
目录

Building Graphs ... 21

Core graph data structures ... 22

class tf.Graph ... 22

class tf.Operation .. 39

class tf.Tensor ... 45

Tensor types .. 51

class tf.DType ... 51

tf.as_dtype(type_value) .. 56

Utility functions .. 56

tf.device(dev) ... 56

tf.name_scope(name).. 57

tf.control_dependencies(control_inputs) .. 58

tf.convert_to_tensor(value, dtype=None, name=None,

as_ref=False) .. 58

tf.convert_to_tensor_or_indexed_slices(value, dtype=None,

name=None, as_ref=False) .. 60

tf.get_default_graph() .. 60

tf.reset_default_graph() .. 61

tf.import_graph_def(graph_def, input_map=None,

return_elements=None, name=None, op_dict=None) 61

tf.load_op_library(library_filename) ... 63

Graph collections .. 64

tf.add_to_collection(name, value) .. 64

tf.get_collection(key, scope=None) .. 64

class tf.GraphKeys .. 65

Defining new operations .. 66

class tf.RegisterGradient ... 66

tf.NoGradient(op_type) .. 67

class tf.RegisterShape .. 68

class tf.TensorShape ... 69

class tf.Dimension .. 77

tf.op_scope(values, name, default_name=None) 79

tf.get_seed(op_seed) ... 80

For libraries building on TensorFlow .. 81

tf.register_tensor_conversion_function(base_type,

conversion_func, priority=100) ... 81

Other Functions and Classes.. 82

class tf.bytes ... 82

Constants, Sequences, and Random Values .. 82

Constant Value Tensors .. 83

tf.zeros(shape, dtype=tf.float32, name=None) 83

tf.zeros_like(tensor, dtype=None, name=None) 84

tf.ones(shape, dtype=tf.float32, name=None) 85

tf.ones_like(tensor, dtype=None, name=None) 86

tf.fill(dims, value, name=None) ... 87

tf.constant(value, dtype=None, shape=None, name='Const') ... 87

Sequences ... 89

tf.linspace(start, stop, num, name=None) ... 89

tf.range(start, limit=None, delta=1, name='range') 90

Random Tensors .. 91

Examples: .. 91

tf.random_normal(shape, mean=0.0, stddev=1.0,

dtype=tf.float32, seed=None, name=None) .. 92

tf.truncated_normal(shape, mean=0.0, stddev=1.0,

dtype=tf.float32, seed=None, name=None) .. 93

tf.random_uniform(shape, minval=0, maxval=None,

dtype=tf.float32, seed=None, name=None) .. 94

tf.random_shuffle(value, seed=None, name=None) 95

tf.random_crop(value, size, seed=None, name=None) 96

tf.set_random_seed(seed) .. 97

Variables .. 99

Variables .. 100

class tf.Variable .. 100

Variable helper functions ... 111

tf.all_variables() .. 112

tf.trainable_variables() .. 112

tf.moving_average_variables() .. 113

tf.initialize_all_variables() .. 113

tf.initialize_variables(var_list, name='init') 113

tf.assert_variables_initialized(var_list=None) 114

Saving and Restoring Variables ... 115

class tf.train.Saver ... 115

tf.train.latest_checkpoint(checkpoint_dir,

latest_filename=None) ... 123

tf.train.get_checkpoint_state(checkpoint_dir,

latest_filename=None) ... 124

tf.train.update_checkpoint_state(save_dir,

model_checkpoint_path, all_model_checkpoint_paths=None,

latest_filename=None) ... 125

Sharing Variables ... 125

tf.get_variable(name, shape=None, dtype=tf.float32,

initializer=None, trainable=True, collections=None) 125

tf.get_variable_scope() .. 127

tf.make_template(name_, func_, **kwargs) 127

tf.variable_op_scope(values, name, default_name,

initializer=None) .. 130

tf.variable_scope(name_or_scope, reuse=None,

initializer=None) .. 131

tf.constant_initializer(value=0.0, dtype=tf.float32) 133

tf.random_normal_initializer(mean=0.0, stddev=1.0,

seed=None, dtype=tf.float32) .. 133

tf.truncated_normal_initializer(mean=0.0, stddev=1.0,

seed=None, dtype=tf.float32) .. 134

tf.random_uniform_initializer(minval=0.0, maxval=1.0,

seed=None, dtype=tf.float32) .. 135

tf.uniform_unit_scaling_initializer(factor=1.0, seed=None,

dtype=tf.float32) .. 136

tf.zeros_initializer(shape, dtype=tf.float32) 137

Sparse Variable Updates ... 137

tf.scatter_update(ref, indices, updates, use_locking=None,

name=None) ... 138

tf.scatter_add(ref, indices, updates, use_locking=None,

name=None) ... 140

tf.scatter_sub(ref, indices, updates, use_locking=None,

name=None) ... 142

tf.sparse_mask(a, mask_indices, name=None)................................... 144

class tf.IndexedSlices .. 145

Tensor Transformations ... 148

Casting ... 149

tf.string_to_number(string_tensor, out_type=None,

name=None) ... 149

tf.to_double(x, name='ToDouble') .. 150

tf.to_float(x, name='ToFloat') ... 150

tf.to_bfloat16(x, name='ToBFloat16') ... 151

tf.to_int32(x, name='ToInt32') ... 152

tf.to_int64(x, name='ToInt64') ... 152

tf.cast(x, dtype, name=None) .. 153

Shapes and Shaping .. 154

tf.shape(input, name=None) ... 154

tf.size(input, name=None) ... 155

tf.rank(input, name=None) ... 155

tf.reshape(tensor, shape, name=None) ... 156

tf.squeeze(input, squeeze_dims=None, name=None) 158

tf.expand_dims(input, dim, name=None) .. 159

Slicing and Joining .. 160

tf.slice(input_, begin, size, name=None) 160

tf.split(split_dim, num_split, value, name='split') 162

tf.tile(input, multiples, name=None) ... 163

tf.pad(input, paddings, name=None) .. 163

tf.concat(concat_dim, values, name='concat') 165

tf.pack(values, name='pack') .. 166

tf.unpack(value, num=None, name='unpack') 167

tf.reverse_sequence(input, seq_lengths, seq_dim,

batch_dim=None, name=None) ... 168

tf.reverse(tensor, dims, name=None) ... 170

tf.transpose(a, perm=None, name='transpose') 171

tf.space_to_depth(input, block_size, name=None) 173

tf.depth_to_space(input, block_size, name=None) 175

tf.gather(params, indices, validate_indices=None,

name=None) ... 177

tf.dynamic_partition(data, partitions, num_partitions,

name=None) ... 178

tf.dynamic_stitch(indices, data, name=None) 181

tf.boolean_mask(tensor, mask, name='boolean_mask') 182

Other Functions and Classes.. 184

tf.shape_n(input, name=None) .. 184

tf.unique_with_counts(x, name=None) ... 184

Math .. 185

Arithmetic Operators .. 188

tf.add(x, y, name=None) .. 188

tf.sub(x, y, name=None) .. 189

tf.mul(x, y, name=None) .. 190

tf.div(x, y, name=None) .. 190

tf.truediv(x, y, name=None) .. 191

tf.floordiv(x, y, name=None) .. 192

tf.mod(x, y, name=None) .. 193

tf.cross(a, b, name=None) ... 193

Basic Math Functions ... 194

tf.add_n(inputs, name=None) .. 194

tf.abs(x, name=None) ... 195

tf.neg(x, name=None) ... 196

tf.sign(x, name=None) ... 196

tf.inv(x, name=None) ... 197

tf.square(x, name=None) .. 197

tf.round(x, name=None) .. 198

tf.sqrt(x, name=None) ... 199

tf.rsqrt(x, name=None) .. 199

tf.pow(x, y, name=None) .. 200

tf.exp(x, name=None) ... 201

tf.log(x, name=None) ... 201

tf.ceil(x, name=None) ... 202

tf.floor(x, name=None) .. 202

tf.maximum(x, y, name=None) .. 203

tf.minimum(x, y, name=None) .. 203

tf.cos(x, name=None) ... 204

tf.sin(x, name=None) ... 204

tf.lgamma(x, name=None) .. 205

tf.erf(x, name=None) ... 206

tf.erfc(x, name=None) ... 206

Matrix Math Functions .. 207

tf.diag(diagonal, name=None) .. 207

tf.transpose(a, perm=None, name='transpose') 208

tf.matmul(a, b, transpose_a=False, transpose_b=False,

a_is_sparse=False, b_is_sparse=False, name=None) 209

tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None) . 210

tf.matrix_determinant(input, name=None) .. 212

tf.batch_matrix_determinant(input, name=None) 212

tf.matrix_inverse(input, name=None) ... 213

tf.batch_matrix_inverse(input, name=None) 214

tf.cholesky(input, name=None) .. 214

tf.batch_cholesky(input, name=None) ... 215

tf.self_adjoint_eig(input, name=None) .. 216

tf.batch_self_adjoint_eig(input, name=None) 217

tf.matrix_solve(matrix, rhs, name=None) .. 217

tf.batch_matrix_solve(matrix, rhs, name=None) 218

tf.matrix_triangular_solve(matrix, rhs, lower=None,

name=None) ... 219

tf.batch_matrix_triangular_solve(matrix, rhs, lower=None,

name=None) ... 220

tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0,

fast=True, name=None) ... 221

tf.batch_matrix_solve_ls(matrix, rhs, l2_regularizer=0.0,

fast=True, name=None) ... 223

Complex Number Functions.. 225

tf.complex(real, imag, name=None) .. 225

tf.complex_abs(x, name=None) .. 226

tf.conj(in_, name=None) .. 226

tf.imag(in_, name=None) .. 227

tf.real(in_, name=None) .. 228

tf.fft2d(in_, name=None) .. 229

tf.ifft2d(in_, name=None) ... 229

Reduction ... 230

tf.reduce_sum(input_tensor, reduction_indices=None,

keep_dims=False, name=None) .. 230

tf.reduce_prod(input_tensor, reduction_indices=None,

keep_dims=False, name=None) .. 231

tf.reduce_min(input_tensor, reduction_indices=None,

keep_dims=False, name=None) .. 232

tf.reduce_max(input_tensor, reduction_indices=None,

keep_dims=False, name=None) .. 233

tf.reduce_mean(input_tensor, reduction_indices=None,

keep_dims=False, name=None) .. 234

tf.reduce_all(input_tensor, reduction_indices=None,

keep_dims=False, name=None) .. 235

tf.reduce_any(input_tensor, reduction_indices=None,

keep_dims=False, name=None) .. 236

tf.accumulate_n(inputs, shape=None, tensor_dtype=None,

name=None) ... 237

Segmentation .. 238

tf.segment_sum(data, segment_ids, name=None) 239

tf.segment_prod(data, segment_ids, name=None) 240

tf.segment_min(data, segment_ids, name=None) 242

tf.segment_max(data, segment_ids, name=None) 243

tf.segment_mean(data, segment_ids, name=None) 245

tf.unsorted_segment_sum(data, segment_ids, num_segments,

name=None) ... 246

tf.sparse_segment_sum(data, indices, segment_ids,

name=None) ... 248

tf.sparse_segment_mean(data, indices, segment_ids,

name=None) ... 249

tf.sparse_segment_sqrt_n(data, indices, segment_ids,

name=None) ... 250

Sequence Comparison and Indexing .. 251

tf.argmin(input, dimension, name=None) .. 251

tf.argmax(input, dimension, name=None) .. 252

tf.listdiff(x, y, name=None) .. 253

tf.where(input, name=None) ... 254

tf.unique(x, name=None) .. 255

tf.edit_distance(hypothesis, truth, normalize=True,

name='edit_distance') ... 256

tf.invert_permutation(x, name=None) ... 258

Other Functions and Classes.. 259

tf.scalar_mul(scalar, x) .. 259

tf.sparse_segment_sqrt_n_grad(grad, indices, segment_ids,

output_dim0, name=None) .. 259

Control Flow... 260

Control Flow Operations .. 261

tf.identity(input, name=None) .. 261

tf.tuple(tensors, name=None, control_inputs=None) 262

tf.group(*inputs, **kwargs) .. 263

tf.no_op(name=None).. 264

tf.count_up_to(ref, limit, name=None) .. 264

tf.cond(pred, fn1, fn2, name=None) .. 265

Logical Operators ... 266

tf.logical_and(x, y, name=None) ... 266

tf.logical_not(x, name=None) .. 267

tf.logical_or(x, y, name=None) ... 267

tf.logical_xor(x, y, name='LogicalXor') .. 268

Comparison Operators ... 268

tf.equal(x, y, name=None) ... 268

tf.not_equal(x, y, name=None) .. 269

tf.less(x, y, name=None) .. 269

tf.less_equal(x, y, name=None) ... 270

tf.greater(x, y, name=None) .. 271

tf.greater_equal(x, y, name=None) .. 271

tf.select(condition, t, e, name=None) .. 272

tf.where(input, name=None) ... 273

Debugging Operations ... 274

tf.is_finite(x, name=None) ... 275

tf.is_inf(x, name=None) .. 275

tf.is_nan(x, name=None) .. 276

tf.verify_tensor_all_finite(t, msg, name=None) 276

tf.check_numerics(tensor, message, name=None) 277

tf.add_check_numerics_ops() .. 277

tf.Assert(condition, data, summarize=None, name=None) 278

tf.Print(input_, data, message=None, first_n=None,

summarize=None, name=None) ... 278

Images .. 279

Encoding and Decoding ... 281

tf.image.decode_jpeg(contents, channels=None, ratio=None,

fancy_upscaling=None, try_recover_truncated=None,

acceptable_fraction=None, name=None) ... 282

tf.image.encode_jpeg(image, format=None, quality=None,

progressive=None, optimize_size=None,

chroma_downsampling=None, density_unit=None,

x_density=None, y_density=None, xmp_metadata=None,

name=None) ... 283

tf.image.decode_png(contents, channels=None, dtype=None,

name=None) ... 285

tf.image.encode_png(image, compression=None, name=None) ... 286

Resizing .. 287

tf.image.resize_images(images, new_height, new_width,

method=0, align_corners=False) ... 287

tf.image.resize_area(images, size, align_corners=None,

name=None) ... 289

tf.image.resize_bicubic(images, size, align_corners=None,

name=None) ... 290

tf.image.resize_bilinear(images, size, align_corners=None,

name=None) ... 291

tf.image.resize_nearest_neighbor(images, size,

align_corners=None, name=None) ... 291

Cropping ... 292

tf.image.resize_image_with_crop_or_pad(image,

target_height, target_width) .. 292

tf.image.pad_to_bounding_box(image, offset_height,

offset_width, target_height, target_width)................................... 293

tf.image.crop_to_bounding_box(image, offset_height,

offset_width, target_height, target_width)................................... 294

tf.image.extract_glimpse(input, size, offsets,

centered=None, normalized=None, uniform_noise=None,

name=None) ... 296

Flipping and Transposing .. 297

tf.image.flip_up_down(image) .. 297

tf.image.random_flip_up_down(image, seed=None) 298

tf.image.flip_left_right(image) ... 299

tf.image.random_flip_left_right(image, seed=None) 299

tf.image.transpose_image(image) ... 300

Converting Between Colorspaces. ... 301

tf.image.rgb_to_grayscale(images) .. 302

tf.image.grayscale_to_rgb(images) .. 302

tf.image.hsv_to_rgb(images, name=None) .. 303

tf.image.rgb_to_hsv(images, name=None) .. 303

tf.image.convert_image_dtype(image, dtype, saturate=False,

name=None) ... 304

Image Adjustments ... 305

tf.image.adjust_brightness(image, delta) 306

tf.image.random_brightness(image, max_delta, seed=None) ... 306

tf.image.adjust_contrast(images, contrast_factor) 307

tf.image.random_contrast(image, lower, upper, seed=None) . 308

tf.image.adjust_hue(image, delta, name=None) 309

tf.image.random_hue(image, max_delta, seed=None) 310

tf.image.adjust_saturation(image, saturation_factor,

name=None) ... 311

tf.image.random_saturation(image, lower, upper, seed=None)

 ... 312

tf.image.per_image_whitening(image) ... 313

Working with Bounding Boxes .. 313

tf.image.draw_bounding_boxes(images, boxes, name=None) 314

tf.image.sample_distorted_bounding_box(image_size,

bounding_boxes, seed=None, seed2=None,

min_object_covered=None, aspect_ratio_range=None,

area_range=None, max_attempts=None,

use_image_if_no_bounding_boxes=None, name=None) 315

Other Functions and Classes.. 317

tf.image.saturate_cast(image, dtype) ... 318

Sparse Tensors ... 318

Sparse Tensor Representation ... 319

class tf.SparseTensor ... 319

class tf.SparseTensorValue ... 322

Sparse to Dense Conversion .. 323

tf.sparse_to_dense(sparse_indices, output_shape,

sparse_values, default_value=0, validate_indices=True,

name=None) ... 323

tf.sparse_tensor_to_dense(sp_input, default_value=0,

validate_indices=True, name=None) .. 324

tf.sparse_to_indicator(sp_input, vocab_size, name=None) ... 326

Manipulation .. 327

tf.sparse_concat(concat_dim, sp_inputs, name=None) 327

tf.sparse_reorder(sp_input, name=None) .. 329

tf.sparse_split(split_dim, num_split, sp_input, name=None)

 ... 330

tf.sparse_retain(sp_input, to_retain) .. 331

tf.sparse_fill_empty_rows(sp_input, default_value,

name=None) ... 332

Inputs and Readers .. 334

Placeholders .. 335

tf.placeholder(dtype, shape=None, name=None) 335

Readers .. 336

class tf.ReaderBase.. 336

class tf.TextLineReader .. 341

class tf.WholeFileReader .. 345

class tf.IdentityReader .. 349

class tf.TFRecordReader .. 353

class tf.FixedLengthRecordReader .. 357

Converting .. 361

tf.decode_csv(records, record_defaults, field_delim=None,

name=None) ... 361

tf.decode_raw(bytes, out_type, little_endian=None,

name=None) ... 362

Example protocol buffer ... 363

class tf.VarLenFeature .. 363

class tf.FixedLenFeature .. 363

class tf.FixedLenSequenceFeature .. 364

tf.parse_example(serialized, features, name=None,

example_names=None).. 365

tf.parse_single_example(serialized, features, name=None,

example_names=None).. 369

tf.decode_json_example(json_examples, name=None) 370

Queues ... 371

class tf.QueueBase .. 371

class tf.FIFOQueue .. 377

class tf.RandomShuffleQueue .. 378

Dealing with the filesystem .. 380

tf.matching_files(pattern, name=None) .. 380

tf.read_file(filename, name=None) .. 380

Input pipeline ... 381

Beginning of an input pipeline ... 381

tf.train.match_filenames_once(pattern, name=None) 381

tf.train.limit_epochs(tensor, num_epochs=None, name=None)382

tf.train.range_input_producer(limit, num_epochs=None,

shuffle=True, seed=None, capacity=32, name=None) 383

tf.train.slice_input_producer(tensor_list, num_epochs=None,

shuffle=True, seed=None, capacity=32, name=None) 383

tf.train.string_input_producer(string_tensor,

num_epochs=None, shuffle=True, seed=None, capacity=32,

name=None) ... 385

Batching at the end of an input pipeline .. 386

tf.train.batch(tensor_list, batch_size, num_threads=1,

capacity=32, enqueue_many=False, shapes=None, name=None) . 386

tf.train.batch_join(tensor_list_list, batch_size,

capacity=32, enqueue_many=False, shapes=None, name=None) . 388

tf.train.shuffle_batch(tensor_list, batch_size, capacity,

min_after_dequeue, num_threads=1, seed=None,

enqueue_many=False, shapes=None, name=None) 390

tf.train.shuffle_batch_join(tensor_list_list, batch_size,

capacity, min_after_dequeue, seed=None, enqueue_many=False,

shapes=None, name=None) .. 393

Data IO (Python functions) .. 395

Data IO (Python Functions) ... 395

class tf.python_io.TFRecordWriter .. 395

tf.python_io.tf_record_iterator(path) .. 396

TFRecords Format Details .. 397

Neural Network ... 397

Activation Functions ... 399

tf.nn.relu(features, name=None) ... 400

tf.nn.relu6(features, name=None) .. 400

tf.nn.elu(features, name=None) ... 401

tf.nn.softplus(features, name=None) ... 401

tf.nn.softsign(features, name=None) ... 402

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,

name=None) ... 402

tf.nn.bias_add(value, bias, name=None) .. 404

tf.sigmoid(x, name=None) .. 404

tf.tanh(x, name=None) ... 405

Convolution .. 406

tf.nn.conv2d(input, filter, strides, padding,

use_cudnn_on_gpu=None, name=None) .. 408

tf.nn.depthwise_conv2d(input, filter, strides, padding,

name=None) ... 409

tf.nn.separable_conv2d(input, depthwise_filter,

pointwise_filter, strides, padding, name=None) 411

tf.nn.conv2d_transpose(value, filter, output_shape,

strides, padding='SAME', name=None) ... 412

Pooling .. 413

tf.nn.avg_pool(value, ksize, strides, padding, name=None)414

tf.nn.max_pool(value, ksize, strides, padding, name=None)415

tf.nn.max_pool_with_argmax(input, ksize, strides, padding,

Targmax=None, name=None) .. 415

Normalization ... 417

tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) 417

tf.nn.local_response_normalization(input,

depth_radius=None, bias=None, alpha=None, beta=None,

name=None) ... 418

tf.nn.moments(x, axes, name=None, keep_dims=False) 419

Losses .. 419

tf.nn.l2_loss(t, name=None) .. 420

Classification ... 420

tf.nn.sigmoid_cross_entropy_with_logits(logits, targets,

name=None) ... 420

tf.nn.softmax(logits, name=None) .. 421

tf.nn.softmax_cross_entropy_with_logits(logits, labels,

name=None) ... 422

tf.nn.sparse_softmax_cross_entropy_with_logits(logits,

labels, name=None) .. 423

Embeddings ... 424

tf.nn.embedding_lookup(params, ids,

partition_strategy='mod', name=None, validate_indices=True)

 ... 425

Evaluation .. 426

tf.nn.top_k(input, k=1, sorted=True, name=None) 427

tf.nn.in_top_k(predictions, targets, k, name=None) 427

Candidate Sampling ... 429

Sampled Loss Functions ... 429

tf.nn.nce_loss(weights, biases, inputs, labels,

num_sampled, num_classes, num_true=1, sampled_values=None,

remove_accidental_hits=False, partition_strategy='mod',

name='nce_loss') ... 429

tf.nn.sampled_softmax_loss(weights, biases, inputs, labels,

num_sampled, num_classes, num_true=1, sampled_values=None,

remove_accidental_hits=True, partition_strategy='mod',

name='sampled_softmax_loss') .. 431

Candidate Samplers ... 433

tf.nn.uniform_candidate_sampler(true_classes, num_true,

num_sampled, unique, range_max, seed=None, name=None) 433

tf.nn.log_uniform_candidate_sampler(true_classes, num_true,

num_sampled, unique, range_max, seed=None, name=None) 435

tf.nn.learned_unigram_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, seed=None,

name=None) ... 437

tf.nn.fixed_unigram_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, vocab_file='',

distortion=1.0, num_reserved_ids=0, num_shards=1, shard=0,

unigrams=(), seed=None, name=None) .. 438

Miscellaneous candidate sampling utilities ... 441

tf.nn.compute_accidental_hits(true_classes,

sampled_candidates, num_true, seed=None, name=None) 441

Running Graphs .. 443

Session management .. 443

class tf.Session ... 444

class tf.InteractiveSession .. 449

tf.get_default_session() .. 451

Error classes .. 451

class tf.OpError ... 451

class tf.errors.CancelledError ... 453

class tf.errors.UnknownError .. 453

class tf.errors.InvalidArgumentError ... 454

class tf.errors.DeadlineExceededError .. 455

class tf.errors.NotFoundError .. 455

class tf.errors.AlreadyExistsError .. 455

class tf.errors.PermissionDeniedError .. 456

class tf.errors.UnauthenticatedError ... 456

class tf.errors.ResourceExhaustedError .. 457

class tf.errors.FailedPreconditionError .. 457

class tf.errors.AbortedError .. 458

class tf.errors.OutOfRangeError ... 458

class tf.errors.UnimplementedError .. 459

class tf.errors.InternalError .. 459

class tf.errors.UnavailableError .. 460

class tf.errors.DataLossError .. 460

Training... 460

Optimizers .. 462

class tf.train.Optimizer .. 462

Usage ... 463

Processing gradients before applying them. .. 463

Gating Gradients ... 468

Slots .. 469

class tf.train.GradientDescentOptimizer .. 470

class tf.train.AdagradOptimizer ... 471

class tf.train.MomentumOptimizer .. 472

class tf.train.AdamOptimizer .. 472

class tf.train.FtrlOptimizer .. 474

class tf.train.RMSPropOptimizer ... 475

Gradient Computation .. 476

tf.gradients(ys, xs, grad_ys=None, name='gradients',

colocate_gradients_with_ops=False, gate_gradients=False,

aggregation_method=None) .. 476

class tf.AggregationMethod ... 478

tf.stop_gradient(input, name=None) .. 478

Gradient Clipping .. 479

tf.clip_by_value(t, clip_value_min, clip_value_max,

name=None) ... 480

tf.clip_by_norm(t, clip_norm, name=None) 481

tf.clip_by_average_norm(t, clip_norm, name=None) 482

tf.clip_by_global_norm(t_list, clip_norm, use_norm=None,

name=None) ... 482

tf.global_norm(t_list, name=None) .. 484

Decaying the learning rate .. 485

tf.train.exponential_decay(learning_rate, global_step,

decay_steps, decay_rate, staircase=False, name=None) 485

Moving Averages .. 486

class tf.train.ExponentialMovingAverage .. 487

Coordinator and QueueRunner .. 493

class tf.train.Coordinator ... 493

class tf.train.QueueRunner ... 498

tf.train.add_queue_runner(qr, collection='queue_runners')503

tf.train.start_queue_runners(sess=None, coord=None,

daemon=True, start=True, collection='queue_runners') 504

Summary Operations ... 504

tf.scalar_summary(tags, values, collections=None,

name=None) ... 505

tf.image_summary(tag, tensor, max_images=3,

collections=None, name=None) .. 505

tf.histogram_summary(tag, values, collections=None,

name=None) ... 507

tf.nn.zero_fraction(value, name=None) .. 508

tf.merge_summary(inputs, collections=None, name=None) 509

tf.merge_all_summaries(key='summaries') .. 509

Adding Summaries to Event Files .. 510

class tf.train.SummaryWriter .. 510

tf.train.summary_iterator(path) ... 514

Training utilities ... 515

tf.train.global_step(sess, global_step_tensor) 515

tf.train.write_graph(graph_def, logdir, name, as_text=True)

 ... 516

Other Functions and Classes.. 516

class tf.train.LooperThread .. 517

tf.train.export_meta_graph(filename=None,

meta_info_def=None, graph_def=None, saver_def=None,

collection_list=None, as_text=False) ... 522

tf.train.generate_checkpoint_state_proto(save_dir,

model_checkpoint_path, all_model_checkpoint_paths=None) ... 523

tf.train.import_meta_graph(meta_graph_or_file) 523

Wraps python functions ... 524

Script Language Operators. .. 524

Other Functions and Classes.. 525

tf.py_func(func, inp, Tout, name=None) .. 525

Testing .. 525

Unit tests .. 526

tf.test.main() ... 526

Utilities .. 527

tf.test.assert_equal_graph_def(actual, expected) 527

tf.test.get_temp_dir() .. 527

tf.test.is_built_with_cuda() .. 528

Gradient checking ... 528

tf.test.compute_gradient(x, x_shape, y, y_shape,

x_init_value=None, delta=0.001, init_targets=None) 528

tf.test.compute_gradient_error(x, x_shape, y, y_shape,

x_init_value=None, delta=0.001, init_targets=None) 529

Layers (contrib) ... 530

Higher level ops for building neural network layers. .. 531

tf.contrib.layers.convolution2d(x, num_output_channels,

kernel_size, activation_fn=None, stride=(1, 1),

padding='SAME', weight_init=_initializer,

bias_init=_initializer, name=None, weight_collections=None,

bias_collections=None, output_collections=None,

weight_regularizer=None, bias_regularizer=None) 531

tf.contrib.layers.fully_connected(x, num_output_units,

activation_fn=None, weight_init=_initializer,

bias_init=_initializer, name=None,

weight_collections=('weights',),

bias_collections=('biases',),

output_collections=('activations',),

weight_regularizer=None, bias_regularizer=None) 534

Regularizers... 536

tf.contrib.layers.l1_regularizer(scale) .. 536

tf.contrib.layers.l2_regularizer(scale) .. 537

Initializers ... 538

tf.contrib.layers.xavier_initializer(uniform=True,

seed=None, dtype=tf.float32) .. 538

tf.contrib.layers.xavier_initializer_conv2d(uniform=True,

seed=None, dtype=tf.float32) .. 539

Summaries ... 540

tf.contrib.layers.summarize_activation(op)................................... 540

tf.contrib.layers.summarize_tensor(tensor)................................... 540

tf.contrib.layers.summarize_tensors(tensors,

summarizer=summarize_tensor) .. 541

tf.contrib.layers.summarize_collection(collection,

name_filter=None, summarizer=summarize_tensor) 541

tf.contrib.layers.summarize_activations(name_filter=None,

summarizer=summarize_activation) .. 542

Other Functions and Classes.. 542

tf.contrib.layers.assert_same_float_dtype(tensors=None,

dtype=None) ... 542

Utilities (contrib) .. 543

Miscellaneous Utility Functions .. 543

tf.contrib.util.constant_value(tensor) .. 543

tf.contrib.util.make_tensor_proto(values, dtype=None,

shape=None) ... 544

Building Graphs

Contents

 Building Graphs
 Core graph data structures
 class tf.Graph
 class tf.Operation
 class tf.Tensor

 Tensor types
 class tf.DType
 tf.as_dtype(type_value)

 Utility functions
 tf.device(dev)
 tf.name_scope(name)
 tf.control_dependencies(control_inputs)
 tf.convert_to_tensor(value, dtype=None, name=None,

as_ref=False)
 tf.convert_to_tensor_or_indexed_slices(value, dtype=None,

name=None, as_ref=False)
 tf.get_default_graph()
 tf.reset_default_graph()
 tf.import_graph_def(graph_def, input_map=None,

return_elements=None, name=None, op_dict=None)
 tf.load_op_library(library_filename)

 Graph collections
 tf.add_to_collection(name, value)
 tf.get_collection(key, scope=None)
 class tf.GraphKeys

 Defining new operations
 class tf.RegisterGradient
 tf.NoGradient(op_type)
 class tf.RegisterShape
 class tf.TensorShape
 class tf.Dimension
 tf.op_scope(values, name, default_name=None)
 tf.get_seed(op_seed)

 For libraries building on TensorFlow
 tf.register_tensor_conversion_function(base_type,

conversion_func, priority=100)

 Other Functions and Classes

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#building-graphs
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#core-graph-data-structures
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#tensor-types
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#DType
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#as_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#utility-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#device
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#name_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#control_dependencies
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor_or_indexed_slices
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor_or_indexed_slices
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_default_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#reset_default_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#import_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#import_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#load_op_library
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#graph-collections
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#add_to_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#GraphKeys
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#defining-new-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#RegisterGradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#NoGradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#RegisterShape
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#TensorShape
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Dimension
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#op_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_seed
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#for-libraries-building-on-tensorflow
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#register_tensor_conversion_function
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#register_tensor_conversion_function
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#other-functions-and-classes

 class tf.bytes

Classes and functions for building TensorFlow graphs.

Core graph data structures

class tf.Graph

A TensorFlow computation, represented as a dataflow graph.

A Graph contains a set of Operation objects, which represent units

of computation; and Tensor objects, which represent the units of data

that flow between operations.

A default Graph is always registered, and accessible by

calling tf.get_default_graph(). To add an operation to the default

graph, simply call one of the functions that defines a new Operation:

c = tf.constant(4.0)

assert c.graph is tf.get_default_graph()

Another typical usage involves the Graph.as_default() context

manager, which overrides the current default graph for the lifetime of
the context:
g = tf.Graph()

with g.as_default():

 # Define operations and tensors in `g`.

 c = tf.constant(30.0)

 assert c.graph is g

Important note: This class is not thread-safe for graph construction.
All operations should be created from a single thread, or external
synchronization must be provided. Unless otherwise specified, all
methods are not thread-safe.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#bytes
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#get_default_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.as_default

tf.Graph.__init__()

Creates a new, empty Graph.

tf.Graph.as_default()

Returns a context manager that makes this Graph the default graph.

This method should be used if you want to create multiple graphs in
the same process. For convenience, a global default graph is
provided, and all ops will be added to this graph if you do not create a

new graph explicitly. Use this method the with keyword to specify

that ops created within the scope of a block should be added to this
graph.
The default graph is a property of the current thread. If you create a
new thread, and wish to use the default graph in that thread, you

must explicitly add a with g.as_default(): in that thread's

function.

The following code examples are equivalent:

1. Using Graph.as_default():

g = tf.Graph()

with g.as_default():

 c = tf.constant(5.0)

 assert c.graph is g

2. Constructing and making default:

with tf.Graph().as_default() as g:

 c = tf.constant(5.0)

 assert c.graph is g

Returns:

A context manager for using this graph as the default graph.

tf.Graph.as_graph_def(from_version=None,

add_shapes=False)

Returns a serialized GraphDef representation of this graph.

The serialized GraphDef can be imported into

another Graph (using import_graph_def()) or used with theC++

Session API.

This method is thread-safe.

Args:

 from_version: Optional. If this is set, returns a GraphDef containing

only the nodes that were added to this graph since

its version property had the given value.

 add_shapes: If true, adds an "_output_shapes" list attr to each node

with the inferred shapes of each of its outputs.

Returns:

A GraphDef protocol buffer.

Raises:

 ValueError: If the graph_def would be too large.

tf.Graph.finalize()

Finalizes this graph, making it read-only.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#import_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/cc/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/cc/index.html
https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

After calling g.finalize(), no new operations can be added to g.

This method is used to ensure that no operations are added to a
graph when it is shared between multiple threads, for example when

using aQueueRunner.

tf.Graph.finalized

True if this graph has been finalized.

tf.Graph.control_dependencies(control_inputs)

Returns a context manager that specifies control dependencies.

Use with the with keyword to specify that all operations constructed

within the context should have control dependencies

on control_inputs. For example:

with g.control_dependencies([a, b, c]):

 # `d` and `e` will only run after `a`, `b`, and `c` have

executed.

 d = ...

 e = ...

Multiple calls to control_dependencies() can be nested, and in that

case a new Operation will have control dependencies on the union

of control_inputs from all active contexts.

with g.control_dependencies([a, b]):

 # Ops constructed here run after `a` and `b`.

 with g.control_dependencies([c, d]):

 # Ops constructed here run after `a`, `b`, `c`, and `d`.

You can pass None to clear the control dependencies:

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#QueueRunner

with g.control_dependencies([a, b]):

 # Ops constructed here run after `a` and `b`.

 with g.control_dependencies(None):

 # Ops constructed here run normally, not waiting for either

`a` or `b`.

 with g.control_dependencies([c, d]):

 # Ops constructed here run after `c` and `d`, also not

waiting

 # for either `a` or `b`.

N.B. The control dependencies context applies only to ops that are
constructed within the context. Merely using an op or tensor in the
context does not add a control dependency. The following example
illustrates this point:
WRONG

def my_func(pred, tensor):

 t = tf.matmul(tensor, tensor)

 with tf.control_dependencies([pred]):

 # The matmul op is created outside the context, so no control

 # dependency will be added.

 return t

RIGHT

def my_func(pred, tensor):

 with tf.control_dependencies([pred]):

 # The matmul op is created in the context, so a control

dependency

 # will be added.

 return tf.matmul(tensor, tensor)

Args:

 control_inputs: A list of Operation or Tensor objects which must

be executed or computed before running the operations defined in

the context. Can also be None to clear the control dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

Raises:

 TypeError: If control_inputs is not a list

of Operation or Tensor objects.

tf.Graph.device(device_name_or_function)

Returns a context manager that specifies the default device to use.

The device_name_or_function argument may either be a device

name string, a device function, or None:
 If it is a device name string, all operations constructed in this context

will be assigned to the device with that name, unless overridden by a

nested device() context.

 If it is a function, it will be treated as function from Operation objects
to device name strings, and invoked each time a new Operation is
created. The Operation will be assigned to the device with the
returned name.

 If it is None, all device() invocations from the enclosing context will

be ignored.

For example:

with g.device('/gpu:0'):

 # All operations constructed in this context will be placed

 # on GPU 0.

 with g.device(None):

 # All operations constructed in this context will have no

 # assigned device.

Defines a function from `Operation` to device string.

def matmul_on_gpu(n):

 if n.type == "MatMul":

 return "/gpu:0"

 else:

 return "/cpu:0"

with g.device(matmul_on_gpu):

 # All operations of type "MatMul" constructed in this context

 # will be placed on GPU 0; all other operations will be placed

 # on CPU 0.

Args:

 device_name_or_function: The device name or function to use in

the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.Graph.name_scope(name)

Returns a context manager that creates hierarchical names for
operations.

A graph maintains a stack of name scopes. A with

name_scope(...): statement pushes a new name onto the stack for

the lifetime of the context.

The name argument will be interpreted as follows:

 A string (not ending with '/') will create a new name scope, in

which name is appended to the prefix of all operations created in the

context. If name has been used before, it will be made unique by

callingself.unique_name(name).

 A scope previously captured from a with g.name_scope(...) as

scope: statement will be treated as an "absolute" name scope, which

makes it possible to re-enter existing scopes.

 A value of None or the empty string will reset the current name scope

to the top-level (empty) name scope.

For example:

with tf.Graph().as_default() as g:

 c = tf.constant(5.0, name="c")

 assert c.op.name == "c"

 c_1 = tf.constant(6.0, name="c")

 assert c_1.op.name == "c_1"

 # Creates a scope called "nested"

 with g.name_scope("nested") as scope:

 nested_c = tf.constant(10.0, name="c")

 assert nested_c.op.name == "nested/c"

 # Creates a nested scope called "inner".

 with g.name_scope("inner"):

 nested_inner_c = tf.constant(20.0, name="c")

 assert nested_inner_c.op.name == "nested/inner/c"

 # Create a nested scope called "inner_1".

 with g.name_scope("inner"):

 nested_inner_1_c = tf.constant(30.0, name="c")

 assert nested_inner_1_c.op.name == "nested/inner_1/c"

 # Treats `scope` as an absolute name scope, and

 # switches to the "nested/" scope.

 with g.name_scope(scope):

 nested_d = tf.constant(40.0, name="d")

 assert nested_d.op.name == "nested/d"

 with g.name_scope(""):

 e = tf.constant(50.0, name="e")

 assert e.op.name == "e"

The name of the scope itself can be captured by with

g.name_scope(...) as scope:, which stores the name of the scope

in the variable scope. This value can be used to name an operation

that represents the overall result of executing the ops in a scope. For
example:
inputs = tf.constant(...)

with g.name_scope('my_layer') as scope:

 weights = tf.Variable(..., name="weights")

 biases = tf.Variable(..., name="biases")

 affine = tf.matmul(inputs, weights) + biases

 output = tf.nn.relu(affine, name=scope)

Args:

 name: A name for the scope.

Returns:

A context manager that installs name as a new name scope.

A Graph instance supports an arbitrary number of "collections" that

are identified by name. For convenience when building a large graph,
collections can store groups of related objects: for example,

the tf.Variable uses a collection

(named tf.GraphKeys.VARIABLES) for all variables that are created

during the construction of a graph. The caller may define additional
collections by specifying a new name.

tf.Graph.add_to_collection(name, value)

Stores value in the collection with the given name.

Note that collections are not sets, so it is possible to add a value to a
collection several times.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#GraphKeys

Args:

 name: The key for the collection. The GraphKeys class contains many

standard names for collections.

 value: The value to add to the collection.

tf.Graph.get_collection(name, scope=None)

Returns a list of values in the collection with the given name.

Args:

 name: The key for the collection. For example, the GraphKeys class

contains many standard names for collections.

 scope: (Optional.) If supplied, the resulting list is filtered to include

only items whose name begins with this string.

Returns:

The list of values in the collection with the given name, or an empty

list if no value has been added to that collection. The list contains the
values in the order under which they were collected.

tf.Graph.as_graph_element(obj, allow_tensor=True,

allow_operation=True)

Returns the object referred to by obj, as an Operation or Tensor.

This function validates that obj represents an element of this graph,

and gives an informative error message if it is not.

This function is the canonical way to get/validate an object of one of
the allowed types from an external argument reference in the
Session API.

This method may be called concurrently from multiple threads.

Args:

 obj: A Tensor, an Operation, or the name of a tensor or operation.

Can also be any object with an_as_graph_element() method that

returns a value of one of these types.

 allow_tensor: If true, obj may refer to a Tensor.

 allow_operation: If true, obj may refer to an Operation.

Returns:

The Tensor or Operation in the Graph corresponding to obj.

Raises:

 TypeError: If obj is not a type we support attempting to convert to

types.

 ValueError: If obj is of an appropriate type but invalid. For example,

an invalid string.

 KeyError: If obj is not an object in the graph.

tf.Graph.get_operation_by_name(name)

Returns the Operation with the given name.

This method may be called concurrently from multiple threads.

Args:

 name: The name of the Operation to return.

Returns:

The Operation with the given name.

Raises:

 TypeError: If name is not a string.

 KeyError: If name does not correspond to an operation in this graph.

tf.Graph.get_tensor_by_name(name)

Returns the Tensor with the given name.

This method may be called concurrently from multiple threads.

Args:

 name: The name of the Tensor to return.

Returns:

The Tensor with the given name.

Raises:

 TypeError: If name is not a string.

 KeyError: If name does not correspond to a tensor in this graph.

tf.Graph.get_operations()

Return the list of operations in the graph.

You can modify the operations in place, but modifications to the list
such as inserts/delete have no effect on the list of operations known
to the graph.

This method may be called concurrently from multiple threads.

Returns:

A list of Operations.

tf.Graph.seed

tf.Graph.unique_name(name)

Return a unique operation name for name.

Note: You rarely need to call unique_name() directly. Most of the

time you just need to create with g.name_scope() blocks to

generate structured names.

unique_name is used to generate structured names, separated

by "/", to help identify operations when debugging a graph.

Operation names are displayed in error messages reported by the
TensorFlow runtime, and in various visualization tools such as
TensorBoard.

Args:

 name: The name for an operation.

Returns:

A string to be passed to create_op() that will be used to name the

operation being created.

tf.Graph.version

Returns a version number that increases as ops are added to the
graph.

Note that this is unrelated to the GraphDef version.

tf.Graph.graph_def_versions

The GraphDef version information of this graph.

For details on the meaning of each version, see GraphDef.

Returns:

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.graph_def_version
https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

A VersionDef.

tf.Graph.create_op(op_type, inputs, dtypes,

input_types=None, name=None, attrs=None, op_def=None,

compute_shapes=True, compute_device=True)

Creates an Operation in this graph.

This is a low-level interface for creating an Operation. Most

programs will not call this method directly, and instead use the

Python op constructors, such as tf.constant(), which add ops to

the default graph.

Args:

 op_type: The Operation type to create. This corresponds to

the OpDef.name field for the proto that defines the operation.

 inputs: A list of Tensor objects that will be inputs to the Operation.

 dtypes: A list of DType objects that will be the types of the tensors

that the operation produces.

 input_types: (Optional.) A list of DTypes that will be the types of the

tensors that the operation consumes. By default, uses the

base DType of each input in inputs. Operations that expect

reference-typed inputs must specify input_types explicitly.

 name: (Optional.) A string name for the operation. If not specified, a

name is generated based on op_type.

 attrs: (Optional.) A dictionary where the key is the attribute name (a

string) and the value is the respectiveattr attribute of

the NodeDef proto that will represent the operation

(an AttrValue proto).

 op_def: (Optional.) The OpDef proto that describes the op_type that

the operation will have.

 compute_shapes: (Optional.) If True, shape inference will be

performed to compute the shapes of the outputs.

 compute_device: (Optional.) If True, device functions will be

executed to compute the device property of the Operation.

Raises:

 TypeError: if any of the inputs is not a Tensor.

Returns:

An Operation object.

tf.Graph.gradient_override_map(op_type_map)

EXPERIMENTAL: A context manager for overriding gradient
functions.

This context manager can be used to override the gradient function
that will be used for ops within the scope of the context.

For example:

@tf.RegisterGradient("CustomSquare")

def _custom_square_grad(op, inputs):

 # ...

with tf.Graph().as_default() as g:

 c = tf.constant(5.0)

 s_1 = tf.square(c) # Uses the default gradient for tf.square.

 with g.gradient_override_map({"Square": "CustomSquare"}):

 s_2 = tf.square(s_2) # Uses _custom_square_grad to compute

the

 # gradient of s_2.

Args:

 op_type_map: A dictionary mapping op type strings to alternative op

type strings.

Returns:

A context manager that sets the alternative op type to be used for
one or more ops created in that context.

Raises:

 TypeError: If op_type_map is not a dictionary mapping strings to

strings.

Other Methods

tf.Graph.add_to_collections(names, value)

Stores value in the collections given by names.

Note that collections are not sets, so it is possible to add a value to a
collection several times. This function makes sure that duplicates

in names are ignored, but it will not check for pre-existing membership

of value in any of the collections in names.

Args:

 names: The keys for the collections to add to. The GraphKeys class

contains many standard names for collections.

 value: The value to add to the collections.

tf.Graph.get_all_collection_keys()

Returns a list of collections used in this graph.

class tf.Operation

Represents a graph node that performs computation on tensors.

An Operation is a node in a TensorFlow Graph that takes zero or

more Tensor objects as input, and produces zero or

more Tensor objects as output. Objects of type Operation are

created by calling a Python op constructor (such as tf.matmul())

or Graph.create_op().

For example c = tf.matmul(a, b) creates an Operation of type

"MatMul" that takes tensors a and b as input, and produces c as

output.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.create_op

After the graph has been launched in a session, an Operation can

be executed by passing it toSession.run(). op.run() is a shortcut

for calling tf.get_default_session().run(op).

tf.Operation.name

The full name of this operation.

tf.Operation.type

The type of the op (e.g. "MatMul").

tf.Operation.inputs

The list of Tensor objects representing the data inputs of this op.

tf.Operation.control_inputs

The Operation objects on which this op has a control dependency.

Before this op is executed, TensorFlow will ensure that the

operations in self.control_inputs have finished executing. This

mechanism can be used to run ops sequentially for performance
reasons, or to ensure that the side effects of an op are observed in
the correct order.

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run

Returns:

A list of Operation objects.

tf.Operation.outputs

The list of Tensor objects representing the outputs of this op.

tf.Operation.device

The name of the device to which this op has been assigned, if any.

Returns:

The string name of the device to which this op has been assigned, or
an empty string if it has not been assigned to a device.

tf.Operation.graph

The Graph that contains this operation.

tf.Operation.run(feed_dict=None, session=None)

Runs this operation in a Session.

Calling this method will execute all preceding operations that produce
the inputs needed for this operation.

N.B. Before invoking Operation.run(), its graph must have been

launched in a session, and either a default session must be available,

or session must be specified explicitly.

Args:

 feed_dict: A dictionary that maps Tensor objects to feed values.

See Session.run() for a description of the valid feed values.

 session: (Optional.) The Session to be used to run to this operation.

If none, the default session will be used.

tf.Operation.get_attr(name)

Returns the value of the attr of this op with the given name.

Args:

 name: The name of the attr to fetch.

Returns:

The value of the attr, as a Python object.

Raises:

 ValueError: If this op does not have an attr with the given name.

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run

tf.Operation.traceback

Returns the call stack from when this operation was constructed.

Other Methods

tf.Operation.__init__(node_def, g, inputs=None,

output_types=None, control_inputs=None, input_types=None,

original_op=None, op_def=None)

Creates an Operation.

NOTE: This constructor validates the name of

the Operation (passed as node_def.name). Valid Operationnames

match the following regular expression:
[A-Za-z0-9.][A-Za-z0-9_.\-/]*

Args:

 node_def: graph_pb2.NodeDef. NodeDef for the Operation. Used for

attributes ofgraph_pb2.NodeDef, typically name, op, and device.

The input attribute is irrelevant here as it will be computed when

generating the model.

 g: Graph. The parent graph.

 inputs: list of Tensor objects. The inputs to this Operation.

 output_types: list of DType objects. List of the types of

the Tensors computed by this operation. The length of this list

indicates the number of output endpoints of the Operation.

 control_inputs: list of operations or tensors from which to have a

control dependency.

 input_types: List of DType objects representing the types of the

tensors accepted by the Operation. By default

uses [x.dtype.base_dtype for x in inputs]. Operations that

expect reference-typed inputs must specify these explicitly.

 original_op: Optional. Used to associate the new Operation with

an existing Operation (for example, a replica with the op that was

replicated).

 op_def: Optional. The op_def_pb2.OpDef proto that describes the op

type that this Operationrepresents.

Raises:

 TypeError: if control inputs are not Operations or Tensors, or

if node_def is not a NodeDef, or if g is not aGraph, or if inputs are

not tensors, or if inputs and input_types are incompatible.

 ValueError: if the node_def name is not valid.

tf.Operation.node_def

Returns a serialized NodeDef representation of this operation.

Returns:

A NodeDef protocol buffer.

https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

tf.Operation.op_def

Returns the OpDef proto that represents the type of this op.

Returns:

An OpDef protocol buffer.

tf.Operation.values()

DEPRECATED: Use outputs.

class tf.Tensor

Represents a value produced by an Operation.

A Tensor is a symbolic handle to one of the outputs of an Operation.

It does not hold the values of that operation's output, but instead
provides a means of computing those values in a

TensorFlow Session.

This class has two primary purposes:

1. A Tensor can be passed as an input to another Operation. This

builds a dataflow connection between operations, which enables

TensorFlow to execute an entire Graph that represents a large, multi-

step computation.
2. After the graph has been launched in a session, the value of

the Tensor can be computed by passing it

https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session

toSession.run(). t.eval() is a shortcut for

calling tf.get_default_session().run(t).

In the following example, c, d, and e are symbolic Tensor objects,

whereas result is a numpy array that stores a concrete value:

Build a dataflow graph.

c = tf.constant([[1.0, 2.0], [3.0, 4.0]])

d = tf.constant([[1.0, 1.0], [0.0, 1.0]])

e = tf.matmul(c, d)

Construct a `Session` to execute the graph.

sess = tf.Session()

Execute the graph and store the value that `e` represents in

`result`.

result = sess.run(e)

tf.Tensor.dtype

The DType of elements in this tensor.

tf.Tensor.name

The string name of this tensor.

tf.Tensor.value_index

The index of this tensor in the outputs of its Operation.

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run

tf.Tensor.graph

The Graph that contains this tensor.

tf.Tensor.op

The Operation that produces this tensor as an output.

tf.Tensor.consumers()

Returns a list of Operations that consume this tensor.

Returns:

A list of Operations.

tf.Tensor.eval(feed_dict=None, session=None)

Evaluates this tensor in a Session.

Calling this method will execute all preceding operations that produce
the inputs needed for the operation that produces this tensor.

N.B. Before invoking Tensor.eval(), its graph must have been

launched in a session, and either a default session must be available,

or session must be specified explicitly.

Args:

 feed_dict: A dictionary that maps Tensor objects to feed values.

See Session.run() for a description of the valid feed values.

 session: (Optional.) The Session to be used to evaluate this tensor.

If none, the default session will be used.

Returns:

A numpy array corresponding to the value of this tensor.

tf.Tensor.get_shape()

Returns the TensorShape that represents the shape of this tensor.

The shape is computed using shape inference functions that are

registered for each Operation type usingtf.RegisterShape.

See TensorShape for more details of what a shape represents.

The inferred shape of a tensor is used to provide shape information
without having to launch the graph in a session. This can be used for
debugging, and providing early error messages. For example:

c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

print(c.get_shape())

==> TensorShape([Dimension(2), Dimension(3)])

d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])

print(d.get_shape())

==> TensorShape([Dimension(4), Dimension(2)])

Raises a ValueError, because `c` and `d` do not have compatible

inner dimensions.

e = tf.matmul(c, d)

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.run
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#TensorShape

f = tf.matmul(c, d, transpose_a=True, transpose_b=True)

print(f.get_shape())

==> TensorShape([Dimension(3), Dimension(4)])

In some cases, the inferred shape may have unknown dimensions. If
the caller has additional information about the values of these

dimensions, Tensor.set_shape() can be used to augment the

inferred shape.

Returns:

A TensorShape representing the shape of this tensor.

tf.Tensor.set_shape(shape)

Updates the shape of this tensor.

This method can be called multiple times, and will merge the

given shape with the current shape of this tensor. It can be used to

provide additional information about the shape of this tensor that
cannot be inferred from the graph alone. For example, this can be
used to provide additional information about the shapes of images:
_, image_data = tf.TFRecordReader(...).read(...)

image = tf.image.decode_png(image_data, channels=3)

The height and width dimensions of `image` are data dependent,

and

cannot be computed without executing the op.

print(image.get_shape())

==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

We know that each image in this dataset is 28 x 28 pixels.

image.set_shape([28, 28, 3])

print(image.get_shape())

==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])

Args:

 shape: A TensorShape representing the shape of this tensor.

Raises:

 ValueError: If shape is not compatible with the current shape of this

tensor.

Other Methods

tf.Tensor.__init__(op, value_index, dtype)

Creates a new Tensor.

Args:

 op: An Operation. Operation that computes this tensor.

 value_index: An int. Index of the operation's endpoint that

produces this tensor.

 dtype: A DType. Type of elements stored in this tensor.

Raises:

 TypeError: If the op is not an Operation.

tf.Tensor.device

The name of the device on which this tensor will be produced, or
None.

Tensor types

class tf.DType

Represents the type of the elements in a Tensor.

The following DType objects are defined:

 tf.float32: 32-bit single-precision floating-point.

 tf.float64: 64-bit double-precision floating-point.

 tf.bfloat16: 16-bit truncated floating-point.

 tf.complex64: 64-bit single-precision complex.

 tf.int8: 8-bit signed integer.

 tf.uint8: 8-bit unsigned integer.

 tf.uint16: 16-bit unsigned integer.

 tf.int16: 16-bit signed integer.

 tf.int32: 32-bit signed integer.

 tf.int64: 64-bit signed integer.

 tf.bool: Boolean.

 tf.string: String.

 tf.qint8: Quantized 8-bit signed integer.

 tf.quint8: Quantized 8-bit unsigned integer.

 tf.qint16: Quantized 16-bit signed integer.

 tf.quint16: Quantized 16-bit unsigned integer.

 tf.qint32: Quantized 32-bit signed integer.

In addition, variants of these types with the _ref suffix are defined for

reference-typed tensors.

The tf.as_dtype() function converts numpy types and string type

names to a DType object.

tf.DType.is_compatible_with(other)

Returns True if the other DType will be converted to this DType.

The conversion rules are as follows:

DType(T) .is_compatible_with(DType(T)) == True

DType(T) .is_compatible_with(DType(T).as_ref) == True

DType(T).as_ref.is_compatible_with(DType(T)) == False

DType(T).as_ref.is_compatible_with(DType(T).as_ref) == True

Args:

 other: A DType (or object that may be converted to a DType).

Returns:

True if a Tensor of the other DType will be implicitly converted to

this DType.

tf.DType.name

Returns the string name for this DType.

tf.DType.base_dtype

Returns a non-reference DType based on this DType.

tf.DType.is_ref_dtype

Returns True if this DType represents a reference type.

tf.DType.as_ref

Returns a reference DType based on this DType.

tf.DType.is_floating

Returns whether this is a (real) floating point type.

tf.DType.is_integer

Returns whether this is a (non-quantized) integer type.

tf.DType.is_quantized

Returns whether this is a quantized data type.

tf.DType.is_unsigned

Returns whether this type is unsigned.

Non-numeric, unordered, and quantized types are not considered

unsigned, and this function returns False.

Returns:

Whether a DType is unsigned.

tf.DType.as_numpy_dtype

Returns a numpy.dtype based on this DType.

tf.DType.as_datatype_enum

Returns a types_pb2.DataType enum value based on this DType.

Other Methods

tf.DType.__init__(type_enum)

Creates a new DataType.

NOTE(mrry): In normal circumstances, you should not need to

construct a DataType object directly. Instead, use

the tf.as_dtype() function.

Args:

 type_enum: A types_pb2.DataType enum value.

Raises:

 TypeError: If type_enum is not a value types_pb2.DataType.

tf.DType.max

Returns the maximum representable value in this data type.

Raises:

 TypeError: if this is a non-numeric, unordered, or quantized type.

tf.DType.min

Returns the minimum representable value in this data type.

Raises:

 TypeError: if this is a non-numeric, unordered, or quantized type.

tf.as_dtype(type_value)

Converts the given type_value to a DType.

Args:

 type_value: A value that can be converted to a tf.DType object.

This may currently be a tf.DTypeobject, a DataType enum, a string

type name, or a numpy.dtype.

Returns:

A DType corresponding to type_value.

Raises:

 TypeError: If type_value cannot be converted to a DType.

Utility functions

tf.device(dev)

https://www.tensorflow.org/code/tensorflow/core/framework/types.proto

Wrapper for Graph.device() using the default graph.

See Graph.device() for more details.

Args:

 device_name_or_function: The device name or function to use in

the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.name_scope(name)

Wrapper for Graph.name_scope() using the default graph.

See Graph.name_scope() for more details.

Args:

 name: A name for the scope.

Returns:

A context manager that installs name as a new name scope in the

default graph.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.device
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.name_scope

tf.control_dependencies(control_inputs)

Wrapper for Graph.control_dependencies() using the default

graph.

See Graph.control_dependencies() for more details.

Args:

 control_inputs: A list of Operation or Tensor objects which must

be executed or computed before running the operations defined in

the context. Can also be None to clear the control dependencies.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

tf.convert_to_tensor(value, dtype=None, name=None,

as_ref=False)

Converts the given value to a Tensor.

This function converts Python objects of various types

to Tensor objects. It accepts Tensor objects, numpy arrays, Python

lists, and Python scalars. For example:
import numpy as np

array = np.random.rand(32, 100, 100)

def my_func(arg):

 arg = tf.convert_to_tensor(arg, dtype=tf.float32)

 return tf.matmul(arg, arg) + arg

The following calls are equivalent.

value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))

value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.control_dependencies

value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]],

dtype=np.float32))

This function can be useful when composing a new operation in

Python (such as my_func in the example above). All standard Python

op constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,

and scalars in addition to Tensor objects.

Args:

 value: An object whose type has a registered Tensor conversion

function.

 dtype: Optional element type for the returned tensor. If missing, the

type is inferred from the type of value.

 name: Optional name to use if a new Tensor is created.

 as_ref: True if we want the result as a ref tensor.

Returns:

A Tensor based on value.

Raises:

 TypeError: If no conversion function is registered for value.

 RuntimeError: If a registered conversion function returns an invalid

value.

tf.convert_to_tensor_or_indexed_slices(value, dtype=None,

name=None, as_ref=False)

Converts the given object to a Tensor or an IndexedSlices.

If value is an IndexedSlices it is returned unmodified. Otherwise, it

is converted to a Tensor usingconvert_to_tensor().

Args:

 value: An IndexedSlices or an object that can be consumed

by convert_to_tensor().

 dtype: (Optional.) The required DType of the

returned Tensor or IndexedSlices.

 name: (Optional.) A name to use if a new Tensor is created.

 as_ref: True if the caller wants the results as ref tensors.

Returns:

An Tensor or an IndexedSlices based on value.

