BB

10T [o [TgTo R CT =T o] 1= PR 21
Core graph data SITUCIUMESc.ecveiiieieie ettt st ses 22
Class L .GraPh v, 22
Class LI .0PETratiom i, 39
Class LL . TeINSOT ittt e s 45
L] 1S Y 01T TSP 51
Clas s LE i DT P ittt 51
tf.as dtype (LYPEe VAlUE) it 56
ULIIEY FUNCHIONS ..ttt ettt sttt e st e et besae et 56
ol e [NV TSI (e 1< v/ TN 56
Lf.name SCOPE (NAIME) ittt bbb et 57
tf.control dependencies (control Iinputs) ..., 58

tf.convert to tensor(value, dtype=None, name=None,

S _TEIZFALSE) ittt s 58

tf.convert to tensor or indexed slices(value, dtype=None,

name=None, as ref=FalsSe) ... 60
tf.get default graph () . 60
tf.reset default graph () ., 61

tf.import graph def (graph def, input map=None,

return elements=None, name=None, op dict=None) ... 61
tf.load op library (library filename) ..., 63
Graph COECHIONS ..ottt et e s be e be s beebesbeenaeseas 64
tf.add to collection(name, vValUe) ... 64
tf.get collection(key, SCOPE=NONE) wiiiiiiiiniiiiiitiicieeciee e 64
Class L .GraphKeyS i 65
Defining NEW OPEIatiONScc.oiuieiiieieiee ettt st e ee e 66
class tf.RegisterGradient ., 66
tf.NoGradient (0P LYPE) wiiiei i 67
Cclass Lf.RegisSterShape wiii e 68
Class Lf.TeNSOTSRAPE ittt e 69

SRR F T ol N D B 1 T3 o F= T K o o RPN 77

tf.op scope(values, name, default name=None) ..., 79
tf.get seed (0P SEed) i 80
For libraries building 0N TENSOIFIOW..........ccocieieiiiieecceee e 81

tf.register tensor conversion function (base type,

conversion func, priority=100) .., 81
Other FUNCioNs and CIASSES..........ccooiiiniiiiiiiiiiee e 82
Class L. DY S i, 82
Constants, Sequences, and Random ValUESccceeceieeeeiiceeseseeese e 82
Constant Value TENSOIS ..o 83
tf.zeros (shape, dtype=tf.float32, name=None) ... 83
tf.zeros like(tensor, dtype=None, name=NONe) ... 84
tf.ones (shape, dtype=tf.float32, name=NOoNne)rirnnnnnnn. 85
tf.ones like (tensor, dtype=None, name=NONe) ... 86
tf.fill (dims, value, NAME=NOIE) iiiiereiiiereetiieeeerteeeeriieeeeeraeeeraneaeeees 87

tf.constant (value, dtype=None, shape=None, name='Const') ...87

RS <0 {1 1] o < S UPPRRSI 89
tf.linspace(start, stop, num, NAME=NONE) .ccccrrerrrireiiierreerrrernniiereneenns 89
tf.range(start, limit=None, delta=1l, name='range') 90

RANAOM TENSOIS ...ttt ettt 91
= 0 1] 0] TSP 91

tf.random normal (shape, mean=0.0, stddev=1.0,

dtype=tf.float32, seed=None, NamMe=NONE) ..ccccccccrrrrrrrrerererererererereeerenens 92

tf.truncated normal (shape, mean=0.0, stddev=1l.0,

dtype=tf.float32, seed=None, nNamMe=NONE) ..ccccccccrrrrrrrrrerererererererereeerenen 93

tf.random uniform(shape, minval=0, maxval=None,

dtype=tf.float32, seed=None, NaAmMe=NONE) .cccccccrrrrrrrrrererererererererereeeeenens 94
tf.random shuffle(value, seed=None, name=None) ... 95
tf.random crop(value, size, seed=None, name=NoOne) 96
tf.set random seed(seed) . 97

RV Z= L= 1o =SSP 99
VANADIES ...ttt sttt s ae et st e e e teeneetesteenteae s 100
Class LL.Variable c 100

Variable helper fUNCHONSco e 111

tf.all variables () v 112

tf.trainable variables () . 112
tf.moving average variables () .. 113
tf.initialize all variables () . 113
tf.initialize variables(var list, name="init') ... 113
tf.assert variables initialized(var list=None) ... 114
Saving and Restoring VariableS ..ottt erne e 115
Class Lf.Lrain.SaVer c 115

tf.train.latest checkpoint (checkpoint dir,

latest filename=NONE) .. 123

tf.train.get checkpoint state(checkpoint dir,
latest filename=NONE) .. 124

tf.train.update checkpoint state(save dir,
model checkpoint path, all model checkpoint paths=None,

latest filename=NONE) .. 125
Sharing VariabIESc..ouoiiiiiieeee e 125

tf.get variable (name, shape=None, dtype=tf.float32,

initializer=None, trainable=True, collections=None) 125
tf.get variable SCODPE () v 127
tf.make template(name , func , **KWAIrgS) ..., 127

tf.variable op scope(values, name, default name,

TN AT 1811 ZETENONE) tiitiiiiiietitiiiieet ettt ettt ettt eratrteestserttesrteeeraserteessnserans 130

tf.variable scope(name or scope, reuse=None,

TN AT 1811 ZETENONE) tittiiiiiiiiiieiiieeiier ettt ettt ettt eratrteesttertesrteeeraerteessnserans 131
tf.constant initializer (value=0.0, dtype=tf.float32)....... 133

tf.random normal initializer (mean=0.0, stddev=1.0,

seed=None, dtype=tf.fl0at32) 133

tf.truncated normal initializer (mean=0.0, stddev=1.0,

seed=None, dtype=tf.fl0at32) 134

tf.random uniform initializer (minval=0.0, maxval=1.0,

seed=None, dtype=tf.fl0at32) 135

tf.uniform unit scaling initializer (factor=1.0, seed=None,

e R o4 oISl o i il R o = oA 1) PP PP PP P PP PP PPPPPPPRPPPPPRPRt 136

tf.zeros initializer (shape, dtype=tf.float32) ... 137

Sparse Variable UPAAtES..........ocveviiiieieieieeeceetese ettt ettt ae e eraene s 137

tf.scatter update(ref, indices, updates, use locking=None,

NLAIMETINOTIIE) ttttuietueituneetrterntetueeeteerseetseeerneesnesstsersestuesesssesssesresesseseteessnserssesresees 138

tf.scatter add(ref, indices, updates, use locking=None,

NLAIMETINOTIIE) tituiitueieuneetreerueetueeeseersteetreeerneesneesssersestnesesssesssessesersesstneessnsersseeresees 140

tf.scatter sub(ref, indices, updates, use locking=None,

NAMETNOIIE) iittueiituiiiteettieeteeeteetteettaeettaeetntranestteetaneetneresnsteneeetasesnseeeesesneernaeeeneeeen 142
tf.sparse mask(a, mask indices, name=NONe) ..., 144
Class tf.INdexXedS1iCEeS it 145
Tensor TransforMAatiONS...........ccieiiiiiini s 148
(OF2 1S3 1] [0 1RO OO OO TSP PO PP 149

tf.string to number (string tensor, out type=None,

NAMETNOIIE) itttuiettueteteettieetueertteeeteettaeettaeesnteraneesteesnaestneeesneesneeetaeesneeseeessnsesneessneeeen 149
tf.to double (x, name='ToDouble') ., 150
tf.to float (x, name="'TOFloat') ., 150
tf.to bfloatl6(x, name="TOBFloatlo') .., 151
tf.to int32(x, name="TOoINt32") ., 152
tf.to int64(x, name="TOoINt64") . 152
tf.cast (x, dtype, NAmME=NOIE) i e e e e e e 153
Shapes and SNAPING ...t st ettt e s beeaesteeraente s 154
tf.shape (input, Name=NONE) ...cciiiiiiiiiiiiiiiii e 154
tf.size (input, NAME=NONE) i, 155
tf.rank (1nput, NAmME=NONE) i, 155
tf.reshape (tensor, shape, nName=NONE) ..cccccoiiiiiiiiiiiiiiiiiiiiiee, 156
tf.squeeze (input, squeeze dims=None, name=NONe) ... 158
tf.expand dims (input, dim, name=NONe) ..., 159
1Y [Tod g7 B=Ta o BN To] [11 T TSSO 160
tf.slice(input , begin, size, name=NONEe) ..., 160
tf.split(split dim, num split, value, name='split') 162
tf.tile(input, multiples, NAME=NONE) ..cccccoimmmriiiiiiiiiiiiiiinieeee e 163
tf.pad(input, paddings, NaAmME=NONE) ..., 163
tf.concat (concat dim, values, name='concat') ..., 165

tf.pack(values, name="pack’) . 166

tf.unpack (value, num=None, name='unpack') ... 167

tf.reverse sequence (input, seq lengths, seqg dim,

batch dim=None, name=NONe) ... 168
tf.reverse (tensor, dims, NaAME=NOINE) .ririiriiiiirrriiierriiieeeeeieeerenneenens 170
tf.transpose(a, perm=None, name='transpose') ... 171
tf.space to depth(input, block size, name=None) ... 173
tf.depth to space(input, block size, name=None) ... 175

tf.gather (params, indices, validate indices=None,

NLAIMETINOTIIE) ttttuietueituneettrerneetueeeteeeseetreeetneesneesaseraestnetesnserseesserersesesnesssnserssesresees 177

tf.dynamic partition(data, partitions, num partitions,

NAMETNOIIE) itttuiettueeeteettieetueeeteeeteettaeettaeetnteraneeeteeenaeetneresneesseestaeesnsereeessnsesneeseneeees 178
tf.dynamic stitch(indices, data, name=NONne) ..., 181
tf.boolean mask(tensor, mask, name='boolean mask') 182
Other FUNCIONS aNnd CIASSES.........cccovuiuiiiiiiieiirecerne e 184
tf.shape n(input, Name=NONE) ... 184
tf.unique with counts (x, nNaAme=NONE) ..., 184
IMBER ..ottt ettt be et e bt e et et neene e 185
AFTNMETIC OPEIALOIS ..ottt et ste et e s re e b e s beenaaseas 188
tf.add(x, Y, NAME=NONE) i 188
LL.sUb (X, ¥V, NAME=NONE) i 189
L. mul (X, ¥V, NAME=NONE) ttitiiiiii e 190
LE£.div(x, YV, NAME=NONE) i 190
tf.truediv (x, VY, NAME=NONE) i, 191
tf.floordiv (X, VY, NAME=NOIE) i 192
L. mod (X, YV, NAME=NONE) ittt 193
tf.cross(a, D, NAME=NONE) iiiiiiiiiiiiiiiiirer e e e e e e e e aaea s 193
Basic Math FUNCHONS..........ccociiiiiii s 194
tf.add n(inputs, Name=NONE) ... 194
LE.3DS (X, NAMEZNONE) iiiiiiiiieiiiie et e e e e et ee e e et e e e et e e e et e aeeaaeeesannaeeeen 195
L. nNeg (X, NAMEZNOIIE) 1ttt e e e e e e e e e e e e 196
LL.S1gN (X, NAMEZNOIE) tiiiiiiiiiiiiie e e e e e e e e e e 196

Lo A I o RV O R o F= ¥ (1S T \ Lo o 1= S 197

tf.square (X, NAME=NONE) i 197
L. 70UNA (X, NAMEZNONIE) ttiiiiiiiiiiriiieieriiiieereteeeretieeeretieeererieeerrrsieesrsieresssnieeerees 198
LE.SOrt (X, NAMEZNONE) it 199
LE.7Sgrt (X, NAME=NOIIE) i 199
L. POW (X, YV, NAMEZNONE) 1 200
LE.eXP (X, NAMEZNOIE) 1 201
LE.10g (X, NAMEZNOIE) 1ttt 201
LE.CE11 (X, NAMEZNOIIE) tittiiiiiiiiiiiiriiieeeriiieeeertieeerrtieeerttieeerrrteeererseeesrsneesssnneerees 202
L. L1007 (X, NAMEZNOIIE) ttiiitriiitiirteiriiiertieetieertrerteerrirerneereeerseerssessreeesnerans 202
tf.maximum (X, Y, NAMEZNOINE) .ireirrrireririrniiiereeeeeeerriinesereerrernneeeeermmmmnnns 203
tf.minimum (X, YV, NAMEZNOINE) .rceirrriieriiiiiiierereetttneiineseeeeerernnseeeerenmnnnns 203
TL.COS (X, NAMEZNOTIE) tiiiittiiiiiiiitieriieeetiiertiertteertrerteerrirerneereeersirersaessreeesnseranns 204
LL.SIN (X, NAMETNONE) iiitiieiieiiiieeeeiiieeeettieeeeeteeerettaeeestteeesrtteeesesnaeesssnieesssnieeesees 204
Tf.lgamma (X, NAMEZNOTIE) ciiiiiiiiiiiiuiieeieeeitiiiee e eeetrene e e eetrernn e s eeerensnaaannss 205
L. f (X, NAMETNONE) ittt et eae et e e e e eae e et e eeneeeneesneesannns 206
L .erfC (X, NAMETNONE) tiitiiiiiiieiiieeie it te et e e e et e eaneeetteestaeeeneeeneeeannesannns 206
Matrix Math FUNCHONS..........cciiiiiicccc s 207
tf.diag(diagonal, NamMEe=NOIIE) .iiiiiiiiiiierererereeeeeeeeeeeeeeeeens 207
tf.transpose(a, perm=None, name='transpose') ... 208
tf.matmul (a, b, transpose a=False, transpose b=False,
a 1s sparse=False, b is sparse=False, name=None) 209
tf.batch matmul (x, y, adj x=None, adj y=None, name=None) .210
tf.matrix determinant (input, name=NOne) ..., 212
tf.batch matrix determinant (input, name=None) ... 212
tf.matrix inverse (input, Name=NONe) ..., 213
tf.batch matrix inverse (input, name=NONe) ..., 214
tf.cholesky (input, NAME=NONE) i 214
tf.batch cholesky (input, name=NONe) ..., 215
tf.self adjoint eig(input, name=NOne) ..., 216
tf.batch self adjoint eig(input, name=NOne) ... 217
tf.matrix solve (matrix, rhs, name=None) ..., 217
tf.batch matrix solve(matrix, rhs, name=None) ... 218

tf.matrix triangular solve(matrix, rhs, lower=None,

NLAIMETINOTIIE) ttttuieuueieuneetreerutetueeeseerseetseeerntesneessseraestnetesnstsseesseressesetesssnserssesresees 219

tf.batch matrix triangular solve (matrix, rhs, lower=None,

NAMETNOIIE) 1tittuetitueitteettieeteeeteettieettaetttaeetnteraneeeteesnneetneresnsteneeetaeesneeeeeessneernaeeeneseen 220

tf.matrix solve ls(matrix, rhs, 12 regularizer=0.0,

fast=True, NAME=NOINE) .iiiiiiirriiiiieeeiiie ettt eertiieeeereeseerrneeerersseennnserernseerennns 221

tf.batch matrix solve ls(matrix, rhs, 12 regularizer=0.0,

fast=True, NAME=NONE) .iiiiiiieriiiiiireeiiir ettt rereiie e e eteeseertneeerersseennnserernsseenennns 223
Complex NUMDBEr FUNCHONS........ccoviieieieieeeieeese sttt 225
tf.complex(real, imag, NaAME=NONE) .cciciiiiiiiiiiiiiiieeee e 225
tf.complex abs (x, NaAmMe=NONE) ... 226
tf.conj (in , NaAmME=NONE) .ttt e 226
tf.imag (in , NAmME=NOINE) .ttt e 227
tf.real (in , NaAmME=NONE) .t 228
L. ££E2d (AN , NAme=NONE) it 229
EL.1fft2d(in , NAmMe=NONE) .ttt 229
REAUCTION ...t 230

tf.reduce sum(input tensor, reduction indices=None,

keep dims=False, NamMe=NONE)ccciimiiriieniieniieniiiniienieereeneenee e enreens 230

tf.reduce prod(input tensor, reduction indices=None,

keep dims=False, NamMe=NONE)ccciiiniieniieniieniiiniienieereenee e eneenreens 231

tf.reduce min (input tensor, reduction indices=None,

keep dims=False, NamMe=NONE)cccciiirieriieniieniieniiiniienreenneeniee e enseens 232

tf.reduce max (input tensor, reduction indices=None,

keep dims=False, nName=NONE) ...ttt 233

tf.reduce mean (input tensor, reduction indices=None,

keep dims=False, NaAmME=NONE) ...cccciimiiimiiimniieniinniiiniiee e 234

tf.reduce_all (input tensor, reduction indices=None,

keep dims=False, NaAmME=NONE) ...cccccimiiimiiimniieniinniisinee e 235

tf.reduce_ any (input tensor, reduction indices=None,

keep dims=False, NaAmME=NONE)cccciimiiimiiimniieniinniisieee e 236

tf.accumulate n(inputs, shape=None, tensor dtype=None,

NLAMETZINOTIIE) ttttuiitutiruneerrreruertteeetterseerteteratersueesteersessueeesssersesrteresseesteessnserssesseeees 237
S T=T0] 00 =]] €= LA L] o ISR 238

tf.segment sum(data, segment ids, name=NOne) ... 239

tf.segment prod(data, segment ids, name=NONe) ... 240

tf.segment min(data, segment ids, name=None) ... 242
tf.segment max(data, segment ids, name=None) ... 243
tf.segment mean(data, segment ids, name=NONe) ... 245

tf.unsorted segment sum(data, segment ids, num segments,

NLAIMETINOTIIE) tttttuierueteuneetrrerntetueeesterseeetueeerneeeneesssersestmesesneessessserersesssesssnserssessesees 246

tf.sparse segment sum(data, indices, segment ids,

NLAIMETINOTIIE) ttttuiitueittneettterneetueeeteerseetseeerneesneessseraeetneeesnstssessserersesesesssnserssesresens 248

tf.sparse segment mean(data, indices, segment ids,

NAMETNOIIE) titttuieetueeeteetteeetueeetteeeteettaeettaeetntertneeeteesnaeetneeesnetrsresstaeesneeeseessnsesneeseneeees 249

tf.sparse segment sqrt n(data, indices, segment ids,

NAMETNOIIE) iittueietueeeteettieetueerteeeteettaeetteeetnteranersteesneetneeesneerneeetaeesnseeseessnsesneessneeeen 250
Sequence Comparison and INAEXINGc..cceerererirereneeeeeeee e 251
tf.argmin (input, dimension, Name=NONE)ccoriiiiiiriiiiiiiieeeeiiniinnne 251
tf.argmax (input, dimension, Name=NONE)cccorriiiiiiiriiiiiieieeeeinniinnne 252
Lf.1istdiff (X, YV, NAMEZNOINE) i 253
tf.where (Input, NAME=NONE) i 254
L. Uunique (X, NAMEZNONE) 1t e e e e e e e e e e eeeeeeaeens 255

tf.edit distance (hypothesis, truth, normalize=True,

name="'edit disStancCe') .. 256
tf.invert permutation(x, Name=NONE) ..., 258
Other Functions and CIasSes...........cccociviiiiiiiiniiiniiiic s 259
tf.scalar mul (SCAlar, X) . 259

tf.sparse segment sgrt n grad(grad, indices, segment ids,

output dim0, Name=NONE) ...ccciriiiiiieiiieniieniene e 259
CONLIOL FIOW......oiiiiiiiiiii e 260
Control FIOW OPEratiONSccieeevieiieiesieeeeie sttt et sreete e sae e sseesse s e essesreesaensens 261
tf.identity (input, NAmME=NONE) i 261
tf.tuple (tensors, name=None, control inputs=None) ... 262
LL.group (FinPutsS, FTHARWATTS) i 263
£L.N0_ 0P (NAME=NONE) tiiiitiiitiiitiiiiiete bbb 264
tf.count up to(ref, limit, name=NONe) ..., 264

tf.cond(pred, fnl, fn2, Name=NONE) ., 265

oo |02z L @] 0 =T =1 (o] £= 3SR 266

tf.logical and(x, y, NAME=NONE) . 266
tf.logical not(x, NamMe=NONE) ... 267
tf.logical or(x, y, NAmMe=NONE) ... 267
tf.logical xor(x, y, name='LogicalXor') ..., 268
CoMPAriSON OPEIALOIS.......cccveriieteeieiteeiesteeeete s e e e st e e stesraebesteesessesseessesseesestesssesens 268
tf.equal (X, VY, NAMEZNONE) i 268
tf.not equal (X, Yy, NAME=NONE) ittt 269
Lf.1eSS (X, Y, NAMETNOINE) tiiiittirrruiieeereerretrniaeereeeertrrniseseeererernseeeeremsnnns 269
tf.less equal (x, Yy, NAME=NONE) .ciiiiiiiiiiiiiniiccie e 270
tf.greater (X, Y, NAMEZNONE) .iiierriiiiiriiiiiierreeetetnriineseeeeerernnseeeerermmnnss 271
tf.greater equal (X, Yy, NAME=NONE) ..cccciiiiiiiiniiiiiiiiienieeciee e 271
tf.select(condition, t, €, NAME=NONE) .iiiirriiiiiiiiiiiineeeeeenien. 272
tf.where (Input, NAME=NONE) i 273
Debugging OPEratiONSc..coeieieirirerierierietee ettt see e e e eneas 274
tf.is finite (X, NAME=NONE) . 275
tf.is inf(x, NAmME=NONE) .t 275
tf.is nan(x, NaAmME=NOINE) .t e 276
tf.verify tensor all finite(t, msg, name=NoOne) ... 276
tf.check numerics(tensor, message, name=NONe) ... 277
tf.add check NUMEricCs OPS () i 277
tf.Assert (condition, data, summarize=None, name=None) 278

tf.Print (input , data, message=None, first n=None,

summarize=None, NAMETZNOIIE) .iiiiiierererieeerrrirerrrnieeerereeeessiieersssieeerssineesssineens 278
IMBIGES ...ttt ettt sttt et e st e a b e e e bt e e a b e e st e e s bbee s be e e bteesateesbaeenabeenas 279
(Sl gTeleTe TaTo Jr=TaTo J = ToTo o [1 o TSP 281

tf.image.decode jpeg(contents, channels=None, ratio=None,
fancy upscaling=None, try recover truncated=None,

acceptable fraction=None, name=NONE) ..., 282
tf.image.encode jpeg(image, format=None, quality=None,
progressive=None, optimize size=None,

chroma downsampling=None, density unit=None,

x_density=None, y density=None, xmp metadata=None,

NLAIMETINOTIIE) ttttuieuueieuneetreerutetueeeseerseetseeerntesneessseraestnetesnstsseesseressesetesssnserssesresees 283

tf.image.decode png(contents, channels=None, dtype=None,

NAMETNOIIE) 1tittuetitueitteettieeteeeteettieettaetttaeetnteraneeeteesnneetneresnsteneeetaeesneeeeeessneernaeeeneseen 285
tf.image.encode png(image, compression=None, name=None) ...286
RESIZING...ecueeiecteeece ettt et et e et e b e s be et e s teebeenbesreeneesbeese e resreennenrs 287

tf.image.resize images (images, new height, new width,

method=0, align corners=FalsSe) ..., 287

tf.image.resize area(images, size, align corners=None,

NAMETNOIIE) iittuiettueeeterttieetueertteetteettaetttaeetnteranereteeeneetueresneessnesstaeesnserseessnsesnsessneeees 289

tf.image.resize bicubic(images, size, align corners=None,

NAMETNOIIE) iittuiietueieteettieetueertteeeteettaeettaeetneraneeeteeeneetneresnetsaesetaeesnsereeessneesnseseneeeen 290

tf.image.resize bilinear (images, size, align corners=None,

NAMETNOIIE) iittuieitueeetertteeetueeeteeeteettaeettaeetnteraneretaeesnaeetueresneessesetaeesnseeseessnsesnaeseneeeen 291

tf.image.resize nearest neighbor (images, size,

align corners=None, Name=NONE)iiiiiiiiniiiiniienieeiee e 291
CrOPPING cetitieteeteeteete sttt et et e e b e s te e e e s tesbeesbesteessesbesssessesbaestasseessessesssansesseensestessaensens 292

tf.image.resize image with crop or pad(image,

target height, target width) ., 292

tf.image.pad to bounding box(image, offset height,

offset width, target height, target width) ... 293

tf.image.crop to bounding box(image, offset height,

offset width, target height, target width) ... 294

tf.image.extract glimpse (input, size, offsets,

centered=None, normalized=None, uniform noise=None,

NAMETNOTIIE) tittuiituririetrtittrttertteertrerseettttesaersueesttersestuetesuserseerseterseerseessnsereesseeens 296
Flipping and TranSPOSINGcccverieiierereeeerieseetesteeeesteseeestestesseessesreessessesssessessesssesses 297
tf.image.flip up dOown (1MAgE) i 297
tf.image.random flip up down (image, seed=None) ... 298
tf.image.flip left right (image) .., 299
tf.image.random flip left right(image, seed=None) ... 299
tf.image.transpose image (IMage) e 300
Converting Between CoOIOrSPACES.ccocvveeciiriieieieeesiesteete e eeste e see e eaesreesaesens 301
tf.image.rgb to grayscale (iMages) .., 302

tf.image.grayscale to rgb (images) .., 302

tf.image.hsv to rgb(images, name=NONE) ..., 303
tf.image.rgb to hsv(images, name=NONE) ..., 303

tf.image.convert image dtype (image, dtype, saturate=False,

NLAIMETINOTIIE) tttttuiitueituneetrterntetneeeseerseetseeesneesneestseraeetnesesnetssesssesesseseteessnserssesresens 304
IMAGE AQJUSIMENTSciiiieiicieeeee sttt ettt re et e s teera e beereenresreeanenres 305
tf.image.adjust brightness (image, delta) ..., 306

tf.image.random brightness(image, max delta, seed=None) ...306
tf.image.adjust contrast (images, contrast factor).......... 307
tf.image.random contrast (image, lower, upper, seed=None) .308
tf.image.adjust hue (image, delta, name=NONe) ... 309
tf.image.random hue (image, max delta, seed=None) 310

tf.image.adjust saturation(image, saturation factor,

NAMETZINOTIIE) ttireueietueirueertrerueertteertrerteettatesntereneerstersereneeesseersnsessisesssersseessserssessseeees 311

tf.image.random saturation (image, lower, upper, seed=None)

... 312

tf.image.per image whitening (1mage) ..., 313
Working with Bounding BOXES ..o 313

tf.image.draw bounding boxes (images, boxes, name=None) ... 314

tf.image.sample distorted bounding box (image size,

bounding boxes, seed=None, seed2=None,

min object covered=None, aspect ratio range=None,

area_ range=None, max attempts=None,

use image if no bounding boxes=None, name=None)........... 315
Other Functions and CIasSes...........c.cocoiviiiiiiiniiiiiiie e 317

tf.image.saturate cast (image, dLyPe) ., 318

SPAISE TENSOIS .. .ciiuiiiiieiieeieeste ettt sttt ettt e s e e st e steesatesteesteesbeesaeesasesasesnsesnseenseenseesses 318

Sparse Tensor REPreSENTALION.cvccvereeeerieeetere ettt ae e esneee s 319

Class LI .S PAT S NSO ittt e e e e e e e e e e e e e aaees 319

class TL.SPAarsSeTensSOrValUC i 322
Sparse t0 DENSE CONVEISIONcceiuieierieeieieeeetesteeeestesreeae e saessesseessesseesesresssensens 323

tf.sparse to dense(sparse indices, output shape,
sparse values, default value=0, validate indices=True,

TSR S\ [} o =) N 323

tf.sparse tensor to dense(sp input, default value=0,

validate indices=True, name=NONE) ..., 324

tf.sparse to indicator(sp input, vocab size, name=None) ...326

Y F= T T o101 = 1T o TSRS 327
tf.sparse concat (concat dim, sp inputs, name=None) 327
tf.sparse reorder (sp_input, name=NONe) ..., 329

tf.sparse split(split dim, num split, sp input, name=None)

... 330
tf.sparse retain(sp input, to retain) ..., 331
tf.sparse fill empty rows (sp_input, default value,
NAMETNOIIE) itttuiettueeeteettieetueeeteeeteettaeettaeetnteraneeeteeenaeetneresneesseestaeesnsereeessnsesneeseneeees 332
INPULS 8N REAUEIS ..ottt sttt 334
PlaCENOIAEIS ... s 335
tf.placeholder (dtype, shape=None, name=NoONe) ... 335
REAUEIS ...t s 336
Class L .REAAEIBASE ittt 336
class tf.TexXtLineREadETr it 341
class tf.WholeFileReader . s 345
class tf.IdentityReader i 349
class Lf.TFRECOTAREATET ittt 353
class tf.FixedLengthRecordReader ..., 357
CONVEITING ..t eteetietiete sttt ettt e st e e st e e be e beste e b e beessebesbaessasteessenbesssansesseensestessaentens 361

tf.decode csv(records, record defaults, field delim=None,

LTSRS\ Fo) o =) IS 361

tf.decode raw(bytes, out type, little endian=None,

NAMETZINOTIIE) tiituiitutirteettteruertteertterseettetesaersueesstersertueeesserseersetesseesseesseserseesseeens 362
Example protoCol DUFENccviieeeeceeee e 363
class TL.VarLenFeatlUre e 363
class Tf.FixedLenFeatUlE 363
class tf.FixedLenSequenceFeature .., 364

tf.parse example (serialized, features, name=None,

example NamesS=NOTIE)ccciiuiiiiiiiiiiiiiiieeiee e e 365

tf.parse single example (serialized, features, name=None,

example Names=NOTIE) ...ccciiuiiriiiiiiiiiiiee e bbb 369
tf.decode json example (json examples, name=None) ... 370
QUEBUES ...ttt ettt e et e e et e e ta e e et e e e eba e e s abeeebae e sbaesbeeesateeeabeeeasaeessesenseeas 371
RN T ol A O L DT ST = T N1 < T 371
RN T T ol R I O 10 L6 L= T Y 377
class tf.RaANAOMSNULLELEOUEUE tiiiiiiiiiiieiiieeeie ettt et et e et eeae et sesnerannes 378
Dealing With the fileSYSIEMoouiieeecce e s 380
tf.matching files(pattern, name=NONe) ..., 380
tf.read file(filename, NamME=NONE) ...cccccriimiiiiniiiiiiiieniieniee e 380
INPUL PIPEIINE ..ottt sttt e s teesa e beeas e tesbeeaneneas 381
Beginning of an input PIPEIINE........ccooveeie e 381
tf.train.match filenames once (pattern, name=None) 381

tf.train.limit epochs(tensor, num epochs=None, name=None) 382
tf.train.range input producer (limit, num epochs=None,
shuffle=True, seed=None, capacity=32, name=NONe) 383

tf.train.slice input producer (tensor list, num epochs=None,
shuffle=True, seed=None, capacity=32, name=None) 383
tf.train.string input producer (string tensor,

num epochs=None, shuffle=True, seed=None, capacity=32,

NAMETNOTIIE) tittuiituririetrtittrttertteertrerseettttesaersueesttersestuetesuserseerseterseerseessnsereesseeens 385
Batching at the end of an input PIPElINEccocvveeeviiriee e 386

tf.train.batch(tensor list, batch size, num threads=1,
capacity=32, enqueue many=False, shapes=None, name=None) .386
tf.train.batch join(tensor list list, batch size,
capacity=32, enqueue many=False, shapes=None, name=None) .388
tf.train.shuffle batch(tensor list, batch size, capacity,
min after dequeue, num threads=1, seed=None,

enqueue many=False, shapes=None, name=NONe) ..., 390
tf.train.shuffle batch join(tensor list list, batch size,
capacity, min after dequeue, seed=None, enqueue many=False,

shapes=None, Name=NONE)cccccrrritriiiiiiiiiiiiiieee e 393
Data [0 (PYthon fUNCHONS)c.oiiiieieeeeeeeeee ettt 395
Data 10 (PYthon FUNCLIONS)........ccciiieieesie e ee ettt te e sse e s sneeaeenne e 395

class tf.python io.TFRecOrdWriter .., 395

tf.python io.tf record iterator(path) .. 396
TFRecords Format DEtallscociiiriiiininiiiiccc e 397
NEUIAl NEIWOTK ... 397
ACHVALION FUNCHONSoviiiiiiiiccic s 399
tf.nn.relu(features, NAME=NOIIE) .iiiiieiieieriieeerrrieeereree e eeraneerens 400
tf.nn.relub (features, NAME=NONE) .iiiiieiiiiiiiiiiieereieeerrre e eereneerens 400
tf.nn.elu(features, NAME=NONE) oot e e et eeraaeerens 401
tf.nn.softplus (features, NAME=NONE) .cvviiiiririiiirerieerereriiee e eeeererenen 401
tf.nn.softsign (features, NAME=NONE) .viiiiiiriiiiirerieerireriierreeeeerereen 402

tf.nn.dropout (x, keep prob, noise shape=None, seed=None,

TR TS\ [o) X N 402
tf.nn.bias add(value, bias, name=NONeE) ..., 404
Lf.51gmoid (X, NAMEZNOINE) tiiiiiiirriiieeereetrttiriieereeeeetrrnaeseeererernneeeeerensnnnns 404
T.tanh (X, NAME=NOIIE) tiiiiiiiiiiiii et ree e e et e e e et e e e et e e eetaeeeeannsaseen 405
CONVOIULION ...ttt 406

tf.nn.conv2d(input, filter, strides, padding,

use cudnn on gpu=None, nName=NONE)cccccsriiiririrrniererieiinieeniieeeneeenneens 408

tf.nn.depthwise conv2d(input, filter, strides, padding,

LTSRS\ Fo) o =) IS 409

tf.nn.separable convZd(input, depthwise filter,

pointwise filter, strides, padding, name=None) ... 411

tf.nn.conv2d transpose(value, filter, output shape,

strides, padding="'SAME', Name=NOINE) ..ccccrrrrrrrrrirrrirariraririrarasasasasasasnnns 412
0T] 1 0o TSP 413
tf.nn.avg pool (value, ksize, strides, padding, name=None)414
tf.nn.max pool (value, ksize, strides, padding, name=None)415

tf.nn.max pool with argmax(input, ksize, strides, padding,

Targmax=None, NAMEZNOTIE) iiiiiiiiiiiiiiiiiiiiiiiireeeeerreeeeeeeeeeeeeeeeeeeeeeeees 415
N[0T g = 1€ 1[0 o PR 417
tf.nn.12 normalize(x, dim, epsilon=le-12, name=None) 417

tf.nn.local response normalization (input,
depth radius=None, bias=None, alpha=None, beta=None,

NLAMETZINOTIIE) ttttutiturituneertteruertteeetrersteetieeesatersueestsersessueeesserseerteresseesreessesersessesees 418

tf.nn.moments (x, axes, name=None, keep dims=False) 419

0 ST ST ST 419
tf.nn.12 loss (t, Name=NONE) ... 420
ClASSITICALION ...ttt ettt ettt e et e e e e eateesasseeesaasaeeesaaraeesasreeesssnneeessarees 420

tf.nn.sigmoid cross entropy with logits(logits, targets,

NLAIMETINOTIIE) tttttuierueteuneetrrerntetueeesterseeetueeerneeeneesssersestmesesneessessserersesssesssnserssessesees 420
tf.nn.softmax (1ogits, NAME=NONE) i, 421

tf.nn.softmax cross entropy with logits(logits, labels,

NLAIMETINOTIIE) ttttuietueituneettrerneetueeeteeeseetreeetneesneesaseraestnetesnserseesserersesesnesssnserssesresees 422

tf.nn.sparse softmax cross_entropy with logits(logits,

1abels, NAMEZINOIE) tiiiieriiirieeeitiieteeiiiererttee ettt eetrnee ettt serenesterrnaeeeresaneeensnesees 423
EMBDEAUINGS ...ttt 424

tf.nn.embedding lookup (params, ids,

partition strategy='mod', name=None, validate indices=True)

... 425
EVAIUBTION ...t 426
tf.nn.top k(input, k=1, sorted=True, name=NONe) ... 427
tf.nn.in top k(predictions, targets, k, name=None) 427
Candidate SAMPIINGcccvvieiirieeeereeere ettt e e be e esesseeaesressaensens 429
Sampled LOSS FUNCLIONSccooieieiieieieseeeie sttt sttt ae e saene s 429

tf.nn.nce loss(weights, biases, inputs, labels,
num_ sampled, num classes, num true=l, sampled values=None,
remove accidental hits=False, partition strategy='mod',

Name="NCE L10OSS") i 429

tf.nn.sampled softmax loss(weights, biases, inputs, labels,
num sampled, num classes, num true=l, sampled values=None,
remove accidental hits=True, partition strategy='mod',

name="'sampled softmax 10SS") ., 431
Candidate SAMPIEIS........o ettt ettt st sae e e nae s 433

tf.nn.uniform candidate sampler (true classes, num true,

num sampled, unique, range max, seed=None, name=None) ... 433

tf.nn.log uniform candidate sampler (true classes, num true,

num sampled, unique, range max, seed=None, name=None) ... 435

tf.nn.learned unigram candidate sampler (true classes,
num true, num sampled, unique, range max, seed=None,

NAMETNOIIE) iittueiituiiiteettieeteeeteetteettaeettaeetntranestteetaneetneresnsteneeetasesnseeeesesneernaeeeneeeen 437

tf.nn.fixed unigram candidate sampler (true classes,

num_ true, num sampled, unique, range max, vocab file='",
distortion=1.0, num reserved ids=0, num shards=1, shard=0,
unigrams= (), seed=None, NAME=NONE) .cccccccrrrrrrrrrererererererererereremereeeeerenenen 438

Miscellaneous candidate sampling UtIHItIEScccooeverieiininncc 441

tf.nn.compute accidental hits(true classes,

sampled candidates, num true, seed=None, name=None) 441
RUNNING GrapRS......ccviiiceee ettt ettt s a e st et s re e b s beeanenes 443
SESSION MANAGEMENTeecvietietietieteeteiet ettt ettt e e e eae e eseebesbesbe st ebensessessesens 443
Class L. SE S0 444
class Lf.INnteractiveSeSSioN i 449
tf.get default SeSS10N () i 451
o 0] g F= 11T PR 451
Class TL.OPELTOT i 451
Class Lf.errorsS.CanCelledETTOT «iiiiiieiitiiiieeeeeereeeie e eeereneness 453
class tf.errors.UnkNOWNELTOL ciiiiiiiiiieee et e s 453
class tf.errors.InvalidArgumentErTOT e 454
class tf.errors.DeadlineExceededETrTOr ciiiiiiiiieiiceee e 455
class tf.errors.NOLFOUNAELTO ittt 455
class tf.errors.AlreadyEXISESErTOT i, 455
class tf.errors.PermissionDeniedETrTOr e 456
class tf.errors.UnauthenticatedErroOr e 456
class tf.errors.ResourceExhaustedError . iieieeeee e 457
class tf.errors.FailedPreconditionNError e 457
class tf.errors.ADOrtEdELTOL tiiiiiiiirteeee et 458
class tf.errors.OULOfRANGEETITOT ittt 458
class tf.errors.UnimplementedErTOrl i 459
class tf.errors.InterNalErTOr e e e 459
class tf.errors.UnavailableErToOr c e 460

Class Lf.errorsS.DatalioS SE T O i iiiiiiiieietieeereiieeereiieeerereeeretiieersanneesens 460

B I = 1111 o T USSR 460

OPLIMUZELS ..ttt ettt et e s te et e te s e et e sbaesbesteesaesbesseestasseensesteesaensens 462
class Lf.train.OpPLimlzZer i, 462
L0 7= T TSR 463
Processing gradients before applying them. ..., 463
€T 1] [0 [T = To =T) £SO 468
SIOES . 469
class tf.train.GradientDescentOptimizer. .., 470
class tf.train.AdagradOptimizZer i, 471
class tf.train.MomentumOpPLiMIZET i, 472
class tf.train.AdamOpPtimizZer i, 472
class tf.train.FLtrlOptimizZer i, 474
class tf.train.RMSPropOPtiMiZer it 475

Gradient COMPULATIONc.coiiiiirierteeet ettt sttt 476

tf.gradients(ys, xs, grad ys=None, name='gradients',

colocate gradients with ops=False, gate gradients=False,

aggregation method=NONE) ... 476
class tf.AggregationMethod. ... 478
tf.stop gradient (input, name=NONEe) ..., 478
GradieNt ClPPING ..oooveieeeeeee ettt et e s be e teste e e besteesbesbeeanesteesaentens 479
tf.clip by value(t, clip value min, clip value max,
LTSRS\ Fo) o =) IS 480
tf.clip by norm(t, clip norm, name=NONE)iienieennn. 481
tf.clip by average norm(t, clip norm, name=None) 482

tf.clip by global norm(t list, clip norm, use norm=None,

LTSN LS\ Fo) o) IS 482
tf.global norm(t list, name=NONE) ..., 484
Decaying the [€arning ratecoocecererereeeeeseee et 485

tf.train.exponential decay(learning rate, global step,

decay steps, decay rate, staircase=False, name=None)......... 485
YT AV o I =T = To TSP 486
class tf.train.ExponentialMOVINGAVETAgE .iiiiiiiiiiiiiiiinieeeenniininn 487

Coordinator and QUEUERUNNETcccueeiieieeeeriee st steeteeteeseesee e s aesaeeste s e sseeseeas 493

class tf.train.Coordinator i 493
Class L .Lrain. QUECUECRUININIET iviiieeiitiieeieeiieeete et ettieerneeeteeeseersieerrerernnerannes 498
tf.train.add queue runner (qgr, collection='queue runners')503

tf.train.start queue runners (sess=None, coord=None,

daemon=True, start=True, collection='queue runners')....... 504
SUMMArY OPEFALIONSoocvieeeeiieieeiesteetese ettt et e et e sre e besteeaestesseesesseessestessaensens 504

tf.scalar summary(tags, values, collections=None,

NLAIMETINOTIIE) ttttuiitueittneettterneetueeeteerseetseeerneesneessseraeetneeesnstssessserersesesesssnserssesresens 505

tf.image summary(tag, tensor, max images=3,

collections=None, NaAME=NOIIE) .iiiiiiiiiiiiirieeeiiiire e 505

tf.histogram summary(tag, values, collections=None,

NAMETNOIIE) iittueietueeeteettieetueerteeeteettaeetteeetnteranersteesneetneeesneerneeetaeesnseeseessnsesneessneeeen 507
tf.nn.zero fraction(value, name=NONe) ..., 508
tf.merge summary (inputs, collections=None, name=None) 509
tf.merge all summaries (key='summaries') ..., 509
Adding Summaries t0 EVENt FIlES ..o 510
class tf.train.SUMmMaryWEIter e 510
tf.train.summary iterator (Path) .. 514
TraiNiNG ULIHIES ...oveeeeeieceees ettt sttt et estesseesaesreennenne s 515
tf.train.global step(sess, global step tensor) ... 515

tf.train.write graph(graph def, logdir, name, as text=True)

... 516
Other FUNCHIONS @Nd CIASSES.........ccviiriiiiiiniiiietsetreeeee e 516

class tf.train.LooperThread i, 517

tf.train.export meta graph (filename=None,

meta info def=None, graph def=None, saver def=None,

collection list=None, as text=False) ..., 522

tf.train.generate checkpoint state proto(save dir,

model checkpoint path, all model checkpoint paths=None) ...523

tf.train.import meta graph(meta graph or file) ... 523
Wraps PYthON fUNCHIONSocueeieececeeeeeee ettt st 524
Script LANguage OPEIatOrS.ceevieiteeierieeeeeiesteeteseeeestesseesesresaessesseessesseessessesssessens 524
Other FUNCHIONS @Nd CIAaSSES......ccoiviviiiiieieiirieriesiesie ettt 525

tf.py func(func, inp, Tout, name=NONe) ..., 525

Testing.............
Unit tests......
tf.test.
Utilities..........
tf.test.
tf.test.

tf.test.

assert equal graph def (actual, expected) ...
get temp dir () i

is built with cuda ()

GradieNt CRECKINGccvieiecieceeeceee ettt sttt et e st et e s beesaesteesaenaens

tf.test.

compute gradient (x, x shape, y, y shape,

X _1init value=None, delta=0.001, init targets=None) ...

tf.test.

compute gradient error(x, x shape, y, y shape,

X _1init value=None, delta=0.001, init targets=None) ...

LaYers (CONTIIDY ..vieceeeceecee ettt st e ba et s re et e beeanenes

Higher level ops for building neural network layers..........cccccoeveveeeeveieeceeveseeeee,

tf.contrib.layers.convolution2d(x, num output channels,

kernel size, activation fn=None, stride=(1, 1),

padding='SAME', weight init= initializer,

bias init= initializer, name=None, weight collections=None,

bias collections=None, output collections=None,

weight regularizer=None, bias regularizer=None) ...

tf.contrib.layers.fully connected(x, num output units,

activation fn=None, weight init= initializer,

bias init= initializer, name=None,

weight collections=('weights',),

bias collections=('biases',),

output collections=('activations',),

weight regularizer=None, bias regularizer=None) ...

Regularizers

tf.contrib.layers.ll regularizer (sScale) ...,

tf.contrib.layers.l2 regularizer (Scale) ...,

Initializers.....

tf.contrib.layers.xavier initializer (uniform=True,

seed=None, dtype=tf.fl1oat32) e

tf.contrib.layers.xavier initializer conv2d(uniform=True,

seed=None, dtype=tf.fl0at32) e

SUMMIATIES .. ettt ettt ettt e e et e e st e e bt e e sbae e sbe e e satessbessaseeesabesesseeesntessseessbesesseeas 540
tf.contrib.layers.summarize activation (OpP) ..., 540
tf.contrib.layers.summarize tensor (LeNSOI) ..., 540

tf.contrib.layers.summarize tensors (tensors,

summarizer=summarize LEeNSOTL) . 541

tf.contrib.layers.summarize collection(collection,

name filter=None, summarizer=summarize tensor) ... 541

tf.contrib.layers.summarize activations(name filter=None,

summarizer=summarize activation) .., 542
Other FUNCLIONS AN CIASSES.....c.viiieeeeeee ettt eetes et etes e eeae s e eaee s 542

tf.contrib.layers.assert same float dtype (tensors=None,

ALEYPEZNOTIE) tiiiiiiiiiiiiiiiiiiiiiiiiiiiti it s s sssssssasasasassssssssssasaae 542
ULIlItIES (CONTIID) ...ttt 543
Miscellaneous Utility FUNCHIONSccoceririirieiiieieenesesenieeeeeeeeee st 543
tf.contrib.util.constant value (LeNnSOr) .., 543

tf.contrib.util.make tensor proto(values, dtype=None,

Shape=NONE) . 544

Building Graphs

Contents

Bu

ilding Graphs

Core graph data structures

cl
cl
cl

ass tf.Graph
ass tf.Operation
ass tf.Tensor

Tensor types

.as_dtype (type value)

.name_ scope (name)

.control dependencies (control inputs)

.convert to tensor (value,

class tf.DType
tf

Utility functions
tf.device (dev)
tf

tf

tf

as ref=False)

dtype=None,

name=None,

tf.convert to tensor or indexed slices(value, dtype=None,

na
tf
tf

tf.import graph def (graph def,

re

me=None, as ref=False)
.get default graph()
.reset default graph()

turn elements=None, name=None,

tf.load op library(library filename)
Graph collections

tf.add to collection(name, value)

tf
cl

.get collection(key, scope=None)

ass tf.GraphKeys

Defining new operations

cl
tf
cl
cl
cl
tf
tf
Fo

ass tf.RegisterGradient
.NoGradient (op_type)
ass tf.RegisterShape
ass tf.TensorShape

ass tf.Dimension

input map=None,
op dict=None)

.0op_scope (values, name, default name=None)

.get seed(op_seed)
r libraries building on TensorFlow

tf.register tensor conversion function (base type,

conversion func, priority=100)
Other Functions and Classes

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#building-graphs
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#core-graph-data-structures
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#tensor-types
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#DType
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#as_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#utility-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#device
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#name_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#control_dependencies
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor_or_indexed_slices
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor_or_indexed_slices
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_default_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#reset_default_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#import_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#import_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#load_op_library
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#graph-collections
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#add_to_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#GraphKeys
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#defining-new-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#RegisterGradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#NoGradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#RegisterShape
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#TensorShape
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Dimension
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#op_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_seed
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#for-libraries-building-on-tensorflow
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#register_tensor_conversion_function
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#register_tensor_conversion_function
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#other-functions-and-classes

Classes and functions for building TensorFlow graphs.

Core graph data structures

class tf.Graph

A TensorFlow computation, represented as a dataflow graph.

A Graph contains a set of objects, which represent units

of computation; and objects, which represent the units of data
that flow between operations.

A default Graph is always registered, and accessible by
calling . To add an operation to the default

graph, simply call one of the functions that defines a new operation:

c = tf.constant(4.0)
assert c.graph is tf.get default graph/()

Another typical usage involves the context

manager, which overrides the current default graph for the lifetime of
the context:
g = tf.Graph()
with g.as default():

Define operations and tensors in g .

c = tf.constant (30.0)

assert c.graph is g
Important note: This class is not thread-safe for graph construction.
All operations should be created from a single thread, or external
synchronization must be provided. Unless otherwise specified, all
methods are not thread-safe.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#bytes
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_default_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.as_default

tf.Graph. init ()

Creates a new, empty Graph.

tf.Graph.as default()
Returns a context manager that makes this Graph the default graph.

This method should be used if you want to create multiple graphs in
the same process. For convenience, a global default graph is
provided, and all ops will be added to this graph if you do not create a

new graph explicitly. Use this method the with keyword to specify

that ops created within the scope of a block should be added to this
graph.

The default graph is a property of the current thread. If you create a
new thread, and wish to use the default graph in that thread, you

must explicitly add a with g.as default () : in that thread's

function.

The following code examples are equivalent:

1. Using Graph.as default():
g = tf.Graph()
with g.as default():

c = tf.constant (5.0)

assert c.graph is g
2. Constructing and making default:
with tf.Graph() .as default() as g:

c = tf.constant (5.0)

assert c.graph is g

Returns:

A context manager for using this graph as the default graph.

tf.Graph.as graph def (from version=None,
add_shapes=False)

Returns a serialized craphDef representation of this graph.
The serialized Graphbef can be imported into

another Graph (using) or used with the

This method is thread-safe.

Args:

from version: Optional. If this is set, returns a Graphbef containing
only the nodes that were added to this graph since

its version property had the given value.

add shapes: If true, adds an "_output_shapes" list attr to each node

with the inferred shapes of each of its outputs.

Returns:

A protocol buffer.

Raises:

valueError: If the graph def would be too large.

tf.Graph.finalize ()

Finalizes this graph, making it read-only.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#import_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/cc/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/cc/index.html
https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

After calling g.finalize (), NO new operations can be added to .

This method is used to ensure that no operations are added to a
graph when it is shared between multiple threads, for example when

using a

tf.Graph.finalized

True if this graph has been finalized.

tf.Graph.control dependencies (control inputs)

Returns a context manager that specifies control dependencies.

Use with the with keyword to specify that all operations constructed
within the context should have control dependencies

oNn control inputs. For example:

with g.control dependencies([a, b, c]):
'd’ and ‘e’ will only run after ‘a’, ‘b’, and ‘¢’ have

executed.

Multiple calls to control dependencies () can be nested, and in that
case a new operation Will have control dependencies on the union

of control inputs from all active contexts.

with g.control dependencies([a, b]):
Ops constructed here run after “a’ and 'b’.
with g.control dependencies([c, d]):

Ops constructed here run after "a’, 'b°, "¢, and "d’.

You can pass None to clear the control dependencies:

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#QueueRunner

with g.control dependencies([a, b]):
Ops constructed here run after "a’ and "b’.
with g.control dependencies (None) :
Ops constructed here run normally, not waiting for either
‘a’ or b.
with g.control dependencies([c, d]):
Ops constructed here run after "¢” and "d’, also not
waiting
for either "a’ or 'b’.
N.B. The control dependencies context applies only to ops that are
constructed within the context. Merely using an op or tensor in the
context does not add a control dependency. The following example

illustrates this point:
WRONG

def my func(pred, tensor):
t = tf.matmul (tensor, tensor)
with tf.control dependencies ([pred]):
The matmul op is created outside the context, so no control
dependency will be added.

return t

RIGHT
def my func(pred, tensor):
with tf.control dependencies ([pred]):
The matmul op is created in the context, so a control
dependency
will be added.

return tf.matmul (tensor, tensor)

Args:

control inputs: A list of operation Or Tensor objects which must
be executed or computed before running the operations defined in

the context. Can also be None to clear the control dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

Raises:

TypeError: If control inputs is nota list

of Operation Of Tensor Objects.

tf.Graph.device (device name or function)

Returns a context manager that specifies the default device to use.

The device name or function argument may either be a device

name string, a device function, or None:
If it is a device name string, all operations constructed in this context
will be assigned to the device with that name, unless overridden by a

nested device () context.

If it is a function, it will be treated as function from Operation objects
to device name strings, and invoked each time a new Operation is
created. The Operation will be assigned to the device with the
returned name.

If it is None, all device () invocations from the enclosing context will

be ignored.

For example:

with g.device('/gpu:0"'):
All operations constructed in this context will be placed
on GPU 0.
with g.device (None) :
All operations constructed in this context will have no

assigned device.

Defines a function from “Operation’ to device string.
def matmul on gpu(n):
if n.type == "MatMul":
return "/gpu:0"

else:

return "/cpu:0"
with g.device (matmul on gpu) :
A1l operations of type "MatMul" constructed in this context

will be placed on GPU 0; all other operations will be placed
on CPU O.

Args:

device name or function: The device name or function to use in

the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.Graph.name scope (name)

Returns a context manager that creates hierarchical names for
operations.

A graph maintains a stack of name scopes. A with

name scope (...) : Statement pushes a new name onto the stack for
the lifetime of the context.

The name argument will be interpreted as follows:

A string (not ending with '/*) will create a new name scope, in

which name is appended to the prefix of all operations created in the
context. If name has been used before, it will be made unique by

Camngself.unique_name(name).

A scope previously captured from a with g.name scope(...) as

scope: statement will be treated as an "absolute” name scope, which
makes it possible to re-enter existing scopes.
A value of None or the empty string will reset the current name scope

to the top-level (empty) name scope.

For example:

with tf.Graph() .as default() as g:

c = tf.constant (5.0, name="c")

assert c.op.name == "c"
c 1 = tf.constant (6.0, name="c")
assert ¢ l.op.name == "c 1"

Creates a scope called "nested"
with g.name scope ("nested") as scope:
nested ¢ = tf.constant (10.0, name="c")

assert nested c.op.name == "nested/c"

Creates a nested scope called "inner".
with g.name scope ("inner"):
nested inner c = tf.constant(20.0, name="c")

assert nested inner c.op.name == "nested/inner/c"

Create a nested scope called "inner 1".
with g.name scope ("inner"):
nested inner 1 c = tf.constant(30.0, name="c")

assert nested inner 1 c.op.name == "nested/inner 1/c"

Treats “scope’ as an absolute name scope, and
switches to the "nested/" scope.
with g.name scope (scope) :

nested d = tf.constant (40.0, name="d")

assert nested d.op.name == "nested/d"

with g.name scope (""):
e = tf.constant (50.0, name="e")

assert e.op.name == "e"

The name of the scope itself can be captured by with

g.name scope(...) as scope:, Which stores the name of the scope

in the variable scope. This value can be used to name an operation

that represents the overall result of executing the ops in a scope. For

example:
inputs = tf.constant(...)

with g.name scope('my layer') as scope:

weights = tf.Variable(..., name="weights")
biases = tf.Variable (..., name="biases")
affine = tf.matmul (inputs, weights) + biases
output = tf.nn.relu(affine, name=scope)

Args:

name: A name for the scope.

Returns:

A context manager that installs name as a new name scope.

A Graph instance supports an arbitrary number of "collections" that

are identified by name. For convenience when building a large graph,
collections can store groups of related objects: for example,

the tf.variable uses a collection

(named) for all variables that are created

during the construction of a graph. The caller may define additional
collections by specifying a new name.

tf.Graph.add to collection (name, value)

Stores value in the collection with the given name.

Note that collections are not sets, so it is possible to add a value to a
collection several times.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#GraphKeys

Args:

name: The key for the collection. The Graphkeys class contains many
standard names for collections.

value: The value to add to the collection.

tf.Graph.get collection (name, scope=None)

Returns a list of values in the collection with the given name.

Args:

name: The key for the collection. For example, the Graphkeys class
contains many standard names for collections.
scope: (Optional.) If supplied, the resulting list is filtered to include

only items whose name begins with this string.

Returns:

The list of values in the collection with the given name, or an empty

list if no value has been added to that collection. The list contains the
values in the order under which they were collected.

tf.Graph.as graph element (obj, allow tensor=True,
allow operation=True)

Returns the object referred to by obj, as an operation Of Tensor.

This function validates that obj represents an element of this graph,

and gives an informative error message if it is not.

This function is the canonical way to get/validate an object of one of
the allowed types from an external argument reference in the
Session APL.

This method may be called concurrently from multiple threads.

Args:

obj: A Tensor, an Operation, Or the name of a tensor or operation.

Can also be any object with an_as graph element () method that
returns a value of one of these types.

allow tensor: If true, obj may refer to a Tensor.

allow operation: If true, obs may refer to an operation.

Returns:

The Tensor or operation in the Graph corresponding to obj.

Raises:

TypeError: If obj IS not a type we support attempting to convert to
types.

valueError: If obj is of an appropriate type but invalid. For example,
an invalid string.

KeyError: If obj IS not an object in the graph.

tf.Graph.get operation by name (name)

Returns the operation with the given name.

This method may be called concurrently from multiple threads.

Args:

name: The name of the operation to return.

Returns:

The operation with the given name.

Raises:

TypeError: If name iS not a string.

KeyError: If name does not correspond to an operation in this graph.

tf.Graph.get tensor by name (name)

Returns the Tensor with the given name.

This method may be called concurrently from multiple threads.

Args:

name: The name of the Tensor to return.

Returns:

The Tensor with the given name.

Raises:

TypeError: If name iS not a string.

KeyError: If name does not correspond to a tensor in this graph.

tf.Graph.get operations()

Return the list of operations in the graph.

You can modify the operations in place, but modifications to the list
such as inserts/delete have no effect on the list of operations known

to the graph.

This method may be called concurrently from multiple threads.

Returns:

A list of Operations.

tf.Graph.seed

tf.Graph.unique name (name)

Return a unique operation hame for name.
Note: You rarely need to call unique name () directly. Most of the

time you just need to create with g.name scope () blocks to

generate structured names.

unique name IS used to generate structured names, separated

by "/, to help identify operations when debugging a graph.

Operation names are displayed in error messages reported by the
TensorFlow runtime, and in various visualization tools such as
TensorBoard.

Args:

name: The name for an operation.

Returns:

A string to be passed to create op () that will be used to name the

operation being created.

tf.Graph.version

Returns a version number that increases as ops are added to the
graph.

Note that this is unrelated to the

tf.Graph.graph def versions

The GraphDef version information of this graph.

For details on the meaning of each version, see

Returns:

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.graph_def_version
https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

A VersionDef.

tf.Graph.create op(op type, inputs, dtypes,
input types=None, name=None, attrs=None, op def=None,
compute shapes=True, compute device=True)

Creates an operation in this graph.

This is a low-level interface for creating an operation. Most
programs will not call this method directly, and instead use the
Python op constructors, such as tf.constant (), which add ops to

the default graph.

Args:

op type: The operation type to create. This corresponds to
the oppef . name field for the proto that defines the operation.
inputs: A list of Tensor objects that will be inputs to the operation.

dtypes: A list of DType objects that will be the types of the tensors
that the operation produces.

input types: (Optional.) A list of DTypes that will be the types of the
tensors that the operation consumes. By default, uses the

base pType of each input in inputs. Operations that expect
reference-typed inputs must specify input_ types explicitly.
name: (Optional.) A string name for the operation. If not specified, a

name is generated based on op type.

attrs: (Optional.) A dictionary where the key is the attribute name (a
string) and the value is the respectiveattr attribute of

the NodeDef proto that will represent the operation

(an Attrvalue proto).

op def: (Optional.) The opbef proto that describes the op type that
the operation will have.

compute shapes: (Optional.) If True, shape inference will be
performed to compute the shapes of the outputs.

compute device: (Optional.) If True, device functions will be

executed to compute the device property of the Operation.

Raises:

TypeError: if any of the inputs is not a Tensor.

Returns:

An operation Object.

tf.Graph.gradient override map (op type map)

EXPERIMENTAL: A context manager for overriding gradient
functions.

This context manager can be used to override the gradient function
that will be used for ops within the scope of the context.

For example:

@tf.RegisterGradient ("CustomSquare")

def custom square grad(op, inputs):

...

with tf.Graph() .as default() as g:
c = tf.constant (5.0)
s 1 = tf.square(c) # Uses the default gradient for tf.square.
with g.gradient override map ({"Square": "CustomSquare"}) :
s 2 = tf.square(s_2) # Uses custom square grad to compute
the
gradient of s 2.

Args:

op type map: A dictionary mapping op type strings to alternative op

type strings.

Returns:

A context manager that sets the alternative op type to be used for
one or more ops created in that context.

Raises:

TypeError: If op type map IS not a dictionary mapping strings to

strings.

Other Methods

tf.Graph.add to collections (names, value)
Stores value in the collections given by names.

Note that collections are not sets, so it is possible to add a value to a
collection several times. This function makes sure that duplicates

In names are ignored, but it will not check for pre-existing membership

of value in any of the collections in names.

Args:

names. The keys for the collections to add to. The GraphKeys class
contains many standard names for collections.

value: The value to add to the collections.

tf.Graph.get all collection keys()

Returns a list of collections used in this graph.

class tf.Operation

Represents a graph node that performs computation on tensors.

An operation is a node in a TensorFlow Graph that takes zero or
more Tensor objects as input, and produces zero or

more Tensor Objects as output. Objects of type operation are
created by calling a Python op constructor (such as)
or

For example ¢ = tf.matmul (a, b) Creates an Operation Of type

"MatMul" that takes tensors a and b as input, and produces c as

output.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.create_op

After the graph has been launched in a session, an operation can
be executed by passing it to . op.run () IS a shortcut

forcamng'tf.get_default_session().run(op).

tf.Operation.name

The full name of this operation.

tf.Operation.type

The type of the op (e.g. "MatMul").

tf.Operation.inputs

The list of Tensor objects representing the data inputs of this op.

tf.Operation.control inputs

The operation objects on which this op has a control dependency.
Before this op is executed, TensorFlow will ensure that the
operations in self.control inputs have finished executing. This

mechanism can be used to run ops sequentially for performance
reasons, or to ensure that the side effects of an op are observed in
the correct order.

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run

Returns:

A list of operation objects.

tf.Operation.outputs

The list of Tensor objects representing the outputs of this op.

tf.Operation.device

The name of the device to which this op has been assigned, if any.

Returns:

The string name of the device to which this op has been assigned, or
an empty string if it has not been assigned to a device.

tf.Operation.graph

The Graph that contains this operation.

tf.Operation.run (feed dict=None, session=None)

Runs this operation in a Session.

Calling this method will execute all preceding operations that produce
the inputs needed for this operation.

N.B. Before invoking operation.run (), its graph must have been
launched in a session, and either a default session must be available,

or session must be specified explicitly.

Args:

feed dict: Adictionary that maps Tensor objects to feed values.
See for a description of the valid feed values.

session: (Optional.) The session to be used to run to this operation.

If none, the default session will be used.

tf.Operation.get attr (name)

Returns the value of the attr of this op with the given name.

Args:

name: The name of the attr to fetch.

Returns:

The value of the attr, as a Python object.

Raises:

valueError: If this op does not have an attr with the given name.

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run

tf.Operation.traceback

Returns the call stack from when this operation was constructed.

Other Methods

tf.Operation. init (node def, g, inputs=None,
output types=None, control inputs=None, input types=None,
original op=None, op def=None)

Creates an Operation.
NOTE: This constructor validates the name of
the operation (passed as node def.name). Valid operationnames

match the following regular expression:
[A-Za-2z0-9.] [A-Za-2z0-9 .\-/]*

Args:

node def! graph pb2.NodeDef. NodeDef for the operation. Used for
attributes ofgraph pb2.NodeDef, typically name, op, and device.

The input attribute is irrelevant here as it will be computed when
generating the model.

g: Graph. The parent graph.

inputs: list of Tensor objects. The inputs to this operation.
output types: list of DType oObjects. List of the types of

the Tensors computed by this operation. The length of this list
indicates the number of output endpoints of the operation.

control inputs: list of operations or tensors from which to have a

control dependency.

input_ types: List of bType objects representing the types of the
tensors accepted by the operation. By default

uses [x.dtype.base dtype for x in inputs]. Operations that
expect reference-typed inputs must specify these explicitly.

original op: Optional. Used to associate the new operation with

an existing operation (for example, a replica with the op that was
replicated).

op def: Optional. The op def pb2.0pbDef proto that describes the op

type that this operationrepresents.

Raises:

TypeError: if control inputs are not Operations or Tensors, or
if node def IS not a NodeDef, Or if g iS nOt aGraph, Or if inputs are
not tensors, or if inputs and input_ types are incompatible.

ValueError: if the node def name is not valid.

tf.Operation.node def

Returns a serialized NodeDe f representation of this operation.

Returns:

A protocol buffer.

https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

tf.Operation.op def

Returns the oppDef proto that represents the type of this op.

Returns:

An protocol buffer.

tf.Operation.values|()

DEPRECATED: Use outputs.

class tf.Tensor

Represents a value produced by an operation.

A Tensor IS a symbolic handle to one of the outputs of an operation.

It does not hold the values of that operation's output, but instead
provides a means of computing those values in a

TensorFlow
This class has two primary purposes:

. A Tensor can be passed as an input to another operation. This
builds a dataflow connection between operations, which enables
TensorFlow to execute an entire Graph that represents a large, multi-

step computation.
. After the graph has been launched in a session, the value of

the Tensor can be computed by passing it

https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session

to . t.eval () IS a shortcut for
Camng'tf.get_default_session().run(t).
In the following example, ¢, d, and e are symbolic Tensor objects,

whereas result IS a numpy array that stores a concrete value:

Build a dataflow graph.

c = tf.constant ([[1.0, 2.0], [3.0, 4.011])
d = tf.constant ([[1.0, 1.0], [0.0, 1.011)
e = tf.matmul (c, d)

Construct a “Session’ to execute the graph.

sess = tf.Session ()

Execute the graph and store the value that “e’ represents in
“result .

result = sess.run (e)

tf.Tensor.dtype

The pType of elements in this tensor.

tf.Tensor.name

The string name of this tensor.

tf.Tensor.value index

The index of this tensor in the outputs of its operation.

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run

tf.Tensor.graph

The Graph that contains this tensor.

tf.Tensor.op

The operation that produces this tensor as an output.

tf.Tensor.consumers ()

Returns a list of operations that consume this tensor.

Returns:

A list of operations.

tf.Tensor.eval (feed dict=None, session=None)

Evaluates this tensor in a Session.

Calling this method will execute all preceding operations that produce
the inputs needed for the operation that produces this tensor.

N.B. Before invoking Tensor.eval (), its graph must have been
launched in a session, and either a default session must be available,

or session must be specified explicitly.

Args:

feed dict: A dictionary that maps Tensor objects to feed values.
See for a description of the valid feed values.

session: (Optional.) The session to be used to evaluate this tensor.

If none, the default session will be used.

Returns:

A numpy array corresponding to the value of this tensor.

tf.Tensor.get shape ()
Returns the Tensorshape that represents the shape of this tensor.
The shape is computed using shape inference functions that are

registered for each operation type usingtf.RegisterShape.

See for more details of what a shape represents.

The inferred shape of a tensor is used to provide shape information
without having to launch the graph in a session. This can be used for
debugging, and providing early error messages. For example:

¢ = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]1)

print (c.get shape())

==> TensorShape ([Dimension (2), Dimension (3)])
d = tf.constant([(1.0, 0.0], [0.0, 1.0], [1.0, 0.01, [0.0, 1.011)

print (d.get shape())

==> TensorShape ([Dimension (4), Dimension (2)])

Raises a ValueError, because ‘¢’ and "d° do not have compatible
inner dimensions.

e = tf.matmul (c, d)

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#TensorShape

f = tf.matmul (¢, d, transpose a=True, transpose b=True)

print (f.get shape())
==> TensorShape ([Dimension (3), Dimension(4)])

In some cases, the inferred shape may have unknown dimensions. If
the caller has additional information about the values of these

dimensions, Tensor.set shape () can be used to augment the

inferred shape.

Returns:

A TensorShape representing the shape of this tensor.

tf.Tensor.set shape (shape)
Updates the shape of this tensor.

This method can be called multiple times, and will merge the
given shape with the current shape of this tensor. It can be used to

provide additional information about the shape of this tensor that
cannot be inferred from the graph alone. For example, this can be

used to provide additional information about the shapes of images:
_, image data = tf.TFRecordReader(...).read(...)

image = tf.image.decode png(image data, channels=3)

The height and width dimensions of “image’ are data dependent,
and

cannot be computed without executing the op.

print (image.get shape())

==> TensorShape ([Dimension (None), Dimension (None), Dimension(3)])

We know that each image in this dataset is 28 x 28 pixels.
image.set shape([28, 28, 3])
print (image.get shape())

==> TensorShape ([Dimension (28), Dimension(28), Dimension(3)])

Args:

shape: A TensorShape representing the shape of this tensor.

Raises:

valueError: If shape IS not compatible with the current shape of this

tensor.

Other Methods

tf.Tensor. 1init (op, value index, dtype)
Creates a new Tensor.
Args:

op: An Operation. Operation that computes this tensor.

value index: An int. Index of the operation's endpoint that
produces this tensor.

dtype: A DType. Type of elements stored in this tensor.

Raises:

TypeError: If the op is not an operation.

tf.Tensor.device

The name of the device on which this tensor will be produced, or
None.

Tensor types

class tf.DType

Represents the type of the elements in a Tensor.
The following pType objects are defined:
tf.float32: 32-bit single-precision floating-point.
tf.float64: 64-bit double-precision floating-point.
tf.bfloatl6: 16-bit truncated floating-point.
tf.complex64: 64-bit single-precision complex.
tf.int8: 8-bit signed integer.

tf.uint8: 8-bit unsigned integer.

tf.uint16: 16-bit unsigned integer.

tf.int16: 16-bit signed integer.

tf.int32: 32-bit signed integer.

tf.int64: 64-bit signed integer.

tf.bool: Boolean.

tf.string: String.

tf.gint8: Quantized 8-bit signed integer.

tf.quint8: Quantized 8-bit unsigned integer.

tf.qgint16: Quantized 16-bit signed integer.
tf.quint16: Quantized 16-bit unsigned integer.

tf.qint32: Quantized 32-bit signed integer.

In addition, variants of these types with the ref suffix are defined for

reference-typed tensors.

The tf.as dtype () function converts numpy types and string type

names to a DType Object.

tf.DType.is compatible with (other)

Returns True if the other DType will be converted to this DType.

The conversion rules are as follows:

DType (T) .1s compatible with (DType (T)) == True
DType (T) .1s compatible with (DType(T).as ref) == True
DType (T) .as_ref.is compatible with (DType (T)) == False
DType (T) .as_ref.is compatible with(DType (T).as ref) == True
Args:

other: A DType (Or object that may be converted to a DType).

Returns:

True if a Tensor of the other DType Will be implicitly converted to

this DType.

tf.DType.name

Returns the string name for this pType.

tf.DType.base dtype

Returns a non-reference pType based on this pType.

tf.DType.is ref dtype

Returns True if this DType represents a reference type.

tf.DType.as ref

Returns a reference pType based on this DType.

tf.DType.is floating

Returns whether this is a (real) floating point type.

tf.DType.is integer

Returns whether this is a (non-quantized) integer type.

tf.DType.is quantized

Returns whether this is a quantized data type.

tf.DType.is unsigned

Returns whether this type is unsigned.

Non-numeric, unordered, and quantized types are not considered

unsigned, and this function returns ralse.

Returns:

Whether a pType IS unsigned.

tf.DType.as numpy dtype

Returns a numpy . dtype based on this DType.

tf.DType.as_datatype enum

Returns a types pb2.DataType enum value based on this DType.

Other Methods

tf.DType. 1init (type enum)
Creates a new DataType.
NOTE(mrry): In normal circumstances, you should not need to

construct a pataType Object directly. Instead, use

the tf.as dtype () function.

Args:

type_enumZAtq@es_pb2.DataTypeenun1vmue.

Raises:

TypeErrorﬁ|ftype_enumi$l10ta\Eﬂue types pb2.DataType.

tf.DType.max

Returns the maximum representable value in this data type.

Raises:

TypeError: if this is @ non-numeric, unordered, or quantized type.

tf.DType.min

Returns the minimum representable value in this data type.

Raises:

TypeError: if this is a non-numeric, unordered, or quantized type.

tf.as dtype (type value)

Converts the given type value to a DType.

Args:

type value: A value that can be converted to a tf.DpType Object.
This may currently be a t f.pTypeobject, a , a string

type name, Or a numpy.dtype.

Returns:

A DType corresponding to type value.

Raises:

TypeError: If type value cannot be converted to a DType.

Utility functions

tf.device (dev)

https://www.tensorflow.org/code/tensorflow/core/framework/types.proto

Wrapper for Graph.device () using the default graph.

See for more details.

Args:

device name or function: The device name or function to use in

the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.name scope (name)

Wrapper for Graph.name scope () using the default graph.

See for more details.

Args:

name: A name for the scope.

Returns:

A context manager that installs name as a new name scope in the

default graph.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.device
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.name_scope

tf.control dependencies (control inputs)

Wrapper for Graph.control dependencies () using the default
graph.

See for more details.

Args:

control inputs: A list of operation Or Tensor objects which must
be executed or computed before running the operations defined in

the context. Can also be None to clear the control dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

tf.convert to tensor (value, dtype=None, name=None,
as_ref=False)

Converts the given value t0 a Tensor.
This function converts Python objects of various types
to Tensor Objects. It accepts Tensor objects, numpy arrays, Python

lists, and Python scalars. For example:
import numpy as np

array = np.random.rand (32, 100, 100)

def my func(arg):
arg = tf.convert to tensor(arg, dtype=tf.float32)

return tf.matmul (arg, arg) + arg

The following calls are equivalent.
value 1 = my func(tf.constant([[1.0, 2.0] [3.0, 4.011))

value 2 = my func([[1.0, 2.0], [3.0, 4.0]1)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.control_dependencies

value 3 = my func(np.array([[1.0, 2.0], [3.0, 4.0]1],
dtype=np.float32))

This function can be useful when composing a new operation in
Python (such as my func in the example above). All standard Python

op constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,

and scalars in addition to Tensor objects.

Args:

value: An object whose type has a registered Tensor conversion
function.

dtype: Optional element type for the returned tensor. If missing, the
type is inferred from the type of value.
name: Optional name to use if a new Tensor is created.

as_ref: True if we want the result as a ref tensor.

Returns:

A Tensor based on value.

Raises:

TypeError: If N0 conversion function is registered for value.

RuntimeError: If a registered conversion function returns an invalid

value.

tf.convert to tensor or indexed slices(value, dtype=None,
name=None, as ref=False)

Converts the given object to a Tensor Or an IndexedSlices.
If value IS an IndexedSlices it is returned unmodified. Otherwise, it

IS converted to a Tensor USingconvert_to_tensor 0.

Args:

value: An IndexedSlices Or an object that can be consumed
by convert to tensor ().

dtype: (Optional.) The required pType of the

returned Tensor Of IndexedSlices.

name: (Optional.) A name to use if a new Tensor is created.

as_ref: True if the caller wants the results as ref tensors.

Returns:

AN Tensor Or an IndexedSlices based on value.

Raises:

valueError: If dtype does not match the element type of value.

tf.get default graph()

Returns the default graph for the current thread.

The returned graph will be the innermost graph on which
a Graph.as default () context has been entered, or a global default

graph if none has been explicitly created.
NOTE: The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that thread,

you must explicitly add a with g.as default () : in that thread's

function.

Returns:

The default craph being used in the current thread.

tf.reset default graph()

Clears the default graph stack and resets the global default graph.
NOTE: The default graph is a property of the current thread. This
function applies only to the current thread. Calling this function while
atf.Session Or tf.InteractiveSession IS active will result in
undefined behavior. Using any previously

created tf.Operation Or tf.Tensor Objects after calling this function

will result in undefined behavior.

tf.import graph def (graph def, input map=None,
return elements=None, name=None, op dict=None)

Imports the TensorFlow graph in graph def into the Python Graph.
This function provides a way to import a serialized

TensorFlow protocol buffer, and extract individual objects

https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

In the GraphDef as and objects.

See for a way to create a GraphDef proto.

Args:

graph def: A GraphDef proto containing operations to be imported
into the default graph.

input map: A dictionary mapping input names (as strings)

INn graph_def t0 Tensor objects. The values of the named input
tensors in the imported graph will be re-mapped to the

respective Tensor values.

return_elements: A list of strings containing operation names

in graph_def that will be returned asoperation objects; and/or
tensor names in graph_def that will be returned as Tensor objects.
name: (Optional.) A prefix that will be prepended to the names

iNn graph_def. Defaults to "import".

op dict: (Optional.) A dictionary mapping op type names

to opDef protos. Must contain an oppef proto for each op type named

In graph_def. If omitted, uses the opbef protos registered in the

global registry.

Returns:

A list of operation and/or Tensor objects from the imported graph,

corresponding to the names inreturn elements.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.as_graph_def

Raises:

TypeError: If graph def IS NOt @ GraphDef pProto, input map IS Not a

dictionary mapping strings toTensor Objects, or return elements IS
not a list of strings.

ValueError: If input map, Or return elements contains names that

do not appear in graph def, Ofgraph def IS not well-formed (e.qg. it

refers to an unknown tensor).

tf.load op library(library filename)

Loads a TensorFlow plugin, containing custom ops and kernels.
Pass "library filename" to a platform-specific mechanism for
dynamically loading a library. The rules for determining the exact
location of the library are platform-specific and are not documented

here. Expects the symbols "RegisterOps", "RegisterKernels", and
"GetOpList", to be defined in the library.

Args:

library filename: Path to the plugin. Relative or absolute

filesystem path to a dynamic library file.

Returns:

A python module containing the Python wrappers for Ops defined in
the plugin.

Raises:

e RuntimeError: when unable to load the library or get the python

wrappers.

Graph collections

tf.add to collection (name, value)

Wrapper for Graph.add to collection () using the default graph.

See for more details.

Args:

« name: The key for the collection. For example, the GraphKkeys class
contains many standard names for collections.

e« value: The value to add to the collection.

tf.get collection(key, scope=None)

Wrapper for Graph.get collection () using the default graph.

See for more details.

Args:

« key: The key for the collection. For example, the Graphkeys class

contains many standard names for collections.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.add_to_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.get_collection

scope: (Optional.) If supplied, the resulting list is filtered to include

only items whose name begins with this string.

Returns:

The list of values in the collection with the given name, or an empty

list if no value has been added to that collection. The list contains the
values in the order under which they were collected.

class tf.GraphKeys

Standard names to use for graph collections.

The standard library uses various well-known names to collect and
retrieve values associated with a graph. For example,

the tf.optimizer subclasses default to optimizing the variables

collected undert f.GraphKeys. TRAINABLE VARIABLES if none is

specified, but it is also possible to pass an explicit list of variables.

The following standard keys are defined:

VARIABLES: the variable objects that comprise a model, and must

be saved and restored together. See for more
details.

TRAINABLE VARIABLES: the subset of variable objects that will be

trained by an optimizer. See for more
details.

SUMMARIES: the summary Tensor objects that have been created in

the graph. See for more details.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#all_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#trainable_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#merge_all_summaries

QUEUE_RUNNERS: the QueueRunner oObjects that are used to produce

input for a computation. See for more
details.

MOVING AVERAGE VARIABLES: the subset of variable objects that will
also keep moving averages.

See for more details.

REGULARIZATION LOSSES: regularization losses collected during
graph construction.

WEIGHTS: weights inside neural network layers
BIASES: biases inside neural network layers

ACTIVATIONS: activations of neural network layers

Defining new operations

class tf.RegisterGradient
A decorator for registering the gradient function for an op type.

This decorator is only used when defining a new op type. For an op

with m inputs and n outputs, the gradient function is a function that

takes the original operation and n Tensor Objects (representing the
gradients with respect to each output of the op), and
returns m Tensor objects (representing the partial gradients with

respect to each input of the op).

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#start_queue_runners
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#moving_average_variables

For example, assuming that operations of type "sub" take two

Inputs x and y, and return a single output x - v, the following

gradient function would be registered:
@tf.RegisterGradient ("Sub")

def sub grad(unused op, grad):
return grad, tf.neg(grad)

The decorator argument op_type IS the string type of an operation.

This corresponds to the opDef.name field for the proto that defines

the operation.

tf.RegisterGradient. 1init (op type)
Creates a new decorator with op type as the Operation type.
Args:

op_type: The string type of an operation. This corresponds to

the oppef . name field for the proto that defines the operation.

tf.NoGradient (op_type)

Specifies that ops of type op type do not have a defined gradient.
This function is only used when defining a new op type. It may be
used for ops such as tf.size () that are not differentiable. For

example:
tf.NoGradient ("Size")

Args:

op_type: The string type of an operation. This corresponds to

the oppef.name field for the proto that defines the operation.

Raises:

TypeError: If op type IS not a string.

class tf.RegisterShape

A decorator for registering the shape function for an op type.

This decorator is only used when defining a new op type. A shape

function is a function from an operationobject to a list

of TensorShape Objects, with one Tensorshape for each output of the
operation.

For example, assuming that operations of type "sub" take two

inputs x and y, and return a single output x - v, all with the same

shape, the following shape function would be registered:
@tf.RegisterShape ("Sub")

def sub shape (op) :
return

[op.inputs[0] .get shape () .merge with (op.inputs[1l].get shape())]

The decorator argument op_type is the string type of an operation.

This corresponds to the oppef . name field for the proto that defines

the operation.

tf.RegisterShape. 1init (op_ type)

Saves the op type as the operation type.

class tf.TensorShape

Represents the shape of a Tensor.
A TensorShape represents a possibly-partial shape specification for

a Tensor. It may be one of the following:

Fully-known shape: has a known number of dimensions and a known
size for each dimension.

Partially-known shape: has a known number of dimensions, and an
unknown size for one or more dimension.

Unknown shape: has an unknown number of dimensions, and an
unknown size in all dimensions.

If a tensor is produced by an operation of type "Foo", its shape may
be inferred if there is a registered shape function for "Foo".

See for details of shape functions and how to
register them. Alternatively, the shape may be set explicitly

using

tf.TensorShape.merge with (other)

Returns a Tensorshape combining the information
In self and other.
The dimensions in se1f and other are merged elementwise,

according to the rules defined forbimension.merge with ().

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#RegisterShape
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.set_shape

Args:

other: Another TensorShape.

Returns:

A TensorShape containing the combined information

of sel1f and other.

Raises:

valueError: If self and other are not compatible.

tf.TensorShape.concatenate (other)

Returns the concatenation of the dimension in sel1f and other.

N.B. If either sel1f or other is completely unknown, concatenation

will discard information about the other shape. In future, we might
support concatenation that preserves this information for use with
slicing.

Args:

other: Another TensorShape.

Returns:

A TensorShape Whose dimensions are the concatenation of the

dimensions in self and other.

tf.TensorShape.ndims

Returns the rank of this shape, or None if it is unspecified.

tf.TensorShape.dims

Returns a list of Dimensions, or None if the shape is unspecified.

tf.TensorShape.as list()

Returns a list of integers or None for each dimension.

Returns:

A list of integers or None for each dimension.

tf.TensorShape.as proto()

Returns this shape as a TensorShapeProto.

tf.TensorShape.is compatible with (other)

Returns True iff self is compatible with other.

Two possibly-partially-defined shapes are compatible if there exists a
fully-defined shape that both shapes can represent. Thus,
compatibility allows the shape inference code to reason about
partially-defined shapes. For example:

TensorShape(None) is compatible with all shapes.

TensorShape([None, None]) is compatible with all two-dimensional
shapes, such as TensorShape([32, 784]), and also
TensorShape(None). It is not compatible with, for example,
TensorShape([None]) or TensorShape([None, None, None]).

TensorShape([32, None]) is compatible with all two-dimensional
shapes with size 32 in the Oth dimension, and also
TensorShape([None, None]) and TensorShape(None). It is not
compatible with, for example, TensorShape([32]), TensorShape([32,
None, 1]) or TensorShape([64, None]).

TensorShape([32, 784]) is compatible with itself, and also
TensorShape([32, None]), TensorShape([None, 784]),
TensorShape([None, None]) and TensorShape(None). It is not
compatible with, for example, TensorShape([32, 1, 784]) or
TensorShape([None]).

The compatibility relation is reflexive and symmetric, but not
transitive. For example, TensorShape([32, 784]) is compatible with
TensorShape(None), and TensorShape(None) is compatible with
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible
with TensorShape([4, 4]).

Args:

other: Another TensorShape.

Returns:

True iff se1f is compatible with other.

tf.TensorShape.is fully defined()

Returns True iff se1f is fully defined in every dimension.

tf.TensorShape.with rank(rank)

Returns a shape based on self with the given rank.

This method promotes a completely unknown shape to one with a
known rank.

Args:

« rank: An integer.

Returns:

A shape that is at least as specific as self with the given rank.

Raises:

e ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.with rank at least (rank)

Returns a shape based on self with at least the given rank.

Args:

« rank: An integer.

Returns:

A shape that is at least as specific as self with at least the given

rank.

Raises:

valueError: If self does not represent a shape with at least the

given rank.

tf.TensorShape.with rank at most (rank)

Returns a shape based on se1f with at most the given rank.

Args:

rank: An integer.

Returns:

A shape that is at least as specific as se1f with at most the given

rank.

Raises:

valueError: If sel1f does not represent a shape with at most the

given rank.

tf.TensorShape.assert has rank (rank)

Raises an exception if self is not compatible with the given rank.

Args:

rank: An integer.

Raises:

valueError: If sel1f does not represent a shape with the given rank.

tf.TensorShape.assert same rank (other)

Raises an exception if se1f and other do not have compatible ranks.

Args:

other: Another TensorShape.

Raises:

valueError: If self and other do not represent shapes with the

same rank.

tf.TensorShape.assert is compatible with (other)
Raises exception if se1f and other do not represent the same

shape.

This method can be used to assert that there exists a shape that

both self and other represent.

Args:

other: Another TensorShape.

Raises:

valueError: If sel1f and other do not represent the same shape.

tf.TensorShape.assert is fully defined()

Raises an exception if se1f is not fully defined in every dimension.

Raises:

valueError: If sel1f does not have a known value for every

dimension.

Other Methods

tf.TensorShape. init (dims)

Creates a new TensorShape with the given dimensions.

Args:

dims: A list of Dimensions, or None if the shape is unspecified.

DEPRECATED: A single integer is treated as a singleton list.

tf.TensorShape.num elements ()

Returns the total number of elements, or none for incomplete shapes.

class tf.Dimension

Represents the value of one dimension in a TensorShape.

tf.Dimension. init (value)

Creates a new Dimension with the given value.

tf.Dimension.assert is compatible with (other)

Raises an exception if other is not compatible with this Dimension.

Args:

other: Another Dimension.

Raises:

valueError: If self and other are not compatible (see

Is_compatible_with).

tf.Dimension.is compatible with (other)

Returns true if other is compatible with this Dimension.

Two known Dimensions are compatible if they have the same value.
An unknown Dimension is compatible with all other Dimensions.

Args:

other: Another Dimension.

Returns:

True if this Dimension and other are compatible.

tf.Dimension.merge with (other)
Returns a Dimension that combines the information

in self and other.

Dimensions are combined as follows:

Dimension (n) .merge with (Dimension (n)) == Dimension (n)
Dimension (n) .merge with (Dimension (None)) == Dimension (n)
Dimension (None) .merge with (Dimension (n)) == Dimension (n)
Dimension (None) .merge with (Dimension (None)) == Dimension (None)
Dimension (n) .merge with(Dimension(m)) raises ValueError for

n!=m

Args:

other: Another Dimension.

Returns:

A Dimension containing the combined information of self and other.

Raises:

valueError: If self and other are not compatible (see

IS_compatible with).

tf.Dimension.value

The value of this dimension, or None if it is unknown.

tf.op scope(values, name, default name=None)

Returns a context manager for use when defining a Python op.

This context manager validates that the given values are from the

same graph, ensures that that graph is the default graph, and pushes
a name scope.

For example, to define a new Python op called my op:

def my op(a, b, ¢, name=None) :

with tf.op scope([a, b, c], name, "MyOp") as scope:

a tf.convert to tensor(a, name="a")
b = tf.convert to tensor (b, name="b")

(
tf.convert to tensor(c, name="c")

C

Define some computation that uses “a’, "b’, and “c .

return foo op (..., name=scope)

Args:

values: The list of Tensor arguments that are passed to the op
function.

name: The name argument that is passed to the op function.
default name: The default name to use if the name argument

IS None.

Returns:

A context manager for use in defining Python ops. Yields the name
scope.

Raises:

ValueError: if neither name nor default name IS provided.

tf.get seed(op seed)

Returns the local seeds an operation should use given an op-specific
seed.

Given operation-specific seed, op seed, this helper function returns

two seeds derived from graph-level and op-level seeds. Many
random operations internally use the two seeds to allow user to
change the seed globally for a graph, or for only specific operations.
For details on how the graph-level seed interacts with op seeds,

see

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Args:

op seed: integer.

Returns:

A tuple of two integers that should be used for the local seed of this
operation.

For libraries building on TensorFlow

tf.register tensor conversion function (base type,
conversion func, priority=100)

Registers a function for converting objects of base type t0 Tensor.

The conversion function must have the following signature:

def conversion func(value, dtype=None, name=None, as ref=False):

oo,

It must return a Tensor with the given dtype if specified. If the
conversion function creates a new Tensor, it should use the

given name If specified. All exceptions will be propagated to the caller.
If as_ref is true, the function must return a Tensor reference, such

as a Variable.

NOTE: The conversion functions will execute in order of priority,
followed by order of registration. To ensure that a conversion

function r runs before another conversion function G, ensure that r is

registered with a smaller priority than .

Args:

base type: The base type or tuple of base types for all objects
that conversion func accepts.

conversion func: A function that converts instances

of base type tO Tensor.

priority: Optional integer that indicates the priority for applying this

conversion function. Conversion functions with smaller priority values
run earlier than conversion functions with larger priority values.
Defaults to 100.

Raises:

TypeError: If the arguments do not have the appropriate type.

Other Functions and Classes

class tf.bytes
str(object=") -> string

Return a nice string representation of the object. If the argument is a
string, the return value is the same object.

Constants, Sequences, and Random
Values

Note: Functions taking Tensor arguments can also take anything

accepted by

Contents

Constant Value Tensors

TensorFlow provides several operations that you can use to generate
constants.

tf.zeros (shape, dtype=tf.float32, name=None)

Creates a tensor with all elements set to zero.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#constants-sequences-and-random-values
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#constant-value-tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#zeros
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#zeros_like
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#ones
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#ones_like
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#fill
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#constant
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#sequences
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#linspace
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#range
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random-tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#examples
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#truncated_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#truncated_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_uniform
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_uniform
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_shuffle
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_crop
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

This operation returns a tensor of type dtype with shape shape and

all elements set to zero.

For example:

tf.zeros([3, 4], int32) ==> [[O, O, O, O], [0, O, O, 01, [O, O,
0, 01]

Args:

shape: Either a list of integers, or a 1-D Tensor of type int32.
dtype: The type of an element in the resulting Tensor.

name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

tf.zeros like(tensor, dtype=None, name=None)

Creates a tensor with all elements set to zero.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to zero.

Optionally, you can use dtype to specify a new type for the returned

tensor.

For example:

'tensor' is [[1, 2, 31, [4, 5, 6]
tf.zeros like(tensor) ==> [[0, O, 0], [0, O, O]]

Args:

e tensor. A Tensor.

o dtype: Atype for the returned Tensor. Must
be f1o0at32, float64, int8, intl6, int32, int64, uints,
Or complex64.

« name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

tf.ones (shape, dtype=tf.float32, name=None)

Creates a tensor with all elements set to 1.

This operation returns a tensor of type dtype with shape shape and
all elements set to 1.

For example:

tf.ones([2, 3], int32) ==> [[1, 1, 11, [1, 1, 11]

Args:

« shape: Either a list of integers, or a 1-D Tensor of type int32.
« dtype: The type of an element in the resulting Tensor.

« name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

tf.ones like (tensor, dtype=None, name=None)

Creates a tensor with all elements set to 1.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to 1.

Optionally, you can specify a new type (dtype) for the returned

tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]

tf.ones like(tensor) ==> [[1, 1, 11, [1, 1, 1]]
Args:

tensor: A Tensor.

dtype: A type for the returned Tensor. Must

be float32, float64, int8, intl16, int32, int64, uints,
Or complex64.

name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

tf.fill (dims, value, name=None)

Creates a tensor filled with a scalar value.

This operation creates a tensor of shape dims and fills it with value.

For example:

Output tensor has shape [2, 3].
filli([z2, 31, 9) ==> [[9, 9, 9]
[9, 9, 9]1

Args:

dims: A Tensor Of type int32. 1-D. Represents the shape of the
output tensor.

value: A Tensor. 0-D (scalar). Value to fill the returned tensor.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as value.

tf.constant (value, dtype=None, shape=None, name='Const')

Creates a constant tensor.

The resulting tensor is populated with values of type dtype, as

specified by arguments value and (optionally)shape (See examples
below).

The argument value can be a constant value, or a list of values of

type dtype. If value is a list, then the length of the list must be less
than or equal to the number of elements implied by

the shape argument (if specified). In the case where the list length is

less than the number of elements specified by shape, the last
element in the list will be used to fill the remaining entries.

The argument shape is optional. If present, it specifies the
dimensions of the resulting tensor. If not present, then the tensor is a

scalar (0-D) if value is a scalar, or 1-D otherwise.
If the argument dtype is not specified, then the type is inferred from

the type of value.

For example:

Constant 1-D Tensor populated with value list.
tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]

Constant 2-D tensor populated with scalar value -1.
tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.]

Args:

value: A constant value (or list) of output type dtype.
dtype: The type of the elements of the resulting tensor.
shape: Optional dimensions of resulting tensor.

name: Optional name for the tensor.

Returns:

A Constant Tensor.

Sequences

tf.linspace(start, stop, num, name=None)

Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning
atstart. If num > 1, the values in the sequence increase by stop -

start / num - 1, SO thatthe last one is exactly stop.

For example:

tf.linspace(10.0, 12.0, 3, name="linspace") => [10.0 11.0 12.0]

Args:

start: A Tensor. Must be one of the following
types: float32, float64. First entry in the range.

stop: A Tensor. Must have the same type as start. Last entry in the
range.

num: A Tensor Of type int32. Number of values to generate.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as start. 1-D. The generated values.

tf.range(start, limit=None, delta=1, name='range')

Creates a sequence of integers.

Creates a sequence of integers that begins at start and extends by
increments of delta up to but not including1imit.
Like the Python builtin range, start defaults to 0, so that range (n) =

range (0, n).

For example:

'start' is 3
'limit' is 18
'delta' is 3
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]

'limit' is 5

tf.range(limit) ==> [0, 1, 2, 3, 4]

Args:

start: A 0-D (scalar) of type int32. First entry in sequence. Defaults
to O.

1imit: A 0-D (scalar) of type int32. Upper limit of sequence,
exclusive.

delta: A 0-D Tensor (scalar) of type int32. Optional. Default is 1.
Number that increments start.

name: A name for the operation (optional).

Returns:

An 1-D int32 Tensor.

Random Tensors

TensorFlow has several ops that create random tensors with different
distributions. The random ops are stateful, and create new random
values each time they are evaluated.

The seed keyword argument in these functions acts in conjunction
with the graph-level random seed. Changing either the graph-level
seed using or the op-level seed will change the

underlying seed of these operations. Setting neither graph-level nor
op-level seed, results in a random seed for all operations.

See for details on the interaction between

operation-level and graph-level random seeds.

Examples:

Create a tensor of shape [2, 3] consisting of random normal
values, with mean
-1 and standard deviation 4.

norm = tf.random normal ([2, 3], mean=-1, stddev=4)

Shuffle the first dimension of a tensor
c = tf.constant ([[1, 21, [3, 41, [5, 611)
shuff = tf.random shuffle (c)

Each time we run these ops, different results are generated
sess = tf.Session ()
print (sess.run (norm))

print (sess.run (norm))

Set an op-level seed to generate repeatable sequences across
sessions.
c = tf.constant ([[1, 2], [3, 41, [5, ©6]11)

sess = tf.Session ()

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

norm = tf.random normal (c, seed=1234)

print (sess.run (norm))

print (sess.run (norm))

Another common use of random values is the initialization of
variables. Also see the

Use random uniform values in [0, 1) as the initializer for a
variable of shape

[2, 3]. The default type is float32.

var = tf.Variable(tf.random uniform([2, 3]), name="var")

init = tf.initialize all variables()

sess tf.Session ()
sess.run(init)

print (sess.run (var))

tf.random normal (shape, mean=0.0, stddev=1.0,
dtype=tf.float32, seed=None, name=None)

Outputs random values from a normal distribution.

Args:

shape: A 1-D integer Tensor or Python array. The shape of the output
tensor.

mean: A 0-D Tensor or Python value of type dtype. The mean of the
normal distribution.

stddev: A 0-D Tensor or Python value of type dtype. The standard
deviation of the normal distribution.

dtype: The type of the output.
seed: A Python integer. Used to create a random seed for the
distribution. See for behavior.

name: A name for the operation (optional).

https://www.tensorflow.org/versions/r0.7/how_tos/variables/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Returns:

A tensor of the specified shape filled with random normal values.

tf.truncated normal (shape, mean=0.0, stddev=1.0,
dtype=tf.float32, seed=None, name=None)

Outputs random values from a truncated normal distribution.

The generated values follow a normal distribution with specified
mean and standard deviation, except that values whose magnitude is
more than 2 standard deviations from the mean are dropped and re-
picked.

Args:

shape: A 1-D integer Tensor or Python array. The shape of the output
tensor.

mean: A 0-D Tensor or Python value of type dtype. The mean of the
truncated normal distribution.

stddev: A 0-D Tensor or Python value of type dtype. The standard
deviation of the truncated normal distribution.

dtype: The type of the output.
seed: A Python integer. Used to create a random seed for the
distribution. See for behavior.

name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random truncated normal
values.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

tf.random uniform(shape, minval=0, maxval=None,
dtype=tf.float32, seed=None, name=None)

Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the

range [minval, maxval). The lower bound minvalis included in the
range, while the upper bound maxval is excluded.

For floats, the default range is [0, 1). For ints, at least maxval must

be specified explicitly.
In the integer case, the random integers are slightly biased

unless maxval - minval iS an exact power of two. The bias is small
for values of maxval - minval significantly smaller than the range of

the output (either2**32 or 2**64).

Args:

shape: A 1-D integer Tensor or Python array. The shape of the output
tensor.

minval: A 0-D Tensor or Python value of type dtype. The lower
bound on the range of random values to generate. Defaults to 0.
maxval: A 0-D Tensor or Python value of type dtype. The upper
bound on the range of random values to generate. Defaults to 1

if dtype is floating point.
dtype: The type of the output: f1oat32, float64, int32, Of int64.
seed: A Python integer. Used to create a random seed for the

distribution. See for behavior.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

« name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random uniform values.

Raises:

e ValueError: If dtype is integral and maxval is not specified.

tf.random shuffle(value, seed=None, name=None)

Randomly shuffles a tensor along its first dimension.

The tensor is shuffled along dimension 0, such that each value[7] IS

mapped to one and only one output [i]. For example, a mapping

that might occur for a 3x2 tensor is:

[y, 27, (05, 6],
[3, 41, == [1, 2],
[5, 6]] (3, 4]]
Args:

« value: A Tensor to be shuffled.
« seed: A Python integer. Used to create a random seed for the
distribution. See for behavior.

« name: A name for the operation (optional).

Returns:

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

A tensor of same shape and type as value, shuffled along its first

dimension.

tf.random crop(value, size, seed=None, name=None)

Randomly crops a tensor to a given size.

Slices a shape size portion out of value at a uniformly chosen offset.

Requires value.shape >= size.
If a dimension should not be cropped, pass the full size of that

dimension. For example, RGB images can be cropped with size =

[crop height, crop width, 3].

Args:

value: Input tensor to crop.

size: 1-D tensor with size the rank of value.

seed: Python integer. Used to create a random seed.
See for behavior.

name: A name for this operation (optional).

Returns:

A cropped tensor of the same rank as value and shape size.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

tf.set random seed(seed)

Sets the graph-level random seed.

Operations that rely on a random seed actually derive it from two
seeds: the graph-level and operation-level seeds. This sets the
graph-level seed.

Its interactions with operation-level seeds is as follows:

. If neither the graph-level nor the operation seed is set: A random
seed is used for this op.

. If the graph-level seed is set, but the operation seed is not: The
system deterministically picks an operation seed in conjunction with
the graph-level seed so that it gets a unique random sequence.

. If the graph-level seed is not set, but the operation seed is set: A
default graph-level seed and the specified operation seed are used to
determine the random sequence.

. If both the graph-level and the operation seed are set: Both seeds
are used in conjunction to determine the random sequence.

To illustrate the user-visible effects, consider these examples:

To generate different sequences across sessions, set neither graph-
level nor op-level seeds:

)
Il

tf.random uniform([1])

o
Il

tf.random normal ([1])

print ("Session 1")
with tf.Session() as sessl:
print (sessl.run # generates 'Al'

print (sessl.run

(

print (sessl.run(a
(# generates 'Bl1'
(

)
) # generates 'A2'
)
)

print (sessl.run # generates 'B2'
print ("Session 2")
with tf.Session() as sess2:

print (sess2.run(a # generates 'A3'
print (sess2.run # generates 'A4'

(
(
print (sess2.run (# generates 'B3'
print (sess2.run (b # generates 'B4'

To generate the same repeatable sequence for an op across
sessions, set the seed for the op:

Q
Il

tf.random uniform([1l], seed=1)

b = tf.random normal ([1])

Repeatedly running this block with the same graph will generate
the same
sequence of values for 'a', but different sequences of values
for 'b'.
print ("Session 1")
with tf.Session () as sessl:

print (sessl.run # generates 'Al'
print (sessl.run # generates 'A2'
print (sessl.run # generates 'Bl'
print (sessl.run # generates 'B2'
print ("Session 2")
with tf.Session () as sess2:

print (sess2.run # generates 'Al'
print (sess2.run # generates 'A2'
print (sess2.run # generates 'B3'
print (sess2.run # generates 'B4'

To make the random sequences generated by all ops be repeatable
across sessions, set a graph-level seed:

tf.set random seed(1234)

a tf.random uniform([1])

b = tf.random normal ([1])

Repeatedly running this block with the same graph will generate
different
sequences of 'a' and 'b'.
print ("Session 1")
with tf.Session() as sessl:

print (sessl.run # generates 'Al'
generates 'A2'

print (sessl.run

(

print (sessl.run (
(# generates 'Bl'
(

a))
a))
b))
print (sessl.run (b)) # generates 'B2'
print ("Session 2")
with tf.Session() as sess2:

print (sess2.run(a)) # generates 'Al'

print (sess2.run(a)) # generates 'A2'

print (sess2.run (b)) # generates 'Bl'
print (sess2.run (b)) # generates 'B2'
Args:

seed: integer.

Variables

Note: Functions taking Tensor arguments can also take anything

accepted by « © . convert to tensor.

Contents

Variables

Variables

class tf.Variable
Variable helper functions
tf.all variables()
tf.trainable variables()

tf.moving average variables()
tf.initialize all variables()

tf.initialize variables(var list, name=init)
tf.assert variables initialized(var list=None)

Saving and Restoring Variables
class tf.train.Saver

tf.train.latest checkpoint (checkpoint dir,

latest filename=None)
tf.train.get checkpoint state(checkpoint dir,

latest filename=None)
tf.train.update checkpoint state(save dir,

model checkpoint path, all model checkpoint paths=None,
latest filename=None)

Sharing Variables

tf.get variable (name, shape=None, dtype=tf.float32,
initializer=None, trainable=True, collections=None)

tf.get variable scope()
tf.make template (name , func , **kwargs)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variables-2
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable-helper-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#all_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#trainable_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#moving_average_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#initialize_all_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#initialize_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#assert_variables_initialized
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#saving-and-restoring-variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Saver
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#latest_checkpoint
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#latest_checkpoint
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#update_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#update_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#update_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#sharing-variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_variable_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#make_template

Variables

class tf.Variable
See the for a high level overview.

A variable maintains state in the graph across calls to run (). You
add a variable to the graph by constructing an instance of the

class variable.
The variable () constructor requires an initial value for the variable,

which can be a Tensor of any type and shape. The initial value

defines the type and shape of the variable. After construction, the

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_op_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_op_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#constant_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#truncated_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#truncated_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_uniform_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_uniform_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#uniform_unit_scaling_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#uniform_unit_scaling_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#zeros_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#sparse-variable-updates
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_update
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_update
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_add
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_add
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_sub
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_sub
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#sparse_mask
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#IndexedSlices
https://www.tensorflow.org/versions/r0.7/how_tos/variables/index.html

type and shape of the variable are fixed. The value can be changed
using one of the assign methods.
If you want to change the shape of a variable later you have to use

an assign Op Withvalidate_shape=False.

Just like any Tensor, variables created with variable () can be used
as inputs for other Ops in the graph. Additionally, all the operators
overloaded for the Tensor class are carried over to variables, so you

can also add nodes to the graph by just doing arithmetic on variables.

import tensorflow as tf

Create a variable.
\Y

= tf.Variable(<initial-value>, name=<optional-name>)

Use the variable in the graph like any Tensor.

#
y = tf.matmul (w, ...another variable or tensor...)

The overloaded operators are available too.

z = tf.sigmoid(w + D)

Assign a new value to the variable with “assign() or a related
method.

w.assign(w + 1.0)

w.assign add(1.0)

When you launch the graph, variables have to be explicitly initialized
before you can run Ops that use their value. You can initialize a
variable by running its initializer op, restoring the variable from a save

file, or simply running anassign Op that assigns a value to the

variable. In fact, the variable initializer op is just an assign Op that

assigns the variable's initial value to the variable itself.

Launch the graph in a session.
with tf.Session() as sess:
Run the variable initializer.

sess.run(w.initializer)

|l 1

...you now can run ops that use the value of 'w'...

The most common initialization pattern is to use the convenience
function initialize all variables() to add an Op to the graph

that initializes all the variables. You then run that Op after launching
the graph.

Add an Op to initialize all variables.

init op = tf.initialize all variables()

Launch the graph in a session.

with tf.Session() as sess:
Run the Op that initializes all variables.
sess.run(init op)
...you can now run any Op that uses variable values...

If you need to create a variable with an initial value dependent on
another variable, use the other variable'sinitialized value (). This

ensures that variables are initialized in the right order.
All variables are automatically collected in the graph where they are
created. By default, the constructor adds the new variable to the

graph collection GraphKeys.VARIABLES. The convenience

function a11 variables () returns the contents of that collection.

When building a machine learning model it is often convenient to
distinguish betwen variables holding the trainable model parameters

and other variables such as a global step variable used to count
training steps. To make this easier, the variable constructor supports

a trainable=<bool> parameter. If True, the new variable is also
added to the graph collection GraphKeys.TRAINABLE VARIABLES,
The convenience functiontrainable variables () returns the

contents of this collection. The various optimizer classes use this

collection as the default list of variables to optimize.

Creating a variable.

tf.Variable. 1init (initial value=None, trainable=True,
collections=None, validate shape=True, name=None,
variable def=None)

Creates a new variable with value initial value.

The new variable is added to the graph collections listed

INn collections, Which defaults to [GraphKeys.VARIABLES].
If trainable IS True the variable is also added to the graph
collectionGraphKeys.TRAINABLE VARIABLES.

This constructor creates both a variable Op and an assign Op to

set the variable to its initial value.

Args:

initial value: A Tensor, Or Python object convertible to a Tensor.
The initial value for the Variable. Must have a shape specified

unless validate shape IS set to False.

trainable: If True, the default, also adds the variable to the graph
collectionGraphKeys. TRAINABLE VARIABLES. This collection is used
as the default list of variables to use by theoptimizer classes.
collections: List of graph collections keys. The new variable is
added to these collections. Defaults to [GraphKeys . VARIABLES] .
validate shape: If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape

of initial value mustbe known.

name: Optional name for the variable. Defaults to 'variable' and
gets uniquified automatically.

variable def:VariableDef protocol buffer. If not None, recreates

the Variable object with its contents.variable def and the other

arguments are mutually exclusive.

Returns:

A Variable.

Raises:

valueError: If both variable def and initial_value are specified.
valueError: If the initial value is not specified, or does not have a

shape and validate shape IS True.

tf.Variable.initialized value ()
Returns the value of the initialized variable.

You should use this instead of the variable itself to initialize another
variable with a value that depends on the value of this variable.

Initialize 'v' with a random tensor.
= tf.Variable(tf.truncated normal ([10, 40]))

Use "initialized value to guarantee that 'v' has been

#
v
#
initialized before its value is used to initialize “w'.
The random values are picked only once.

w

= tf.Variable(v.initialized value() * 2.0)

Returns:

A Tensor holding the value of this variable after its initializer has run.

Changing a variable value.

tf.Variable.assign(value, use locking=False)

Assigns a new value to the variable.

This is essentially a shortcut for assign (self, value).

Args:

value: A Tensor. The new value for this variable.

use locking: If True, use locking during the assignment.

Returns:

A Tensor that will hold the new value of this variable after the

assignment has completed.

tf.Variable.assign add(delta, use locking=False)

Adds a value to this variable.

This is essentially a shortcut for assign _add(self, delta).

Args:

delta: A Tensor. The value to add to this variable.

use locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after the

addition has completed.

tf.Variable.assign sub(delta, use locking=False)

Subtracts a value from this variable.

This is essentially a shortcut for assign sub (self, delta).

Args:

delta: A Tensor. The value to subtract from this variable.

use locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after the

subtraction has completed.

tf.Variable.scatter sub(sparse delta, use locking=False)

Subtracts Indexedslices from this variable.
This is essentially a shortcut for scatter sub (self,

sparse_delta.indices, sparse delta.values).

Args:

sparse_delta: IndexedSlices to be subtracted from this variable.

use locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after the

scattered subtraction has completed.

Raises:

ValueError: if sparse deltais notan Indexedslices.

tf.Variable.count up to(limit)

Increments this variable until it reaches 1imit.
When that Op is run it tries to increment the variable by 1. If
incrementing the variable would bring it above 1imitthen the Op

raises the exception outOfRangeError.

If no error is raised, the Op outputs the value of the variable before
the increment.

This is essentially a shortcut for count _up to(self, limit).

Args:

1imit: value at which incrementing the variable raises an error.

Returns:

A Tensor that will hold the variable value before the increment. If no

other Op modifies this variable, the values produced will all be
distinct.

tf.Variable.eval (session=None)
In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the
graph.

This convenience method requires a session where the graph
containing this variable has been launched. If no session is passed,
the default session is used. See the for more

information on launching a graph and on sessions.
v = tf.Variable([1l, 2])

init = tf.initialize all variables()

with tf.Session() as sess:
sess.run (init)
Usage passing the session explicitly.
print (v.eval (sess))
Usage with the default session. The 'with' block
above makes 'sess' the default session.

print (v.eval())

Args:

session: The session to use to evaluate this variable. If none, the

default session is used.

Returns:
A numpy ndarray with a copy of the value of this variable.

Properties.

tf.Variable.name

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session

The name of this variable.

tf.Variable.dtype

The pType of this variable.

tf.Variable.get shape()

The Tensorshape Of this variable.

Returns:

A TensorShape.

tf.Variable.device

The device of this variable.

tf.Variable.initializer

The initializer operation for this variable.

tf.Variable.graph

The Graph of this variable.

tf.Variable.op

The operation oOf this variable.

Other Methods

tf.Variable.from proto(variable def)

tf.Variable.ref ()
Returns a reference to this variable.

You usually do not need to call this method as all ops that need a
reference to the variable call it automatically.

Returns is a Tensor which holds a reference to the variable. You can
assign a new value to the variable by passing the tensor to an assign

op. See if you want to get the value of the variable.

Returns:

A Tensor that is a reference to the variable.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable.value

tf.Variable.to proto()

Converts a variable t0 @ VvariableDef protocol buffer.

Returns:

A variableDef protocol buffer.

tf.Variable.value ()

Returns the last snapshot of this variable.

You usually do not need to call this method as all ops that need the
value of the variable call it automatically through

a convert to tensor () call

Returns a Tensor which holds the value of the variable. You can not
assign a new value to this tensor as it is not a reference to the

variable. See if you want to get a reference to the variable.

To avoid copies, if the consumer of the returned value is on the same
device as the variable, this actually returns the live value of the
variable, not a copy. Updates to the variable are seen by the
consumer. If the consumer is on a different device it will get a copy of
the variable.

Returns:

A Tensor containing the value of the variable.

Variable helper functions

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable.ref

TensorFlow provides a set of functions to help manage the set of
variables collected in the graph.

tf.all variables()

Returns all variables collected in the graph.

The variable () constructor automatically adds new variables to the

graph collectionGraphkeys.VARIABLES. This convenience function

returns the contents of that collection.

Returns:

A list of variable objects.

tf.trainable variables()

Returns all variables created with trainable=True.

When passed trainable=True, the variable () constructor
automatically adds new variables to the graph
collection GraphKeys.TRAINABLE VARIABLES. This convenience

function returns the contents of that collection.

Returns:

A list of Variable objects.

tf.moving average variables()

Returns all variables that maintain their moving averages.

If an ExponentialMovingAverage Object is created and

the apply () method is called on a list of variables, these variables
will be added to
the GraphKeys.MOVING AVERAGE VARIABLES collection. This

convenience function returns the contents of that collection.

Returns:

A list of Variable objects.

tf.initialize all variables()

Returns an Op that initializes all variables.

This is just a shortcut

fOFinitialize_variables(all_variables())

Returns:

An Op that initializes all variables in the graph.

tf.initialize variables(var list, name='init')

Returns an Op that initializes a list of variables.

After you launch the graph in a session, you can run the returned Op

to initialize all the variables in var 1ist. This Op runs all the
initializers of the variables in var 1ist in parallel.

Calling initialize variables () IS equivalent to passing the list of
initializers to Group ().

If var 1ist is empty, however, the function still returns an Op that

can be run. That Op just has no effect.

Args:

var list: List of variable objects to initialize.

name: Optional name for the returned operation.

Returns:

An Op that run the initializers of all the specified variables.

tf.assert variables initialized(var_ list=None)

Returns an Op to check if variables are initialized.

When run, the returned Op will raise the

exception FailedPreconditionError if any of the variables has not
yet been initialized.

Note: This function is implemented by trying to fetch the values of the

variables. If one of the variables is not initialized a message may be
logged by the C++ runtime. This is expected.

Args:

o var list: Listofvariable objects to check. Defaults to the value

Ofall_variables().

Returns:

An Op, or None if there are no variables.

Saving and Restoring Variables

class tf.train.Saver

Saves and restores variables.

See for an overview of variables, saving and restoring.
The saver class adds ops to save and restore variables to and

from checkpoints. It also provides convenience methods to run these
ops.

Checkpoints are binary files in a proprietary format which map
variable names to tensor values. The best way to examine the

contents of a checkpoint is to load it using a saver.

Savers can automatically number checkpoint filenames with a
provided counter. This lets you keep multiple checkpoints at different
steps while training a model. For example you can number the
checkpoint filenames with the training step number. To avoid filling
up disks, savers manage checkpoint files automatically. For example,
they can keep only the N most recent files, or one checkpoint for
every N hours of training.

You number checkpoint filenames by passing a value to the

optional global step argumentto save ():

saver.save (sess, 'my-model', global step=0) ==> filename: 'my-
model-0"'

https://www.tensorflow.org/versions/r0.7/how_tos/variables/index.html

saver.save (sess, 'my-model', global step=1000) ==> filename: 'my-
model-1000"

Additionally, optional arguments to the saver () constructor let you
control the proliferation of checkpoint files on disk:
max_to keep Indicates the maximum number of recent checkpoint

files to keep. As new files are created, older files are deleted. If None
or 0, all checkpoint files are kept. Defaults to 5 (that is, the 5 most
recent checkpoint files are kept.)

keep checkpoint every n_ hours: In addition to keeping the most

recentmax to_ keep checkpoint files, you might want to keep one

checkpoint file for every N hours of training. This can be useful if you
want to later analyze how a model progressed during a long training
session. For example,

passingkeep checkpoint every n hours=2 ensures that you keep

one checkpoint file for every 2 hours of training. The default value of
10,000 hours effectively disables the feature.

Note that you still have to call the save () method to save the model.

Passing these arguments to the constructor will not save variables
automatically for you.

A training program that saves regularly looks like:

Create a saver.
saver = tf.train.Saver(...variables...)
Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange (1000000) :
sess.run(..training op..)
if step % 1000 == O:
Append the step number to the checkpoint name:
saver.save (sess, 'my-model', global step=step)
In addition to checkpoint files, savers keep a protocol buffer on disk
with the list of recent checkpoints. This is used to manage numbered

checkpoint files and by 1atest checkpoint (), which makes it easy

to discover the path to the most recent checkpoint. That protocol

buffer is stored in a file named 'checkpoint' next to the checkpoint
files.
If you create several savers, you can specify a different filename for

the protocol buffer file in the call to save ().

tf.train.Saver. 1init (var list=None, reshape=False,
sharded=False, max to keep=5,

keep checkpoint every n hours=10000.0, name=None,

restore sequentially=False, saver def=None, builder=None)

Creates a saver.
The constructor adds ops to save and restore variables.

var list specifies the variables that will be saved and restored. It
can be passed as a dict or a list:

A dict of names to variables: The keys are the names that will be

used to save or restore the variables in the checkpoint files.

A list of variables: The variables will be keyed with their op name in
the checkpoint files.

For example:
vl = tf.Variable (..., name='vl'")
v2 = tf.Variable (..., name='v2'")

Pass the variables as a dict:

saver = tf.train.Saver({'vl': vl1, 'v2': v2})

Or pass them as a list.

saver = tf.train.Saver ([vl, Vv2])

Passing a list is equivalent to passing a dict with the
variable op names

as keys:

saver = tf.train.Saver ({v.op.name: v for v in [vl, Vv2]})

The optional reshape argument, if True, allows restoring a variable

from a save file where the variable had a different shape, but the
same number of elements and type. This is useful if you have
reshaped a variable and want to reload it from an older checkpoint.

The optional sharded argument, if True, instructs the saver to shard

checkpoints per device.

Args:

var list: Alist of variable objects or a dictionary mapping names
to variables. If None, defaults to the list of all variables.

reshape: If True, allows restoring parameters from a checkpoint
where the variables have a different shape.

sharded: If True, shard the checkpoints, one per device.

max_to_keep: Maximum number of recent checkpoints to keep.
Defaults to 5.

keep checkpoint every n hours: How often to keep checkpoints.
Defaults to 10,000 hours.

name: String. Optional name to use as a prefix when adding
operations.

restore sequentially: A Bool, Which if true, causes restore of

different variables to happen sequentially within each device. This
can lower memory usage when restoring very large models.

saver def: Optional saverDef proto to use instead of running the
builder. This is only useful for specialty code that wants to recreate

a saver object for a previously built Graph that had a saver.
The saver defproto should be the one returned by

the as_saver def () call of the saver that was created for thatGraph.

builder: Optional saverBuilder to use if a saver def was not

provided. Defaults toBaseSaverBuilder ().

Raises:

TypeError: If var 1ist is invalid.

valueError: If any of the keys or values in var 1ist are not unique.

tf.train.Saver.save(sess, save path, global step=None,
latest filename=None, meta graph suffix='meta')

Saves variables.

This method runs the ops added by the constructor for saving
variables. It requires a session in which the graph was launched. The
variables to save must also have been initialized.

The method returns the path of the newly created checkpoint file.

This path can be passed directly to a call torestore ().

Args:

sess: A Session to use to save the variables.

save path: String. Path to the checkpoint filename. If the saver
IS sharded, this is the prefix of the sharded checkpoint filename.
global step: If provided the global step number is appended
to save path to create the checkpoint filename. The optional

argument can be a Tensor, a Tensor hame or an integer.

latest filename: Optional name for the protocol buffer file that will

contains the list of most recent checkpoint filenames. That file, kept in
the same directory as the checkpoint files, is automatically managed
by the saver to keep track of recent checkpoints. Defaults to
‘checkpoint'.

meta graph suffix: Suffix for MetaGraphDef file. Defaults to 'meta’.

Returns:
A string: path at which the variables were saved. If the saver is

number of shards created.

Raises:

TypeError: If sess IS NOt a Session.

valueError: If latest filename contains path components.

tf.train.Saver.restore(sess, save path)

Restores previously saved variables.
This method runs the ops added by the constructor for restoring
variables. It requires a session in which the graph was launched. The

variables to restore do not have to have been initialized, as restoring
is itself a way to initialize variables.

The save path argument is typically a value previously returned from

asave () call, oracall tolatest checkpoint ().

Args:

o sess: A session to use to restore the parameters.

« save path: Path where parameters were previously saved.

Other utility methods.

tf.train.Saver.last checkpoints

List of not-yet-deleted checkpoint filenames.

You can pass any of the returned values to restore ().

Returns:

A list of checkpoint filenames, sorted from oldest to newest.

tf.train.Saver.set last checkpoints(last checkpoints)
DEPRECATED: Use set_last_checkpoints_with_time.

Sets the list of old checkpoint filenames.

Args:

e last checkpoints: A list of checkpoint filenames.

Raises:

o AssertionError: If last_checkpoints is not a list.

tf.train.Saver.as saver def ()

Generates a saverDef representation of this saver.

Returns:

A saverDef proto.

Other Methods

tf.train.Saver.export meta graph (filename=None,
collection list=None, as text=False)

Writes MetaGraphDef to save_path/filename.
Args:

filename: Optional meta_graph filename including the path.
collection list: List of string keys to collect.

as_text! If True, writes the meta_graph as an ASCII proto.

Returns:

A MetaGraphDef proto.

tf.train.Saver.from proto (saver def)

tf.train.Saver.set last checkpoints with time(last checkp
oints with time)

Sets the list of old checkpoint filenames and timestamps.
Args:

o last checkpoints with time: A list of tuples of checkpoint

filenames and timestamps.

Raises:

« AssertionError: If last_checkpoints with_time is not a list.

tf.train.Saver.to proto()

Returns a saverbef protocol buffer.

tf.train.latest checkpoint (checkpoint dir,
latest filename=None)

Finds the filename of latest saved checkpoint file.

Args:

o checkpoint_ dir: Directory where the variables were saved.

latest filename: Optional name for the protocol buffer file that
contains the list of most recent checkpoint filenames. See the

corresponding argument to saver.save ().

Returns:

The full path to the latest checkpoint or None if no checkpoint was

found.

tf.train.get checkpoint state(checkpoint dir,
latest filename=None)

Returns CheckpointState proto from the "checkpoint" file.

If the "checkpoint” file contains a valid CheckpointState proto, returns
it.

Args:

checkpoint dir: The directory of checkpoints.

latest filename: Optional name of the checkpoint file. Default to
‘checkpoint'.

Returns:

A CheckpointState if the state was available, None otherwise.

tf.train.update checkpoint state(save dir,
model checkpoint path, all model checkpoint paths=None,
latest filename=None)

Updates the content of the ‘checkpoint' file.

This updates the checkpoint file containing a CheckpointState proto.

Args:

save_dir: Directory where the model was saved.
model checkpoint path: The checkpoint file.

all model checkpoint paths: List of strings. Paths to all not-yet-

deleted checkpoints, sorted from oldest to newest. If this is a non-
empty list, the last element must be equal to model _checkpoint_path.
These paths are also saved in the CheckpointState proto.

latest filename: Optional name of the checkpoint file. Default to

‘checkpoint'.

Raises:

RuntimeError: If the save paths conflict.

Sharing Variables

TensorFlow provides several classes and operations that you can
use to create variables contingent on certain conditions.

tf.get variable (name, shape=None, dtype=tf.float32,
initializer=None, trainable=True, collections=None)

Gets an existing variable with these parameters or create a new one.

This function prefixes the name with the current variable scope and
performs reuse checks. See the for an

extensive description of how reusing works. Here is a basic example:
with tf.variable scope("foo"):

v = tf.get variable("v", [1]) # v.name == "foo/v:0"

w = tf.get variable("w", [1]) # w.name == "foo/w:0"
with tf.variable scope("foo", reuse=True)

vl = tf.get variable("v") # The same as v above.

If initializer is None (the default), the default initializer passed in the
constructor is used. If that one is None t00,

auniformUnitScalingInitializer Will be used. The initializer can

also be a Tensor, in which case the variable is initialized to this value
and shape.

Args:

name: the name of the new or existing variable.

shape: shape of the new or existing variable.

dtype: type of the new or existing variable (defaults to bT FLOAT).
initializer: initializer for the variable if one is created.
trainable: If True also add the variable to the graph

collection GraphKeys.TRAINABLE VARIABLES(See tf.Variable).
collections: List of graph collections keys to add the Variable to.

Defaults to [GraphKeys.VARIABLES] (See tf.Variable).

Returns:

The created or existing variable.

Raises:

https://www.tensorflow.org/versions/r0.7/how_tos/variable_scope/index.html

ValueError: When creating a new variable and shape is not
declared, or when violating reuse during variable creation. Reuse is

setinside variable scope.

tf.get variable scope()

Returns the current variable scope.

tf.make template (name , func , **kwargs)

Given an arbitrary function, wrap it so that it does variable sharing.

This wraps func_in a Template and partially evaluates it. Templates
are functions that create variables the first time they are called and

reuse them thereafter. In order for func_to be compatible with

a Template it must have the following properties:
The function should create all trainable variables and any variables

that should be reused by callingtf.get variable. If a trainable

variable is created using tf.variable, then a ValueError will be
thrown. Variables that are intended to be locals can be created by
specifying tf.variable (..., trainable=false).

The function may use variable scopes and other templates internally
to create and reuse variables, but it shouldn't

use tf.get variables t0 capture variables that are defined outside

of the scope of the function.
Internal scopes and variable names should not depend on any

arguments that are not supplied tomake template. In general you will

get a ValueError telling you that you are trying to reuse a variable
that doesn't exist if you make a mistake.

In the following example, both z and w will be scaled by the same v. It
IS important to note that if we didn't assignscalar name and used a

different name for z and w that a valueError would be thrown

because it couldn't reuse the variable.

def my op(x, scalar name):
varl = tf.get variable(scalar name,
shape=1[],
initializer=tf.constant initializer(1l))

return x * varl

scale by y = tf.make template('scale by y', my op,

scalar name='y'")

z = scale by y(inputl)
w = scale by y(input2)

As a safe-guard, the returned function will raise a valueError after

the first call if trainable variables are created by calling tf.variable.

If all of these are true, then 2 properties are enforced by the template:

. Calling the same template multiple times will share all non-local
variables.

. Two different templates are guaranteed to be unique, unless you
reenter the same variable scope as the initial definition of a template
and redefine it. An examples of this exception:
def my op(x, scalar name):
varl = tf.get variable(scalar name,
shape=[],
initializer=tf.constant initializer(1l))

return x * varl

with tf.variable scope('scope') as vs:

scale by y = tf.make template('scale by y', my op,
scalar name='y'")

z = scale by y(inputl)

w = scale by y(input2)

Creates a template that reuses the variables above.
with tf.variable scope(vs, reuse=True):
scale by y2 = tf.make template('scale by y', my op,
scalar name='y')
z2 = scale by y2(inputl)
w2 = scale by y2(input2)
Note: The full variable scope is captured at the time of the first call.
Note: name and func_have a following underscore to reduce the

likelihood of collisions with kwargs.

Args:

« name : A name for the scope created by this template. If necessary,
the name will be made unique by appending ~ to the name.
« func : The function to wrap.

o **kwargs: Keyword arguments to apply to func .

Returns:

A function that will enter a variable scope before calling func_. The

first time it is called, it will create a non-reusing scope so that the
variables will be unique. On each subsequent call, it will reuse those
variables.

Raises:

e ValueError: if the name is None.

tf.variable op scope (values, name, default name,
initializer=None)

Returns a context manager for defining an op that creates variables.

This context manager validates that the given values are from the

same graph, ensures that that graph is the default graph, and pushes
a name scope and a variable scope.

If name is Nnot None, it is used as is in the variable scope. If name is

None, then default name is used. In that case, if the same name
has been previously used in the same scope, it will made unique be
appending nto it.

This is intended to be used when defining generic ops and so reuse
Is always inherited.

For example, to define a new Python op called my op with vars:

def my op with vars(a, b, name=None) :
with tf.variable op scope([a, b], name, "MyOp") as scope:
a = tf.convert to tensor(a, name="a")
b

C

tf.convert to tensor (b, name="b")

tf.get variable('c')

Define some computation that uses "a’, 'b’, and “c’.

return foo op (..., name=scope)

Args:

values: The list of Tensor arguments that are passed to the op
function.

name: The name argument that is passed to the op function, this
name is not uniquified in the variable scope.

default name: The default name to use if the name argument is None,
this name will be uniquified.

initializer: A default initializer to pass to variable scope.

Returns:

A context manager for use in defining a Python op.

Raises:

valueError: When trying to reuse within a create scope, or create
within a reuse scope, or if reuse is NotNone Or True.

TypeError: When the types of some arguments are not appropriate.

tf.variable scope(name or scope, reuse=None,
initializer=None)

Returns a context for variable scope.

Variable scope allows to create new variables and to share already
created ones while providing checks to not create or share by
accident. For details, see the , here we
present only a few basic examples.

Simple example of how to create a new variable:

with tf.variable scope("foo"):
with tf.variable scope("bar"):
v = tf.get variable("v", [1])

assert v.name == "foo/bar/v:0"

Basic example of sharing a variable:

with tf.variable scope ("foo"):

v = tf.get variable("v", [1])

with tf.variable scope("foo", reuse=True):
vl = tf.get variable("v", [1])

assert vl == v

Sharing a variable by capturing a scope and setting reuse:

https://www.tensorflow.org/versions/r0.7/how_tos/variable_scope/index.html

with tf.variable scope("foo") as scope:
v = tf.get variable("v", [1])
scope.reuse variables ()
vl = tf.get variable("v", [1])

assert vl == v

To prevent accidental sharing of variables, we raise an exception
when getting an existing variable in a non-reusing scope.

with tf.variable scope("foo"):
v = tf.get variable("v", [1])
vl = tf.get variable("v", [1])

Raises ValueError("... v already exists ...").

Similarly, we raise an exception when trying to get a variable that
does not exist in reuse mode.

with tf.variable scope("foo", reuse=True):
v = tf.get variable("v", [1])

Ralses ValueError("... v does not exists ...").

Note that the reuse flag is inherited: if we open a reusing scope, then

all its sub-scopes become reusing as well.

Args:

name or scope:string Of VariableScope: the scope to open.
reuse: True Of None; if True, We go into reuse mode for this scope as
well as all sub-scopes; if None, we just inherit the parent scope reuse.

initializer: default initializer for variables within this scope.

Returns:

A scope that can be to captured and reused.

Raises:

valueError: When trying to reuse within a create scope, or create
within a reuse scope, or if reuse is NotNone Or True.

TypeError: When the types of some arguments are not appropriate.

tf.constant initializer (value=0.0, dtype=tf.float32)
Returns an initializer that generates tensors with a single value.
Args:

value: A Python scalar. All elements of the initialized variable will be
set to this value.

dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a single value.

Raises:

valueError: if dtype IS not a floating point type.

tf.random normal initializer (mean=0.0, stddev=1.0,
seed=None, dtype=tf.float32)

Returns an initializer that generates tensors with a normal
distribution.

Args:

mean: @ python scalar or a scalar tensor. Mean of the random values
to generate.

stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

seed: A Python integer. Used to create random seeds.
See for behavior.

dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a normal distribution.

Raises:

valueError: If dtype IS not a floating point type.

tf.truncated normal initializer (mean=0.0, stddev=1.0,
seed=None, dtype=tf.float32)

Returns an initializer that generates a truncated normal distribution.

These values are similar to values from
a random normal initializer except that values more than two

standard deviations from the mean are discarded and re-drawn. This
Is the recommended initializer for neural network weights and filters.

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

mean: a python scalar or a scalar tensor. Mean of the random values
to generate.

stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

seed: A Python integer. Used to create random seeds.
See for behavior.

dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a truncated normal
distribution.

Raises:

valueError: if dtype IS not a floating point type.

tf.random uniform initializer (minval=0.0, maxval=1.0,
seed=None, dtype=tf.float32)

Returns an initializer that generates tensors with a uniform
distribution.

Args:

minval: a python scalar or a scalar tensor. lower bound of the range
of random values to generate.
maxval: a python scalar or a scalar tensor. upper bound of the range

of random values to generate.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

o seed: A Python integer. Used to create random seeds.
See for behavior.

« dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a uniform distribution.

Raises:

e ValueError: if dtype iS not a floating point type.

tf.uniform unit scaling initializer (factor=1.0,
seed=None, dtype=tf.float32)

Returns an initializer that generates tensors without scaling variance.
When initializing a deep network, it is in principle advantageous to

keep the scale of the input variance constant, so it does not explode

or diminish by reaching the final layer. If the input is x and the
operation x * w, and we want to initialize w uniformly at random, we

need to pick w from

[-sgrt (3) / sqrt(dim), sqrt(3) / sqrt(dim)]

to keep the scale intact, where dim = w.shape[0] (the size of the
input). A similar calculation for convolutional networks gives an
analogous result with dim equal to the product of the first 3
dimensions. When nonlinearities are present, we need to multiply this
by a constant factor. See (pdf) for deeper

motivation, experiments and the calculation of constants. In section

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed
https://arxiv.org/abs/1412.6558
http://arxiv.org/pdf/1412.6558.pdf

2.3 there, the constants were numerically computed: for a linear layer
it's 1.0, relu: ~1.43, tanh: ~1.15.

Args:

factor: Float. A multiplicative factor by which the values will be
scaled.

seed: A Python integer. Used to create random seeds.
See for behavior.

dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with unit variance.

Raises:

valueError: If dtype IS not a floating point type.

tf.zeros initializer (shape, dtype=tf.float32)

An adaptor for zeros() to match the Initializer spec.

Sparse Variable Updates

The sparse update ops modify a subset of the entries in a
dense variable, either overwriting the entries or adding / subtracting

a delta. These are useful for training embedding models and similar
lookup-based networks, since only a small subset of embedding
vectors change in any given step.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Since a sparse update of a large tensor may be generated
automatically during gradient computation (as in the gradient

of), an class is provided that
encapsulates a set of sparse indices and
values. IndexedSlices Objects are detected and handled

automatically by the optimizers in most cases.

tf.scatter update(ref, indices, updates,
use locking=None, name=None)

Applies sparse updates to a variable reference.

This operation computes

Scalar indices

ref[indices, ...] = updates][...]

Vector indices (for each 1)

ref[indices[i], ...] = updates[i, ...]
High rank indices (for each i, ..., 7J)
refl[indices([i, ..., Jl, ...] = updates[i, ..., J, ...]

This operation outputs ref after the update is done. This makes it
easier to chain operations that need to use the reset value.

If values in ref is to be updated more than once, because there are

duplicate entires in indices, the order at which the updates happen
for each value is undefined.

RequWESUpdates.shape = indices.shape + ref.shape[l:].

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#IndexedSlices

ref

iIndices [2, 0, 5]

updates

Args:

o ref: A mutable Tensor. Should be from a variable node.

e indices: A Tensor. Must be one of the following types: int32, inté64.
A tensor of indices into the first dimension of ref.

« updates: A Tensor. Must have the same type as ref. A tensor of

updated values to store in ref.

use locking: An optional bool. Defaults to True. If True, the

assignment will be protected by a lock; otherwise the behavior is
undefined, but may exhibit less contention.

name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want to

use the updated values after the update is done.

tf.scatter add(ref, indices, updates, use locking=None,
name=None)

Adds sparse updates to a variable reference.

This operation computes

Scalar indices

ref[indices, ...] += updates[...]

Vector indices (for each i)

ref[indices[i], ...] += updates[i, ...]
High rank indices (for each i, ..., 7J)
ref[indices[i, ..., 3], ...] += updates[i, ..., J, ...]

This operation outputs ref after the update is done. This makes it
easier to chain operations that need to use the reset value.
Duplicate entries are handled correctly: if multiple indices reference
the same location, their contributions add.

Requ”eSupdates.shape = indices.shape + ref.shape[l:].

ref

iIndices

updates

Args:

ref: A mutable Tensor. Must be one of the following

types: float32, float64, int64, int32, uint8,uint16, intl16, ints,
complex64, gint8, quint8, gint32. Should be from

avariable node.

indices: A Tensor. Must be one of the following types: int32, int64.

A tensor of indices into the first dimension of ref.

updates: A Tensor. Must have the same type as ref. A tensor of
updated values to add to ref.

use locking: An optional bool. Defaults to rFaise. If True, the

addition will be protected by a lock; otherwise the behavior is
undefined, but may exhibit less contention.

name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want to

use the updated values after the update is done.

tf.scatter sub(ref, indices, updates, use locking=None,
name=None)

Subtracts sparse updates to a variable reference.

Scalar indices

ref[indices, ...] -= updates[...]

Vector indices (for each 1)

ref[indices[i], ...] -= updates[i, ...]
High rank indices (for each i, ..., 7J)
ref[indices[i, ..., J1, ...] -= updates[i, ..., J, ...]

This operation outputs ref after the update is done. This makes it
easier to chain operations that need to use the reset value.
Duplicate entries are handled correctly: if multiple indices reference
the same location, their (negated) contributions add.

RequWeSupdates.shape = indices.shape + ref.shape[l:].

ref

iIndices

updates

Args:

ref: A mutable Tensor. Must be one of the following

types: float32, float64, int64, int32, uint8,uintl16, intl16, ints,
complex64, gint8, quint8, gint32. Should be from

avariable node.

indices: A Tensor. Must be one of the following types: int32, int64.

A tensor of indices into the first dimension of ref.

e updates: A Tensor. Must have the same type as ref. A tensor of
updated values to subtract from ref.

e use locking: An optional bool. Defaults to ralse. If True, the

subtraction will be protected by a lock; otherwise the behavior is
undefined, but may exhibit less contention.

« name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want to

use the updated values after the update is done.

tf.sparse mask(a, mask indices, name=None)

Masks elements of IndexedSlices.
Given an IndexedSlices instance a, returns
another Indexedslices that contains a subset of the slices ofa. Only

the slices at indices specified in mask indices are returned.
This is useful when you need to extract a subset of slices in

an IndexedSlices Object.

For example:

“a’ contains slices at indices [12, 26, 37, 45] from a large
tensor

with shape [1000, 10]

a.indices => [12, 26, 37, 45]

tf.shape (a.values) => [4, 10]

b’ will be the subset of "a’ slices at its second and third

indices, so

we want to mask of its first and last indices (which are at
absolute

indices 12, 45)

b = tf.sparse mask(a, [12, 45])

b.indices => [26, 37]
tf.shape (b.values) => [2, 10]
Args:

a: An IndexedSlices instance.
mask_indices: Indices of elements to mask.

name: A name for the operation (optional).

Returns:

The masked IndexedSlices instance.

class tf.IndexedSlices

A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:

values: A Tensor Of any dtype with shape [po, D1, ..., Dn].
indices: A 1-D integer Tensor with shape [D0].

An IndexedSlices is typically used to represent a subset of a larger

tensor dense of shape [LARGEO, D1, .. , DN] where LARGEOD >>

DO. The values in indices are the indices in the first dimension of the
slices that have been extracted from the larger tensor.

The dense tensor dense represented by

an IndexedSlices slices has

dense[slices.indices[i], :, :, :, ...]1 =

slices.values([i, :, =, :, ...]

The Indexedslices class is used principally in the definition of
gradients for operations that have sparse gradients (e.g.).

Contrast this representation with , which uses multi-

dimensional indices and scalar values.

tf.IndexedSlices. 1init (values, indices,
dense shape=None)

Creates an IndexedSlices.

tf.IndexedSlices.values

A Tensor containing the values of the slices.

tf.IndexedSlices.indices

A 1-D Tensor containing the indices of the slices.

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor

tf.IndexedSlices.dense shape
A 1-D Tensor containing the shape of the corresponding dense

tensor.

tf.IndexedSlices.name

The name of this IndexedSlices.

tf.IndexedSlices.dtype

The pType Of elements in this tensor.

tf.IndexedSlices.device

The name of the device on which values will be produced, or None.

tf.IndexedSlices.op

The operation that produces values as an output.

Other Methods

tf.IndexedSlices.graph

The Grapn that contains the values, indices, and shape tensors.

Tensor Transformations

Note: Functions taking Tensor arguments can also take anything

accepted by « . convert to tensor.

Contents

Tensor Transformations
Casting

tf.string to number (string tensor, out type=None,

name=None)

tf.to double (x, name=ToDouble)
tf.to float(x, name=ToFloat)

tf.to bfloatl6 (x, name=ToBFloatlo6)
tf.to int32(x, name=ToInt32)

tf.to int64 (x, name=ToInto64)
tf.cast (x, dtype, name=None)
Shapes and Shaping

tf.shape (input, name=None)

tf.size (input, name=None)

tf.rank (input, name=None)

tf.reshape (tensor, shape, name=None)

tf.squeeze (input, squeeze dims=None, name=None)
tf.expand dims (input, dim, name=None)

Slicing and Joining

tf.slice(input , begin, size, name=None)

tf.split(split dim, num split, value, name=split)
tf.tile(input, multiples, name=None)
tf.pad(input, paddings, name=None)

tf.concat (concat dim, values, name=concat)
tf.pack(values, name=pack)

tf.unpack(value, num=None, name=unpack)
tf.reverse sequence (input, seq lengths, seqg dim,
batch dim=None, name=None)

tf.reverse (tensor, dims, name=None)
tf.transpose(a, perm=None, name=transpose)
tf.space to depth(input, block size, name=None)
tf.depth to space(input, block size, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#tensor-transformations
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#casting
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#string_to_number
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#string_to_number
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_double
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_float
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_bfloat16
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_int32
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_int64
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#cast
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#shapes-and-shaping
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#shape
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#size
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#rank
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reshape
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#squeeze
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#expand_dims
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#slicing-and-joining
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#slice
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#split
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#tile
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#pad
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#concat
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#pack
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#unpack
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reverse_sequence
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reverse_sequence
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reverse
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#space_to_depth
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#depth_to_space

Casting

TensorFlow provides several operations that you can use to cast
tensor data types in your graph.

tf.string to number (string tensor, out type=None,
name=None)

Converts each string in the input Tensor to the specified numeric
type.

(Note that int32 overflow results in an error while float overflow
results in a rounded value.)

Args:

e string tensor: A Tensor of type string.
o out type: Anoptional tf.DType from: tf.float32, tf.int32.

Defaults to tf. f1o0at32. The numeric type to interpret each string in
string_tensor as.

« name: A name for the operation (optional).

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#dynamic_partition
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#dynamic_partition
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#dynamic_stitch
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#boolean_mask
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#2-d-example
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#shape_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#unique_with_counts

Returns:

A Tensor Of type out type. A Tensor of the same shape as the

iNnput string tensor.

tf.to double(x, name='ToDouble')

Casts a tensor to type float64.

Args:

x. A Tensor Of SparseTensor.

name: A name for the operation (optional).

Returns:

A Tensor Of SparseTensor With same shape as x with type float64.

Raises:

TypeError: If x cannot be cast to the float64.

tf.to float(x, name='ToFloat')

Casts a tensor to type float32.

Args:

x. A Tensor Of SparseTensor.

name: A name for the operation (optional).

Returns:

A Tensor Of SparseTensor With same shape as x with type float32.

Raises:

TypeError: If x cannot be cast to the float32.

tf.to bfloatl6 (x, name='ToBFloatl6')

Casts a tensor to type bfloat1é.

Args:

x. A Tensor Of SparseTensor.

name: A name for the operation (optional).

Returns:

A Tensor O SparseTensor With same shape as x with type bfloatilé.

Raises:

TypeError: If x cannot be cast to the bfilocat1s.

tf.to int32(x, name='ToInt32")

Casts a tensor to type int32.

Args:

x. A Tensor Of SparseTensor.

name: A name for the operation (optional).

Returns:

A Tensor Of SparseTensor With same shape as x with type int32.

Raises:

TypeError: If x cannot be cast to the int32.

tf.to int64(x, name='ToInto4d')

Casts a tensor to type int64.

Args:

x. A Tensor Of SparseTensor.

name: A name for the operation (optional).

Returns:

A Tensor Of SparseTensor With same shape as x with type inté64.

Raises:

TypeError: If x cannot be cast to the int64.

tf.cast (x, dtype, name=None)

Casts a tensor to a new type.

The operation casts x (in case of Tensor) Or x.values (in case

of sparseTensor) t0 dtype.

For example:

tensor “a is [1.8, 2.2], dtype=tf.float
tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32

Args:

x. A Tensor Of SparseTensor.
dtype: The destination type.

name: A name for the operation (optional).

Returns:

A Tensor OfF SparseTensor With same shape as x.

Raises:

TypeError: If x cannot be cast to the dtype.

Shapes and Shaping

TensorFlow provides several operations that you can use to
determine the shape of a tensor and change the shape of a tensor.

tf.shape (input, name=None)
Returns the shape of a tensor.

This operation returns a 1-D integer tensor representing the shape

of input.

For example:

't' is [[[1, 1, 11, [2, 2, 211, [I3, 3, 31, [4, 4, 4]11]
shape (t) ==> [2, 2, 3]

Args:

input: A Tensor.

name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.size (input, name=None)
Returns the size of a tensor.

This operation returns an integer representing the number of

elements in input.

For example:

't' is [[[1, 1,, 11, (2, 2, 211, [[3, 3, 31, [4, 4, 4111]]
size(t) ==> 12

Args:

input: A Tensor.

name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.rank (input, name=None)

Returns the rank of a tensor.

This operation returns an integer representing the rank of input.

For example:

't' is [[[1, 1, 11, [2, 2, 211, [I[3, 3, 31, [4, 4, 4]1]
shape of tensor 't' is [2, 2, 3]

rank (t) ==> 3

Note: The rank of a tensor is not the same as the rank of a matrix.
The rank of a tensor is the number of indices required to uniquely

select each element of the tensor. Rank is also known as "order",
"degree", or "ndims."

Args:

input: A Tensor.

name: A name for the operation (optional).

Returns:

A Tensor Of type int32.

tf.reshape(tensor, shape, name=None)

Reshapes a tensor.

Given tensor, this operation returns a tensor that has the same
values as tensor with shape shape.

If one component of shape is the special value -1, the size of that
dimension is computed so that the total size remains constant. In

particular, a shape of [-1] flattens into 1-D. At most one component
of shape can be -1.

If shape is 1-D or higher, then the operation returns a tensor with
shape shape filled with the values of tensor. In this case, the number
of elements implied by shape must be the same as the number of

elements in tensor.

For example:

tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
tensor 't' has shape [9]
reshape(t, [3, 31) ==> [[1, 2, 3]

[4, 5, 6]

[7, 8, 911

tensor 't' is [[[1, 1], [2, 2]]

[[3, 31, [4, 4111
tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2]
[3, 3, 4, 411
tensor 't' is [[[1, 1, 1],
(2, 2, 211,
[[3, 3, 31,
(4, 4, 411,
[[5, 5, 5],
[6, 6, 6]]]
tensor 't' has shape [3, 2, 3]
pass '[-1]' to flatten 't'
reshape (t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5,
5, 6, 6, 6]
-1 can also be used with higher dimensional shapes
reshape(t, [2, -11) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 31,

(4, 4, 4, 5, 5, 5, 6, 6, 6]]

tensor 't' is [7]

shape " [] reshapes to a scalar
reshape(t, []) ==> 7
Args:

tensor: A Tensor.

shape: A Tensor Of type int32. Defines the shape of the output
tensor.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.squeeze (input, squeeze dims=None, name=None)

Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same

type with all dimensions of size 1 removed. If you don't want to
remove all size 1 dimensions, you can remove specific size 1

dimensions by specifyingsqueeze dims.

For example:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape (squeeze (t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape (squeeze (t, [2, 4]1)) ==> [1, 2, 3, 1]

Args:

input: A Tensor. The input to squeeze.

squeeze dims: An optional list of ints. Defaults to [1. If specified,

only squeezes the dimensions listed. The dimension index starts at 0.
It is an error to squeeze a dimension that is not 1.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Contains the same data

as input, but has one or more dimensions of size 1 removed.

tf.expand dims (input, dim, name=None)

Inserts a dimension of 1 into a tensor's shape.

Given a tensor input, this operation inserts a dimension of 1 at the
dimension index dim of input's shape. The dimension

index dim starts at zero; if you specify a negative number for dim it is

counted backward from the end.
This operation is useful if you want to add a batch dimension to a
single element. For example, if you have a single image of

shape [height, width, channels], you can make it a batch of 1
image withexpand dims (image, 0), which will make the shape [1,

height, width, channels].

Other examples:

't' is a tensor of shape [2]

shape (expand dims(t, 0)) ==> [1, 2]

shape (expand dims(t, 1)) ==> [2, 1]

shape (expand dims (t, -1)) ==> [2, 1]

't2' is a tensor of shape [2, 3, 5]
shape (expand dims (t2, 0)) ==> [1, 2, 3, 5]
shape (expand dims (t2, 2)) ==> [2, 3, 1, 5]
shape (expand dims (t2, 3)) ==> [2, 3, 5, 1]

This operation requires that:

-l-input.dims () <= dim <= input.dims ()

This operation is related to squeeze (), which removes dimensions of

size 1.

Args:

input: A Tensor.
dim: A Tensor oOf type int32. 0-D (scalar). Specifies the dimension
index at which to expand the shape ofinput.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Contains the same data

as input, but its shape has an additional dimension of size 1 added.

Slicing and Joining

TensorFlow provides several operations to slice or extract parts of a
tensor, or join multiple tensors together.

tf.slice(input , begin, size, name=None)

Extracts a slice from a tensor.

This operation extracts a slice of size size from a
tensor input starting at the location specified by begin. The

slice size is represented as a tensor shape, where size[i] is the

number of elements of the 'i'th dimension ofinput that you want to
slice. The starting location (begin) for the slice is represented as an
offset in each dimension of input. In other words, begin[i] is the
offset into the 'I'th dimension of input that you want to slice from.

begin IS zero-based; size is one-based. If size[i] Is -1, all

remaining elements in dimension i are included in the slice. In other
words, this is equivalent to setting:
size[i] = input.dim size (i) - begin[i]

This operation requires that:

0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]

For example:

'input' is [[[1, 1, 11, [2, 2, 211,

(13, 3, 31, [4, 4, 411,

[[5, 5, 51, [6, 6, 6]]]

tf.slice(input, [1, O, 0], [1, 1, 31) ==> [[[3, 3, 3111

tf.slice (input, [1, 0, 0], [1, 2, 31) ==> [[[3, 3, 31,
(4, 4, 4111

tf.slice(input, [1, O, 0], [2, 1, 31) ==> [[I[3, 3, 311,
[[5, 5, 5111

Args:

input A Tensor.
begin: AN int32 Or int64 Tensor.
size: AN int32 Or int64 Tensor.

name: A name for the operation (optional).

Returns:

A Tensor the same type as input.

tf.split(split dim, num split, value, name='split')

Splits a tensor into num_split tensors along one dimension.
Splits value along dimension split diminto num split Smaller
tensors. Requires that num split evenly

divide value. shape[split dim].

For example:

'value' is a tensor with shape [5, 30]

Split 'value' into 3 tensors along dimension 1
split0, splitl, split2 = tf.split(l, 3, value)
tf.shape(split0) ==> [5, 10]

Args:

split dim: A 0-D int32 Tensor. The dimension along which to split.
Must be in the range [0, rank(value)).

num_split: A Python integer. The number of ways to split.

value: The Tensor to split.

name: A name for the operation (optional).

Returns:

num split Tensor oObjects resulting from splitting value.

tf.tile(input, multiples, name=None)
Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by

replicating input multiples times. The output tensor's i'th dimension
has input.dims (i) * multiples[i] elements, and the values
of input are replicated multiples[i]times along the 'i'th dimension.

For example, tiling (a b ¢ d] by [2] produces [a b ¢ d a b ¢ d].

Args:

input: A Tensor. 1-D or higher.
multiples: A Tensor Of type int32. 1-D. Length must be the same
as the number of dimensions in input

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.pad(input, paddings, name=None)

Pads a tensor with zeros.

This operation pads a input with zeros according to

the paddings you specify. paddings IS an integer tensor with

shape [Dn, 2], where nis the rank of input. For each dimension D
of input, paddings [D, O]indicates how many zeros to add before
the contents of input in that dimension, and paddings [D,

1]indicates how many zeros to add after the contents of input in that

dimension.
The padded size of each dimension D of the output is:

paddings (D, 0) + input.dim size (D) + paddings (D, 1)

For example:
't is [[1, 11, [2, 2]]
'paddings' is [[1, 11, [2, 2]1]

rank of 't' is 2
pad(t, paddings) ==> [][
[0, O 0
(06, 0, 2, 2, 0, O
[0, O 0

Args:

input: A Tensor.
paddings: A Tensor Of type int32.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.concat (concat dim, values, name='concat')

Concatenates tensors along one dimension.

Concatenates the list of tensors values along

dimension concat dim. If values[i]. shape = [D0O, D1,
Dconcat dim(i), ...Dn],the concatenated result has shape
[DO, D1, ... Rconcat dim, ...Dn]

where

Rconcat dim = sum(Dconcat dim(i))

That is, the data from the input tensors is joined along

the concat dim dimension.

The number of dimensions of the input tensors must match, and all

dimensions except concat dim must be equal.

For example:

tl = [[1, 2, 3], [4, 5, 6]]

t2 = [[7, 8, 9], [10, 11, 12]]

tf.concat(0, [tl, t2]) ==> [[1, 2, 31, [4, 5, 61, [7, 8, 91, [10,
11, 1271

tf.concat (1, [tl, t2]) ==> [I[1, 2, 3, 7, 8, 91, [4, 5, 6, 10, 11,
1271

tensor t3 with shape [2, 3]
tensor t4 with shape [2, 3]

tf.shape(tf.concat (0, [t3, t4])) ==> [4, 3]
tf.shape(tf.concat(l, [t3, t4])) ==> [2, 6]
Args:

concat dim: 0-D int32 Tensor. Dimension along which to

concatenate.

o values: Alist of Tensor Objects or a single Tensor.

« name: A name for the operation (optional).

Returns:

A Tensor resulting from concatenation of the input tensors.

tf.pack(values, name='pack')

Packs a list of rank-r tensors into one rank- (rR+1) tensor.
Packs tensors in values into a tensor with rank one higher than each
tensor in values and shape[len (values)] + values[0].shape.

The output satisfies output [i, ...] = values[i][...].

This is the opposite of unpack. The numpy equivalent is

tf.pack([x, y, z]) = np.asarray([x, y, z])

Args:

o values: A list of Tensor objects with the same shape and type.

« name: A name for this operation (optional).

Returns:

o output: A packed Tensor with the same type as values.

tf.unpack(value, num=None, name='unpack')

Unpacks the outer dimension of a rank-r tensor into rank- (r-

1) tensors.

Unpacks num tensors from value along the first dimension. If num is
not specified (the default), it is inferred fromvalue's shape.

If value.shape[0] IS not kKnown, valueError IS raised.

The ith tensor in output is the slice value[i, ...].Each tensor

In output has shape value.shape[1:].

This is the opposite of pack. The numpy equivalent is
tf.unpack(x, n) = list(x)

Args:

e value: Arankr > 0 Tensor to be unpacked.
« num: An int. The first dimension of value. Automatically inferred
if None (the default).

« name: A name for the operation (optional).

Returns:

The list of Tensor objects unpacked from value.

Raises:

e ValueError: If numis unspecified and cannot be inferred.

tf.reverse sequence (input, seq lengths, seq dim,
batch dim=None, name=None)

Reverses variable length slices.

This op first slices input along the dimension batch dim, and for
each slice i, reverses the firstseq lengths[i] elements along the
dimension seq dim.

The elements of seq_lengths must obey seq lengths[i] <
input.dims[seqg dim], andseq lengths must be a vector of

length input.dims[batch dim].

The output slice i along dimension batch dim IS then given by input
slice i, with the first seq lengths[i]slices along

dimension seq_dim reversed.

For example:

Given this:

batch dim = 0

seq dim = 1

input.dims = (4, 8, ...)
seq lengths = [7, 2, 3, 5]

then slices of input are reversed on seq dim, but only up to

seq_lengths:

output[0, 0:7, =,] = input[0, 7:0:-1, =, oo
output[l, 0:2, ;] = input[l, 2:0:-1, =, oo
output[2, 0:3, ;] = input[2, 3:0:-1, =, oo
output[3, 0:5, :,] = input[3, 5:0:-1, :, .]

while entries past seq lens are copied through:
output[0, 7:, :, ...] = input[0, 7:, :, ...]
output[l, 2:, :, ...]

inputfll, 2:, :, ...]

euEPuE [2, 33, 8,
euEPuE [, 23, 8,

In contrast, if:

Given this:
batch dim = 2
seqg _dim = 0

input.dims = (8,

seq lengths = [7,

then slices of input are reversed

seq lengths:
output[0:7, :, O
output[0:2 1
output[0:3, :, 2,
output[0:5 3

while entries past

output([7:, :, O,
output[2:, :, v

[1
output[3:, :, 2,
output|[2 3

I I 4

Args:

-7
-7
-7

-7

AeuE [2;, 38y 8y oool

LE [S, 287 Sy ocool

on seq dim,

input([7:0:-1, :, O,
input([2:0:-1, :, 1,
input[3:0:-1, :, 2,
input[5:0:-1, :, 3,

but only up to

seq lens are copied through:

-]

ool
-]
]

input(7:, :, 0, =,
inputf2:, :, 1, =,
input[3:, :, 2, =,
inputf2:, :, 3, =,

input: A Tensor. The input to reverse.

seq_lengths: A Tensor Of type int64. 1-D with

length input.dims (batch dim) andmax (seq lengths) <

input.dims (seg_dim)

seq_dim: An int. The dimension which is partially reversed.

batch dim: An optional int. Defaults to 0. The dimension along

which reversal is performed.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. The partially reversed input.

It has the same shape as input.

tf.reverse (tensor, dims, name=None)

Reverses specific dimensions of a tensor.

Given a tensor, and a bool tensor dims representing the dimensions
of tensor, this operation reverses each dimension i

of tensor where dims [1i] IS True.

tensor can have up to 8 dimensions. The number of dimensions

of tensor must equal the number of elements in dims. In other

words:

rank (tensor) = size (dims)

For example:

tensor 't' is [[[[O, 1, 2, 31,
[4, 5, 6, 7],

[8 9, 10, 1111,
[[12, 13, 14, 15],

(16, 17, 18, 19],

[20, 21, 22, 231111
tensor 't' shape is [1, 2, 3, 4]

'dims' is [False, False, False, True]

reverse (t, dims) ==> [[[[3, 2, 1, 01,
[7, 6, 5, 41,
[11, 10, 9, 811,
[[15, 14, 13, 127,
1%, 18, 17, 161,
[23, 22, 21, 201111

'dims' is [False, True, False, False]

reverse (t, dims) ==> [[[[12, 13, 14, 15],
[le, 17, 18, 197,
[20, 21, 22, 23]
(r o, 1, 2, 31,
[4, 5, 6, 171,
[8, 9, 10, 111111

'dims' is [False, False, True, False]
reverse (t, dims) ==> [[[[8, 9, 10, 117,
(4, 5, o, 71,
[0, i, 2, 3]]
[[20, 21, 22, 231,
[l6, 17, 18, 191,
[12, 13, 14, 15]111]

Args:

tensor: A Tensor. Must be one of the following
types: uint8, int8, int32, bool, float32, float64. Up to 8-D.
dims: A Tensor Of type bool. 1-D. The dimensions to reverse.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor. The same shape

as tensor.

tf.transpose(a, perm=None, name='transpose')
Transposes a. Permutes the dimensions according to perm.
The returned tensor's dimension i will correspond to the input

dimension perm[i]. If permis not given, it is set to (n-1...0), where n

Is the rank of the input tensor. Hence by default, this operation
performs a regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]

[4 5 611
tf.transpose(x) ==> [[1l 4]
[2 5]
[3 6]]
Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
[2 5]
[3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2
'x' is [rrr 2 31

[4 5 6]]
[[7 8 9]
[10 11 1211]
Take the transpose of the matrices in dimension-0
tf.transpose (b, perm=[0, 2, 1]) ==> [[[1 4]
[2 5]
[3 611
[[7 10]
[8 11]
[9 12111
Args:

a. A Tensor.
perm: A permutation of the dimensions of a.

name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.space to depth(input, block size, name=None)
SpaceToDepth for tensors of type T.
Rearranges blocks of spatial data, into depth. More specifically, this

op outputs a copy of the input tensor where values from

the height and width dimensions are moved to the depth dimension.

The attr block sizeindicates the input block size and how the data is
moved.

Non-overlapping blocks of size block size x block size are
rearranged into depth at each location.

The depth of the output tensor is input depth * block size *

block size.

The input tensor's height and width must be divisible by block_size.

That is, assuming the input is in the shape: [batch, height,

width, depth], the shape of the output will be: [batch,

height/block size, width/block size,
depth*block size*block size]
This operation requires that the input tensor be of rank 4, and

that block size be >=1 and a divisor of both the

Input height and width.

This operation is useful for resizing the activations between
convolutions (but keeping all data), e.g. instead of pooling. It is also
useful for training purely convolutional models.

For example, given this input of shape (1, 2, 2, 171, and block_size

of 2:
x = [[[[1]1, [2]]

This operation will output a tensor of shape (1, 1, 1, 4]:

[reex, 2, 3, 41111
Here, the input has a batch of 1 and each batch element has

shape (2, 2, 11, the corresponding output will have a single

element (i.e. width and height are both 1) and will have a depth of 4
channels (1 * block_size * block_size). The output element shape

is[1, 1, 4].

For an input tensor with larger depth, here of shape (1, 2, 2, 31,

e.g.
X:[[[[lr 2/ 3]/ [41 5/ 6]]1

[[7, &, 91, 119, i, 127717
This operation, for block_size of 2, will return the following tensor of

shape (1, 1, 1, 12]

ceeey, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12]]]]

x = (0[], (2], [31, [e]],
(31, (4], (71, [81],
(rej, f[101, (131, [14]],
(r11j, f(1i2], (151, [16]]]

Args:

input: A Tensor.
block size: An int. The size of the spatial block.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.depth to space(input, block size, name=None)
DepthToSpace for tensors of type T.

Rearranges data from depth into blocks of spatial data. This is the
reverse transformation of SpaceToDepth. More specifically, this op
outputs a copy of the input tensor where values from

the depth dimension are moved in spatial blocks to

the height and width dimensions. The attr block size indicates the
input block size and how the data is moved.

Chunks of data of size block size * block size from depth are

rearranged into non-overlapping blocks of size block size x

block size

The width the output tensor is input_depth * block size, whereas
the height is input _height * block size.

The depth of the input tensor must be divisible by block size *
block size.

That is, assuming the input is in the shape: [batch, height,

width, depth], the shape of the output will be: [batch,

height*block size, width*block size,
depth/ (block size*block size)]
This operation requires that the input tensor be of rank 4, and

thatblock size be >=1andthatblock size * block size bea

divisor of the input depth.

This operation is useful for resizing the activations between
convolutions (but keeping all data), e.g. instead of pooling. It is also
useful for training purely convolutional models.

For example, given this input of shape (1, 1, 1, 4], and a block

size of 2:
x = [[[[1, 2, 3, 41111

This operation will output a tensor of shape (1, 2, 2, 11:

(00111, [211,
[[3], [411]]
Here, the input has a batch of 1 and each batch element has

shape (1, 1, 4], the corresponding output will have 2x2 elements
and will have a depth of 1 channel (1=4 / (block size *
block size)). The output element shapeis 2, 2, 1].

For an input tensor with larger depth, here of shape (1, 1, 1, 127,

e.g.
x = [[[l1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12]11]

This operation, for block size of 2, will return the following tensor of
shape (1, 2, 2, 3]

ceeex, 2, 31, (4, 5, 611,
(s, 8, 91, (10, 11, 12]]]]

Similarly, for the following input of shape [1 2 2 4], and a block size
of 2:

[l

[5, 6, 7, 811,

([ro, 10, 11, 127,
[13, 14, 15, 161111

the operator will return the following tensor of shape (1 4 4 17:

x = [[(1], (2], [3], [el],
(31, (41, (71, (811,
(91, f(101, (131, [14]],
((111, (121, (151, [16]]]

Args:

input: A Tensor.

block size: An int. The size of the spatial block, same as in
Space2Depth.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.gather (params, indices, validate indices=None,
name=None)

Gather slices from params according to indices.
indices must be an integer tensor of any dimension (usually 0-D or
1-D). Produces an output tensor with shapeindices.shape +

params.shape[1:] Where:

Scalar indices

output[:, ..., :] = params[indices, :, ... :]

Vector indices

output[i, :, ..., :] = params[indices[i], :, ... :]
Higher rank indices

output(i, ..., Jj, :, ... :] = params[indices[i, ...,

J); 8y ocoop 8]

If indices is a permutation and len (indices) ==
params.shape [0] then this operation will

permuteparams accordingly.

Palrams Po| P1]P2 ||

Indices [2, 0,2, 5]

Args:

params. A Tensor.
indices: A Tensor. Must be one of the following types: int32, int64.
validate indices: An optional bool. Defaults to True.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as params.

tf.dynamic partition(data, partitions, num partitions,
name=None)

Partitions data iNt0 num_partitions tensors using indices

from partitions.

For each index tuple js of size partitions.ndim, the

slice data[js, ...] becomes part ofoutputs[partitions[js]].
The slices with partitions[js] = i are placed in outputs[i] Iin
lexicographic order of js, and the first dimension of cutputs[i] IS

the number of entries in partitions equal to i. In detalil,

outputs[i] .shape = [sum(partitions == i)] +

data.shape[partitions.ndim:]
outputs[i] = pack([dataljs, ...] for js if partitions[js] == i])

data.shape must start with partitions.shape.

For example:

Scalar partitions

partitions = 1

num partitions = 2

data = [10, 20]

outputs[0] = [] # Empty with shape [0, 2]
outputs[1l] = [[10, 20]]

Vector partitions
partitions = [0, O, 1, 1, 0]
num partitions = 2

data = [10, 20, 30, 40, 50]
outputs[0] = [10, 20, 50]
outputs[l] = [30, 40]

partitions 0|0 |

data T

partitions: A Tensor Of type int32. Any shape. Indices in the

Args:

data: A Tensor.

range [0, num partitions).

num partitions! An int thatis >= 1. The number of partitions to
output.

name: A name for the operation (optional).

Returns:

A list of num partitions Tensor objects of the same type as data.

tf.dynamic stitch(indices, data, name=None)

Interleave the values from the data tensors into a single tensor.

Builds a merged tensor such that

merged[indices[m] [i, ..., J], ...] = data[m][i, ..., 3, ...]

For example, if each indices [m] is scalar or vector, we have

Scalar indices

merged[indices[m], ...] = data[m][...]

Vector indices

merged[indices[m] [i], ...] = data[m][i, ...]

Each data[i].shape must start with the

corresponding indices[i] .shape, and the rest

ofdata[i].shape must be constant w.r.t. i. That is, we must

have data[i].shape = indices[i].shape + constant. In terms of

this constant, the output shape is

merged.shape = [max (indices)] + constant

Values are merged in order, so if an index appears in

both indices[m] [i] and indices[n] [j] fOr (m,i) < (n,7) the

slice data[n] [§1 will appear in the merged result.

For example:

indices[0] = 6

indices[1] = [4, 1]

indices[2] = [[5, 2], [0, 31]

data[0] = [61l, 62]

datal[l] = [[41, 42], [11, 12]]

dataf2] = [[[51, 521, [21, 22]], [I[1, 21, [31, 32]11]
merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],

(51, 52], [61, 62]]

data
indices R
7

[[0,1,5],[2,3,0]]
indices: A list of at least 2 Tensor objects of type int32.

Args:

data: A list with the same number of Tensor objects
as indices Of Tensor objects of the same type.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.

tf.boolean mask(tensor, mask, name='boolean mask')

Apply boolean mask to tensor. Numpy equivalent is tensor [mask].

1-D example

tensor = [0, 1, 2, 3]
mask = [True, False, True, False]

boolean mask(tensor, mask) ==> [0, 2]

In general, 0 < dim(mask) = K <= dim(tensor), and mask's shape
must match the first K dimensions oftensor's shape. We then
have:boolean_mask(tensor, mask) [1, J1,...,3d] =
tensor[il, ..., iK,31,...,3jd] where (i1, ..., iK) isthe

ith True entry of mask (row-major order).

Args:

tensor: N-D tensor. First K dimensions can be None, which allows
e.g. undefined batch size. Trailing dimensions must be specified.

mask: K-D boolean tensor, K <= N.

name: A name for this operation (optional).

Returns:

Tensor populated by entries in tensor corresponding to True values

IN mask.

Raises:

valueError: If shapes do not conform.

Examples: python

2-D example

a=1[1, 2], [3, 4], [5, 6]] mask = [True, False, True]
boolean_mask(tensor, mask) ==>[[1, 2], [5, 6]]

Other Functions and Classes

tf.shape n(input, name=None)
Returns shape of tensors.

This operation returns N 1-D integer tensors representing shape
of input[i]s.
Args:

input: A list of at least 1 Tensor objects of the same type.

name: A name for the operation (optional).

Returns:

A list with the same number of Tensor objects

as input of Tensor objects of type int32.

tf.unique with counts (x, name=None)

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique
elements of x sorted in the same order that they occur in x. This

operation also returns a tensor idx the same size as x that contains

the index of each value of xin the unique output y. Finally, it returns a

third tensor count that contains the count of each element of v in x. In

other words:
y[idx[1i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx, count = unique with counts (x)

y ==> [1, 2, 4, 7, 8]

idx ==> [0, O, 1, 2, 2, 2, 3, 4, 4]

count ==> [2, 1, 3, 1, 2]

Args:

x. A Tensor. 1-D.

name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx, count).
y: A Tensor. Has the same type as x. 1-D.
idx: A Tensor Of type int32. 1-D.

count: A Tensor Of type int32. 1-D.

Math

Note: Functions taking Tensor arguments can also take anything

accepted by

Contents

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor

Math
Arithmetic Operators
tf.add(x, y, name=None

)
tf.sub(x, y, name=None)
tf.mul (x, y, name=None)
tf.div(x, y, name=None)
tf.truediv (x, y, name=None)
tf.floordiv(x, y, name=None)
tf.mod(x, y, name=None)
tf.cross(a, b, name=None)
Basic Math Functions

tf.add n(inputs, name=None)

tf.abs (x, name=None)
tf.neg(x, name=None)
tf.sign (x, name=None)
tf.inv(x, name=None)
tf.square (x, name=None)
tf.round (x, name=None)
tf.sgrt (x, name=None)
tf.rsgrt (x, name=None)
tf.pow(x, y, name=None)
tf.exp(x, name=None)
tf.log(x, name=None)
tf.ceil (x, name=None)
tf.floor (x, name=None)
tf.maximum(x, y, name=None)
tf.minimum(x, y, name=None)
tf.cos(x, name=None)
tf.sin(x, name=None)
tf.lgamma (x, name=None)
tf.erf (x, name=None)
tf.erfc(x, name=None)

Matrix Math Functions
tf.diag(diagonal, name=None)

tf.transpose(a, perm=None, name=transpose)
tf.matmul (a, b, transpose a=False, transpose b=False,
a_1s sparse=False, b is sparse=False, name=None)

tf.batch matmul (x, y, adj x=None, adj y=None, name=None)

tf.matrix determinant (input, name=None)
tf.batch matrix determinant (input, name=None)
tf.matrix inverse (input, name=None)
tf.batch matrix inverse (input, name=None)
tf.cholesky (input, name=None)

tf.batch cholesky(input, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#math
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#arithmetic-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#add
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sub
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#mul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#div
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#truediv
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#floordiv
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#mod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#cross
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#basic-math-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#add_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#abs
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#neg
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sign
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#inv
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#square
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#round
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sqrt
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#rsqrt
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#pow
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#exp
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#log
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#ceil
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#floor
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#maximum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#minimum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#cos
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sin
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#lgamma
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#erf
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#erfc
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix-math-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#diag
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_determinant
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_determinant
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_inverse
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_inverse
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#cholesky
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_cholesky

tf.
tf.
tf
tf
tf.
name=None)

self adjoint eig(input,

.matrix solve (matrix,

tf.batch matrix triangular

name=None)
tf.matrix solve ls(matrix,

fast=True, name=None)

tf.batch matrix solve ls(matrix,

fast=True, name=None)

Complex Number Functions
tf.complex (real, imag,
tf.
tf.
tf.
tf.

complex abs(x,
conj (in , name=None)
imag (in , name=None)
real (in_, name=None)
tf.fft2d(in_,
tf.ifft2d(in ,
Reduction

tf.reduce sum(input tensor,

name=None)
name=None)

keep dims=False, name=None)

tf.reduce prod(input tensor,

keep dims=False, name=None)
tf.reduce min(input tensor,
keep dims=False, name=None)
tf.reduce max (input tensor,
keep dims=False, name=None)

tf.reduce mean (input tensor,

keep dims=False, name=None)
tf.reduce all (input tensor,
keep dims=False, name=None)
tf.reduce any(input tensor,
keep dims=False, name=None)
tf.accumulate n(inputs,
name=None)
Segmentation
tf.segment sum(data,
tf.segment prod(data,
tf.segment min (data,
tf.
tf.

segment max (data,
segment mean (data,

batch self adjoint eig(input,
rhs,
.batch matrix solve (matrix,
matrix triangular solve (matrix,

shape=None,

name=None)
name=None)
name=None)
rhs, name=None)
rhs, lower=None,

solve (matrix, rhs, lower=None,

rhs, 12 regularizer=0.0,

rhs, 12 regularizer=0.0,

name=None)
name=None)

reduction indices=None,
reduction indices=None,
reduction indices=None,
reduction indices=None,
reduction indices=None,
reduction indices=None,
reduction indices=None,

tensor dtype=None,

segment_ids, name=None)
segment_ids, name=None)
segment_ids, name=None)
segment_ids, name=None)
segment_ids, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#self_adjoint_eig
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_self_adjoint_eig
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#complex-number-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#complex
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#complex_abs
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#conj
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#imag
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#real
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#fft2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#ifft2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduction
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_prod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_prod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_min
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_min
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_max
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_max
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_all
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_all
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_any
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_any
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#accumulate_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#accumulate_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_prod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_min
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_max
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_mean

Arithmetic Operators

TensorFlow provides several operations that you can use to add
basic arithmetic operators to your graph.

tf.add(x, y, name=None)
Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not.

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#unsorted_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#unsorted_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sequence-comparison-and-indexing
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#argmin
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#argmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#listdiff
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#where
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#unique
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#edit_distance
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#edit_distance
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#invert_permutation
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#scalar_mul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n_grad
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n_grad

o x: A Tensor. Must be one of the following
types: float32, float64, uint8, int8, intl6, int32, int64,complex
64, string.

e v: A Tensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sub(x, y, name=None)
Returns x - y element-wise.
Args:

o x: A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.
e vy: A Tensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.mul (x, y, name=None)

Returns x * y element-wise.

Args:

o x: A Tensor. Must be one of the following
types: float32, float64, uint8, int8, intl6, int32, int64,complex
64.

e v:ATensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.div(x, y, name=None)

Returns x / y element-wise.

Args:

« x: A Tensor. Must be one of the following
types: float32, float64, uint8, int8, intl6, int32, int64,complex
64.

e vy:ATensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.truediv(x, y, name=None)
Divides x / y elementwise, always producing floating point results.
The same as tf.div for floating point arguments, but casts integer

arguments to floating point before dividing so that the result is always
floating point. This op is generated by normal x / vy division in
Python 3 and in Python 2.7 with from future import
division. If you want integer division that rounds down, use x //

yor tf.floordiv.

x and y must have the same numeric type. If the inputs are floating

point, the output will have the same type. If the inputs are integral,
the inputs are cast

to float32 for intg and inti16 and float64 for int32 and int64(mat

ching the behavior of Numpy).

Args:

x. Tensor humerator of numeric type.
y: Tensor denominator of numeric type.

name: A name for the operation (optional).

Returns:

x / yevaluated in floating point.

Raises:

TypeError: If x and y have different dtypes.

tf.floordiv(x, y, name=None)

Divides x / y elementwise, rounding down for floating point.
The same as tf.div (x,y) for integers, but

uses tf.floor (tf.div(x,y)) for floating point arguments so that
the result is always an integer (though possibly an integer

represented as floating point). This op is generated by x // v floor
division in Python 3 and in Python 2.7 with from future import
division.

Note that for efficiency, f1oordiv uses C semantics for negative
numbers (unlike Python and Numpy).
x and y must have the same type, and the result will have the same

type as well.

Args:

x: Tensor humerator of real numeric type.
y: Tensor denominator of real numeric type.

name: A name for the operation (optional).

Returns:

x / yrounded down (except possibly towards zero for negative

integers).

Raises:

TypeError: If the inputs are complex.

tf.mod(x, y, name=None)
Returns element-wise remainder of division.
Args:

x. A Tensor. Must be one of the following
types: int32, int64, float32, float64
y: A Tensor. Must have the same type as x.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cross(a, b, name=None)

Compute the pairwise cross product.

a and b must be the same shape; they can either be simple 3-

element vectors, or any shape where the innermost dimension is 3.
In the latter case, each pair of corresponding 3-element vectors is
cross-multiplied independently.

Args:

a: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16, int8,uintls.
A tensor containing 3-element vectors.

b: A Tensor. Must have the same type as a. Another tensor, of same
type and shape as a.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a. Pairwise cross product of the

vectors in a and b.

Basic Math Functions

TensorFlow provides several operations that you can use to add
basic mathematical functions to your graph.

tf.add n(inputs, name=None)

Add all input tensors element wise.

Args:

inputs: A list of at least 1 Tensor objects of the same type
IN: float32, float64, int64, int32, uint8,uintl6, intl6, int8, com

plex64, gint8, quint8, gint32. Must all be the same size and
shape.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as inputs.

tf.abs (x, name=None)

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor

containing the absolute value of each element inx. For example, if x
Is an input element and y is an output element, this operation

computes y=|X|y=|x].

See to compute the absolute value of a complex

number.

Args:

x. A Tensor Of type float, double, int32, OF inté64.

name: A name for the operation (optional).

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#tf_complex_abs

Returns:

A Tensor the same size and type as x with absolute values.

tf.neg(x, name=None)

Computes numerical negative value element-wise.

l.e., y=—Xy=-x.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sign (x, name=None)
Returns an element-wise indication of the sign of a number.

y=sign(x) =-1ifx<0;0ifx==0; 1if x> 0.

Args:

o x: A Tensor. Must be one of the following
types: float32, float64, int32, int64

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.inv(x, name=None)

Computes the reciprocal of x element-wise.

l.e., y=1/xy=1/x.

Args:

« x: A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.square (x, name=None)

Computes square of x element-wise.

[.e., y=X*X=X2y=x*Xx=X2.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.round(x, name=None)
Rounds the values of a tensor to the nearest integer, element-wise.

For example:

'a' is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [1.0, 3.0, 2.0, -4.0]

Args:

x. A Tensor Of type float Or double.

name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as x.

tf.sgrt (x, name=None)

Computes square root of x element-wise.

l.e., y=X\/=X1/2y=x=x1/2.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.rsqgrt (x, name=None)

Computes reciprocal of square root of x element-wise.

le., y=1/x\y=1/x.

Args:

o x: A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.pow(x, y, name=None)

Computes the power of one value to another.

Given a tensor x and a tensor vy, this operation computes Xyxy for

corresponding elements in x and y. For example:

tensor 'x' is [[2, 211, [3, 311

tensor 'y' is [[8, 16], [2, 3]1]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
Args:

e x:A Tensor of type float, double, int32, complex64, Of int64.
e vy:ATensor of type float, double, int32, complex64, Of int64.

« name: A name for the operation (optional).

Returns:

A Tensor.

tf.exp(x, name=None)
Computes exponential of x element-wise. y=exy=ex.
Args:

%. A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.log(x, name=None)

Computes natural logarithm of x element-wise.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.ceil (x, name=None)

Returns element-wise smallest integer in not less than x.

Args:

x. A Tensor. Must be one of the following types: float32, float64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.floor (x, name=None)

Returns element-wise largest integer not greater than x.

Args:

x. A Tensor. Must be one of the following types: fl1oat32, float64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.maximum(x, y, name=None)

Returns the max of xand y (i.e. x >y ? X : y) element-wise,
broadcasts.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, int64.
y: A Tensor. Must have the same type as x.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.minimum(x, y, name=None)

Returns the min of x and y (i.e. x <y ? x : y) element-wise,
broadcasts.

Args:

o x: A Tensor. Must be one of the following
types: float32, float64, int32, int64
e vy: A Tensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cos (x, name=None)
Computes cos of x element-wise.
Args:

o x: A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sin(x, name=None)

Computes sin of x element-wise.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, complex64, int64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.lgamma (x, name=None)
Computes 1n (| gamma (x) |) element-wise.
Args:

x. A Tensor with type float, double, int32, int64, Of gint32.

name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype !'= gint32 otherwise

the return type is quints.

tf.erf (x, name=None)
Computes Gauss error function of x element-wise.
Args:

x. A Tensor with type float, double, int32, int64, Of gint32.

name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != gint32 otherwise

the return type is quints.

tf.erfc(x, name=None)
Computes complementary error function of x element-wise.
Args:

x. A Tensor with type float, double, int32, int64, Of gint32.

name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != gint32 otherwise

the return type is quints.

Matrix Math Functions

TensorFlow provides several operations that you can use to add
basic mathematical functions for matrices to your graph.

tf.diag(diagonal, name=None)

Returns a diagonal tensor with a given diagonal values.

Given a diagonal, this operation returns a tensor with

the diagonal and everything else padded with zeros. The diagonal is
computed as follows:

Assume diagonal has dimensions [D1,..., DK], then the output is a
tensor of rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where:
output[il, ..., ik, i1,..., ik] = diagonal[il, ..., ik] and

0 everywhere else.

For example:
'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, O]
(0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]
Args:

diagonal: A Tensor. Must be one of the following

types: float32, float64, int32, int64. Rank k tensor where k is at
most 3.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as diagonal.

tf.transpose (a, perm=None, name='transpose')

Transposes a. Permutes the dimensions according to perm.

The returned tensor's dimension i will correspond to the input
dimension perm[i]. If permis not given, it is set to (n-1...0), where n
Is the rank of the input tensor. Hence by default, this operation
performs a regular matrix transpose on 2-D input Tensors.

For example:

'x'" is [[1 2 3]

[4 5 6]]
tf.transpose(x) ==> [[1l 4]
[2 5]
[3 6]]
Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
[2 5]
[3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2
'x' is [[[1 2 3]

[4 5 6]]
[[7 8 9]
[10 11 12711]
Take the transpose of the matrices in dimension-0
tf.transpose (b, perm=[0, 2, 1]) ==> [[[1 4]
[2 5]
[3 6]]
[[7 10]
[8 11]

(9 12]11]

Args:

a. A Tensor.
perm: A permutation of the dimensions of a.

name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.matmul (a, b, transpose a=False, transpose b=False,
a 1ls sparse=False, b is sparse=False, name=None)

Multiplies matrix a by matrix b, producing a * b.

The inputs must be two-dimensional matrices, with matching inner
dimensions, possibly after transposition.

Both matrices must be of the same type. The supported types
are: float, double, int32, complex64.

Either matrix can be transposed on the fly by setting the
corresponding flag to True. This is False by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the

corresponding a_is sparse Orb is sparse flag to True. These

are ralse by default.

For example:

2-D tensor “a’
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]

2-D tensor ‘b’

b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
[9. 10.]
[11. 12.11

c = tf.matmul(a, b) => [[58 64]
[139 1547]

Args:

a: Tensor Of type float, double, int32 OF complex64.

b: Tensor With same type as a.

transpose_a! If True, a is transposed before multiplication.
transpose b! If True, b is transposed before multiplication.
a_is sparse! If True, a is treated as a sparse matrix.

b is sparse: If True, b iS treated as a sparse matrix.

name: Name for the operation (optional).

Returns:

A Tensor Of the same type as a.

tf.batch matmul (x, y, adj x=None, adj y=None, name=None)

Multiplies slices of two tensors in batches.

Multiplies all slices of Tensor x and y (each slice can be viewed as an

element of a batch), and arranges the individual results in a single
output tensor of the same batch size. Each of the individual slices
can optionally be adjointed (to adjoint a matrix means to transpose

and conjugate it) before multiplication by setting

the adj x oradj vy flag to True, which are by default rFalse.
The input tensors x and y are 3-D or higher with shape ..., r x,

c X] and (..., ry, c yVy].

The output tensor is 3-D or higher with shape (..., r o, c o],

where;

r o=c x if adj x else r x

c o r y if adj y else c y

It is computed as:

out[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :1)

Args:

x. A Tensor. Must be one of the following

types: float32, float64, int32, complex64. 3-D or higher with
shape [..., r x, c x].

y: A Tensor. Must have the same type as x. 3-D or higher with
shape [..., r vy, c v].

adj x: An optional bool. Defaults to False. If True, adjoint the slices
of x. Defaults to False.

adj_y: An optional bool. Defaults to False. If True, adjoint the slices
of y. Defaults to False.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x. 3-D or higher with shape |.. .,

r o, c o]

tf.matrix determinant (input, name=None)

Calculates the determinant of a square matrix.

Args:

input: A Tensor. Must be one of the following
types: float32, float64. A tensor of shape (M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. A scalar, equal to the

determinant of the input.

tf.batch matrix determinant (input, name=None)

Calculates the determinants for a batch of square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2
dimensions form square matrices. The output is a 1-D tensor

containing the determinants for all input submatrices ..., :, :1.

Args:

input: A Tensor. Must be one of the following
types: float32, float64. Shapeis [..., M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shapeis [...].

tf.matrix inverse (input, name=None)

Calculates the inverse of a square invertible matrix.

The op uses the Cholesky decomposition if the matrix is symmetric
positive definite and LU decomposition with partial pivoting otherwise.

If the matrix is not invertible there is no guarantee what the op does.

It may detect the condition and raise an exception or it may simply
return a garbage result.

Args:

input: A Tensor. Must be one of the following
types: float32, float64. Shapeis [M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [M, M] containing

the matrix inverse of the input.

tf.batch matrix inverse (input, name=None)
Calculates the inverse of square invertible matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices. The output is a tensor of the same
shape as the input containing the inverse for all input

submatrices ..., :, :].

The op uses the Cholesky decomposition if the matrices are
symmetric positive definite and LU decomposition with partial pivoting
otherwise.

If a matrix is not invertible there is no guarantee what the op does. It

may detect the condition and raise an exception or it may simply
return a garbage result.

Args:

input: A Tensor. Must be one of the following
types: float32, float64. Shapeis [..., M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shapeis [..., M, M].

tf.cholesky (input, name=None)

Calculates the Cholesky decomposition of a square matrix.

The input has to be symmetric and positive definite. Only the lower-
triangular part of the input will be used for this operation. The upper-
triangular part will not be read.

The result is the lower-triangular matrix of the Cholesky
decomposition of the input.

Args:

input: A Tensor. Must be one of the following
types: float64, float32. Shapeis [M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is (M, M].

tf.batch cholesky(input, name=None)

Calculates the Cholesky decomposition of a batch of square
matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices, with the same constraints as the
single matrix Cholesky decomposition above. The output is a tensor
of the same shape as the input containing the Cholesky

decompositions for all input submatrices (..., :, :1.

Args:

input: A Tensor. Must be one of the following
types: float64, float32. Shapeis [..., M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shapeis [..., M, M].

tf.self adjoint eig(input, name=None)
Calculates the Eigen Decomposition of a square Self-Adjoint matrix.

Only the lower-triangular part of the input will be used in this case.
The upper-triangular part will not be read.

The resultis a M+1 x M matrix whose first row is the eigenvalues,
and subsequent rows are eigenvectors.

Args:

input: A Tensor. Must be one of the following
types: float64, float32. Shapeis [M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [M+1, M].

tf.batch self adjoint eig(input, name=None)

Calculates the Eigen Decomposition of a batch of square self-adjoint
matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices, with the same constraints as the
single matrix SelfAdjointEig.

The resultis a'[..., M+1, M] matrix with [..., 0,:] containing the
eigenvalues, and subsequent [...,1:, :] containing the eigenvectors.

Args:

input: A Tensor. Must be one of the following
types: float64, float32. Shapeis [..., M, M].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shapeis [..., M+1, M].

tf.matrix solve (matrix, rhs, name=None)
Solves a system of linear equations. Checks for invertibility.
Args:

matrix: A Tensor. Must be one of the following

types: float32, float64. Shapeis [M, M].

rhs: A Tensor. Must have the same type as matrix. Shape is [V,
KJ.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [M, K] containing

the tensor that solves matrix * output = rhs.

tf.batch matrix solve (matrix, rhs, name=None)

Solves systems of linear equations. Checks for invertibility.

Matrix is a tensor of shape (..., M, M] whose inner-most 2
dimensions form square matrices. Rhs is a tensor of shape [..., M,
K]. The output is a tensor shape [..., M, K] where each output
matrix satisfies matrix[..., :, :] * outputl..., :, ;] = rhs[..., 1, 1].

Args:

matrix: A Tensor. Must be one of the following

types: float32, float64. Shapeis [..., M, M].

rhs: A Tensor. Must have the same type as matrix. Shapeis [...,
M, K].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type asmatrix. Shapeis [..., M, K].

tf.matrix triangular solve (matrix, rhs, lower=None,
name=None)

Solves a system of linear equations with an upper or lower triangular
matrix by

backsubstitution.

matrix IS @ matrix of shape (M, M]. If lower iS True then the strictly
upper triangular part of matrix is ignored. If 1ower is False then the

strictly lower triangular part of matrix is ignored. rhs is a matrix of
shape [M, K]'.

The output is a matrix of shape [M, K].If lower iS True then the
output satisfies Y ik=03 k=0i matrix[i, kK] * output[k, j] = rhs[i,]. If 1ower is

false then output satisfies) k-1k=iy k=iK-1 matrix[i, k] * output[k, j] =
rhsli, j].

Args:

matrix: A Tensor. Must be one of the following
types: float32, float64. Shapeis [M, M].
rhs: A Tensor. Must have the same type as matrix. Shape is [M,

K].

lower: An optional bool. Defaults to True. Boolean indicating
whether matrix is lower or upper triangular.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shapeis [M, K].

tf.batch matrix triangular solve(matrix, rhs, lower=None,
name=None)

Solves systems of linear equations with upper or lower triangular
matrices by

backsubstitution.

matrix IS atensor of shape [..., M, M] whose inner-most 2
dimensions form square matrices. If 1ower iSTrue then the strictly

upper triangular part of each inner-most matrix is ignored. If 1ower IS
False then the strictly lower triangular part of each inner-most matrix

is ignored. rhs is a tensor of shape [..., M, K]'.

The output is a tensor of shape (..., M, K].If lower IS True then
the output satisfies Y ik=0y k=0i matrix[..., i, K] * output]..., k, j] = rhs[...,
I, j]. If Lower is false then the strictly then the output

satisfies sumk-1k=isumk=iK-1 matrix[..., i, K] * output]..., k, j] = rhs[..., i,

il

Args:

matrix: A Tensor. Must be one of the following

types: float32, float64. Shapeis [..., M, M].
rhs: A Tensor. Must have the same type as matrix. Shapeis [.. .,
M, K].

lower: An optional bool. Defaults to True. Boolean indicating
whether matrix is lower or upper triangular.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shapeis [..., M, K].

tf.matrix solve ls(matrix, rhs, 12 regularizer=0.0,
fast=True, name=None)

Solves a linear least-squares problem.

Below we will use the following notation matrix=A € RmxAE
Rmxn, rhs=B € Rm«BERMxk, output=X E RnxkX&E
%nXKIZ_regularizer:Xk

If fast is True, then the solution is computed by solving the normal
equations using Cholesky decomposition. Specifically,
if m>nmzn then X=(ATA+AI)-1ATBX=(ATA+AI)-1ATB, which solves the

regularized least-squares problem X=argminze

Rnxk||AZ—Bl||2F+A||Z||2FX=argminZ € Rnxk||AZ-B||F2+\||Z||F2.

If m<nm<n then output is computed

as X=AT1(AAT+A])-1BX=AT(AAT+AI)-1B, which (for A=0A=0) is the
minimum-norm solution to the under-determined linear system,

i.e. X=argminzeRrnx||Z||2FX=argminZ&RnxKk||Z||F2, subject

to AZ=BAZ=B. Notice that the fast path is only numerically stable
when AA is numerically full rank and has a condition

number cond(A)<iemachvcond(A)<lemach or A\ is sufficiently large.

If fast IS False then the solution is computed using the rank

revealing QR decomposition with column pivoting. This will always
compute a least-squares solution that minimizes the residual

norm ||AX—B||2F||AX-B||F2, even when AAis rank deficient or ill-
conditioned. Notice: The current version does not compute a
minimum norm solution. Iffast is False then 12 regularizeris

ignored.

Args:

matrix: 2-D Tensor of shape [M, N].

rhs: 2-D Tensor of shape is [M, K].

12 regularizer: 0-D double Tensor. Ignored if fast=False.
fast: bool. Defaults to True.

name: String, optional name of the operation.

Returns:

output: Matrix of shape [N, K] containing the matrix that

solvesmatrix * output = rhs in the least-squares sense.

tf.batch matrix solve ls(matrix, rhs, 12 regularizer=0.0,
fast=True, name=None)

Solves multiple linear least-squares problems.

matrix iS atensor of shape [..., M, N] whose inner-most 2
dimensions form mM-by-N matrices. Rhs is a tensor of shape [..., M,
K] whose inner-most 2 dimensions form mM-by-x matrices. The
computed output is aTensor of shape [..., N, K] whose inner-
most 2 dimensions form M-by-k matrices that solve the
equationsmatrix[..., :, :] * output[..., :, :] =

rhs[..., :, :1inthe leastsquares sense.

Below we will use the following notation for each pair of matrix and
right-hand sides in the batch:

matrix=AE RmxnAERMxN, rhs=B € RmxkBERMxk, output=X € Rn>kX
ERnxk, 12 _regularizer=AA.

If fast is True, then the solution is computed by solving the normal
equations using Cholesky decomposition. Specifically,
if m>nm=zn then X=(ATA+AI)-1ATBX=(ATA+Al)-1ATB, which solves the

least-squares problem X=argminzernx||AZ—B||2F+A||Z]||2FX=argminze
Rnxk||AZ-B||F2+A||Z||F2. If m<nm<n then output is computed

as X=A1(AAT+AI)-1BX=AT(AAT+AI)-1B, which (for A=0A=0) is the
minimum-norm solution to the under-determined linear system,

i.e. X=argminzeRrnx||Z||2FX=argminZ&RnxKk||Z||F2, subject

to AZ=BAZz=B. Notice that the fast path is only numerically stable
when AA is numerically full rank and has a condition
number cond(A)<iemachvcond(A)<lemach OrAA is sufficiently large.

If fast IS False then the solution is computed using the rank

revealing QR decomposition with column pivoting. This will always
compute a least-squares solution that minimizes the residual

norm ||AX—B||2F||AX-B||F2, even when AAis rank deficient or ill-
conditioned. Notice: The current version does not compute a

minimum norm solution. Iffast is False then 12 regularizeris

ignored.

Args:

matrix: Tensor Of Shape [..., M, NJ.
rhs: Tensor Of shape [..., M, K].

12 regularizer: 0-D double Tensor. Ignored if fast=False.
fast: bool. Defaults to True.

name: String, optional name of the operation.

Returns:

output: Tensor Of shape [..., N, K] whose inner-most 2
dimensions form mM-by-k matrices that solve the
equations matrix[..., :, :] * output[..., :, :] =

rhs[..., :, :]inthe leastsquares sense.

Complex Number Functions

TensorFlow provides several operations that you can use to add
complex number functions to your graph.

tf.complex(real, imag, name=None)

Converts two real numbers to a complex number.

Given a tensor real representing the real part of a complex number,

and a tensor imag representing the imaginary part of a complex
number, this operation computes complex numbers elementwise of

the form a+bja+bj, where a represents the real part and b represents
the imag part.

The input tensors real and imag must be the same shape.

For example:

tensor 'real' is [2.25, 3.25]
tensor ‘imag’ is [4.75, 5.75]
tf.complex (real, imag) ==> [[2.25 + 4.743], [3.25 + 5.753]1]

Args:

real: A Tensor Of type float.
imag: A Tensor Of type float.

name: A name for the operation (optional).

Returns:

A Tensor Of type complex64.

tf.complex abs(x, name=None)

Computes the complex absolute value of a tensor.

Given a tensor x of complex numbers, this operation returns a tensor
of type float that is the absolute value of each element in x. All

elements in x must be complex numbers of the form a+bja+bj. The

absolute value is computed as a2+b2————— Va2+b2.
For example:
tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]

tf.complex abs(x) ==> [5.25594902, 6.60492229]

Args:

x. A Tensor Of type complex64.

name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.conj (in_, name=None)

Returns the complex conjugate of a complex number.

Given a tensor in of complex numbers, this operation returns a
tensor of complex numbers that are the complex conjugate of each

element in in. The complex numbers in in must be of the

form a+bja+bj, where a is the real part and b is the imaginary part.
The complex conjugate returned by this operation is of the

form a—bja-b;j.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.757]
tf.conj (in) ==> [-2.25 - 4.75j, 3.25 - 5.757]

Args:

in ! A Tensor Of type complex64.

name: A name for the operation (optional).

Returns:

A Tensor Of type complexé64.

tf.imag(in_ , name=None)

Returns the imaginary part of a complex number.

Given a tensor in of complex numbers, this operation returns a

tensor of type float that is the imaginary part of each element in in.

All elements in in must be complex numbers of the form a+bja+bj,

where a is the real part and bis the imaginary part returned by this
operation.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.757]
tf.imag(in) ==> [4.75, 5.75]

Args:

in ! A Tensor Of type complex64.

name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.real (in_, name=None)

Returns the real part of a complex number.

Given a tensor in of complex numbers, this operation returns a
tensor of type float that is the real part of each element in in. All

elements in in must be complex numbers of the form a+bja+bj,

where a is the real part returned by this operation and b is the
imaginary part.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.757]
tf.real (in) ==> [-2.25, 3.25]

Args:

in ! A Tensor Of type complex64.

name: A name for the operation (optional).

Returns:

A Tensor Of type float32.

tf.fft2d(in , name=None)

Compute the 2-dimensional discrete Fourier Transform.

Args:

in ! A Tensor Of type complex64. A complex64 matrix.

name: A name for the operation (optional).

Returns:

A Tensor of type complex64. The 2D Fourier Transform of in.

tf.ifft2d(in , name=None)

Compute the inverse 2-dimensional discrete Fourier Transform.

Args:

in ! A Tensor Of type complex64. A complex64 matrix.

name: A name for the operation (optional).

Returns:

A Tensor of type complex64. The inverse 2D Fourier Transform of in.

Reduction

TensorFlow provides several operations that you can use to perform
common math computations that reduce various dimensions of a
tensor.

tf.reduce sum(input tensor, reduction indices=None,
keep dims=False, name=None)

Computes the sum of elements across dimensions of a tensor.

Reduces input tensor along the dimensions given
iN reduction indices. Unless keep dims is true, the rank of the
tensor is reduced by 1 for each entry in reduction indices.

If keep dims is true, the reduced dimensions are retained with length
1.
If reduction indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

For example:

tf.reduce sum(x) ==> 6

(
tf.reduce sum(x, 0) ==> [2, 2, 2]
tf.reduce sum(x, 1) ==> [3, 3]
tf.reduce sum(x, 1, keep dims=True) ==> [[3], [3]]
tf.reduce sum(x, [0, 1]) ==> 6
Args:

input tensor: The tensor to reduce. Should have numeric type.

reduction indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

keep dims: If true, retains reduced dimensions with length 1.

name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce prod(input tensor, reduction indices=None,
keep dims=False, name=None)

Computes the product of elements across dimensions of a tensor.

Reduces input tensor along the dimensions given
IN reduction indices. Unless keep dims IS true, the rank of the
tensor is reduced by 1 for each entry in reduction indices.

If keep dims is true, the reduced dimensions are retained with length
1.
If reduction indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

Args:

input tensor: The tensor to reduce. Should have numeric type.

reduction indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

keep dims: If true, retains reduced dimensions with length 1.

name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce min(input tensor, reduction indices=None,
keep dims=False, name=None)

Computes the minimum of elements across dimensions of a tensor.

Reduces input tensor along the dimensions given
iN reduction indices. Unless keep dims is true, the rank of the
tensor is reduced by 1 for each entry in reduction indices.

If keep dims is true, the reduced dimensions are retained with length
1.
If reduction indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

Args:

input tensor: The tensor to reduce. Should have numeric type.

o reduction indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

o keep dims: If true, retains reduced dimensions with length 1.

« name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce max(input tensor, reduction indices=None,
keep dims=False, name=None)

Computes the maximum of elements across dimensions of a tensor.

Reduces input tensor along the dimensions given
iN reduction indices. Unless keep dims is true, the rank of the
tensor is reduced by 1 for each entry in reduction indices.

If keep dims is true, the reduced dimensions are retained with length
1.
If reduction indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

Args:

e input tensor: The tensor to reduce. Should have numeric type.

e reduction indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

o keep dims: If true, retains reduced dimensions with length 1.

name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce mean (input tensor, reduction indices=None,
keep dims=False, name=None)

Computes the mean of elements across dimensions of a tensor.

Reduces input tensor along the dimensions given
iN reduction indices. Unless keep dims is true, the rank of the
tensor is reduced by 1 for each entry in reduction indices.

If keep dims is true, the reduced dimensions are retained with length
1.

If reduction indices has no entries, all dimensions are reduced,
and a tensor with a single element is returned.

For example:

'x' is [[1., 1.]

[2op 20]]

tf.reduce mean(x) ==> 1.5
tf.reduce mean(x, 0) ==> [1.5, 1.5]
tf.reduce mean(x, 1) ==> [1., 2.]
Args:

input tensor: The tensor to reduce. Should have numeric type.

reduction indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

keep dims: If true, retains reduced dimensions with length 1.

name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce all (input tensor, reduction indices=None,
keep dims=False, name=None)

Computes the "logical and" of elements across dimensions of a
tensor.

Reduces input tensor along the dimensions given
iIN reduction indices. Unless keep dims is true, the rank of the
tensor is reduced by 1 for each entry in reduction indices.

If keep dims is true, the reduced dimensions are retained with length
1.
If reduction indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

For example:

'x' 1s [[True, True]

[False, False]]

tf.reduce all(x) ==> False

tf.reduce all(x, 0) ==> [False, False]
tf.reduce all(x, 1) ==> [True, False]

Args:

input_tensor: The boolean tensor to reduce.

reduction indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

keep dims: If true, retains reduced dimensions with length 1.

name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce any(input tensor, reduction indices=None,
keep dims=False, name=None)

Computes the "logical or" of elements across dimensions of a tensor.

Reduces input tensor along the dimensions given
iN reduction indices. Unless keep dims is true, the rank of the
tensor is reduced by 1 for each entry in reduction indices.

If keep dims is true, the reduced dimensions are retained with length
1.
If reduction indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

For example:

'x' is [[True, True]

[False, False]]
tf.reduce any(x) ==> True

tf.reduce any(x, 0) ==> [True, True]

tf.reduce any(x, 1) ==> [True, False]

Args:

input_tensor: The boolean tensor to reduce.

reduction indices: The dimensions to reduce. If None (the default),
reduces all dimensions.

keep dims: If true, retains reduced dimensions with length 1.

name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.accumulate n(inputs, shape=None, tensor dtype=None,
name=None)

Returns the element-wise sum of a list of tensors.

Optionally, pass shape and tensor dtype for shape and type

checking, otherwise, these are inferred.

For example:

tensor 'a' is [[1, 2], [3, 4]

tensor ‘b is [[5, 0], [0, 6]]
tf.accumulate n([a, b, a]) ==> [[7, 4], [6, 14]]

Explicitly pass shape and type
tf.accumulate n(la, b, al, shape=[2, 2], tensor dtype=tf.int32)
==> [[7, 4], [6, 14]]

Args:

inputs: A list of Tensor objects, each with same shape and type.
shape: Shape of elements of inputs.
tensor dtype: The type of inputs.

name: A hame for the operation (optional).

Returns:

A Tensor of same shape and type as the elements of inputs.

Raises:

valueError: If inputs don't all have same shape and dtype or the

shape cannot be inferred.

Segmentation

TensorFlow provides several operations that you can use to perform
common math computations on tensor segments. Here a
segmentation is a partitioning of a tensor along the first dimension,

I.e. it defines a mapping from the first dimension onto segment ids.
The segment_ids tensor should be the size of the first dimension,do,

with consecutive IDs in the range 0 to k, where k<do. In particular, a

segmentation of a matrix tensor is a mapping of rows to segments.

For example:

c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.segment sum(c, tf.constant ([0, 0, 17))
==> [[0 0 0 0]
[5 6 7 8]]

tf.segment sum(data, segment ids, name=None)

Computes the sum along segments of a tensor.

Read for an explanation of segments.

Computes a tensor such that outputi=> jdatajoutputi=3 jdataj where sum

IS over j such that segment _ids[j] == 1.

segment ids

data 5

Args:

data: A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8, intl16,int8, uintleé.
segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

of data's first dimension. Values should be sorted and can be
repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment prod(data, segment ids, name=None)
Computes the product along segments of a tensor.

Read for an explanation of segments.

Computes a tensor such that outputi=[[jdatajoutputi=[Tjdataj where the

product is over j such that segment ids[j] == i.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

segment ids

data 5

Args:

data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uintle.
segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

of data's first dimension. Values should be sorted and can be
repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment min(data, segment ids, name=None)

Computes the minimum along segments of a tensor.

Read for an explanation of segments.
Computes a tensor such

that outputi=minj(dataj)outputi=minj(dataj) where min is over j such

that segment ids[j] == i.

segment ids

data 5

Args:

data: A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8, intl16,int8, uintleé.
segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

of data's first dimension. Values should be sorted and can be
repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment max(data, segment ids, name=None)

Computes the maximum along segments of a tensor.

Read for an explanation of segments.
Computes a tensor such

that outputi=max;j(dataj)outputi=maxj(dataj) where max is over j such

that segment ids[j] == i.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

segment ids

data 5

Args:

data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uintle.
segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

of data's first dimension. Values should be sorted and can be
repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment mean (data, segment ids, name=None)

Computes the mean along segments of a tensor.

Read for an explanation of segments.
Computes a tensor such

that outputi=yjdatajNoutputi=3 jdatajN where mean is over 5 such

that segment ids[j] == i andnis the total number of values

summed.

segment ids

data 5

Args:

o data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, intl16,int8, uintle.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

segment ids: A Tensor. Must be one of the following
types: int32, int64. A 1-D tensor whose rank is equal to the rank

of data's first dimension. Values should be sorted and can be
repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.unsorted segment sum(data, segment ids, num segments,
name=None)

Computes the sum along segments of a tensor.

Read for an explanation of segments.

Computes a tensor such that outputi=> jdatajoutputi=3jdataj where sum
IS over j such that segment _ids[j] == 1.

Unlike segmentsum, segment ids need not be sorted and need not
cover all values in the full range of valid values.

If the sum is empty for a given segment ID i, output[i] = 0.

num_segments Should equal the number of distinct segment IDs.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

segment ids

data

Args:

data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uintle.
segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank
of data's first dimension.

num_segments: A Tensor Of type int32.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has Sizenum segments.

tf.sparse segment sum(data, indices, segment ids,
name=None)

Computes the sum along sparse segments of a tensor.

Read for an explanation of segments.
Like segmentSum, but segment ids can have rank less than data's
first dimension, selecting a subset of dimension 0, specified

by indices.

For example:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4]1, [5,6,7,8]1)

Select two rows, one segment.
tf.sparse segment sum(c, tf.constant ([0, 1]), tf.constant([0,
01))

==> [[0 0 0 011

Select two rows, two segment.
tf.sparse segment sum(c, tf.constant ([0, 1]), tf.constant([0,
11))
==> [[1 2 3 4]
[-1 -2 -3 -4]]

Select all rows, two segments.
tf.sparse segment sum(c, tf.constant ([0, 1, 2]), tf.constant([O,
0, 11))
==> [[0 0O 0 0]
[5 6 7 811

Which is equivalent to:

tf.segment sum(c, tf.constant ([0, 0, 11))

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

Args:

data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, intl6,int8, uintlo.
indices: A Tensor Of type int32. A 1-D tensor. Has same rank

as segment ids.

segment ids: A Tensor Of type int32. A 1-D tensor. Values should
be sorted and can be repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.sparse segment mean(data, indices, segment ids,
name=None)

Computes the mean along sparse segments of a tensor.

Read for an explanation of segments.
Like segmentMean, but segment ids can have rank less than data's
first dimension, selecting a subset of dimension 0, specified

by indices.

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

data: A Tensor. Must be one of the following

types: float32, float64

indices: A Tensor Of type int32. A 1-D tensor. Has same rank
as segment ids.

segment ids: A Tensor Of type int32. A 1-D tensor. Values should
be sorted and can be repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.sparse segment sgrt n(data, indices, segment ids,
name=None)

Computes the sum along sparse segments of a tensor divided by the
sgrt of N.

N is the size of the segment being reduced.

Read for an explanation of segments.

Args:

data: A Tensor. Must be one of the following

types: float32, float64.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

indices: A Tensor Of type int32. A 1-D tensor. Has same rank
as segment ids.

segment ids: A Tensor Of type int32. A 1-D tensor. Values should
be sorted and can be repeated.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

Sequence Comparison and Indexing

TensorFlow provides several operations that you can use to add
sequence comparison and index extraction to your graph. You can
use these operations to determine sequence differences and
determine the indexes of specific values in a tensor.

tf.argmin (input, dimension, name=None)

Returns the index with the smallest value across dimensions of a
tensor.

Args:

input: A Tensor. Must be one of the following
types: float32, float64, int64, int32, uint8,uint16, int16, ints,

complex64, gint8, quint8, gint32.

dimension: A Tensor Of type int32. int32, 0 <= dimension <

rank(input). Describes which dimension of the input Tensor to reduce
across. For vectors, use dimension = 0.

name: A name for the operation (optional).

Returns:

A Tensor of type int64.

tf.argmax (input, dimension, name=None)

Returns the index with the largest value across dimensions of a
tensor.

Args:

input: A Tensor. Must be one of the following
types: float32, float64, int64, int32, uint8,uintl16, intl16, ints,
complex64, gint8, quint8, gint32.

dimension: A Tensor Of type int32. int32, 0 <= dimension <

rank(input). Describes which dimension of the input Tensor to reduce
across. For vectors, use dimension = 0.

name: A name for the operation (optional).

Returns:

A Tensor Of type int64.

tf.listdiff (x, y, name=None)

Computes the difference between two lists of numbers or strings.

Given a list x and a list vy, this operation returns a list out that
represents all values that are in x but not in y. The returned list out is
sorted in the same order that the numbers appear in x (duplicates are
preserved). This operation also returns a list i dx that represents the

position of each out element in x. In other words:

out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1]

For example, given this input:

x =11, 2, 3, 4, 5, 6]
y = [1, 3, 3]

This operation would return:

out ==> [2, 4, 6]
idx ==> [1, 3, 5]

Args:

x. A Tensor. 1-D. Values to keep.
y: A Tensor. Must have the same type as x. 1-D. Values to remove.

name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (out, idx).

out: A Tensor. Has the same type as x. 1-D. Values present in x but
notin v.
idx: A Tensor Of type int32. 1-D. Positions of x values preserved

iNn out.

tf.where (input, name=None)

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The

coordinates are returned in a 2-D tensor where the first dimension
(rows) represents the number of true elements, and the second
dimension (columns) represents the coordinates of the true elements.
Keep in mind, the shape of the output tensor can vary depending on

how many true values there are in input. Indices are output in row-

major order.

For example:

'input' tensor is [[True, False]

[True, Falsel]]

'input' has two true values, so output has two coordinates.
'input' has rank of 2, so coordinates have two indices.
where (input) ==> [[0, 0],

(1, O]]

“input® tensor is [[[True, False]
True, Falsel]]
[

False, True]

[

#
[

[

[False, Truel]]

[False, False]

[False, Truell]

'input' has 5 true values, so output has 5 coordinates.

'input' has rank of 3, so coordinates have three indices.
where (input) ==> [[0, 0, 0],

~ ~
~

\

R R o
~

=)

~

[T S —'1
o~

Args:

input: A Tensor Of type bool.

name: A name for the operation (optional).

Returns:

A Tensor Of type int64.

tf.unique (x, name=None)

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique
elements of x sorted in the same order that they occur in x. This
operation also returns a tensor idx the same size as x that contains

the index of each value of xin the unique output y. In other words:

y[idx[i]] = x[i] for i1 in [0, 1,...,rank(x) - 1]

For example:

''is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, 1dx = unique (x)

y ==> [1, 2, 4, 7, 8]

idx ==> [0, O, 1, 2, 2, 2, 3, 4, 4]

tensor 'x

Args:

x. A Tensor. 1-D.

name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx).
y. A Tensor. Has the same type as x. 1-D.

idx: A Tensor Of type int32. 1-D.

tf.edit distance (hypothesis, truth, normalize=True,
name='edit distance')

Computes the Levenshtein distance between sequences.

This operation takes variable-length sequences
(hypothesis and truth), each provided as a sparseTensor, and
computes the Levenshtein distance. You can normalize the edit

distance by length of truth by settingnormalize to true.

For example, given the following input:

'hypothesis' is a tensor of shape " [2, 1] with variable-length

values:
(0,0) = ["a"]
(1,0) = ["b"]
hypothesis = tf.SparseTensor (
(o, o, oJ,
(1, 0, 0]1,
["a", "b"]
)

(2, 1, 1)

'truth' is a tensor of shape " [2, 2] with variable-length

values:

(0,0) = [1

(0,1) = ["a"]

(1,0) = ["b", "c"]

(1,1) = ["a"]

truth = tf.SparseTensor (
(o, 1, oJ,
(1, o, 01,
(L, o, 11,
[1, 1, 011
[("a", "b", "c", "a"l,
(2, 2, 2))

normalize = True

This operation would return the following:

'output' is a tensor of shape “[2, 2] with edit distances

normalized

by 'truth' lengths.

output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis
[0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis

Args:

hypothesis: A SparseTensor containing hypothesis sequences.
truth: A SparseTensor containing truth sequences.

normalize: Abool. If True, normalizes the Levenshtein distance by
length of truth.

name: A name for the operation (optional).

Returns:

A dense Tensor with rank R - 1, where R is the rank of

the sparseTensor INPULS hypothesis and truth

Raises:

TypeError: If either hypothesis Or truth are not a SparseTensor.

tf.invert permutation (x, name=None)
Computes the inverse permutation of a tensor.

This operation computes the inverse of an index permutation. It takes
a 1-D integer tensor x, which represents the indices of a zero-based
array, and swaps each value with its index position. In other words,
for an output tensor yand an input tensor x, this operation computes

the following:
y[x[i]] = 1 for i in [0, 1, ..., len(x) - 1]

The values must include 0. There can be no duplicate values or
negative values.

For example:

tensor 'x° is [3, 4, 0, 2, 1]

invert permutation(x) ==> [2, 4, 3, 0, 1]

Args:

x. A Tensor Of type int32. 1-D.

name: A name for the operation (optional).

Returns:

A Tensor of type int32. 1-D.

Other Functions and Classes

tf.scalar mul (scalar, x)

Multiplies a scalar times a Tensor Or IndexedSlices Object.
Intended for use in gradient code which might deal
with Tndexedslices objects, which are easy to multiply by a scalar

but more expensive to multiply with arbitrary tensors.

Args:

scalar: A 0-D scalar Tensor. Must have known shape.

x. A Tensor Or IndexedSlices to be scaled.

Returns:

scalar * x Of the same type (Tensor Of IndexedSlices) as x.

Raises:

ValueError: if scalar is not a 0-D scalar.

tf.sparse segment sgrt n grad(grad, indices, segment ids,
output dim0O, name=None)

Computes gradients for SparseSegmentSqgrtN.

Returns tensor "output” with same shape as grad, except for
dimension 0 whose value is output_dimO.

Args:

grad: A Tensor. Must be one of the following

types: float32, float64. gradient propagated to the
SparseSegmentSqrtN op.

indices: A Tensor Of type int32. indices passed to the
corresponding SparseSegmentSqrtN op.

segment ids: A Tensor Of type int32. segment_ids passed to the
corresponding SparseSegmentSqrtN op.

output dim0: A Tensor Of type int32. dimension O of "data" passed
to SparseSegmentSqrtN op.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as grad.

Control Flow

Note: Functions taking Tensor arguments can also take anything

accepted by

Contents

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#control-flow
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#control-flow-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#identity
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#tuple
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#group
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#no_op

Control Flow Operations

TensorFlow provides several operations and classes that you can
use to control the execution of operations and add conditional
dependencies to your graph.

tf.identity (input, name=None)

Return a tensor with the same shape and contents as the input
tensor or value.

https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#count_up_to
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#cond
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_and
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_not
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_or
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_xor
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#comparison-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#not_equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#less
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#less_equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#greater
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#greater_equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#select
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#where
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#debugging-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#is_finite
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#is_inf
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#is_nan
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#verify_tensor_all_finite
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#check_numerics
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#add_check_numerics_ops
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#Assert
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#Print
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#Print

Args:

input: A Tensor.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.tuple(tensors, name=None, control inputs=None)
GI‘OUp tensors together.

This creates a tuple of tensors with the same values as

the tensors argument, except that the value of each tensor is only
returned after the values of all tensors have been computed.
control inputs contains additional ops that have to finish before

this op finishes, but whose outputs are not returned.
This can be used as a "join" mechanism for parallel computations: all
the argument tensors can be computed in parallel, but the values of

any tensor returned by tuple are only available after all the parallel
computations are done.

See also group and with dependencies.

Args:

tensors: A list of TensorS Or IndexedSlices, SOmMe entries can
be None.

name: (Optional) A name to use as a name_scope for the operation.

« control inputs: List of additional ops to finish before returning.

Returns:

Same as tensors.

Raises:

e ValueError: If tensors does not contain
any Tensor O IndexedSlices.
o TypeError: If control inputsis nota list

of Operation Or Tensor Objects.

tf.group (*inputs, **kwargs)
Create an op that groups multiple operations.
When this op finishes, all ops in input have finished. This op has no

output.

See also tuple and with dependencies.

Args:

e *inputs: One or more tensors to group.

« **kwargs. Optional parameters to pass when constructing the
NodeDef.

« name: A name for this operation (optional).

Returns:
An Operation that executes all its inputs.
Raises:

valueError: If an unknown keyword argument is provided, or if there

are no inputs.

tf.no op(name=None)

Does nothing. Only useful as a placeholder for control edges.

Args:

name: A name for the operation (optional).

Returns:

The created Operation.

tf.count up to(ref, limit, name=None)
Increments 'ref' until it reaches 'limit'.

This operation outputs "ref" after the update is done. This makes it
easier to chain operations that need to use the updated value.

Args:

ref: A mutable Tensor. Must be one of the following
types: int32, int64. Should be from a scalarvariable node.

limit: An int. If incrementing ref would bring it above limit, instead
generates an 'OutOfRange’ error.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as ref. A copy of the input before

increment. If nothing else modifies the input, the values produced will
all be distinct.

tf.cond(pred, fnl, fn2, name=None)

Return either fnl1() or fn2() based on the boolean predicate pred.

fn1l and £n2 both return lists of output tensors. £n1 and £n2 must

have the same non-zero number and type of outputs.

Args:

pred: A scalar determining whether to return the result of £n1 or £n2.
fn1: The function to be performed if pred is true.
fn2: The function to be performed if pref is false.

name: Optional name prefix for the returned tensors.

Returns:

Tensors returned by the call to either £n1 or £n2. If the functions

return a singleton list, the element is extracted from the list.

Raises:

TypeError: if £nl or £n2 is not callable.

valueError: If fn1 and £n2 do not return the same number of
tensors, or return tensors of different types.

Example.

x = tf.constant (2)

y = tf.constant (5)

def fl(): return tf.mul(x, 17)

def f2(): return tf.add(y, 23)

r = cond(math ops.less(x, y), fl, £2)
r is set to fl().

Operations in f2 (e.g., tf.add) are not executed.

Logical Operators

TensorFlow provides several operations that you can use to add
logical operators to your graph.

tf.logical and(x, y, name=None)
Returns the truth value of x AND y element-wise.
Args:

x. A Tensor Of type bool.

y: A Tensor Of type bool.

name: A name for the operation (optional).

Returns:

A Tensor oOf type bool.

tf.logical not (x, name=None)

Returns the truth value of NOT x element-wise.

Args:

x. A Tensor Of type bool.

name: A name for the operation (optional).

Returns:

A Tensor Of type bool.

tf.logical or(x, y, name=None)

Returns the truth value of x OR y element-wise.

Args:

x. A Tensor Of type bool.

y: A Tensor Of type bool.

« name: A name for the operation (optional).

Returns:

A Tensor oOf type bool.

tf.logical xor(x, y, name='LogicalXor')

XNy =(x]y)&~(X&Y).

Comparison Operators

TensorFlow provides several operations that you can use to add
comparison operators to your graph.

tf.equal (x, y, name=None)

Returns the truth value of (x ==y) element-wise.

Args:

« x: A Tensor. Must be one of the following
types: float32, float64, uint8, int8, intl6, int32, int64,complex
64, quint8, gint8, gint32, string.

« vy:ATensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor oOf type bool.

tf.not equal (x, y, name=None)

Returns the truth value of (x !=y) element-wise.

Args:

x. A Tensor. Must be one of the following

types: float32, float64, uint8, int8, intl6, int32, int64,complex
64, quint8, gint8, gint32, string.

y: A Tensor. Must have the same type as x.

name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less (x, y, name=None)

Returns the truth value of (x <y) element-wise.

Args:

o x: A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8, intl6, int8,uintlé6.
e vy: A Tensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less equal (x, y, name=None)
Returns the truth value of (x <=y) element-wise.
Args:

« x: A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8, intl6, int8,uintl1é6.
e vy: A Tensor. Must have the same type as x.

« name: A name for the operation (optional).

Returns:

A Tensor Of type bool.

tf.greater(x, y, name=None)

Returns the truth value of (x > y) element-wise.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8, intl6, int8,uintlé6.
y: A Tensor. Must have the same type as x.

name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.greater equal (x, y, name=None)

Returns the truth value of (x >=y) element-wise.

Args:

x. A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8, int16, int8,uintl1é6.
y: A Tensor. Must have the same type as x.

name: A name for the operation (optional).

Returns:

A Tensor Of type bool.

tf.select (condition, t, e, name=None)

Selects elements from t or e, depending on condition.

The t, and e tensors must all have the same shape, and the output
will also have that shape. The conditiontensor must be a scalar

if t and e are scalars. If + and e are vectors or higher rank,

then condition must be either a vector with size matching the first
dimension of t, or must have the same shape as t.

The condition tensor acts as a mask that chooses, based on the
value at each element, whether the corresponding element / row in

the output should be taken from « (if true) or e (if false).

If condition is a vector and t and e are higher rank matrices, then it
chooses which row (outer dimension) to copy from t and e.

If condition has the same shape as t and e, then it chooses which

element to copy from tand e.

For example:

'condition' tensor i1s [[True, False]
[False, Truel]

't' is [[1, 2],

[3, 411

'e' is [I[5, 61,

(7, 811

select (condition, t, e) ==> [[1l, 6],

'condition' tensor is [True, False]
't' is [[1, 2],

[3, 4]1]
#
#

'e' is [[5, o],
[7, 811
select (condition, t, e) ==> [[1, 2],
[7, 81]
Args:

condition: A Tensor Of type bool.

t: A Tensor Which may have the same shape as condition.

If condition is rank 1, £ may have higher rank, but its first dimension
must match the size of condition.

e: A Tensor with the same type and shape as t.

name: A name for the operation (optional).

Returns:

A Tensor with the same type and shape as + and e.

tf.where (input, name=None)

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The

coordinates are returned in a 2-D tensor where the first dimension
(rows) represents the number of true elements, and the second
dimension (columns) represents the coordinates of the true elements.

Keep in mind, the shape of the output tensor can vary depending on

how many true values there are in input. Indices are output in row-

major order.

For example:
'"input' tensor is [[True, False]
[True, Falsel]]
'input' has two true values, so output has two coordinates.
'input' has rank of 2, so coordinates have two indices.
where (input) ==> [[0, 0],
(1, 01]
“input® tensor is [[[True, False]
[True, Falsel]]
[[False, True]
[False, Truel]
[[False, False]
[False, Truell]]
'input' has 5 true values, so output has 5 coordinates.
'input' has rank of 3, so coordinates have three indices.
where (input) ==> [[0, 0, 0],
(0, 1, 01,
(1, 0, 11,
(1, 1, 11,
2, 1, 417
Args:

input: A Tensor Of type bool.

name: A name for the operation (optional).

Returns:

A Tensor oOf type int64.

Debugging Operations

TensorFlow provides several operations that you can use to validate
values and debug your graph.

tf.is finite(x, name=None)

Returns which elements of x are finite.

Args:

x. A Tensor. Must be one of the following types: fl1oat32, float64.

name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.is inf (x, name=None)

Returns which elements of x are Inf.

Args:

x. A Tensor. Must be one of the following types: float32, float64.

name: A name for the operation (optional).

Returns:

A Tensor oOf type bool.

tf.is nan(x, name=None)

Returns which elements of x are NaN.

Args:

x. A Tensor. Must be one of the following types: float32, float64.

name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.verify tensor all finite(t, msg, name=None)
Assert that the tensor does not contain any NaN's or Inf's.
Args:

t: Tensor to check.
msg: Message to log on failure.

name: A name for this operation (optional).

Returns:

Same tensor as t.

tf.check numerics (tensor, message, name=None)

Checks a tensor for NaN and Inf values.

When run, reports an IinvalidArgument error if tensor has any
values that are not a number (NaN) or infinity (Inf). Otherwise,

passes tensor as-is.

Args:

tensor: A Tensor. Must be one of the following
types: float32, float64.
message: A string. Prefix of the error message.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.add check numerics ops|()

Connect a check numerics to every floating point tensor.
check_numerics operations themselves are added for
each float Or double tensor in the graph. For all ops in the graph,

the check numerics op for all of its (f1oat Or double) inputs is

guaranteed to run before thecheck numerics op on any of its

outputs.

Returns:

A group op depending on all check numerics ops added.

tf.Assert (condition, data, summarize=None, name=None)

Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors

In data. summarize determines how many entries of the tensors to

print.

Args:

condition: The condition to evaluate.
data: The tensors to print out when condition is false.
summarize: Print this many entries of each tensor.

name: A name for this operation (optional).

tf.Print (input , data, message=None, first n=None,
summarize=None, name=None)

Prints a list of tensors.

This is an identity op with the side effect of printing data when

evaluating.

Args:

input : A tensor passed through this op.
data: A list of tensors to print out when op is evaluated.
message: A string, prefix of the error message.

first _n:Onlylog first n number of times. Negative numbers log
always; this is the default.

summarize: Only print this many entries of each tensor. If None, then
a maximum of 3 elements are printed per input tensor.

name: A name for the operation (optional).

Returns:

Same tensor as input .

Images

Note: Functions taking Tensor arguments can also take anything

accepted by

Contents

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encoding-and-decoding
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg

chroma downsampling=None, density unit=None,

x density=None, y density=None, xmp metadata=None,
name=None)

tf.image.decode png(contents, channels=None, dtype=None,
name=None)

tf.image.encode png(image, compression=None, name=None)
Resizing

tf.image.resize images (images, new height, new width,
method=0, align corners=False)

tf.image.resize area(images, size, align corners=None,
name=None)

tf.image.resize bicubic(images, size, align corners=None,
name=None)

tf.image.resize bilinear (images, size,

align corners=None, name=None)
tf.image.resize nearest neighbor (images, size,

align corners=None, name=None)

Cropping

tf.image.resize image with crop or pad(image,

target height, target width)
tf.image.pad to bounding box (image, offset height,
offset width, target height, target width)
tf.image.crop to bounding box (image, offset height,
offset width, target height, target width)
tf.image.extract glimpse (input, size, offsets,
centered=None, normalized=None, uniform noise=None,
name=None)

Flipping and Transposing

tf.image.flip up down (image)

tf.image.random flip up down (image, seed=None)
tf.image.flip left right (image)
tf.image.random flip left right(image, seed=None)
tf.image.transpose image (image)

Converting Between Colorspaces.
tf.image.rgb to grayscale (images)
tf.image.grayscale to rgb(images)
tf.image.hsv _to rgb(images, name=None)

tf.image.rgb to hsv(images, name=None)
tf.image.convert image dtype (image, dtype,
saturate=False, name=None)

Image Adjustments
tf.image.adjust brightness (image, delta)

tf.image.random brightness (image, max delta, seed=None)
tf.image.adjust contrast (images, contrast factor)

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_png
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_png
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_png
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resizing
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_area
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_area
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bicubic
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bicubic
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bilinear
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bilinear
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#cropping
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_image_with_crop_or_pad
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_image_with_crop_or_pad
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#pad_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#pad_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#crop_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#crop_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#extract_glimpse
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#extract_glimpse
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#extract_glimpse
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#flipping-and-transposing
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#flip_up_down
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_flip_up_down
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#flip_left_right
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_flip_left_right
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#transpose_image
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#converting-between-colorspaces
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#rgb_to_grayscale
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#grayscale_to_rgb
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#hsv_to_rgb
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#rgb_to_hsv
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#convert_image_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#convert_image_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#image-adjustments
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_brightness
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_brightness
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_contrast

Encoding and Decoding

TensorFlow provides Ops to decode and encode JPEG and PNG
formats. Encoded images are represented by scalar string Tensors,

decoded images by 3-D uint8 tensors of shape [height, width,

channels]. (PNG also supports uintl6.)

The encode and decode Ops apply to one image at a time. Their
input and output are all of variable size. If you need fixed size
images, pass the output of the decode Ops to one of the cropping
and resizing Ops.

Note: The PNG encode and decode Ops support RGBA, but the
conversions Ops presently only support RGB, HSV, and GrayScale.
Presently, the alpha channel has to be stripped from the image and
re-attached using slicing ops.

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_contrast
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_hue
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_hue
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#per_image_whitening
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#working-with-bounding-boxes
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#draw_bounding_boxes
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#saturate_cast

tf.image.decode jpeg(contents, channels=None, ratio=None,
fancy upscaling=None, try recover truncated=None,
acceptable fraction=None, name=None)

Decode a JPEG-encoded image to a uint8 tensor.

The attr channels indicates the desired number of color channels for
the decoded image.

Accepted values are:

0: Use the number of channels in the JPEG-encoded image.
1: output a grayscale image.

3: output an RGB image.

If needed, the JPEG-encoded image is transformed to match the
requested number of color channels.

The attr ratio allows downscaling the image by an integer factor

during decoding. Allowed values are: 1, 2, 4, and 8. This is much
faster than downscaling the image later.

Args:

contents: A Tensor Of type string. 0-D. The JPEG-encoded image.

channels: An optional int. Defaults to 0. Number of color channels
for the decoded image.

ratio: An optional int. Defaults to 1. Downscaling ratio.

fancy upscaling: An optional bool. Defaults to True. If true use a
slower but nicer upscaling of the chroma planes (yuv420/422 only).
try recover truncated: An optional bool. Defaults to False. If true

try to recover an image from truncated input.

acceptable fraction: An optional float. Defaults to 1. The

minimum required fraction of lines before a truncated input is
accepted.

name: A name for the operation (optional).

Returns:

A Tensor of type uint8. 3-D with shape [height, width,

channels]..

tf.image.encode jpeg(image, format=None, quality=None,
progressive=None, optimize size=None,

chroma downsampling=None, density unit=None,

x _density=None, y density=None, xmp metadata=None,
name=None)

JPEG-encode an image.

image is a 3-D uint8 Tensor of shape [height, width, channels].

The attr format can be used to override the color format of the
encoded output. Values can be:

' *: Use a default format based on the number of channels in the
image.

grayscale: Output a grayscale JPEG image.
The channels dimension of image must be 1.
rgb: Output an RGB JPEG image. The channels dimension

of image must be 3.

If format is not specified or is the empty string, a default format is

picked in function of the number of channels inimage:

1: Output a grayscale image.

3: Output an RGB image.

Args:

image: A Tensor Of type uint8. 3-D with shape [height, width,
channels].

format: An optional string from: "", "grayscale", "rgb".
Defaults to "". Per pixel image format.

quality: An optional int. Defaults to 95. Quality of the compression
from 0 to 100 (higher is better and slower).

progressive: An optional bool. Defaults to False. If True, create a

JPEG that loads progressively (coarse to fine).

optimize size: An optional bool. Defaults to False. If True, spend

CPU/RAM to reduce size with no quality change.

chroma downsampling: An optional bool. Defaults to True.

See

density unit: Anoptional string from: "in", "cm". Defaults
to "in". Unit used to specifyx density and y density: pixels per
inch ("in') or centimeter ("cm"').

x_density: An optional int. Defaults to 300. Horizontal pixels per
density unit.
y density: An optional int. Defaults to 300. Vertical pixels per

density unit.

https://www.google.com/url?q=http://en.wikipedia.org/wiki/Chroma_subsampling&usg=AFQjCNHsxo2igvsqZa9KTxD2XZCCYUsn9g

xmp metadata: An optional string. Defaults to ". If not empty,
embed this XMP metadata in the image header.

name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. JPEG-encoded image.

tf.image.decode png(contents, channels=None, dtype=None,
name=None)

Decode a PNG-encoded image to a uint8 or uint16 tensor.

The attr channels indicates the desired number of color channels for

the decoded image.
Accepted values are:

0: Use the number of channels in the PNG-encoded image.
1: output a grayscale image.
3: output an RGB image.

4: output an RGBA image.

If needed, the PNG-encoded image is transformed to match the
requested number of color channels.

Args:

contents: A Tensor Of type string. 0-D. The PNG-encoded image.

channels: An optional int. Defaults to 0. Number of color channels
for the decoded image.

dtype: An optional tf.DType from: tf.uint8, tf.uintl6. Defaults
fo tf.uints.

name: A name for the operation (optional).

Returns:

A Tensor of type dtype. 3-D with shape [height, width,

channels].

tf.image.encode png(image, compression=None, name=None)

PNG-encode an image.

image is a 3-D uint8 or uint1l6 Tensor of shape [height, width,

channels] where channels iS:

1: for grayscale.
3: for RGB.

4: for RGBA.
The ZLIB compression level, compression, can be -1 for the PNG-

encoder default or a value from 0 to 9. 9 is the highest compression
level, generating the smallest output, but is slower.

Args:

image: A Tensor. Must be one of the following types: uint8, uint1é.
3-D with shape [height, width, channels].
compression: An optional int. Defaults to -1. Compression level.

name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. PNG-encoded image.

Resizing

The resizing Ops accept input images as tensors of several types.
They always output resized images as float32 tensors.

The convenience function supports both 4-D and

3-D tensors as input and output. 4-D tensors are for batches of
images, 3-D tensors for individual images.
Other resizing Ops only support 4-D batches of images as

input: : , ,

Example:

Decode a JPG image and resize it to 299 by 299 using default
method.
image = tf.image.decode jpeg(...)

resized image = tf.image.resize images(image, 299, 299)

tf.image.resize images (images, new height, new width,
method=0, align corners=False)

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_area
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bicubic
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bilinear
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor

Resize images t0 new width, new height using the specified method.
Resized images will be distorted if their original aspect ratio is not the

same as new width, new height. TO avoid distortions
see

method can be one of:

ResizeMethod.BILINEAR.

ResizeMethod.NEAREST NEIGHBOR:
ResizeMethod.BICUBIC:

ResizeMethod.AREA: Area interpolation.

Args:

images: 4-D Tensor of shape [batch, height, width,
channels] or 3-D Tensor of shape [height, width, channels].
new height: integer.

new width! integer.

method: ResizeMethod. Defaults to ResizeMethod.BILINEAR.
align corners: bool. If true, exactly align all 4 cornets of the input

and output. Defaults to false.

Raises:

valueError: If the shape of images is incompatible with the shape
arguments to this function

valueError: if an unsupported resize method is specified.

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_image_with_crop_or_pad
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
https://en.wikipedia.org/wiki/Bicubic_interpolation

Returns:

If images was 4-D, a 4-D float Tensor of shape [batch,
new_height, new width, channels]. Ifimages was 3-D, a 3-D float

Tensor of shape [new height, new width, channels].

tf.image.resize area(images, size, align corners=None,
name=None)

Resize images t0 size using area interpolation.

Input images can be of different types but output images are always
float.

Args:

images: A Tensor. Must be one of the following
types: uint8, int8, int16, int32, int64, float32,float64. 4-D with
shape [batch, height, width, channels].

size: A 1-D int32 Tensor of 2 elements: new height, new width.
The new size for the images.
align_corners: An optional bool. Defaults to rFalse. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

name: A name for the operation (optional).

Returns:

A Tensor oOf type float32. 4-D with shape [batch, new height,

new width, channels].

tf.image.resize bicubic(images, size, align corners=None,
name=None)

Resize images t0 size using bicubic interpolation.

Input images can be of different types but output images are always
float.

Args:

images: A Tensor. Must be one of the following
types: uint8, int8, intl16, int32, int64, float32,float64. 4-D with
shape [batch, height, width, channels].

size: A 1-D int32 Tensor of 2 elements: new _height, new width.
The new size for the images.
align corners: An optional bool. Defaults to False. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

name: A name for the operation (optional).

Returns:

A Tensor Of type float32. 4-D with shape [batch, new height,

new width, channels].

tf.image.resize bilinear (images, size,
align corners=None, name=None)

Resize images t0 size using bilinear interpolation.

Input images can be of different types but output images are always
float.

Args:

images: A Tensor. Must be one of the following
types: uint8, int8, intl16, int32, int64, float32,float64. 4-D with
Shape[batch, height, width, channels].

size: A 1-D int32 Tensor of 2 elements: new height, new width.
The new size for the images.
align corners: An optional bool. Defaults to False. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

name: A name for the operation (optional).

Returns:

A Tensor Of type float32. 4-D with shape [batch, new height,

new width, channels].

tf.image.resize nearest neighbor (images, size,
align corners=None, name=None)

Resize images t0 size using nearest neighbor interpolation.

Args:

images: A Tensor. Must be one of the following
types: uint8, int8, intl16, int32, int64, float32,float64. 4-D with
shape [batch, height, width, channels].

size: A 1-D int32 Tensor of 2 elements: new _height, new width.
The new size for the images.
align_corners: An optional bool. Defaults to rFalse. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. 4-D with shape [batch,

new _height, new width, channels].

Cropping

tf.image.resize image with crop or pad(image,
target height, target width)

Crops and/or pads an image to a target width and height.

Resizes an image to a target width and height by either centrally
cropping the image or padding it evenly with zeros.

If width or height is greater than the
specified target width Or target height respectively, this op
centrally crops along that dimension. If width or height is smaller

than the specified target width Ortarget height respectively, this

op centrally pads with 0 along that dimension.

Args:

image: 3-D tensor of shape [height, width, channels]
target height: Target height.

target width: Target width.

Raises:

ValueError: if target height Of target width are zero or

negative.

Returns:

Cropped and/or padded image of shape [target height,

target width, channels]

tf.image.pad to bounding box(image, offset height,
offset width, target height, target width)

Pad image with zeros to the specified height and width.

Adds offset height rows of zeros on top, offset width columns of
zeros on the left, and then pads the image on the bottom and right

with zeros until it has dimensions target height, target width.
This op does nothing if offset * is zero and the image already has

size target height by target width.

Args:

image: 3-D tensor with shape [height, width, channels]
offset _height: Number of rows of zeros to add on top.
offset_width: Number of columns of zeros to add on the left.
target height: Height of output image.

target width: Width of output image.

Returns:

3-D tensor of shape [target height, target width, channels]

Raises:

valueError: If the shape of image is incompatible with

the offset * Or target * arguments

tf.image.crop to bounding box (image, offset height,
offset width, target height, target width)

Crops an image to a specified bounding box.

This op cuts a rectangular part out of image. The top-left corner of the
returned image is at offset height, offset widthin image, and
its lower-right corner is at offset _height + target height,

offset width + target width.

Args:

image: 3-D tensor with shape [height, width, channels]

offset height: Vertical coordinate of the top-left corner of the result
in the input.

offset width: Horizontal coordinate of the top-left corner of the
result in the input.

target height: Height of the result.

target width: Width of the result.

Returns:

3-D tensor of image with shape [target height, target width,

channels]

Raises:

valueError: If the shape of image is incompatible with

the offset * Of target * arguments

tf.image.extract glimpse (input, size, offsets,
centered=None, normalized=None, uniform noise=None,
name=None)

Extracts a glimpse from the input tensor.

Returns a set of windows called glimpses extracted at
location of fsets from the input tensor. If the windows only partially

overlaps the inputs, the non overlapping areas will be filled with
random noise.

The result is a 4-D tensor of shape [batch size, glimpse height,

glimpse width, channels]. The channels and batch dimensions
are the same as that of the input tensor. The height and width of the

output windows are specified in the size parameter.

The argument normalized and centered controls how the windows

are built: * If the coordinates are normalized but not centered, 0.0 and
1.0 correspond to the minimum and maximum of each height and
width dimension. * If the coordinates are both normalized and
centered, they range from -1.0 to 1.0. The coordinates (-1.0, -1.0)
correspond to the upper left corner, the lower right corner is located
at (1.0, 1.0) and the center is at (0, 0). * If the coordinates are not
normalized they are interpreted as numbers of pixels.

Args:

input: A Tensor Of type float32. A 4-D float tensor of
shape [batch size, height, width, channels].

size: A Tensor Of type int32. A 1-D tensor of 2 elements containing

the size of the glimpses to extract. The glimpse height must be
specified first, following by the glimpse width.

offsets: A Tensor Of type float32. A 2-D integer tensor of

shape [batch size, 2] containing the X, y locations of the center of

each window.

centered: An optional bool. Defaults to True. indicates if the offset

coordinates are centered relative to the image, in which case the (0,
0) offset is relative to the center of the input images. If false, the (0,0)
offset corresponds to the upper left corner of the input images.

normalized: An optional bool. Defaults to True. indicates if the offset
coordinates are normalized.
uniform noise: An optional bool. Defaults to True. indicates if the

noise should be generated using a uniform distribution or a gaussian
distribution.

name: A name for the operation (optional).

Returns:

A Tensor of type float32. A tensor representing the
glimpses [batch size, glimpse height, glimpse width,

channels].

Flipping and Transposing

tf.image.flip up down (image)

Flip an image horizontally (upside down).

Outputs the contents of image flipped along the first dimension, which
IS height.

See also reverse ().

Args:

image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

valueError: If the shape of image not supported.

tf.image.random flip up down (image, seed=None)

Randomly flips an image vertically (upside down).

With a 1 in 2 chance, outputs the contents of image flipped along the

first dimension, which is height. Otherwise output the image as-is.

Args:

image: A 3-D tensor of shape [height, width, channels].
seed: A Python integer. Used to create a random seed.

See for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Raises:

valueError: If the shape of image not supported.

tf.image.flip left right (image)

Flip an image horizontally (left to right).

Outputs the contents of image flipped along the second dimension,
which is width.

See also reverse ().

Args:

image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

valueError: If the shape of image not supported.

tf.image.random flip left right(image, seed=None)

Randomly flip an image horizontally (left to right).

With a 1 in 2 chance, outputs the contents of image flipped along the

second dimension, which is width. Otherwise output the image as-is.

Args:

image: A 3-D tensor of shape [height, width, channels].
seed: A Python integer. Used to create a random seed.

See for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

valueError: If the shape of image not supported.

tf.image.transpose image (image)

Transpose an image by swapping the first and second dimension.

See also transpose ().

Args:

image: 3-D tensor of shape [height, width, channels]

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Returns:

A 3-D tensor of shape [width, height, channels]

Raises:

valueError: if the shape of image not supported.

Converting Between Colorspaces.

Image ops work either on individual images or on batches of images,
depending on the shape of their input Tensor.

If 3-D, the shape is [height, width, channels], and the Tensor
represents one image. If 4-D, the shape iS[batch size, height,
width, channels], and the Tensor represents batch size images.

Currently, channels can usefully be 1, 2, 3, or 4. Single-channel

Images are grayscale, images with 3 channels are encoded as either
RGB or HSV. Images with 2 or 4 channels include an alpha channel,
which has to be stripped from the image before passing the image to
most image processing functions (and can be re-attached later).

Internally, images are either stored in as one f1oat32 per channel
per pixel (implicitly, values are assumed to lie in [0, 1)) or
one uintsg per channel per pixel (values are assumed to lie

in [0,255]).

Tensorflow can convert between images in RGB or HSV. The
conversion functions work only on float images, so you need to

convert images in other formats using

Example:

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#convert-image-dtype

Decode an image and convert it to HSV.

rgb image = tf.decode png (..., channels=3)

rgb image float = tf.convert image dtype(rgb image, tf.float32)
hsv _image = tf.rgb to hsv(rgb image)

tf.image.rgb to grayscale (images)
Converts one or more images from RGB to Grayscale.
Outputs a tensor of the same pDType and rank as images. The size of

the last dimension of the output is 1, containing the Grayscale value
of the pixels.

Args:

images: The RGB tensor to convert. Last dimension must have size 3

and should contain RGB values.

Returns:

The converted grayscale image(s).

tf.image.grayscale to rgb(images)
Converts one or more images from Grayscale to RGB.
Outputs a tensor of the same pType and rank as images. The size of

the last dimension of the output is 3, containing the RGB value of the
pixels.

Args:

images: The Grayscale tensor to convert. Last dimension must be

size 1.

Returns:

The converted grayscale image(s).

tf.image.hsv to rgb(images, name=None)

Convert one or more images from HSV to RGB.

Outputs a tensor of the same shape as the images tensor, containing
the RGB value of the pixels. The output is only well defined if the

value in images arein [0,1].

See rgb to hsv for a description of the HSV encoding.

Args:

images: A Tensor Of type float32. 1-D or higher rank. HSV data to
convert. Last dimension must be size 3.

name: A name for the operation (optional).

Returns:

A Tensor Of type float32. images converted to RGB.

tf.image.rgb to hsv(images, name=None)

Converts one or more images from RGB to HSV.

Outputs a tensor of the same shape as the images tensor, containing
the HSV value of the pixels. The output is only well defined if the

value in images arein [0,1].
output[..., 0] contains hue, output[..., 1] contains saturation,

and output[..., 2] contains value. All HSV values are in [0,1]. A

hue of O corresponds to pure red, hue 1/3 is pure green, and 2/3 is
pure blue.

Args:

images: A Tensor Of type f1oat32. 1-D or higher rank. RGB data to
convert. Last dimension must be size 3.
name: A name for the operation (optional).

Returns:

A Tensor Of type float32. images converted to HSV.

tf.image.convert image dtype (image, dtype,
saturate=False, name=None)

Convert image to dtype, scaling its values if needed.

Images that are represented using floating point values are expected
to have values in the range [0,1). Image data stored in integer data

types are expected to have values in the range [0, MAX],

where Max is the largest positive representable number for the data

type.

This op converts between data types, scaling the values
appropriately before casting.

Note that converting from floating point inputs to integer types may
lead to over/underflow problems. Set saturate to True to avoid such

problem in problematic conversions. If enabled, saturation will clip the
output into the allowed range before performing a potentially
dangerous cast (and only before performing such a cast, i.e., when
casting from a floating point to an integer type, and when casting

from a signed to an unsigned type; saturatehas no effect on casts

between floats, or on casts that increase the type's range).

Args:

image: An image.
dtype: A DType t0 convert image to.
saturate: If True, clip the input before casting (if necessary).

name: A name for this operation (optional).

Returns:

image, converted to dtype.

Image Adjustments

TensorFlow provides functions to adjust images in various ways:
brightness, contrast, hue, and saturation. Each adjustment can be
done with predefined parameters or with random parameters picked
from predefined intervals. Random adjustments are often useful to
expand a training set and reduce overfitting.

If several adjustments are chained it is advisable to minimize the
number of redundant conversions by first converting the images to
the most natural data type and representation (RGB or HSV).

tf.image.adjust brightness(image, delta)

Adjust the brightness of RGB or Grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its brightness, and then converts it back to the

original data type. If several adjustments are chained it is advisable
to minimize the number of redundant conversions.

The value delta is added to all components of the tensor image.
Both image and delta are converted tofloat before adding
(and image is scaled appropriately if it is in fixed-point
representation). For regular images,delta should be in the
range [0, 1), as it is added to the image in floating point

representation, where pixel values are in the [0, 1) range.

Args:

image: A tensor.

delta: A scalar. Amount to add to the pixel values.

Returns:

A brightness-adjusted tensor of the same shape and type as image.

tf.image.random brightness (image, max delta, seed=None)

Adjust the brightness of images by a random factor.

Equivalent to adjust brightness () USing a delta randomly picked

in the interval [-max delta, max delta).

Args:

image: An image.
max_delta: float, must be non-negative.
seed: A Python integer. Used to create a random seed.

See for behavior.

Returns:

The brightness-adjusted image.

Raises:

ValueError: ifmax delta IS negative.

tf.image.adjust contrast (images, contrast factor)

Adjust contrast of RGB or grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its contrast, and then converts it back to the
original data type. If several adjustments are chained it is advisable
to minimize the number of redundant conversions.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

images IS a tensor of at least 3 dimensions. The last 3 dimensions
are interpreted as [height, width, channels]. The other

dimensions only represent a collection of images, such as [batch,

height, width, channels].

Contrast is adjusted independently for each channel of each image.

For each channel, this Op computes the mean of the image pixels in

the channel and then adjusts each component x of each pixel to (x -

mean) * contrast factor + mean.

Args:

images: Images to adjust. At least 3-D.

contrast factor: A float multiplier for adjusting contrast.

Returns:

The constrast-adjusted image or images.

tf.image.random contrast (image, lower, upper, seed=None)

Adjust the contrast of an image by a random factor.

Equivalent to adjust contrast () but uses

a contrast factor randomly picked in the interval [lower, upper].

Args:

image: An image tensor with 3 or more dimensions.
lower: float. Lower bound for the random contrast factor.
upper: float. Upper bound for the random contrast factor.
seed: A Python integer. Used to create a random seed.

See for behavior.

Returns:

The contrast-adjusted tensor.

Raises:

ValueError: if upper <= lower Or if lower < 0.

tf.image.adjust hue(image, delta, name=None)
Adjust hue of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the hue channel,
converts back to RGB and then back to the original data type. If
several adjustments are chained it is advisable to minimize the
number of redundant conversions.

image is an RGB image. The image hue is adjusted by converting the

image to HSV and rotating the hue channel (H) by de1ta. The image
is then converted back to RGB.

delta must be in the interval [-1, 1].

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Args:

image: RGB image or images. Size of the last dimension must be 3.
delta: float. How much to add to the hue channel.

name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

tf.image.random hue (image, max delta, seed=None)

Adjust the hue of an RGB image by a random factor.

Equivalent to adjust_hue () but uses a delta randomly picked in the
interval [-max delta, max deltal.

max_delta must be in the interval [0, 0.5].

Args:

image: RGB image or images. Size of the last dimension must be 3.
max_delta: float. Maximum value for the random delta.

seed: An operation-specific seed. It will be used in conjunction with

the graph-level seed to determine the real seeds that will be used in
this operation. Please see the documentation of set_random_seed
for its interaction with the graph-level random seed.

Returns:

3-D float tensor of shape [height, width, channels].

Raises:

ValueErrorZﬁn@x_deltaisinva”d.

tf.image.adjust saturation(image, saturation factor,
name=None)

Adjust saturation of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the saturation
channel, converts back to RGB and then back to the original data

type. If several adjustments are chained it is advisable to minimize
the number of redundant conversions.

image IS an RGB image. The image saturation is adjusted by
converting the image to HSV and multiplying the saturation (S)
channel by saturation factor and clipping. The image is then
converted back to RGB.

Args:

image: RGB image or images. Size of the last dimension must be 3.
saturation factor: float. Factor to multiply the saturation by.

name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

tf.image.random saturation(image, lower, upper,
seed=None)

Adjust the saturation of an RGB image by a random factor.

Equivalent to adjust saturation () but uses

a saturation factor randomly picked in the interval [1ower,

upper].

Args:

image: RGB image or images. Size of the last dimension must be 3.
lower: float. Lower bound for the random saturation factor.
upper: float. Upper bound for the random saturation factor.

seed: An operation-specific seed. It will be used in conjunction with

the graph-level seed to determine the real seeds that will be used in
this operation. Please see the documentation of set_random_seed
for its interaction with the graph-level random seed.

Returns:

Adjusted image(s), same shape and DType as image.

Raises:

ValueError: if upper <= lower Orif lower < 0.

tf.image.per image whitening (image)

Linearly scales image to have zero mean and unit norm.

This op computes (x - mean) / adjusted stddev, Where mean is
the average of all values in image, andadjusted stddev =

max (stddev, 1.0/sgrt (image.NumElements())).

stddev is the standard deviation of all values in image. It is capped

away from zero to protect against division by 0 when handling
uniform images.

Note that this implementation is limited: * It only whitens based on the
statistics of an individual image. * It does not take into account the
covariance structure.

Args:

image: 3-D tensor of shape [height, width, channels].

Returns:

The whitened image with same shape as image.

Raises:

valueError: if the shape of 'image' is incompatible with this function.

Working with Bounding Boxes

tf.image.draw bounding boxes (images, boxes, name=None)

Draw bounding boxes on a batch of images.

Outputs a copy of images but draws on top of the pixels zero or more
bounding boxes specified by the locations in boxes. The coordinates
of the each bounding box in boxes are encoded as[y_min, Xx_min,
y_max, X_max]. The bounding box coordinates are floats

in[0.0, 1.0] relative to the width and height of the underlying image.
For example, if an image is 100 x 200 pixels and the bounding box

IS [0.1, 0.5, 0.2, 0.9],the bottom-left and upper-right

coordinates of the bounding box will be (10, 40) to (50, 180).

Parts of the bounding box may fall outside the image.

Args:

images: A Tensor Of type f1oat32. 4-D with shape [batch, height,
width, depth]. A batch of images.

boxes: A Tensor Of type float32. 3-D with shape [batch,

num bounding boxes, 4] containing bounding boxes.

name: A name for the operation (optional).

Returns:

A Tensor Of type float32. 4-D with the same shape as images. The

batch of input images with bounding boxes drawn on the images.

tf.image.sample distorted bounding box (image size,
bounding boxes, seed=None, seedZ2=None,

min object covered=None, aspect ratio range=None,
area range=None, max attempts=None,

use image if no bounding boxes=None, name=None)

Generate a single randomly distorted bounding box for an image.

Bounding box annotations are often supplied in addition to ground-
truth labels in image recognition or object localization tasks. A
common technique for training such a system is to randomly distort
an image while preserving its content, i.e. data augmentation. This
Op outputs a randomly distorted localization of an object, i.e.

bounding box, given an image size, bounding boxes and a series of

constraints.
The output of this Op is a single bounding box that may be used to
crop the original image. The output is returned as 3

tensors: begin, size and bboxes. The first 2 tensors can be fed
directly into tf.s1ice to crop the image. The latter may be supplied

to tf.image.draw bounding box to visualize what the bounding box
looks like.

Bounding boxes are supplied and returned as [y min, x min,
y max, x_max]. The bounding box coordinates are floats in [0.0,

1.0] relative to the width and height of the underlying image.

For example,

Generate a single distorted bounding box.

begin, size, bbox for draw =

tf.image.sample distorted bounding box (
tf.shape (image),

bounding boxes=bounding boxes)

Draw the bounding box in an image summary.

image with box =

tf.image.draw_bounding boxes (tf.expand dims (image, 0),
bbox for draw)

tf.image summary ('images with box', image with box)

Employ the bounding box to distort the image.
distorted image = tf.slice(image, begin, size)

Note that if no bounding box information is available,

setting use image if no bounding boxes = trueWill assume there
Is a single implicit bounding box covering the whole image.

Ifuse image if no bounding boxes IS false and no bounding boxes

are supplied, an error is raised.

Args:

image size! A Tensor. Must be one of the following

types: uint8, int8, int16, int32, int64. 1-D, containing [height,
width, channels].

bounding boxes: A Tensor Of type float32. 3-D with shape [batch,
N, 4] describing the N bounding boxes associated with the image.
seed: An optional int. Defaults to 0. If either seed or seed2 are set to

non-zero, the random number generator is seeded by the given seed.
Otherwise, it is seeded by a random seed.

seed2: An optional int. Defaults to 0. A second seed to avoid seed
collision.

min object covered: An optional float. Defaultsto 0.1. The

cropped area of the image must contain at least this fraction of any
bounding box supplied.

aspect ratio range: An optional list of f1oats. Defaults to [0.75,

1.33]. The cropped area of the image must have an aspect ratio =

width / height within this range.

area range: An optional list of f1oats. Defaultsto [0.05, 11. The

cropped area of the image must contain a fraction of the supplied
image within in this range.

max_attempts: An optional int. Defaults to 100. Number of attempts
at generating a cropped region of the image of the specified

constraints. After max _attempts failures, return the entire image.
use image if no bounding boxes: An optional bool. Defaults

to False. Controls behavior if no bounding boxes supplied. If true,

assume an implicit bounding box covering the whole input. If false,
raise an error.

name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (begin, size, bboxes).

begin: A Tensor. Has the same type as image size. 1-D,
containing [offset height, offset width, 0].Provide as input
fotf.slice.

size! A Tensor. Has the same type as image size. 1-D,

containing [target height, target width, -1].Provide as input
fotf.slice.

bboxes: A Tensor Of type float32. 3-D with shape 11, 1,

41 containing the distorted bounding box. Provide as input

to tf.image.draw bounding boxes.

Other Functions and Classes

tf.image.saturate cast (image, dtype)

Performs a safe cast of image data to dtype.

This function casts the data in image to dtype, without applying any

scaling. If there is a danger that image data would over or underflow
in the cast, this op applies the appropriate clamping before the cast.

Args:

image: An image to cast to a different data type.

dtype: A DType t0 cast image to.

Returns:

image, safely cast to dtype.

Sparse Tensors

Note: Functions taking Tensor arguments can also take anything

accepted by

Contents

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse-tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse-tensor-representation
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensorValue
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse-to-dense-conversion
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_tensor_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_tensor_to_dense

Sparse Tensor Representation

Tensorflow supports a sparseTensor representation for data that is
sparse in multiple dimensions. Contrast this representation
with 1ndexedslices, which is efficient for representing tensors that

are sparse in their first dimension, and dense along all other
dimensions.

class tf.SparseTensor

Represents a sparse tensor.

Tensorflow represents a sparse tensor as three separate dense

tensors: indices, values, and shape. In Python, the three tensors
are collected into a sparseTensor class for ease of use. If you have
separate indices,values, and shape tensors, wrap them in

a sparseTensor Object before passing to the ops below.
Concretely, the sparse tensor sparseTensor (indices, values,
shape)iS

indices: A 2-D int64 tensor of shape [N, ndims].

https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_indicator
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#manipulation
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_concat
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_reorder
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_split
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_split
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_retain
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_fill_empty_rows
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_fill_empty_rows

o values: A 1-D tensor of any type and shape [N].
e shape: A 1-D int64 tensor of shape [ndims].
where N and ndims are the number of values, and number of

dimensions in the sparseTensor respectively.

The corresponding dense tensor satisfies

dense.shape = shape

dense[tuple(indices[i])] = values|[i]

By convention, indices should be sorted in row-major order (or
equivalently lexicographic order on the tuplesindices[i]). Thisis
not enforced when sparseTensor objects are constructed, but most

ops assume correct ordering. If the ordering of sparse tensor st is
wrong, a fixed version can be obtained by

callingtf.sparse reorder (st).

Example: The sparse tensor

SparseTensor (indices=[[0, 0], [1, 2]]1, values=[1l, 2], shape=[3,

4])

represents the dense tensor

tf.SparseTensor. 1init (indices, values, shape)

Creates a SparseTensor.

Args:

indices: A 2-D int64 tensor of shape [N, ndims].
values: A 1-D tensor of any type and shape [n].

shape: A 1-D int64 tensor of shape [ndims].

Returns:

A SparseTensor

tf.SparseTensor.indices

The indices of non-zero values in the represented dense tensor.

Returns:

A 2-D Tensor of int64 with shape [N, ndims], where v is the number

of non-zero values in the tensor, andndims is the rank.

tf.SparseTensor.values

The non-zero values in the represented dense tensor.

Returns:

A 1-D Tensor of any data type.

tf.SparseTensor.dtype

The pType of elements in this tensor.

tf.SparseTensor.shape

A 1-D Tensor of int64 representing the shape of the dense tensor.

tf.SparseTensor.graph

The Graph that contains the index, value, and shape tensors.

class tf.SparseTensorValue

SparseTensorValue(indices, values, shape)

tf.SparseTensorValue.indices

Alias for field number O

tf.SparseTensorValue.shape

Alias for field number 2

tf.SparseTensorValue.values

Alias for field number 1

Sparse to Dense Conversion

tf.sparse to dense (sparse indices, output shape,
sparse values, default value=0, validate indices=True,
name=None)

Converts a sparse representation into a dense tensor.

Builds an array dense with shape output shape such that

If sparse indices is scalar

dense[i] = (i == sparse indices ? sparse values : default value)

If sparse indices is a vector, then for each 1

dense[sparse indices[i]] = sparse values|[i]

If sparse indices is an n by d matrix, then for each i in [O,
n)
dense[sparse indices[i][0], ..., sparse indices[i][d-1]] =

sparse values([i]

All other values in dense are setto default value.

If sparse values is a scalar, all sparse indices are set to this single

value.
Indices should be sorted in lexicographic order, and indices must not

contain any repeats. If validate indicesis True, these properties

are checked during execution.

Args:

sparse indices: A 0-D, 1-D, or 2-D Tensor Of
type int32 Or int64. sparse indices[1i] contains the complete
index where sparse values[i] will be placed.

output shape: A 1-D Tensor of the same type as sparse indices.
Shape of the dense output tensor.

sparse values: A 0-D or 1-D Tensor. Values corresponding to each

row of sparse indices, oOr a scalar value to be used for all sparse
indices.

default value: A 0-D Tensor of the same type as sparse values.

Value to set for indices not specified in sparse indices. Defaults to
zero.
validate indices: A boolean value. If True, indices are checked to

make sure they are sorted in lexicographic order and that there are
no repeats.

name: A name for the operation (optional).

Returns:

Dense Tensor of shape output shape. Has the same type

as sparse values.

tf.sparse tensor to dense(sp input, default value=0,
validate indices=True, name=None)

Converts a sparseTensor INto a dense tensor.

This op is a convenience wrapper

around sparse to dense for SparseTensors.

For example, if sp_input has shape [3, 5] and non-empty string

values:

[0, 11: a
[0, 3]: b
[2, 01: ¢

and default value S x, then the output will be a dense [3,

5] string tensor with values:

[[x a x b x]
[x x X X X]

[c x x x x]]

Indices must be without repeats. This is only tested if
validate indices is True.

Args:

sp_input!: The input SparseTensor.
default value: Scalar value to set for indices not specified
iNn sp_input. Defaults to zero.

validate indices: A boolean value. If True, indices are checked to

make sure they are sorted in lexicographic order and that there are
no repeats.

name: A name prefix for the returned tensors (optional).

Returns:

A dense tensor with shape sp_input.shape and values specified by
the non-empty values in sp_input. Indices not in sp_input are

assigned default value.

Raises:

TypeError: If sp input iS NOt @ SparseTensor.

tf.sparse to indicator(sp input, vocab size, name=None)

Converts a sparseTensor Of ids into a dense bool indicator tensor.

The last dimension of sp _input is discarded and replaced with the

values of sp_input. If sp_input.shape = [DO, D1, ..., Dn, KI,
then output.shape = [DO, D1, ..., Dn, vocab sizel, where
output([d 0, 41, ..., d n, sp input[d 0, 41, ..., dn, k]] =
True

and False elsewhere in output.

For example, if sp_input.shape = [2, 3, 4] with non-empty
values:

[0, 0, 0]: 0

[0, 1, 0]: 10

[1, 0, 3]: 103

[1, 1, 2]: 150

[1, 1, 3]: 149

[1, 1, 4]: 150

(1, 2, 11: 121

and vocab_size = 200, then the output willbe a (2, 3, 200] dense

bool tensor with False everywhere except at positions
(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),
(1, 2, 121).

Note that repeats are allowed in the input SparseTensor. This op is
useful for converting sparseTensors into dense formats for
compatibility with ops that expect dense tensors.

The input sparseTensor must be in row-major order.

Args:

sp_input: A SparseTensor Of type int32 Or int64.
vocab size: The new size of the last dimension, with a11 (0 <=
sp_input.values < vocab size).

name: A name prefix for the returned tensors (optional)

Returns:

A dense bool indicator tensor representing the indices with specified
value.

Raises:

TypeError: If sp_input iS NOt @ SparseTensor.

Manipulation

tf.sparse concat (concat dim, sp inputs, name=None)
Concatenates a list of sparseTensor along the specified dimension.
Concatenation is with respect to the dense versions of each sparse
input. It is assumed that each inputs is asparseTensor whose

elements are ordered along increasing dimension number.
All inputs' shapes must match, except for the concat dimension.

The indices, values, and shapes lists must have the same length.

The output shape is identical to the inputs’, except along the concat
dimension, where it is the sum of the inputs' sizes along that
dimension.

The output elements will be resorted to preserve the sort order along
increasing dimension number.

Thisoprunsino M 1og M) time, where M is the total number of non-

empty values across all inputs. This is due to the need for an internal
sort in order to concatenate efficiently across an arbitrary dimension.

For example, if concat dim = 1 and the inputs are

sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, O]: "b"
[1, 1]: "c"
sp_inputs[1l]: shape = [2, 4]
[0, 1]: "a"
[0, 2]: "e"

then the output will be

shape = [2, 7]
[0, 2]: "a"
[0, 41: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 11: "c"

Graphically this is equivalent to doing

[al] concat [de] = [a de]
[b c 1 [] [b ¢]

Args:

concat dim: Dimension to concatenate along.
sp_inputs: List of sparseTensor to concatenate.

name: A name prefix for the returned tensors (optional).

Returns:

A sparseTensor With the concatenated output.

Raises:

TypeError: If sp inputs is not a list of sparseTensor.

tf.sparse reorder (sp_ input, name=None)

Reorders a sparseTensor into the canonical, row-major ordering.

Note that by convention, all sparse ops preserve the canonical
ordering along increasing dimension number. The only time ordering
can be violated is during manual manipulation of the indices and
values to add entries.

Reordering does not affect the shape of the sparseTensor.

For example, if sp_input has shape [4, 5] and indices/values:

[0, 3]1: Db
[0, 1]: a
[3, 1]1: d
[2, 0]: c

then the output will be a sparseTensor of shape [4,

5] and indices/values:

[0, 11: a
[0, 31: D
[2, 0]: c
[3, 1]: d
Args:

sp_input: The input sparseTensor.

name: A hame prefix for the returned tensors (optional)

Returns:

A sparseTensor With the same shape and non-empty values, but in

canonical ordering.

Raises:

TypeError: If sp_input IS NOt a SparseTensor.

tf.sparse split(split dim, num split, sp input,
name=None)

Split a sparseTensor INtO num split tensors along split dim.

If the sp_input.shape([split dim] iS not an integer multiple

of num split each slice starting from O:shape [split dim] %
num_split gets extra one dimension. For example, if split dim =

1 andnum_split = 2 and the inputis:

input tensor = shape = [2, 7]
[a d e]
[b c]

Graphically the output tensors are:

output tensor[0]
[a]
[b c 1]

output tensor[1]
[de]
[]

Args:

split dim: A 0-D int32 Tensor. The dimension along which to split.
num split: A Python integer. The number of ways to split.
sp_input: The sparseTensor to split.

name: A name for the operation (optional).

Returns:

num_split SparseTensor Objects resulting from splitting value.

Raises:

TypeError: If sp_input iS NOt @ SparseTensor.

tf.sparse retain(sp input, to retain)

Retains specified non-empty values within a sparseTensor.

For example, if sp_input has shape [4, 5] and 4 non-empty string

values:
[0, 171:
[0, 371:
[2, 071:
[3, 11:

0O Qo o w

and to_retain = [True, False, False, True], then the output

will be a sparseTensor of shape4, 5] with 2 non-empty values:

Args:

sp_input: The input sparseTensor with N non-empty elements.

to retain: A bool vector of length n with M true values.

Returns:

A sparseTensor With the same shape as the input and M non-empty

elements corresponding to the true positions in to retain.

Raises:

TypeError: If sp_input iS NOt @ SparseTensor.

tf.sparse fill empty rows(sp_ input, default value,
name=None)

Fills empty rows in the input 2-D sparseTensor with a default value.
This op adds entries with the specified default value at

index [row, 0] for any row in the input that does not already have a
value.
For example, suppose sp_input has shape [5, 6] and non-empty

values:
[0, 17:
[0, 371:
[2, 071:
[3, 1]

0 Q O w

14

Rows 1 and 4 are empty, so the output will be of shape [5, 6] with

values:
[0, 11: a

[0, 3]1: Db
[1, O]: default value
[2, 01: ¢
[3, 1]1: d
(4, 0]

: default value

Note that the input may have empty columns at the end, with no
effect on this op.

The output sparseTensor Will be in row-major order and will have the

same shape as the input.

This op also returns an indicator vector such that

empty row indicator[i] = True iff row i was an empty row.

Args:

sp_input: A SparseTensor With shape [N, M].
default value: The value to fill for empty rows, with the same type
as sp input.

name: A name prefix for the returned tensors (optional)

Returns:

sp_ordered output:! A sparseTensor With shape [N, M7, and with
all empty rows filled in withdefault value.

empty row indicator: A bool vector of length x indicating whether

each input row was empty.

Raises:

TypeError: If sp_input iS NOt @ SparseTensor.

Inputs and Readers

Note: Functions taking Tensor arguments can also take anything

accepted by « . convert to tensor.

Contents

Inputs and Readers

Placeholders

tf.placeholder (dtype, shape=None, name=

Readers

class
class
class
class
class
class

tf.
tf.
.WholeFileReader
tf.
tf.
tf.

tf

ReaderBase
TextLineReader

IdentityReader
TFRecordReader
FixedLengthRecordReader

Converting

tf.decode csv(records, record defaults,

name=None)

None)

field delim=None,

tf.decode raw(bytes, out type, little endian=None,

name=None)
Example protocol buffer

class
class
class

tf

.VarLenFeature
tf.
tf.
tf.parse

FixedLenFeature
FixedLenSequenceFeature
example (serialized, features,

example names=None)

tf.parse single example (serialized,

example names=None)

tf.decode json example (json examples,

Queues

class tf.QueueBase
class tf.FIFOQueue
class tf.RandomShuffleQueue

Dealing with the filesystem

tf.matching files (pattern, name=None)

tf.read file(filename, name=None)
Input pipeline

Beginning of an input pipeline

tf.train.match filenames once (pattern,

name=None,

features, name=None,

name=None)

name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#inputs-and-readers
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#placeholders
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#placeholder
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#readers
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#ReaderBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#TextLineReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#IdentityReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#TFRecordReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FixedLengthRecordReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#converting
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_csv
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_csv
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_raw
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_raw
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#example-protocol-buffer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#VarLenFeature
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FixedLenFeature
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FixedLenSequenceFeature
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_single_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_single_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_json_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#queues
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FIFOQueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#RandomShuffleQueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#dealing-with-the-filesystem
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#matching_files
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#read_file
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#input-pipeline
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#beginning-of-an-input-pipeline
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#match_filenames_once

Placeholders

TensorFlow provides a placeholder operation that must be fed with
data on execution. For more info, see the section on

tf.placeholder (dtype, shape=None, name=None)
Inserts a placeholder for a tensor that will be always fed.

Important: This tensor will produce an error if evaluated. Its value

must be fed using the feed dict optional argument

t0 Session.run (), Tensor.eval (), OFf Operation.run ().

For example:

x = tf.placeholder (tf.float32, shape=(1024, 1024))

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#limit_epochs
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#range_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#range_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#slice_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#slice_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#slice_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#string_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#string_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#string_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batching-at-the-end-of-an-input-pipeline
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html#feeding

y = tf.matmul (x, x)

with tf.Session () as sess:

print (sess.run(y)) # ERROR: will fail because x was not fed.

rand array = np.random.rand (1024, 1024)

print (sess.run(y, feed dict={x: rand array})) # Will succeed.

Args:

dtype: The type of elements in the tensor to be fed.

shape: The shape of the tensor to be fed (optional). If the shape is
not specified, you can feed a tensor of any shape.

name: A name for the operation (optional).

Returns:

A Tensor that may be used as a handle for feeding a value, but not

evaluated directly.

Readers

TensorFlow provides a set of Reader classes for reading data
formats. For more information on inputs and readers, see

class tf.ReaderBase

Base class for different Reader types, that produce a record every
step.

Conceptually, Readers convert string ‘work units' into records (key,
value pairs). Typically the 'work units' are filenames and the records

https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html
https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html

are extracted from the contents of those files. We want a single
record produced per step, but a work unit can correspond to many
records.

Therefore we introduce some decoupling using a queue. The queue
contains the work units and the Reader dequeues from the queue
when it is asked to produce a record (via Read()) but it has finished
the last work unit.

tf.ReaderBase. init (reader ref,
supports serialize=False)

Creates a new ReaderBase.

Args:

reader ref: The operation that implements the reader.

supports_serialize: True if the reader implementation can serialize

its state.

tf.ReaderBase.num records produced (name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.num work units completed (name=None)

Returns the number of work units this reader has finished processing.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.read (queue, name=None)
Returns the next record (key, value pair) produced by a reader.
Will dequeue a work unit from queue if necessary (e.g. when the

Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

« queue: A Queue or a mutable string Tensor representing a handle to
a Queue, with string work items.

« name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

key: A string scalar Tensor.

value: A string scalar Tensor.

tf.ReaderBase.reader ref

Op that implements the reader.

tf.ReaderBase.reset (name=None)

Restore a reader to its initial clean state.

Args:

name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.restore state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

state: A string Tensor. Result of a SerializeState of a Reader with
matching type.

name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.serialize state (name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

name: A name for the operation (optional).

Returns:

A string Tensor.

tf.ReaderBase.supports serialize

Whether the Reader implementation can serialize its state.

class tf.TextlLineReader

A Reader that outputs the lines of a file delimited by newlines.

Newlines are stripped from the output. See ReaderBase for
supported methods.

tf.TextLineReader. init (skip header lines=None,
name=None)

Create a TextLineReader.

Args:

skip_header lines: An optional int. Defaults to 0. Number of lines
to skip from the beginning of every file.

name: A name for the operation (optional).

tf.TextLineReader.num records produced (name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.num work units completed (name=None)

Returns the number of work units this reader has finished processing.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.read (queue, name=None)
Returns the next record (key, value pair) produced by a reader.
Will dequeue a work unit from queue if necessary (e.g. when the

Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

« queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

« name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

e key: A string scalar Tensor.

e value: A string scalar Tensor.

tf.TextLineReader.reader ref

Op that implements the reader.

tf.TextLineReader.reset (name=None)

Restore a reader to its initial clean state.

Args:

« name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.restore state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

state: A string Tensor. Result of a SerializeState of a Reader with
matching type.

name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.serialize state (name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TextLineReader.supports serialize

Whether the Reader implementation can serialize its state.

class tf.WholeFileReader
A Reader that outputs the entire contents of a file as a value.

To use, enqueue filenames in a Queue. The output of Read will be a
filename (key) and the contents of that file (value).

See ReaderBase for supported methods.

tf.WholeFileReader. init (name=None)

Create a WholeFileReader.

Args:

name: A name for the operation (optional).

tf.WholeFileReader.num records produced (name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.num work units completed (name=None)

Returns the number of work units this reader has finished processing.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.read (queue, name=None)
Returns the next record (key, value pair) produced by a reader.
Will dequeue a work unit from queue if necessary (e.g. when the

Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

« queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

« name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

e key: A string scalar Tensor.

e value: A string scalar Tensor.

tf.WholeFileReader.reader ref

Op that implements the reader.

tf.WholeFileReader.reset (name=None)

Restore a reader to its initial clean state.

Args:

« name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.restore state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

state: A string Tensor. Result of a SerializeState of a Reader with
matching type.

name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.serialize state (name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

name: A name for the operation (optional).

Returns:

A string Tensor.

tf.WholeFileReader.supports serialize

Whether the Reader implementation can serialize its state.

class tf.IdentityReader

A Reader that outputs the queued work as both the key and value.

To use, enqueue strings in a Queue. Read will take the front work
string and output (work, work).

See ReaderBase for supported methods.

tf.IdentityReader. init (name=None)

Create a IdentityReader.

Args:

name: A name for the operation (optional).

tf.IdentityReader.num records produced (name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.num work units completed (name=None)

Returns the number of work units this reader has finished processing.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.read (queue, name=None)
Returns the next record (key, value pair) produced by a reader.
Will dequeue a work unit from queue if necessary (e.g. when the

Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

« queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

« name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

e key: A string scalar Tensor.

e value: A string scalar Tensor.

tf.IdentityReader.reader ref

Op that implements the reader.

tf.IdentityReader.reset (name=None)

Restore a reader to its initial clean state.

Args:

« name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.restore state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

state: A string Tensor. Result of a SerializeState of a Reader with
matching type.

name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.serialize state (name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

name: A name for the operation (optional).

Returns:

A string Tensor.

tf.IdentityReader.supports serialize

Whether the Reader implementation can serialize its state.

class tf.TFRecordReader

A Reader that outputs the records from a TFRecords file.

See ReaderBase for supported methods.

tf.TFRecordReader. init (name=None)

Create a TFRecordReader.

Args:

name: A name for the operation (optional).

tf.TFRecordReader.num records produced (name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.num work units completed (name=None)

Returns the number of work units this reader has finished processing.

Args:

« name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.read (queue, name=None)
Returns the next record (key, value pair) produced by a reader.
Will dequeue a work unit from queue if necessary (e.g. when the

Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

« queue: A Queue or a mutable string Tensor representing a handle to
a Queue, with string work items.

« name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

key: A string scalar Tensor.

value: A string scalar Tensor.

tf.TFRecordReader.reader ref

Op that implements the reader.

tf.TFRecordReader.reset (name=None)

Restore a reader to its initial clean state.

Args:

name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.restore state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

state: A string Tensor. Result of a SerializeState of a Reader with
matching type.

name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.serialize state (name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TFRecordReader.supports serialize

Whether the Reader implementation can serialize its state.

class tf.FixedLengthRecordReader

A Reader that outputs fixed-length records from a file.

See ReaderBase for supported methods.

tf.FixedLengthRecordReader. 1init (record bytes,
header bytes=None, footer bytes=None, name=None)

Create a FixedLengthRecordReader.

Args:

record bytes: Anint.
header bytes: An optional int. Defaults to O.
footer bytes: An optional int. Defaults to O.

name: A name for the operation (optional).

tf.FixedLengthRecordReader.num records produced (name=None

)
Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.num work units completed (name=
None)

Returns the number of work units this reader has finished processing.

Args:

name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.read (queue, name=None)
Returns the next record (key, value pair) produced by a reader.
Will dequeue a work unit from queue if necessary (e.g. when the

Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

« queue: A Queue or a mutable string Tensor representing a handle to
a Queue, with string work items.

« name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

e key: A string scalar Tensor.

« value: A string scalar Tensor.

tf.FixedLengthRecordReader.reader ref

Op that implements the reader.

tf.FixedLengthRecordReader.reset (name=None)

Restore a reader to its initial clean state.

Args:

« name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.restore state(state,
name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

state: A string Tensor. Result of a SerializeState of a Reader with
matching type.

name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.serialize state (name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

name: A name for the operation (optional).

Returns:

A string Tensor.

tf.FixedLengthRecordReader.supports serialize

Whether the Reader implementation can serialize its state.

Converting

TensorFlow provides several operations that you can use to convert
various data formats into tensors.

tf.decode csv(records, record defaults, field delim=None,
name=None)

Convert CSV records to tensors. Each column maps to one tensor.

RFC 4180 format is expected for the CSV records.
() Note that we allow leading and
trailing spaces with int or float field.

Args:

records: A Tensor Of type string. Each string is a record/row in the
csv and all records should have the same format.

record defaults: A list of Tensor objects with types

from: f1oat32, int32, int64, string. One tensor per column of the

input record, with either a scalar default value for that column or
empty if the column is required.

field delim: An optional string. Defaults to ", . delimiter to
separate fields in a record.

name: A name for the operation (optional).

https://www.google.com/url?q=https://tools.ietf.org/html/rfc4180&usg=AFQjCNFnElM47j7H-JbuWRKAe49PFOkN8w

Returns:

A list of Tensor objects. Has the same type as record defaults.

Each tensor will have the same shape as records.

tf.decode raw(bytes, out type, little endian=None,
name=None)

Reinterpret the bytes of a string as a vector of numbers.

Args:

bytes: A Tensor Of type string. All the elements must have the
same length.

out type: A tf.DType from: tf.float32, tf.float64, tf.int32,
tf.uint8, tf.intl6, tf.int8, tf.int64.

little endian: An optional bool. Defaults to True. Whether the
input bytes are in little-endian order. Ignored for out type values
that are stored in a single byte like uints.

name: A name for the operation (optional).

Returns:

A Tensor Of type out type. A Tensor with one more dimension than
the input bytes. The added dimension will have size equal to the
length of the elements of bytes divided by the number of bytes to

representout type.

Example protocol buffer

TensorFlow's IS

serialized Examp1le protocol buffers, . They

contain Features,

class tf.VarlLenFeature
Configuration for parsing a variable-length input feature.

Fields: dtype: Data type of input.

tf.VarlLenFeature.dtype

Alias for field number O

class tf.FixedLenFeature

Configuration for parsing a fixed-length input feature.

To treat sparse input as dense, provide a default value; otherwise,

the parse functions will fail on any examples missing this feature.
Fields: shape: Shape of input data. dtype: Data type of input.
default_value: Value to be used if an example is missing this feature.

It must be compatible with dtype.

https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html#standard-tensorflow-format
https://www.tensorflow.org/code/tensorflow/core/example/example.proto
https://www.tensorflow.org/code/tensorflow/core/example/feature.proto

tf.FixedLenFeature.default value

Alias for field number 2

tf.FixedLenFeature.dtype

Alias for field number 1

tf.FixedLenFeature. shape

Alias for field number O

class tf.FixedLenSequenceFeature

Configuration for a dense input feature in a sequence item.

To treat a sparse input as dense, provide allow missing=True;

otherwise, the parse functions will fail on any examples missing this
feature.

Fields: shape: Shape of input data. dtype: Data type of input.
allow_missing: Whether to allow this feature to be missing from a
feature list item.

tf.FixedLenSequenceFeature.allow missing

Alias for field number 2

tf.FixedLenSequenceFeature.dtype

Alias for field number 1

tf.FixedLenSequenceFeature.shape

Alias for field number O

tf.parse example(serialized, features, name=None,
example names=None)

Parses Example protos into a dict of tensors.
Parses a number of serialized protos given in serialized.

example names May contain descriptive names for the corresponding
serialized protos. These may be useful for debugging purposes, but

they have no effect on the output. If not None, example names must

be the same length as serialized.
This op parses serialized examples into a dictionary mapping keys

to Tensor and SparseTensor Objects.features IS a dict from keys
t0 VarLenFeature and FixedLenFeature Objects.
Each varLenFeature is mapped to a sparseTensor, and

each FixedLenFeature iS mapped to a Tensor.

https://www.tensorflow.org/code/tensorflow/core/example/example.proto

Each varLenFeature maps to a sparseTensor Of the specified type
representing a ragged matrix. Its indices are [batch,
index] where batch is the batch entry the value is from

in serialized, and index IS the value's index in the list of values
associated with that feature and example.

Each FixedLenFeature df maps to a Tensor of the specified type

(or tf.float32 if not specified) and shape (serialized.size(),) +
df.shape.

FixedLenFeature entries with a default value are optional. With no
default value, we will fail if thatFeature is missing from any example

IN serialized.
Examples:

For example, if one expects a tf. f1oat32 sparse feature £t and

three serialized ExampleS are provided:

serialized = [
features
{ feature { key: "ft" value { float list { value: [1.0,
2.0 v} } o}y,
features
{ feature []},
features
{ feature { key: "ft" value { float list { value: [3.0] } } }

then the output will look like:

{"ft": SparseTensor (indices=[[0, 0], [0, 11, [2, O]1,
values=[1.0, 2.0, 3.0],
shape=(3, 2)) }

Given two Example INput protos in serialized:

features {

feature { key:

"big"] } } }

feature { key:

|

features {

feature { key:

[" emmy "]

Forod

feature { key:
feature { key:

And arguments

example names:

features: {
"kw':
"dank":
"gps":

["inputO",

"kw" value { bytes list { value: [

"gps" value { float list { value:

"kw" value { bytes list { value:

"dank" value { int64 list
o}

{ value:

"gps" value {

"inputl"],

VarLenFeature (tf.string),
VarLenFeature (tf.into4),
VarLenFeature (tf.float),

Then the output is a dictionary:

" kw" .

indices=[[0,

shape=[2,
"dank":

indices=[[1,

values=[42],

SparseTensor (
01,
values=["knit",
21),
SparseTensor (
011,

(0, 11,
"big",

(1, 0]],

" emmyu]

shape=[2, 1]),
"gps": SparseTensor (
indices=[],
values=[],
shape=[2, 0]),

}

For dense results in two serialized ExampleS:

[

features {

feature { key: "age" value { int64 list { value:

"knit" ,

[]

[

[

}

42

}

]

}

}

}

}

}

}

feature { key: "gender" value { bytes list { value:
["t" 1} }}
by
features {
feature { key: "age" value { int64 list { value: [] } } }

feature { key: "gender" value { bytes list { value:
["t" 1} } }
}

We can use arguments:

example names: ["inputO", "inputl"],

features: {
"age": FixedLenFeature([], dtype=tf.inté4, default value=-1),
"gender": FixedLenFeature([], dtype=tf.string),

And the expected output is:

"age": [[0], [-111,
'Vgender": [['Vf"], ["f"]],

Args:

serialized: A vector (1-D Tensor) of strings, a batch of binary
serialized Example protos.

features: A dict mapping feature keys

t0 FixedLenFeature Of VarLenFeature values.

name: A name for this operation (optional).

example names: A vector (1-D Tensor) of strings (optional), the

names of the serialized protos in the batch.

Returns:

A dict mapping feature keys to Tensor and SparseTensor values.

Raises:

valueError: if any feature is invalid.

tf.parse single example (serialized, features, name=None,
example names=None)

Parses a single Example proto.

Similar to parse example, except:

For dense tensors, the returned Tensor is identical to the output
of parse example, except there is no batch dimension, the output
shape is the same as the shape given in dense shape.

For sparseTensors, the first (batch) column of the indices matrix is
removed (the indices matrix is a column vector), the values vector is
unchanged, and the first (batch_size) entry of the shape vector is

removed (it is now a single element vector).

Args:

serialized: A scalar string Tensor, a single serialized Example.
See parse single example rawdocumentation for more details.
features: A dict mapping feature keys

t0 FixedLenFeature Of VarLenFeature values.

name: A name for this operation (optional).

example names: (Optional) A scalar string Tensor, the associated

name. See parse single example raw documentation for more

details.

Returns:

A dict mapping feature keys to Tensor and sparseTensor values.

Raises:

valueError: If any feature is invalid.

tf.decode json example(json examples, name=None)

Convert JSON-encoded Example records to binary protocol buffer
strings.

This op translates a tensor containing Example records, encoded
using the , Into a tensor containing the same
records encoded as binary protocol buffers. The resulting tensor can
then be fed to any of the other Example-parsing ops.

Args:

json_examples: A Tensor Of type string. Each string is a JSON

object serialized according to the JSON mapping of the Example
proto.

name: A name for the operation (optional).

Returns:

https://developers.google.com/protocol-buffers/docs/proto3#json

A Tensor Of type string. Each string is a binary Example protocol

buffer corresponding to the respective element of json examples.

Queues

TensorFlow provides several implementations of '‘Queues’, which are
structures within the TensorFlow computation graph to stage
pipelines of tensors together. The following describe the basic Queue
interface and some implementations. To see an example use,

see

class tf.QueueBase

Base class for queue implementations.

A queue is a TensorFlow data structure that stores tensors across
multiple steps, and exposes operations that enqueue and dequeue
tensors.

Each queue element is a tuple of one or more tensors, where each
tuple component has a static dtype, and may have a static shape.
The queue implementations support versions of enqueue and
dequeue that handle single elements, versions that support
enqueuing and dequeuing a batch of elements at once.

See and for concrete

implementations of this class, and instructions on how to create
them.

tf.QueueBase.enqueue (vals, name=None)

Enqueues one element to this queue.

https://www.tensorflow.org/versions/r0.7/how_tos/threading_and_queues/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FIFOQueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#RandomShuffleQueue

If the queue is full when this operation executes, it will block until the
element has been enqueued.

Args:

vals: The tuple of Tensor objects to be enqueued.

name: A name for the operation (optional).

Returns:

The operation that enqueues a new tuple of tensors to the queue.

tf.QueueBase.enqueue many (vals, name=None)

Enqueues zero or elements to this queue.

This operation slices each component tensor along the Oth dimension
to make multiple queue elements. All of the tensors in vals must

have the same size in the 0th dimension.

If the queue is full when this operation executes, it will block until all
of the elements have been enqueued.

Args:

vals: The tensor or tuple of tensors from which the queue elements
are taken.

name: A name for the operation (optional).

Returns:

The operation that enqueues a batch of tuples of tensors to the
queue.

tf.QueueBase.dequeue (name=None)

Dequeues one element from this queue.

If the queue is empty when this operation executes, it will block until
there is an element to dequeue.

Args:

name: A name for the operation (optional).

Returns:

The tuple of tensors that was dequeued.

tf.QueueBase.dequeue many(n, name=None)

Dequeues and concatenates n elements from this queue.

This operation concatenates queue-element component tensors
along the Oth dimension to make a single component tensor. All of

the components in the dequeued tuple will have size n in the Oth
dimension.

If the queue contains fewer than n elements when this operation

executes, it will block until n elements have been dequeued.

Args:

« n: A scalar Tensor containing the number of elements to dequeue.

« name: A name for the operation (optional).

Returns:

The tuple of concatenated tensors that was dequeued.

tf.QueueBase.size (name=None)

Compute the number of elements in this queue.

Args:

« name: A name for the operation (optional).

Returns:

A scalar tensor containing the number of elements in this queue.

tf.QueueBase.close (cancel pending enqueues=False,
name=None)

Closes this queue.

This operation signals that no more elements will be enqueued in the

given queue. Subsequent enqueue andenqueue many operations will

fail. Subsequent dequeue and dequeue many operations will continue

to succeed if sufficient elements remain in the queue.

Subsequent dequeue and dequeue many operations that would block
will fail immediately.
If cancel pending enqueues IS True, all pending requests will also

be cancelled.

Args:

cancel pending enqueues: (Optional.) A boolean, defaulting
to False (described above).

name: A name for the operation (optional).

Returns:

The operation that closes the queue.

Other Methods

tf.QueueBase. 1init (dtypes, shapes, queue ref)

Constructs a queue object from a queue reference.

Args:

dtypes: A list of types. The length of dtypes must equal the number
of tensors in each element.
shapes: Constraints on the shapes of tensors in an element: A list of

shape tuples or None. This list is the same length as dtypes. If the
shape of any tensors in the element are constrained, all must be;
shapes can be None if the shapes should not be constrained.

queue ref: The queue reference, i.e. the output of the queue op.

tf.QueueBase.dtypes

The list of dtypes for each component of a queue element.

tf.QueueBase.from list (index, queues)

Create a queue using the queue reference from queues [index].

Args:

index: An integer scalar tensor that determines the input that gets
selected.

queues: A list of gueueBase objects.

Returns:

A QueueBase Object.

Raises:

TypeError: When queues is not a list of gueueBase objects, or when

the data types of queues are not all the same.

tf.QueueBase.name

The name of the underlying queue.

tf.QueueBase.queue ref

The underlying queue reference.

class tf.FIFOQueue

A gqueue implementation that dequeues elements in first-in-first out
order.

See for a description of the methods on this class.

tf.FIFOQueue. 1init (capacity, dtypes, shapes=None,
shared name=None, name='fifo queue')

Creates a queue that dequeues elements in a first-in first-out order.

A FIFoQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A r1FOoQueue holds a list of up to capacity elements. Each element
is a fixed-length tuple of tensors whose dtypes are described

by dtypes, and whose shapes are optionally described by

the shapes argument.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase

If the shapes argument is specified, each component of a queue

element must have the respective fixed shape. If it is unspecified,
different queue elements may have different shapes, but the use

of dequeue many is disallowed.

Args:

capacity: Aninteger. The upper bound on the number of elements
that may be stored in this queue.

dtypes: A list of bType objects. The length of dtypes must equal the
number of tensors in each queue element.

shapes: (Optional.) A list of fully-defined Tensorshape objects, with
the same length as dtypes Or None.

shared name: (Optional.) If non-empty, this queue will be shared
under the given name across multiple sessions.

name: Optional name for the queue operation.

class tf.RandomShuffleQueue

A queue implementation that dequeues elements in a random order.

See for a description of the methods on this class.

tf.RandomShuffleQueue. 1init (capacity,
min after dequeue, dtypes, shapes=None, seed=None,
shared name=None, name='random shuffle queue')

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase

Create a queue that dequeues elements in a random order.

A RandomShuffleQueue has bounded capacity; supports multiple

concurrent producers and consumers; and provides exactly-once
delivery.

A RandomShuffleQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are described

by dtypes, and whose shapes are optionally described by
the shapesargument.

If the shapes argument is specified, each component of a queue

element must have the respective fixed shape. If it is unspecified,
different queue elements may have different shapes, but the use

of dequeue many is disallowed.

The min after dequeue argument allows the caller to specify a
minimum number of elements that will remain in the queue after
a dequeue Of dequeue many Operation completes, to ensure a

minimum level of mixing of elements. This invariant is maintained by
blocking those operations until sufficient elements have been

enqueued. The min after dequeue argument is ignored after the

gueue has been closed.

Args:

capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

min after dequeue: An integer (described above).

dtypes: A list of bType objects. The length of dtypes must equal the
number of tensors in each queue element.

shapes: (Optional.) A list of fully-defined Tensorshape objects, with

the same length as dtypes Or None.

seed: A Python integer. Used to create a random seed.
See for behavior.

shared name: (Optional.) If non-empty, this queue will be shared
under the given name across multiple sessions.

name: Optional name for the queue operation.

Dealing with the filesystem

tf.matching files (pattern, name=None)

Returns the set of files matching a pattern.

Note that this routine only supports wildcard characters in the
basename portion of the pattern, not in the directory portion.

Args:

pattern: A Tensor Of type string. A (scalar) shell wildcard pattern.

name: A name for the operation (optional).

Returns:

A Tensor of type string. A vector of matching filenames.

tf.read file(filename, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Reads and outputs the entire contents of the input filename.

Args:

filename: A Tensor Of type string.

name: A name for the operation (optional).

Returns:

A Tensor of type string.

Input pipeline

TensorFlow functions for setting up an input-prefetching pipeline.
Please see the for context.

Beginning of an input pipeline

The "producer” functions add a queue to the graph and a
corresponding QueueRunner for running the subgraph that fills that

queue.

tf.train.match filenames once (pattern, name=None)

Save the list of files matching pattern, so it is only computed once.

Args:

pattern: A file pattern (glob).

https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html

name: A hame for the operations (optional).

Returns:

A variable that is initialized to the list of files matching pattern.

tf.train.limit epochs (tensor, num epochs=None, name=None)

Returns tensor num_epochs times and then raises

an OutOfRange €rror.

Args:

tensor: ANy Tensor.

num_epochs: A positive integer (optional). If specified, limits the
number of steps the output tensor may be evaluated.

name: A name for the operations (optional).

Returns:

tensor or outOfRange.

Raises:

ValueError: if num_epochs is invalid.

tf.train.range input producer (limit, num epochs=None,
shuffle=True, seed=None, capacity=32, name=None)

Produces the integers from 0 to limit-1 in a queue.

Args:

1imit: An int32 scalar tensor.

num_epochs: An integer (optional). If

specified, range input producer produces each
integernum_epochs times before generating an OutOfRange error. If

not specified, range input producer can cycle through the integers
an unlimited number of times.

shuffle: Boolean. If true, the integers are randomly shuffled within
each epoch.

seed: An integer (optional). Seed used if shuffle == True.
capacity: An integer. Sets the queue capacity.

name: A name for the operations (optional).

Returns:

A Queue with the output integers. A QueueRunner for the Queue is

added to the current Graph'SQUEUE RUNNER collection.

tf.train.slice input producer (tensor list,
num epochs=None, shuffle=True, seed=None, capacity=32,
name=None)

Produces a slice of each Tensor in tensor 1list.
Implemented using a Queue -- a QueueRunner for the Queue is

added to the current Graph's QUEUE RUNNERCOIllection.

Args:

tensor list! A list of Tensor objects.

Every Tensor Iin tensor 1ist must have the same size in the first
dimension.

num_epochs: An integer (optional). If
specified, slice input producer produces each
slicenum epochs times before generating an outofrange error. If not

specified, slice input producercan cycle through the slices an
unlimited number of times.

shuffle: Boolean. If true, the integers are randomly shuffled within
each epoch.

seed: An integer (optional). Seed used if shuffle == True.
capacity: An integer. Sets the queue capacity.

name: A name for the operations (optional).

Returns:

A list of tensors, one for each element of tensor 1ist. If the tensor
in tensor list has shape [N, a, b, .., zl,thenthe

corresponding output tensor will have shape [(a, b, ..., z].

Raises:

ValueError: if slice input producer produces nothing

ﬂ0n1tensor_list.

tf.train.string input producer (string tensor,
num epochs=None, shuffle=True, seed=None, capacity=32,
name=None)

Output strings (e.g. filenames) to a queue for an input pipeline.

Args:

string tensor: A 1-D string tensor with the strings to produce.
num_epochs: An integer (optional). If

specified, string input producer produces each string
fromstring tensor num epochs times before generating an
OutOfRange error. If not specified,string input producer can

cycle through the strings in string tensor an unlimited number of
times.

shuffle: Boolean. If true, the strings are randomly shuffled within
each epoch.

seed: An integer (optional). Seed used if shuffle == True.
capacity: An integer. Sets the queue capacity.

name: A name for the operations (optional).

Returns:

A gueue with the output strings. A QueueRunner for the Queue is

added to the current Graph's QUEUE RUNNERCOIllection.

Raises:

valueError: If the string_tensor is a null Python list. At runtime, will

fail with an assertion if string_tensor becomes a null tensor.

Batching at the end of an input pipeline

These functions add a queue to the graph to assemble a batch of
examples, with possible shuffling. They also add a gueuerRunner for
running the subgraph that fills that queue.

Use or for batching examples that have already

been well shuffled. Use or for
examples that would benefit from additional shuffling.
Use or if you want a single thread producing

examples to batch, or if you have a single subgraph producing
examples but you want to run it in N threads (where you
increase N until it can keep the queue full).

Use or if you have N different

subgraphs producing examples to batch and you want them run
by N threads.

tf.train.batch(tensor list, batch size, num threads=1,
capacity=32, enqueue many=False, shapes=None, name=None)

Creates batches of tensors in tensor_ 1list.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join

This function is implemented using a queue. A QueueRunner for the
gueue is added to the current Graph'SQUEUE RUNNER collection.

If enqueue manyiS False, tensor list IS assumed to represent a
single example. An input tensor with shape [x, vy, =z] will be output
as a tensor with shape [batch size, x, y, z].

If enqueue many iS True, tensor list iS assumed to represent a
batch of examples, where the first dimension is indexed by example,

and all members of tensor 1ist should have the same size in the
first dimension. If an input tensor has shape [*, x, vy, z],the
output will have shape [batch size, x, y, zl.

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

N.B.: You must ensure that either (i) the shapes argument is passed,
or (ii) all of the tensors in tensor 1istmust have fully-defined

shapes. valueError Will be raised if neither of these conditions
holds.

Args:

tensor list: The list of tensors to enqueue.
batch size: The new batch size pulled from the queue.

num_threads: The number of threads enqueuing tensor 1list.

capacity: An integer. The maximum number of elements in the
gueue.

enqueue many. Whether each tensor in tensor 1ist isS a single
example.

shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor 1ist.

name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as tensor list.

Raises:

valueError: If the shapes are not specified, and cannot be inferred

from the elements of tensor list.

tf.train.batch join(tensor list list, batch size,
capacity=32, enqueue many=False, shapes=None, name=None)

Runs a list of tensors to fill a queue to create batches of examples.

Enqueues a different list of tensors in different threads. Implemented

using a queue -- a QueueRunner for the queue is added to the
current Graph's QUEUE RUNNER collection.
len(tensor list list) threads will be started, with

thread i enqueuing the tensors

fromtensor_list_list [1]. tensor list list[il][]] must

match tensor list 1ist[i2][j] intype and shape, exceptin the
first dimension if enqueue many is true.

If enqueue many iS False, each tensor list 1list[i] IS assumed to
represent a single example. An input tensor x will be output as a
tensor with shape [batch size] + x.shape.

If enqueue many IS True, tensor list list[i] IS assumed to
represent a batch of examples, where the first dimension is indexed
by example, and all members of tensor 1ist 1ist[i] should have
the same size in the first dimension. The slices of any input

tensor x are treated as examples, and the output tensors will have
shape [batch size] + x.shape[l:].

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

N.B.: You must ensure that either (i) the shapes argument is passed,
or (ii) all of the tensors intensor 1ist 1list must have fully-defined

shapes. valueError will be raised if neither of these conditions
holds.

Args:

o tensor list 1list:Alist of tuples of tensors to enqueue.

batch size: Aninteger. The new batch size pulled from the queue.

capacity: An integer. The maximum number of elements in the
queue.

enqueue many. Whether each tensor in tensor 1ist listisa
single example.

shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes fortensor list list[i].

name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types
as tensor list list[i].
Raises:

valueError: If the shapes are not specified, and cannot be inferred

from the elements oftensor 1list list.

tf.train.shuffle batch(tensor list, batch size, capacity,
min after dequeue, num threads=1, seed=None,
enqueue many=False, shapes=None, name=None)

Creates batches by randomly shuffling tensors.

This function adds the following to the current Graph:

A shuffling queue into which tensors from tensor 1list are

enqueued.

A dequeue many operation to create batches from the queue.

A QueueRunner 10 QUEUE RUNNER collection, to enqueue the tensors
from tensor 1list.

If enqueue many iS False, tensor list IS assumed to represent a
single example. An input tensor with shape [x, vy, =z] will be output
as a tensor with shape [batch size, x, y, z].

If enqueue many iS True, tensor list iS assumed to represent a
batch of examples, where the first dimension is indexed by example,

and all members of tensor 1ist should have the same size in the
first dimension. If an input tensor has shape [*, x, vy, z],the
output will have shape [batch size, x, y, zl.

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

For example:

Creates batches of 32 images and 32 labels.
image batch, label batch = tf.train.shuffle batch(
[single image, single label],
batch size=32,
num_ threads=4,
capacity=50000,
min after dequeue=10000)

N.B.: You must ensure that either (i) the shapes argument is passed,

or (ii) all of the tensors in tensor 1istmust have fully-defined

shapes. valueError will be raised if neither of these conditions
holds.

Args:

tensor list: The list of tensors to enqueue.
batch size: The new batch size pulled from the queue.

capacity: Aninteger. The maximum number of elements in the
gueue.

min after dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

num_ threads: The number of threads enqueuing tensor 1list.
seed: Seed for the random shuffling within the queue.

enqueue many: Whether each tensor in tensor 1list IS a single
example.

shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor 1ist.

name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as tensor list.

Raises:

valueError: If the shapes are not specified, and cannot be inferred

from the elements of tensor list.

tf.train.shuffle batch join(tensor list list, batch size,
capacity, min after dequeue, seed=None,
enqueue many=False, shapes=None, name=None)

Create batches by randomly shuffling tensors.

This version enqueues a different list of tensors in different threads. It

adds the following to the current Graph:

A shuffling queue into which tensors from tensor list list are
enqueued.

A dequeue many operation to create batches from the queue.

A QueueRunner 10 QUEUE RUNNER collection, to enqueue the tensors
from tensor list list.

len(tensor list list) threads will be started, with

thread i enqueuing the tensors

fromtensor 1list list[i].tensor list list[il][j] mMust
match tensor 1ist 1list[i2][3] intype and shape, exceptin the
first dimension if enqueue many is true.

If enqueue many IS False, each tensor list 1list[i] IS assumed to
represent a single example. An input tensor with shape (%, v,

z] will be output as a tensor with shape [batch size, x, y, z].

If enqueue many IS True, tensor list list([i] iIs assumed to
represent a batch of examples, where the first dimension is indexed

by example, and all members of tensor 1ist list[i] should have

the same size in the first dimension. If an input tensor has shape [~,
x, vy, z1,the output will have shape [batch size, x, vy, z].

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

Args:

tensor list list:! A list of tuples of tensors to enqueue.
batch size: An integer. The new batch size pulled from the queue.

capacity: Aninteger. The maximum number of elements in the
queue.

min after dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

seed: Seed for the random shuffling within the queue.

enqueue many: Whether each tensor in tensor 1list listisa
single example.

shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes fortensor 1list list[i].

name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types

as tensor list list[i].

Raises:

valueError: If the shapes are not specified, and cannot be inferred

from the elements oftensor 1ist list.

Data 1O (Python functions)

Contents

Data 10 (Python Functions)

A TFRecords file represents a sequence of (binary) strings. The
format is not random access, so it is suitable for streaming large
amounts of data but not suitable if fast sharding or other non-
sequential access is desired.

class tf.python io.TFRecordWriter

A class to write records to a TFRecords file.

This class implements enter and exit , and can be used

in with blocks like a normal file.

tf.python io.TFRecordWriter. init (path)

https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#data-io-python-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#data-io-python-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#TFRecordWriter
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#tf_record_iterator
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#tfrecords-format-details

Opens file path and creates a TFRecordwWriter writing to it.

Args:

path: The path to the TFRecords file.

Raises:

I0Error: If path cannot be opened for writing.

tf.python io.TFRecordWriter.write (record)

Write a string record to the file.

Args:

record: Str

tf.python io.TFRecordWriter.close ()

Close the file.

tf.python io.tf record iterator (path)

An iterator that read the records from a TFRecords file.

Args:

path: The path to the TFRecords file.

Yields:

Strings.

Raises:

ToError: If path cannot be opened for reading.

TFRecords Format Details

A TFRecords file contains a sequence of strings with CRC hashes.
Each record has the format

uint64 length

uint32 masked crc32 of length
byte data[length]

uint32 masked crc32 of data

and the records are concatenated together to produce the file. The
CRC32s are , and the mask of a CRC is

masked crc = ((crc >> 15) | (crc << 17)) + 0Oxaz282ead8ul

Neural Network

Note: Functions taking Tensor arguments can also take anything

accepted by

Contents

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#neural-network
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#activation-functions

tf.nn.relu(features, name=None)

tf.nn.reluo6 (features, name=None)

tf.nn.elu(features, name=None)

tf.nn.softplus (features, name=None)

tf.nn.softsign (features, name=None)

tf.nn.dropout (x, keep prob, noise shape=None, seed=None,
name=None)

tf.nn.bias add(value, bias, name=None)

tf.sigmoid (x, name=None)

tf.tanh (x, name=None)

Convolution

tf.nn.conv2d(input, filter, strides, padding,

use cudnn on gpu=None, name=None)

tf.nn.depthwise conv2d(input, filter, strides, padding,
name=None)

tf.nn.separable conv2Zd(input, depthwise filter,
pointwise filter, strides, padding, name=None)
tf.nn.conv2d transpose(value, filter, output shape,
strides, padding=SAME, name=None)

Pooling

tf.nn.avg pool (value, ksize, strides, padding, name=None)
tf.nn.max pool (value, ksize, strides, padding, name=None)
tf.nn.max pool with argmax(input, ksize, strides,
padding, Targmax=None, name=None)

Normalization

tf.nn.12 normalize(x, dim, epsilon=le-12, name=None)

tf.nn.local response normalization (input,

depth radius=None, bias=None, alpha=None, beta=None,
name=None)

tf.nn.moments (x, axes, name=None, keep dims=False)
Losses

tf.nn.12 loss(t, name=None)

Classification
tf.nn.sigmoid cross entropy with logits(logits, targets,

name=None)

tf.nn.softmax (logits, name=None)
tf.nn.softmax cross entropy with logits(logits, labels,
name=None)

tf.nn.sparse softmax cross entropy with logits(logits,
labels, name=None)

Embeddings

tf.nn.embedding lookup (params, ids,

partition strategy=mod, name=None, validate indices=True)
Evaluation

https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#relu
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#relu6
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#elu
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softplus
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softsign
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#dropout
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#dropout
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#bias_add
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sigmoid
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#tanh
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#convolution
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#depthwise_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#depthwise_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#separable_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#separable_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d_transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d_transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#pooling
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#avg_pool
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool_with_argmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool_with_argmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#l2_normalize
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#local_response_normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#local_response_normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#local_response_normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#moments
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#losses
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#l2_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#classification
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sigmoid_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sigmoid_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sparse_softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sparse_softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#embeddings
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#embedding_lookup
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#embedding_lookup
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#evaluation

Activation Functions

The activation ops provide different types of nonlinearities for use in
neural networks. These include smooth nonlinearities

(sigmoid, tanh, elu, softplus, and softsign), continuous but not
everywhere differentiable functions (relu, relu6, and relu x), and

random regularization (dropout).

All activation ops apply componentwise, and produce a tensor of the
same shape as the input tensor.

https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#top_k
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#in_top_k
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#candidate-sampling
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled-loss-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#candidate-samplers
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#log_uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#log_uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#log_uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#learned_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#learned_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#learned_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#miscellaneous-candidate-sampling-utilities
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#compute_accidental_hits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#compute_accidental_hits

tf.nn.relu(features, name=None)

Computes rectified linear: max (features, 0).

Args:

features: A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8,intl6, int8, uintle.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.reluo6 (features, name=None)

Computes Rectified Linear 6: min (max (features, 0), 6).

Args:

features: A Tensor With
type float, double, int32, int64, uint8, intl6, Or int8.

name: A name for the operation (optional).

Returns:

A Tensor with the same type as features.

tf.nn.elu(features, name=None)

Computes exponential linear: exp (features) - 11if<

0, features otherwise.

See

Args:

features: A Tensor. Must be one of the following
types: float32, float64.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.softplus (features, name=None)

Computes softplus: 1og (exp (features) + 1).

Args:

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

e features: A Tensor. Must be one of the following
types: float32, float64, int32, int64, uint8,intl6, int8, uintle.

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.softsign (features, name=None)

Computes softsign: features / (abs (features) + 1).

Args:

e features: A Tensor. Must be one of the following
typeSZfloat32,float64,int32,int64,uint8Jﬂtl6,int8,uintl6

« name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.dropout (x, keep prob, noise shape=None, seed=None,
name=None)

Computes dropout.

With probability keep prob, outputs the input element scaled up by 1

/ keep prob, otherwise outputs 0. The scaling is so that the

expected sum is unchanged.
By default, each element is kept or dropped independently.

If noise shape is specified, it must be to the shape
of x, and only dimensions with noise shape[i] == shape (x) [i] Will
make independent decisions. For example, if shape (x) = [k, 1, m,

n] and noise shape = [k, 1, 1, n],each batch and channel

component will be kept independently and each row and column will
be kept or not kept together.

Args:

x: A tensor.

keep prob: A scalar Tensor with the same type as x. The probability
that each element is kept.

noise shape: A 1-D Tensor Of type int32, representing the shape
for randomly generated keep/drop flags.

seed: A Python integer. Used to create random seeds.
See for behavior.

name: A name for this operation (optional).

Returns:

A Tensor of the same shape of x.

Raises:

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

e ValueError: If keep prob IS not in (0, 17.

tf.nn.bias add(value, bias, name=None)

Adds bias to value.

This is (mostly) a special case of tf.add where bias is restricted to
1-D. Broadcasting is supported, so valuemay have any number of
dimensions. Unlike tf.add, the type of bias is allowed to differ

from value in the case where both types are quantized.

Args:

e value: A Tensor With
type float, double, int64, int32, uint8, intl6, int8, OF complex64.
o bias: A 1-D Tensor with size matching the last dimension of value.

Must be the same type as valueunless value is a quantized type, in
which case a different quantized type may be used.

« name: A name for the operation (optional).

Returns:

A Tensor with the same type as value.

tf.sigmoid (x, name=None)

Computes sigmoid of x element-wise.

Specifically, y = 1 / (1 + exp(-x)).

Args:

x. A Tensor with type float, double, int32, complex64, int64,
Or gint32.

name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != gint32 otherwise

the return type is quints.

tf.tanh (x, name=None)

Computes hyperbolic tangent of x element-wise.

Args:

x. A Tensor with type float, double, int32, complex64, int64,
Or gint32.

name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != gint32 otherwise

the return type is quints.

Convolution

The convolution ops sweep a 2-D filter over a batch of images,
applying the filter to each window of each image of the appropriate
size. The different ops trade off between generic vs. specific filters:

conv2d: Arbitrary filters that can mix channels together.

depthwise conv2d: Filters that operate on each channel
independently.
separable conv2d: A depthwise spatial filter followed by a pointwise

filter.

Note that although these ops are called "convolution”, they are strictly
speaking "cross-correlation” since the filter is combined with an input
window without reversing the filter. For details, see

The filter is applied to image patches of the same size as the filter

and strided according to the stridesargument. strides = [1, 1,
1, 11 applies the filter to a patch at every offset, strides = [1, 2,

2, 11 applies the filter to every other image patch in each dimension,

etc.
Ignoring channels for the moment, and assume that the 4-

D input has shape [batch, in height, in width, ...] andthe

4-D filter has shape [filter height, filter width, ...1,
then the spatial semantics of the convolution ops are as follows: first,
according to the padding scheme chosen as 'save'or 'vALID', the
output size and the padding pixels are computed. For

the 'same' padding, the output height and width are computed as:

out _height = ceil(float(in height) / float (strides[1]))

https://en.wikipedia.org/wiki/Cross-correlation#Properties
https://en.wikipedia.org/wiki/Cross-correlation#Properties

out width = ceil(float (in width) / float(strides[2]))

and the padding on the top and left are computed as:

pad along height = ((out height - 1) * strides[1l] +
filter height - in height)
pad along width = ((out width - 1) * strides[2] +

filter width - in width)
pad top = pad along height / 2
pad left = pad along width / 2
Note that the division by 2 means that there might be cases when the
padding on both sides (top vs bottom, right vs left) are off by one. In
this case, the bottom and right sides always get the one additional

padded pixel. For example, when pad along height iS5, we pad 2

pixels at the top and 3 pixels at the bottom. Note that this is different
from existing libraries such as cuDNN and Caffe, which explicitly
specify the number of padded pixels and always pad the same
number of pixels on both sides.

For the 'vaLip' padding, the output height and width are computed

as:

out height = ceil(float(in height - filter height + 1) /
float (strides[1]))

out width = ceil(float (in width - filter width + 1) /
float (strides[2]))

and the padding values are always zero. The output is then
computed as

output[b, i, j, :1 =
sum_{di, dj} input[b, strides[l] * i + di - pad top,

strides[2] * j + dj - pad left, ...] *
filter([di, dj, ...]

where any value outside the original input image region are

considered zero (i.e. we pad zero values around the border of the
image).

Since input is 4-D, each input (b, i, 3, :] IS avector.
For conv2d, these vectors are multiplied by thefilter(di,

dj, :, :] matrices to produce new vectors.

For depthwise conv 2d, each scalar component input[b, i, 7,

k] is multiplied by a vector filter[di, dj, k], and all the vectors

are concatenated.

tf.nn.conv2d(input, filter, strides, padding,
use cudnn on gpu=None, name=None)

Computes a 2-D convolution given 4-D input and filter tensors.
Given an input tensor of shape [batch, in height, in width,
in channels] and a filter / kernel tensor of shape [filter height,

filter width, in channels, out channels], this op performs the
following:

. Flattens the filter to a 2-D matrix with shape [filter height *

filter width * in channels, output channels]
. Extracts image patches from the input tensor to form a virtual tensor

of shape [batch, out height, out width, filter height *
filter width * in channels].

. For each patch, right-multiplies the filter matrix and the image patch
vector.

In detall,

output[b, i, j, k] =
sum_{di, dj, g} input[b, strides[l] * i + di, strides[2] * J +
dj, aql *
filter([di, d3j, g, k]

Must have strides[0] = strides[3] = 1.Forthe most common
case of the same horizontal and vertices strides, strides = [1,

stride, stride, 1].

Args:

input: A Tensor. Must be one of the following

types: float32, float64.

filter: A Tensor. Must have the same type as input.
strides: Alist of ints. 1-D of length 4. The stride of the sliding
window for each dimension of input.

padding: A string from: "same", "vaLiD". The type of padding
algorithm to use.

use cudnn_on_gpu: An optional bool. Defaults to True.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.nn.depthwise convZ2d(input, filter, strides, padding,
name=None)

Depthwise 2-D convolution.

Given an input tensor of shape [batch, in height, in width,

in channels] and a filter tensor of shape [filter height,

filter width, in channels,

channel multiplier] containingin channels convolutional filters of

depth 1, depthwise conv2d applies a different filter to each input

channel (expanding from 1 channel

to channel multiplier channels for each), then concatenates the
results together. The output has in channels *

channel multiplier channels.

In detall,

output[b, i, j, k * channel multiplier + g] =
sum {di, dj} input[b, strides[l] * i + di, strides[2] * j +
dj, k] *
filter([di, dj, k, g]

Must have strides[0] = strides[3] = 1. Forthe most common
case of the same horizontal and vertical strides, strides = [1,

stride, stride, 1].

Args:

input: 4-D with shape [batch, in height, in width,

in channels].

filter: 4-D with shape [filter height, filter width,

in channels, channel multiplier].

strides: 1-D of size 4. The stride of the sliding window for each
dimension of input.

padding: A string, either 'varLIp' or 'saMe'. The padding algorithm.

name: A name for this operation (optional).

Returns:

A 4-D Tensor Of shape [batch, out height, out width,

in channels * channel multiplier].

tf.nn.separable conv2d(input, depthwise filter,
pointwise filter, strides, padding, name=None)

2-D convolution with separable filters.

Performs a depthwise convolution that acts separately on channels
followed by a pointwise convolution that mixes channels. Note that

this is separability between dimensions [1, 2] and 3, not spatial

separability between dimensions 1 and 2.

In detall,

output (b, i, j, k] = sum {di, dj, g, r]
input[b, strides[l] * i + di, strides[2] * 3 + dj, g] *
depthwise filter([di, dj, g, r] *

pointwise filter[0, 0, g * channel multiplier + r, k]

strides controls the strides for the depthwise convolution only, since
the pointwise convolution has implicit strides of (1, 1, 1, 1].Must
have strides[0] = strides[3] = 1. Forthe most common case of
the same horizontal and vertical strides, strides = [1, stride,

stride, 1].

Args:

input: 4-D Tensor with shape [batch, in height, in width,

in channels].

depthwise filter:4-D Tensor with shape [filter height,
filter width, in channels, channel multiplier].

Contains in_channels convolutional filters of depth 1.

pointwise filter: 4-D Tensor with shape (1, 1,

channel multiplier * in channels, out channels]. Pointwise

filter to mix channels after depthwise filter has convolved
spatially.

strides: 1-D of size 4. The strides for the depthwise convolution for
each dimension of input.
padding: A string, either 'vaLip' or 'saMe'. The padding algorithm.

name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape [batch, out height, out width,

out channels].

tf.nn.conv2d transpose(value, filter, output shape,
strides, padding='SAME', name=None)

The transpose of conv2d.

This operation is sometimes called "deconvolution" after
(Deconvolutional
Networks)[

], but is actually the transpose (gradient) of conv2drather than an

actual deconvolution.

https://www.google.com/url?q=http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf&usg=AFQjCNH4Y1ctRO8f4jWX98F6O4eikTJdzw
https://www.google.com/url?q=http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf&usg=AFQjCNH4Y1ctRO8f4jWX98F6O4eikTJdzw

Args:

value: A 4-D Tensor of type float and shape [batch, height,
width, in channels].

filter: A 4-D Tensor with the same type as value and

Shape [height, width, output channels,

in channels]. filter'S in channels dimension must match that
of value.

output shape: A 1-D Tensor representing the output shape of the
deconvolution op.

strides: A list of ints. The stride of the sliding window for each
dimension of the input tensor.

padding: A string, either 'varLIp' or 'saMe'. The padding algorithm.

name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

valueError: If input/output depth does not match filter's shape, or

if padding is other than 'vALID' Or'samvE".

Pooling

The pooling ops sweep a rectangular window over the input tensor,
computing a reduction operation for each window (average, max, or

max with argmax). Each pooling op uses rectangular windows of

Size ksize separated by offset strides. For example, if strides is

all ones every window is used, if strides is all twos every other

window is used in each dimension, etc.

In detail, the output is

output [i] = reduce (value[strides * i:strides * i + ksize])

where the indices also take into consideration the padding values.
Please refer to the convolution section for details about the padding

calculation.

tf.nn.avg pool (value, ksize, strides, padding, name=None)

Performs the average pooling on the input.

Each entry in output is the mean of the corresponding

Size ksize window in value.

Args:

value: A 4-D Tensor of shape [batch, height, width,
channels] and type float32, float64,qint8, quint8, Of gint32.

ksize: A list of ints that has length >= 4. The size of the window for
each dimension of the input tensor.

strides: A list of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.

padding: A string, either 'varLIp' or 'saMe'. The padding algorithm.

name: Optional name for the operation.

Returns:

A Tensor with the same type as value. The average pooled output

tensor.

tf.nn.max pool (value, ksize, strides, padding, name=None)

Performs the max pooling on the input.

Args:

value: A 4-D Tensor with shape [batch, height, width,
channels] and type tf.float32.

ksize: A list of ints that has length >= 4. The size of the window for
each dimension of the input tensor.

strides: A list of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.

padding: A string, either 'varLIp' or 'saMe'. The padding algorithm.

name: Optional name for the operation.

Returns:

A Tensor with type tf. float32. The max pooled output tensor.

tf.nn.max pool with argmax(input, ksize, strides,
padding, Targmax=None, name=None)

Performs max pooling on the input and outputs both max values and
indices.

The indices in argmax are flattened, so that a maximum value at
position [b, y, x, c] becomes flattened index ((b * height + y)

* width + x) * channels + c.

Args:

input: A Tensor Of type float32. 4-D with shape [batch, height,
width, channels]. Inputto pool over.

ksize: Alist of ints that has length >= 4. The size of the window for
each dimension of the input tensor.

strides: Alist of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.

padding: A string from: "same", "varip". The type of padding
algorithm to use.

Targmax. An optional tf.DType from: tf.int32, tf.inté64. Defaults
to tf.int64.

name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, argmax).
output: A Tensor Of type float32. The max pooled output tensor.

argmax: A Tensor Of type Targmax. 4-D. The flattened indices of the

max values chosen for each output.

Normalization

Normalization is useful to prevent neurons from saturating when
Inputs may have varying scale, and to aid generalization.

tf.nn.12 normalize(x, dim, epsilon=le-12, name=None)

Normalizes along dimension dim using an L2 norm.

For a 1-D tensor with dim = 0, computes

output = x / sqrt (max (sum(x**2), epsilon))

For x with more dimensions, independently normalizes each 1-D slice

along dimension dim.

Args:

x. A Tensor.

dim: Dimension along which to normalize.

epsilon: A lower bound value for the norm. Will

use sqrt (epsilon) as the divisor if norm < sqrt (epsilon).

name: A name for this operation (optional).

Returns:

A Tensor with the same shape as x.

tf.nn.local response normalization (input,
depth radius=None, bias=None, alpha=None, beta=None,
name=None)

Local Response Normalization.

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along

the last dimension), and each vector is normalized independently.
Within a given vector, each component is divided by the weighted,

squared sum of inputs within depth radius. In detall,

sqr_sumla, b, ¢, d] =
sum(input[a, b, c, d - depth radius : d + depth radius + 1] **
2)
output = input / (bias + alpha * sgr sum ** beta)
For details, see

Args:

input: A Tensor Of type float32. 4-D.

depth radius: An optional int. Defaults to 5. 0-D. Half-width of the
1-D normalization window.

bias: An optional f1oat. Defaults to 1. An offset (usually positive to
avoid dividing by 0).

alpha: An optional f1oat. Defaults to 1. A scale factor, usually
positive.

beta: An optional f1oat. Defaults to 0.5. An exponent.

name: A name for the operation (optional).

Returns:

A Tensor of type float32.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

tf.nn.moments (x, axes, name=None, keep dims=False)
Calculate the mean and variance of x.

The mean and variance are calculated by aggregating the contents
of x across axes. If x is 1-D and axes = [0] this is just the mean and

variance of a vector.
For so-called "global normalization" needed for convolutional filters

pass axes=[0, 1, 2] (batch, height, width). For batch normalization

pass axes=[0] (batch).

Args:

x. A Tensor.
axes: array of ints. Axes along which to compute mean and variance.

keep dims: produce moments with the same dimensionality as the
input.
name: Name used to scope the operations that compute the

moments.

Returns:

TwO Tensor Objects: mean and variance.

Losses

The loss ops measure error between two tensors, or between a
tensor and zero. These can be used for measuring accuracy of a
network in a regression task or for regularization purposes (weight
decay).

tf.nn.12 loss(t, name=None)

L2 Loss.

Computes half the L2 norm of a tensor without the sqrt:

output = sum(t ** 2) / 2

Args:

t: A Tensor. Must be one of the following
types: float32, float64, int64, int32, uint8, uint16,int16, ints,

complex64, gint8, quint8, gint32. Typically 2-D, but may have any
dimensions.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as t. 0-D.

Classification

TensorFlow provides several operations that help you perform
classification.

tf.nn.sigmoid cross entropy with logits(logits, targets,
name=None)

Computes sigmoid cross entropy given logits.

Measures the probability error in discrete classification tasks in which
each class is independent and not mutually exclusive. For instance,
one could perform multilabel classification where a picture can
contain both an elephant and a dog at the same time.

For brevity, let x = 1ogits, z = targets. The logistic loss is

z * -log(sigmoid(x)) + (1 - z) * -log(l - sigmoid(x))
=z * -log(l / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 +
exp(-x)))

=z * log(l + exp(-x)) + (1L - z) * (-log(exp(-x)) + log(l + exp(-
x)))

=z * log(l + exp(-x)) + (1 - z) * (x + log(l + exp(-x))

= (1 - z) * x + log(l + exp(-x))

=x - x * z + log(l + exp(-x))

To ensure stability and avoid overflow, the implementation uses

max(x, 0) - x * z + log(l + exp(-abs(x)))
logits and targets must have the same type and shape.
Args:

logits: A Tensor Of type float32 Or float64.
targets: A Tensor Of the same type and shape as 1ogits.

name: A name for the operation (optional).

Returns:

A Tensor Of the same shape as 10gits with the componentwise

logistic losses.

tf.nn.softmax (logits, name=None)

Computes softmax activations.

For each batch i and class 5 we have

softmax[i, J] = exp(logits[i, Jj]) / sum(exp(logits[i]))

Args:

logits: A Tensor. Must be one of the following
types: float32, float64. 2-D with shape [batch size,
num classes].

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as 1ogits. Same shape as logits.

tf.nn.softmax cross entropy with logits(logits, labels,
name=None)

Computes softmax cross entropy between 1ogits and labels.

Measures the probability error in discrete classification tasks in which
the classes are mutually exclusive (each entry is in exactly one
class). For example, each CIFAR-10 image is labeled with one and
only one label: an image can be a dog or a truck, but not both.
NOTE:: While the classes are mutually exclusive, their probabilities

need not be. All that is required is that each row of 1abels is a valid

probability distribution. If using exclusive 1abels (wherein one and

only one class is true at a time),
S€€ sparse softmax cross entropy with logits.
WARNING: This op expects unscaled logits, since it performs

a softmax 0N logits internally for efficiency. Do not call this op with
the output of softmax, as it will produce incorrect results.
logits and labels must have the same shape [batch size,

num classes] and the same dtype (eitherfloat32 or float64).

Args:

logits: Unscaled log probabilities.
labels: Each row 1abels[i] must be a valid probability distribution.

name: A name for the operation (optional).

Returns:

A 1-D Tensor of length batch size of the same type as logits with

the softmax cross entropy loss.

tf.nn.sparse softmax cross entropy with logits(logits,
labels, name=None)
Computes sparse softmax cross entropy

between 1ogits and labels.

Measures the probability error in discrete classification tasks in which
the classes are mutually exclusive (each entry is in exactly one
class). For example, each CIFAR-10 image is labeled with one and
only one label: an image can be a dog or a truck, but not both.

NOTE:: For this operation, the probability of a given label is
considered exclusive. That is, soft classes are not allowed, and

the 1abels vector must provide a single specific index for the true

class for each row of 1ogits(each minibatch entry). For soft softmax
classification with a probability distribution for each entry,
Seesoftmax cross entropy with logits.

WARNING: This op expects unscaled logits, since it performs

a softmax 0N logits internally for efficiency. Do not call this op with
the output of softmax, as it will produce incorrect results.

logits and must have the shape [batch size, num classes] and
the dtype (either f1oat32 Orfloat64).

labels must have the shape [batch size] and the dtype int64,

Args:

logits: Unscaled log probabilities.
labels: Each entry 1abels[i] must be anindexin [0,
num classes).

name: A name for the operation (optional).

Returns:

A 1-D Tensor of length batch size of the same type as logits with

the softmax cross entropy loss.

Embeddings

TensorFlow provides library support for looking up values in
embedding tensors.

tf.nn.embedding lookup (params, ids,
partition strategy='mod', name=None,
validate indices=True)

Looks up ids in a list of embedding tensors.

This function is used to perform parallel lookups on the list of tensors
In params. It is a generalization of , where params IS
interpreted as a partition of a larger embedding tensor.

If len (params) > 1, each element id of ids is partitioned between

the elements of params according to thepartition strategy. Inall
strategies, if the id space does not evenly divide the number of
partitions, each of the first (max id + 1) % len(params) partitions
will be assigned one more id.

If partition strategyiS "mod", we assign each id to partitionp =
id % len(params). Forinstance, 13 ids are split across 5 partitions
as: [ro, 5, w1, [, 6, 111, f[2, 7, 121, (3, 81, [4, 9]]

If partition strategyiS "div", we assign ids to partitions in a
contiguous manner. In this case, 13 ids are split across 5 partitions
as: [0, 1, 21, 3, 4, 51, (6, 7, 81, [9, 101, [11, 12]]
The results of the lookup are concatenated into a dense tensor. The

returned tensor has shape shape (ids) + shape (params) [1:].

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather

params: A list of tensors with the same type and which can be
concatenated along dimension 0. EachTensor must be appropriately
sized for the given partition strategy.

ids: A Tensor With type int32 Or int64 containing the ids to be
looked up in params.

partition strategy: A string specifying the partitioning strategy,
relevant if 1en (params) > 1. Currently "div" and "mod" are
supported. Default is "mod".

name: A name for the operation (optional).

validate indices: Whether or not to validate gather indices.

Returns:

A Tensor with the same type as the tensors in params.

Raises:

valueError: If params is empty.

Evaluation

The evaluation ops are useful for measuring the performance of a
network. Since they are nondifferentiable, they are typically used at
evaluation time.

tf.nn.top k(input, k=1, sorted=True, name=None)
Finds values and indices of the k largest entries for the last
dimension.

If the input is a vector (rank-1), finds the k largest entries in the vector
and outputs their values and indices as vectors. Thus values[j] IS
the j-th largest entry in input, and its index is indices[j].

For matrices (resp. higher rank input), computes the top k entries in

each row (resp. vector along the last dimension). Thus,

values.shape = indices.shape = input.shape[:-1] + [k]

If two elements are equal, the lower-index element appears first.

Args:

input: 1-D or higher Tensor with last dimension at least k.

k: 0-D int32 Tensor. Number of top elements to look for along the
last dimension (along each row for matrices).

sorted: If true the resulting k elements will be sorted by the values in
descending order.

name: Optional name for the operation.

Returns:

values: The k largest elements along each last dimensional slice.

indices: The indices of values within the last dimension of input.

tf.nn.in top k(predictions, targets, k, name=None)

Says whether the targets are in the top x predictions.

This outputs abatch size bool array, an entry out [i] IS true if the
prediction for the target class is among the top k predictions among
all predictions for example i. Note that the behavior of 1nTopk differs
from the Topkop in its handling of ties; if multiple classes have the
same prediction value and straddle the top-k boundary, all of those

classes are considered to be in the top k.
More formally, let

predictionsipredictionsi be the predictions for all classes for
example i, targetsitargetsi be the target class for example i, outiouti be
the output for example i,

outi=predictionsi,targetsi €

TopKiIncludingTies(predictionsi)outi=predictionsi, targetsi € TopKInclud

ingTies (predictionsi)

Args:

predictions: A Tensor Of type float32.

Abatch size Xclasses tensor.

targets: A Tensor. Must be one of the following types: int32, inté4.
Abatch size vector of class ids.

k: An int. Number of top elements to look at for computing precision.

name: A name for the operation (optional).

Returns:

A Tensor of type bool. Computed Precision at k as a bool Tensor.

Candidate Sampling

Do you want to train a multiclass or multilabel model with thousands
or millions of output classes (for example, a language model with a
large vocabulary)? Training with a full Softmax is slow in this case,
since all of the classes are evaluated for every training example.
Candidate Sampling training algorithms can speed up your step
times by only considering a small randomly-chosen subset of
contrastive classes (called candidates) for each batch of training
examples.

See our

Sampled Loss Functions

TensorFlow provides the following sampled loss functions for faster
training.

tf.nn.nce loss(weights, biases, inputs, labels,
num_ sampled, num classes, num true=l,

sampled values=None, remove accidental hits=False,
partition strategy='mod', name='nce loss')

Computes and returns the noise-contrastive estimation training loss.

See
. Also see our

Note: In the case where num true > 1, we assign to each target class

the target probability 1 / num true so that the target probabilities sum

to 1 per-example.

https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf
http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf
https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf

Note: It would be useful to allow a variable number of target classes
per example. We hope to provide this functionality in a future release.
For now, if you have a variable number of target classes, you can
pad them out to a constant number by either repeating them or by
padding with an otherwise unused class.

Args:

weights: A Tensor Of shape [num classes, dim], Or alist

of Tensor objects whose concatenation along dimension O has shape
[num_classes, dim]. The (possibly-partitioned) class embeddings.

biases: A Tensor Of shape [num classes]. The class biases.

inputs: A Tensor Of shape [batch size, dim]. The forward
activations of the input network.

labels: A Tensor Of type int64 and shape [batch size,
num_true]. The target classes.

num_sampled: An int. The number of classes to randomly sample
per batch.

num classes: An int. The number of possible classes.

num_true: An int. The number of target classes per training
example.

sampled values: a tuple of

(sampled candidates, true expected count,sampled expected c
ount) returned by a * candidate sampler function. (if None, we
default tolog uniform candidate sampler)

remove accidental hits: Abool. Whether to remove "accidental
hits" where a sampled class equals one of the target classes. If set

to True, this is a "Sampled Logistic" loss instead of NCE, and we are

learning to generate log-odds instead of log probabilities. See
our . Default is False.

partition strategy: A string specifying the partitioning strategy,
relevant if 1en (weights) > 1. Currently "div" and "mod" are

supported. Default is "mod". See tf.nn.embedding lookup for more
details.
name: A name for the operation (optional).

Returns:

Abatch size 1-D tensor of per-example NCE losses.

tf.nn.sampled softmax loss(weights, biases, inputs,
labels, num sampled, num classes, num true=l1l,

sampled values=None, remove accidental hits=True,
partition strategy='mod', name='sampled softmax loss')

Computes and returns the sampled softmax training loss.

This is a faster way to train a softmax classifier over a huge number
of classes.

This operation is for training only. It is generally an underestimate of
the full softmax loss.

At inference time, you can compute full softmax probabilities with the

expressiontf.nn.softmax (tf.matmul (inputs, weights) +

biases).

See our
Also see Section 3 of (odf) for the math.

Args:

https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
http://arxiv.org/abs/1412.2007
http://arxiv.org/pdf/1412.2007.pdf

weights: A Tensor of shape [num classes, dim], Ora list

of Tensor objects whose concatenation along dimension 0 has shape
[num_classes, dim]. The (possibly-sharded) class embeddings.

biases: A Tensor Of shape [num classes]. The class biases.

inputs: A Tensor Of shape [batch size, dim]. The forward
activations of the input network.

labels: A Tensor Of type int64 and shape [batch size,
num_true]. The target classes. Note that this format differs from
the 1abels argument of nn.softmax cross entropy with logits.

num_sampled: An int. The number of classes to randomly sample
per batch.

num classes: An int. The number of possible classes.

num_true: An int. The number of target classes per training
example.

sampled values: a tuple of

(sampled_candidates, true expected count,sampled expected c
ount) returned by a * candidate sampler function. (if None, we
default tolog uniform candidate sampler)

remove accidental hits: Abool. whether to remove "accidental

hits" where a sampled class equals one of the target classes. Default
is True.

partition strategy: A string specifying the partitioning strategy,
relevant if 1en (weights) > 1. Currently "div" and "mod" are

supported. Default is "mod". See tf.nn.embedding lookup for more
details.

name: A name for the operation (optional).

Returns:

Abatch size 1-D tensor of per-example sampled softmax losses.

Candidate Samplers

TensorFlow provides the following samplers for randomly sampling
candidate classes when using one of the sampled loss functions
above.

tf.nn.uniform candidate sampler (true classes, num true,
num sampled, unique, range max, seed=None, name=None)

Samples a set of classes using a uniform base distribution.

This operation randomly samples a tensor of sampled classes

(sampled candidates) from the range of integers [0, range max].
The elements of sampled candidates are drawn without

replacement (if unique=True) or with replacement (if unique=False)

from the base distribution.
The base distribution for this operation is the uniform distribution over

the range of integers [0, range max].

In addition, this operation returns

tensors true expected count and sampled expected countlepres
enting the number of times each of the target classes
(true_classes) and the sampled classes (sampled_candidates) 5
expected to occur in an average tensor of sampled classes. These

values correspond to ¢ (v | x) defined in

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

http://www.tensorflow.org/extras/candidate_sampling.pdf

Args:

true classes: A Tensor Of type int64 and shape [batch size,
num_true]. The target classes.

num_ true: An int. The number of target classes per training
example.

num sampled: An int. The number of classes to randomly sample
per batch.

unique: A bool. Determines whether all sampled classes in a batch
are unique.

range _max: An int. The number of possible classes.
seed: An int. An operation-specific seed. Default is O.

name: A name for the operation (optional).

Returns:

sampled candidates: A tensor of type int64 and

shape [num_sampled]. The sampled classes.

true expected count: A tensor of type float. Same shape

as true classes. The expected counts under the sampling
distribution of each of true classes.

sampled expected count: A tensor of type float. Same shape
as sampled candidates. The expected counts under the sampling

distribution of each of sampled candidates.

tf.nn.log uniform candidate sampler (true classes,
num true, num sampled, unique, range max, seed=None,
name=None)

Samples a set of classes using a log-uniform (Zipfian) base
distribution.
This operation randomly samples a tensor of sampled classes

(sampled candidates) from the range of integers [0, range max].
The elements of sampled candidates are drawn without

replacement (if unique=True) or with replacement (if unique=ralse)
from the base distribution.

The base distribution for this operation is an approximately log-
uniform or Zipfian distribution:

P(class) = (log(class + 2) - log(class + 1)) /
log(range max + 1)

This sampler is useful when the target classes approximately follow
such a distribution - for example, if the classes represent words in a
lexicon sorted in decreasing order of frequency. If your classes are
not ordered by decreasing frequency, do not use this op.

In addition, this operation returns

tensors true expected count and sampled expected countrepres
enting the number of times each of the target classes

(true classes) and the sampled classes (sampled candidates)iS
expected to occur in an average tensor of sampled classes. These

values correspond to ¢ (v | x) defined in

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

Args:

http://www.tensorflow.org/extras/candidate_sampling.pdf

true classes: A Tensor of type int64 and shape [batch size,
num_true]. The target classes.

num_true: An int. The number of target classes per training
example.

num_sampled: An int. The number of classes to randomly sample
per batch.

unique: A bool. Determines whether all sampled classes in a batch
are unique.

range max: An int. The number of possible classes.
seed: An int. An operation-specific seed. Default is O.

name: A name for the operation (optional).

Returns:

sampled candidates: A tensor of type int64 and

shape [num sampled]. The sampled classes.

true expected count: A tensor of type float. Same shape

as true classes. The expected counts under the sampling
distribution of each of true classes.

sampled expected count: A tensor of type float. Same shape
as sampled candidates. The expected counts under the sampling

distribution of each of sampled candidates.

tf.nn.learned unigram candidate sampler (true classes,
num true, num sampled, unique, range max, seed=None,
name=None)

Samples a set of classes from a distribution learned during training.

This operation randomly samples a tensor of sampled classes

(sampled candidates) from the range of integers [0, range max].
The elements of sampled candidates are drawn without

replacement (if unique=True) or with replacement (if unique=ralse)

from the base distribution.
The base distribution for this operation is constructed on the fly
during training. It is a unigram distribution over the target classes

seen so far during training. Every integer in [0, range max] begins

with a weight of 1, and is incremented by 1 each time it is seen as a
target class. The base distribution is not saved to checkpoints, so it is
reset when the model is reloaded.

In addition, this operation returns

tensors true expected count and sampled expected countrepres
enting the number of times each of the target classes

(true classes) and the sampled classes (sampled candidates)iS
expected to occur in an average tensor of sampled classes. These

values correspond to ¢ (y | x) defined in

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

Args:

true classes: A Tensor of type int64 and shape [batch size,
num_true]. The target classes.

num_true: An int. The number of target classes per training

example.

http://www.tensorflow.org/extras/candidate_sampling.pdf

num_sampled: An int. The number of classes to randomly sample
per batch.

unique: A bool. Determines whether all sampled classes in a batch
are unique.

range max: An int. The number of possible classes.
seed: An int. An operation-specific seed. Default is 0.

name: A name for the operation (optional).

Returns:

sampled candidates: A tensor of type int64 and

shape [num sampled]. The sampled classes.

true expected count: A tensor of type float. Same shape

as true classes. The expected counts under the sampling
distribution of each of true classes.

sampled expected count: A tensor of type float. Same shape
as sampled candidates. The expected counts under the sampling

distribution of each of sampled candidates.

tf.nn.fixed unigram candidate sampler (true classes,

num true, num sampled, unique, range max, vocab file='",
distortion=1.0, num reserved ids=0, num shards=1,
shard=0, unigrams=(), seed=None, name=None)

Samples a set of classes using the provided (fixed) base distribution.

This operation randomly samples a tensor of sampled classes

(sampled candidates) from the range of integers [0, range max].
The elements of sampled candidates are drawn without

replacement (if unique=True) or with replacement (if unique=False)
from the base distribution.
The base distribution is read from a file or passed in as an in-memory

array. There is also an option to skew the distribution by applying a
distortion power to the weights.

In addition, this operation returns

tensors true expected count and sampled expected countrepres
enting the number of times each of the target classes

(true classes) and the sampled classes (sampled candidates) IS
expected to occur in an average tensor of sampled classes. These

values correspond to ¢ (y | x) defined in

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

Args:

true classes: A Tensor of type int64 and shape [batch size,
num_true]. The target classes.

num_true: An int. The number of target classes per training
example.

num_sampled: An int. The number of classes to randomly sample
per batch.

unique: A bool. Determines whether all sampled classes in a batch
are unique.

range _max: An int. The number of possible classes.

http://www.tensorflow.org/extras/candidate_sampling.pdf

vocab file: Each valid line in this file (which should have a CSV-like

format) corresponds to a valid word ID. IDs are in sequential order,
starting from num_reserved_ids. The last entry in each line is
expected to be a value corresponding to the count or relative

probability. Exactly one of vocab file and unigrams needs to be
passed to this operation.

distortion: The distortion is used to skew the unigram probability
distribution. Each weight is first raised to the distortion's power before

adding to the internal unigram distribution. As a result, distortion =
1.0gives regular unigram sampling (as defined by the vocab file),
and distortion = 0.0 gives a uniform distribution.

num reserved ids: Optionally some reserved IDs can be added in

the range [0, num reserved ids]by the users. One use case is

that a special unknown word token is used as ID 0. These IDs will
have a sampling probability of O.

num_shards: A sampler can be used to sample from a subset of the
original range in order to speed up the whole computation through
parallelism. This parameter (together with shard) indicates the
number of partitions that are being used in the overall computation.
shard: A sampler can be used to sample from a subset of the original
range in order to speed up the whole computation through
parallelism. This parameter (together with num shards) indicates the

particular partition number of the operation, when partitioning is being
used.

unigrams: A list of unigram counts or probabilities, one per ID in

sequential order. Exactly one ofvocab file and unigrams should be
passed to this operation.

seed: An int. An operation-specific seed. Default is O.

name: A name for the operation (optional).

Returns:

sampled candidates: A tensor of type int64 and

shape [num sampled]. The sampled classes.

true expected count: A tensor of type float. Same shape

as true classes. The expected counts under the sampling
distribution of each of true classes.

sampled expected count: A tensor of type float. Same shape
as sampled candidates. The expected counts under the sampling

distribution of each of sampled candidates.

Miscellaneous candidate sampling utilities

tf.nn.compute accidental hits(true classes,
sampled candidates, num true, seed=None, name=None)

Compute the position ids

Wlsampled_candidatesrnakﬂﬂng'true_classes.

In Candidate Sampling, this operation facilitates virtually removing
sampled classes which happen to match target classes. This is done
in Sampled Softmax and Sampled Logistic.

See our

We presuppose that the sampled candidates are unigque.

We call it an 'accidental hit' when one of the target classes matches
one of the sampled classes. This operation reports accidental hits as

triples (index, id, weight), where index represents the row

http://www.tensorflow.org/extras/candidate_sampling.pdf

number intrue classes, id represents the position

IN sampled candidates, and weight is -FLOAT MAX.
The result of this op should be passed through
a sparse_to dense operation, then added to the logits of the

sampled classes. This removes the contradictory effect of
accidentally sampling the true target classes as noise classes for the
same example.

Args:

true classes: A Tensor Of type int64 and shape [batch size,
num_true]. The target classes.
sampled candidates: A tensor of type int64 and

shape [num sampled]. The sampled_candidates output of
CandidateSampler.

num_true: An int. The number of target classes per training
example.

seed: An int. An operation-specific seed. Default is O.

name: A name for the operation (optional).

Returns:

indices: A Tensor Of type int32 and

shape [num accidental hits]. Values indicate rows

iNtrue classes.

ids: A Tensor Of type int64 and shape [num accidental hits].

Values indicate positions insampled candidates.

weights: A Tensor Of type float and

shape [num accidental hits]. Each valueis -FLOAT MAX.

Running Graphs

Contents

This library contains classes for launching graphs and executing
operations.

The guide has examples of how a graph is launched in

a

Session management

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#running-graphs
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#session-management
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#InteractiveSession
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#get_default_session
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#error-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#OpError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#CancelledError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnknownError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#InvalidArgumentError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#DeadlineExceededError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#NotFoundError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#AlreadyExistsError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#PermissionDeniedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnauthenticatedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#ResourceExhaustedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#FailedPreconditionError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#AbortedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#OutOfRangeError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnimplementedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#InternalError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnavailableError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#DataLossError
https://www.tensorflow.org/versions/r0.7/get_started/index.html#basic-usage
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session

class tf.Session

A class for running TensorFlow operations.

A session object encapsulates the environment in

which operation oObjects are executed, and Tensor objects are

evaluated. For example:
Build a graph.
tf.constant (5.0)
tf.constant (6.0)

a * b

a
b
@

Launch the graph in a session.

sess = tf.Session()

Evaluate the tensor “c’.

print (sess.run(c))

A session may own resources, such as : , and
It is important to release these resources when they are no longer

required. To do this, either invoke the method on the

session, or use the session as a context manager. The following two

examples are equivalent:
Using the “close () method.

sess = tf.Session()
sess.run(...)

sess.close ()

Using the context manager.
with tf.Session() as sess:

sess.run(...)

The protocol buffer exposes various configuration

options for a session. For example, to create a session that uses soft
constraints for device placement, and log the resulting placement

decisions, create a session as follows:
Launch the graph in a session that allows soft device placement

and

logs the placement decisions.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#ReaderBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.close
https://www.tensorflow.org/code/tensorflow/core/framework/config.proto

sess =
tf.Session(config=tf.ConfigProto(allow soft placement=True,

log device placement=True))

tf.Session. 1init (target='', graph=None, config=None)

Creates a new TensorFlow session.

If no graph argument is specified when constructing the session, the
default graph will be launched in the session. If you are using more
than one graph (created with tf.Graph () in the same process, you

will have to use different sessions for each graph, but each graph can
be used in multiple sessions. In this case, it is often clearer to pass
the graph to be launched explicitly to the session constructor.

Args:

target: (Optional.) The execution engine to connect to. Defaults to

using an in-process engine. At present, no value other than the
empty string is supported.

graph: (Optional.) The Graph to be launched (described above).

config: (Optional.) A protocol buffer with configuration

options for the session.

tf.Session.run (fetches, feed dict=None)
Runs the operations and evaluates the tensors in fetches.
This method runs one "step" of TensorFlow computation, by running

the necessary graph fragment to execute every operation and

https://www.tensorflow.org/code/tensorflow/core/framework/config.proto

evaluate every Tensor in fetches, substituting the values
in feed dict for the corresponding input values.

The fetches argument may be a list of graph elements or a single

graph element, and these determine the return value of this method.
A graph element can be one of the following types:

If the *i*th element of fetches iS an , the *i*th return value
will be None.
If the *i*th element of fetches is a , the *i*th return value will

be a numpy ndarray containing the value of that tensor.

If the *i*th element of fetches is a , the *i*th return

value will be a containing the value of that
sparse tensor.

The optional feed dict argument allows the caller to override the

value of tensors in the graph. Each key infeed dict can be one of
the following types:

If the key is a , the value may be a Python scalar, string, list,

or numpy ndarray that can be converted to the same dtype as that

tensor. Additionally, if the key is a , the shape of the value
will be checked for compatibility with the placeholder.

If the key is a , the value should be

a

Args:

fetches: A single graph element, or a list of graph elements

(described above).

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensorValue
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#placeholder
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensorValue

o feed dict: A dictionary that maps graph elements to values

(described above).

Returns:

Either a single value if fetches is a single graph element, or a list of

values if fetches is a list (described above).

Raises:

e RuntimeError: If this session is in an invalid state (e.g. has been
closed).
o TypeError: If fetches Or feed dict keys are of an inappropriate

type.
o ValueError: If fetches Or feed dict Keys are invalid or refer to

a Tensor that doesn't exist.

tf.Session.close ()

Closes this session.

Calling this method frees all resources associated with the session.

Raises:

« RuntimeError: If an error occurs while closing the session.

tf.Session.graph

The graph that was launched in this session.

tf.Session.as _default ()

Returns a context manager that makes this object the default
session.

Use with the with keyword to specify that calls

to or should be executed in this

session.

c = tf.constant(..)

sess = tf.Session|()

with sess.as _default():
assert tf.get default session() is sess

print (c.eval())

To get the current default session, use

N.B. The as_default context manager does not close the session

when you exit the context, and you must close the session explicitly.
c = tf.constant(...)
sess = tf.Session ()
with sess.as_default():
print (c.eval())
#
with sess.as_default():

print (c.eval())

sess.close ()
Alternatively, you can use with tf.Session () : tO Ccreate a session

that is automatically closed on exiting the context, including when an
uncaught exception is raised.

N.B. The default graph is a property of the current thread. If you
create a new thread, and wish to use the default session in that

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation.run
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.run
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#get_default_session

thread, you must explicitly add a with sess.as default () : in that

thread's function.

Returns:

A context manager using this session as the default session.

class tf.InteractiveSession
A TensorFlow session for use in interactive contexts, such as a
shell.

The only difference with a regular session is that

an InteractiveSession installs itself as the default session on

construction. The

methods and will use that session
to run ops.
This is convenient in interactive shells and ,as it

avoids having to pass an explicit sessionobject to run ops.

For example:

sess = tf.InteractiveSession|()
a = tf.constant (5.0)

b = tf.constant (6.0)
c=a*hb
We can just use 'c.eval()' without passing 'sess'

print (c.eval ())

sess.close()

Note that a regular session installs itself as the default session when
it is created in a with statement. The common usage in non-

interactive programs is to follow that pattern:
a = tf.constant(5.0)

b tf.constant (6.0)

c=a*b

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.eval
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation.run
http://ipython.org/

with tf.Session () :
We can also use 'c.eval()' here.

print (c.eval())

tf.InteractiveSession. 1init (target='"', graph=None,
config=None)

Creates a new interactive TensorFlow session.

If no graph argument is specified when constructing the session, the
default graph will be launched in the session. If you are using more
than one graph (created with tf.Graph () in the same process, you

will have to use different sessions for each graph, but each graph can
be used in multiple sessions. In this case, it is often clearer to pass
the graph to be launched explicitly to the session constructor.

Args:

target: (Optional.) The execution engine to connect to. Defaults to

using an in-process engine. At present, no value other than the
empty string is supported.

graph: (Optional.) The Graph to be launched (described above).

config: (Optional) configProto proto used to configure the session.

tf.InteractiveSession.close ()

Closes an InteractiveSession.

tf.get default session()

Returns the default session for the current thread.

The returned session Will be the innermost session on which

a Session OF Session.as default () context has been entered.

NOTE: The default session is a property of the current thread. If you
create a new thread, and wish to use the default session in that

thread, you must explicitly add a with sess.as default () : in that

thread's function.

Returns:

The default session being used in the current thread.

Error classes

class tf.OpError
A generic error that is raised when TensorFlow execution fails.

Whenever possible, the session will raise a more specific subclass

of opError from the tf.errors module.

tf.OpError.op

The operation that failed, if known.

N.B. If the failed op was synthesized at runtime, e.g.

a Send Or Recv 0P, there will be no corresponding object.
In that case, this will return None, and you should instead use

the to discover information about the op.

Returns:

The operation that failed, or None.

tf.OpError.node def

The NodeDef proto representing the op that failed.

Other Methods

tf.0OpError. 1init (node def, op, message, error code)

Creates a new OpError indicating that a particular op failed.

Args:

node def: The graph pb2.NodeDef proto representing the op that
failed.

op: The ops.operation that failed, if known; otherwise None.
message: The message string describing the failure.

error code: The error codes pb2.Code describing the error.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#OpError.node_def

tf.OpError.error code

The integer error code that describes the error.

tf.OpError.message

The error message that describes the error.

class tf.errors.CancelledError

Raised when an operation or step is cancelled.

For example, a long-running operation (e.g. may
be cancelled by running another operation
(e.0. , or by

. A step that is running such a long-running operation will

fail by raising cancelledkrror.

tf.errors.CancelledError. init (node def, op, message)

Creates a cancelledError.

class tf.errors.UnknownError

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.enqueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.close
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.close
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.close

Unknown error.

An example of where this error may be returned is if a Status value
received from another address space belongs to an error-space that
Is not known to this address space. Also errors raised by APIs that do
not return enough error information may be converted to this error.

tf.errors.UnknownError. init (node def, op, message,

error code=2)

Creates an UnknownError.

class tf.errors.InvalidArgumentError

Raised when an operation receives an invalid argument.

This may occur, for example, if an operation is receives an input
tensor that has an invalid value or shape. For example,

the op will raise this error if it receives an input that is

not a matrix, and the op will raise this error if the new

shape does not match the number of elements in the input tensor.

tf.errors.InvalidArgumentError. init (node def, op,
message)

Creates an InvalidArgumentError.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reshape

class tf.errors.DeadlineExceededError

Raised when a deadline expires before an operation could complete.

This exception is not currently used.

tf.errors.DeadlineExceededError. 1init (node def, op,
message)

Creates a DeadlineExceededError.

class tf.errors.NotFoundError

Raised when a requested entity (e.g., a file or directory) was not
found.

For example, running the operation

could raise NotFoundError If it receives the name of a file that does

not exist.

tf.errors.NotFoundError. init (node def, op, message)

Creates a NotFoundError.

class tf.errors.AlreadyExistsError

Raised when an entity that we attempted to create already exists.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader

For example, running an operation that saves a file
(e.0.) could potentially raise this exception

if an explicit filename for an existing file was passed.

tf.errors.AlreadyExistsError. 1init (node def, op,
message)

Creates an AlreadyExistsError.

class tf.errors.PermissionDeniedError

Raised when the caller does not have permission to run an operation.

For example, running the operation

could raise permissionDeniedErrorif it receives the name of a file

for which the user does not have the read file permission.

tf.errors.PermissionDeniedError. init (node def, op,
message)

Creates a permissionDeniedError.

class tf.errors.UnauthenticatedError

The request does not have valid authentication credentials.

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Saver.save
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader

This exception is not currently used.

tf.errors.UnauthenticatedError. 1init (node def, op,
message)

Creates an UnauthenticatedError.

class tf.errors.ResourceExhaustedError

Some resource has been exhausted.

For example, this error might be raised if a per-user quota is
exhausted, or perhaps the entire file system is out of space.

tf.errors.ResourceExhaustedError. 1init (node def, op,
message)

Creates a ResourceExhaustedError.

class tf.errors.FailedPreconditionError

Operation was rejected because the system is not in a state to
execute it.

This exception is most commonly raised when running an operation

that reads a before it has been initialized.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable

tf.errors.FailedPreconditionError. init (node def, op,

message)

Creates a FailedPreconditionError.

class tf.errors.AbortedError

The operation was aborted, typically due to a concurrent action.

For example, running a operation may
raise AbortedError if a operation previously ran.
tf.errors.AbortedError. 1init (node def, op, message)

Creates an abortedError.

class tf.errors.OutOfRangeError

Raised when an operation executed past the valid range.

This exception is raised in "end-of-file" conditions, such as when

a operation is blocked on an empty queue, and

a operation executes.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.enqueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.close
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.dequeue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.close

tf.errors.OutOfRangeError. 1init (node def, op, message)

Creates an outOfRangeError.

class tf.errors.UnimplementedError
Raised when an operation has not been implemented.

Some operations may raise this error when passed otherwise-valid
arguments that it does not currently support. For example, running
the operation would raise this error if pooling was

requested on the batch dimension, because this is not yet supported.

tf.errors.UnimplementedError. 1init (node def, op,
message)

Creates an UnimplementedError.

class tf.errors.InternalError
Raised when the system experiences an internal error.
This exception is raised when some invariant expected by the

runtime has been broken. Catching this exception is not
recommended.

tf.errors.InternalError. 1init (node_def, op, message)

https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool

Creates an InternalError.

class tf.errors.UnavailableError

Raised when the runtime is currently unavailable.

This exception is not currently used.

tf.errors.UnavailableError. init (node def, op,
message)

Creates an UnavailableError.

class tf.errors.DatalossError

Raised when unrecoverable data loss or corruption is encountered.

For example, this may be raised by running
a operation, if the file is truncated

while it is being read.

tf.errors.DatalossError. 1init (node def, op, message)

Creates a DatalLossError.

Training

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader

Contents

Training

Optimizers

class tf.train.Optimizer

Usage

Processing gradients before applying them.

Gating Gradients

Slots

class tf.train.GradientDescentOptimizer

class tf.train.AdagradOptimizer

class tf.train.MomentumOptimizer

class tf.train.AdamOptimizer

class tf.train.FtrlOptimizer

class tf.train.RMSPropOptimizer

Gradient Computation

tf.gradients(ys, xs, grad ys=None, name=gradients,

colocate gradients with ops=False, gate gradients=False,
aggregation method=None)

class tf.AggregationMethod

tf.stop gradient (input, name=None)

Gradient Clipping

tf.clip by value(t, clip value min, clip value max,
name=None)

tf.clip by norm(t, clip norm, name=None)
tf.clip by average norm(t, clip norm, name=None)

tf.clip by global norm(t list, clip norm, use norm=None,
name=None)

tf.global norm(t list, name=None)

Decaying the learning rate

tf.train.exponential decay(learning rate, global step,

decay steps, decay rate, staircase=False, name=None)
Moving Averages

class tf.train.ExponentialMovingAverage

Coordinator and QueueRunner

class tf.train.Coordinator

class tf.train.QueueRunner
tf.train.add queue runner (qr, collection=queue runners)
tf.train.start queue runners (sess=None, coord=None,
daemon=True, start=True, collection=queue runners)
Summary Operations

tf.scalar summary(tags, values, collections=None,

name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#training
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#optimizers
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Optimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#usage
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#processing-gradients-before-applying-them
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gating-gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#slots
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#GradientDescentOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#AdagradOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#MomentumOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#AdamOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#FtrlOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#RMSPropOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradient-computation
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#AggregationMethod
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#stop_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradient-clipping
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_value
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_value
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_average_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_global_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_global_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#global_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#decaying-the-learning-rate
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#exponential_decay
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#exponential_decay
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#moving-averages
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#ExponentialMovingAverage
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#coordinator-and-queuerunner
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Coordinator
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#QueueRunner
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#add_queue_runner
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#start_queue_runners
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#start_queue_runners
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#summary-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#scalar_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#scalar_summary

This library provides a set of classes and functions that helps train
models.

Optimizers

The Optimizer base class provides methods to compute gradients for
a loss and apply gradients to variables. A collection of subclasses
implement classic optimization algorithms such as GradientDescent
and Adagrad.

You never instantiate the Optimizer class itself, but instead
instantiate one of the subclasses.

class tf.train.Optimizer

Base class for optimizers.

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#image_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#image_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#histogram_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#histogram_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#zero_fraction
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#merge_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#merge_all_summaries
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#adding-summaries-to-event-files
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#SummaryWriter
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#summary_iterator
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#training-utilities
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#global_step
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#write_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#write_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#LooperThread
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#export_meta_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#export_meta_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#export_meta_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#generate_checkpoint_state_proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#generate_checkpoint_state_proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#import_meta_graph

This class defines the API to add Ops to train a model. You never
use this class directly, but instead instantiate one of its subclasses

such as GradientDescentOptimizer, AdagradOptimizer,

Or MomentumOptimizer.

Usage

Create an optimizer with the desired parameters.

opt = GradientDescentOptimizer (learning rate=0.1)

Add Ops to the graph to minimize a cost by updating a list of
variables.

"cost" is a Tensor, and the list of variables contains
tf.Variable

objects.

opt op = opt.minimize (cost, var list=<list of variables>)

In the training program you will just have to run the returned Op.

Execute opt op to do one step of training:

opt _op.run()

Processing gradients before applying them.

Calling minimize () takes care of both computing the gradients and

applying them to the variables. If you want to process the gradients
before applying them you can instead use the optimizer in three
steps:

. Compute the gradients with compute gradients ().

2. Process the gradients as you wish.

. Apply the processed gradients with apply gradients ().

Example:

Create an optimizer.

opt = GradientDescentOptimizer (learning rate=0.1)

Compute the gradients for a list of variables.

grads_and vars = opt.compute gradients(loss, <list of variables>)

grads_and vars is a list of tuples (gradient, variable). Do
whatever you

need to the 'gradient' part, for example cap them, etc.
capped grads_and vars = [(MyCapper(gv([0]), gv[1l])) for gv in

grads_and vars]

Ask the optimizer to apply the capped gradients.
opt.apply gradients (capped grads and vars)

tf.train.Optimizer. 1init (use locking, name)
Create a new Optimizer.

This must be called by the constructors of subclasses.

Args:

use locking: Bool. If True apply use locks to prevent concurrent
updates to variables.
name: A non-empty string. The name to use for accumulators created

for the optimizer.

Raises:

ValueError: If name is malformed.

tf.train.Optimizer.minimize (loss, global step=None,
var list=None, gate gradients=1, aggregation method=None,
colocate gradients with ops=False, name=None)

Add operations to minimize 1o0ss by updating var 1ist.

This method simply combines

calls compute gradients () and apply gradients (). If you want to
process the gradient before applying them

call compute gradients () and apply gradients () explicitly

instead of using this function.

Args:

loss: A Tensor containing the value to minimize.

global step: Optional variable to increment by one after the
variables have been updated.

var 1list: Optional list of variable objects to update to

minimize 1oss. Defaults to the list of variables collected in the graph
under the key GraphKeys.TRAINABLE VARIABLES.

gate gradients: How to gate the computation of gradients. Can
be GATE NONE, GATE OP, OfGATE GRAPH.

aggregation method: Specifies the method used to combine
gradient terms. Valid values are defined in the

class AggregationMethod.

colocate gradients with ops: If True, try colocating gradients with
the corresponding op.

name: Optional name for the returned operation.

Returns:

An Operation that updates the variables in var 1ist.
If g1obal step was not None, that operation also

increments global step.

Raises:

valueError: If some of the variables are not variable objects.

tf.train.Optimizer.compute gradients (loss, var list=None,
gate gradients=1, aggregation method=None,
colocate gradients with ops=False)

Compute gradients of 1oss for the variables in var list.

This is the first part of minimize (). It returns a list of (gradient,
variable) pairs where "gradient" is the gradient for "variable". Note
that "gradient” can be a Tensor, an IndexedSlices, Or None if there

IS no gradient for the given variable.

Args:

loss: A Tensor containing the value to minimize.

var list: Optional list of tf.Variable to update to minimize 1oss.
Defaults to the list of variables collected in the graph under the

key GraphKey.TRAINABLE VARIABLES.
gate gradients: How to gate the computation of gradients. Can

be GATE NONE, GATE OP, OIGATE GRAPH.

e aggregation method: Specifies the method used to combine
gradient terms. Valid values are defined in the

class AggregationMethod.

e colocate gradients with ops: If True, try colocating gradients with

the corresponding op.

Returns:

A list of (gradient, variable) pairs.

Raises:

e TypeError:If var 1ist contains anything else
than variable Objects.

e ValueError: If some arguments are invalid.

tf.train.Optimizer.apply gradients(grads_and vars,
global step=None, name=None)

Apply gradients to variables.

This is the second part of minimize (). It returns an operation that

applies gradients.

Args:

e grads_and vars: List of (gradient, variable) pairs as returned

bycompute_gradients(L

global step: Optional variable to increment by one after the
variables have been updated.

name: Optional name for the returned operation. Default to the name

passed to the optimizer constructor.

Returns:

An operation that applies the specified gradients.
If global step was not None, that operation also

increments global step.

Raises:

TypeError: If grads_and vars Is malformed.

valueError: If none of the variables have gradients.

Gating Gradients

Both minimize () and compute gradients () accept

a gate gradient argument that controls the degree of parallelism
during the application of the gradients.

The possible values are: GATE NONE, GATE OP, and GATE GRAPH,

GATE NONE: Compute and apply gradients in parallel. This provides

the maximum parallelism in execution, at the cost of some non-
reproducibility in the results. For example the two gradients

of matmul depend on the input values: With GATE NONE one of the

gradients could be applied to one of the inputs before the other
gradient is computed resulting in non-reproducible results.

GATE_op: For each Op, make sure all gradients are computed before

they are used. This prevents race conditions for Ops that generate
gradients for multiple inputs where the gradients depend on the
inputs.

GATE_GRAPH: Make sure all gradients for all variables are computed

before any one of them is used. This provides the least parallelism
but can be useful if you want to process all gradients before applying
any of them.

Slots

Some optimizer subclasses, such
as MomentumOptimizer and AdagradOptimizer allocate and manage

additional variables associated with the variables to train. These are
called Slots. Slots have names and you can ask the optimizer for the
names of the slots that it uses. Once you have a slot name you can
ask the optimizer for the variable it created to hold the slot value.

This can be useful if you want to log debug a training algorithm,
report stats about the slots, etc.

tf.train.Optimizer.get slot names ()

Return a list of the names of slots created by the optimizer.

See get _slot().

Returns:

A list of strings.

tf.train.Optimizer.get slot(var, name)

Return a slot named name created for var by the Optimizer.
Some optimizer Subclasses use additional variables. For
example Momentum and Adagrad use variables to accumulate

updates. This method gives access to these variable objects if for
some reason you need them.

Use get slot names () to get the list of slot names created by

the optimizer.

Args:

var: A variable passed to minimize () Or apply gradients ().

name: A string.

Returns:

The variable for the slot if it was created, None otherwise.

class tf.train.GradientDescentOptimizer

Optimizer that implements the gradient descent algorithm.

tf.train.GradientDescentOptimizer. init (learning rate,

use locking=False, name='GradientDescent')

Construct a new gradient descent optimizer.

Args:

learning rate: A Tensor or a floating point value. The learning rate
to use.

use locking: If True use locks for update operations.

name: Optional name prefix for the operations created when applying

gradients. Defaults to "GradientDescent".

class tf.train.AdagradOptimizer

Optimizer that implements the Adagrad algorithm.

See this

tf.train.AdagradOptimizer. 1init (learning rate,
initial accumulator value=0.1, use locking=False,
name="'Adagrad')

Construct a new Adagrad optimizer.

Args:

learning rate: A Tensor Or a floating point value. The learning rate.

initial accumulator value: A floating point value. Starting value
for the accumulators, must be positive.

use locking: If True use locks for update operations.

name: Optional name prefix for the operations created when applying

gradients. Defaults to "Adagrad".

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Raises:

ValueError: If the initial_accumulator_valueiSinva”d.

class tf.train.MomentumOptimizer

Optimizer that implements the Momentum algorithm.

tf.train.MomentumOptimizer. 1init (learning rate,
momentum, use locking=False, name='Momentum')

Construct a new Momentum optimizer.

Args:

learning rate! A Tensor Or a floating point value. The learning rate.
momentum: A Tensor Or a floating point value. The momentum.
use locking: If True use locks for update operations.

name: Optional name prefix for the operations created when applying

gradients. Defaults to "Momentum".

class tf.train.AdamOptimizer
Optimizer that implements the Adam algorithm.

See (nd?).

http://arxiv.org/abs/1412.6980
http://arxiv.org/pdf/1412.6980.pdf

tf.train.AdamOptimizer. init (learning rate=0.001,
betal=0.9, beta2=0.999, epsilon=le-08, use locking=False,
name="'Adam"')

Construct a new Adam optimizer.

Initialization:

m 0 <- 0 (Initialize initial 1st moment vector)
v 0 <- 0 (Initialize initial 2nd moment vector)

t <- 0 (Initialize timestep)
The update rule for variable with gradient g uses an optimization

described at the end of section2 of the paper:
t <-t + 1

lr t <- learning rate * sqrt(l - beta2”t) / (1 - betal”t)

m t <- betal * m {t-1} + (1 - betal) * g
v _t <- betaz * v_{t-1} + (1 - beta2) * g * g

variable <- variable - 1lr t * m t / (sgqrt(v_t) + epsilon)

The default value of 1e-8 for epsilon might not be a good default in
general. For example, when training an Inception network on
ImageNet a current good choice is 1.0 or 0.1.

Args:

learning rate: A Tensor or a floating point value. The learning rate.

betal: A float value or a constant float tensor. The exponential decay
rate for the 1st moment estimates.
beta2: A float value or a constant float tensor. The exponential decay
rate for the 2nd moment estimates.

epsilon: A small constant for numerical stability.

use locking: If True use locks for update operations.

name: Optional name for the operations created when applying

gradients. Defaults to "Adam".

class tf.train.FtrlOptimizer

Optimizer that implements the FTRL algorithm.

tf.train.FtrlOptimizer. 1init (learning rate,
learning rate power=-0.5, initial accumulator value=0.1,
11 regularization strength=0.0,

12 regularization strength=0.0, use locking=False,
name='Ftrl')

Construct a new FTRL optimizer.

The Ftrl-proximal algorithm, abbreviated for Follow-the-regularized-
leader, is described in the paper

It can give a good performance vs. sparsity tradeoff.

Ftrl-proximal uses its own global base learning rate and can behave

like Adagrad withlearning rate power=-0.5, or like gradient

descent with 1earning rate power=0.0

The effective learning rate is adjusted per parameter, relative to this
base learning rate as:

effective learning rate i = (learning rate /

pow (k + summed squared gradients for i, learning rate power));

where k is the small constant initial accumulator value.

https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf

Note that the real regularization coefficient of |w|~2 for objective

functionis 1 / lambda 2 if specifying 12 = lambda 2 as argument

when using this function.

Args:

learning rate! A float value or a constant float Tensor.
learning rate power: A float value, must be less or equal to zero.

initial accumulator value: The starting value for accumulators.
Only positive values are allowed.

11 regularization strength: A float value, must be greater than
or equal to zero.

12 regularization strength: A float value, must be greater than
or equal to zero.

use locking: If True use locks for update operations.

name: Optional name prefix for the operations created when applying

gradients. Defaults to "Ftrl".

Raises:

valueError: If one of the arguments is invalid.

class tf.train.RMSPropOptimizer
Optimizer that implements the RMSProp algorithm.

See the

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

tf.train.RMSPropOptimizer. 1init (learning rate,
decay=0.9, momentum=0.0, epsilon=le-10,
use locking=False, name='RMSProp')

Construct a new RMSProp optimizer.

Args:

learning rate: A Tensor or a floating point value. The learning rate.
decay: Discounting factor for the history/coming gradient

momentum: A scalar tensor.

epsilon: Small value to avoid zero denominator.

use locking: If True use locks for update operation.

name: Optional name prefix for the operations created when applying

gradients. Defaults to "RMSProp".

Gradient Computation

TensorFlow provides functions to compute the derivatives for a given
TensorFlow computation graph, adding operations to the graph. The
optimizer classes automatically compute derivatives on your graph,
but creators of new Optimizers or expert users can call the lower-
level functions below.

tf.gradients(ys, xs, grad ys=None, name='gradients',
colocate gradients with ops=False, gate gradients=False,
aggregation method=None)

Constructs symbolic partial derivatives of ys w.r.t. X in xs.

ys and xs are each a Tensor or a list of tensors. grad_ys is a list

of Tensor, holding the gradients received by the ys. The list must be
the same length as ys.

gradients () adds ops to the graph to output the partial derivatives
of ys with respect to xs. It returns a list ofTensor of

length 1en (xs) where each tensor is the sum (dy/dx) foryin ys.
grad_ys IS a list of tensors of the same length as ys that holds the
initial gradients for each y in ys. Whengrad ys is None, we fill in a
tensor of '1's of the shape of y for each y in ys. A user can provide

their own initialgrad ys to compute the derivatives using a different

initial gradient for each y (e.g., if one wanted to weight the gradient
differently for each value in each y).

Args:

ys: A Tensor Or list of tensors to be differentiated.

xs: A Tensor oOr list of tensors to be used for differentiation.
grad_ys: Optional. A Tensor or list of tensors the same size
as ys and holding the gradients computed for each y in ys.

name: Optional name to use for grouping all the gradient ops
together. defaults to 'gradients’.

colocate gradients with ops: If True, try colocating gradients with
the corresponding op.

gate gradients: If True, add a tuple around the gradients returned

for an operations. This avoids some race conditions.

aggregation method: Specifies the method used to combine
gradient terms. Accepted values are constants defined in the

class AggregationMethod.

Returns:

A list of sum (dy/dx) for each x in xs.

Raises:

LookupError: if one of the operations between x and y does not
have a registered gradient function.

valueError: If the arguments are invalid.

class tf.AggregationMethod

A class listing aggregation methods used to combine gradients.

Computing partial derivatives can require aggregating gradient
contributions. This class lists the various methods that can be used to
combine gradients in the graph:

apD_N: All of the gradient terms are summed as part of one operation

using the "AddN" op. It has the property that all gradients must be
ready before any aggregation is performed.

DEFAULT: The system-chosen default aggregation method.

tf.stop gradient (input, name=None)

Stops gradient computation.
When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the
contribution of its inputs to be taken into account. Normally, the
gradient generator adds ops to a graph to compute the derivatives of
a specified 'loss' by recursively finding out inputs that contributed to
its computation. If you insert this op in the graph it inputs are masked
from the gradient generator. They are not taken into account for
computing gradients.

This is useful any time you want to compute a value with TensorFlow
but need to pretend that the value was a constant. Some examples
include:

The EM algorithm where the M-step should not involve
backpropagation through the output of the E-step.

Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not
backpropagate through the graph that generated the samples from
the model.

Adversarial training, where no backprop should happen through the
adversarial example generation process.

Args:

input: A Tensor.

name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

Gradient Clipping

TensorFlow provides several operations that you can use to add
clipping functions to your graph. You can use these functions to
perform general data clipping, but they're particularly useful for
handling exploding or vanishing gradients.

tf.clip by value(t, clip value min, clip value max,
name=None)

Clips tensor values to a specified min and max.

Given a tensor t, this operation returns a tensor of the same type
and shape as t with its values clipped

toclip value min and clip value max. Any values less

than clip value min are settoclip value min. Any values greater

than clip value max are setto clip value max.

Args:

t: A Tensor.

clip value min: A 0-D (scalar) Tensor. The minimum value to clip

by.
clip value max: A 0-D (scalar) Tensor. The maximum value to clip

by.
name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip by norm(t, clip norm, name=None)

Clips tensor values to a maximum L2-norm.

Given a tensor t, and a maximum clip value c1ip norm, this
operation normalizes t so that its L2-norm is less than or equal

to clip norm. Specifically, if the L2-norm is already less than or
equal to clip norm, then t is not modified. If the L2-norm is greater
than c1ip norm, then this operation returns a tensor of the same type

and shape as t with its values set to:

t * clip norm / 1l2norm(t)

In this case, the L2-norm of the output tensor iS clip norm.

This operation is typically used to clip gradients before applying them
with an optimizer.

Args:

t: A Tensor.
clip norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip by average norm(t, clip norm, name=None)

Clips tensor values to a maximum average L2-norm.

Given a tensor t, and a maximum clip value c1ip norm, this
operation normalizes t so that its average L2-norm is less than or
equal to c1ip norm. Specifically, if the average L2-norm is already
less than or equal toc1ip norm, then t is not modified. If the average
L2-norm is greater than c1ip norm, then this operation returns a

tensor of the same type and shape as t with its values set to:

t * clip norm / 12norm avg(t)

In this case, the average L2-norm of the output tensor is c1ip norm.

This operation is typically used to clip gradients before applying them
with an optimizer.

Args:

t: A Tensor.
clip norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip by global norm(t list, clip norm, use norm=None,
name=None)

Clips values of multiple tensors by the ratio of the sum of their norms.

Given a tuple or list of tensors t 1ist, and a clipping

ratio c1ip norm, this operation returns a list of clipped

tensors 1ist clipped and the global norm (global norm) of all
tensors in t 1ist. Optionally, if you've already computed the global
norm for t 1ist, you can specify the global norm with use norm.

To perform the clipping, the values + 1ist[i] are setto:

t list[i] * clip norm / max (global norm, clip norm)

where:

global norm = sqgrt(sum([l2norm(t)**2 for t in t list]))

If c1ip norm > global normthen the entriesin t 1ist remain as
they are, otherwise they're all shrunk by the global ratio.

Any of the entries of + 1ist that are of type None are ignored.

This is the correct way to perform gradient clipping (for example,
see (pd)).

However, it is slower than c1ip by norm() because all the

parameters must be ready before the clipping operation can be
performed.

Args:

t list: Atuple or list of mixed Tensors, IndexedSlices, Or None.
clip norm: A 0-D (scalar) Tensor > 0. The clipping ratio.
use norm: A 0-D (scalar) Tensor of type float (optional). The global

norm to use. If not provided,global norm() IS used to compute the
norm.

name: A name for the operation (optional).

http://arxiv.org/abs/1211.5063
http://arxiv.org/pdf/1211.5063.pdf

Returns:

list clipped: Alist of Tensors of the same type as 1ist t.

global norm: A 0-D (scalar) Tensor representing the global norm.

Raises:

TypeError: If t 1ist iS not a sequence.

tf.global norm(t list, name=None)

Computes the global norm of multiple tensors.

Given a tuple or list of tensors t 1ist, this operation returns the

global norm of the elements in all tensors int_1ist. The global norm

Is computed as:
global norm = sgrt(sum([lZ2norm(t)**2 for t in t list]))

Any entries in t_1ist that are of type None are ignored.

Args:

t list: Atuple or list of mixed Tensors, IndexedSlices, Or None.

name: A name for the operation (optional).

Returns:

A 0-D (scalar) Tensor of type float.

Raises:

TypeError: If t list isnota sequence.

Decaying the learning rate

tf.train.exponential decay(learning rate, global step,
decay steps, decay rate, staircase=False, name=None)

Applies exponential decay to the learning rate.

When training a model, it is often recommended to lower the learning
rate as the training progresses. This function applies an exponential
decay function to a provided initial learning rate. It requires

a global step value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training
step.

The function returns the decayed learning rate. It is computed as:

decayed learning rate = learning rate *

decay rate " (global step / decay steps)

If the argument staircase iS True, then global step

/decay steps IS an integer division and the decayed learning rate

follows a staircase function.

Example: decay every 100000 steps with a base of 0.96:

global step = tf.Variable(0, trainable=False)
starter learning rate = 0.1
learning rate = tf.train.exponential decay(starter learning rate,
global step,
100000, 0.96, staircase=True)

optimizer = tf.GradientDescentOptimizer (learning rate)

Passing global step to minimize() will increment it at each
step.

optimizer.minimize(...my loss..., global step=global step)

Args:

learning rate! A scalar float32 Or float64 Tensor Or a Python
number. The initial learning rate.

global step: A scalar int32 Or int64 Tensor Or a Python number.
Global step to use for the decay computation. Must not be negative.
decay steps: A scalar int32 Or int64 Tensor Or a Python number.
Must be positive. See the decay computation above.

decay rate: Ascalar fl1oat32 Or float64 Tensor Or a Python
number. The decay rate.

staircase: Boolean. It True decay the learning rate at discrete
intervals.

name: String. Optional name of the operation. Defaults to

'‘ExponentialDecay’

Returns:

A scalar Tensor of the same type as learning rate. The decayed

learning rate.

Moving Averages

Some training algorithms, such as GradientDescent and Momentum
often benefit from maintaining a moving average of variables during
optimization. Using the moving averages for evaluations often
improve results significantly.

class tf.train.ExponentialMovingAverage

Maintains moving averages of variables by employing an exponential
decay.

When training a model, it is often beneficial to maintain moving
averages of the trained parameters. Evaluations that use averaged
parameters sometimes produce significantly better results than the
final trained values.

The apply () method adds shadow copies of trained variables and

add ops that maintain a moving average of the trained variables in
their shadow copies. It is used when building the training model. The
ops that maintain moving averages are typically run after each

training step. The average () and average name () methods give

access to the shadow variables and their names. They are useful
when building an evaluation model, or when restoring a model from a
checkpoint file. They help use the moving averages in place of the
last trained values for evaluations.

The moving averages are computed using exponential decay. You
specify the decay value when creating

theExponentialMovingAverage Object. The shadow variables are

initialized with the same initial values as the trained variables. When
you run the ops to maintain the moving averages, each shadow

variable is updated with the formula:
shadow variable -= (1 - decay) * (shadow variable -

variable)
This is mathematically equivalent to the classic formula below, but

the use of an assign_sub op (the "-="in the formula) allows
concurrent lockless updates to the variables:

shadow variable = decay * shadow variable + (1 - decay) *
variable

Reasonable values for decay are close to 1.0, typically in the

multiple-nines range: 0.999, 0.9999, etc.

Example usage when creating a training model:

Create variables.
var0 = tf.Variable(...)
tf.Variable(...)

varl

... use the variables to build a training model...

Create an op that applies the optimizer. This is what we
usually
would use as a training op.

opt op = opt.minimize (my loss, [var0O, varl])

Create an ExponentialMovingAverage object

ema = tf.train.ExponentialMovingAverage (decay=0.9999)

Create the shadow variables, and add ops to maintain moving
averages
of var0 and varl.

maintain averages op = ema.apply([var0, varl])

Create an op that will update the moving averages after each
training
step. This is what we will use in place of the usual training

op.
with tf.control dependencies([opt op]):

training op = tf.group(maintain averages_ op)
...train the model by running training op...

There are two ways to use the moving averages for evaluations:

Build a model that uses the shadow variables instead of the
variables. For this, use the average () method which returns the

shadow variable for a given variable.
Build a model normally but load the checkpoint files to evaluate by
using the shadow variable names. For this use

the average name () method. See the for more

information on restoring saved variables.

Example of restoring the shadow variable values:

Create a Saver that loads variables from their saved shadow

values.

shadow var(O name ema.average name (var0)

shadow varl name = ema.average name (varl)
saver = tf.train.Saver ({shadow var0 name: var(O, shadow varl name:
varl})

saver.restore(...checkpoint filename...)

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Saver

var0 and varl now hold the moving average values

tf.train.ExponentialMovingAverage. 1init (decay,
num updates=None, name='ExponentialMovingAverage')

Creates a new ExponentialMovingAverage object.

The rpply () method has to be called to create shadow variables and
add ops to maintain moving averages.
The optional num updates parameter allows one to tweak the decay

rate dynamically. . It is typical to pass the count of training steps,
usually kept in a variable that is incremented at each step, in which
case the decay rate is lower at the start of training. This makes
moving averages move faster. If passed, the actual decay rate used
Is:

min (decay, (1 + num updates) / (10 + num updates))

Args:

decay: Float. The decay to use.

num_updates: Optional count of number of updates applied to
variables.

name: String. Optional prefix name to use for the name of ops added

in Apply ().

tf.train.ExponentialMovingAverage.apply (var list=None)

Maintains moving averages of variables.

var list mustbe alist of variable Or Tensor objects. This method
creates shadow variables for all elements of var 1ist. Shadow

variables for variable objects are initialized to the variable's initial
value. They will be added to

the GraphKeys.MOVING AVERAGE VARIABLES collection.

For Tensor objects, the shadow variables are initialized to 0.
shadow variables are created with trainable=False and added to
the GraphKeys.ALL VARIABLEScCOllection. They will be returned by

callsto tf.all variables().
Returns an op that updates all shadow variables as described above.

Note that apply () can be called multiple times with different lists of

variables.

Args:

var list: A list of Variable or Tensor objects. The variables and

Tensors must be of types float32 or float64.

Returns:

An Operation that updates the moving averages.

Raises:

TypeError: If the arguments are not all float32 or float64.

valueError: If the moving average of one of the variables is already

being computed.

tf.train.ExponentialMovingAverage.average name (var)

Returns the name of the variable holding the average for var.

The typical scenario for ExponentialMovingAverage IS t0O compute

moving averages of variables during training, and restore the
variables from the computed moving averages during evaluations.
To restore variables, you have to know the name of the shadow
variables. That name and the original variable can then be passed to

a saver () object to restore the variable from the moving average

value with: saver = tf.train.Saver ({ema.average name (var) :

var})
average name () can be called whether or not apply () has been

called.

Args:

var: A variable Object.

Returns:

A string: The name of the variable that will be used or was used by

the ExponentialMovingAverage classto hold the moving average

of var.

tf.train.ExponentialMovingAverage.average (var)

Returns the variable holding the average of var.

Args:

var: Avariable Object.

Returns:

A variable object or None if the moving average of var is not

maintained..

tf.train.ExponentialMovingAverage.variables to restore()

Returns a map of names to variables to restore.

If a variable has a moving average, use the moving average variable
name as the restore name; otherwise, use the variable name.

For example,

variables to restore = ema.variables to restore()

saver = tf.train.Saver (variables to restore)

Below is an example of such mapping:

conv/batchnorm/gamma/ExponentialMovingAverage:
conv/batchnorm/gamma,

conv_4/conv2d params/ExponentialMovingAverage:
conv_4/conv2d params,

global step: global step
Returns:
A map from restore_names to variables. The restore_name can be

the moving_average version of the variable name if it exist, or the
original variable name.

Coordinator and QueueRunner

See for how to use threads and queues. For
documentation on the Queue API, see

class tf.train.Coordinator

A coordinator for threads.

This class implements a simple mechanism to coordinate the
termination of a set of threads.

Usage:

Create a coordinator.

coord = Coordinator ()

Start a number of threads, passing the coordinator to each of
them.

...start thread 1... (coord, ...)

...start thread N... (coord, ...)

Wait for all the threads to terminate.

coord.join (threads)

Any of the threads can call coord.request stop () to ask for all the
threads to stop. To cooperate with the requests, each thread must

check for coord.should stop () On a regular
basis. coord.should stop () returns True as soon

as coord.request stop () has been called.

A typical thread running with a coordinator will do something like:

while not coord.should stop():

...do some work...

Exception handling:

https://www.tensorflow.org/versions/r0.7/how_tos/threading_and_queues/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#queues

A thread can report an exception to the coordinator as part of

the should stop () call. The exception will be re-raised from

the coord.join () call.

Thread code:

try:
while not coord.should stop() :
...do some work...
except Exception as e:

coord.request stop(e)

Main code:
try:

coord = Coordinator ()

Start a number of threads, passing the coordinator to each of
them.

...start thread 1... (coord, ...)

...start thread N... (coord, ...)

Wait for all the threads to terminate.

coord.join (threads)
except Exception as e:

...exception that was passed to coord.request stop()

To simplify the thread implementation, the Coordinator provides a
context handler stop_on_exception () that automatically requests a

stop if an exception is raised. Using the context handler the thread

code above can be written as:
with coord.stop on exception():

while not coord.should stop():

...do some work...

Grace period for stopping:

After a thread has called coord. request stop () the other threads

have a fixed time to stop, this is called the 'stop grace period' and
defaults to 2 minutes. If any of the threads is still alive after the grace

period expirescoord.join () raises a RuntimeException reporting the

laggards.

try:

coord = Coordinator ()

Start a number of threads, passing the coordinator to each of
them.

...start thread 1... (coord, ...)

...start thread N... (coord, ...)

Wait for all the threads to terminate, give them 10s grace
period

coord.join(threads, stop grace period secs=10)
except RuntimeException:

...one of the threads took more than 10s to stop after
request stop ()

..was called.

except Exception:

...exception that was passed to coord.request stop()

tf.train.Coordinator. init ()

Create a new Coordinator.

tf.train.Coordinator.clear stop()

Clears the stop flag.

After this is called, calls to should stop () will return rFalse.

tf.train.Coordinator.join (threads,
stop grace period secs=120)

Wait for threads to terminate.

Blocks until all threads have terminated or request stop () IS
called.

After the threads stop, if an exc info was passed t0 request stop,
that exception is re-raised.

Grace period handling: When request stop () is called, threads are
given 'stop_grace_period_secs' seconds to terminate. If any of them

is still alive after that period expires, a RuntimeError IS raised. Note
that if anexc info was passed to request stop () then itis raised

instead of that RuntimeError.

Args:

threads: List of threading.Threads. The started threads to join.
stop grace period secs: Number of seconds given to threads to

stop after request stop () has been called.

Raises:

RuntimeError: If any thread is still alive after request stop() is

called and the grace period expires.

tf.train.Coordinator.request stop (ex=None)

Request that the threads stop.

After this is called, calls to should stop () will return True.

Args:

ex: Optional Exception, or Python exc info tuple as returned
by sys.exc info (). If this is the first call to request stop () the

corresponding exception is recorded and re-raised from join ().

tf.train.Coordinator.should stop ()

Check if stop was requested.

Returns:

True if a stop was requested.

tf.train.Coordinator.stop on exception ()

Context manager to request stop when an Exception is raised.

Code that uses a coordinator must catch exceptions and pass them
to the request stop () method to stop the other threads managed by
the coordinator.

This context handler simplifies the exception handling. Use it as
follows:

with coord.stop on exception() :
Any exception raised in the body of the with
clause is reported to the coordinator before terminating
the execution of the body.
...body...

This is completely equivalent to the slightly longer code:

try:
...body...
exception Exception as ex:

coord.request stop (ex)

Yields:

nothing.

tf.train.Coordinator.wait for stop (timeout=None)
Wait till the Coordinator is told to stop.
Args:

timeout: Float. Sleep for up to that many seconds waiting for

should_stop() to become True.

Returns:

True if the Coordinator is told stop, False if the timeout expired.

class tf.train.QueueRunner

Holds a list of enqueue operations for a queue, each to be runin a
thread.

Queues are a convenient TensorFlow mechanism to compute
tensors asynchronously using multiple threads. For example in the
canonical 'Input Reader' setup one set of threads generates
filenames in a queue; a second set of threads read records from the
files, processes them, and enqueues tensors on a second queue; a

third set of threads dequeues these input records to construct
batches and runs them through training operations.

There are several delicate issues when running multiple threads that
way: closing the queues in sequence as the input is exhausted,
correctly catching and reporting exceptions, etc.

The QueueRunner, combined with the coordinator, helps handle

these issues.

tf.train.QueueRunner. 1init (queue=None,
enqueue ops=None, close op=None, cancel op=None,
queue runner def=None)

Create a QueueRunner.

On construction the gueuerRunner adds an op to close the queue.
That op will be run if the enqueue ops raise exceptions.

When you later call the create threads () method,

the gueuerunner will create one thread for each op inenqueue ops.

Each thread will run its enqueue op in parallel with the other threads.
The enqueue ops do not have to all be the same op, but it is

expected that they all enqueue tensors in queue.

Args:

queue: A Queue.
enqueue ops: List of enqueue ops to run in threads later.

close op: Op to close the queue. Pending enqueue ops are
preserved.

cancel op: Op to close the queue and cancel pending enqueue ops.

e queue runner def: Optional QueuerRunnerDef protocol buffer. If
specified, recreates the QueueRunner from its
contents. queue runner def and the other arguments are mutually

exclusive.

Raises:

o ValueError: If both queue runner def and queue are both
specified.

o ValueError: If queue Or enqueue ops are not provided when not

restoring from queue runner def.

tf.train.QueueRunner.cancel op

tf.train.QueueRunner.close op

tf.train.QueueRunner.create threads(sess, coord=None,
daemon=False, start=False)

Create threads to run the enqueue ops.

This method requires a session in which the graph was launched. It
creates a list of threads, optionally starting them. There is one thread

for each op passed in enqueue ops.

The coord argument is an optional coordinator, that the threads will

use to terminate together and report exceptions. If a coordinator is
given, this method starts an additional thread to close the queue
when the coordinator requests a stop.

This method may be called again as long as all threads from a
previous call have stopped.

Args:

sess: A Session.

coord: Optional coordinator Object for reporting errors and
checking stop conditions.

daemon: Boolean. If True make the threads daemon threads.
start: Boolean. If True starts the threads. If False the caller must

call the start () method of the returned threads.

Returns:

A list of threads.

Raises:

RuntimeError: If threads from a previous call

t0 create threads () are still running.

tf.train.QueueRunner.enqueue_ oOps

tf.train.QueueRunner.exceptions raised

Exceptions raised but not handled by the gQueuerRunner threads.
Exceptions raised in queue runner threads are handled in one of two

ways depending on whether or not acoordinator was passed

tO create threads():

With a coordinator, exceptions are reported to the coordinator and
forgotten by the gueueRunner.

Without a coordinator, exceptions are captured by

the gueuerunner and made available in

thiSexceptions raised property.

Returns:

A list of Python Exception objects. The list is empty if no exception

was captured. (No exceptions are captured when using a
Coordinator.)

tf.train.QueueRunner.from proto(queue runner def)

tf.train.QueueRunner.name

The string name of the underlying Queue.

tf.train.QueueRunner.queue

tf.train.QueueRunner.to proto()

Converts this QueueRunner t0 @ QueueRunnerDef protocol buffer.

Returns:

A QueueRunnerDef protocol buffer.

tf.train.add queue runner(gr, collection='queue runners')

Adds a gueuerunner to a collection in the graph.

When building a complex model that uses many queues it is often
difficult to gather all the queue runners that need to be run. This
convenience function allows you to add a queue runner to a well
known collection in the graph.

The companion method start queue runners () can be used to

start threads for all the collected queue runners.

Args:

gr: A QueueRunner.
collection: A GraphKey specifying the graph collection to add the

gueue runner to. Defaults toGraphKeys .QUEUE RUNNERS.

tf.train.start queue runners (sess=None, coord=None,
daemon=True, start=True, collection='queue runners')

Starts all queue runners collected in the graph.

This is a companion method to add queue runner (). It just starts

threads for all queue runners collected in the graph. It returns the list
of all threads.

Args:

sess: Session used to run the queue ops. Defaults to the default
session.

coord: Optional coordinator for coordinating the started threads.

daemon: Whether the threads should be marked as daemons,
meaning they don't block program exit.

start: Setto False to only create the threads, not start them.
collection: A GraphKey specifying the graph collection to get the

gueue runners from. Defaults toGraphKeys.QUEUE RUNNERS.

Returns:

A list of threads.

Summary Operations

The following ops output protocol buffers as serialized string

tensors.
You can fetch the output of a summary op in a session, and pass it to
a to append it to an event file. Event files

contain protos that can contain summary protos along with the

timestamp and step. You can then use TensorBoard to visualize the

https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#SummaryWriter
https://www.tensorflow.org/code/tensorflow/core/util/event.proto

contents of the event files. See for more
details.

tf.scalar summary(tags, values, collections=None,
name=None)

Outputs a summary protocol buffer with scalar values.

The input tags and values must have the same shape. The
generated summary has a summary value for each tag-value pair

INn tags and values.

Args:

tags: A string Tensor. Tags for the summaries.
values: A real numeric Tensor. Values for the summaries.

collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults

O [GraphKeys.SUMMARIES].

name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized summary protocol
buffer.

tf.image summary(tag, tensor, max images=3,
collections=None, name=None)

https://www.tensorflow.org/versions/r0.7/how_tos/summaries_and_tensorboard/index.html

Outputs a summary protocol buffer with images.

The summary has up to max images summary values containing
Images. The images are built from tensorwhich must be 4-D with
shape [batch size, height, width, channels] and

where channels can be:

1: tensor is interpreted as Grayscale.

3: tensor is interpreted as RGB.

4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor.
For float input, the values are normalized one image at a time to fit in

the range [0, 255].uint8 values are unchanged. The op uses two

different normalization algorithms:

If the input values are all positive, they are rescaled so the largest
one is 255.

If any input value is negative, the values are shifted so input value

0.0 is at 127. They are then rescaled so that either the smallest value
is 0, or the largest one is 255.

The tag argument is a scalar Tensor of type string. Itis used to
build the tag of the summary values:
If max images IS 1, the summary value tag is *tag*/image’.

If mvax images IS greater than 1, the summary value tags are

generated sequentially as *tag*/image/0', *tag*/image/1', etc.

Args:

tag: A scalar Tensor of type string. Used to build the tag of the
summary values.

tensor: A 4-D uint8 Or float32 Tensor Of Shape [batch size,
height, width, channels]where channelsis 1, 3, or 4.
max_images: Max number of batch elements to generate images for.

collections: Optional list of ops.GraphKeys. The collections to add
the summary to. Defaults to [ops.GraphKeys.SUMMARIES]

name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized summary protocol
buffer.

tf.histogram summary(tag, values, collections=None,
name=None)

Outputs a summary protocol buffer with a histogram.
The generated has one summary value containing a
histogram for values.

This op reports an out0fRrRange error if any value is not finite.

Args:

tag: A string Tensor. 0-D. Tag to use for the summary value.

values: A real numeric Tensor. Any shape. Values to use to build the

histogram.

https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto

collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults

tO0 [GraphKeys.SUMMARIES].

name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized summary protocol
buffer.

tf.nn.zero fraction(value, name=None)

Returns the fraction of zeros in value.

If value is empty, the result is nan.

This is useful in summaries to measure and report sparsity. For
example,

z = tf.Relu(...)

summ = tf.scalar summary('sparsity', tf.zero fraction(z))

Args:

value: A tensor of numeric type.

name: A name for the operation (optional).

Returns:

The fraction of zeros in value, with type float32.

tf.merge summary (inputs, collections=None, name=None)
Merges summaries.

This op creates a protocol buffer that contains the union of
all the values in the input summaries.

When the Op is run, it reports an InvalidArgument error if multiple

values in the summaries to merge use the same tag.

Args:

inputs: A list of string Tensor objects containing
serialized summary protocol buffers.

collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults

{0 [GraphKeys.SUMMARIES].

name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized summary protocol

buffer resulting from the merging.

tf.merge all summaries (key='summaries')

Merges all summaries collected in the default graph.

https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto

Args:

key: GraphKey used to collect the summaries. Defaults

t0 GraphKeys.SUMMARIES.

Returns:

If no summaries were collected, returns None. Otherwise returns a

scalar Tensor of typestring containing the

serialized summary protocol buffer resulting from the merging.

Adding Summaries to Event Files

See for an overview of summaries, event
files, and visualization in TensorBoard.

class tf.train.SummaryWriter

Writes summary protocol buffers to event files.

The summarywriter class provides a mechanism to create an event

file in a given directory and add summaries and events to it. The
class updates the file contents asynchronously. This allows a training
program to call methods to add data to the file directly from the
training loop, without slowing down training.

tf.train.SummaryWriter. init (logdir, graph def=None,
max queue=10, flush secs=120)

Creates a summaryWriter and an event file.

https://www.tensorflow.org/versions/r0.7/how_tos/summaries_and_tensorboard/index.html

On construction the summary writer creates a new event file
In 1logdir. This event file will contain Eventprotocol buffers
constructed when you call one of the following

functions: add summary (),add session log(), add event (),
Or add graph ().
If you pass a graph def protocol buffer to the constructor it is added

to the event file. (This is equivalent to calling add graph () later).

TensorBoard will pick the graph from the file and display it graphically
S0 you can interactively explore the graph you built. You will usually
pass the graph from the session in which you launched it:

...create a graph...

Launch the graph in a session.

sess = tf.Session ()

Create a summary writer, add the 'graph def' to the event file.

writer = tf.train.SummaryWriter (<some-directory>, sess.graph def)

The other arguments to the constructor control the asynchronous
writes to the event file:

flush secs: How often, in seconds, to flush the added summaries
and events to disk.
max_queue: Maximum number of summaries or events pending to be

written to disk before one of the 'add' calls block.

Args:

logdir: A string. Directory where event file will be written.
graph def: A GraphDef protocol buffer.

max_queue: Integer. Size of the queue for pending events and

summaries.

flush secs: Number. How often, in seconds, to flush the pending

events and summaries to disk.

tf.train.SummaryWriter.add summary (summary,
global step=None)

Adds a summary protocol buffer to the event file.

This method wraps the provided summary in an Event protocol buffer

and adds it to the event file.
You can pass the result of evaluating any summary op, using

[session.run ()](client.md#Session.run] or , to this

function. Alternatively, you can pass a tf.Summary protocol buffer

that you populate with your own data. The latter is commonly done to
report evaluation results in event files.

Args:

summary: A summary protocol buffer, optionally serialized as a string.

global step: Number. Optional global step value to record with the

summary.

tf.train.SummaryWriter.add session log(session log,
global step=None)

Adds a sessionLog protocol buffer to the event file.

This method wraps the provided session in an Event procotol buffer

and adds it to the event file.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.eval

Args:

session log: A sessionLog protocol buffer.

global step: Number. Optional global step value to record with the

summary.

tf.train.SummaryWriter.add event (event)

Adds an event to the event file.

Args:

event: An Event protocol buffer.

tf.train.SummaryWriter.add graph(graph def,
global step=None)

Adds a Graphpef protocol buffer to the event file.

The graph described by the protocol buffer will be displayed by
TensorBoard. Most users pass a graph in the constructor instead.

Args:

graph def: A GraphDef protocol buffer.

global step: Number. Optional global step counter to record with

the graph.

tf.train.SummaryWriter.flush ()
Flushes the event file to disk.

Call this method to make sure that all pending events have been
written to disk.

tf.train.SummaryWriter.close ()
Flushes the event file to disk and close the file.

Call this method when you do not need the summary writer anymore.

tf.train.summary iterator (path)

An iterator for reading Event protocol buffers from an event file.
You can use this function to read events written to an event file. It

returns a Python iterator that yields ventprotocol buffers.

Example: Print the contents of an events file.

for e in tf.train.summary iterator (path to events file):

print (e)

Example: Print selected summary values.

This example supposes that the events file contains summaries

with a

summary value tag 'loss'. These could have been added by
calling

“add summary() ', passing the output of a scalar summary op

created with

with: "tf.scalar summary(['loss'], loss_ tensor) .

for e in tf.train.summary iterator(path to events file):
for v in e.summary.value:

if v.tag == 'loss':

print (v.simple value)
See the protocol buffer definitions of and for more
information about their attributes.

Args:

« path: The path to an event file created by a summarywriter.

Yields:

Event protocol buffers.

Training utilities

tf.train.global step(sess, global step tensor)

Small helper to get the global step.

Creates a variable to hold the global step.
global step tensor = tf.Variable (10, trainable=False,
name='global step')
Creates a session.
sess = tf.Session()
Initializes the variable.
sess.run(global step tensor.initializer)

oot o

print ('global step: %s' % tf.train.global step(sess,
global step tensor))

global step: 10

Args:

o sess: Abrain session object.

https://www.tensorflow.org/code/tensorflow/core/util/event.proto
https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto

global step tensor: Tensor Or the name of the operation that

contains the global step.

Returns:

The global step value.

tf.train.write graph(graph def, logdir, name,
as_text=True)

Writes a graph proto on disk.

The graph is written as a binary proto unless as text iS True.

v = tf.Variable (0, name='my variable')

sess = tf.Session|()

tf.train.write graph(sess.graph def, '/tmp/my-model',
'train.pbtxt')

Args:

graph def: A GraphDef protocol buffer.
logdir: Directory where to write the graph.
name: Filename for the graph.

as_text! If True, writes the graph as an ASCII proto.

Other Functions and Classes

class tf.train.LooperThread

A thread that runs code repeatedly, optionally on a timer.

This thread class is intended to be used with a Coordinator. It
repeatedly runs code specified either as targetand args or by

the run_loop () method.

Before each run the thread checks if the coordinator has requested
stop. In that case the looper thread terminates immediately.

If the code being run raises an exception, that exception is reported

to the coordinator and the thread terminates. The coordinator will
then request all the other threads it coordinates to stop.

You typically pass looper threads to the supervisor Join () method.

tf.train.LooperThread. 1init (coord,
timer interval secs, target=None, args=None)

Create a LooperThread.

Args:

coord: A Coordinator.

timer interval secs: Time boundaries at which to call Run(), or
None if it should be called back to back.

target: Optional callable object that will be executed in the thread.

args: Optional arguments to pass to target when calling it.

Raises:

valueError: If one of the arguments is invalid.

tf.train.LooperThread.daemon

A boolean value indicating whether this thread is a daemon thread
(True) or not (False).

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the main
thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads
are left.

tf.train.LooperThread.getName ()

tf.train.LooperThread. ident

Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

tf.train.LooperThread.isAlive ()

Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread. isDaemon ()

tf.train.LooperThread.is alive ()
Return whether the thread is alive.
This method returns True just before the run() method starts until just

after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread.join (timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates -- either normally or through an unhandled
exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in
seconds (or fractions thereof). As join() always returns None, you
must call isAlive() after join() to decide whether a timeout happened -
- if the thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the
same exception.

tf.train.LooperThread.loop(coord, timer interval secs,
target, args=None)

Start a LooperThread that calls a function periodically.

If timer interval secs is None the thread
calls target (args) repeatedly. Otherwise target (args) is called

every timer interval secs Seconds. The thread terminates when a

stop of the coordinator is requested.

Args:

coord: A Coordinator.

timer interval secs:Number. Time boundaries at which to
call target.

target: A callable object.

args: Optional arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.LooperThread.name

A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name.
The initial name is set by the constructor.

tf.train.LooperThread.run ()

tf.train.LooperThread.run loop ()

Called at 'timer_interval_secs' boundaries.

tf.train.LooperThread.setDaemon (daemonic)

tf.train.LooperThread. setName (name)

tf.train.LooperThread.start ()

Start the thread's activity.

It must be called at most once per thread object. It arranges for the
object's run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

tf.train.LooperThread.start loop()

Called when the thread starts.

tf.train.export meta graph(filename=None,
meta info def=None, graph def=None, saver def=None,
collection list=None, as text=False)

Returns MetaGraphDef proto. Optionally writes it to filename.
This function exports the graph, saver, and collection objects
INto MetaGraphDef protocol buffer with the intension of it being

imported at a later time or location to restart training, run inference, or
be a subgraph.

Args:

filename: Optional filename including the path for writing the
generated MetaGraphDef protocol buffer.

meta info def:MetaInfoDef protocol buffer.

graph def: GraphDef protocol buffer.

saver def: SaverDef protocol buffer.

collection list: List of string keys to collect.

as_text! If True, writes the MetaGraphDef as an ASCII proto.

Returns:

A MetaGraphDef proto.

tf.train.generate checkpoint state proto(save dir,
model checkpoint path, all model checkpoint paths=None)

Generates a checkpoint state proto.

Args:

save_dir: Directory where the model was saved.
model checkpoint path: The checkpoint file.

all model checkpoint paths: List of strings. Paths to all not-yet-

deleted checkpoints, sorted from oldest to newest. If this is a non-
empty list, the last element must be equal to model_checkpoint_path.
These paths are also saved in the CheckpointState proto.

Returns:

CheckpointState proto with model_checkpoint_path and
all_model_checkpoint_paths updated to either absolute paths or
relative paths to the current save_dir.

tf.train.import meta graph(meta graph or file)

Recreates a Graph saved in a MetaGraphDef proto.

This function reads from a file containing a MetaGraphbef proto, adds

all the nodes from the graph_def proto to the current graph, recreates
all the collections, and returns a saver from saver_def.

In combination with export meta graph (), this function can be used

to

Serialize a graph along with other Python objects such
as QueueRunner, Variable INtO aMetaGraphDef.
Restart training from a saved graph and checkpoints.
Run inference from a saved graph and checkpoints.

Args:

meta graph or file:!MetaGraphDef protocol buffer or filename

(including the path) containing avMetaGraphDef.

Returns:

A saver constructed rom saver def IN MetaGraphDef.

Wraps python functions

Note: Functions taking Tensor arguments can also take anything

accepted by

Contents

Script Language Operators.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#wraps-python-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#script-language-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#py_func

TensorFlow provides allows you to wrap python/numpy functions as
TensorFlow operators.

Other Functions and Classes

tf.py func(func, inp, Tout, name=None)

Wraps a python function and uses it as a tensorflow op.

Given a python function func, which takes numpy arrays as its inputs
and returns numpy arrays as its outputs. E.g.,

def my_func(x): return np.sinh(x) inp = tf.placeholder(..., tf.float32) y =
py_func(my_func, [inp], [tf.float32])

The above snippet constructs a tf graph which invokes a numpy
sinh(x) as an op in the graph.

Args:

func: A python function.
inp: A list of Tensor.
Tout: A list of tensorflow data types indicating what func returns.

name: A name for the operation (optional).

Returns:

A list of Tensor which func computes.

Testing

Contents

Unit tests

TensorFlow provides a convenience class inheriting
from unittest.TestCase Which adds methods relevant to

TensorFlow tests. Here is an example:

import tensorflow as tf

class SquareTest (tf.test.TestCase):

def testSquare (self):
with self.test session():
x = tf.square([2, 31])
self.assertAllEqual (x.eval (), [4, 91])

|l L

if name == main g

tf.test.main ()

tf.test.TestCase Inherits from unittest.TestCase but adds a few

additional methods. We will document these methods soon.

tf.test.main ()

https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#testing
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#unit-tests
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#main
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#utilities
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#assert_equal_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#get_temp_dir
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#is_built_with_cuda
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#gradient-checking
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient_error
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient_error

Runs all unit tests.

Utilities

tf.test.assert equal graph def (actual, expected)

Asserts that two GraphDefs are (mostly) the same.

Compares two Graphbef protos for equality, ignoring versions and

ordering of nodes, attrs, and control inputs. Node names are used to
match up nodes between the graphs, so the naming of nodes must
be consistent.

Args:

actual: The GraphbDef we have.

expected: The GraphDef we expected.

Raises:

AssertionError: If the Graphbefs do not match.

TypeError: If either argument is not a Graphbef.

tf.test.get temp dir()
Returns a temporary directory for use during tests.

There is no need to delete the directory after the test.

Returns:

The temporary directory.

tf.test.is built with cuda()

Returns whether TensorFlow was built with CUDA (GPU) support.

Gradient checking

and perform

numerical differentiation of graphs for comparison against registered
analytic gradients.

tf.test.compute gradient (x, x shape, y, y shape,
x init value=None, delta=0.001, init targets=None)

Computes and returns the theoretical and numerical Jacobian.

Args:

x. a tensor or list of tensors

x_shape: the dimensions of x as a tuple or an array of ints. If x is a
list, then this is the list of shapes.

y. a tensor
y_shape: the dimensions of y as a tuple or an array of ints.

x_init value: (Optional) a numpy array of the same shape as "x"

representing the initial value of x. If x is a list, this should be a list of

https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient_error

numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

o delta: (optional) the amount of perturbation.

e 1init targets: list of targets to run to initialize model params.

TODO(mrry): remove this argument.

Returns:

Two 2-d numpy arrays representing the theoretical and numerical
Jacobian for dy/dx. Each has "x_size" rows and "y _size" columns
where "x_size" is the number of elements in x and "y_size" is the
number of elements iny. If X is a list, returns a list of two numpy
arrays.

tf.test.compute gradient error(x, x shape, y, y shape,
X 1init value=None, delta=0.001, init targets=None)

Computes the gradient error.

Computes the maximum error for dy/dx between the computed
Jacobian and the numerically estimated Jacobian.

This function will modify the tensors passed in as it adds more
operations and hence changing the consumers of the operations of
the input tensors.

This function adds operations to the current session. To compute the
error using a particular device, such as a GPU, use the standard

methods for setting a device (e.g. using with sess.graph.device() or
setting a device function in the session constructor).

Args:

e x:atensor or list of tensors

https://teams.googleplex.com/mrry

x_shape: the dimensions of x as a tuple or an array of ints. If X is a
list, then this is the list of shapes.

y. a tensor
y_shape: the dimensions of y as a tuple or an array of ints.

x_init value: (Optional) a numpy array of the same shape as "x"

representing the initial value of x. If x is a list, this should be a list of
numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

delta: (optional) the amount of perturbation.

init targets: list of targets to run to initialize model params.

TODO(mrry): Remove this argument.

Returns:

The maximum error in between the two Jacobians.
Layers (contrib)

Contents

https://teams.googleplex.com/mrry
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#layers-contrib
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#higher-level-ops-for-building-neural-network-layers
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected

Ops for building neural network layers, regularizers, summaries, etc.

Higher level ops for building neural network layers.

This package provides several ops that take care of creating
variables that are used internally in a consistent way and provide the
building blocks for many common machine learning algorithms.

tf.contrib.layers.convolution2d(x, num output channels,
kernel size, activation fn=None, stride=(1, 1),
padding='SAME', weight init= initializer,

bias init= initializer, name=None,

weight collections=None, bias collections=None,

output collections=None, weight regularizer=None,

bias regularizer=None)

Adds the parameters for a conv2d layer and returns the output.

https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#regularizers
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#l1_regularizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#l2_regularizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#initializers
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summaries
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_activation
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_activations
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_activations
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#assert_same_float_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#assert_same_float_dtype

A neural network convolution layer is generally defined

as: y=f(conv2d(w,x)+b)y=f(conv2d(w,x)+b) where f is given
byactivation fn, conv2dis tf.nn.conv2d and x has

shape [batch, height, width, channels]. The output of this op is
of shape [batch, out height, out width,

num output channels], Whereout width and out height are
determined by the padding argument. See conv2D for details.

This op creates w and optionally b and adds various summaries that
can be useful for visualizing learning or diagnosing training problems.

Bias can be disabled by setting bias init to None.
The variable creation is compatible with tf.variable scope and so

can be reused withtf.variable scope Of tf.make template.

Most of the details of variable creation can be controlled by
specifying the initializers (weight init andbias init) and which
collections to place the created variables in

(weight collections andbias collections).

A per layer regularization can be specified by

setting weight regularizer. This is only applied to weights and not

the bias.

Args:

x: A 4-D input Tensor.

num output channels: The number of output channels (i.e. the size
of the last dimension of the output).

kernel size: Alength 2 1ist or tuple containing the kernel size.

activation fn: A function that requires a single Tensor that is
applied as a non-linearity.

stride: Alength 2 1ist or tuple specifying the stride of the sliding
window across the image.

padding: A string from: "SAME", "VALID". The type of padding
algorithm to use.

weight init: An optional initialization. If not specified, uses Xavier
initialization (seetf.learn.xavier initializer).

bias init: Aninitializer for the bias, defaults to 0. Set toNone in
order to disable bias.
name: The name for this operation is used to name operations and to

find variables. If specified it must be unique for this scope, otherwise
a unique name starting with "convolution2d" will be created.

Seetf.variable op scope for details.

weight collections: List of graph collections to which weights are
added.

bias collections: List of graph collections to which biases are
added.

output collections: List of graph collections to which outputs are
added.

weight regularizer: A regularizer like the result
of 11 regularizer Or 12 regularizer. Used for Weights.
bias regularizer: A regularizer like the result

of 11 regularizer Or 12 regularizer. Used for biases.

Returns:

The result of applying a 2-D convolutional layer.

Raises:

ValueError: If kernel size Or stride are not length 2.

tf.contrib.layers.fully connected(x, num output units,
activation fn=None, weight init= initializer,
bias init= initializer, name=None,

weight collections=('weights',),
bias collections=('biases',),
output collections=('activations',),

weight regularizer=None, bias regularizer=None)

Adds the parameters for a fully connected layer and returns the
output.

A fully connected layer is generally defined as a matrix multiply: y =
f(w * x + b) where £ is given byactivation fn.

If activation fn IS None, theresultofy = w * x + bis returned.
This op creates w and optionally b. Bias (b) can be disabled by
setting bias init tO None.

The variable creation is compatible with tf.variable scope and so

can be reused withtf.variable scope Of tf.make template.

Most of the details of variable creation can be controlled by
specifying the initializers (weight init andbias init) and which in
collections to place the created variables

(weight collections andbias collections; note that the

variables are always added to the varIABLES collection). The output

of the layer can be placed in custom collections

using output collections. The collections arguments default

tOWEIGHTS, BIASES and ACTIVATIONS, respectively.

A per layer regularization can be specified by

setting weight regularizer and bias regularizer, Which are
applied to the weights and biases respectively, and whose output is

added to the REGULARIZATION LOSsEscollection.

Args:

x: The input Tensor.
num_output units: The size of the output.

activation fn: A function that requires a single Tensor that is

applied as a non-linearity. If None is used, do not apply any
activation.

weight init: An optional weight initialization, defaults
t0 xavier initializer.

bias_ init: Aninitializer for the bias, defaults to 0. Set to None in
order to disable bias.
name: The name for this operation is used to name operations and to

find variables. If specified it must be unique for this scope, otherwise
a unique name starting with "fully_connected" will be created.

Seetf.variable op scope for details.

weight collections: List of graph collections to which weights are
added.

bias collections: List of graph collections to which biases are
added.

output collections: List of graph collections to which outputs are
added.

e weight regularizer: A regularizer like the result
of 11 regularizer Or 12 regularizer. Used for weights.
e bias regularizer: Aregularizer like the result

of 11 regularizer Or 12 regularizer. Used for biases.

Returns:
The output of the fully connected layer.

Aliases for fully_connected which set a default activation function are

available: relu, relu6 and linear.

Regularizers

Regularization can help prevent overfitting. These have the

signature fn (weights). The loss is typically added

t0 tf.GraphKeys.REGULARIZATION LOSS

tf.contrib.layers.ll regularizer (scale)

Returns a function that can be used to apply L1 regularization to
weights.

L1 regularization encourages sparsity.

Args:

o scale:! A scalar multiplier Tensor. 0.0 disables the regularizer.

Returns:

A function with signature 11 (weights, name=None) that apply L1

regularization.

Raises:

valueError: If scale is outside of the range [0.0, 1.0] or if scale is not

a float.

tf.contrib.layers.1l2 regularizer (scale)

Returns a function that can be used to apply L2 regularization to
weights.

Small values of L2 can help prevent overfitting the training data.

Args:

scale: A scalar multiplier Tensor. 0.0 disables the regularizer.

Returns:

A function with signature 12 (weights, name=None) that applies L2

regularization.

Raises:

valueError: If scale is outside of the range [0.0, 1.0] or if scale is not

a float.

Initializers

Initializers are used to initialize variables with sensible values given
their size, data type, and purpose.

tf.contrib.layers.xavier initializer (uniform=True,
seed=None, dtype=tf.float32)

Returns an initializer performing "Xavier" initialization for weights.
This function implements the weight initialization from:

Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty
of training deep feedforward neural networks. International

conference on artificial intelligence and statistics.

This initializer is designed to keep the scale of the gradients roughly
the same in all layers. In uniform distribution this ends up being the

range: x = sqrt (6. / (in + out)); [-x, x] and for normal

distribution a standard deviation of sqrt (3. / (in + out)) IS used.
The returned initializer assumes that the shape of the weight matrix

to be initialized is [in, out].

Args:

uniform: Whether to use uniform or normal distributed random
initialization.

seed: A Python integer. Used to create random seeds.

See for behavior.

dtype: The data type. Only floating point types are supported.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Returns:

An initializer for a 2-D weight matrix.

Raises:

TypeError: If dtype is not a floating point type.

tf.contrib.layers.xavier initializer conv2d(uniform=True,
seed=None, dtype=tf.float32)

Returns an "Xavier" initializer for 2D convolution weights.

For details on the initialization performed, see xavier initializer.

This function initializes a convolution weight variable which is
assumed to be 4-D. The first two dimensions are expected to be the
kernel size, the third dimension is the number of input channels, and
the last dimension is the number of output channels.

The number of inputs is therefore shape [0] *shape[1] *shape[2],

and the number of outputs iSshape [0] *shape [1] *shape [3].

Args:

uniform: Whether to use uniform or normal distributed random
initialization.

seed: A Python integer. Used to create random seeds.

See for behavior.

dtype: The data type. Only floating point types are supported.

Returns:

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

An initializer for a 4-D weight matrix.

Raises:

TypeError: If dtype is not a floating point type.

Summaries

Helper functions to summarize specific variables or ops.

tf.contrib.layers.summarize activation (op)
Summarize an activation.

This applies the given activation and adds useful summaries specific
to the activation.

Args:

op: The tensor to summarize (assumed to be a layer activation).

Returns:

The summary op created to summarize op.

tf.contrib.layers.summarize tensor (tensor)

Summarize a tensor using a suitable summary type.

This function adds a summary op for tensor. The type of summary
depends on the shape of tensor. For scalars, a scalar summary iS

created, for all other tensors, histogram summary IS used.

Args:

tensor: The tensor to summarize

Returns:

The summary op created.

tf.contrib.layers.summarize tensors(tensors,
summarizer=summarize tensor)

Summarize a set of tensors.

tf.contrib.layers.summarize collection(collection,
name filter=None, summarizer=summarize tensor)

Summarize a graph collection of tensors, possibly filtered by name.

The layers module defines convenience

functions summarize variables, summarize weights andsummariz
e biases, Which set the collection argument

of summarize collection tO VARIABLES,WEIGHTS and BIASES,

respectively.

tf.contrib.layers.summarize activations (name filter=None,
summarizer=summarize activation)

Summarize activations, using summarize activation t0 SUmmarize.

Other Functions and Classes

tf.contrib.layers.assert same float dtype (tensors=None,
dtype=None)

Validate and return float type based on tensors and dtype.
For ops such as matrix multiplication, inputs and weights must be of

the same float type. This function validates that all tensors are the
same type, validates that type is dtype (if supplied), and returns the
type. Type must bedtypes.float32 Or dtypes.float64. If

neither tensors nor dtype is supplied, default todtypes. float32.

Args:

tensors: Tensors of input values. Can include None elements, which
will be ignored.

dtype: Expected type.

Returns:

Validated type.

Raises:

ValueError: If neither tensors nor dtype is supplied, or result is not

float.

Utilities (contrib)

Contents

Utilities for dealing with Tensors.

Miscellaneous Utility Functions

tf.contrib.util.constant value (tensor)

Returns the constant value of the given tensor, if efficiently
calculable.

This function attempts to partially evaluate the given tensor, and
returns its value as a numpy ndarray if this succeeds.

TODO(mrry): Consider whether this function should use a registration
mechanism like gradients and ShapeFunctions, so that it is easily
extensible.

Args:

tensor: The Tensor to be evaluated.

https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#utilities-contrib
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#miscellaneous-utility-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#constant_value
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#make_tensor_proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#make_tensor_proto
https://teams.googleplex.com/mrry

Returns:

A numpy ndarray containing the constant value of the given tensor,

or None if it cannot be calculated.

Raises:

TypeError: if tensor is not an ops.Tensor.

tf.contrib.util.make tensor proto(values, dtype=None,
shape=None)

Create a TensorProto.

Args:

values: Values to put in the TensorProto.
dtype: Optional tensor_pb2 DataType value.

shape: List of integers representing the dimensions of tensor.

Returns:
A TensorProto. Depending on the type, it may contain data in the
"tensor_content" attribute, which is not directly useful to Python

programs. To access the values you should convert the proto back to
a numpy ndarray with tensor_util.MakeNdarray(proto).

Raises:

TypeError: if unsupported types are provided.

valueError: if arguments have inappropriate values.

make_tensor_proto accepts "values" of a python scalar, a python list,
a numpy ndarray, or a numpy scalar.

If "values" is a python scalar or a python list, make_tensor_proto first
convert it to numpy ndarray. If dtype is None, the conversion tries its
best to infer the right numpy data type. Otherwise, the resulting
numpy array has a compatible data type with the given dtype.

In either case above, the numpy ndarray (either the caller provided or
the auto converted) must have the compatible type with dtype.

make_tensor_proto then converts the numpy array to a tensor proto.

If "shape" is None, the resulting tensor proto represents the numpy
array precisely.

Otherwise, "shape" specifies the tensor's shape and the numpy array
can not have more elements than what "shape" specifies.

	Building Graphs
	Core graph data structures
	class tf.Graph
	tf.Graph.__init__()
	tf.Graph.as_default()
	Returns:

	tf.Graph.as_graph_def(from_version=None, add_shapes=False)
	Args:
	Returns:
	Raises:

	tf.Graph.finalize()
	tf.Graph.finalized
	tf.Graph.control_dependencies(control_inputs)
	Args:
	Returns:
	Raises:

	tf.Graph.device(device_name_or_function)
	Args:
	Returns:

	tf.Graph.name_scope(name)
	Args:
	Returns:

	tf.Graph.add_to_collection(name, value)
	Args:

	tf.Graph.get_collection(name, scope=None)
	Args:
	Returns:

	tf.Graph.as_graph_element(obj, allow_tensor=True, allow_operation=True)
	Args:
	Returns:
	Raises:

	tf.Graph.get_operation_by_name(name)
	Args:
	Returns:
	Raises:

	tf.Graph.get_tensor_by_name(name)
	Args:
	Returns:
	Raises:

	tf.Graph.get_operations()
	Returns:

	tf.Graph.seed
	tf.Graph.unique_name(name)
	Args:
	Returns:

	tf.Graph.version
	tf.Graph.graph_def_versions
	Returns:

	tf.Graph.create_op(op_type, inputs, dtypes, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True)
	Args:
	Raises:
	Returns:

	tf.Graph.gradient_override_map(op_type_map)
	Args:
	Returns:
	Raises:

	Other Methods
	tf.Graph.add_to_collections(names, value)
	Args:

	tf.Graph.get_all_collection_keys()

	class tf.Operation
	tf.Operation.name
	tf.Operation.type
	tf.Operation.inputs
	tf.Operation.control_inputs
	Returns:

	tf.Operation.outputs
	tf.Operation.device
	Returns:

	tf.Operation.graph
	tf.Operation.run(feed_dict=None, session=None)
	Args:

	tf.Operation.get_attr(name)
	Args:
	Returns:
	Raises:

	tf.Operation.traceback
	Other Methods
	tf.Operation.__init__(node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None)
	Args:
	Raises:

	tf.Operation.node_def
	Returns:

	tf.Operation.op_def
	Returns:

	tf.Operation.values()

	class tf.Tensor
	tf.Tensor.dtype
	tf.Tensor.name
	tf.Tensor.value_index
	tf.Tensor.graph
	tf.Tensor.op
	tf.Tensor.consumers()
	Returns:

	tf.Tensor.eval(feed_dict=None, session=None)
	Args:
	Returns:

	tf.Tensor.get_shape()
	Returns:

	tf.Tensor.set_shape(shape)
	Args:
	Raises:

	Other Methods
	tf.Tensor.__init__(op, value_index, dtype)
	Args:
	Raises:

	tf.Tensor.device

	Tensor types
	class tf.DType
	tf.DType.is_compatible_with(other)
	Args:
	Returns:

	tf.DType.name
	tf.DType.base_dtype
	tf.DType.is_ref_dtype
	tf.DType.as_ref
	tf.DType.is_floating
	tf.DType.is_integer
	tf.DType.is_quantized
	tf.DType.is_unsigned
	Returns:

	tf.DType.as_numpy_dtype
	tf.DType.as_datatype_enum
	Other Methods
	tf.DType.__init__(type_enum)
	Args:
	Raises:

	tf.DType.max
	Raises:

	tf.DType.min
	Raises:

	tf.as_dtype(type_value)
	Args:
	Returns:
	Raises:

	Utility functions
	tf.device(dev)
	Args:
	Returns:

	tf.name_scope(name)
	Args:
	Returns:

	tf.control_dependencies(control_inputs)
	Args:
	Returns:

	tf.convert_to_tensor(value, dtype=None, name=None, as_ref=False)
	Args:
	Returns:
	Raises:

	tf.convert_to_tensor_or_indexed_slices(value, dtype=None, name=None, as_ref=False)
	Args:
	Returns:
	Raises:

	tf.get_default_graph()
	Returns:

	tf.reset_default_graph()
	tf.import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None)
	Args:
	Returns:
	Raises:

	tf.load_op_library(library_filename)
	Args:
	Returns:
	Raises:

	Graph collections
	tf.add_to_collection(name, value)
	Args:

	tf.get_collection(key, scope=None)
	Args:
	Returns:

	class tf.GraphKeys

	Defining new operations
	class tf.RegisterGradient
	tf.RegisterGradient.__init__(op_type)
	Args:

	tf.NoGradient(op_type)
	Args:
	Raises:

	class tf.RegisterShape
	tf.RegisterShape.__init__(op_type)

	class tf.TensorShape
	tf.TensorShape.merge_with(other)
	Args:
	Returns:
	Raises:

	tf.TensorShape.concatenate(other)
	Args:
	Returns:

	tf.TensorShape.ndims
	tf.TensorShape.dims
	tf.TensorShape.as_list()
	Returns:

	tf.TensorShape.as_proto()
	tf.TensorShape.is_compatible_with(other)
	Args:
	Returns:

	tf.TensorShape.is_fully_defined()
	tf.TensorShape.with_rank(rank)
	Args:
	Returns:
	Raises:

	tf.TensorShape.with_rank_at_least(rank)
	Args:
	Returns:
	Raises:

	tf.TensorShape.with_rank_at_most(rank)
	Args:
	Returns:
	Raises:

	tf.TensorShape.assert_has_rank(rank)
	Args:
	Raises:

	tf.TensorShape.assert_same_rank(other)
	Args:
	Raises:

	tf.TensorShape.assert_is_compatible_with(other)
	Args:
	Raises:

	tf.TensorShape.assert_is_fully_defined()
	Raises:

	Other Methods
	tf.TensorShape.__init__(dims)
	Args:

	tf.TensorShape.num_elements()

	class tf.Dimension
	tf.Dimension.__init__(value)
	tf.Dimension.assert_is_compatible_with(other)
	Args:
	Raises:

	tf.Dimension.is_compatible_with(other)
	Args:
	Returns:

	tf.Dimension.merge_with(other)
	Args:
	Returns:
	Raises:

	tf.Dimension.value

	tf.op_scope(values, name, default_name=None)
	Args:
	Returns:
	Raises:

	tf.get_seed(op_seed)
	Args:
	Returns:

	For libraries building on TensorFlow
	tf.register_tensor_conversion_function(base_type, conversion_func, priority=100)
	Args:
	Raises:

	Other Functions and Classes
	class tf.bytes

	Constants, Sequences, and Random Values
	Constant Value Tensors
	tf.zeros(shape, dtype=tf.float32, name=None)
	Args:
	Returns:

	tf.zeros_like(tensor, dtype=None, name=None)
	Args:
	Returns:

	tf.ones(shape, dtype=tf.float32, name=None)
	Args:
	Returns:

	tf.ones_like(tensor, dtype=None, name=None)
	Args:
	Returns:

	tf.fill(dims, value, name=None)
	Args:
	Returns:

	tf.constant(value, dtype=None, shape=None, name='Const')
	Args:
	Returns:

	Sequences
	tf.linspace(start, stop, num, name=None)
	Args:
	Returns:

	tf.range(start, limit=None, delta=1, name='range')
	Args:
	Returns:

	Random Tensors
	Examples:
	tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
	Args:
	Returns:

	tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
	Args:
	Returns:

	tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)
	Args:
	Returns:
	Raises:

	tf.random_shuffle(value, seed=None, name=None)
	Args:
	Returns:

	tf.random_crop(value, size, seed=None, name=None)
	Args:
	Returns:

	tf.set_random_seed(seed)
	Args:

	Variables
	Variables
	class tf.Variable
	tf.Variable.__init__(initial_value=None, trainable=True, collections=None, validate_shape=True, name=None, variable_def=None)
	Args:
	Returns:
	Raises:

	tf.Variable.initialized_value()
	Returns:

	tf.Variable.assign(value, use_locking=False)
	Args:
	Returns:

	tf.Variable.assign_add(delta, use_locking=False)
	Args:
	Returns:

	tf.Variable.assign_sub(delta, use_locking=False)
	Args:
	Returns:

	tf.Variable.scatter_sub(sparse_delta, use_locking=False)
	Args:
	Returns:
	Raises:

	tf.Variable.count_up_to(limit)
	Args:
	Returns:

	tf.Variable.eval(session=None)
	Args:
	Returns:

	tf.Variable.name
	tf.Variable.dtype
	tf.Variable.get_shape()
	Returns:

	tf.Variable.device
	tf.Variable.initializer
	tf.Variable.graph
	tf.Variable.op
	Other Methods
	tf.Variable.from_proto(variable_def)
	tf.Variable.ref()
	Returns:

	tf.Variable.to_proto()
	Returns:

	tf.Variable.value()
	Returns:

	Variable helper functions
	tf.all_variables()
	Returns:

	tf.trainable_variables()
	Returns:

	tf.moving_average_variables()
	Returns:

	tf.initialize_all_variables()
	Returns:

	tf.initialize_variables(var_list, name='init')
	Args:
	Returns:

	tf.assert_variables_initialized(var_list=None)
	Args:
	Returns:

	Saving and Restoring Variables
	class tf.train.Saver
	tf.train.Saver.__init__(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n_hours=10000.0, name=None, restore_sequentially=False, saver_def=None, builder=None)
	Args:
	Raises:

	tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta')
	Args:
	Returns:
	Raises:

	tf.train.Saver.restore(sess, save_path)
	Args:

	tf.train.Saver.last_checkpoints
	Returns:

	tf.train.Saver.set_last_checkpoints(last_checkpoints)
	Args:
	Raises:

	tf.train.Saver.as_saver_def()
	Returns:

	Other Methods
	tf.train.Saver.export_meta_graph(filename=None, collection_list=None, as_text=False)
	Args:
	Returns:

	tf.train.Saver.from_proto(saver_def)
	tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time)
	Args:
	Raises:

	tf.train.Saver.to_proto()

	tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None)
	Args:
	Returns:

	tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None)
	Args:
	Returns:

	tf.train.update_checkpoint_state(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None, latest_filename=None)
	Args:
	Raises:

	Sharing Variables
	tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None, trainable=True, collections=None)
	Args:
	Returns:
	Raises:

	tf.get_variable_scope()
	tf.make_template(name_, func_, **kwargs)
	Args:
	Returns:
	Raises:

	tf.variable_op_scope(values, name, default_name, initializer=None)
	Args:
	Returns:
	Raises:

	tf.variable_scope(name_or_scope, reuse=None, initializer=None)
	Args:
	Returns:
	Raises:

	tf.constant_initializer(value=0.0, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.random_uniform_initializer(minval=0.0, maxval=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.uniform_unit_scaling_initializer(factor=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.zeros_initializer(shape, dtype=tf.float32)

	Sparse Variable Updates
	tf.scatter_update(ref, indices, updates, use_locking=None, name=None)
	Args:
	Returns:

	tf.scatter_add(ref, indices, updates, use_locking=None, name=None)
	Args:
	Returns:

	tf.scatter_sub(ref, indices, updates, use_locking=None, name=None)
	Args:
	Returns:

	tf.sparse_mask(a, mask_indices, name=None)
	Args:
	Returns:

	class tf.IndexedSlices
	tf.IndexedSlices.__init__(values, indices, dense_shape=None)
	tf.IndexedSlices.values
	tf.IndexedSlices.indices
	tf.IndexedSlices.dense_shape
	tf.IndexedSlices.name
	tf.IndexedSlices.dtype
	tf.IndexedSlices.device
	tf.IndexedSlices.op
	Other Methods
	tf.IndexedSlices.graph

	Tensor Transformations
	Casting
	tf.string_to_number(string_tensor, out_type=None, name=None)
	Args:
	Returns:

	tf.to_double(x, name='ToDouble')
	Args:
	Returns:
	Raises:

	tf.to_float(x, name='ToFloat')
	Args:
	Returns:
	Raises:

	tf.to_bfloat16(x, name='ToBFloat16')
	Args:
	Returns:
	Raises:

	tf.to_int32(x, name='ToInt32')
	Args:
	Returns:
	Raises:

	tf.to_int64(x, name='ToInt64')
	Args:
	Returns:
	Raises:

	tf.cast(x, dtype, name=None)
	Args:
	Returns:
	Raises:

	Shapes and Shaping
	tf.shape(input, name=None)
	Args:
	Returns:

	tf.size(input, name=None)
	Args:
	Returns:

	tf.rank(input, name=None)
	Args:
	Returns:

	tf.reshape(tensor, shape, name=None)
	Args:
	Returns:

	tf.squeeze(input, squeeze_dims=None, name=None)
	Args:
	Returns:

	tf.expand_dims(input, dim, name=None)
	Args:
	Returns:

	Slicing and Joining
	tf.slice(input_, begin, size, name=None)
	Args:
	Returns:

	tf.split(split_dim, num_split, value, name='split')
	Args:
	Returns:

	tf.tile(input, multiples, name=None)
	Args:
	Returns:

	tf.pad(input, paddings, name=None)
	Args:
	Returns:

	tf.concat(concat_dim, values, name='concat')
	Args:
	Returns:

	tf.pack(values, name='pack')
	Args:
	Returns:

	tf.unpack(value, num=None, name='unpack')
	Args:
	Returns:
	Raises:

	tf.reverse_sequence(input, seq_lengths, seq_dim, batch_dim=None, name=None)
	Args:
	Returns:

	tf.reverse(tensor, dims, name=None)
	Args:
	Returns:

	tf.transpose(a, perm=None, name='transpose')
	Args:
	Returns:

	tf.space_to_depth(input, block_size, name=None)
	Args:
	Returns:

	tf.depth_to_space(input, block_size, name=None)
	Args:
	Returns:

	tf.gather(params, indices, validate_indices=None, name=None)
	Args:
	Returns:

	tf.dynamic_partition(data, partitions, num_partitions, name=None)
	Args:
	Returns:

	tf.dynamic_stitch(indices, data, name=None)
	Args:
	Returns:

	tf.boolean_mask(tensor, mask, name='boolean_mask')
	Args:
	Returns:
	Raises:

	Other Functions and Classes
	tf.shape_n(input, name=None)
	Args:
	Returns:

	tf.unique_with_counts(x, name=None)
	Args:
	Returns:

	Math
	Arithmetic Operators
	tf.add(x, y, name=None)
	Args:
	Returns:

	tf.sub(x, y, name=None)
	Args:
	Returns:

	tf.mul(x, y, name=None)
	Args:
	Returns:

	tf.div(x, y, name=None)
	Args:
	Returns:

	tf.truediv(x, y, name=None)
	Args:
	Returns:
	Raises:

	tf.floordiv(x, y, name=None)
	Args:
	Returns:
	Raises:

	tf.mod(x, y, name=None)
	Args:
	Returns:

	tf.cross(a, b, name=None)
	Args:
	Returns:

	Basic Math Functions
	tf.add_n(inputs, name=None)
	Args:
	Returns:

	tf.abs(x, name=None)
	Args:
	Returns:

	tf.neg(x, name=None)
	Args:
	Returns:

	tf.sign(x, name=None)
	Args:
	Returns:

	tf.inv(x, name=None)
	Args:
	Returns:

	tf.square(x, name=None)
	Args:
	Returns:

	tf.round(x, name=None)
	Args:
	Returns:

	tf.sqrt(x, name=None)
	Args:
	Returns:

	tf.rsqrt(x, name=None)
	Args:
	Returns:

	tf.pow(x, y, name=None)
	Args:
	Returns:

	tf.exp(x, name=None)
	Args:
	Returns:

	tf.log(x, name=None)
	Args:
	Returns:

	tf.ceil(x, name=None)
	Args:
	Returns:

	tf.floor(x, name=None)
	Args:
	Returns:

	tf.maximum(x, y, name=None)
	Args:
	Returns:

	tf.minimum(x, y, name=None)
	Args:
	Returns:

	tf.cos(x, name=None)
	Args:
	Returns:

	tf.sin(x, name=None)
	Args:
	Returns:

	tf.lgamma(x, name=None)
	Args:
	Returns:

	tf.erf(x, name=None)
	Args:
	Returns:

	tf.erfc(x, name=None)
	Args:
	Returns:

	Matrix Math Functions
	tf.diag(diagonal, name=None)
	Args:
	Returns:

	tf.transpose(a, perm=None, name='transpose')
	Args:
	Returns:

	tf.matmul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None)
	Args:
	Returns:

	tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None)
	Args:
	Returns:

	tf.matrix_determinant(input, name=None)
	Args:
	Returns:

	tf.batch_matrix_determinant(input, name=None)
	Args:
	Returns:

	tf.matrix_inverse(input, name=None)
	Args:
	Returns:

	tf.batch_matrix_inverse(input, name=None)
	Args:
	Returns:

	tf.cholesky(input, name=None)
	Args:
	Returns:

	tf.batch_cholesky(input, name=None)
	Args:
	Returns:

	tf.self_adjoint_eig(input, name=None)
	Args:
	Returns:

	tf.batch_self_adjoint_eig(input, name=None)
	Args:
	Returns:

	tf.matrix_solve(matrix, rhs, name=None)
	Args:
	Returns:

	tf.batch_matrix_solve(matrix, rhs, name=None)
	Args:
	Returns:

	tf.matrix_triangular_solve(matrix, rhs, lower=None, name=None)
	Args:
	Returns:

	tf.batch_matrix_triangular_solve(matrix, rhs, lower=None, name=None)
	Args:
	Returns:

	tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None)
	Args:
	Returns:

	tf.batch_matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None)
	Args:
	Returns:

	Complex Number Functions
	tf.complex(real, imag, name=None)
	Args:
	Returns:

	tf.complex_abs(x, name=None)
	Args:
	Returns:

	tf.conj(in_, name=None)
	Args:
	Returns:

	tf.imag(in_, name=None)
	Args:
	Returns:

	tf.real(in_, name=None)
	Args:
	Returns:

	tf.fft2d(in_, name=None)
	Args:
	Returns:

	tf.ifft2d(in_, name=None)
	Args:
	Returns:

	Reduction
	tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_prod(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_min(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_all(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_any(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None)
	Args:
	Returns:
	Raises:

	Segmentation
	tf.segment_sum(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_prod(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_min(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_max(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_mean(data, segment_ids, name=None)
	Args:
	Returns:

	tf.unsorted_segment_sum(data, segment_ids, num_segments, name=None)
	Args:
	Returns:

	tf.sparse_segment_sum(data, indices, segment_ids, name=None)
	Args:
	Returns:

	tf.sparse_segment_mean(data, indices, segment_ids, name=None)
	Args:
	Returns:

	tf.sparse_segment_sqrt_n(data, indices, segment_ids, name=None)
	Args:
	Returns:

	Sequence Comparison and Indexing
	tf.argmin(input, dimension, name=None)
	Args:
	Returns:

	tf.argmax(input, dimension, name=None)
	Args:
	Returns:

	tf.listdiff(x, y, name=None)
	Args:
	Returns:

	tf.where(input, name=None)
	Args:
	Returns:

	tf.unique(x, name=None)
	Args:
	Returns:

	tf.edit_distance(hypothesis, truth, normalize=True, name='edit_distance')
	Args:
	Returns:
	Raises:

	tf.invert_permutation(x, name=None)
	Args:
	Returns:

	Other Functions and Classes
	tf.scalar_mul(scalar, x)
	Args:
	Returns:
	Raises:

	tf.sparse_segment_sqrt_n_grad(grad, indices, segment_ids, output_dim0, name=None)
	Args:
	Returns:

	Control Flow
	Control Flow Operations
	tf.identity(input, name=None)
	Args:
	Returns:

	tf.tuple(tensors, name=None, control_inputs=None)
	Args:
	Returns:
	Raises:

	tf.group(*inputs, **kwargs)
	Args:
	Returns:
	Raises:

	tf.no_op(name=None)
	Args:
	Returns:

	tf.count_up_to(ref, limit, name=None)
	Args:
	Returns:

	tf.cond(pred, fn1, fn2, name=None)
	Args:
	Returns:
	Raises:

	Logical Operators
	tf.logical_and(x, y, name=None)
	Args:
	Returns:

	tf.logical_not(x, name=None)
	Args:
	Returns:

	tf.logical_or(x, y, name=None)
	Args:
	Returns:

	tf.logical_xor(x, y, name='LogicalXor')

	Comparison Operators
	tf.equal(x, y, name=None)
	Args:
	Returns:

	tf.not_equal(x, y, name=None)
	Args:
	Returns:

	tf.less(x, y, name=None)
	Args:
	Returns:

	tf.less_equal(x, y, name=None)
	Args:
	Returns:

	tf.greater(x, y, name=None)
	Args:
	Returns:

	tf.greater_equal(x, y, name=None)
	Args:
	Returns:

	tf.select(condition, t, e, name=None)
	Args:
	Returns:

	tf.where(input, name=None)
	Args:
	Returns:

	Debugging Operations
	tf.is_finite(x, name=None)
	Args:
	Returns:

	tf.is_inf(x, name=None)
	Args:
	Returns:

	tf.is_nan(x, name=None)
	Args:
	Returns:

	tf.verify_tensor_all_finite(t, msg, name=None)
	Args:
	Returns:

	tf.check_numerics(tensor, message, name=None)
	Args:
	Returns:

	tf.add_check_numerics_ops()
	Returns:

	tf.Assert(condition, data, summarize=None, name=None)
	Args:

	tf.Print(input_, data, message=None, first_n=None, summarize=None, name=None)
	Args:
	Returns:

	Images
	Encoding and Decoding
	tf.image.decode_jpeg(contents, channels=None, ratio=None, fancy_upscaling=None, try_recover_truncated=None, acceptable_fraction=None, name=None)
	Args:
	Returns:

	tf.image.encode_jpeg(image, format=None, quality=None, progressive=None, optimize_size=None, chroma_downsampling=None, density_unit=None, x_density=None, y_density=None, xmp_metadata=None, name=None)
	Args:
	Returns:

	tf.image.decode_png(contents, channels=None, dtype=None, name=None)
	Args:
	Returns:

	tf.image.encode_png(image, compression=None, name=None)
	Args:
	Returns:

	Resizing
	tf.image.resize_images(images, new_height, new_width, method=0, align_corners=False)
	Args:
	Raises:
	Returns:

	tf.image.resize_area(images, size, align_corners=None, name=None)
	Args:
	Returns:

	tf.image.resize_bicubic(images, size, align_corners=None, name=None)
	Args:
	Returns:

	tf.image.resize_bilinear(images, size, align_corners=None, name=None)
	Args:
	Returns:

	tf.image.resize_nearest_neighbor(images, size, align_corners=None, name=None)
	Args:
	Returns:

	Cropping
	tf.image.resize_image_with_crop_or_pad(image, target_height, target_width)
	Args:
	Raises:
	Returns:

	tf.image.pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width)
	Args:
	Returns:
	Raises:

	tf.image.crop_to_bounding_box(image, offset_height, offset_width, target_height, target_width)
	Args:
	Returns:
	Raises:

	tf.image.extract_glimpse(input, size, offsets, centered=None, normalized=None, uniform_noise=None, name=None)
	Args:
	Returns:

	Flipping and Transposing
	tf.image.flip_up_down(image)
	Args:
	Returns:
	Raises:

	tf.image.random_flip_up_down(image, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.flip_left_right(image)
	Args:
	Returns:
	Raises:

	tf.image.random_flip_left_right(image, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.transpose_image(image)
	Args:
	Returns:
	Raises:

	Converting Between Colorspaces.
	tf.image.rgb_to_grayscale(images)
	Args:
	Returns:

	tf.image.grayscale_to_rgb(images)
	Args:
	Returns:

	tf.image.hsv_to_rgb(images, name=None)
	Args:
	Returns:

	tf.image.rgb_to_hsv(images, name=None)
	Args:
	Returns:

	tf.image.convert_image_dtype(image, dtype, saturate=False, name=None)
	Args:
	Returns:

	Image Adjustments
	tf.image.adjust_brightness(image, delta)
	Args:
	Returns:

	tf.image.random_brightness(image, max_delta, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.adjust_contrast(images, contrast_factor)
	Args:
	Returns:

	tf.image.random_contrast(image, lower, upper, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.adjust_hue(image, delta, name=None)
	Args:
	Returns:

	tf.image.random_hue(image, max_delta, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.adjust_saturation(image, saturation_factor, name=None)
	Args:
	Returns:

	tf.image.random_saturation(image, lower, upper, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.per_image_whitening(image)
	Args:
	Returns:
	Raises:

	Working with Bounding Boxes
	tf.image.draw_bounding_boxes(images, boxes, name=None)
	Args:
	Returns:

	tf.image.sample_distorted_bounding_box(image_size, bounding_boxes, seed=None, seed2=None, min_object_covered=None, aspect_ratio_range=None, area_range=None, max_attempts=None, use_image_if_no_bounding_boxes=None, name=None)
	Args:
	Returns:

	Other Functions and Classes
	tf.image.saturate_cast(image, dtype)
	Args:
	Returns:

	Sparse Tensors
	Sparse Tensor Representation
	class tf.SparseTensor
	tf.SparseTensor.__init__(indices, values, shape)
	Args:
	Returns:

	tf.SparseTensor.indices
	Returns:

	tf.SparseTensor.values
	Returns:

	tf.SparseTensor.dtype
	tf.SparseTensor.shape
	tf.SparseTensor.graph

	class tf.SparseTensorValue
	tf.SparseTensorValue.indices
	tf.SparseTensorValue.shape
	tf.SparseTensorValue.values

	Sparse to Dense Conversion
	tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None)
	Args:
	Returns:

	tf.sparse_tensor_to_dense(sp_input, default_value=0, validate_indices=True, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_to_indicator(sp_input, vocab_size, name=None)
	Args:
	Returns:
	Raises:

	Manipulation
	tf.sparse_concat(concat_dim, sp_inputs, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_reorder(sp_input, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_split(split_dim, num_split, sp_input, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_retain(sp_input, to_retain)
	Args:
	Returns:
	Raises:

	tf.sparse_fill_empty_rows(sp_input, default_value, name=None)
	Args:
	Returns:
	Raises:

	Inputs and Readers
	Placeholders
	tf.placeholder(dtype, shape=None, name=None)
	Args:
	Returns:

	Readers
	class tf.ReaderBase
	tf.ReaderBase.__init__(reader_ref, supports_serialize=False)
	Args:

	tf.ReaderBase.num_records_produced(name=None)
	Args:
	Returns:

	tf.ReaderBase.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.ReaderBase.read(queue, name=None)
	Args:
	Returns:

	tf.ReaderBase.reader_ref
	tf.ReaderBase.reset(name=None)
	Args:
	Returns:

	tf.ReaderBase.restore_state(state, name=None)
	Args:
	Returns:

	tf.ReaderBase.serialize_state(name=None)
	Args:
	Returns:

	tf.ReaderBase.supports_serialize

	class tf.TextLineReader
	tf.TextLineReader.__init__(skip_header_lines=None, name=None)
	Args:

	tf.TextLineReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.TextLineReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.TextLineReader.read(queue, name=None)
	Args:
	Returns:

	tf.TextLineReader.reader_ref
	tf.TextLineReader.reset(name=None)
	Args:
	Returns:

	tf.TextLineReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.TextLineReader.serialize_state(name=None)
	Args:
	Returns:

	tf.TextLineReader.supports_serialize

	class tf.WholeFileReader
	tf.WholeFileReader.__init__(name=None)
	Args:

	tf.WholeFileReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.WholeFileReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.WholeFileReader.read(queue, name=None)
	Args:
	Returns:

	tf.WholeFileReader.reader_ref
	tf.WholeFileReader.reset(name=None)
	Args:
	Returns:

	tf.WholeFileReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.WholeFileReader.serialize_state(name=None)
	Args:
	Returns:

	tf.WholeFileReader.supports_serialize

	class tf.IdentityReader
	tf.IdentityReader.__init__(name=None)
	Args:

	tf.IdentityReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.IdentityReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.IdentityReader.read(queue, name=None)
	Args:
	Returns:

	tf.IdentityReader.reader_ref
	tf.IdentityReader.reset(name=None)
	Args:
	Returns:

	tf.IdentityReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.IdentityReader.serialize_state(name=None)
	Args:
	Returns:

	tf.IdentityReader.supports_serialize

	class tf.TFRecordReader
	tf.TFRecordReader.__init__(name=None)
	Args:

	tf.TFRecordReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.TFRecordReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.TFRecordReader.read(queue, name=None)
	Args:
	Returns:

	tf.TFRecordReader.reader_ref
	tf.TFRecordReader.reset(name=None)
	Args:
	Returns:

	tf.TFRecordReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.TFRecordReader.serialize_state(name=None)
	Args:
	Returns:

	tf.TFRecordReader.supports_serialize

	class tf.FixedLengthRecordReader
	tf.FixedLengthRecordReader.__init__(record_bytes, header_bytes=None, footer_bytes=None, name=None)
	Args:

	tf.FixedLengthRecordReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.read(queue, name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.reader_ref
	tf.FixedLengthRecordReader.reset(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.serialize_state(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.supports_serialize

	Converting
	tf.decode_csv(records, record_defaults, field_delim=None, name=None)
	Args:
	Returns:

	tf.decode_raw(bytes, out_type, little_endian=None, name=None)
	Args:
	Returns:

	Example protocol buffer
	class tf.VarLenFeature
	tf.VarLenFeature.dtype

	class tf.FixedLenFeature
	tf.FixedLenFeature.default_value
	tf.FixedLenFeature.dtype
	tf.FixedLenFeature.shape

	class tf.FixedLenSequenceFeature
	tf.FixedLenSequenceFeature.allow_missing
	tf.FixedLenSequenceFeature.dtype
	tf.FixedLenSequenceFeature.shape

	tf.parse_example(serialized, features, name=None, example_names=None)
	Args:
	Returns:
	Raises:

	tf.parse_single_example(serialized, features, name=None, example_names=None)
	Args:
	Returns:
	Raises:

	tf.decode_json_example(json_examples, name=None)
	Args:
	Returns:

	Queues
	class tf.QueueBase
	tf.QueueBase.enqueue(vals, name=None)
	Args:
	Returns:

	tf.QueueBase.enqueue_many(vals, name=None)
	Args:
	Returns:

	tf.QueueBase.dequeue(name=None)
	Args:
	Returns:

	tf.QueueBase.dequeue_many(n, name=None)
	Args:
	Returns:

	tf.QueueBase.size(name=None)
	Args:
	Returns:

	tf.QueueBase.close(cancel_pending_enqueues=False, name=None)
	Args:
	Returns:

	Other Methods
	tf.QueueBase.__init__(dtypes, shapes, queue_ref)
	Args:

	tf.QueueBase.dtypes
	tf.QueueBase.from_list(index, queues)
	Args:
	Returns:
	Raises:

	tf.QueueBase.name
	tf.QueueBase.queue_ref

	class tf.FIFOQueue
	tf.FIFOQueue.__init__(capacity, dtypes, shapes=None, shared_name=None, name='fifo_queue')
	Args:

	class tf.RandomShuffleQueue
	tf.RandomShuffleQueue.__init__(capacity, min_after_dequeue, dtypes, shapes=None, seed=None, shared_name=None, name='random_shuffle_queue')
	Args:

	Dealing with the filesystem
	tf.matching_files(pattern, name=None)
	Args:
	Returns:

	tf.read_file(filename, name=None)
	Args:
	Returns:

	Input pipeline
	Beginning of an input pipeline
	tf.train.match_filenames_once(pattern, name=None)
	Args:
	Returns:

	tf.train.limit_epochs(tensor, num_epochs=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)
	Args:
	Returns:

	tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)
	Args:
	Returns:
	Raises:

	tf.train.string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)
	Args:
	Returns:
	Raises:

	Batching at the end of an input pipeline
	tf.train.batch(tensor_list, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.batch_join(tensor_list_list, batch_size, capacity=32, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.shuffle_batch(tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.shuffle_batch_join(tensor_list_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	Data IO (Python functions)
	Data IO (Python Functions)
	class tf.python_io.TFRecordWriter
	tf.python_io.TFRecordWriter.__init__(path)
	Args:
	Raises:

	tf.python_io.TFRecordWriter.write(record)
	Args:

	tf.python_io.TFRecordWriter.close()

	tf.python_io.tf_record_iterator(path)
	Args:
	Yields:
	Raises:

	TFRecords Format Details

	Neural Network
	Activation Functions
	tf.nn.relu(features, name=None)
	Args:
	Returns:

	tf.nn.relu6(features, name=None)
	Args:
	Returns:

	tf.nn.elu(features, name=None)
	Args:
	Returns:

	tf.nn.softplus(features, name=None)
	Args:
	Returns:

	tf.nn.softsign(features, name=None)
	Args:
	Returns:

	tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)
	Args:
	Returns:
	Raises:

	tf.nn.bias_add(value, bias, name=None)
	Args:
	Returns:

	tf.sigmoid(x, name=None)
	Args:
	Returns:

	tf.tanh(x, name=None)
	Args:
	Returns:

	Convolution
	tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
	Args:
	Returns:

	tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding='SAME', name=None)
	Args:
	Returns:
	Raises:

	Pooling
	tf.nn.avg_pool(value, ksize, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.max_pool(value, ksize, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None)
	Args:
	Returns:

	Normalization
	tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)
	Args:
	Returns:

	tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None)
	Args:
	Returns:

	tf.nn.moments(x, axes, name=None, keep_dims=False)
	Args:
	Returns:

	Losses
	tf.nn.l2_loss(t, name=None)
	Args:
	Returns:

	Classification
	tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None)
	Args:
	Returns:

	tf.nn.softmax(logits, name=None)
	Args:
	Returns:

	tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
	Args:
	Returns:

	tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name=None)
	Args:
	Returns:

	Embeddings
	tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True)
	Args:
	Returns:
	Raises:

	Evaluation
	tf.nn.top_k(input, k=1, sorted=True, name=None)
	Args:
	Returns:

	tf.nn.in_top_k(predictions, targets, k, name=None)
	Args:
	Returns:

	Candidate Sampling
	Sampled Loss Functions
	tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, partition_strategy='mod', name='nce_loss')
	Args:
	Returns:

	tf.nn.sampled_softmax_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, partition_strategy='mod', name='sampled_softmax_loss')
	Args:
	Returns:

	Candidate Samplers
	tf.nn.uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)
	Args:
	Returns:

	tf.nn.log_uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)
	Args:
	Returns:

	tf.nn.learned_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)
	Args:
	Returns:

	tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, vocab_file='', distortion=1.0, num_reserved_ids=0, num_shards=1, shard=0, unigrams=(), seed=None, name=None)
	Args:
	Returns:

	Miscellaneous candidate sampling utilities
	tf.nn.compute_accidental_hits(true_classes, sampled_candidates, num_true, seed=None, name=None)
	Args:
	Returns:

	Running Graphs
	Session management
	class tf.Session
	tf.Session.__init__(target='', graph=None, config=None)
	Args:

	tf.Session.run(fetches, feed_dict=None)
	Args:
	Returns:
	Raises:

	tf.Session.close()
	Raises:

	tf.Session.graph
	tf.Session.as_default()
	Returns:

	class tf.InteractiveSession
	tf.InteractiveSession.__init__(target='', graph=None, config=None)
	Args:

	tf.InteractiveSession.close()

	tf.get_default_session()
	Returns:

	Error classes
	class tf.OpError
	tf.OpError.op
	Returns:

	tf.OpError.node_def
	Other Methods
	tf.OpError.__init__(node_def, op, message, error_code)
	Args:

	tf.OpError.error_code
	tf.OpError.message

	class tf.errors.CancelledError
	tf.errors.CancelledError.__init__(node_def, op, message)

	class tf.errors.UnknownError
	tf.errors.UnknownError.__init__(node_def, op, message, error_code=2)

	class tf.errors.InvalidArgumentError
	tf.errors.InvalidArgumentError.__init__(node_def, op, message)

	class tf.errors.DeadlineExceededError
	tf.errors.DeadlineExceededError.__init__(node_def, op, message)

	class tf.errors.NotFoundError
	tf.errors.NotFoundError.__init__(node_def, op, message)

	class tf.errors.AlreadyExistsError
	tf.errors.AlreadyExistsError.__init__(node_def, op, message)

	class tf.errors.PermissionDeniedError
	tf.errors.PermissionDeniedError.__init__(node_def, op, message)

	class tf.errors.UnauthenticatedError
	tf.errors.UnauthenticatedError.__init__(node_def, op, message)

	class tf.errors.ResourceExhaustedError
	tf.errors.ResourceExhaustedError.__init__(node_def, op, message)

	class tf.errors.FailedPreconditionError
	tf.errors.FailedPreconditionError.__init__(node_def, op, message)

	class tf.errors.AbortedError
	tf.errors.AbortedError.__init__(node_def, op, message)

	class tf.errors.OutOfRangeError
	tf.errors.OutOfRangeError.__init__(node_def, op, message)

	class tf.errors.UnimplementedError
	tf.errors.UnimplementedError.__init__(node_def, op, message)

	class tf.errors.InternalError
	tf.errors.InternalError.__init__(node_def, op, message)

	class tf.errors.UnavailableError
	tf.errors.UnavailableError.__init__(node_def, op, message)

	class tf.errors.DataLossError
	tf.errors.DataLossError.__init__(node_def, op, message)

	Training
	Optimizers
	class tf.train.Optimizer
	Usage
	Processing gradients before applying them.
	tf.train.Optimizer.__init__(use_locking, name)
	Args:
	Raises:

	tf.train.Optimizer.minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, name=None)
	Args:
	Returns:
	Raises:

	tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False)
	Args:
	Returns:
	Raises:

	tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None)
	Args:
	Returns:
	Raises:

	Gating Gradients
	Slots
	tf.train.Optimizer.get_slot_names()
	Returns:

	tf.train.Optimizer.get_slot(var, name)
	Args:
	Returns:

	class tf.train.GradientDescentOptimizer
	tf.train.GradientDescentOptimizer.__init__(learning_rate, use_locking=False, name='GradientDescent')
	Args:

	class tf.train.AdagradOptimizer
	tf.train.AdagradOptimizer.__init__(learning_rate, initial_accumulator_value=0.1, use_locking=False, name='Adagrad')
	Args:
	Raises:

	class tf.train.MomentumOptimizer
	tf.train.MomentumOptimizer.__init__(learning_rate, momentum, use_locking=False, name='Momentum')
	Args:

	class tf.train.AdamOptimizer
	tf.train.AdamOptimizer.__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')
	Args:

	class tf.train.FtrlOptimizer
	tf.train.FtrlOptimizer.__init__(learning_rate, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name='Ftrl')
	Args:
	Raises:

	class tf.train.RMSPropOptimizer
	tf.train.RMSPropOptimizer.__init__(learning_rate, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp')
	Args:

	Gradient Computation
	tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None)
	Args:
	Returns:
	Raises:

	class tf.AggregationMethod
	tf.stop_gradient(input, name=None)
	Args:
	Returns:

	Gradient Clipping
	tf.clip_by_value(t, clip_value_min, clip_value_max, name=None)
	Args:
	Returns:

	tf.clip_by_norm(t, clip_norm, name=None)
	Args:
	Returns:

	tf.clip_by_average_norm(t, clip_norm, name=None)
	Args:
	Returns:

	tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)
	Args:
	Returns:
	Raises:

	tf.global_norm(t_list, name=None)
	Args:
	Returns:
	Raises:

	Decaying the learning rate
	tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)
	Args:
	Returns:

	Moving Averages
	class tf.train.ExponentialMovingAverage
	tf.train.ExponentialMovingAverage.__init__(decay, num_updates=None, name='ExponentialMovingAverage')
	Args:

	tf.train.ExponentialMovingAverage.apply(var_list=None)
	Args:
	Returns:
	Raises:

	tf.train.ExponentialMovingAverage.average_name(var)
	Args:
	Returns:

	tf.train.ExponentialMovingAverage.average(var)
	Args:
	Returns:

	tf.train.ExponentialMovingAverage.variables_to_restore()
	Returns:

	Coordinator and QueueRunner
	class tf.train.Coordinator
	Usage:
	Exception handling:
	Grace period for stopping:
	tf.train.Coordinator.__init__()
	tf.train.Coordinator.clear_stop()
	tf.train.Coordinator.join(threads, stop_grace_period_secs=120)
	Args:
	Raises:

	tf.train.Coordinator.request_stop(ex=None)
	Args:

	tf.train.Coordinator.should_stop()
	Returns:

	tf.train.Coordinator.stop_on_exception()
	Yields:

	tf.train.Coordinator.wait_for_stop(timeout=None)
	Args:
	Returns:

	class tf.train.QueueRunner
	tf.train.QueueRunner.__init__(queue=None, enqueue_ops=None, close_op=None, cancel_op=None, queue_runner_def=None)
	Args:
	Raises:

	tf.train.QueueRunner.cancel_op
	tf.train.QueueRunner.close_op
	tf.train.QueueRunner.create_threads(sess, coord=None, daemon=False, start=False)
	Args:
	Returns:
	Raises:

	tf.train.QueueRunner.enqueue_ops
	tf.train.QueueRunner.exceptions_raised
	Returns:

	tf.train.QueueRunner.from_proto(queue_runner_def)
	tf.train.QueueRunner.name
	tf.train.QueueRunner.queue
	tf.train.QueueRunner.to_proto()
	Returns:

	tf.train.add_queue_runner(qr, collection='queue_runners')
	Args:

	tf.train.start_queue_runners(sess=None, coord=None, daemon=True, start=True, collection='queue_runners')
	Args:
	Returns:

	Summary Operations
	tf.scalar_summary(tags, values, collections=None, name=None)
	Args:
	Returns:

	tf.image_summary(tag, tensor, max_images=3, collections=None, name=None)
	Args:
	Returns:

	tf.histogram_summary(tag, values, collections=None, name=None)
	Args:
	Returns:

	tf.nn.zero_fraction(value, name=None)
	Args:
	Returns:

	tf.merge_summary(inputs, collections=None, name=None)
	Args:
	Returns:

	tf.merge_all_summaries(key='summaries')
	Args:
	Returns:

	Adding Summaries to Event Files
	class tf.train.SummaryWriter
	tf.train.SummaryWriter.__init__(logdir, graph_def=None, max_queue=10, flush_secs=120)
	Args:

	tf.train.SummaryWriter.add_summary(summary, global_step=None)
	Args:

	tf.train.SummaryWriter.add_session_log(session_log, global_step=None)
	Args:

	tf.train.SummaryWriter.add_event(event)
	Args:

	tf.train.SummaryWriter.add_graph(graph_def, global_step=None)
	Args:

	tf.train.SummaryWriter.flush()
	tf.train.SummaryWriter.close()

	tf.train.summary_iterator(path)
	Args:
	Yields:

	Training utilities
	tf.train.global_step(sess, global_step_tensor)
	Args:
	Returns:

	tf.train.write_graph(graph_def, logdir, name, as_text=True)
	Args:

	Other Functions and Classes
	class tf.train.LooperThread
	tf.train.LooperThread.__init__(coord, timer_interval_secs, target=None, args=None)
	Args:
	Raises:

	tf.train.LooperThread.daemon
	tf.train.LooperThread.getName()
	tf.train.LooperThread.ident
	tf.train.LooperThread.isAlive()
	tf.train.LooperThread.isDaemon()
	tf.train.LooperThread.is_alive()
	tf.train.LooperThread.join(timeout=None)
	tf.train.LooperThread.loop(coord, timer_interval_secs, target, args=None)
	Args:
	Returns:

	tf.train.LooperThread.name
	tf.train.LooperThread.run()
	tf.train.LooperThread.run_loop()
	tf.train.LooperThread.setDaemon(daemonic)
	tf.train.LooperThread.setName(name)
	tf.train.LooperThread.start()
	tf.train.LooperThread.start_loop()

	tf.train.export_meta_graph(filename=None, meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, as_text=False)
	Args:
	Returns:

	tf.train.generate_checkpoint_state_proto(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None)
	Args:
	Returns:

	tf.train.import_meta_graph(meta_graph_or_file)
	Args:
	Returns:

	Wraps python functions
	Script Language Operators.
	Other Functions and Classes
	tf.py_func(func, inp, Tout, name=None)
	Args:
	Returns:

	Testing
	Unit tests
	tf.test.main()

	Utilities
	tf.test.assert_equal_graph_def(actual, expected)
	Args:
	Raises:

	tf.test.get_temp_dir()
	Returns:

	tf.test.is_built_with_cuda()

	Gradient checking
	tf.test.compute_gradient(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None)
	Args:
	Returns:

	tf.test.compute_gradient_error(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None)
	Args:
	Returns:

	Layers (contrib)
	Higher level ops for building neural network layers.
	tf.contrib.layers.convolution2d(x, num_output_channels, kernel_size, activation_fn=None, stride=(1, 1), padding='SAME', weight_init=_initializer, bias_init=_initializer, name=None, weight_collections=None, bias_collections=None, output_collections=Non...
	Args:
	Returns:
	Raises:

	tf.contrib.layers.fully_connected(x, num_output_units, activation_fn=None, weight_init=_initializer, bias_init=_initializer, name=None, weight_collections=('weights',), bias_collections=('biases',), output_collections=('activations',), weight_regulari...
	Args:
	Returns:

	Regularizers
	tf.contrib.layers.l1_regularizer(scale)
	Args:
	Returns:
	Raises:

	tf.contrib.layers.l2_regularizer(scale)
	Args:
	Returns:
	Raises:

	Initializers
	tf.contrib.layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.contrib.layers.xavier_initializer_conv2d(uniform=True, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	Summaries
	tf.contrib.layers.summarize_activation(op)
	Args:
	Returns:

	tf.contrib.layers.summarize_tensor(tensor)
	Args:
	Returns:

	tf.contrib.layers.summarize_tensors(tensors, summarizer=summarize_tensor)
	tf.contrib.layers.summarize_collection(collection, name_filter=None, summarizer=summarize_tensor)
	tf.contrib.layers.summarize_activations(name_filter=None, summarizer=summarize_activation)

	Other Functions and Classes
	tf.contrib.layers.assert_same_float_dtype(tensors=None, dtype=None)
	Args:
	Returns:
	Raises:

	Utilities (contrib)
	Miscellaneous Utility Functions
	tf.contrib.util.constant_value(tensor)
	Args:
	Returns:
	Raises:

	tf.contrib.util.make_tensor_proto(values, dtype=None, shape=None)
	Args:
	Returns:
	Raises:

