 API 大致有以下这些：

1.1 让 CPU 占用率曲线听你指挥

编程之美——微软技术面试心得

8

1. Sleep()——这个方法能让当前线程“停”下来。

2. WaitForSingleObject()——自己停下来，等待某个事件发生

3. GetTickCount()——有人把 Tick翻译成“嘀嗒”，很形象。

4. QueryPerformanceFrequency()、QueryPerformanceCounter()——让你访问到精
度更高的 CPU 数据。

5. timeGetSystemTime()——是另一个得到高精度时间的方法。

6. PerformanceCounter——效能计数器。

7. GetProcessorInfo()/SetThreadAffinityMask()。遇到多核的问题怎么办呢？这两
个方法能够帮你更好地控制 CPU。

8. GetCPUTickCount()。想拿到 CPU 核心运行周期数吗？用用这个方法吧。

了解并应用了上面的 API，就可以考虑在简历中写上“精通 Windows”了。