Raises:

 ValueError: If dtype does not match the element type of value.

tf.get_default_graph()

Returns the default graph for the current thread.

The returned graph will be the innermost graph on which

a Graph.as_default() context has been entered, or a global default

graph if none has been explicitly created.
NOTE: The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that thread,

you must explicitly add a with g.as_default(): in that thread's

function.

Returns:

The default Graph being used in the current thread.

tf.reset_default_graph()

Clears the default graph stack and resets the global default graph.

NOTE: The default graph is a property of the current thread. This
function applies only to the current thread. Calling this function while

a tf.Session or tf.InteractiveSession is active will result in

undefined behavior. Using any previously

created tf.Operation or tf.Tensor objects after calling this function

will result in undefined behavior.

tf.import_graph_def(graph_def, input_map=None,

return_elements=None, name=None, op_dict=None)

Imports the TensorFlow graph in graph_def into the Python Graph.

This function provides a way to import a serialized

TensorFlow GraphDef protocol buffer, and extract individual objects

https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto

in the GraphDef as Tensor and Operation objects.

See Graph.as_graph_def() for a way to create a GraphDef proto.

Args:

 graph_def: A GraphDef proto containing operations to be imported

into the default graph.

 input_map: A dictionary mapping input names (as strings)

in graph_def to Tensor objects. The values of the named input

tensors in the imported graph will be re-mapped to the

respective Tensor values.

 return_elements: A list of strings containing operation names

in graph_def that will be returned asOperation objects; and/or

tensor names in graph_def that will be returned as Tensor objects.

 name: (Optional.) A prefix that will be prepended to the names

in graph_def. Defaults to "import".

 op_dict: (Optional.) A dictionary mapping op type names

to OpDef protos. Must contain an OpDef proto for each op type named

in graph_def. If omitted, uses the OpDef protos registered in the

global registry.

Returns:

A list of Operation and/or Tensor objects from the imported graph,

corresponding to the names inreturn_elements.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.as_graph_def

Raises:

 TypeError: If graph_def is not a GraphDef proto, input_map is not a

dictionary mapping strings toTensor objects, or return_elements is

not a list of strings.

 ValueError: If input_map, or return_elements contains names that

do not appear in graph_def, orgraph_def is not well-formed (e.g. it

refers to an unknown tensor).

tf.load_op_library(library_filename)

Loads a TensorFlow plugin, containing custom ops and kernels.

Pass "library_filename" to a platform-specific mechanism for
dynamically loading a library. The rules for determining the exact
location of the library are platform-specific and are not documented
here. Expects the symbols "RegisterOps", "RegisterKernels", and
"GetOpList", to be defined in the library.

Args:

 library_filename: Path to the plugin. Relative or absolute

filesystem path to a dynamic library file.

Returns:

A python module containing the Python wrappers for Ops defined in
the plugin.

Raises:

 RuntimeError: when unable to load the library or get the python

wrappers.

Graph collections

tf.add_to_collection(name, value)

Wrapper for Graph.add_to_collection() using the default graph.

See Graph.add_to_collection() for more details.

Args:

 name: The key for the collection. For example, the GraphKeys class

contains many standard names for collections.

 value: The value to add to the collection.

tf.get_collection(key, scope=None)

Wrapper for Graph.get_collection() using the default graph.

See Graph.get_collection() for more details.

Args:

 key: The key for the collection. For example, the GraphKeys class

contains many standard names for collections.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.add_to_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Graph.get_collection

 scope: (Optional.) If supplied, the resulting list is filtered to include

only items whose name begins with this string.

Returns:

The list of values in the collection with the given name, or an empty

list if no value has been added to that collection. The list contains the
values in the order under which they were collected.

class tf.GraphKeys

Standard names to use for graph collections.

The standard library uses various well-known names to collect and
retrieve values associated with a graph. For example,

the tf.Optimizer subclasses default to optimizing the variables

collected undertf.GraphKeys.TRAINABLE_VARIABLES if none is

specified, but it is also possible to pass an explicit list of variables.

The following standard keys are defined:

 VARIABLES: the Variable objects that comprise a model, and must

be saved and restored together. Seetf.all_variables() for more

details.

 TRAINABLE_VARIABLES: the subset of Variable objects that will be

trained by an optimizer. Seetf.trainable_variables() for more

details.

 SUMMARIES: the summary Tensor objects that have been created in

the graph. Seetf.merge_all_summaries() for more details.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#all_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#trainable_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#merge_all_summaries

 QUEUE_RUNNERS: the QueueRunner objects that are used to produce

input for a computation. Seetf.start_queue_runners() for more

details.

 MOVING_AVERAGE_VARIABLES: the subset of Variable objects that will

also keep moving averages.

Seetf.moving_average_variables() for more details.

 REGULARIZATION_LOSSES: regularization losses collected during

graph construction.

 WEIGHTS: weights inside neural network layers

 BIASES: biases inside neural network layers

 ACTIVATIONS: activations of neural network layers

Defining new operations

class tf.RegisterGradient

A decorator for registering the gradient function for an op type.

This decorator is only used when defining a new op type. For an op

with m inputs and n outputs, the gradient function is a function that

takes the original Operation and n Tensor objects (representing the

gradients with respect to each output of the op), and

returns m Tensor objects (representing the partial gradients with

respect to each input of the op).

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#start_queue_runners
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#moving_average_variables

For example, assuming that operations of type "Sub" take two

inputs x and y, and return a single output x - y, the following

gradient function would be registered:
@tf.RegisterGradient("Sub")

def _sub_grad(unused_op, grad):

 return grad, tf.neg(grad)

The decorator argument op_type is the string type of an operation.

This corresponds to the OpDef.name field for the proto that defines

the operation.

tf.RegisterGradient.__init__(op_type)

Creates a new decorator with op_type as the Operation type.

Args:

 op_type: The string type of an operation. This corresponds to

the OpDef.name field for the proto that defines the operation.

tf.NoGradient(op_type)

Specifies that ops of type op_type do not have a defined gradient.

This function is only used when defining a new op type. It may be

used for ops such as tf.size() that are not differentiable. For

example:
tf.NoGradient("Size")

Args:

 op_type: The string type of an operation. This corresponds to

the OpDef.name field for the proto that defines the operation.

Raises:

 TypeError: If op_type is not a string.

class tf.RegisterShape

A decorator for registering the shape function for an op type.

This decorator is only used when defining a new op type. A shape

function is a function from an Operationobject to a list

of TensorShape objects, with one TensorShape for each output of the

operation.

For example, assuming that operations of type "Sub" take two

inputs x and y, and return a single output x - y, all with the same

shape, the following shape function would be registered:
@tf.RegisterShape("Sub")

def _sub_shape(op):

 return

[op.inputs[0].get_shape().merge_with(op.inputs[1].get_shape())]

The decorator argument op_type is the string type of an operation.

This corresponds to the OpDef.name field for the proto that defines

the operation.

tf.RegisterShape.__init__(op_type)

Saves the op_type as the Operation type.

class tf.TensorShape

Represents the shape of a Tensor.

A TensorShape represents a possibly-partial shape specification for

a Tensor. It may be one of the following:

 Fully-known shape: has a known number of dimensions and a known
size for each dimension.

 Partially-known shape: has a known number of dimensions, and an
unknown size for one or more dimension.

 Unknown shape: has an unknown number of dimensions, and an
unknown size in all dimensions.

If a tensor is produced by an operation of type "Foo", its shape may

be inferred if there is a registered shape function for "Foo".

See tf.RegisterShape() for details of shape functions and how to

register them. Alternatively, the shape may be set explicitly

using Tensor.set_shape().

tf.TensorShape.merge_with(other)

Returns a TensorShape combining the information

in self and other.

The dimensions in self and other are merged elementwise,

according to the rules defined forDimension.merge_with().

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#RegisterShape
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.set_shape

Args:

 other: Another TensorShape.

Returns:

A TensorShape containing the combined information

of self and other.

Raises:

 ValueError: If self and other are not compatible.

tf.TensorShape.concatenate(other)

Returns the concatenation of the dimension in self and other.

N.B. If either self or other is completely unknown, concatenation

will discard information about the other shape. In future, we might
support concatenation that preserves this information for use with
slicing.

Args:

 other: Another TensorShape.

Returns:

A TensorShape whose dimensions are the concatenation of the

dimensions in self and other.

tf.TensorShape.ndims

Returns the rank of this shape, or None if it is unspecified.

tf.TensorShape.dims

Returns a list of Dimensions, or None if the shape is unspecified.

tf.TensorShape.as_list()

Returns a list of integers or None for each dimension.

Returns:

A list of integers or None for each dimension.

tf.TensorShape.as_proto()

Returns this shape as a TensorShapeProto.

tf.TensorShape.is_compatible_with(other)

Returns True iff self is compatible with other.

Two possibly-partially-defined shapes are compatible if there exists a
fully-defined shape that both shapes can represent. Thus,
compatibility allows the shape inference code to reason about
partially-defined shapes. For example:

 TensorShape(None) is compatible with all shapes.

 TensorShape([None, None]) is compatible with all two-dimensional
shapes, such as TensorShape([32, 784]), and also
TensorShape(None). It is not compatible with, for example,
TensorShape([None]) or TensorShape([None, None, None]).

 TensorShape([32, None]) is compatible with all two-dimensional
shapes with size 32 in the 0th dimension, and also
TensorShape([None, None]) and TensorShape(None). It is not
compatible with, for example, TensorShape([32]), TensorShape([32,
None, 1]) or TensorShape([64, None]).

 TensorShape([32, 784]) is compatible with itself, and also
TensorShape([32, None]), TensorShape([None, 784]),
TensorShape([None, None]) and TensorShape(None). It is not
compatible with, for example, TensorShape([32, 1, 784]) or
TensorShape([None]).

The compatibility relation is reflexive and symmetric, but not
transitive. For example, TensorShape([32, 784]) is compatible with
TensorShape(None), and TensorShape(None) is compatible with
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible
with TensorShape([4, 4]).

Args:

 other: Another TensorShape.

Returns:

True iff self is compatible with other.

tf.TensorShape.is_fully_defined()

Returns True iff self is fully defined in every dimension.

tf.TensorShape.with_rank(rank)

Returns a shape based on self with the given rank.

This method promotes a completely unknown shape to one with a
known rank.

Args:

 rank: An integer.

Returns:

A shape that is at least as specific as self with the given rank.

Raises:

 ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.with_rank_at_least(rank)

Returns a shape based on self with at least the given rank.

Args:

 rank: An integer.

Returns:

A shape that is at least as specific as self with at least the given

rank.

Raises:

 ValueError: If self does not represent a shape with at least the

given rank.

tf.TensorShape.with_rank_at_most(rank)

Returns a shape based on self with at most the given rank.

Args:

 rank: An integer.

Returns:

A shape that is at least as specific as self with at most the given

rank.

Raises:

 ValueError: If self does not represent a shape with at most the

given rank.

tf.TensorShape.assert_has_rank(rank)

Raises an exception if self is not compatible with the given rank.

Args:

 rank: An integer.

Raises:

 ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.assert_same_rank(other)

Raises an exception if self and other do not have compatible ranks.

Args:

 other: Another TensorShape.

Raises:

 ValueError: If self and other do not represent shapes with the

same rank.

tf.TensorShape.assert_is_compatible_with(other)

Raises exception if self and other do not represent the same

shape.

This method can be used to assert that there exists a shape that

both self and other represent.

Args:

 other: Another TensorShape.

Raises:

 ValueError: If self and other do not represent the same shape.

tf.TensorShape.assert_is_fully_defined()

Raises an exception if self is not fully defined in every dimension.

Raises:

 ValueError: If self does not have a known value for every

dimension.

Other Methods

tf.TensorShape.__init__(dims)

Creates a new TensorShape with the given dimensions.

Args:

 dims: A list of Dimensions, or None if the shape is unspecified.

 DEPRECATED: A single integer is treated as a singleton list.

tf.TensorShape.num_elements()

Returns the total number of elements, or none for incomplete shapes.

class tf.Dimension

Represents the value of one dimension in a TensorShape.

tf.Dimension.__init__(value)

Creates a new Dimension with the given value.

tf.Dimension.assert_is_compatible_with(other)

Raises an exception if other is not compatible with this Dimension.

Args:

 other: Another Dimension.

Raises:

 ValueError: If self and other are not compatible (see

is_compatible_with).

tf.Dimension.is_compatible_with(other)

Returns true if other is compatible with this Dimension.

Two known Dimensions are compatible if they have the same value.
An unknown Dimension is compatible with all other Dimensions.

Args:

 other: Another Dimension.

Returns:

True if this Dimension and other are compatible.

tf.Dimension.merge_with(other)

Returns a Dimension that combines the information

in self and other.

Dimensions are combined as follows:

Dimension(n) .merge_with(Dimension(n)) == Dimension(n)

Dimension(n) .merge_with(Dimension(None)) == Dimension(n)

Dimension(None).merge_with(Dimension(n)) == Dimension(n)

Dimension(None).merge_with(Dimension(None)) == Dimension(None)

Dimension(n) .merge_with(Dimension(m)) raises ValueError for

n != m

Args:

 other: Another Dimension.

Returns:

A Dimension containing the combined information of self and other.

Raises:

 ValueError: If self and other are not compatible (see

is_compatible_with).

tf.Dimension.value

The value of this dimension, or None if it is unknown.

tf.op_scope(values, name, default_name=None)

Returns a context manager for use when defining a Python op.

This context manager validates that the given values are from the

same graph, ensures that that graph is the default graph, and pushes
a name scope.

For example, to define a new Python op called my_op:

def my_op(a, b, c, name=None):

 with tf.op_scope([a, b, c], name, "MyOp") as scope:

 a = tf.convert_to_tensor(a, name="a")

 b = tf.convert_to_tensor(b, name="b")

 c = tf.convert_to_tensor(c, name="c")

 # Define some computation that uses `a`, `b`, and `c`.

 return foo_op(..., name=scope)

Args:

 values: The list of Tensor arguments that are passed to the op

function.

 name: The name argument that is passed to the op function.

 default_name: The default name to use if the name argument

is None.

Returns:

A context manager for use in defining Python ops. Yields the name
scope.

Raises:

 ValueError: if neither name nor default_name is provided.

tf.get_seed(op_seed)

Returns the local seeds an operation should use given an op-specific
seed.

Given operation-specific seed, op_seed, this helper function returns

two seeds derived from graph-level and op-level seeds. Many
random operations internally use the two seeds to allow user to
change the seed globally for a graph, or for only specific operations.
For details on how the graph-level seed interacts with op seeds,

see set_random_seed.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Args:

 op_seed: integer.

Returns:

A tuple of two integers that should be used for the local seed of this
operation.

For libraries building on TensorFlow

tf.register_tensor_conversion_function(base_type,

conversion_func, priority=100)

Registers a function for converting objects of base_type to Tensor.

The conversion function must have the following signature:

def conversion_func(value, dtype=None, name=None, as_ref=False):

 # ...

It must return a Tensor with the given dtype if specified. If the

conversion function creates a new Tensor, it should use the

given name if specified. All exceptions will be propagated to the caller.

If as_ref is true, the function must return a Tensor reference, such

as a Variable.

NOTE: The conversion functions will execute in order of priority,
followed by order of registration. To ensure that a conversion

function F runs before another conversion function G, ensure that F is

registered with a smaller priority than G.

Args:

 base_type: The base type or tuple of base types for all objects

that conversion_func accepts.

 conversion_func: A function that converts instances

of base_type to Tensor.

 priority: Optional integer that indicates the priority for applying this

conversion function. Conversion functions with smaller priority values
run earlier than conversion functions with larger priority values.
Defaults to 100.

Raises:

 TypeError: If the arguments do not have the appropriate type.

Other Functions and Classes

class tf.bytes

str(object='') -> string

Return a nice string representation of the object. If the argument is a
string, the return value is the same object.

Constants, Sequences, and Random

Values

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Constants, Sequences, and Random Values
 Constant Value Tensors
 tf.zeros(shape, dtype=tf.float32, name=None)
 tf.zeros_like(tensor, dtype=None, name=None)
 tf.ones(shape, dtype=tf.float32, name=None)
 tf.ones_like(tensor, dtype=None, name=None)
 tf.fill(dims, value, name=None)
 tf.constant(value, dtype=None, shape=None, name=Const)

 Sequences
 tf.linspace(start, stop, num, name=None)
 tf.range(start, limit=None, delta=1, name=range)

 Random Tensors
 Examples:
 tf.random_normal(shape, mean=0.0, stddev=1.0,

dtype=tf.float32, seed=None, name=None)
 tf.truncated_normal(shape, mean=0.0, stddev=1.0,

dtype=tf.float32, seed=None, name=None)
 tf.random_uniform(shape, minval=0, maxval=None,

dtype=tf.float32, seed=None, name=None)
 tf.random_shuffle(value, seed=None, name=None)
 tf.random_crop(value, size, seed=None, name=None)
 tf.set_random_seed(seed)

Constant Value Tensors

TensorFlow provides several operations that you can use to generate
constants.

tf.zeros(shape, dtype=tf.float32, name=None)

Creates a tensor with all elements set to zero.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#constants-sequences-and-random-values
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#constant-value-tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#zeros
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#zeros_like
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#ones
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#ones_like
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#fill
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#constant
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#sequences
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#linspace
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#range
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random-tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#examples
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#truncated_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#truncated_normal
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_uniform
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_uniform
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_shuffle
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_crop
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

This operation returns a tensor of type dtype with shape shape and

all elements set to zero.

For example:

tf.zeros([3, 4], int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0,

0, 0]]

Args:

 shape: Either a list of integers, or a 1-D Tensor of type int32.

 dtype: The type of an element in the resulting Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

tf.zeros_like(tensor, dtype=None, name=None)

Creates a tensor with all elements set to zero.

Given a single tensor (tensor), this operation returns a tensor of the

same type and shape as tensor with all elements set to zero.

Optionally, you can use dtype to specify a new type for the returned

tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]

tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]

Args:

 tensor: A Tensor.

 dtype: A type for the returned Tensor. Must

be float32, float64, int8, int16, int32, int64, uint8,

or complex64.

 name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

tf.ones(shape, dtype=tf.float32, name=None)

Creates a tensor with all elements set to 1.

This operation returns a tensor of type dtype with shape shape and

all elements set to 1.

For example:

tf.ones([2, 3], int32) ==> [[1, 1, 1], [1, 1, 1]]

Args:

 shape: Either a list of integers, or a 1-D Tensor of type int32.

 dtype: The type of an element in the resulting Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

tf.ones_like(tensor, dtype=None, name=None)

Creates a tensor with all elements set to 1.

Given a single tensor (tensor), this operation returns a tensor of the

same type and shape as tensor with all elements set to 1.

Optionally, you can specify a new type (dtype) for the returned

tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]

tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]

Args:

 tensor: A Tensor.

 dtype: A type for the returned Tensor. Must

be float32, float64, int8, int16, int32, int64, uint8,

or complex64.

 name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

tf.fill(dims, value, name=None)

Creates a tensor filled with a scalar value.

This operation creates a tensor of shape dims and fills it with value.

For example:

Output tensor has shape [2, 3].

fill([2, 3], 9) ==> [[9, 9, 9]

 [9, 9, 9]]

Args:

 dims: A Tensor of type int32. 1-D. Represents the shape of the

output tensor.

 value: A Tensor. 0-D (scalar). Value to fill the returned tensor.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as value.

tf.constant(value, dtype=None, shape=None, name='Const')

Creates a constant tensor.

The resulting tensor is populated with values of type dtype, as

specified by arguments value and (optionally)shape (see examples

below).

The argument value can be a constant value, or a list of values of

type dtype. If value is a list, then the length of the list must be less

than or equal to the number of elements implied by

the shape argument (if specified). In the case where the list length is

less than the number of elements specified by shape, the last

element in the list will be used to fill the remaining entries.

The argument shape is optional. If present, it specifies the

dimensions of the resulting tensor. If not present, then the tensor is a

scalar (0-D) if value is a scalar, or 1-D otherwise.

If the argument dtype is not specified, then the type is inferred from

the type of value.

For example:

 # Constant 1-D Tensor populated with value list.

 tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]

 # Constant 2-D tensor populated with scalar value -1.

 tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.]

 [-1. -1. -1.]]

Args:

 value: A constant value (or list) of output type dtype.

 dtype: The type of the elements of the resulting tensor.

 shape: Optional dimensions of resulting tensor.

 name: Optional name for the tensor.

Returns:

A Constant Tensor.

Sequences

tf.linspace(start, stop, num, name=None)

Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning

at start. If num > 1, the values in the sequence increase by stop -

start / num - 1, so that the last one is exactly stop.

For example:

tf.linspace(10.0, 12.0, 3, name="linspace") => [10.0 11.0 12.0]

Args:

 start: A Tensor. Must be one of the following

types: float32, float64. First entry in the range.

 stop: A Tensor. Must have the same type as start. Last entry in the

range.

 num: A Tensor of type int32. Number of values to generate.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as start. 1-D. The generated values.

tf.range(start, limit=None, delta=1, name='range')

Creates a sequence of integers.

Creates a sequence of integers that begins at start and extends by

increments of delta up to but not includinglimit.

Like the Python builtin range, start defaults to 0, so that range(n) =

range(0, n).

For example:

'start' is 3

'limit' is 18

'delta' is 3

tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]

'limit' is 5

tf.range(limit) ==> [0, 1, 2, 3, 4]

Args:

 start: A 0-D (scalar) of type int32. First entry in sequence. Defaults

to 0.

 limit: A 0-D (scalar) of type int32. Upper limit of sequence,

exclusive.

 delta: A 0-D Tensor (scalar) of type int32. Optional. Default is 1.

Number that increments start.

 name: A name for the operation (optional).

Returns:

An 1-D int32 Tensor.

Random Tensors

TensorFlow has several ops that create random tensors with different
distributions. The random ops are stateful, and create new random
values each time they are evaluated.

The seed keyword argument in these functions acts in conjunction

with the graph-level random seed. Changing either the graph-level

seed using set_random_seed or the op-level seed will change the

underlying seed of these operations. Setting neither graph-level nor
op-level seed, results in a random seed for all operations.

Seeset_random_seed for details on the interaction between

operation-level and graph-level random seeds.

Examples:

Create a tensor of shape [2, 3] consisting of random normal

values, with mean

-1 and standard deviation 4.

norm = tf.random_normal([2, 3], mean=-1, stddev=4)

Shuffle the first dimension of a tensor

c = tf.constant([[1, 2], [3, 4], [5, 6]])

shuff = tf.random_shuffle(c)

Each time we run these ops, different results are generated

sess = tf.Session()

print(sess.run(norm))

print(sess.run(norm))

Set an op-level seed to generate repeatable sequences across

sessions.

c = tf.constant([[1, 2], [3, 4], [5, 6]])

sess = tf.Session()

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

norm = tf.random_normal(c, seed=1234)

print(sess.run(norm))

print(sess.run(norm))

Another common use of random values is the initialization of
variables. Also see the Variables How To.
Use random uniform values in [0, 1) as the initializer for a

variable of shape

[2, 3]. The default type is float32.

var = tf.Variable(tf.random_uniform([2, 3]), name="var")

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

print(sess.run(var))

tf.random_normal(shape, mean=0.0, stddev=1.0,

dtype=tf.float32, seed=None, name=None)

Outputs random values from a normal distribution.

Args:

 shape: A 1-D integer Tensor or Python array. The shape of the output

tensor.

 mean: A 0-D Tensor or Python value of type dtype. The mean of the

normal distribution.

 stddev: A 0-D Tensor or Python value of type dtype. The standard

deviation of the normal distribution.

 dtype: The type of the output.

 seed: A Python integer. Used to create a random seed for the

distribution. See set_random_seed for behavior.

 name: A name for the operation (optional).

https://www.tensorflow.org/versions/r0.7/how_tos/variables/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Returns:

A tensor of the specified shape filled with random normal values.

tf.truncated_normal(shape, mean=0.0, stddev=1.0,

dtype=tf.float32, seed=None, name=None)

Outputs random values from a truncated normal distribution.

The generated values follow a normal distribution with specified
mean and standard deviation, except that values whose magnitude is
more than 2 standard deviations from the mean are dropped and re-
picked.

Args:

 shape: A 1-D integer Tensor or Python array. The shape of the output

tensor.

 mean: A 0-D Tensor or Python value of type dtype. The mean of the

truncated normal distribution.

 stddev: A 0-D Tensor or Python value of type dtype. The standard

deviation of the truncated normal distribution.

 dtype: The type of the output.

 seed: A Python integer. Used to create a random seed for the

distribution. See set_random_seed for behavior.

 name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random truncated normal
values.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

tf.random_uniform(shape, minval=0, maxval=None,

dtype=tf.float32, seed=None, name=None)

Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the

range [minval, maxval). The lower bound minvalis included in the

range, while the upper bound maxval is excluded.

For floats, the default range is [0, 1). For ints, at least maxval must

be specified explicitly.
In the integer case, the random integers are slightly biased

unless maxval - minval is an exact power of two. The bias is small

for values of maxval - minval significantly smaller than the range of

the output (either2**32 or 2**64).

Args:

 shape: A 1-D integer Tensor or Python array. The shape of the output

tensor.

 minval: A 0-D Tensor or Python value of type dtype. The lower

bound on the range of random values to generate. Defaults to 0.

 maxval: A 0-D Tensor or Python value of type dtype. The upper

bound on the range of random values to generate. Defaults to 1

if dtype is floating point.

 dtype: The type of the output: float32, float64, int32, or int64.

 seed: A Python integer. Used to create a random seed for the

distribution. See set_random_seed for behavior.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

 name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random uniform values.

Raises:

 ValueError: If dtype is integral and maxval is not specified.

tf.random_shuffle(value, seed=None, name=None)

Randomly shuffles a tensor along its first dimension.

The tensor is shuffled along dimension 0, such that each value[j] is

mapped to one and only one output[i]. For example, a mapping

that might occur for a 3x2 tensor is:
[[1, 2], [[5, 6],

 [3, 4], ==> [1, 2],

 [5, 6]] [3, 4]]

Args:

 value: A Tensor to be shuffled.

 seed: A Python integer. Used to create a random seed for the

distribution. See set_random_seed for behavior.

 name: A name for the operation (optional).

Returns:

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

A tensor of same shape and type as value, shuffled along its first

dimension.

tf.random_crop(value, size, seed=None, name=None)

Randomly crops a tensor to a given size.

Slices a shape size portion out of value at a uniformly chosen offset.

Requires value.shape >= size.

If a dimension should not be cropped, pass the full size of that

dimension. For example, RGB images can be cropped with size =

[crop_height, crop_width, 3].

Args:

 value: Input tensor to crop.

 size: 1-D tensor with size the rank of value.

 seed: Python integer. Used to create a random seed.

See set_random_seed for behavior.

 name: A name for this operation (optional).

Returns:

A cropped tensor of the same rank as value and shape size.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

tf.set_random_seed(seed)

Sets the graph-level random seed.

Operations that rely on a random seed actually derive it from two
seeds: the graph-level and operation-level seeds. This sets the
graph-level seed.

Its interactions with operation-level seeds is as follows:

1. If neither the graph-level nor the operation seed is set: A random
seed is used for this op.

2. If the graph-level seed is set, but the operation seed is not: The
system deterministically picks an operation seed in conjunction with
the graph-level seed so that it gets a unique random sequence.

3. If the graph-level seed is not set, but the operation seed is set: A
default graph-level seed and the specified operation seed are used to
determine the random sequence.

4. If both the graph-level and the operation seed are set: Both seeds
are used in conjunction to determine the random sequence.

To illustrate the user-visible effects, consider these examples:

To generate different sequences across sessions, set neither graph-
level nor op-level seeds:

a = tf.random_uniform([1])

b = tf.random_normal([1])

print("Session 1")

with tf.Session() as sess1:

 print(sess1.run(a)) # generates 'A1'

 print(sess1.run(a)) # generates 'A2'

 print(sess1.run(b)) # generates 'B1'

 print(sess1.run(b)) # generates 'B2'

print("Session 2")

with tf.Session() as sess2:

 print(sess2.run(a)) # generates 'A3'

 print(sess2.run(a)) # generates 'A4'

 print(sess2.run(b)) # generates 'B3'

 print(sess2.run(b)) # generates 'B4'

To generate the same repeatable sequence for an op across
sessions, set the seed for the op:

a = tf.random_uniform([1], seed=1)

b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate

the same

sequence of values for 'a', but different sequences of values

for 'b'.

print("Session 1")

with tf.Session() as sess1:

 print(sess1.run(a)) # generates 'A1'

 print(sess1.run(a)) # generates 'A2'

 print(sess1.run(b)) # generates 'B1'

 print(sess1.run(b)) # generates 'B2'

print("Session 2")

with tf.Session() as sess2:

 print(sess2.run(a)) # generates 'A1'

 print(sess2.run(a)) # generates 'A2'

 print(sess2.run(b)) # generates 'B3'

 print(sess2.run(b)) # generates 'B4'

To make the random sequences generated by all ops be repeatable
across sessions, set a graph-level seed:

tf.set_random_seed(1234)

a = tf.random_uniform([1])

b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate

different

sequences of 'a' and 'b'.

print("Session 1")

with tf.Session() as sess1:

 print(sess1.run(a)) # generates 'A1'

 print(sess1.run(a)) # generates 'A2'

 print(sess1.run(b)) # generates 'B1'

 print(sess1.run(b)) # generates 'B2'

print("Session 2")

with tf.Session() as sess2:

 print(sess2.run(a)) # generates 'A1'

 print(sess2.run(a)) # generates 'A2'

 print(sess2.run(b)) # generates 'B1'

 print(sess2.run(b)) # generates 'B2'

Args:

 seed: integer.

Variables

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Variables
 Variables
 class tf.Variable

 Variable helper functions
 tf.all_variables()
 tf.trainable_variables()
 tf.moving_average_variables()
 tf.initialize_all_variables()
 tf.initialize_variables(var_list, name=init)
 tf.assert_variables_initialized(var_list=None)

 Saving and Restoring Variables
 class tf.train.Saver
 tf.train.latest_checkpoint(checkpoint_dir,

latest_filename=None)
 tf.train.get_checkpoint_state(checkpoint_dir,

latest_filename=None)
 tf.train.update_checkpoint_state(save_dir,

model_checkpoint_path, all_model_checkpoint_paths=None,

latest_filename=None)

 Sharing Variables
 tf.get_variable(name, shape=None, dtype=tf.float32,

initializer=None, trainable=True, collections=None)
 tf.get_variable_scope()
 tf.make_template(name_, func_, **kwargs)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variables-2
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable-helper-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#all_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#trainable_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#moving_average_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#initialize_all_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#initialize_variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#assert_variables_initialized
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#saving-and-restoring-variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Saver
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#latest_checkpoint
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#latest_checkpoint
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#update_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#update_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#update_checkpoint_state
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#sharing-variables
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#get_variable_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#make_template

 tf.variable_op_scope(values, name, default_name,

initializer=None)
 tf.variable_scope(name_or_scope, reuse=None,

initializer=None)
 tf.constant_initializer(value=0.0, dtype=tf.float32)
 tf.random_normal_initializer(mean=0.0, stddev=1.0,

seed=None, dtype=tf.float32)
 tf.truncated_normal_initializer(mean=0.0, stddev=1.0,

seed=None, dtype=tf.float32)
 tf.random_uniform_initializer(minval=0.0, maxval=1.0,

seed=None, dtype=tf.float32)
 tf.uniform_unit_scaling_initializer(factor=1.0,

seed=None, dtype=tf.float32)
 tf.zeros_initializer(shape, dtype=tf.float32)

 Sparse Variable Updates
 tf.scatter_update(ref, indices, updates,

use_locking=None, name=None)
 tf.scatter_add(ref, indices, updates, use_locking=None,

name=None)
 tf.scatter_sub(ref, indices, updates, use_locking=None,

name=None)
 tf.sparse_mask(a, mask_indices, name=None)
 class tf.IndexedSlices

Variables

class tf.Variable

See the Variables How To for a high level overview.

A variable maintains state in the graph across calls to run(). You

add a variable to the graph by constructing an instance of the

class Variable.

The Variable() constructor requires an initial value for the variable,

which can be a Tensor of any type and shape. The initial value

defines the type and shape of the variable. After construction, the

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_op_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_op_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#variable_scope
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#constant_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#truncated_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#truncated_normal_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_uniform_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#random_uniform_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#uniform_unit_scaling_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#uniform_unit_scaling_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#zeros_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#sparse-variable-updates
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_update
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_update
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_add
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_add
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_sub
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#scatter_sub
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#sparse_mask
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#IndexedSlices
https://www.tensorflow.org/versions/r0.7/how_tos/variables/index.html

type and shape of the variable are fixed. The value can be changed
using one of the assign methods.
If you want to change the shape of a variable later you have to use

an assign Op withvalidate_shape=False.

Just like any Tensor, variables created with Variable() can be used

as inputs for other Ops in the graph. Additionally, all the operators

overloaded for the Tensor class are carried over to variables, so you

can also add nodes to the graph by just doing arithmetic on variables.
import tensorflow as tf

Create a variable.

w = tf.Variable(<initial-value>, name=<optional-name>)

Use the variable in the graph like any Tensor.

y = tf.matmul(w, ...another variable or tensor...)

The overloaded operators are available too.

z = tf.sigmoid(w + b)

Assign a new value to the variable with `assign()` or a related

method.

w.assign(w + 1.0)

w.assign_add(1.0)

When you launch the graph, variables have to be explicitly initialized
before you can run Ops that use their value. You can initialize a
variable by running its initializer op, restoring the variable from a save

file, or simply running anassign Op that assigns a value to the

variable. In fact, the variable initializer op is just an assign Op that

assigns the variable's initial value to the variable itself.
Launch the graph in a session.

with tf.Session() as sess:

 # Run the variable initializer.

 sess.run(w.initializer)

 # ...you now can run ops that use the value of 'w'...

The most common initialization pattern is to use the convenience

function initialize_all_variables() to add an Op to the graph

that initializes all the variables. You then run that Op after launching
the graph.

Add an Op to initialize all variables.

init_op = tf.initialize_all_variables()

Launch the graph in a session.

with tf.Session() as sess:

 # Run the Op that initializes all variables.

 sess.run(init_op)

 # ...you can now run any Op that uses variable values...

If you need to create a variable with an initial value dependent on

another variable, use the other variable'sinitialized_value(). This

ensures that variables are initialized in the right order.
All variables are automatically collected in the graph where they are
created. By default, the constructor adds the new variable to the

graph collection GraphKeys.VARIABLES. The convenience

function all_variables()returns the contents of that collection.

When building a machine learning model it is often convenient to
distinguish betwen variables holding the trainable model parameters

and other variables such as a global step variable used to count

training steps. To make this easier, the variable constructor supports

a trainable=<bool> parameter. If True, the new variable is also

added to the graph collection GraphKeys.TRAINABLE_VARIABLES.

The convenience functiontrainable_variables() returns the

contents of this collection. The various Optimizer classes use this

collection as the default list of variables to optimize.

Creating a variable.

tf.Variable.__init__(initial_value=None, trainable=True,

collections=None, validate_shape=True, name=None,

variable_def=None)

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed

in collections, which defaults to[GraphKeys.VARIABLES].

If trainable is True the variable is also added to the graph

collectionGraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to

set the variable to its initial value.

Args:

 initial_value: A Tensor, or Python object convertible to a Tensor.

The initial value for the Variable. Must have a shape specified

unless validate_shape is set to False.

 trainable: If True, the default, also adds the variable to the graph

collectionGraphKeys.TRAINABLE_VARIABLES. This collection is used

as the default list of variables to use by theOptimizer classes.

 collections: List of graph collections keys. The new variable is

added to these collections. Defaults to[GraphKeys.VARIABLES].

 validate_shape: If False, allows the variable to be initialized with a

value of unknown shape. If True, the default, the shape

of initial_value must be known.

 name: Optional name for the variable. Defaults to 'Variable' and

gets uniquified automatically.

 variable_def: VariableDef protocol buffer. If not None, recreates

the Variable object with its contents.variable_def and the other

arguments are mutually exclusive.

Returns:

A Variable.

Raises:

 ValueError: If both variable_def and initial_value are specified.

 ValueError: If the initial value is not specified, or does not have a

shape and validate_shape is True.

tf.Variable.initialized_value()

Returns the value of the initialized variable.

You should use this instead of the variable itself to initialize another
variable with a value that depends on the value of this variable.

Initialize 'v' with a random tensor.

v = tf.Variable(tf.truncated_normal([10, 40]))

Use `initialized_value` to guarantee that `v` has been

initialized before its value is used to initialize `w`.

The random values are picked only once.

w = tf.Variable(v.initialized_value() * 2.0)

Returns:

A Tensor holding the value of this variable after its initializer has run.

Changing a variable value.

tf.Variable.assign(value, use_locking=False)

Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).

Args:

 value: A Tensor. The new value for this variable.

 use_locking: If True, use locking during the assignment.

Returns:

A Tensor that will hold the new value of this variable after the

assignment has completed.

tf.Variable.assign_add(delta, use_locking=False)

Adds a value to this variable.

This is essentially a shortcut for assign_add(self, delta).

Args:

 delta: A Tensor. The value to add to this variable.

 use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after the

addition has completed.

tf.Variable.assign_sub(delta, use_locking=False)

Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).

Args:

 delta: A Tensor. The value to subtract from this variable.

 use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after the

subtraction has completed.

tf.Variable.scatter_sub(sparse_delta, use_locking=False)

Subtracts IndexedSlices from this variable.

This is essentially a shortcut for scatter_sub(self,

sparse_delta.indices, sparse_delta.values).

Args:

 sparse_delta: IndexedSlices to be subtracted from this variable.

 use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after the

scattered subtraction has completed.

Raises:

 ValueError: if sparse_delta is not an IndexedSlices.

tf.Variable.count_up_to(limit)

Increments this variable until it reaches limit.

When that Op is run it tries to increment the variable by 1. If

incrementing the variable would bring it above limitthen the Op

raises the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before
the increment.

This is essentially a shortcut for count_up_to(self, limit).

Args:

 limit: value at which incrementing the variable raises an error.

Returns:

A Tensor that will hold the variable value before the increment. If no

other Op modifies this variable, the values produced will all be
distinct.

tf.Variable.eval(session=None)

In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the
graph.

This convenience method requires a session where the graph
containing this variable has been launched. If no session is passed,
the default session is used. See the Session class for more
information on launching a graph and on sessions.
v = tf.Variable([1, 2])

init = tf.initialize_all_variables()

with tf.Session() as sess:

 sess.run(init)

 # Usage passing the session explicitly.

 print(v.eval(sess))

 # Usage with the default session. The 'with' block

 # above makes 'sess' the default session.

 print(v.eval())

Args:

 session: The session to use to evaluate this variable. If none, the

default session is used.

Returns:

A numpy ndarray with a copy of the value of this variable.

Properties.

tf.Variable.name

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session

The name of this variable.

tf.Variable.dtype

The DType of this variable.

tf.Variable.get_shape()

The TensorShape of this variable.

Returns:

A TensorShape.

tf.Variable.device

The device of this variable.

tf.Variable.initializer

The initializer operation for this variable.

tf.Variable.graph

The Graph of this variable.

tf.Variable.op

The Operation of this variable.

Other Methods

tf.Variable.from_proto(variable_def)

tf.Variable.ref()

Returns a reference to this variable.

You usually do not need to call this method as all ops that need a
reference to the variable call it automatically.

Returns is a Tensor which holds a reference to the variable. You can

assign a new value to the variable by passing the tensor to an assign

op. See value() if you want to get the value of the variable.

Returns:

A Tensor that is a reference to the variable.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable.value

tf.Variable.to_proto()

Converts a Variable to a VariableDef protocol buffer.

Returns:

A VariableDef protocol buffer.

tf.Variable.value()

Returns the last snapshot of this variable.

You usually do not need to call this method as all ops that need the
value of the variable call it automatically through

a convert_to_tensor() call.

Returns a Tensor which holds the value of the variable. You can not

assign a new value to this tensor as it is not a reference to the

variable. See ref() if you want to get a reference to the variable.

To avoid copies, if the consumer of the returned value is on the same
device as the variable, this actually returns the live value of the
variable, not a copy. Updates to the variable are seen by the
consumer. If the consumer is on a different device it will get a copy of
the variable.

Returns:

A Tensor containing the value of the variable.

Variable helper functions

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable.ref

TensorFlow provides a set of functions to help manage the set of
variables collected in the graph.

tf.all_variables()

Returns all variables collected in the graph.

The Variable() constructor automatically adds new variables to the

graph collectionGraphKeys.VARIABLES. This convenience function

returns the contents of that collection.

Returns:

A list of Variable objects.

tf.trainable_variables()

Returns all variables created with trainable=True.

When passed trainable=True, the Variable() constructor

automatically adds new variables to the graph

collection GraphKeys.TRAINABLE_VARIABLES. This convenience

function returns the contents of that collection.

Returns:

A list of Variable objects.

tf.moving_average_variables()

Returns all variables that maintain their moving averages.

If an ExponentialMovingAverage object is created and

the apply() method is called on a list of variables, these variables

will be added to

the GraphKeys.MOVING_AVERAGE_VARIABLES collection. This

convenience function returns the contents of that collection.

Returns:

A list of Variable objects.

tf.initialize_all_variables()

Returns an Op that initializes all variables.

This is just a shortcut

for initialize_variables(all_variables())

Returns:

An Op that initializes all variables in the graph.

tf.initialize_variables(var_list, name='init')

Returns an Op that initializes a list of variables.

After you launch the graph in a session, you can run the returned Op

to initialize all the variables in var_list. This Op runs all the

initializers of the variables in var_list in parallel.

Calling initialize_variables() is equivalent to passing the list of

initializers to Group().

If var_list is empty, however, the function still returns an Op that

can be run. That Op just has no effect.

Args:

 var_list: List of Variable objects to initialize.

 name: Optional name for the returned operation.

Returns:

An Op that run the initializers of all the specified variables.

tf.assert_variables_initialized(var_list=None)

Returns an Op to check if variables are initialized.

When run, the returned Op will raise the

exception FailedPreconditionError if any of the variables has not

yet been initialized.

Note: This function is implemented by trying to fetch the values of the
variables. If one of the variables is not initialized a message may be
logged by the C++ runtime. This is expected.

Args:

 var_list: List of Variable objects to check. Defaults to the value

of all_variables().

Returns:

An Op, or None if there are no variables.

Saving and Restoring Variables

class tf.train.Saver

Saves and restores variables.

See Variables for an overview of variables, saving and restoring.

The Saver class adds ops to save and restore variables to and

from checkpoints. It also provides convenience methods to run these
ops.
Checkpoints are binary files in a proprietary format which map
variable names to tensor values. The best way to examine the

contents of a checkpoint is to load it using a Saver.

Savers can automatically number checkpoint filenames with a
provided counter. This lets you keep multiple checkpoints at different
steps while training a model. For example you can number the
checkpoint filenames with the training step number. To avoid filling
up disks, savers manage checkpoint files automatically. For example,
they can keep only the N most recent files, or one checkpoint for
every N hours of training.

You number checkpoint filenames by passing a value to the

optional global_step argument to save():

saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-

model-0'

https://www.tensorflow.org/versions/r0.7/how_tos/variables/index.html

...

saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-

model-1000'

Additionally, optional arguments to the Saver() constructor let you

control the proliferation of checkpoint files on disk:

 max_to_keep indicates the maximum number of recent checkpoint

files to keep. As new files are created, older files are deleted. If None
or 0, all checkpoint files are kept. Defaults to 5 (that is, the 5 most
recent checkpoint files are kept.)

 keep_checkpoint_every_n_hours: In addition to keeping the most

recent max_to_keep checkpoint files, you might want to keep one

checkpoint file for every N hours of training. This can be useful if you
want to later analyze how a model progressed during a long training
session. For example,

passingkeep_checkpoint_every_n_hours=2 ensures that you keep

one checkpoint file for every 2 hours of training. The default value of
10,000 hours effectively disables the feature.

Note that you still have to call the save() method to save the model.

Passing these arguments to the constructor will not save variables
automatically for you.

A training program that saves regularly looks like:

...

Create a saver.

saver = tf.train.Saver(...variables...)

Launch the graph and train, saving the model every 1,000 steps.

sess = tf.Session()

for step in xrange(1000000):

 sess.run(..training_op..)

 if step % 1000 == 0:

 # Append the step number to the checkpoint name:

 saver.save(sess, 'my-model', global_step=step)

In addition to checkpoint files, savers keep a protocol buffer on disk
with the list of recent checkpoints. This is used to manage numbered

checkpoint files and by latest_checkpoint(), which makes it easy

to discover the path to the most recent checkpoint. That protocol

buffer is stored in a file named 'checkpoint' next to the checkpoint
files.
If you create several savers, you can specify a different filename for

the protocol buffer file in the call to save().

tf.train.Saver.__init__(var_list=None, reshape=False,

sharded=False, max_to_keep=5,

keep_checkpoint_every_n_hours=10000.0, name=None,

restore_sequentially=False, saver_def=None, builder=None)

Creates a Saver.

The constructor adds ops to save and restore variables.

var_list specifies the variables that will be saved and restored. It

can be passed as a dict or a list:

 A dict of names to variables: The keys are the names that will be

used to save or restore the variables in the checkpoint files.

 A list of variables: The variables will be keyed with their op name in
the checkpoint files.

For example:

v1 = tf.Variable(..., name='v1')

v2 = tf.Variable(..., name='v2')

Pass the variables as a dict:

saver = tf.train.Saver({'v1': v1, 'v2': v2})

Or pass them as a list.

saver = tf.train.Saver([v1, v2])

Passing a list is equivalent to passing a dict with the

variable op names

as keys:

saver = tf.train.Saver({v.op.name: v for v in [v1, v2]})

The optional reshape argument, if True, allows restoring a variable

from a save file where the variable had a different shape, but the
same number of elements and type. This is useful if you have
reshaped a variable and want to reload it from an older checkpoint.

The optional sharded argument, if True, instructs the saver to shard

checkpoints per device.

Args:

 var_list: A list of Variable objects or a dictionary mapping names

to variables. If None, defaults to the list of all variables.

 reshape: If True, allows restoring parameters from a checkpoint

where the variables have a different shape.

 sharded: If True, shard the checkpoints, one per device.

 max_to_keep: Maximum number of recent checkpoints to keep.

Defaults to 5.

 keep_checkpoint_every_n_hours: How often to keep checkpoints.

Defaults to 10,000 hours.

 name: String. Optional name to use as a prefix when adding

operations.

 restore_sequentially: A Bool, which if true, causes restore of

different variables to happen sequentially within each device. This
can lower memory usage when restoring very large models.

 saver_def: Optional SaverDef proto to use instead of running the

builder. This is only useful for specialty code that wants to recreate

a Saver object for a previously built Graph that had a Saver.

The saver_defproto should be the one returned by

the as_saver_def() call of the Saver that was created for thatGraph.

 builder: Optional SaverBuilder to use if a saver_def was not

provided. Defaults toBaseSaverBuilder().

Raises:

 TypeError: If var_list is invalid.

 ValueError: If any of the keys or values in var_list are not unique.

tf.train.Saver.save(sess, save_path, global_step=None,

latest_filename=None, meta_graph_suffix='meta')

Saves variables.

This method runs the ops added by the constructor for saving
variables. It requires a session in which the graph was launched. The
variables to save must also have been initialized.

The method returns the path of the newly created checkpoint file.

This path can be passed directly to a call torestore().

Args:

 sess: A Session to use to save the variables.

 save_path: String. Path to the checkpoint filename. If the saver

is sharded, this is the prefix of the sharded checkpoint filename.

 global_step: If provided the global step number is appended

to save_path to create the checkpoint filename. The optional

argument can be a Tensor, a Tensor name or an integer.

 latest_filename: Optional name for the protocol buffer file that will

contains the list of most recent checkpoint filenames. That file, kept in
the same directory as the checkpoint files, is automatically managed
by the saver to keep track of recent checkpoints. Defaults to
'checkpoint'.

 meta_graph_suffix: Suffix for MetaGraphDef file. Defaults to 'meta'.

Returns:

A string: path at which the variables were saved. If the saver is
sharded, this string ends with: '-?????-of-nnnnn' where 'nnnnn' is the
number of shards created.

Raises:

 TypeError: If sess is not a Session.

 ValueError: If latest_filename contains path components.

tf.train.Saver.restore(sess, save_path)

Restores previously saved variables.

This method runs the ops added by the constructor for restoring
variables. It requires a session in which the graph was launched. The
variables to restore do not have to have been initialized, as restoring
is itself a way to initialize variables.

The save_path argument is typically a value previously returned from

a save() call, or a call tolatest_checkpoint().

Args:

 sess: A Session to use to restore the parameters.

 save_path: Path where parameters were previously saved.

Other utility methods.

tf.train.Saver.last_checkpoints

List of not-yet-deleted checkpoint filenames.

You can pass any of the returned values to restore().

Returns:

A list of checkpoint filenames, sorted from oldest to newest.

tf.train.Saver.set_last_checkpoints(last_checkpoints)

DEPRECATED: Use set_last_checkpoints_with_time.

Sets the list of old checkpoint filenames.

Args:

 last_checkpoints: A list of checkpoint filenames.

Raises:

 AssertionError: If last_checkpoints is not a list.

tf.train.Saver.as_saver_def()

Generates a SaverDef representation of this saver.

Returns:

A SaverDef proto.

Other Methods

tf.train.Saver.export_meta_graph(filename=None,

collection_list=None, as_text=False)

Writes MetaGraphDef to save_path/filename.

Args:

 filename: Optional meta_graph filename including the path.

 collection_list: List of string keys to collect.

 as_text: If True, writes the meta_graph as an ASCII proto.

Returns:

A MetaGraphDef proto.

tf.train.Saver.from_proto(saver_def)

tf.train.Saver.set_last_checkpoints_with_time(last_checkp

oints_with_time)

Sets the list of old checkpoint filenames and timestamps.

Args:

 last_checkpoints_with_time: A list of tuples of checkpoint

filenames and timestamps.

Raises:

 AssertionError: If last_checkpoints_with_time is not a list.

tf.train.Saver.to_proto()

Returns a SaverDef protocol buffer.

tf.train.latest_checkpoint(checkpoint_dir,

latest_filename=None)

Finds the filename of latest saved checkpoint file.

Args:

 checkpoint_dir: Directory where the variables were saved.

 latest_filename: Optional name for the protocol buffer file that

contains the list of most recent checkpoint filenames. See the

corresponding argument to Saver.save().

Returns:

The full path to the latest checkpoint or None if no checkpoint was

found.

tf.train.get_checkpoint_state(checkpoint_dir,

latest_filename=None)

Returns CheckpointState proto from the "checkpoint" file.

If the "checkpoint" file contains a valid CheckpointState proto, returns
it.

Args:

 checkpoint_dir: The directory of checkpoints.

 latest_filename: Optional name of the checkpoint file. Default to

'checkpoint'.

Returns:

A CheckpointState if the state was available, None otherwise.

tf.train.update_checkpoint_state(save_dir,

model_checkpoint_path, all_model_checkpoint_paths=None,

latest_filename=None)

Updates the content of the 'checkpoint' file.

This updates the checkpoint file containing a CheckpointState proto.

Args:

 save_dir: Directory where the model was saved.

 model_checkpoint_path: The checkpoint file.

 all_model_checkpoint_paths: List of strings. Paths to all not-yet-

deleted checkpoints, sorted from oldest to newest. If this is a non-
empty list, the last element must be equal to model_checkpoint_path.
These paths are also saved in the CheckpointState proto.

 latest_filename: Optional name of the checkpoint file. Default to

'checkpoint'.

Raises:

 RuntimeError: If the save paths conflict.

Sharing Variables

TensorFlow provides several classes and operations that you can
use to create variables contingent on certain conditions.

tf.get_variable(name, shape=None, dtype=tf.float32,

initializer=None, trainable=True, collections=None)

Gets an existing variable with these parameters or create a new one.

This function prefixes the name with the current variable scope and
performs reuse checks. See the Variable Scope How To for an
extensive description of how reusing works. Here is a basic example:
with tf.variable_scope("foo"):

 v = tf.get_variable("v", [1]) # v.name == "foo/v:0"

 w = tf.get_variable("w", [1]) # w.name == "foo/w:0"

with tf.variable_scope("foo", reuse=True)

 v1 = tf.get_variable("v") # The same as v above.

If initializer is None (the default), the default initializer passed in the

constructor is used. If that one is None too,

aUniformUnitScalingInitializer will be used. The initializer can

also be a Tensor, in which case the variable is initialized to this value
and shape.

Args:

 name: the name of the new or existing variable.

 shape: shape of the new or existing variable.

 dtype: type of the new or existing variable (defaults to DT_FLOAT).

 initializer: initializer for the variable if one is created.

 trainable: If True also add the variable to the graph

collection GraphKeys.TRAINABLE_VARIABLES(see tf.Variable).

 collections: List of graph collections keys to add the Variable to.

Defaults to [GraphKeys.VARIABLES](see tf.Variable).

Returns:

The created or existing variable.

Raises:

https://www.tensorflow.org/versions/r0.7/how_tos/variable_scope/index.html

 ValueError: when creating a new variable and shape is not

declared, or when violating reuse during variable creation. Reuse is

set inside variable_scope.

tf.get_variable_scope()

Returns the current variable scope.

tf.make_template(name_, func_, **kwargs)

Given an arbitrary function, wrap it so that it does variable sharing.

This wraps func_ in a Template and partially evaluates it. Templates

are functions that create variables the first time they are called and

reuse them thereafter. In order for func_ to be compatible with

a Template it must have the following properties:

 The function should create all trainable variables and any variables

that should be reused by callingtf.get_variable. If a trainable

variable is created using tf.Variable, then a ValueError will be

thrown. Variables that are intended to be locals can be created by

specifying tf.Variable(..., trainable=false).

 The function may use variable scopes and other templates internally
to create and reuse variables, but it shouldn't

use tf.get_variables to capture variables that are defined outside

of the scope of the function.
 Internal scopes and variable names should not depend on any

arguments that are not supplied tomake_template. In general you will

get a ValueError telling you that you are trying to reuse a variable
that doesn't exist if you make a mistake.

In the following example, both z and w will be scaled by the same y. It

is important to note that if we didn't assignscalar_name and used a

different name for z and w that a ValueError would be thrown

because it couldn't reuse the variable.
def my_op(x, scalar_name):

 var1 = tf.get_variable(scalar_name,

 shape=[],

 initializer=tf.constant_initializer(1))

 return x * var1

scale_by_y = tf.make_template('scale_by_y', my_op,

scalar_name='y')

z = scale_by_y(input1)

w = scale_by_y(input2)

As a safe-guard, the returned function will raise a ValueError after

the first call if trainable variables are created by calling tf.Variable.

If all of these are true, then 2 properties are enforced by the template:

1. Calling the same template multiple times will share all non-local
variables.

2. Two different templates are guaranteed to be unique, unless you
reenter the same variable scope as the initial definition of a template
and redefine it. An examples of this exception:
def my_op(x, scalar_name):

 var1 = tf.get_variable(scalar_name,

 shape=[],

 initializer=tf.constant_initializer(1))

 return x * var1

with tf.variable_scope('scope') as vs:

 scale_by_y = tf.make_template('scale_by_y', my_op,

scalar_name='y')

 z = scale_by_y(input1)

 w = scale_by_y(input2)

Creates a template that reuses the variables above.

with tf.variable_scope(vs, reuse=True):

 scale_by_y2 = tf.make_template('scale_by_y', my_op,

scalar_name='y')

 z2 = scale_by_y2(input1)

 w2 = scale_by_y2(input2)

Note: The full variable scope is captured at the time of the first call.

Note: name_ and func_ have a following underscore to reduce the

likelihood of collisions with kwargs.

Args:

 name_: A name for the scope created by this template. If necessary,

the name will be made unique by appending _N to the name.

 func_: The function to wrap.

 **kwargs: Keyword arguments to apply to func_.

Returns:

A function that will enter a variable_scope before calling func_. The

first time it is called, it will create a non-reusing scope so that the
variables will be unique. On each subsequent call, it will reuse those
variables.

Raises:

 ValueError: if the name is None.

tf.variable_op_scope(values, name, default_name,

initializer=None)

Returns a context manager for defining an op that creates variables.

This context manager validates that the given values are from the

same graph, ensures that that graph is the default graph, and pushes
a name scope and a variable scope.

If name is not None, it is used as is in the variable scope. If name is

None, then default_name is used. In that case, if the same name

has been previously used in the same scope, it will made unique be

appending _N to it.

This is intended to be used when defining generic ops and so reuse
is always inherited.

For example, to define a new Python op called my_op_with_vars:

def my_op_with_vars(a, b, name=None):

 with tf.variable_op_scope([a, b], name, "MyOp") as scope:

 a = tf.convert_to_tensor(a, name="a")

 b = tf.convert_to_tensor(b, name="b")

 c = tf.get_variable('c')

 # Define some computation that uses `a`, `b`, and `c`.

 return foo_op(..., name=scope)

Args:

 values: The list of Tensor arguments that are passed to the op

function.

 name: The name argument that is passed to the op function, this

name is not uniquified in the variable scope.

 default_name: The default name to use if the name argument is None,

this name will be uniquified.

 initializer: A default initializer to pass to variable scope.

Returns:

A context manager for use in defining a Python op.

Raises:

 ValueError: when trying to reuse within a create scope, or create

within a reuse scope, or if reuse is notNone or True.

 TypeError: when the types of some arguments are not appropriate.

tf.variable_scope(name_or_scope, reuse=None,

initializer=None)

Returns a context for variable scope.

Variable scope allows to create new variables and to share already
created ones while providing checks to not create or share by
accident. For details, see the Variable Scope How To, here we
present only a few basic examples.

Simple example of how to create a new variable:

with tf.variable_scope("foo"):

 with tf.variable_scope("bar"):

 v = tf.get_variable("v", [1])

 assert v.name == "foo/bar/v:0"

Basic example of sharing a variable:

with tf.variable_scope("foo"):

 v = tf.get_variable("v", [1])

with tf.variable_scope("foo", reuse=True):

 v1 = tf.get_variable("v", [1])

assert v1 == v

Sharing a variable by capturing a scope and setting reuse:

https://www.tensorflow.org/versions/r0.7/how_tos/variable_scope/index.html

with tf.variable_scope("foo") as scope:

 v = tf.get_variable("v", [1])

 scope.reuse_variables()

 v1 = tf.get_variable("v", [1])

assert v1 == v

To prevent accidental sharing of variables, we raise an exception
when getting an existing variable in a non-reusing scope.

with tf.variable_scope("foo"):

 v = tf.get_variable("v", [1])

 v1 = tf.get_variable("v", [1])

 # Raises ValueError("... v already exists ...").

Similarly, we raise an exception when trying to get a variable that
does not exist in reuse mode.

with tf.variable_scope("foo", reuse=True):

 v = tf.get_variable("v", [1])

 # Raises ValueError("... v does not exists ...").

Note that the reuse flag is inherited: if we open a reusing scope, then

all its sub-scopes become reusing as well.

Args:

 name_or_scope: string or VariableScope: the scope to open.

 reuse: True or None; if True, we go into reuse mode for this scope as

well as all sub-scopes; if None, we just inherit the parent scope reuse.

 initializer: default initializer for variables within this scope.

Returns:

A scope that can be to captured and reused.

Raises:

 ValueError: when trying to reuse within a create scope, or create

within a reuse scope, or if reuse is notNone or True.

 TypeError: when the types of some arguments are not appropriate.

tf.constant_initializer(value=0.0, dtype=tf.float32)

Returns an initializer that generates tensors with a single value.

Args:

 value: A Python scalar. All elements of the initialized variable will be

set to this value.

 dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a single value.

Raises:

 ValueError: if dtype is not a floating point type.

tf.random_normal_initializer(mean=0.0, stddev=1.0,

seed=None, dtype=tf.float32)

Returns an initializer that generates tensors with a normal
distribution.

Args:

 mean: a python scalar or a scalar tensor. Mean of the random values

to generate.

 stddev: a python scalar or a scalar tensor. Standard deviation of the

random values to generate.

 seed: A Python integer. Used to create random seeds.

See set_random_seed for behavior.

 dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a normal distribution.

Raises:

 ValueError: if dtype is not a floating point type.

tf.truncated_normal_initializer(mean=0.0, stddev=1.0,

seed=None, dtype=tf.float32)

Returns an initializer that generates a truncated normal distribution.

These values are similar to values from

a random_normal_initializer except that values more than two

standard deviations from the mean are discarded and re-drawn. This
is the recommended initializer for neural network weights and filters.

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

 mean: a python scalar or a scalar tensor. Mean of the random values

to generate.

 stddev: a python scalar or a scalar tensor. Standard deviation of the

random values to generate.

 seed: A Python integer. Used to create random seeds.

See set_random_seed for behavior.

 dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a truncated normal
distribution.

Raises:

 ValueError: if dtype is not a floating point type.

tf.random_uniform_initializer(minval=0.0, maxval=1.0,

seed=None, dtype=tf.float32)

Returns an initializer that generates tensors with a uniform
distribution.

Args:

 minval: a python scalar or a scalar tensor. lower bound of the range

of random values to generate.

 maxval: a python scalar or a scalar tensor. upper bound of the range

of random values to generate.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

 seed: A Python integer. Used to create random seeds.

See set_random_seed for behavior.

 dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with a uniform distribution.

Raises:

 ValueError: if dtype is not a floating point type.

tf.uniform_unit_scaling_initializer(factor=1.0,

seed=None, dtype=tf.float32)

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to
keep the scale of the input variance constant, so it does not explode

or diminish by reaching the final layer. If the input is x and the

operation x * W, and we want to initialize W uniformly at random, we

need to pick W from

[-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]

to keep the scale intact, where dim = W.shape[0] (the size of the

input). A similar calculation for convolutional networks gives an

analogous result with dim equal to the product of the first 3

dimensions. When nonlinearities are present, we need to multiply this

by a constant factor. See Sussillo et al., 2014 (pdf) for deeper

motivation, experiments and the calculation of constants. In section

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed
https://arxiv.org/abs/1412.6558
http://arxiv.org/pdf/1412.6558.pdf

2.3 there, the constants were numerically computed: for a linear layer
it's 1.0, relu: ~1.43, tanh: ~1.15.

Args:

 factor: Float. A multiplicative factor by which the values will be

scaled.

 seed: A Python integer. Used to create random seeds.

See set_random_seed for behavior.

 dtype: The data type. Only floating point types are supported.

Returns:

An initializer that generates tensors with unit variance.

Raises:

 ValueError: if dtype is not a floating point type.

tf.zeros_initializer(shape, dtype=tf.float32)

An adaptor for zeros() to match the Initializer spec.

Sparse Variable Updates

The sparse update ops modify a subset of the entries in a

dense Variable, either overwriting the entries or adding / subtracting

a delta. These are useful for training embedding models and similar
lookup-based networks, since only a small subset of embedding
vectors change in any given step.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Since a sparse update of a large tensor may be generated
automatically during gradient computation (as in the gradient

of tf.gather), an IndexedSlices class is provided that

encapsulates a set of sparse indices and

values. IndexedSlices objects are detected and handled

automatically by the optimizers in most cases.

tf.scatter_update(ref, indices, updates,

use_locking=None, name=None)

Applies sparse updates to a variable reference.

This operation computes

Scalar indices

ref[indices, ...] = updates[...]

Vector indices (for each i)

ref[indices[i], ...] = updates[i, ...]

High rank indices (for each i, ..., j)

ref[indices[i, ..., j], ...] = updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it

easier to chain operations that need to use the reset value.

If values in ref is to be updated more than once, because there are

duplicate entires in indices, the order at which the updates happen

for each value is undefined.

Requires updates.shape = indices.shape + ref.shape[1:].

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#IndexedSlices

Args:

 ref: A mutable Tensor. Should be from a Variable node.

 indices: A Tensor. Must be one of the following types: int32, int64.

A tensor of indices into the first dimension of ref.

 updates: A Tensor. Must have the same type as ref. A tensor of

updated values to store in ref.

 use_locking: An optional bool. Defaults to True. If True, the

assignment will be protected by a lock; otherwise the behavior is
undefined, but may exhibit less contention.

 name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want to

use the updated values after the update is done.

tf.scatter_add(ref, indices, updates, use_locking=None,

name=None)

Adds sparse updates to a variable reference.

This operation computes

Scalar indices

ref[indices, ...] += updates[...]

Vector indices (for each i)

ref[indices[i], ...] += updates[i, ...]

High rank indices (for each i, ..., j)

ref[indices[i, ..., j], ...] += updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it

easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference

the same location, their contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:

 ref: A mutable Tensor. Must be one of the following

types: float32, float64, int64, int32, uint8,uint16, int16, int8,

complex64, qint8, quint8, qint32. Should be from

a Variable node.

 indices: A Tensor. Must be one of the following types: int32, int64.

A tensor of indices into the first dimension of ref.

 updates: A Tensor. Must have the same type as ref. A tensor of

updated values to add to ref.

 use_locking: An optional bool. Defaults to False. If True, the

addition will be protected by a lock; otherwise the behavior is
undefined, but may exhibit less contention.

 name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want to

use the updated values after the update is done.

tf.scatter_sub(ref, indices, updates, use_locking=None,

name=None)

Subtracts sparse updates to a variable reference.

Scalar indices

ref[indices, ...] -= updates[...]

Vector indices (for each i)

ref[indices[i], ...] -= updates[i, ...]

High rank indices (for each i, ..., j)

ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it

easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference

the same location, their (negated) contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:

 ref: A mutable Tensor. Must be one of the following

types: float32, float64, int64, int32, uint8,uint16, int16, int8,

complex64, qint8, quint8, qint32. Should be from

a Variable node.

 indices: A Tensor. Must be one of the following types: int32, int64.

A tensor of indices into the first dimension of ref.

 updates: A Tensor. Must have the same type as ref. A tensor of

updated values to subtract from ref.

 use_locking: An optional bool. Defaults to False. If True, the

subtraction will be protected by a lock; otherwise the behavior is
undefined, but may exhibit less contention.

 name: A name for the operation (optional).

Returns:

Same as ref. Returned as a convenience for operations that want to

use the updated values after the update is done.

tf.sparse_mask(a, mask_indices, name=None)

Masks elements of IndexedSlices.

Given an IndexedSlices instance a, returns

another IndexedSlices that contains a subset of the slices ofa. Only

the slices at indices specified in mask_indices are returned.

This is useful when you need to extract a subset of slices in

an IndexedSlices object.

For example:

`a` contains slices at indices [12, 26, 37, 45] from a large

tensor

with shape [1000, 10]

a.indices => [12, 26, 37, 45]

tf.shape(a.values) => [4, 10]

`b` will be the subset of `a` slices at its second and third

indices, so

we want to mask of its first and last indices (which are at

absolute

indices 12, 45)

b = tf.sparse_mask(a, [12, 45])

b.indices => [26, 37]

tf.shape(b.values) => [2, 10]

Args:

 a: An IndexedSlices instance.

 mask_indices: Indices of elements to mask.

 name: A name for the operation (optional).

Returns:

The masked IndexedSlices instance.

class tf.IndexedSlices

A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:

 values: A Tensor of any dtype with shape [D0, D1, ..., Dn].

 indices: A 1-D integer Tensor with shape [D0].

An IndexedSlices is typically used to represent a subset of a larger

tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >>

D0. The values in indices are the indices in the first dimension of the

slices that have been extracted from the larger tensor.

The dense tensor dense represented by

an IndexedSlices slices has

dense[slices.indices[i], :, :, :, ...] =

slices.values[i, :, :, :, ...]

The IndexedSlices class is used principally in the definition of

gradients for operations that have sparse gradients (e.g. tf.gather).

Contrast this representation with SparseTensor, which uses multi-

dimensional indices and scalar values.

tf.IndexedSlices.__init__(values, indices,

dense_shape=None)

Creates an IndexedSlices.

tf.IndexedSlices.values

A Tensor containing the values of the slices.

tf.IndexedSlices.indices

A 1-D Tensor containing the indices of the slices.

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor

tf.IndexedSlices.dense_shape

A 1-D Tensor containing the shape of the corresponding dense

tensor.

tf.IndexedSlices.name

The name of this IndexedSlices.

tf.IndexedSlices.dtype

The DType of elements in this tensor.

tf.IndexedSlices.device

The name of the device on which values will be produced, or None.

tf.IndexedSlices.op

The Operation that produces values as an output.

Other Methods

tf.IndexedSlices.graph

The Graph that contains the values, indices, and shape tensors.

Tensor Transformations

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Tensor Transformations
 Casting
 tf.string_to_number(string_tensor, out_type=None,

name=None)
 tf.to_double(x, name=ToDouble)
 tf.to_float(x, name=ToFloat)
 tf.to_bfloat16(x, name=ToBFloat16)
 tf.to_int32(x, name=ToInt32)
 tf.to_int64(x, name=ToInt64)
 tf.cast(x, dtype, name=None)

 Shapes and Shaping
 tf.shape(input, name=None)
 tf.size(input, name=None)
 tf.rank(input, name=None)
 tf.reshape(tensor, shape, name=None)
 tf.squeeze(input, squeeze_dims=None, name=None)
 tf.expand_dims(input, dim, name=None)

 Slicing and Joining
 tf.slice(input_, begin, size, name=None)
 tf.split(split_dim, num_split, value, name=split)
 tf.tile(input, multiples, name=None)
 tf.pad(input, paddings, name=None)
 tf.concat(concat_dim, values, name=concat)
 tf.pack(values, name=pack)
 tf.unpack(value, num=None, name=unpack)
 tf.reverse_sequence(input, seq_lengths, seq_dim,

batch_dim=None, name=None)
 tf.reverse(tensor, dims, name=None)
 tf.transpose(a, perm=None, name=transpose)
 tf.space_to_depth(input, block_size, name=None)
 tf.depth_to_space(input, block_size, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#tensor-transformations
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#casting
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#string_to_number
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#string_to_number
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_double
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_float
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_bfloat16
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_int32
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#to_int64
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#cast
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#shapes-and-shaping
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#shape
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#size
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#rank
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reshape
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#squeeze
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#expand_dims
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#slicing-and-joining
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#slice
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#split
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#tile
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#pad
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#concat
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#pack
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#unpack
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reverse_sequence
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reverse_sequence
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reverse
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#space_to_depth
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#depth_to_space

 tf.gather(params, indices, validate_indices=None,

name=None)
 tf.dynamic_partition(data, partitions, num_partitions,

name=None)
 tf.dynamic_stitch(indices, data, name=None)
 tf.boolean_mask(tensor, mask, name=boolean_mask)

 2-D example
 Other Functions and Classes
 tf.shape_n(input, name=None)
 tf.unique_with_counts(x, name=None)

Casting

TensorFlow provides several operations that you can use to cast
tensor data types in your graph.

tf.string_to_number(string_tensor, out_type=None,

name=None)

Converts each string in the input Tensor to the specified numeric
type.

(Note that int32 overflow results in an error while float overflow
results in a rounded value.)

Args:

 string_tensor: A Tensor of type string.

 out_type: An optional tf.DType from: tf.float32, tf.int32.

Defaults to tf.float32. The numeric type to interpret each string in

string_tensor as.

 name: A name for the operation (optional).

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#dynamic_partition
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#dynamic_partition
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#dynamic_stitch
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#boolean_mask
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#2-d-example
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#shape_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#unique_with_counts

Returns:

A Tensor of type out_type. A Tensor of the same shape as the

input string_tensor.

tf.to_double(x, name='ToDouble')

Casts a tensor to type float64.

Args:

 x: A Tensor or SparseTensor.

 name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float64.

Raises:

 TypeError: If x cannot be cast to the float64.

tf.to_float(x, name='ToFloat')

Casts a tensor to type float32.

Args:

 x: A Tensor or SparseTensor.

 name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float32.

Raises:

 TypeError: If x cannot be cast to the float32.

tf.to_bfloat16(x, name='ToBFloat16')

Casts a tensor to type bfloat16.

Args:

 x: A Tensor or SparseTensor.

 name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type bfloat16.

Raises:

 TypeError: If x cannot be cast to the bfloat16.

tf.to_int32(x, name='ToInt32')

Casts a tensor to type int32.

Args:

 x: A Tensor or SparseTensor.

 name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int32.

Raises:

 TypeError: If x cannot be cast to the int32.

tf.to_int64(x, name='ToInt64')

Casts a tensor to type int64.

Args:

 x: A Tensor or SparseTensor.

 name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int64.

Raises:

 TypeError: If x cannot be cast to the int64.

tf.cast(x, dtype, name=None)

Casts a tensor to a new type.

The operation casts x (in case of Tensor) or x.values (in case

of SparseTensor) to dtype.

For example:

tensor `a` is [1.8, 2.2], dtype=tf.float

tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32

Args:

 x: A Tensor or SparseTensor.

 dtype: The destination type.

 name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x.

Raises:

 TypeError: If x cannot be cast to the dtype.

Shapes and Shaping

TensorFlow provides several operations that you can use to
determine the shape of a tensor and change the shape of a tensor.

tf.shape(input, name=None)

Returns the shape of a tensor.

This operation returns a 1-D integer tensor representing the shape

of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]

shape(t) ==> [2, 2, 3]

Args:

 input: A Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.size(input, name=None)

Returns the size of a tensor.

This operation returns an integer representing the number of

elements in input.

For example:

't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]

size(t) ==> 12

Args:

 input: A Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.rank(input, name=None)

Returns the rank of a tensor.

This operation returns an integer representing the rank of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]

shape of tensor 't' is [2, 2, 3]

rank(t) ==> 3

Note: The rank of a tensor is not the same as the rank of a matrix.
The rank of a tensor is the number of indices required to uniquely

select each element of the tensor. Rank is also known as "order",
"degree", or "ndims."

Args:

 input: A Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.reshape(tensor, shape, name=None)

Reshapes a tensor.

Given tensor, this operation returns a tensor that has the same

values as tensor with shape shape.

If one component of shape is the special value -1, the size of that

dimension is computed so that the total size remains constant. In

particular, a shape of [-1] flattens into 1-D. At most one component

of shape can be -1.

If shape is 1-D or higher, then the operation returns a tensor with

shape shape filled with the values of tensor. In this case, the number

of elements implied by shape must be the same as the number of

elements in tensor.

For example:

tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]

tensor 't' has shape [9]

reshape(t, [3, 3]) ==> [[1, 2, 3]

 [4, 5, 6]

 [7, 8, 9]]

tensor 't' is [[[1, 1], [2, 2]]

[[3, 3], [4, 4]]]

tensor 't' has shape [2, 2, 2]

reshape(t, [2, 4]) ==> [[1, 1, 2, 2]

 [3, 3, 4, 4]]

tensor 't' is [[[1, 1, 1],

[2, 2, 2]],

[[3, 3, 3],

[4, 4, 4]],

[[5, 5, 5],

[6, 6, 6]]]

tensor 't' has shape [3, 2, 3]

pass '[-1]' to flatten 't'

reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5,

5, 6, 6, 6]

-1 can also be used with higher dimensional shapes

reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],

 [4, 4, 4, 5, 5, 5, 6, 6, 6]]

tensor 't' is [7]

shape `[]` reshapes to a scalar

reshape(t, []) ==> 7

Args:

 tensor: A Tensor.

 shape: A Tensor of type int32. Defines the shape of the output

tensor.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.squeeze(input, squeeze_dims=None, name=None)

Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same

type with all dimensions of size 1 removed. If you don't want to
remove all size 1 dimensions, you can remove specific size 1

dimensions by specifyingsqueeze_dims.

For example:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]

shape(squeeze(t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]

shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

Args:

 input: A Tensor. The input to squeeze.

 squeeze_dims: An optional list of ints. Defaults to []. If specified,

only squeezes the dimensions listed. The dimension index starts at 0.
It is an error to squeeze a dimension that is not 1.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Contains the same data

as input, but has one or more dimensions of size 1 removed.

tf.expand_dims(input, dim, name=None)

Inserts a dimension of 1 into a tensor's shape.

Given a tensor input, this operation inserts a dimension of 1 at the

dimension index dim of input's shape. The dimension

index dim starts at zero; if you specify a negative number for dim it is

counted backward from the end.
This operation is useful if you want to add a batch dimension to a
single element. For example, if you have a single image of

shape [height, width, channels], you can make it a batch of 1

image withexpand_dims(image, 0), which will make the shape [1,

height, width, channels].

Other examples:

't' is a tensor of shape [2]

shape(expand_dims(t, 0)) ==> [1, 2]

shape(expand_dims(t, 1)) ==> [2, 1]

shape(expand_dims(t, -1)) ==> [2, 1]

't2' is a tensor of shape [2, 3, 5]

shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]

shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]

shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

This operation requires that:

-1-input.dims() <= dim <= input.dims()

This operation is related to squeeze(), which removes dimensions of

size 1.

Args:

 input: A Tensor.

 dim: A Tensor of type int32. 0-D (scalar). Specifies the dimension

index at which to expand the shape ofinput.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Contains the same data

as input, but its shape has an additional dimension of size 1 added.

Slicing and Joining

TensorFlow provides several operations to slice or extract parts of a
tensor, or join multiple tensors together.

tf.slice(input_, begin, size, name=None)

Extracts a slice from a tensor.

This operation extracts a slice of size size from a

tensor input starting at the location specified by begin. The

slice size is represented as a tensor shape, where size[i] is the

number of elements of the 'i'th dimension ofinput that you want to

slice. The starting location (begin) for the slice is represented as an

offset in each dimension of input. In other words, begin[i] is the

offset into the 'i'th dimension of input that you want to slice from.

begin is zero-based; size is one-based. If size[i] is -1, all

remaining elements in dimension i are included in the slice. In other
words, this is equivalent to setting:
size[i] = input.dim_size(i) - begin[i]

This operation requires that:

0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]

For example:

'input' is [[[1, 1, 1], [2, 2, 2]],

[[3, 3, 3], [4, 4, 4]],

[[5, 5, 5], [6, 6, 6]]]

tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]

tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],

 [4, 4, 4]]]

tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],

 [[5, 5, 5]]]

Args:

 input_: A Tensor.

 begin: An int32 or int64 Tensor.

 size: An int32 or int64 Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor the same type as input.

tf.split(split_dim, num_split, value, name='split')

Splits a tensor into num_split tensors along one dimension.

Splits value along dimension split_dim into num_split smaller

tensors. Requires that num_split evenly

divide value.shape[split_dim].

For example:

'value' is a tensor with shape [5, 30]

Split 'value' into 3 tensors along dimension 1

split0, split1, split2 = tf.split(1, 3, value)

tf.shape(split0) ==> [5, 10]

Args:

 split_dim: A 0-D int32 Tensor. The dimension along which to split.

Must be in the range [0, rank(value)).

 num_split: A Python integer. The number of ways to split.

 value: The Tensor to split.

 name: A name for the operation (optional).

Returns:

num_split Tensor objects resulting from splitting value.

tf.tile(input, multiples, name=None)

Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by

replicating input multiples times. The output tensor's i'th dimension

has input.dims(i) * multiples[i] elements, and the values

of input are replicated multiples[i]times along the 'i'th dimension.

For example, tiling [a b c d] by [2] produces [a b c d a b c d].

Args:

 input: A Tensor. 1-D or higher.

 multiples: A Tensor of type int32. 1-D. Length must be the same

as the number of dimensions in input

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.pad(input, paddings, name=None)

Pads a tensor with zeros.

This operation pads a input with zeros according to

the paddings you specify. paddings is an integer tensor with

shape [Dn, 2], where n is the rank of input. For each dimension D

of input, paddings[D, 0]indicates how many zeros to add before

the contents of input in that dimension, and paddings[D,

1]indicates how many zeros to add after the contents of input in that

dimension.

The padded size of each dimension D of the output is:

paddings(D, 0) + input.dim_size(D) + paddings(D, 1)

For example:

't' is [[1, 1], [2, 2]]

'paddings' is [[1, 1], [2, 2]]

rank of 't' is 2

pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]

 [0, 0, 1, 1, 0, 0]

 [0, 0, 2, 2, 0, 0]

 [0, 0, 0, 0, 0, 0]]

Args:

 input: A Tensor.

 paddings: A Tensor of type int32.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.concat(concat_dim, values, name='concat')

Concatenates tensors along one dimension.

Concatenates the list of tensors values along

dimension concat_dim. If values[i].shape = [D0, D1, ...

Dconcat_dim(i), ...Dn], the concatenated result has shape

[D0, D1, ... Rconcat_dim, ...Dn]

where

Rconcat_dim = sum(Dconcat_dim(i))

That is, the data from the input tensors is joined along

the concat_dim dimension.

The number of dimensions of the input tensors must match, and all

dimensions except concat_dim must be equal.

For example:

t1 = [[1, 2, 3], [4, 5, 6]]

t2 = [[7, 8, 9], [10, 11, 12]]

tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10,

11, 12]]

tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11,

12]]

tensor t3 with shape [2, 3]

tensor t4 with shape [2, 3]

tf.shape(tf.concat(0, [t3, t4])) ==> [4, 3]

tf.shape(tf.concat(1, [t3, t4])) ==> [2, 6]

Args:

 concat_dim: 0-D int32 Tensor. Dimension along which to

concatenate.

 values: A list of Tensor objects or a single Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor resulting from concatenation of the input tensors.

tf.pack(values, name='pack')

Packs a list of rank-R tensors into one rank-(R+1) tensor.

Packs tensors in values into a tensor with rank one higher than each

tensor in values and shape[len(values)] + values[0].shape.

The output satisfies output[i, ...] = values[i][...].

This is the opposite of unpack. The numpy equivalent is

tf.pack([x, y, z]) = np.asarray([x, y, z])

Args:

 values: A list of Tensor objects with the same shape and type.

 name: A name for this operation (optional).

Returns:

 output: A packed Tensor with the same type as values.

tf.unpack(value, num=None, name='unpack')

Unpacks the outer dimension of a rank-R tensor into rank-(R-

1) tensors.

Unpacks num tensors from value along the first dimension. If num is

not specified (the default), it is inferred fromvalue's shape.

If value.shape[0] is not known, ValueError is raised.

The ith tensor in output is the slice value[i, ...]. Each tensor

in output has shape value.shape[1:].

This is the opposite of pack. The numpy equivalent is

tf.unpack(x, n) = list(x)

Args:

 value: A rank R > 0 Tensor to be unpacked.

 num: An int. The first dimension of value. Automatically inferred

if None (the default).

 name: A name for the operation (optional).

Returns:

The list of Tensor objects unpacked from value.

Raises:

 ValueError: If num is unspecified and cannot be inferred.

tf.reverse_sequence(input, seq_lengths, seq_dim,

batch_dim=None, name=None)

Reverses variable length slices.

This op first slices input along the dimension batch_dim, and for

each slice i, reverses the firstseq_lengths[i] elements along the

dimension seq_dim.

The elements of seq_lengths must obey seq_lengths[i] <

input.dims[seq_dim], andseq_lengths must be a vector of

length input.dims[batch_dim].

The output slice i along dimension batch_dim is then given by input

slice i, with the first seq_lengths[i]slices along

dimension seq_dim reversed.

For example:

Given this:

batch_dim = 0

seq_dim = 1

input.dims = (4, 8, ...)

seq_lengths = [7, 2, 3, 5]

then slices of input are reversed on seq_dim, but only up to

seq_lengths:

output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...]

output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...]

output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...]

output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...]

while entries past seq_lens are copied through:

output[0, 7:, :, ...] = input[0, 7:, :, ...]

output[1, 2:, :, ...] = input[1, 2:, :, ...]

output[2, 3:, :, ...] = input[2, 3:, :, ...]

output[3, 2:, :, ...] = input[3, 2:, :, ...]

In contrast, if:

Given this:

batch_dim = 2

seq_dim = 0

input.dims = (8, ?, 4, ...)

seq_lengths = [7, 2, 3, 5]

then slices of input are reversed on seq_dim, but only up to

seq_lengths:

output[0:7, :, 0, :, ...] = input[7:0:-1, :, 0, :, ...]

output[0:2, :, 1, :, ...] = input[2:0:-1, :, 1, :, ...]

output[0:3, :, 2, :, ...] = input[3:0:-1, :, 2, :, ...]

output[0:5, :, 3, :, ...] = input[5:0:-1, :, 3, :, ...]

while entries past seq_lens are copied through:

output[7:, :, 0, :, ...] = input[7:, :, 0, :, ...]

output[2:, :, 1, :, ...] = input[2:, :, 1, :, ...]

output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...]

output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...]

Args:

 input: A Tensor. The input to reverse.

 seq_lengths: A Tensor of type int64. 1-D with

length input.dims(batch_dim) andmax(seq_lengths) <

input.dims(seq_dim)

 seq_dim: An int. The dimension which is partially reversed.

 batch_dim: An optional int. Defaults to 0. The dimension along

which reversal is performed.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. The partially reversed input.

It has the same shape as input.

tf.reverse(tensor, dims, name=None)

Reverses specific dimensions of a tensor.

Given a tensor, and a bool tensor dims representing the dimensions

of tensor, this operation reverses each dimension i

of tensor where dims[i] is True.

tensor can have up to 8 dimensions. The number of dimensions

of tensor must equal the number of elements in dims. In other

words:
rank(tensor) = size(dims)

For example:

tensor 't' is [[[[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11]],

[[12, 13, 14, 15],

[16, 17, 18, 19],

[20, 21, 22, 23]]]]

tensor 't' shape is [1, 2, 3, 4]

'dims' is [False, False, False, True]

reverse(t, dims) ==> [[[[3, 2, 1, 0],

 [7, 6, 5, 4],

 [11, 10, 9, 8]],

 [[15, 14, 13, 12],

 [19, 18, 17, 16],

 [23, 22, 21, 20]]]]

'dims' is [False, True, False, False]

reverse(t, dims) ==> [[[[12, 13, 14, 15],

 [16, 17, 18, 19],

 [20, 21, 22, 23]

 [[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11]]]]

'dims' is [False, False, True, False]

reverse(t, dims) ==> [[[[8, 9, 10, 11],

 [4, 5, 6, 7],

 [0, 1, 2, 3]]

 [[20, 21, 22, 23],

 [16, 17, 18, 19],

 [12, 13, 14, 15]]]]

Args:

 tensor: A Tensor. Must be one of the following

types: uint8, int8, int32, bool, float32, float64. Up to 8-D.

 dims: A Tensor of type bool. 1-D. The dimensions to reverse.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor. The same shape

as tensor.

tf.transpose(a, perm=None, name='transpose')

Transposes a. Permutes the dimensions according to perm.

The returned tensor's dimension i will correspond to the input

dimension perm[i]. If perm is not given, it is set to (n-1...0), where n

is the rank of the input tensor. Hence by default, this operation
performs a regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]

[4 5 6]]

tf.transpose(x) ==> [[1 4]

 [2 5]

 [3 6]]

Equivalently

tf.transpose(x, perm=[1, 0]) ==> [[1 4]

 [2 5]

 [3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2

'x' is [[[1 2 3]

[4 5 6]]

[[7 8 9]

[10 11 12]]]

Take the transpose of the matrices in dimension-0

tf.transpose(b, perm=[0, 2, 1]) ==> [[[1 4]

 [2 5]

 [3 6]]

 [[7 10]

 [8 11]

 [9 12]]]

Args:

 a: A Tensor.

 perm: A permutation of the dimensions of a.

 name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.space_to_depth(input, block_size, name=None)

SpaceToDepth for tensors of type T.

Rearranges blocks of spatial data, into depth. More specifically, this
op outputs a copy of the input tensor where values from

the height and width dimensions are moved to the depth dimension.

The attr block_sizeindicates the input block size and how the data is

moved.

 Non-overlapping blocks of size block_size x block size are

rearranged into depth at each location.

 The depth of the output tensor is input_depth * block_size *

block_size.

 The input tensor's height and width must be divisible by block_size.

That is, assuming the input is in the shape: [batch, height,

width, depth], the shape of the output will be: [batch,

height/block_size, width/block_size,

depth*block_size*block_size]

This operation requires that the input tensor be of rank 4, and

that block_size be >=1 and a divisor of both the

input height and width.

This operation is useful for resizing the activations between
convolutions (but keeping all data), e.g. instead of pooling. It is also
useful for training purely convolutional models.

For example, given this input of shape [1, 2, 2, 1], and block_size

of 2:
x = [[[[1], [2]],

 [[3], [4]]]]

This operation will output a tensor of shape [1, 1, 1, 4]:

[[[[1, 2, 3, 4]]]]

Here, the input has a batch of 1 and each batch element has

shape [2, 2, 1], the corresponding output will have a single

element (i.e. width and height are both 1) and will have a depth of 4
channels (1 * block_size * block_size). The output element shape

is [1, 1, 4].

For an input tensor with larger depth, here of shape [1, 2, 2, 3],

e.g.
x = [[[[1, 2, 3], [4, 5, 6]],

 [[7, 8, 9], [10, 11, 12]]]]

This operation, for block_size of 2, will return the following tensor of

shape [1, 1, 1, 12]

[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]

Similarly, for the following input of shape [1 4 4 1], and a block size

of 2:
x = [[[1], [2], [5], [6]],

 [[3], [4], [7], [8]],

 [[9], [10], [13], [14]],

 [[11], [12], [15], [16]]]

the operator will return the following tensor of shape [1 2 2 4]:

x = [[[[1, 2, 3, 4],

 [5, 6, 7, 8]],

 [[9, 10, 11, 12],

 [13, 14, 15, 16]]]]

Args:

 input: A Tensor.

 block_size: An int. The size of the spatial block.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.depth_to_space(input, block_size, name=None)

DepthToSpace for tensors of type T.

Rearranges data from depth into blocks of spatial data. This is the
reverse transformation of SpaceToDepth. More specifically, this op
outputs a copy of the input tensor where values from

the depth dimension are moved in spatial blocks to

the height and width dimensions. The attr block_size indicates the

input block size and how the data is moved.

 Chunks of data of size block_size * block_size from depth are

rearranged into non-overlapping blocks of size block_size x

block_size

 The width the output tensor is input_depth * block_size, whereas

the height is input_height * block_size.

 The depth of the input tensor must be divisible by block_size *

block_size.

That is, assuming the input is in the shape: [batch, height,

width, depth], the shape of the output will be: [batch,

height*block_size, width*block_size,

depth/(block_size*block_size)]

This operation requires that the input tensor be of rank 4, and

that block_size be >=1 and that block_size * block_size be a

divisor of the input depth.

This operation is useful for resizing the activations between
convolutions (but keeping all data), e.g. instead of pooling. It is also
useful for training purely convolutional models.

For example, given this input of shape [1, 1, 1, 4], and a block

size of 2:
x = [[[[1, 2, 3, 4]]]]

This operation will output a tensor of shape [1, 2, 2, 1]:

 [[[[1], [2]],

 [[3], [4]]]]

Here, the input has a batch of 1 and each batch element has

shape [1, 1, 4], the corresponding output will have 2x2 elements

and will have a depth of 1 channel (1 = 4 / (block_size *

block_size)). The output element shape is [2, 2, 1].

For an input tensor with larger depth, here of shape [1, 1, 1, 12],

e.g.
x = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]

This operation, for block size of 2, will return the following tensor of

shape [1, 2, 2, 3]

 [[[[1, 2, 3], [4, 5, 6]],

 [[7, 8, 9], [10, 11, 12]]]]

Similarly, for the following input of shape [1 2 2 4], and a block size

of 2:
x = [[[[1, 2, 3, 4],

 [5, 6, 7, 8]],

 [[9, 10, 11, 12],

 [13, 14, 15, 16]]]]

the operator will return the following tensor of shape [1 4 4 1]:

x = [[[1], [2], [5], [6]],

 [[3], [4], [7], [8]],

 [[9], [10], [13], [14]],

 [[11], [12], [15], [16]]]

Args:

 input: A Tensor.

 block_size: An int. The size of the spatial block, same as in

Space2Depth.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.gather(params, indices, validate_indices=None,

name=None)

Gather slices from params according to indices.

indices must be an integer tensor of any dimension (usually 0-D or

1-D). Produces an output tensor with shapeindices.shape +

params.shape[1:] where:

Scalar indices

output[:, ..., :] = params[indices, :, ... :]

Vector indices

output[i, :, ..., :] = params[indices[i], :, ... :]

Higher rank indices

output[i, ..., j, :, ... :] = params[indices[i, ...,

j], :, ..., :]

If indices is a permutation and len(indices) ==

params.shape[0] then this operation will

permuteparams accordingly.

Args:

 params: A Tensor.

 indices: A Tensor. Must be one of the following types: int32, int64.

 validate_indices: An optional bool. Defaults to True.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as params.

tf.dynamic_partition(data, partitions, num_partitions,

name=None)

Partitions data into num_partitions tensors using indices

from partitions.

For each index tuple js of size partitions.ndim, the

slice data[js, ...] becomes part ofoutputs[partitions[js]].

The slices with partitions[js] = i are placed in outputs[i] in

lexicographic order of js, and the first dimension of outputs[i] is

the number of entries in partitions equal to i. In detail,

outputs[i].shape = [sum(partitions == i)] +

data.shape[partitions.ndim:]

outputs[i] = pack([data[js, ...] for js if partitions[js] == i])

data.shape must start with partitions.shape.

For example:

Scalar partitions

partitions = 1

num_partitions = 2

data = [10, 20]

outputs[0] = [] # Empty with shape [0, 2]

outputs[1] = [[10, 20]]

Vector partitions

partitions = [0, 0, 1, 1, 0]

num_partitions = 2

data = [10, 20, 30, 40, 50]

outputs[0] = [10, 20, 50]

outputs[1] = [30, 40]

Args:

 data: A Tensor.

 partitions: A Tensor of type int32. Any shape. Indices in the

range [0, num_partitions).

 num_partitions: An int that is >= 1. The number of partitions to

output.

 name: A name for the operation (optional).

Returns:

A list of num_partitions Tensor objects of the same type as data.

tf.dynamic_stitch(indices, data, name=None)

Interleave the values from the data tensors into a single tensor.

Builds a merged tensor such that

merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...]

For example, if each indices[m] is scalar or vector, we have

Scalar indices

merged[indices[m], ...] = data[m][...]

Vector indices

merged[indices[m][i], ...] = data[m][i, ...]

Each data[i].shape must start with the

corresponding indices[i].shape, and the rest

ofdata[i].shape must be constant w.r.t. i. That is, we must

have data[i].shape = indices[i].shape + constant. In terms of

this constant, the output shape is

merged.shape = [max(indices)] + constant

Values are merged in order, so if an index appears in

both indices[m][i] and indices[n][j] for (m,i) < (n,j) the

slice data[n][j] will appear in the merged result.

For example:

indices[0] = 6

indices[1] = [4, 1]

indices[2] = [[5, 2], [0, 3]]

data[0] = [61, 62]

data[1] = [[41, 42], [11, 12]]

data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]

merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],

 [51, 52], [61, 62]]

Args:

 indices: A list of at least 2 Tensor objects of type int32.

 data: A list with the same number of Tensor objects

as indices of Tensor objects of the same type.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data.

tf.boolean_mask(tensor, mask, name='boolean_mask')

Apply boolean mask to tensor. Numpy equivalent is tensor[mask].

1-D example

tensor = [0, 1, 2, 3]

mask = [True, False, True, False]

boolean_mask(tensor, mask) ==> [0, 2]

In general, 0 < dim(mask) = K <= dim(tensor), and mask's shape

must match the first K dimensions oftensor's shape. We then

have: boolean_mask(tensor, mask)[i, j1,...,jd] =

tensor[i1,...,iK,j1,...,jd] where (i1,...,iK) is the

ith True entry of mask (row-major order).

Args:

 tensor: N-D tensor. First K dimensions can be None, which allows

e.g. undefined batch size. Trailing dimensions must be specified.

 mask: K-D boolean tensor, K <= N.

 name: A name for this operation (optional).

Returns:

Tensor populated by entries in tensor corresponding to True values

in mask.

Raises:

 ValueError: If shapes do not conform.

 Examples: ```python

2-D example

a = [[1, 2], [3, 4], [5, 6]] mask = [True, False, True]
boolean_mask(tensor, mask) ==> [[1, 2], [5, 6]] ```

Other Functions and Classes

tf.shape_n(input, name=None)

Returns shape of tensors.

This operation returns N 1-D integer tensors representing shape

of input[i]s.

Args:

 input: A list of at least 1 Tensor objects of the same type.

 name: A name for the operation (optional).

Returns:

A list with the same number of Tensor objects

as input of Tensor objects of type int32.

tf.unique_with_counts(x, name=None)

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique

elements of x sorted in the same order that they occur in x. This

operation also returns a tensor idx the same size as x that contains

the index of each value of xin the unique output y. Finally, it returns a

third tensor count that contains the count of each element of y in x. In

other words:
y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]

y, idx, count = unique_with_counts(x)

y ==> [1, 2, 4, 7, 8]

idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]

count ==> [2, 1, 3, 1, 2]

Args:

 x: A Tensor. 1-D.

 name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx, count).

 y: A Tensor. Has the same type as x. 1-D.

 idx: A Tensor of type int32. 1-D.

 count: A Tensor of type int32. 1-D.

Math

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor

 Math
 Arithmetic Operators
 tf.add(x, y, name=None)
 tf.sub(x, y, name=None)
 tf.mul(x, y, name=None)
 tf.div(x, y, name=None)
 tf.truediv(x, y, name=None)
 tf.floordiv(x, y, name=None)
 tf.mod(x, y, name=None)
 tf.cross(a, b, name=None)

 Basic Math Functions
 tf.add_n(inputs, name=None)
 tf.abs(x, name=None)
 tf.neg(x, name=None)
 tf.sign(x, name=None)
 tf.inv(x, name=None)
 tf.square(x, name=None)
 tf.round(x, name=None)
 tf.sqrt(x, name=None)
 tf.rsqrt(x, name=None)
 tf.pow(x, y, name=None)
 tf.exp(x, name=None)
 tf.log(x, name=None)
 tf.ceil(x, name=None)
 tf.floor(x, name=None)
 tf.maximum(x, y, name=None)
 tf.minimum(x, y, name=None)
 tf.cos(x, name=None)
 tf.sin(x, name=None)
 tf.lgamma(x, name=None)
 tf.erf(x, name=None)
 tf.erfc(x, name=None)

 Matrix Math Functions
 tf.diag(diagonal, name=None)
 tf.transpose(a, perm=None, name=transpose)
 tf.matmul(a, b, transpose_a=False, transpose_b=False,

a_is_sparse=False, b_is_sparse=False, name=None)
 tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None)
 tf.matrix_determinant(input, name=None)
 tf.batch_matrix_determinant(input, name=None)
 tf.matrix_inverse(input, name=None)
 tf.batch_matrix_inverse(input, name=None)
 tf.cholesky(input, name=None)
 tf.batch_cholesky(input, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#math
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#arithmetic-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#add
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sub
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#mul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#div
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#truediv
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#floordiv
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#mod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#cross
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#basic-math-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#add_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#abs
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#neg
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sign
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#inv
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#square
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#round
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sqrt
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#rsqrt
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#pow
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#exp
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#log
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#ceil
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#floor
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#maximum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#minimum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#cos
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sin
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#lgamma
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#erf
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#erfc
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix-math-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#diag
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_determinant
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_determinant
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_inverse
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_inverse
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#cholesky
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_cholesky

 tf.self_adjoint_eig(input, name=None)
 tf.batch_self_adjoint_eig(input, name=None)
 tf.matrix_solve(matrix, rhs, name=None)
 tf.batch_matrix_solve(matrix, rhs, name=None)
 tf.matrix_triangular_solve(matrix, rhs, lower=None,

name=None)
 tf.batch_matrix_triangular_solve(matrix, rhs, lower=None,

name=None)
 tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0,

fast=True, name=None)
 tf.batch_matrix_solve_ls(matrix, rhs, l2_regularizer=0.0,

fast=True, name=None)

 Complex Number Functions
 tf.complex(real, imag, name=None)
 tf.complex_abs(x, name=None)
 tf.conj(in_, name=None)
 tf.imag(in_, name=None)
 tf.real(in_, name=None)
 tf.fft2d(in_, name=None)
 tf.ifft2d(in_, name=None)

 Reduction
 tf.reduce_sum(input_tensor, reduction_indices=None,

keep_dims=False, name=None)
 tf.reduce_prod(input_tensor, reduction_indices=None,

keep_dims=False, name=None)
 tf.reduce_min(input_tensor, reduction_indices=None,

keep_dims=False, name=None)
 tf.reduce_max(input_tensor, reduction_indices=None,

keep_dims=False, name=None)
 tf.reduce_mean(input_tensor, reduction_indices=None,

keep_dims=False, name=None)
 tf.reduce_all(input_tensor, reduction_indices=None,

keep_dims=False, name=None)
 tf.reduce_any(input_tensor, reduction_indices=None,

keep_dims=False, name=None)
 tf.accumulate_n(inputs, shape=None, tensor_dtype=None,

name=None)

 Segmentation
 tf.segment_sum(data, segment_ids, name=None)
 tf.segment_prod(data, segment_ids, name=None)
 tf.segment_min(data, segment_ids, name=None)
 tf.segment_max(data, segment_ids, name=None)
 tf.segment_mean(data, segment_ids, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#self_adjoint_eig
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_self_adjoint_eig
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_triangular_solve
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#batch_matrix_solve_ls
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#complex-number-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#complex
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#complex_abs
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#conj
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#imag
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#real
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#fft2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#ifft2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduction
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_prod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_prod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_min
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_min
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_max
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_max
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_all
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_all
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_any
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#reduce_any
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#accumulate_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#accumulate_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_prod
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_min
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_max
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segment_mean

 tf.unsorted_segment_sum(data, segment_ids, num_segments,

name=None)
 tf.sparse_segment_sum(data, indices, segment_ids,

name=None)
 tf.sparse_segment_mean(data, indices, segment_ids,

name=None)
 tf.sparse_segment_sqrt_n(data, indices, segment_ids,

name=None)

 Sequence Comparison and Indexing
 tf.argmin(input, dimension, name=None)
 tf.argmax(input, dimension, name=None)
 tf.listdiff(x, y, name=None)
 tf.where(input, name=None)
 tf.unique(x, name=None)
 tf.edit_distance(hypothesis, truth, normalize=True,

name=edit_distance)
 tf.invert_permutation(x, name=None)

 Other Functions and Classes
 tf.scalar_mul(scalar, x)
 tf.sparse_segment_sqrt_n_grad(grad, indices, segment_ids,

output_dim0, name=None)

Arithmetic Operators

TensorFlow provides several operations that you can use to add
basic arithmetic operators to your graph.

tf.add(x, y, name=None)

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not.

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#unsorted_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#unsorted_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sum
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_mean
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sequence-comparison-and-indexing
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#argmin
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#argmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#listdiff
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#where
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#unique
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#edit_distance
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#edit_distance
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#invert_permutation
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#scalar_mul
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n_grad
https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#sparse_segment_sqrt_n_grad

 x: A Tensor. Must be one of the following

types: float32, float64, uint8, int8, int16, int32, int64,complex

64, string.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sub(x, y, name=None)

Returns x - y element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.mul(x, y, name=None)

Returns x * y element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, uint8, int8, int16, int32, int64,complex

64.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.div(x, y, name=None)

Returns x / y element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, uint8, int8, int16, int32, int64,complex

64.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.truediv(x, y, name=None)

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer

arguments to floating point before dividing so that the result is always

floating point. This op is generated by normal x / y division in

Python 3 and in Python 2.7 with from __future__ import

division. If you want integer division that rounds down, use x //

yor tf.floordiv.

x and y must have the same numeric type. If the inputs are floating

point, the output will have the same type. If the inputs are integral,
the inputs are cast

to float32 for int8 and int16 and float64 for int32 and int64(mat

ching the behavior of Numpy).

Args:

 x: Tensor numerator of numeric type.

 y: Tensor denominator of numeric type.

 name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

 TypeError: If x and y have different dtypes.

tf.floordiv(x, y, name=None)

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but

uses tf.floor(tf.div(x,y)) for floating point arguments so that

the result is always an integer (though possibly an integer

represented as floating point). This op is generated by x // y floor

division in Python 3 and in Python 2.7 with from __future__ import

division.

Note that for efficiency, floordiv uses C semantics for negative

numbers (unlike Python and Numpy).

x and y must have the same type, and the result will have the same

type as well.

Args:

 x: Tensor numerator of real numeric type.

 y: Tensor denominator of real numeric type.

 name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative

integers).

Raises:

 TypeError: If the inputs are complex.

tf.mod(x, y, name=None)

Returns element-wise remainder of division.

Args:

 x: A Tensor. Must be one of the following

types: int32, int64, float32, float64.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cross(a, b, name=None)

Compute the pairwise cross product.

a and b must be the same shape; they can either be simple 3-

element vectors, or any shape where the innermost dimension is 3.
In the latter case, each pair of corresponding 3-element vectors is
cross-multiplied independently.

Args:

 a: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16, int8,uint16.

A tensor containing 3-element vectors.

 b: A Tensor. Must have the same type as a. Another tensor, of same

type and shape as a.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as a. Pairwise cross product of the

vectors in a and b.

Basic Math Functions

TensorFlow provides several operations that you can use to add
basic mathematical functions to your graph.

tf.add_n(inputs, name=None)

Add all input tensors element wise.

Args:

 inputs: A list of at least 1 Tensor objects of the same type

in: float32, float64, int64, int32, uint8,uint16, int16, int8, com

plex64, qint8, quint8, qint32. Must all be the same size and

shape.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as inputs.

tf.abs(x, name=None)

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor

containing the absolute value of each element inx. For example, if x

is an input element and y is an output element, this operation

computes y=|x|y=|x|.

See tf.complex_abs() to compute the absolute value of a complex

number.

Args:

 x: A Tensor of type float, double, int32, or int64.

 name: A name for the operation (optional).

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#tf_complex_abs

Returns:

A Tensor the same size and type as x with absolute values.

tf.neg(x, name=None)

Computes numerical negative value element-wise.

I.e., y=−xy=−x.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sign(x, name=None)

Returns an element-wise indication of the sign of a number.

y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.inv(x, name=None)

Computes the reciprocal of x element-wise.

I.e., y=1/xy=1/x.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.square(x, name=None)

Computes square of x element-wise.

I.e., y=x∗x=x2y=x∗x=x2.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.round(x, name=None)

Rounds the values of a tensor to the nearest integer, element-wise.

For example:

'a' is [0.9, 2.5, 2.3, -4.4]

tf.round(a) ==> [1.0, 3.0, 2.0, -4.0]

Args:

 x: A Tensor of type float or double.

 name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as x.

tf.sqrt(x, name=None)

Computes square root of x element-wise.

I.e., y=x√=x1/2y=x=x1/2.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.rsqrt(x, name=None)

Computes reciprocal of square root of x element-wise.

I.e., y=1/x√y=1/x.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.pow(x, y, name=None)

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes xyxy for

corresponding elements in x and y. For example:

tensor 'x' is [[2, 2]], [3, 3]]

tensor 'y' is [[8, 16], [2, 3]]

tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

 x: A Tensor of type float, double, int32, complex64, or int64.

 y: A Tensor of type float, double, int32, complex64, or int64.

 name: A name for the operation (optional).

Returns:

A Tensor.

tf.exp(x, name=None)

Computes exponential of x element-wise. y=exy=ex.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.log(x, name=None)

Computes natural logarithm of x element-wise.

I.e., y=logexy=loge⁡x.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.ceil(x, name=None)

Returns element-wise smallest integer in not less than x.

Args:

 x: A Tensor. Must be one of the following types: float32, float64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.floor(x, name=None)

Returns element-wise largest integer not greater than x.

Args:

 x: A Tensor. Must be one of the following types: float32, float64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.maximum(x, y, name=None)

Returns the max of x and y (i.e. x > y ? x : y) element-wise,
broadcasts.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, int64.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.minimum(x, y, name=None)

Returns the min of x and y (i.e. x < y ? x : y) element-wise,
broadcasts.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, int64.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cos(x, name=None)

Computes cos of x element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sin(x, name=None)

Computes sin of x element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64, int64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.lgamma(x, name=None)

Computes ln(|gamma(x)|) element-wise.

Args:

 x: A Tensor with type float, double, int32, int64, or qint32.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32 otherwise

the return type is quint8.

tf.erf(x, name=None)

Computes Gauss error function of x element-wise.

Args:

 x: A Tensor with type float, double, int32, int64, or qint32.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32 otherwise

the return type is quint8.

tf.erfc(x, name=None)

Computes complementary error function of x element-wise.

Args:

 x: A Tensor with type float, double, int32, int64, or qint32.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32 otherwise

the return type is quint8.

Matrix Math Functions

TensorFlow provides several operations that you can use to add
basic mathematical functions for matrices to your graph.

tf.diag(diagonal, name=None)

Returns a diagonal tensor with a given diagonal values.

Given a diagonal, this operation returns a tensor with

the diagonal and everything else padded with zeros. The diagonal is

computed as follows:

Assume diagonal has dimensions [D1,..., Dk], then the output is a

tensor of rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where:

output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik] and

0 everywhere else.

For example:

'diagonal' is [1, 2, 3, 4]

tf.diag(diagonal) ==> [[1, 0, 0, 0]

 [0, 2, 0, 0]

 [0, 0, 3, 0]

 [0, 0, 0, 4]]

Args:

 diagonal: A Tensor. Must be one of the following

types: float32, float64, int32, int64. Rank k tensor where k is at

most 3.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as diagonal.

tf.transpose(a, perm=None, name='transpose')

Transposes a. Permutes the dimensions according to perm.

The returned tensor's dimension i will correspond to the input

dimension perm[i]. If perm is not given, it is set to (n-1...0), where n

is the rank of the input tensor. Hence by default, this operation
performs a regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]

[4 5 6]]

tf.transpose(x) ==> [[1 4]

 [2 5]

 [3 6]]

Equivalently

tf.transpose(x, perm=[1, 0]) ==> [[1 4]

 [2 5]

 [3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2

'x' is [[[1 2 3]

[4 5 6]]

[[7 8 9]

[10 11 12]]]

Take the transpose of the matrices in dimension-0

tf.transpose(b, perm=[0, 2, 1]) ==> [[[1 4]

 [2 5]

 [3 6]]

 [[7 10]

 [8 11]

 [9 12]]]

Args:

 a: A Tensor.

 perm: A permutation of the dimensions of a.

 name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.matmul(a, b, transpose_a=False, transpose_b=False,

a_is_sparse=False, b_is_sparse=False, name=None)

Multiplies matrix a by matrix b, producing a * b.

The inputs must be two-dimensional matrices, with matching inner
dimensions, possibly after transposition.

Both matrices must be of the same type. The supported types

are: float, double, int32, complex64.

Either matrix can be transposed on the fly by setting the

corresponding flag to True. This is False by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the

corresponding a_is_sparse or b_is_sparse flag to True. These

are False by default.

For example:

2-D tensor `a`

a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]

 [4. 5. 6.]]

2-D tensor `b`

b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]

 [9. 10.]

 [11. 12.]]

c = tf.matmul(a, b) => [[58 64]

 [139 154]]

Args:

 a: Tensor of type float, double, int32 or complex64.

 b: Tensor with same type as a.

 transpose_a: If True, a is transposed before multiplication.

 transpose_b: If True, b is transposed before multiplication.

 a_is_sparse: If True, a is treated as a sparse matrix.

 b_is_sparse: If True, b is treated as a sparse matrix.

 name: Name for the operation (optional).

Returns:

A Tensor of the same type as a.

tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None)

Multiplies slices of two tensors in batches.

Multiplies all slices of Tensor x and y (each slice can be viewed as an

element of a batch), and arranges the individual results in a single
output tensor of the same batch size. Each of the individual slices
can optionally be adjointed (to adjoint a matrix means to transpose

and conjugate it) before multiplication by setting

the adj_x oradj_y flag to True, which are by default False.

The input tensors x and y are 3-D or higher with shape [..., r_x,

c_x] and [..., r_y, c_y].

The output tensor is 3-D or higher with shape [..., r_o, c_o],

where:
r_o = c_x if adj_x else r_x

c_o = r_y if adj_y else c_y

It is computed as:

out[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, complex64. 3-D or higher with

shape [..., r_x, c_x].

 y: A Tensor. Must have the same type as x. 3-D or higher with

shape [..., r_y, c_y].

 adj_x: An optional bool. Defaults to False. If True, adjoint the slices

of x. Defaults to False.

 adj_y: An optional bool. Defaults to False. If True, adjoint the slices

of y. Defaults to False.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x. 3-D or higher with shape [...,

r_o, c_o]

tf.matrix_determinant(input, name=None)

Calculates the determinant of a square matrix.

Args:

 input: A Tensor. Must be one of the following

types: float32, float64. A tensor of shape [M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. A scalar, equal to the

determinant of the input.

tf.batch_matrix_determinant(input, name=None)

Calculates the determinants for a batch of square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices. The output is a 1-D tensor

containing the determinants for all input submatrices [..., :, :].

Args:

 input: A Tensor. Must be one of the following

types: float32, float64. Shape is [..., M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [...].

tf.matrix_inverse(input, name=None)

Calculates the inverse of a square invertible matrix.

The op uses the Cholesky decomposition if the matrix is symmetric
positive definite and LU decomposition with partial pivoting otherwise.

If the matrix is not invertible there is no guarantee what the op does.
It may detect the condition and raise an exception or it may simply
return a garbage result.

Args:

 input: A Tensor. Must be one of the following

types: float32, float64. Shape is [M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [M, M] containing

the matrix inverse of the input.

tf.batch_matrix_inverse(input, name=None)

Calculates the inverse of square invertible matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices. The output is a tensor of the same
shape as the input containing the inverse for all input

submatrices [..., :, :].

The op uses the Cholesky decomposition if the matrices are
symmetric positive definite and LU decomposition with partial pivoting
otherwise.

If a matrix is not invertible there is no guarantee what the op does. It
may detect the condition and raise an exception or it may simply
return a garbage result.

Args:

 input: A Tensor. Must be one of the following

types: float32, float64. Shape is [..., M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

tf.cholesky(input, name=None)

Calculates the Cholesky decomposition of a square matrix.

The input has to be symmetric and positive definite. Only the lower-
triangular part of the input will be used for this operation. The upper-
triangular part will not be read.

The result is the lower-triangular matrix of the Cholesky
decomposition of the input.

Args:

 input: A Tensor. Must be one of the following

types: float64, float32. Shape is [M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [M, M].

tf.batch_cholesky(input, name=None)

Calculates the Cholesky decomposition of a batch of square
matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices, with the same constraints as the
single matrix Cholesky decomposition above. The output is a tensor
of the same shape as the input containing the Cholesky

decompositions for all input submatrices [..., :, :].

Args:

 input: A Tensor. Must be one of the following

types: float64, float32. Shape is [..., M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

tf.self_adjoint_eig(input, name=None)

Calculates the Eigen Decomposition of a square Self-Adjoint matrix.

Only the lower-triangular part of the input will be used in this case.
The upper-triangular part will not be read.

The result is a M+1 x M matrix whose first row is the eigenvalues,
and subsequent rows are eigenvectors.

Args:

 input: A Tensor. Must be one of the following

types: float64, float32. Shape is [M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [M+1, M].

tf.batch_self_adjoint_eig(input, name=None)

Calculates the Eigen Decomposition of a batch of square self-adjoint
matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices, with the same constraints as the
single matrix SelfAdjointEig.

The result is a '[..., M+1, M] matrix with [..., 0,:] containing the
eigenvalues, and subsequent [...,1:, :] containing the eigenvectors.

Args:

 input: A Tensor. Must be one of the following

types: float64, float32. Shape is [..., M, M].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M+1, M].

tf.matrix_solve(matrix, rhs, name=None)

Solves a system of linear equations. Checks for invertibility.

Args:

 matrix: A Tensor. Must be one of the following

types: float32, float64. Shape is [M, M].

 rhs: A Tensor. Must have the same type as matrix. Shape is [M,

K].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [M, K] containing

the tensor that solves matrix * output = rhs.

tf.batch_matrix_solve(matrix, rhs, name=None)

Solves systems of linear equations. Checks for invertibility.

Matrix is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices. Rhs is a tensor of shape [..., M,

K]. The output is a tensor shape [..., M, K] where each output

matrix satisfies matrix[..., :, :] * output[..., :, :] = rhs[..., :, :].

Args:

 matrix: A Tensor. Must be one of the following

types: float32, float64. Shape is [..., M, M].

 rhs: A Tensor. Must have the same type as matrix. Shape is [...,

M, K].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [..., M, K].

tf.matrix_triangular_solve(matrix, rhs, lower=None,

name=None)

Solves a system of linear equations with an upper or lower triangular
matrix by

backsubstitution.

matrix is a matrix of shape [M, M]. If lower is True then the strictly

upper triangular part of matrix is ignored. If lower is False then the

strictly lower triangular part of matrix is ignored. rhs is a matrix of

shape [M, K]`.

The output is a matrix of shape [M, K]. If lower is True then the

output satisfies ∑ik=0∑k=0i matrix[i, k] * output[k, j] = rhs[i, j]. If lower is

false then output satisfies ∑K−1k=i∑k=iK−1 matrix[i, k] * output[k, j] =

rhs[i, j].

Args:

 matrix: A Tensor. Must be one of the following

types: float32, float64. Shape is [M, M].

 rhs: A Tensor. Must have the same type as matrix. Shape is [M,

K].

 lower: An optional bool. Defaults to True. Boolean indicating

whether matrix is lower or upper triangular.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [M, K].

tf.batch_matrix_triangular_solve(matrix, rhs, lower=None,

name=None)

Solves systems of linear equations with upper or lower triangular
matrices by

backsubstitution.

matrix is a tensor of shape [..., M, M] whose inner-most 2

dimensions form square matrices. If lower isTrue then the strictly

upper triangular part of each inner-most matrix is ignored. If lower is

False then the strictly lower triangular part of each inner-most matrix

is ignored. rhs is a tensor of shape [..., M, K]`.

The output is a tensor of shape [..., M, K]. If lower is True then

the output satisfies ∑ik=0∑k=0i matrix[..., i, k] * output[..., k, j] = rhs[...,

i, j]. If lower is false then the strictly then the output

satisfies sumK−1k=isumk=iK−1 matrix[..., i, k] * output[..., k, j] = rhs[..., i,

j].

Args:

 matrix: A Tensor. Must be one of the following

types: float32, float64. Shape is [..., M, M].

 rhs: A Tensor. Must have the same type as matrix. Shape is [...,

M, K].

 lower: An optional bool. Defaults to True. Boolean indicating

whether matrix is lower or upper triangular.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as matrix. Shape is [..., M, K].

tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0,

fast=True, name=None)

Solves a linear least-squares problem.

Below we will use the following notation matrix=A∈Rm×nA∈

ℜm×n, rhs=B∈Rm×kB∈ℜm×k, output=X∈Rn×kX∈

ℜn×k,l2_regularizer=λλ.

If fast is True, then the solution is computed by solving the normal

equations using Cholesky decomposition. Specifically,

if m≥nm≥n then X=(ATA+λI)−1ATBX=(ATA+λI)−1ATB, which solves the

regularized least-squares problem X=argminZ∈

Rn×k||AZ−B||2F+λ||Z||2FX=argminZ∈ℜn×k||AZ−B||F2+λ||Z||F2.

If m<nm<n then output is computed

as X=AT(AAT+λI)−1BX=AT(AAT+λI)−1B, which (for λ=0λ=0) is the

minimum-norm solution to the under-determined linear system,

i.e. X=argminZ∈Rn×k||Z||2FX=argminZ∈ℜn×k||Z||F2, subject

to AZ=BAZ=B. Notice that the fast path is only numerically stable

when AA is numerically full rank and has a condition

number cond(A)<1ϵmach√cond(A)<1ϵmach or λλ is sufficiently large.

If fast is False then the solution is computed using the rank

revealing QR decomposition with column pivoting. This will always
compute a least-squares solution that minimizes the residual

norm ||AX−B||2F||AX−B||F2, even when AAis rank deficient or ill-

conditioned. Notice: The current version does not compute a

minimum norm solution. Iffast is False then l2_regularizer is

ignored.

Args:

 matrix: 2-D Tensor of shape [M, N].

 rhs: 2-D Tensor of shape is [M, K].

 l2_regularizer: 0-D double Tensor. Ignored if fast=False.

 fast: bool. Defaults to True.

 name: string, optional name of the operation.

Returns:

 output: Matrix of shape [N, K] containing the matrix that

solves matrix * output = rhs in the least-squares sense.

tf.batch_matrix_solve_ls(matrix, rhs, l2_regularizer=0.0,

fast=True, name=None)

Solves multiple linear least-squares problems.

matrix is a tensor of shape [..., M, N] whose inner-most 2

dimensions form M-by-N matrices. Rhs is a tensor of shape [..., M,

K] whose inner-most 2 dimensions form M-by-K matrices. The

computed output is aTensor of shape [..., N, K] whose inner-

most 2 dimensions form M-by-K matrices that solve the

equationsmatrix[..., :, :] * output[..., :, :] =

rhs[..., :, :] in the least squares sense.

Below we will use the following notation for each pair of matrix and
right-hand sides in the batch:

matrix=A∈Rm×nA∈ℜm×n, rhs=B∈Rm×kB∈ℜm×k, output=X∈Rn×kX

∈ℜn×k, l2_regularizer=λλ.

If fast is True, then the solution is computed by solving the normal

equations using Cholesky decomposition. Specifically,

if m≥nm≥n then X=(ATA+λI)−1ATBX=(ATA+λI)−1ATB, which solves the

least-squares problem X=argminZ∈Rn×k||AZ−B||2F+λ||Z||2FX=argminZ∈

ℜn×k||AZ−B||F2+λ||Z||F2. If m<nm<n then output is computed

as X=AT(AAT+λI)−1BX=AT(AAT+λI)−1B, which (for λ=0λ=0) is the

minimum-norm solution to the under-determined linear system,

i.e. X=argminZ∈Rn×k||Z||2FX=argminZ∈ℜn×k||Z||F2, subject

to AZ=BAZ=B. Notice that the fast path is only numerically stable

when AA is numerically full rank and has a condition

number cond(A)<1ϵmach√cond(A)<1ϵmach orλλ is sufficiently large.

If fast is False then the solution is computed using the rank

revealing QR decomposition with column pivoting. This will always
compute a least-squares solution that minimizes the residual

norm ||AX−B||2F||AX−B||F2, even when AAis rank deficient or ill-

conditioned. Notice: The current version does not compute a

minimum norm solution. Iffast is False then l2_regularizer is

ignored.

Args:

 matrix: Tensor of shape [..., M, N].

 rhs: Tensor of shape [..., M, K].

 l2_regularizer: 0-D double Tensor. Ignored if fast=False.

 fast: bool. Defaults to True.

 name: string, optional name of the operation.

Returns:

 output: Tensor of shape [..., N, K] whose inner-most 2

dimensions form M-by-K matrices that solve the

equations matrix[..., :, :] * output[..., :, :] =

rhs[..., :, :] in the least squares sense.

Complex Number Functions

TensorFlow provides several operations that you can use to add
complex number functions to your graph.

tf.complex(real, imag, name=None)

Converts two real numbers to a complex number.

Given a tensor real representing the real part of a complex number,

and a tensor imag representing the imaginary part of a complex

number, this operation computes complex numbers elementwise of

the form a+bja+bj, where a represents the real part and b represents

the imag part.

The input tensors real and imag must be the same shape.

For example:

tensor 'real' is [2.25, 3.25]

tensor `imag` is [4.75, 5.75]

tf.complex(real, imag) ==> [[2.25 + 4.74j], [3.25 + 5.75j]]

Args:

 real: A Tensor of type float.

 imag: A Tensor of type float.

 name: A name for the operation (optional).

Returns:

A Tensor of type complex64.

tf.complex_abs(x, name=None)

Computes the complex absolute value of a tensor.

Given a tensor x of complex numbers, this operation returns a tensor

of type float that is the absolute value of each element in x. All

elements in x must be complex numbers of the form a+bja+bj. The

absolute value is computed as a2+b2−−−−−−√a2+b2.

For example:

tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]

tf.complex_abs(x) ==> [5.25594902, 6.60492229]

Args:

 x: A Tensor of type complex64.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.conj(in_, name=None)

Returns the complex conjugate of a complex number.

Given a tensor in of complex numbers, this operation returns a

tensor of complex numbers that are the complex conjugate of each

element in in. The complex numbers in in must be of the

form a+bja+bj, where a is the real part and b is the imaginary part.

The complex conjugate returned by this operation is of the

form a−bja−bj.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]

tf.conj(in) ==> [-2.25 - 4.75j, 3.25 - 5.75j]

Args:

 in_: A Tensor of type complex64.

 name: A name for the operation (optional).

Returns:

A Tensor of type complex64.

tf.imag(in_, name=None)

Returns the imaginary part of a complex number.

Given a tensor in of complex numbers, this operation returns a

tensor of type float that is the imaginary part of each element in in.

All elements in in must be complex numbers of the form a+bja+bj,

where a is the real part and bis the imaginary part returned by this
operation.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]

tf.imag(in) ==> [4.75, 5.75]

Args:

 in_: A Tensor of type complex64.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.real(in_, name=None)

Returns the real part of a complex number.

Given a tensor in of complex numbers, this operation returns a

tensor of type float that is the real part of each element in in. All

elements in in must be complex numbers of the form a+bja+bj,

where a is the real part returned by this operation and b is the
imaginary part.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]

tf.real(in) ==> [-2.25, 3.25]

Args:

 in_: A Tensor of type complex64.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.fft2d(in_, name=None)

Compute the 2-dimensional discrete Fourier Transform.

Args:

 in_: A Tensor of type complex64. A complex64 matrix.

 name: A name for the operation (optional).

Returns:

A Tensor of type complex64. The 2D Fourier Transform of in.

tf.ifft2d(in_, name=None)

Compute the inverse 2-dimensional discrete Fourier Transform.

Args:

 in_: A Tensor of type complex64. A complex64 matrix.

 name: A name for the operation (optional).

Returns:

A Tensor of type complex64. The inverse 2D Fourier Transform of in.

Reduction

TensorFlow provides several operations that you can use to perform
common math computations that reduce various dimensions of a
tensor.

tf.reduce_sum(input_tensor, reduction_indices=None,

keep_dims=False, name=None)

Computes the sum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given

in reduction_indices. Unless keep_dims is true, the rank of the

tensor is reduced by 1 for each entry in reduction_indices.

If keep_dims is true, the reduced dimensions are retained with length

1.

If reduction_indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

For example:

'x' is [[1, 1, 1]

[1, 1, 1]]

tf.reduce_sum(x) ==> 6

tf.reduce_sum(x, 0) ==> [2, 2, 2]

tf.reduce_sum(x, 1) ==> [3, 3]

tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]

tf.reduce_sum(x, [0, 1]) ==> 6

Args:

 input_tensor: The tensor to reduce. Should have numeric type.

 reduction_indices: The dimensions to reduce. If None (the default),

reduces all dimensions.

 keep_dims: If true, retains reduced dimensions with length 1.

 name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_prod(input_tensor, reduction_indices=None,

keep_dims=False, name=None)

Computes the product of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given

in reduction_indices. Unless keep_dims is true, the rank of the

tensor is reduced by 1 for each entry in reduction_indices.

If keep_dims is true, the reduced dimensions are retained with length

1.

If reduction_indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

Args:

 input_tensor: The tensor to reduce. Should have numeric type.

 reduction_indices: The dimensions to reduce. If None (the default),

reduces all dimensions.

 keep_dims: If true, retains reduced dimensions with length 1.

 name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_min(input_tensor, reduction_indices=None,

keep_dims=False, name=None)

Computes the minimum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given

in reduction_indices. Unless keep_dims is true, the rank of the

tensor is reduced by 1 for each entry in reduction_indices.

If keep_dims is true, the reduced dimensions are retained with length

1.

If reduction_indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

Args:

 input_tensor: The tensor to reduce. Should have numeric type.

 reduction_indices: The dimensions to reduce. If None (the default),

reduces all dimensions.

 keep_dims: If true, retains reduced dimensions with length 1.

 name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_max(input_tensor, reduction_indices=None,

keep_dims=False, name=None)

Computes the maximum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given

in reduction_indices. Unless keep_dims is true, the rank of the

tensor is reduced by 1 for each entry in reduction_indices.

If keep_dims is true, the reduced dimensions are retained with length

1.

If reduction_indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

Args:

 input_tensor: The tensor to reduce. Should have numeric type.

 reduction_indices: The dimensions to reduce. If None (the default),

reduces all dimensions.

 keep_dims: If true, retains reduced dimensions with length 1.

 name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_mean(input_tensor, reduction_indices=None,

keep_dims=False, name=None)

Computes the mean of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given

in reduction_indices. Unless keep_dims is true, the rank of the

tensor is reduced by 1 for each entry in reduction_indices.

If keep_dims is true, the reduced dimensions are retained with length

1.

If reduction_indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

For example:

'x' is [[1., 1.]

[2., 2.]]

tf.reduce_mean(x) ==> 1.5

tf.reduce_mean(x, 0) ==> [1.5, 1.5]

tf.reduce_mean(x, 1) ==> [1., 2.]

Args:

 input_tensor: The tensor to reduce. Should have numeric type.

 reduction_indices: The dimensions to reduce. If None (the default),

reduces all dimensions.

 keep_dims: If true, retains reduced dimensions with length 1.

 name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_all(input_tensor, reduction_indices=None,

keep_dims=False, name=None)

Computes the "logical and" of elements across dimensions of a
tensor.

Reduces input_tensor along the dimensions given

in reduction_indices. Unless keep_dims is true, the rank of the

tensor is reduced by 1 for each entry in reduction_indices.

If keep_dims is true, the reduced dimensions are retained with length

1.

If reduction_indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

For example:

'x' is [[True, True]

[False, False]]

tf.reduce_all(x) ==> False

tf.reduce_all(x, 0) ==> [False, False]

tf.reduce_all(x, 1) ==> [True, False]

Args:

 input_tensor: The boolean tensor to reduce.

 reduction_indices: The dimensions to reduce. If None (the default),

reduces all dimensions.

 keep_dims: If true, retains reduced dimensions with length 1.

 name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_any(input_tensor, reduction_indices=None,

keep_dims=False, name=None)

Computes the "logical or" of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given

in reduction_indices. Unless keep_dims is true, the rank of the

tensor is reduced by 1 for each entry in reduction_indices.

If keep_dims is true, the reduced dimensions are retained with length

1.

If reduction_indices has no entries, all dimensions are reduced,

and a tensor with a single element is returned.

For example:

'x' is [[True, True]

[False, False]]

tf.reduce_any(x) ==> True

tf.reduce_any(x, 0) ==> [True, True]

tf.reduce_any(x, 1) ==> [True, False]

Args:

 input_tensor: The boolean tensor to reduce.

 reduction_indices: The dimensions to reduce. If None (the default),

reduces all dimensions.

 keep_dims: If true, retains reduced dimensions with length 1.

 name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.accumulate_n(inputs, shape=None, tensor_dtype=None,

name=None)

Returns the element-wise sum of a list of tensors.

Optionally, pass shape and tensor_dtype for shape and type

checking, otherwise, these are inferred.

For example:

tensor 'a' is [[1, 2], [3, 4]

tensor `b` is [[5, 0], [0, 6]]

tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]

Explicitly pass shape and type

tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32)

 ==> [[7, 4], [6, 14]]

Args:

 inputs: A list of Tensor objects, each with same shape and type.

 shape: Shape of elements of inputs.

 tensor_dtype: The type of inputs.

 name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as the elements of inputs.

Raises:

 ValueError: If inputs don't all have same shape and dtype or the

shape cannot be inferred.

Segmentation

TensorFlow provides several operations that you can use to perform
common math computations on tensor segments. Here a
segmentation is a partitioning of a tensor along the first dimension,

i.e. it defines a mapping from the first dimension onto segment_ids.

The segment_ids tensor should be the size of the first dimension,d0,

with consecutive IDs in the range 0 to k, where k<d0. In particular, a

segmentation of a matrix tensor is a mapping of rows to segments.

For example:

c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])

tf.segment_sum(c, tf.constant([0, 0, 1]))

 ==> [[0 0 0 0]

 [5 6 7 8]]

tf.segment_sum(data, segment_ids, name=None)

Computes the sum along segments of a tensor.

Read the section on Segmentation for an explanation of segments.

Computes a tensor such that outputi=∑jdatajoutputi=∑jdataj where sum

is over j such that segment_ids[j] == i.

Args:

 data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uint16.

 segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

of data's first dimension. Values should be sorted and can be

repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment_prod(data, segment_ids, name=None)

Computes the product along segments of a tensor.

Read the section on Segmentation for an explanation of segments.

Computes a tensor such that outputi=∏jdatajoutputi=∏jdataj where the

product is over j such that segment_ids[j] == i.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

Args:

 data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uint16.

 segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

of data's first dimension. Values should be sorted and can be

repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment_min(data, segment_ids, name=None)

Computes the minimum along segments of a tensor.

Read the section on Segmentation for an explanation of segments.
Computes a tensor such

that outputi=minj(dataj)outputi=minj(dataj) where min is over j such

that segment_ids[j] == i.

Args:

 data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uint16.

 segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

of data's first dimension. Values should be sorted and can be

repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment_max(data, segment_ids, name=None)

Computes the maximum along segments of a tensor.

Read the section on Segmentation for an explanation of segments.
Computes a tensor such

that outputi=maxj(dataj)outputi=maxj(dataj) where max is over j such

that segment_ids[j] == i.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

Args:

 data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uint16.

 segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

of data's first dimension. Values should be sorted and can be

repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.segment_mean(data, segment_ids, name=None)

Computes the mean along segments of a tensor.

Read the section on Segmentation for an explanation of segments.
Computes a tensor such

that outputi=∑jdatajNoutputi=∑jdatajN where mean is over j such

that segment_ids[j] == i andN is the total number of values

summed.

Args:

 data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uint16.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

 segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

of data's first dimension. Values should be sorted and can be

repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.unsorted_segment_sum(data, segment_ids, num_segments,

name=None)

Computes the sum along segments of a tensor.

Read the section on Segmentation for an explanation of segments.

Computes a tensor such that outputi=∑jdatajoutputi=∑jdataj where sum

is over j such that segment_ids[j] == i.

Unlike SegmentSum, segment_ids need not be sorted and need not

cover all values in the full range of valid values.

If the sum is empty for a given segment ID i, output[i] = 0.

num_segments should equal the number of distinct segment IDs.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

Args:

 data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uint16.

 segment_ids: A Tensor. Must be one of the following

types: int32, int64. A 1-D tensor whose rank is equal to the rank

of data's first dimension.

 num_segments: A Tensor of type int32.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has sizenum_segments.

tf.sparse_segment_sum(data, indices, segment_ids,

name=None)

Computes the sum along sparse segments of a tensor.

Read the section on Segmentation for an explanation of segments.

Like SegmentSum, but segment_ids can have rank less than data's

first dimension, selecting a subset of dimension 0, specified

by indices.

For example:

c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])

Select two rows, one segment.

tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0,

0]))

 ==> [[0 0 0 0]]

Select two rows, two segment.

tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0,

1]))

 ==> [[1 2 3 4]

 [-1 -2 -3 -4]]

Select all rows, two segments.

tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0,

0, 1]))

 ==> [[0 0 0 0]

 [5 6 7 8]]

Which is equivalent to:

tf.segment_sum(c, tf.constant([0, 0, 1]))

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

Args:

 data: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16,int8, uint16.

 indices: A Tensor of type int32. A 1-D tensor. Has same rank

as segment_ids.

 segment_ids: A Tensor of type int32. A 1-D tensor. Values should

be sorted and can be repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.sparse_segment_mean(data, indices, segment_ids,

name=None)

Computes the mean along sparse segments of a tensor.

Read the section on Segmentation for an explanation of segments.

Like SegmentMean, but segment_ids can have rank less than data's

first dimension, selecting a subset of dimension 0, specified

by indices.

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

 data: A Tensor. Must be one of the following

types: float32, float64.

 indices: A Tensor of type int32. A 1-D tensor. Has same rank

as segment_ids.

 segment_ids: A Tensor of type int32. A 1-D tensor. Values should

be sorted and can be repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

tf.sparse_segment_sqrt_n(data, indices, segment_ids,

name=None)

Computes the sum along sparse segments of a tensor divided by the
sqrt of N.

N is the size of the segment being reduced.

Read the section on Segmentation for an explanation of segments.

Args:

 data: A Tensor. Must be one of the following

types: float32, float64.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#segmentation

 indices: A Tensor of type int32. A 1-D tensor. Has same rank

as segment_ids.

 segment_ids: A Tensor of type int32. A 1-D tensor. Values should

be sorted and can be repeated.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as data. Has same shape as data,

except for dimension 0 which has size k, the number of segments.

Sequence Comparison and Indexing

TensorFlow provides several operations that you can use to add
sequence comparison and index extraction to your graph. You can
use these operations to determine sequence differences and
determine the indexes of specific values in a tensor.

tf.argmin(input, dimension, name=None)

Returns the index with the smallest value across dimensions of a
tensor.

Args:

 input: A Tensor. Must be one of the following

types: float32, float64, int64, int32, uint8,uint16, int16, int8,

complex64, qint8, quint8, qint32.

 dimension: A Tensor of type int32. int32, 0 <= dimension <

rank(input). Describes which dimension of the input Tensor to reduce
across. For vectors, use dimension = 0.

 name: A name for the operation (optional).

Returns:

A Tensor of type int64.

tf.argmax(input, dimension, name=None)

Returns the index with the largest value across dimensions of a
tensor.

Args:

 input: A Tensor. Must be one of the following

types: float32, float64, int64, int32, uint8,uint16, int16, int8,

complex64, qint8, quint8, qint32.

 dimension: A Tensor of type int32. int32, 0 <= dimension <

rank(input). Describes which dimension of the input Tensor to reduce
across. For vectors, use dimension = 0.

 name: A name for the operation (optional).

Returns:

A Tensor of type int64.

tf.listdiff(x, y, name=None)

Computes the difference between two lists of numbers or strings.

Given a list x and a list y, this operation returns a list out that

represents all values that are in x but not in y. The returned list out is

sorted in the same order that the numbers appear in x (duplicates are

preserved). This operation also returns a list idx that represents the

position of each out element in x. In other words:

out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1]

For example, given this input:

x = [1, 2, 3, 4, 5, 6]

y = [1, 3, 5]

This operation would return:

out ==> [2, 4, 6]

idx ==> [1, 3, 5]

Args:

 x: A Tensor. 1-D. Values to keep.

 y: A Tensor. Must have the same type as x. 1-D. Values to remove.

 name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (out, idx).

 out: A Tensor. Has the same type as x. 1-D. Values present in x but

not in y.

 idx: A Tensor of type int32. 1-D. Positions of x values preserved

in out.

tf.where(input, name=None)

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The

coordinates are returned in a 2-D tensor where the first dimension
(rows) represents the number of true elements, and the second
dimension (columns) represents the coordinates of the true elements.
Keep in mind, the shape of the output tensor can vary depending on

how many true values there are in input. Indices are output in row-

major order.

For example:

'input' tensor is [[True, False]

[True, False]]

'input' has two true values, so output has two coordinates.

'input' has rank of 2, so coordinates have two indices.

where(input) ==> [[0, 0],

 [1, 0]]

`input` tensor is [[[True, False]

[True, False]]

[[False, True]

[False, True]]

[[False, False]

[False, True]]]

'input' has 5 true values, so output has 5 coordinates.

'input' has rank of 3, so coordinates have three indices.

where(input) ==> [[0, 0, 0],

 [0, 1, 0],

 [1, 0, 1],

 [1, 1, 1],

 [2, 1, 1]]

Args:

 input: A Tensor of type bool.

 name: A name for the operation (optional).

Returns:

A Tensor of type int64.

tf.unique(x, name=None)

Finds unique elements in a 1-D tensor.

This operation returns a tensor y containing all of the unique

elements of x sorted in the same order that they occur in x. This

operation also returns a tensor idx the same size as x that contains

the index of each value of xin the unique output y. In other words:

y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]

For example:

tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]

y, idx = unique(x)

y ==> [1, 2, 4, 7, 8]

idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]

Args:

 x: A Tensor. 1-D.

 name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (y, idx).

 y: A Tensor. Has the same type as x. 1-D.

 idx: A Tensor of type int32. 1-D.

tf.edit_distance(hypothesis, truth, normalize=True,

name='edit_distance')

Computes the Levenshtein distance between sequences.

This operation takes variable-length sequences

(hypothesis and truth), each provided as a SparseTensor, and

computes the Levenshtein distance. You can normalize the edit

distance by length of truth by settingnormalize to true.

For example, given the following input:

'hypothesis' is a tensor of shape `[2, 1]` with variable-length

values:

(0,0) = ["a"]

(1,0) = ["b"]

hypothesis = tf.SparseTensor(

 [[0, 0, 0],

 [1, 0, 0]],

 ["a", "b"]

 (2, 1, 1))

'truth' is a tensor of shape `[2, 2]` with variable-length

values:

(0,0) = []

(0,1) = ["a"]

(1,0) = ["b", "c"]

(1,1) = ["a"]

truth = tf.SparseTensor(

 [[0, 1, 0],

 [1, 0, 0],

 [1, 0, 1],

 [1, 1, 0]]

 ["a", "b", "c", "a"],

 (2, 2, 2))

normalize = True

This operation would return the following:

'output' is a tensor of shape `[2, 2]` with edit distances

normalized

by 'truth' lengths.

output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis

 [0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis

Args:

 hypothesis: A SparseTensor containing hypothesis sequences.

 truth: A SparseTensor containing truth sequences.

 normalize: A bool. If True, normalizes the Levenshtein distance by

length of truth.

 name: A name for the operation (optional).

Returns:

A dense Tensor with rank R - 1, where R is the rank of

the SparseTensor inputs hypothesis and truth.

Raises:

 TypeError: If either hypothesis or truth are not a SparseTensor.

tf.invert_permutation(x, name=None)

Computes the inverse permutation of a tensor.

This operation computes the inverse of an index permutation. It takes

a 1-D integer tensor x, which represents the indices of a zero-based

array, and swaps each value with its index position. In other words,

for an output tensor yand an input tensor x, this operation computes

the following:
y[x[i]] = i for i in [0, 1, ..., len(x) - 1]

The values must include 0. There can be no duplicate values or
negative values.

For example:

tensor `x` is [3, 4, 0, 2, 1]

invert_permutation(x) ==> [2, 4, 3, 0, 1]

Args:

 x: A Tensor of type int32. 1-D.

 name: A name for the operation (optional).

Returns:

A Tensor of type int32. 1-D.

Other Functions and Classes

tf.scalar_mul(scalar, x)

Multiplies a scalar times a Tensor or IndexedSlices object.

Intended for use in gradient code which might deal

with IndexedSlices objects, which are easy to multiply by a scalar

but more expensive to multiply with arbitrary tensors.

Args:

 scalar: A 0-D scalar Tensor. Must have known shape.

 x: A Tensor or IndexedSlices to be scaled.

Returns:

scalar * x of the same type (Tensor or IndexedSlices) as x.

Raises:

 ValueError: if scalar is not a 0-D scalar.

tf.sparse_segment_sqrt_n_grad(grad, indices, segment_ids,

output_dim0, name=None)

Computes gradients for SparseSegmentSqrtN.

Returns tensor "output" with same shape as grad, except for
dimension 0 whose value is output_dim0.

Args:

 grad: A Tensor. Must be one of the following

types: float32, float64. gradient propagated to the

SparseSegmentSqrtN op.

 indices: A Tensor of type int32. indices passed to the

corresponding SparseSegmentSqrtN op.

 segment_ids: A Tensor of type int32. segment_ids passed to the

corresponding SparseSegmentSqrtN op.

 output_dim0: A Tensor of type int32. dimension 0 of "data" passed

to SparseSegmentSqrtN op.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as grad.

Control Flow

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Control Flow
 Control Flow Operations
 tf.identity(input, name=None)
 tf.tuple(tensors, name=None, control_inputs=None)
 tf.group(*inputs, **kwargs)
 tf.no_op(name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#control-flow
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#control-flow-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#identity
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#tuple
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#group
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#no_op

 tf.count_up_to(ref, limit, name=None)
 tf.cond(pred, fn1, fn2, name=None)

 Logical Operators
 tf.logical_and(x, y, name=None)
 tf.logical_not(x, name=None)
 tf.logical_or(x, y, name=None)
 tf.logical_xor(x, y, name=LogicalXor)

 Comparison Operators
 tf.equal(x, y, name=None)
 tf.not_equal(x, y, name=None)
 tf.less(x, y, name=None)
 tf.less_equal(x, y, name=None)
 tf.greater(x, y, name=None)
 tf.greater_equal(x, y, name=None)
 tf.select(condition, t, e, name=None)
 tf.where(input, name=None)

 Debugging Operations
 tf.is_finite(x, name=None)
 tf.is_inf(x, name=None)
 tf.is_nan(x, name=None)
 tf.verify_tensor_all_finite(t, msg, name=None)
 tf.check_numerics(tensor, message, name=None)
 tf.add_check_numerics_ops()
 tf.Assert(condition, data, summarize=None, name=None)
 tf.Print(input_, data, message=None, first_n=None,

summarize=None, name=None)

Control Flow Operations

TensorFlow provides several operations and classes that you can
use to control the execution of operations and add conditional
dependencies to your graph.

tf.identity(input, name=None)

Return a tensor with the same shape and contents as the input
tensor or value.

https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#count_up_to
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#cond
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_and
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_not
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_or
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#logical_xor
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#comparison-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#not_equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#less
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#less_equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#greater
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#greater_equal
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#select
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#where
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#debugging-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#is_finite
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#is_inf
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#is_nan
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#verify_tensor_all_finite
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#check_numerics
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#add_check_numerics_ops
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#Assert
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#Print
https://www.tensorflow.org/versions/r0.7/api_docs/python/control_flow_ops.html#Print

Args:

 input: A Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.tuple(tensors, name=None, control_inputs=None)

Group tensors together.

This creates a tuple of tensors with the same values as

the tensors argument, except that the value of each tensor is only

returned after the values of all tensors have been computed.

control_inputs contains additional ops that have to finish before

this op finishes, but whose outputs are not returned.
This can be used as a "join" mechanism for parallel computations: all
the argument tensors can be computed in parallel, but the values of

any tensor returned by tuple are only available after all the parallel

computations are done.

See also group and with_dependencies.

Args:

 tensors: A list of Tensors or IndexedSlices, some entries can

be None.

 name: (optional) A name to use as a name_scope for the operation.

 control_inputs: List of additional ops to finish before returning.

Returns:

Same as tensors.

Raises:

 ValueError: If tensors does not contain

any Tensor or IndexedSlices.

 TypeError: If control_inputs is not a list

of Operation or Tensor objects.

tf.group(*inputs, **kwargs)

Create an op that groups multiple operations.

When this op finishes, all ops in input have finished. This op has no

output.

See also tuple and with_dependencies.

Args:

 *inputs: One or more tensors to group.

 **kwargs: Optional parameters to pass when constructing the

NodeDef.

 name: A name for this operation (optional).

Returns:

An Operation that executes all its inputs.

Raises:

 ValueError: If an unknown keyword argument is provided, or if there

are no inputs.

tf.no_op(name=None)

Does nothing. Only useful as a placeholder for control edges.

Args:

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.count_up_to(ref, limit, name=None)

Increments 'ref' until it reaches 'limit'.

This operation outputs "ref" after the update is done. This makes it
easier to chain operations that need to use the updated value.

Args:

 ref: A mutable Tensor. Must be one of the following

types: int32, int64. Should be from a scalarVariable node.

 limit: An int. If incrementing ref would bring it above limit, instead

generates an 'OutOfRange' error.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as ref. A copy of the input before

increment. If nothing else modifies the input, the values produced will
all be distinct.

tf.cond(pred, fn1, fn2, name=None)

Return either fn1() or fn2() based on the boolean predicate pred.

fn1 and fn2 both return lists of output tensors. fn1 and fn2 must

have the same non-zero number and type of outputs.

Args:

 pred: A scalar determining whether to return the result of fn1 or fn2.

 fn1: The function to be performed if pred is true.

 fn2: The function to be performed if pref is false.

 name: Optional name prefix for the returned tensors.

Returns:

Tensors returned by the call to either fn1 or fn2. If the functions

return a singleton list, the element is extracted from the list.

Raises:

 TypeError: if fn1 or fn2 is not callable.

 ValueError: if fn1 and fn2 do not return the same number of

tensors, or return tensors of different types.

 Example:

 x = tf.constant(2)

 y = tf.constant(5)

 def f1(): return tf.mul(x, 17)

 def f2(): return tf.add(y, 23)

 r = cond(math_ops.less(x, y), f1, f2)

 # r is set to f1().

 # Operations in f2 (e.g., tf.add) are not executed.

Logical Operators

TensorFlow provides several operations that you can use to add
logical operators to your graph.

tf.logical_and(x, y, name=None)

Returns the truth value of x AND y element-wise.

Args:

 x: A Tensor of type bool.

 y: A Tensor of type bool.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_not(x, name=None)

Returns the truth value of NOT x element-wise.

Args:

 x: A Tensor of type bool.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_or(x, y, name=None)

Returns the truth value of x OR y element-wise.

Args:

 x: A Tensor of type bool.

 y: A Tensor of type bool.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_xor(x, y, name='LogicalXor')

x ^ y = (x | y) & ~(x & y).

Comparison Operators

TensorFlow provides several operations that you can use to add
comparison operators to your graph.

tf.equal(x, y, name=None)

Returns the truth value of (x == y) element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, uint8, int8, int16, int32, int64,complex

64, quint8, qint8, qint32, string.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.not_equal(x, y, name=None)

Returns the truth value of (x != y) element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, uint8, int8, int16, int32, int64,complex

64, quint8, qint8, qint32, string.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less(x, y, name=None)

Returns the truth value of (x < y) element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16, int8,uint16.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less_equal(x, y, name=None)

Returns the truth value of (x <= y) element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16, int8,uint16.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.greater(x, y, name=None)

Returns the truth value of (x > y) element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16, int8,uint16.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.greater_equal(x, y, name=None)

Returns the truth value of (x >= y) element-wise.

Args:

 x: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8, int16, int8,uint16.

 y: A Tensor. Must have the same type as x.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.select(condition, t, e, name=None)

Selects elements from t or e, depending on condition.

The t, and e tensors must all have the same shape, and the output

will also have that shape. The conditiontensor must be a scalar

if t and e are scalars. If t and e are vectors or higher rank,

then condition must be either a vector with size matching the first

dimension of t, or must have the same shape as t.

The condition tensor acts as a mask that chooses, based on the

value at each element, whether the corresponding element / row in

the output should be taken from t (if true) or e (if false).

If condition is a vector and t and e are higher rank matrices, then it

chooses which row (outer dimension) to copy from t and e.

If condition has the same shape as t and e, then it chooses which

element to copy from tand e.

For example:

'condition' tensor is [[True, False]

[False, True]]

't' is [[1, 2],

[3, 4]]

'e' is [[5, 6],

[7, 8]]

select(condition, t, e) ==> [[1, 6],

 [7, 4]]

'condition' tensor is [True, False]

't' is [[1, 2],

[3, 4]]

'e' is [[5, 6],

[7, 8]]

select(condition, t, e) ==> [[1, 2],

 [7, 8]]

Args:

 condition: A Tensor of type bool.

 t: A Tensor which may have the same shape as condition.

If condition is rank 1, t may have higher rank, but its first dimension

must match the size of condition.

 e: A Tensor with the same type and shape as t.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type and shape as t and e.

tf.where(input, name=None)

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The

coordinates are returned in a 2-D tensor where the first dimension
(rows) represents the number of true elements, and the second
dimension (columns) represents the coordinates of the true elements.

Keep in mind, the shape of the output tensor can vary depending on

how many true values there are in input. Indices are output in row-

major order.

For example:

'input' tensor is [[True, False]

[True, False]]

'input' has two true values, so output has two coordinates.

'input' has rank of 2, so coordinates have two indices.

where(input) ==> [[0, 0],

 [1, 0]]

`input` tensor is [[[True, False]

[True, False]]

[[False, True]

[False, True]]

[[False, False]

[False, True]]]

'input' has 5 true values, so output has 5 coordinates.

'input' has rank of 3, so coordinates have three indices.

where(input) ==> [[0, 0, 0],

 [0, 1, 0],

 [1, 0, 1],

 [1, 1, 1],

 [2, 1, 1]]

Args:

 input: A Tensor of type bool.

 name: A name for the operation (optional).

Returns:

A Tensor of type int64.

Debugging Operations

TensorFlow provides several operations that you can use to validate
values and debug your graph.

tf.is_finite(x, name=None)

Returns which elements of x are finite.

Args:

 x: A Tensor. Must be one of the following types: float32, float64.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.is_inf(x, name=None)

Returns which elements of x are Inf.

Args:

 x: A Tensor. Must be one of the following types: float32, float64.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.is_nan(x, name=None)

Returns which elements of x are NaN.

Args:

 x: A Tensor. Must be one of the following types: float32, float64.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.verify_tensor_all_finite(t, msg, name=None)

Assert that the tensor does not contain any NaN's or Inf's.

Args:

 t: Tensor to check.

 msg: Message to log on failure.

 name: A name for this operation (optional).

Returns:

Same tensor as t.

tf.check_numerics(tensor, message, name=None)

Checks a tensor for NaN and Inf values.

When run, reports an InvalidArgument error if tensor has any

values that are not a number (NaN) or infinity (Inf). Otherwise,

passes tensor as-is.

Args:

 tensor: A Tensor. Must be one of the following

types: float32, float64.

 message: A string. Prefix of the error message.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.add_check_numerics_ops()

Connect a check_numerics to every floating point tensor.

check_numerics operations themselves are added for

each float or double tensor in the graph. For all ops in the graph,

the check_numerics op for all of its (float or double) inputs is

guaranteed to run before thecheck_numerics op on any of its

outputs.

Returns:

A group op depending on all check_numerics ops added.

tf.Assert(condition, data, summarize=None, name=None)

Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors

in data. summarize determines how many entries of the tensors to

print.

Args:

 condition: The condition to evaluate.

 data: The tensors to print out when condition is false.

 summarize: Print this many entries of each tensor.

 name: A name for this operation (optional).

tf.Print(input_, data, message=None, first_n=None,

summarize=None, name=None)

Prints a list of tensors.

This is an identity op with the side effect of printing data when

evaluating.

Args:

 input_: A tensor passed through this op.

 data: A list of tensors to print out when op is evaluated.

 message: A string, prefix of the error message.

 first_n: Only log first_n number of times. Negative numbers log

always; this is the default.

 summarize: Only print this many entries of each tensor. If None, then

a maximum of 3 elements are printed per input tensor.

 name: A name for the operation (optional).

Returns:

Same tensor as input_.

Images

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Images
 Encoding and Decoding
 tf.image.decode_jpeg(contents, channels=None, ratio=None,

fancy_upscaling=None, try_recover_truncated=None,

acceptable_fraction=None, name=None)
 tf.image.encode_jpeg(image, format=None, quality=None,

progressive=None, optimize_size=None,

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encoding-and-decoding
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg

chroma_downsampling=None, density_unit=None,

x_density=None, y_density=None, xmp_metadata=None,

name=None)
 tf.image.decode_png(contents, channels=None, dtype=None,

name=None)
 tf.image.encode_png(image, compression=None, name=None)

 Resizing
 tf.image.resize_images(images, new_height, new_width,

method=0, align_corners=False)
 tf.image.resize_area(images, size, align_corners=None,

name=None)
 tf.image.resize_bicubic(images, size, align_corners=None,

name=None)
 tf.image.resize_bilinear(images, size,

align_corners=None, name=None)
 tf.image.resize_nearest_neighbor(images, size,

align_corners=None, name=None)

 Cropping
 tf.image.resize_image_with_crop_or_pad(image,

target_height, target_width)
 tf.image.pad_to_bounding_box(image, offset_height,

offset_width, target_height, target_width)
 tf.image.crop_to_bounding_box(image, offset_height,

offset_width, target_height, target_width)
 tf.image.extract_glimpse(input, size, offsets,

centered=None, normalized=None, uniform_noise=None,

name=None)

 Flipping and Transposing
 tf.image.flip_up_down(image)
 tf.image.random_flip_up_down(image, seed=None)
 tf.image.flip_left_right(image)
 tf.image.random_flip_left_right(image, seed=None)
 tf.image.transpose_image(image)

 Converting Between Colorspaces.
 tf.image.rgb_to_grayscale(images)
 tf.image.grayscale_to_rgb(images)
 tf.image.hsv_to_rgb(images, name=None)
 tf.image.rgb_to_hsv(images, name=None)
 tf.image.convert_image_dtype(image, dtype,

saturate=False, name=None)

 Image Adjustments
 tf.image.adjust_brightness(image, delta)
 tf.image.random_brightness(image, max_delta, seed=None)
 tf.image.adjust_contrast(images, contrast_factor)

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_jpeg
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_png
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#decode_png
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#encode_png
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resizing
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_area
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_area
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bicubic
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bicubic
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bilinear
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bilinear
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#cropping
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_image_with_crop_or_pad
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_image_with_crop_or_pad
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#pad_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#pad_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#crop_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#crop_to_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#extract_glimpse
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#extract_glimpse
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#extract_glimpse
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#flipping-and-transposing
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#flip_up_down
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_flip_up_down
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#flip_left_right
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_flip_left_right
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#transpose_image
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#converting-between-colorspaces
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#rgb_to_grayscale
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#grayscale_to_rgb
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#hsv_to_rgb
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#rgb_to_hsv
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#convert_image_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#convert_image_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#image-adjustments
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_brightness
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_brightness
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_contrast

 tf.image.random_contrast(image, lower, upper, seed=None)
 tf.image.adjust_hue(image, delta, name=None)
 tf.image.random_hue(image, max_delta, seed=None)
 tf.image.adjust_saturation(image, saturation_factor,

name=None)
 tf.image.random_saturation(image, lower, upper,

seed=None)
 tf.image.per_image_whitening(image)

 Working with Bounding Boxes
 tf.image.draw_bounding_boxes(images, boxes, name=None)
 tf.image.sample_distorted_bounding_box(image_size,

bounding_boxes, seed=None, seed2=None,

min_object_covered=None, aspect_ratio_range=None,

area_range=None, max_attempts=None,

use_image_if_no_bounding_boxes=None, name=None)

 Other Functions and Classes
 tf.image.saturate_cast(image, dtype)

Encoding and Decoding

TensorFlow provides Ops to decode and encode JPEG and PNG
formats. Encoded images are represented by scalar string Tensors,

decoded images by 3-D uint8 tensors of shape [height, width,

channels]. (PNG also supports uint16.)

The encode and decode Ops apply to one image at a time. Their
input and output are all of variable size. If you need fixed size
images, pass the output of the decode Ops to one of the cropping
and resizing Ops.

Note: The PNG encode and decode Ops support RGBA, but the
conversions Ops presently only support RGB, HSV, and GrayScale.
Presently, the alpha channel has to be stripped from the image and
re-attached using slicing ops.

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_contrast
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_hue
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_hue
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#adjust_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#random_saturation
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#per_image_whitening
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#working-with-bounding-boxes
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#draw_bounding_boxes
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#sample_distorted_bounding_box
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#saturate_cast

tf.image.decode_jpeg(contents, channels=None, ratio=None,

fancy_upscaling=None, try_recover_truncated=None,

acceptable_fraction=None, name=None)

Decode a JPEG-encoded image to a uint8 tensor.

The attr channels indicates the desired number of color channels for

the decoded image.

Accepted values are:

 0: Use the number of channels in the JPEG-encoded image.

 1: output a grayscale image.

 3: output an RGB image.

If needed, the JPEG-encoded image is transformed to match the
requested number of color channels.

The attr ratio allows downscaling the image by an integer factor

during decoding. Allowed values are: 1, 2, 4, and 8. This is much
faster than downscaling the image later.

Args:

 contents: A Tensor of type string. 0-D. The JPEG-encoded image.

 channels: An optional int. Defaults to 0. Number of color channels

for the decoded image.

 ratio: An optional int. Defaults to 1. Downscaling ratio.

 fancy_upscaling: An optional bool. Defaults to True. If true use a

slower but nicer upscaling of the chroma planes (yuv420/422 only).

 try_recover_truncated: An optional bool. Defaults to False. If true

try to recover an image from truncated input.

 acceptable_fraction: An optional float. Defaults to 1. The

minimum required fraction of lines before a truncated input is
accepted.

 name: A name for the operation (optional).

Returns:

A Tensor of type uint8. 3-D with shape [height, width,

channels]..

tf.image.encode_jpeg(image, format=None, quality=None,

progressive=None, optimize_size=None,

chroma_downsampling=None, density_unit=None,

x_density=None, y_density=None, xmp_metadata=None,

name=None)

JPEG-encode an image.

image is a 3-D uint8 Tensor of shape [height, width, channels].

The attr format can be used to override the color format of the

encoded output. Values can be:

 '': Use a default format based on the number of channels in the

image.

 grayscale: Output a grayscale JPEG image.

The channels dimension of image must be 1.

 rgb: Output an RGB JPEG image. The channels dimension

of image must be 3.

If format is not specified or is the empty string, a default format is

picked in function of the number of channels inimage:

 1: Output a grayscale image.

 3: Output an RGB image.

Args:

 image: A Tensor of type uint8. 3-D with shape [height, width,

channels].

 format: An optional string from: "", "grayscale", "rgb".

Defaults to "". Per pixel image format.

 quality: An optional int. Defaults to 95. Quality of the compression

from 0 to 100 (higher is better and slower).

 progressive: An optional bool. Defaults to False. If True, create a

JPEG that loads progressively (coarse to fine).

 optimize_size: An optional bool. Defaults to False. If True, spend

CPU/RAM to reduce size with no quality change.

 chroma_downsampling: An optional bool. Defaults to True.

Seehttp://en.wikipedia.org/wiki/Chroma_subsampling.

 density_unit: An optional string from: "in", "cm". Defaults

to "in". Unit used to specifyx_density and y_density: pixels per

inch ('in') or centimeter ('cm').

 x_density: An optional int. Defaults to 300. Horizontal pixels per

density unit.

 y_density: An optional int. Defaults to 300. Vertical pixels per

density unit.

https://www.google.com/url?q=http://en.wikipedia.org/wiki/Chroma_subsampling&usg=AFQjCNHsxo2igvsqZa9KTxD2XZCCYUsn9g

 xmp_metadata: An optional string. Defaults to "". If not empty,

embed this XMP metadata in the image header.

 name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. JPEG-encoded image.

tf.image.decode_png(contents, channels=None, dtype=None,

name=None)

Decode a PNG-encoded image to a uint8 or uint16 tensor.

The attr channels indicates the desired number of color channels for

the decoded image.

Accepted values are:

 0: Use the number of channels in the PNG-encoded image.

 1: output a grayscale image.

 3: output an RGB image.

 4: output an RGBA image.

If needed, the PNG-encoded image is transformed to match the
requested number of color channels.

Args:

 contents: A Tensor of type string. 0-D. The PNG-encoded image.

 channels: An optional int. Defaults to 0. Number of color channels

for the decoded image.

 dtype: An optional tf.DType from: tf.uint8, tf.uint16. Defaults

to tf.uint8.

 name: A name for the operation (optional).

Returns:

A Tensor of type dtype. 3-D with shape [height, width,

channels].

tf.image.encode_png(image, compression=None, name=None)

PNG-encode an image.

image is a 3-D uint8 or uint16 Tensor of shape [height, width,

channels] where channels is:

 1: for grayscale.

 3: for RGB.

 4: for RGBA.

The ZLIB compression level, compression, can be -1 for the PNG-

encoder default or a value from 0 to 9. 9 is the highest compression
level, generating the smallest output, but is slower.

Args:

 image: A Tensor. Must be one of the following types: uint8, uint16.

3-D with shape [height, width, channels].

 compression: An optional int. Defaults to -1. Compression level.

 name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. PNG-encoded image.

Resizing

The resizing Ops accept input images as tensors of several types.
They always output resized images as float32 tensors.

The convenience function resize_images() supports both 4-D and

3-D tensors as input and output. 4-D tensors are for batches of
images, 3-D tensors for individual images.
Other resizing Ops only support 4-D batches of images as

input: resize_area, resize_bicubic,resize_bilinear, resize_nea

rest_neighbor.

Example:

Decode a JPG image and resize it to 299 by 299 using default

method.

image = tf.image.decode_jpeg(...)

resized_image = tf.image.resize_images(image, 299, 299)

tf.image.resize_images(images, new_height, new_width,

method=0, align_corners=False)

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_images
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_area
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bicubic
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_bilinear
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor
https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_nearest_neighbor

Resize images to new_width, new_height using the specified method.

Resized images will be distorted if their original aspect ratio is not the

same as new_width, new_height. To avoid distortions

see resize_image_with_crop_or_pad.

method can be one of:

 ResizeMethod.BILINEAR: Bilinear interpolation.

 ResizeMethod.NEAREST_NEIGHBOR: Nearest neighbor interpolation.

 ResizeMethod.BICUBIC: Bicubic interpolation.

 ResizeMethod.AREA: Area interpolation.

Args:

 images: 4-D Tensor of shape [batch, height, width,

channels] or 3-D Tensor of shape[height, width, channels].

 new_height: integer.

 new_width: integer.

 method: ResizeMethod. Defaults to ResizeMethod.BILINEAR.

 align_corners: bool. If true, exactly align all 4 cornets of the input

and output. Defaults to false.

Raises:

 ValueError: if the shape of images is incompatible with the shape

arguments to this function

 ValueError: if an unsupported resize method is specified.

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#resize_image_with_crop_or_pad
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
https://en.wikipedia.org/wiki/Bicubic_interpolation

Returns:

If images was 4-D, a 4-D float Tensor of shape [batch,

new_height, new_width, channels]. Ifimages was 3-D, a 3-D float

Tensor of shape [new_height, new_width, channels].

tf.image.resize_area(images, size, align_corners=None,

name=None)

Resize images to size using area interpolation.

Input images can be of different types but output images are always
float.

Args:

 images: A Tensor. Must be one of the following

types: uint8, int8, int16, int32, int64, float32,float64. 4-D with

shape [batch, height, width, channels].

 size: A 1-D int32 Tensor of 2 elements: new_height, new_width.

The new size for the images.

 align_corners: An optional bool. Defaults to False. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape [batch, new_height,

new_width, channels].

tf.image.resize_bicubic(images, size, align_corners=None,

name=None)

Resize images to size using bicubic interpolation.

Input images can be of different types but output images are always
float.

Args:

 images: A Tensor. Must be one of the following

types: uint8, int8, int16, int32, int64, float32,float64. 4-D with

shape [batch, height, width, channels].

 size: A 1-D int32 Tensor of 2 elements: new_height, new_width.

The new size for the images.

 align_corners: An optional bool. Defaults to False. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape [batch, new_height,

new_width, channels].

tf.image.resize_bilinear(images, size,

align_corners=None, name=None)

Resize images to size using bilinear interpolation.

Input images can be of different types but output images are always
float.

Args:

 images: A Tensor. Must be one of the following

types: uint8, int8, int16, int32, int64, float32,float64. 4-D with

shape [batch, height, width, channels].

 size: A 1-D int32 Tensor of 2 elements: new_height, new_width.

The new size for the images.

 align_corners: An optional bool. Defaults to False. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape [batch, new_height,

new_width, channels].

tf.image.resize_nearest_neighbor(images, size,

align_corners=None, name=None)

Resize images to size using nearest neighbor interpolation.

Args:

 images: A Tensor. Must be one of the following

types: uint8, int8, int16, int32, int64, float32,float64. 4-D with

shape [batch, height, width, channels].

 size: A 1-D int32 Tensor of 2 elements: new_height, new_width.

The new size for the images.

 align_corners: An optional bool. Defaults to False. If true, rescale

input by (new_height - 1) / (height - 1), which exactly aligns the 4
corners of images and resized images. If false, rescale by
new_height / height. Treat similarly the width dimension.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. 4-D with shape [batch,

new_height, new_width, channels].

Cropping

tf.image.resize_image_with_crop_or_pad(image,

target_height, target_width)

Crops and/or pads an image to a target width and height.

Resizes an image to a target width and height by either centrally
cropping the image or padding it evenly with zeros.

If width or height is greater than the

specified target_width or target_height respectively, this op

centrally crops along that dimension. If width or height is smaller

than the specified target_width ortarget_height respectively, this

op centrally pads with 0 along that dimension.

Args:

 image: 3-D tensor of shape [height, width, channels]

 target_height: Target height.

 target_width: Target width.

Raises:

 ValueError: if target_height or target_width are zero or

negative.

Returns:

Cropped and/or padded image of shape [target_height,

target_width, channels]

tf.image.pad_to_bounding_box(image, offset_height,

offset_width, target_height, target_width)

Pad image with zeros to the specified height and width.

Adds offset_height rows of zeros on top, offset_width columns of

zeros on the left, and then pads the image on the bottom and right

with zeros until it has dimensions target_height, target_width.

This op does nothing if offset_* is zero and the image already has

size target_height by target_width.

Args:

 image: 3-D tensor with shape [height, width, channels]

 offset_height: Number of rows of zeros to add on top.

 offset_width: Number of columns of zeros to add on the left.

 target_height: Height of output image.

 target_width: Width of output image.

Returns:

3-D tensor of shape [target_height, target_width, channels]

Raises:

 ValueError: If the shape of image is incompatible with

the offset_* or target_* arguments

tf.image.crop_to_bounding_box(image, offset_height,

offset_width, target_height, target_width)

Crops an image to a specified bounding box.

This op cuts a rectangular part out of image. The top-left corner of the

returned image is at offset_height, offset_width in image, and

its lower-right corner is at offset_height + target_height,

offset_width + target_width.

Args:

 image: 3-D tensor with shape [height, width, channels]

 offset_height: Vertical coordinate of the top-left corner of the result

in the input.

 offset_width: Horizontal coordinate of the top-left corner of the

result in the input.

 target_height: Height of the result.

 target_width: Width of the result.

Returns:

3-D tensor of image with shape [target_height, target_width,

channels]

Raises:

 ValueError: If the shape of image is incompatible with

the offset_* or target_* arguments

tf.image.extract_glimpse(input, size, offsets,

centered=None, normalized=None, uniform_noise=None,

name=None)

Extracts a glimpse from the input tensor.

Returns a set of windows called glimpses extracted at

location offsets from the input tensor. If the windows only partially

overlaps the inputs, the non overlapping areas will be filled with
random noise.

The result is a 4-D tensor of shape [batch_size, glimpse_height,

glimpse_width, channels]. The channels and batch dimensions

are the same as that of the input tensor. The height and width of the

output windows are specified in the size parameter.

The argument normalized and centered controls how the windows

are built: * If the coordinates are normalized but not centered, 0.0 and
1.0 correspond to the minimum and maximum of each height and
width dimension. * If the coordinates are both normalized and
centered, they range from -1.0 to 1.0. The coordinates (-1.0, -1.0)
correspond to the upper left corner, the lower right corner is located
at (1.0, 1.0) and the center is at (0, 0). * If the coordinates are not
normalized they are interpreted as numbers of pixels.

Args:

 input: A Tensor of type float32. A 4-D float tensor of

shape [batch_size, height, width, channels].

 size: A Tensor of type int32. A 1-D tensor of 2 elements containing

the size of the glimpses to extract. The glimpse height must be
specified first, following by the glimpse width.

 offsets: A Tensor of type float32. A 2-D integer tensor of

shape [batch_size, 2] containing the x, y locations of the center of

each window.

 centered: An optional bool. Defaults to True. indicates if the offset

coordinates are centered relative to the image, in which case the (0,
0) offset is relative to the center of the input images. If false, the (0,0)
offset corresponds to the upper left corner of the input images.

 normalized: An optional bool. Defaults to True. indicates if the offset

coordinates are normalized.

 uniform_noise: An optional bool. Defaults to True. indicates if the

noise should be generated using a uniform distribution or a gaussian
distribution.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32. A tensor representing the

glimpses [batch_size, glimpse_height, glimpse_width,

channels].

Flipping and Transposing

tf.image.flip_up_down(image)

Flip an image horizontally (upside down).

Outputs the contents of image flipped along the first dimension, which

is height.

See also reverse().

Args:

 image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

 ValueError: if the shape of image not supported.

tf.image.random_flip_up_down(image, seed=None)

Randomly flips an image vertically (upside down).

With a 1 in 2 chance, outputs the contents of image flipped along the

first dimension, which is height. Otherwise output the image as-is.

Args:

 image: A 3-D tensor of shape [height, width, channels].

 seed: A Python integer. Used to create a random seed.

See set_random_seed for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Raises:

 ValueError: if the shape of image not supported.

tf.image.flip_left_right(image)

Flip an image horizontally (left to right).

Outputs the contents of image flipped along the second dimension,

which is width.

See also reverse().

Args:

 image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

 ValueError: if the shape of image not supported.

tf.image.random_flip_left_right(image, seed=None)

Randomly flip an image horizontally (left to right).

With a 1 in 2 chance, outputs the contents of image flipped along the

second dimension, which is width. Otherwise output the image as-is.

Args:

 image: A 3-D tensor of shape [height, width, channels].

 seed: A Python integer. Used to create a random seed.

See set_random_seed for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

 ValueError: if the shape of image not supported.

tf.image.transpose_image(image)

Transpose an image by swapping the first and second dimension.

See also transpose().

Args:

 image: 3-D tensor of shape [height, width, channels]

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Returns:

A 3-D tensor of shape [width, height, channels]

Raises:

 ValueError: if the shape of image not supported.

Converting Between Colorspaces.

Image ops work either on individual images or on batches of images,
depending on the shape of their input Tensor.

If 3-D, the shape is [height, width, channels], and the Tensor

represents one image. If 4-D, the shape is[batch_size, height,

width, channels], and the Tensor represents batch_size images.

Currently, channels can usefully be 1, 2, 3, or 4. Single-channel

images are grayscale, images with 3 channels are encoded as either
RGB or HSV. Images with 2 or 4 channels include an alpha channel,
which has to be stripped from the image before passing the image to
most image processing functions (and can be re-attached later).

Internally, images are either stored in as one float32 per channel

per pixel (implicitly, values are assumed to lie in [0,1)) or

one uint8 per channel per pixel (values are assumed to lie

in [0,255]).

Tensorflow can convert between images in RGB or HSV. The
conversion functions work only on float images, so you need to

convert images in other formats using convert_image_dtype.

Example:

https://www.tensorflow.org/versions/r0.7/api_docs/python/image.html#convert-image-dtype

Decode an image and convert it to HSV.

rgb_image = tf.decode_png(..., channels=3)

rgb_image_float = tf.convert_image_dtype(rgb_image, tf.float32)

hsv_image = tf.rgb_to_hsv(rgb_image)

tf.image.rgb_to_grayscale(images)

Converts one or more images from RGB to Grayscale.

Outputs a tensor of the same DType and rank as images. The size of

the last dimension of the output is 1, containing the Grayscale value
of the pixels.

Args:

 images: The RGB tensor to convert. Last dimension must have size 3

and should contain RGB values.

Returns:

The converted grayscale image(s).

tf.image.grayscale_to_rgb(images)

Converts one or more images from Grayscale to RGB.

Outputs a tensor of the same DType and rank as images. The size of

the last dimension of the output is 3, containing the RGB value of the
pixels.

Args:

 images: The Grayscale tensor to convert. Last dimension must be

size 1.

Returns:

The converted grayscale image(s).

tf.image.hsv_to_rgb(images, name=None)

Convert one or more images from HSV to RGB.

Outputs a tensor of the same shape as the images tensor, containing

the RGB value of the pixels. The output is only well defined if the

value in images are in [0,1].

See rgb_to_hsv for a description of the HSV encoding.

Args:

 images: A Tensor of type float32. 1-D or higher rank. HSV data to

convert. Last dimension must be size 3.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32. images converted to RGB.

tf.image.rgb_to_hsv(images, name=None)

Converts one or more images from RGB to HSV.

Outputs a tensor of the same shape as the images tensor, containing

the HSV value of the pixels. The output is only well defined if the

value in images are in [0,1].

output[..., 0] contains hue, output[..., 1] contains saturation,

and output[..., 2] contains value. All HSV values are in [0,1]. A

hue of 0 corresponds to pure red, hue 1/3 is pure green, and 2/3 is
pure blue.

Args:

 images: A Tensor of type float32. 1-D or higher rank. RGB data to

convert. Last dimension must be size 3.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32. images converted to HSV.

tf.image.convert_image_dtype(image, dtype,

saturate=False, name=None)

Convert image to dtype, scaling its values if needed.

Images that are represented using floating point values are expected
to have values in the range [0,1). Image data stored in integer data

types are expected to have values in the range [0,MAX],

where MAX is the largest positive representable number for the data

type.

This op converts between data types, scaling the values
appropriately before casting.

Note that converting from floating point inputs to integer types may

lead to over/underflow problems. Set saturate to True to avoid such

problem in problematic conversions. If enabled, saturation will clip the
output into the allowed range before performing a potentially
dangerous cast (and only before performing such a cast, i.e., when
casting from a floating point to an integer type, and when casting

from a signed to an unsigned type; saturatehas no effect on casts

between floats, or on casts that increase the type's range).

Args:

 image: An image.

 dtype: A DType to convert image to.

 saturate: If True, clip the input before casting (if necessary).

 name: A name for this operation (optional).

Returns:

image, converted to dtype.

Image Adjustments

TensorFlow provides functions to adjust images in various ways:
brightness, contrast, hue, and saturation. Each adjustment can be
done with predefined parameters or with random parameters picked
from predefined intervals. Random adjustments are often useful to
expand a training set and reduce overfitting.

If several adjustments are chained it is advisable to minimize the
number of redundant conversions by first converting the images to
the most natural data type and representation (RGB or HSV).

tf.image.adjust_brightness(image, delta)

Adjust the brightness of RGB or Grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its brightness, and then converts it back to the
original data type. If several adjustments are chained it is advisable
to minimize the number of redundant conversions.

The value delta is added to all components of the tensor image.

Both image and delta are converted tofloat before adding

(and image is scaled appropriately if it is in fixed-point

representation). For regular images,delta should be in the

range [0,1), as it is added to the image in floating point

representation, where pixel values are in the [0,1) range.

Args:

 image: A tensor.

 delta: A scalar. Amount to add to the pixel values.

Returns:

A brightness-adjusted tensor of the same shape and type as image.

tf.image.random_brightness(image, max_delta, seed=None)

Adjust the brightness of images by a random factor.

Equivalent to adjust_brightness() using a delta randomly picked

in the interval [-max_delta, max_delta).

Args:

 image: An image.

 max_delta: float, must be non-negative.

 seed: A Python integer. Used to create a random seed.

See set_random_seed for behavior.

Returns:

The brightness-adjusted image.

Raises:

 ValueError: if max_delta is negative.

tf.image.adjust_contrast(images, contrast_factor)

Adjust contrast of RGB or grayscale images.

This is a convenience method that converts an RGB image to float
representation, adjusts its contrast, and then converts it back to the
original data type. If several adjustments are chained it is advisable
to minimize the number of redundant conversions.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

images is a tensor of at least 3 dimensions. The last 3 dimensions

are interpreted as [height, width, channels]. The other

dimensions only represent a collection of images, such as [batch,

height, width, channels].

Contrast is adjusted independently for each channel of each image.

For each channel, this Op computes the mean of the image pixels in

the channel and then adjusts each component x of each pixel to (x -

mean) * contrast_factor + mean.

Args:

 images: Images to adjust. At least 3-D.

 contrast_factor: A float multiplier for adjusting contrast.

Returns:

The constrast-adjusted image or images.

tf.image.random_contrast(image, lower, upper, seed=None)

Adjust the contrast of an image by a random factor.

Equivalent to adjust_contrast() but uses

a contrast_factor randomly picked in the interval [lower, upper].

Args:

 image: An image tensor with 3 or more dimensions.

 lower: float. Lower bound for the random contrast factor.

 upper: float. Upper bound for the random contrast factor.

 seed: A Python integer. Used to create a random seed.

See set_random_seed for behavior.

Returns:

The contrast-adjusted tensor.

Raises:

 ValueError: if upper <= lower or if lower < 0.

tf.image.adjust_hue(image, delta, name=None)

Adjust hue of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the hue channel,
converts back to RGB and then back to the original data type. If
several adjustments are chained it is advisable to minimize the
number of redundant conversions.

image is an RGB image. The image hue is adjusted by converting the

image to HSV and rotating the hue channel (H) by delta. The image

is then converted back to RGB.

delta must be in the interval [-1, 1].

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Args:

 image: RGB image or images. Size of the last dimension must be 3.

 delta: float. How much to add to the hue channel.

 name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

tf.image.random_hue(image, max_delta, seed=None)

Adjust the hue of an RGB image by a random factor.

Equivalent to adjust_hue() but uses a delta randomly picked in the

interval [-max_delta, max_delta].

max_delta must be in the interval [0, 0.5].

Args:

 image: RGB image or images. Size of the last dimension must be 3.

 max_delta: float. Maximum value for the random delta.

 seed: An operation-specific seed. It will be used in conjunction with

the graph-level seed to determine the real seeds that will be used in
this operation. Please see the documentation of set_random_seed
for its interaction with the graph-level random seed.

Returns:

3-D float tensor of shape [height, width, channels].

Raises:

 ValueError: if max_delta is invalid.

tf.image.adjust_saturation(image, saturation_factor,

name=None)

Adjust saturation of an RGB image.

This is a convenience method that converts an RGB image to float
representation, converts it to HSV, add an offset to the saturation
channel, converts back to RGB and then back to the original data
type. If several adjustments are chained it is advisable to minimize
the number of redundant conversions.

image is an RGB image. The image saturation is adjusted by

converting the image to HSV and multiplying the saturation (S)

channel by saturation_factor and clipping. The image is then

converted back to RGB.

Args:

 image: RGB image or images. Size of the last dimension must be 3.

 saturation_factor: float. Factor to multiply the saturation by.

 name: A name for this operation (optional).

Returns:

Adjusted image(s), same shape and DType as image.

tf.image.random_saturation(image, lower, upper,

seed=None)

Adjust the saturation of an RGB image by a random factor.

Equivalent to adjust_saturation() but uses

a saturation_factor randomly picked in the interval[lower,

upper].

Args:

 image: RGB image or images. Size of the last dimension must be 3.

 lower: float. Lower bound for the random saturation factor.

 upper: float. Upper bound for the random saturation factor.

 seed: An operation-specific seed. It will be used in conjunction with

the graph-level seed to determine the real seeds that will be used in
this operation. Please see the documentation of set_random_seed
for its interaction with the graph-level random seed.

Returns:

Adjusted image(s), same shape and DType as image.

Raises:

 ValueError: if upper <= lower or if lower < 0.

tf.image.per_image_whitening(image)

Linearly scales image to have zero mean and unit norm.

This op computes (x - mean) / adjusted_stddev, where mean is

the average of all values in image, andadjusted_stddev =

max(stddev, 1.0/sqrt(image.NumElements())).

stddev is the standard deviation of all values in image. It is capped

away from zero to protect against division by 0 when handling
uniform images.

Note that this implementation is limited: * It only whitens based on the
statistics of an individual image. * It does not take into account the
covariance structure.

Args:

 image: 3-D tensor of shape [height, width, channels].

Returns:

The whitened image with same shape as image.

Raises:

 ValueError: if the shape of 'image' is incompatible with this function.

Working with Bounding Boxes

tf.image.draw_bounding_boxes(images, boxes, name=None)

Draw bounding boxes on a batch of images.

Outputs a copy of images but draws on top of the pixels zero or more

bounding boxes specified by the locations in boxes. The coordinates

of the each bounding box in boxes are encoded as[y_min, x_min,

y_max, x_max]. The bounding box coordinates are floats

in[0.0, 1.0]` relative to the width and height of the underlying image.

For example, if an image is 100 x 200 pixels and the bounding box

is [0.1, 0.5, 0.2, 0.9], the bottom-left and upper-right

coordinates of the bounding box will be (10, 40) to (50, 180).

Parts of the bounding box may fall outside the image.

Args:

 images: A Tensor of type float32. 4-D with shape [batch, height,

width, depth]. A batch of images.

 boxes: A Tensor of type float32. 3-D with shape [batch,

num_bounding_boxes, 4] containing bounding boxes.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with the same shape as images. The

batch of input images with bounding boxes drawn on the images.

tf.image.sample_distorted_bounding_box(image_size,

bounding_boxes, seed=None, seed2=None,

min_object_covered=None, aspect_ratio_range=None,

area_range=None, max_attempts=None,

use_image_if_no_bounding_boxes=None, name=None)

Generate a single randomly distorted bounding box for an image.

Bounding box annotations are often supplied in addition to ground-
truth labels in image recognition or object localization tasks. A
common technique for training such a system is to randomly distort
an image while preserving its content, i.e. data augmentation. This
Op outputs a randomly distorted localization of an object, i.e.

bounding box, given an image_size, bounding_boxes and a series of

constraints.
The output of this Op is a single bounding box that may be used to
crop the original image. The output is returned as 3

tensors: begin, size and bboxes. The first 2 tensors can be fed

directly into tf.slice to crop the image. The latter may be supplied

to tf.image.draw_bounding_box to visualize what the bounding box

looks like.

Bounding boxes are supplied and returned as [y_min, x_min,

y_max, x_max]. The bounding box coordinates are floats in [0.0,

1.0] relative to the width and height of the underlying image.

For example,

Generate a single distorted bounding box.

begin, size, bbox_for_draw =

tf.image.sample_distorted_bounding_box(

 tf.shape(image),

 bounding_boxes=bounding_boxes)

Draw the bounding box in an image summary.

image_with_box =

tf.image.draw_bounding_boxes(tf.expand_dims(image, 0),

 bbox_for_draw)

tf.image_summary('images_with_box', image_with_box)

Employ the bounding box to distort the image.

distorted_image = tf.slice(image, begin, size)

Note that if no bounding box information is available,

setting use_image_if_no_bounding_boxes = truewill assume there

is a single implicit bounding box covering the whole image.

Ifuse_image_if_no_bounding_boxes is false and no bounding boxes

are supplied, an error is raised.

Args:

 image_size: A Tensor. Must be one of the following

types: uint8, int8, int16, int32, int64. 1-D, containing [height,

width, channels].

 bounding_boxes: A Tensor of type float32. 3-D with shape [batch,

N, 4] describing the N bounding boxes associated with the image.

 seed: An optional int. Defaults to 0. If either seed or seed2 are set to

non-zero, the random number generator is seeded by the given seed.

Otherwise, it is seeded by a random seed.

 seed2: An optional int. Defaults to 0. A second seed to avoid seed

collision.

 min_object_covered: An optional float. Defaults to 0.1. The

cropped area of the image must contain at least this fraction of any
bounding box supplied.

 aspect_ratio_range: An optional list of floats. Defaults to [0.75,

1.33]. The cropped area of the image must have an aspect ratio =

width / height within this range.

 area_range: An optional list of floats. Defaults to [0.05, 1]. The

cropped area of the image must contain a fraction of the supplied
image within in this range.

 max_attempts: An optional int. Defaults to 100. Number of attempts

at generating a cropped region of the image of the specified

constraints. After max_attempts failures, return the entire image.

 use_image_if_no_bounding_boxes: An optional bool. Defaults

to False. Controls behavior if no bounding boxes supplied. If true,

assume an implicit bounding box covering the whole input. If false,
raise an error.

 name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (begin, size, bboxes).

 begin: A Tensor. Has the same type as image_size. 1-D,

containing [offset_height, offset_width, 0]. Provide as input

to tf.slice.

 size: A Tensor. Has the same type as image_size. 1-D,

containing [target_height, target_width, -1]. Provide as input

to tf.slice.

 bboxes: A Tensor of type float32. 3-D with shape [1, 1,

4] containing the distorted bounding box. Provide as input

to tf.image.draw_bounding_boxes.

Other Functions and Classes

tf.image.saturate_cast(image, dtype)

Performs a safe cast of image data to dtype.

This function casts the data in image to dtype, without applying any

scaling. If there is a danger that image data would over or underflow
in the cast, this op applies the appropriate clamping before the cast.

Args:

 image: An image to cast to a different data type.

 dtype: A DType to cast image to.

Returns:

image, safely cast to dtype.

Sparse Tensors

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Sparse Tensors
 Sparse Tensor Representation
 class tf.SparseTensor
 class tf.SparseTensorValue

 Sparse to Dense Conversion
 tf.sparse_to_dense(sparse_indices, output_shape,

sparse_values, default_value=0, validate_indices=True,

name=None)
 tf.sparse_tensor_to_dense(sp_input, default_value=0,

validate_indices=True, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse-tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse-tensor-representation
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensorValue
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse-to-dense-conversion
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_tensor_to_dense
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_tensor_to_dense

 tf.sparse_to_indicator(sp_input, vocab_size, name=None)

 Manipulation
 tf.sparse_concat(concat_dim, sp_inputs, name=None)
 tf.sparse_reorder(sp_input, name=None)
 tf.sparse_split(split_dim, num_split, sp_input,

name=None)
 tf.sparse_retain(sp_input, to_retain)
 tf.sparse_fill_empty_rows(sp_input, default_value,

name=None)

Sparse Tensor Representation

Tensorflow supports a SparseTensor representation for data that is

sparse in multiple dimensions. Contrast this representation

with IndexedSlices, which is efficient for representing tensors that

are sparse in their first dimension, and dense along all other
dimensions.

class tf.SparseTensor

Represents a sparse tensor.

Tensorflow represents a sparse tensor as three separate dense

tensors: indices, values, and shape. In Python, the three tensors

are collected into a SparseTensor class for ease of use. If you have

separate indices,values, and shape tensors, wrap them in

a SparseTensor object before passing to the ops below.

Concretely, the sparse tensor SparseTensor(indices, values,

shape) is

 indices: A 2-D int64 tensor of shape [N, ndims].

https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_to_indicator
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#manipulation
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_concat
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_reorder
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_split
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_split
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_retain
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_fill_empty_rows
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#sparse_fill_empty_rows

 values: A 1-D tensor of any type and shape [N].

 shape: A 1-D int64 tensor of shape [ndims].

where N and ndims are the number of values, and number of

dimensions in the SparseTensor respectively.

The corresponding dense tensor satisfies

dense.shape = shape

dense[tuple(indices[i])] = values[i]

By convention, indices should be sorted in row-major order (or

equivalently lexicographic order on the tuplesindices[i]). This is

not enforced when SparseTensor objects are constructed, but most

ops assume correct ordering. If the ordering of sparse tensor st is

wrong, a fixed version can be obtained by

callingtf.sparse_reorder(st).

Example: The sparse tensor

SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], shape=[3,

4])

represents the dense tensor

[[1, 0, 0, 0]

 [0, 0, 2, 0]

 [0, 0, 0, 0]]

tf.SparseTensor.__init__(indices, values, shape)

Creates a SparseTensor.

Args:

 indices: A 2-D int64 tensor of shape [N, ndims].

 values: A 1-D tensor of any type and shape [N].

 shape: A 1-D int64 tensor of shape [ndims].

Returns:

A SparseTensor

tf.SparseTensor.indices

The indices of non-zero values in the represented dense tensor.

Returns:

A 2-D Tensor of int64 with shape [N, ndims], where N is the number

of non-zero values in the tensor, andndims is the rank.

tf.SparseTensor.values

The non-zero values in the represented dense tensor.

Returns:

A 1-D Tensor of any data type.

tf.SparseTensor.dtype

The DType of elements in this tensor.

tf.SparseTensor.shape

A 1-D Tensor of int64 representing the shape of the dense tensor.

tf.SparseTensor.graph

The Graph that contains the index, value, and shape tensors.

class tf.SparseTensorValue

SparseTensorValue(indices, values, shape)

tf.SparseTensorValue.indices

Alias for field number 0

tf.SparseTensorValue.shape

Alias for field number 2

tf.SparseTensorValue.values

Alias for field number 1

Sparse to Dense Conversion

tf.sparse_to_dense(sparse_indices, output_shape,

sparse_values, default_value=0, validate_indices=True,

name=None)

Converts a sparse representation into a dense tensor.

Builds an array dense with shape output_shape such that

If sparse_indices is scalar

dense[i] = (i == sparse_indices ? sparse_values : default_value)

If sparse_indices is a vector, then for each i

dense[sparse_indices[i]] = sparse_values[i]

If sparse_indices is an n by d matrix, then for each i in [0,

n)

dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] =

sparse_values[i]

All other values in dense are set to default_value.

If sparse_values is a scalar, all sparse indices are set to this single

value.
Indices should be sorted in lexicographic order, and indices must not

contain any repeats. If validate_indicesis True, these properties

are checked during execution.

Args:

 sparse_indices: A 0-D, 1-D, or 2-D Tensor of

type int32 or int64. sparse_indices[i] contains the complete

index where sparse_values[i] will be placed.

 output_shape: A 1-D Tensor of the same type as sparse_indices.

Shape of the dense output tensor.

 sparse_values: A 0-D or 1-D Tensor. Values corresponding to each

row of sparse_indices, or a scalar value to be used for all sparse

indices.

 default_value: A 0-D Tensor of the same type as sparse_values.

Value to set for indices not specified in sparse_indices. Defaults to

zero.

 validate_indices: A boolean value. If True, indices are checked to

make sure they are sorted in lexicographic order and that there are
no repeats.

 name: A name for the operation (optional).

Returns:

Dense Tensor of shape output_shape. Has the same type

as sparse_values.

tf.sparse_tensor_to_dense(sp_input, default_value=0,

validate_indices=True, name=None)

Converts a SparseTensor into a dense tensor.

This op is a convenience wrapper

around sparse_to_dense for SparseTensors.

For example, if sp_input has shape [3, 5] and non-empty string

values:
[0, 1]: a

[0, 3]: b

[2, 0]: c

and default_value is x, then the output will be a dense [3,

5] string tensor with values:

[[x a x b x]

 [x x x x x]

 [c x x x x]]

Indices must be without repeats. This is only tested if
validate_indices is True.

Args:

 sp_input: The input SparseTensor.

 default_value: Scalar value to set for indices not specified

in sp_input. Defaults to zero.

 validate_indices: A boolean value. If True, indices are checked to

make sure they are sorted in lexicographic order and that there are
no repeats.

 name: A name prefix for the returned tensors (optional).

Returns:

A dense tensor with shape sp_input.shape and values specified by

the non-empty values in sp_input. Indices not in sp_input are

assigned default_value.

Raises:

 TypeError: If sp_input is not a SparseTensor.

tf.sparse_to_indicator(sp_input, vocab_size, name=None)

Converts a SparseTensor of ids into a dense bool indicator tensor.

The last dimension of sp_input is discarded and replaced with the

values of sp_input. If sp_input.shape = [D0, D1, ..., Dn, K],

then output.shape = [D0, D1, ..., Dn, vocab_size], where

output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] =

True

and False elsewhere in output.

For example, if sp_input.shape = [2, 3, 4] with non-empty

values:
[0, 0, 0]: 0

[0, 1, 0]: 10

[1, 0, 3]: 103

[1, 1, 2]: 150

[1, 1, 3]: 149

[1, 1, 4]: 150

[1, 2, 1]: 121

and vocab_size = 200, then the output will be a [2, 3, 200] dense

bool tensor with False everywhere except at positions
(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),

(1, 2, 121).

Note that repeats are allowed in the input SparseTensor. This op is

useful for converting SparseTensors into dense formats for

compatibility with ops that expect dense tensors.

The input SparseTensor must be in row-major order.

Args:

 sp_input: A SparseTensor of type int32 or int64.

 vocab_size: The new size of the last dimension, with all(0 <=

sp_input.values < vocab_size).

 name: A name prefix for the returned tensors (optional)

Returns:

A dense bool indicator tensor representing the indices with specified
value.

Raises:

 TypeError: If sp_input is not a SparseTensor.

Manipulation

tf.sparse_concat(concat_dim, sp_inputs, name=None)

Concatenates a list of SparseTensor along the specified dimension.

Concatenation is with respect to the dense versions of each sparse

input. It is assumed that each inputs is aSparseTensor whose

elements are ordered along increasing dimension number.
All inputs' shapes must match, except for the concat dimension.

The indices, values, and shapes lists must have the same length.

The output shape is identical to the inputs', except along the concat
dimension, where it is the sum of the inputs' sizes along that
dimension.

The output elements will be resorted to preserve the sort order along
increasing dimension number.

This op runs in O(M log M) time, where M is the total number of non-

empty values across all inputs. This is due to the need for an internal
sort in order to concatenate efficiently across an arbitrary dimension.

For example, if concat_dim = 1 and the inputs are

sp_inputs[0]: shape = [2, 3]

[0, 2]: "a"

[1, 0]: "b"

[1, 1]: "c"

sp_inputs[1]: shape = [2, 4]

[0, 1]: "d"

[0, 2]: "e"

then the output will be

shape = [2, 7]

[0, 2]: "a"

[0, 4]: "d"

[0, 5]: "e"

[1, 0]: "b"

[1, 1]: "c"

Graphically this is equivalent to doing

[a] concat [d e] = [a d e]

[b c] [] [b c]

Args:

 concat_dim: Dimension to concatenate along.

 sp_inputs: List of SparseTensor to concatenate.

 name: A name prefix for the returned tensors (optional).

Returns:

A SparseTensor with the concatenated output.

Raises:

 TypeError: If sp_inputs is not a list of SparseTensor.

tf.sparse_reorder(sp_input, name=None)

Reorders a SparseTensor into the canonical, row-major ordering.

Note that by convention, all sparse ops preserve the canonical
ordering along increasing dimension number. The only time ordering
can be violated is during manual manipulation of the indices and
values to add entries.

Reordering does not affect the shape of the SparseTensor.

For example, if sp_input has shape [4, 5] and indices / values:

[0, 3]: b

[0, 1]: a

[3, 1]: d

[2, 0]: c

then the output will be a SparseTensor of shape [4,

5] and indices / values:

[0, 1]: a

[0, 3]: b

[2, 0]: c

[3, 1]: d

Args:

 sp_input: The input SparseTensor.

 name: A name prefix for the returned tensors (optional)

Returns:

A SparseTensor with the same shape and non-empty values, but in

canonical ordering.

Raises:

 TypeError: If sp_input is not a SparseTensor.

tf.sparse_split(split_dim, num_split, sp_input,

name=None)

Split a SparseTensor into num_split tensors along split_dim.

If the sp_input.shape[split_dim] is not an integer multiple

of num_split each slice starting from 0:shape[split_dim] %

num_split gets extra one dimension. For example, if split_dim =

1 andnum_split = 2 and the input is:

input_tensor = shape = [2, 7]

[a d e]

[b c]

Graphically the output tensors are:

output_tensor[0] =

[a]

[b c]

output_tensor[1] =

[d e]

[]

Args:

 split_dim: A 0-D int32 Tensor. The dimension along which to split.

 num_split: A Python integer. The number of ways to split.

 sp_input: The SparseTensor to split.

 name: A name for the operation (optional).

Returns:

num_split SparseTensor objects resulting from splitting value.

Raises:

 TypeError: If sp_input is not a SparseTensor.

tf.sparse_retain(sp_input, to_retain)

Retains specified non-empty values within a SparseTensor.

For example, if sp_input has shape [4, 5] and 4 non-empty string

values:
[0, 1]: a

[0, 3]: b

[2, 0]: c

[3, 1]: d

and to_retain = [True, False, False, True], then the output

will be a SparseTensor of shape[4, 5] with 2 non-empty values:

[0, 1]: a

[3, 1]: d

Args:

 sp_input: The input SparseTensor with N non-empty elements.

 to_retain: A bool vector of length N with M true values.

Returns:

A SparseTensor with the same shape as the input and M non-empty

elements corresponding to the true positions in to_retain.

Raises:

 TypeError: If sp_input is not a SparseTensor.

tf.sparse_fill_empty_rows(sp_input, default_value,

name=None)

Fills empty rows in the input 2-D SparseTensor with a default value.

This op adds entries with the specified default_value at

index [row, 0] for any row in the input that does not already have a

value.

For example, suppose sp_input has shape [5, 6] and non-empty

values:
[0, 1]: a

[0, 3]: b

[2, 0]: c

[3, 1]: d

Rows 1 and 4 are empty, so the output will be of shape [5, 6] with

values:
[0, 1]: a

[0, 3]: b

[1, 0]: default_value

[2, 0]: c

[3, 1]: d

[4, 0]: default_value

Note that the input may have empty columns at the end, with no
effect on this op.

The output SparseTensor will be in row-major order and will have the

same shape as the input.

This op also returns an indicator vector such that

empty_row_indicator[i] = True iff row i was an empty row.

Args:

 sp_input: A SparseTensor with shape [N, M].

 default_value: The value to fill for empty rows, with the same type

as sp_input.

 name: A name prefix for the returned tensors (optional)

Returns:

 sp_ordered_output: A SparseTensor with shape [N, M], and with

all empty rows filled in withdefault_value.

 empty_row_indicator: A bool vector of length N indicating whether

each input row was empty.

Raises:

 TypeError: If sp_input is not a SparseTensor.

Inputs and Readers

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Inputs and Readers
 Placeholders
 tf.placeholder(dtype, shape=None, name=None)

 Readers
 class tf.ReaderBase
 class tf.TextLineReader
 class tf.WholeFileReader
 class tf.IdentityReader
 class tf.TFRecordReader
 class tf.FixedLengthRecordReader

 Converting
 tf.decode_csv(records, record_defaults, field_delim=None,

name=None)
 tf.decode_raw(bytes, out_type, little_endian=None,

name=None)

 Example protocol buffer
 class tf.VarLenFeature
 class tf.FixedLenFeature
 class tf.FixedLenSequenceFeature
 tf.parse_example(serialized, features, name=None,

example_names=None)
 tf.parse_single_example(serialized, features, name=None,

example_names=None)
 tf.decode_json_example(json_examples, name=None)

 Queues
 class tf.QueueBase
 class tf.FIFOQueue
 class tf.RandomShuffleQueue

 Dealing with the filesystem
 tf.matching_files(pattern, name=None)
 tf.read_file(filename, name=None)

 Input pipeline
 Beginning of an input pipeline
 tf.train.match_filenames_once(pattern, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#inputs-and-readers
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#placeholders
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#placeholder
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#readers
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#ReaderBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#TextLineReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#IdentityReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#TFRecordReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FixedLengthRecordReader
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#converting
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_csv
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_csv
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_raw
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_raw
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#example-protocol-buffer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#VarLenFeature
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FixedLenFeature
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FixedLenSequenceFeature
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_single_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#parse_single_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#decode_json_example
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#queues
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FIFOQueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#RandomShuffleQueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#dealing-with-the-filesystem
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#matching_files
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#read_file
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#input-pipeline
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#beginning-of-an-input-pipeline
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#match_filenames_once

 tf.train.limit_epochs(tensor, num_epochs=None, name=None)
 tf.train.range_input_producer(limit, num_epochs=None,

shuffle=True, seed=None, capacity=32, name=None)
 tf.train.slice_input_producer(tensor_list,

num_epochs=None, shuffle=True, seed=None, capacity=32,

name=None)
 tf.train.string_input_producer(string_tensor,

num_epochs=None, shuffle=True, seed=None, capacity=32,

name=None)

 Batching at the end of an input pipeline
 tf.train.batch(tensor_list, batch_size, num_threads=1,

capacity=32, enqueue_many=False, shapes=None, name=None)
 tf.train.batch_join(tensor_list_list, batch_size,

capacity=32, enqueue_many=False, shapes=None, name=None)
 tf.train.shuffle_batch(tensor_list, batch_size, capacity,

min_after_dequeue, num_threads=1, seed=None,

enqueue_many=False, shapes=None, name=None)
 tf.train.shuffle_batch_join(tensor_list_list, batch_size,

capacity, min_after_dequeue, seed=None,

enqueue_many=False, shapes=None, name=None)

Placeholders

TensorFlow provides a placeholder operation that must be fed with
data on execution. For more info, see the section on Feeding data.

tf.placeholder(dtype, shape=None, name=None)

Inserts a placeholder for a tensor that will be always fed.

Important: This tensor will produce an error if evaluated. Its value

must be fed using the feed_dict optional argument

to Session.run(), Tensor.eval(), or Operation.run().

For example:

x = tf.placeholder(tf.float32, shape=(1024, 1024))

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#limit_epochs
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#range_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#range_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#slice_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#slice_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#slice_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#string_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#string_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#string_input_producer
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batching-at-the-end-of-an-input-pipeline
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html#feeding

y = tf.matmul(x, x)

with tf.Session() as sess:

 print(sess.run(y)) # ERROR: will fail because x was not fed.

 rand_array = np.random.rand(1024, 1024)

 print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.

Args:

 dtype: The type of elements in the tensor to be fed.

 shape: The shape of the tensor to be fed (optional). If the shape is

not specified, you can feed a tensor of any shape.

 name: A name for the operation (optional).

Returns:

A Tensor that may be used as a handle for feeding a value, but not

evaluated directly.

Readers

TensorFlow provides a set of Reader classes for reading data
formats. For more information on inputs and readers, see Reading
data.

class tf.ReaderBase

Base class for different Reader types, that produce a record every
step.

Conceptually, Readers convert string 'work units' into records (key,
value pairs). Typically the 'work units' are filenames and the records

https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html
https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html

are extracted from the contents of those files. We want a single
record produced per step, but a work unit can correspond to many
records.

Therefore we introduce some decoupling using a queue. The queue
contains the work units and the Reader dequeues from the queue
when it is asked to produce a record (via Read()) but it has finished
the last work unit.

tf.ReaderBase.__init__(reader_ref,

supports_serialize=False)

Creates a new ReaderBase.

Args:

 reader_ref: The operation that implements the reader.

 supports_serialize: True if the reader implementation can serialize

its state.

tf.ReaderBase.num_records_produced(name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.num_work_units_completed(name=None)

Returns the number of work units this reader has finished processing.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.read(queue, name=None)

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

 queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

 name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

 key: A string scalar Tensor.

 value: A string scalar Tensor.

tf.ReaderBase.reader_ref

Op that implements the reader.

tf.ReaderBase.reset(name=None)

Restore a reader to its initial clean state.

Args:

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.restore_state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

 state: A string Tensor. Result of a SerializeState of a Reader with

matching type.

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.serialize_state(name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

 name: A name for the operation (optional).

Returns:

A string Tensor.

tf.ReaderBase.supports_serialize

Whether the Reader implementation can serialize its state.

class tf.TextLineReader

A Reader that outputs the lines of a file delimited by newlines.

Newlines are stripped from the output. See ReaderBase for
supported methods.

tf.TextLineReader.__init__(skip_header_lines=None,

name=None)

Create a TextLineReader.

Args:

 skip_header_lines: An optional int. Defaults to 0. Number of lines

to skip from the beginning of every file.

 name: A name for the operation (optional).

tf.TextLineReader.num_records_produced(name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.num_work_units_completed(name=None)

Returns the number of work units this reader has finished processing.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.read(queue, name=None)

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

 queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

 name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

 key: A string scalar Tensor.

 value: A string scalar Tensor.

tf.TextLineReader.reader_ref

Op that implements the reader.

tf.TextLineReader.reset(name=None)

Restore a reader to its initial clean state.

Args:

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.restore_state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

 state: A string Tensor. Result of a SerializeState of a Reader with

matching type.

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.serialize_state(name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

 name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TextLineReader.supports_serialize

Whether the Reader implementation can serialize its state.

class tf.WholeFileReader

A Reader that outputs the entire contents of a file as a value.

To use, enqueue filenames in a Queue. The output of Read will be a
filename (key) and the contents of that file (value).

See ReaderBase for supported methods.

tf.WholeFileReader.__init__(name=None)

Create a WholeFileReader.

Args:

 name: A name for the operation (optional).

tf.WholeFileReader.num_records_produced(name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.num_work_units_completed(name=None)

Returns the number of work units this reader has finished processing.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.read(queue, name=None)

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

 queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

 name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

 key: A string scalar Tensor.

 value: A string scalar Tensor.

tf.WholeFileReader.reader_ref

Op that implements the reader.

tf.WholeFileReader.reset(name=None)

Restore a reader to its initial clean state.

Args:

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.restore_state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

 state: A string Tensor. Result of a SerializeState of a Reader with

matching type.

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.serialize_state(name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

 name: A name for the operation (optional).

Returns:

A string Tensor.

tf.WholeFileReader.supports_serialize

Whether the Reader implementation can serialize its state.

class tf.IdentityReader

A Reader that outputs the queued work as both the key and value.

To use, enqueue strings in a Queue. Read will take the front work
string and output (work, work).

See ReaderBase for supported methods.

tf.IdentityReader.__init__(name=None)

Create a IdentityReader.

Args:

 name: A name for the operation (optional).

tf.IdentityReader.num_records_produced(name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.num_work_units_completed(name=None)

Returns the number of work units this reader has finished processing.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.read(queue, name=None)

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

 queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

 name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

 key: A string scalar Tensor.

 value: A string scalar Tensor.

tf.IdentityReader.reader_ref

Op that implements the reader.

tf.IdentityReader.reset(name=None)

Restore a reader to its initial clean state.

Args:

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.restore_state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

 state: A string Tensor. Result of a SerializeState of a Reader with

matching type.

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.serialize_state(name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

 name: A name for the operation (optional).

Returns:

A string Tensor.

tf.IdentityReader.supports_serialize

Whether the Reader implementation can serialize its state.

class tf.TFRecordReader

A Reader that outputs the records from a TFRecords file.

See ReaderBase for supported methods.

tf.TFRecordReader.__init__(name=None)

Create a TFRecordReader.

Args:

 name: A name for the operation (optional).

tf.TFRecordReader.num_records_produced(name=None)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.num_work_units_completed(name=None)

Returns the number of work units this reader has finished processing.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.read(queue, name=None)

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

 queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

 name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

 key: A string scalar Tensor.

 value: A string scalar Tensor.

tf.TFRecordReader.reader_ref

Op that implements the reader.

tf.TFRecordReader.reset(name=None)

Restore a reader to its initial clean state.

Args:

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.restore_state(state, name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

 state: A string Tensor. Result of a SerializeState of a Reader with

matching type.

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.serialize_state(name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

 name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TFRecordReader.supports_serialize

Whether the Reader implementation can serialize its state.

class tf.FixedLengthRecordReader

A Reader that outputs fixed-length records from a file.

See ReaderBase for supported methods.

tf.FixedLengthRecordReader.__init__(record_bytes,

header_bytes=None, footer_bytes=None, name=None)

Create a FixedLengthRecordReader.

Args:

 record_bytes: An int.

 header_bytes: An optional int. Defaults to 0.

 footer_bytes: An optional int. Defaults to 0.

 name: A name for the operation (optional).

tf.FixedLengthRecordReader.num_records_produced(name=None

)

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.num_work_units_completed(name=

None)

Returns the number of work units this reader has finished processing.

Args:

 name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.read(queue, name=None)

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has finished
with the previous file).

Args:

 queue: A Queue or a mutable string Tensor representing a handle to

a Queue, with string work items.

 name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

 key: A string scalar Tensor.

 value: A string scalar Tensor.

tf.FixedLengthRecordReader.reader_ref

Op that implements the reader.

tf.FixedLengthRecordReader.reset(name=None)

Restore a reader to its initial clean state.

Args:

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.restore_state(state,

name=None)

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

 state: A string Tensor. Result of a SerializeState of a Reader with

matching type.

 name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.serialize_state(name=None)

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

 name: A name for the operation (optional).

Returns:

A string Tensor.

tf.FixedLengthRecordReader.supports_serialize

Whether the Reader implementation can serialize its state.

Converting

TensorFlow provides several operations that you can use to convert
various data formats into tensors.

tf.decode_csv(records, record_defaults, field_delim=None,

name=None)

Convert CSV records to tensors. Each column maps to one tensor.

RFC 4180 format is expected for the CSV records.
(https://tools.ietf.org/html/rfc4180) Note that we allow leading and
trailing spaces with int or float field.

Args:

 records: A Tensor of type string. Each string is a record/row in the

csv and all records should have the same format.

 record_defaults: A list of Tensor objects with types

from: float32, int32, int64, string. One tensor per column of the

input record, with either a scalar default value for that column or
empty if the column is required.

 field_delim: An optional string. Defaults to ",". delimiter to

separate fields in a record.

 name: A name for the operation (optional).

https://www.google.com/url?q=https://tools.ietf.org/html/rfc4180&usg=AFQjCNFnElM47j7H-JbuWRKAe49PFOkN8w

Returns:

A list of Tensor objects. Has the same type as record_defaults.

Each tensor will have the same shape as records.

tf.decode_raw(bytes, out_type, little_endian=None,

name=None)

Reinterpret the bytes of a string as a vector of numbers.

Args:

 bytes: A Tensor of type string. All the elements must have the

same length.

 out_type: A tf.DType from: tf.float32, tf.float64, tf.int32,

tf.uint8, tf.int16, tf.int8, tf.int64.

 little_endian: An optional bool. Defaults to True. Whether the

input bytes are in little-endian order. Ignored for out_type values

that are stored in a single byte like uint8.

 name: A name for the operation (optional).

Returns:

A Tensor of type out_type. A Tensor with one more dimension than

the input bytes. The added dimension will have size equal to the

length of the elements of bytes divided by the number of bytes to

representout_type.

Example protocol buffer

TensorFlow's recommended format for training examples is

serialized Example protocol buffers, described here. They

contain Features, described here.

class tf.VarLenFeature

Configuration for parsing a variable-length input feature.

Fields: dtype: Data type of input.

tf.VarLenFeature.dtype

Alias for field number 0

class tf.FixedLenFeature

Configuration for parsing a fixed-length input feature.

To treat sparse input as dense, provide a default_value; otherwise,

the parse functions will fail on any examples missing this feature.
Fields: shape: Shape of input data. dtype: Data type of input.
default_value: Value to be used if an example is missing this feature.

It must be compatible with dtype.

https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html#standard-tensorflow-format
https://www.tensorflow.org/code/tensorflow/core/example/example.proto
https://www.tensorflow.org/code/tensorflow/core/example/feature.proto

tf.FixedLenFeature.default_value

Alias for field number 2

tf.FixedLenFeature.dtype

Alias for field number 1

tf.FixedLenFeature.shape

Alias for field number 0

class tf.FixedLenSequenceFeature

Configuration for a dense input feature in a sequence item.

To treat a sparse input as dense, provide allow_missing=True;

otherwise, the parse functions will fail on any examples missing this
feature.

Fields: shape: Shape of input data. dtype: Data type of input.
allow_missing: Whether to allow this feature to be missing from a
feature list item.

tf.FixedLenSequenceFeature.allow_missing

Alias for field number 2

tf.FixedLenSequenceFeature.dtype

Alias for field number 1

tf.FixedLenSequenceFeature.shape

Alias for field number 0

tf.parse_example(serialized, features, name=None,

example_names=None)

Parses Example protos into a dict of tensors.

Parses a number of serialized Example protos given in serialized.

example_names may contain descriptive names for the corresponding

serialized protos. These may be useful for debugging purposes, but

they have no effect on the output. If not None, example_names must

be the same length as serialized.

This op parses serialized examples into a dictionary mapping keys

to Tensor and SparseTensor objects.features is a dict from keys

to VarLenFeature and FixedLenFeature objects.

Each VarLenFeature is mapped to a SparseTensor, and

each FixedLenFeature is mapped to a Tensor.

https://www.tensorflow.org/code/tensorflow/core/example/example.proto

Each VarLenFeature maps to a SparseTensor of the specified type

representing a ragged matrix. Its indices are [batch,

index] where batch is the batch entry the value is from

in serialized, and index is the value's index in the list of values

associated with that feature and example.

Each FixedLenFeature df maps to a Tensor of the specified type

(or tf.float32 if not specified) and shape (serialized.size(),) +

df.shape.

FixedLenFeature entries with a default_value are optional. With no

default value, we will fail if thatFeature is missing from any example

in serialized.

Examples:

For example, if one expects a tf.float32 sparse feature ft and

three serialized Examples are provided:

serialized = [

 features

 { feature { key: "ft" value { float_list { value: [1.0,

2.0] } } } },

 features

 { feature []},

 features

 { feature { key: "ft" value { float_list { value: [3.0] } } }

]

then the output will look like:

{"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],

 values=[1.0, 2.0, 3.0],

 shape=(3, 2)) }

Given two Example input protos in serialized:

[

 features {

 feature { key: "kw" value { bytes_list { value: ["knit",

"big"] } } }

 feature { key: "gps" value { float_list { value: [] } } }

 },

 features {

 feature { key: "kw" value { bytes_list { value:

["emmy"] } } }

 feature { key: "dank" value { int64_list { value: [42] } } }

 feature { key: "gps" value { } }

 }

]

And arguments

example_names: ["input0", "input1"],

features: {

 "kw": VarLenFeature(tf.string),

 "dank": VarLenFeature(tf.int64),

 "gps": VarLenFeature(tf.float),

}

Then the output is a dictionary:

{

 "kw": SparseTensor(

 indices=[[0, 0], [0, 1], [1, 0]],

 values=["knit", "big", "emmy"]

 shape=[2, 2]),

 "dank": SparseTensor(

 indices=[[1, 0]],

 values=[42],

 shape=[2, 1]),

 "gps": SparseTensor(

 indices=[],

 values=[],

 shape=[2, 0]),

}

For dense results in two serialized Examples:

[

 features {

 feature { key: "age" value { int64_list { value: [0] } } }

 feature { key: "gender" value { bytes_list { value:

["f"] } } }

 },

 features {

 feature { key: "age" value { int64_list { value: [] } } }

 feature { key: "gender" value { bytes_list { value:

["f"] } } }

 }

]

We can use arguments:

example_names: ["input0", "input1"],

features: {

 "age": FixedLenFeature([], dtype=tf.int64, default_value=-1),

 "gender": FixedLenFeature([], dtype=tf.string),

}

And the expected output is:

{

 "age": [[0], [-1]],

 "gender": [["f"], ["f"]],

}

Args:

 serialized: A vector (1-D Tensor) of strings, a batch of binary

serialized Example protos.

 features: A dict mapping feature keys

to FixedLenFeature or VarLenFeature values.

 name: A name for this operation (optional).

 example_names: A vector (1-D Tensor) of strings (optional), the

names of the serialized protos in the batch.

Returns:

A dict mapping feature keys to Tensor and SparseTensor values.

Raises:

 ValueError: if any feature is invalid.

tf.parse_single_example(serialized, features, name=None,

example_names=None)

Parses a single Example proto.

Similar to parse_example, except:

For dense tensors, the returned Tensor is identical to the output

of parse_example, except there is no batch dimension, the output

shape is the same as the shape given in dense_shape.

For SparseTensors, the first (batch) column of the indices matrix is

removed (the indices matrix is a column vector), the values vector is

unchanged, and the first (batch_size) entry of the shape vector is

removed (it is now a single element vector).

Args:

 serialized: A scalar string Tensor, a single serialized Example.

See _parse_single_example_rawdocumentation for more details.

 features: A dict mapping feature keys

to FixedLenFeature or VarLenFeature values.

 name: A name for this operation (optional).

 example_names: (Optional) A scalar string Tensor, the associated

name. See_parse_single_example_raw documentation for more

details.

Returns:

A dict mapping feature keys to Tensor and SparseTensor values.

Raises:

 ValueError: if any feature is invalid.

tf.decode_json_example(json_examples, name=None)

Convert JSON-encoded Example records to binary protocol buffer
strings.

This op translates a tensor containing Example records, encoded
using the standard JSON mapping, into a tensor containing the same
records encoded as binary protocol buffers. The resulting tensor can
then be fed to any of the other Example-parsing ops.

Args:

 json_examples: A Tensor of type string. Each string is a JSON

object serialized according to the JSON mapping of the Example
proto.

 name: A name for the operation (optional).

Returns:

https://developers.google.com/protocol-buffers/docs/proto3#json

A Tensor of type string. Each string is a binary Example protocol

buffer corresponding to the respective element of json_examples.

Queues

TensorFlow provides several implementations of 'Queues', which are
structures within the TensorFlow computation graph to stage
pipelines of tensors together. The following describe the basic Queue
interface and some implementations. To see an example use,
see Threading and Queues.

class tf.QueueBase

Base class for queue implementations.

A queue is a TensorFlow data structure that stores tensors across
multiple steps, and exposes operations that enqueue and dequeue
tensors.

Each queue element is a tuple of one or more tensors, where each
tuple component has a static dtype, and may have a static shape.
The queue implementations support versions of enqueue and
dequeue that handle single elements, versions that support
enqueuing and dequeuing a batch of elements at once.

See tf.FIFOQueue and tf.RandomShuffleQueue for concrete

implementations of this class, and instructions on how to create
them.

tf.QueueBase.enqueue(vals, name=None)

Enqueues one element to this queue.

https://www.tensorflow.org/versions/r0.7/how_tos/threading_and_queues/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#FIFOQueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#RandomShuffleQueue

If the queue is full when this operation executes, it will block until the
element has been enqueued.

Args:

 vals: The tuple of Tensor objects to be enqueued.

 name: A name for the operation (optional).

Returns:

The operation that enqueues a new tuple of tensors to the queue.

tf.QueueBase.enqueue_many(vals, name=None)

Enqueues zero or elements to this queue.

This operation slices each component tensor along the 0th dimension

to make multiple queue elements. All of the tensors in vals must

have the same size in the 0th dimension.

If the queue is full when this operation executes, it will block until all
of the elements have been enqueued.

Args:

 vals: The tensor or tuple of tensors from which the queue elements

are taken.

 name: A name for the operation (optional).

Returns:

The operation that enqueues a batch of tuples of tensors to the
queue.

tf.QueueBase.dequeue(name=None)

Dequeues one element from this queue.

If the queue is empty when this operation executes, it will block until
there is an element to dequeue.

Args:

 name: A name for the operation (optional).

Returns:

The tuple of tensors that was dequeued.

tf.QueueBase.dequeue_many(n, name=None)

Dequeues and concatenates n elements from this queue.

This operation concatenates queue-element component tensors
along the 0th dimension to make a single component tensor. All of

the components in the dequeued tuple will have size n in the 0th

dimension.

If the queue contains fewer than n elements when this operation

executes, it will block until n elements have been dequeued.

Args:

 n: A scalar Tensor containing the number of elements to dequeue.

 name: A name for the operation (optional).

Returns:

The tuple of concatenated tensors that was dequeued.

tf.QueueBase.size(name=None)

Compute the number of elements in this queue.

Args:

 name: A name for the operation (optional).

Returns:

A scalar tensor containing the number of elements in this queue.

tf.QueueBase.close(cancel_pending_enqueues=False,

name=None)

Closes this queue.

This operation signals that no more elements will be enqueued in the

given queue. Subsequent enqueue andenqueue_many operations will

fail. Subsequent dequeue and dequeue_many operations will continue

to succeed if sufficient elements remain in the queue.

Subsequent dequeue and dequeue_many operations that would block

will fail immediately.

If cancel_pending_enqueues is True, all pending requests will also

be cancelled.

Args:

 cancel_pending_enqueues: (Optional.) A boolean, defaulting

to False (described above).

 name: A name for the operation (optional).

Returns:

The operation that closes the queue.

Other Methods

tf.QueueBase.__init__(dtypes, shapes, queue_ref)

Constructs a queue object from a queue reference.

Args:

 dtypes: A list of types. The length of dtypes must equal the number

of tensors in each element.

 shapes: Constraints on the shapes of tensors in an element: A list of

shape tuples or None. This list is the same length as dtypes. If the
shape of any tensors in the element are constrained, all must be;
shapes can be None if the shapes should not be constrained.

 queue_ref: The queue reference, i.e. the output of the queue op.

tf.QueueBase.dtypes

The list of dtypes for each component of a queue element.

tf.QueueBase.from_list(index, queues)

Create a queue using the queue reference from queues[index].

Args:

 index: An integer scalar tensor that determines the input that gets

selected.

 queues: A list of QueueBase objects.

Returns:

A QueueBase object.

Raises:

 TypeError: When queues is not a list of QueueBase objects, or when

the data types of queues are not all the same.

tf.QueueBase.name

The name of the underlying queue.

tf.QueueBase.queue_ref

The underlying queue reference.

class tf.FIFOQueue

A queue implementation that dequeues elements in first-in-first out
order.

See tf.QueueBase for a description of the methods on this class.

tf.FIFOQueue.__init__(capacity, dtypes, shapes=None,

shared_name=None, name='fifo_queue')

Creates a queue that dequeues elements in a first-in first-out order.

A FIFOQueue has bounded capacity; supports multiple concurrent

producers and consumers; and provides exactly-once delivery.

A FIFOQueue holds a list of up to capacity elements. Each element

is a fixed-length tuple of tensors whose dtypes are described

by dtypes, and whose shapes are optionally described by

the shapes argument.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase

If the shapes argument is specified, each component of a queue

element must have the respective fixed shape. If it is unspecified,
different queue elements may have different shapes, but the use

of dequeue_many is disallowed.

Args:

 capacity: An integer. The upper bound on the number of elements

that may be stored in this queue.

 dtypes: A list of DType objects. The length of dtypes must equal the

number of tensors in each queue element.

 shapes: (Optional.) A list of fully-defined TensorShape objects, with

the same length as dtypes or None.

 shared_name: (Optional.) If non-empty, this queue will be shared

under the given name across multiple sessions.

 name: Optional name for the queue operation.

class tf.RandomShuffleQueue

A queue implementation that dequeues elements in a random order.

See tf.QueueBase for a description of the methods on this class.

tf.RandomShuffleQueue.__init__(capacity,

min_after_dequeue, dtypes, shapes=None, seed=None,

shared_name=None, name='random_shuffle_queue')

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase

Create a queue that dequeues elements in a random order.

A RandomShuffleQueue has bounded capacity; supports multiple

concurrent producers and consumers; and provides exactly-once
delivery.

A RandomShuffleQueue holds a list of up to capacity elements. Each

element is a fixed-length tuple of tensors whose dtypes are described

by dtypes, and whose shapes are optionally described by

the shapesargument.

If the shapes argument is specified, each component of a queue

element must have the respective fixed shape. If it is unspecified,
different queue elements may have different shapes, but the use

of dequeue_many is disallowed.

The min_after_dequeue argument allows the caller to specify a

minimum number of elements that will remain in the queue after

a dequeue or dequeue_many operation completes, to ensure a

minimum level of mixing of elements. This invariant is maintained by
blocking those operations until sufficient elements have been

enqueued. The min_after_dequeue argument is ignored after the

queue has been closed.

Args:

 capacity: An integer. The upper bound on the number of elements

that may be stored in this queue.

 min_after_dequeue: An integer (described above).

 dtypes: A list of DType objects. The length of dtypes must equal the

number of tensors in each queue element.

 shapes: (Optional.) A list of fully-defined TensorShape objects, with

the same length as dtypes or None.

 seed: A Python integer. Used to create a random seed.

See set_random_seed for behavior.

 shared_name: (Optional.) If non-empty, this queue will be shared

under the given name across multiple sessions.

 name: Optional name for the queue operation.

Dealing with the filesystem

tf.matching_files(pattern, name=None)

Returns the set of files matching a pattern.

Note that this routine only supports wildcard characters in the
basename portion of the pattern, not in the directory portion.

Args:

 pattern: A Tensor of type string. A (scalar) shell wildcard pattern.

 name: A name for the operation (optional).

Returns:

A Tensor of type string. A vector of matching filenames.

tf.read_file(filename, name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Reads and outputs the entire contents of the input filename.

Args:

 filename: A Tensor of type string.

 name: A name for the operation (optional).

Returns:

A Tensor of type string.

Input pipeline

TensorFlow functions for setting up an input-prefetching pipeline.
Please see the reading data how-to for context.

Beginning of an input pipeline

The "producer" functions add a queue to the graph and a

corresponding QueueRunner for running the subgraph that fills that

queue.

tf.train.match_filenames_once(pattern, name=None)

Save the list of files matching pattern, so it is only computed once.

Args:

 pattern: A file pattern (glob).

https://www.tensorflow.org/versions/r0.7/how_tos/reading_data/index.html

 name: A name for the operations (optional).

Returns:

A variable that is initialized to the list of files matching pattern.

tf.train.limit_epochs(tensor, num_epochs=None, name=None)

Returns tensor num_epochs times and then raises

an OutOfRange error.

Args:

 tensor: Any Tensor.

 num_epochs: A positive integer (optional). If specified, limits the

number of steps the output tensor may be evaluated.

 name: A name for the operations (optional).

Returns:

tensor or OutOfRange.

Raises:

 ValueError: if num_epochs is invalid.

tf.train.range_input_producer(limit, num_epochs=None,

shuffle=True, seed=None, capacity=32, name=None)

Produces the integers from 0 to limit-1 in a queue.

Args:

 limit: An int32 scalar tensor.

 num_epochs: An integer (optional). If

specified, range_input_producer produces each

integernum_epochs times before generating an OutOfRange error. If

not specified, range_input_producer can cycle through the integers

an unlimited number of times.

 shuffle: Boolean. If true, the integers are randomly shuffled within

each epoch.

 seed: An integer (optional). Seed used if shuffle == True.

 capacity: An integer. Sets the queue capacity.

 name: A name for the operations (optional).

Returns:

A Queue with the output integers. A QueueRunner for the Queue is

added to the current Graph'sQUEUE_RUNNER collection.

tf.train.slice_input_producer(tensor_list,

num_epochs=None, shuffle=True, seed=None, capacity=32,

name=None)

Produces a slice of each Tensor in tensor_list.

Implemented using a Queue -- a QueueRunner for the Queue is

added to the current Graph's QUEUE_RUNNERcollection.

Args:

 tensor_list: A list of Tensor objects.

Every Tensor in tensor_list must have the same size in the first

dimension.

 num_epochs: An integer (optional). If

specified, slice_input_producer produces each

slicenum_epochs times before generating an OutOfRange error. If not

specified, slice_input_producercan cycle through the slices an

unlimited number of times.

 shuffle: Boolean. If true, the integers are randomly shuffled within

each epoch.

 seed: An integer (optional). Seed used if shuffle == True.

 capacity: An integer. Sets the queue capacity.

 name: A name for the operations (optional).

Returns:

A list of tensors, one for each element of tensor_list. If the tensor

in tensor_list has shape [N, a, b, .., z], then the

corresponding output tensor will have shape [a, b, ..., z].

Raises:

 ValueError: if slice_input_producer produces nothing

from tensor_list.

tf.train.string_input_producer(string_tensor,

num_epochs=None, shuffle=True, seed=None, capacity=32,

name=None)

Output strings (e.g. filenames) to a queue for an input pipeline.

Args:

 string_tensor: A 1-D string tensor with the strings to produce.

 num_epochs: An integer (optional). If

specified, string_input_producer produces each string

fromstring_tensor num_epochs times before generating an

OutOfRange error. If not specified,string_input_producer can

cycle through the strings in string_tensor an unlimited number of

times.

 shuffle: Boolean. If true, the strings are randomly shuffled within

each epoch.

 seed: An integer (optional). Seed used if shuffle == True.

 capacity: An integer. Sets the queue capacity.

 name: A name for the operations (optional).

Returns:

A queue with the output strings. A QueueRunner for the Queue is

added to the current Graph's QUEUE_RUNNERcollection.

Raises:

 ValueError: If the string_tensor is a null Python list. At runtime, will

fail with an assertion if string_tensor becomes a null tensor.

Batching at the end of an input pipeline

These functions add a queue to the graph to assemble a batch of

examples, with possible shuffling. They also add a QueueRunner for

running the subgraph that fills that queue.

Use batch or batch_join for batching examples that have already

been well shuffled. Use shuffle_batchor shuffle_batch_join for

examples that would benefit from additional shuffling.

Use batch or shuffle_batch if you want a single thread producing

examples to batch, or if you have a single subgraph producing
examples but you want to run it in N threads (where you
increase N until it can keep the queue full).

Use batch_join or shuffle_batch_join if you have N different

subgraphs producing examples to batch and you want them run
by N threads.

tf.train.batch(tensor_list, batch_size, num_threads=1,

capacity=32, enqueue_many=False, shapes=None, name=None)

Creates batches of tensors in tensor_list.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#batch_join
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#shuffle_batch_join

This function is implemented using a queue. A QueueRunner for the

queue is added to the current Graph'sQUEUE_RUNNER collection.

If enqueue_many is False, tensor_list is assumed to represent a

single example. An input tensor with shape [x, y, z] will be output

as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensor_list is assumed to represent a

batch of examples, where the first dimension is indexed by example,

and all members of tensor_list should have the same size in the

first dimension. If an input tensor has shape [*, x, y, z], the

output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

N.B.: You must ensure that either (i) the shapes argument is passed,

or (ii) all of the tensors in tensor_listmust have fully-defined

shapes. ValueError will be raised if neither of these conditions

holds.

Args:

 tensor_list: The list of tensors to enqueue.

 batch_size: The new batch size pulled from the queue.

 num_threads: The number of threads enqueuing tensor_list.

 capacity: An integer. The maximum number of elements in the

queue.

 enqueue_many: Whether each tensor in tensor_list is a single

example.

 shapes: (Optional) The shapes for each example. Defaults to the

inferred shapes for tensor_list.

 name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as tensor_list.

Raises:

 ValueError: If the shapes are not specified, and cannot be inferred

from the elements of tensor_list.

tf.train.batch_join(tensor_list_list, batch_size,

capacity=32, enqueue_many=False, shapes=None, name=None)

Runs a list of tensors to fill a queue to create batches of examples.

Enqueues a different list of tensors in different threads. Implemented

using a queue -- a QueueRunner for the queue is added to the

current Graph's QUEUE_RUNNER collection.

len(tensor_list_list) threads will be started, with

thread i enqueuing the tensors

fromtensor_list_list[i]. tensor_list_list[i1][j] must

match tensor_list_list[i2][j] in type and shape, except in the

first dimension if enqueue_many is true.

If enqueue_many is False, each tensor_list_list[i] is assumed to

represent a single example. An input tensor x will be output as a

tensor with shape [batch_size] + x.shape.

If enqueue_many is True, tensor_list_list[i] is assumed to

represent a batch of examples, where the first dimension is indexed

by example, and all members of tensor_list_list[i] should have

the same size in the first dimension. The slices of any input

tensor x are treated as examples, and the output tensors will have

shape [batch_size] + x.shape[1:].

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

N.B.: You must ensure that either (i) the shapes argument is passed,

or (ii) all of the tensors intensor_list_list must have fully-defined

shapes. ValueError will be raised if neither of these conditions

holds.

Args:

 tensor_list_list: A list of tuples of tensors to enqueue.

 batch_size: An integer. The new batch size pulled from the queue.

 capacity: An integer. The maximum number of elements in the

queue.

 enqueue_many: Whether each tensor in tensor_list_list is a

single example.

 shapes: (Optional) The shapes for each example. Defaults to the

inferred shapes fortensor_list_list[i].

 name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types

as tensor_list_list[i].

Raises:

 ValueError: If the shapes are not specified, and cannot be inferred

from the elements oftensor_list_list.

tf.train.shuffle_batch(tensor_list, batch_size, capacity,

min_after_dequeue, num_threads=1, seed=None,

enqueue_many=False, shapes=None, name=None)

Creates batches by randomly shuffling tensors.

This function adds the following to the current Graph:

 A shuffling queue into which tensors from tensor_list are

enqueued.

 A dequeue_many operation to create batches from the queue.

 A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors

from tensor_list.

If enqueue_many is False, tensor_list is assumed to represent a

single example. An input tensor with shape [x, y, z] will be output

as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensor_list is assumed to represent a

batch of examples, where the first dimension is indexed by example,

and all members of tensor_list should have the same size in the

first dimension. If an input tensor has shape [*, x, y, z], the

output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

For example:

Creates batches of 32 images and 32 labels.

image_batch, label_batch = tf.train.shuffle_batch(

 [single_image, single_label],

 batch_size=32,

 num_threads=4,

 capacity=50000,

 min_after_dequeue=10000)

N.B.: You must ensure that either (i) the shapes argument is passed,

or (ii) all of the tensors in tensor_listmust have fully-defined

shapes. ValueError will be raised if neither of these conditions

holds.

Args:

 tensor_list: The list of tensors to enqueue.

 batch_size: The new batch size pulled from the queue.

 capacity: An integer. The maximum number of elements in the

queue.

 min_after_dequeue: Minimum number elements in the queue after a

dequeue, used to ensure a level of mixing of elements.

 num_threads: The number of threads enqueuing tensor_list.

 seed: Seed for the random shuffling within the queue.

 enqueue_many: Whether each tensor in tensor_list is a single

example.

 shapes: (Optional) The shapes for each example. Defaults to the

inferred shapes for tensor_list.

 name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as tensor_list.

Raises:

 ValueError: If the shapes are not specified, and cannot be inferred

from the elements of tensor_list.

tf.train.shuffle_batch_join(tensor_list_list, batch_size,

capacity, min_after_dequeue, seed=None,

enqueue_many=False, shapes=None, name=None)

Create batches by randomly shuffling tensors.

This version enqueues a different list of tensors in different threads. It

adds the following to the current Graph:

 A shuffling queue into which tensors from tensor_list_list are

enqueued.

 A dequeue_many operation to create batches from the queue.

 A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors

from tensor_list_list.

len(tensor_list_list) threads will be started, with

thread i enqueuing the tensors

fromtensor_list_list[i]. tensor_list_list[i1][j] must

match tensor_list_list[i2][j] in type and shape, except in the

first dimension if enqueue_many is true.

If enqueue_many is False, each tensor_list_list[i] is assumed to

represent a single example. An input tensor with shape [x, y,

z] will be output as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensor_list_list[i] is assumed to

represent a batch of examples, where the first dimension is indexed

by example, and all members of tensor_list_list[i] should have

the same size in the first dimension. If an input tensor has shape [*,

x, y, z], the output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is

allowed to grow the queues.
The returned operation is a dequeue operation and will

throw tf.errors.OutOfRangeError if the input queue is exhausted.

If this operation is feeding another input queue, its queue runner will
catch this exception, however, if this operation is used in your main
thread you are responsible for catching this yourself.

Args:

 tensor_list_list: A list of tuples of tensors to enqueue.

 batch_size: An integer. The new batch size pulled from the queue.

 capacity: An integer. The maximum number of elements in the

queue.

 min_after_dequeue: Minimum number elements in the queue after a

dequeue, used to ensure a level of mixing of elements.

 seed: Seed for the random shuffling within the queue.

 enqueue_many: Whether each tensor in tensor_list_list is a

single example.

 shapes: (Optional) The shapes for each example. Defaults to the

inferred shapes fortensor_list_list[i].

 name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types

as tensor_list_list[i].

Raises:

 ValueError: If the shapes are not specified, and cannot be inferred

from the elements oftensor_list_list.

Data IO (Python functions)

Contents

 Data IO (Python functions)
 Data IO (Python Functions)
 class tf.python_io.TFRecordWriter
 tf.python_io.tf_record_iterator(path)

 TFRecords Format Details

Data IO (Python Functions)

A TFRecords file represents a sequence of (binary) strings. The
format is not random access, so it is suitable for streaming large
amounts of data but not suitable if fast sharding or other non-
sequential access is desired.

class tf.python_io.TFRecordWriter

A class to write records to a TFRecords file.

This class implements __enter__ and __exit__, and can be used

in with blocks like a normal file.

tf.python_io.TFRecordWriter.__init__(path)

https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#data-io-python-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#data-io-python-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#TFRecordWriter
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#tf_record_iterator
https://www.tensorflow.org/versions/r0.7/api_docs/python/python_io.html#tfrecords-format-details

Opens file path and creates a TFRecordWriter writing to it.

Args:

 path: The path to the TFRecords file.

Raises:

 IOError: If path cannot be opened for writing.

tf.python_io.TFRecordWriter.write(record)

Write a string record to the file.

Args:

 record: str

tf.python_io.TFRecordWriter.close()

Close the file.

tf.python_io.tf_record_iterator(path)

An iterator that read the records from a TFRecords file.

Args:

 path: The path to the TFRecords file.

Yields:

Strings.

Raises:

 IOError: If path cannot be opened for reading.

TFRecords Format Details

A TFRecords file contains a sequence of strings with CRC hashes.
Each record has the format

uint64 length

uint32 masked_crc32_of_length

byte data[length]

uint32 masked_crc32_of_data

and the records are concatenated together to produce the file. The
CRC32s are described here, and the mask of a CRC is
masked_crc = ((crc >> 15) | (crc << 17)) + 0xa282ead8ul

Neural Network

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Neural Network
 Activation Functions

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#neural-network
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#activation-functions

 tf.nn.relu(features, name=None)
 tf.nn.relu6(features, name=None)
 tf.nn.elu(features, name=None)
 tf.nn.softplus(features, name=None)
 tf.nn.softsign(features, name=None)
 tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,

name=None)
 tf.nn.bias_add(value, bias, name=None)
 tf.sigmoid(x, name=None)
 tf.tanh(x, name=None)

 Convolution
 tf.nn.conv2d(input, filter, strides, padding,

use_cudnn_on_gpu=None, name=None)
 tf.nn.depthwise_conv2d(input, filter, strides, padding,

name=None)
 tf.nn.separable_conv2d(input, depthwise_filter,

pointwise_filter, strides, padding, name=None)
 tf.nn.conv2d_transpose(value, filter, output_shape,

strides, padding=SAME, name=None)

 Pooling
 tf.nn.avg_pool(value, ksize, strides, padding, name=None)
 tf.nn.max_pool(value, ksize, strides, padding, name=None)
 tf.nn.max_pool_with_argmax(input, ksize, strides,

padding, Targmax=None, name=None)

 Normalization
 tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)
 tf.nn.local_response_normalization(input,

depth_radius=None, bias=None, alpha=None, beta=None,

name=None)
 tf.nn.moments(x, axes, name=None, keep_dims=False)

 Losses
 tf.nn.l2_loss(t, name=None)

 Classification
 tf.nn.sigmoid_cross_entropy_with_logits(logits, targets,

name=None)
 tf.nn.softmax(logits, name=None)
 tf.nn.softmax_cross_entropy_with_logits(logits, labels,

name=None)
 tf.nn.sparse_softmax_cross_entropy_with_logits(logits,

labels, name=None)

 Embeddings
 tf.nn.embedding_lookup(params, ids,

partition_strategy=mod, name=None, validate_indices=True)

 Evaluation

https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#relu
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#relu6
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#elu
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softplus
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softsign
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#dropout
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#dropout
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#bias_add
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sigmoid
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#tanh
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#convolution
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#depthwise_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#depthwise_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#separable_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#separable_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d_transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#conv2d_transpose
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#pooling
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#avg_pool
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool_with_argmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool_with_argmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#l2_normalize
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#local_response_normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#local_response_normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#local_response_normalization
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#moments
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#losses
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#l2_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#classification
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sigmoid_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sigmoid_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softmax
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sparse_softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sparse_softmax_cross_entropy_with_logits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#embeddings
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#embedding_lookup
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#embedding_lookup
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#evaluation

 tf.nn.top_k(input, k=1, sorted=True, name=None)
 tf.nn.in_top_k(predictions, targets, k, name=None)

 Candidate Sampling
 Sampled Loss Functions
 tf.nn.nce_loss(weights, biases, inputs, labels,

num_sampled, num_classes, num_true=1,

sampled_values=None, remove_accidental_hits=False,

partition_strategy=mod, name=nce_loss)
 tf.nn.sampled_softmax_loss(weights, biases, inputs,

labels, num_sampled, num_classes, num_true=1,

sampled_values=None, remove_accidental_hits=True,

partition_strategy=mod, name=sampled_softmax_loss)

 Candidate Samplers
 tf.nn.uniform_candidate_sampler(true_classes, num_true,

num_sampled, unique, range_max, seed=None, name=None)
 tf.nn.log_uniform_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, seed=None,

name=None)
 tf.nn.learned_unigram_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, seed=None,

name=None)
 tf.nn.fixed_unigram_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, vocab_file=,

distortion=1.0, num_reserved_ids=0, num_shards=1,

shard=0, unigrams=(), seed=None, name=None)

 Miscellaneous candidate sampling utilities
 tf.nn.compute_accidental_hits(true_classes,

sampled_candidates, num_true, seed=None, name=None)

Activation Functions

The activation ops provide different types of nonlinearities for use in
neural networks. These include smooth nonlinearities

(sigmoid, tanh, elu, softplus, and softsign), continuous but not

everywhere differentiable functions (relu, relu6, and relu_x), and

random regularization (dropout).

All activation ops apply componentwise, and produce a tensor of the
same shape as the input tensor.

https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#top_k
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#in_top_k
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#candidate-sampling
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled-loss-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#nce_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#sampled_softmax_loss
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#candidate-samplers
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#log_uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#log_uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#log_uniform_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#learned_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#learned_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#learned_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#fixed_unigram_candidate_sampler
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#miscellaneous-candidate-sampling-utilities
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#compute_accidental_hits
https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#compute_accidental_hits

tf.nn.relu(features, name=None)

Computes rectified linear: max(features, 0).

Args:

 features: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8,int16, int8, uint16.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.relu6(features, name=None)

Computes Rectified Linear 6: min(max(features, 0), 6).

Args:

 features: A Tensor with

type float, double, int32, int64, uint8, int16, or int8.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type as features.

tf.nn.elu(features, name=None)

Computes exponential linear: exp(features) - 1 if <

0, features otherwise.

See Fast and Accurate Deep Network Learning by Exponential
Linear Units (ELUs)

Args:

 features: A Tensor. Must be one of the following

types: float32, float64.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.softplus(features, name=None)

Computes softplus: log(exp(features) + 1).

Args:

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

 features: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8,int16, int8, uint16.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.softsign(features, name=None)

Computes softsign: features / (abs(features) + 1).

Args:

 features: A Tensor. Must be one of the following

types: float32, float64, int32, int64, uint8,int16, int8, uint16.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,

name=None)

Computes dropout.

With probability keep_prob, outputs the input element scaled up by 1

/ keep_prob, otherwise outputs 0. The scaling is so that the

expected sum is unchanged.
By default, each element is kept or dropped independently.

If noise_shape is specified, it must be broadcastableto the shape

of x, and only dimensions with noise_shape[i] == shape(x)[i] will

make independent decisions. For example, if shape(x) = [k, l, m,

n] and noise_shape = [k, 1, 1, n], each batch and channel

component will be kept independently and each row and column will
be kept or not kept together.

Args:

 x: A tensor.

 keep_prob: A scalar Tensor with the same type as x. The probability

that each element is kept.

 noise_shape: A 1-D Tensor of type int32, representing the shape

for randomly generated keep/drop flags.

 seed: A Python integer. Used to create random seeds.

See set_random_seed for behavior.

 name: A name for this operation (optional).

Returns:

A Tensor of the same shape of x.

Raises:

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

 ValueError: If keep_prob is not in (0, 1].

tf.nn.bias_add(value, bias, name=None)

Adds bias to value.

This is (mostly) a special case of tf.add where bias is restricted to

1-D. Broadcasting is supported, so valuemay have any number of

dimensions. Unlike tf.add, the type of bias is allowed to differ

from value in the case where both types are quantized.

Args:

 value: A Tensor with

type float, double, int64, int32, uint8, int16, int8, or complex64.

 bias: A 1-D Tensor with size matching the last dimension of value.

Must be the same type as valueunless value is a quantized type, in

which case a different quantized type may be used.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type as value.

tf.sigmoid(x, name=None)

Computes sigmoid of x element-wise.

Specifically, y = 1 / (1 + exp(-x)).

Args:

 x: A Tensor with type float, double, int32, complex64, int64,

or qint32.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32 otherwise

the return type is quint8.

tf.tanh(x, name=None)

Computes hyperbolic tangent of x element-wise.

Args:

 x: A Tensor with type float, double, int32, complex64, int64,

or qint32.

 name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32 otherwise

the return type is quint8.

Convolution

The convolution ops sweep a 2-D filter over a batch of images,
applying the filter to each window of each image of the appropriate
size. The different ops trade off between generic vs. specific filters:

 conv2d: Arbitrary filters that can mix channels together.

 depthwise_conv2d: Filters that operate on each channel

independently.

 separable_conv2d: A depthwise spatial filter followed by a pointwise

filter.
Note that although these ops are called "convolution", they are strictly
speaking "cross-correlation" since the filter is combined with an input
window without reversing the filter. For details, see the properties of
cross-correlation.
The filter is applied to image patches of the same size as the filter

and strided according to the stridesargument. strides = [1, 1,

1, 1] applies the filter to a patch at every offset, strides = [1, 2,

2, 1] applies the filter to every other image patch in each dimension,

etc.
Ignoring channels for the moment, and assume that the 4-

D input has shape [batch, in_height, in_width, ...] and the

4-D filter has shape [filter_height, filter_width, ...],

then the spatial semantics of the convolution ops are as follows: first,

according to the padding scheme chosen as 'SAME'or 'VALID', the

output size and the padding pixels are computed. For

the 'SAME' padding, the output height and width are computed as:

out_height = ceil(float(in_height) / float(strides[1]))

https://en.wikipedia.org/wiki/Cross-correlation#Properties
https://en.wikipedia.org/wiki/Cross-correlation#Properties

out_width = ceil(float(in_width) / float(strides[2]))

and the padding on the top and left are computed as:

pad_along_height = ((out_height - 1) * strides[1] +

 filter_height - in_height)

pad_along_width = ((out_width - 1) * strides[2] +

 filter_width - in_width)

pad_top = pad_along_height / 2

pad_left = pad_along_width / 2

Note that the division by 2 means that there might be cases when the
padding on both sides (top vs bottom, right vs left) are off by one. In
this case, the bottom and right sides always get the one additional

padded pixel. For example, when pad_along_height is 5, we pad 2

pixels at the top and 3 pixels at the bottom. Note that this is different
from existing libraries such as cuDNN and Caffe, which explicitly
specify the number of padded pixels and always pad the same
number of pixels on both sides.

For the 'VALID' padding, the output height and width are computed

as:
out_height = ceil(float(in_height - filter_height + 1) /

float(strides[1]))

out_width = ceil(float(in_width - filter_width + 1) /

float(strides[2]))

and the padding values are always zero. The output is then
computed as

output[b, i, j, :] =

 sum_{di, dj} input[b, strides[1] * i + di - pad_top,

 strides[2] * j + dj - pad_left, ...] *

 filter[di, dj, ...]

where any value outside the original input image region are
considered zero (i.e. we pad zero values around the border of the
image).

Since input is 4-D, each input[b, i, j, :] is a vector.

For conv2d, these vectors are multiplied by thefilter[di,

dj, :, :] matrices to produce new vectors.

For depthwise_conv_2d, each scalar component input[b, i, j,

k] is multiplied by a vector filter[di, dj, k], and all the vectors

are concatenated.

tf.nn.conv2d(input, filter, strides, padding,

use_cudnn_on_gpu=None, name=None)

Computes a 2-D convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width,

in_channels] and a filter / kernel tensor of shape [filter_height,

filter_width, in_channels, out_channels], this op performs the

following:

1. Flattens the filter to a 2-D matrix with shape [filter_height *

filter_width * in_channels, output_channels].

2. Extracts image patches from the input tensor to form a virtual tensor

of shape [batch, out_height, out_width, filter_height *

filter_width * in_channels].

3. For each patch, right-multiplies the filter matrix and the image patch
vector.

In detail,

output[b, i, j, k] =

 sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j +

dj, q] *

 filter[di, dj, q, k]

Must have strides[0] = strides[3] = 1. For the most common

case of the same horizontal and vertices strides, strides = [1,

stride, stride, 1].

Args:

 input: A Tensor. Must be one of the following

types: float32, float64.

 filter: A Tensor. Must have the same type as input.

 strides: A list of ints. 1-D of length 4. The stride of the sliding

window for each dimension of input.

 padding: A string from: "SAME", "VALID". The type of padding

algorithm to use.

 use_cudnn_on_gpu: An optional bool. Defaults to True.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.nn.depthwise_conv2d(input, filter, strides, padding,

name=None)

Depthwise 2-D convolution.

Given an input tensor of shape [batch, in_height, in_width,

in_channels] and a filter tensor of shape [filter_height,

filter_width, in_channels,

channel_multiplier] containingin_channels convolutional filters of

depth 1, depthwise_conv2d applies a different filter to each input

channel (expanding from 1 channel

to channel_multiplier channels for each), then concatenates the

results together. The output has in_channels *

channel_multiplier channels.

In detail,

output[b, i, j, k * channel_multiplier + q] =

 sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j +

dj, k] *

 filter[di, dj, k, q]

Must have strides[0] = strides[3] = 1. For the most common

case of the same horizontal and vertical strides, strides = [1,

stride, stride, 1].

Args:

 input: 4-D with shape [batch, in_height, in_width,

in_channels].

 filter: 4-D with shape [filter_height, filter_width,

in_channels, channel_multiplier].

 strides: 1-D of size 4. The stride of the sliding window for each

dimension of input.

 padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

 name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape [batch, out_height, out_width,

in_channels * channel_multiplier].

tf.nn.separable_conv2d(input, depthwise_filter,

pointwise_filter, strides, padding, name=None)

2-D convolution with separable filters.

Performs a depthwise convolution that acts separately on channels
followed by a pointwise convolution that mixes channels. Note that

this is separability between dimensions [1, 2] and 3, not spatial

separability between dimensions 1 and 2.

In detail,

output[b, i, j, k] = sum_{di, dj, q, r]

 input[b, strides[1] * i + di, strides[2] * j + dj, q] *

 depthwise_filter[di, dj, q, r] *

 pointwise_filter[0, 0, q * channel_multiplier + r, k]

strides controls the strides for the depthwise convolution only, since

the pointwise convolution has implicit strides of [1, 1, 1, 1]. Must

have strides[0] = strides[3] = 1. For the most common case of

the same horizontal and vertical strides, strides = [1, stride,

stride, 1].

Args:

 input: 4-D Tensor with shape [batch, in_height, in_width,

in_channels].

 depthwise_filter: 4-D Tensor with shape [filter_height,

filter_width, in_channels, channel_multiplier].

Contains in_channels convolutional filters of depth 1.

 pointwise_filter: 4-D Tensor with shape [1, 1,

channel_multiplier * in_channels, out_channels]. Pointwise

filter to mix channels after depthwise_filter has convolved

spatially.

 strides: 1-D of size 4. The strides for the depthwise convolution for

each dimension of input.

 padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

 name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape [batch, out_height, out_width,

out_channels].

tf.nn.conv2d_transpose(value, filter, output_shape,

strides, padding='SAME', name=None)

The transpose of conv2d.

This operation is sometimes called "deconvolution" after
(Deconvolutional
Networks)[http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pd

f], but is actually the transpose (gradient) of conv2drather than an

actual deconvolution.

https://www.google.com/url?q=http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf&usg=AFQjCNH4Y1ctRO8f4jWX98F6O4eikTJdzw
https://www.google.com/url?q=http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf&usg=AFQjCNH4Y1ctRO8f4jWX98F6O4eikTJdzw

Args:

 value: A 4-D Tensor of type float and shape [batch, height,

width, in_channels].

 filter: A 4-D Tensor with the same type as value and

shape [height, width, output_channels,

in_channels]. filter's in_channels dimension must match that

of value.

 output_shape: A 1-D Tensor representing the output shape of the

deconvolution op.

 strides: A list of ints. The stride of the sliding window for each

dimension of the input tensor.

 padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

 name: Optional name for the returned tensor.

Returns:

A Tensor with the same type as value.

Raises:

 ValueError: If input/output depth does not match filter's shape, or

if padding is other than 'VALID' or'SAME'.

Pooling

The pooling ops sweep a rectangular window over the input tensor,
computing a reduction operation for each window (average, max, or

max with argmax). Each pooling op uses rectangular windows of

size ksize separated by offset strides. For example, if strides is

all ones every window is used, if strides is all twos every other

window is used in each dimension, etc.

In detail, the output is

output[i] = reduce(value[strides * i:strides * i + ksize])

where the indices also take into consideration the padding values.

Please refer to the Convolution section for details about the padding

calculation.

tf.nn.avg_pool(value, ksize, strides, padding, name=None)

Performs the average pooling on the input.

Each entry in output is the mean of the corresponding

size ksize window in value.

Args:

 value: A 4-D Tensor of shape [batch, height, width,

channels] and type float32, float64,qint8, quint8, or qint32.

 ksize: A list of ints that has length >= 4. The size of the window for

each dimension of the input tensor.

 strides: A list of ints that has length >= 4. The stride of the sliding

window for each dimension of the input tensor.

 padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

 name: Optional name for the operation.

Returns:

A Tensor with the same type as value. The average pooled output

tensor.

tf.nn.max_pool(value, ksize, strides, padding, name=None)

Performs the max pooling on the input.

Args:

 value: A 4-D Tensor with shape [batch, height, width,

channels] and type tf.float32.

 ksize: A list of ints that has length >= 4. The size of the window for

each dimension of the input tensor.

 strides: A list of ints that has length >= 4. The stride of the sliding

window for each dimension of the input tensor.

 padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

 name: Optional name for the operation.

Returns:

A Tensor with type tf.float32. The max pooled output tensor.

tf.nn.max_pool_with_argmax(input, ksize, strides,

padding, Targmax=None, name=None)

Performs max pooling on the input and outputs both max values and
indices.

The indices in argmax are flattened, so that a maximum value at

position [b, y, x, c] becomes flattened index ((b * height + y)

* width + x) * channels + c.

Args:

 input: A Tensor of type float32. 4-D with shape [batch, height,

width, channels]. Input to pool over.

 ksize: A list of ints that has length >= 4. The size of the window for

each dimension of the input tensor.

 strides: A list of ints that has length >= 4. The stride of the sliding

window for each dimension of the input tensor.

 padding: A string from: "SAME", "VALID". The type of padding

algorithm to use.

 Targmax: An optional tf.DType from: tf.int32, tf.int64. Defaults

to tf.int64.

 name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, argmax).

 output: A Tensor of type float32. The max pooled output tensor.

 argmax: A Tensor of type Targmax. 4-D. The flattened indices of the

max values chosen for each output.

Normalization

Normalization is useful to prevent neurons from saturating when
inputs may have varying scale, and to aid generalization.

tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)

Normalizes along dimension dim using an L2 norm.

For a 1-D tensor with dim = 0, computes

output = x / sqrt(max(sum(x**2), epsilon))

For x with more dimensions, independently normalizes each 1-D slice

along dimension dim.

Args:

 x: A Tensor.

 dim: Dimension along which to normalize.

 epsilon: A lower bound value for the norm. Will

use sqrt(epsilon) as the divisor if norm < sqrt(epsilon).

 name: A name for this operation (optional).

Returns:

A Tensor with the same shape as x.

tf.nn.local_response_normalization(input,

depth_radius=None, bias=None, alpha=None, beta=None,

name=None)

Local Response Normalization.

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along

the last dimension), and each vector is normalized independently.
Within a given vector, each component is divided by the weighted,

squared sum of inputs within depth_radius. In detail,

sqr_sum[a, b, c, d] =

 sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] **

2)

output = input / (bias + alpha * sqr_sum ** beta)

For details, see Krizhevsky et al., ImageNet classification with deep
convolutional neural networks (NIPS 2012).

Args:

 input: A Tensor of type float32. 4-D.

 depth_radius: An optional int. Defaults to 5. 0-D. Half-width of the

1-D normalization window.

 bias: An optional float. Defaults to 1. An offset (usually positive to

avoid dividing by 0).

 alpha: An optional float. Defaults to 1. A scale factor, usually

positive.

 beta: An optional float. Defaults to 0.5. An exponent.

 name: A name for the operation (optional).

Returns:

A Tensor of type float32.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

tf.nn.moments(x, axes, name=None, keep_dims=False)

Calculate the mean and variance of x.

The mean and variance are calculated by aggregating the contents

of x across axes. If x is 1-D and axes = [0] this is just the mean and

variance of a vector.
For so-called "global normalization" needed for convolutional filters

pass axes=[0, 1, 2] (batch, height, width). For batch normalization

pass axes=[0] (batch).

Args:

 x: A Tensor.

 axes: array of ints. Axes along which to compute mean and variance.

 keep_dims: produce moments with the same dimensionality as the

input.

 name: Name used to scope the operations that compute the

moments.

Returns:

Two Tensor objects: mean and variance.

Losses

The loss ops measure error between two tensors, or between a
tensor and zero. These can be used for measuring accuracy of a
network in a regression task or for regularization purposes (weight
decay).

tf.nn.l2_loss(t, name=None)

L2 Loss.

Computes half the L2 norm of a tensor without the sqrt:

output = sum(t ** 2) / 2

Args:

 t: A Tensor. Must be one of the following

types: float32, float64, int64, int32, uint8, uint16,int16, int8,

complex64, qint8, quint8, qint32. Typically 2-D, but may have any

dimensions.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as t. 0-D.

Classification

TensorFlow provides several operations that help you perform
classification.

tf.nn.sigmoid_cross_entropy_with_logits(logits, targets,

name=None)

Computes sigmoid cross entropy given logits.

Measures the probability error in discrete classification tasks in which
each class is independent and not mutually exclusive. For instance,
one could perform multilabel classification where a picture can
contain both an elephant and a dog at the same time.

For brevity, let x = logits, z = targets. The logistic loss is

 z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))

= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 +

exp(-x)))

= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-

x)))

= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))

= (1 - z) * x + log(1 + exp(-x))

= x - x * z + log(1 + exp(-x))

To ensure stability and avoid overflow, the implementation uses

max(x, 0) - x * z + log(1 + exp(-abs(x)))

logits and targets must have the same type and shape.

Args:

 logits: A Tensor of type float32 or float64.

 targets: A Tensor of the same type and shape as logits.

 name: A name for the operation (optional).

Returns:

A Tensor of the same shape as logits with the componentwise

logistic losses.

tf.nn.softmax(logits, name=None)

Computes softmax activations.

For each batch i and class j we have

softmax[i, j] = exp(logits[i, j]) / sum(exp(logits[i]))

Args:

 logits: A Tensor. Must be one of the following

types: float32, float64. 2-D with shape[batch_size,

num_classes].

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as logits. Same shape as logits.

tf.nn.softmax_cross_entropy_with_logits(logits, labels,

name=None)

Computes softmax cross entropy between logits and labels.

Measures the probability error in discrete classification tasks in which
the classes are mutually exclusive (each entry is in exactly one
class). For example, each CIFAR-10 image is labeled with one and
only one label: an image can be a dog or a truck, but not both.

NOTE:: While the classes are mutually exclusive, their probabilities

need not be. All that is required is that each row of labels is a valid

probability distribution. If using exclusive labels (wherein one and

only one class is true at a time),

see sparse_softmax_cross_entropy_with_logits.

WARNING: This op expects unscaled logits, since it performs

a softmax on logits internally for efficiency. Do not call this op with

the output of softmax, as it will produce incorrect results.

logits and labels must have the same shape [batch_size,

num_classes] and the same dtype (eitherfloat32 or float64).

Args:

 logits: Unscaled log probabilities.

 labels: Each row labels[i] must be a valid probability distribution.

 name: A name for the operation (optional).

Returns:

A 1-D Tensor of length batch_size of the same type as logits with

the softmax cross entropy loss.

tf.nn.sparse_softmax_cross_entropy_with_logits(logits,

labels, name=None)

Computes sparse softmax cross entropy

between logits and labels.

Measures the probability error in discrete classification tasks in which
the classes are mutually exclusive (each entry is in exactly one
class). For example, each CIFAR-10 image is labeled with one and
only one label: an image can be a dog or a truck, but not both.

NOTE:: For this operation, the probability of a given label is
considered exclusive. That is, soft classes are not allowed, and

the labels vector must provide a single specific index for the true

class for each row of logits(each minibatch entry). For soft softmax

classification with a probability distribution for each entry,

seesoftmax_cross_entropy_with_logits.

WARNING: This op expects unscaled logits, since it performs

a softmax on logits internally for efficiency. Do not call this op with

the output of softmax, as it will produce incorrect results.

logits and must have the shape [batch_size, num_classes] and

the dtype (either float32 orfloat64).

labels must have the shape [batch_size] and the dtype int64.

Args:

 logits: Unscaled log probabilities.

 labels: Each entry labels[i] must be an index in [0,

num_classes).

 name: A name for the operation (optional).

Returns:

A 1-D Tensor of length batch_size of the same type as logits with

the softmax cross entropy loss.

Embeddings

TensorFlow provides library support for looking up values in
embedding tensors.

tf.nn.embedding_lookup(params, ids,

partition_strategy='mod', name=None,

validate_indices=True)

Looks up ids in a list of embedding tensors.

This function is used to perform parallel lookups on the list of tensors

in params. It is a generalization oftf.gather(), where params is

interpreted as a partition of a larger embedding tensor.

If len(params) > 1, each element id of ids is partitioned between

the elements of params according to thepartition_strategy. In all

strategies, if the id space does not evenly divide the number of

partitions, each of the first (max_id + 1) % len(params) partitions

will be assigned one more id.

If partition_strategy is "mod", we assign each id to partition p =

id % len(params). For instance, 13 ids are split across 5 partitions

as: [[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]

If partition_strategy is "div", we assign ids to partitions in a

contiguous manner. In this case, 13 ids are split across 5 partitions

as: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

The results of the lookup are concatenated into a dense tensor. The

returned tensor has shape shape(ids) + shape(params)[1:].

Args:

https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#gather

 params: A list of tensors with the same type and which can be

concatenated along dimension 0. EachTensor must be appropriately

sized for the given partition_strategy.

 ids: A Tensor with type int32 or int64 containing the ids to be

looked up in params.

 partition_strategy: A string specifying the partitioning strategy,

relevant if len(params) > 1. Currently "div" and "mod" are

supported. Default is "mod".

 name: A name for the operation (optional).

 validate_indices: Whether or not to validate gather indices.

Returns:

A Tensor with the same type as the tensors in params.

Raises:

 ValueError: If params is empty.

Evaluation

The evaluation ops are useful for measuring the performance of a
network. Since they are nondifferentiable, they are typically used at
evaluation time.

tf.nn.top_k(input, k=1, sorted=True, name=None)

Finds values and indices of the k largest entries for the last

dimension.

If the input is a vector (rank-1), finds the k largest entries in the vector

and outputs their values and indices as vectors. Thus values[j] is

the j-th largest entry in input, and its index is indices[j].

For matrices (resp. higher rank input), computes the top k entries in

each row (resp. vector along the last dimension). Thus,
values.shape = indices.shape = input.shape[:-1] + [k]

If two elements are equal, the lower-index element appears first.

Args:

 input: 1-D or higher Tensor with last dimension at least k.

 k: 0-D int32 Tensor. Number of top elements to look for along the

last dimension (along each row for matrices).

 sorted: If true the resulting k elements will be sorted by the values in

descending order.

 name: Optional name for the operation.

Returns:

 values: The k largest elements along each last dimensional slice.

 indices: The indices of values within the last dimension of input.

tf.nn.in_top_k(predictions, targets, k, name=None)

Says whether the targets are in the top K predictions.

This outputs a batch_size bool array, an entry out[i] is true if the

prediction for the target class is among the top k predictions among

all predictions for example i. Note that the behavior of InTopK differs

from the TopKop in its handling of ties; if multiple classes have the

same prediction value and straddle the top-k boundary, all of those

classes are considered to be in the top k.

More formally, let

predictionsipredictionsi be the predictions for all classes for

example i, targetsitargetsi be the target class for example i, outiouti be

the output for example i,

outi=predictionsi,targetsi∈

TopKIncludingTies(predictionsi)outi=predictionsi,targetsi∈TopKInclud

ingTies(predictionsi)

Args:

 predictions: A Tensor of type float32.

A batch_size x classes tensor.

 targets: A Tensor. Must be one of the following types: int32, int64.

A batch_size vector of class ids.

 k: An int. Number of top elements to look at for computing precision.

 name: A name for the operation (optional).

Returns:

A Tensor of type bool. Computed Precision at k as a bool Tensor.

Candidate Sampling

Do you want to train a multiclass or multilabel model with thousands
or millions of output classes (for example, a language model with a
large vocabulary)? Training with a full Softmax is slow in this case,
since all of the classes are evaluated for every training example.
Candidate Sampling training algorithms can speed up your step
times by only considering a small randomly-chosen subset of
contrastive classes (called candidates) for each batch of training
examples.

See our Candidate Sampling Algorithms Reference

Sampled Loss Functions

TensorFlow provides the following sampled loss functions for faster
training.

tf.nn.nce_loss(weights, biases, inputs, labels,

num_sampled, num_classes, num_true=1,

sampled_values=None, remove_accidental_hits=False,

partition_strategy='mod', name='nce_loss')

Computes and returns the noise-contrastive estimation training loss.

See Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. Also see ourCandidate Sampling
Algorithms Reference

Note: In the case where num_true > 1, we assign to each target class

the target probability 1 / num_true so that the target probabilities sum

to 1 per-example.

https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf
http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf
https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf

Note: It would be useful to allow a variable number of target classes
per example. We hope to provide this functionality in a future release.
For now, if you have a variable number of target classes, you can
pad them out to a constant number by either repeating them or by
padding with an otherwise unused class.

Args:

 weights: A Tensor of shape [num_classes, dim], or a list

of Tensor objects whose concatenation along dimension 0 has shape

[num_classes, dim]. The (possibly-partitioned) class embeddings.

 biases: A Tensor of shape [num_classes]. The class biases.

 inputs: A Tensor of shape [batch_size, dim]. The forward

activations of the input network.

 labels: A Tensor of type int64 and shape [batch_size,

num_true]. The target classes.

 num_sampled: An int. The number of classes to randomly sample

per batch.

 num_classes: An int. The number of possible classes.

 num_true: An int. The number of target classes per training

example.

 sampled_values: a tuple of

(sampled_candidates, true_expected_count,sampled_expected_c

ount) returned by a *_candidate_sampler function. (if None, we

default tolog_uniform_candidate_sampler)

 remove_accidental_hits: A bool. Whether to remove "accidental

hits" where a sampled class equals one of the target classes. If set

to True, this is a "Sampled Logistic" loss instead of NCE, and we are

learning to generate log-odds instead of log probabilities. See
our Candidate Sampling Algorithms Reference. Default is False.

 partition_strategy: A string specifying the partitioning strategy,

relevant if len(weights) > 1. Currently "div" and "mod" are

supported. Default is "mod". See tf.nn.embedding_lookup for more

details.

 name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example NCE losses.

tf.nn.sampled_softmax_loss(weights, biases, inputs,

labels, num_sampled, num_classes, num_true=1,

sampled_values=None, remove_accidental_hits=True,

partition_strategy='mod', name='sampled_softmax_loss')

Computes and returns the sampled softmax training loss.

This is a faster way to train a softmax classifier over a huge number
of classes.

This operation is for training only. It is generally an underestimate of
the full softmax loss.

At inference time, you can compute full softmax probabilities with the

expressiontf.nn.softmax(tf.matmul(inputs, weights) +

biases).

See our Candidate Sampling Algorithms Reference
Also see Section 3 of Jean et al., 2014 (pdf) for the math.

Args:

https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
https://www.tensorflow.org/versions/r0.7/extras/candidate_sampling.pdf
http://arxiv.org/abs/1412.2007
http://arxiv.org/pdf/1412.2007.pdf

 weights: A Tensor of shape [num_classes, dim], or a list

of Tensor objects whose concatenation along dimension 0 has shape

[num_classes, dim]. The (possibly-sharded) class embeddings.

 biases: A Tensor of shape [num_classes]. The class biases.

 inputs: A Tensor of shape [batch_size, dim]. The forward

activations of the input network.

 labels: A Tensor of type int64 and shape [batch_size,

num_true]. The target classes. Note that this format differs from

the labels argument of nn.softmax_cross_entropy_with_logits.

 num_sampled: An int. The number of classes to randomly sample

per batch.

 num_classes: An int. The number of possible classes.

 num_true: An int. The number of target classes per training

example.

 sampled_values: a tuple of

(sampled_candidates, true_expected_count,sampled_expected_c

ount) returned by a *_candidate_sampler function. (if None, we

default tolog_uniform_candidate_sampler)

 remove_accidental_hits: A bool. whether to remove "accidental

hits" where a sampled class equals one of the target classes. Default
is True.

 partition_strategy: A string specifying the partitioning strategy,

relevant if len(weights) > 1. Currently "div" and "mod" are

supported. Default is "mod". See tf.nn.embedding_lookup for more

details.

 name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example sampled softmax losses.

Candidate Samplers

TensorFlow provides the following samplers for randomly sampling
candidate classes when using one of the sampled loss functions
above.

tf.nn.uniform_candidate_sampler(true_classes, num_true,

num_sampled, unique, range_max, seed=None, name=None)

Samples a set of classes using a uniform base distribution.

This operation randomly samples a tensor of sampled classes

(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without

replacement (if unique=True) or with replacement (if unique=False)

from the base distribution.
The base distribution for this operation is the uniform distribution over

the range of integers [0, range_max].

In addition, this operation returns

tensors true_expected_count and sampled_expected_countrepres

enting the number of times each of the target classes

(true_classes) and the sampled classes (sampled_candidates) is

expected to occur in an average tensor of sampled classes. These

values correspond to Q(y|x) defined in this document.

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

http://www.tensorflow.org/extras/candidate_sampling.pdf

Args:

 true_classes: A Tensor of type int64 and shape [batch_size,

num_true]. The target classes.

 num_true: An int. The number of target classes per training

example.

 num_sampled: An int. The number of classes to randomly sample

per batch.

 unique: A bool. Determines whether all sampled classes in a batch

are unique.

 range_max: An int. The number of possible classes.

 seed: An int. An operation-specific seed. Default is 0.

 name: A name for the operation (optional).

Returns:

 sampled_candidates: A tensor of type int64 and

shape [num_sampled]. The sampled classes.

 true_expected_count: A tensor of type float. Same shape

as true_classes. The expected counts under the sampling

distribution of each of true_classes.

 sampled_expected_count: A tensor of type float. Same shape

as sampled_candidates. The expected counts under the sampling

distribution of each of sampled_candidates.

tf.nn.log_uniform_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, seed=None,

name=None)

Samples a set of classes using a log-uniform (Zipfian) base
distribution.

This operation randomly samples a tensor of sampled classes

(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without

replacement (if unique=True) or with replacement (if unique=False)

from the base distribution.

The base distribution for this operation is an approximately log-
uniform or Zipfian distribution:

P(class) = (log(class + 2) - log(class + 1)) /

log(range_max + 1)

This sampler is useful when the target classes approximately follow
such a distribution - for example, if the classes represent words in a
lexicon sorted in decreasing order of frequency. If your classes are
not ordered by decreasing frequency, do not use this op.

In addition, this operation returns

tensors true_expected_count and sampled_expected_countrepres

enting the number of times each of the target classes

(true_classes) and the sampled classes (sampled_candidates) is

expected to occur in an average tensor of sampled classes. These

values correspond to Q(y|x) defined in this document.

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

Args:

http://www.tensorflow.org/extras/candidate_sampling.pdf

 true_classes: A Tensor of type int64 and shape [batch_size,

num_true]. The target classes.

 num_true: An int. The number of target classes per training

example.

 num_sampled: An int. The number of classes to randomly sample

per batch.

 unique: A bool. Determines whether all sampled classes in a batch

are unique.

 range_max: An int. The number of possible classes.

 seed: An int. An operation-specific seed. Default is 0.

 name: A name for the operation (optional).

Returns:

 sampled_candidates: A tensor of type int64 and

shape [num_sampled]. The sampled classes.

 true_expected_count: A tensor of type float. Same shape

as true_classes. The expected counts under the sampling

distribution of each of true_classes.

 sampled_expected_count: A tensor of type float. Same shape

as sampled_candidates. The expected counts under the sampling

distribution of each of sampled_candidates.

tf.nn.learned_unigram_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, seed=None,

name=None)

Samples a set of classes from a distribution learned during training.

This operation randomly samples a tensor of sampled classes

(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without

replacement (if unique=True) or with replacement (if unique=False)

from the base distribution.
The base distribution for this operation is constructed on the fly
during training. It is a unigram distribution over the target classes

seen so far during training. Every integer in [0, range_max] begins

with a weight of 1, and is incremented by 1 each time it is seen as a
target class. The base distribution is not saved to checkpoints, so it is
reset when the model is reloaded.
In addition, this operation returns

tensors true_expected_count and sampled_expected_countrepres

enting the number of times each of the target classes

(true_classes) and the sampled classes (sampled_candidates) is

expected to occur in an average tensor of sampled classes. These

values correspond to Q(y|x) defined in this document.

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

Args:

 true_classes: A Tensor of type int64 and shape [batch_size,

num_true]. The target classes.

 num_true: An int. The number of target classes per training

example.

http://www.tensorflow.org/extras/candidate_sampling.pdf

 num_sampled: An int. The number of classes to randomly sample

per batch.

 unique: A bool. Determines whether all sampled classes in a batch

are unique.

 range_max: An int. The number of possible classes.

 seed: An int. An operation-specific seed. Default is 0.

 name: A name for the operation (optional).

Returns:

 sampled_candidates: A tensor of type int64 and

shape [num_sampled]. The sampled classes.

 true_expected_count: A tensor of type float. Same shape

as true_classes. The expected counts under the sampling

distribution of each of true_classes.

 sampled_expected_count: A tensor of type float. Same shape

as sampled_candidates. The expected counts under the sampling

distribution of each of sampled_candidates.

tf.nn.fixed_unigram_candidate_sampler(true_classes,

num_true, num_sampled, unique, range_max, vocab_file='',

distortion=1.0, num_reserved_ids=0, num_shards=1,

shard=0, unigrams=(), seed=None, name=None)

Samples a set of classes using the provided (fixed) base distribution.

This operation randomly samples a tensor of sampled classes

(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without

replacement (if unique=True) or with replacement (if unique=False)

from the base distribution.

The base distribution is read from a file or passed in as an in-memory
array. There is also an option to skew the distribution by applying a
distortion power to the weights.

In addition, this operation returns

tensors true_expected_count and sampled_expected_countrepres

enting the number of times each of the target classes

(true_classes) and the sampled classes (sampled_candidates) is

expected to occur in an average tensor of sampled classes. These

values correspond to Q(y|x) defined in this document.

If unique=True, then these are post-rejection probabilities and we

compute them approximately.

Args:

 true_classes: A Tensor of type int64 and shape [batch_size,

num_true]. The target classes.

 num_true: An int. The number of target classes per training

example.

 num_sampled: An int. The number of classes to randomly sample

per batch.

 unique: A bool. Determines whether all sampled classes in a batch

are unique.

 range_max: An int. The number of possible classes.

http://www.tensorflow.org/extras/candidate_sampling.pdf

 vocab_file: Each valid line in this file (which should have a CSV-like

format) corresponds to a valid word ID. IDs are in sequential order,
starting from num_reserved_ids. The last entry in each line is
expected to be a value corresponding to the count or relative

probability. Exactly one of vocab_file and unigrams needs to be

passed to this operation.

 distortion: The distortion is used to skew the unigram probability

distribution. Each weight is first raised to the distortion's power before

adding to the internal unigram distribution. As a result, distortion =

1.0gives regular unigram sampling (as defined by the vocab file),

and distortion = 0.0 gives a uniform distribution.

 num_reserved_ids: Optionally some reserved IDs can be added in

the range [0, num_reserved_ids]by the users. One use case is

that a special unknown word token is used as ID 0. These IDs will
have a sampling probability of 0.

 num_shards: A sampler can be used to sample from a subset of the

original range in order to speed up the whole computation through

parallelism. This parameter (together with shard) indicates the

number of partitions that are being used in the overall computation.

 shard: A sampler can be used to sample from a subset of the original

range in order to speed up the whole computation through

parallelism. This parameter (together with num_shards) indicates the

particular partition number of the operation, when partitioning is being
used.

 unigrams: A list of unigram counts or probabilities, one per ID in

sequential order. Exactly one ofvocab_file and unigrams should be

passed to this operation.

 seed: An int. An operation-specific seed. Default is 0.

 name: A name for the operation (optional).

Returns:

 sampled_candidates: A tensor of type int64 and

shape [num_sampled]. The sampled classes.

 true_expected_count: A tensor of type float. Same shape

as true_classes. The expected counts under the sampling

distribution of each of true_classes.

 sampled_expected_count: A tensor of type float. Same shape

as sampled_candidates. The expected counts under the sampling

distribution of each of sampled_candidates.

Miscellaneous candidate sampling utilities

tf.nn.compute_accidental_hits(true_classes,

sampled_candidates, num_true, seed=None, name=None)

Compute the position ids

in sampled_candidates matching true_classes.

In Candidate Sampling, this operation facilitates virtually removing
sampled classes which happen to match target classes. This is done
in Sampled Softmax and Sampled Logistic.

See our Candidate Sampling Algorithms Reference.

We presuppose that the sampled_candidates are unique.

We call it an 'accidental hit' when one of the target classes matches
one of the sampled classes. This operation reports accidental hits as

triples (index, id, weight), where index represents the row

http://www.tensorflow.org/extras/candidate_sampling.pdf

number intrue_classes, id represents the position

in sampled_candidates, and weight is -FLOAT_MAX.

The result of this op should be passed through

a sparse_to_dense operation, then added to the logits of the

sampled classes. This removes the contradictory effect of
accidentally sampling the true target classes as noise classes for the
same example.

Args:

 true_classes: A Tensor of type int64 and shape [batch_size,

num_true]. The target classes.

 sampled_candidates: A tensor of type int64 and

shape [num_sampled]. The sampled_candidates output of

CandidateSampler.

 num_true: An int. The number of target classes per training

example.

 seed: An int. An operation-specific seed. Default is 0.

 name: A name for the operation (optional).

Returns:

 indices: A Tensor of type int32 and

shape [num_accidental_hits]. Values indicate rows

intrue_classes.

 ids: A Tensor of type int64 and shape [num_accidental_hits].

Values indicate positions insampled_candidates.

 weights: A Tensor of type float and

shape [num_accidental_hits]. Each value is -FLOAT_MAX.

Running Graphs

Contents

 Running Graphs
 Session management
 class tf.Session
 class tf.InteractiveSession
 tf.get_default_session()

 Error classes
 class tf.OpError
 class tf.errors.CancelledError
 class tf.errors.UnknownError
 class tf.errors.InvalidArgumentError
 class tf.errors.DeadlineExceededError
 class tf.errors.NotFoundError
 class tf.errors.AlreadyExistsError
 class tf.errors.PermissionDeniedError
 class tf.errors.UnauthenticatedError
 class tf.errors.ResourceExhaustedError
 class tf.errors.FailedPreconditionError
 class tf.errors.AbortedError
 class tf.errors.OutOfRangeError
 class tf.errors.UnimplementedError
 class tf.errors.InternalError
 class tf.errors.UnavailableError
 class tf.errors.DataLossError

This library contains classes for launching graphs and executing
operations.

The basic usage guide has examples of how a graph is launched in

a tf.Session.

Session management

https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#running-graphs
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#session-management
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#InteractiveSession
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#get_default_session
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#error-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#OpError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#CancelledError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnknownError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#InvalidArgumentError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#DeadlineExceededError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#NotFoundError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#AlreadyExistsError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#PermissionDeniedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnauthenticatedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#ResourceExhaustedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#FailedPreconditionError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#AbortedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#OutOfRangeError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnimplementedError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#InternalError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#UnavailableError
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#DataLossError
https://www.tensorflow.org/versions/r0.7/get_started/index.html#basic-usage
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session

class tf.Session

A class for running TensorFlow operations.

A Session object encapsulates the environment in

which Operation objects are executed, and Tensor objects are

evaluated. For example:
Build a graph.

a = tf.constant(5.0)

b = tf.constant(6.0)

c = a * b

Launch the graph in a session.

sess = tf.Session()

Evaluate the tensor `c`.

print(sess.run(c))

A session may own resources, such as variables, queues, and readers.
It is important to release these resources when they are no longer

required. To do this, either invoke the close() method on the

session, or use the session as a context manager. The following two
examples are equivalent:
Using the `close()` method.

sess = tf.Session()

sess.run(...)

sess.close()

Using the context manager.

with tf.Session() as sess:

 sess.run(...)

The ConfigProto protocol buffer exposes various configuration

options for a session. For example, to create a session that uses soft
constraints for device placement, and log the resulting placement
decisions, create a session as follows:
Launch the graph in a session that allows soft device placement

and

logs the placement decisions.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#ReaderBase
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.close
https://www.tensorflow.org/code/tensorflow/core/framework/config.proto

sess =

tf.Session(config=tf.ConfigProto(allow_soft_placement=True,

 log_device_placement=True))

tf.Session.__init__(target='', graph=None, config=None)

Creates a new TensorFlow session.

If no graph argument is specified when constructing the session, the

default graph will be launched in the session. If you are using more

than one graph (created with tf.Graph() in the same process, you

will have to use different sessions for each graph, but each graph can
be used in multiple sessions. In this case, it is often clearer to pass
the graph to be launched explicitly to the session constructor.

Args:

 target: (Optional.) The execution engine to connect to. Defaults to

using an in-process engine. At present, no value other than the
empty string is supported.

 graph: (Optional.) The Graph to be launched (described above).

 config: (Optional.) A ConfigProto protocol buffer with configuration

options for the session.

tf.Session.run(fetches, feed_dict=None)

Runs the operations and evaluates the tensors in fetches.

This method runs one "step" of TensorFlow computation, by running

the necessary graph fragment to execute every Operation and

https://www.tensorflow.org/code/tensorflow/core/framework/config.proto

evaluate every Tensor in fetches, substituting the values

in feed_dict for the corresponding input values.

The fetches argument may be a list of graph elements or a single

graph element, and these determine the return value of this method.
A graph element can be one of the following types:

 If the *i*th element of fetches is an Operation, the *i*th return value

will be None.

 If the *i*th element of fetches is a Tensor, the *i*th return value will

be a numpy ndarray containing the value of that tensor.

 If the *i*th element of fetches is a SparseTensor, the *i*th return

value will be a SparseTensorValuecontaining the value of that

sparse tensor.

The optional feed_dict argument allows the caller to override the

value of tensors in the graph. Each key infeed_dict can be one of

the following types:

 If the key is a Tensor, the value may be a Python scalar, string, list,

or numpy ndarray that can be converted to the same dtype as that

tensor. Additionally, if the key is a placeholder, the shape of the value
will be checked for compatibility with the placeholder.

 If the key is a SparseTensor, the value should be

a SparseTensorValue.

Args:

 fetches: A single graph element, or a list of graph elements

(described above).

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensorValue
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#placeholder
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/sparse_ops.html#SparseTensorValue

 feed_dict: A dictionary that maps graph elements to values

(described above).

Returns:

Either a single value if fetches is a single graph element, or a list of

values if fetches is a list (described above).

Raises:

 RuntimeError: If this Session is in an invalid state (e.g. has been

closed).

 TypeError: If fetches or feed_dict keys are of an inappropriate

type.

 ValueError: If fetches or feed_dict keys are invalid or refer to

a Tensor that doesn't exist.

tf.Session.close()

Closes this session.

Calling this method frees all resources associated with the session.

Raises:

 RuntimeError: If an error occurs while closing the session.

tf.Session.graph

The graph that was launched in this session.

tf.Session.as_default()

Returns a context manager that makes this object the default
session.

Use with the with keyword to specify that calls

to Operation.run() or Tensor.run() should be executed in this

session.
c = tf.constant(..)

sess = tf.Session()

with sess.as_default():

 assert tf.get_default_session() is sess

 print(c.eval())

To get the current default session, use tf.get_default_session().

N.B. The as_default context manager does not close the session

when you exit the context, and you must close the session explicitly.
c = tf.constant(...)

sess = tf.Session()

with sess.as_default():

 print(c.eval())

...

with sess.as_default():

 print(c.eval())

sess.close()

Alternatively, you can use with tf.Session(): to create a session

that is automatically closed on exiting the context, including when an
uncaught exception is raised.
N.B. The default graph is a property of the current thread. If you
create a new thread, and wish to use the default session in that

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation.run
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.run
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#get_default_session

thread, you must explicitly add a with sess.as_default(): in that

thread's function.

Returns:

A context manager using this session as the default session.

class tf.InteractiveSession

A TensorFlow Session for use in interactive contexts, such as a

shell.

The only difference with a regular Session is that

an InteractiveSession installs itself as the default session on

construction. The

methods Tensor.eval() and Operation.run() will use that session

to run ops.
This is convenient in interactive shells and IPython notebooks, as it

avoids having to pass an explicit Sessionobject to run ops.

For example:

sess = tf.InteractiveSession()

a = tf.constant(5.0)

b = tf.constant(6.0)

c = a * b

We can just use 'c.eval()' without passing 'sess'

print(c.eval())

sess.close()

Note that a regular session installs itself as the default session when

it is created in a with statement. The common usage in non-

interactive programs is to follow that pattern:
a = tf.constant(5.0)

b = tf.constant(6.0)

c = a * b

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.eval
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation.run
http://ipython.org/

with tf.Session():

 # We can also use 'c.eval()' here.

 print(c.eval())

tf.InteractiveSession.__init__(target='', graph=None,

config=None)

Creates a new interactive TensorFlow session.

If no graph argument is specified when constructing the session, the

default graph will be launched in the session. If you are using more

than one graph (created with tf.Graph() in the same process, you

will have to use different sessions for each graph, but each graph can
be used in multiple sessions. In this case, it is often clearer to pass
the graph to be launched explicitly to the session constructor.

Args:

 target: (Optional.) The execution engine to connect to. Defaults to

using an in-process engine. At present, no value other than the
empty string is supported.

 graph: (Optional.) The Graph to be launched (described above).

 config: (Optional) ConfigProto proto used to configure the session.

tf.InteractiveSession.close()

Closes an InteractiveSession.

tf.get_default_session()

Returns the default session for the current thread.

The returned Session will be the innermost session on which

a Session or Session.as_default() context has been entered.

NOTE: The default session is a property of the current thread. If you
create a new thread, and wish to use the default session in that

thread, you must explicitly add a with sess.as_default(): in that

thread's function.

Returns:

The default Session being used in the current thread.

Error classes

class tf.OpError

A generic error that is raised when TensorFlow execution fails.

Whenever possible, the session will raise a more specific subclass

of OpError from the tf.errors module.

tf.OpError.op

The operation that failed, if known.

N.B. If the failed op was synthesized at runtime, e.g.

a Send or Recv op, there will be no correspondingOperation object.

In that case, this will return None, and you should instead use

the OpError.node_def to discover information about the op.

Returns:

The Operation that failed, or None.

tf.OpError.node_def

The NodeDef proto representing the op that failed.

Other Methods

tf.OpError.__init__(node_def, op, message, error_code)

Creates a new OpError indicating that a particular op failed.

Args:

 node_def: The graph_pb2.NodeDef proto representing the op that

failed.

 op: The ops.Operation that failed, if known; otherwise None.

 message: The message string describing the failure.

 error_code: The error_codes_pb2.Code describing the error.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Operation
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#OpError.node_def

tf.OpError.error_code

The integer error code that describes the error.

tf.OpError.message

The error message that describes the error.

class tf.errors.CancelledError

Raised when an operation or step is cancelled.

For example, a long-running operation (e.g. queue.enqueue() may

be cancelled by running another operation

(e.g. queue.close(cancel_pending_enqueues=True), or by closing

the session. A step that is running such a long-running operation will

fail by raising CancelledError.

tf.errors.CancelledError.__init__(node_def, op, message)

Creates a CancelledError.

class tf.errors.UnknownError

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.enqueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.close
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.close
https://www.tensorflow.org/versions/r0.7/api_docs/python/client.html#Session.close

Unknown error.

An example of where this error may be returned is if a Status value
received from another address space belongs to an error-space that
is not known to this address space. Also errors raised by APIs that do
not return enough error information may be converted to this error.

tf.errors.UnknownError.__init__(node_def, op, message,

error_code=2)

Creates an UnknownError.

class tf.errors.InvalidArgumentError

Raised when an operation receives an invalid argument.

This may occur, for example, if an operation is receives an input
tensor that has an invalid value or shape. For example,

the tf.matmul() op will raise this error if it receives an input that is

not a matrix, and thetf.reshape() op will raise this error if the new

shape does not match the number of elements in the input tensor.

tf.errors.InvalidArgumentError.__init__(node_def, op,

message)

Creates an InvalidArgumentError.

https://www.tensorflow.org/versions/r0.7/api_docs/python/math_ops.html#matmul
https://www.tensorflow.org/versions/r0.7/api_docs/python/array_ops.html#reshape

class tf.errors.DeadlineExceededError

Raised when a deadline expires before an operation could complete.

This exception is not currently used.

tf.errors.DeadlineExceededError.__init__(node_def, op,

message)

Creates a DeadlineExceededError.

class tf.errors.NotFoundError

Raised when a requested entity (e.g., a file or directory) was not
found.

For example, running the tf.WholeFileReader.read() operation

could raise NotFoundError if it receives the name of a file that does

not exist.

tf.errors.NotFoundError.__init__(node_def, op, message)

Creates a NotFoundError.

class tf.errors.AlreadyExistsError

Raised when an entity that we attempted to create already exists.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader

For example, running an operation that saves a file

(e.g. tf.train.Saver.save()) could potentially raise this exception

if an explicit filename for an existing file was passed.

tf.errors.AlreadyExistsError.__init__(node_def, op,

message)

Creates an AlreadyExistsError.

class tf.errors.PermissionDeniedError

Raised when the caller does not have permission to run an operation.

For example, running the tf.WholeFileReader.read() operation

could raise PermissionDeniedErrorif it receives the name of a file

for which the user does not have the read file permission.

tf.errors.PermissionDeniedError.__init__(node_def, op,

message)

Creates a PermissionDeniedError.

class tf.errors.UnauthenticatedError

The request does not have valid authentication credentials.

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Saver.save
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader

This exception is not currently used.

tf.errors.UnauthenticatedError.__init__(node_def, op,

message)

Creates an UnauthenticatedError.

class tf.errors.ResourceExhaustedError

Some resource has been exhausted.

For example, this error might be raised if a per-user quota is
exhausted, or perhaps the entire file system is out of space.

tf.errors.ResourceExhaustedError.__init__(node_def, op,

message)

Creates a ResourceExhaustedError.

class tf.errors.FailedPreconditionError

Operation was rejected because the system is not in a state to
execute it.

This exception is most commonly raised when running an operation

that reads a tf.Variable before it has been initialized.

https://www.tensorflow.org/versions/r0.7/api_docs/python/state_ops.html#Variable

tf.errors.FailedPreconditionError.__init__(node_def, op,

message)

Creates a FailedPreconditionError.

class tf.errors.AbortedError

The operation was aborted, typically due to a concurrent action.

For example, running a queue.enqueue() operation may

raise AbortedError if a queue.close()operation previously ran.

tf.errors.AbortedError.__init__(node_def, op, message)

Creates an AbortedError.

class tf.errors.OutOfRangeError

Raised when an operation executed past the valid range.

This exception is raised in "end-of-file" conditions, such as when

a queue.dequeue() operation is blocked on an empty queue, and

a queue.close() operation executes.

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.enqueue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.close
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.dequeue
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#QueueBase.close

tf.errors.OutOfRangeError.__init__(node_def, op, message)

Creates an OutOfRangeError.

class tf.errors.UnimplementedError

Raised when an operation has not been implemented.

Some operations may raise this error when passed otherwise-valid
arguments that it does not currently support. For example, running

the tf.nn.max_pool() operation would raise this error if pooling was

requested on the batch dimension, because this is not yet supported.

tf.errors.UnimplementedError.__init__(node_def, op,

message)

Creates an UnimplementedError.

class tf.errors.InternalError

Raised when the system experiences an internal error.

This exception is raised when some invariant expected by the
runtime has been broken. Catching this exception is not
recommended.

tf.errors.InternalError.__init__(node_def, op, message)

https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#max_pool

Creates an InternalError.

class tf.errors.UnavailableError

Raised when the runtime is currently unavailable.

This exception is not currently used.

tf.errors.UnavailableError.__init__(node_def, op,

message)

Creates an UnavailableError.

class tf.errors.DataLossError

Raised when unrecoverable data loss or corruption is encountered.

For example, this may be raised by running

a tf.WholeFileReader.read() operation, if the file is truncated

while it is being read.

tf.errors.DataLossError.__init__(node_def, op, message)

Creates a DataLossError.

Training

https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#WholeFileReader

Contents

 Training
 Optimizers
 class tf.train.Optimizer

 Usage
 Processing gradients before applying them.
 Gating Gradients
 Slots
 class tf.train.GradientDescentOptimizer
 class tf.train.AdagradOptimizer
 class tf.train.MomentumOptimizer
 class tf.train.AdamOptimizer
 class tf.train.FtrlOptimizer
 class tf.train.RMSPropOptimizer

 Gradient Computation
 tf.gradients(ys, xs, grad_ys=None, name=gradients,

colocate_gradients_with_ops=False, gate_gradients=False,

aggregation_method=None)
 class tf.AggregationMethod
 tf.stop_gradient(input, name=None)

 Gradient Clipping
 tf.clip_by_value(t, clip_value_min, clip_value_max,

name=None)
 tf.clip_by_norm(t, clip_norm, name=None)
 tf.clip_by_average_norm(t, clip_norm, name=None)
 tf.clip_by_global_norm(t_list, clip_norm, use_norm=None,

name=None)
 tf.global_norm(t_list, name=None)

 Decaying the learning rate
 tf.train.exponential_decay(learning_rate, global_step,

decay_steps, decay_rate, staircase=False, name=None)

 Moving Averages
 class tf.train.ExponentialMovingAverage

 Coordinator and QueueRunner
 class tf.train.Coordinator
 class tf.train.QueueRunner
 tf.train.add_queue_runner(qr, collection=queue_runners)
 tf.train.start_queue_runners(sess=None, coord=None,

daemon=True, start=True, collection=queue_runners)

 Summary Operations
 tf.scalar_summary(tags, values, collections=None,

name=None)

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#training
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#optimizers
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Optimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#usage
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#processing-gradients-before-applying-them
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gating-gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#slots
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#GradientDescentOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#AdagradOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#MomentumOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#AdamOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#FtrlOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#RMSPropOptimizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradient-computation
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradients
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#AggregationMethod
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#stop_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#gradient-clipping
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_value
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_value
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_average_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_global_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#clip_by_global_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#global_norm
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#decaying-the-learning-rate
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#exponential_decay
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#exponential_decay
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#moving-averages
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#ExponentialMovingAverage
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#coordinator-and-queuerunner
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Coordinator
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#QueueRunner
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#add_queue_runner
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#start_queue_runners
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#start_queue_runners
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#summary-operations
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#scalar_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#scalar_summary

 tf.image_summary(tag, tensor, max_images=3,

collections=None, name=None)
 tf.histogram_summary(tag, values, collections=None,

name=None)
 tf.nn.zero_fraction(value, name=None)
 tf.merge_summary(inputs, collections=None, name=None)
 tf.merge_all_summaries(key=summaries)

 Adding Summaries to Event Files
 class tf.train.SummaryWriter
 tf.train.summary_iterator(path)

 Training utilities
 tf.train.global_step(sess, global_step_tensor)
 tf.train.write_graph(graph_def, logdir, name,

as_text=True)

 Other Functions and Classes
 class tf.train.LooperThread
 tf.train.export_meta_graph(filename=None,

meta_info_def=None, graph_def=None, saver_def=None,

collection_list=None, as_text=False)
 tf.train.generate_checkpoint_state_proto(save_dir,

model_checkpoint_path, all_model_checkpoint_paths=None)
 tf.train.import_meta_graph(meta_graph_or_file)

This library provides a set of classes and functions that helps train
models.

Optimizers

The Optimizer base class provides methods to compute gradients for
a loss and apply gradients to variables. A collection of subclasses
implement classic optimization algorithms such as GradientDescent
and Adagrad.

You never instantiate the Optimizer class itself, but instead
instantiate one of the subclasses.

class tf.train.Optimizer

Base class for optimizers.

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#image_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#image_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#histogram_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#histogram_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#zero_fraction
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#merge_summary
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#merge_all_summaries
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#adding-summaries-to-event-files
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#SummaryWriter
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#summary_iterator
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#training-utilities
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#global_step
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#write_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#write_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#LooperThread
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#export_meta_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#export_meta_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#export_meta_graph
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#generate_checkpoint_state_proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#generate_checkpoint_state_proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#import_meta_graph

This class defines the API to add Ops to train a model. You never
use this class directly, but instead instantiate one of its subclasses

such as GradientDescentOptimizer, AdagradOptimizer,

or MomentumOptimizer.

Usage

Create an optimizer with the desired parameters.

opt = GradientDescentOptimizer(learning_rate=0.1)

Add Ops to the graph to minimize a cost by updating a list of

variables.

"cost" is a Tensor, and the list of variables contains

tf.Variable

objects.

opt_op = opt.minimize(cost, var_list=<list of variables>)

In the training program you will just have to run the returned Op.

Execute opt_op to do one step of training:

opt_op.run()

Processing gradients before applying them.

Calling minimize() takes care of both computing the gradients and

applying them to the variables. If you want to process the gradients
before applying them you can instead use the optimizer in three
steps:

1. Compute the gradients with compute_gradients().

2. Process the gradients as you wish.

3. Apply the processed gradients with apply_gradients().

Example:

Create an optimizer.

opt = GradientDescentOptimizer(learning_rate=0.1)

Compute the gradients for a list of variables.

grads_and_vars = opt.compute_gradients(loss, <list of variables>)

grads_and_vars is a list of tuples (gradient, variable). Do

whatever you

need to the 'gradient' part, for example cap them, etc.

capped_grads_and_vars = [(MyCapper(gv[0]), gv[1])) for gv in

grads_and_vars]

Ask the optimizer to apply the capped gradients.

opt.apply_gradients(capped_grads_and_vars)

tf.train.Optimizer.__init__(use_locking, name)

Create a new Optimizer.

This must be called by the constructors of subclasses.

Args:

 use_locking: Bool. If True apply use locks to prevent concurrent

updates to variables.

 name: A non-empty string. The name to use for accumulators created

for the optimizer.

Raises:

 ValueError: If name is malformed.

tf.train.Optimizer.minimize(loss, global_step=None,

var_list=None, gate_gradients=1, aggregation_method=None,

colocate_gradients_with_ops=False, name=None)

Add operations to minimize loss by updating var_list.

This method simply combines

calls compute_gradients() and apply_gradients(). If you want to

process the gradient before applying them

call compute_gradients() and apply_gradients() explicitly

instead of using this function.

Args:

 loss: A Tensor containing the value to minimize.

 global_step: Optional Variable to increment by one after the

variables have been updated.

 var_list: Optional list of Variable objects to update to

minimize loss. Defaults to the list of variables collected in the graph

under the key GraphKeys.TRAINABLE_VARIABLES.

 gate_gradients: How to gate the computation of gradients. Can

be GATE_NONE, GATE_OP, orGATE_GRAPH.

 aggregation_method: Specifies the method used to combine

gradient terms. Valid values are defined in the

class AggregationMethod.

 colocate_gradients_with_ops: If True, try colocating gradients with

the corresponding op.

 name: Optional name for the returned operation.

Returns:

An Operation that updates the variables in var_list.

If global_step was not None, that operation also

increments global_step.

Raises:

 ValueError: If some of the variables are not Variable objects.

tf.train.Optimizer.compute_gradients(loss, var_list=None,

gate_gradients=1, aggregation_method=None,

colocate_gradients_with_ops=False)

Compute gradients of loss for the variables in var_list.

This is the first part of minimize(). It returns a list of (gradient,

variable) pairs where "gradient" is the gradient for "variable". Note

that "gradient" can be a Tensor, an IndexedSlices, or None if there

is no gradient for the given variable.

Args:

 loss: A Tensor containing the value to minimize.

 var_list: Optional list of tf.Variable to update to minimize loss.

Defaults to the list of variables collected in the graph under the

key GraphKey.TRAINABLE_VARIABLES.

 gate_gradients: How to gate the computation of gradients. Can

be GATE_NONE, GATE_OP, orGATE_GRAPH.

 aggregation_method: Specifies the method used to combine

gradient terms. Valid values are defined in the

class AggregationMethod.

 colocate_gradients_with_ops: If True, try colocating gradients with

the corresponding op.

Returns:

A list of (gradient, variable) pairs.

Raises:

 TypeError: If var_list contains anything else

than Variable objects.

 ValueError: If some arguments are invalid.

tf.train.Optimizer.apply_gradients(grads_and_vars,

global_step=None, name=None)

Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that

applies gradients.

Args:

 grads_and_vars: List of (gradient, variable) pairs as returned

by compute_gradients().

 global_step: Optional Variable to increment by one after the

variables have been updated.

 name: Optional name for the returned operation. Default to the name

passed to the Optimizer constructor.

Returns:

An Operation that applies the specified gradients.

If global_step was not None, that operation also

increments global_step.

Raises:

 TypeError: If grads_and_vars is malformed.

 ValueError: If none of the variables have gradients.

Gating Gradients

Both minimize() and compute_gradients() accept

a gate_gradient argument that controls the degree of parallelism

during the application of the gradients.

The possible values are: GATE_NONE, GATE_OP, and GATE_GRAPH.

GATE_NONE: Compute and apply gradients in parallel. This provides

the maximum parallelism in execution, at the cost of some non-
reproducibility in the results. For example the two gradients

of matmul depend on the input values: With GATE_NONE one of the

gradients could be applied to one of the inputs before the other
gradient is computed resulting in non-reproducible results.

GATE_OP: For each Op, make sure all gradients are computed before

they are used. This prevents race conditions for Ops that generate
gradients for multiple inputs where the gradients depend on the
inputs.

GATE_GRAPH: Make sure all gradients for all variables are computed

before any one of them is used. This provides the least parallelism
but can be useful if you want to process all gradients before applying
any of them.

Slots

Some optimizer subclasses, such

as MomentumOptimizer and AdagradOptimizer allocate and manage

additional variables associated with the variables to train. These are
called Slots. Slots have names and you can ask the optimizer for the
names of the slots that it uses. Once you have a slot name you can
ask the optimizer for the variable it created to hold the slot value.

This can be useful if you want to log debug a training algorithm,
report stats about the slots, etc.

tf.train.Optimizer.get_slot_names()

Return a list of the names of slots created by the Optimizer.

See get_slot().

Returns:

A list of strings.

tf.train.Optimizer.get_slot(var, name)

Return a slot named name created for var by the Optimizer.

Some Optimizer subclasses use additional variables. For

example Momentum and Adagrad use variables to accumulate

updates. This method gives access to these Variable objects if for

some reason you need them.

Use get_slot_names() to get the list of slot names created by

the Optimizer.

Args:

 var: A variable passed to minimize() or apply_gradients().

 name: A string.

Returns:

The Variable for the slot if it was created, None otherwise.

class tf.train.GradientDescentOptimizer

Optimizer that implements the gradient descent algorithm.

tf.train.GradientDescentOptimizer.__init__(learning_rate,

use_locking=False, name='GradientDescent')

Construct a new gradient descent optimizer.

Args:

 learning_rate: A Tensor or a floating point value. The learning rate

to use.

 use_locking: If True use locks for update operations.

 name: Optional name prefix for the operations created when applying

gradients. Defaults to "GradientDescent".

class tf.train.AdagradOptimizer

Optimizer that implements the Adagrad algorithm.

See this paper.

tf.train.AdagradOptimizer.__init__(learning_rate,

initial_accumulator_value=0.1, use_locking=False,

name='Adagrad')

Construct a new Adagrad optimizer.

Args:

 learning_rate: A Tensor or a floating point value. The learning rate.

 initial_accumulator_value: A floating point value. Starting value

for the accumulators, must be positive.

 use_locking: If True use locks for update operations.

 name: Optional name prefix for the operations created when applying

gradients. Defaults to "Adagrad".

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Raises:

 ValueError: If the initial_accumulator_value is invalid.

class tf.train.MomentumOptimizer

Optimizer that implements the Momentum algorithm.

tf.train.MomentumOptimizer.__init__(learning_rate,

momentum, use_locking=False, name='Momentum')

Construct a new Momentum optimizer.

Args:

 learning_rate: A Tensor or a floating point value. The learning rate.

 momentum: A Tensor or a floating point value. The momentum.

 use_locking: If True use locks for update operations.

 name: Optional name prefix for the operations created when applying

gradients. Defaults to "Momentum".

class tf.train.AdamOptimizer

Optimizer that implements the Adam algorithm.

See Kingma et. al., 2014 (pdf).

http://arxiv.org/abs/1412.6980
http://arxiv.org/pdf/1412.6980.pdf

tf.train.AdamOptimizer.__init__(learning_rate=0.001,

beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False,

name='Adam')

Construct a new Adam optimizer.

Initialization:

m_0 <- 0 (Initialize initial 1st moment vector)

v_0 <- 0 (Initialize initial 2nd moment vector)

t <- 0 (Initialize timestep)

The update rule for variable with gradient g uses an optimization

described at the end of section2 of the paper:
t <- t + 1

lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)

m_t <- beta1 * m_{t-1} + (1 - beta1) * g

v_t <- beta2 * v_{t-1} + (1 - beta2) * g * g

variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)

The default value of 1e-8 for epsilon might not be a good default in
general. For example, when training an Inception network on
ImageNet a current good choice is 1.0 or 0.1.

Args:

 learning_rate: A Tensor or a floating point value. The learning rate.

 beta1: A float value or a constant float tensor. The exponential decay

rate for the 1st moment estimates.

 beta2: A float value or a constant float tensor. The exponential decay

rate for the 2nd moment estimates.

 epsilon: A small constant for numerical stability.

 use_locking: If True use locks for update operations.

 name: Optional name for the operations created when applying

gradients. Defaults to "Adam".

class tf.train.FtrlOptimizer

Optimizer that implements the FTRL algorithm.

tf.train.FtrlOptimizer.__init__(learning_rate,

learning_rate_power=-0.5, initial_accumulator_value=0.1,

l1_regularization_strength=0.0,

l2_regularization_strength=0.0, use_locking=False,

name='Ftrl')

Construct a new FTRL optimizer.

The Ftrl-proximal algorithm, abbreviated for Follow-the-regularized-
leader, is described in the paper Ad Click Prediction: a View from the

Trenches.

It can give a good performance vs. sparsity tradeoff.

Ftrl-proximal uses its own global base learning rate and can behave

like Adagrad withlearning_rate_power=-0.5, or like gradient

descent with learning_rate_power=0.0.

The effective learning rate is adjusted per parameter, relative to this
base learning rate as:

effective_learning_rate_i = (learning_rate /

 pow(k + summed_squared_gradients_for_i, learning_rate_power));

where k is the small constant initial_accumulator_value.

https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf

Note that the real regularization coefficient of |w|^2 for objective

function is 1 / lambda_2 if specifying l2 = lambda_2 as argument

when using this function.

Args:

 learning_rate: A float value or a constant float Tensor.

 learning_rate_power: A float value, must be less or equal to zero.

 initial_accumulator_value: The starting value for accumulators.

Only positive values are allowed.

 l1_regularization_strength: A float value, must be greater than

or equal to zero.

 l2_regularization_strength: A float value, must be greater than

or equal to zero.

 use_locking: If True use locks for update operations.

 name: Optional name prefix for the operations created when applying

gradients. Defaults to "Ftrl".

Raises:

 ValueError: If one of the arguments is invalid.

class tf.train.RMSPropOptimizer

Optimizer that implements the RMSProp algorithm.

See the paper.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

tf.train.RMSPropOptimizer.__init__(learning_rate,

decay=0.9, momentum=0.0, epsilon=1e-10,

use_locking=False, name='RMSProp')

Construct a new RMSProp optimizer.

Args:

 learning_rate: A Tensor or a floating point value. The learning rate.

 decay: Discounting factor for the history/coming gradient

 momentum: A scalar tensor.

 epsilon: Small value to avoid zero denominator.

 use_locking: If True use locks for update operation.

 name: Optional name prefix for the operations created when applying

gradients. Defaults to "RMSProp".

Gradient Computation

TensorFlow provides functions to compute the derivatives for a given
TensorFlow computation graph, adding operations to the graph. The
optimizer classes automatically compute derivatives on your graph,
but creators of new Optimizers or expert users can call the lower-
level functions below.

tf.gradients(ys, xs, grad_ys=None, name='gradients',

colocate_gradients_with_ops=False, gate_gradients=False,

aggregation_method=None)

Constructs symbolic partial derivatives of ys w.r.t. x in xs.

ys and xs are each a Tensor or a list of tensors. grad_ys is a list

of Tensor, holding the gradients received by the ys. The list must be

the same length as ys.

gradients() adds ops to the graph to output the partial derivatives

of ys with respect to xs. It returns a list ofTensor of

length len(xs) where each tensor is the sum(dy/dx) for y in ys.

grad_ys is a list of tensors of the same length as ys that holds the

initial gradients for each y in ys. Whengrad_ys is None, we fill in a

tensor of '1's of the shape of y for each y in ys. A user can provide

their own initialgrad_ys to compute the derivatives using a different

initial gradient for each y (e.g., if one wanted to weight the gradient
differently for each value in each y).

Args:

 ys: A Tensor or list of tensors to be differentiated.

 xs: A Tensor or list of tensors to be used for differentiation.

 grad_ys: Optional. A Tensor or list of tensors the same size

as ys and holding the gradients computed for each y in ys.

 name: Optional name to use for grouping all the gradient ops

together. defaults to 'gradients'.

 colocate_gradients_with_ops: If True, try colocating gradients with

the corresponding op.

 gate_gradients: If True, add a tuple around the gradients returned

for an operations. This avoids some race conditions.

 aggregation_method: Specifies the method used to combine

gradient terms. Accepted values are constants defined in the

class AggregationMethod.

Returns:

A list of sum(dy/dx) for each x in xs.

Raises:

 LookupError: if one of the operations between x and y does not

have a registered gradient function.

 ValueError: if the arguments are invalid.

class tf.AggregationMethod

A class listing aggregation methods used to combine gradients.

Computing partial derivatives can require aggregating gradient
contributions. This class lists the various methods that can be used to
combine gradients in the graph:

 ADD_N: All of the gradient terms are summed as part of one operation

using the "AddN" op. It has the property that all gradients must be
ready before any aggregation is performed.

 DEFAULT: The system-chosen default aggregation method.

tf.stop_gradient(input, name=None)

Stops gradient computation.

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the
contribution of its inputs to be taken into account. Normally, the
gradient generator adds ops to a graph to compute the derivatives of
a specified 'loss' by recursively finding out inputs that contributed to
its computation. If you insert this op in the graph it inputs are masked
from the gradient generator. They are not taken into account for
computing gradients.

This is useful any time you want to compute a value with TensorFlow
but need to pretend that the value was a constant. Some examples
include:

 The EM algorithm where the M-step should not involve
backpropagation through the output of the E-step.

 Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not
backpropagate through the graph that generated the samples from
the model.

 Adversarial training, where no backprop should happen through the
adversarial example generation process.

Args:

 input: A Tensor.

 name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

Gradient Clipping

TensorFlow provides several operations that you can use to add
clipping functions to your graph. You can use these functions to
perform general data clipping, but they're particularly useful for
handling exploding or vanishing gradients.

tf.clip_by_value(t, clip_value_min, clip_value_max,

name=None)

Clips tensor values to a specified min and max.

Given a tensor t, this operation returns a tensor of the same type

and shape as t with its values clipped

toclip_value_min and clip_value_max. Any values less

than clip_value_min are set toclip_value_min. Any values greater

than clip_value_max are set to clip_value_max.

Args:

 t: A Tensor.

 clip_value_min: A 0-D (scalar) Tensor. The minimum value to clip

by.

 clip_value_max: A 0-D (scalar) Tensor. The maximum value to clip

by.

 name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_norm(t, clip_norm, name=None)

Clips tensor values to a maximum L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this

operation normalizes t so that its L2-norm is less than or equal

to clip_norm. Specifically, if the L2-norm is already less than or

equal to clip_norm, then t is not modified. If the L2-norm is greater

than clip_norm, then this operation returns a tensor of the same type

and shape as t with its values set to:

t * clip_norm / l2norm(t)

In this case, the L2-norm of the output tensor is clip_norm.

This operation is typically used to clip gradients before applying them
with an optimizer.

Args:

 t: A Tensor.

 clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

 name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_average_norm(t, clip_norm, name=None)

Clips tensor values to a maximum average L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this

operation normalizes t so that its average L2-norm is less than or

equal to clip_norm. Specifically, if the average L2-norm is already

less than or equal toclip_norm, then t is not modified. If the average

L2-norm is greater than clip_norm, then this operation returns a

tensor of the same type and shape as t with its values set to:

t * clip_norm / l2norm_avg(t)

In this case, the average L2-norm of the output tensor is clip_norm.

This operation is typically used to clip gradients before applying them
with an optimizer.

Args:

 t: A Tensor.

 clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

 name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_global_norm(t_list, clip_norm, use_norm=None,

name=None)

Clips values of multiple tensors by the ratio of the sum of their norms.

Given a tuple or list of tensors t_list, and a clipping

ratio clip_norm, this operation returns a list of clipped

tensors list_clipped and the global norm (global_norm) of all

tensors in t_list. Optionally, if you've already computed the global

norm for t_list, you can specify the global norm with use_norm.

To perform the clipping, the values t_list[i] are set to:

t_list[i] * clip_norm / max(global_norm, clip_norm)

where:

global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

If clip_norm > global_norm then the entries in t_list remain as

they are, otherwise they're all shrunk by the global ratio.

Any of the entries of t_list that are of type None are ignored.

This is the correct way to perform gradient clipping (for example,
see Pascanu et al., 2012 (pdf)).

However, it is slower than clip_by_norm() because all the

parameters must be ready before the clipping operation can be
performed.

Args:

 t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

 clip_norm: A 0-D (scalar) Tensor > 0. The clipping ratio.

 use_norm: A 0-D (scalar) Tensor of type float (optional). The global

norm to use. If not provided,global_norm() is used to compute the

norm.

 name: A name for the operation (optional).

http://arxiv.org/abs/1211.5063
http://arxiv.org/pdf/1211.5063.pdf

Returns:

 list_clipped: A list of Tensors of the same type as list_t.

 global_norm: A 0-D (scalar) Tensor representing the global norm.

Raises:

 TypeError: If t_list is not a sequence.

tf.global_norm(t_list, name=None)

Computes the global norm of multiple tensors.

Given a tuple or list of tensors t_list, this operation returns the

global norm of the elements in all tensors int_list. The global norm

is computed as:
global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

Any entries in t_list that are of type None are ignored.

Args:

 t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

 name: A name for the operation (optional).

Returns:

A 0-D (scalar) Tensor of type float.

Raises:

 TypeError: If t_list is not a sequence.

Decaying the learning rate

tf.train.exponential_decay(learning_rate, global_step,

decay_steps, decay_rate, staircase=False, name=None)

Applies exponential decay to the learning rate.

When training a model, it is often recommended to lower the learning
rate as the training progresses. This function applies an exponential
decay function to a provided initial learning rate. It requires

a global_step value to compute the decayed learning rate. You can

just pass a TensorFlow variable that you increment at each training
step.

The function returns the decayed learning rate. It is computed as:

decayed_learning_rate = learning_rate *

 decay_rate ^ (global_step / decay_steps)

If the argument staircase is True, then global_step

/decay_steps is an integer division and the decayed learning rate

follows a staircase function.

Example: decay every 100000 steps with a base of 0.96:

...

global_step = tf.Variable(0, trainable=False)

starter_learning_rate = 0.1

learning_rate = tf.train.exponential_decay(starter_learning_rate,

global_step,

 100000, 0.96, staircase=True)

optimizer = tf.GradientDescentOptimizer(learning_rate)

Passing global_step to minimize() will increment it at each

step.

optimizer.minimize(...my loss..., global_step=global_step)

Args:

 learning_rate: A scalar float32 or float64 Tensor or a Python

number. The initial learning rate.

 global_step: A scalar int32 or int64 Tensor or a Python number.

Global step to use for the decay computation. Must not be negative.

 decay_steps: A scalar int32 or int64 Tensor or a Python number.

Must be positive. See the decay computation above.

 decay_rate: A scalar float32 or float64 Tensor or a Python

number. The decay rate.

 staircase: Boolean. It True decay the learning rate at discrete

intervals.

 name: String. Optional name of the operation. Defaults to

'ExponentialDecay'

Returns:

A scalar Tensor of the same type as learning_rate. The decayed

learning rate.

Moving Averages

Some training algorithms, such as GradientDescent and Momentum
often benefit from maintaining a moving average of variables during
optimization. Using the moving averages for evaluations often
improve results significantly.

class tf.train.ExponentialMovingAverage

Maintains moving averages of variables by employing an exponential
decay.

When training a model, it is often beneficial to maintain moving
averages of the trained parameters. Evaluations that use averaged
parameters sometimes produce significantly better results than the
final trained values.

The apply() method adds shadow copies of trained variables and

add ops that maintain a moving average of the trained variables in
their shadow copies. It is used when building the training model. The
ops that maintain moving averages are typically run after each

training step. The average() and average_name() methods give

access to the shadow variables and their names. They are useful
when building an evaluation model, or when restoring a model from a
checkpoint file. They help use the moving averages in place of the
last trained values for evaluations.
The moving averages are computed using exponential decay. You
specify the decay value when creating

theExponentialMovingAverage object. The shadow variables are

initialized with the same initial values as the trained variables. When
you run the ops to maintain the moving averages, each shadow
variable is updated with the formula:
shadow_variable -= (1 - decay) * (shadow_variable -

variable)

This is mathematically equivalent to the classic formula below, but

the use of an assign_sub op (the "-=" in the formula) allows

concurrent lockless updates to the variables:
shadow_variable = decay * shadow_variable + (1 - decay) *

variable

Reasonable values for decay are close to 1.0, typically in the

multiple-nines range: 0.999, 0.9999, etc.

Example usage when creating a training model:

Create variables.

var0 = tf.Variable(...)

var1 = tf.Variable(...)

... use the variables to build a training model...

...

Create an op that applies the optimizer. This is what we

usually

would use as a training op.

opt_op = opt.minimize(my_loss, [var0, var1])

Create an ExponentialMovingAverage object

ema = tf.train.ExponentialMovingAverage(decay=0.9999)

Create the shadow variables, and add ops to maintain moving

averages

of var0 and var1.

maintain_averages_op = ema.apply([var0, var1])

Create an op that will update the moving averages after each

training

step. This is what we will use in place of the usual training

op.

with tf.control_dependencies([opt_op]):

 training_op = tf.group(maintain_averages_op)

...train the model by running training_op...

There are two ways to use the moving averages for evaluations:

 Build a model that uses the shadow variables instead of the

variables. For this, use the average() method which returns the

shadow variable for a given variable.
 Build a model normally but load the checkpoint files to evaluate by

using the shadow variable names. For this use

the average_name() method. See the Saver class for more

information on restoring saved variables.

Example of restoring the shadow variable values:

Create a Saver that loads variables from their saved shadow

values.

shadow_var0_name = ema.average_name(var0)

shadow_var1_name = ema.average_name(var1)

saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name:

var1})

saver.restore(...checkpoint filename...)

https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Saver

var0 and var1 now hold the moving average values

tf.train.ExponentialMovingAverage.__init__(decay,

num_updates=None, name='ExponentialMovingAverage')

Creates a new ExponentialMovingAverage object.

The Apply() method has to be called to create shadow variables and

add ops to maintain moving averages.

The optional num_updates parameter allows one to tweak the decay

rate dynamically. . It is typical to pass the count of training steps,
usually kept in a variable that is incremented at each step, in which
case the decay rate is lower at the start of training. This makes
moving averages move faster. If passed, the actual decay rate used
is:
min(decay, (1 + num_updates) / (10 + num_updates))

Args:

 decay: Float. The decay to use.

 num_updates: Optional count of number of updates applied to

variables.

 name: String. Optional prefix name to use for the name of ops added

in Apply().

tf.train.ExponentialMovingAverage.apply(var_list=None)

Maintains moving averages of variables.

var_list must be a list of Variable or Tensor objects. This method

creates shadow variables for all elements of var_list. Shadow

variables for Variable objects are initialized to the variable's initial

value. They will be added to

the GraphKeys.MOVING_AVERAGE_VARIABLES collection.

For Tensor objects, the shadow variables are initialized to 0.

shadow variables are created with trainable=False and added to

the GraphKeys.ALL_VARIABLEScollection. They will be returned by

calls to tf.all_variables().

Returns an op that updates all shadow variables as described above.

Note that apply() can be called multiple times with different lists of

variables.

Args:

 var_list: A list of Variable or Tensor objects. The variables and

Tensors must be of types float32 or float64.

Returns:

An Operation that updates the moving averages.

Raises:

 TypeError: If the arguments are not all float32 or float64.

 ValueError: If the moving average of one of the variables is already

being computed.

tf.train.ExponentialMovingAverage.average_name(var)

Returns the name of the Variable holding the average for var.

The typical scenario for ExponentialMovingAverage is to compute

moving averages of variables during training, and restore the
variables from the computed moving averages during evaluations.
To restore variables, you have to know the name of the shadow
variables. That name and the original variable can then be passed to

a Saver() object to restore the variable from the moving average

value with: saver = tf.train.Saver({ema.average_name(var):

var})

average_name() can be called whether or not apply() has been

called.

Args:

 var: A Variable object.

Returns:

A string: The name of the variable that will be used or was used by

the ExponentialMovingAverage classto hold the moving average

of var.

tf.train.ExponentialMovingAverage.average(var)

Returns the Variable holding the average of var.

Args:

 var: A Variable object.

Returns:

A Variable object or None if the moving average of var is not

maintained..

tf.train.ExponentialMovingAverage.variables_to_restore()

Returns a map of names to Variables to restore.

If a variable has a moving average, use the moving average variable
name as the restore name; otherwise, use the variable name.

For example,

 variables_to_restore = ema.variables_to_restore()

 saver = tf.train.Saver(variables_to_restore)

Below is an example of such mapping:

 conv/batchnorm/gamma/ExponentialMovingAverage:

conv/batchnorm/gamma,

 conv_4/conv2d_params/ExponentialMovingAverage:

conv_4/conv2d_params,

 global_step: global_step

Returns:

A map from restore_names to variables. The restore_name can be
the moving_average version of the variable name if it exist, or the
original variable name.

Coordinator and QueueRunner

See Threading and Queues for how to use threads and queues. For
documentation on the Queue API, see Queues.

class tf.train.Coordinator

A coordinator for threads.

This class implements a simple mechanism to coordinate the
termination of a set of threads.

Usage:

Create a coordinator.

coord = Coordinator()

Start a number of threads, passing the coordinator to each of

them.

...start thread 1...(coord, ...)

...start thread N...(coord, ...)

Wait for all the threads to terminate.

coord.join(threads)

Any of the threads can call coord.request_stop() to ask for all the

threads to stop. To cooperate with the requests, each thread must

check for coord.should_stop() on a regular

basis. coord.should_stop()returns True as soon

as coord.request_stop() has been called.

A typical thread running with a coordinator will do something like:

while not coord.should_stop():

 ...do some work...

Exception handling:

https://www.tensorflow.org/versions/r0.7/how_tos/threading_and_queues/index.html
https://www.tensorflow.org/versions/r0.7/api_docs/python/io_ops.html#queues

A thread can report an exception to the coordinator as part of

the should_stop() call. The exception will be re-raised from

the coord.join() call.

Thread code:

try:

 while not coord.should_stop():

 ...do some work...

except Exception as e:

 coord.request_stop(e)

Main code:

try:

 ...

 coord = Coordinator()

 # Start a number of threads, passing the coordinator to each of

them.

 ...start thread 1...(coord, ...)

 ...start thread N...(coord, ...)

 # Wait for all the threads to terminate.

 coord.join(threads)

except Exception as e:

 ...exception that was passed to coord.request_stop()

To simplify the thread implementation, the Coordinator provides a

context handler stop_on_exception() that automatically requests a

stop if an exception is raised. Using the context handler the thread
code above can be written as:
with coord.stop_on_exception():

 while not coord.should_stop():

 ...do some work...

Grace period for stopping:

After a thread has called coord.request_stop() the other threads

have a fixed time to stop, this is called the 'stop grace period' and
defaults to 2 minutes. If any of the threads is still alive after the grace

period expirescoord.join() raises a RuntimeException reporting the

laggards.
try:

 ...

 coord = Coordinator()

 # Start a number of threads, passing the coordinator to each of

them.

 ...start thread 1...(coord, ...)

 ...start thread N...(coord, ...)

 # Wait for all the threads to terminate, give them 10s grace

period

 coord.join(threads, stop_grace_period_secs=10)

except RuntimeException:

 ...one of the threads took more than 10s to stop after

request_stop()

 ...was called.

except Exception:

 ...exception that was passed to coord.request_stop()

tf.train.Coordinator.__init__()

Create a new Coordinator.

tf.train.Coordinator.clear_stop()

Clears the stop flag.

After this is called, calls to should_stop() will return False.

tf.train.Coordinator.join(threads,

stop_grace_period_secs=120)

Wait for threads to terminate.

Blocks until all threads have terminated or request_stop() is

called.

After the threads stop, if an exc_info was passed to request_stop,

that exception is re-raised.

Grace period handling: When request_stop() is called, threads are

given 'stop_grace_period_secs' seconds to terminate. If any of them

is still alive after that period expires, a RuntimeError is raised. Note

that if anexc_info was passed to request_stop() then it is raised

instead of that RuntimeError.

Args:

 threads: List of threading.Threads. The started threads to join.

 stop_grace_period_secs: Number of seconds given to threads to

stop after request_stop() has been called.

Raises:

 RuntimeError: If any thread is still alive after request_stop() is

called and the grace period expires.

tf.train.Coordinator.request_stop(ex=None)

Request that the threads stop.

After this is called, calls to should_stop() will return True.

Args:

 ex: Optional Exception, or Python exc_info tuple as returned

by sys.exc_info(). If this is the first call to request_stop() the

corresponding exception is recorded and re-raised from join().

tf.train.Coordinator.should_stop()

Check if stop was requested.

Returns:

True if a stop was requested.

tf.train.Coordinator.stop_on_exception()

Context manager to request stop when an Exception is raised.

Code that uses a coordinator must catch exceptions and pass them

to the request_stop() method to stop the other threads managed by

the coordinator.

This context handler simplifies the exception handling. Use it as
follows:

with coord.stop_on_exception():

 # Any exception raised in the body of the with

 # clause is reported to the coordinator before terminating

 # the execution of the body.

 ...body...

This is completely equivalent to the slightly longer code:

try:

 ...body...

exception Exception as ex:

 coord.request_stop(ex)

Yields:

nothing.

tf.train.Coordinator.wait_for_stop(timeout=None)

Wait till the Coordinator is told to stop.

Args:

 timeout: Float. Sleep for up to that many seconds waiting for

should_stop() to become True.

Returns:

True if the Coordinator is told stop, False if the timeout expired.

class tf.train.QueueRunner

Holds a list of enqueue operations for a queue, each to be run in a
thread.

Queues are a convenient TensorFlow mechanism to compute
tensors asynchronously using multiple threads. For example in the
canonical 'Input Reader' setup one set of threads generates
filenames in a queue; a second set of threads read records from the
files, processes them, and enqueues tensors on a second queue; a

third set of threads dequeues these input records to construct
batches and runs them through training operations.

There are several delicate issues when running multiple threads that
way: closing the queues in sequence as the input is exhausted,
correctly catching and reporting exceptions, etc.

The QueueRunner, combined with the Coordinator, helps handle

these issues.

tf.train.QueueRunner.__init__(queue=None,

enqueue_ops=None, close_op=None, cancel_op=None,

queue_runner_def=None)

Create a QueueRunner.

On construction the QueueRunner adds an op to close the queue.

That op will be run if the enqueue ops raise exceptions.

When you later call the create_threads() method,

the QueueRunner will create one thread for each op inenqueue_ops.

Each thread will run its enqueue op in parallel with the other threads.
The enqueue ops do not have to all be the same op, but it is

expected that they all enqueue tensors in queue.

Args:

 queue: A Queue.

 enqueue_ops: List of enqueue ops to run in threads later.

 close_op: Op to close the queue. Pending enqueue ops are

preserved.

 cancel_op: Op to close the queue and cancel pending enqueue ops.

 queue_runner_def: Optional QueueRunnerDef protocol buffer. If

specified, recreates the QueueRunner from its

contents. queue_runner_def and the other arguments are mutually

exclusive.

Raises:

 ValueError: If both queue_runner_def and queue are both

specified.

 ValueError: If queue or enqueue_ops are not provided when not

restoring from queue_runner_def.

tf.train.QueueRunner.cancel_op

tf.train.QueueRunner.close_op

tf.train.QueueRunner.create_threads(sess, coord=None,

daemon=False, start=False)

Create threads to run the enqueue ops.

This method requires a session in which the graph was launched. It
creates a list of threads, optionally starting them. There is one thread

for each op passed in enqueue_ops.

The coord argument is an optional coordinator, that the threads will

use to terminate together and report exceptions. If a coordinator is
given, this method starts an additional thread to close the queue
when the coordinator requests a stop.

This method may be called again as long as all threads from a
previous call have stopped.

Args:

 sess: A Session.

 coord: Optional Coordinator object for reporting errors and

checking stop conditions.

 daemon: Boolean. If True make the threads daemon threads.

 start: Boolean. If True starts the threads. If False the caller must

call the start() method of the returned threads.

Returns:

A list of threads.

Raises:

 RuntimeError: If threads from a previous call

to create_threads() are still running.

tf.train.QueueRunner.enqueue_ops

tf.train.QueueRunner.exceptions_raised

Exceptions raised but not handled by the QueueRunner threads.

Exceptions raised in queue runner threads are handled in one of two

ways depending on whether or not aCoordinator was passed

to create_threads():

 With a Coordinator, exceptions are reported to the coordinator and

forgotten by the QueueRunner.

 Without a Coordinator, exceptions are captured by

the QueueRunner and made available in

thisexceptions_raised property.

Returns:

A list of Python Exception objects. The list is empty if no exception

was captured. (No exceptions are captured when using a
Coordinator.)

tf.train.QueueRunner.from_proto(queue_runner_def)

tf.train.QueueRunner.name

The string name of the underlying Queue.

tf.train.QueueRunner.queue

tf.train.QueueRunner.to_proto()

Converts this QueueRunner to a QueueRunnerDef protocol buffer.

Returns:

A QueueRunnerDef protocol buffer.

tf.train.add_queue_runner(qr, collection='queue_runners')

Adds a QueueRunner to a collection in the graph.

When building a complex model that uses many queues it is often
difficult to gather all the queue runners that need to be run. This
convenience function allows you to add a queue runner to a well
known collection in the graph.

The companion method start_queue_runners() can be used to

start threads for all the collected queue runners.

Args:

 qr: A QueueRunner.

 collection: A GraphKey specifying the graph collection to add the

queue runner to. Defaults toGraphKeys.QUEUE_RUNNERS.

tf.train.start_queue_runners(sess=None, coord=None,

daemon=True, start=True, collection='queue_runners')

Starts all queue runners collected in the graph.

This is a companion method to add_queue_runner(). It just starts

threads for all queue runners collected in the graph. It returns the list
of all threads.

Args:

 sess: Session used to run the queue ops. Defaults to the default

session.

 coord: Optional Coordinator for coordinating the started threads.

 daemon: Whether the threads should be marked as daemons,

meaning they don't block program exit.

 start: Set to False to only create the threads, not start them.

 collection: A GraphKey specifying the graph collection to get the

queue runners from. Defaults toGraphKeys.QUEUE_RUNNERS.

Returns:

A list of threads.

Summary Operations

The following ops output Summary protocol buffers as serialized string

tensors.
You can fetch the output of a summary op in a session, and pass it to
a SummaryWriter to append it to an event file. Event files

contain Event protos that can contain Summary protos along with the

timestamp and step. You can then use TensorBoard to visualize the

https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#SummaryWriter
https://www.tensorflow.org/code/tensorflow/core/util/event.proto

contents of the event files. See TensorBoard and Summaries for more
details.

tf.scalar_summary(tags, values, collections=None,

name=None)

Outputs a Summary protocol buffer with scalar values.

The input tags and values must have the same shape. The

generated summary has a summary value for each tag-value pair

in tags and values.

Args:

 tags: A string Tensor. Tags for the summaries.

 values: A real numeric Tensor. Values for the summaries.

 collections: Optional list of graph collections keys. The new

summary op is added to these collections. Defaults

to [GraphKeys.SUMMARIES].

 name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol

buffer.

tf.image_summary(tag, tensor, max_images=3,

collections=None, name=None)

https://www.tensorflow.org/versions/r0.7/how_tos/summaries_and_tensorboard/index.html

Outputs a Summary protocol buffer with images.

The summary has up to max_images summary values containing

images. The images are built from tensorwhich must be 4-D with

shape [batch_size, height, width, channels] and

where channels can be:

 1: tensor is interpreted as Grayscale.

 3: tensor is interpreted as RGB.

 4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor.
For float input, the values are normalized one image at a time to fit in

the range [0, 255]. uint8 values are unchanged. The op uses two

different normalization algorithms:

 If the input values are all positive, they are rescaled so the largest
one is 255.

 If any input value is negative, the values are shifted so input value
0.0 is at 127. They are then rescaled so that either the smallest value
is 0, or the largest one is 255.

The tag argument is a scalar Tensor of type string. It is used to

build the tag of the summary values:

 If max_images is 1, the summary value tag is '*tag*/image'.

 If max_images is greater than 1, the summary value tags are

generated sequentially as '*tag*/image/0', '*tag*/image/1', etc.

Args:

 tag: A scalar Tensor of type string. Used to build the tag of the

summary values.

 tensor: A 4-D uint8 or float32 Tensor of shape [batch_size,

height, width, channels]where channels is 1, 3, or 4.

 max_images: Max number of batch elements to generate images for.

 collections: Optional list of ops.GraphKeys. The collections to add

the summary to. Defaults to [ops.GraphKeys.SUMMARIES]

 name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol

buffer.

tf.histogram_summary(tag, values, collections=None,

name=None)

Outputs a Summary protocol buffer with a histogram.

The generated Summary has one summary value containing a

histogram for values.

This op reports an OutOfRange error if any value is not finite.

Args:

 tag: A string Tensor. 0-D. Tag to use for the summary value.

 values: A real numeric Tensor. Any shape. Values to use to build the

histogram.

https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto

 collections: Optional list of graph collections keys. The new

summary op is added to these collections. Defaults

to [GraphKeys.SUMMARIES].

 name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol

buffer.

tf.nn.zero_fraction(value, name=None)

Returns the fraction of zeros in value.

If value is empty, the result is nan.

This is useful in summaries to measure and report sparsity. For
example,

z = tf.Relu(...)

summ = tf.scalar_summary('sparsity', tf.zero_fraction(z))

Args:

 value: A tensor of numeric type.

 name: A name for the operation (optional).

Returns:

The fraction of zeros in value, with type float32.

tf.merge_summary(inputs, collections=None, name=None)

Merges summaries.

This op creates a Summary protocol buffer that contains the union of

all the values in the input summaries.

When the Op is run, it reports an InvalidArgument error if multiple

values in the summaries to merge use the same tag.

Args:

 inputs: A list of string Tensor objects containing

serialized Summary protocol buffers.

 collections: Optional list of graph collections keys. The new

summary op is added to these collections. Defaults

to [GraphKeys.SUMMARIES].

 name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol

buffer resulting from the merging.

tf.merge_all_summaries(key='summaries')

Merges all summaries collected in the default graph.

https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto

Args:

 key: GraphKey used to collect the summaries. Defaults

to GraphKeys.SUMMARIES.

Returns:

If no summaries were collected, returns None. Otherwise returns a

scalar Tensor of typestring containing the

serialized Summary protocol buffer resulting from the merging.

Adding Summaries to Event Files

See Summaries and TensorBoard for an overview of summaries, event
files, and visualization in TensorBoard.

class tf.train.SummaryWriter

Writes Summary protocol buffers to event files.

The SummaryWriter class provides a mechanism to create an event

file in a given directory and add summaries and events to it. The
class updates the file contents asynchronously. This allows a training
program to call methods to add data to the file directly from the
training loop, without slowing down training.

tf.train.SummaryWriter.__init__(logdir, graph_def=None,

max_queue=10, flush_secs=120)

Creates a SummaryWriter and an event file.

https://www.tensorflow.org/versions/r0.7/how_tos/summaries_and_tensorboard/index.html

On construction the summary writer creates a new event file

in logdir. This event file will contain Eventprotocol buffers

constructed when you call one of the following

functions: add_summary(),add_session_log(), add_event(),

or add_graph().

If you pass a graph_def protocol buffer to the constructor it is added

to the event file. (This is equivalent to calling add_graph() later).

TensorBoard will pick the graph from the file and display it graphically
so you can interactively explore the graph you built. You will usually
pass the graph from the session in which you launched it:

...create a graph...

Launch the graph in a session.

sess = tf.Session()

Create a summary writer, add the 'graph_def' to the event file.

writer = tf.train.SummaryWriter(<some-directory>, sess.graph_def)

The other arguments to the constructor control the asynchronous
writes to the event file:

 flush_secs: How often, in seconds, to flush the added summaries

and events to disk.

 max_queue: Maximum number of summaries or events pending to be

written to disk before one of the 'add' calls block.

Args:

 logdir: A string. Directory where event file will be written.

 graph_def: A GraphDef protocol buffer.

 max_queue: Integer. Size of the queue for pending events and

summaries.

 flush_secs: Number. How often, in seconds, to flush the pending

events and summaries to disk.

tf.train.SummaryWriter.add_summary(summary,

global_step=None)

Adds a Summary protocol buffer to the event file.

This method wraps the provided summary in an Event protocol buffer

and adds it to the event file.
You can pass the result of evaluating any summary op, using

[Session.run()](client.md#Session.run] orTensor.eval(), to this

function. Alternatively, you can pass a tf.Summary protocol buffer

that you populate with your own data. The latter is commonly done to
report evaluation results in event files.

Args:

 summary: A Summary protocol buffer, optionally serialized as a string.

 global_step: Number. Optional global step value to record with the

summary.

tf.train.SummaryWriter.add_session_log(session_log,

global_step=None)

Adds a SessionLog protocol buffer to the event file.

This method wraps the provided session in an Event procotol buffer

and adds it to the event file.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#Tensor.eval

Args:

 session_log: A SessionLog protocol buffer.

 global_step: Number. Optional global step value to record with the

summary.

tf.train.SummaryWriter.add_event(event)

Adds an event to the event file.

Args:

 event: An Event protocol buffer.

tf.train.SummaryWriter.add_graph(graph_def,

global_step=None)

Adds a GraphDef protocol buffer to the event file.

The graph described by the protocol buffer will be displayed by
TensorBoard. Most users pass a graph in the constructor instead.

Args:

 graph_def: A GraphDef protocol buffer.

 global_step: Number. Optional global step counter to record with

the graph.

tf.train.SummaryWriter.flush()

Flushes the event file to disk.

Call this method to make sure that all pending events have been
written to disk.

tf.train.SummaryWriter.close()

Flushes the event file to disk and close the file.

Call this method when you do not need the summary writer anymore.

tf.train.summary_iterator(path)

An iterator for reading Event protocol buffers from an event file.

You can use this function to read events written to an event file. It

returns a Python iterator that yields Eventprotocol buffers.

Example: Print the contents of an events file.

for e in tf.train.summary_iterator(path to events file):

 print(e)

Example: Print selected summary values.

This example supposes that the events file contains summaries

with a

summary value tag 'loss'. These could have been added by

calling

`add_summary()`, passing the output of a scalar summary op

created with

with: `tf.scalar_summary(['loss'], loss_tensor)`.

for e in tf.train.summary_iterator(path to events file):

 for v in e.summary.value:

 if v.tag == 'loss':

 print(v.simple_value)

See the protocol buffer definitions of Event and Summary for more
information about their attributes.

Args:

 path: The path to an event file created by a SummaryWriter.

Yields:

Event protocol buffers.

Training utilities

tf.train.global_step(sess, global_step_tensor)

Small helper to get the global step.

Creates a variable to hold the global_step.

global_step_tensor = tf.Variable(10, trainable=False,

name='global_step')

Creates a session.

sess = tf.Session()

Initializes the variable.

sess.run(global_step_tensor.initializer)

print('global_step: %s' % tf.train.global_step(sess,

global_step_tensor))

global_step: 10

Args:

 sess: A brain Session object.

https://www.tensorflow.org/code/tensorflow/core/util/event.proto
https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto

 global_step_tensor: Tensor or the name of the operation that

contains the global step.

Returns:

The global step value.

tf.train.write_graph(graph_def, logdir, name,

as_text=True)

Writes a graph proto on disk.

The graph is written as a binary proto unless as_text is True.

v = tf.Variable(0, name='my_variable')

sess = tf.Session()

tf.train.write_graph(sess.graph_def, '/tmp/my-model',

'train.pbtxt')

Args:

 graph_def: A GraphDef protocol buffer.

 logdir: Directory where to write the graph.

 name: Filename for the graph.

 as_text: If True, writes the graph as an ASCII proto.

Other Functions and Classes

class tf.train.LooperThread

A thread that runs code repeatedly, optionally on a timer.

This thread class is intended to be used with a Coordinator. It

repeatedly runs code specified either as targetand args or by

the run_loop() method.

Before each run the thread checks if the coordinator has requested
stop. In that case the looper thread terminates immediately.

If the code being run raises an exception, that exception is reported
to the coordinator and the thread terminates. The coordinator will
then request all the other threads it coordinates to stop.

You typically pass looper threads to the supervisor Join() method.

tf.train.LooperThread.__init__(coord,

timer_interval_secs, target=None, args=None)

Create a LooperThread.

Args:

 coord: A Coordinator.

 timer_interval_secs: Time boundaries at which to call Run(), or

None if it should be called back to back.

 target: Optional callable object that will be executed in the thread.

 args: Optional arguments to pass to target when calling it.

Raises:

 ValueError: If one of the arguments is invalid.

tf.train.LooperThread.daemon

A boolean value indicating whether this thread is a daemon thread
(True) or not (False).

This must be set before start() is called, otherwise RuntimeError is
raised. Its initial value is inherited from the creating thread; the main
thread is not a daemon thread and therefore all threads created in
the main thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads
are left.

tf.train.LooperThread.getName()

tf.train.LooperThread.ident

Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the thread.get_ident() function. Thread
identifiers may be recycled when a thread exits and another thread is
created. The identifier is available even after the thread has exited.

tf.train.LooperThread.isAlive()

Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread.isDaemon()

tf.train.LooperThread.is_alive()

Return whether the thread is alive.

This method returns True just before the run() method starts until just
after the run() method terminates. The module function enumerate()
returns a list of all alive threads.

tf.train.LooperThread.join(timeout=None)

Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is
called terminates -- either normally or through an unhandled
exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in
seconds (or fractions thereof). As join() always returns None, you
must call isAlive() after join() to decide whether a timeout happened -
- if the thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current
thread as that would cause a deadlock. It is also an error to join() a
thread before it has been started and attempts to do so raises the
same exception.

tf.train.LooperThread.loop(coord, timer_interval_secs,

target, args=None)

Start a LooperThread that calls a function periodically.

If timer_interval_secs is None the thread

calls target(args) repeatedly. Otherwise target(args) is called

every timer_interval_secs seconds. The thread terminates when a

stop of the coordinator is requested.

Args:

 coord: A Coordinator.

 timer_interval_secs: Number. Time boundaries at which to

call target.

 target: A callable object.

 args: Optional arguments to pass to target when calling it.

Returns:

The started thread.

tf.train.LooperThread.name

A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name.
The initial name is set by the constructor.

tf.train.LooperThread.run()

tf.train.LooperThread.run_loop()

Called at 'timer_interval_secs' boundaries.

tf.train.LooperThread.setDaemon(daemonic)

tf.train.LooperThread.setName(name)

tf.train.LooperThread.start()

Start the thread's activity.

It must be called at most once per thread object. It arranges for the
object's run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once on the
same thread object.

tf.train.LooperThread.start_loop()

Called when the thread starts.

tf.train.export_meta_graph(filename=None,

meta_info_def=None, graph_def=None, saver_def=None,

collection_list=None, as_text=False)

Returns MetaGraphDef proto. Optionally writes it to filename.

This function exports the graph, saver, and collection objects

into MetaGraphDef protocol buffer with the intension of it being

imported at a later time or location to restart training, run inference, or
be a subgraph.

Args:

 filename: Optional filename including the path for writing the

generated MetaGraphDef protocol buffer.

 meta_info_def: MetaInfoDef protocol buffer.

 graph_def: GraphDef protocol buffer.

 saver_def: SaverDef protocol buffer.

 collection_list: List of string keys to collect.

 as_text: If True, writes the MetaGraphDef as an ASCII proto.

Returns:

A MetaGraphDef proto.

tf.train.generate_checkpoint_state_proto(save_dir,

model_checkpoint_path, all_model_checkpoint_paths=None)

Generates a checkpoint state proto.

Args:

 save_dir: Directory where the model was saved.

 model_checkpoint_path: The checkpoint file.

 all_model_checkpoint_paths: List of strings. Paths to all not-yet-

deleted checkpoints, sorted from oldest to newest. If this is a non-
empty list, the last element must be equal to model_checkpoint_path.
These paths are also saved in the CheckpointState proto.

Returns:

CheckpointState proto with model_checkpoint_path and
all_model_checkpoint_paths updated to either absolute paths or
relative paths to the current save_dir.

tf.train.import_meta_graph(meta_graph_or_file)

Recreates a Graph saved in a MetaGraphDef proto.

This function reads from a file containing a MetaGraphDef proto, adds

all the nodes from the graph_def proto to the current graph, recreates
all the collections, and returns a saver from saver_def.

In combination with export_meta_graph(), this function can be used

to
 Serialize a graph along with other Python objects such

as QueueRunner, Variable into aMetaGraphDef.

 Restart training from a saved graph and checkpoints.

 Run inference from a saved graph and checkpoints.

Args:

 meta_graph_or_file: MetaGraphDef protocol buffer or filename

(including the path) containing aMetaGraphDef.

Returns:

A saver constructed rom saver_def in MetaGraphDef.

Wraps python functions

Note: Functions taking Tensor arguments can also take anything

accepted by tf.convert_to_tensor.

Contents

 Wraps python functions
 Script Language Operators.
 Other Functions and Classes
 tf.py_func(func, inp, Tout, name=None)

Script Language Operators.

https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#convert_to_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#wraps-python-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#script-language-operators
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/script_ops.html#py_func

TensorFlow provides allows you to wrap python/numpy functions as
TensorFlow operators.

Other Functions and Classes

tf.py_func(func, inp, Tout, name=None)

Wraps a python function and uses it as a tensorflow op.

Given a python function func, which takes numpy arrays as its inputs

and returns numpy arrays as its outputs. E.g.,

def my_func(x): return np.sinh(x) inp = tf.placeholder(..., tf.float32) y =
py_func(my_func, [inp], [tf.float32])

The above snippet constructs a tf graph which invokes a numpy
sinh(x) as an op in the graph.

Args:

 func: A python function.

 inp: A list of Tensor.

 Tout: A list of tensorflow data types indicating what func returns.

 name: A name for the operation (optional).

Returns:

A list of Tensor which func computes.

Testing

Contents

 Testing
 Unit tests
 tf.test.main()

 Utilities
 tf.test.assert_equal_graph_def(actual, expected)
 tf.test.get_temp_dir()
 tf.test.is_built_with_cuda()

 Gradient checking
 tf.test.compute_gradient(x, x_shape, y, y_shape,

x_init_value=None, delta=0.001, init_targets=None)
 tf.test.compute_gradient_error(x, x_shape, y, y_shape,

x_init_value=None, delta=0.001, init_targets=None)

Unit tests

TensorFlow provides a convenience class inheriting

from unittest.TestCase which adds methods relevant to

TensorFlow tests. Here is an example:
import tensorflow as tf

class SquareTest(tf.test.TestCase):

 def testSquare(self):

 with self.test_session():

 x = tf.square([2, 3])

 self.assertAllEqual(x.eval(), [4, 9])

if __name__ == '__main__':

 tf.test.main()

tf.test.TestCase inherits from unittest.TestCase but adds a few

additional methods. We will document these methods soon.

tf.test.main()

https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#testing
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#unit-tests
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#main
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#utilities
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#assert_equal_graph_def
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#get_temp_dir
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#is_built_with_cuda
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#gradient-checking
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient_error
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient_error

Runs all unit tests.

Utilities

tf.test.assert_equal_graph_def(actual, expected)

Asserts that two GraphDefs are (mostly) the same.

Compares two GraphDef protos for equality, ignoring versions and

ordering of nodes, attrs, and control inputs. Node names are used to
match up nodes between the graphs, so the naming of nodes must
be consistent.

Args:

 actual: The GraphDef we have.

 expected: The GraphDef we expected.

Raises:

 AssertionError: If the GraphDefs do not match.

 TypeError: If either argument is not a GraphDef.

tf.test.get_temp_dir()

Returns a temporary directory for use during tests.

There is no need to delete the directory after the test.

Returns:

The temporary directory.

tf.test.is_built_with_cuda()

Returns whether TensorFlow was built with CUDA (GPU) support.

Gradient checking

compute_gradient and compute_gradient_error perform

numerical differentiation of graphs for comparison against registered
analytic gradients.

tf.test.compute_gradient(x, x_shape, y, y_shape,

x_init_value=None, delta=0.001, init_targets=None)

Computes and returns the theoretical and numerical Jacobian.

Args:

 x: a tensor or list of tensors

 x_shape: the dimensions of x as a tuple or an array of ints. If x is a

list, then this is the list of shapes.

 y: a tensor

 y_shape: the dimensions of y as a tuple or an array of ints.

 x_init_value: (optional) a numpy array of the same shape as "x"

representing the initial value of x. If x is a list, this should be a list of

https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient
https://www.tensorflow.org/versions/r0.7/api_docs/python/test.html#compute_gradient_error

numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

 delta: (optional) the amount of perturbation.

 init_targets: list of targets to run to initialize model params.

TODO(mrry): remove this argument.

Returns:

Two 2-d numpy arrays representing the theoretical and numerical
Jacobian for dy/dx. Each has "x_size" rows and "y_size" columns
where "x_size" is the number of elements in x and "y_size" is the
number of elements in y. If x is a list, returns a list of two numpy
arrays.

tf.test.compute_gradient_error(x, x_shape, y, y_shape,

x_init_value=None, delta=0.001, init_targets=None)

Computes the gradient error.

Computes the maximum error for dy/dx between the computed
Jacobian and the numerically estimated Jacobian.

This function will modify the tensors passed in as it adds more
operations and hence changing the consumers of the operations of
the input tensors.

This function adds operations to the current session. To compute the
error using a particular device, such as a GPU, use the standard
methods for setting a device (e.g. using with sess.graph.device() or
setting a device function in the session constructor).

Args:

 x: a tensor or list of tensors

https://teams.googleplex.com/mrry

 x_shape: the dimensions of x as a tuple or an array of ints. If x is a

list, then this is the list of shapes.

 y: a tensor

 y_shape: the dimensions of y as a tuple or an array of ints.

 x_init_value: (optional) a numpy array of the same shape as "x"

representing the initial value of x. If x is a list, this should be a list of
numpy arrays. If this is none, the function will pick a random tensor
as the initial value.

 delta: (optional) the amount of perturbation.

 init_targets: list of targets to run to initialize model params.

TODO(mrry): Remove this argument.

Returns:

The maximum error in between the two Jacobians.

Layers (contrib)

Contents

 Layers (contrib)
 Higher level ops for building neural network layers.
 tf.contrib.layers.convolution2d(x, num_output_channels,

kernel_size, activation_fn=None, stride=(1, 1),

padding=SAME, weight_init=_initializer,

bias_init=_initializer, name=None,

weight_collections=None, bias_collections=None,

output_collections=None, weight_regularizer=None,

bias_regularizer=None)
 tf.contrib.layers.fully_connected(x, num_output_units,

activation_fn=None, weight_init=_initializer,

bias_init=_initializer, name=None,

weight_collections=(weights,),

bias_collections=(biases,),

output_collections=(activations,),

weight_regularizer=None, bias_regularizer=None)

https://teams.googleplex.com/mrry
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#layers-contrib
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#higher-level-ops-for-building-neural-network-layers
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#convolution2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#fully_connected

 Regularizers
 tf.contrib.layers.l1_regularizer(scale)
 tf.contrib.layers.l2_regularizer(scale)

 Initializers
 tf.contrib.layers.xavier_initializer(uniform=True,

seed=None, dtype=tf.float32)
 tf.contrib.layers.xavier_initializer_conv2d(uniform=True,

seed=None, dtype=tf.float32)

 Summaries
 tf.contrib.layers.summarize_activation(op)
 tf.contrib.layers.summarize_tensor(tensor)
 tf.contrib.layers.summarize_tensors(tensors,

summarizer=summarize_tensor)
 tf.contrib.layers.summarize_collection(collection,

name_filter=None, summarizer=summarize_tensor)
 tf.contrib.layers.summarize_activations(name_filter=None,

summarizer=summarize_activation)

 Other Functions and Classes
 tf.contrib.layers.assert_same_float_dtype(tensors=None,

dtype=None)

Ops for building neural network layers, regularizers, summaries, etc.

Higher level ops for building neural network layers.

This package provides several ops that take care of creating
variables that are used internally in a consistent way and provide the
building blocks for many common machine learning algorithms.

tf.contrib.layers.convolution2d(x, num_output_channels,

kernel_size, activation_fn=None, stride=(1, 1),

padding='SAME', weight_init=_initializer,

bias_init=_initializer, name=None,

weight_collections=None, bias_collections=None,

output_collections=None, weight_regularizer=None,

bias_regularizer=None)

Adds the parameters for a conv2d layer and returns the output.

https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#regularizers
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#l1_regularizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#l2_regularizer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#initializers
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#xavier_initializer_conv2d
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summaries
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_activation
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_tensor
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_tensors
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_collection
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_activations
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#summarize_activations
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#other-functions-and-classes
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#assert_same_float_dtype
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.layers.html#assert_same_float_dtype

A neural network convolution layer is generally defined

as: y=f(conv2d(w,x)+b)y=f(conv2d(w,x)+b) where f is given

byactivation_fn, conv2d is tf.nn.conv2d and x has

shape [batch, height, width, channels]. The output of this op is

of shape [batch, out_height, out_width,

num_output_channels], whereout_width and out_height are

determined by the padding argument. See conv2D for details.

This op creates w and optionally b and adds various summaries that

can be useful for visualizing learning or diagnosing training problems.

Bias can be disabled by setting bias_init to None.

The variable creation is compatible with tf.variable_scope and so

can be reused withtf.variable_scope or tf.make_template.

Most of the details of variable creation can be controlled by

specifying the initializers (weight_init andbias_init) and which

collections to place the created variables in

(weight_collections andbias_collections).

A per layer regularization can be specified by

setting weight_regularizer. This is only applied to weights and not

the bias.

Args:

 x: A 4-D input Tensor.

 num_output_channels: The number of output channels (i.e. the size

of the last dimension of the output).

 kernel_size: A length 2 list or tuple containing the kernel size.

 activation_fn: A function that requires a single Tensor that is

applied as a non-linearity.

 stride: A length 2 list or tuple specifying the stride of the sliding

window across the image.

 padding: A string from: "SAME", "VALID". The type of padding

algorithm to use.

 weight_init: An optional initialization. If not specified, uses Xavier

initialization (seetf.learn.xavier_initializer).

 bias_init: An initializer for the bias, defaults to 0. Set toNone in

order to disable bias.

 name: The name for this operation is used to name operations and to

find variables. If specified it must be unique for this scope, otherwise
a unique name starting with "convolution2d" will be created.

Seetf.variable_op_scope for details.

 weight_collections: List of graph collections to which weights are

added.

 bias_collections: List of graph collections to which biases are

added.

 output_collections: List of graph collections to which outputs are

added.

 weight_regularizer: A regularizer like the result

of l1_regularizer or l2_regularizer. Used for weights.

 bias_regularizer: A regularizer like the result

of l1_regularizer or l2_regularizer. Used for biases.

Returns:

The result of applying a 2-D convolutional layer.

Raises:

 ValueError: If kernel_size or stride are not length 2.

tf.contrib.layers.fully_connected(x, num_output_units,

activation_fn=None, weight_init=_initializer,

bias_init=_initializer, name=None,

weight_collections=('weights',),

bias_collections=('biases',),

output_collections=('activations',),

weight_regularizer=None, bias_regularizer=None)

Adds the parameters for a fully connected layer and returns the
output.

A fully connected layer is generally defined as a matrix multiply: y =

f(w * x + b) where f is given byactivation_fn.

If activation_fn is None, the result of y = w * x + b is returned.

This op creates w and optionally b. Bias (b) can be disabled by

setting bias_init to None.

The variable creation is compatible with tf.variable_scope and so

can be reused withtf.variable_scope or tf.make_template.

Most of the details of variable creation can be controlled by

specifying the initializers (weight_init andbias_init) and which in

collections to place the created variables

(weight_collections andbias_collections; note that the

variables are always added to the VARIABLES collection). The output

of the layer can be placed in custom collections

using output_collections. The collections arguments default

toWEIGHTS, BIASES and ACTIVATIONS, respectively.

A per layer regularization can be specified by

setting weight_regularizer and bias_regularizer, which are

applied to the weights and biases respectively, and whose output is

added to the REGULARIZATION_LOSSEScollection.

Args:

 x: The input Tensor.

 num_output_units: The size of the output.

 activation_fn: A function that requires a single Tensor that is

applied as a non-linearity. If None is used, do not apply any
activation.

 weight_init: An optional weight initialization, defaults

to xavier_initializer.

 bias_init: An initializer for the bias, defaults to 0. Set to None in

order to disable bias.

 name: The name for this operation is used to name operations and to

find variables. If specified it must be unique for this scope, otherwise
a unique name starting with "fully_connected" will be created.

Seetf.variable_op_scope for details.

 weight_collections: List of graph collections to which weights are

added.

 bias_collections: List of graph collections to which biases are

added.

 output_collections: List of graph collections to which outputs are

added.

 weight_regularizer: A regularizer like the result

of l1_regularizer or l2_regularizer. Used for weights.

 bias_regularizer: A regularizer like the result

of l1_regularizer or l2_regularizer. Used for biases.

Returns:

The output of the fully connected layer.

Aliases for fully_connected which set a default activation function are

available: relu, relu6 and linear.

Regularizers

Regularization can help prevent overfitting. These have the

signature fn(weights). The loss is typically added

to tf.GraphKeys.REGULARIZATION_LOSS

tf.contrib.layers.l1_regularizer(scale)

Returns a function that can be used to apply L1 regularization to
weights.

L1 regularization encourages sparsity.

Args:

 scale: A scalar multiplier Tensor. 0.0 disables the regularizer.

Returns:

A function with signature l1(weights, name=None) that apply L1

regularization.

Raises:

 ValueError: If scale is outside of the range [0.0, 1.0] or if scale is not

a float.

tf.contrib.layers.l2_regularizer(scale)

Returns a function that can be used to apply L2 regularization to
weights.

Small values of L2 can help prevent overfitting the training data.

Args:

 scale: A scalar multiplier Tensor. 0.0 disables the regularizer.

Returns:

A function with signature l2(weights, name=None) that applies L2

regularization.

Raises:

 ValueError: If scale is outside of the range [0.0, 1.0] or if scale is not

a float.

Initializers

Initializers are used to initialize variables with sensible values given
their size, data type, and purpose.

tf.contrib.layers.xavier_initializer(uniform=True,

seed=None, dtype=tf.float32)

Returns an initializer performing "Xavier" initialization for weights.

This function implements the weight initialization from:

Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty
of training deep feedforward neural networks. International
conference on artificial intelligence and statistics.

This initializer is designed to keep the scale of the gradients roughly
the same in all layers. In uniform distribution this ends up being the

range: x = sqrt(6. / (in + out)); [-x, x] and for normal

distribution a standard deviation of sqrt(3. / (in + out)) is used.

The returned initializer assumes that the shape of the weight matrix

to be initialized is [in, out].

Args:

 uniform: Whether to use uniform or normal distributed random

initialization.

 seed: A Python integer. Used to create random seeds.

See set_random_seed for behavior.

 dtype: The data type. Only floating point types are supported.

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

Returns:

An initializer for a 2-D weight matrix.

Raises:

 TypeError: If dtype is not a floating point type.

tf.contrib.layers.xavier_initializer_conv2d(uniform=True,

seed=None, dtype=tf.float32)

Returns an "Xavier" initializer for 2D convolution weights.

For details on the initialization performed, see xavier_initializer.

This function initializes a convolution weight variable which is
assumed to be 4-D. The first two dimensions are expected to be the
kernel size, the third dimension is the number of input channels, and
the last dimension is the number of output channels.

The number of inputs is therefore shape[0]*shape[1]*shape[2],

and the number of outputs isshape[0]*shape[1]*shape[3].

Args:

 uniform: Whether to use uniform or normal distributed random

initialization.

 seed: A Python integer. Used to create random seeds.

See set_random_seed for behavior.

 dtype: The data type. Only floating point types are supported.

Returns:

https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#set_random_seed

An initializer for a 4-D weight matrix.

Raises:

 TypeError: If dtype is not a floating point type.

Summaries

Helper functions to summarize specific variables or ops.

tf.contrib.layers.summarize_activation(op)

Summarize an activation.

This applies the given activation and adds useful summaries specific
to the activation.

Args:

 op: The tensor to summarize (assumed to be a layer activation).

Returns:

The summary op created to summarize op.

tf.contrib.layers.summarize_tensor(tensor)

Summarize a tensor using a suitable summary type.

This function adds a summary op for tensor. The type of summary

depends on the shape of tensor. For scalars, a scalar_summary is

created, for all other tensors, histogram_summary is used.

Args:

 tensor: The tensor to summarize

Returns:

The summary op created.

tf.contrib.layers.summarize_tensors(tensors,

summarizer=summarize_tensor)

Summarize a set of tensors.

tf.contrib.layers.summarize_collection(collection,

name_filter=None, summarizer=summarize_tensor)

Summarize a graph collection of tensors, possibly filtered by name.

The layers module defines convenience

functions summarize_variables, summarize_weights andsummariz

e_biases, which set the collection argument

of summarize_collection to VARIABLES,WEIGHTS and BIASES,

respectively.

tf.contrib.layers.summarize_activations(name_filter=None,

summarizer=summarize_activation)

Summarize activations, using summarize_activation to summarize.

Other Functions and Classes

tf.contrib.layers.assert_same_float_dtype(tensors=None,

dtype=None)

Validate and return float type based on tensors and dtype.

For ops such as matrix multiplication, inputs and weights must be of

the same float type. This function validates that all tensors are the

same type, validates that type is dtype (if supplied), and returns the

type. Type must bedtypes.float32 or dtypes.float64. If

neither tensors nor dtype is supplied, default todtypes.float32.

Args:

 tensors: Tensors of input values. Can include None elements, which

will be ignored.

 dtype: Expected type.

Returns:

Validated type.

Raises:

 ValueError: if neither tensors nor dtype is supplied, or result is not

float.

Utilities (contrib)

Contents

 Utilities (contrib)
 Miscellaneous Utility Functions
 tf.contrib.util.constant_value(tensor)
 tf.contrib.util.make_tensor_proto(values, dtype=None,

shape=None)

Utilities for dealing with Tensors.

Miscellaneous Utility Functions

tf.contrib.util.constant_value(tensor)

Returns the constant value of the given tensor, if efficiently
calculable.

This function attempts to partially evaluate the given tensor, and
returns its value as a numpy ndarray if this succeeds.

TODO(mrry): Consider whether this function should use a registration
mechanism like gradients and ShapeFunctions, so that it is easily
extensible.

Args:

 tensor: The Tensor to be evaluated.

https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#utilities-contrib
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#miscellaneous-utility-functions
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#constant_value
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#make_tensor_proto
https://www.tensorflow.org/versions/r0.7/api_docs/python/contrib.util.html#make_tensor_proto
https://teams.googleplex.com/mrry

Returns:

A numpy ndarray containing the constant value of the given tensor,

or None if it cannot be calculated.

Raises:

 TypeError: if tensor is not an ops.Tensor.

tf.contrib.util.make_tensor_proto(values, dtype=None,

shape=None)

Create a TensorProto.

Args:

 values: Values to put in the TensorProto.

 dtype: Optional tensor_pb2 DataType value.

 shape: List of integers representing the dimensions of tensor.

Returns:

A TensorProto. Depending on the type, it may contain data in the
"tensor_content" attribute, which is not directly useful to Python
programs. To access the values you should convert the proto back to
a numpy ndarray with tensor_util.MakeNdarray(proto).

Raises:

 TypeError: if unsupported types are provided.

 ValueError: if arguments have inappropriate values.

make_tensor_proto accepts "values" of a python scalar, a python list,
a numpy ndarray, or a numpy scalar.

If "values" is a python scalar or a python list, make_tensor_proto first
convert it to numpy ndarray. If dtype is None, the conversion tries its
best to infer the right numpy data type. Otherwise, the resulting
numpy array has a compatible data type with the given dtype.

In either case above, the numpy ndarray (either the caller provided or
the auto converted) must have the compatible type with dtype.

make_tensor_proto then converts the numpy array to a tensor proto.

If "shape" is None, the resulting tensor proto represents the numpy
array precisely.

Otherwise, "shape" specifies the tensor's shape and the numpy array
can not have more elements than what "shape" specifies.

	Building Graphs
	Core graph data structures
	class tf.Graph
	tf.Graph.__init__()
	tf.Graph.as_default()
	Returns:

	tf.Graph.as_graph_def(from_version=None, add_shapes=False)
	Args:
	Returns:
	Raises:

	tf.Graph.finalize()
	tf.Graph.finalized
	tf.Graph.control_dependencies(control_inputs)
	Args:
	Returns:
	Raises:

	tf.Graph.device(device_name_or_function)
	Args:
	Returns:

	tf.Graph.name_scope(name)
	Args:
	Returns:

	tf.Graph.add_to_collection(name, value)
	Args:

	tf.Graph.get_collection(name, scope=None)
	Args:
	Returns:

	tf.Graph.as_graph_element(obj, allow_tensor=True, allow_operation=True)
	Args:
	Returns:
	Raises:

	tf.Graph.get_operation_by_name(name)
	Args:
	Returns:
	Raises:

	tf.Graph.get_tensor_by_name(name)
	Args:
	Returns:
	Raises:

	tf.Graph.get_operations()
	Returns:

	tf.Graph.seed
	tf.Graph.unique_name(name)
	Args:
	Returns:

	tf.Graph.version
	tf.Graph.graph_def_versions
	Returns:

	tf.Graph.create_op(op_type, inputs, dtypes, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True)
	Args:
	Raises:
	Returns:

	tf.Graph.gradient_override_map(op_type_map)
	Args:
	Returns:
	Raises:

	Other Methods
	tf.Graph.add_to_collections(names, value)
	Args:

	tf.Graph.get_all_collection_keys()

	class tf.Operation
	tf.Operation.name
	tf.Operation.type
	tf.Operation.inputs
	tf.Operation.control_inputs
	Returns:

	tf.Operation.outputs
	tf.Operation.device
	Returns:

	tf.Operation.graph
	tf.Operation.run(feed_dict=None, session=None)
	Args:

	tf.Operation.get_attr(name)
	Args:
	Returns:
	Raises:

	tf.Operation.traceback
	Other Methods
	tf.Operation.__init__(node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None)
	Args:
	Raises:

	tf.Operation.node_def
	Returns:

	tf.Operation.op_def
	Returns:

	tf.Operation.values()

	class tf.Tensor
	tf.Tensor.dtype
	tf.Tensor.name
	tf.Tensor.value_index
	tf.Tensor.graph
	tf.Tensor.op
	tf.Tensor.consumers()
	Returns:

	tf.Tensor.eval(feed_dict=None, session=None)
	Args:
	Returns:

	tf.Tensor.get_shape()
	Returns:

	tf.Tensor.set_shape(shape)
	Args:
	Raises:

	Other Methods
	tf.Tensor.__init__(op, value_index, dtype)
	Args:
	Raises:

	tf.Tensor.device

	Tensor types
	class tf.DType
	tf.DType.is_compatible_with(other)
	Args:
	Returns:

	tf.DType.name
	tf.DType.base_dtype
	tf.DType.is_ref_dtype
	tf.DType.as_ref
	tf.DType.is_floating
	tf.DType.is_integer
	tf.DType.is_quantized
	tf.DType.is_unsigned
	Returns:

	tf.DType.as_numpy_dtype
	tf.DType.as_datatype_enum
	Other Methods
	tf.DType.__init__(type_enum)
	Args:
	Raises:

	tf.DType.max
	Raises:

	tf.DType.min
	Raises:

	tf.as_dtype(type_value)
	Args:
	Returns:
	Raises:

	Utility functions
	tf.device(dev)
	Args:
	Returns:

	tf.name_scope(name)
	Args:
	Returns:

	tf.control_dependencies(control_inputs)
	Args:
	Returns:

	tf.convert_to_tensor(value, dtype=None, name=None, as_ref=False)
	Args:
	Returns:
	Raises:

	tf.convert_to_tensor_or_indexed_slices(value, dtype=None, name=None, as_ref=False)
	Args:
	Returns:
	Raises:

	tf.get_default_graph()
	Returns:

	tf.reset_default_graph()
	tf.import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None)
	Args:
	Returns:
	Raises:

	tf.load_op_library(library_filename)
	Args:
	Returns:
	Raises:

	Graph collections
	tf.add_to_collection(name, value)
	Args:

	tf.get_collection(key, scope=None)
	Args:
	Returns:

	class tf.GraphKeys

	Defining new operations
	class tf.RegisterGradient
	tf.RegisterGradient.__init__(op_type)
	Args:

	tf.NoGradient(op_type)
	Args:
	Raises:

	class tf.RegisterShape
	tf.RegisterShape.__init__(op_type)

	class tf.TensorShape
	tf.TensorShape.merge_with(other)
	Args:
	Returns:
	Raises:

	tf.TensorShape.concatenate(other)
	Args:
	Returns:

	tf.TensorShape.ndims
	tf.TensorShape.dims
	tf.TensorShape.as_list()
	Returns:

	tf.TensorShape.as_proto()
	tf.TensorShape.is_compatible_with(other)
	Args:
	Returns:

	tf.TensorShape.is_fully_defined()
	tf.TensorShape.with_rank(rank)
	Args:
	Returns:
	Raises:

	tf.TensorShape.with_rank_at_least(rank)
	Args:
	Returns:
	Raises:

	tf.TensorShape.with_rank_at_most(rank)
	Args:
	Returns:
	Raises:

	tf.TensorShape.assert_has_rank(rank)
	Args:
	Raises:

	tf.TensorShape.assert_same_rank(other)
	Args:
	Raises:

	tf.TensorShape.assert_is_compatible_with(other)
	Args:
	Raises:

	tf.TensorShape.assert_is_fully_defined()
	Raises:

	Other Methods
	tf.TensorShape.__init__(dims)
	Args:

	tf.TensorShape.num_elements()

	class tf.Dimension
	tf.Dimension.__init__(value)
	tf.Dimension.assert_is_compatible_with(other)
	Args:
	Raises:

	tf.Dimension.is_compatible_with(other)
	Args:
	Returns:

	tf.Dimension.merge_with(other)
	Args:
	Returns:
	Raises:

	tf.Dimension.value

	tf.op_scope(values, name, default_name=None)
	Args:
	Returns:
	Raises:

	tf.get_seed(op_seed)
	Args:
	Returns:

	For libraries building on TensorFlow
	tf.register_tensor_conversion_function(base_type, conversion_func, priority=100)
	Args:
	Raises:

	Other Functions and Classes
	class tf.bytes

	Constants, Sequences, and Random Values
	Constant Value Tensors
	tf.zeros(shape, dtype=tf.float32, name=None)
	Args:
	Returns:

	tf.zeros_like(tensor, dtype=None, name=None)
	Args:
	Returns:

	tf.ones(shape, dtype=tf.float32, name=None)
	Args:
	Returns:

	tf.ones_like(tensor, dtype=None, name=None)
	Args:
	Returns:

	tf.fill(dims, value, name=None)
	Args:
	Returns:

	tf.constant(value, dtype=None, shape=None, name='Const')
	Args:
	Returns:

	Sequences
	tf.linspace(start, stop, num, name=None)
	Args:
	Returns:

	tf.range(start, limit=None, delta=1, name='range')
	Args:
	Returns:

	Random Tensors
	Examples:
	tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
	Args:
	Returns:

	tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
	Args:
	Returns:

	tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)
	Args:
	Returns:
	Raises:

	tf.random_shuffle(value, seed=None, name=None)
	Args:
	Returns:

	tf.random_crop(value, size, seed=None, name=None)
	Args:
	Returns:

	tf.set_random_seed(seed)
	Args:

	Variables
	Variables
	class tf.Variable
	tf.Variable.__init__(initial_value=None, trainable=True, collections=None, validate_shape=True, name=None, variable_def=None)
	Args:
	Returns:
	Raises:

	tf.Variable.initialized_value()
	Returns:

	tf.Variable.assign(value, use_locking=False)
	Args:
	Returns:

	tf.Variable.assign_add(delta, use_locking=False)
	Args:
	Returns:

	tf.Variable.assign_sub(delta, use_locking=False)
	Args:
	Returns:

	tf.Variable.scatter_sub(sparse_delta, use_locking=False)
	Args:
	Returns:
	Raises:

	tf.Variable.count_up_to(limit)
	Args:
	Returns:

	tf.Variable.eval(session=None)
	Args:
	Returns:

	tf.Variable.name
	tf.Variable.dtype
	tf.Variable.get_shape()
	Returns:

	tf.Variable.device
	tf.Variable.initializer
	tf.Variable.graph
	tf.Variable.op
	Other Methods
	tf.Variable.from_proto(variable_def)
	tf.Variable.ref()
	Returns:

	tf.Variable.to_proto()
	Returns:

	tf.Variable.value()
	Returns:

	Variable helper functions
	tf.all_variables()
	Returns:

	tf.trainable_variables()
	Returns:

	tf.moving_average_variables()
	Returns:

	tf.initialize_all_variables()
	Returns:

	tf.initialize_variables(var_list, name='init')
	Args:
	Returns:

	tf.assert_variables_initialized(var_list=None)
	Args:
	Returns:

	Saving and Restoring Variables
	class tf.train.Saver
	tf.train.Saver.__init__(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n_hours=10000.0, name=None, restore_sequentially=False, saver_def=None, builder=None)
	Args:
	Raises:

	tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta')
	Args:
	Returns:
	Raises:

	tf.train.Saver.restore(sess, save_path)
	Args:

	tf.train.Saver.last_checkpoints
	Returns:

	tf.train.Saver.set_last_checkpoints(last_checkpoints)
	Args:
	Raises:

	tf.train.Saver.as_saver_def()
	Returns:

	Other Methods
	tf.train.Saver.export_meta_graph(filename=None, collection_list=None, as_text=False)
	Args:
	Returns:

	tf.train.Saver.from_proto(saver_def)
	tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time)
	Args:
	Raises:

	tf.train.Saver.to_proto()

	tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None)
	Args:
	Returns:

	tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None)
	Args:
	Returns:

	tf.train.update_checkpoint_state(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None, latest_filename=None)
	Args:
	Raises:

	Sharing Variables
	tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None, trainable=True, collections=None)
	Args:
	Returns:
	Raises:

	tf.get_variable_scope()
	tf.make_template(name_, func_, **kwargs)
	Args:
	Returns:
	Raises:

	tf.variable_op_scope(values, name, default_name, initializer=None)
	Args:
	Returns:
	Raises:

	tf.variable_scope(name_or_scope, reuse=None, initializer=None)
	Args:
	Returns:
	Raises:

	tf.constant_initializer(value=0.0, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.random_uniform_initializer(minval=0.0, maxval=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.uniform_unit_scaling_initializer(factor=1.0, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.zeros_initializer(shape, dtype=tf.float32)

	Sparse Variable Updates
	tf.scatter_update(ref, indices, updates, use_locking=None, name=None)
	Args:
	Returns:

	tf.scatter_add(ref, indices, updates, use_locking=None, name=None)
	Args:
	Returns:

	tf.scatter_sub(ref, indices, updates, use_locking=None, name=None)
	Args:
	Returns:

	tf.sparse_mask(a, mask_indices, name=None)
	Args:
	Returns:

	class tf.IndexedSlices
	tf.IndexedSlices.__init__(values, indices, dense_shape=None)
	tf.IndexedSlices.values
	tf.IndexedSlices.indices
	tf.IndexedSlices.dense_shape
	tf.IndexedSlices.name
	tf.IndexedSlices.dtype
	tf.IndexedSlices.device
	tf.IndexedSlices.op
	Other Methods
	tf.IndexedSlices.graph

	Tensor Transformations
	Casting
	tf.string_to_number(string_tensor, out_type=None, name=None)
	Args:
	Returns:

	tf.to_double(x, name='ToDouble')
	Args:
	Returns:
	Raises:

	tf.to_float(x, name='ToFloat')
	Args:
	Returns:
	Raises:

	tf.to_bfloat16(x, name='ToBFloat16')
	Args:
	Returns:
	Raises:

	tf.to_int32(x, name='ToInt32')
	Args:
	Returns:
	Raises:

	tf.to_int64(x, name='ToInt64')
	Args:
	Returns:
	Raises:

	tf.cast(x, dtype, name=None)
	Args:
	Returns:
	Raises:

	Shapes and Shaping
	tf.shape(input, name=None)
	Args:
	Returns:

	tf.size(input, name=None)
	Args:
	Returns:

	tf.rank(input, name=None)
	Args:
	Returns:

	tf.reshape(tensor, shape, name=None)
	Args:
	Returns:

	tf.squeeze(input, squeeze_dims=None, name=None)
	Args:
	Returns:

	tf.expand_dims(input, dim, name=None)
	Args:
	Returns:

	Slicing and Joining
	tf.slice(input_, begin, size, name=None)
	Args:
	Returns:

	tf.split(split_dim, num_split, value, name='split')
	Args:
	Returns:

	tf.tile(input, multiples, name=None)
	Args:
	Returns:

	tf.pad(input, paddings, name=None)
	Args:
	Returns:

	tf.concat(concat_dim, values, name='concat')
	Args:
	Returns:

	tf.pack(values, name='pack')
	Args:
	Returns:

	tf.unpack(value, num=None, name='unpack')
	Args:
	Returns:
	Raises:

	tf.reverse_sequence(input, seq_lengths, seq_dim, batch_dim=None, name=None)
	Args:
	Returns:

	tf.reverse(tensor, dims, name=None)
	Args:
	Returns:

	tf.transpose(a, perm=None, name='transpose')
	Args:
	Returns:

	tf.space_to_depth(input, block_size, name=None)
	Args:
	Returns:

	tf.depth_to_space(input, block_size, name=None)
	Args:
	Returns:

	tf.gather(params, indices, validate_indices=None, name=None)
	Args:
	Returns:

	tf.dynamic_partition(data, partitions, num_partitions, name=None)
	Args:
	Returns:

	tf.dynamic_stitch(indices, data, name=None)
	Args:
	Returns:

	tf.boolean_mask(tensor, mask, name='boolean_mask')
	Args:
	Returns:
	Raises:

	Other Functions and Classes
	tf.shape_n(input, name=None)
	Args:
	Returns:

	tf.unique_with_counts(x, name=None)
	Args:
	Returns:

	Math
	Arithmetic Operators
	tf.add(x, y, name=None)
	Args:
	Returns:

	tf.sub(x, y, name=None)
	Args:
	Returns:

	tf.mul(x, y, name=None)
	Args:
	Returns:

	tf.div(x, y, name=None)
	Args:
	Returns:

	tf.truediv(x, y, name=None)
	Args:
	Returns:
	Raises:

	tf.floordiv(x, y, name=None)
	Args:
	Returns:
	Raises:

	tf.mod(x, y, name=None)
	Args:
	Returns:

	tf.cross(a, b, name=None)
	Args:
	Returns:

	Basic Math Functions
	tf.add_n(inputs, name=None)
	Args:
	Returns:

	tf.abs(x, name=None)
	Args:
	Returns:

	tf.neg(x, name=None)
	Args:
	Returns:

	tf.sign(x, name=None)
	Args:
	Returns:

	tf.inv(x, name=None)
	Args:
	Returns:

	tf.square(x, name=None)
	Args:
	Returns:

	tf.round(x, name=None)
	Args:
	Returns:

	tf.sqrt(x, name=None)
	Args:
	Returns:

	tf.rsqrt(x, name=None)
	Args:
	Returns:

	tf.pow(x, y, name=None)
	Args:
	Returns:

	tf.exp(x, name=None)
	Args:
	Returns:

	tf.log(x, name=None)
	Args:
	Returns:

	tf.ceil(x, name=None)
	Args:
	Returns:

	tf.floor(x, name=None)
	Args:
	Returns:

	tf.maximum(x, y, name=None)
	Args:
	Returns:

	tf.minimum(x, y, name=None)
	Args:
	Returns:

	tf.cos(x, name=None)
	Args:
	Returns:

	tf.sin(x, name=None)
	Args:
	Returns:

	tf.lgamma(x, name=None)
	Args:
	Returns:

	tf.erf(x, name=None)
	Args:
	Returns:

	tf.erfc(x, name=None)
	Args:
	Returns:

	Matrix Math Functions
	tf.diag(diagonal, name=None)
	Args:
	Returns:

	tf.transpose(a, perm=None, name='transpose')
	Args:
	Returns:

	tf.matmul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None)
	Args:
	Returns:

	tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None)
	Args:
	Returns:

	tf.matrix_determinant(input, name=None)
	Args:
	Returns:

	tf.batch_matrix_determinant(input, name=None)
	Args:
	Returns:

	tf.matrix_inverse(input, name=None)
	Args:
	Returns:

	tf.batch_matrix_inverse(input, name=None)
	Args:
	Returns:

	tf.cholesky(input, name=None)
	Args:
	Returns:

	tf.batch_cholesky(input, name=None)
	Args:
	Returns:

	tf.self_adjoint_eig(input, name=None)
	Args:
	Returns:

	tf.batch_self_adjoint_eig(input, name=None)
	Args:
	Returns:

	tf.matrix_solve(matrix, rhs, name=None)
	Args:
	Returns:

	tf.batch_matrix_solve(matrix, rhs, name=None)
	Args:
	Returns:

	tf.matrix_triangular_solve(matrix, rhs, lower=None, name=None)
	Args:
	Returns:

	tf.batch_matrix_triangular_solve(matrix, rhs, lower=None, name=None)
	Args:
	Returns:

	tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None)
	Args:
	Returns:

	tf.batch_matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None)
	Args:
	Returns:

	Complex Number Functions
	tf.complex(real, imag, name=None)
	Args:
	Returns:

	tf.complex_abs(x, name=None)
	Args:
	Returns:

	tf.conj(in_, name=None)
	Args:
	Returns:

	tf.imag(in_, name=None)
	Args:
	Returns:

	tf.real(in_, name=None)
	Args:
	Returns:

	tf.fft2d(in_, name=None)
	Args:
	Returns:

	tf.ifft2d(in_, name=None)
	Args:
	Returns:

	Reduction
	tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_prod(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_min(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_all(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.reduce_any(input_tensor, reduction_indices=None, keep_dims=False, name=None)
	Args:
	Returns:

	tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None)
	Args:
	Returns:
	Raises:

	Segmentation
	tf.segment_sum(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_prod(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_min(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_max(data, segment_ids, name=None)
	Args:
	Returns:

	tf.segment_mean(data, segment_ids, name=None)
	Args:
	Returns:

	tf.unsorted_segment_sum(data, segment_ids, num_segments, name=None)
	Args:
	Returns:

	tf.sparse_segment_sum(data, indices, segment_ids, name=None)
	Args:
	Returns:

	tf.sparse_segment_mean(data, indices, segment_ids, name=None)
	Args:
	Returns:

	tf.sparse_segment_sqrt_n(data, indices, segment_ids, name=None)
	Args:
	Returns:

	Sequence Comparison and Indexing
	tf.argmin(input, dimension, name=None)
	Args:
	Returns:

	tf.argmax(input, dimension, name=None)
	Args:
	Returns:

	tf.listdiff(x, y, name=None)
	Args:
	Returns:

	tf.where(input, name=None)
	Args:
	Returns:

	tf.unique(x, name=None)
	Args:
	Returns:

	tf.edit_distance(hypothesis, truth, normalize=True, name='edit_distance')
	Args:
	Returns:
	Raises:

	tf.invert_permutation(x, name=None)
	Args:
	Returns:

	Other Functions and Classes
	tf.scalar_mul(scalar, x)
	Args:
	Returns:
	Raises:

	tf.sparse_segment_sqrt_n_grad(grad, indices, segment_ids, output_dim0, name=None)
	Args:
	Returns:

	Control Flow
	Control Flow Operations
	tf.identity(input, name=None)
	Args:
	Returns:

	tf.tuple(tensors, name=None, control_inputs=None)
	Args:
	Returns:
	Raises:

	tf.group(*inputs, **kwargs)
	Args:
	Returns:
	Raises:

	tf.no_op(name=None)
	Args:
	Returns:

	tf.count_up_to(ref, limit, name=None)
	Args:
	Returns:

	tf.cond(pred, fn1, fn2, name=None)
	Args:
	Returns:
	Raises:

	Logical Operators
	tf.logical_and(x, y, name=None)
	Args:
	Returns:

	tf.logical_not(x, name=None)
	Args:
	Returns:

	tf.logical_or(x, y, name=None)
	Args:
	Returns:

	tf.logical_xor(x, y, name='LogicalXor')

	Comparison Operators
	tf.equal(x, y, name=None)
	Args:
	Returns:

	tf.not_equal(x, y, name=None)
	Args:
	Returns:

	tf.less(x, y, name=None)
	Args:
	Returns:

	tf.less_equal(x, y, name=None)
	Args:
	Returns:

	tf.greater(x, y, name=None)
	Args:
	Returns:

	tf.greater_equal(x, y, name=None)
	Args:
	Returns:

	tf.select(condition, t, e, name=None)
	Args:
	Returns:

	tf.where(input, name=None)
	Args:
	Returns:

	Debugging Operations
	tf.is_finite(x, name=None)
	Args:
	Returns:

	tf.is_inf(x, name=None)
	Args:
	Returns:

	tf.is_nan(x, name=None)
	Args:
	Returns:

	tf.verify_tensor_all_finite(t, msg, name=None)
	Args:
	Returns:

	tf.check_numerics(tensor, message, name=None)
	Args:
	Returns:

	tf.add_check_numerics_ops()
	Returns:

	tf.Assert(condition, data, summarize=None, name=None)
	Args:

	tf.Print(input_, data, message=None, first_n=None, summarize=None, name=None)
	Args:
	Returns:

	Images
	Encoding and Decoding
	tf.image.decode_jpeg(contents, channels=None, ratio=None, fancy_upscaling=None, try_recover_truncated=None, acceptable_fraction=None, name=None)
	Args:
	Returns:

	tf.image.encode_jpeg(image, format=None, quality=None, progressive=None, optimize_size=None, chroma_downsampling=None, density_unit=None, x_density=None, y_density=None, xmp_metadata=None, name=None)
	Args:
	Returns:

	tf.image.decode_png(contents, channels=None, dtype=None, name=None)
	Args:
	Returns:

	tf.image.encode_png(image, compression=None, name=None)
	Args:
	Returns:

	Resizing
	tf.image.resize_images(images, new_height, new_width, method=0, align_corners=False)
	Args:
	Raises:
	Returns:

	tf.image.resize_area(images, size, align_corners=None, name=None)
	Args:
	Returns:

	tf.image.resize_bicubic(images, size, align_corners=None, name=None)
	Args:
	Returns:

	tf.image.resize_bilinear(images, size, align_corners=None, name=None)
	Args:
	Returns:

	tf.image.resize_nearest_neighbor(images, size, align_corners=None, name=None)
	Args:
	Returns:

	Cropping
	tf.image.resize_image_with_crop_or_pad(image, target_height, target_width)
	Args:
	Raises:
	Returns:

	tf.image.pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width)
	Args:
	Returns:
	Raises:

	tf.image.crop_to_bounding_box(image, offset_height, offset_width, target_height, target_width)
	Args:
	Returns:
	Raises:

	tf.image.extract_glimpse(input, size, offsets, centered=None, normalized=None, uniform_noise=None, name=None)
	Args:
	Returns:

	Flipping and Transposing
	tf.image.flip_up_down(image)
	Args:
	Returns:
	Raises:

	tf.image.random_flip_up_down(image, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.flip_left_right(image)
	Args:
	Returns:
	Raises:

	tf.image.random_flip_left_right(image, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.transpose_image(image)
	Args:
	Returns:
	Raises:

	Converting Between Colorspaces.
	tf.image.rgb_to_grayscale(images)
	Args:
	Returns:

	tf.image.grayscale_to_rgb(images)
	Args:
	Returns:

	tf.image.hsv_to_rgb(images, name=None)
	Args:
	Returns:

	tf.image.rgb_to_hsv(images, name=None)
	Args:
	Returns:

	tf.image.convert_image_dtype(image, dtype, saturate=False, name=None)
	Args:
	Returns:

	Image Adjustments
	tf.image.adjust_brightness(image, delta)
	Args:
	Returns:

	tf.image.random_brightness(image, max_delta, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.adjust_contrast(images, contrast_factor)
	Args:
	Returns:

	tf.image.random_contrast(image, lower, upper, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.adjust_hue(image, delta, name=None)
	Args:
	Returns:

	tf.image.random_hue(image, max_delta, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.adjust_saturation(image, saturation_factor, name=None)
	Args:
	Returns:

	tf.image.random_saturation(image, lower, upper, seed=None)
	Args:
	Returns:
	Raises:

	tf.image.per_image_whitening(image)
	Args:
	Returns:
	Raises:

	Working with Bounding Boxes
	tf.image.draw_bounding_boxes(images, boxes, name=None)
	Args:
	Returns:

	tf.image.sample_distorted_bounding_box(image_size, bounding_boxes, seed=None, seed2=None, min_object_covered=None, aspect_ratio_range=None, area_range=None, max_attempts=None, use_image_if_no_bounding_boxes=None, name=None)
	Args:
	Returns:

	Other Functions and Classes
	tf.image.saturate_cast(image, dtype)
	Args:
	Returns:

	Sparse Tensors
	Sparse Tensor Representation
	class tf.SparseTensor
	tf.SparseTensor.__init__(indices, values, shape)
	Args:
	Returns:

	tf.SparseTensor.indices
	Returns:

	tf.SparseTensor.values
	Returns:

	tf.SparseTensor.dtype
	tf.SparseTensor.shape
	tf.SparseTensor.graph

	class tf.SparseTensorValue
	tf.SparseTensorValue.indices
	tf.SparseTensorValue.shape
	tf.SparseTensorValue.values

	Sparse to Dense Conversion
	tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None)
	Args:
	Returns:

	tf.sparse_tensor_to_dense(sp_input, default_value=0, validate_indices=True, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_to_indicator(sp_input, vocab_size, name=None)
	Args:
	Returns:
	Raises:

	Manipulation
	tf.sparse_concat(concat_dim, sp_inputs, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_reorder(sp_input, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_split(split_dim, num_split, sp_input, name=None)
	Args:
	Returns:
	Raises:

	tf.sparse_retain(sp_input, to_retain)
	Args:
	Returns:
	Raises:

	tf.sparse_fill_empty_rows(sp_input, default_value, name=None)
	Args:
	Returns:
	Raises:

	Inputs and Readers
	Placeholders
	tf.placeholder(dtype, shape=None, name=None)
	Args:
	Returns:

	Readers
	class tf.ReaderBase
	tf.ReaderBase.__init__(reader_ref, supports_serialize=False)
	Args:

	tf.ReaderBase.num_records_produced(name=None)
	Args:
	Returns:

	tf.ReaderBase.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.ReaderBase.read(queue, name=None)
	Args:
	Returns:

	tf.ReaderBase.reader_ref
	tf.ReaderBase.reset(name=None)
	Args:
	Returns:

	tf.ReaderBase.restore_state(state, name=None)
	Args:
	Returns:

	tf.ReaderBase.serialize_state(name=None)
	Args:
	Returns:

	tf.ReaderBase.supports_serialize

	class tf.TextLineReader
	tf.TextLineReader.__init__(skip_header_lines=None, name=None)
	Args:

	tf.TextLineReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.TextLineReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.TextLineReader.read(queue, name=None)
	Args:
	Returns:

	tf.TextLineReader.reader_ref
	tf.TextLineReader.reset(name=None)
	Args:
	Returns:

	tf.TextLineReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.TextLineReader.serialize_state(name=None)
	Args:
	Returns:

	tf.TextLineReader.supports_serialize

	class tf.WholeFileReader
	tf.WholeFileReader.__init__(name=None)
	Args:

	tf.WholeFileReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.WholeFileReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.WholeFileReader.read(queue, name=None)
	Args:
	Returns:

	tf.WholeFileReader.reader_ref
	tf.WholeFileReader.reset(name=None)
	Args:
	Returns:

	tf.WholeFileReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.WholeFileReader.serialize_state(name=None)
	Args:
	Returns:

	tf.WholeFileReader.supports_serialize

	class tf.IdentityReader
	tf.IdentityReader.__init__(name=None)
	Args:

	tf.IdentityReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.IdentityReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.IdentityReader.read(queue, name=None)
	Args:
	Returns:

	tf.IdentityReader.reader_ref
	tf.IdentityReader.reset(name=None)
	Args:
	Returns:

	tf.IdentityReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.IdentityReader.serialize_state(name=None)
	Args:
	Returns:

	tf.IdentityReader.supports_serialize

	class tf.TFRecordReader
	tf.TFRecordReader.__init__(name=None)
	Args:

	tf.TFRecordReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.TFRecordReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.TFRecordReader.read(queue, name=None)
	Args:
	Returns:

	tf.TFRecordReader.reader_ref
	tf.TFRecordReader.reset(name=None)
	Args:
	Returns:

	tf.TFRecordReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.TFRecordReader.serialize_state(name=None)
	Args:
	Returns:

	tf.TFRecordReader.supports_serialize

	class tf.FixedLengthRecordReader
	tf.FixedLengthRecordReader.__init__(record_bytes, header_bytes=None, footer_bytes=None, name=None)
	Args:

	tf.FixedLengthRecordReader.num_records_produced(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.num_work_units_completed(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.read(queue, name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.reader_ref
	tf.FixedLengthRecordReader.reset(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.restore_state(state, name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.serialize_state(name=None)
	Args:
	Returns:

	tf.FixedLengthRecordReader.supports_serialize

	Converting
	tf.decode_csv(records, record_defaults, field_delim=None, name=None)
	Args:
	Returns:

	tf.decode_raw(bytes, out_type, little_endian=None, name=None)
	Args:
	Returns:

	Example protocol buffer
	class tf.VarLenFeature
	tf.VarLenFeature.dtype

	class tf.FixedLenFeature
	tf.FixedLenFeature.default_value
	tf.FixedLenFeature.dtype
	tf.FixedLenFeature.shape

	class tf.FixedLenSequenceFeature
	tf.FixedLenSequenceFeature.allow_missing
	tf.FixedLenSequenceFeature.dtype
	tf.FixedLenSequenceFeature.shape

	tf.parse_example(serialized, features, name=None, example_names=None)
	Args:
	Returns:
	Raises:

	tf.parse_single_example(serialized, features, name=None, example_names=None)
	Args:
	Returns:
	Raises:

	tf.decode_json_example(json_examples, name=None)
	Args:
	Returns:

	Queues
	class tf.QueueBase
	tf.QueueBase.enqueue(vals, name=None)
	Args:
	Returns:

	tf.QueueBase.enqueue_many(vals, name=None)
	Args:
	Returns:

	tf.QueueBase.dequeue(name=None)
	Args:
	Returns:

	tf.QueueBase.dequeue_many(n, name=None)
	Args:
	Returns:

	tf.QueueBase.size(name=None)
	Args:
	Returns:

	tf.QueueBase.close(cancel_pending_enqueues=False, name=None)
	Args:
	Returns:

	Other Methods
	tf.QueueBase.__init__(dtypes, shapes, queue_ref)
	Args:

	tf.QueueBase.dtypes
	tf.QueueBase.from_list(index, queues)
	Args:
	Returns:
	Raises:

	tf.QueueBase.name
	tf.QueueBase.queue_ref

	class tf.FIFOQueue
	tf.FIFOQueue.__init__(capacity, dtypes, shapes=None, shared_name=None, name='fifo_queue')
	Args:

	class tf.RandomShuffleQueue
	tf.RandomShuffleQueue.__init__(capacity, min_after_dequeue, dtypes, shapes=None, seed=None, shared_name=None, name='random_shuffle_queue')
	Args:

	Dealing with the filesystem
	tf.matching_files(pattern, name=None)
	Args:
	Returns:

	tf.read_file(filename, name=None)
	Args:
	Returns:

	Input pipeline
	Beginning of an input pipeline
	tf.train.match_filenames_once(pattern, name=None)
	Args:
	Returns:

	tf.train.limit_epochs(tensor, num_epochs=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)
	Args:
	Returns:

	tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)
	Args:
	Returns:
	Raises:

	tf.train.string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)
	Args:
	Returns:
	Raises:

	Batching at the end of an input pipeline
	tf.train.batch(tensor_list, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.batch_join(tensor_list_list, batch_size, capacity=32, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.shuffle_batch(tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	tf.train.shuffle_batch_join(tensor_list_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, name=None)
	Args:
	Returns:
	Raises:

	Data IO (Python functions)
	Data IO (Python Functions)
	class tf.python_io.TFRecordWriter
	tf.python_io.TFRecordWriter.__init__(path)
	Args:
	Raises:

	tf.python_io.TFRecordWriter.write(record)
	Args:

	tf.python_io.TFRecordWriter.close()

	tf.python_io.tf_record_iterator(path)
	Args:
	Yields:
	Raises:

	TFRecords Format Details

	Neural Network
	Activation Functions
	tf.nn.relu(features, name=None)
	Args:
	Returns:

	tf.nn.relu6(features, name=None)
	Args:
	Returns:

	tf.nn.elu(features, name=None)
	Args:
	Returns:

	tf.nn.softplus(features, name=None)
	Args:
	Returns:

	tf.nn.softsign(features, name=None)
	Args:
	Returns:

	tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)
	Args:
	Returns:
	Raises:

	tf.nn.bias_add(value, bias, name=None)
	Args:
	Returns:

	tf.sigmoid(x, name=None)
	Args:
	Returns:

	tf.tanh(x, name=None)
	Args:
	Returns:

	Convolution
	tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
	Args:
	Returns:

	tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding='SAME', name=None)
	Args:
	Returns:
	Raises:

	Pooling
	tf.nn.avg_pool(value, ksize, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.max_pool(value, ksize, strides, padding, name=None)
	Args:
	Returns:

	tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None)
	Args:
	Returns:

	Normalization
	tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)
	Args:
	Returns:

	tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None)
	Args:
	Returns:

	tf.nn.moments(x, axes, name=None, keep_dims=False)
	Args:
	Returns:

	Losses
	tf.nn.l2_loss(t, name=None)
	Args:
	Returns:

	Classification
	tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None)
	Args:
	Returns:

	tf.nn.softmax(logits, name=None)
	Args:
	Returns:

	tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
	Args:
	Returns:

	tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name=None)
	Args:
	Returns:

	Embeddings
	tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True)
	Args:
	Returns:
	Raises:

	Evaluation
	tf.nn.top_k(input, k=1, sorted=True, name=None)
	Args:
	Returns:

	tf.nn.in_top_k(predictions, targets, k, name=None)
	Args:
	Returns:

	Candidate Sampling
	Sampled Loss Functions
	tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, partition_strategy='mod', name='nce_loss')
	Args:
	Returns:

	tf.nn.sampled_softmax_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, partition_strategy='mod', name='sampled_softmax_loss')
	Args:
	Returns:

	Candidate Samplers
	tf.nn.uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)
	Args:
	Returns:

	tf.nn.log_uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)
	Args:
	Returns:

	tf.nn.learned_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)
	Args:
	Returns:

	tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, vocab_file='', distortion=1.0, num_reserved_ids=0, num_shards=1, shard=0, unigrams=(), seed=None, name=None)
	Args:
	Returns:

	Miscellaneous candidate sampling utilities
	tf.nn.compute_accidental_hits(true_classes, sampled_candidates, num_true, seed=None, name=None)
	Args:
	Returns:

	Running Graphs
	Session management
	class tf.Session
	tf.Session.__init__(target='', graph=None, config=None)
	Args:

	tf.Session.run(fetches, feed_dict=None)
	Args:
	Returns:
	Raises:

	tf.Session.close()
	Raises:

	tf.Session.graph
	tf.Session.as_default()
	Returns:

	class tf.InteractiveSession
	tf.InteractiveSession.__init__(target='', graph=None, config=None)
	Args:

	tf.InteractiveSession.close()

	tf.get_default_session()
	Returns:

	Error classes
	class tf.OpError
	tf.OpError.op
	Returns:

	tf.OpError.node_def
	Other Methods
	tf.OpError.__init__(node_def, op, message, error_code)
	Args:

	tf.OpError.error_code
	tf.OpError.message

	class tf.errors.CancelledError
	tf.errors.CancelledError.__init__(node_def, op, message)

	class tf.errors.UnknownError
	tf.errors.UnknownError.__init__(node_def, op, message, error_code=2)

	class tf.errors.InvalidArgumentError
	tf.errors.InvalidArgumentError.__init__(node_def, op, message)

	class tf.errors.DeadlineExceededError
	tf.errors.DeadlineExceededError.__init__(node_def, op, message)

	class tf.errors.NotFoundError
	tf.errors.NotFoundError.__init__(node_def, op, message)

	class tf.errors.AlreadyExistsError
	tf.errors.AlreadyExistsError.__init__(node_def, op, message)

	class tf.errors.PermissionDeniedError
	tf.errors.PermissionDeniedError.__init__(node_def, op, message)

	class tf.errors.UnauthenticatedError
	tf.errors.UnauthenticatedError.__init__(node_def, op, message)

	class tf.errors.ResourceExhaustedError
	tf.errors.ResourceExhaustedError.__init__(node_def, op, message)

	class tf.errors.FailedPreconditionError
	tf.errors.FailedPreconditionError.__init__(node_def, op, message)

	class tf.errors.AbortedError
	tf.errors.AbortedError.__init__(node_def, op, message)

	class tf.errors.OutOfRangeError
	tf.errors.OutOfRangeError.__init__(node_def, op, message)

	class tf.errors.UnimplementedError
	tf.errors.UnimplementedError.__init__(node_def, op, message)

	class tf.errors.InternalError
	tf.errors.InternalError.__init__(node_def, op, message)

	class tf.errors.UnavailableError
	tf.errors.UnavailableError.__init__(node_def, op, message)

	class tf.errors.DataLossError
	tf.errors.DataLossError.__init__(node_def, op, message)

	Training
	Optimizers
	class tf.train.Optimizer
	Usage
	Processing gradients before applying them.
	tf.train.Optimizer.__init__(use_locking, name)
	Args:
	Raises:

	tf.train.Optimizer.minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, name=None)
	Args:
	Returns:
	Raises:

	tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False)
	Args:
	Returns:
	Raises:

	tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None)
	Args:
	Returns:
	Raises:

	Gating Gradients
	Slots
	tf.train.Optimizer.get_slot_names()
	Returns:

	tf.train.Optimizer.get_slot(var, name)
	Args:
	Returns:

	class tf.train.GradientDescentOptimizer
	tf.train.GradientDescentOptimizer.__init__(learning_rate, use_locking=False, name='GradientDescent')
	Args:

	class tf.train.AdagradOptimizer
	tf.train.AdagradOptimizer.__init__(learning_rate, initial_accumulator_value=0.1, use_locking=False, name='Adagrad')
	Args:
	Raises:

	class tf.train.MomentumOptimizer
	tf.train.MomentumOptimizer.__init__(learning_rate, momentum, use_locking=False, name='Momentum')
	Args:

	class tf.train.AdamOptimizer
	tf.train.AdamOptimizer.__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')
	Args:

	class tf.train.FtrlOptimizer
	tf.train.FtrlOptimizer.__init__(learning_rate, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name='Ftrl')
	Args:
	Raises:

	class tf.train.RMSPropOptimizer
	tf.train.RMSPropOptimizer.__init__(learning_rate, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp')
	Args:

	Gradient Computation
	tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None)
	Args:
	Returns:
	Raises:

	class tf.AggregationMethod
	tf.stop_gradient(input, name=None)
	Args:
	Returns:

	Gradient Clipping
	tf.clip_by_value(t, clip_value_min, clip_value_max, name=None)
	Args:
	Returns:

	tf.clip_by_norm(t, clip_norm, name=None)
	Args:
	Returns:

	tf.clip_by_average_norm(t, clip_norm, name=None)
	Args:
	Returns:

	tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)
	Args:
	Returns:
	Raises:

	tf.global_norm(t_list, name=None)
	Args:
	Returns:
	Raises:

	Decaying the learning rate
	tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)
	Args:
	Returns:

	Moving Averages
	class tf.train.ExponentialMovingAverage
	tf.train.ExponentialMovingAverage.__init__(decay, num_updates=None, name='ExponentialMovingAverage')
	Args:

	tf.train.ExponentialMovingAverage.apply(var_list=None)
	Args:
	Returns:
	Raises:

	tf.train.ExponentialMovingAverage.average_name(var)
	Args:
	Returns:

	tf.train.ExponentialMovingAverage.average(var)
	Args:
	Returns:

	tf.train.ExponentialMovingAverage.variables_to_restore()
	Returns:

	Coordinator and QueueRunner
	class tf.train.Coordinator
	Usage:
	Exception handling:
	Grace period for stopping:
	tf.train.Coordinator.__init__()
	tf.train.Coordinator.clear_stop()
	tf.train.Coordinator.join(threads, stop_grace_period_secs=120)
	Args:
	Raises:

	tf.train.Coordinator.request_stop(ex=None)
	Args:

	tf.train.Coordinator.should_stop()
	Returns:

	tf.train.Coordinator.stop_on_exception()
	Yields:

	tf.train.Coordinator.wait_for_stop(timeout=None)
	Args:
	Returns:

	class tf.train.QueueRunner
	tf.train.QueueRunner.__init__(queue=None, enqueue_ops=None, close_op=None, cancel_op=None, queue_runner_def=None)
	Args:
	Raises:

	tf.train.QueueRunner.cancel_op
	tf.train.QueueRunner.close_op
	tf.train.QueueRunner.create_threads(sess, coord=None, daemon=False, start=False)
	Args:
	Returns:
	Raises:

	tf.train.QueueRunner.enqueue_ops
	tf.train.QueueRunner.exceptions_raised
	Returns:

	tf.train.QueueRunner.from_proto(queue_runner_def)
	tf.train.QueueRunner.name
	tf.train.QueueRunner.queue
	tf.train.QueueRunner.to_proto()
	Returns:

	tf.train.add_queue_runner(qr, collection='queue_runners')
	Args:

	tf.train.start_queue_runners(sess=None, coord=None, daemon=True, start=True, collection='queue_runners')
	Args:
	Returns:

	Summary Operations
	tf.scalar_summary(tags, values, collections=None, name=None)
	Args:
	Returns:

	tf.image_summary(tag, tensor, max_images=3, collections=None, name=None)
	Args:
	Returns:

	tf.histogram_summary(tag, values, collections=None, name=None)
	Args:
	Returns:

	tf.nn.zero_fraction(value, name=None)
	Args:
	Returns:

	tf.merge_summary(inputs, collections=None, name=None)
	Args:
	Returns:

	tf.merge_all_summaries(key='summaries')
	Args:
	Returns:

	Adding Summaries to Event Files
	class tf.train.SummaryWriter
	tf.train.SummaryWriter.__init__(logdir, graph_def=None, max_queue=10, flush_secs=120)
	Args:

	tf.train.SummaryWriter.add_summary(summary, global_step=None)
	Args:

	tf.train.SummaryWriter.add_session_log(session_log, global_step=None)
	Args:

	tf.train.SummaryWriter.add_event(event)
	Args:

	tf.train.SummaryWriter.add_graph(graph_def, global_step=None)
	Args:

	tf.train.SummaryWriter.flush()
	tf.train.SummaryWriter.close()

	tf.train.summary_iterator(path)
	Args:
	Yields:

	Training utilities
	tf.train.global_step(sess, global_step_tensor)
	Args:
	Returns:

	tf.train.write_graph(graph_def, logdir, name, as_text=True)
	Args:

	Other Functions and Classes
	class tf.train.LooperThread
	tf.train.LooperThread.__init__(coord, timer_interval_secs, target=None, args=None)
	Args:
	Raises:

	tf.train.LooperThread.daemon
	tf.train.LooperThread.getName()
	tf.train.LooperThread.ident
	tf.train.LooperThread.isAlive()
	tf.train.LooperThread.isDaemon()
	tf.train.LooperThread.is_alive()
	tf.train.LooperThread.join(timeout=None)
	tf.train.LooperThread.loop(coord, timer_interval_secs, target, args=None)
	Args:
	Returns:

	tf.train.LooperThread.name
	tf.train.LooperThread.run()
	tf.train.LooperThread.run_loop()
	tf.train.LooperThread.setDaemon(daemonic)
	tf.train.LooperThread.setName(name)
	tf.train.LooperThread.start()
	tf.train.LooperThread.start_loop()

	tf.train.export_meta_graph(filename=None, meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, as_text=False)
	Args:
	Returns:

	tf.train.generate_checkpoint_state_proto(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None)
	Args:
	Returns:

	tf.train.import_meta_graph(meta_graph_or_file)
	Args:
	Returns:

	Wraps python functions
	Script Language Operators.
	Other Functions and Classes
	tf.py_func(func, inp, Tout, name=None)
	Args:
	Returns:

	Testing
	Unit tests
	tf.test.main()

	Utilities
	tf.test.assert_equal_graph_def(actual, expected)
	Args:
	Raises:

	tf.test.get_temp_dir()
	Returns:

	tf.test.is_built_with_cuda()

	Gradient checking
	tf.test.compute_gradient(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None)
	Args:
	Returns:

	tf.test.compute_gradient_error(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None)
	Args:
	Returns:

	Layers (contrib)
	Higher level ops for building neural network layers.
	tf.contrib.layers.convolution2d(x, num_output_channels, kernel_size, activation_fn=None, stride=(1, 1), padding='SAME', weight_init=_initializer, bias_init=_initializer, name=None, weight_collections=None, bias_collections=None, output_collections=Non...
	Args:
	Returns:
	Raises:

	tf.contrib.layers.fully_connected(x, num_output_units, activation_fn=None, weight_init=_initializer, bias_init=_initializer, name=None, weight_collections=('weights',), bias_collections=('biases',), output_collections=('activations',), weight_regulari...
	Args:
	Returns:

	Regularizers
	tf.contrib.layers.l1_regularizer(scale)
	Args:
	Returns:
	Raises:

	tf.contrib.layers.l2_regularizer(scale)
	Args:
	Returns:
	Raises:

	Initializers
	tf.contrib.layers.xavier_initializer(uniform=True, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	tf.contrib.layers.xavier_initializer_conv2d(uniform=True, seed=None, dtype=tf.float32)
	Args:
	Returns:
	Raises:

	Summaries
	tf.contrib.layers.summarize_activation(op)
	Args:
	Returns:

	tf.contrib.layers.summarize_tensor(tensor)
	Args:
	Returns:

	tf.contrib.layers.summarize_tensors(tensors, summarizer=summarize_tensor)
	tf.contrib.layers.summarize_collection(collection, name_filter=None, summarizer=summarize_tensor)
	tf.contrib.layers.summarize_activations(name_filter=None, summarizer=summarize_activation)

	Other Functions and Classes
	tf.contrib.layers.assert_same_float_dtype(tensors=None, dtype=None)
	Args:
	Returns:
	Raises:

	Utilities (contrib)
	Miscellaneous Utility Functions
	tf.contrib.util.constant_value(tensor)
	Args:
	Returns:
	Raises:

	tf.contrib.util.make_tensor_proto(values, dtype=None, shape=None)
	Args:
	Returns:
	Raises:

