THE EXPERT'S VOICE® IN OPEN SOURCE

Beginning

Python

Visualization

Crafting Visual Transformation Scripts

Learn how to process, organize, and visualize data
from various sources using the Python programming
language and supporting packages.

Shai Vaingast

Apress

Beginning Python
Visualization

Crafting Visual Transformation
Scripts

Shai Vaingast

Apress’

Beginning Python Visualization: Crafting Visual Transformation Scripts
Copyright © 2009 by Shai Vaingast

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1843-2
ISBN-13 (electronic): 978-1-4302-1844-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Frank Pohlmann, Michelle Lowman

Technical Reviewer: C. Titus Brown

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editor: Ami Knox

Associate Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Dina Quan

Proofreader: Liz Welch

Indexer: Julie Grady

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.
apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

This book is dedicated to my wife, Orna Vaingast.

Contents at a Glance

Aboutthe AUTNOr. o XV
About the Technical Reviewer e XVi
ACKNOWIBAgMENTS Xvii
IMtrOdUCHIONo Xviii
CHAPTER 1 Navigating the World of Data Visualization........................ 1
CHAPTER 2 The Environment.............. ... 31
CHAPTER 3 Python for Programmers.. 53
CHAPTER 4 Data Organization..................., 101
CHAPTER 5 Processing TextFiles.. 135
CHAPTER 6 GraphsandPlots................. 183
CHAPTER 7 Math Games.................... i 221
CHAPTER 8 Science and Visualization...................................... 249
CHAPTER 9 Image Processing....................iii i 285
CHAPTER 10 Advanced File Processingcoviiiiinins. 319
APPENDIX Additional Source Listing 343

Contents

Aboutthe AUTNOr. o XV
About the Technical ReVIEWEr i e XVi
ACKnowledgments Xvii
IMtrOdUCHIONo Xviii
CHAPTER1 Navigating the World of Data Visualization 1
Gathering Data................. i 2

Case Study: GPSData...................... ..., 2

Scanning Serial Ports 3

RecordingGPSDataooo i 5

Data Organizationcc i 6

FileFormat 6

File Naming Conventionscocoiiiiiiiiint 7
Datalocation................... i 7

Data Analysis 8

Walking Directories 8

Reading CSVFiles 9
AnalyzingGPSData.................. 12

Extracting GPSData................... ... 14

Data Visualization i 17

GPS LocationPlot...............l 18

Annotatingthe Graph.l 20

Velocity Plot. 22

SUBPIOtS. 23

TeXt. 23

Tying ltAll Together 25

Final Notes and References..................., 29

vii

viii CONTENTS

CHAPTER 2

CHAPTER 3

The Environment... 31
Operating Systems 32
GNULINUXo 32
Windows 33
Choosing an Operating System 35
Then Again, Why Choose? Using Several Operating Systems. 36
The Python Environment.................. i 37
VeISIONSo 37
Python 38
Python Integrated Development Environments.................. 39
Scientific Computing............... . 41
Plotting. 42
Image Processing.oovii i 43
Additional Python Packages.................................. 43
Installation Summary...............l 44
Additional Applicationso i 45
EditOrS ... 45
A Short Listof Text Editors................................... 47
Spreadsheetso 48
Word Processorsovviiii i 48
Image VIBWENSo 49
Version Control Systems. ...l 49
LICeNSINg. . ..o 51
Final Notes and References................... 52
Python for Programmers 53
What s Python?. 53
Interactive Python 54
Invoking Python ... 54
Entering Commands i 55
The Interactive Help System 56
Moving Around 57
Running Scripts 58
Data Types 60
NUMDEIS .. 60
SHNGS . ..o 65

BOOIBANS oo 67

CHAPTER 4

CONTENTS
Data Structures o 68
LiStS 69
TUPIES .. 72
Dictionaries.t 74
Sl 78
Variables 80
Statements.......... ... 81
Printing. ... 81
Userinput ... 84
Comments. 85
Flow Control i 85
Some Built-in Functions. 92
Defining Functions. 93
Generators.o 94
Generator EXpressions ...t 95
Object-Oriented Programmingccoiiiiiiin... 96
Modules and Packages.c i 97
The import Statement.............. 98
Modules Installed inaSystem................................ 99
ThedirStatement 99
Final Notes and References................ 99
Data Organization.. 101
File Name Conventions. 102
Dateand TimeinaFileName............................... 102
Useful File Name Titles 104
File Name Extensionso ... 104
InConclusion ... 105
Other Schemes. i 107
FileFormats 108
CSVFileFormatc i, 109
BinaryFiles.......... ... 117
Readme Files 123
INLFIleS .. 123
XML 125
OtherFile Formats............ i .. 126
Locating DataFileso i 126
Organization into Directories 126
SearchingforFiles...................c i 127

INdexing. ... 128

ix

CONTENTS

Catalogs. . ..o 131
Filesvs.aDatabase........................ocoiiiii 133

Final Notes and References. ...t 134
CHAPTER5 Processing TextFiles...................................... 135
Textand Strings. 136
Splitting Text. 136
Joining Strings 137
Converting StringstoNumbers 137
FindandReplace............... i, 143
Stripping Strings. 144
String Formatting. ... 145
String Conditionals. 146
MoreonStringsco i 147

FileS . .o 147
OpeningaFile...........co i 147
ClosingaFile i 148
Writing Text. ... 148
Reading Text............coo i 149
Workingwith TextFiles i, 150
Example: Character, Word, and Line Count.................... 151
Example: headand tail 152
Example: Splitting and Combining Files. 153
Example: Searching Inside a TextFile 155
Example: Working with Comments. 156
Example: Extracting Numbers froma TextFile................. 157
CSVFIlES. ... 159
ThecsvModule ... 159

The csv.reader Object..................... ... 160

The csv.writer Object ... 161
More csv Functionality 161
DictReader and DictWriter Objects 162
Dateand Time i 163
TimeModule. 164

The struct_time Tuple................. .. i 165
Parsing and Formatting Date and Time 165

The Epoch: “Linearizing” the Time Base...................... 168

Additional Time and Date Functions.......................... 173

CHAPTER 6

CONTENTS
Regular EXpressionst 173
Regular Expression Patterns 173
Special SEqUENCES. 175
Alternatives. 175
RaNgeS. 175
When to Use Regular Expressions............................ 175
Internationalization and Localization 176
Locale. ... 177
Unicode Strings 178
Final Notes and References................... 181
GraphsandPlots.. 183
The Matplotlib Package 183
Interactive Graphs vs. Image Files 184
Interactive Graphs 185
Saving GraphstoFiles.............. i 187
Plotting Graphs. o 189
LinesandMarkers. 189
Plotting Several Graphson One Figure........................ 191
Line Widths and Marker Sizes............................... 192
COlOrS. ..o 193
Controllingthe Graph i 194
AXIS. .. 194
Gridand Ticks. ... 195
SUDPIOS. . ..o 196
Erasingthe Graph 197
Adding Text. ... 197
Title. ..o 198
AxisLabelsandLegendl 198
TextRendering...............co i 199
Mathematical Symbols and Expressions...................... 200
More Graph TYPeSo 201
BarCharts........... 201
Histograms ... 204
PieCharts 206
Logarithmic Plots............. ... 207
PolarPlots. ... 208
StemPlots........ ... 209

Additional Graphs. 210

Xi

Xii

CONTENTS

CHAPTER 7

CHAPTER 8

Getting and Setting Values. i, 213
Setting Figure and Axis Parameters.......................... 215
Patches 217
Example: Adding ArrowstoaGraph.......................... 218
Example: Some Other Patches 219
Final Notes and References. ...t 220
MathGames... 221
Modules mathandcmath 221
Example: ANewton Fractal 224
Modulerandom i 228
Using random to Solve Probability Questions.................. 229
Random Sequences.oiiir i 232
Module NUMPy. 233
Array Creation. o 234
Slicing, Indexing, and Reshaping 235
N-Dimensional Arrays. ... 236
Math Functions. L 239
Array Methods and Properties............................... 241
Other Useful Array Functions................................ 247
Final Notes and References................... 247
Science and Visualization................................. 249
Finding Your Way: Variables and Functions 250
SCIPY. .. 250
Linear Algebra i 251
Solving a System of Linear Equations 251
Vector and Matrix Operations................................ 252
Matrix Decomposition.................l 253
Additional Linear Algebra Functionality 254
Numerical Integration............. 254
More Integration Methods 257
Interpolation and Curve Fitting 258
Piecewise Linear Interpolation............................... 258
Polynomials. 260
Uses of Polynomials. 261

Spline Interpolation 266

CHAPTER 9

CONTENTS
Solving Nonlinear Equations 267
Special FUnctions. o 268
Signal Processingooivint i 268
Functions where, select, andfind............................ 269
Functionsdiffand split 273
Waveforms ... 274
Fourier Transform 275
Example: FFT of a Sampled CosineWave 276
Window Functions i 277
Filtering 279
FilterDesign ... 279
Example: Heart-Rate Monitor. 281
Example: Moving Average ... 283
Final Notes and References......................cociiiiiiiin.. 284
Image Processing.. 285
Reading, Writing, and Displaying Images 286
Reading Images from File................................... 286
Image Attributes. 287
DisplayingImagesc i 288
Converting File Formats 289
Image Manipulation............... 291
CreatingNew Images ..., 291
CopyandPaste..................o it 292
Cropand ReSIZeccoiiii e 292
Rotate......... ..o i 293
Image Annotation. 294
Annotating with Geometrical Shapes......................... 294
TextAnnotations. 295
Image Processing ...t 300
Matrix Representationand Colors. 300
Example: Counting Objects (Five Parts)....................... 303
Image Arithmetic 312
Image Filtering. 315

Final Notes and References. ..., 317

Xiii

Xiv CONTENTS

CHAPTER 10 Advanced File Processing 319
Binary Files and Random Access ..., 319
Example: Reading the Nth Field. 321
Example: Efficient Tail Implementation 322
Example: Creating a Fixed-Size File.......................... 323
Example: Recording Time-Based BinaryData 323
Object Serialization 325
The PickleModuleco i 325
Command-Line Parameters.................... 327
ATGV o 327
Example: Creating a Fixed-Size File (Stand-Alone Script) 328
OptParse Module i 329

The Filelnput Module. ... 332

File and Directory Manipulation. 333
Moduleglob 334
Additional os Module Functionality 334
Additional os.path Module Functionality 335
Module shutil L 336

File Compression. ...t 337
Example: A Compressed tarFile............................. 338
Comparing Files. o 339
Module filecmp. ... 339
Module difflib 341

Final Notes and References................... 342
APPENDIX Additional Source Listing.................................. 343
Nudge Subplotso 343
Magic SqQuare ArrOWS 345
Fractal Function Source Codeooo i, 347

About the Author

SHAI VAINGAST has been an engineer, an engineering manager, and
a director of engineering since 1993. He has worked in the defense
industry and in the medical device industry while being heavily
involved with data processing and visualization. He has several
patents.

Xv

XVi

About the Technical Reviewer

C. TITUS BROWN is a professor of Computer Science and Engineering and Microbiology and
Molecular Genetics at Michigan State University, where he studies developmental biology.
Dr. Brown has been using Python for about a decade, and he is the author of several Python
bioinformatics packages as well as several testing tools. You can visit his blog at ivory.idyll.
org/blog/.

Acknowledgments

I'd like to thank the following individuals for their contribution to the book (in alphabetical
order): Shai Ayal, C. Titus Brown, Ehud Cohen, Bryan Crouse, Kylie Johnston, Michelle Lowman,
Rich Lundeen, Frank Pohlmann, Ami Saguy, Sam Saguy, Janet Vaingast, Motty Vaingast, Orna

Vaingast, and Arnon Zeira.

Xvii

xviii

Introduction

I was always drawn to math and computers, ever since I was a kid playing computer games
on my Sinclair ZX81. When I attended university, I had a special interest in numerical analy-
sis, a field that I felt combines math and computers ideally. During my career, I learned of
MATLAB, widely popular for digital signal processing, numerical analysis, and feedback and
control. MATLAB’s strong suits include a high-level programming language, excellent graph-
ing capabilities, and numerous packages from almost every imaginable engineering field. But
I found that MATLAB wasn’t enough. I worked with very large files and needed the ability to
manipulate both text and data. So I combined Perl, AWK, and Bash scripts to write programs
that automate data analysis and visualization. And along the way, I've developed practices and
ideas involving the organization of data—for example, ways to ensure file names are unique
and self-explanatory.

With the increasing popularity of the Internet, I learned of GNU/Linux and the open
source movement. I made an effort to use open source software whenever possible, and so I've
learned of GNU-Octave and gnuplot, which together provide excellent scientific computing
functionality. That fit well on my Linux machine: Bash scripts, Perl and AWK, GNU-Octave and
gnuplot.

Knowing I was interested in programming languages and open source software, a friend
suggested I give Python a try. My first impression was that it’s just another programming lan-
guage: I can do most anything I need with Perl and Bash, resorting to C/C++ if things got hairy.
And I'd still need GNU-Octave and gnuplot, so what'’s to gain? Eventually, I did learn Python
and discovered that it is far better than my collection of tools. Python provides something that
is extremely appealing: it’s a one-stop shop—you can do it all in Python.

I've shared my enthusiasm with friends and colleagues. Many who expressed interest with
the ideas of data processing and visualization would ask, “Can you recommend a book that
teaches the ideas you're preaching?” And I would tell them, “Of course, numerous books cover
this subject!” But they didn’t want numerous books, just one, with information distilled to
focus on data analysis and visualization. I realized there wasn’t such a title, and this was how
the idea for this book originated.

Who This Book Is For

Although this book is about software, the target audience is not necessarily programmers or
computer scientists. The reader’s main line of work is research or R&D, in his or her field of
interest, be it astrophysics, signal and image processing, or biology. The audience includes

INTRODUCTION

¢ Graduate and PhD students in exact and natural sciences (physics, biology, and chem-
istry) working on their thesis, dealing with large experimental data sets. The book also
appeals to students working on purely theoretical projects, as they require simulations
and means to analyze the results.

¢ R&D engineers in the fields of electrical engineering (EE), mechanical engineering, and
chemical engineering: engineers working with large sets of data from multiple sources.
In EE more specifically, signal processing engineers, communication engineers, and
systems engineers will find the book appealing.

e Programmers and computer enthusiasts, unfamiliar with Python and the GNU/Linux
world, willing to dive into a new world of tools.

e Hobby astronomers and other hobbyists who deal with data and are interested in using
Python to support their hobby.

The book can be appealing to these groups for different reasons. For scientists and engi-
neers, the book provides the means to be more productive in their work, without investing a
considerable amount of time learning new tools and programs that constantly change. For
programmers and computer enthusiasts, the book can serve as an appetizer, opening up their
world to Python. And because of the unique approach presented here, they might share the
enthusiasm the author has for this wonderful software world. Perhaps it will even entice them
to be part of the large and growing open source community, sharing their own code.

It is assumed that the reader does have minimal proficiency with a computer; namely he
or she must know how to manipulate files, install applications, view and edit files, and use
applications to generate reports and presentations. Background in numerical analysis, signal
processing, and image processing, as well as programming, is of help, but not required.

This book does not intend to serve as an encyclopedia of programming in Python and the
covered packages; nor does it try to be complete. It serves as an introduction to data analysis
and visualization in Python and covers most of the topics associated with that field.

How This Book Is Structured

The book is designed so that you can easily skip back and forth as you engage topics.

Chapter 1 is a case study introducing the topics discussed throughout the book: data anal-
ysis, data management, and, of course, data visualization. The case study involves reading GPS
data, analyzing it, and plotting it along with relevant annotations (direction of travel, speed,
etc.). A fully functional Python script will be built from the ground up, complemented with lots
of explanations. The fruit of our work will be an eye-catching GPS route.

If you're new to data analysis and visualization, consider reading Chapter 2 first. The
chapter describes how to set up a development environment to perform the tasks associated
with data analysis and visualization in Python, including the selection of an OS, installing
Python, and installing third-party packages.

If you're new to Python, your next stop should be Chapter 3. In this chapter, I swiftly
discuss the Python programming language. I won’t be overly rehashing basic programming
paradigms; instead I'll quickly overview the Python programming building blocks.

Xix

XX

INTRODUCTION

Regardless of your Python programming experience, I highly encourage you to read Chap-
ter 4 before proceeding to the next chapters. Organization is the key to successful data analysis
and visualization. This chapter covers organizing data files, pros and cons of different file
formats, file naming conventions, finding data files, and automating file creation. The ideas in
Chapter 4 are used throughout the book.

From here on out you have several options. If you intend to process text and data files,
proceed to Chapter 5. Chapter 5 covers text files from all aspects: I/O operations, string pro-
cessing, the csv module, regular expressions, and localization and internationalization. If
Chapter 5 leaves you wanting to know more about file processing, proceed to Chapter 10.
Chapter 10 includes advanced file processing topics: binary files, command-line arguments,
file and directory manipulation, and more. Both Chapters 5 and 10 are complemented with
numerous examples.

If graphs and plots are your heart’s desire, skip directly to Chapter 6. In Chapter 6 I exam-
ine matplotlib and explore its capabilities.

If you're interested in the numerical aspects of data, it is advised you read Chapter 7
first. Chapter 7 discusses the basic building blocks for scientific computing. Chapter 8 builds
on Chapter 7 and includes more advanced topics such as numerical analysis and signal
processing.

Image processing is an important aspect of data processing. Chapter 9 deals with tools
available as part of the Python Imaging Library (PIL) package and shows how to further
expand the package and perform more complex image processing tasks.

Chapter 10 covers advanced file processing topics including binary files and random
access, object serialization, command-line parameters, file compression, and more.

Finally, the Appendix provides additional source code listings used in the book.

Downloading the Code

The source code for this book is available to readers at www.apress.comin the Source Code sec-
tion of this book’s home page. Please feel free to visit the Apress web site and download all the
code there. You can also check for errata and find related titles from Apress.

Contacting the Author

You can contact me at shai.vaingast@gmail.com.

CHAPTER 1

Navigating the World of Data
Visualization

A Case Study

As an engineer, I work with data all the time. I parse log files, analyze data, estimate values,
and compare the results with theory. Things don’t always add up. So I double-check my analy-
sis, perform more calculations, or run simulations to better understand the results. I refer to
previous work because the ideas are similar or sometimes because they're dissimilar. I look at
the graphs and realize I'm missing some crucial information. So I add the missing data, but it’s
noisy and needs filtering. Eventually, I realize my implementation of the algorithm is poor or
that there is a better algorithm with better results, and so back to square one. It’s an iterative
process: tweak, test, tweak again until I'm satisfied with the results.

Those are the tasks surrounding research and development (R&D) work. And to be honest,
there’s no systematic method. Most of the time, research is organized chaos. The emphasis,
however, should be on organized, not chaos. Data should be analyzed and presented in a
clear and coherent manner. Sources for graphs well understood and verified to be accurate.
Algorithms tested and proven to be working as intended. The system should be flexible. Intro-
ducing new ideas and challenging previous methods should be easy and testing new ideas on
current data fast and efficient.

In this book I will attempt to address all the topics associated with data processing and
visualization: managing files and directories, reading files of varying formats, performing
signal processing and numerical analysis in a high-level programming language similar to
MATLAB and GNU-Octave, and teaching you Python, a rich and powerful programming lan-
guage, along the way.

In a nutshell, Beginning Python Visualization deals with the processing, analysis, manipu-
lation, and visualization of data using the Python programming language. The book covers the
following:

2

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

¢ Fundamentals of the Python programming language required for data analysis and
visualization

¢ Data files, format, and organization, as well as methods and guidelines for selecting file
formats and storing and organizing data to enable fast, efficient data processing

¢ Readily available Python packages for numerical analysis, signal and image processing,
graphing and plotting, and more

Gathering Data

We spend a considerable time recording and analyzing data. Data is stored in various formats
depending on the tools used to collect it, the nature of the data (e.g., pictures vs. sampled
analog data), the application that will later process the data, and personal preferences. Data
files are of varying sizes; some are very large, others are smaller but in larger quantities. Data
organization adds another level of complexity. Files can be stored in directories according to
date, grouped together in one big directory or in a database, or adhere to a different scheme
altogether. Typically, the number of data files or the amount of data per file is too large to
allow skimming or browsing with an editor or viewer. Methods and tools are required to find
the data and analyze it to produce meaningful results.

Case Study: GPS Data

You just got a USB GPS receiver for your birthday! You’d like to analyze GPS data and find out
how often you exceed the speed limit and how much time you spend in traffic. You’d like to
track data over a year, or even longer.

Some hardware background: most USB GPS receivers behave as serial ports (this is also
true for Bluetooth GPS devices). What this means is that once a GPS is connected, and assum-
ing it’s installed properly, reading GPS data is as simple as opening the COM port associated
with the GPS and reading the values. GPS values are typically clear text values: numbers and
text. Of course, if you're planning on recording data from your car, it would make a lot of sense
to hook it up to a laptop rather than a desktop.

We would like to record, analyze, and visualize the GPS data, in Python. First things first:
recording GPS data.

Note If you wish to follow along with the remainder of the chapter by means of issuing the commands
yourself and viewing the results, you might first want to refer to Chapter 2 and set up Python on your system.
That being said, it's not necessary, and you can follow along to get an understanding of the book and its
purpose. In fact, | encourage you to come back to this chapter and read it again after you’ve had more expe-
rience with Python.

Python is an interpreted programming language. What this means is each command
is first read and then executed, in contrast to compiled programming languages, where the
entire program is evaluated (compiled) and then executed. One of the important features of

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

interpreted programming languages is that it’s easy to run them interactively. That is, perform
a command, examine the results, perform more commands, and examine more results, and so
on. The ability to run Python interactively is very useful, and it allows you to examine topics as
you learn them.

It’s also possible to run Python scripts, that is, noninteractively, and there are several ways
to do that. You can run scripts from the interactive Python prompt by issuing the command
execfile('scriptname.py'). Oryou can enter python scriptname.py at the command-line
interface of your operating system. If you're using IPython, you can issue the command run
scriptname.py instead; and if you're running IDLE, the Python GUI, you can open the script
and press F5 to execute it. The . py extension is a common convention that distinguishes
Python scripts from other files.

Back to recording GPS data. To be able to access the serial port from Python, we’ll be
using the pySerial module. PySerial, as the name suggests, allows seamless access to serial
ports. To use pySerial we must first read the module to memory, that is, import it using the
import command. If all goes well, we’ll be presented with the Python prompt again.

>>> import serial

Note To distinguish between interactive sessions and Python scripts, when code starts with >>>, it
means that the code was run on Python interactively. In case the ellipsis symbol (. . .) appears, it means that
this is a continuation of a previously interactively entered command. Lines of text following the symbols ...
or >>> is Python’s response to the issued command. A code listing that does not start with >>> is a script
written in an editor, and in order to execute it you will have to save it under scriptname.py (or some other
name) and execute it as described previously.

Scanning Serial Ports

Next, we need to find the serial port parameters: the baud rate and the port number. The baud
rate is a GPS parameter, so it’s best to consult the GPS manual (not to worry if you can’t find
this information, I'll discuss later how to “guess” what it is). As for the port number, this is
determined by your operating system. If you're not sure how to find the port number, or if the
port number keeps changing when you plug and unplug your GPS, you can use the short pro-
gram in Listing 1-1 to identify active serial ports.

Listing 1-1. Scanning Serial Ports with scanport.py

import serial

found = False
for i in range(64):
try:
ser = serial.Serial(i)
ser.close()
print "Found COM", i+1
found = True

4 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

except serial.serialutil.SerialException:
pass

if not found:
print "No ports found, make sure GPS is connected."

Note Short programs are typically referred to as scripts.

Run scanport.py and note the result:

>>> execfile('scanport.py"')
Found COM 5

This is a rather quick introduction to Python! First, let’s dissect scanport.py line by line.
The first line, import serial, loads the pySerial module. We then assign to the Boolean vari-
able found the value False; this variable will be used as an indication of whether a serial port
was found or not. We proceed with the for loop: the loop goes over the values between 0 and
63 as implied by range(64) (most systems have less than 64 virtual COM ports). The function
range(N) returns a list of values from 0 to N-1. Our approach to seeing what ports are available
is rather simple: try and open the port, and if all goes well, that port is a candidate. If it was not
possible to open the port, just ignore that port. And so this is exactly how it’s coded!

This is a common motto in Python: It’s Easier to Ask Forgiveness than Permission, or
EAFP. The idea is this: Try and perform an operation. If all goes well, great. If not, handle it
with the except clause, or more figuratively, ask forgiveness. This is eloquently coded with the
try/except mechanism.

In our case, the function that’s most likely to fail (raise an exception) is the one that tries
to open a nonexistent port: ser = serial.Serial(i). The function Serial() is part of the serial
module (notice case sensitivity). To access functions within modules, you specify the mod-
ule name, dot (.), and the function name. So to call the function Serial () within the module
serial, write serial.Serial(). The function Serial() takes one parameter: the port number.
Python, like C, starts counting at 0, so remember to subtract 1 from your virtual COM port
when passing a parameter to the function. My GPS turned out to be connected to COMS5, so a
call to serial.Serial(4) will allow me access to the GPS. If the port is successfully opened, no
exception is raised, and the opened port is associated with the variable ser.

The next line in the try block, ser.close(), tries to close the port. Closing the port renders
it accessible to other applications, including your own. If you neglect to close the port, Python
will close it for you once the variable associated with it, ser, is no longer in use. We also print
out a message saying the port is a good candidate and set the found flag to True.

If the block of commands under try fails, the block of commands under except is exe-
cuted assuming the except condition is met. In our case, if an exception occurred, and if the
exception is of type serial.serialutil.SerialException, which means the port could not be
opened, we want to simply disregard it. This is done using the pass statement, which does
nothing.

Lastly, once the for loop is complete, and in case no port was found, a message indicating
that is printed.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Note The indentation (tabs) in Python is important because it groups commands together. This is also
true when using Python in an interactive mode. All lines with the same indentation are considered one block.
Python’s indentation is equivalent to C/C++ curly braces—{}.

Recording GPS Data

Let’s start gathering data. Enter code in Listing 1-2 and record it in the file record gps.py.

Listing 1-2. record gps.py

import time, serial

change these parameters to your GPS parameters
ser = serial.Serial(4)

ser.baudrate = 4800

fmt = "../data/GPS-%4d-%02d-%02d-%02d-%02d-%02d.csv"

filename = fmt % time.localtime()[0:6]
f = open(filename, 'wb")
while True:
line = ser.readline()
f.write(line)
print line,

This time, we’ve imported another module: time. The time module provides access to
date and time functions, and we’ll use those to name our GPS data files. We also introduce
an important notion here, comments! Comments in Python are denoted by the # sign and
are similar to C++ double slash notation, //. Everything from that point onward is considered
aremark. If the # sign is at the beginning of a line, then the entire line is a remark, usually
describing the next line or block of code. The exception to the # sign indicating a remark is if it
is quoted inside a string, as follows: "#".

Don’t forget to change the port number to point at your serial port (minus 1) and set
the proper baud rate. Determining the baud rate is not complex either—best to consult the
manual. Mine turned out to be 4800, but if you're not sure, you can tweak this parameter. The
script record _gps.py will print the output from the GPS on screen so you can change the baud
rate value (in multiples of 2, for example 4800, 9600, and so on) until you see some meaningful
results (i.e., text and numbers).

Running record_gps.py (I'll get to how it works soon) yields GPS data:

>>> execfile('record gps.py')
$GPRMC,140053.00,A,4454.1740,N,09325.0143,W,000.0,128.7,300508,001.1,E,A*2E
$GPGGA, 140053 .00,4454.1740,N,09325.0143,W,1,09,01.1,00289.8,M,-030.7,M, , *5E
$GPGSA, A, 3,21,15,18,24,26,29,06,22,,03,,,02.0,01.1,01.7%04

$GPGSV, 3,1,12,21,75,306,40,15,59,075,46,18,57,269,49,24,56,115,46%79
$GPGSV, 3,2,12,26,48,059,43,29,27,188,48,06,25,308,41,22,18,257,33*7D
$GPGSV, 3,3,12,08,14,060,,03,11,320,32,09,06,144, ,16,04,311,*¥7C

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

$GPRMC,140054.00,A,4454.1740,N,09325.0143,W,000.0,128.7,300508,001.1, E,A*29
$GPGGA, 140054.00,4454.1740,N,09325.0143,W,1,09,01.1,00289.8,M,-030.7,M, ,*59
$GPGSA, A, 3,21,15,18,24,26,29,06,22,,03,,,02.0,01.1,01.7*04

Data is being recorded to file as it is displayed. When you wish to stop viewing and record-
ing GPS data, press Ctrl+C. If you're running in an interactive Python, once you issue Ctrl+C,
be sure to close the serial port, or you won'’t be able to rerun the script record gps.py. To close
the port, issue the following command:

>>> ser.close()
It’s also a good idea to close the file:
>>> f.close()

Let’s turn back so I can explain how record gps.py works. The heart of the script lies in
the following lines of code:

while True:
line = ser.readline()
f.write(line)
print line,

This is a straightforward implementation. The first line, while True:, instructs that the
following block should be run indefinitely, that is, in an infinite loop. That’s why you need to
press Ctrl+C to stop recording. The next three lines are then executed continuously. What we
do is read a line of text from the serial port, store it to file, and print it to screen. Reading GPS
data is carried out by the command line = ser.readline(). Writing that data to a file for later
processing is done by f.write(1line). Printing the data to screen so the user has some visual
feedback is done with print line,.The reason for the comma following line is to suppress an
extra line break.

Data Organization

Let’s turn to selecting file format, file naming conventions, and data location. Now there isn’t
a good solution that fits all, but the methodologies and ideas are simple. The method I'll use
here is based on file names. I'll show you how to name data files in a way that lends itself easily
to automatic processing later on.

File Format

A file format is a set of rules describing the contents of a file. For the GPS problem, we’ll choose
the Comma Separated Values (CSV) file format. CSV files are text files with values separated by
commas. For example:

$GPCSY, 3,2,12,06,43,096,37,07,41,291,38,16,39,052,32,27,34,291,34*76

$GPGSV, 3,3,12,19,26,152,35,08,06,280, ,10,00,337, ,00,00,000, *74

$GPRMC, 233547.32,A,4455.6446,N,09329.3400,W,030.1,272.5,040608,001.1, E,A*2E
$GPGGA,233547.32,4455.6446,N,09329.3400,W,1,06,02.8,00299.0,M,-030.7,M, ,*5A

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

CSV is a popular format recognized by most spreadsheets and database applications and,
of course, text editors, seeing as they’re really just text files. As it turns out, the data the GPS
outputs is already comma separated, so all that’s required is to save this information to a file,
as is.

File Naming Conventions

We turn to selecting proper file names for our data files. File names should be unique so that
files won’t be accidentally overwritten. File names should be descriptive, that is, tell us some-
thing about the contents. Lastly, we’d like the file name extension to tell us how to view the
file. The latter is typically achieved by selecting a proper extension, in our case, .csv. Here are
the naming conventions I chose for this example:

* File names holding GPS data will start with the text “GPS-".

¢ Next is the date and time in ISO format with the separating colons omitted and a
hyphen between the date and time: YYYY-mm-dd-HH-MM-SS, where YYYY stands for
year, mm for month, dd for day, HH for hours, MM for minutes, and SS for seconds. In
case a value is one digit and two digits are required, values will be padded with zeros,
for example, the month of May will be denoted by 05, not 5. For additional information
regarding the ISO format, refer to ISO 8601, “Data elements and interchange formats—
Information interchange—Representation of dates and times” (http://www.iso.org).

o All files will have a .csv extension.

Following these conventions, a file name might look like this:

GPS-2008-05-30-09-10-52.csv

Data Location

This is where we store data files:

¢ All data files are stored in directory data. All scripts are stored in directory src. Both
directories are under the same parent directory Ch1. So a relative path from src to data
is ../data.

* It's a good idea to also add a Readme. txt file. Readme files are clear text files describing
the contents of a directory, in as much detail as deemed reasonable: the data source,
data acquisition system, person in charge of data gathering, reason for gathering the
data, and so on. Here’s an example:

Data recorded from a USB GPS receiver, connected to a Lenovo laptop Té60.
Data was gathered via the serial port stored to clear text files (CSV).
Measurements were taken to estimate speed and time spent in traffic.
Gathered by Shai Vaingast.

Date: throughout 2008, see file timestamps.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Data Analysis

Once data is organized and accessible in files, the next step is to extract information. Informa-
tion can be a value, a graph, or a report pertaining to the problem at hand.

The idea is to use Python’s scripting abilities and the wide range of readily available pack-
ages to write a fully automated application to process, analyze, and visualize data. Scripts are
small pieces of code that are written relatively quickly in a high-level programming language.
The key word here is productivity, the ability to change and test algorithms and extract results
fast. Scripts might not be highly efficient in terms of processing speed, but written properly,
they should not slow down running times. For example, a script might generate graphs or
search the hard drive for data files, analyze log files, and extract the maximum and minimum
temperatures, or in our case, analyze GPS data.

Back to our GPS case study. The following is the algorithm we’ll follow:

1. Compile a list of all the data files.
2. For each file

a. Read the data.

b. Process the data.

c¢. Plot the data.

Walking Directories

To compile a list of all the files having GPS data, we’ll use the function os.walk() provided with
the module os, which is part of the Python Standard Library. To use os, we issue import os.

>>> import os
>>> for root, dirs, files in os.walk('../data'):
print root, dirs, files

../data [] ['GPS-2008-05-30-09-00-50.csv', 'GPS-2008-05-30-09-10-52.csv’,
'Readme.txt"]

Note To be able to change directories within the Python interpreter, first issue import os. Then,
to change to a directory, issue os.chdir(directory path). To list directory contents, you can use
os.listdir(directory path). Some interpreters like IPython let you use, among other enhancements,
shell-like commands such as cd and 1s, which add considerably to usability.

The function os.walk() iterates through the directory data and its subdirectories recur-
sively, looking for files and folders, storing the results in variables root, dirs, and files. The
second line prints out the root directory for our search, in our case . ./data (notice the rela-
tive path), then the subdirectories, and lastly the files themselves, in a list. I've only recorded
two data files, but as time progresses, more data is added to this folder, and the number can

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

increase substantially. Since we have no subdirectories in folder data, the output correspond-
ing to dirs should be an empty list, which is denoted by [].

os.walk() is a bit of an overkill here. In our case, directory data doesn’t have any sub-
directories, and we could have just as easily listed the contents of the directory using the
o0s.listdir() function call, as follows:

>>> os.listdir('../data")
['GPS-2008-30-05-09-00-50.csv', 'GPS-2008-30-05-09-10-52.csv', 'Readme.txt']

However, os.walk() is very useful. It's not uncommon to have files grouped together in
directories and within those directories subdirectories holding more files. For example, you
might want to group files in accordance with the GPS that recorded the data. Or if another
driver is recording GPS data, you might want to put that data in a separate subdirectory within
your data directory. In those cases, os.walk() is exactly what’s needed.

Now that we have a list of all the files in directory data, we turn to process only those
with the . csv extension. This is done using the endswith() function, which checks whether a
string ends with “csv”. Files that do not end with “csv” are skipped using the continue state-
ment: continue instructs the for loop to skip current execution and proceed to the next
element. Files that do end with “csv” are read and processed. We also introduce a function to
create a full file name path from the directory and the file name, os.path.join(), as shown in
Listing 1-3.

Listing 1-3. Processing Only CSV Files

for filename in files:
create full file name including path
cur_file = os.path.join(root, filename)
if filename.endswith('csv'):
y = read csv_file(cur file)
else:
continue

only files with the .csv extension from here on

Reading CSV Files

Our next step is to read the files. Again, we turn to Python’s built-in modules, this time the csv
module. Although the CSV file format is quite popular, there’s no clear definition, and each
spreadsheet and database employs its own “dialect.” The files we’ll be processing adhere to
the most basic CSV file dialect, so we’ll use the default behavior of Python’s csv module. Since
we’ll be reading several CSV files, it stands to reason to define a function to perform this task.
Listing 1-4 shows this function.

Listing 1-4. A Function to Read CSV Files

def read csv_file(filename):
"""Reads a CSV file and returns it as a list of rows.

nun

10 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

data = []

for row in csv.reader(open(filename)):
data.append(row)

return data

The first line defines a function named read csv_file(). CSV file support is introduced
with the csv module, so we have to import csv before calling the function. The function takes
one variable, filename, and returns an array of rows holding data in the file. What I mean by
this is that every line read is processed and becomes a list, with every comma-separated value
as one element in that list. The function returns an array of such lists. For example:

>>> import csv

>>> x = read csv_file('../data/GPS-2008-06-04-09-03-45.csv")

>>> len(x)

3683

>>> x[10]

['$GPGSV', '3', '3', '12', '29', '10', 'O40', '', '16', 'O2', '302', '', '26', '01',
'037', '', 'o0', '00', '000', '*72']

>>> x[1676]

['$GPGSV', '3', '1', '12', '21', '86', '258', '43', '18', '66', '286', '20', '15',
'50', '059", '45', '24', '44', '126', '43*72']

len(x) lets us know the size of the array of lists. It’s also a crude way for us to ensure that
data was actually read into the array.

The second line in the function is called a docstring, and it is characterized by three quotes
(""") surrounding the text in the following manner: """dosctring""". In this case, a docstring
is used to document the function, that is, what it does. Issuing the command help(funcname)
yields its docstring:

>>> help(read_csv_file)
Help on function read _csv_file in module _ main_ :

read_csv_file(filename)
Reads a CSV file and returns it as a list of rows.

You should use help() extensively. help() can be invoked with functions as well as mod-
ules. For example, the following invokes help on module csv:

>>> help(csv)
Help on module csv:

NAME
csv - CSV parsing and writing.

FILE
/usr/1ib/python2.5/csv.py

MODULE DOCS
http://www.python.org/doc/current/lib/module-csv.html

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

DESCRIPTION
This module provides classes that assist in the reading and writing
of Comma Separated Value (CSV) files, and implements the interface
described by PEP 305. Although many CSV files are simple to parse,
the format is not formally defined by a stable specification and
is subtle enough that parsing lines of a CSV file with something
like line.split(",") is bound to fail. The module supports three
basic APIs: reading, writing, and registration of dialects.

Next in our dissection is the line data = [] which declares a variable named data and ini-
tializes it as an empty list. data will be used to store the values from the CSV file.

The csv module helps us read CSV files by automating a lot of the tasks associated with
reading CSV files. I will discuss CSV files and the csv module in Chapters 4 and 5, so here I'll
only provide an overview.

These are the operations to perform in order to read CSV files using the csv module:

1. Open the file for reading.

2. Create a csv.reader object. The csv.reader object has functions that help us read CSV
files.

3. Using the csv.reader object, read the data from the file, a row at a time.
4, Append every row to variable data.
5. Close the file.

Let’s try this, a step at a time:

>>> f = open("'../data/GPS-2008-06-04-09-03-45.csv")
>>> cr = csv.reader(f)
>>> for row in cr:

print row

['$GPGSA', 'A', '3', '21', '18', 'a5', '24', '', ‘"'22°', ‘', v,y ottty

'03.5", '02.2", '02.7*09']
['$GPGSV', '3', '1', "12', '21', '86', '267', '39', '18', '66', '286', '44', '15',
'51', '060", '43', '24', '45', '125', "30*7A"]
['$GPGSV', '3", '2', '12', 'O6', '28', '300', '33', '22', '27', '265', '31', '03",
‘18", '312', '27', '29', '15', '185', '31*7C']
['$GPGSV', '3', '3', '12', '09', '15', '138', '31', '16', 'OO', '301',
'oo', '332', '', 'oo', '00', '000', '*70']
['$GPRMC', '140706.24', 'A', '4455.6241', 'N', '09328.0519', 'W', '011.4', '152.7',
'040608', '001.2', 'E', 'A*25']
['$GPGGA', '140706.24', '4455.6241', 'N', '09328.0519', 'W', '1', '04',
'03.0','00295.1", 'M', '-030.7', 'M', '', "*¥51']
['$GPGSA', 'A", '3', "21', '18", '15', ‘'24', ‘', "‘',orttyttyoorvtpottoott,tt; '08.9',
'03.0", '08.4*%04']
>>> f.close()

First we open the data file and assign it to variable f. The opened file can now be referred
to by the variable f. Next, we create a csv.reader object, cr. We associate the csv.reader

11

12

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

object, cr, with the file f. We then iterate through every row of the csv.reader object and print
that row. Lastly, we close the file by calling f.close(). It is considered good practice to close
the file once you're done with it, but if you neglect to do so, Python will close the file automati-
cally once the variable f is no longer in use.

One of the things that you can do in Python is cascade functions. This means you can call
functions on results of other functions. This process can be repeated several times. Cascad-
ing (usually) adds clarity and produces more elegant scripts. In our case, since variable f isn’t
really important to us, we discard it after we attach it to a csv.reader object; so instead of the
preceding code, we can write the following:

>>> cr = csv.reader(open('data/CB401-2005-06-21-013504.csv"'))
>>> for row in cr:
print row

The same holds true for variable cr, so if we're feeling particularly brave, we can use this
script:

>>> for row in csv.reader(open('data/CB401-2005-06-21-013504.csv")):
print row

While the script might be shorter, there’s no performance gain. It is therefore suggested
that you cascade functions only if it adds clarity; there’s a good chance you'll be editing this
code later on, and it’s important to be able to understand what’s going on. In fact, not cas-
cading functions might be useful at times because you might need access to intermediate
variables (such as f and cr in our case).

The csv.reader object converts each row we read into a row of fields, in the form of a
list. That row is then appended to a list of rows, data. This is also the value returned by the
function.

Note By now you’ve seen the dot symbol (.) used several times, and it might be a bit confusing, so an
explanation is in order. The dot symbol is used to access function members of modules as well as function
members of objects (classes). You've seen it in member functions of modules, such as csv.reader (), but
also for objects, such as f.read(). In the latter, it means that the file object has a member function read()
and that function is called to operate on variable f. To access these functions, we use the dot operator. We'll
touch on this again in Chapter 3. Lastly, we use the ellipsis symbol (. . .) to denote line continuation when
interactively entering commands in Python.

Analyzing GPS Data

Let’s take a closer look at the GPS data.
¢ Each row seems to start with a text header stamp, beginning with the characters $GP.
¢ There are several header stamps, for example, $GPGSA and $GPRMC.

¢ Following the header are additional values, most of which are numeric.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Not being GPS savvy, I looked up the GPS format on the Internet. It turns out the for-
mat is known as NMEA 0183. NMEA stands for the National Marine Electronics Association;
see http://www.nmea.org for more information. The NMEA 0183 data format is described at
http://www.gpsinformation.org/dale/nmea.htm. There are a lot of header stamps in the for-
mat, and some might hold useful information for our task.

As mentioned earlier, several $GP header stamps appear in our data files, but which ones
exactly are of relevance is a different question. First, it would be nice to know which header
stamps from the NMEA standard are even present in our data files. One option would be to
open the files, look for the headers, and jot down every new header once we see it. Another, of
course, would be to use Python to do that for us.

Python is a very high-level programming language. As such, it has built-in support for
dictionaries (also known as associative arrays in Perl), which are data structures that have a
one-to-one relationship between a key and a value, very much like real dictionaries. Tradi-
tional dictionaries, however, often have several values for a key, that is, several interpretations
(values) for one word (key). You can easily implement this in Python’s using the dictionary
object as well by assigning a list value to a key. That way you can have several entries per one
key, because the key is associated with a list that can hold several values. In reality, it’s still a
one-to-one relationship. But enough about that for now, I'll cover dictionaries in more detail
in future chapters. What we want to do here is use a dictionary object to hold the number of
times a header is encountered. Our key will be the GPS header stamp, and our value will be a
number, indicating occurrence. We’ll increment the value whenever a key is encountered, as
shown in Listing 1-5.

Listing 1-5. Function 1ist_gps commands ()

def list gps commands(data):
"""Counts the number of times a GPS command is observed.

nun

Returns a dictionary object.

gps_cmds = dict()
for row in data:
try:
gps_cmds[row[0]] += 1
except KeyError:
gps_cmds[row[0]] = 1

return gps_cmds

Some notes about this function. First, the docstring spans multiple lines, which is one of
the key benefits of docstrings. Docstrings will display all the spaces and line breaks as shown
in the function itself. Next we initialize a variable, gps_cmds, to be our dictionary. We then pro-
cess every list in the GPS data: we only care about the first element of every row, as that’s the
value that holds the GPS header stamps. We then increment the value associated with the key:
gps_cmds[row[0]] += 1. We use the += operation to increment the value by 1, similar to how
it's done in C (Python, however, does not use the ++ operator). If the key does not exist, which
will happen whenever we encounter a new header stamp, an exception will be raised. We

13

14

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

catch the exception with our except KeyError statement. In case of an exception, we set the
dictionary value associated with the key to 1.

The function list gps commands() can be written even more compactly using the diction-
ary method get(); see Chapter 3 for details.

Let’s analyze some GPS data:

>>> x = read _csv_file('../data/GPS-2008-05-30-09-00-50.csv")
>>> list gps commands(x)
{"$GPGSA": 282, '$GPGSV': 846, '$GPGGA': 282, '$GPRMC': 283}

Turns out there are four distinct GPS headers being generated by my GPS. Of those, only
two interest me: $GPGSV, which holds the number of satellites in view (Hey! It’s really impor-
tant!), and $GPRMC, which holds location and velocity information.

So what we’d like to do is code a function that takes the GPS data and, whenever the
header field is $GPGSV or $GPRMC, extracts the information and stores it in numerical arrays that
will be easier to manipulate later on. Numerical arrays are introduced with the NumPy mod-
ule, so we have to issue import numpy. Since we’ll be using a lot of the functionality of NumPy,
SciPy, and matplotlib, an easier approach would be to issue import pylab, which imports all
these modules, as follows:

>>> from pylab import *

Note The name PyLab comes from Python and MATLAB. PyLab provides MATLAB-like functionality in
Python.

Extracting GPS Data

In the case of a $GPGSV header, the number of satellites is the fourth entry. In case of a $GPRMC
header, we have a bit more interesting information. The second field is the timestamp, the
fourth field is the latitude, the sixth field is the longitude, and the eighth field is the velocity.
Again, turn to the NMEA 0183 format for more details. Table 1-1 summarizes the fields and
their values in a $GPRMC line.

Table 1-1. $GPRMC Information (Excerpt)

Field Name Index Format

Header 0 $GPRMC (fixed)
Timestamp 1 hhmmss.ss
Latitude 3 DDMM.MMM
Longitude 5 DDDMM.MMM
Velocity 7 VVV.V

Some caveats regarding the information in $GPRMC. We first turn to the timestamp of an
arbitrary line:

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

>>> x[12]
['$GPRMC', '140055.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0', '128.7',
'300508"', '001.1', 'E', 'A*28']

In this output, the timestamp appears as '140055.00". This follows the format hhmmss.ss
where hh are two digits representing the hour (it will always consist of two digits—if the hour
is one digit, say 7 in the morning, a 0 will be added before it), mm are two digits representing
the minute (again, always two digits), and ss.ss are five characters (four digits plus the dot)
representing seconds and fractions of seconds. (There’s also a North/South field as well as
an East/West field. Here, for simplicity, we assume northern hemisphere, but you can easily
change these values by reading the entire $GPRMC structure.)

Note In the ISO time format, we’ve used HHMMSS to denote hours minutes and seconds. Here we follow
the convention in NMEA, which uses hhmmss.ss for hours, minutes, and seconds and sets DD and MM to
angular degrees and minutes.

The timestamp string is a bit hard to work with, especially when plotting data. The first
reason is that it’s a string, not a number. But even if you translated it to a number, the system
does not lend itself nicely to plotting because there are 60 seconds in a minute, not a 100. So
what we want to do is “linearize” the timestamp. To achieve this, we translate the timestamp
as seconds elapsed since midnight, as follows: T = hh * 3600 + mm * 60 + ss.ss.

The second issue we have is that hh, mm, and ss.ss are strings, not numbers. Multiplying
a string in Python does something completely different from what we want here. So we have to
first convert the strings to numerical values, in our case, float, because of the decimal point in
the string representing the seconds. This all folds nicely into the following:

>>> Tow = x[12]

['$GPRMC', '140055.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0', '128.7',
'300508', '001.1', 'E', 'A*28']

>>> float(row[1][0:2])*3600+float(row[1][2:4])*60+float(row[1][4:6])

50445.0

The operator [] denotes the index, so row[1] is the second field of row (counting starts at
zero) which is a string. The first two characters of a string are denoted by [0:2]; this is known
as string slicing. So to access the first two characters of the first field, we write row[1][0:2].
Upcoming chapters will include more about strings and methods of slicing them.

Next we tackle latitude and longitude. We face the same issue as with the timestamp, only
here we deal with degrees. Latitude follows the format DDMM.MMM where DD stands for
degrees and MM.MMM stands for minutes. We decide to use degrees this time. To translate
the latitude into decimal degrees, we need to divide the minutes by 60:

>>> Tow = x[12]

['$GPRMC', '140055.00', 'A', '4454.1740', 'N', '09325.0143', 'W', '000.0', '128.7',
'300508', '001.1', 'E', 'A*28']

>>> float(row[3][0:2])+float(row[3][2:])/60.0

44.902900000000002

15

16

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

For latitude information we require the fourth field, hence row[3]. This example also
introduces another notation, [2:], which means the slice of the string from the third character
until the end. Also notice that the code uses 60.0 and not 60. When dividing by 60, it’s implied
that you want an integer division; dividing by 60.0 means you want a floating-point division,
which is to say you care about the information past the decimal point. However, seeing as we
already specified that we want the information as a floating-point number as indicated by the
float() conversion, the result will be a floating point regardless. Still, it’s good practice to let
Python know what kind of division you really want.

Here are some examples to further illustrate the point:

>>> 100/60

1

>>> 100/60.0
1.6666666666666667
>>> float(100)/60
1.6666666666666667

Longitude information is similar to latitude with a minor difference: longitude degrees are
three characters instead of two (up to 180 degrees, not just up to 90 degrees) so the indices to
the strings are different.

Listing 1-6 presents the entire function to process GPS data.

Listing 1-6. Function process_gps_data()

from pylab import *

constant definitions
NMI = 1852.0

def process gps data(data):
"""Processes GPS data, NMEA 0183 format.

Returns a tuple of arrays: latitude, longitude, velocity [km/h],
time [sec] and number of satellites.

See also: http://www.gpsinformation.org/dale/nmea.htm."""
latitude = [
longitude = [
velocity = [
t seconds = [
num_sats = [

S S S |

for row in data:
if row[0] == "$GPGSV':
num_sats.append(float(row[3]))
elif row[0] == '$GPRMC":
t_seconds.append(float(row[1][0:2])*3600 + \
float(row[1][2:4])*60+float(row[1][4:6]))
latitude.append(float(row[3][0:2]) + \

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

float(row[3][2:])/60.0)
longitude.append((float(row[5][0:3]) + \

float(row[5][3:])/60.0))
velocity.append(float(row[7])*NMI/1000.0)

return (array(latitude), array(longitude), \
array(velocity), array(t _seconds), array(num sats))

Some notes about the process_gps data() function:

e NMI is defined as 1852.0, which is one nautical mile in meters and also one minute on
the equator. The reason the constant NMI is not defined in the function is that we’d like
to use it outside the function as well.

* We initialize the return values latitude, longitude, velocity, t seconds, and num_sats
by setting them to an empty list: []. Initializing the lists creates them and allows us to
use the append() method, which adds values to the lists.

e The if and elif statements are self-explanatory: if is a conditional clause, and elif is
equivalent to saying “else, if.” That is, if the first condition didn’t succeed, but the next
condition succeeds, execute the following block.

e The symbol \ that appears on the several calculations and on the return line indicates
that the operation continues on the next line.

e Lastly, the return value is a tuple of arrays. A tuple is an immutable sequence, mean-
ing you cannot change it. So tuple means an unchangeable sequence of items (as
opposed to a list, which is a mutable sequence). The reason we return a tuple and not
a two-dimensional array, for example, is that we might have different lengths of lists to
return: the length of the number of satellites list may be different from the length of the
longitude list, since they originated from different header stamps.

Here’s how you call process_gps data():

>>>y = read csv_file('../data\\GPS-2008-05-30-09-00-50.csv")
>>> (lat, long, v, t, sats) = process gps data(y)

The second line introduces sequence unpacking, which allows multiple assignments.
Armed with all these functions, we’re ready to plot some data!

Data Visualization

Our next step is to visualize the data. We’ll be relying on the matplotlib package heavily. We've
already imported matplotlib with the command from pylab import *, so there’s no additional
importing needed at the moment. It’s time to read the data and plot the course.

Our first problem is that the information is given in latitude and longitude. Latitude and
longitude are spherical coordinates, that is, those are points on a sphere, the earth. But we
want a map-like plot, which uses Cartesian coordinates, that is, x and y. So first we have to
transform the spherical coordinates to Cartesian. We’ll use the quick-and-dirty method shown
in Listing 1-7 to do this, one that’s actually quite accurate as long as the distances traveled are
small relative to the radius of the earth.

17

18

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

Listing 1-7. “Quick-and-Dirty” Spherical to Cartesian Transformation

x = longitude*NMI*60.0*cos(latitude)
latitude*NMI*60.0

<
1}

To justify this to yourself, consider the following reasoning: As you go up to the North
Pole, the circumference at the location you're at gets smaller and smaller, until at the North
Pole it’s zero. So at latitude 0°, the equator, each degree (longitude) means more distance trav-
eled than at latitude 45°. That’s why x is a function of the longitude value itself but also of the
latitude: the greater the latitude, the smaller a longitude change is in terms of distance. On the
other hand, y, which is north to south, is not dependent on longitude.

The next thing to understand is that the earth is a sphere, and whenever we plot an x-y
map, we're only really plotting a projection of that sphere on a plane of our choosing, hence
we denote it by (px,py), where p stands for “projection.” We’ll take the southeastern-most
point as the start of the GPS data projection: (px,py) = (0,0). This translates into the code
shown in Listing 1-8.

Listing 1-8. Projecting the Traveled Course to Cartesian Coordinates

py = (lat-min(latitude))*NMI*60.0
px = (long-min(longitude))*NMI*60.0*cos(D2R*1atitude)

Some things to note:

* Variables py and px are arrays of floating-point values. We now operate on entire arrays
seamlessly. This is part of the NumPy package.

* D2Ris a constant equal to /180, converting degrees to radians.

¢ To set the y-axis at the minimum latitude and the x-axis at the minimum longitude, we
subtract the minimum latitude and minimum longitude values from latitude and lon-
gitude values, respectively.

GPS Location Plot

Now the moment we’ve been waiting for, plotting GPS data. To be able to follow along and
plot data, be sure to define the functions read_csv_file() and process _gps data() as previ-
ously detailed and set the file name variable to point to your GPS data file. I've suppressed
matplotlib responses so that the code is cleaner to follow.

>>> filename = 'GPS-2008-05-30-09-00-50.csv'

>>> y = read csv_file('../data/'+filename)

>>> (lat, long, v, t, sats) = process gps data(y)
>>> px = (long-min(long))*NMI*60.0*cos(D2R*1at)
>>> py = (lat-min(lat))*NMI*60.0

>>> figure()

>>> gca().axes.invert xaxis()

>>> plot(px, py, 'b', label='Cruising', linewidth=3)
>>> title(filename[:-4])

>>> legend(loc="upper left')

>>> xlabel('east-west (meters)')

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION 19

>>> ylabel('south-north (meters)')
>>> grid()

>>> axis('equal')

>>> show()

Figure 1-1 shows the result, which is rather pleasing.

500 GPS-2008-05-30-09-00-50

400} -
.%‘ : 1 ! : ! ; :
‘&‘]‘ 300 ._..: I,....,I : :,..............._: :_._
_E.. :] ! ! !] :
=
£
=]
c E] ; ; : : ;
5 200 | ssmmomomont (ERHERSSEETY sGiC EEERRNEENERaR (EERTEREC SR AE Y rPEREEL, CRERY R]
3 :] ! ! ! !]
2]

100 B

0 5[IJO 4CIIO 3[30 200 1CIIO 6 —1I[10

east-west (meters)

Figure 1-1. GPS data

We’ve used a substantial number of new functions, all part of the matplotlib package:
plot(), grid(), xlabel(), legend(), and more. Most of them are self-explanatory:

e xlabel(string value) and ylabel(string value) will print a label on the x- and y-axis,
respectively. title(string value) is used to print a caption above the graph. The string
value in the title is the file name up to the end minus four characters (so as to not dis-
play “.csv”). This is done using string slicing with a negative value, which means “from
the end.”

¢ legend() prints the labels associated with the graph in a legend box. legend() is highly
configurable (see help(legend) for details). The example plots the legend at the top-left
corner.

e grid() plots the grid lines. You can control the behavior of the grid quite extensively.

¢ plot() requires additional explanation as it is the most versatile. The command
plot(px, py, 'b', label='Cruising', linewidth=3) plots px and py with the color
blue as specified by the character 'b"'. The plot is labeled “Cruising” so later on, when
we call the legend() function, the proper text will be associated with the data. Finally,
we set the line width to 3.

20 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

¢ The function axis() controls the behavior of the graph axis. Normally, I don’t call the
axis() function because plot() does a decent job at selecting the right values. How-
ever, in this case, it's important to visualize the data properly, and that means to have
both x- and y-axes with equal increments so the graph is true to the path depicted. This
is achieved by calling axis('equal"). There are other values to control axis behavior as
described by help(axis).

e Lastly, gca().axes.invert xaxis() is a rather exotic addition. It stems from the way
we like to view maps and directions. In longitude, increasing values are displayed from
right to left. However, in mathematical graphs, increasing values are typically displayed
from left to right. This function call instructs the x-axis to be incrementing from right to
left, just like maps.

¢ When you're done preparing the graph, calling the show() function displays the output.

Matplotlib, which includes the preceding functions, is a comprehensive plotting package
and will be explored in Chapter 6.

Annotating the Graph

We’d like to add some more information to the GPS graph: we’d like to know where we’ve
stopped and where we were speeding. For this we use the function find(), which is part of the
PyLab package. find() returns an array of indices that satisfy the condition, in our case:

>>> STANDING KMH = 10.0

>>> SPEEDING KMH = 50.0

>>> Istand = find(v < STANDING KMH)

>>> Ispeed = find(v > SPEEDING KMH)

>>> Icruise = find((v >= STANDING KMH) & (v <= SPEEDING KMH))

We also calculate when we’re cruising (i.e., not speeding nor standing) for future process-
ing.

To annotate the graph with these points, we add another plot on top of our current plot,
only this time we change the color of the plot, and we use symbols instead of a solid blue line.
The combination 'sg' indicates a green square symbol (g for green, s for square); the combi-
nation 'or' indicates a red circle (r for red, o for circle). I suggest you use different symbols for
standing and speeding, not just colors, because the graph might be printed on a monochrome
printer. The function plot () supports an assortment of symbols and colors; consult with the
interactive help for details. The values we plot are only those returned by the find() function.

>>> plot(px[Istand], py[Istand], 'sg', label='Standing')
>>> plot(px[Ispeed], py[Ispeed], 'or', label='Speeding!')
>>> legend(loc="upper left')

Figure 1-2 shows the outcome.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

S5k GPS-2008-05-30-09-00-50
= Cruising ' : ' 5
= = Standing
e e Speeding!
400| L -
? : : a : ; 5
300
£ :
=
£
[=]
= : : .] !]
juu | H
?
100_.5. SRS 3, -, NN NP I 1) S L
o 560 40|0 360 200 160 (I) -100

east-west (meters)

Figure 1-2. GPS data with additional speed information

We’d also like to know the direction the car is going. To implement this, we’ll use the
text () function, which allows the writing of a string to an arbitrary location in the graph. So
to add the text “Hi” at location (10, 10), issue the command text (10, 10, 'Hi').One of the
nice features of the text () function is that you can rotate the text at an arbitrary angle. So to
plot “Hi” at location (10, 10) at 45 degrees, you issue text (10, 10, 'Hi', rotation=45).Our
implementation of heading information involves rotating the text “>>>" at the angle the car is
heading. We'll only do this ten times so as not to clutter the graph with “>” symbols. Calculat-
ing the direction the car is heading at a given point, i, is shown in Listing 1-9.

Listing 1-9. Calculating the Heading

dx = px[i+1]-px[i]

dy = py[i+1]-py[i]
heading = arctan(dy/dx)

Instead of actually using the function arctan(dy/dx), we’ll use the function arctan2(dy,
dx). The benefits of using arctan2() over arctan() are twofold: 1) there’s no division that
might cause a divide-by-zero exception in case dx is zero, and 2) arctan2() preserves the angle
from —180 degrees to 180 degrees, whereas arctan() produces values between 0 degrees and
180 degrees only. The following code adds the direction symbols:

>>> for i in range(0, len(v), len(v)/10-1):
text(px[i], py[i], ">»", \
rotation = arctan2(py[i+1]-py[i], -(px[i+1]-px[i]))/D2R, \
ha="center")

21

22 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

500 — - - -
= Cruising
= = Standing
e e Speeding!
400 L :
7 a a a a a a 5
‘E]' 300._. , _ __
=
£
=]
c E] ; ; : : ;
5 /1143 LT EE R (ERHER SRy T NEERRNE AR (EERTEREC SR NE Lo W ERE R]
- | i 4 H 1 ' H
3 :
(1]
100
ol j i : aas i i
500 400 300 200 100 0 —100

Figure 1-3 shows the resulting graph.

GPS-2008-05-30-09-00-50

east-west (meters)

Figure 1-3. GPS graph with heading

Velocity Plot

We now turn to plotting a graph of the speed. This is a lot simpler:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>

figure()

t = (t-t[0])/60.0

plot(t, v, 'k')

plot([t[0], t[-1]], [STANDING KMH, STANDING KMH], '-g')
text(t[0], STANDING KMH, \

" Standing threshold: "+str(STANDING KMH))
plot([t[o], t[-1]], [SPEEDING KMH, SPEEDING KMH], '-1')
text(t[0], SPEEDING KMH, \

" Speeding threshold: "+str(SPEEDING KMH))
grid()
title('Velocity')
xlabel('Time from start of file (minutes)')
ylabel('Speed (Km/H)')

We start by opening a different figure with the figure() command. We proceed by chang-

ing the timescale units to minutes, a value easier for most humans to follow than seconds.
Selecting the proper units of measurement is important. Most people will find it easier to fol-
low the sentence “I drove for 30 minutes” as opposed to “I drove for 1800 seconds.” We also
set the time axis to start at t[0]. Next we plot the velocity as a function of time, in black. Good

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

graphs require annotation, so we choose to add two lines describing the thresholds for stand-
ing and speeding as well as text describing those thresholds. To generate the text, we combine
the text “Standing threshold” with the threshold value (after casting it to a string) and use the +
operator to concatenate strings. Last, of course, are the title, x and y labels, and grid. Figure 1-4
shows the final result.

Velocity
60 , : :

50

Speeding threshold: 50.0 pf\ ﬂ

Speed (Km/H)

Time from start of file (minutes)

Figure 1-4. Velocity over time

Subplots

We’d also like to display some statistics. But before we do that, it would be preferable to
combine all these plots (GPS, velocity, and statistics) into one figure. To do this, we use the
subplot() function. subplot() is a matplotlib function that divides the plot into several smaller
sections called subplots and selects the subplot to work with. For example, subplot(1, 2, 1)
informs subsequent plotting commands that the area to work on is 1 by 2 subplots and the
currently selected subplot is 1, so that’s the left side of the plot area. subplot(2, 2, 2) will
choose the top-right subplot; subplot(2, 2, 4) will choose the lower-right subplot. A selec-
tion I found most readable in this scenario is to have the GPS data take half of the plot area,

the velocity graph a quarter, and the statistics another quarter.

Text

Sometimes, the best way to convey information is using text, not graphics. We’ll be limiting
our work to the statistics quarter for this section. Our first task is to get rid of the plot frame
and the x and y ticks. We just want a plain canvas to display text on. This is achieved by issuing
the following:

23

24

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

>>> subplot(2, 2, 4)
>>> axis('off")

The first call to subplot () selects our region of work as the lower-right quarter. The second
line removes the axes and hides the frame box.

It’s time to calculate some statistics. It appears that GPS data is being sent in regular inter-
vals, typically one second. So to calculate the time spent standing, in seconds, we calculate
the length of the vector Istand. Likewise, to calculate the time speeding, we can calculate the
length of Ispeed. To estimate how much these were in percent values, we divide the length of
the Istand and Ispeed vectors by the length of the velocity vector and multiply by 100. To cal-
culate the average speed, we use the mean() function, which is part of PyLab.

We also would like to calculate the total distance traveled. The distance can be calculated
as the sum of the distances between each two consecutive data points. The function diff()
returns a vector of the differences of the input vector.

>>> diff([1, 4, 0, 2])
array([3, -4, 2])

This is really useful because now to calculate the distance we can do the following:

>>> sum(sqrt(diff(px)**2+diff(py)**2))
1652.1444099624528

which in turn yields the total distance traveled.

To automate the whole process of printing the statistics, we store the text to be printed
in the variable stats, a list of strings. We also use a method of formatting strings similar to C’s
printf() function, although the syntax is a bit different. %s indicates a string; the %f indicates a
floating point number, in our case %. 1f indicates a float with one digit after the decimal point;
and %d indicates an integer. The following generates the statistics text:

>>> Total distance = float(sum(sqrt(diff(px)**2+diff(py)**2))/1000.0)
>>> Stand_time = len(Istand)/60.0
>>> Cruise time = len(Icruise)/60.0
>>> Speed_time = len(Ispeed)/60.0

>>> Stand _per = 100*len(Istand)/len(v)
>>> Cruise per = 100*len(Icruise)/len(v)
>>> Speed per = 100*1len(Ispeed)/len(v)

>>> stats=['Statistics', \
'%s' % filename, \
"Number of data points: %d' % len(y), \
'Average number of satellites: %d' % mean(sats), \
'Total driving time: %.1f minutes:' % (len(v)/60.0), \
' Standing: %.1f minutes (%d%%)' % \
(Stand_time, Stand per), \
' Cruising: %.1f minutes (%d%%)' % \
(Cruise_time, Cruise per), \
' Speeding: %.1f minutes (%d%%)' % \
(Speed_time, Speed per), \
'Average speed: %d km/h' % mean(v), \
'Total distance traveled: %.1f Km' % Total distance]

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

To print the text on the canvas, we again use the text() function, in a for loop, iterating
over every string of the stats list.

>>> for index, stat line in enumerate(reversed(stats)):
text(0, index, stat line, va='bottom')

>>> plot([index-.2, index-.2])
>>> axis([0, 1, -1, len(stats)])

We’ve introduced two new functions. One is reversed(), which yields the elements of
stats, in reversed order. The second is enumerate(), which returns not just each row in the
stats array but also the index to each row. So when variable stat_line is assigned the value
'Average speed...', the variable index is assigned the value 8, which indicates the ninth row
in stats. The reason we want to know the index is that we use it as location on the y-axis.
Lastly, the vertical alignment of the text is selected as bottom as suggested by the parameter
va="bottom"' (va is short for vertical alignment).

Tying It All Together

Finally, Listing 1-10 shows the combined code to analyze and plot all GPS files in directory data.

Listing 1-10. Script gps. py

from pylab import *
import csv, os

constant definitions
STANDING _KMH = 10.0
SPEEDING KMH = 50.0
NMI = 1852.0

D2R = pi/180.0

def read csv_file(filename):
"""Reads a CSV file and returns it as a list of rows."""
data = []
for row in csv.reader(open(filename)):
data.append(row)
return data

def process gps data(data):
"""Processes GPS data, NMEA 0183 format.

Returns a tuple of arrays: latitude, longitude, velocity [km/h],
time [sec] and number of satellites.
See also: http://www.gpsinformation.org/dale/nmea.htm.

nwn

25

26 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

latitude = [
longitude = [
velocity = [
t seconds = [
num_sats = [

[S S S |

for row in data:
if row[0] == "$GPGSV':
num_sats.append(float(row[3]))
elif row[0] == "$GPRMC':
t_seconds.append(float(row[1][0:2])*3600 + \
float(row[1][2:4])*60+float(row[1][4:6]))
latitude.append(float(row[3][0:2]) + \
float(row[3][2:])/60.0)
longitude.append((float(row[5][0:3]) + \
float(row[5][3:])/60.0))
velocity.append(float(row[7])*NMI/1000.0)

return (array(latitude), array(longitude), \
array(velocity), array(t_seconds), array(num sats))

read every data file, filter, and plot the data
for root, dirs, files in os.walk('../data'):
for filename in files:
create full file name including path
cur_file = os.path.join(root, filename)
if filename.endswith('csv'):
y = read csv_file(cur file)
else:
continue

only files with the .csv extension from here on

process GPS data
(lat, long, v, t, sats) = process _gps data(y)

translate spherical coordinates to Cartesian
py = (lat-min(lat))*NMI*60.0
px = (Llong-min(long))*NMI*60.0*cos(D2R*1at)

find out when standing, speeding, or cruising

Istand = find(v < STANDING KMH)

Ispeed = find(v > SPEEDING KMH)

Icruise = find((v >= STANDING KMH) & (v <= SPEEDING KMH))

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

left side, GPS location graph
figure()
subplot(1, 2, 1)

longitude values go from right to left,
we want increasing values from left to right
gca().axes.invert xaxis()

plot(px, py, 'b', label=" Cruising', linewidth=3)
plot(px[Istand], py[Istand], 'sg', label=' Standing')
plot(px[Ispeed], py[Ispeed], 'or', label=' Speeding!")

add direction of travel
for i in range(0, len(v), len(v)/10-1):
text(px[1], py[i], ">>>", \
rotation = arctan2(py[i+1]-py[i], \
-(px[i+1]-px[1i]))/D2R, ha='center")

legends and labels
title(filename[:-4])
legend(loc="upper left")
xlabel('east-west (meters)')
ylabel('south-north (meters)"')
grid()

axis('equal')

top-right corner, speed graph
subplot(2, 2, 2)

set the start time as t[0]; convert to minutes
t = (t-t[0])/60.0
plot(t, v, 'k")

plot the standing and speeding threshold lines
plot([t[0], t[-1]], [STANDING KMH, STANDING KMH], '-g')
text(t[0], STANDING KMH, \

" Standing threshold: "+str(STANDING KMH))
plot([t[0], t[-1]], [SPEEDING KMH, SPEEDING KMH], '-r')
text(t[0], SPEEDING KMH, \

" Speeding threshold: "+str(SPEEDING KMH))

grid()

legend and labels

title('Velocity')

xlabel('Time from start of file (minutes)")
ylabel('Speed (Km/H)')

27

28 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

right-side corner, statistics data
subplot(2, 2, 4)

remove the frame and x-/y-axes. we want a clean slate
axis('off")

generate an array of strings to be printed

Total distance = float(sum(sqrt(diff(px)**2+diff(py)**2)) \
/1000.0)

Stand time = len(Istand)/60.0

Cruise time = len(Icruise)/60.0

Speed time = len(Ispeed)/60.0

Stand per = 100*1len(Istand)/len(v)

Cruise per = 100*len(Icruise)/len(v)

Speed per = 100*1len(Ispeed)/len(v)

stats=["'Statistics', \

'%s' % filename, \

"Number of data points: %d' % len(y), \

'Average number of satellites: %d' % mean(sats), \

'Total driving time: %.1f minutes:' % (len(v)/60.0), \

' Standing: %.1f minutes (%d%%)' % \

(Stand_time, Stand per), \

' Cruising: %.1f minutes (%d%%)' % \

(Cruise time, Cruise per), \

' Speeding: %.1f minutes (%d%%)' % \

(Speed_time, Speed per), \

'Average speed: %d km/h' % mean(v),

'Total distance traveled: %.1f Km' % Total distance]

—

display statistics information
for index, stat line in enumerate(reversed(stats)):
text(0, index, stat line, va='bottom")

draw a line below the "Statistics" text
plot([index-.2, index-.2])

set axis properly so all the text is displayed
axis([0, 1, -1, len(stats)])
show()

Figure 1-5 shows the final results.

CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

GPS-2008-05-30-09-00-50 - Velocity

= Cruising
= = Standing
e e Speeding!

500 H

400 Lot)

Speed (Km/H)

3001

Time from start of file (minutes)

Statistics

GPS-2008-05-30-09-00-50.csv
Mumber of data points: 1693

Average number of satellites: 12

Total driving time: 4.7 minutes:
Standing: 1.6 minutes (32%)
Cruising: 2.8 minutes (60%)
Speeding: 0.3 minutes (7%)

Average speed: 20 km/h

Total distance traveled: 1.7 Km

200+

south-north (meters)

wol Vi i i i

I i i
400 350 300 250 200150 100 50 O
east-west (meters)

Figure 1-5. Output of gps. py on some GPS data

Final Notes and References

The GPS problem described here is research in nature: a computation, an intermediate result,
not an end product. Research, or R&D work, especially feasibility studies, requires rapid
responses. This means using readily available tools as much as possible and combining them
to get the job done. If those tools are inexpensive, or free, that’s yet another reason to use them.
Throughout the book, we will examine different packages and modules and see how they
may be used to perform data analysis and visualization. The theme we’ll be using is open
software, including software published under the GNU Public License (GPL) and the Python
Software Foundation (PSF) license. Examples of these tools include GNU/Linux and, of course,

Python.

There are several benefits to developing data analysis and visualization scripts in Python:
¢ Developing and writing code is quick, appealing for research work.
» Readily available packages further increase productivity and ensure accurate results.

e Scripts introduce automation. Modifying an algorithm is easily done.

Scripts will be numerous and explained in detail, and I aim to cover most of the issues
you are likely to encounter in the real world. Examples include scripts to deal with binary files,
to combine data from different sources, to perform text parsing, to use high-level numerical
algorithms, and much more. Scripts will be written in Python: some will be simple one-liners,
others more complex. Special attention will be given to data visualization and how to achieve
pleasing results in Python.

29

30 CHAPTER 1 NAVIGATING THE WORLD OF DATA VISUALIZATION

If you’d like to read more about Python in general (and not necessarily for data analysis
and visualization), the Python official web site is an excellent resource:

¢ Python Programming Language—Official Website, http://www.python.org

CHAPTER 2

The Environment
Tools of the Trade

In the previous chapter we’ve seen a case study involving the collection, analysis, and visual-
ization of GPS data. Unless you're already familiar with Python and the packages we’ve used,
you should read this chapter and build yourself a development environment.

Analyzing and visualizing data requires several software tools: a text editor to write code,
Python to run and test the scripts, and perhaps a tool to present the results.

I've decided to break the discussion of software tools into two categories: general-purpose
software components and specific software components. The general-purpose software com-
ponents are merely a recommendation on my part on tools I think improve productivity. If
you're already comfortable with another software package, by all means use it over the one
suggested here. The specific software components category, on the other hand, is composed of
tools required to run the examples in the book. To clarify, whenever a component is a required
component, it is clearly mentioned.

The following is a suggested list of software components that I feel provides a solid devel-
opment environment.

General software components:

¢ An operating system (OS)
o Atext editor
e Animage viewer
 Tools for presenting and viewing the results
¢ Aversion control system
Specific software components:
¢ Python with its built-in packages
* Additional Python packages for data analysis and visualization

This chapter introduces the different software components in a linear fashion, that is, it
builds things from the ground up—first the OS, then Python and Python packages, and lastly,
supporting software components.

31

32

CHAPTER 2 THE ENVIRONMENT

Although the chapter is organized in a linear fashion, feel free to skip the general software
components section if you already know what applications you’ll be using. You should, how-
ever, ensure you have the specific components (Python and additional packages) properly
installed; code presented in the book assumes that is the case.

Operating Systems

The development environment is built upon an operating system. There are several options
to choose from: UNIX-based operating systems (including GNU/Linux, Mac OS X, and oth-
ers) and Windows. Of those, we’ll focus on Linux and Windows. As for Mac OS, since it is a
UNIX-based operating system, most of the discussions regarding Linux apply to it as well. The
Python web site (http://www.python.org) is an excellent resource for all things Python, includ-
ing supported operating systems.

GNU/Linux

Linux is a generic term that describes UNIX-like operating systems based on the Linux kernel.
A Linux distribution is a collection consisting of the Linux kernel along with additional soft-
ware packages that together provide a full OS. Most distributions provide more than a basic
OS functionality; they provide additional software packages such as multimedia applications,
games, office productivity suites, and much more. A considerable portion of the packages in
most Linux distributions is based on the GNU project (http://www.gnu.org), hence the term
GNU/Linux.

There is a large number of Linux distributions (distros) available today, including

* Fedora project: http://www.fedoraproject.org
e Debian: http://www.debian.org
e Ubuntu: http://www.ubuntu.com

e Gentoo: http://www.gentoo.org

Most of these are excellent distributions, so if you plan on going the Linux route, spend
some time to acquaint yourself with these distributions to decide on the one that best suits
your needs (or should I say best fits your personality?).

It is especially important that you know how to install applications in the Linux distribu-
tion of your choice. Most distributions come with a package management tool (e.g., rpm/Yum
on Fedora, apt-get/APT on Debian, and emerge/Portage on Gentoo) that enables download-
ing applications and installing them on your Linux OS. Typically, package management tools
synchronize with an online repository and enable downloading and upgrading software. They
also take care of any version conflicts and perform the actual installation tasks such as copying
files and updating system information.

As a general rule, opt for using your Linux distribution’s built-in package management
tool to install the software components discussed in this chapter, Python and packages
included, over a manual install; this will ensure a stable Linux system.

In case a software application of your liking is not available via the package management
tool of your Linux distribution, you still have the option of manually installing that applica-
tion. This is not a trivial task and requires some Linux expertise. That being said, in the case of

CHAPTER 2 THE ENVIRONMENT

Python packages, a manual install is straightforward, and an example will be provided later in
the chapter in section “Manually Installing a Python Package.”

Windows

Of the Windows versions available today, any version from Windows XP upward should be
fine; previous flavors of Windows are growing obsolete, so support for applications running on
older versions of Windows is limited. That being said, most applications still do run on older
versions of Windows; however, you should check with the packages’ online documentation.

Unlike Linux, after selecting Windows as the OS, there’s still a decision to be made, and
that is what exact environment Python will be running on. There are three main options to
choose from:

¢ Stand-alone (natively)

e Cygwin

¢ Virtual machines (VMs)

Stand-Alone (Natively)

Unless you have a strong reason against it, this should be your preferred choice if you intend
on using Windows: installing Python natively without an additional environment. Python
comes as an executable file with an installer application. After downloading, double-click the
executable and install Python (more on Python installation shortly). Most other packages we’ll
be dealing with also come bundled in this fashion, so installing them should be simple as well.

In case you’d like to install a package that doesn’t come with an installer, you'll have to
consult with that package’s documentation. By the way, regardless of whether you choose a
stand-alone approach or one of the other methods suggested next (or Linux), there are bound
to be packages that require a manual installation, so knowing how to do a manual package
install is of value.

Cygwin

Cygwin (http://www.cygwin.com) is an environment that runs in Windows and provides UNIX-
like functionality. It is an excellent software product even if you are a devoted Windows user.

Cygwin comes with a GUI installer that runs on Windows named Cygwin Net Release
Setup Program (setup.exe) that allows picking and installing software packages. The Cygwin
installer is actually a package management tool just like any other package management tool
in most Linux distributions. As you browse through the list of packages, you'll realize there’s
an extensive selection to choose from; however, that should not deter you. Install the default
options knowing you can always go back and add or remove applications; it’s as simple as
rerunning the Cygwin installer. After installing Cygwin, run it via Start » All Programs »
Cygwin » Cygwin Bash Shell.

Cygwin provides a great number of additional open source software packages, including
Python. If you want additional functionality—Bash shell, SSH, editors, viewers, version control
systems, X functionality, and more—then Cygwin is an excellent choice. The downside is that
it is a bit more complex for a less-experienced user than the stand-alone approach presented
earlier. There’s also a small performance hit using Cygwin compared with a native installation.

33

34

CHAPTER 2 THE ENVIRONMENT

For example, on my computer, a simple for loop summing values was 20 percent slower in
Python on Cygwin compared with a native Python installation.

Note Cygwin treats drives differently from Windows as it follows a UNIX directory structure. If you
installed Cygwin under c:\cygwin, then this directory is usually denoted as the topmost directory: /. To
access directories outside c: \cygwin, use the following notation: /cygdrive/disk. For example, if a file
is located in c:\data, it is accessible in Cygwin as /cygdrive/c/data.

Virtual Machines

The third option, which is a bit more exotic, is running a virtual machine (VM). A virtual
machine allows the user to run a Linux OS (or another OS for that matter) in the host operating
system, which is in this case Windows or Mac OS. This option is for the more experienced user:
installing and configuring a VM is not an easy task.

On Windows, there are several VMs available today including the open source Coopera-
tive Linux (coLinux, http://www.colinux.org) and the commercial VMware (http://www.
vmware.com), which has a free version as well. A popular VM on Mac OS is Parallels (http://
www.parallels.com), which allows for running both Linux and Windows alongside Mac OS.

Tip Running a virtual machine might be a good option in case you just want to try out Linux in general but
don’t want to go the full route of installing an 0S. If that is the case, there is also the option of running a live
CD, which basically means booting a full-fledged Linux OS from CD-ROM. There’s quite a large number of
live CDs available today, with one of the well-known ones being Knoppix (http://www.knoppix.net).

INSTALLING COLINUX

As mentioned, installing a Linux VM in Windows is not a trivial task. The process involves several steps that
require Linux and networking expertise. Here’s a set of steps to install coLinux in Windows XP:

1. First, install coLinux with an image of the Linux distribution of your choice.

2. Set up Internet connectivity on the target OS (Linux) so that you can download and update packages.
Update and install packages as needed.

3. Set up a networking connection between the host 0S and the target OS so you can transfer data files.

VM packages nowadays, both commercial and open source, automate these tasks and make the instal-
lation a lot more user friendly.

CHAPTER 2 THE ENVIRONMENT

One of the downsides of using a VM is that you pay a price in performance. That being
said, VM implementations and the increasing power of computing have made this a relatively
small price to pay.

Choosing an Operating System

From a data analysis and visualization perspective, Linux is a perfect match. The main reason
is that Linux comes with a strong command-line interface (CLI) compared with Windows,
which relies heavily on a graphical user interface (GUI).

Working with a significant number of files, CLI wins hands down. Consider renaming
a large number of files, say, pictures you took on your last vacation. Most cameras generate
files that follow a sequential naming scheme: DSB00001. jpg, DSB00002. jpg, and so forth, which
is rather cryptic. You, on the other hand, would like to rename these files to something a bit
more informative, such as Vacation2007-09-20-NNNNN. jpg, where NNNNN is the running index.
So a file named DSB00002. jpg will now be named Vacation2007-09-20-00002. jpg. You can per-
form this task with both a GUI and a CLI:

¢ With the GUI approach, this means a task of point, click, and rename for each and
every file. While this might be perfectly reasonable for a small number of pictures, as
the number increases, this becomes a tedious task.

e The CLI approach is to write a command to rename all the files. If you're familiar with
Bash, you might issue the following:

$ for fn in DSB*.jpg; do mv $fn ${fn/DSB/Vacation2007-09-20-}; done

(There are lots of ways to do it with a CLI, and this is just one I prefer. I will not be
discussing Bash in the book.) Again, for a small number of pictures, this seems like
overkill; however, once the number of files increases, this is the better approach.

Of course, renaming files is a simple task, one that Windows supports via its command
prompt as well (which is the Windows version of a CLI), but even this simple task is not trivial
in Windows, unless you install additional software or write some code to perform the task
(although recent versions of Windows also introduce shell capabilities enabling both GUI and
CLI interfaces). For more complex data management tasks, a CLI-centric approach is much
better than a GUI. An operating system built around CLI is usually a better choice for manag-
ing data files.

Tip There isn’t a right or wrong, whatever 0S you choose—the concepts (and code) presented in this
book will work just fine.

Here are some things to consider when choosing an OS:

35

36

CHAPTER 2 THE ENVIRONMENT

¢ Linuxis a stable and able operating system. The benefits of using Linux include low
cost (typically, none), solid CLI, and an active and supportive community. The main
disadvantage with Linux is that if you're not familiar with the OS, there is a learning
curve, although with today’s distributions the curve has leveled off significantly. Also,
support for hardware isn’t as all-encompassing as is the case in Windows. This might
prove a serious disadvantage if your work involves using an already existing piece of
hardware that isn’t supported in Linux to generate data.

¢ Windows is a widely popular operating system. Most users have experienced working
in Windows to some degree, so the learning curve is very shallow, if any. Support for
hardware is very good; most hardware vendors target Widows as their primary OS. The
drawbacks of using Windows are lack of a strong CLI and cost of the OS and additional
software applications.

e MacOS is gaining popularity: it combines the GUI experience with UNIX power.
Although relatively new in the data analysis and visualization scene, due to those two
traits, I have a feeling you’ll see more and more of Mac OS being used. Mac OS down-
sides as I view them are cost and support for legacy hardware.

Table 2-1 summarizes the aforementioned pros and cons.

Table 2-1. Linux, Windows, and Mac OS as Development Environments for Data Processing and
Visualization

Linux Windows Mac0S
CLI Very good (native) Good (with Python) Very good (native)
Applications Full (mostly free) ~ Full (possible additional cost) ~ Full)(possible additional
cost
Learning curve Steep Gentle Gentle
Cost Low Medium Medium
Hardware support Good Very good Medium
Stability Very good Very good Very good

Then Again, Why Choose? Using Several Operating Systems

The nice thing about Python is that it eliminates the operating system from the equation.
Python is a complete environment, with a “batteries-included” approach: you should be pretty
much good to go, out of the box, after installing Python; the standard library provides full
functionality. What that means is that all of a sudden, Windows has a strong CLI as well: the
Python interpreter.

With that in mind, the selection of an OS becomes more of a personal preference than
anything else. I have both Linux and Windows and use both for data analysis and visualization:
my Linux machine is a stationary home server so I can’t use it to record GPS data when driv-
ing; my laptop runs Windows and does that for me.

If you require more UNIX-like functionality than Python provides but would still like to
use Windows, opt for Cygwin as discussed previously. Cygwin provides a host of GNU tools
ported to Windows. In fact, use Cygwin’s X server and connect to my Linux machine if I'd like

CHAPTER 2 THE ENVIRONMENT

some interactive work-plotting data (the Linux machine is tucked under the desk and has no
monitor).

If you plan on using both Windows and Linux to analyze data on the same computer,
that is, dual-booting, think about how you’re going to transfer data between the Linux and
Windows partitions. There are several ways: having a shared partition that both Linux and
Windows can handle (FAT32, NTFS on some), transferring files through a USB device, or even
networking to another machine. Each has its benefits, but remember that you might be deal-
ing with a large number of files, so it would be best if you could access the data on a shared
resource.

Caution Installing an 0S is a time-consuming task, taking twice as long if you intend to dual-boot. You
should consult with the Linux documentation of your distribution on how to best achieve dual-booting, and
especially on what 0S (Linux or Windows) you should install first. Dual-booting is an advanced topic and is
not suggested for the beginner.

Using a dual-boot system can be annoying at times, especially since you have to reboot
to switch operating systems. Not to mention that the installation process is a bit risky: there
could be scenarios of lost data due to repartitioning of the hard disk (which can be avoided, if
you know what you're doing). This is exactly why a VM is a good alternative: data is safe from
repartitions, and actual reboots are not required. My PC is strong enough to run Linux as a
VM in Windows with excellent performance. If you’'d like to use this setup, again, think about
how you're going to share data between the host OS and the target OS. A common (and good)
approach is to transfer files using a virtual network interface.

On Mac OS, the need for these solutions is somewhat less required; Mac OS is already a
UNIX-like OS.

The Python Environment

By now you should’ve already selected and installed the OS of your choice. You should also be
comfortable with downloading and installing packages. It’s now time to install Python. This
section discusses the installation of Python and Python packages to enable programming data
analysis and visualization scripts. A more detailed discussion on using Python both in an inter-
active shell and as a stand-alone application will be given in Chapter 3. In this chapter, I'll be
covering Python distributions, Python IDEs, and Python packages.

Versions

The book covers Python version 2.5 and should work on version 2.4 as well. As a general
rule, you should opt for the most updated Python version. Unfortunately, that’s not always
possible:

37

38

CHAPTER 2 THE ENVIRONMENT

¢ Some operating systems, for example the Gentoo Linux distribution, rely heavily on
Python for system administration, and upgrades require extensive testing to ensure the
system is stable. So although a new release of Python becomes available, you might not
be able to use it yet. There are workarounds to that such as installing several versions of
Python on one machine; again, refer to your Linux distribution for further information,
as this topic is beyond the scope of this chapter.

¢ At the time of writing, Python 2.6 was released. However, not all the packages used
in the book have caught up yet, so I've had to stick with Python 2.5. We already know
Python 3.0 is in the making, and a lot of the information regarding the upcoming
changes can already be viewed on the Python web site (http://www.python.org). When
applicable, I've tried to cover the differences between Python 2.6 and Python 3.0.

Tip Always make sure you're downloading and installing a version of a package that is compatible with
the version of Python you’re using. Some packages keep older versions if you need them for compatibility
reasons.

Python

You can download a Python implementation for your specific OS from http://www.python.
org/download/. Read carefully and select the package that fits your OS. Again, if you're run-
ning a Linux OS, opt for using that system’s package management tool over downloading and
installing from the Python web site. The same applies for Cygwin: use the Cygwin installer if
you can. On Windows, the common practice is to use the Python binaries distributed with an
installer from the preceding URL.

You can install Python from source code, that is, download the source code and compile
it on your OS. Personally, I have not found a reason to do this other than to satisfy my curiosity
that the code does indeed compile properly.

If you are wondering about Jython (an implementation of Python written purely in Java,
see http://www. jython.org) and IronPython (an implementation of Python on Microsoft’s
.NET platform, see http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython), I'm
afraid they’re not good options for this book. A lot of the code and examples rely heavily on
packages that do not run on Jython or IronPython.

Python Distributions with Scientific Packages

Another option is to use a Python distribution that already bundles a significant number of the
Python packages we’ll be using. Enthought Python Distribution (EPD, http://www.enthought.
com/) and Python(x,y) (http://www.pythonxy.com/) provide Python distributions that should
prove a good option if you don’t want the hassle of installing individual packages. Opt for this
option if you can’t wait to be past the installation phase and up and running code.

CHAPTER 2 THE ENVIRONMENT

Tip If you choose the distribution from Enthought or Python(x,y), you can skip the sections related to
SciPy, NumPy, matplotlib, and IPython later in the chapter. Both these distributions include those packages
out of the box.

Python Integrated Development Environments

An integrated development environment (IDE) is, simply put, an application that helps pro-
grammers write code. Typically an IDE is composed of the language engine (Python), an
editor, a debugger, documentation, and possibly additional productivity tools. While it is by all
means possible to use Python without an IDE, using one will greatly increase your productivity
and will enable a faster learning pace.

There is a wealth of Python IDEs, and a rather extensive list is provided in the books
Python in a Nutshell: A Desktop Quick Reference and Beginning Python: From Novice to Profes-
sional (see the references at the end of this chapter). In this chapter, we’ll limit our discussion
to IDLE and IPython (which isn’t really an IDE, more of a Python shell enhancement).

IDLE

IDLE (http://www.python.org/doc/2.6/1ibrary/idle.html) is a cross-platform Python GUI
IDE. If you installed from Windows binaries, IDLE is automatically installed; access it via
Start » All Programs » Python 2.5 » IDLE (Python GUI). IDLE is a capable IDE with the fol-
lowing features: seamless integration with the Python interpreter, an editor, a debugger, and
a help system. It’s an excellent environment to get up and running, especially if you're new to
programming.

One of the benefits of using IDLE is that you can write code in an editor, specifically
designed for Python, and then quite easily execute it in IDLE by pressing F5. With a CLI
approach, you’d have to invoke Python with the file you’d like to execute (more on this in
Chapter 3).

IPython

As you start working with a CLI, you'll realize there are some things you'd really like enhanced.
IPython (http://ipython.scipy.org/) provides an enhanced interactive Python shell and is
highly recommended mostly because data analysis and visualization is interactive in nature.
IPython is supported on most platforms. Here’s a short list of the added features that come
with IPython:

¢ Tab completion, which involves completion of variables, functions, methods, attri-
butes, and file names. Tab completion is achieved with the GNU Readline library
(http://tiswww.case.edu/php/chet/readline/r1top.html) and is highly addictive. It’s
very hard to go back to a regular CLI after you've been exposed to GNU Readline.

e Command history capabilities: issue the command history for a full account of the
commands you've recently typed. You can copy and paste those into a Python script
and save time and effort.

39

40 CHAPTER 2 THE ENVIRONMENT

¢ Seamless integration with system shell: you can use 1s -1 or cd /home/user, for
example.

* Colored output.

Note IPython is not required but is highly recommended. The code in the book will work without IPython
as well as with it.

IPython comes bundled with an installer for Windows and is available on most package
management tools as well on Linux and Cygwin. Depending on your OS, you might need to
install GNU Readline; on Windows, you'll also need to install PyReadline (http://ipython.
scipy.org/moin/PyReadline/Intro). Consult with IPython’s installation documentation.

Note IPython should be installed after Python, GNU Readline, and PyReadline are installed.

CHARACTER COMPLETION WITH GNU READLINE
Character completion with GNU Readline is a welcomed addition to an interactive CLI. With IPython, character
completion can be used to complete
o Names of variables
e Names of methods and attributes

e File names

To invoke character completion, start by spelling out the first few characters of the word you wish to
write and then press the Tab key to have GNU Readline try and complete the word for you. The following is
from IPython:

In [1]: s = "A string"

In [2]: s.is
s.isalnum s.isalpha s.isdigit s.islower s.isspace s.istitle s.isupper
In [2]: s.is

After typing s.is, the user pressed the Tab key and was presented with a list of options. Had the user
spelled the word s . isd and pressed Tab, the entire s. isdigit would have appeared automatically at the
prompt.

The way GNU Readline works is that it tries to complete the word by searching for a variable, function,
method, attribute, or file name that matches the typed characters. In case of one option, that word is auto-
matically spelled out at the prompt. In case of several options, all the options are displayed. To select which
of the options you’d rather have completed, supply the next character and then press Tab again. In case of no
matches to the typed word, nothing happens.

CHAPTER 2 THE ENVIRONMENT

You can also use the character completion feature to explore methods and attributes of a class, or any
other namespace for that matter. In the following listing, the Tab key is pressed after a. is entered (notice the
dot).

In [1]: a = dict()

In [2]: a.

a. class a._ hash a._ setattr a.itervalues
a._cmp__ a. init a._ setitem a.keys
a.__contains__ a. iter a. str a.pop

a. delattr a. le a.clear a.popitem

a. delitem a. len a.copy a.setdefault
a. doc__ a. 1t a.fromkeys a.update
a._eq a. _ne a.get a.values

a. ge a._ new__ a.has_key a.pdf

a. getattribute a. reduce a.items

a._ getitem a._ reduce ex__ a.iteritems

a. gt a._ repr a.iterkeys

Scientific Computing

A significant portion of the book is dedicated to the processing of data prior to visualization.
Two packages help us achieve that end: NumPy and SciPy. NumPy will be discussed in Chap-
ter 7, and SciPy will be reviewed in Chapter 8. These two packages, combined with matplotlib
(more on this package shortly) behave similarly to most high-end math packages such as the
open source GNU Octave (http://www.octave.org) and the commercial MATLAB (http://www.
mathworks.com). In fact, there’s even a name for these three packages working together: PyLab,
which is a combination of Python and MATLAB. A portal for SciPy and NumPy is located at
http://www.scipy.org.

SciPy, NumPy, and matplotlib are all open source software packages and are required to
run the code presented in the book.

NumPy

NumPy provides a powerful N-dimensional array that is the basis for most of the data process-
ing we'll perform. You've already seen it in action in the GPS example in Chapter 1. NumPy
also provides additional numerical capabilities: linear algebra, Fourier transforms, and more.
NumPy is a mature and stable package and can be downloaded and installed from
http://numpy.scipy.org/. NumPy will be discussed in Chapter 7 and Chapter 8.

SciPy

SciPy builds on top of NumPy and adds additional scientific computing tools. These include
numerical integration, differential equations, interpolation, signal processing, optimization,
linear algebra, and more.

41

42

CHAPTER 2 THE ENVIRONMENT

Even if you're not interested in scientific computing, I encourage you to give SciPy a try—
it provides additional utility functions to NumPy that are very useful and used extensively in
the book.

SciPy can be downloaded and installed from http://www.scipy.org/ and will be reviewed
in Chapter 8.

Note SciPy relies on NumPy and should be installed after NumPy is installed.

Plotting

Visualization is the final step, displaying data graphically to the audience, portraying an idea,
and capturing information efficiently and elegantly. We now turn to two packages that allow
easy plotting and graphing.

Matplotlib

Plotting throughout the book will rely heavily on the matplotlib package, maintained at
http://matplotlib.sourceforge.net/. Matplotlib is a 2-D plotting package that interfaces well
with NumPy and SciPy. The package is cross-platform and works on Linux, Windows, and Mac
OsS.

Matplotlib can produce both interactive and hard-copy plots using various engines. You
can therefore use it both for interactive work, which is very useful in the early stages of an algo-
rithm design; or you can use it in an automatic mode, for example, batch processing, to plot
results to, say, a shared directory or a web server.

Matplotlib is both simple to use and highly customizable, yielding an excellent package
for our purposes. It allows a range of 2-D plot types and has excellent graph annotation capa-
bilities.

Tip Matplotlib has some additional toolkits available, out of which the one that is of interest especially in
light of Chapter 1 is the basemap toolkit. The basemap toolkit allows working with map projections. | will not
be covering the basemap toolkit in this book.

Gnuplot

An alternative package suggested here is gnuplot (http://www.gnuplot.info/). Gnuplotis a
widely popular plotting package that has been ported to numerous platforms including Linux,
Windows, and Mac OS. This renders gnuplot a very good graphing and plotting package. Gnu-
plot also supports both interactive and hard-copy graphs.

One of the benefits of gnuplot over matplotlib is 3-D graph support. If you require such
capabilities, opt for gnuplot.

CHAPTER 2 THE ENVIRONMENT

In order to use gnuplot interactively from the Python CLI, a software package to connect
the two is required. I have used the Gnuplot.py package (http://gnuplot-py.sourceforge.
net/) to do so with good results.

Note To use gnuplot from Python, be sure to install both gnuplot and Gnuplot.py. After installing Gnuplot.
py, you'll have to set the variable Gnuplot.GnuplotOpts.gnuplot command to point to the location of the
gnuplot binary executable. Alternatively, you can edit a configuration file to permanently set this variable;
consult with Gnuplot.py’s documentation. In Windows, you’ll also require pgnuplot.exe, which is a part of
gnuplot for Windows and allows sending commands to wgnuplot (the Windows version of the gnuplot appli-
cation).

As mentioned previously, most of the examples in the book rely on matplotlib, so you'll
need to modify the code if you wish to use gnuplot solely. Unless you have a strong reason not
to use matplotlib, or that gnuplot is already installed on your system and heavily used, I sug-
gest you stick with matplotlib.

Image Processing

Image processing provides the final piece of the puzzle. It is an important part of data visu-
alization and will be discussed extensively in Chapter 9. We’ll be using the Python Imaging
Library (PIL) to provide image processing support.

Python Imaging Library

The Python Imaging Library (http://www.pythonware.com/products/pil/) enhances Python
with excellent image processing capabilities. PIL supports most popular image file formats
and provides a wealth of functions for manipulating image data. PIL, combined with NumPy,
provides a very capable image processing environment for Python.

Additional Python Packages

Numerous Python packages are available, and more are being written every day. The following
are good sources of information on Python packages:

* The Python Package Index: http://pypi.python.org/pypi

* SourceForge: http://www.sourceforge.net

PySerial

In Chapter 1 we used pySerial to capture GPS data through the serial port. PySerial is available
athttp://pyserial.wiki.sourceforge.net/pySerial.

43

44

CHAPTER 2 THE ENVIRONMENT

Note In Windows, you will also need to install the Python Win32 Extensions (win32all) from http://
python.net/crew/mhammond/win32/Downloads.html as well as possibly a real-time library. Consult the
pySerial and Python Win32 Extensions documentation.

Example: Manually Installing a Python Package

As mentioned previously, some Python packages do not come with a stand-alone installer. In
that case, you’ll have to perform a manual install. Not to worry, this is easier than it sounds.

As a general rule, it’s best to read the documentation and follow the instructions. That
being said, most Python packages require a similar set of steps to install:

1. Download the package.

2. Unpack the package to a temporary directory. Most packages are distributed as com-
pressed files, with extensions such as .tar.gz or .zip, or even self-extracting . exe files.
You'll need to unpack the package to a temporary directory. (Occasionally, files having
the extension .tar.gz are downloaded as .tar.tar. If that is the case, rename the file
with the extension .tar.gz and continue to unpack as you normally would.)

3. Run python setup.py install in the temporary directory. Of course, this has to be
done after Python is installed and working properly on your system.

The following documents the steps I took to install pySerial on Cygwin:

$ tar zxvf pyserial-2.4.tar.gz
$ cd pyserial-2.4
$ python setup.py install

The first command unpacks the downloaded file to a newly created directory named
pyserial-2.4; the creation of the new directory is done automatically by the application tar
and is reported to the user. In case you're running Windows (and not Cygwin), you can use
a native Windows utility, such as 7-Zip (http://www.7-zip.org/), to unpack the files; the tar
application is available in Linux and usually comes preinstalled with the OS. The second
command changes directory to the temporary directory. The third command performs the
installation and ensures the package is properly installed.

You can also use the setuptools package (which includes the easy_setup tool), available
from http://peak.telecommunity.com/DevCenter/setuptools, for better control over install-
ing and maintaining packages, especially packages that depend on other packages. Another
benefit of the package is that you can also install Python packages without worrying about root
(superuser) permissions.

Installation Summary

Table 2-2 summarizes the Python packages discussed previously and indicates which software
is required to run the examples in the book.

CHAPTER 2 THE ENVIRONMENT

Table 2-2. Package Installation Summary

Software/Package Functionality Required?

Python Python programming language Yes

IDLE Python IDE No

IPython, Readline Python CLI enhancements No

NumPy N-dimensional arrays and math package Yes

SciPy Scientific tools Yes

Matplotlib Plotting and graphing package Yes

Gnuplot, gnuplot.py Plotting and graphing package No

PIL Python Imaging Library Partial (Chapter 9)
PySerial Serial interface Partial (Chapter 1)

Additional Applications

By now you should have a working development environment that includes the OS of your
choice, Python, and Python packages. We now turn to additional software applications to
complete an environment for developing and running data analysis and visualization scripts
in Python.

This section suggests tools to augment the development environment from the open
source software world. While there are excellent commercial applications as well, I will not be
covering those. The suggested applications are perfectly good for me, but you might have your
own preference, even an application that’s not mentioned here. By all means, use your favor-
ite; this section is mostly intended for those who require some starting points.

Editors

The number one tool in a developer’s arsenal is a text editor. Think of it as your Swiss Army
knife: it can be used to read, write, or modify scripts, view data files, as a scratchpad for ideas,
as a clipboard for intermediate copy and paste, and more. Basic text editors will soon frustrate
you as some are limited in the size of files they can edit, others do not allow several open files,
and yet others are missing syntax highlighting or bookmark capabilities.

Selecting the Proper Editor for You

Editors play a major role in your development environment. There’s a bit of a learning curve
with a new editor, so consider the following points when you select a text editor or switch from
your current one.

¢ Ease of use: This one is obvious. Is the editor easy to use and intuitive? Is there a learn-
ing curve, and if so, how long will it take you to master?

e Multiple file editing: You might be dealing with a considerable number of script files or
even examining data files in the editor. Having one application deal with all these files
removes clutter from your desktop and is generally easier to handle.

45

46

CHAPTER 2 THE ENVIRONMENT

e Maximum file size: What's the largest file you can open in the editor? Again, useful
when you'd like to view large data files.

» Syntax highlighting: Syntax highlighting is a feature that displays reserved or specific
syntax of a programming language in a different color or font so that the code is easier
to view. Most editors that support syntax highlighting have built-in support for several
programming languages, including Python. This feature is handy as it will highlight
possible syntax errors as well as make the code more readable.

e Line numbering: Errors and warnings typically return line information where they
occurred. Therefore, being able to know what line caused an error without counting
lines is important. Some editors also support a jump-to-line command, which can be
useful if your code is long. Lastly, line numbers are helpful when communicating with
another person.

* Most recently used files list: This is a nice feature that allows you to easily access one of
the files you've recently viewed or edited, without specifying its full path.

¢ Bookmarks: Bookmarks allow easy navigation and are especially useful with large files.

e Macro support and macro recording: Macros and the ability to record and play back
macros can boost productivity (see the sidebar “Recording Macros”).

» Autocompletion: This feature is similar to character completion, described previously
in the sidebar “Character Completion in Readline” (but usually with a different key-
stroke, such as Ctrl+space). It can boost productivity but requires some getting used to.

e Other features: The preceding is a list of features I consider important. You might have
different needs and different requirements, so jot them down and use those to select
the proper editor for you.

RECORDING MACROS

Macro recorders are a quick and effective way to perform automation without actually writing code. Suppose
you want to combine every two consecutive lines in a file into one line with && symbols in between. This is
not easily done with a search and replace (unless your search and replace also supports new-line characters).
Of course, you could write a Python script to do this, but let’s suppose in this particular case there’s no point
in automation simply because you’ll only do it once. This is exactly where you would use a macro recorder.

First, move your cursor to the beginning of the file (or press Ctrl+Home on some editors to get there).
Now start your macro recorder and perform the following actions: press End to reach the end of the line,
press Del to delete the line separator and combine the two lines into one long line, type &&, move down one
line with the down arrow, and press Home to get to the beginning of the next line. Stop your macro recorder
to finish the recording of your macro. This sequence combines two lines into one, adding &8 in between. Note
that I've used the keyboard and not the mouse; this is important, as most macro recorders in editors don’t
support mouse recording.

Next, run the macro N times where N is the number of lines in the file divided by 2 (remember you
combine two lines per run). Or you can run that macro for each pair of lines you want to combine. Some
editors have the option to run the macro to the end of file. The following figure shows a macro recorder in
Notepad++.

CHAPTER 2 THE ENVIRONMENT 47

 cHHERGE stHBh/ e Ayt BERENEE CERDE *

a8 o1 bd Run Macro Multiple Times [x]
1 This is a simple &6 text fild Macra ko run ¢ | Current recorded macro % |
2 to combine into one e
3 file with additional 2
4 s=ymbols in between ORLI'! L =
5 lines, @&m unkll end of file
i Run] I Cancel J
Marmal text rb char : 101 ln:2 cColil Sel:0 Dosiwindows | ANST INS

The macro is highly reliant on the location of the cursor. If you move the cursor to the end of the file and
run the macro, you might get some unintended results.

A Short List of Text Editors

Table 2-3 presents a short list of some popular text editors. Use this table as a starting point in
selecting an editor. This is by all means not a comprehensive list of available editors, so shop
around and use the Internet to find more.

Table 2-3. Short List of Open Source Editors

Editor 0S/Environment Notes

Notepad++ Windows Has all the features described previ-

http://notepad-plus.sourceforge.net/ ously in the chapter and more. Down-
side: available only in Windows, sorry
Linux folks.

SciTE Windows, X Avery good text editor, especially if

Scintilla Text Editor you’re developing on both Windows

http://www.scintilla.org/SciTE.html and X: you can use one editor for

both platforms. Lacks in the number
of open files and macro recording

capabilities.
GNU Emacs Windows, Linux, X, A very rich editor. Runs on most any
http://www.gnu.org/software/emacs/ Cygwin, Mac OS platform including text-based CLI

(Linux), X, and Windows as well as
Cygwin. Has a bit of a learning curve if
you're new to Emacs.

Vim Windows, Linux, X, A very rich editor that runs on most

http://www.vim.org Cygwin, Mac OS any platform; has most of the features
described previously and more (e.g.,
hex editor).

GNU Nano Linux, Cygwin, DOS A text-based (nongraphical) light-

http://www.nano-editor.org/ weight editor. Missing some features

but makes up for that in size and
performance. A good candidate when
writing code over a telnet or SSH
connection.

48

CHAPTER 2 THE ENVIRONMENT

A BINARY EDITOR

At times it proves useful to edit binary files as well (see Chapter 10 for discussion of binary files). Binary

files typically cannot be viewed nor edited using regular editors (with maybe the exception of Vim). Hexedit
(http://people.mandriva.com/~prigaux/hexedit.html)is a useful utility that allows editing of
binary files. It displays the hex values as well as their ASCII representation (if such is available) and allows
editing of both the hexadecimal and ASCII values. | wouldn’t recommend writing binary files in hexedit, rather
using it to tweak or modify binary files. Hexedit is available with most Linux distributions as well as Cygwin.
To invoke hexedit, issue the following:

$ hexedit filename

While in hexedit, pressing F1 will bring up a help screen. To exit hexedit without saving, press Ctrl+C.

Spreadsheets

Spreadsheets are excellent tools for data processing and visualization. The ease in which a user
can import data from various file formats, organize it, and generate graphs is outstanding.

CSV, a most useful file format, is supported by virtually all spreadsheet applications. CSV
files are used extensively in data analysis and visualization, and being able to edit them easily
is a great benefit of spreadsheets.

Most spreadsheets come equipped with additional tools such as linear regression, statisti-
cal computations, financial functions, and more. A more experienced user may be able to use
macros to automate tasks or to update results when new data is entered. Because of these fea-
tures, spreadsheets will definitely complement your development environment.

Spreadsheets are not ideal for data processing. They're designed with an interactive point-
and-click (GUI) user in mind, which makes them less natural at script automation. They're
also limited in the amount of data they can process—you typically have to open the entire file
in the spreadsheet, and with large files that’s an issue. Lastly, they lack inherent documenta-
tion—it’s hard to capture and document the steps you took to reach a result.

Therefore, we will not be using spreadsheets in this book; however, I will mention their
usage when appropriate. For example, it is of value to know how to export and import data to
and from spreadsheets.

The following are open source spreadsheet applications:

e Gnumeric (http://www.gnome.org/projects/gnumeric/) is part of the GNOME desktop
environment project.

e Calc (http://www.openoffice.org/) is part of the OpenOffice.org project and is avail-
able on most platforms.

Word Processors

Finally, it might be of value to write a report or a presentation, displaying the results of your
work. And you might want to publish the results in HTML or PDF format. Again, several open
source applications are available, most notably the following:

CHAPTER 2 THE ENVIRONMENT

e AbiWord (http://www.abisource.com/) is a word processing application available for
Windows, GNU/Linux, and Mac OS.

* Write (http://www.openoffice.org/) is part of the OpenOffice.org project and is avail-
able on most platforms.

Image Viewers

If you plan on performing image processing tasks, an image viewing utility is required. Even
if you're not really performing an image processing task, for example, generating a hard-copy
graph in known file formats such as PNG and JPG, an image viewing utility is still a must.

Windows has built-in support for most popular image formats. On Linux, both GNOME
and KDE desktop environments come with built-in image viewers. Plus, it’s possible to open
an image using a web browser both on Windows and Linux, as browsers also support most
image formats.

Point of the matter: no need to install anything. Use your OS image viewer or web
browser.

Version Control Systems

Version control systems (VCSs) enable management of several revisions of a document (or
documents) with full history, tagging, and date capabilities. Most packages also support sev-
eral developers working together simultaneously on the same file.

A VCS allows going back to a previous working version, or checking the difference
between the current version and an older one, or even viewing a version of the document
based on date. It might hold such information as who edited the file or the tag assigned to the
document to mark its status.

A VCS is increasingly recognized as a required tool for a team of developers. But there’s
also a case to be made for even one developer. These management systems are growing in
popularity and for a good reason: they save time and help manage software projects. For this
reason, they’re good software to enhance your development environment.

The downside of using a VCS is that it’s not trivial to master and perhaps should be post-
poned until after you're comfortable with your programming environment. To help offset the
complexity involved with VCSs, some also provide a GUI front end.

WORKING WITH A VERSION CONTROL SYSTEM

In a nutshell, working with a version control system can be described as follows:

1. Check-out the project: create a local copy of the most updated version of the documents.
2. Modify your local copy: edit source code, fix bugs, and add features.
3. Review your changes: make sure the right files are modified.

4. Commit changes: save the changes you’ve made in the version control repository.

49

50

CHAPTER 2 THE ENVIRONMENT

When you check out a document from the VCS repository, the system ensures you have the most
updated version to work with. This is typically done once, and from here on you edit your local copy. You then
modify your document, and once you’re satisfied with the results, review the changes. Reviewing the changes
can be done by performing a dif of the file you have with the copy in the repository. You then commit your
changes (also known as checking in) and possibly add a description of the changes. Subsequent modifica-
tions follow steps 2 through 4.

The version control system notifies you in case of a conflict. For example, suppose you checked out
version 1 of the document, but by the time you wish to commit your changes, another developer has already
checked in his version of the document: the system will alert you of a possible conflict, because you're trying
to update a document which is now version 2, whereas you were working on version 1.

The system also maintains a full history of the project. So even if you’re the only person working on
a project, the ability to go back to previous versions of the project is as simple as checking out an older
revision. Most systems allow checking out of documents based on date, revision, or even a tag that you’ve
previously supplied. Because the system maintains such a complete history, most developers feel that you
should commit changes as often as possible— you won’t be negatively affecting “good” releases.

One final note: if you can, choose to use text files over binary files. Performing a diff on text files is
supported by most VCS systems and is a valuable tool. With the binary version of the file (e.g., an execut-
able), a diff yields very little information other than that the current version is not identical to the one in the
repository.

Here’s a set of commands | often use, working on a local copy I’'m continually editing, once I'm done
editing my local copy. With Mercurial, | issue

$ hg status

$ hg commit filename
$ hg push

$ hg update

The first command checks the status of the project: which files are modified. The second and third com-
mands check in the local copy and update the repository (where Mercurial stores the files). The last command
ensures | have the most updated version of the project in my local directory.

In CVS, | follow a similar set of commands:

$ cvs diff
$ cvs commit
$ cvs update

Here are some pointers to several open source VCS software applications:

e CVS (http://www.nongnu.org/cvs/) is a widely popular system with several graphical
user interfaces including web-based ones.

e Subversion (http://subversion.tigris.org/) is another widely popular system avail-
able on most platforms.

e Mercurial (http://www.selenic.com/mercurial/wiki/) is a lightweight VCS package
designed for distributed projects.

CHAPTER 2 THE ENVIRONMENT

Example: Directory Structure for the Book

In the process of writing this book, I've used a VCS system to control the documents, images,
source code, and data for each chapter. I've used the following directory structure: each chap-
ter has a directory of its own named ChXX, with XX being the chapter number. Within each
directory corresponding to a chapter, I've added four additional directories named doc, data,
images, and src. My actual writing was placed in directory doc; my data files in directory data;
images (such as those embedded in documents) in directory images; and source code in direc-
tory src.

Book

Ch1
data
images
SIC
doc

Ch2
data
images
STC
doc

Another side benefit of this directory structure is that it is helpful in envisioning how a
project will look. If there’s something important you realized in the first piece of code (in my
case, the first chapter) but it doesn’t really belong there, simply dump the ideas and code in
the relevant directory for future processing.

Tip This directory structure is also apparent in the source code listing. Since the source code resides in
directory ChXX/src, and data files reside in directory ChXX/data, the relative path to directory data is
../data. Similarly, the relative path to directory images is . . /images.

The reason I decided on using a VCS system for the book is quite simple. I've handed over
documents of various revisions to editors, I've revisited others, and I've sent reviewers yet a
different version. Some would return responses to a revision that I've already updated, and so
I had to know what document they’ve edited. If you think about it, in a sense, there were really
several developers for one document, and managing them all is a lot easier with a version con-
trol system.

Licensing

Most of the software described in the chapter is open source and free (with the obvious
exception of Windows and other commercial packages: MATLAB and VMware, to name a
couple). That being said, there are limitations on what you can do with open source software,

51

52

CHAPTER 2 THE ENVIRONMENT

especially if you intend on distributing your applications. Several software licenses exist, and
T urge you to read each and every one. The same applies for commercial software: ensure you
read the license agreement.

The following is a list of some of the license agreements of the software described in this
chapter. It is neither complete nor comprehensive, and the licenses might change with time,
so be sure to check the most recent license documentation.

e GNU licenses, including GPL and LGPL, which cover a substantial number of the pack-
ages described in this chapter: http://www.gnu.org/licenses/licenses.html

o Linux distributions licenses: Refer to the respective web page of the distribution of your
choice

* Cygwin: Refer to the license documents installed in Cygwin, usually under c:\cygwin\
usr\share\doc\common-1licenses as well as http://www.redhat.com/software/cygwin/

e VMuware: http://www.vmware.com/

e Python: http://www.python.org/psf/license/

e Enthought (EPD): http://www.enthought.com/products/epdlicense.php

e [Python: http://ipython.scipy.org/

* Matplotlib: http://matplotlib.sourceforge.net/users/license.html

e SciPy and NumPy: http://waw.scipy.org/License _Compatibility

* Python Imaging Library (PIL): http://www.pythonware.com/products/pil/license.htm
e PySerial: http://pyserial.svn.sourceforge.net/

* Python Windows extensions (win32all): refer to the license agreement as part of the
package.

e Scintilla and SciTE: http://scintilla.sourceforge.net/License.txt

* Subversion: http://subversion.tigris.org/

Final Notes and References

By now you should have a full development environment, one that provides all the tools of
the trade. Experiment with your environment, get accustomed to it; in the following chapters
you'll be using it extensively.

The following provide additional useful information in building a Python development
environment should you want to investigate some more:

* Beginning Python: From Novice to Professional, Second Edition, by Magnus Lie Hetland
(Apress, 2008)

e Python in a Nutshell: A Desktop Quick Reference, Second Edition by Alex Martelli
(O’Reilly, 2006)

CHAPTER 3

Python for Programmers
The Building Blocks

Python is a very readable language. Assuming you've had some previous experience in pro-
gramming, you should be able to read the code presented in the book without much trouble;
you’ll understand what’s going on.

That being said, the book would be incomplete without coverage of the Python program-
ming language. From a book-design perspective, it stands to reason that this chapter appears
in the beginning. But that shouldn’t bind you; feel free to skip it and come back to it later.

Furthermore, this chapter does not cover the full extent of the language. Some Python
topics that I felt were not crucial for data analysis and visualization were left out of scope.

If you would like to learn more about the Python programming language, I've listed several
books in the “Final Notes and References” section at the end of the chapter; these books are
all Python oriented and should prove valuable resources.

Now to the chapter itself: I'll be taking you quickly through the Python building blocks
and complement the discussion with short examples. We'll start by going through the basics
of invoking and using Python interactively and noninteractively, entering expressions, and
running scripts. We then look at the basic building blocks of most modern programming lan-
guages: data types, structures, variables, printing, flow control, and functions. We continue
with a brief discussion of object-oriented programming (OOP) and finalize with a discussion
of modules and packages.

What Is Python?

Python is an open source, object-oriented, high-level programming language. This is a rather
vague definition; if you're looking for a more accurate one, have alook at http://www.python.
org/ and http://www.python.org/about/. That being said, I think it’s easier to show what
Python is, rather than try and define it. This really is the purpose of this book in a narrow
sense: using Python effectively for data analysis and visualization and not just learning Python
for the purpose of knowing the language.

Python seemed to have developed a culture around it. You'll find such notions as
“Pythonic” or “Easier to Ask Forgiveness than Permission” (EAFP) or the “batteries included”
approach—all of which shows that Python is more than just a programming language.

54

CHAPTER 3 PYTHON FOR PROGRAMMERS

It is rumored that many developers first use the language as a simple tool to solve a
specific problem, but with time they are absolutely captivated to the point they start writing
haikus in Python. I'm afraid I'm not that artistic, so you won’t be seeing any haikus in here.

Here are the language features I view as the most important for the topics presented in
the book:

* Open source: Yes, I view this as one of the fundamental aspects about Python. Python,
and its packages, have been developed by an active community. The language evolves
and changes, providing a dynamic environment built on discussion, on actual needs,
on real problems people have to solve. I think this approach ensures a good language
that hopefully will withstand the test of time.

* Ease of learning: It’s easy to learn Python, especially if you're familiar with other pro-
gramming languages—Python combines the best of several programming languages
and programming paradigms in one.

e “Batteries included” Python includes a great number of libraries as part of the standard
library (several will be explored in this book). Additional packages can be installed and
used seamlessly. You should be able to do most, if not all, of the work associated with
data analysis and visualization without ever leaving the Python environment.

* Versatility: Python is versatile in that it supports both the early stages of development,
as a rapid application development tool, and later phases of the project, when more
structured programming paradigms are required.

o [nteractive nature: More about this in the next section.

Interactive Python

The ability to run Python interactively, with a command-line interface (CLI), is an envious
ability. The CLI allows both understanding of the workings of the programming language as
well as your code as you write it. It's not a new concept, and personally, the first programming
environment I ever used was also interactive in nature: Basic in Sinclair’s ZX-81 (see http://
en.wikipedia.org/wiki/Zx-81 for some nostalgia). At times, when I write C code, I just wish I
could do the same. ..

The interactive nature of Python is elegantly introduced in Guido van Rossum'’s “Python
Tutorial” available at http://docs.python.org/tut/tut.html (Guido van Rossum is Python’s
creator). Nevertheless, here’s a short introduction to running Python interactively, from a data
analysis and visualization perspective.

Invoking Python
How you invoke Python depends on your platform:
¢ In Windows, assuming you've installed the binaries, click Start » All Programs »

Python 2.5 » Python (command line) or IDLE (Python GUI) if you prefer a GUI envi-
ronment. You might have a newer version by now.

CHAPTER 3 PYTHON FOR PROGRAMMERS

¢ In Windows, under Cygwin, start a Cygwin bash shell and issue the following
command:

$ python

¢ In Linux, open a terminal and issue the same command:
$ python

To exit Python, either press Ctrl+D or enter

>>> exit()

Entering Commands

After starting Python in interactive mode, you're presented with version information along
with a short list of introductory commands, help, copyright, credits, and license, and the
Python prompt >>>.

Note Whenever you encounter the >>> prompt in any listings in the book, it is meant to indicate that the
command was issued interactively with the Python interpreter, and you should try it yourself by repeating the
same commands in your Python interpreter. Similarly, when you encounter three dots (. . .) at the beginning
of a line of code, it means that this is a continuation of the text entered interactively in the previous line.

Issue any of the these commands by entering the command name and pressing Enter
(from now on, I'll refrain from mentioning to press Enter or discussing how to erase charac-
ters; I assume you know how to use a CLI). Here’s the output from issuing the help command:

>>> help
Type help() for interactive help, or help(object) for help about object.

Python’s CLI allows entering statements and evaluating expressions. Some basic ones are
described here. Try them to get a feel for the interactive nature of Python:

>>> 14243+445+6+7+8+9

45

>>> 22%2

44

>>>a =4

>>> a*4

16

>>> 'a'*4

'aaaa’

>>> sqrt(a)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'sqrt' is not defined

55

56

CHAPTER 3 PYTHON FOR PROGRAMMERS

The first couple of lines use Python to do basic arithmetic. One of the nice benefits of
using interactive Python as opposed to using a calculator is that you can edit your previous
entries very easily. Plus, you can retrace your steps and find a typo. But that’s hardly the rea-
son for using Python, just an added bonus.

The third line is an assignment: we assign the value 4 to the variable a. The next line prints
out the value of a times 4. You'll learn more about variables, functions, and statements soon,
but for now, let’s examine the interactive environment and get you up to speed on how to
work with it efficiently.

The following line shows Python’s string capabilities. A string is typically enclosed in
quotes, so the next command multiplies the string 'a’ by 4. Which is exactly that: 'a' multi-
plied four times results in 'aaaa'—pretty cool.

The last line shows what happens when the interpreter encounters a problem: it raises
an exception and reports the reason back to the user. In this particular case, the interpreter
doesn’t know of the function sqrt(); this can be easily remedied if we import the function by
issuing from math import sqrt, but that’s reserved for later.

The Result Variable

Whenever Python executes a statement, the result is stored in a special variable named . This
is useful when you're doing some manual calculations:

>>> 14243+4+5+6+7+8+9
45

>>>

45

>>> + 10

55

>>>

55

>»> /5

11

The result variable keeps on being updated, as shown in this example, so bear that
in mind.

The Interactive Help System

The interactive help system is a valuable tool both when learning the language and when pro-
gramming. Python has a considerable number of functions, modules, and packages, so a help
system is a must. As the name suggests, the help system is an interactive system. Invoking it is
straightforward (notice the required empty parentheses):

>>> help()

Enter quit to exit the system. Enter a function name to read about it (e.g., execfile).

If you enter sqrt, the help system will respond that there’s no documentation regarding
sqrt. The reason for this is that sqrt is part of the math module, and to view its help informa-
tion you'll have to enter math.sqrt instead. Refer to the “Modules and Packages” section later
in this chapter for discussion about modules.

CHAPTER 3 PYTHON FOR PROGRAMMERS

You can also view specific function help (noninteractively) using help(function):

>>> help(execfile)
Help on built-in function execfile in module _ builtin_ :

execfile(...)
execfile(filename[, globals[, locals]])

Read and execute a Python script from a file.
The globals and locals are dictionaries, defaulting to the current
globals and locals. If only globals is given, locals defaults to it.

In reality what happens when you issue the command help(function) is that that func-
tion’s docstring is printed. More about docstrings in the “Defining Functions” section later in
this chapter.

Moving Around

At times, it’s of value to know how to change the current working directory within the Python
interpreter. This is especially important if the code and data are located in different directories;
it might be easier to just switch to another directory as the situation requires.

Suppose you defined a function that accepts a file name as input, reads it, and does some
processing. Furthermore, this function was defined interactively, as you were using the inter-
preter. Now you'd like to run this function on some files, but the path to these files is long and
cumbersome. This is a situation where it’d be much easier to switch to the directory where
the files reside and execute the function with the relatively shorter file name, that is, excluding
the path.

Module os provides us with this functionality. You've already seen the os module in
Chapter 1, but this time we use it to move around the interpreter:

>>> import os

>>> os.getcwd()

' /home/shai/python’

>>> os.listdir('.")

['src', 'data']

>>> os.chdir('src')

>>> os.getcwd()

' /home/shai/python/src’

>>> os.chdir('/home/shai/python/data")
>>> os.getcwd()

' /home/shai/python/data’

>>> os.chdir('../src")

>>> os.getcwd()

' /home/shai/python/src’

>>> os.listdir('/home/shai/python/data")
['GPS-2008-06-05-13-02-56.csv"']

In this listing I've used several functions. The first line imports the os module, containing
functions required to move around. I've then used several functions from the os module:

57

58

CHAPTER 3 PYTHON FOR PROGRAMMERS

¢ The function os.listdir(path) lists directory contents. The function must be supplied
with a string argument. If the string argument is an empty string (' ') or a string with a
single dotin it (‘. "), the function will return the contents of the current directory.

¢ To figure out what’s your current working directory, issue the command os.getcwd().
This function takes no arguments.

e Finally, I've shown the usage of the os.chdir(path) function. The function accepts one
string as an argument and, depending on the string, changes directories accordingly.
The function accepts both relative directory paths (such as '../src"') as well as full
directory paths (' /home/shai/python/data’).

Tip InIPython (see Chapter 2), you can use the commands cd, 1s, and pwd as you would in any Linux
shell instead of using the os module functions (it’s faster to type!).

Running Scripts

The interactive environment can only get you so far. Eventually, you will want to write pro-
grams (scripts) and run them either noninteractively or from within the Python interpreter.

There could be various reasons to write scripts, and most are due to the fact that you
might perform a task more than once. Say the accountants in your company use nonlinear
depreciation equations, and being their favorite programmer they ask you for a personal favor,
so you decide to write a web-based depreciation calculator. Or the clinical people in your
medical device company often require access to log files that are large and require processing,
so they ask you to write an end-of-day report per patient summarizing the day’s events based
on those log files, or . . . and the list goes on and on.

The path I typically follow is that I use the interactive environment in parallel to coding
the script. That is, I run Python interactively, run a few statements, assign some variables, plot
some graphs; if things look good, I copy over the commands I issued to an editor where my
script resides.

Tip InIPython you can issue the command history to view a list of recently entered commands.

The benefit of coding interactively is that you can examine the variables and data struc-
tures of your code, without additional debugging tools. If the script raises an exception, you
now have at your fingertips all the variables and data structures: you can reproduce the error
and possibly fix the bug.

Once your script is ready (well it’s never really ready, let’s just agree that it’s ready to be
test-driven), you have several options to run it:

CHAPTER 3 PYTHON FOR PROGRAMMERS

e Run the script from the GUI environment: running IDLE (Python GUI), select File »
Open and choose the script to run. This will open the Python script in the IDLE editor
(ifit’s already open, there’s no need to reopen it). To run the script, press F5 or select
Run Module from the Run menu. The output should appear in the Python GUI shell.

¢ Run the script from Python’s CLIL Using execfile('path/to/filename.py") is my favor-
ite option when developing. The reason I prefer this method over the GUI environment
is that I like editing my code in an editor that is not part of an IDE.

Tip If you're using IPython, you could issue the command run path/to/filename.py instead of
execfile('filename.py"); the benefits are 1) you can use character completion to select the file name,
and 2) you can supply command-line parameters to the script: run path/to/filename.py parami param2.

¢ Invoke the script from the shell or a command window (noninteractive mode).

Even though you might have developed your script in interactive Python, it’s a good
idea to test your script in a shell as well, especially if you're distributing your code for
others to use: they might not want to run the code interactively. To run the script from
a Linux shell or Cygwin, use this command:

$ python path/to/filename.py
Or in Windows:
c:\python25\python.exe path\to\filename.py

In Windows, you could also set the PATH variable to include the Python directory path,
in this case, c:\python25, so invoking the script will not require a full path to the Python
executable:

path=%path%;c:\python25
python path\to\filename.py

 Finally, it’s also possible to enjoy both worlds: interactive and noninteractive mode!
This is done by running the script with the -1 switch, which opens up a Python shell
after the script has run and lets you examine variables, interactively:

$ python -i somescript.py

Tip Since the backslash character (\) has a special meaning in strings (we’ll get to that later) and is also
used as a path separator in Windows, it’s best to use the slash (/) character whenever you’re working with
file names and file paths. If you can, opt to use relative paths (e.g., . . /data instead of c:\data); your code
will be portable across operating systems and much easier to read.

That’s it. I think we’re ready for the language itself now.

60

CHAPTER 3 PYTHON FOR PROGRAMMERS

Data Types

Python data types are similar to data types in other programming languages; you'll see here
strings and numbers just as you would in, say, Basic. But there are some niceties you should
know about even in those basic data types, for example, the long data type supports infinite
integer precision.

Numbers
We'll start off with numbers. Python natively supports int, long, float, and complex.

Int and Long

The data type int is equivalent to C’s long data type, and its precision is system dependent.
Irun a 32-bit machine, so on my system, int defaults to a 4-byte integer. This means the maxi-
mum int I can represent on my system is 23!-1, and the minimum is -23!. If you're uncertain
of the bit count on your system or if your code might be running on different platforms (e.g.,
both 32-bit and 64-bit platforms), you can use the following to determine the maximum int
value:

>>> import sys
>>> sys.maxint
2147483647

The data type long provides infinite integer precision. It’s not limited by the platform.
However, there is a price to be paid: performance. Long integer numbers are denoted in
Python with a trailing L character:

>>> 2%%70

1180591620717411303424L

>>> 2*¥*¥700
5260135901548373507240989882880128665550339802823173859498280903068732
1542970808221136665362775884512269829688561782177130194322501838038631
2781477065188084995522367112844459819166375788432271727129325173578137
6L

I've introduced the operator power, denoted by **, so 2*¥*70 is 27°. Once you leave the
int range (4 bytes on a 32-bit machine, 8 bytes on a 64-bit machine), that is, your calculation
extends to a number greater than sys.maxint, Python automatically converts the number to a
long integer value, giving it infinite precision. So if your plan was to use an int, make sure you
didn’t accidentally cast it into a long. Here’s a possible pitfall:

>>> 2%¥31-2
21474836461

As you can see, the result is a long, denoted by the trailing L. But surely this number is less
than sys.maxint! The problem is that the first calculation, 23!, already exceeded sys.maxint,
and now any future computations are performed in infinite precision, denoted by the trailing L.

Once a number is long, it will keep on being treated as long unless you specifically convert
it back to an int using the int() function, assuming the number indeed can be represented as
an int.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Personally, I haven’t used long all that much. I typically use integer values when counting
things (for example, in loops) and 23!-1 is more than enough. However, had I required such
a large number, I'd have to jump through a series of hoops in, say, C, but in Python it’s a lot
easier (not effortless, but still easier).

WHY NOT EFFORTLESS?

This is a bit off-topic and is an advanced discussion that assumes some knowledge of Python.

The reason it’s not effortless doing infinite precision with integers is that a lot of the functions we’re
used to working with in Python return int, and not long. To illustrate this problem, suppose you'd like to
compute a sum of numbers from 1 to N, where N is greater than 22 (yes, there are easier ways but I'm trying
to make a point here). A typical approach would be to use a for loop with an xrange () iterator as follows:

>>> total = 0
>>> for x in xrange(1000):
total += x
>>> total
499500
Note that I've used a variable named total and not sum because sum is a built-in function in Python.

Now the problem lies with the call to xrange ()—the iterator accepts only int values. So if you were
to replace the number 1000 with, say, 2**32, you'd get an error:

>>> xrange(2**32)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
OverflowError: long int too large to convert to int

which means you’d have to resort to other techniques such as (caution: this is a long run)

>>> x, total =0, 0
>>> while(x < 2*%33):
X += 1

total += x

It’s definitely doable in Python, but it’s not effortless. That said, doing the same in C is even harder.

Other Useful Bases

Bases that are powers of 2 are native to computing systems. One byte is 28 as opposed to, say,
a power of the decimal system. For this reason, the ability to convert values to and from bases
that are powers of 2 (such as the hexadecimal base or the octal base) to the decimal system is
important.

61

62

CHAPTER 3 PYTHON FOR PROGRAMMERS

Note The octal base is less popular nowadays. However, some octal notations are still active, for exam-
ple, file permissions in Linux systems.

Hexadecimal values are denoted with a leading 0x. Thus, 0x20 is 32 (decimal). You can use
both capital and noncapital letters for digits A-F:

>>> OxaB
171
>>> Oxff
255

Octal values are denoted with a leading 0 (that’s a zero, not the character O). Thus 020 is
16 (decimal):

>>> 020
16

Regardless of how you enter numbers, that is, what base you've used, they’re still retained
as numbers in Python. Should you want to look up the different base representation, use the
oct() and hex() function calls. Both these functions return a string:

>>> hex(100)
'0x64 '
>>> oct(100)
'0144"'

You can also perform any other base conversion using the function int(str[, radix]),
which returns a number, not a string. In case radix isn’t specified, it is assumed to be 10:

>>> int('100")
100

>>> int('100', 3)
9

The argument to the function int() is a string and not a number. So in case you'd like to
convert 101 in base 3 to a decimal value, write int('101", 3) or int(str(101), 3).The latteris
more useful if you’d like to use a variable, that is, int(str(variable), base).

It’s possible to use higher bases than hexadecimal (base 16), using an increasing number
of letters from the alphabet as the new digits for the base. In base 17, the character g is added;
in base 18, the character h is used, and so on. So the number 'ggg"' in base 17 should be 173-1:

>>> int('ggg', 17)
4912

>>> 17%¥3-1

4912

“«.

This support for bases is up to value 36, corresponding with the letter “z”.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Comparisons

You can compare values using the regular operators: > and < for greater than and less than,
respectively. Equality checks are done using a double equal sign (==) to differentiate from the
assignment symbol denoted by a single equal sign (=). Inequality is !=, and you can also use >=
and <= for greater-than-or-equal and less-than-or-equal comparisons.

>>> 2*¥3 > 5
True
>>> 2¥3 1= 5
True

Some comparisons are not allowed, for instance, comparing a complex number
(described in the next section) with an integer value:

>>> 141 > 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: no ordering relation is defined for complex numbers

Bitwise Operations

Bitwise operators are similar to C’s bitwise operators as shown in Table 3-1.

Table 3-1. Bitwise Operations

Operator Description Example

~ Bitwise not ~0x0ff+0x100 returns 0.

<« Shift left 1<<8 returns 256.

>> Shift right 256>>2 returns 64.

A Bitwise exclusive OR (XOR) oxff ~ oxforeturns 15 (0x0f).

& Bitwise AND oxff & oxof returns 15 (0x0f).

| Bitwise OR 0x0f | 0xforeturns 255 (0xff).

Augmented Assignments

Augmented assignments introduce the operators +=, -=, *=, /=, %=, *¥= | <<=, >>=, 8=, "=, and |=.

This is notation is similar to C/C++ syntax. That is, instead of writinga = a+1, you can write
a += 1. Similarly, instead of writinga = a>>1, you can write a >>= 1. Please note that Python
does not support the increment operator ++.

Float and Complex

Floating-point values have been around for quite some time, and there’s no escaping them.
Python'’s float data type is equivalent to C’s double, so it’s really more accurate than C’s float
(C’s float has fewer bytes than C’s double).

63

64

CHAPTER 3 PYTHON FOR PROGRAMMERS

Floating-point values are represented with a dot or with the e or E character denoting
exponential notation. So if you want to ensure your value is a float, either add a leading dot
(or dot zero, or e/E) or explicitly do so with the function float():

>>> 2.0

2.0

>>> 2

2

>>> float(2)
2.0

>>> 1e3
1000.0

The reason specifying a float is important is that you might get an integer operation
where you really want a floating-point operation.

>>> 2/3

0

>>> 2./3
0.66666666666666663
>>> 2/3.
0.66666666666666663
>>> 2.0/3.0
0.66666666666666663
>>> float(2)/3
0.66666666666666663
>>> float(2/3)

0.0

Note In Python 3.0, 2/3 will return a floating-point value; for an integer division, use 2//3 instead. See
http://www.python.org/dev/peps/pep-0238/ for more details.

In the first operation and the last operation, the division is integer division, returning the
value 0. As a general rule, whenever a floating-point number is introduced, any integers (both
int and long) are converted to a float, and from that point onward the calculation continues
with floating-point values. This is also known as promotion or coercion; long and int are pro-
moted to a float.

You can force a value into a floating-point value by using the float() function. This works
on strings as well as numbers, as long as the conversion is possible.

The complex data type represents complex numbers and is composed of two floating-
point values, one representing the real part and one representing the imaginary part. The
imaginary part is appended with the trailing letter j (or J). Accessing the real and imaginary
parts is possible using the . imag and .real attributes, as follows:

CHAPTER 3 PYTHON FOR PROGRAMMERS

>>> a = 1+2]
>>> a.real
1.0

>>> a.imag
2.0

You can use most any operator on complex numbers just as you would on floating-point
numbers. Once a computation involving a complex number is encountered, the remaining
computation will remain a complex, that is, integers and floating-point values are promoted
to complex values. You can convert a number to a complex number using the complex(reall,
imag]) function. In case imag is provided, it holds the imaginary value of the complex number:

>>> complex(10)
(10+07)

>>> complex(10, 2)
(10+23)

The complex data type as well as examples on using it will be discussed in Chapter 7.

Strings
Per the classic Python definition, strings are an immutable sequence of characters. This means
a string is a sequence of characters, and it is unchangeable: you can’t change the characters. I

know that this might seem odd at first: you're probably thinking, “How do I work with strings if
I can’t modify them?” The answer is that you create new strings based on your current string.

Expressing Strings

There are several ways to express a string: single quotes, 'string'; double quotes, "string";
and triple-double-quotes, """string""" (phew), to name a few. And there are even more: raw
strings denoted by the letter r such as r"string" and Unicode strings denoted by the letter u,
for example, u"unicode".

To express a basic string, use single quotes as follows:

non

>>> 'split’
"split’

In case your string has a quote in it, you’ll have to escape it with a backslash (\):

>>> 'it\'s a split’
"it's a split"

The reason we escaped the quote that’s part of the word it's is so that the quote before
the letter s won’t terminate the string.

Single quotes and double quotes are interchangeable. Therefore, we could’ve achieved the
same result, without escaping the quote that’s part of the word it's, by replacing the enclos-
ing quote (the ones at the beginning and end) with double quotes:

>>> "it's a split”
"it's a split"

65

66

CHAPTER 3 PYTHON FOR PROGRAMMERS

But what if we wanted a string that actually does have the backslash before the quote
as well—a string that looks exactly like this: it\'s a split? Well, one option is to escape the
backslash as well as the quote:

>>> "it\"\\s a split second’
"it"\\s a split second"

>>> print '"it\'\\s a split second’
it'\s a split second

Notice how the interpreter represents that string differently from how it’s printed.
Well, this pattern can keep on going, making things harder to understand. Instead, we
could use a raw string:

>>> r"it\'s a split second"
"it\\'s a split second"

>>> print r"it\'s a split second"
it\'s a split second

A raw string means that everything following the character r and the starting quote and
before the ending quote should be taken literally. Have Python escape what needs escaping
and return a proper string back to me!

Note Raw strings will be used extensively in regular expressions so as not to escape special meaning
characters on several levels. See Chapter 5 for details.

Strings can also span multiple lines with a backslash:

>>> "it's a \
. split second"
"it's a split second"

This obviously could bring about more disasters—what if you really wanted that backslash
to appear, as well as the line break? Not to worry, time to use triple-double-quotes (or triple-
single-quotes, they're interchangeable):

>>> print """it's a \
. split second"""

it's a \

split second

If all this sounds too confusing, you're in good company. To acquaint yourself with these
caveats, launch Python interactively and experiment!
I'haven’t talked about Unicode strings here; I'll touch on that in Chapter 5.

String Operations

So what can you do with strings? Table 3-2 lists some operations that can be performed on
strings, along with examples. In the examples, I've selected strings that don’t require escaping

CHAPTER 3 PYTHON FOR PROGRAMMERS

so they're easier to follow, but the same can be applied to any string expression described
previously.

Table 3-2. String Operations

Operator Description Example
Adding and Multiplying
stri+str2 Concatenates strings str1 and str2. 'split '+'second' returns

'split second'.

str¥n Concatenates the str string n times. 'second '*3returns
'second second second '

Indexing and Slicing

n and m are positive integer values less than the length of str. Negative values are counted from the
end of the string.

s[n] Retrieves the nth character of s "split'[3] returns 'i'.

s[n:m] Retrieves a string slice from nth character split second'[6:12]
to the mth character, excluding the mth returns 'second’.
character. If n or m are negative, they are "split second'[-6:-2]
counted from the end of the string. returns 'seco’.

s[:m] Equals s[n:m] with n=0. "split second'[:3] returns

"spl'.

s[n:] Retrieves a string slice from the nth "split second'[6:] returns

character to the end. 'second’.

You can check whether a character is in a string using the in operator:

>>> 'd' in 'abcde'
True

or count the number of characters in a string using the len() function:

>>> len('abcde")

5

Both in and len() operate on other sequences, as you'll soon see.

I'll discuss strings (including Unicode strings and raw strings) in more detail in Chapter 5.
Booleans

I've postponed discussion of Boolean values until after you've seen some other data types
because Booleans values shine in the context of other data types. Booleans can take two val-
ues: True (1) or False (0).

>>> a = True
»>an>1
False

>>> a ==
True

>>> bool(5)

67

68

CHAPTER 3 PYTHON FOR PROGRAMMERS

True
>>> type(a)
<type 'bool'>

You can cast a value to a Boolean by using the bool() function. Empty strings, as well as
other empty sequences, and the value zero of any form are considered False:

>>> bool(0)
False

>>> bool(5)
True

>>> bool("")
False

>>> bool("s")
True

Logical Operations

Logical operations and, or, and not operate on Booleans. I assume you know how to use them.
Let’s see if you know the answer to the following. . .

>>> 5> 1 and ((4 < 3) or 2+4 < 5 and not 6 < 2)

Data Structures

Python, being a high-level programming language, also provides additional, more complex,
data types, which I refer to as data structures. These include lists, tuples, dictionaries, and sets,
to name a few. Data structures make the programming experience a lot more enjoyable.

Python documentation does not necessarily differentiate between data types and data
structures the way I have. My purpose in this distinction is to split the discussion into two
categories: simple data types, which you're likely to encounter in popular programming lan-
guages (such as C), and more complex data types, or data structures, which you're likely to see
in higher-level programming languages such as Python and Perl. Regardless of the classifica-
tion presented in this chapter, both are built-in data types as far as Python is concerned.

In a sense, you've already been exposed to data structures: strings and complex num-
bers. The string is an immutable sequence, hardly a “simple” data type. By comparison, the
C programming language does not support a native string data type, rather an array of char-
acters, which is to show that strings aren’t really all that basic. But a string is still limited—it’s
a sequence of characters. What about sequences of other objects? And what about mutable
(changeable) sequences?

Not to worry, Python provides those as well. A list in Python is a mutable sequence of arbi-
trary data types. A tuple is quite similar to a list, only that it’s immutable.

We’ll also talk about some more complex data structures that can make programming yet
more entertaining. You've already seen a dictionary object in Chapter 1, and we’ll explore that
data structure as well as the set object. Python is also an object-oriented-programming lan-
guage; therefore, a discussion of the class object will be presented after we have talked about
functions.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Lastly, there are also additional native data types and structures in Python, but most of
them will be left out of the scope for this book; they’re not a must for data analysis and visual-
ization (with the possible exception of file data types, which will be discussed in Chapter 5).

Lists

A list is a mutable sequence of objects. A list is denoted by brackets:

>>> [1, ‘hey', 1+2j]
[1, 'hey', (1+2])]

You can also create a list using the 1ist() function. This is useful when converting differ-
ent sequences to a list, say, from a string:

>>> list('some text')
[ISI’ Io') Iml’ lel) ' I’ It') Iel’ 'XI) 'tl]

Alist can be modified. You can add another element to a list by using the + operator. The
+ operator concatenates lists, so you have to supply another list:

>>> [1, 'hey', 1+2j] + ['hey', ‘hey']
[1, "hey', (1+23), ‘hey’, 'hey']

The following, however, will fail, since you cannot add an integer to a list:

>>> [1, 2, 3] + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list

The proper way to do this would be to form another list, made solely of the value 2:

>>> [1, 2, 3] + [2]
[1, 2, 3, 2]

If you're looking to add the value 2 to each and every element of the list [1, 2, 3], thatis,
to modify the list to [3, 4, 5], you'll get the details in the sections “The for Statement” and
“List Comprehensions” later in this chapter.

Alist is an object too, so you can also have a list inside a list:

Now things get trickier, both in describing the object and in actually performing opera-
tions. Say you'd like to add another list, [5, 6], to the preceding example. How exactly would
you like to add it? Should the updated listbe [[1, 2], [3, 4], [5, 6]]or[[1, 2], [3, 4],
5, 6]or[[[1, 2], [3, 4]], [5, 6]] (which really is shamelessly tricky)?

The way I like to describe the data structure [[1, 2], [3, 4]]is as alist of rows. The first
rowis [1, 2] and the second rowis [3, 4].

Here are some of the things you can do to concatenate lists:

>>> [[1, 2], [3, 4]] + [5, 6]

[[1, 2], [3, 4], 5, 6

o+

69

70

CHAPTER 3 PYTHON FOR PROGRAMMERS

>>> [[1, 2], [3, 411 + [[5, 6]]
[[1, 2], [3, 4], [5, 6]]

The first line adds the elements 5 and 6. The second line adds the row [5, 6].
Another option is to use a variable to hold the list, L, and use the append() and extend()
methods:

>»> L= [[1, 2], [3, 4]]
>>> L.append([5, 6])
>>> L

[[1, 2], [3, 4], [5, 6]]
>>> L.extend([7, 8])
>>> L

[[1, 2], [3, 4], [5, 6], 7, 8]

The method append() adds an item to the list, in this case thelist [5, 6]. The method
extend() adds elements from the sequence one by one to the list, in this case, the elements
7 and 8. It’s a bit hard to follow at first, but experiment with lists interactively to get a feel for
how to use them properly.

Lists can also be indexed, similarly to strings:

>>> L= [["hey', '1'], [2, 3, 4], '']
>>> L[0]

["hey', '1']

>>> L[1]

(2, 3, 4]

>>> L[1][1]

3

The last statement, L[1][1], requires some explanation. The statement L[1] returns the
second element in the list (indices start at 0, so index 1 is the second element). For our pur-
poses, let’s mentally assign L[1] to variable M. But variable M is a list as well: [2, 3, 4].So
clearly we can index M as well: M[1] is 3. Instead of doing those two steps, we can write this
more compactlyas L[1][1].

Lists much like strings can also be sliced:

>>> L= [["hey', '1'1, [2, 3, 4], "]

>>> L[:-1]

[["hey', "1'], [2, 3, 4]]
>>> L[2:]

("]

You can check whether an item is in a list using the in operator:

>>> 'hey' in ['hey', 'hey', 'split', 'second']
True

You can count the number of elements in a list using the len() statement:

>>> len([['hey', '1'], [2, 3, 4], "'])
3

CHAPTER 3

Since lists are mutable, they can be reassigned:

>>> L= [['hey', '1'], [2, 3, 4], "']

>>> L[1] = [4, 5, 6]
>>> L

[['hey', '1'], [4, 5, 6], ""]

or have items removed using the del statement:

>»>> L =]
>>> del L[0]
>»> L

[[2, 3, 4], "]

[“hey', '1'], [2, 3, 4], "']

PYTHON FOR PROGRAMMERS

Lists also have methods, functions that operate only on list objects such as append() and
extend(), shown previously. To use a method, follow the list object with a dot and the function
name with parentheses and parameters within (empty ones in case of no parameters):

>>> L = ['hey', 'hey', 'split', 'second']

>>> L.count('hey")
2

>>> L.sort()

>»> L

['hey', 'hey', 'second', 'split']

I've used the methods count (), which counts the occurrences of an item in a list, and
sort(), which sorts a list. Table 3-3 describes the list methods along with some examples. In
the examples, assume that L is ['second', 'second', 8].

Table 3-3. List Methods

Method Description Example
append(obj) Adds an element to the end of a list. L.append('hey") changes L
to ['second', 'second', 8,
"hey'].
count(val) Returns the number of times val L.count('second") returns 2.
appears in the list.
extend(iterable) Adds elements to the list from iterable L.extend(xrange(2)) changes

index(val, [start,
[stop]])

insert(n, obj)

(more on iterators and iterables later in
this chapter).

Returns the first index of val in the list.
If start is supplied, this method returns
the first index that is greater than start;
if stop is supplied, the index also has to
be less than stop.

Inserts an object at index n.

Lto['second', 'second', 8,
0, 1].

L.index("'second") returns 0.
L.index('second', 1) returns 1.
L.index('second', 2, 3) raises
an exception x not in list.

L.insert(2, 'me') changes
Lto ['second', 'second',
'me', 8].

Continued

7

72

CHAPTER 3 PYTHON FOR PROGRAMMERS

Table 3-3. Continued

Method Description Example

pop([n]) Returns the nth element in the list and L.pop() returns 8, and the
removes it. If n is not supplied, this modified listis ['second’,
method returns the last element. 'second'].

L.pop(-3) returns 'second’, and
the modified listis ['second’,

8].
remove(val) Removes the first occurrence of valinx. L.remove('second") changes L
to['second', 8].
reverse() Reverses the list. L.reverse() modifies L to
[8, 'second', 'second'].
sort() Sorts the list. You can supply a sort func- L.sort() modifies L to
tion to the list; see help(list.sort). [8, 'second', 'second'].
Tuples

A tuple is an immutable (unchangeable) sequence of objects. A tuple is denoted by parenthe-
ses and can be created using the tuple() function:

»> (1, 2, 3)

(1, 2, 3)
>>> tuple('hey")
('hll 'e') Iy')

Tuples don’t necessarily require parentheses; merely adding a comma suggests the
expression is a tuple:

>»> 1, 2
(1, 2)
>>> 1,
(1,)
>>> (1)
1

The expression (1) is not a tuple: it’s the value 1 within parentheses, which is treated
simply as 1.

Tuples behave similarly to lists, with the exception of modification: you can’t modify a
tuple. But you can create a new one based on an existing one:

>>> tuple([1, 2, 3])
(1, 2, 3)

>>> ¥ 2

(1, 2, 3, 1, 2, 3)

In the first statement, I've created a tuple based on a list. Note that tuple(1, 2, 3) would
raise an exception, because the function tuple() expects one argument, not three. In the pre-
ceding code I passed a list as an argument: [1, 2, 3].Icould’ve also written tuple((1, 2,
3)), effectively achieving the same thing: the first outer set of parentheses in the expression

CHAPTER 3 PYTHON FOR PROGRAMMERS

is the function parentheses; the inner one is the tuple parentheses. In the second statement
listed, I've created a second tuple based on the first one, by multiplying the result variable.
Tuples can contain different data types and data structures:

>>> ([1, 2], (3, 4))
([1, 2], (3, 4))

The preceding is a tuple containing a list and a tuple.
Tuples can also be indexed, similarly to lists and strings. Remember that indexing requires
brackets, not parentheses:

>>> ([1, 21, (3, 4))[0]
[1, 2]

>>> ([1, 21, (3, 4))[1]
(3, 4)

>>> ([1, 2], (3, 4))[1][0]
3

A tuple can be sliced, generating a new tuple:

>>> ([1, 2], (3, 4))[1:]
((3, 4),)
However, tuples cannot be reassigned:
>>>a = (["hey', "'1'], '")
>>> af[o] = 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

But the lists within them can be changed, since lists are mutable:
>>>a = ([Iheyl) '1I]J ”)
>>> a[0][0] = "wow'
>>> a
(['wow', "2'], "")
Checking whether an item is in a tuple can be done using the in operator:

>>> 1 in (2, 3)
False

Finally, it’'s common practice to use tuples to perform multiple assignments, also known
as unpacking:

>»>a, b=1, 2
>»>a+b
3

73

74

CHAPTER 3 PYTHON FOR PROGRAMMERS

Dictionaries

Dictionaries are mutable sequences that connect a key with a value. The key must be unique,
whereas the value need not be. I like to use a phonebook analogy when I think about diction-
aries. Every phone number (key) has but one entry (value) associated with it, usually a person;
however, one person (value) can have several phones (keys). The key and value objects can be
most data types, with the exception of some (e.g., another dictionary).

There are several ways to create a dictionary: using the dict() function with a sequence of
(key, value) tuples or using the curly braces ({}) with colons separating keys and values:

>>> dict((('split', 8), ('second', 1)))
{'second': 1, 'split': 8}

>>> {'split':8, 'second':1}

{'second': 1, 'split': 8}

There are many parentheses in the first expression: the outermost are the parentheses for
the function dict(), the innermost are specific tuple pairs, and the ones in between denote
a tuple of tuples, because dict() can only accept one argument. A more readable approach
would be to pass dict() alist of tuples, instead of a tuple of tuples:

>>> dict([('split', 8), ('second', 1)])
{'second': 1, 'split': 8}

Retrieving values from a dictionary is achieved using brackets:

>>> D = dict([('split’, 8), ('second', 1)])
>>> D['split']
8

Checking for membership in a dictionary is done using the in operator, which defaults to
checking against the keys of the dictionary, not the values. If you wish to check against the val-
ues, use the values() method:

>>> D = dict([('split', 8), ('second', 1)])
>>> 'split' in D

True

>>> 8 in D

False

>>> 8 in D.values()

True

Changing values and assigning new values is done using brackets as well:

>>> D = dict([('split', 8), ('second', 1)])

>>> D['python"] = 'snake'

>»>> D

{"python': "snake', 'second': 1, 'split': 8}

>>> D['python'] = 'programming language'

>»> D

{"'python': 'programming language', 'second': 1, 'split': 8}

CHAPTER 3 PYTHON FOR PROGRAMMERS

In the preceding example, the second assignment to the key 'python' has overwritten the
previous value, 'snake', with the value 'programming language'.

If you think about it, real-world dictionaries may have several entries for one key: the
word “Python” can mean the Python snake or the Python programming language. This behav-
ior can be mimicked in Python dictionaries as well; simply have the value contain a list:

>>> D = dict()

>>> D['python'] = ['snake', 'programming language']
>>> D

{'python': ['snake', 'programming language']}

Dictionaries are implemented using a hashing algorithm. This means that retrieving a
value from a key is extremely efficient. There’s a lot of information regarding hashing algo-
rithms and hashing functions on the Internet, so look that up if you're interested in knowing
how they work. There’s also good discussion on specific Python dictionary implementation in
the Python Cookbook (see “Final Notes and References”). Used properly, a dictionary can sim-
plify your code and make it a lot more efficient. In Chapter 4, I present an example of using a
dictionary to locate duplicate files on a hard drive.

Table 3-4 lists dictionary member functions. In the examples in the table, assume D is
{'second': 1, 'split': 8}.

Table 3-4. Dictionary Methods

Method Description Example
Functions
clear() Removes all items from the dictionary. D.clear() changesD to {}.
copy () Returns a shallow copy of D (see the D2 = D.copy().
“Variables” section later in the chapter).
fromkeys (K[, v]) Creates a dictionary from keys K. If v is {}.fromkeys(['split’,
provided, all values are set to v. 'second'], 8)returns
{'second': 8, 'split': 8}.
get(k[, def]) Returns the value associated with key k. D.get('first', 1) returns 1.

If k is not in the dictionary, this method
returns def if provided.

has_key (k) Returns True if k is a key. D.has_key('na") returns False.
items() Returns key-value tuples. In a sense D.items() returns [('second’,
this is the opposite of dict(). 1), ('split', 8)].
keys() Returns the list of keys. D.keys() returns ['second",
"split'].
pop(k[, def]) Returns the value associated with key D.pop('split") returns 8 and

k and removes it from the dictionary. If changesDto {'second': 1}.
k is not in the dictionary, this method

returns def if provided; otherwise, it

raises an exception.

popitem() Returns an arbitrary key-value tuple and D.popitem() returns
removes the pair from the dictionary. ('second', 1) and changes
Dto{'split': 8}.

Continued

75

76

CHAPTER 3 PYTHON FOR PROGRAMMERS

Table 3-4. Continued

Method Description Example

setdefault(k[, def]) Returns the value associated with the D.setdefault('hey', 6)
key k. If k is not in the dictionary, this returns 6 and changes D to
method returns def if provided and sets {'second': 1, 'split': 8,

D[k] to def. 'hey': 6}.

update(e) Updates the dictionary with datafrom See the upcoming example in
dictionary e. this section.

values() Returns the list of values. D.values() returns [1, 8].

Iterators

Iterators will be discussed later in the chapter. For reference purposes, I've listed dictionary iterator
methods in this table.

iteritems() Returns an iterator holding key-value
pairs.

iterkeys() Returns an iterator holding the
dictionary keys.

itervalues() Returns an iterator holding the
dictionary values.

While most of these member functions are easy to follow (with the exception of iterators,
which we’ll soon get to), I'd like to talk about two member functions that I feel require more
explanation: update() and get().

The method update() updates the dictionary with key-value pairs from another diction-
ary. For ease of discussion, I'll refer to the function call D1.update(D2). In case a key exists in
both dictionaries D1 and D2, the value associated with the key in the dictionary D1 is updated
with the value from dictionary D2. If a key from D2 does not exist in D1, it is added to D1 along
with its value. The following illustrates this behavior:

>>> D1 = {'second': 1, 'split': 8}
>>> D2 = {'second': 3, 'hey': 7}
>>> D1.update(D2)

>>> D

{'second': 3, 'split': 8, ‘hey': 7}

The value associated with the key 'second' was updated, and the key-value pair 'hey': 7
was added.

The next member function [want to talk about is get (). At first, this seems rather odd;
how is get () different from simply accessing the key using brackets? The difference is that if
you use brackets and the key is not in the dictionary, a KeyError exception is raised. The func-
tion get () allows checking whether a key is in a dictionary and as a side product also returns a
default value. A good way to show how this is useful is perhaps with an example.

Consider the function 1ist_gps_commands() presented in Chapter 1 (I've removed the doc-
string), shown here in Listing 3-1.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Listing 3-1. Function 1ist_gps commands ()

def list_gps commands(data):
gps_cmds = dict()
for row in data:
try:
gps_cmds[row[0]] += 1
except KeyError:
gps_cmds[row[0]] = 1
return gps_cmds

To further illustrate the example, let’s build a short list of GPS commands (L) to later sort
in a dictionary so you can try the example for yourself. First, we execute a set of commands
similar to those detailed in the function list gps commands():

>>> L = ["$GPGSA", '$GPGSV', '$GPGSV', '$GPGSV', '$GPRMC', '"$GPGGA']
>>> D1 = dict()
>>> for elem in L:
try:
Difelem] += 1
except KeyError:
Difelem] = 1
>>> D1
{"$GPGSA": 1, "$GPGSV': 3, '$GPGGA': 1, "$GPRMC': 1}
The approach is simple. We first try to access a key in the dictionary. If the key exists, we
increment the count. If the key doesn’t exist, an exception is raised, which means it’s a new
entry, so we set it to 1.

A second approach is to check whether a key exists in a dictionary using the in statement
and then follow up with an if sentence, as follows:

>>> L = ["$GPGSA", "$GPGSV', '$GPGSV', '$GPGSV', '$GPRMC', '$GPGGA']
>>> D2 = dict()
>>> for elem in L:
if elem in D2:
D2[elem] += 1
else:
D2[elem] = 1
>>> D2
{"$GPGGA": 1, "$GPGSA': 1, '$GPGSV': 3, '$GPRMC': 1}
It’s also possible to use the has_key() member function in a similar manner.

A much more elegant approach would be to use the get() method with a default value
ofo:

>>> L = ["$GPGSA', "$GPGSV', '$GPGSV', '$GPGSV', '$GPRMC', '$GPGGA']
>>> D3 = dict()
>>> for elem in L:

77

78

CHAPTER 3 PYTHON FOR PROGRAMMERS

D3[elem] = D3.get(elem, 0)+1
>>> D3
{"$GPGSA": 1, "$GPGSV': 3, '$GPGGA': 1, "$GPRMC': 1}

I chose the first approach in Chapter 1 because I think it’s clearer to those unfamiliar with
the language. However, the last approach presented here is a clear winner in my mind.

Sets

Our last data structure for now will be a set. Sets are sequences of unique items. To create a set,
use the set() function:

>>> set(['split', 'second'])
set(['second', 'split'])

>>> set(['split’, 'second']*8)
set(['second', 'split'])

If you pass a duplicate to the set() function, it will not be added to the set. This is shown
in the second statement where a list multiplied by 8 is passed as an argument.

In a sense, you've already been introduced to sets: the keys in a dictionary form a set since
they are unique items.

Set operations are a bit different from the previous sequences you've seen. They are
derived from the math operations and include intersection, union, and differences, to name a
few:

>>> S1 = set(['split', 'second'])
>>> S2 = set(['split', 8])
>>> S1 | S2

set([8, 'second', 'split'])
>>> S1.union(S2)

set([8, 'second', 'split'])
>>> S1 & S2

set(['split'])

>>> S1 - S2

set(['second'])

>>> Si.difference(S2)
set(['second'])

>>> S2.difference(S1)

set([8])

The operator | is equivalent to the member function union(). The operator & is equivalent
to the member function intersection(). The operator - is equivalent to the member function
difference(), and much like regular subtraction, the order is important: S1-S2 is different
from S2-S1.

Table 3-5 lists some set functions. In the examples, assume S1 equals set([8, 'hey']).

Table 3-5. Set Methods

CHAPTER 3

PYTHON FOR PROGRAMMERS

Method Description Example
add(obj) Adds obj to the set. S1.add(9) changes S1 to
set([8, 9, 'hey']).
clear() Removes all elements from the list. S1.clear() changes S1 to
set([]).
copy () Returns a shallow copy of 51 (see a S2 = Si.copy().
discussion of shallow copy in the “Vari-
ables” section later in the chapter).
difference(S2) Returns the difference of two sets. This ~ S1.difference(set([8]))

difference update(S2)

discard(v)

intersection(S2)

intersection update(S2)

issubset(S2)
issuperset(S2)

pop()

remove(val)

symmetric_difference(S2)

symmetric_difference_
update(S2)

union(S2)

update(S2)

is equivalent to S1-S2.

Similar to difference() but modifies
the list (not merely returns a copy).

Removes the element v from the set. If
v is not in the set, nothing happens (no
exception is raised).

Returns the intersection of S1 and S2.
This is equivalent to S1 & S2.

Similar to intersect() but modifies the
set (not merely returns a copy).

Returns True if S1 is a subset of S2 (all
elements of S1 appear in S2).

Returns True if S1 is a superset of S2
(all elements of S2 appear in S1).

Returns an arbitrary element and
removes it from the set.

Removes val from the set. If val is
not in the set, this method raises an
exception.

Returns the symmetric difference. This
is equivalent to (S1-S2) | (S2-S1).

Similar to symmetric_difference() but
modifies the set (not merely returns a

copy).
Returns the union of S1 and S2 (all

unique elements that appear in both
sets).

Similar to union() but modifies the set
(not merely returns a copy).

returns set(["hey']).

Si.difference
update(set([8])) changes
S1toset(['hey']).

S1.discard(8) changes S1
toset(["hey']).

Si.intersection(['hey'])
returns set(['hey']).

Si.intersection_
update(["hey']) changes
S1toset(['hey']).

S1.issubset(set(['hey',8,
'na'])) returns True.

S1.issuperset(set([8]))
returns True.

S1.pop() returns 8 and
changes S1 to set(['hey']).

S1.remove('hey') changes
S1toset([8]).

S2 = set(['jude', 'hey']).
S1.symmetric_
difference(S2) returns
set([8, 'jude']).

Si.union(set(['na"', 8]))
returns set([8, 'na’,
"hey']).
S1.update(set(['na', 8]))
changes S1 to set([8,

'na', 'hey']).

79

80

CHAPTER 3 PYTHON FOR PROGRAMMERS

I find I use sets much less than dictionaries. However, using sets at times can be quite
elegant. Consider the example shown in our previous discussion about dictionaries that
enumerates GPS commands. Now suppose you don’t care how many times a GPS command
appears, only what types of GPS commands exist. Then this is easily done with a set:

>>> L = ["$GPGSA', "$GPGSV', '$GPGSV', '$GPGSV', '$GPRMC', '$GPGGA']
>>> S = set(L)
>>> S

set(['$GPGSA", "$GPGSV', '$GPGGA', '$GPRMC'])

Variables

Next topic of our discussion is variables. Variables in Python are similar to variables in most
other programming languages. Variable names can consist of characters, digits, and an under-
score, but they have to start with a character or an underscore and must not contain spaces. I
recommend you avoid odd variable names such as 02 (which is a legitimate variable name) as
it might lead to some confusing code. Consider 02 = 3; that just doesn’t look right.

An important concept regarding variables of data structures in Python is that of binding.
When you assign variable b to be equal to variable a, which we’ll suppose is a list, Python does
not copy the contents of a to b. Rather, it sets both a and b to refer to the same object. This is to
achieve speed and performance.

>»> a = [1, 2]
>»> b =a

>>> b[0o] = "hey’
>>> a

['hey', 2]

>»> b

['hey', 2]

In case you do want a real copy of the data structure, and not merely another reference,
you have several options:

¢ Some data structures provide the copy() method, such as dictionaries.

* In some cases, you can create another item using the constructor, for example,
L2 = list(L1).

* You can use the copy module from the standard library:

>>> import copy
>>>a = [1, 2]

>>> b = copy.copy(a)
>>> b[0] =0

>>>a, b

([1, 2], [o, 2])

CHAPTER 3 PYTHON FOR PROGRAMMERS

Note In case a variable is a more complex structure (e.g., a list of rows), it’s not enough to use copy .
copy (), as the newly constructed list still points to the rows in the original list. In this case, you might want
to use copy.deepcopy() instead. For more information about shallow copy, deep copy, and lazy copy, see
http://en.wikipedia.org/wiki/Object copy.

Statements

We now turn to Python statements. You've already seen the use of statements, but here I'll
cover more ground by talking about statements I haven’t discussed yet. Python is a rich
language that keeps evolving, so I will not be covering the entire language here. But the state-
ments I cover should be enough to get you going.

I've split the discussion into three statement categories: printing, user input, and flow
control. We’ll have some off-track discussions about comments, iterators, and list comprehen-
sions as well.

Printing
One of the basic statements in most programming languages is the print statement. You can
use print to display Python objects:

>>> print(2**100)
1267650600228229401496703205376
>>> print(1+1j)

(1+13)

>>> print(ox20)

32

>>> print "String"

String

>>> print(['short list'])
['short list']

>>> print(('a', 'tuple'))

("a", 'tuple")

>>> print dict([('hey', 'jude'), (8, 1)])
{8: 1, 'hey': 'jude'}

>>> print set([1, 2, 1])
set([1, 2])

Tip The function pprint from module pprint provides an alternative to the print statement, one
that formats the output in a “prettier” fashion, such as avoiding word breaks. This is especially useful
if you’re displaying large data structures. To use it, import pprint and issue the command pprint.
pprint(object).

81

82

CHAPTER 3 PYTHON FOR PROGRAMMERS

Suppressing Line Breaks

If you follow a print command with a comma, the next print statement will continue on the
same line after printing a space:

>>> for i in [1, 2, 3]:

print i

1

2

3

>>> for i in [1, 2, 3]:
print i,

123

Format Specifications

The print statement is similar to C’s printf() function in that it accepts format specifica-
tions in the form %[flags][w][.pre]type. Other than the % and type fields, all parameters are
optional. The simplest use of the format specifications is with the % operator, as follows:

>>> print "%d" % 2**4
16

If more than one specifier is present, provide a tuple after the % operator:

>>> print "%d: %s=%d" % (1, 'hey', 8)
1: hey=8

The operator % is present after the string to be printed and before the tuple containing the
values to be formatted.

Note The function printf() (on which print is based) is a complex function with a considerable
number of options and parameters. This section is quite detailed and should provide most of your daily pro-
gramming needs. However, should you wish to explore print and printf() some more, a good source of
information is the prinft () manual page (also known as the man page). In any Linux (or Cygwin) prompt,
enter man 3 printf for an accurate overview. This is C-level documentation, but C programming skills are
not required.

There are several values type can have, but only one is allowed in each specification (e.g.,
the format specifier %sd will be interpreted as a string, followed by the character 'd"). Table 3-6
provides a distilled list of types.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Table 3-6. Print Format Specification Types

Character Type

d Integer

ek An engineering notation of a floating-point number with e or E, respectively (mantissa
and exponent are always present).

f Floating-point number

g Floating-point number in either f or e form, omitting trailing zeros and the decimal
point if it’s not needed

o Octal

S String

X, X Hexadecimal (lowercase), hexadecimal (uppercase)

Note Starting from Python 3.0, print becomes a function and not a statement, and to use print you’ll
have to add parentheses: print(obj).

We now turn to optional flags in the format specifier.

The value flags can take several of the following values: 1) a number, specifying the num-
ber of characters to left-align, 2) the character +, specifying that in case of a numeric value, the
sign must be present (either + or -), 3) the character -, specifying that the text should be left-
aligned, 4) the character #, which modifies behavior of some numeric types (out of the scope
of this discussion—refer to the documentation), and 5) the character 0, used to left-pad values
with zeros. Here are some examples:

>>> print "%d" % 2
2
>>> print "%5d" % 2
2
>>> print "%+5d" % 2
+2
>>> print "%-+5d*¥*" % 2
+2 *x
>>> print "%05d" % 2
00002

The value w specifies minimum width. If the width of the object to print is less than w, the
output is left-padded with spaces. If it is greater than w, the value is displayed as is:

>>> print "%10s" % 'Really long string'
Really long string
>>> print "%10s" % 'shorter’

shorter

83

84

CHAPTER 3 PYTHON FOR PROGRAMMERS

The value pre is preceded with a dot and specifies the maximum number of decimal
points in floating-point numbers, the maximum number of characters to print in a string, or
the minimum number of digits in integers:

>>> print "%.2f, %.3s, %.4d" % (1.0/3, 'this will be truncated', 1)
0.33, thi, 0001

You can mix and match format specifiers. Here’s a print statement that makes use of
several format specifiers:

>>> print "%+08.3f" % (1.0/9)
+000.111

The + character forces the sign to appear in the output, the digit 0 takes care of the zero
padding, the digit 8 forces the output to be at least eight characters long (the plus symbol,
three digits, the dot symbol, and three more digits), the dot followed by 3 ensures at most three
digits are displayed, and lastly the character f announces that this is a floating-point number.

Employing print in this manner is especially useful when you want to create text output
that’s properly aligned and can be displayed in a report.

Format specifiers, with the use of the % operator, can also be used to format strings, not
only print them:

>>> s = "%+08.4f" % (1.0/3)
>>> S
'+00.3333"

User Input

We complement our output (printing) discussion with some input discussion, specifically,
user input. Other sorts of input, for example, files and command-line parameters, will be dis-
cussed in future chapters.

User input in Python is done using the raw_input([prompt]) function. The function prints
the prompt string, reads a string from the standard input, and returns it, stripped of end-of-line
characters. The prompt argument is optional:

>>> s = raw_input("How many times? ")
How many times? 7
>>> print "split "*s
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'
>>> print "split "*int(s)
split split split split split split split

The function raw_input() returns a string, thus even though I've input a numeric value,
the function returns the string "7". I've converted the string to a number using the int()
function.

In Windows, it’s common to see raw_input() at the end of a script. This ensures that the
command window stays open, waiting for user input and displaying the results of running the

CHAPTER 3 PYTHON FOR PROGRAMMERS

script. The default behavior in Windows is that this box is automatically closed, preventing the
user from reading the output, and so raw_input() overrides this behavior.

Comments

Comments start at the symbol # provided it’s not part of a string:

>>> print "Some text" # This is a comment
Some text
>>> # This entire line is a comment

>>> print "Text after this sign # is not a comment”
Text after this sign # is not a comment

Flow Control

Flow control statements control the behavior of a script. Python provides several flow control
statements, some similar to other programming languages. Typically, a flow control statement
is followed by a block, which is indented to the left.

if, elif, else

The if statement follows this syntax:

if Conditioni:
Block1

elif Condition2:
Block2

elif Condition3:
Block3

else:
ElseBlock

Behavior is as follows: if Condition1 evaluates to True, the code in Block1 is executed.
Block1 can be more than one line long and must be indented to the same level. If Condition1 is
False, Condition2 is evaluated, causing Block2 to be executed if it is True. This continues on to
Block3, and so forth. If none of the conditions are met, the E1seBlock is executed.

The statements if, elif, and else should be left-aligned. Statements in each block should
be left-aligned as well, but further in than the if clause. The colon after the if, elif, and else
statements is required. Here’s an example:

>>> if 3 > 10:
print "Checked whether 3 is greater than 10"
.. print "It is!"
. elif ord('A") == 65:
print "Ordinal of 'A" is 65"

85

86

CHAPTER 3 PYTHON FOR PROGRAMMERS

. else:
print "All failed, nothing works"

Ordinal of 'A' is 65

Other than the if statement, all other statements (elif, else) are optional. In case of a
short if statement, you can write the block on the same line as the if statement:

>>> if 's' < "t': print "Yeap"
Yeap

Conditions can be more complex and can include conditionals such as and and or:
>>> X = 25

>>> if x > 20 and x%2 ==
print "Odd *and* over 20!"

0dd *and* over 20!

The pass Statement

The pass statement does nothing, and can be used as a placeholder, for example, in multiple
if assignments:

>>> X = 0.2
>>> if x < 0.1:
print "Too small"
. elif x < 0.3:
eee pass
. elif x > 0.5:
print "large"
. else:
print "huge"

>>>
Asyou can see, nothing happened, which is exactly what I wanted.

Exceptions: try, else, and finally

Exceptions are Python’s mechanism of dealing with runtime issues. You've already seen
exceptions reported and also how to catch them, that is, prevent them from halting program
execution, in Chapter 1.

You can catch, or intercept, exceptions before they stop program execution with the
following syntax:

try:
TryBlock
except [ExceptionType1]:

CHAPTER 3 PYTHON FOR PROGRAMMERS

ExceptBlock1
except [ExceptionType2]:
ExceptBlock2
finally:
FinallyBlock

If an exception happens someplace inside the TryBlock, ExceptBlock1 is executed. In case
ExceptionTypel is specified, only exceptions that are of type ExceptionTypel are caught. You
can have several except clauses to deal with different types of exceptions. The FinallyBlock is
optional and executed after both the try and except section have completed execution.

First, let’s see an exception in action, without catching it:

>>> str = 'second '
>»>n = "7
>>> print str*n
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'

The reason for this exception is that the operator * doesn’t know how to multiply ' second
"by '7"' (it does know how to do 'second '*7, but that’s a different statement).

Asyou can see, the exception that was raised was a TypeError exception. Let’s catch it and
print it:

>>> str = 'second '

>»>n="7"

>>> try:
print str*n

. except TypeError, e:

print "Exception caught!"

. print e

... finally:
print "This will be run regardless"

Exception caught!
can't multiply sequence by non-int of type
This will be run regardless

str

We’ve caught the exception in the except block, plus we printed what the exception was in
the second print line. Lastly, the code in the finally block was executed. Let’s run it again, this
time without triggering an exception:

>>> str="second '
>»>n =7
>>> try:
print str*n
. except TypeError, e:
print "Exception caught!"
. print e
... finally:

87

88

CHAPTER 3 PYTHON FOR PROGRAMMERS

print "This will be run regardless"

second second second second second second second
This will be run regardless

As you can see, the code in the finally block was executed regardless of whether the
exception was raised or not.

Now let’s trigger an exception that’s not of the TypeError exception. I'll modify the line
print str*n to print 1/0, which raises a different exception:

>»>> try:
print 1/0
. except TypeError, e:
print "Exception caught!", e

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: integer division or modulo by zero

This time, the exception wasn’t caught by the code (it didn’t print “Exception caught!”)
and was handled by the interpreter because it wasn’t of type TypeError.
If you don’t specify an exception condition, all exceptions are caught:

>>> try:
print 1/0
. except:
print "Exception caught!"

Exception caught!

As a general rule, try to make your exception specific, that is, try to specify the exception
condition. If the list of exceptions is too long, maybe wide-range exception catching (i.e., with-
out a condition) is a better approach.

Exceptions are a fundamental part of flow control. The EAFP concept is built around the
idea that it’s at times simpler to just try to perform an operation, later catching the exception
in case of an issue.

Exceptions can occur deep within your code. For instance, say function1() calls function2(),
which calls function3(). Now let’s suppose an exception occurred in function3(). In case
function3() doesn’t handle the exception with the try/except mechanism, the exception
moves to function2(). If function2() doesn’t handle the exception, functioni() has a chance.
And finally, if function1() doesn’t handle the exception, the interpreter will issue an exception
and print the cause.

In the preceding scenario, in case function3() does handle the exception, it will not
resurface in function2(). However, if you wish to catch an exception and pass it to the call-
ing function, you can do that. That’s left out of the scope of this discussion; refer to the online
documentation for more details at http://docs.python.org/reference/executionmodel.html
under the section Exceptions.

CHAPTER 3 PYTHON FOR PROGRAMMERS

You can also raise exceptions of your own. This is of value if you write code and want to
ensure it’s being used properly. Suppose your algorithm only works on odd numbers; a good
approach would be to check whether a parameter passed to the algorithm is odd, and if not,
raise an exception:

>»>n =56
>>> if not n%2 ==
raise ValueError, "value must be odd"

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ValueError: value must be odd

In the preceding example, I've used an existing exception, ValueError. You can create
exceptions of your own or use existing exceptions. For more details and a list of existing excep-
tions, refer to Python’s online documentation: http://docs.python.org/library/exceptions.
html.

Iterators

Before we move to the for statement, I'd like to cover an important concept, iterators. Iterators
are objects that return an element one at a time, instead of returning a full sequence. An object
that can be iterated over is known as iterable. Using iterators is more memory efficient than
using a sequence. For example, the function range(1000) creates a list of a thousand values,
whereas the iterator xrange() creates an iterator object that consumes much less memory:
calls to xrange() yield the values from zero to 1000, excluding the value 1000, one at a time.

Python relies heavily on iterators and provides a great number of iterators that work on
data structures I've covered. Iterators are best understood in the context of the for statement,
so let’s now take a look at this statement.

The for Statement

The for statement is one of the most versatile statements in Python. The statement follows the
following syntax:

for element in sequence:
ForBlock

In case of a one-line block, the ForBlock can appear on the same line as the for statement.
Indentation rules for blocks are the same as those described in the if statement (and for any
block for that matter—they must be indented to the same level).

The for statement assigns element to be a value from sequence and executes the ForBlock.
This happens for all the values in sequence:

>>> for elem in ['hey', 'jude', 8]:
print elem,

hey jude 8

89

CHAPTER 3 PYTHON FOR PROGRAMMERS

If you're interested in a format similar to that of C’s for function, use the range() function:

>>> for x in range(10):
print x,

0123456789

The for statement can also operate on an iterator. The function xrange() creates an itera-
tor object, whereas the function range() creates a list. Both can be used in the context of a for
statement:

>>> for x in range(5):
print
for y in xrange(5):
print "%4d" % (x*5+y),

1 2 3 4

5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

In the preceding example, I've used both xrange() and range(), effectively yielding the
same result. Also, as the preceding code suggests, for loops can be nested.

The for statement shines in the context of iterators. Let’s cover a few.

The reversed(seq) iterator returns one element at a time from a sequence in reversed
order:

>>> for x in reversed(['split', 'second']): print x,
second split

The iterator enumerate(seq) returns both the index to the item in the sequence and the
item, as a tuple:

>>> for i, elem in enumerate(['split', 8, 'second']): print i, "-->", elem
0 --> split
1-->8

2 --> second

Some data structures provide iterators themselves. The iterator iteritems() returns a
(key, value) tuple and is used to iterate over items in a dictionary:

>>> d = {'split':8, 'second':1}
>>> for k, v in d.iteritems(): print k,

n n

-, v

second --> 1
split --> 8

CHAPTER 3 PYTHON FOR PROGRAMMERS

List Comprehensions

List comprehensions is a topic I've postponed until after we talked about the for statement.
They really do apply to lists, but they’re rather hard to explain unless you understand for
statements. List comprehensions are an efficient method to create lists from lists, but with a
slightly different notation than a regular for loop. List comprehensions follow this syntax:

[f(x) for x in list if condition]
The condition clause is optional:

>>> [x*x for x in range(10) if x > 5]
[36, 49, 64, 81]

>>> [x**2 for x in range(6, 10)]

[36, 49, 64, 81]

You can also write a nested list comprehension, similar to nested for loops:

>>> [(x, y) for x in range(3) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

You'll encounter numerous uses of list comprehensions throughout the book.

The while Statement

The while statement complements for loops and is best used in case a condition has to occur
before the loop is terminated. You've seen the while statement in use in Chapter 1, which
allows recording of GPS data until a Ctrl+C is pressed, and also previously in this chapter. The
while syntax is as follows:

while condition:
WhileBlock

As long as condition evaluates to True, the WhileBlock is executed:

>>> import random
>>> while random.random() < 0.9: print "*",

k* ok ok ookok ok ok ok ok ok ok ok ok ok ok ok ko ok sk ok ok ok ko ok ok ok ok

This example will print a star as long as a random number between 0 and 1 is less than 0.9.
I've used the function random() from module random (see Chapter 7).

Statements break and continue

The statements break and continue are used to modify behavior within a loop or a block. The
statement break exits a flow control block, and the statement continue stops execution of the
block but picks up on the next iteration.

>>> for x in range(5):
if x == 3: break
print x,

91

92

CHAPTER 3

012

>>> for x in range(5):
if x ==
print x,

0124

PYTHON FOR PROGRAMMERS

: continue

In the first for statement, I've used the statement break when x is equal to 3, effectively
terminating the for loop. In the second for statement, I've merely skipped execution of the
block in case x is equal to 3, suppressing the print statement, but resuming on the next value.

Some Built-in Functions

Let’s now turn to built-in Python functions that weren’t covered in any of the previous sec-
tions. By built-in, I mean functions that do not require any import command prior to using

them. Table 3-7 presents these functions, in alphabetical order.

Table 3-7. Some Python Built-in Functions

Statement Description Example

all(s) Returns True if all elements of s arenot ~ all(['hi', 2]) returns True.
False. all(['', 2]) returns False.

any(s) Returns True if some elements of s are any(['', 2]) returns True.
True. any([]) returns False.

chr(n) Returns the ASCII value of n. chr(65) returns 'A’".

cmp(x, y) Returns -1ifx < y,0ifx == y,and1ifx cmp('a’, 'bc') returns -1.
> y. cmp(2, 1) returns 1.

ord(ch) Returns the ordinal value of ch. Thisis ~ ord('A") returns 65.

range([i, I3[, k1)

sorted(s)

sum(s)

type(obj)

zip(s1[, s2])

the inverse of chr(n).

Returns a list starting at i (if supplied,
default is zero), ending right before j,
with an increment step of k (if supplied;
defaultis 1).

Returns sequence s, sorted.

Returns sum of elements in s.

Returns the type of obj.

Returns a list of tuples, each composed
of elements at the same location in the
sequences. s2 is optional.

ord(chr(80)) returns 80.

range(5) returns [0, 1, 2,

3, 4].

range(2, 5)returns[2, 3, 4].
range(2, 5, 2)returns[2, 4].
range(5, 2, -2)returns [5,
3].

sorted('hey') returns ['e’,
Ihl s Iyl].

sum(range(10)) returns 45.
type(1j) returns <type
‘complex'>.

zip(range(2), ['hey’,
'jude']) returns [(0, "hey'),
(1, "jude")].

zip(range(2)) returns [(0,),

(1,)1.

CHAPTER 3 PYTHON FOR PROGRAMMERS

Some of these functions are very useful. For example, have a look at the Newton fractal
example in Chapter 7 for an interesting use of the zip()function.

Defining Functions

Functions are a convenient way to reuse code. Functions in Python are similar to procedures,
subroutines, and functions in other programming languages. There’s no distinction between
a function that returns a value and a function that does not—both are considered functions.
(In some programming languages, if a function doesn’t return a value, it is named differently:
procedure or subroutine, for example.)

Functions are declared as follows:

def funcname(arguments):
FunctionBody

The keyword def defines a start of a function. The name of the function is funcname;
arguments are optional:

>>> def f1():

print "F1"
>>> f1()
F1
>>> def f2(n):

print "F2"*n
>>> f2(10)
F2F2F2F2F2F2F2F2F2F2

I've defined two functions: f1() and f2(). Function f1() requires no parameters, while
function 2() requires one parameter. Using the functions (calling them) requires the addition
of a set of parentheses.

You can also specify optional parameters using an assignment in the list of arguments in
the function name, as follows:

>>> def f3(n, s="F3"):

print s*n
>>> £3(2)
F3F3
>>> £3(2, 'F4l")
F41F4!

In the first call to £3(), the default value of s is "F3". In the second call, that value is
assigned the string 'F4!".
Functions can return values using the return statement:

>>> def f5(n):
return "f5"*n

93

94

CHAPTER 3 PYTHON FOR PROGRAMMERS

>>> 5(3)
'f5f5f5'

»> a = f5(3)
>»> a
'f5f5f5'

The return statement doesn’t necessarily have to appear at the end of the function; how-
ever, the function ends execution when it reaches a return.

Functions are typically documented with docstrings (which are bold in the following
code):

>>> def f6(n=1, s="f6"):
"""Returns a string composed of the string s, repeated n times.

n and s are both optional."""
return s*n

>>> help(f6)
Help on function f6 in module main_:

f6(n=1, s="f6")
Returns a string composed of the string s, repeated n times.

n and s are both optional.

>>> £6()

6

>>> f6(2, 'f7')
f7E7"

The benefit of using a docstring immediately after the function declaration is that execut-
ing help(funcname) returns the docstring, which is an excellent way to document a function.

Generators

Generators are functions used to create iterators. The main difference between a generator
and a regular function is that generators return one element at a time using the yield state-
ment, while functions return one element using the return statement (it could be a sequence
or tuple, but it’s essentially one object).

>>> def odd(s):
"""A generator function to iterate through odd elements of s.

nwun

i=o0

while(i < len(s)):
yield s[i]
i+4=2

>>> for i in odd(['hey', 'split', 'second', 8]):

CHAPTER 3 PYTHON FOR PROGRAMMERS

print i,
hey second
In the preceding example, I've defined an iterator named odd() that yields the odd ele-
ments in a list (i.e., the first, third, fifth, and so forth). I've implemented the iterator using a
while loop and proper indexing.
There are also other methods I could’ve used to implement the iterator, but it's important
to understand that the motivation behind using an iterator is that of efficiency. A different

implementation could be one that makes use of the indexing operator with a step value of 2, as
follows:

>>> def odd(s):
"""A generator function to iterate through odd elements of s
for elem in s[::2]:
yield elem

nwn

While this might look like more elegant code, in my mind it’s not as good. The reason is
that the for loop creates an entire list (albeit half the size), and in case of large lists, this is not
memory efficient. The first implementation, on the other hand, is quite memory efficient.

It’s also possible to implement the function odd() using a for loop instead of a while loop,
in which case I would suggest using the iterator xrange() (over a list comprehension) to avoid
creating additional large data structures.

Generator Expressions
Generator expressions, or genexps, are a compact method to implement simple generators.
Generator expressions follow this syntax:

(f(x) for element in sequence if condition)

In a sense, they are very similar to list comprehensions, with the difference being that they
are iterators and not lists, and hence are more memory efficient. Here’s an implementation of
the odd() generator function using a genexp:

>>> L = ['hey', 'split', 'second', 8]
>>> odd = (x for x in L[::2])
>>> for i in odd:
print i,
hey second
or in one big line:
>>> L = ['hey', 'split', 'second', 8]

>>> for i in (x for x in L[::2]):
print i,

hey second

95

96

CHAPTER 3 PYTHON FOR PROGRAMMERS

If I were a bit more conscious about memory usage, I'd notice that I've created another list
in the for loop: L[: :2], which probably is not a good idea (from a memory-conscious applica-
tion). A different approach is to use the xrange() iterator as follows:

>>> L = ['hey', 'split', 'second', 8]
>>> odd = (L[i] for i in xrange(0, len(L), 2))
>>> for elem in odd:

print elem,

hey second

This might be a bit less clear, but it is a more memory-conscious implementation. Alter-
natively, you could also use the enumerate() iterator, iterating over list elements and only
printing an element if the index is odd. Deciding whether an index is odd or even can be done

using the modulo (%) operator, which returns the remainder from dividing by a number, in our
case 2:

>>> L = ['hey', 'split', 'second', 8]
>>> odd = (elem for i, elem in enumerate(L) if not (i % 2))
>>> for elem in odd:

print elem,

hey second
Opt for using genexps over list comprehensions if you just want to iterate over items and

don’t require the list itself. Unless you're using really large data structures (on the order of
scale of the memory you have in your computer), using either is fine.

Object-Oriented Programming

Per the description I've given of the Python language in the beginning of the chapter, you can
deduce that Python is an object-oriented programming language. You've already seen this. For
example, the data structure list, whose methods are in essence member functions, is an object.

The purpose of this section is to quickly (very quickly!) go over the syntax of object-
oriented programming and to show how to implement a basic object. The reason I won'’t be
covering OOP in detail is that this book mostly deals with using objects, rather than coding
them. If you'd like to know more about coding an object, refer to the online Python documen-
tation and the references at the end of this chapter.

The basic data structure to implement object-oriented programming in Python is a class.
Classes have functions, called methods, and variables, called attributes. Listing 3-2 shows a
simple class named 0dd that implements the odd functionality, that is, retrieves odd elements.

Listing 3-2. Listing of odd. py

class 0dd:
def _init (self, s=[]):
self.sequence = s
def odd(self):
return self.sequence[::2]

CHAPTER 3 PYTHON FOR PROGRAMMERS

The first line defines a class named 0dd. From here, functions and variables indented per
the usual block rules denote functions and variables belonging to class 0dd.

I've defined two functions. The first function is the constructor _init _ (double under-
scores on both sides). The constructor function is called whenever an object is instantiated, or
created. To instantiate a class object, call the 0dd class with parentheses. Here are some ways
you can instantiate the 0dd class object (be sure to execute the preceding script first):

>>> odd1 = 0dd()
>>> odd2 = 0dd('a string")
>>> odd3 = 0dd(['hey', 'split', 'second', 8])

The implementation I chose is that in case a parameter is provided, the variable self.
sequence is assigned this parameter. An important note here is the use of the argument self:
the word self is a convention and not a reserved word. Whenever you call a class property or
method, the argument self is passed automatically but not spelled out. That is, to instantiate
an 0dd object, you enter 0dd(s) and not 0dd(self, s).By passing the argument self (hidden),
Python identifies one created object from another. The analogy I like to use is that self is simi-
lar to C++’s this statement.

Another important concept here is that of scope. Had I not used the notation self.
sequence and written sequence instead, the local variable sequence, that is, local to the function
(and not the class), would have been updated. Once the function returned, that variable would
have disappeared. To ensure that the class variable sequence is updated (and not the func-
tion’s local variable), I've used the notation self.sequence.

The second function I defined is odd(), which returns the odd elements in a sequence. To
call the function, use the dot operator after the 0dd object, as follows:

>>> odd3 = 0dd(['hey', 'split', 'second', 8])
>>> odd3.odd()
["hey', 'second']

So far, I've only shown methods, but the class 0dd also contains a variable: sequence. To
access this variable, you can use the dot operator as well:

>>> odd3 = 0dd(['hey', 'split', 'second', 8])
>>> odd3.sequence
['hey', 'split', 'second', 8]

There’s a lot more to object-oriented programming in Python, including most of the con-
cepts that appear in other object-oriented programming languages such as inheritance and
operator overloading, to name a couple. Again, the references at the end of the chapter should
prove valuable resources should you need to learn more about object-oriented programming
and design in Python.

Modules and Packages

One of Python’s strong suits is the extensive number of packages readily available. You've seen
how to install packages in Chapter 2; now it’s time to see how to use them.

A module is a set of functions and data structures. In essence, it is similar to a class.
Accessing modules is performed using the module’s namespace, followed by a dot to access

97

98

CHAPTER 3 PYTHON FOR PROGRAMMERS

functions and variables. Packages are collections of modules. Accessing modules within pack-
ages is performed using the dot operator.

It’s also of value to know that it’s possible to extend Python with modules from C and
C++. From a Python user’s perspective, you just import a module and use it as is, regardless of
whether it was written in another programming language.

The import Statement

The import statement loads a module, effectively allowing us to access the functions and vari-
ables within the module. You can issue the import statement in several ways:

import module

import module as name

from module import function

from module import function as name
from module import *

The first method, import module, loads a module with its namespace. To access the mod-
ule functions, use module.function(). The second method loads the module but renames it,
so to use its functions, use name.function(). The third statement imports only one function
from the module; to access it simply use its name: function(). You can have multiple func-
tions imported in this manner by separating the functions with commas. The fourth statement
is identical to the third, only the name of the function is now name; to call the function, enter
name(). Lastly, the last import statement loads all functions from a module; to access the func-
tions you enter their name (without the module name). Here are some examples:

>>> import math

>>> math.pi
3.1415926535897931

>>> math.sqrt(4)

2.0

>>> import math as m

>>> m.pi
3.1415926535897931

>>> m.sqrt(4)

2.0

>>> from math import sqrt
>>> sqrt(4)

2.0

>>> from math import sqrt as square root
>>> square_root(4)

2.0

>>> from math import *
>>> sin(0)

0.0

Whether you'll be loading the entire module or just some pieces of the module is totally
up to you (and a function of the amount of memory you have). At times, though, it’s easier to
load entire modules, and yet at other times it’s important to be able to load modules with their

CHAPTER 3 PYTHON FOR PROGRAMMERS

namespace, for example, when two modules have the same function names (such as modules
math and cmath).

Modules Installed in a System

Before you start importing modules and reading about their functions, it would be valuable to
know what modules are currently installed and available in your system. Don’t forget that the
Python Standard Library is vast, with a substantial number of modules and packages to choose
from. Maybe a function you're looking for already exists in the standard library? Of course, you
can refer to the online documentation, but you can also refer to the interactive help system.

Invoke the interactive help system by entering help(). At the help prompt, enter modules.
This will provide a list of available modules in your system. Enter help(module) to read more
about that module.

The dir Statement

Another useful statement is the dir statement, which lists the contents of a specific object (for
example, a class) but in this context, it lists the methods and properties of a module as well:

>>> import math

>>> dir(math)

[' doc_', ' name_ ', 'acos', 'asin', 'atan', 'atan2', 'ceil’, 'cos', ‘'cosh’,
'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log'
, 'log10', ‘modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', "tanh']

This is very useful if you're exploring the functions in a module or if you forgot the exact name
of a function.

Final Notes and References

It is far beyond the scope of this chapter and this book to cover the entire Python program-
ming language. However, this chapter should get you up and running, and you’ll be able to
follow through with the rest of the book with very little need for additional references. That
being said, one of the purposes of the book is to introduce the language and provide additional
resources should you want to expand your knowledge.

I have found the following references of value, and I hope you find them useful as well:

e “The Python Tutorial” by Guido van Rosso, http://docs.python.org/tutorial/index.
html

e The Python Standard Library, http://docs.python.org/library/index.html

* Beginning Python: From Novice to Professional, Second Edition by Magnus Lie Hetland
(Apress, 2008)

* Dive into Python by Mark Pilgrim (Apress, 2004; free online version also available at
http://diveintopython.org/)

e Python in a Nutshell: A Desktop Quick Reference by Alex Martelli (O’Reilly, 2006)

¢ Python Cookbook: Recipes from the Python Community by Alex Martelli, Anna Martelli
Ravenscroft, and David Ascher (O’Reilly, 2005)

99

CHAPTER 4

Data Organization
Organizing Chaos

A preliminary step to designing and programming an algorithm is gathering data and sorting
it. When you first go out to test a thesis or write code to analyze network traffic, only part of the
information is readily available; some of the data is still unknown. First estimations are made
based on the first set of data files. As data is gathered, new insights and understandings arise,
resulting in possible changes to the processing script and data gathering application, such as
adding a previously unlogged parameter and graphing it over time. Some changes may include
data gathering over substantial longer time periods than originally anticipated. Consequently,
to accommodate for manageable data files, a reduction in the sampling rate is required, imple-
mented by logging only every nth value. Another plausible scenario is that of parsing log files,
where the generating application, for example, a web server, recently went through a software
upgrade altering the file format and the file name scheme.

The situation can get more complex. Some files may have an error due to a hardware mal-
function of the recording apparatus; or some portions of the file are corrupt due to hard drive
issues (back up!), or the application that stored the file had a bug and generated incorrect data.
By now, you realize you need to modify the erroneous data or remove it from your analysis, be
it manually or automatically.

In some cases, part of the data should be used as a teacher set to help define the algo-
rithm, while another set of data should be used as a tester set to estimate performance. In this
case, you may need to feed the algorithm additional information regarding the contents of the
files so that more complex tests can be carried out.

Documenting file contents is important so that the knowledge of what each file contains
is not lost. A few years from now I doubt you'll remember what each and every file is; but you
might be expected to reuse your previous work. So annotating, or note taking, is of value.
Ideally you'd like the annotations and documentation to reside with the data, and not in an
inaccessible notebook.

By now you have quite a number of different file types: varying number of parameters,
different file lengths, different logging periods, various file formats, several file name schemes,
clean and raw data, annotated data, and much more. Ideally, you’d like to use data from all the
files, even if some of them have partial information or conform to a different file format; they
still hold valuable information. Or it could be that you’d like to use historical information to
ensure backward compatibility with older versions of the software.

101

102

CHAPTER 4 DATA ORGANIZATION

Alot of the work has many unknowns. Data gathering is an iterative process in nature,
and if you don’t manage your data files properly, you'll lose control. I'm not suggesting that we
stop and design an entire data management infrastructure from the get-go. On the contrary,

I think data should be gathered as I've described. However, following some simple guidelines
and conventions can make life a lot easier. The purpose of this chapter is to address all these
issues: file names, file formats, data organization, data cleaning, and annotation and data
documentation. I'll touch on each topic, suggesting guidelines and conventions to help man-
age data more easily for the programmer and the processing application.

File Name Conventions

Our first step in data organization is deciding on a file name convention. You’d be surprised at
the odd names people choose for their files. Not because they’re not inventive enough, rather
because they’'ve never given it much thought. File name conventions are also of value when
more than one person accesses the data. A good convention will help all data users locate files
and manage them: your administrator will find it easier to restore previously backed-up files if
he knows the file name pattern. A good naming convention should also have in mind scripts,
or programs, so that automation is easier to implement. For example, if the file names contain
the day of the week, it’s easier to have those limited to three letters, Sun, Mon, Tue, Wed, Thu,
Fri, Sat, instead of full day names, allowing the script that processes them to be less complex.

Date and Time in a File Name

We remember a lot based on date. “Remember that time when we ran that test? That was
when you joined the group, about a year and a half ago.” One of the best ways to capture
date and time information is to use it to name a file. Following this guideline allows easy file
searches. Instead of going through the files one at a time, opening them, and looking at the
contents, you can browse the directory contents and find data based on date. The following
are benefits of using date and time in a file name:

¢ Date is useful information. Just looking at the file name tells you a lot about the file.

¢ File names are almost guaranteed to be unique. This is important when your data log-
ging application is creating file names, because it won’t overwrite existing files. If you
want to further ensure uniqueness, include the time in seconds along with the date
information.

¢ File names are retained when copying or moving even if modifying. However, if you
rely on the operating system to record the file names, you will find that there are issues
with that: copying files using different media and/or over a network might not always
retain all the date information such as creation date. They will, however, retain the file
name.

¢ It’s easy to automate and write scripts in this manner. A script to display all the graphs
from last month is straightforward to implement.

¢ The convention is easily followed on a wide range of systems and programming
languages. The application that records the data can be written in C programming
language and not necessarily Python.

CHAPTER 4 DATA ORGANIZATION

We therefore would like our file names to embed the date and time, preferably up to a
second resolution. That being said, there are a lot of possible ways to denote date and time.
Personally, I follow the date and time format suggested in ISO 8601: YYYY-MM-DDThh:mm:ss (see
the section “Final Notes and References”) with some modifications, as it is not possible to
have a file name with colon (:) as is required by the format. Instead of colons, I use a dash (-).
Another possible modification is replacing letter T used to separate the date and time portions
in the ISO standard with a dash as well. The side benefit of those two replacements (replacing
both the colons and the T with a dash) is that now there’s a single field separator that separates
year, month, day, hour, minute, and second. This is quite valuable for automation and is easily
implemented in most programming languages. Some prefer keeping the character T as it does
help remind where the date ends and when the time starts, and it’s not all that complex to
manage either. Leaving the T or replacing it with a dash are both good options and mostly are
a matter of personal preference. As you'll soon see, we have a dedicated function for parsing
dates, strptime(), that can handle the T quite easily.

Python provides us with the split(substr) function, which splits a string into a list of sub-
strings once substr is encountered. In this case, split('-") will split the date-time format:

>>> a_date = "2008-04-02-22-14-14"
>>> a_date.split('-")
[IZOOSI, IO4', 102|’ |22|’ 114|’ |14|]

The following example extracts the month as an integer:

>>> int("2004-04-12-11-11-11".split("-")[1])
4

In the latter example, I chose to operate directly on the string, not saving it in a variable.
The month is the second element in the list, hence to access it I index it: [1] (counting starts at
0). The function int() converts the string value to an integer.

If you follow the scheme where T is used instead of a dash, you can use the function
strptime(), which is part of the time module. I assume strptime() is short for string-parse-time;
regardless if it’s true, it helps to remember the function name:

>>> from time import strptime
>>> strptime("2003-06-28T709-29-22", "%Y-%m-%dT%H-%M-%S")
(2003, 6, 28, 9, 29, 22, 5, 179, -1)

Note Small and capital letters are used to distinguish between a date and time fields, mainly because the
character m can mean both month and minutes. So the convention is that time is denoted by caps (HH, MM,
SS) and date is denoted by small letters (yy, mm, dd). There’s one exception and that’s the year: when using a
four-digit notation (e.g., 2008), the characters are capitalized: YYYY.

As you can see, it’s quite easy to extract date and time information in Python from a file
name so long as one conforms to the convention. Processing all the files from, say, April 2008
can be done using a single split() command followed by an if statement.

103

104

CHAPTER 4 DATA ORGANIZATION

Useful File Name Titles

Another important aspect of a file name is a useful title. A short, descriptive title can be a time-
saver. SystemY or MarsTelescopeA are good candidates. Avoid titles that describe the data such
as Logfiles or TemperatureAndFlow. You want to describe the system more than the data; the
data will speak for itself when you analyze it. If you do want to describe the data, do so in addi-
tion to describing the system: Sys736Logs is a good option.

The following sample titles further clarify this point:

* PumpRawData is lacking system description. What if you have several pumps you want
to test for flow? One alternative is to use the pump’s serial number: Pump472RawData
(assuming 472 is the pump’s serial number).

* VoltageSys2AMay2008 is probably not a good title either. If you append the date
to this title, you might end up with a title that looks like this: VoltageSys2A-
May2008-2009-01-01-01-01-01. So which one is it—year 2009 or year 2008?

* VoltageCurrentSystem2A is OK; however, I'd opt to rename it to be less specific, or
should I say, more general: ElectricalDataSystem2A. The reason for the renaming is
that it’s possible you'll decide to record additional values, say, power, as well as voltage
and current, and unless you want to rename your code to look for different headers,
having a file name titled VoltageCurrentSystem2A that also has power values will be a
bit misleading.

File Name Extensions

The last part of the file name convention is an indication of the file format, usually denoted
by the file name extension. File name extensions are typically three characters long (some are
less, such as .gz, and some are longer, such as .html). We'll try to follow a convention of three
characters for the extension, again because it will be easier for the processing application. I
suggest thinking about three distinct file name extension subcategories:

* Known file formats: Image formats follow very specific extensions: . jpg, .png, .bmp,
.tiff, and more. These file names have a meaning, so if you're recording data in those
file formats, use the known extensions. There are also known extensions for com-
pressed file formats, video file formats, and others, so use them accordingly.

o Text file formats: Here I suggest using either a . txt or a . csv extension. If the text file
format is not the Comma Separated Values (CSV) format, use the .txt extension, sug-
gesting it is viewable by most text editors. Exceptions to this guideline include files that
already have a known extension, for example, INI files: although they are text files, you
really want to capture that they're files holding initialization values. The same would
apply to batch files and shell scripts. But those typically are not data files.

* Binary file formats: Binary file formats are not as self-descriptive as CSV files. And
unlike CSV or plain text files, they are hard to view without knowing in advance the
specific file format. For this reason, binary file formats should be accompanied by a
header file that describes the contents and format of the binary files. However, it’s still

CHAPTER 4 DATA ORGANIZATION

valuable to know a bit more about the binary file format even if the exact format is
unknown. The following is the suggested convention: one character denoting whether
the data is signed (i), unsigned (u), or floating point (f) followed by the number of bits
used to store the data, as described in Table 4-1.

Table 4-1. Suggested Binary File Name Extensions

Description Precision Extension

Signed integers 8,16, 32, 64 .108, .116, .132, .164 (respectively)
Unsigned integers 8, 16,32, 64 .u08, .u16, .u32, .ub4 (respectively)
Floating point 32 (float) 32

64 (double) f64

e Other binary file formats: When binary files contain several values of different pre-
cisions, the convention described in the Table 4-1 is not feasible, at least not in a
three-character extension notation. In that case use .bin or .x.bin where x is a num-
ber. The reason for the x is that it’s conceivable you’ll have several file formats of
varying precisions, and a good way to tell them apart would be to add an integer prefix.
Notice that they still all end with a .bin, enabling easy file distinction.

In Conclusion

Three items are important to file naming conventions: date and time in a file name, useful and
descriptive file name titles, and proper file name extensions. If you follow these conventions,
you'll find that writing scripts to manipulate these files is simple.

Using these conventions, we have file names that follow the scheme Title-YYYY-mm-dd-
HH-MM-SS. ext with the placeholders detailed in Table 4-2.

Table 4-2. Convention Scheme for File Name Title-YYYY-mm-dd-HH-MM-SS. ext

Placeholder Description

Title A descriptive title of your choice

YYYY Year the file was created

mm Month the file was created. In the case of January, mm is 01.

dd Day file was created. In the case of the 7th, dd is 07.

HH Hours in 24-hour notation. 11 p.m. would be represented as 23. Values are from
00 to 23.

MM Minutes. 5 minutes past the hour is 05.

SS Seconds. 7 seconds past the minute is 07.

ext An extension describing the file format, three characters long (if possible).

105

106

CHAPTER 4 DATA ORGANIZATION

Note In case of values occupying less than the assigned number of digits, a zero is added. So if the time
is 5 minutes past 1 o’clock, the value of hh will be 01 and the value of mm will be 05.

Example: Automating File Name Creation

Listing 4-1 presents an implementation, unique. py, that conforms to the file name conven-
tions suggested previously.

Listing 4-1. Creating a Unique File Name, unique.py

from time import localtime

a script to create unique file names based on title,

date and time stamp and an extension

datetime_stamp = '%4d-%02d-%02dT%02d-%02d-%02d" % localtime()[:6]
title = 'SysAlogs'

ext = "csv
print 'Unique filename: %s-%s.%s' % (title, datetime stamp, ext)

Here’s the result I got from executing python unique.py:

Unique filename: SysAlLogs-2008-09-03T09-29-36.csv

Note We’re assuming that files are generated at a slower rate of one file per second and that there’s only
one application logging data, hence a file name based on seconds is unique. Also, in case of a system time
change, there’s a chance of files being nonunique. Before creating a file, we could check whether a file with
the same name exists, but for clarity reasons it’s left out of the script.

The function localtime() is part of the time module and provides a tuple of values rep-
resenting the year, month, day of the month, hours, minutes, seconds, week day, day of the
year, and daylight saving time (phew). We only require the first six arguments of localtime()
to create our unique file name. To access the first six elements of the tuple, we use the slicing
operator [:6]. So localtime()[:6] returns the very six elements we’re interested in for creating
our unique file name.

Next we use the % operator to format the string containing the timestamp:
'%4d-%02d-%02dT%02d-%02d-%02d" . The substring '%4d"' means up to four digits; the substring
'%02d"' means two digits, and in case there are less than two digits, padded with zeros. We
also use the % operator to output the final unique file name, which is composed of the strings
stored in variables title, datetime stamp, and ext. In this case we use '%s' to format strings
instead of integers.

CHAPTER 4 DATA ORGANIZATION

Other Schemes

Unfortunately, automating file name creation and using the date and time mostly applies if
you're writing the application that generates the data files. That’s not always the case: you
might be using an embedded system’s output files and have no control of the source code. As
long as the system generating the files has a real time clock, and assuming you can change the
code, or later change the file names, following the preceding convention is doable.

On the occasions where a real time clock is unavailable, a different naming scheme should
be employed. One of the alternatives to using a timestamp in a file name is a running index.
That’s a bit more complex than using the date because now we have to figure out what'’s the
last index used. That being said, it’s still a good option: it provides consistency, and unless files
are randomly deleted, it also provides some sort of chronological order. Incidentally, that’s the
scheme used by most digital cameras.

Example: Running Index

Listing 4-2 is a suggested running index implementation. The script will look for files accord-
ing to a title and extension and determine a running index (up to 999). It will then create a file
accordingly. Repeatedly running the script will create files with incrementing index values.

Listing 4-2. Running Index Implementation

a script to create unique file names using a running index
from os.path import exists

index_stamp = 1

max_index = 999 # maximum number of files
title = '../data/SysAlLogs'

ext = 'txt'

while index_stamp < max_index:
unique filename = '%s-%03d.%s' % (title, index stamp, ext)
if exists(unique filename):
index_stamp += 1
continue
f = open(unique_filename, 'wt")
f.write("Data")
f.close()
break

report status
if index_stamp >= max_index:
print "Could not create a unique filename"
else:
print "Created unique file:

[l

', unique_filename

The general operation of this script is as follows: first we create a file name string with the
current index. Next, we check to see whether the file exists by calling the function exists(),
which is part of the os.path module (more on os.path in Chapter 10). If the file exists, we

107

108

CHAPTER 4 DATA ORGANIZATION

increment the index and restart the loop; this is done with the statement continue. In case the
file name we’ve created does not exist, we proceed with writing the data to the file and break-
ing out of the while loop. Lastly, in case a unique file name was not available (we check up

to index 999, per variable max_index), the script reports that a unique file name could not be
created.

Notice that we choose to pad the running index with zeros as denoted by the substring
'%03d" in the line unique filename = '%s-%03d.%s' % (title, index_stamp, ext).Thisis
generally a good idea and allows easier processing of file names, as they have identical lengths,
and the strings representing the file names can be easily sliced.

Note If you change the value of max_index, be sure to change the format string accordingly. For
example, if max_index is 99999, replace %03d with %05d in the format specifications for unique_filename.
This can also be done automatically by calculating the number of digits using int(log10(max_index)+1)
and using the result in the format specifications (see the section “Example: Searching Inside a Text File” in
Chapter 5).

File Formats

Up to this point we’ve discussed the form of the file names. Now it is time to discuss the for-
mat of the contents, that is, file formats. As previously pointed out, you may not be able to
choose the file format used to store the data. Assuming you do have influence over the file for-
mat, the question is what format to use. A good file format is portable, easily recognizable, and
does not impact performance drastically, be it size or computation overhead, depending on
the nature of the application.

When you select a file format, consider the amount of data you'll be dealing with. If you're
looking at large amounts of data, you want to be as efficient as possible in both storing the
data and accessing it, sacrificing a bit for portability and using a less self-descriptive file for-
mat. This means choosing a binary format. If the amount of data is not large and you want the
data to be self-descriptive and portable as much as possible, choose text file formats, specifi-
cally CSV. By large amounts of data, consider the following:

e How much storage space do you have? If you're running a desktop PC, a reasonable
size to be dealing with is less than 1 terabyte. Of course, this number is ever-changing
as storage space and processing power increase. At times you will find that due to
storage space limitations your only option is going with binary files. The reason for
this is that text representation is not as efficient as binary representations. 8-bit inte-
gers (characters) require 1 byte of storage in binary form and from 1 to 3 bytes in text
form used in CSV. Storing floating-point values, which typically require 4 or 8 bytes
in binary form, will now require a considerably larger amount of bytes. The value
0.00000095367431640625 (which is 2 to the power of minus 20) will now require 22
bytes to represent properly in a CSV file. And that’s not counting the separators and
delimiters.

CHAPTER 4 DATA ORGANIZATION

* How critical is performance to your application? The smaller the data files, the faster
you can process them. There’s no need to parse the data, simply read it. If performance
is your major concern, opt for binary file format.

Note The sentence “The smaller the data files, the faster you can process them” is not always correct.
In case of compressed files, data files are smaller but require more processing power to work with, hence
performance is worse, not better. However, assuming no compression, performance of binary files is usually
better.

So from a high-level file format category, you want to decide whether you’ll be looking at
binary data or text data. Table 4-3 lists the pros and cons of using either.

Table 4-3. Pros and Cons of Binary and Text File Formats

Pros Cons
Text Self-descriptive (usually) Not storage efficient
Does not require specific knowledge Medium read/write access
of the file format Requires “text” parsers
Can be viewed by any text editor
Binary Relatively small storage space Not so self-descriptive
Fast read and write access Requires knowledge of the file format

Requires a specific application to view data

Text and binary are high-level categorizations. When dealing with text files, we will mostly
limit our discussion to plain text files and CSV files and touch lightly on other file formats.
When dealing with binary files, we’ll talk mostly about straightforward file formats such as
u16 and 132 and not complex file formats such as MP3 and GZ that might support compression
and/or encryption.

CSV File Format

The CSV file format is a text file format and can be viewed by any text editor. Furthermore,
most spreadsheet applications are capable of reading and writing CSV files, parsing the val-
ues properly into rows and cells. In CSV files, values are separated by commas; values are
strings that represent numbers, dates, titles, or any other textual fields. If the string value has

a comma in it, quoting is required, that is, the string will have beginning and ending quotes.
Alternatively, the comma in the field can be escaped (more on this in Chapter 5). CSV format
does not require a fixed number of fields per line (also called a row), which can be quite useful:
it allows easy annotation of headers or descriptions of the data, which in turn can later be read
by most any spreadsheet and/or editor with all the information recorded still intact and easily
accessible.

109

110

CHAPTER 4 DATA ORGANIZATION

The following are the contents of a valid CSV file:

System A

Data generated by loggerl
"Header, 1",Header 2
Value 1,1

Value 2,AA

Example: Stock Price Charts

Following a convention that stores a short description of the data in the beginning lines of the
CSV files can be very useful for annotating a graph or a report associated with the data in the
file.

To follow along with the example, ensure your directory structure is similar to that pre-
sented in Chapter 2 in the section “Example: Directory Structure for the Book.” Your base
directory should be Ch4; within Ch4 there should be three subdirectories named src, data, and
images. If you wish to use a different scheme, be sure to change the file path variable and the
call to function savefig() in the script in Listing 4-3, which appears a little later in this section.

For this example you can download data from the NASDAQ stock exchange web site
(http://www.nasdaq.com). Select a stock, for instance, the NASDAQ-100 (IXNDX) or your com-
pany’s stock chart, you wish to display on the intranet web site. You will be presented with a
chart of the stock. When you click the chart, the NASDAQ web site presents the actual values
used to create the chart. You can choose to download the file in Excel format: do so, and save
the file under directory Ch4/data/charts.xls.

If you open the file Ch4/data/charts.x1s in a text editor, you'll notice that there’s header
information describing what each column means:

Date Open High Low Close/Last Volume
09/02/2008 1904.75 1912.72 1843.07 1850.14 0
08/29/2008 1897.56 1899.56 1866.81 1872.54 0
08/28/2008 1907.17 1921.19 1904.20 1915.12 0
08/27/2008 1886.76 1913.53 1881.54 1900.30 0

In reality, the file format is a form of CSV, the separator being a tab instead of a comma.
We can easily overcome this with Python’s csv module by specifying the delimiter to be tab
"\t'. Listing 4-3 shows our implementation, stock_charts.py, which reads a stock chart file
and presents a graph with the header information properly displayed. Be sure to save it in
folder Ch4/src. The result will be a PNG image, stock price.png, in directory Ch4/images.

Listing 4-3. stock charts.py, Plotting NASDAQ charts.x1s File

from pylab import *
import csv
from time import gmtime, mktime

CHAPTER 4 DATA ORGANIZATION

modify the following to point to your data file
filepath = '../data/charts.xls’

read the entire CSV file and store it in an array of lists

use tab ('\t') as a delimiter

data = []

for row in csv.reader(open(filepath), delimiter="\t'):
data.append(row)

split the data to header and values
header = data[o0]
values = array(data[1:])

the first column is date information in a string format
we transform it to a day of year format
notice that this will not work over year boundary (need to add 365)
yearday = zeros(len(values[:, 0]))
for i, day in enumerate(values[:, 0]):
market close time = (int(day[6:]), int(day[:2]), int(day[3:5]), \
16, 0, 0, 0, 0, 0)
yearday[i] = gmtime(mktime(market close time)).tm yday

plot the data
for i in range(1, 5):
plot(yearday, values[:, i], label=header[i], linewidth=3)

annotate the start and end dates
text(yearday[0], values[0, 1], values[0, 0])
text(yearday[-1], values[-1, 1], values[-1, 0])

grid()

legend()

ylabel('Stock price [USD]")

xlabel('Days from start of the year '+values[0, 0][6:])

title('NASDAQ-100 (IXNDX) Stock price, period %s-%s' % (values[-1, 0], values[0,0]))
savefig('../images/stock price.png")

We start by reading the CSV data file and passing a tab as a delimiter. The first line in vari-
able data is the header information, describing what each column means: Date, Open, High,
Low, Close/Last, and Volume. The remaining lines are the values to plot. We therefore split the
variable data into header and values, accordingly. We also convert the values to a NumPy array
using the function call array(). Using a NumPy array, the data will be easier to process and
plot; more about NumPy in Chapter 7.

The following is not so much an explanation of working with CSV files but is important to
fully understand the script.

111

112

CHAPTER 4 DATA ORGANIZATION

Next is the so-called linearization process. Much like in the GPS example of Chapter 1,
datain charts.xls is not linear. The information is stock prices on a daily basis; however,
stocks are not traded every day, weekends being the prime example but also holidays. If we
plot the information as is, neglecting these “holes” in the data, the picture presented will be
skewed. So instead, we need to choose a different time base, one that will take into consider-
ation nontrade days. I chose to use the day-of-the-year value: January 1is 1, January 2is 2, . . .
December 31 is 365 or 366 (leap year dependent).

Since I don’t want to get into the process of determining leap years or summing up the
days in each month, I've decided to use the time module again. The idea here is to use the
function gmtime() and as a side effect, retrieve the day-of-the-year value. Function gmtime()
receives a value representing the number of seconds elapsed since the epoch, a fixed point
in time (see more about the epoch in Chapter 5). While this sounds even more complicated
than calculating the day of the year, in reality it’s easier because of function mktime(). Func-
tion mktime() receives a tuple of nine values, detailed previously, and returns the number of
seconds since the epoch. So we first construct a tuple of those nine values, the first three being
year, month, and day, which are known to us, and arbitrarily assigning the hour to be 4 p.m.
(which coincides with the end of trade). We leave the remaining fields zero. We then feed this
number to gntime() and receive a new tuple, now properly populated with the year of day, the
eighth element of the tuple, accessible with tm_yday, which we save in vector yearday.

Note The script does not take into account data over more than one year. To accommodate for this, you
could take into consideration the number of days in a year (365 or 366, depending on a leap year) and use
the lowest year as a baseline.

We then plot the data and annotate the graph. For the legend, we use the header values
of the CSV file stored in variable header. We also use actual values from the variable values
to annotate the start and end of period on the graph itself, the title, and the x-axis label (see
Figure 4-1).

Note If you look closely at the data in charts.x1s, you'll notice that it’s reversed, that is, backward in
time. One of the side effects of using the day-of-the-year value is that values are now plotted from lower to
higher values, that is, older times are on the left, and newer events are on the right. If you'd like to reverse
this behavior, issue the command gca() .axes.invert xaxis().

CHAPTER 4 DATA ORGANIZATION

1980 -

NASDAQ-100 (IXNDX) Stock price, period 08/04/2008-09/02/2008

- Open
w— High E
— | oW

== Close/Last

1960

L 7. 11 | RSP T RLE)

1920 . & e S 4
1900 g < olilnae

1880

Stock price [USD]

1860 PP L P P B s Sl NN s 5
1840 il

1820 3 T oo i

1809

i i I i I i
15 220 225 230 235 240 245 250
Days from start of the year 2008

Figure 4-1. Stock price chart output

Example: Automatically Reading Yahoo! Financial Data

The following discussion is a bit off-topic, but as it is a direct continuation of the previous
example, this is probably a logical spot for it.

There’s an alternative method to manually saving the charts.x1s file from NASDAQ. One
such option is using the matplotlib.finance module. The two core functions that fetch the
data and parse it are fetch_historical yahoo() and parse_yahoo historical() (although you
could easily parse the data yourself). Another function of interest is the candlestick() func-
tion, which plots a candlestick graph of the stocks.

Listing 4-4 is a modification of the previous example to use the functions from the mat-
plotlib.finance module. Notice that there are some other minor changes to the code because
the data structure is a bit different from the NASDAQ charts.x1s file. You can control the stock
you wish to view and the start and end dates by changing the values stock _name, t_start, and
t_end.

Listing 4-4. Fetching and Plotting Yahoo! Data

from pylab import *
from matplotlib.finance import *

stock name and period
stock_name = 'NDX'
t start = datetime.datetime(2008, 1, 1)

113

114

CHAPTER 4 DATA ORGANIZATION

t_end = datetime.datetime(2008, 1, 31)
year_start = datetime.datetime(2008, 1, 1)

retrieve and parse stock data
data = fetch historical yahoo(stock name, t start, t end)
y = array(parse _yahoo historical(data))

dates might not be trade days, so update values
to show actual dates retrieved

t_start = num2date(y[0, 0])

t end = num2date(y[-1, 0])

normalize the x-axis to show values from the start of year
yl:, 0] = y[:, 0]-date2num(year_ start)+1

plot a candlestick graph
figure()
candlestick(gca(), y)

annotate the graph with additional text

start str = "%d-%02d-%02d" % (t_start.year, t start.month, t start.day)

end_str = "%d-%02d-%02d" % (t_end.year, t _end.month, t end.day)

title('Stock: %s, period %s to %s' % (stock name, start str, end str))

xlabel('Days from start of the year %d' % t start.year)

ylabel(' /s Stock price [USD]' % stock name)

text(y[o, 0], y[0, 1], start str)

text(y[-1

grid()

savefig('../images/%s _candlestick yahoo-%s-%s.png' % \
(stock name, start str, end str))

s], y[-1, 1], end str)

Some notes:

¢ The time base is normalized, that is, the dates are shown from the start of the year
2008 and not the epoch. This is implemented in line y[:,0] = y[:,0]-date2num(year
start)+1.

¢ The actual dates requested might not be trade days. Therefore, the start and end
times are updated after the data is fetched and parsed. This is done in line t_start =
num2date(y[0, 0]) andt _end = num2date(y[-1, O]).

Figure 4-2 shows the results of the example in Listing 4-4.

CHAPTER 4 DATA ORGANIZATION

5100 Stock: NDX, period 2008-01-02 to 2008-01-31

008-01-02 : ! : : :

2000

8 1950}F------------- ,r' i T, R i
2 ; ; ! 5 5 5

f_, 1900 |-tk ' _
& : : : : : :

¥ : : ; ' : ' :

g 1850 s e AR A o
>

a

-

1750}

mo"l!*l _—

1700F------------- ‘ , \ -
E] L I L i
5% 5 10 15 20 25 30 35

Days from start of the year 2008

Figure 4-2. Automatically generated candlestick graph

Example: Creating a CSV File

The following is an example of writing a list to a CSV file. I assign some arbitrary mixed data
(strings and numbers) to a list named data and write it to file. Try it yourself, and then open
the created file test.csv to view the file contents.

>>> L = [['Time', 'Value', 'Notes'], [0, 20, 'Start point'],\
[0.1, 'Middle point'], [2]]

>>> import csv

>>> f = open('../data/test.csv', 'wb')

>>> csv.writer(f).writerows(L)

>>> f.close()

Here are the contents of the test file, test.csv:

Time,Value,Notes
0,20,Start point
0.1,Middle point
2

115

116

CHAPTER 4 DATA ORGANIZATION

Try changing the values of the list, such as adding a comma to one of the strings. Now,
open the file in a spreadsheet application: did the application manage to read the comma
properly? Open the file in a text editor and notice the string containing the comma is now
quoted. The csv module took care of adding quotes as required. More about the csv module
in Chapter 5.

USING THE CSV MODULE INSTEAD OF THE SPLIT() FUNCTION

So far we've used Python’s csv module liberally. You might be wondering why we’re not using the function
split(",") instead of the csv.reader object. The answer is that the csv module also addresses special
cases such as a string that includes a comma. Consider the following row:

"Surname, Name", 2008, 450

Module csv will handle this properly and return three elements. However, sp1it(", ") will return four
elements: the quoted string will be broken in two.

CSV Limitations

All’s not roses in the world of CSV. Here are some things to consider:

e Size: CSV files are typically not size efficient, compared with binary file formats.

e Performance: There’s also a performance hit with CSV files because they require pars-
ing. An application, be it a spreadsheet application or even our code in Python, calls a
function to translate the CSV file into values more easily used by the application. That
is, it parses fields and rows and translates from text to integer or floating point in the
case of number values. Running the parser to read the CSV file takes time, so reading a
large file will take considerable time. If performance is of importance and your applica-
tion reads very large files, consider using a binary file format instead.

What to Store

As a general rule, store as much information as possible. Unfortunately, sometimes that’s sim-
ply not possible. Consider the data rate of an uncompressed HDTV video signal at 1280X720
pixels, 30 frames per second, true colors (24 bits). That’s 1280X720X30X3 bytes per second,

or roughly 83 megabytes per second and on the order scale of today’s hardware limitations.
Which means you'll have to discard some of the information or compress it, or get better
hardware.

Deciding what to store and what not to store will be very much system dependent. Some
opt for decimating the data, which has its implications. Others decide on discarding a param-
eter they deem less important. Barring file size limitations, consider the following guidelines in
deciding what to store:

CHAPTER 4 DATA ORGANIZATION 117

¢ Write header file information in the beginning of the file, describing the system and the
data, including units of measurement. You can use free-form text for this. Some even
go a further step by adding a special character (e.g., #) at the beginning of every line,
ensuring the reader understands those are remarks and not part of the data.

¢ Include a header for each column, explaining what each column means. It’s very useful
for both viewing the files using a spreadsheet and for automated scripts to visualize the
data.

¢ Always try to store the time and date. Store the date and time values in the first column.
You can follow the ISO 8601 specifications, or you might opt to use a different notation.
An alternative valuable notation to ISO 8601 format is to store the number of seconds
that have elapsed since the epoch: 1 January 1970 on most Linux machines. That way
you have a number that is very easy to manipulate, as opposed to a date and time that
requires parsing. There’s also a side benefit and that is if you have several files, you can
use the same time base for all of them. The seconds-since-the-epoch notation is very
useful in binary formats.

Here’s an example of the contents of a file that follows the preceding guidelines:

#Units,Celsius

#Sensor,Al

#System serial number,401

Date and Time,Temperature,Pressure
2005-09-15T01:07:08, 42.0,53.1
2005-09-15T01:07:14, 42.0,53.2
2005-09-15T01:07:19, 39.0,51.8

When to Use CSV

Use CSV whenever possible, with the following exceptions:

¢ Performance is an issue.
¢ File size is an issue.

¢ Data is already in a different format.

Binary Files
Binary files are an efficient method of storing data. The term “binary files” means files that
are not represented as ASCII text; that is, if you open these files in a text editor, the data will
appear to be gibberish. In reality there’s no difference between binary files and text files, other
than what the data in the files represent. From the computer’s perspective, they're both just
files. So in essence, if the file is not a text file, it’s a binary file, but that’s a loose definition.

As discussed previously, there are merits to using binary file formats, and those are typi-
cally size and performance. There’s also another reason, and that’s the nature of the data. A
digital picture is not easily represented as a text file (it can be though—for example, every pixel

118

CHAPTER 4 DATA ORGANIZATION

value is an integer in a CSV file). The same applies to compressed files. Regardless of the rea-
son, it’s almost impossible to avoid using binary files.

In this book, when I refer to binary files, I typically mean one of the following file formats:
an array of values, an array of structs, or other commonly used binary file formats.

An Array of Values

The most simple binary file format we’ll be using is an array of values, that is, a repeating
single data type. The file could be holding 16-bit signed values or unsigned bytes. The array-of-
values file format lends itself nicely to storing simple binary data.

Example: Reading and Writing an Array of Binary Values

The Python array data type is an ideal candidate for this sort of binary file handling. The array
data type is part of the array module, so to use it, issue the following command:

>>> from array import *

To create an array, call the array() function with the data type and optional initialization
parameters, as follows:

>>> a = array('h') # array of signed shorts, of zero size

>>> a

array('h")

>>> b = array('L', [1000, 2000, 3000]) # array of three unsigned longs
>> b

array('L", [2000L, 2000L, 3000L])

>>> ¢ = array('d', range(10)) # array of doubles, from 0 to 9 including
>>> ¢

array('d', [o0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])

The data types listed in Table 4-4 can be used in initializing array objects.

Table 4-4. Array Data Types

Data Type Data Meaning and Size

¢! Character, 1 byte.

‘u' Unicode character, 2 bytes.

'b' Signed character, 1 byte.

'B' Unsigned character, 1 byte.

'h' Signed short, 2 bytes.

"H' Unsigned short, 2 bytes.

i Unsigned int, size is CPU dependent.
'T' Unsigned int, size is CPU dependent.
1 Signed long, 4 bytes.

"L Unsigned long, 4 bytes.

CHAPTER 4 DATA ORGANIZATION

Data Type Data Meaning and Size

f! Floating-point value, 4 bytes.
d' Floating-point value, 8 bytes.

Of these data types, as a guideline, try not to use the 'i' and 'I' data types, since they're
system dependent and might prove problematic when you transfer your code to another sys-
tem (unless of course that functionality is exactly what you require).

Writing array values to file is done using the tofile() member function of the array data

type:

>>> f = open('b.u32"', 'wb")
>>> b.tofile(f)
>>> f.close()

Reading is performed using the fromfile() member function of the array data type. The
function fromfile() also requires the number of values to read. If you supply a number greater
than the number of elements in the file, an exception is raised; however, values will still be
retrieved.

>>> d = array('L")

>>> f = open('b.u32', 'rb")
>>> d.fromfile(f, 3)

>>> f.close()

>>>d ==b

True

An Array of Structs

A more complex binary data structure we’ll be dealing with is an array of structs. The word
“struct” is taken from the C programming language and describes a structure combined of
several data types.

Suppose data is stored as follows: long, float, float, long, float, float, and so forth. This
series can be viewed as an array of structures, with the structure being { long, float, float }.
In this sense, an array of values, discussed previously, is also an array of structs with the struct
being a single data type, for example, { char }.If you're familiar with C, the preceding struc-
ture might be described as in Listing 4-5.

Listing 4-5. A Structin C

struct some binary file format
{

long epoch;

float fTemperature;

float fPressure;

};

119

120

CHAPTER 4 DATA ORGANIZATION

Note that unlike our previous binary file formats, this one doesn’t lend itself to a nice
extension naming convention such as .u16 or .32, so we simply choose the extension .bin,
noting that it’s a binary file.

Example: Reading and Writing an Array of Structs

In this example, we’ll create a structure containing two data types (long and float), write it
to file, and then read it using two different methods: a structure at a time and the entire file at
once. You can follow along by entering the commands interactively at the Python shell.

First, we have to import the struct module:

>>> import struct

To illustrate the concept of an array of structs, we’ll create a list of rows. Each row is a list
of three values: a long and two floats, which represent a structure. We’ll generate a relatively
short list, only two rows long:

>>> L = [[10L, 1.0, 2.0], [20L, 0.125, 0.25]]

Next, we define two variables, filename and format, so we don’t have to enter them every
time:

>>> filename = '../data/structs.bin’
>>> format = 'Lff’

I'm assuming there’s a directory named . ./data; if one does not exist, either create it or
change the value of the variable filename accordingly. The format 'Lff' means along, fol-
lowed by a float and a float per Table 4-4. Next, we write the list to file:

>>> fout = open(filename, 'wb")

>>> for row in L:
data = struct.pack(format, row[0], row[1], row[2])
fout.write(data)

>>> fout.close()

The first call to open() opens a file in binary mode. We then use a for loop and iterate
over the rows in the list L. Every row is packed using the function struct.pack(). The function
struct.pack() accepts a format and then the values to pack. The return value is a string that
can be written to file. We then write the string to file. Finally, the last line closes the file.

So now we should have a file named . ./data/structs.bin. This file contains the list of
values from the list L. Let’s read it a struct at a time:

First, we'll start by defining a variable equivalent to the size of the struct format:

>>> struct size = struct.calcsize(format)

The function struct.calcsize() calculates the size in bytes of the format. Armed with the
struct size, we start reading the data, a struct at a time:

>>> fin = open(filename, 'rb')

>>> data = fin.read(struct size)

>>> data
"\n\x00\x00\x00\x00\x00\x80?\x00\x00\x00@"

CHAPTER 4 DATA ORGANIZATION

The first line opens the file for reading in binary mode. We then use the function
read(n) to read n bytes and store them in the variable data. So now the variable data holds
the first structure from the binary file, but it isn’t legible yet. We’ll need to unpack it, using
struct.unpack(), that is, convert it from a string to a tuple of values using the format speci-
fier ' Lff'. But since we’ll be reading and unpacking several values, it stands to reason to use
awhile loop as follows:

>>> while data:
values = struct.unpack(format, data)
print values
data = fin.read(struct size)

(10, 1.0, 2.0)
(20, 0.125, 0.25)
>>> fin.close()

The while condition evaluates to True as long as variable data is nonempty, hence data
will be processed until the end of the file. Each struct read is unpacked to a tuple of values
using the struct.unpack() function. Once a struct is unpacked, we read the next structure.
This continues until all the structs are read from the input file. Lastly, we close the file.

The second method we’ll examine here is reading the entire file at once. To do so, we first
read the entire file to memory, using the read() function:

>>> data = open(filename, 'rb').read()
>>> len(data)
24

If no parameters are provided for read(), the entire file is read into memory until an end
of file (EOF) is reached. This might not be a problem with small files, but with larger files be
wary; your computer might not be able to handle all the data at once, so you will need to read
the files in chunks per the previous method. Note that I've chosen not to assign a file handle
for the data file and let Python handle the closing of the file for me.

The function struct.unpack() accepts format as a parameter and unpacks the data to a
tuple. However, we need to unpack the entire array, not just the first structure. We can take
the obvious route of using a for loop to unpack the binary data a piece at a time. An alterna-
tive approach is to change the format value to unpack() from a single 'Lff' to a repetitive
'LffLffLff. .. . This allows unpacking of the entire binary data in one call to struct.unpack().
Luckily, Python provides us with a very useful tool for multiplying strings, the multiplication
operator:

>>> "Lff'*5
"LEfLFfLFfLFFLFE’

We can calculate the size of the array we want to unpack by dividing the length of the data
by the size of one struct. In our case, that’s len(data)/struct_size. So to generate a format to
unpack by, we multiply the format by that value, which folds neatly into the following:

>>> print struct.unpack(format*(len(data)/struct size), data)
(10, 1.0, 2.0, 20, 0.125, 0.25)

121

122

CHAPTER 4 DATA ORGANIZATION

Note (Advanced readers) This implementation assumes the file is in accordance with the native operat-
ing system’s byte order. If you try to unpack data in this manner with any of the struct’s byte order, size, and
alignment format characters, such as @, =, <, >, and !, the function will fail.

Other Binary File Formats

Binary files can be more complex and can follow a different scheme from the repeating fixed-
size structure. Some employ compression, which typically involves a non-fixed-size structure.
Others might store data sequentially, that is, using the data of the preceding example, you
could write all the long values, followed by the float values. In that case, a different method to
read the file should be employed, but it’s quite straightforward if you know the file format. In
this book I'll touch lightly on this topic, specifically about known file types such as pictures
and compressed files. Since the number of file formats is virtually unlimited, the topic is too
vast for one book to cover.

Header Files

Unlike CSV files, with binary files you can’t really tell whether the information is in integer
representation, floating point, or an altogether different scheme. This means that you, the
programmer, need to know in advance what file format you're dealing with. At first that might
not seem such a complex task, but in reality, it’s not trivial. Even with the same notation as
explained previously in this chapter, say, .u16, you still don’t know what the values represent:
are they sampled voltage values? Is there a timestamp? And you might have several binary file
formats you're dealing with.

To resolve this, we use a header file to describe each file type, or directory, in case all the
files conform to the same format. A header file is a text file that describes the format of the
binary file. But if we’re using a text file, we might as well use CSV!

It’s a good idea to have the same base file name for the header file as the binary file
(excluding extension). I typically add an .hdr.csv extension for my header files; for example,
for file Lava2001-03-21T08-22-23.132 I name the header file Lava2001-03-21T08-22-23.f32.
hdr.csv.

Here’s an example of header file contents for an array-of-structs file format:

"Name", "Number of bytes", "Format", "Units"

"Time Elapsed since epoch", 4, "integer", "seconds"
"Temperature", 4, "float", "Degrees Celsius"
"Pressure", 4, "float", "Psi"

The nice thing about this structure is that it’s quite self-explanatory. It lends itself easily to
automation and scripting.

I've also added a column titled Units. This column is obvious; however, you will find later
that it’s quite useful. Say you know the temperature is an integer, but what exactly does it rep-
resent? Degrees? And if so, are those in Kelvin, Fahrenheit, or Celsius?

CHAPTER 4 DATA ORGANIZATION

If the file format is different and does not follow the repeating fixed-size structure format,
you can come up with a header that best describes that file format. In the case of sequential
data, the header file might look like this:

"Name", "Number of bytes", "Format", "Units", "#Values"
"Time Elapsed since epoch", 4, "integer", "seconds", 100
"Temperature", 4, "float", "Degrees Celsius", 100
"Filtered values", 4, "float", "Degrees Celsius", 100

This format implies that the data is sequential, having 100 values for each parameter. This
is a more complex file format and not at all popular due to the complexity associated with
implementing a format that behaves like this; you’d have to remember all the information and
then store it to file instead of gathering values and storing them one at a time. Again, at times,
you're given data files to work with and can’t control the file format.

Readme Files

Readme files are documentation files placed in a directory describing the contents of the

files in that directory. There’s no clear definition of the contents of Readme files, only that

the information should be in clear text so as to be viewed by any text editor. Some Readme
files have directions on what should be run and how to use the software. Others add author
information and credentials. Using Readme files is an excellent way to document what you've
done without the overhead of writing a user’s manual. Here are occasions where I found using
Readme files of value:

¢ They are helpful for describing the contents of data in directories: file formats, origin of
data, date and time, person in charge, and so forth. See Chapter 1 for an example of a
Readme file describing data.

e When directories contain both data and scripts to analyze them, there’s bound to be a
multitude of scripts. Describing the entry point, or what the user should run first, is a
time saver—especially if a process is required before running the scripts, for example,
uncompressing the data. Describe that in your Readme file.

Readme files can be as detailed or as cryptic as you’d like. Just remember that they're
there to help; include detail in them according to the level of the user or developer so they
understand what’s going on.

The common full file name for Readme files is Readme. txt.

INI Files

As you add content and capabilities to your scripts, you'll find that you need to control the
scripts’ behavior using options, such as running the script but only generating a text out-
put, without graphs or running the scripts on a different set of data points. As the number of
options increase, you'll need methods for controlling the options. There are several ways to
implement options. Following are the common ones:

¢ Interactive input from the user, for example, “Generate graphs (y/n)?”

¢ Command-line parameters such as the -1 in the command 1s -1.

123

124

CHAPTER 4 DATA ORGANIZATION

¢ An external configuration file holding the choices and parameters. To change the
behavior of the script, the user changes the values in the configuration file. The script
reads the configuration file and acts accordingly.

The latter option, a configuration file, is also referred to as an INI file. The reason is that
back in the days before the registry was introduced in Windows, applications used to store
parameters in files having the application name and ending with an . INI extension. In Linux
this is commonly referred to as a configuration files; configuration files typically reside in
the directory /etc and have a . conf extension. Python supports INI files natively with the
ConfigParser module.

Much like Readme files describing the data, INI files describe the parameters, options,
and choices used to run a script. They provide a clean way of explaining what the options
mean. The general markup of an INI file (config file) is a section, denoted by brackets, fol-
lowed by a list of parameters and their assigned values and optional remarks, as outlined in
Table 4-5.

Table 4-5. INI File Format

INI/Config Line Format Notes

Section [section] Used to group parameters logically
Parameter paraml=valuel orparaml:valuel Used to set a parameter to a value

Remark ; remark or# remark Used to document sections and parameters

Example: Reading and Writing INI Files

Listing 4-6 shows an implementation of writing an INI file using the ConfigParser module.

Listing 4-6. Creating an INI (Config) File

creating an INI (config) file

import ConfigParser

options = ConfigParser.ConfigParser()
options.add section('User Options")
options.set('User Options', 'all data', True)
options.set('User Options', 'graph', 1)
options.add section('Plot")
options.set('Plot', 'grid', True)

f = open('../data/options.ini', 'w")
options.write(f)

f.close()

First we import the ConfigParser module. We then set sections with the add_section()
method and parameters and values with the set() method. Lastly, we create a file and output
the ConfigParser object to file, generating an INI file. The following are the results from run-
ning the script in Listing 4-6:

CHAPTER 4 DATA ORGANIZATION

[Plot]
grid = True

[User Options]
graph = 1
all data = True

Reading an INI file is even easier. Assuming you have run the previous script, you should
now have an INI file named . . /data/options.ini. The script in Listing 4-7 will read that file
and parse its contents.

Listing 4-7. Reading an INI (Config) File

read an INI (config) file

import ConfigParser

read opts = ConfigParser.ConfigParser()
read opts.read('../data/options.ini")

print parameters and values
for section in read opts.sections():
print "[%s]" % section
for param in read opts.items(section):
print param

The function ConfigParser.read() accepts a file name (use readfp() if you want to use a
file object) and parses the INI file with the ConfigParser object. The code following the read()
function call prints the sections, options, and values. Here are the results from running the
script in Listing 4-7:

[Plot]

('grid', 'True')
[User Options]

('all data', 'True")
("graph’, '1')

XML

XML, or Extensible Markup Language, has been growing in popularity as a data file format.
XML is more descriptive than CSV and definitely more descriptive than binary, hence its
popularity. XML is a very good format for data files, but it has its overhead. Mainly it requires a
complex parser to read the data and check data validity. While that’s true for CSV as well, CSV
is much less complex.

XML, however, is left out of scope for this book, mainly because CSV provides us with the
functionality we require, but also because the topic is too large to be addressed properly in this
book. If you do require XML processing, rest assured that Python has extensive XML support.
There’s also a large selection of books available on XML, and I suggest you consult with them
or the Internet should you require XML support.

125

126

CHAPTER 4 DATA ORGANIZATION

Other File Formats

There are a large number of other file formats you're likely to encounter. These include image
formats such as PNG, JPEG, bitmaps and GIF, or compressed file formats such as ZIP or GZ,
and yes, XML too.

It is far beyond the scope of this book to detail and discuss all these file formats. One of
the benefits of using Python is its popularity and an active developer base with an extensive
number of freely available packages contributed by the Python community. There’s a good
chance there’s already a module out there that’s suitable for reading different file formats and
converting them to programmer-friendly values. For example, a module we’ll be exploring in
Chapter 9, the Python Imaging Library (PIL), supports most popular image formats.

Locating Data Files

As described in the introduction to this chapter, as you gather data, you're bound to end up
with files of various types: raw data files, clean data files, processed data files, files of older file
formats, and the list goes on and on. The question is, how do you organize all this data, and
furthermore, how do you later locate it for analysis?

This section suggests several approaches to organizing files and what’s more important,
maintaining well-organized data. One approach is storing files in directories and subdirecto-
ries, and we’ll discuss methods to locate the files using that approach; another is to use catalog
files and annotate them.

Organization into Directories

The most popular method of organizing files is in directories. If you go with this approach, try
to have all your subdirectories containing data files in a parent directory named data or simi-
lar. If you intend to preprocess the data, split the directory into “raw” and “clean” data. The
reason you want to do this is that you may find out later that the preprocessing algorithm has a
bug or that a different method should be employed to preprocess the data. Or if you manually
preprocessed the data (that is, cleaned up the data files, removed wrong files, edited others,
etc.), you may later realize you accidentally erased the wrong data file or that you made some
other mistake.

From here on, there are several options, for example, putting all the data files in one
directory or creating subdirectories and organizing files there. Personally, I like to split the
directories further for several reasons. One is that it gives me greater control over documenta-
tion: it’s possible to generate Readme files for every directory. The other is that it allows greater
control over what files to process, for example, I could process all files from directory systemA.
Lastly, it helps provide a more aesthetic view, and that’s an important part of any engineering
work.

The actual breakdown into subdirectories is very problem specific. It could be based on
dates, type of files, contents, and pretty much anything else you would like. However, do try to
group the directories in one root directory, as it will be a lot easier to iterate through the data.

data
Taw
systemA

CHAPTER 4 DATA ORGANIZATION

systemB
systemC
clean
systemA
systemB
systemC

Searching for Files

One of the obvious methods for searching for a file is by recursively going through all the sub-
directories and looking for files that match a given pattern.

Example: Storing Directory Contents in an Array

When you first look for a file, you don’t always find it on your first search, maybe because
you chose the wrong file name pattern or because of a simple typo. There’s a good chance
you'll require additional searches. Now if you have a significant number of data files, it can be
tedious to rewalk the entire directory again. Every search is laborious, and time spent finding
files will increase dramatically. Instead, it’s possible to store the intermediate result in a data
structure.

Try this yourself. Define the function get _all files(), as shown in Listing 4-8, and call it
interactively in Python by issuing allfiles = get all files(some path). Observe the results
by issuing print allfiles at the Python shell.

Listing 4-8. A Function to Retrieve All Files in a Directory and Store It in an Array

import os

def get all files(srchpath):

"""Cet the names, paths and sizes of all the files in a directory.
allfiles = []

nnn

for root, dirs, files in os.walk(srchpath):
for file in files:
pathname = os.path.join(root, file)
filesize = os.path.getsize(pathname)
allfiles.append([file, pathname, filesize])
return allfiles

The function stores an entry to each file in a list (allfiles). Each entry in the list holds
the file name, path name, and file size. A path name is the full path plus a name of a file (e.g.,
/home/shai/file.txt); a file name is the name of the file excluding the path (e.g., file.txt),
and file size is given in bytes. The function os.walk() was described in Chapter 1 and should
not require additional clarifications. I've made use of the function os.path.getsize() to
retrieve the size of a file.

127

128

CHAPTER 4 DATA ORGANIZATION

Note In cases where file names contain non-English characters, I've seen the function getsize() raise
an exception because it was unable to read the file. If you're dealing with such files, either rename them or
add a try/except clause to catch the exception.

Indexing

The act of going through directories and recording file information in an organized manner is
called indexing. Done properly, indexing can allow fast searches.

Example: Searching for Duplicate Files

Continuing our previous example, now that we have an array containing all the files in a direc-
tory, we can perform fast searches on the array. We can sort the array based on file size and
find the ten largest files; or we can look for files matching a given pattern. In this example we’ll
explore a more complex search, one that checks for duplicate files. This is a true need, one that
arises especially when dealing with a large number of files.

Assuming you have followed the unique file name convention suggested earlier, there
shouldn’t be any duplicate file names. However, that’s not always the case. Consider the fol-
lowing: data is generated by copying pictures from a digital camera. Many digital cameras
follow a simple running index scheme (see the section “Other Schemes” earlier in this chapter)
whereby file names follow the pattern Header0001. jpg, Header0002. jpg, and so on, with each
camera having its own Header string. After you copy the files to your computer, you delete the
old files in the camera, clearing space for new pictures. New pictures taken by the camera will
in turn start from index 1 and eventually, as they’re copied to your computer, will have non-
unique file names. To ensure files are not accidentally overwritten, you copy over each batch
of pictures to a directory of its own, each directory named uniquely based on date and time.
So you end up with several directories, but their contents could contain nonunique file names.
Maybe some are the same. Can we clear some up?

Another scenario is that of backups, or that of using several storage locations, say, your
laptop and your home PC. You may have copies of data lying around in several spots, and the
question again is whether you have multiple copies of the same data. Of course, if you follow
a central server approach and that server is backed up on a regular basis, you'll find that these
occasions are rare. Still, it’s nice to be able to identify duplicate files, and that’s the motivation
behind this example.

In the example we’ll confine ourselves to the following: we assume files to be identical if
they have the same file name and file size. While this isn’t necessarily true, the example can be
easily modified to compare contents as well.

We’ll show three different implementations and discuss the best solution of the three. In
all three methods we’ll use a dictionary object.

Note To be able to follow along, ensure you've defined the function get all files() from the previous
example. Run it in interactive Python and store the results in an array as follows: allfiles = get all
files(pathname).

CHAPTER 4 DATA ORGANIZATION

Method 1: We use the file name as the unique key in our dictionary, mydict1. The value
isalist of [filepath, filesize]. At first, mydict1 is empty. For every entry, we ask whether
the file name is a key to the dictionary. If it wasn’t encountered, we add the list [filepath,
filesize] as a value to the key, file name. If the key is in the dictionary, it means that this file
name has been encountered in the past. We then retrieve the file size and compare it with the
current entry file size. Listing 4-9 shows the implementation.

Listing 4-9. Looking for Duplicate Files, Method 1

def find dupes 1(thefiles):
"""Searches for file duplicates, method 1."""
resultl = []
mydictl = dict()

for filename, pathname, filesize in thefiles:
if filename in mydicti:
[dup_file, dup_size] = mydicti[filename]
if dup_size == filesize:
resulti.append(pathname)
else:
mydicti[filename] = [pathname, filesize]
return result1

One of the obvious shortcomings of this method is that there might be several files with
the same file name but different sizes; the algorithm might not catch some of them. For exam-
ple, if the first file is of size A, and several other files have the same file name but are of size B,
the algorithm will not identify files of size B as duplicates.

Method 2: This method uses the path name as the unique key in the dictionary mydict2
and the list [filename, filesize] as the value. Since we’re using the path name as the key,
it’s guaranteed to be unique; there are no two files with the same file name and path name. To
check whether a file name already exists in the dictionary, we iterate through all the elements
in the dictionary using the iteritems() method. If the file name and the file size are identical,
we announce them to be a duplicate. If not, we add the associated path name as key and the
[filename, filesize] asanew value to the dictionary (see Listing 4-10).

Listing 4-10. Looking for Duplicate Files, Method 2

def find dupes 2(thefiles):
"""Searches for file duplicates, method 2.
result2 = []
mydict2 = dict()

nwnn

for filename, pathname, filesize in thefiles:
for k, v in mydict2.iteritems():
if v[0] == filename and v[1] == filesize:
result2.append(pathname)
else:
mydict2[pathname] = [filename, filesize]
return result2

129

130 CHAPTER 4 DATA ORGANIZATION

While this method does resolve the shortcoming of method 1 in that if there are sev-
eral files with the same file name, they will all be checked, the implementation is not a good
one. The major issue is that we use a dictionary object to store values and neglect to use the
inherent hashing mechanism properly: we iterate through all the items linearly. We probably
could’ve just as well used an array.

Method 3: This method uses the file name as the key in the dictionary object mydict3. The
difference from method 1 is that instead of a list holding [pathname, filesize], we now hold
an array of [pathname, filesize] lists for every key, much like in a real dictionary where one
entry (key) might have several definitions (values). The second change we introduce is that
we don’t ask whether the file name (key) is part of the current set of keys. Instead, we simply
access the dictionary object with the file name using the method get (). If there’s an entry,
we go through the array of [pathname, filesize] values and check for duplicate files. If one
matches, it’s a duplicate. If none matches, we append our new [pathname, filesize] to the
array of current values. In case there’s no entry for the file name, we add it as a new entry to
the dictionary object (see Listing 4-11).

Listing 4-11. Finding Duplicate Files, Method 3

def find dupes 3(thefiles):
"""Searches for file duplicates, method 3.
result3 = []
mydict3 = dict()

nnn

for filename, pathname, filesize in thefiles:
if mydict3.get(filename):
for [dup file, dup size] in mydict3[filename]:
if dup_size == filesize:
result3.append(pathname)
mydict3[filename].append([pathname, filesize])
else:
mydict3[filename] = [[pathname, filesize]]
return result3

Of the three methods, the third one is the best because it uses hashing properly.

To check performance for yourself, copy the function implementations per Listing 4-9,
4-10, and 4-11 to a text editor, save them under scriptname.py, and then issue
execfile('scriptname.py') in an interactive Python shell. Once that’s done, here’s a short
set of commands you can use to measure performance. Be sure to change the srchpath vari-
able to point to a directory containing a large number of files, with some duplicates.

>>> srchpath = 'c:/Python2s’

>>> allfiles = get all files(srchpath)

>»>t =[]

>>> from time import clock as clk

>>> t.append(clk()); resi = find dupes 1(allfiles); t.append(clk())
>>> t.append(clk()); res2 = find dupes 2(allfiles); t.append(clk())
>>> t.append(clk()); res3 = find dupes 3(allfiles); t.append(clk())
>>> len(allfiles) # number of data files processed

8371

CHAPTER 4 DATA ORGANIZATION

>>> print "method 1: %5.5f; method 2: %5.5f; method 3: %5.5f" % \
... (t[2]-t[o], t[3]-t[2], t[5]-t[4])

method 1: 0.00761; method 2: 5.61522; method 3: 0.01945

>>> len(res1), len(res2), len(res3)

(41, 802, 802)

I've imported the method clock() and renamed it to c1k() (to save a few characters).
The function clock(), part of the time module, returns the system clock and is very useful
for comparing performance. Notice how I've entered three function calls in one line. This is
important: if you split those into three separate sentences, the time it actually took you to write
the command is also added to the time difference, offsetting results.

Note Because method 2 is quite inefficient, for a large number of files or a slow machine it might take
considerable time to compute. Although method 1 seems the fastest, in reality it's inaccurate and shouldn’t
be used.

In the preceding implementations, we do not check the contents of the files to ensure they
are indeed identical. It is quite possible to add that capability by modifying the functions and
comparing the contents of two files, filel and file2, as well:

>>> if open(file1, 'rb').read() == open(file2, 'rb').read():
print 'identical files'

This method reads the entire files to memory and compares them byte by byte. Note that
this is a not a good option if the files are large; reading chunks or using other mechanisms may
be better (see “Comparing Files” section in Chapter 10).

Catalogs

We've discussed splitting data files into directories and subdirectories and mentioned that it’s
a good habit to group files in that manner. While this is an excellent method of maintaining
what’s what, it’s limited to one division. That is, if you’d like to split files into directories based
on several criteria, what do you do with a data file that fits several of those criteria? This is
where catalogs come in handy.

Catalogs are text files that hold data in columns: the first column contains the file names,
and subsequence columns contain subcategories (other criteria). Ideally you'd like to use
CSV because there’s a good chance you’ll be editing the catalog file manually in a spreadsheet
application or automatically with Python; CSV fits that role perfectly.

Once you have a catalog file, it’s easy to select only files meeting a specific criterion and
run a script on those selected files.

Example: Creating a Clean Catalog File

The first step is to generate a basic catalog file, or a clean catalog file. This clean catalog file
is generated automatically, using Python. For every file encountered, the full path as well as

131

132

CHAPTER 4 DATA ORGANIZATION

the file size is retrieved. Listing 4-12 shows an example of creating a clean catalog of files with
extension .py.

Listing 4-12. Creating a Clean Catalog

import os, csv

rename the following to a directory of your choosing
srchpath = '../src'

the CSV header
catalog = [['Filename', 'pathname’, 'size']]

walk directory tree
for root, dirs, files in os.walk(srchpath):
for file in files:
process only .py files
if file.lower().endswith('py"):
pathname = os.path.join(root, file)
filesize = os.path.getsize(pathname)
catalog.append([file, pathname, filesize])

create the clean catalog

f = open('../data/clean catalog.csv', 'wb")
csv.writer(f).writerows(catalog)

f.close()

To follow along, change the srchpath variable to point to a directory containing Python
files, such as the root Python directory (c:\Python25). I chose to list the contents of my . ./src
directory.

The script walks the search directory looking for Python files (files ending with the exten-
sion .py, case insensitive). For every file encountered, we retrieve the file size. We then store all
the information in a CSV file as shown in previous examples.

Filename,pathname,size

get_all files.py,../src/get_all files.py,385
read ini.py,../src/read _ini.py,282

write ini.py,../src/write_ini.py,330
cmp_fd.py,../src/cmp_fd.py,2285
unique.py,../src/unique.py,273
tips.py,../src/tips.py,151
create_catalog.py,../src/create_catalog.py, 595
stock_charts.py,../src/stock_charts.py,1290
yahoo_data.py, ../src/yahoo_data.py,1218

read write structs.py,../src/read write structs.py,795
running_index.py,../src/running_index.py,613

CHAPTER 4 DATA ORGANIZATION

Next you take notes. For example, if a script is a draft, you mark it as such. So now you
have an additional column: “Draft?” The contents of the catalog file will look something like
this:

Filename,pathname,size,Draft?

get all files.py,../src/get all files.py,385,
read_ini.py,../src/read _ini.py,282,

write ini.py,../src/write ini.py,330,
cmp_fd.py,../src/cmp_fd.py,2285,Yes
unique.py,../src/unique.py,273,
tips.py,../src/tips.py,151,Yes

create _catalog.py,../src/create_catalog.py,595,
stock_charts.py,../src/stock_charts.py,1290,
yahoo_data.py,../src/yahoo_data.py,1218,

read write structs.py,../src/read write structs.py,795,
running_index.py,../src/running_index.py,613,

For the purpose of this exercise, I chose to use .py files, but you could just as well use the
script on data files. In this manner, running a script on only clean data from the annotated
catalog is manageable and reproducible.

Note Maintaining catalog files is a delicate job. Ensure your catalog files are always under version
control, or better yet, a software configuration management system (for example, CVS, Subversion, or Mer-
curial—see Chapter 2). You will constantly need to re-create clean (unannotated) catalogs if data is added.
Consider investing time in maintaining your catalogs to keep them clean and up to date. If you find that the
number of columns in your catalog files has increased and is unmanageable, consider using a database
instead of a CSV file.

Files vs. a Database

There are a lot of pros for using databases over the management of files in directories. If your
data becomes too complex to manage, rethinking and redesigning your data infrastructure is
not a bad idea. That being said, I personally have found that databases do not add to my pro-
ductivity. In my mind, the reasons are as follows:

¢ The nature of the work: When you design a database, it’s important to know a lot of
the information up front. A good database relies on a good database design. And good
database design relies on knowing the information and structure beforehand. The
work described here does not follow that path. As presented in the beginning of the
chapter, it’s an iterative process; you do not know all the information before you start.
And your application is mostly for your usage, not for end users (at least at first). It’s
not “production-level” code yet. When it does get to production level, that is, it's an
application to be used by end users, rethinking the data organization is a good idea, at
which point you should consider using a database as well.

133

134

CHAPTER 4 DATA ORGANIZATION

¢ The nature of the data: The nature of the data described here is somewhat flat. There
are not a lot of connections and interconnections and hierarchy and logic. There’s
simply a lot of data. There’s a need to analyze it, fast. Some of the files are quite large,
and while it’s possible store large files in a database, it’s probably not the most effi-
cient way.

* Overhead: Databases introduce overhead. Some may argue that it’s not significant,
and they may be right. However, there’s another piece of code, a database engine, that
needs interfacing. Yes, Python provides good database support, but it’s not the same
as opening a file natively in your operating system. The overhead is in several layers:
backup is more complex, code writing requires additional libraries, designing data-
bases requires some experience (which you might not have), transferring the work to
another computer is not easy, and maintenance is also required.

Note It’s worth mentioning that the SQLite database module (sqlite), which is part of the Python Stan-
dard Library, has very little overhead and is an excellent package for working with databases should you
require one.

o Immediate interaction: Say you'd like to browse for data and view files. With a database
you’d have to write an application just to extract data, and then to view it. The interac-
tion is less immediate in my mind.

I know I'm not being fair in my analysis; I'm mostly showing the cons of databases. So to
offset that, I'll say that databases do have their role. If you feel that you’d like to store your data
in a database, you should at least know that Python provides a great number of tools for you to
choose from, so even then, Python is the right programming language for you.

Final Notes and References

Data organization is an important part of any serious data analysis and visualization proj-
ect. If you follow through with the guidelines suggested in this chapter, I believe you will find
that the overhead associated with maintaining data coherently is minimal, and furthermore
that it’s easy to write scripts to process large sets of data.

I have found the following of great value, when deciding on the file name format or the
date and time format in a log file:

* “Numeric representation of Dates and Time: The ISO solution to a long-
standing source of confusion,” http://www.iso.org/iso/support/faqs/
fags_widely used standards/widely used standards other/
date_and_time format.htm

CHAPTER 5

Processing Text Files
Text Is Everywhere

A considerable amount of data we process is text based. From a simplistic approach, text
files are files that contain characters. The Python scripts we write are text files, the HTML files
our web browser receives are text files, the e-mail messages we read are text files. They’re sim-
ply everywhere. Because of the abundance of text files, you're likely to analyze data that comes
in some form of a text file.

But in reality, there’s no difference between a text file and another file, say, a binary file.
They’re both just files that occupy space on your hard drive. The important difference is what
text files represent. If you look at data in a text file, a byte at a time, and convert every value
using the ASCII table, you will be able to find (usually) intelligible text.

Note ASCII, short for American Standard Code for Information Interchange, is a 7-bit character encoding.
Each character has a number (0-127) associated with it. Characters can also include digits and symbols. To
view the ASCII table in Python, issue the following: for i in range(128): print i, repr(chr(i)).
Note that nonprintable characters (usually values 32 and below) will be displayed with their hexadecimal
notation.

In a sense, text files are regular files that have information encoded in accordance with
a known code. Nontext files, that is, binary files, will have values that don’t necessarily corre-
spond to the ASCII table, and if you use the ASCII table to decode a binary file, you’ll probably
end up with gibberish, not with text.

Text files can conform to yet another set of rules, say, the CSV format or the XML markup
language. Text files that don’t necessarily conform to any mapping other than the ASCII table
are called plain text files. You'll mostly encounter plain text files and CSV files in this chapter.

The goal of this chapter is to present tools to work with text. First, we’ll talk about strings
and how to process them, and then continue with a discussion of reading and writing files,
complementing the discussion with a considerable number of examples. We then turn to
some topics that are likely to pop up when dealing with text files: handling CSV files, reading

135

136

CHAPTER 5 PROCESSING TEXT FILES

date and time information and parsing it, and working with regular expressions, a powerful
tool for processing text. Lastly, since date and time are denoted differently around the world,
we turn to a discussion about reading data that originated in a different locale.

Text and Strings

Text is composed of strings of characters, usually separated by spaces or other separators,
such as commas, dots, and punctuation marks. Processing text is therefore based on process-
ing strings.

You've already seen a discussion of strings in Chapter 3, one that deals with strings as
sequences of characters: slicing, indexing, and concatenating. But in essence, we didn’t deal
with the string as a text object. You could’ve just as well thought of the string as a sequence of
numbers, and the discussion would still be valid.

While that approach is correct, it’s too simplistic. When we view strings that way, we
lose important information. Consider this book: it's made of text. But as you read it, there’s
more information than just a sequence of characters. There are words, lines, and punctuation
marks. And even then, there’s still yet more information: for example, words that begin with
a capital letter have a different meaning. Those distinctions are important to us when we'’re
reading text.

The following section deals with functions and ideas that help us write code to process
higher-level textual concepts; “string” is no longer merely a sequence of characters.

Splitting Text
The first tool at our disposal is the split() function, which is a string method:

>>> "split second".split()
['split', 'second']

The split() function splits a string into a list of strings once a separator is encountered.
The default separator is a whitespace string and is one of the following: carriage return '\r",
line feed '\n', tab "'\t', vertical tab "\v', form feed '\f', and a space. Vertical tabs and form
feeds are less frequently used.

The split() function does not include the separators in the list, nor does it care how long
the separator string is. This is especially useful if you're splitting text that’s made of columns,
with a varying number of spaces between fields:

>>> grocery list = """Milk 2
. Eggs 12"""

>>> print grocery list

Milk 2

Eggs 12

>>> grocery list.split()

['Milk', '2', 'Eggs', '12']

Much like it’s useful to split text on words, it’s also useful to split text on lines. The func-
tion splitlines([keepends]) splits a string based on line endings and removes the line
endings, that is, removes the characters '\n' or '\r\n' if they exist. In case the optional value
keepends is True, end-of-line characters are retained:

CHAPTER 5 PROCESSING TEXT FILES

>>> grocery list = """Milk 2
. Eggs 12"""

>>> grocery list.splitlines()

['Milk 2', "Eggs 12']

>>> grocery list.splitlines(1)

['Milk 2\n', 'Eggs 12']

Example: Counting the Number of Words and Number of Lines in a String

At times you’d like to count the number of words, or the number of lines in a string. This can
be done by using the function len() to count the number of elements in the lists generated
from the calls to functions split() and splitlines(), as demonstrated in Listing 5-1.

Listing 5-1. Counting the Number of Words and Lines in a String

def word line count(s):
"""Returns the number of words and the numbers of lines in a string.

nun

return (len(s.split()), len(s.splitlines()))

The function returns a tuple: the first element is the number of words in the string, and
the second element is the number of lines in the string.
Once you define the function, use it as follows:

>>> grocery list = """Milk 2

. Eggs 12||ll||
>>> word line count(grocery list)
(4, 2)

Joining Strings
Much like you can split a string into a list of strings, you can join a list of strings into a new
string using the join() member function. Remember, though, that join() is a string method;

therefore you must have a string to operate on to begin with. So if you'd just like to combine a
list of strings with no spaces in between, you should write the following:

>>> S0S = ['..., ---t,]
>>> "".join(S0S)

Converting Strings to Numbers

Common use of the split() function is to parse the text and then extract numeric data, which
usually comes in the form of a string of digits. Once extracted, the strings representing num-
bers can be converted to an actual Python numeric representation instead of a sequence of
digits.

Converting strings to numbers can be done with either float(), int(), or long() function
calls:

137

138 CHAPTER 5 PROCESSING TEXT FILES

>>> float('3.25")
3.25

>>> int('100")
100

If you try to convert a string that doesn’t represent a number to a number, an exception is
raised:

>>> float('split')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for float(): split

This can be used to your advantage: say you're looking to print only the number of items
from the grocery list in previous examples. Simply employ the EAFP principle to convert every
string to a number and print it.

>>> grocery list = """Milk 2
. Eggs 12"
>>> for item in grocery list.split():
try:

print int(item),
except ValueError:
pass

2 12
In this example, I took special care to discard only ValueError exceptions, which occur in
case of a conversion problem.

Example: Base Conversion—RBinary, Octal, Decimal, and Hexadecimal

At times, it’s useful to convert a number from one base representation to another. In case
you're dealing with octal, decimal, and hexadecimal bases, this is easily achieved using the
functions int(), hex(), and oct().

Since we’re dealing with representations of numbers, it stands to reason we use strings.
I've therefore chosen to define several functions, all of which accept a string as an argument.
As shown in Listing 5-2, these functions are hex2dec (), hex2oct (), dec2hex(), dec2oct(),
oct2dec(), and oct2hex(). The names of these functions are self-explanatory.

Listing 5-2. Base Conversion Helper Functions

def oct2dec(s):

return str(int(s, 8))
def hex2dec(s):

return str(int(s, 16))
def dec2oct(s):

return oct(int(s))
def dec2hex(s):

return hex(int(s))

CHAPTER 5 PROCESSING TEXT FILES

def hex2oct(s):

return dec2oct(hex2dec(s))
def oct2hex(s):

return dec2hex(oct2dec(s))

I've left out the docstrings: I think the function names are documentation enough. I also
chose to use int(); the function long() would’ve worked just as well. The functions do not
perform any sort of error checking (e.g., ensuring that they received a string as an input).

Here’s a possible use of these functions:

>>> hex2dec('ffff")
'65535"
>>> oct2hex('777")
"ox1ff!

Note In Python 2.6, the notation of the octal base accepts a zero and the o character: 0o or 00. This
change is accompanied with the introduction of binary numbers in Python 2.6 and above. Binary numbers are
denoted with a leading 08B or ob (zero and the character b).

BINARY CONVERSION IN PYTHON 2.5

At the time of the writing of this book, the external packages used to create much of the code did not yet
catch up to Python version 2.6, and so | resorted to using version 2.5. In case you’re in the same boat
and would like to use the binary base-conversion helper functions, here’s a short implementation of the
dec2bin() function that works in Python 2.5 as well. Combine this function with the function int () or
long() to implement all other base conversions.

def dec2bin(s):

bin list, num = [], int(s)

if num < 0O: # we don't convert negative numbers
raise ValueError, "value must be positive"

if not num: # special case, number is zero
return '0'

regular case

while num:
bin list.append('1' if (num & 1) else '0")
num >>= 1

return "".join(reversed(bin list))

The way the function works is as follows. The string representing a decimal value is converted into a
number. The number is then checked for special cases (negative, zero) and proceeds to the conversion in the
while loop.

139

140

CHAPTER 5 PROCESSING TEXT FILES

Within the while loop, if the number’s least significant bit is equal to 1 (condition num & '1'),a1is
added to the list of digits, bin_list; otherwise,a '0" is added to the list. I've used a conditional expression
similar to the ?: expression in C (go to http://docs.python.org/whatsnew/2.5.html and scroll down
to PEP 308). The number is then right-shifted 1 bit, and the whole cycle repeats itself. The while loop ends
when the shifted number reaches zero, effectively meaning all its binary digits were converted. Finally, the
function returns a string from the list of digits, only the string has to be reversed since we’ve converted from
the least significant bit first to the most significant bit last. I've used the iterator reversed() to present the
binary digits in the proper sequence.

The function does not accept negative values. It shouldn’t be too hard to support negative numbers as
well, but I've never used negative binary numbers, and so the need has never arisen.

Let’s complete the preceding helper function by implementing the functions bin2oct(),
bin2dec(), bin2hex(), oct2bin(), and hex2bin() using dec2bin(), as shown in Listing 5-3. If
you're running version 2.6, I would suggest implementing the function dec2bin() as a simple
return(bin(int(s)); if you're using version 2.5, use the implementation suggested in the side-
bar “Binary Conversion in Python 2.5.”

Listing 5-3. Binary Conversion Helper Functions

def bin2oct(s):

return dec2oct(bin2dec(s))
def bin2dec(s):

return str(int(s, 2))
def bin2hex(s):

return dec2hex(bin2dec(s))
def oct2bin(s):

return dec2bin(oct2dec(s))
def hex2bin(s):

return dec2bin(hex2dec(s))

Testing Your Implementation: exec and assert

This is a bit of an off-track discussion and somewhat advanced, but I thought it appropriate in
the context of the preceding discussion.

As you implement the base-conversion helper functions, you'll find that it’s quite possible
that you've made a mistake. Those are implementations of nested function calls and are prone
to human error.

Python provides several testing modules: doctest and unittest (see the Python Standard
Library, http://docs.python.org/library/test.html). However, I chose a different approach,
one that does not make use of these modules, in hopes of shedding light on two new state-
ments: exec and assert.

The first statement, assert, will return an AssertionError in case a condition isn’t met.
This is quite useful for testing purposes:

CHAPTER 5 PROCESSING TEXT FILES

>>> assert 1 ==

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AssertionError

Adding assert statements in your code is a good way to ensure things behave the way you
expect them to, for example, making certain an argument passed to a function is of a specific

type.

Tip assert statements are not executed when you run Python with the optimization switch turned
on (-0).

The statement exec executes a string as if you typed it in the interpreter:

>>> exec "print 1+2"
3

The exec statement can be used for automating command execution.

At first, exec might not seem such a big deal. But consider those functions in the previ-
ous example: there are 12 functions corresponding to all combinations of base conversions,
bin2oct(), bin2dec(), bin2hex(), oct2bin(), and so forth. Testing all these functions is tedious.
If you watch closely though, you'll find there’s a pattern. And when there’s a pattern, it stands
to reason to write a computer program to perform the task for us. This is exactly where exec
comes to life. The idea is to create a list of strings, each string detailing a function to be exe-
cuted, and then executing each and every string (see Listing 5-4).

Listing 5-4. Testing Base-Conversion Function Implementations

def testbases():

"""Tests implementation of base conversion functions"""
vo = {'bin':'0", 'oct':'0", 'dec':'0"', 'hex':'Ox0'}
vl = {'bin':'1111", 'oct':'017', 'dec':'15', 'hex':'Oxf'}

for v in [vo, vi]:
perms = [(a, b) for b in v for a in v if a != b]
for (s1, s2) in perms:
tc = "assert %s2%s(v['%s']) == v['%s']" % (s1, s2, s1, s2)
exec tc

I created two test vectors: v1 and v2. Variables vi1 and v2 are dictionaries containing a
string representing the base as the key and a string representing the number as the value. I
took care in ensuring that the string representing the base names follows the three-letter nota-
tions I've used for the function names. I then iterate through my test vector list and execute
each test case (tc). Let’s break this down into smaller chunks.

141

142

CHAPTER 5 PROCESSING TEXT FILES

Ifirst create a list comprehension named perms that generates all permutations of bases as
long as they’re not identical (hence the conditiona != b):

>>> v = {'bin':'0", 'oct':'0", 'dec':'0', 'hex':'0Ox0'}
>>> perms = [(a, b) for b in v for a in v if a != b]
>>> from pprint import pprint
>>> pprint(perms)
[('dec', 'bin"),
(‘hex', 'bin')
("oct', 'bin")
("bin', 'dec")
("hex', 'dec")
('oct', 'dec'),
("bin', 'hex")
("dec', 'hex")
(‘oct', 'hex")
(‘bin', ‘'oct")
('dec', 'oct')
("hex', 'oct')]
To modify this list comprehension to generate actual assertion calls requires some string

manipulation, but you already know how to use format specifiers, so here it is:

>>> for (s1, s2) in perms:
tc = "assert %s2%s(v['%s']) == v['%s']" % \
(s1, s2, s1, s2)

print tc
assert dec2bin(v['dec']) == v['bin']
assert hex2bin(v['hex']) == v['bin']
assert oct2bin(v['oct']) == v['bin']
assert bin2dec(v['bin']) == v['dec']
assert hex2dec(v['hex']) == v['dec']
assert oct2dec(v['oct']) == v['dec']
assert bin2hex(v['bin']) == v['hex"]
assert dec2hex(v['dec']) == v['hex']
assert oct2hex(v['oct']) == v['hex']
assert bin2oct(v['bin']) == v['oct']
assert dec2oct(v['dec']) == v['oct']
assert hex2oct(v['hex']) == v['oct']

I've printed a string associated with the command to be executed. The strings represent
commands that check the functionality of the base helper functions. Now all that’s needed is
exec tc.

CHAPTER 5 PROCESSING TEXT FILES

Note If you're using the built-in function bin() available in Python 2.6 and not the implementation of
dec2bin() in the sidebar “Binary Conversion in Python 2.5,” be sure to change the notation to include a
leading ob in case of binary values. The octal notation 0o is optional in version 2.6, and the default behav-
ior is just a leading zero without an o, so there’s no need to change those. Vector vo would then be vo =
{'bin': '0Ob0o', 'oct': '0', 'dec': '0', 'hex': 'Ox0'}.

The nice thing about this implementation is that you can easily add other bases, say, the
functions that convert base 5: qui2bin(), qui2oct(), qui2dec(), and so on (I've used the nota-
tion qui, which is short for quinary, base 5).

Find and Replace

The next set of interesting functions are find() and replace(). The method find() locates
the first occurrence of a substring in a string and takes the general form find(substring][,
start[, end]]). The parameters start and end are optional and are used to limit the search
to indices that are greater than or equal to start and are less than end, if those arguments are
provided:

>>> grocery list = "Milk 2\nEggs 12"
>>> grocery list.find('2")

7

>>> grocery list.find('2", 10)

16

>>> grocery list.find('2"', 10, 16)

-1

In case a substring isn’t found, the return value is -1.

Caution Be sure to compare the value of find() with -1, and not with True, as -1 (substring not found)
is considered True. That is, instead of writing if str.find(substr), write if str.find(substr) != -1.

The function replace() doesn’t really replace items in a string, as strings are immutable.
Instead, it creates a new string, with every occurrence of the old substring replaced with the
new substring:

>>> grocery list = "Milk 2\nEggs 12"
>>> grocery list.replace('Eggs', 'Organic Eggs')
'Milk 2\nOrganic Eggs 12'

The replace() method will replace as many occurrences as are possible unless the count
argument is provided, as follows: replace(old, new[, count])—in which case only the num-
ber of values up to and including count will be replaced.

143

144

CHAPTER 5 PROCESSING TEXT FILES

In case you’d like to know in advance how many substitutions will occur, you can use the
count(substr) method, which counts the number of occurrences of a substring in a string:

>>> grocery list = "Milk 2\nEggs 12"
>>> grocery list.count('2")

2

>>> grocery list.count('Eggs")

1

The method count () also accepts an optional start-of-search and end-of-search indices:
count(substr[, start[, end]]); the behavior is similar to that of function find().

Stripping Strings

Stripping strings is the process of removing extra whitespace characters or other set of char-
acters from a string. The method strip([chars]) removes whitespace characters from both
the right side and the left side of a string. If chars is provided, characters from the string chars
are used as separators instead of whitespace characters, each character acting as a separa-
tor. Methods rstrip([chars]) and 1strip([chars]) do so on the right or left sides only,
respectively:

>>> "Hello ".rstrip()

"Hello'

>>> "k-*_k SECTION BREAK *-*-*' strip('*-')
' SECTION BREAK '

Example: Removing Extra Spaces

In this example, we’d like to remove extra spaces from some text. We could try to use the
replace() method, replacing two spaces with one:

>>> grocery list = "Milk 2\nEggs 12"

>>> new _grocery list = grocery list.replace(" ", " ")
>>> print new grocery list

Milk 2

Eggs 12

That didn’t work well: there are two spaces between Milk and 2 after the call to replace().
The reason for this is that replace() is not a recursive search and replace. After a replace
has been made, the function keeps on looking for other occurrences, but the ones that have
already been replaced add up together to form extra spaces again: those are not replaced. For
example, four spaces become two, and not one. Of course, you could keep on replacing until
there are no more changes to the string, but that’s a bit cumbersome.

Another approach is to use split(), splitlines(), strip(), and join():

>>> grocery list = "Milk 2\nEggs 12"

>>> for line in grocery list.splitlines():
clear line = [s.strip() for s in line.split()]
print " ".join(clear line)

CHAPTER 5 PROCESSING TEXT FILES

Milk 2
Eggs 12

I've used a for loop to iterate through the split lines. For every line, I've created the list
clear line, which is each word stripped of separators (in our case extra spaces). I then joined
the list of words with a space.

If all this seems considerable effort for a simple task, you're absolutely right. There are
other, better ways to perform this: regular expressions. More about these in the section
“Regular Expressions” toward the end of this chapter.

String Formatting

Using format specifiers, presented in Chapter 3, you can control string format very accurately.
But format specifiers do not take into consideration that we’re dealing with text and words;
they treat strings mostly as a sequence of characters.

The functions presented in this section add string formatting options that are more suited
for working with words and text.

The methods upper () and lower() return strings with all characters in uppercase or lower-
case, respectively:

>>> " Middle of Town ".upper()
' MIDDLE OF TOWN '

>>> " Middle of Town ".lower()
' middle of town

The function swapcase() returns a string with the characters’ case inverted:

>>> " Middle of Town
' mIDDLE OF tOWN '

".swapcase()

The method capitalize() returns a string with the first letter in uppercase and the
remaining letters in lowercase. Note that this affects only the first character of the string, disre-
garding English grammar rules or whether there are punctuation marks or line breaks:

>>> "first sentence.\nSecond sentence. Third Sentence".capitalize()
'"First sentence.\nsecond sentence. third sentence’

The method title() capitalizes every first letter of a sentence. Again, not in accordance
with the English grammar rules, as some words in titles should not be capitalized (e.g., “the”):

>>> "first sentence.\nSecond sentence. Third Sentence".title()
'First Sentence.\nSecond Sentence. Third Sentence'

The method center(n[, char]) returns a string of length n with left and right padding of
the string with char (default is space) so as to have the string centered in the middle:

>>> " Middle of Town ".center(26, '*')
Veriok Middle of Town k!

The methods 1just(n[, char]) and rjust(n[, char]) perform left and right justification,
respectively, with the optional fill character being char:

145

146

CHAPTER 5 PROCESSING TEXT FILES

>>> "East side".rjust(20)

' East side’

>>> "West side".ljust(20, '-")
'West side----------- '

String Conditionals

The following is a set of string conditionals: methods that ask questions about strings.

The method endswith(substr[, start[, end]]) returns True if a string ends with substr.
The start and end arguments limit the search indices similarly to previously discussed string
functions; from now on I'll refrain from explaining their effect. The endswith() function is use-
ful for checking file name extensions, for example:

>>> "a20.jpg".endswith('jpg")
True
>>> "a20.jpg".endswith('IPG")
False

The second expression evaluates to False because endswith() is case sensitive. However,
substr can be a tuple as well, accommodating several condition tests:

>>> "a20.IPG".endswith(('jpg", 'IPG"))
True

The method startswith(substr[, start[, end]]) is similar to endswith() only in that it
checks the beginning of a string.

The methods isalpha(), isdigit(), and isalnum() return True if all the characters in the
string are alphabetic, digits, or both, respectively:

>>> "a20.jpg".isalnum()
False

The reason the method isalnum() returns False in the preceding example is that the char-
acter '."' (dot) is not alphabetic nor a digit.

Similarly, the methods islower(), isspace(), istitle(), and isupper() return True if the
string is all lowercase, all whitespace, of the title form (first letter in every word capitalized), or
all uppercase, respectively:

>>> "a20.jpg".islower()
True

Note The conditionals starting with is, such as islower (), will return False if the string is empty.

CHAPTER 5 PROCESSING TEXT FILES

More on Strings

The preceding isn’t a full account of strings and string methods. For example, in Python 2.6

a new formatting function, str.format(), is provided (see http://docs.python.org/library/
string.html). If your work is text-heavy, have a look at the online documentation for addi-
tional information. The discussion that follows relies on the preceding string methods but not
on ones that were not discussed.

Files

Text files are files that contain textual data, that is, text strings. We've talked about strings and
text extensively; now it’s time to talk about files.

In Python, you access files using the file data type. Working with files is quite similar to
doing so in other programming languages: open a file and receive a file object, read from the
file or write to the file using the file object, and lastly close the file, again using the file object.
You can open a file either for reading, writing, or appending, and you can open it in binary
mode or text mode.

Opening a File
To open a file, use the open(filename[, mode [, buffering]]) built-in function. The func-
tion open() returns a file object that is used for subsequent file operations. The first argument,

filename, is required. The second argument, mode, is optional and can take the values listed in
Table 5-1.

Table 5-1. File Open Modes

Mode Description

r Opens a file for reading. This is the default value if mode isn’t specified.
W Opens a file for writing, overwriting an existing file.
a Opens a file for writing in append mode; all write operations are performed at the end.
If the file doesn’t exist, it is created.
I+ Opens a file for reading and updating. If the file doesn’t exist, an exception is raised.
W+ Creates a new file for writing and updating, overwriting an existing one.
a+ Opens a file for reading and writing in append mode. All write operations are performed at

the end. If the file doesn’t exist, it is created.

Adding the character 'b' to the mode ensures the file is open in binary mode (e.g., ' rb").
Adding the character 't' to the mode ensures the file is opened in text mode (e.g., 'wt'). A file
can be opened either in text mode or in binary mode, but not both (default is text mode).

The difference between binary mode and text mode is whether Python tries to convert
line-ending characters it encounters to '\n'. In Windows, the characters '\r\n' are used to
denote the end of the line; in Linux, it’s just '\n'. To have a consistent method to access text
files, use text mode. When dealing with binary files, or when it’s important for you to have
end-of-line characters unmodified, use the binary mode.

147

148

CHAPTER 5 PROCESSING TEXT FILES

Note In append mode, write operations are performed at the end of the file, effectively guarding existing
data, whereas in write mode, you’re allowed to write anywhere in the file, possibly overwriting data.

The third parameter, buffer, is optional as well and determines the file buffering mode.
See http://docs.python.org/library/functions.html for information about buffering.

Closing a File

Contrary to the open() function, which is a built-in function, the close() function is a mem-
ber function of the file object and not a built-in function. To close files, use the file method
f.close() (assuming f is a file object). It’s generally good practice to close a file once you're
done with it. But in case you don’t, Python closes the file for you automatically once the file
object is no longer in use. The following sample shows how to open and close a file:

>>> f = open('somefile.txt")

>>> f

<open file 'somefile.txt', mode 'r' at Ox00BDO3C8>
>>> f.close()

>>> f

<closed file ' somefile.txt', mode 'r' at 0x00BD03C8>
>>> type(f)

<type 'file'>

Writing Text
Once a file is open for writing (or appending) and before it’s closed, you can write strings to it

using the methods write(str) and writelines(strseq).
The method write() writes a string to the file:

>>> grocery str = "Milk 2\nEggs 12"
>>> f = open('../data/tobuy.txt', 'wt')
>>> f.write(grocery str)

>>> f.close()

The contents of the file tobuy.txt are

Milk 2
Eggs 12

The method writelines(strseq) writes a sequence of strings to a file:

>>> grocery list = ["Milk", "2", "Eggs", "12"]
>>> f = open('../data/tobuylist.txt', 'wt')
>>> f.writelines(grocery list)

>>> f.close()

CHAPTER 5 PROCESSING TEXT FILES

The contents of file tobuylist.txt are

Milk2Eggs12

Notice howwritelines() does not add spaces nor line breaks.

Note I've assumed you are following the book convention of having your source code reside in directory
Chs/src and your data directory in Ch5/data. If that's not the case, change the path to your data files in the
preceding examples.

Reading Text

Once a file is open for reading, you can make use of the methods read(), readline(), or
readlines() to read the file contents. You can also iterate over the file object to read a line
at a time. I found that when dealing with text files, my code typically falls into one of three
categories:

1. Reading the entire file at once using the methods read() or readlines(). This option is
preferable if the files are not too large.

2. Iterating over the file object, reading a line at a time. This option is preferable for larger
text files.

3. Using awhile loop with the method read(n). This option is a good candidate in case
you don’t necessarily want to treat the file as lines of text.

Reading the Entire File at Once

Assuming you're dealing with not-too-large files, using method read() or readlines() to read
the entire file at once should be your first choice.

The method read([n]) reads n bytes from the file, returning them as a string. If n is not
specified or negative, the entire file is read. For this example, we’ll use the file tobuy.txt gener-
ated in the previous section, “Writing Text” (first snippet of code):

>>> f = open("'../data/tobuy.txt")
>>> text = f.read()

>>> f.close()

>>> print text

Milk 2

Eggs 12

or more compactly:

>>> print open('../data/tobuy.txt").read()
Milk 2
Eggs 12

149

150

CHAPTER 5 PROCESSING TEXT FILES

The method readlines() reads the file at once, returning a list of strings:

>>> open('../data/tobuy.txt"').readlines()
['Milk 2\n', 'Eggs 12']

Iterating Over the File Object

This option is suited for cases when you want to process your file a line at a time, but you don’t
want to read the entire file at once, due to, say, memory constraints. Here’s an example:

>>> for i, line in enumerate(open('../data/tobuy.txt"')):
print "%d: %s" % (i, line.rstrip())

0: Milk 2
1: Eggs 12

Using a while Loop

Use this method in conjunction with read() to process chunks of the file at a time. Again, this
is best suited for larger files and in cases where you don’t want to treat a file as a list of lines:

>>> f = open('../data/tobuy.txt")
>>> ch = f.read(1)
>>> while ch != 'k' and ch:

print ch,

ch = f.read(1)

Mil
>>> f.close()

This example reads the file a byte at a time and stops upon encountering the character 'k’
or an end-of-file where ch would then evaluate to False.

Working with Text Files

Now that we have the basics covered, that is, reading and writing files and processing strings,
it’s time to combine the two new skills.

This section is presented as a list of examples. The examples can be used for educational
purposes, but they can also be used to form the basis of helper functions for text-based data
processing. With time, I hope you modify the code presented here to best fit your needs.

It is important that you treat these examples for what they are, that is, examples and not
production code. Most of the functions do not perform any sort of error checking or handle
exceptions and should not be used as-is but only for educational purposes. When possible,
I've added a discussion on how these examples can be improved upon.

For the purpose of working with larger files than the contrived grocery list used previously,
I've selected to use the electronic version of the book Flatland, by Edwin A. Abbott, available
for download from Project Gutenberg, located at http://www.gutenberg.org. A direct link to

CHAPTER 5 PROCESSING TEXT FILES

the e-book at the time of the writing of this book is http://www.gutenberg.org/files/97/97.
txt. Once you download the file, save it in folder data under the original file name 97. txt. Your
directory structure should look similar to that presented near the end of Chapter 2 in the sec-
tion “Example: Directory Structure for the Book™:

Chs
sIC
data

In this directory structure, src is where you code is, as well as your current working direc-
tory, and data indicates the location of data files (namely 97.txt—the Flatland e-book).

Example: Character, Word, and Line Count

Similar to the example presented in the beginning of the chapter, now you're confronted with
the task of counting the characters, words, and lines in a file, and not just a string.

The solution is an immediate extension of the example provided before, using split(),
splitlines(), and len(). I've named the function wc(), which is a popular command name on
Linux shells wc filename (see Listing 5-5).

Listing 5-5. Counting the Number of Characters, Words, and Lines in a File

def wc(filename):
"""Returns the number of characters, words and lines in a file.

The result is a tuple of the form (#characters, #words, #lines).

data = open(filename, 'rb").read()
return (len(data), len(data.split()), len(data.splitlines()))

The function returns a tuple of three elements: the first element is the number of char-
acters in the file, the second element is the number of words, and the third element is the
number of lines. I've also selected to open the file in binary mode and not in text mode. This is
so that the number of characters will be counted properly, without any conversions of '\r\n'
to "\n' that would throw numbers off count.

Note Notice how I've indented the docstring; it’s standard practice that in case more than one line is
needed to document the function, a blank line is added immediately after the short function description.
Subsequent documentation is left justified with no indentation.

It’s possible that you're dealing with truly large files, in which case a different approach
should be employed: iterating over the file object (see Listing 5-6).

151

152

CHAPTER 5 PROCESSING TEXT FILES

Listing 5-6. Counting the Number of Characters, Words, and Lines in a Very Large File

def wc_large(filename):
"""Returns the number of characters, words and lines in a large file.

nun

The result is a tuple of the form (#characters, #words, #lines).

num_chars, num_words, num_lines = 0, 0, O

for line in open(filename, 'rb'):
num_chars += len(line)
num words += len(line.split())
num_lines += 1

return (num_chars, num words, num_lines)

Here are the results from running both functions:

>>> we('../data/97.txt")
(216562, 36553, 3920)

>>> wc_large('../data/97.txt")
(216562, 36553, 3920)

Example: head and tail

Most Linux system administrators know and love the head and tail command-line utilities.
It’s a fast check on how an installation is coming along, it’s great for probing message logs, and
it’s good to see whether any errors occurred during boot time.

The way the head and tail command-line utilities work is that they print n lines from
the beginning or end of a file, respectively. You’d typically use these commands to look at log
files because most log files are plain text files with data written sequentially: a recent event is
logged at the end of a file.

The following command will print the last 20 lines from the dmesg log file (a common
Linux log file):

$ tail -20 /var/log/dmesg

Using the method readlines(), both head() and tail() functions are easily implemented,
as shown in Listing 5-7.

Listing 5-7. head() and tail() Functions

def head(filename, n=10):
"""Prints the first n lines of the file."""

for line in open(filename).readlines()[:n]:
print line.rstrip()

def tail(filename, n=10):
"""Returns the last n lines of the file."""

CHAPTER 5 PROCESSING TEXT FILES

for line in open(filename).readlines()[-n:]:
print line.rstrip()

Note It's also possible to replace the line print line.rstrip() with print line, (notice the comma)
to suppress the extra line breaks.

In case your files are too large to be read entirely into memory, things get trickier.
Implementing the head() function is possible by iterating over the file object, as shown in
Listing 5-8.

Listing 5-8. head () Function for Very Large Files

def head large(filename, n=10):

"""Returns the last n lines of a very large file."""
for i, line in enumerate(open(filename)):

print line.rstrip()

if i == n-1: break

You can convince yourself both functions return proper results by modifying the code to
return a list and then comparing the returned values from the two functions.

Unfortunately, implementing the function tail() in a similar manner, iterating over the
file object, is much more complex. First, you'd have to go through the entire file, reading every
line. Remember, this is a large file, therefore doing so will take considerable time. And even
then, the second problem you encounter is that you don’t know in advance which line is the
last line, so you'd either have to perform two passes on the file, on the first one counting the
number of lines and on the second one printing the last n lines, or you’d have to continually
store the last n lines read. In both cases, yikes. A third approach is to use random access func-
tions to start reading files at the end and work your way backward. This requires use of the
function seek(), which will be covered in Chapter 10.

Example: Splitting and Combining Files

Back in the day, computer users used to transfer files on 360K diskettes. Since this was rather
painful, they opted to use a file compression utility that did both splitting and compressing.
Alas, one of the disks always seemed to be misplaced, rendering the data totally useless.

Which brings up a common task when dealing with large files: you may need to split them
into smaller, more manageable files. By that, I don’t mean that each chunk contains legible
information, merely that now you can use size-limited media (e-mail, flash drive) to transfer
the split files. The receiving end will then need to reconstruct the original file from the split
files.

The function splitfile() splits a file into n smaller files, each with a modified file name
that is composed of the original file name plus the split file index (e.g., 97.txt.1). The function
combinefiles() combines several files of the preceding pattern into one, as demonstrated in
Listing 5-9.

153

154

CHAPTER 5 PROCESSING TEXT FILES

Listing 5-9. Splitting and Combining Files

def

Files are created with a running index.

def

splitfile(filename, size=1024**2):
"""Splits a file into n smaller files.

non

fin, index = open(filename, 'rb'), 0

data = fin.read(size)

while data:
index += 1
outfilename = filename+'.'+str(index)
fout = open(outfilename, 'wb")
fout.write(data)
fout.close()
print "Created file %s, size %d" % (outfilename, len(data))
data = fin.read(size)

return

combinefiles(filename):
"""Combines a previously split file.

Filename extensions are assumed a running index.

Important note: if a file named 'filename' exists it will be overwritten.

nwun

fout, index = open(filename, 'wb'), 0
while True:
index += 1
try:
data = open(filename+'.'+str(index), 'rb").read()
fout.write(data)
except IOError:
break
fout.close()
print "Created file %s from %d file(s)\n" % (filename, index-1)

The functions themselves are self-explanatory and should prove easy enough to follow.

Here’s how you would use them:

>>>

splitfile('97.txt"', 100000)

Created file 97.txt.1, size 100000
Created file 97.txt.2, size 100000
Created file 97.txt.3, size 16562

>>>

Now copy the files 97.txt.* to a temporary folder, say, /tmp and issue

combinefiles('/tmp/97.txt")

Created file 97.txt from 3 files

CHAPTER 5 PROCESSING TEXT FILES

To satisfy yourself that indeed the files are identical, issue the following:

>>> datal = open('../data/97.txt', 'rb').read()
>>> data2 = open('/tmp/97.txt", 'rb').read()
>>> datal == data2

True

In the implementation of the function combinefiles() I've chosen to again use the EAFP
approach. Alternatively, I could’ve listed the directory contents using os.1listdir() or used the
glob module to achieve the same; the glob module will be discussed in Chapter 10.

While the topic of this section is text files, the functions splitfile() and combinefiles()
should work on binary files just as well, since we’ve opened the files in binary mode.

Caution The function combinefiles() will overwrite an existing file if it already exists.

Lastly, the function combinefiles() will overwrite a file if it exists; if you'd prefer a differ-
ent functionality, you can use the function os.path.exists() to first ensure the file does not
exist and act accordingly (ask for user preference or return without overwriting the file).

Example: Searching Inside a Text File

The examples up to this point dealt with the files themselves, not really with the information
they hold. The examples going forward will look at the contents as well, that is, read the file
and process text.

A common programming task involves searching for a string inside a file. A yet even more
common task is the searching of a string in multiple files, but we leave that to future discus-
sions (see Chapter 10). In Linux, a handy utility achieves this: grep. grep also provides more
complex searches, ones that include regular expressions, but in this example we limit our dis-
cussion to simple string searches.

Searching inside a text file is easily implemented in Python, as you can see in Listing 5-10.

Listing 5-10. Searching Inside a Text File

def srchfile(filename, substr):
"""Searches for a substring in a file."""
for i, line in enumerate(open(filename, 'rt')):
if line.find(substr) != -1:
print "%5d: %s" % (i, line.rstrip())

I've used the iterator enumerate() to retrieve both the line and the line number, as the
line number is displayed in the print statement later on. I've also used the method rstrip()
to remove the extra new-line character. Here’s the output from running the command
srchfile('../data/97.txt", 'Guide'):

155

156

CHAPTER 5 PROCESSING TEXT FILES

2645: Prostrating myself mentally before my Guide, I cried, "How is it, O
2685: about your Wife," said my Guide: "she will not be long left in anxiety;
2732: "Here we descend,” said my Guide. It was now morning, the first hour
2762: yet," said my Guide, "the time will come for that. Meantime I must
2803: of my own. I absolutely depended on the volition of my Guide, who said
3091: "Look yonder," said my Guide, "in Flatland thou hast lived; of Lineland

There’s room for improvement of the function srchfile(). First, the function is case-
sensitive. To allow for case-insensitive searches, I would suggest adding a parameter to the
function that controls whether searches are case sensitive or not. In case of a case-insensitive
search, srchfile() would make use of the function upper () (or lower()) and convert both the
line to be searched and the search string itself prior to calling find().

Another improvement would be to fix the line number indentation. Currently the line
number is right-aligned five spaces. In case the number of lines is 100,000 or greater, this will
create an indentation problem. Changing the implementation to read the entire file at once
gives us a total line count, allowing the calculation of the maximum number of digits using the
function log10(), which is part of the math module (see Chapter 7) as follows:

>>> numlines = 1234

>>> from math import log10

>>> maxdigits = int(logl0o(numlines))+1
>>> maxdigits

4

This will only work if you know the line number in advance, hence the change to the func-
tion to read the entire file at once. Listing 5-11 shows a possible implementation of fixing the
indentation problem.

Listing 5-11. Searching Inside a Text File (Proper Indentation)

def srchfile ex(filename, substr):
"""Searches for a substring in a file."""
lines = open(filename).readlines()
fmt = 1'%" + str(int(log1o(len(lines)))+1) + r'd: %s'
for index, line in enumerate(lines):
if line.find(substr) != -1:
print fmt % (index, line.rstrip())

Notice how I've first created a format specifier, fmt, using a raw string and then used it to
print the line number and the string.

Example: Working with Comments

I find that I repeatedly turn back to code I once wrote. And what'’s funny, I seem to remem-
ber mostly the comments. An interesting approach to viewing comments is to think of the
comment symbol (#) as a separator. With this in mind, you can implement some interesting
searches, as shown in Listing 5-12. For example, you can search inside comments only, or per-
form the complement search, that is, one that ensures you're not searching comments.

CHAPTER 5 PROCESSING TEXT FILES

Listing 5-12. Working with Comments

def srchcomments(filename, substr):
"""Searches inside Python source comments."""
for index, line in enumerate(open(filename, 'rt')):
L = line.split('#")
if len(L) == 2:
if L[1].find(substr) != -1:
print "%5d: %s" % (index, line.rstrip())

This code is hardly foolproof. It assumes that the # symbol appears only once, text before
the # is always code, and text after # is a comment. This is not always true; for example, in the
preceding code, in the fourth line, L = line.split('#"), #is hardly a comment separator. Nev-
ertheless, in many occasions the function works fine.

Using the function in Listing 5-12 as a starting point, you could for example, write a func-
tion to convert comments that are not on a line of their own to be single-line comments. That
is, convert

print x, # prints x and suppress a line break

to

prints x and suppress a line break
print x,

C++ STYLE COMMENTS

| originally encountered this problem with C/C++. A compiler | was using to write code accepted the C++
style comments, whose behavior is similar to Python’s comments (only with the symbols // instead of #).
However, another older compiler was used that didn’t accept the C++ style comment. | had to convert all my
single-line comments of the form // comment to C-style comments of the form /* comment */.lused a
script similar to the preceding script. Luckily for me, the symbols // didn’t appear anywhere in the code other
than as part of the comments themselves.

Example: Extracting Numbers from a Text File

At times, it’s useful to be able to extract only the numbers in a text file. This could be for the
purpose of creating files based on existing ones, say, for testing purposes. Another scenario
might be you have a system that maintains the number of users in a text file, and you'd like to
write a script to increment that number.

The function presented in Listing 5-13 reads a text file and creates a modified version of
the file with all the numbers incremented. For the purpose of this example, numbers are sepa-
rated by whitespace characters.

157

158

CHAPTER 5 PROCESSING TEXT FILES

Listing 5-13. Incrementing File Contents

def increment contents(filename):
"""Increments values in a file, creating a new file."""
data = open(filename, 'rt').readlines()
for i, line in enumerate(data):
for word in line.split():
try:
data[i] = line.replace(word, str(int(word)+1))
except ValueError:
uncomment the following if you'd like feedback
print word, "is not a number"
pass
open(filename+'.inc', 'wt').writelines(data)

The function reads the entire file into memory and then processes the data a line at a
time (it’s also possible to achieve the same functionality by iterating over a file object). Every
line is split into words. The code then tries to convert every word to a number, and upon suc-
cess, replaces the number with an incremented value. I've used the replace() method to do
that, and that’s the reason you see another str() function call after the increment: replace()
method requires a string, not a number.

In implementing the function, I've chosen to use the EAFP approach, that is, I've tried to
convert every single word I've encountered into an int, and then increment it. On success, the
data is modified. If a ValueError occurs because the conversion didn’t succeed, it means that
the string cannot be converted to an int, in which case I've ignored the word.

A different approach might have been to check whether the word is composed of digits
using the isdigit() method, but that approach will fail on other characters such as the plus
symbol. I think that EAFP here is a clear winner.

To test the function, I again resort to the grocery list. Assume the contents of file . . /data/
grocery list.txt are as follows:

Milk 12

Eggs 12.0

Olives 1e2
Voodoo dolls 1+1j

After executing increment_contents('../data/grocery list.txt'), anewfile, ../data/
grocery list.txt.inc, is created with the following contents:

Milk 13

Eggs 12.0

Olives 1e2
Voodoo dolls 1+1j

CHAPTER 5 PROCESSING TEXT FILES

The function only increments the value 12 because I've used the function int(). Had
I used the function float (), all first three values would have been properly incremented.
However, the first number would then be converted into a float value, and I wanted to leave it
as an int.

Handling both float and int values is possible with nested exception handling. First, the
function tries to use int(), and if int() fails, it tries to use float() (see Listing 5-14).

Listing 5-14. Incrementing File Contents Using float() and int()

def increment contents both(filename):
"""Increments values in a file, creating a new file.

Works with both ints and floats."""

data = open(filename, 'rt').readlines()
for i, line in enumerate(data):
for word in line.split():
try:
data[i] = line.replace(word, str(int(word)+1))
except ValueError:
try:
data[i] = line.replace(word, str(float(word)+1))
except ValueError:
uncomment the following if you'd like feedback
print word, "is not a number"
pass
open(filename+'.inc', 'wt').writelines(data)

Lastly, the functions assume that numbers are always separated by spaces, which might
not always be correct. An alternative approach would be to split based on punctuation marks
as well as spaces (see “Example: Words Used Only Once” later in this chapter for splitting on
punctuation marks as well).

CSV Files

Up to this point we’ve been working with plain text files. Plain text files typically do not follow
any format other than their contents are text based. But in reality, when you’re dealing with
data files, they’'re more structured than plain text files. As discussed previously in Chapter 4,
the CSV file format is a good format for structured text-based data files. The purpose of this
section is to provide tools for more advanced log file processing that will be presented in the
next section.

The csv Module

The csv module, which is part of the Python Standard Library, provides simple methods to
read and write CSV files. To use the csv module, issue import csv; the remaining discussion
assumes you've imported the csv module properly.

159

160

CHAPTER 5 PROCESSING TEXT FILES

There are two basic objects you'll be working with: the csv.reader and the csv.writer. As
their names suggest, one is used for reading, while the other is used for writing.

The csv.reader object splits a line of text into a list of words (also referred to as fields).
While you might think it’s simpler to split the line of text using the split() string method,
some caveats make this a bit more complex than is apparent.

Consider a CSV file with contents as follows (assume it is stored in the file . . /data/
sometext.csv):

1/1/2000, "Some text, and a comma"
1/1/2000, "Some text, and a comma"

If I were to use the split() function, I'd get

>>> L = open('../data/sometext.csv').read().split(",")
>>> from pprint import pprint
>>> pprint(L)
['1/1/2000",
""Some text',
'and a comma"\n1/1/2000",
" "Some text',
' and a comma"\n']

Not really what I wanted, plus fields and rows aren’t separated properly.
Using the csv.reader object, I get a better result:

>>> f = open('../data/sometext.csv")

>>> for line in csv.reader(f, skipinitialspace=True):
print line

['1/1/2000', 'Some text, and a comma']

['1/1/2000', 'Some text, and a comma']

The csv.reader Object

To create a csv.reader object, use the following syntax: csv.reader(f[, dialect="excel']
[, params]). The first parameter, f, is the CSV file, but it can also be any iterable object. The
second parameter is the dialect. Since there are no clear definitions of what a CSV file con-
stitutes (and there are quite a bit of nuances), you can specify a dialect, which is a set of rules
instructing the csv.reader parser how to handle those differences. Furthermore, you can use
an existing dialect and override some parameters of its behavior using the params field.

In the previous example, I didn’t specify a dialect, which defaulted to the 'excel" dialect.
1 did provide a format parameter, instructing the csv.reader to ignore the space at the begin-
ning of the field (there’s an extra space after the comma in the second line of text in my input
file). You can view the list of dialects in your system by issuing csv.1list dialects().

Once you have a csv.reader object, you can iterate through the object and retrieve a list of
fields.

CHAPTER 5 PROCESSING TEXT FILES

The csv.writer Object

The csv.writer object complements the csv.reader in that it allows writing of CSV files.
Creating a csv.writer object is similar to creating the csv.reader object: csv.writer(f[,
dialect="excel'][, params]). The difference (aside from the write vs. read operation) is that
the csv.writer object strictly requires a file, and not an iterable object. Once you have a csv.
writer object, you can use the writerow() or writerows() methods:

>>> lines = [["1/1/2000", "Some text, and a comma"]]
>>> csv.writer(open('../data/outtext.csv', 'w')).writerows(lines)

Note I've created a list of rows (notice the double brackets), even though there is but one row. This is to
match the input expected by the csv.writer object. If you pass the csv.writer object a list, and not a list
of rows, the results might not match what you expect.

More csv Functionality

The csv module allows considerable customization including the use and creation of user-
defined dialects. I won’t be covering this topic; however, I will be covering some parameters
and their meaning.

The delimiter specifies the field separator. That is, the row is split on an occurrence of the
delimiter, provided it is not escaped or quoted. To change the delimiter, add delimiter=char
as an argument to the csv object; char must be a character:

>>> for line in csv.reader(open('../data/sometext.csv'), delimiter='/"'):
print line

1', '1', '2000,"Some text, and a comma"']
['1", '1", '2000, "Some text, and a comma"']

The parameter quotechar specifies the quoting character used to denote a string in a
CSV file.

>>> lines = [["1/1/2000", "Some text, and a comma"]]
>>> f = open('../data/outtext.csv', 'w")

>>> csv.writer(f, quotechar="|").writerows(lines)
>>> f.close()

The preceding example results in the following:

1/1/2000, | Some text, and a comma]

In this example, the date wasn’t quoted, while the text was—the reason being that the text
contained the delimiter. To override quoting behavior, change the value of quoting to csv.
QUOTE_MINIMAL, csv.QUOTE_ALL, csv.QUOTE_NONNUMERIC, or csv.QUOTE_NONE. The names quite

161

162 CHAPTER 5 PROCESSING TEXT FILES

obviously indicate their functionality. In case you select a csv.QUOTE_NONE and a field contains
the delimiter, you’d have to supply an escapechar as well:

>>> lines = [["1/1/2000", "Some text, and a comma"]]

>>> f = open('../data/outtext.csv', 'w")

>>> cw = csv.writer(f, quoting=csv.QUOTE NONE, escapechar='~")
>>> cw.writerows(lines)

>>> f.close()

The preceding example results in the following:

1/1/2000,Some text~, and a comma

DictReader and DictWriter Objects

The csv module provides us with additional useful objects: the DictReader and DictWriter
objects, which are similar to the csv.reader and csv.writer objects.

If you follow the convention that places a header at the beginning of a CSV file, that is, that
each column in the CSV file starts with a field name (see Chapter 4 for a discussion of this),
accessing values can be done by accessing the dictionary with the field name as key.

Let’s turn to an example. To follow along, create the file . . /data/tobuy.csv with the fol-
lowing content:

Item,Count
Milk,?2
Eggs,12
Tomatoes,5

Now let’s create a DictReader object:

>>> import csv
>>> fcsv = open('../data/tobuy.csv")
>>> for row in csv.DictReader(fcsv):
print "Please buy ", row['Count'], row['Item']

Please buy 2 Milk
Please buy 12 Eggs
Please buy 5 Tomatoes

I've accessed the values in the CSV file using 'Count' and 'Item' as keys to the diction-
ary object, row: row['Count'] and row['Item']. If columns were switched, the code would still
work as expected.

Similarly, you can create a DictWriter object as follows:

>>> header = ['Item', 'Count']

>>> rows = [['Organic Eggs', 5], ['Cucumbers', 12]]
>>> fcsv = open('../data/tobuy more.csv', 'wb')
>>> dict wr = csv.DictWriter(fcsv, header)

CHAPTER 5 PROCESSING TEXT FILES

>>> dict wr.writerow(dict(zip(header, header)))
>>> for row in rows:
dict wr.writerow(dict(zip(header, row)))

>>> fcsv.close()

I first created the header, a list of strings, and the data, a list of rows. I then opened a file
named . ./data/tobuy more.csv for writing and attached it to a csv.DictWriter object named
dict_wr. Asyou can see, csv.DictWriter requires the header information as well.

Now this is where it gets a little tricky. First, I'd like to write the header information to the
CSVfile. To do so, I create the following dictionary:

>>> dict(zip(header, header))
{'Count': 'Count', 'Item': 'Item'}

I then pass this dictionary as a parameter to the function writerrow(), a method of
DictWriter, in essence creating the header field.
Now, all that’s required is to do the same for the data, that is:

>>> for row in rows:
dict wr.writerow(dict(zip(header, row)))

And here are the results:

Item,Count
Organic Eggs,5
Cucumbers,12

Asyou can see, the DictWriter object is not as simple to work with. That’s why I rarely
use it, although I use DictReader quite a bit. For a full account of DictReader and DictWriter,
please consult with the Python Library Reference.

Date and Time

While text files are important, text isn’t really the object of this book; it has to do more with
numbers. The most universal form of data you're bound to see when processing data files is
date and time. Text files that record information based on date and time, especially recording
the events that transpired, are commonly referred to as log files.

I recently performed a search for file names containing the word “log” in my C: \Windows
directory. I came up with dozens of files that are indeed log files. I opened some of them in my
favorite editor, and of those that did record date and time, the date and time information was
in varying forms.

One file had timestamps that looked like this:

06/21/2008 21:57:20: Some text
06/21/2008 21:57:25: Some text

163

164 CHAPTER 5 PROCESSING TEXT FILES

Unfortunately, not every line started with a timestamp. Another file looked like this:

2008-10-21 20:37:26 Some text
2008-10-21 20:37:26 Some text

And yet another one looked like this:

=== Logging stopped: 6/26/2008 15:53:09 ===

Some text [15:53:09:109]: Some text

Some text [15:53:09:109]: Some text

=== Verbose logging stopped: 6/26/2008 15:53:09 ===

and this:

Some text
Some text
Some text
Some text

Thu Aug 12 22:36:49 2004
Sat Aug 14 12:54:01 2004
Sat Aug 14 13:25:21 2004
Sat Aug 14 14:41:48 2004

— e e
—_— e

Of those log files, the ones I particularly like are those that don’t save hard disk space and
always dump a timestamp in every entry. The reason for this is that parsing the data later can
be done without state machines, simplifying the code considerably. (For a discussion of state
machines, refer to Text Processing in Python by David Mertz [Addison-Wesley, 2003], also
available online at http://gnosis.cx/TPiP.) Log files that sporadically write date and time
information are even harder to swallow. Clearly, the person writing those did not think of the
parsing application—did he assume that a person will actually read this and not a computer?

So here’s a tip for you, when you implement log files:

Tip When writing log files, start a line of text with full date and time information.

The time module, available as part of the Python Standard Library, allows easy handling of
date and time information.

Time Module

The time module provides a set of helper functions and structures that facilitate handling of
date and time in a simple manner. A point in time, that is, both date and time, can be repre-
sented in one of two ways in the module:

¢ A nine-elements tuple: This tuple includes year, month, day, hours, minutes, seconds,
weekday, Julian day, and DST (DST stands for daylight savings time). Of this tuple, the
values weekday and Julian day are redundant: you can calculate these values based on
other values—year, month, and date. We’ll refer to this tuple as the struct_time tuple.

CHAPTER 5 PROCESSING TEXT FILES

e Number of seconds since the epoch: The epoch is a fixed time reference point and is sys-
tem dependent. On my system, the epoch is Thu Jan 01 00:00:00 1970. At times people
use the word “epoch” to mean the number of seconds elapsed since the epoch and not
the fixed time reference; this is usually done in context and should be easy enough to
discern.

Some time functions accept the struct_time tuple, while others accept the epoch. It’s not
complex to switch representations. With those two notations covered, let’s explore the time
module. But first, to use the module, be sure to issue import time.

The struct_time Tuple

It’s possible to access a specific struct_time tuple element by indexing it; for example, if t
isa struct_time tuple, t[0] is the year value. However, using indices is quite hard to follow,
and you'll constantly have to look up the documentation to figure out which index is the cor-
rect index to the specific value you're looking for. Instead, you can use the member variables
tm_year, tm_month, tm_day, tm_hour, tm_min, tm_sec, tm_wday, tm_yday, and tm isdst to retrieve
these values:

>>> from time import localtime

>>> localtime()

(2008, 10, 26, 9, 37, 35, 6, 300, 0)
>>> localtime().tm year

2008

>>> localtime().tm_yday

300

In this example, I've introduced the function localtime(), which returns the current time
as a struct_time tuple.

Parsing and Formatting Date and Time

The functions strftime() and strptime() are the two functions you're most likely to use when
dealing with log files. The function strptime(), which was introduced in Chapter 4, accepts a
template parse string and the string to parse, and returns a struct_time representation of the
time. The function strftime() does the opposite: transforms a tuple into a string based on a
supplied pattern. Both functions use a similar notation to indicate the values in the struct_
time tuple, as listed in Table 5-2.

Table 5-2. Selected Identifiers for strftime() and strptime()

Identifier Description Values Range
wY Year with century as a decimal number.

%m Month as a decimal number. 1-12

%d Day of the month as a decimal number. 1-31

%H Hour as a decimal number. 0-23

Continued

165

166

CHAPTER 5 PROCESSING TEXT FILES

Table 5-2. Continued

Identifier Description Values Range
%M Minutes as a decimal number. 0-59
%S Seconds as a decimal number. 00-61 (61 for leap seconds)
oW Weekday as a decimal number. 0-6 (where 0 is Sunday)
%J Day of the year as a decimal number. 001-366 (366 for leap years)
%z Time zone field. DST doesn’t have an identifier of
its own and is part of this field.
%a, %A Locale’s weekday name, abbreviated and full.
%b, %B Locale’s month name, abbreviated and full.

The full table includes additional identifiers and is available online at http://docs.
python.org/library/time.html.

In the section “Example: Extracting Date and Time Information from File Contents” later
in this chapter, we'll extract the date and time using the strptime() function from some of the
samples I've provided at the beginning of the section.

Example: Logging Information with a Date and Timestamp

The purpose of this example is to create a log file in accordance with the tip presented
previously in the “Date and Time” section and the ISO time format recommendation (see
Chapter 4).

We'll use the function localtime(), which returns a struct_time tuple containing the
current time. We then format the current time using the strftime() function:

>>> from time import localtime, strftime
>>> strftime("%Y-%m-%dT%H-%M-%S", localtime())
'2008-10-23T12-16-41"

(From now on, I'll assume you either imported the functions by name or imported the
entire time module so I don’t have to write that import statement every time.) While this
notation is handy for file names, maybe in log files you’d like to have something a little more
self-explanatory. In such cases, you can use the asctime() function:

>>> asctime(localtime())
"Thu Oct 23 12:18:42 2008'

However, I'll use the following format:

>>> strftime('%d-%b-%Y %H:%M:%S", gmtime())
'23-0ct-2008 12:23:48"

This is to show formats other than the ISO format and because there’s little room to mis-
understand it. However, I recommend following the ISO time format whenever possible.

CHAPTER 5 PROCESSING TEXT FILES

Tip The ISO date and time format, in my mind, is the preferred method of writing date and time informa-
tion. It might be a little more cryptic at first and might take some getting used to, but it'’s consistent and very
easy to work with. For example, to sort date in ISO time format, you can sort the actual string without con-
verting it to numerical values.

The output from asctime() adds, in my mind, an unnecessary value, redundant informa-
tion if you will: the day of the week. The format I've selected is problematic as well in case of
a different locale (see the section “Locale” later in this chapter), but it’s pretty hard to get it
wrong; it’s probably the most self-explanatory of the formats presented. But it's more a matter
of personal taste.

So now that we have the date and time as a string, time to write it to a log file. Listing 5-15
presents an example script you can run that generates a log file that adheres to the guidelines
I've given in this chapter and previous ones.

Listing 5-15. Creating Log Files

from time import strftime, gmtime, sleep
time str = strftime("%Y-%m-%dT%H-%M-%S", gmtime())
flog = open("../data/LogExample%s.txt" % time str, 'wt')
for i in range(5):
sleep(1.7)
logline = "%s | Some data %d\n" % \
(strftime('%d-%b-%Y %H:%M:%S"', localtime()), i)
flog.write(logline)
flog.close()

I've introduced another function from the time module: sleep(). The sleep() function
accepts as an argument the amount of time in seconds it should sleep and returns once that
time period has elapsed. I chose to use a fractional value so the log file might appear more
“real,” that is, not in fixed time increments:

23-0ct-2008 12:59:25 | Some data 0
23-0ct-2008 12:59:27 | Some data 1
23-0ct-2008 12:59:29 | Some data 2
23-0ct-2008 12:59:30 | Some data 3
23-0ct-2008 12:59:32 | Some data 4

Another benefit of the strftime() function is that it adds a leading zero for values that
do not require the full length of the field, thus 1 a.m. will show as 01 in the hour fields. This is
extremely useful when parsing, as the time format has a fixed length and can be string sliced.
One of the problems associated with logging is that your program crashes, and you might
lose important information. To overcome this, you can open and close the log file every time
you log data (or once in a while) to protect data in case of a crash—your file is still updated.

167

168

CHAPTER 5 PROCESSING TEXT FILES

Another alternative is to use the logging module from the Python Standard Library, which I
won’t be covering here. Refer to http://docs.python.org/library/logging.html for informa-
tion about the logging module.

Example: Extracting Date and Time Information from File Contents

We've already seen an example of using strptime() in Chapter 4. Let’s cover it in more detail
here. This time, we’d like to parse some of the date and time formats presented in the begin-
ning of the section “Date and Time.”

For the purpose of this example, I'll assign a string to each different time format and parse
every string. By now you should be able to write the wrapper functions to implement reading
and writing from a file using either the regular file operation or the csv module. To show that
the format was read properly, I'll print the asctime() version of the time.

>>> logl = '06/21/2008 21:57:20: Some text'

>>> timel = strptime(log1[:19], '%m/%d/%Y %H:%M:%S")
>>> asctime(time1)

'Sat Jun 21 21:57:20 2008"

If you look at the time information in the string log1, it appears that it follows a fixed
length. That’s especially evident because of the leading zero in the month field (06). Therefore,
to extract just the date and time information, I've sliced the string in the beginning. From
there, T used the strptime() function to do the rest of the work. However, had the day been
avalue less than or equal to 12 (it’s currently 21), I wouldn’t know in advance whether the
format is %m/%d or %d/%m. Furthermore, in case the timestamp isn’t a fixed-size string, I would
need to resort to other methods such as splitting the string and working with substrings.

On to the next string.

>>> log2 = '2008-10-21\t20:37:26 Some text'

>>> print log2

2008-10-21 20:37:26 Some text

>>> time2 = strptime(log2[:19], '%Y-%m-%d\t%H:%M:%S")
>>> asctime(time2)

'Tue Oct 21 20:37:26 2008'

This example includes a string with the date and time separated by a tab and a slightly dif-
ferent format. But again, hardly a problem for strptime().
Parsing the date and time information of the remaining strings shouldn’t be too complex.

The Epoch: “Linearizing” the Time Base

Up to this point we’ve been using the struct_time tuple exclusively. It’s time to talk about
the epoch representation. As I mentioned, seconds elapsed since the epoch is another time
representation supported by the time module. At times, it’s more beneficial to use an epoch
representation than a struct_time representation.

The first reason that springs to my mind is that of visualization. If you want to plot data
as a function of time, and your time base is in the form of a struct_time, it’s pretty hard to do.
You’d have to come up with ways to “linearize” the time base so that the time base won’t be
skewed.

CHAPTER 5 PROCESSING TEXT FILES

You've seen two examples of linearizing the data. One was in Chapter 1, where I manually
linearized the data by multiplying the hours value by 3600, adding the minutes value multi-
plied by 60, and then adding the seconds. The second example was given in Chapter 4 where I
used mktime() and gmtime() to calculate the day of the year value as my linear time base.

While these are good options, there’s a more standardized way, and that is using the
epoch notation. As I mentioned previously, the epoch is system dependent and serves as a
reference point in time against which time is measured by the total amount of seconds elapsed
(fractional values are allowed as well).

To figure out the epoch in your system, issue asctime(gmtime(0)). From here on out, you
already have a linear time base, the epoch representation!

Let’s modify the GPS example from Chapter 1. As you recall, the time information was
as follows: hhmmss. ss, where the second set of ss values, after the decimal point, represent
fractions of a second. Let’s consider the values '140055.00"' and '140156.00"', which are one
minute and one second apart. The original calculation used multiplications and additions:

>>> vals = ['140055.00', '140156.00"']

>>> [float(x[0:2])*3600+float(x[2:4])*60+float(x[4:6]) for x in vals]
[50455.0, 50516.0]

>>> [1]-_[o0]

61.0

The difference between the two values (and what we're really after, as you recall we set the
start of the time base at zero) is 61 seconds, as should be expected. We can alternatively calcu-
late the epoch representation using the function mktime() from the time module and use that
to calculate the time difference:

>>> [mktime((0, 0, 0, int(x[0:2]), int(x[2:4]), int(x[4:6]), 0, 0, 0)) \
... for x in vals]

[943963255.0, 943963316.0]

>>> [1]-_[0]

61.0

I've used filler values for other unknown fields such as day and month. (Module datetime
of the Python Standard Library provides functionality that deals with time differences as well
but is beyond the scope of this discussion.)

We get the same result. So what'’s the benefit of using the epoch-based functions from the
time module? There are several:

¢ The preceding example was pretty simple and did not contain date information as well.
Suppose your data recorder also records the date. What happens at midnight? You'll
get arollover if you don’t take into account the date, which makes things considerably
more complex. You can of course add the day into calculations. But what happens
when a month changes? That’s a bit more complex: months don’t have the same num-
ber of days in them, so you’d need a lookup table. And what about leap years? You see,
it gets complicated. Instead, use mktime(), which takes all of these issues into consider-
ation.

¢ Using the epoch enables sharing a time base across files. This means that you can pull
in information from all sorts of data sources and treat them as one.

169

170

CHAPTER 5 PROCESSING TEXT FILES

¢ If you're dealing with timestamped binary data files, writing the time base can be chal-
lenging as well. Instead of coming up with complex representations for the time base,
use the epoch representation (see Chapter 10 for a general discussion of binary files
and an example of time-based binary files).

Example: End-of-Day Report

The end-of-day report is a summary report of a log file presenting data at the end of the day.
Here are two scenarios where this report is useful:

* Ending quote for a stock: Suppose you have a log file with the stock prices over a long
period of time, say, a month. The end-of-day report prints the stock price at the end of
trade days.

e Patient discharge: A patient is being treated at the hospital and during his treatment all
information is logged. You'd like to know the patient discharge state, that is, you want
to receive an end-of-day report with patient’s status.

To illustrate the problem, we’ll create a log file, . ./data/SystemAlLogs.txt, that will be
composed of timestamps and a log message, as follows:

Sat Oct 25 08:15:01 2008, Message
Sat Oct 25 09:30:31 2008, Message
Sun Oct 26 09:19:32 2008, Message
Mon Oct 27 08:05:31 2008, Message
Wed Oct 29 07:17:40 2008, Message
Wed Oct 29 08:44:04 2008, Message
Wed Oct 29 09:44:05 2008, Message
Wed Oct 29 12:30:50 2008, Message
Thu Oct 30 11:22:03 2008, Message

W 00~ O Ul B W N B

In this case, the log file is sorted, which is to be expected. But even if that’s not the case,
the algorithm we employ should still work properly.

To print an end-of-day report, I'll use the following algorithm. A dictionary object stores
an end-of-day report per day. The key of the dictionary should uniquely identify a day. I chose
to use the tuple (year, day of the year) for that purpose. For the dictionary value, I'll be using
a tuple containing the epoch and the message. The reason I'm using the epoch is that first, I
can easily compute it using mktime(), and second, it’s a simple value to check against. A larger
epoch value means a more recent event.

We process the file line by line and extract the information to create the key and value to
access the dictionary. In case the key is already in the dictionary, we check whether the infor-
mation in the current line is from a later time, and if it is, we update the value accordingly. If
the key doesn’t exist in the dictionary, we add the computed key and value pair to the diction-
ary. Once we’re done processing the file, we print the dictionary object. As you can see, the
algorithm doesn’t rely on the log file to be sorted to produce correct results.

I've chosen to use the csv module to show usage of the module in a full script, presented
in Listing 5-16. In this specific case, a simple split, or string slicing, would've worked just as
well.

CHAPTER 5

Listing 5-16. End-of-Day Report Implementation

end-of-day report
from time import mktime, strptime, ctime
import csv

d =

for

for

{}

row in csv.reader(open('../data/SystemAlLogs.txt')):
t is a struct _time tuple
t = strptime(row[0], '%a %b %d %H:%M:%S %Y')

calculate seconds since the epoch
t_epoch = mktime(t)

construct a key and value
key = (t.tm year, t.tm yday)
val = (t_epoch, row[1])

try:
do we have a more recent entry?
if d[key][0] < t_epoch:
d[key] = val
except KeyError:
current date is not in dictionary
d[key] = val

epoch, line in d.itervalues():
print ctime(epoch), line

PROCESSING TEXT FILES

I've also introduced a new function from the time module in Listing 5-16, ctime(). The

function ctime() accepts the number of seconds since the epoch and prints out a date string
representation.
Here are the results from running the script on the preceding log file:

Sat
Thu
Mon
Wed
Sun

Oct 25 09:30:31 2008 Message
Oct 30 11:22:03 2008 Message
Oct 27 08:05:31 2008 Message
Oct 29 12:30:50 2008 Message
Oct 26 09:19:32 2008 Message

w o0 B~ WO N

The results are correct, but they aren’t sorted by date. This can be easily remedied if
instead of printing the files you'd store them to a list and then call the function sort() to sort
the list.

17

172

CHAPTER 5 PROCESSING TEXT FILES

Example: Combining Data from Several Sources Based on the Epoch

One of the benefits of using the epoch is that it is a standard time base to work with. The inten-
tion of this example is to combine data from several sources, in this case two log files, and
present a coherent report. For the purpose of this example, we’ll split the file SystemALogs . txt
from the previous example into two files: SystemBLogs.txt and SystemsCLogs.txt. Our script
should combine them back into a sorted log file.

Following are the contents of SystemBLogs. txt:

Sun Oct 26 09:19:32 2008, Message 3
Wed Oct 29 07:17:40 2008, Message 5
Thu Oct 30 11:22:03 2008, Message 9

And the contents of SystemCLogs . txt:

Sat Oct 25 08:15:01 2008, Message
Sat Oct 25 09:30:31 2008, Message
Mon Oct 27 08:05:31 2008, Message
Wed Oct 29 08:44:04 2008, Message
Wed Oct 29 09:44:05 2008, Message
Wed Oct 29 12:30:50 2008, Message

o ~N OB~ N

Trying to sort these lists based on text will generate the wrong results. So the idea is to
convert every timestamp string into an epoch representation and sort based on that value. For
this purpose we’ll create a list of rows. Each row will be composed of [t_epoch, line], where
t_epoch is the converted time representation and line is the entire line of text. We then use the
sorted() function to sort the lists and dump the data back to file, removing the epoch informa-
tion (see Listing 5-17).

Listing 5-17. Script to Combine Two Time-Based Log Files

from time import mktime, strptime
data = []
data1l = open('../data/SystemBLogs.txt").readlines()
data2 = open('../data/SystemCLogs.txt").readlines()
fmt = "%b %d BH:%M:%S %Y’
for line in datai+data2:

t is a struct time tuple

t = strptime(line[4:24], fmt)

calculate seconds since the epoch
t_epoch = mktime(t)

append data
data.append([t_epoch, line])

data = [line[1] for line in sorted(data)]
open('../data/SystemsBCLogs.txt', 'wt').writelines(data)

CHAPTER 5 PROCESSING TEXT FILES

This script assumes you're combining two files. More often than not, if you need to com-
bine log files, you'll need to combine more than two files. Refer to Chapter 10 for discussion on
working with several input files.

Additional Time and Date Functions

We've covered most of the functionality available in the time module. For most of your log file
processing needs and other time-based processing requirements, the module is comprehen-
sive and complete. There are additional time- and date-related modules available in Python.
The datetime module provides functionality that includes operations on dates using a more
object-oriented approach. The calendar module provides general calendar-related operations.
Refer to the Python Standard Library for additional information.

Regular Expressions

Regular expressions are pattern-matching expressions used for searching and replacing text.
At times, they are more flexible than the string operations presented previously. To use regular
expressions, you'll have to import the regular expression module (named re), which is part of
the standard library. The module re is similar to Perl’s built-in support of regular expressions.

Your next step is to design a pattern to match against and decide what function to use on
that pattern. The most notable functions are findall(pat, str), which finds all occurrences of
a regular expression pattern pat in the string str; split(pat, str), which splits the string str
whenever a regular expression pattern pat is encountered; and sub(pat, repl, str), which
substitutes the occurrence of a pattern pat in a string str with a supplied substitute repl.

There are additional functions in the module, including match(), search(), and compile()
to name a few, but I will not be covering those here: the preceding three functions should take
care of most our data processing needs.

Regular Expression Patterns

A regular expression pattern is basically a string. The pattern can contain both regular charac-
ters and special characters. A regular character matches itself. So the pattern 'a’ matches the
character 'a' whenever encountered, and the pattern 'txt' matches the string 'txt' when-
ever encountered:

>>> import re

>>> re.split(r'a’, 'Flatland")
['F1', "tl', 'nd"]

>>> re.split(r'txt', '97.txt")
['97.", ']

So far, re.split() is similar to the split() function introduced previously in the chapter.
However, the strength of regular expressions lies in the special characters. These characters
provide additional functionality to the pattern itself. Let’s take a look at some. The first one
is the dot character (' ."). The dot character matches any single character except for a new line:

>>> re.findall(r'a.', 'Flatland')
[Iatl, Ianl]

173

174

CHAPTER 5 PROCESSING TEXT FILES

The character '+' means one or more occurrences of the pattern, the character ' ?' means
zero or one occurrences of the pattern, and the character '*' means zero or more repetitions
of the pattern. Note that these are modifiers of the pattern, that is, they change the behavior
of the pattern, whereas the dot symbol is not a modifier of the pattern, it’s part of the pattern.
Here are some examples:

>>> re.findall(r'.?a', 'Flatland')
['1a', 'la']

>>> re.findall(r'a.*"', 'Flatland')
['atland']

The first example finds the pattern composed of zero or one characters, followed by the
character 'a'. The second example matches the character 'a’ followed by any number of
characters.

One might question why is it that the first pattern matched one character before the char-
acter 'a', since obviously zero characters would've worked as well? Or why did the second
pattern matched the string 'atland’ where 'a' would've worked just as well? The answer is
that regular expressions are greedy by default, that is, they try to match as many characters as
possible. You can turn off the greedy behavior by adding a '?' character after the modifiers
presented previously, thatis, '??", "+?',and "*?".

The next special characters are the "' and '$"' characters, which match the start and end
of a string, respectively. Here are some examples that demonstrate these special characters:

>>> re.findall(r'~.*a', 'Flatland')

['Flatla']

>>> re.findall(r'~.*?a', 'Flatland')
['Fla']

>>> re.findall(r'a.*$', 'Flatland')
['atland']

These searches can be expressed in English as follows. The first line matches as many
characters as possible between the start of the string and the character 'a’'. The second line
finds as few characters as possible between the start of the string and the character 'a’ (notice
the nongreediness modifier, '*?"'). The third line matches the character 'a’ and the remaining
characters until the end of the line.

I think we’re ready for an example now.

Example: Removing Extra Spaces with Regular Expressions

Previously in this chapter, I've shown how to remove extra spaces in a string. We've used
split() to split the words on spaces and then strip() to remove the excess spaces. We then
used join() to combine the list back into a string.

With regular expressions, the same can be achieved more easily:

>>> grocery list = "Milk 2\nEggs 12"
>>> re.sub(r' +', ' ', grocery list)
'Milk 2\nEggs 12'

I've used the function sub() with the pattern ' +' (a space followed by the plus sign) to
replace one or more spaces with one space.

CHAPTER 5 PROCESSING TEXT FILES

Special Sequences

Special sequences are used to match some interesting combinations. Here’s a short list: '\d'
matches a decimal digit, ' \s' matches a whitespace, and '\w' matches an alphanumeric
character. If you use uppercase, the opposite is achieved, that is, ' \D' matches anything but
a decimal digit, ' \S' matches anything but a whitespace, and '\W' matches anything but an
alphanumeric character. Since the '\' character is a modifier, it’s a good idea to use the raw
string format, r' ', as you've seen previously, so as not to escape characters on several levels
(i.e., on the string level and on the regular expression level).

>>> grocery list = "Milk 2\nEggs 12"
>>> re.findall(r'\d+', grocery list)
['2', Ilzl]

Alternatives

The special character ' | ' is used to match either pat1 or pat2 in the regular expression
r'patl|pat2":

>>> grocery list = "Milk 2\nEggs 12"
>>> re.sub(r'Milk|Eggs', 'Chocolate', grocery list)
'Chocolate 2\nChocolate 12'

Ranges

You can also match a range of values using brackets. The pattern '[12]" will match both the
character '1' and the character '2":

>>> grocery list = "Milk 2\nEggs 12"
>>> re.sub('[12]", '0', grocery list)
'Milk o\nEggs 00’

You can also denote a range of characters using the '-' character. The pattern '[1-5]"
matches any character from 1 to 5, inclusive.
Lastly, follow up with a '*' after the left bracket to negate the range:

>>> grocery list = "Milk 2\nEggs 12"
>>> re.sub('[*0-5]", "*', grocery list)
Uitk ookok) otk okok) !

When to Use Regular Expressions

It’s hard to decide whether to use a regular expression or just plain string operations. Regular
expressions are hard to master, but practice makes perfect as the saying goes. Try solving the
same problem with string functions and with regular expressions to get a feel for what’s the
better approach.

If using string operations makes things more complicated to follow, resolve to regular
expressions. At times, a simple regular expression makes the code more readable and elegant.

175

176

CHAPTER 5 PROCESSING TEXT FILES

Such a case was presented previously in the example of removing extra spaces. At other times,
it’s the other way around. Opt for simplicity and clarity of your code whenever possible.

That being said, there is a special case where I've found that using regular expressions is
far better than using string methods, and that is when I'd like to split or replace a string based
on several options. The main reason is that string method split() requires a separator and
does not accept several options, whereas with regular expressions you can provide a range of
separators.

Example: Words Used Only Once

We finalize this discussion of regular expressions with an example that uses a dictionary in
conjunction with text. The idea is to find words used only once in a file. The motivation behind
this example is that words used only once might be typographical errors in source code.

To implement the solution, we’ll use a dictionary to count the number of occurrences of
each and every word in a file (see Listing 5-18).

Listing 5-18. Finding Words Used Only Once

from string import punctuation, whitespace
import re
def nonce(filename):
"""Returns words used only once in a file."""
data = open(filename, 'rt').read()
d, result = dict(), []
for word in re.split('['+punctuation+whitespace+']"', data):
d[word.lower()] = d.get(word.lower(), 0)+1
for word, occur in d.iteritems():
if occur ==
result.append(word)
return result

The function nonce() should prove quite readable. The heart of the script lies in the for
loop, which splits the text using a regular expression. This is a prime example where a regular
expression is better than the string method split(): the split happens on either a punctuation
character or a whitespace character by means of the regular expression range specifier, '[]".

Bear in mind that this script is good for mostly source code and not plain-text English. The
reason is that it doesn’t take into consideration such things as plural forms (e.g., “girls” and
“girl” are considered two different words) and other spoken language characteristics.

Internationalization and Localization

At times you're faced with working with data files that originated in a different locale. This
could pose some problems: date and time notations can be different from what your code
expects, or the text characters can be of another language.

The purpose of this section is to introduce the topic of internationalization (i18n) and
localization (110n). I'll touch on two topics: the locale and its impact on date notations, and

CHAPTER 5 PROCESSING TEXT FILES

Unicode, which is a convenient method to support different languages, at least when it comes
to text files.

Note The abbreviation i18n comes from the number of characters between the “i” and the “n” in the
string “internationalization.” Similarly, the abbreviation 110n refers to “localization.”

Locale

In the context of software, locale is a set of rules governing the behavior of some functions that
are either country or language oriented. From a data analysis perspective, if a log file contain-
ing a timestamp of both date and time is used, and the locale is not identical to the one in use,
the function strptime() might fail. For example, some countries use day/month/year notation
while others use the month/day/year notation.

To accommodate for different locales, Python provides support via the locale module,
which is part of the Python Standard Library. To use it, issue the command import locale. To
set alocale, issue the command locale.setlocale(category, locale).You can either enable
the entire set of rules using the category locale.LC_ALL or set specific ones. In our case, we’ll
be using LC_ALL, which also controls the behavior of the functions strftime() and strptime().

Note The locale module relies on 0S locale support. Different operating systems might have different
locale abbreviations. For example, to run the following script on Linux, I had to use the locale 'fr_
FR.ISO-8859-1", while on Windows I've used 'fr'. On some Linux distributions, a list of locale aliases
can be found in the file /usr/share/locale/locale.alias. Unfortunately, | was unable to run the locale
module properly on Cygwin; some poking around suggests that Cygwin does not currently support locale
other than the basic one (named C, which is to imply C language implementation).

Generally speaking, you should set your locale upon program entry.

>>> import locale

>>> locale.setlocale(locale.LC ALL, 'fr'")

'French_France.1252'

if the above doesn't work, try replacing 'fr' with 'fr FR.ISO-8859-1' or 'french'
>>> from time import gmtime, strftime, strptime

>>> fmt = '%d-%B-%Y'

>>> strftime(fmt, localtime())

'26-octobre-2008"

>>> strptime(_, fmt)

(2008, 10, 26, 0, 0, 0, 6, 300, -1)

The first line imports the locale module. I then set the locale to be 'French _France.1252",
which basically means the language French, the country France. It’s possible to mix language
and country, for example, passing the string 'French Canada' to set the language to French but

177

178

CHAPTER 5 PROCESSING TEXT FILES

the country to Canada. In Windows, I've found that the notation 'Language_Country' works
well, whereas I've had some issues with abbreviations (e.g., 'fr_CA' didn’t work well for me).
In Linux, I've found that the notation in the form 'en_US.IS0-8859-1" works well, so for French
Canada, on Linux, I've set the locale to 'fr CA.IS0-8859-1".

For additional information regarding the locale module, refer to the Python Standard
Library: http://docs.python.org/library/locale.html.

We’'re not done with locale yet; I'll present another example after talking a bit about
Unicode.

Unicode Strings

The original ASCII table is based on the English language and does not account for a lot of
other languages and symbols. Several designs were introduced to try to resolve this, and lately
it appears that Unicode (http://www.unicode.org) is the industry standard.

The Unicode standard addresses such topics as character encoding, character properties,
visual representation, and more. From a very simplistic approach, Unicode tries to support
characters and symbols from other languages by assigning every character (and there are tens
of thousands of those, if not more) a unique integer number while maintaining compatibility
with the ASCII table. This means that some Unicode characters are represented by 4 bytes, not
1 byte.

The problem starts when you want to write your Unicode string to file. Writing 4 bytes
instead of 1 every time is space consuming. If the characters you use are simple English
characters, they are all well within the ASCII table and thus contain less than 8 bits. To write
them, you don’t need 4 bytes—1 byte will suffice. In this case, you can choose to encode your
Unicode string as an 8-bit value, known as UTF-8. UTF stands for Unicode Transformation
Format.

If the characters you use are not all from the English alphabet, you might need more bytes
to represent your Unicode string. In most cases, 2 bytes is more than enough, which means
you can encode your Unicode string using UTF-16 encoding. However, you're also likely to use
characters from the English alphabet (or other ASCII symbols), in which case some characters
may be encoded with 8 bits. And so some encoding supports those variable size schemes as
well.

From our perspective, it is sufficient to know that Python natively supports Unicode
strings. And furthermore, we can encode and decode Unicode strings using a host of encoding
schemes, including UTF-8 and UTF-16. Unicode strings follow the notationu"'.

Working with Unicode

Unicode strings behave similarly to regular strings. As mentioned previously, if a character
in the Unicode string matches the ASCII value, that value is used. So to construct a Unicode
string made of ASCII characters, simply call the unicode() function with the string:

>>> unicode('a string')
u'a string'

However, if that is the case, and you are using ASCII characters, what’s the point of Uni-
code? Fair enough, let’s add nonstandard characters, that is, characters with ordinal value
above 128.

CHAPTER 5 PROCESSING TEXT FILES

The value 0xa9 corresponds to © and is pretty hard to type on most keyboards. So instead,
I've used its ordinal value in Unicode. Python retains the value as an ordinal value and does
not print the symbol associated with it. If we dump the Unicode string to file, it will be possible
to view the special characters in most editors or web browsers. In this case, the generated file
is ../data/special.txt.

>>> u = 'a string'+u'\uooa9’

>>> U

u'a string\xa9'

>>> open('../data/special.txt", 'wb').write(u.encode('utf-8'))

The write() method accepts only strings, not Unicode strings. So for us to be able to
use the write() function and write the Unicode strings to file, we’ll have to use the encode()
method, which accepts the encoding to be used. In this case I've selected the UTF-8 encoding,
which is widely popular.

The function decode() complements encode() and returns the decoded Unicode string:

>>> u.encode('utf-8")

'a string\xc2\xa9'

>>> u.encode('utf-16")

"\xff\xfea\x00 \x00s\x00t\x00r\x001i\x00n\x00g\x00\xa9\x00"
>>> u.encode('utf-16").decode('utf-16")

u'a string\xa9'

For example, to read an entire text file encoded in UTF-16, issue the following:
open('../data/somefile.txt").read().decode('utf-16").

Example: The Hebrew Alphabet

The purpose of this example is to generate a file with the Hebrew alphabet. If you don’t have
Hebrew installed on your system (which I suppose is the case for most folks out there), you can
try other, more popular characters, as I'll show shortly.

Note Alphabet is a Hebrew word. It is composed of the first two letters of the Hebrew language: Aleph
and Bet.

The Hebrew alphabet, shown in Figure 5-1, starts with the letter Aleph mapping to the
value 0x5D0 and ends at the letter Tav, mapped to value 0x5EA in Unicode. Unless you have
the Hebrew keyboard installed on your system, manually typing Hebrew letters is not a trivial
task. Therefore, you'll have to construct the alphabet using a Unicode string. Since we don’t
want (or can’t) manually type the values, we’ll construct a list of Unicode letters and then gen-
erate a string from the list. The function unichr() will be used to construct the characters from
their ordinal value, similar to the function chr():

>>> letters = [unichr(letter) for letter in range(0x5d0, 0x5eb)]
>>> alephbet = ''.join(letters)
>>> open('../data/alephbet.txt', 'w').write(alephbet.encode('utf-16"))

179

180

CHAPTER 5 PROCESSING TEXT FILES

NUI1EY¥F93VD1] 1NO23T " UNTINT1IAR

Figure 5-1. The Hebrew alphabet

Once we have the Unicode string, all that’s required is to write it to file. Since the write()
function only accepts strings, and not Unicode strings, we have to encode the string. In our
case, the Hebrew Unicode values require 16 bits, so we therefore encode with UTF-16.

The Latin alphabet has special characters, as shown in Figure 5-2: the accented letters,
starting at value 0xCO and ending at 0xOFF. Therefore, you could modify the preceding script
to generate the Latin special characters as follows:

>>> letters = [unichr(letter) for letter in range(0xc0, 0x100)]
>>> latin = ''.join(letters)
>>> open('../data/latin.txt', 'w').write(latin.encode('utf-16"))

Figure 5-2. Some interesting Latin characters

Example: Writing Today’s Date in the Current Locale

The purpose of this example is to print the current date and time, in a specific locale, to file.
If you're using the English United States locale, this will be rather boring. So instead, I've
decided to use the Hebrew locale again, since we’re all familiar with it by now (see Listing
5-19). Since Python doesn’t always print other character sets in the interpreter, it’s best to
write the results to file and view them in a text viewer, editor, or web browser.

Listing 5-19. Today’s Date in the Current Locale

import locale
from time import strftime, strptime, localtime
from sys import platform

if platform == 'linux2':
locale.setlocale(locale.LC ALL, 'hebrew')
elif platform == 'win32':
locale.setlocale(locale.LC_ALL, 'Hebrew Israel')
elif platform == 'cygwin':
raise Exception('Cygwin not supported')
else:
print "Untested platform: ", sys.platform
today = strftime('%B %d, %Y', localtime())
todayU = unicode(today, 'cp1255")
open('../data/today.txt', 'w').write(todayU.encode('utf-16"))

"

CHAPTER 5 PROCESSING TEXT FILES

At first, I try to guess the encoding for Hebrew based on the current platform using the
sys.platformvalue. As I've mentioned earlier, Linux, Windows, and Cygwin all have different
locale abbreviations.

After I set the locale, I can query the preferred locale encoding with the function
locale.getpreferredencoding(), which is quite useful in determining how to encode the
Unicode string. Unfortunately, I have found that the preferred encoding in the case of
Hebrew should be cp1255 and not the one returned by the getpreferredencoding() function.
Lastly, I encode the string and write it to file using UTF-16.

Figure 5-3 shows the results.

2008 ,18 12ana1a

Figure 5-3. A date in Hebrew

More on Unicode

The topic of Unicode is vast, and numerous books are available that discuss it. As for online
information, I have found the Python library reference a valuable resource. If you're looking
for information regarding i18n and 110n in general, including code pages and locale informa-
tion, the following might prove useful:

e The Unicode Consortium: http://www.unicode.org.

o Wikipedia: http://en.wikipedia.org/wiki/Locale. Be sure to follow the links to topics
such as character encoding and Unicode.

 International Components for Unicode: http://www.icu-project.org/.

Final Notes and References

String and text processing is a very large field, especially with the popularity of the Internet
and search engines; most of the data available online is in some form of text. This chapter has
covered a considerable number of the topics associated with text processing in the context of
data analysis.

However, there’s a lot more to learn. Two topics presented here were but briefly dis-
cussed: regular expressions and i18n and 110n. Considerable documentation is available on
the Internet on these two topics, so by all means refer to online resources. I hope that I've cov-
ered the basics properly to allow you to proceed without much trouble.

The following book is of great value for the topics discussed in the chapter:

 Text Processing in Python by David Mertz (Addison-Wesley, 2003; also available online
athttp://gnosis.cx/TPiP)

181

CHAPTER 6

Graphs and Plots
Visualizing Data

Graphs and plots are efficient methods to present data. Done properly, a graph can convey
an idea better than an entire article.

What a graph should portray is a function of your target audience, so when you plot a
graph, bear that in mind. If your target audience is technical people, they might require addi-

tional technical information. If your target audience is investors, another approach is required.

In this chapter we won'’t be discussing what to present and what not; instead, assuming you
know what you want to present, I'll show you how to do so. Examples include how to plot bar
charts and pie charts, how to add markers and control line ticks, how to annotate the graphs
with text and arrows, and more.

Regardless of your target audience, some ideas and methodologies always hold true.
Sources for data should be accurate and verified. Graphs should be easily reproducible by
running the code that generated them. (How many times did your boss ask you to modify
the report? If the graph was generated with a documented script, doing so should prove easy
enough.) And lastly, your graphs should be aesthetically pleasing. Consulting with colleagues
could be beneficial as well: What do they understand from the graph? Was the key idea cap-
tured? Is the output professional?

In this chapter we’ll discuss the basics of creating and annotating graphs. We’ll start by
exploring the plot() function, continue with text and grid annotation, explore some other
types of graphs, and lastly introduce patches, a method to attach graphical objects to a figure.

The Matplotlib Package

The matplotlib package, available at http://matplotlib.sourceforge.net/, is the main
graphing and plotting tool used throughout this book. The package is versatile and highly con-
figurable, supporting several graphing interfaces. Matplotlib, together with NumPy and SciPy
(see Chapters 7 and 8), provides MATLAB-like graphing capabilities, with perhaps the limita-
tion of 3-D plots, which matplotlib does not support.

183

184 CHAPTER 6 GRAPHS AND PLOTS

The benefits of using matplotlib in the context of data analysis and visualization are as
follows:

* Plotting data is simple and intuitive.
¢ Performance is great; output is professional.

e Integration with NumPy and SciPy (used for signal processing and numerical analysis)
is seamless.

* The package is highly customizable and configurable, catering to most people’s needs.

The package is quite extensive and allows, for example, embedding plots in a graphical user
interface. Currently, the package supports several graphical interfaces including wxPython
(http://www.wxpython.org/) and PyGTK (http://www.pygtk.org/), to name a few. However,
GUI topics are beyond the scope of the book. We will focus on plotting graphs rather than dis-
cussing the GUI engine itself. For a full account of matplotlib, try the online documentation,
available as a PDF document, at http://matplotlib.sourceforge.net/Matplotlib.pdf.

Going forward, you should ensure that you have matplotlib installed and working prop-
erly. Refer to Chapter 2 if you require additional information on installing the package or visit
the package’s web site.

Interactive Graphs vs. Image Files

There are several ways you can use matplotlib:

¢ Create dynamic content to be served on a web server: for example, generating stock
price images on the fly or displaying traffic information on top of a map.

¢ Embed it in a graphical user interface, allowing users to interact with an application to
visualize data.

¢ Automatically process data and generate output in a variety of file formats, including
JPG, PNG (Portable Network Graphics, see http://www.1ibpng.org/pub/png/), PDF,
and PostScript (PS). This option is best suited for batch processing of a large number
of files.

¢ Run it interactively, with the Python shell in X or Windows. This option is good during
the development phases of the code.

Of the preceding options, and in view of the book topics, we’ll explore two: 1) generating
plots of varying file formats and 2) using matplotlib interactively. I typically use both options
depending on the stage of my code. In the early stages of development, I work interactively
with a small sample of the data: plot, zoom in, change graph parameters, annotate, rinse and
repeat. Once my code is ready, I let it loose so to speak on the full set of data files. Since that
might mean tens if not hundreds of graph windows, I prefer to write them as files instead, and
then use an image viewer to view the results one at a time.

So let’s start. First and foremost, import PyLab as follows:

>>> from pylab import *

CHAPTER 6 GRAPHS AND PLOTS

WHERE DOES THIS FUNCTION COME FROM?

A frustration to some, especially those experienced with Python, is that issuing the command from pylab
import * will import several packages. Some feel they’d like to know whether a specific function is a part of
NumPy or matplotlib. The solution is simple—use help! For example, here’s the output from help (diff):

>>> help(diff)
Help on function diff in module numpy.lib.function_base:

diff(a, n=1, axis=-1)
Calculate the nth order discrete difference along given axis.

As you can see in the first line, diff () is a function from the NumPy package, or more specifically,
numpy.lib.function base.

As previously mentioned, this imports matplotlib, NumPy, and SciPy. Although gener-
ally speaking you shouldn’t import everything quite so liberally, in the case of PyLab, make
an exception: it’s considerably easier to work with the entire package loaded into memory,
and unless memory is a constraint, the usability is great. Going forward, I'll assume you've
imported PyLab as just described.

Our next step is to plot a graph. We’ll plot the list [0, 1, 2]:

>>> plot(range(3))
[<matplotlib.lines.Line2D object at 0x018680F0>]

There’s no visible output yet (other than matplotlib’s response), and the reason for this

is we haven’t specified how exactly we want the graph drawn: interactive figures or hard copy
files.

Interactive Graphs

Interactive graphs, like the one shown in Figure 6-1, plot the graph in a separate window in
X or Windows. If you'd like this option, enter show() at the Python shell or call the function
show() in a script.

185

186

Figure 1

CHAPTER 6 GRAPHS AND PLOTS

FBEX
2.0
2
10+
.=||}=.

05
%95 05 1.0 15 2.0

Zoom to rect mode : x=1.44, y=0.766

Figure 6-1. Interactive graph

The function show() opens up an interactive window. Several notes about this window:

¢ The window is numbered, as you can see by the label “Figure 1.” This is useful if you

have several windows and would like subsequent plots to either override or appear on
a specific figure. To switch between figures, use the figure(n) function, where n stands
for the figure index. If you'd like a new figure, and don’t particularly care about the
figure index, issue the command figure(), which will create an empty figure with the
next available index.

The x-axis and y-axis were created automatically to fit the data. In a lot of the cases,
matplotlib does an excellent job of automatically selecting the right axis (as in this
example). However, if you want a different range of values to be displayed, that’s
doable with the axis() command, more on which appears later in the chapter in the
section “Axis.”

The location of the mouse is printed on the right corner of the figure. This is very useful
if you're trying to zoom in on data and find a specific data point. This functionality is
not available when you plot graphs to file (i.e., noninteractive mode).

¢ You have several buttons on the lower-left side of the figure to allow interaction with

the graph. The five leftmost buttons are used for zooming and zooming history. The
first button from the left (with the house icon) is used to change axes to the origi-
nal plot axes. The left and right arrow buttons cycle backward and forward through

CHAPTER 6 GRAPHS AND PLOTS

previous axes changes. The fourth button allows changing of the axes origin, and the
fifth button from the left enables zooming. The sixth button from the left controls the
margins of the plot in respect to the containing window, and lastly the seventh button
allows saving the image to disk.

Note If you're not using matplotlib interactively in Python, be sure to call the function show() afterall
graphs have been generated, as it enters a user interface main loop that will stop execution of the rest of
your code. The reason behind this behavior is that matplotlib is designed to be embedded in a GUI as well.
In Windows, if you’re working from interactive Python, you need only issue show() once; close the figures
(or figures) to return to the shell. Subsequent plots will be drawn automatically without issuing show(), and
you’ll be able to plot graphs interactively.

Saving Graphs to Files

The function savefig() enables writing images of varying formats to a file. Out of the box, mat-
plotlib supports several file formats including PDF, PNG, and PS. The simplest way to generate
a file containing a graph is to issue savefig(filename), where filename has the extension asso-
ciated with your selected image format:

>>> figure()

>>> plot(arange(3))

[<matplotlib.lines.Line2D object at 0x0186A2D0>]

>>> savefig('line.png")

>>> import os

>>> [file for file in os.listdir('.') if file.endswith('png"')]
['line.png']

You should be able to view the figure in most image viewers or your web browser.

Note Matplotlib returns objects as they’re created. In the preceding example, the returned object is
noted by the line [<matplotlib.lines.Line2D object at 0x0186A2D0>]. Going forward I'll omit these
responses in the interest of making the interactive code easier to follow.

I called the function savefig() with the file name extension as part of the string holding
the file name, instructing savefig() to create a PNG file. Similarly, I could’ve created a Post-
Script file by issuing savefig('line.ps").

The dictionary object FigureCanvasBase.filetypes holds a list of supported file types in
your system:

>>> from pprint import pprint
>>> pprint(FigureCanvasBase.filetypes)
{"emf': '"Enhanced Metafile',

187

188

CHAPTER 6 GRAPHS AND PLOTS

'eps': 'Encapsulated Postscript’,
'pdf': 'Portable Document Format',
'png': 'Portable Network Graphics',
'ps': 'Postscript’,

'raw': 'Raw RGBA bitmap',

'rgba': 'Raw RGBA bitmap',

'svg': 'Scalable Vector Graphics',
"svgz': 'Scalable Vector Graphics'}

FINDING WHAT YOU’RE LOOKING FOR IN COMPLEX MODULES

So how did | figure out FigureCanvasBase.filetypes holds the supported file types? Did | read the
entire manual? Hardly. Some of the packages we work with are really large, and mastering all the intricacies
of variables and objects that control their behavior is not a trivial task. So | use some quick-and-dirty tricks,
and although they might not be the “proper” way to do things, they help me get the job done, and that’s what
really counts. So let me show you what I've done to figure out the available file types.

To figure out the base file types, | issued savefig() with a bogus file format: savefig('a.ext").
The result was, of course, an exception (ValueError) but | also received some useful information:
"Supported formats: emf, eps, pdf, png, ps, raw, rgha, svg, svgz." Butthat's not
exactly what | wanted; | wanted an enumeration of the file formats so | can index them rather than parse a
string returned by an exception. So | traced back the source of the error from the exception output: the error
originated in file C: \Python25\1ib\site-packages\matplotlib\backend bases.py line 1290.
Next, | opened up the file backend bases.py, jumped to line 1290, and started reading the code. Python
is a very readable language, and it didn’t take me long to figure out that the formats are stored in variable
self.filetypes.keys. Since self points to the container object, | scrolled up some more and found
that the calling method is named print figure and is part of the class FigureCanvasBase, hence
FigureCanvasBase.filetypes.

Reading the exceptions generated by matplotlib, along with exploring modules and their names, also
helped me find the objects matplotlib.colors.cnames and matplotlib.colors.ColorConverter.
colors, both listing possible colors (see the section “Colors” later in the chapter). That being said, reading
the manual is also a very viable option.

You can pass a format argument to savefig() to control the output file generated instead
of specifying it in the file name string. You can also control other parameters such as dots
per inch (dpi) and face color for the color of the figure. A more general form of savefig() is
savefig(fname[, parami=value1l][, param2=value2]).Table 6-1 lists some parameters. In the
examples, assume fn is a string containing a file name.

CHAPTER 6 GRAPHS AND PLOTS

Table 6-1. savefig() Parameters

Parameter Description Default Value Example

dpi Resolution in dots per inch None (On my system the savefig(fn, dpi=150)
actual dpi is 100.)

facecolor* The figure’s face color 'w' for white background savefig(fn,
facecolor="b")

format File format 'png’ savefig('image',
format="pdf")

* Refer to Table 6-4 for a list of color values.

You can combine several parameters: savefig('file', dpi=150, format='png').The
function savefig() supports additional options; see help(savefig) for a full account.

Plotting Graphs

This section details the building blocks of plotting graphs: the plot() function and how to
control it to generate the output we require. We've used the plot() command extensively
throughout the book. It’s now time to examine it more closely.

The plot() function is highly customizable, accommodating various options, includ-
ing plotting lines and/or markers, line widths, marker types and sizes, colors, and legend to
associate with each plot. The functionality of plot () is similar to that of MATLAB (http://www.
mathworks.com) and GNU-Octave (http://www.gnu.org/software/octave/) with some minor
differences, mostly due to the fact that Python has a different syntax from MATLAB and GNU-
Octave.

Lines and Markers

First, we’ll create a vector to plot using NumPy (see Chapter 7 for a full account of the NumPy
package):

>>> figure()

>>> y = array([1, 2, -1, 1])
>>> plot(y)

>>> show()

If you don’t have a GUT installed with matplotlib, replace show() with
savefig('filename') and open the generated image file in an image viewer.

Note Going forward, I'll omit the show() call from listings. Be sure to issue show() or savefig() if
you’d like to follow along.

189

190

CHAPTER 6 GRAPHS AND PLOTS

I've passed the vector y as an input to plot(). As a result, plot() drew a graph of the
vector y using auto-incrementing integers for an x-axis. Which is to say that if you don’t sup-
ply x-axis values, plot () will automatically generate one for you: plot(y) is equivalent to
plot(range(len(y)), y). Solet’s supply x-axis values (denoted by variable t):

>>> figure()
>>> t = array([10, 11, 12, 13])
>>> plot(t, y)

The call to function figure() generates a new figure to plot on so we don’t overwrite the
previous figure.

On to more options. Next we want to plot y as a function of t but display only markers, not
lines. This is easily done:

>>> figure()
>>> plot(t, y, 'o")

To select a different marker, replace the character 'o' with any of the markers in
Table 6-2. For a full account of available markers, issue help(plot).

Table 6-2. Some Plot Markers

Character Marker Symbol

o] Circle

Upward-pointing triangle

's! Square

"+ Plus

"x' Cross (multiplication)
‘D' Diamond

Much like there are different markers, there are also different line styles, a few of which
are listed in Table 6-3.

Table 6-3. Some Plot Line Styles
Character(s) Line Style

- Solid line

[EEN Dashed line

-. Dash-dot line

Dotted line

If you’d like both markers and lines, concatenate the symbols for line styles and markers.
To plot a dash-dot line and diamond symbols as markers, issue the following:

>>> plot(t, y, 'D-.")

Figure 6-2 shows the output of the examples in this section.

CHAPTER 6 GRAPHS AND PLOTS

plot(y) plot(t, y)
2.0— e ——— 20— —
15 / { 15 /
1.0 {1 1.0
0.5} 1 ost
0.0} 1 ool
-0.5} 1 -05}
-1.0} 1 -1.0f
-1.5} {1 -15}

~28605 1.0 1.5 2.0 25 3.0 3.5 4.0 210,010.511.011.512.012.513.013.514.0

2.0 Bt ¥; o, 2.0 ..flo.t(t' % Do)

15} 1 1sp .7

1.0p ° { 10}’ »

05f { os}

o.of 1 oof o X
-05} 105}
-1.0} . { 1o} .
-1.5} { -1.5}

~2-05.010.511.011.512.012.513.013.514.0 >£0,010.511.011.512,012.513.013 514.0

Figure 6-2. Output of previous examples. Order is from left to right, top to bottom.

Plotting Several Graphs on One Figure

We use graphs to visualize data and compare it. What’s more natural than displaying several
graphs in one plot so we can compare results? There are two ways to do that in matplotlib. The
first one is by adding more vectors to the plot() function:

>>> plot(t, vy, t, 2*y)
or
>>> plot(t, y, '+', t, 2%y, 's-")

The second method is by calling plot () repeatedly. Sometimes you might have only
partial data to plot. Say you have vector y, but then you modify it and want to print both the
original vector and the newly modified vector. What do you do? One option would be to store
the intermediate value, but what if you have 20 of those? That means calling plot () with some
20+ arguments.

When you call plot () with an already existing figure, there are two possible outcomes.
One is that the figure is erased, and the new plot is drawn. The other is that the figure is not
erased, and the new plot is added to the figure. This behavior is determined by the hold status
of the figure. You can control the hold status with the hold() function: calling hold(True) will
ensure new plots don’t erase the figure, whereas hold(False) will do the opposite. Issuing the
command hold() with no arguments will toggle the hold status. As a general rule, it’s best to
specify the hold behavior you require and not rely on the default behavior, that is, hold(True)
or hold(False).

191

192

CHAPTER 6 GRAPHS AND PLOTS

Line Widths and Marker Sizes

Next in this discussion of customization is controlling line widths and marker sizes. This is
done by passing linewidth (or 1w for short) and markersize (or ms for short) arguments to
plot(), as shown in Listing 6-1. Both arguments accept a floating-point value; the default
value is 1.

Listing 6-1. Plotting Several Lines in One Graph with Different Line Styles and Markers

I = arange(6)
plot(I, sin(I), 'o', I, cos(I), '-', lw=3, ms=8)
title("plot(I, sin(I), 'o', I, cos(I), '-', lw=3, ms=8)")

Figure 6-3 shows the results of this example.

plot(l, sin(l), 'o', I, cos(l), '-', Iw=3, ms=8)

1.0
)
[]
05}
°
0.0p
_0’5 -
°
L . , L
“L9 1 2 3 4 5

Figure 6-3. Plotting several graphs in one figure

When you plot multiple lines in one plot() function call, the parameters 1linewidth and
markersize control all the lines in the same plot () command. If you’d like different lines with
different line styles or different marker sizes in the same figure, draw each plot with an indi-
vidual call to the plot() function and use the hold() function, as shown in Listing 6-2.

Listing 6-2. Different Line Widths in One Graph

figure(); hold(True)

I = arange(6)

plot(I, sin(I), lw=4)
plot(I, cos(I) , lw=2)

CHAPTER 6 GRAPHS AND PLOTS

Colors

Finally, on our list of plotting basics is controlling color. Just like marker style and line style,
you can control color with one character, according to the list in Table 6-4.

Table 6-4. Color-Character Lookup Table

Character Color

'b’ Blue

'c' Cyan

'g' Green
k' Black
‘m' Magenta
'r' Red

‘w' White
'y Yellow

As you might have noticed, matplotlib automatically chooses a different color for subse-
quent line plots if a color is not specified. You can select your preferred color by supplying a
color character:

>>> figure()
>>> I = arange(6)
>>> plot(I, sin(I), 'k+-', I, cos(I), 'm:")

This will plot two lines: the first is a black line with plus markers and a connecting solid
line, and the second is a magenta dotted line.

If you'd like a color that does not appear in Table 6-4, you can choose one from the dic-
tionary object matplotlib.colors.cnames. The dictionary contains a better color selection
and has over a hundred values. And lastly, if that dictionary is not enough, you can provide an
explicit Red-Green-Blue (RGB) value. In case you're using the dictionary values or an explicit
RBG value, you have to provide the color argument as a parameter to a plot() call:

>>> plot(randn(5), 'y', lw=5) # 'y' from the color table
>>> plot(randn(5), color="yellowgreen', lw=5) # using matplotlib.colors.cname
>>> plot(randn(5), color="#ffffo0', lw=5) # explicit yellow RGB

See help(matplotlib.colors) for additional color information.

Note The function randn(n) in the preceding example generates a random vector of size n.

193

194

CHAPTER 6 GRAPHS AND PLOTS

Controlling the Graph

For a graph to convey an idea aesthetically, the data, although highly important, is not every-
thing. The grid and grid lines, combined with a proper selection of axis and labels, present
additional layers of information that add clarity and contribute to overall graph presentation.

Now that we have the basics of plotting lines and markers covered, we turn to controlling
the figure: controlling the x-axis and y-axis behavior and setting grid lines.

Axis

The axis() function controls the behavior of the x-axis and y-axis ranges. If you do not supply
a parameter to axis(), the return value is a tuple in the form (xmin, xmax, ymin, ymax).You
can use axis() to set the new axis ranges by specifying new values: axis([xmin, xmax, ymin,
ymax]). In the special case you'd like to set or retrieve only the x-axis values or y-axis values,
use the functions x1im(xmin, xmax) orylim(ymin, ymax), respectively.

Other than the range limits, the function axis() also accepts the following values: 'auto",
'equal’, "tight', 'scaled’, and 'off'. The value 'auto’, the default behavior, allows plot() to
select what it thinks are the best values. The value 'equal’ forces each x value to be the same
length as each y value, which is important if you're trying to convey physical distances, say, in
a GPS plot. The value 'tight' causes the axis to change so that the maximum and minimum
values of x and y both touch the edges of the graph. The value 'scaled' changes the x-axis and
y-axis ranges so that x and y have both the same length (i.e., aspect ratio of 1). Lastly, calling
axis('off') removes the axis and labels.

To illustrate these axis behaviors, I've plot a circle, as demonstrated in Listing 6-3.

Listing 6-3. Plotting a Circle

R =1.2
I = arange(0, 2*pi, 0.01)
plot(sin(I)*R, cos(I)*R)

Note The reason | chose a circle of radius 1.2 is that in the case of a radius of “nicer” numbers (say 1.0
or 2.0), the automatic axis solution works very well, and it’s hard to show the effects of the different axis
options.

Figure 6-4 shows the results of applying different axis values to this circle.

CHAPTER 6 GRAPHS AND PLOTS

15 i 15 Jequal.
1o} 1 10}
05} { os}
0.0} { oo}
-0.5} 1 -o.5}
-1.0} 1 -1.0}
=13/ % 10085 00 05 L0 15 *° -1510-0500 05 L0 15
tiqht i . Iscalledl
1of
0.5}
0.0}
56 —05}
-1.0}
—1.0} |
10 -05 00 05 Lo 1515750500 05 1.0 15

Figure 6-4. Controlling axis behavior

Grid and Ticks

The function grid() draws a grid in the current figure. The grid is composed of a set of hori-
zontal and vertical dashed lines coinciding with the x ticks and y ticks. You can toggle the grid
by calling grid() or set it to be either visible or hidden by using grid(True) or grid(False),
respectively.

To control the ticks (and effectively change the grid lines as well), use the functions
xticks() and yticks(), as shown in Listing 6-4. The functions behave similarly to axis() in
that they return the current ticks in case no parameters are passed and are used to set ticks
once parameters are provided. The functions take an array holding the tick values as numbers
and an optional tuple containing text labels. In case the tuple of labels is not provided, the tick
numbers are used as labels.

Listing 6-4. Grid and Tick Example

R =1.2

I = arange(0, 4*pi, 0.01)

plot(sin(I)*R, cos(0.5*I)*R)

axhline(color="gray")

axvline(color="gray")

grid()

xticks([-1, 0, 1], ('Negative','Neutral','Positive'))
yticks(arange(-1.5, 2.0, 1))

195

196

CHAPTER 6 GRAPHS AND PLOTS

Figure 6-5 shows the output generated from Listing 6-4 without issuing the last two calls
to xticks() and yticks() (left graph) and with xticks() and yticks() calls (right graph).
Notice the labels on the x-axis.

1.5

1‘0 Frrta

0.5

0.0

-0.5

-1.0

15 i . i -1.5 — -
-15-1.0-05 00 05 10 15 Negative Neutral Positive

Figure 6-5. Controlling grid and axis: the left graph shows the default xticks (), the right graph
displays labels.

I've also made use of the functions axhline() and axvline(), which plot a line across the
x-axis and y-axis, respectively. The axhline() and axvline() functions accept many param-
eters, including color, linewidth, and linestyle, to name a few.

Subplots

In some of the previous figures in this chapter, I've displayed several smaller graphs in one
figure; these are known as subplots. The subplot () function splits the figure into subplots and
selects the current subplot. The subplots are numbered from left to right, top to bottom, so the
upper-left subplot is 1, and the lower-right subplot is equivalent to the number of subplots.
Notice that this is different from the default counting behavior used in Python: numbers start
at1 and notatO.

To split the figure into 2-by-2 subplots and select the upper-left subplot for plotting, issue
subplot(2, 2, 1).Alternatively, you can pass the string '221", which does the same thing:
subplot('221").It’s also possible to combine subplots of different sizes in one figure. This is
a bit tricky and requires subplotting with different subplot sizes. Listing 6-5 gives an example
that generates a subplot on the upper half of the figure and two subplots on the lower part of
the figure, the results of which you can see in Figure 6-6.

Listing 6-5. Subplots of Varying Sizes

figure()

subplot(2, 1, 1)

title('Upper half'")

subplot(2, 2, 3)

title('Lower half, left side')
subplot(2, 2, 4)

title('Lower half, right side')

CHAPTER 6 GRAPHS AND PLOTS

Upper half
1.0 . .
0.8}
0.6
0.4
0.2f
>80 Lower ﬁglf, left 5ide0'4 ®Bower half,of?ght side
1.0 , : . . 1.0 . . : .
0.8} 1 os}
0.6f { o6}
0.4} { oaf
0.2f 1 o2l

0'?),0 D,IZ 0:4 0:6 0:8 1.0 0'%.0 0:2 0:4 0:6 0:8 1.0

Figure 6-6. Subplots of varying sizes

Tip Subplots are especially useful in visualizing several aspects of the same data. For example, the GPS
example in Chapter 1 shows x and y coordinates in one subplot and velocity in another subplot. Events (e.g.,
speeding) are marked in both, providing a visual link between the two subplots.

Erasing the Graph

The functions cla() and c1f() clear the axes and the figure, respectively. These functions are
useful when you’re working with an interactive environment and would like to clear the cur-
rent axes (i.e., setting the axes to default values and clearing the plotted lines). It’s also possible
to clear the figure altogether, erasing also the axes and subplots, using the c1f() function.

Lastly, you can choose to close the figure window; this is done by calling the function
close(). If you provide a number to close(), the figure associated with the number is closed.
So close(1) will close Figure 1, leaving other figures open. If you'd like to close all the figures,
issue close('all').

Adding Text

There are several options to annotate your graph with text. You've already seen some: using
the xticks() and yticks() function. The following functions will give you more control over
text in a graph.

197

198

CHAPTER 6 GRAPHS AND PLOTS

Title

The function title(str) sets str as a title for the graph and appears above the plot area. The
function accepts the arguments listed in Table 6-5.

Table 6-5. Text Arguments

Argument Description Values

fontsize Controls the font size 'large’, 'medium’,
'small’, or an actual size
(i.e., 50)

verticalalignment or va Controls the vertical alignment "top', "baseline’,

"bottom’, 'center'

horizontalalignment or ha Controls the horizontal alignment 'center’, 'left’, 'right’

All alignments are based on the default location, which is above the graph, centered. So
setting ha="right"' will print the title starting at the middle (horizontally) and extending to the
right. Similarly, setting ha="1left" will print the title ending in the middle of the graph (hori-
zontally). The same applies for vertical alignment. Here’s an example of using the title()
function:

>>> title('Left aligned, large title', fontsize=24, va='baseline')

Axis Labels and Legend

The functions xlabel() and ylabel() are similar to title() only they're used to set the x-axis
and y-axis labels, respectively. Both these functions accept the text arguments from Table 6-5:

>>> xlabel('time [seconds]')

Next on our list of text functions is legend(). The legend() function adds a legend box,
associating a plot with text:

>>> I = arange(0, 2*pi, 0.1)
>>> plot(I, sin(I), "+-', I, cos(I), 'o-")
>>> legend(['sin(I)", 'cos(I)'])

The legend order associates the text with the plot. Had I called legend() with the inverted
list, the result would be a wrong legend.

An alternative approach is to specify the label argument with the plot() function call,
and then issue a call to legend() with no parameters:

>>> I = arange(0, 2*pi, 0.1)

>>> plot(I, sin(I), '+-', label="sin(I)")
>>> plot(I, cos(I), 'o-', label="cos(I)")
>>> legend()

Figure 6-7 shows the addition of an x-axis label and legend.

CHAPTER 6 GRAPHS AND PLOTS

1.0 re
— sin(l)
e—e cos(l)
0.5}
0.0f
-0.5
~10% 1 2 3 Z 5 6 7

time [seconds]

Figure 6-7. Adding an x-axis label and legend

You can also control the location of the legend box via the loc parameter. This is impor-
tant if you don’t want the legend text to hide the graph line. loc can take one of the following
values: 'best', 'upper right', 'upper left', 'lower left', 'lower right', 'right’', 'center
left’, 'center right', 'lower center', 'upper center', and 'center'.Instead of using strings,
you can use numbers: 'best' corresponds to 0, 'upper left' corresponds to 1, and 'center’
corresponds to 10. Using the value 'best' moves the legend to a spot less likely to hide data;
however, performance-wise there may be some impact.

The function legend() has additional options that let you add a drop shadow and control
the spacing between the text within the legend, among other things. Consult with the interac-
tive help for additional information.

Text Rendering

The text(x, y, str) function accepts the coordinates in graph units x, y and the string to
print, str, and renders the string on the figure. You can modify the text alignment using the
arguments in Table 6-5. The following will print text at location (0, 0):

>>> figure()
>>> P].Ot([—l, 1]) ['1) 1])
>>> text(0, 0, 'origin', va='center', ha='center')

The function text() has many other arguments such as rotation (which was used in
Chapter 1) and fontsize. See help(text) for a complete list of arguments.

199

200

CHAPTER 6 GRAPHS AND PLOTS

Mathematical Symbols and Expressions

Last on our list of text-related functions is one that renders mathematical symbols and expres-
sions. The syntax to use mathematical symbols provided by matplotlib is similar to that of TeX.
To render mathematical expressions, use a raw string and enclose your mathematical expres-
sion with $ signs. For Greek letters, start with a slash followed by the name of the letter. So to
print Alpha (o), your string should be r'α'. Fractions can be created using the
\frac{num}{den} notation; for example, r' $\frac{\pi}{4}$' is the symbol = divided by four.
Subscripts are denoted with an underscore, so to render the text a, write r'a_i".

It is beyond the scope of the book to cover the entire TeX syntax supported by matplotlib.
For additional information, refer to the online matplotlib web site (at the time of the writing
of this book, the following link was available: http://matplotlib.sourceforge.net/users/
mathtext.html). That being said, whenever you encounter a mathematical expression in this
book, you're more than likely be able to figure out how it works with the small subset of com-
mands presented in this section.

Example: A Summary Graph

The script in Listing 6-6 is an example summarizing the functions we’ve discussed up to this
point: plot() for plotting; title(), xlabel(), ylabel(), and text() for text annotations; and
xticks(), ylim(), and grid() for grid control.

Listing 6-6. Plot Summary Example

I = arange(0, 2*pi+0.1, 0.1)
plot(I, sin(I), label='sin(I)")
title('y = sin(x)")
xlabel('x [rad]")
ylabel('Function y = sin(x)")
text(pi/2, 1, 'Max value', ha='center', va='bottom")
text(3*pi/2, -1, 'Min value', ha='center', va="top')
xticks(arange(0, 2*pi, pi/2), \
("o, r'$\frac{\pi}{2}$', r'\pis', r'\frac{3\pi}{2}$"))
xlim([0, 2*pi])
ylim([-1.2, 1.2])
grid()

The result of this example appears in Figure 6-8.

CHAPTER 6 GRAPHS AND PLOTS

Function y=sin(x)

Max:value

sin(x)

y:

Minivalue

I T 3n
2 2

Figure 6-8. Plot summary example

More Graph Types

While the regular line and marker plots are excellent visualization tools, they're hardly the only
ones. This section provides a quick overview of some other 2-D graph options.

Bar Charts

A favorite of many, bar charts allow quantitative comparison of several values. To use a bar
chart, call the function bar(left, height), where left is the x coordinates of the bar and
height is the bar height. The function bar () allows for considerable customization; issuing
help(bar) will provide most of the details.

Example: GDP, N Top Countries

For this example, which plots the purchasing power parity (GDP) of various countries, you'll
need the CIA GDP Rank Order file, available from the CIA World Factbook (https://www.cia.
gov/library/publications/the-world-factbook/rankorder/2001rank.txt); this is a tab-
delimited file, perfect for easy data processing. I'll assume that you've downloaded the file
and saved it in folder Ch6/data; the source code resides in Ch6/src, and the output files are
located in Ch6/images.

201

202

CHAPTER 6 GRAPHS AND PLOTS

First, we’ll define a function to read the data, as we will use it in several examples in the
chapter. The code in Listing 6-7 should be saved under file src/read world data.py.

Listing 6-7. Function read world data()

import csv, re

def read world data(N=10, fn='../data/2001rank.txt"'):
"""A function to read CIA World Factbook file.

N is the number of countries to process.
See https://www.cia.gov/library/publications/the-world-factbook/
rankorder/2001rank.txt."""

initialize return lists
gdP; labels = []J []

read the data and process it
for i, row in enumerate(csv.reader(open(fn), delimiter='\t")):
skip first several lines
if i> 3:
remove the dollar, comma and space characters
gdp_value = re.sub(r'[\$, 1", "', row[2])

store data in billions of dollars
gdp.append(float(gdp value)/1e9)
labels.append(row[1].strip())
stop analyzing the data after N countries have been processed
if 1> N+2:
break
return (gdp, labels)

The function reads data from the first N countries and returns their GDP alongside the
country names. I've made use of two modules. The first, the csv module, reads the data, which
is tab delimited. The second, the re module, gets rid of the dollar sign, comma, and space char-
acters in the GDP value field.

Armed with read world data() function, we turn to plot the bar chart (see Listing 6-8).

Listing 6-8. Plotting the GDP Bar Chart

a script to plot GDP bar chart
from pylab import *

initialize variables, N is the number of countries
N =275

execfile('read world data.py')
gdp, labels = read world data(N)

CHAPTER 6 GRAPHS AND PLOTS

plot the bar chart
bar(arange(N), gdp, align="center")

annotate with text
xticks(arange(N), labels)
for i, val in enumerate(gdp):
text(i, val/2, str(val), va='center', ha='center', color="yellow")
ylabel('$ (Billions)')
title('GDP rank, data from CIA World Factbook')

The script by now should be quite readable. Notice that I've decided to put the read
world data() function in a separate file, and so to be able to use the function, I've called the
function execfile('read world data.py').

If you scroll down to the end of CIA GDP rank order file, you'll find a note similar to this:

This file was last updated on 23 October, 2008

It’s a good idea to extract the date information and add it to the title (or some other spot of
your choice):

>>> last line = open('../data/2001rank.txt").readlines()[-1]
>>> title('CDP rank, data from CIA World Factbook, '+last line[31:-1])

Alternatively, you can modify the function read world data() to return this string as well.
Figure 6-9 shows our bar chart.

GDP rank, data from CIA World Factbook
14000 - - - - -

12000 |

10000

8000

% (Billions)

6000 |

4000

T

7099.0

2000

United States China Japan India Germany

Figure 6-9. Bar chart showing World GDP rank

203

204

CHAPTER 6 GRAPHS AND PLOTS

It’s also possible to add error bars. To add an error bar equivalent to +1000 billion dollars
(talk about an error, eh?), add this line to the script shown in Listing 6-8, just after the bar()
function call:

errorbar(arange(N), gdp, 1000*ones(N), color="k")

Finally, the function barh() plots a horizontal bar chart instead of a vertical one should
you require one.

Histograms

Histograms are charts that show the frequency, or occurrence, of values. In matplotlib, the
function hist() is used to calculate and draw the histogram chart. At a minimum, you must
supply an array of values. You can control the number of cells in a histogram by specitfying
them as follows: hist(values, numcells). Alternatively, you can specify the histogram bins
hist(values, bins), where bins is a list holding histogram bin values. The return value from
hist() is a tuple of probabilities, bins, and patches. Patches are used to create the bars; I'll go
into more detail in the “Patches” section later in the chapter.

The function hist() has other customization options, including the histogram orientation
(vertical or horizontal), the alignment of bars, and more. Again, refer to the interactive help:
help(hist).

Example: GDP, Histogram

We turn again to the GDP ranks from the CIA World Factbook; this time we plot a histogram
of the N largest economies. Again, we use the read world data() function implemented in the
previous example (see Listing 6-9).

Listing 6-9. Plotting GDP Histogram

a script to plot GDP histogram
from pylab import *

initialize variables; N is the number of countries, B is the bin size
N, B = 50, 1000

execfile('read world data.py')
gdp, labels = read world data(N)

plot the histogram
prob, bins, patches = hist(gdp, arange(0, max(gdp)+B, B), align='center')

annotate with text
for i, p in enumerate(prob):
percent = int(float(p)/N*100)
only annotate non-zero values
if percent:
text(bins[i], p, str(percent)+'%",
rotation=45, va='"bottom', ha='center')

CHAPTER 6 GRAPHS AND PLOTS 205

ylabel('Number of countries')
xlabel('Income, billions of dollars')
title('GDP histogram, %d largest economies' % N)

some axis manipulations
x1im(-B/2, x1im()[1]-B/2)

Figure 6-10 shows the resulting graph.

GDP histogram, 50 largest economies
40 : . : :

35

30

28]
w

Number of countries
= %]
wn =]

=
(=]

oo oo oe

4000 5000 8000 10000 12000
Income, billions of dollars

Figure 6-10. GDP histogram, N largest economies

Again, the script should prove quite readable. I'd like to turn your attention to what might
appear to be an odd modification I've made to the x-axis using the call to function x1im().
The purpose of this call is to modify the default behavior of the x-axis ranges. The motivation
behind this modification is that since I've chosen 'center' for the histogram bins, the auto-
matic x-axis range includes negative values, because the leftmost bin is centered at zero but
has a width, part of it in the negative x-axis. I didn'’t like this behavior and chose to override it
by manually setting the axis. Instead of setting a fixed number, I've first retrieved the current
axis by calling x1im(), and then modified the x-axis by subtracting and adding half the bin
width, B/2, to the axis.

As a general rule, when you modify default behavior like this, try to use parameters as
much as possible (in the preceding example, using the parameter B, not the value 1000, and
retrieving current values with x1im()); this will allow for more flexible scripts that cater to a
wider range of input values.

206 CHAPTER 6 GRAPHS AND PLOTS

Pie Charts

Pie charts are as simple to use as bar charts. The function that implements pie charts is
pie(x), where x holds the values to be charted.

Example: GDP, Pie Chart

Listing 6-10 presents a script to generate a pie chart, shown in Figure 6-11, again making use of
the function read world data().

Listing 6-10. Plotting a GDP Pie Chart

a script to plot GDP pie chart
from pylab import *

initialize variables, N is the number of countries
N = 10

execfile('read_world_data.py')
gdp, tags = read_world data(N)

plot the bar chart

pie(gdp, labels=tags, shadow=True)
title('GDP rank, data from CIA World Factbook')

GDP rank, data from CIA World Factbook

United States

China

Italy

Japan Brazil

France

Russia
Germany United Kingdom

Figure 6-11. GDP pie chart, N largest economies

CHAPTER 6 GRAPHS AND PLOTS

Note I've decided to use the variable tags instead of 1abels so that the call to pie() would be a
little less confusing. Had | stuck with the original name, labels, the call to pie would’ve been pie(gdp,
labels=1abels, shadow=True), which still would’ve worked, but would seem a bit confusing in my
opinion.

Logarithmic Plots

The functions semilgox() and semilogy() are used to plot the x-axis and y-axis in a logarithmic
scale, respectively. Logarithmic plots of type semilogy() are common when plotting power or
intensity values, for example, those of the Richter magnitude scale, which measures seismic
energy. Likewise, measurements of quantities used with frequencies, for example, are com-
monly plotted on a logarithmic x-scale denoting octaves and decades. There’s also the option
of using a loglog() plot, which means both x-axis and y-axis are logarithmic. This is the case in
Bode plots, common in engineering fields.

All three functions, semilogx(), semilogy(), and loglog(), can be modified with argu-
ments similar to those presented with the plot() function.

The function logspace(start, stop, numpoints=50, endpoint=True, base=10.0) can be
useful in creating a range of values to be plot with the preceding functions. The start and stop
values are the exponent values. logspace() generates logarithmically spaced values between
10**start and 10**stop. You can decide whether the end value, 10**end, is returned by speci-
fying endpoint=True. If you'd like a base other than 10, set base to the value you require.

>>> figure()

>>> I = 2¥logspace(1, 5, 5)

>»> 1

array([2.00000000e+01, 2.00000000e+02, 2.00000000e+03,
2.00000000e+04, 2.00000000e+05])

>>> semilogx(I, [20, 19, 8, 2, 2], '+-')

>>> grid()

>>> title('Logarithmic plot, semilogx()"')

>>> xlabel('Frequency [Hz]')

>>> ylabel('Amplitude [dB]")

Figure 6-12 shows the results of the preceding example.

207

208

CHAPTER 6 GRAPHS AND PLOTS

Logarithmic plot, semilogx()

Amplitude [dB]

2 L
10! 10° 10° 10° 10° 10°
Frequency [Hz]

Figure 6-12. Logarithmic plot

Notice that when plotting with semilogx(), semilogy(), and loglog(), the labels are the
original values, not the logarithms of the values. If you'd like to print the logarithmic values,
you should probably use a regular plot () function with log() or log10() of the values. This is
useful, for example, in estimating the energy in decibels (dB):

>>> def db(x):
"""Returns the value of x, in decibels.
return 20*log10(abs(x))

>>> plot(db(array([1000, 980, 970, 400, 30, 2, 1, 1])))

Polar Plots

Polar plots draw polar coordinate values: a radius at a given angle. Polar plots are commonly
used to draw antenna radiation patterns, as they depict the energy the antenna transmits at
any given angle. Polar plots are implemented using the polar(theta, 1) function.

To set the labels along the radius, use the rgrids(radii, labels) function, which works
similarly to xticks() and yticks().If you don’t provide the labels value, the radii values are
used as labels. You can also set the angle at which the labels are plotted (the default is 22.5
degrees). Similarly, the function thetagrids() plots the angle ticks and labels, as demonstrated
in Listing 6-11.

CHAPTER 6 GRAPHS AND PLOTS

Listing 6-11. A Polar Plot

theta = arange(0, 2*pi, 0.01)

polar(theta, cos(theta), theta, -cos(theta))

rgrids([0.5, 1.0], ['Half', 'Full'])

theta labels = ['0', r'$\frac{\pi}{2}$"', r'π"', r'$\frac{3*\pi}{2}$']
thetagrids(arange(0, 360, 90), theta labels)

title(r'A polar plot of $\pm cos(\theta)$")

Figure 6-13 shows the resulting polar plot.

A polar plot of + cos(6)
T

2

Figure 6-13. Polar plot

In the title, I've used the + symbol denoted by '\pm".

Stem Plots

Stem plots draw a vertical line from (x, 0) to (x, y) for every (x, y) value as well as a marker at (x,
y). Stem plots are used to denote discrete data and are popular for plotting filtering windows
(see Listing 6-12).

Listing 6-12. A Stem Plot of Filter Windows

from pylab import *

N = [4) 8, 16, 64]

for i, n in enumerate(N):
subplot(2, 2, i+1)

209

210 CHAPTER 6 GRAPHS AND PLOTS

stem(arange(n), hamming(n))
xticks(arange(0, n+1, n/4))
yticks([0, 0.5, 1])
x1im(-0.5, n+0.5)
legend(['N=%d"' % n])

Figure 6-14 shows the results of this listing.

Cl ’] e Lo K] o oN—

0.5F 1 05¢f

0 1 2 3 4 o 2 4 6 8

1.0 T == 1.0 =3 =—|@
|] I -
ool TI L] JTTI.E 1I||||||” I ”""Ilu

Figure 6-14. Stem plots of a Hamming window with different N values

In the preceding example, I've made use of the legend() function to denote the number
of elements used in the plot, as I think it’s clearer than a title. Notice that I had to supply a list
to legend(['N=%d" % n]) (notice the brackets). Had I not supplied a list, the string 'N = %d’
would have been split because legend() assumes a sequence of elements and assigns each one
a plot line. I've also made use of the hamming() function to create a Hamming window, com-
monly used in filtering values.

Additional Graphs

Matplotlib also supports a great number of graphs used to depict more complex data. Here’s a
short list of some of the graphs available:

¢ Functions contour() and contourf() are used for contour plots. Contour plots draw a
line connecting equal (x, y) value pairs. They're used in weather maps, detailing lines of
equal pressure or temperature; in topographical maps, detailing the terrain; in physics
graphs, to describe fields; and more.

CHAPTER 6 GRAPHS AND PLOTS

¢ Function specgram() displays the frequency contents of data over time. specgram() can
be used, for example, to plot the frequencies of a sound wave as a function of time.

* Both the contour() and specgram() functions rely on a color map to depict the data.
Color maps are a relation between a value and a color. Matplotlib provides a set of
color maps that include such names as autumn() and hot() to ease the selection of
a color map.

¢ Function quiver() implements quiver plots, which are typically used to describe force
fields in physics. The quiver plot is a set of arrows depicting the force at each point
(direction and magnitude).

Example: Plotting Frequency Content of a Signal

At times it’s of value to plot the frequencies a signal is composed of as a function of time. For
example, in an audio signal, a different frequency means a different note, so plotting frequen-
cies as a function of time is a possible “musical visualization.”

In this example, shown in Listing 6-13, we create a signal composed of several discrete fre-
quencies and display those frequencies as a function of time using a specgram().

Listing 6-13. Specgram of a Signal

from pylab import *

Fs = 256

times = [3, 7, 5]
frequencies = [100, 20, 80]

y = array([])

for t, f in zip(times, frequencies):
x = cos(2*pi*arange(t*Fs)/Fs*f)
y = append(y, x)

specgram(y, 256, Fs)
xlabel('Time [sec]')
ylabel('Frequency [Hz]')

I've set the frequency of sampling at 256 samples per second and created a signal com-
posed of 100 Hertz (Hz) for 3 seconds, 20 Hz for 7 seconds, and then 80 Hz for 5 seconds. I then
plot the signal using specgram(), with the results shown in Figure 6-15.

211

212 CHAPTER 6 GRAPHS AND PLOTS

120

100

80

60

Frequency [Hz]

40

20

0 2 4 6 8 10 12 14
Time [sec]

Figure 6-15. A specgram

Figure 6-15 clearly shows that in the first 2 seconds the frequency is 100 Hz, in the next 8
seconds the frequency is 20 Hz, and in the last 5 seconds the signal’s frequency is 80 Hz.

Note If you look closely at the figure, you'll notice there’s a half-a-second shift in the specgram. This is
due to an overlapping window of size 128 samples. See help(specgram) for information on the overlapping
window.

You can change the colors used to display the specgram using a color map func-
tion. Simply issue hot () or autumn() at the end of the script, and observe the results. See
help(colormaps) for a full account of available colormaps.

Example: A Repelling Force Field

The following example illustrates the use of quiver() to depict a force field. At each point in
the figure, an arrow points at the direction of the acting force as well as its magnitude, denoted
by the size of the arrow.

from pylab import *

x = arange(-5, 6, 1)
arange(-5, 6, 1)

<
1}

u, v = meshgrid(x, y)
quiver(u, v)

xticks(range(len(x)), x)
yticks(range(len(y)), y)

axis([-1, 11, -1, 11]
axis('scaled")

title('A repelling force field!")

)

CHAPTER 6 GRAPHS AND PLOTS

I've made use of the function meshgrid(x, y), which generates two matrices: the first is a
matrix of repeating values of x, and the second is a matrix of repeating values of y. The output
is used to plot the quiver, shown in Figure 6-16. I then update the axis to reflect the proper

ranges.
A repelling force field!

JNKNXAN Y P L LA
ANNKN KX X % F F ST
sINN XN XN Y b A A7
™ N RN % O b4 4 o]
Of = — - - = e e e —
A= = &+ &2 IO . U
2Waer o & F F T U AN W S~
e s 4 P U N NN\
N/ 4 VN N\
s/ d VNN NN

5 4 -3 2 -1 0 1 2 3 4 5

Figure 6-16. A quiver plot depicting a force field

Getting and Setting Values

As you start plotting and generating visual output, you'll find that you're using more and more
of the “helper” functions, functions that don’t necessarily plot the data, rather control the
graph behavior and arrange labels just the way you want them.

So far we’ve used two methods to modify a plot behavior. One was using dedicated func-
tions such as axis(), x1im(), and ylim() to control the plot ranges. The other method you've
seen was passing arguments to functions, for example, the rotation argument in the text()

function.

213

214

CHAPTER 6 GRAPHS AND PLOTS

A third method is available, one that makes use of the object-oriented design of matplot-
lib. It involves two functions, setp() and getp(), which retrieve and set a matplotlib object’s
parameters. The benefit of using setp() and getp() is that automation is easily achieved.

Up to this point we’ve suppressed the output from matplotlib so that the interactive
scripts are easier to follow. We now turn to looking at those outputs. Whenever you issue a
plot() command, matplotlib returns a list of matplotlib objects. This is important; the return
value from calling plot () is a list of objects, not the matplotlib object itself, even if you only
have one line to plot.

>>> from pylab import *

>>> p = plot(arange(5))

>>> type(p)

<type 'list'>

>>> type(p[0])

<class 'matplotlib.lines.Line2D'>

The function setp(matobj) prints a list of properties you can set for matob3j, where matobj
is a matplotlib object. The function accepts either a list of matplotlib objects or just one object:

>>> setp(p[0])
<output suppressed>

If you're not sure of what values a parameter can take, issue setp(p, 'param'):

>>> setp(p[0], 'visible")
visible: [True | False]

So to hide the plot, you could issue
>>> setp(p[0], visible=False)
or to set the label associated with a line, issue

>>> setp(p[0], label='Line1")
>>> legend()

The function setp() also accepts lists of matplotlib objects, in which case all the matplot-
lib objects in the list will be set.

Nom'quwaammwmpmmmmemd%ememmmﬂmmbemdemqmm$sﬁp@,
'linewidth"). To set a parameter value, do not include the quotes, but do use an assignment: setp(p,
linewidth=4).

Similarly, to retrieve values, use the getp() function. The function getp() is a little less for-
giving in that it requires one matplotlib object, not a list of objects.

>>> getp(p[0], 'linewidth")
1.0

CHAPTER 6 GRAPHS AND PLOTS

Setting Figure and Axis Parameters

In the preceding examples we stored the return value from the call to the function plot(),
which is a matplotlib object of a line, specifically the line we drew (actually, a list containing
one line). But how do we modify the behavior of the figure or the axis?

The function gcf() returns a handle to the current figure. The function gca() returns a
handle to the current axis. Armed with these, we can now modify the axis and figure param-
eters.

To set the y label, instead of calling ylabel('Y value'), we could issue the command

>>> setp(gca(), ylabel="Y value')

But what are the benefits of using setp() in this manner over simply calling ylabel()? The
answer is automation. Let’s turn to an example.

Example: Modifying Subplot Parameters

Suppose you'd like to write a function that receives a figure number and then modifies all the
subplot titles in the figure (if they exist) to numbered titles. For example, for a figure of 2-by-2
subplots in use, you'd like the subplot titles to be from 1 to 4 (if they all exist). You don’t know
in advance how many subplots are in a figure.

This is an ideal case for using setp() and getp(), as demonstrated in Listing 6-14.

Listing 6-14. Numbering Subplots

from pylab import *
def number subplots(fignum):

"""Numbers the subplots in a figure."""
switch to the requested figure
figure(fignum)

fig = gcf()

for i, fig axe in enumerate(getp(fig, 'axes')):
fig axe.set title(str(i+1))

axis()

Some notes regarding the function number_subplots(). First, we set the focus to the figure
we’d like to work on by calling figure(fignum). Next, we retrieve a handle to the figure with
gcf(). The following step assumes some knowledge of the matplotlib object structure. But
even if you're not familiar with the structure, it’s pretty simple to figure out what'’s going on by
exploring the objects. To illustrate this, create a simple figure with two empty subplots:

>>> figure()
>>> axl = subplot(2, 1, 1)
>>> ax2 = subplot(2, 1, 2)

215

216

CHAPTER 6 GRAPHS AND PLOTS

Now retrieve the current figure properties with getp(gcf()):

>>> getp(gef())

alpha = 1.0

animated = False

axes = [<matplotlib.axes.AxesSubplot object at 0x035B4350>, <matplotlib.axes
.AxesSubplot object at 0x035B7AF0>]

children = [<matplotlib.patches.Rectangle object at 0x03594FB0O>, <matplotlib
.axes.AxesSubplot object at 0x035B4350>, <matplotlib.axes.AxesSubplot object at
0x035B7AF0>]

(I've removed the extra output lines as they’re not important for the discussion.) Look
closely at two properties: axes and children. The parameter axes holds a list of two values,
and the parameter children holds a list of three values. Further examination shows that the
axes objects are all contained within the children values. In reality, these are the two axes for
the two subplots. So to get a list of these, we can simply call getp(gcf(), 'axes'), as the code
indeed does. We then set the titles and call the axis() function to force a redraw.

There’s a caveat in the implementation of the function number subplots(): numbering is
performed in accordance with the creation of the subplots. That is, if the bottom-left subplot
was created before the top-left subplot, it will have the smaller title value associated with it
and not the regular subplot numbering (left to right, top to bottom). If you'd like to change
this, you'll have to look at the positions of the subplots and assign numbers accordingly. This
is somewhat more complex and not all that educational, so I've opted to leave it out of the dis-
cussion.

Alot of the parameters that are accessible via setp() and getp() are also accessible by
means of dedicated functions. Instead of setting the y-axis label parameter with setp(), you
can call the ylabel() function. When possible, I prefer using the function version over setp()
and getp() because I think it’s easier to follow.

Exploring the matplotlib object by use of the dir statement is also a very good method to
probe the capabilities of a matplotlib object. Most of the functions are self-explanatory and
let you set and retrieve values associated with a matplotlib object. In case you're not sure, use
the help() function in an interactive Python session. From a partial comparison I've made,
matplotlib object methods are equivalent to the properties available with getp() and setp(),
s0 you can use either:

>>> matobj = gcf()

>>> [func for func in dir(matobj) if func.startswith('get')]

['get alpha', 'get animated', 'get axes', 'get children', 'get clip box', 'get c
lip on', 'get clip path', 'get contains', 'get dpi', 'get edgecolor', 'get facec
olor', 'get figheight', 'get figure', 'get figwidth', 'get frameon', 'get label'
, 'get picker', 'get size inches', 'get transform', 'get transformed clip path a
nd_affine', 'get visible', 'get window_extent', 'get zorder']

Final note: working with setp() and getp() or the set and get methods of the matplotlib
object is an advanced topic. These functions allow closer control of the behavior of plots and
graphs and are not easy to master. They require a good understanding of the matplotlib object

CHAPTER 6 GRAPHS AND PLOTS

hierarchy. Regardless of the complexity, I believe this is an important concept. As you draw
more graphs and deal with more data, you'll find that the default functionality, although great,
isn’t exactly what you want. And in these cases, turning to setp() and getp() is a good option.
I hope that I've exposed you enough to the topic to let you experiment on your own.

Patches

So far we’ve worked with text and lines, which are both implemented as matplotlib objects.
But those two objects at times are not enough. A third object, the patch, allows drawing other
types of shapes that don’t necessarily fall under the category of a line or text.

The way you work with patches is that you assign them to an already existing graph,
because in a sense patches are “patched” on top of a figure. Table 6-6 gives a partial listing of
available patches. In this table, the notation xy indicates a list or tuple of (x, y) values.

Table 6-6. Available Patches

Patch Description

Arrow(x, y, dx, dy) An arrow, starting at location (x, y) and ending at location
(x+dx, y+dy)

Circle(xy, 1) A circle centered at xy and radius r

Ellipse(xy, w, h, angle) An ellipse centered at xy, of width w, height h, and rotated

angle degrees
Polygon([xy1, Xy2, xy3,...]) A polygon made of vertices specified by xy points

Wedge(xy, r, thetal, theta2) A wedge (part of a circle) centered at xy, of radius 1, starting
at angle thetal and ending at angle theta2

Rectangle(xy, w, h) A rectangle, starting at xy, of width w and height h

To use patches, follow these steps:

1. Draw a graph.
2. Create a patch object.
3. Attach the patch object to the figure, using the add_patch() function.

Note Aithough this might seem like a considerable effort to add, say an arrow patch, in reality these three
steps can be folded into one line. To draw an arrow from (0, 0) to (1, 1), issue gca() .add_patch(Arrow(0,
0, 1, 1)).

217

218

CHAPTER 6 GRAPHS AND PLOTS

Example: Adding Arrows to a Graph

In this example we’ll draw a graph and connect every two points on the graph with an arrow.
First draw a simple graph:

>>> x = arange(10)
>>> Yy = x*¥*¥2
>>> plot(x, y)

Now create a list of all the arrows:
>>> ars = [(x0, yo, dx, dy) for (x0, yo, dx, dy) in zip(x, y, diff(x), diff(y))]

This is a bit tricky. First, the function diff() creates a difference of every two elements in
avector, for example, diff([1, 2, 3, 30])is[1, 1, 27]. This is exactly what we need for our
dx and dy values for the Arrow() function. Second, we combine x, y, dx, and dy using the zip()
function and return a list of tuples by using a list comprehension. Luckily for us, zip() uses the
shortest vector, so even though diff() vectors are shorter by 1, it’s not an issue.

Now, all that’s left is to iterate through the list comprehension and attach an arrow to the
graph:

>>> cur_axes = gca()
>>> for x0, yo0, dx, dy in ars:

cur_axes.add patch(Arrow(x0, yo, dx, dy))
>>> title('Arrows!")

Figure 6-17 shows the added arrows.

Arrows!
90 - -

80
70+
60
50
40
30+
20

10

Figure 6-17. Patching arrows

CHAPTER 6 GRAPHS AND PLOTS

Needless to say, Arrow(), as well as other patches, can be customized considerably; you
can adjust color, length, width, and more.

Example: Some Other Patches

The code in Listing 6-15 generates a list of patch objects and attaches them to a figure. The fig-
ure is originally empty.

Listing 6-15. Some Patches

from pylab import *

Import Ellipse and Wedge to current namespace
from matplotlib.patches import Ellipse, Wedge

a list of some patches
my patches = [
Arrow(0, 4, 0, -4, facecolor='g'),
Circle([-2, 2], 1.5, linewidth=4, fc='orange'),
Ellipse([2, 3], 4, 1, 45.0, edgecolor="r"),
Polygon([[4, 2], [3, 3], [1, -1], [3, -1]], ls='dashed', fill=False),
Wedge([-1, 0], 3, 200, 300, fc='m', ec="m"),
Rectangle([1, -2], 3, -2, fill=False, lw=5, ec="r")

]

draw a figure
figure()
aXiS(['5) 5) '5) 5])

add the patches

cur_ax = gca()

for p in my_patches:
cur_ax.add_patch(p)

title('Patches")

Figure 6-18 shows the results of the code in Listing 6-15.

219

220

CHAPTER 6 GRAPHS AND PLOTS

Patches

—a =2 0 2)
Figure 6-18. Some patches

The patch objects E11ipse and Wedge are not automatically imported to the current
namespace when you issue from pylab import * (unlike Arrow, Circle, Polygon, and
Rectangle), so I've manually imported them to the namespace with the statement from
matplotlib.patches import Ellipse, Wedge.

I've also passed arguments to the patches to show how to use them: facecolor (or fc),
edgecolor (or ec), linestyle (or 1s), linewidth (or 1w), and fill.

Final Notes and References

We’ve explored the matplotlib package, a rich package that supports plotting in Python. The
strong suit of matplotlib is easy plotting of simple and complex graphs with a high-number of
customization options. If you're not familiar with the package, exploring it with IPython’s tab
completion, complemented by help(), trial and error, and the manual, should yield excellent
results in no time.

For the purposes of the book and the examples provided, this chapter covers all topics.
However, your needs may be different, and I hope that you now have the tools to explore this
package on your own.

The matplotlib web site is an excellent source of information, and I encourage you to
explore it and learn more about the package.

¢ The matplotlib web site, http://matplotlib.sourceforge.net/

CHAPTER 7

Math Games

Preprocessing Data Prior to
Visualization

M ath is a fundamental tool in data visualization. Python provides outstanding math support
and as such is an ideal development environment for analysis prior to visualization. There are

several reasons I find using Python for this purpose so appealing. First is Python’s interactive
nature: it’s easy to manipulate data and observe intermediate results, as well as modify and
quickly plot them. The second reason, and probably the factor contributing the most, is the
wide range and popularity of freely available, mature numerical packages. Lastly, Python is
also structured, allowing the development of production-level code used to generate quality
reports.

In this chapter we’ll explore Python’s math capabilities, the built-in modules math,
cmath, and random, and the excellent package we’ll use extensively (and have used in previ-
ous chapters), NumPy.

Modules math and cmath

Python provides two flavors of math modules: math and cmath. The math module has
functions that are common to most programming languages and in essence is using the C
math function calls. Functions from module math return floating-point numbers. In case of
improper arguments an error will be raised:

>>> import math

>>> math.sqrt(-1)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: math domain error

221

222

CHAPTER 7 MATH GAMES

Module cmath returns complex results:

>>> import cmath
>>> cmath.sqrt(-1)

1

Note If you see -1.#IND in response to sqrt(-1), it means that NumPy is already imported but without
complex math. This is probably due to a previously issued from numpy import * or from pylab import
* command, or you have a Python distribution that loads NumPy automatically, which automatically issues
these commands for you.

Complex numbers are supported natively in Python with the complex built-in data type.
This is probably a contributing factor to Python’s popularity as a platform for numerical
computation. The imaginary part of complex number has a trailing j as shown in the preced-
ing example. Most arithmetic operations and function calls can be performed on complex
numbers.

If you do not require complex number support, opt for using module math over cmath.
First, it will provide you with valuable exception information if the parameter to a function is
out of the domain, as shown previously. Second, cmath always returns complex results, even if
results can be represented as noncomplex numbers, in which case the imaginary value will be

zero. Lastly, some functions are only available in the math module, as listed in Table 7-1.

Table 7-1. Functions Available Only in the math Module

Function Description Example
ceil(x) Returns the smallest integer greater thanor ~ ceil(2.5) returns 3.0.
equal to x ceil(-2.5) returns -2.0.
floor(x) Returns the largest integer less than or floor(2.5) returns 2.0.
equal to x floor(-2.5) returns -3.0.
fabs(x) Returns the absolute value of x fabs(-2.5) returns 2.5.
fmod(x, y) Returns the remainder of x divided by y fmod(2.5, 2) returnsO.5.
fmod(-2.5, 2) returns -0.5.
fmod(2.5, -2) returns0.5.
fmod(-2.5, -2) returns -0.5.
modf (x) Returns the integer and fractional parts of x ~ modf(2.5) returns (0.5, 2.0).
modf(-2.5) returns (-0.5, -2.0).
frexp(x) Returns the exponent, e, and mantissa, m, frexp(2.5) returns (0.625, 2).

ldexp(m, e)

such that x = mx2°

Returns mx2€

frexp(-2.5) returns (-0.625, 2).

ldexp(0.625, 2) returns2.5.
ldexp(-0.625, 2) returns -2.5.

CHAPTER 7

MATH GAMES 223

Power, logarithmic, trigonometric, and hyperbolic functions are available in both math
and cmath modules, as listed in Table 7-2, with the exception of the functions pow(x, y),
atan2(x, y), and hypot(x, y).

Table 7-2. Power, Logarithmic, Trigonometric, and Hyperbolic Functions in the math and cmath

Modules

Function Description Example (math) Example (cmath)

Power

exp(x) e exp(1) returns exp(pi*1j) returns -1.
2.7182818284590451 (e).

pow(X, y) XY pow(-2, 2) N/A, use operator **,
returns 4.

sqrt(x) Square root of x sqrt(4) returns 2. sqrt(2j) returns 1+17.

Logarithmic

log(x[, base])

log10(x)

Trigonometric

sin(x), cos(x),
tan(x)

asin(x), acos(x),
atan(x)

atan2(y, x)

hypot(x, y)
Hyperbolic

sinh(x), cosh(x),
tanh(x)

Constants

e, pi

Logarithms of x—if base is
not specified, defaults to
natural logarithms

Logarithms of x, base 10

Sine, cosine, and tangent
of x

Arc sine, arc cosine, and
arc tangent of x

Arc tangent of y/X, preserves
quadrant information and
avoids division by zero

V(x2+y?)

Hyperbolic sine, cosine,
and tangent of x

2.7182818284590451,
3.1415926535897931

log(16, 2) returns 4.

log10(3) returns
0.47712125471966244.

sin(pi/2) returns 1.0.

asin(1) returns

1.5707963267948966
(m/2).

atan2(-1, 1) returns

-0.78539816339744828
(-/2).

hypot(3, 4) returns5.0.

cosh(0) returns 1.0.

log(-1) returns
3.14159265358979317 (jm).

log10(-1) returns
1.3643763538418414].

cos(1j) returns
(1.5430806348152437+07).

acos(2) returns
1.3169578969248164].

N/A

N/A

sinh(1j*pi) returns
1.2246063538223773e-016]
0).

224

CHAPTER 7 MATH GAMES

FUNCTION ATAN2

Function atan2(y, x) is very useful in that it maintains angle values of a point in a plane, as shown previ-
ously in Chapter 1. That is, if x and y represent coordinates in a plane, atan2(y, x) returns the angle from
the origin. Consider the point located at (1,1): its angle is 45 degrees (rt/4); point (-1,—1) has an angle of
—135 degrees (or 225 degrees). If you were to use atan(y/x), both points (1,1) and (—1,~1) would yield 45
degrees, losing quadrant information. However, using atan2(y, x) the correct values are returned.

There’s also a side benefit that if x is zero, the angle is calculated properly, whereas atan(y/x) would
raise an exception. Function atan2 () is not particularly useful in complex math as values already represent
Cartesian points.

Example: A Newton Fractal

In this example we use complex math to create a fractal based on the Newton-Raphson
method (or simply Newton’s method). Fractals are used by scientists to investigate chaotic
systems: systems whose state over time is highly dependent on initial conditions. The purpose
of this example is to show the capabilities of Python’s complex math and explore some ways to
visualize data other than a regular plot; fractals are a perfect match.

Newton’s method is an iterative procedure to find numerical solutions, or roots, to an
equation of the form f(z) = 0 using an initial guess. One of the characteristics of the method
is that in case of several solutions, we cannot tell in advance, based on the initial guess, what
the converged solution will be (usually). If you were to map out the initial guesses based on
the solution, you would find they converge to results in an image known as Newton’s fractal,
which is geometrically interesting.

If you’d like to read more about Newton’s method, have a look at http://en.wikipedia.
org/wiki/Newton%27s_method; there’s a lot of additional information available on the Internet.

The function we’ll map is f(z) = z* + 1. This function has four roots:

>>> from cmath import pi, cos, sin
>>> solutions = [cos((2*n+1)*pi/4)+1j*sin((2*n+1)*pi/4) for n in range(4)]

To verify that these are indeed solutions to the equation:

>>> [z**4 for z in solutions]
[(-1+4.4408920985006262e-0167), (-1+4.4408920985006262e-0167), (-1.0000000000000
004+6.6613381477509412e-0167), (-1+8.8817841970012523e-0167)]

The imaginary parts are on the order of scale of 10-1® and are due to inaccuracies of the
trigonometric functions, &, and the floating-point representation; the imaginary parts are
actually zero.

Newton’s method takes an initial guess and calculates the next guess by applying
the equationz =z —f(z) / f'(z), where f'(z) is the derivative of f(z), or in our case z =
z-(z**4+1)/(4*2**3). To check whether the new value is a “good” solution, we reapply it to
the original equation, f(z), and check how close it is to zero. In reality, we check whether the
absolute value is less than delta, a predefined small value. The number of iterations is an
indication of how fast the solution was reached. We’ll use this to select the color depth of each
solution: solutions that converged fast will be brighter. Once our guess converges, we check

CHAPTER 7 MATH GAMES

what solution it converged to and color it accordingly. Since there are four solutions, there will
be four colors (at varying color depths) in the fractal. Listing 7-1 generates said Newton’s frac-
tal in the region (0, 0)-(1, 1).

Listing 7-1. fractal.py

from PIL import Image
from cmath import *

creates a z**4+1 = 0 fractal using the Newton-Raphson
root finding method

delta = 0.000001 # convergence criteria
res = 800 # image size
iters = 30 # number of iterations

create an image to draw on, paint it black
img = Image.new("RGB", (res, res), (0, 0, 0))

these are the solutions to the equation z**4+1 = 0 (Euler's formula)
solutions = [cos((2*n+1)*pi/4)+1j*sin((2*n+1)*pi/4) for n in range(4)]
colors = [(11 0, 0), (O) 1, O)) (O) 0, 1)) (11 1, O)]

for re in range(0, res):
for im in range(0, res):
z = (re+lj*im)/res
for i in range(iters):
try:
z -= (z%*4+1)/(4*z**3)
except ZeroDivisionError:
possibly divide by zero exception
continue
if(abs(z**4+1) < delta):
break

color depth is a function of the number of iterations
color depth = int((iters-i)*255.0/iters)

find to which solution this guess converged to
err = [abs(z-root) for root in solutions]
distances = zip(err, range(len(colors)))

select the color associated with the solution
color = [i*color depth for i in colors[min(distances)[1]]]
img.putpixel((re, im), tuple(color))

img.save('../images/fractal z4s %03d _%03d _%03d.png' % \
(iters, res, abs(logio(delta))), dpi=(150, 150))

225

226

CHAPTER 7 MATH GAMES

We use the Python Imaging Library (PIL) to draw the fractal. We start by creating an RGB
image of size res specifying the fractal’s resolution. We then implement Newton’s method
with a for loop, and an if statement to check for convergence.

While the iteration is straightforward, deciding which of the four solutions a specific guess
converges to and then mapping to the right color and color depth requires some clarifications.

The colors list is composed of the colors red, green, blue, and yellow, each represented by
a tuple of Red-Green-Blue (RGB) values:

colors = [(11 0, O)) (O) 1, O)) (0) 0, 1)) (1) 1, O)]

Variable color_depth is directly responsible for the color depth (or shade) of the displayed
color. For a small number of iterations, color_depth is closer to 255, and for a greater number
of iterations, this number is closer to 0, resulting in a brighter color for faster converging points
(smaller number of iterations).

Once color_depth is calculated, we find the solution closest to our converging value. Since
we're using complex numbers, the value closest is the one with the minimum distance, or in
complex math, the one with the smallest value of err = abs(guess-solution).

To implement this, we generate a list of values corresponding to the distances using a list
comprehension. Here’s an example using an arbitrary point:

>>> Z

(0.70710678118883818+0.707106781188838187)

>>> err = [abs(z-root) for root in solutions]

>>> err

[3.23949326e-012, 1.41421356, 2.00000000, 1.41421356]

Next, we combine these values with the numbers 0-3, which represent the indices to the
colors list, using the zip() function:

>>> zip(err, range(len(colors)))
[(3.23949326e-012, 0), (1.41421356, 1), (2.0000000, 2), (1.4142135, 3)]

We then find the minimum error by calling the function min(). To find the correct color,
we index the color associated with min(distances)[1], which is the second element in the
zipped tuple. Maybe it’s easier to show interactively than explain:

>>> distances = zip(err, range(len(colors)))
>>> min(distances)

(3.23949326e-012, 0)

>>> min(distances)[1]

0

>>> colors[min(distances)[1]]

(1, 0, 0)

Finally, we use a list comprehension to multiply the RGB values by the color depth. This is
because the putpixel() method requires a tuple detailing the RGB values:

color = [i*color depth for i in colors[min(distances)[1]]]
img.putpixel((re, im), tuple(color))

CHAPTER 7 MATH GAMES

Tip As you experiment with parameters, you may wish to save some of the outputs. These runs can take
a considerable time to complete, so it’s a good idea to have different file names for the outputs as opposed
to a single file name, ensuring files are not accidentally overwritten. Unlike data files, the outputs of these
runs are dependent on input parameters and the code (e.g., version of the script) that generated them and
are not date or time dependent. It doesn’t matter whether the run was performed last week or last year;
the results should be the same. The notation I've used is one that details all the parameters used to create
the output within the file name: ' ../images/fractal z4s %03d %03d_%03d.png' % (iters, res,
abs(log10(delta))). Names of the output files detail the inputs that generated them. An even better
approach (one that in this case will somewhat disturb the pleasing output) is annotating the images with text
describing the parameters used. And lastly, if you use a version control system (see Chapter 2), the version
number of the script that generated the output is a very welcomed addition either in the file name or in an
annotation.

Figure 7-1 is a collage of outputs generated by the script with resolution=200 and values
of iters ranging from 1 to 9 (top leftis i = 1; bottomrightisi = 9). We’ll touch on collages in
Chapter 9. Figure 7-2 is the result of a longer run with resolution=800 and iters=30.

Figure 7-1. Collage of Newton’s fractals with iterations from 1 (top left) to 9 (bottom right)

227

228

CHAPTER 7 MATH GAMES

Figure 7-2. Newton’s fractal, max number of iterations equaling 30

Tip The preceding example explores the region (0, 0)—(1, 1). If you wish to explore around the origin, that
is, around (0, 0), change the line z = (re+1j*im)/restoz = ((re-res/2)+1j*(im-res/2))/res.

Module random

Other than mathematical functions, Python also provides a rich library for random numbers.
Random numbers are important in a variety of software applications. In game programming,
random numbers are used to change the behavior of elements in the game to make it more
interesting or unpredictable. When writing simulations, random numbers are used to generate

CHAPTER 7 MATH GAMES

data that simulates the real world. Random numbers can also be used to answer probability
questions, as you'll soon see.

The random module provides random values based on a wide variety of distribution func-
tions including uniform distribution, Gaussian distribution, and more. Module random also
supports Python’s lists naturally, with random functions operating on sequences.

Table 7-3 gives a partial list of some useful random functions.

Table 7-3. Functions of the random Module

Function Description Example/Note

Integers

randint(a, b) Returns a random number between ~ randint(0, 1) returnsOor1
aand b (including a and b) (randomly).

randrange([start,] Sameasrandint() exceptitallowsa randrange(3, 7, 2) returns3,5,
stop[, step]) step value or 7 (randomly).

Floating-Point Numbers

random() Returns a real value between 0.0 random()
and 1.0 (excluding 1.0)
uniform(a, b) Returns a real value between uniform(120, 220) returns a
a and b (excluding b) random number between 120
and 220 (excluding 220).
gauss(u, sigma) Returns a Gaussian distributed gauss(1, 2)

value with u as mean and sigma
as standard deviation

Module random provides an additional number of other distributions: Log normal and
Weibul, to name a couple. Refer to the Python Standard Library documentation for a full
account.

Using random to Solve Probability Questions

The following examples use the random module to solve probability-based questions
numerically.

Example: Hard Disk Head

Return to zero: Consider the following: a hard disk head is normally resting at location 0, rep-
resenting the start of the disk. Files (of size zero) are evenly distributed between location 0 and
1, where 1 represents the end of the disk. The head is required to access files randomly. After
each read, the head returns to location zero. The question is, what is the average distance the
head moves?

The answer is not hard: on average, the head moves a distance of 1.0 (don’t forget it has to
go back to location 0). You can easily verify this using a simple script:

>>> from random import random
>>> N = 1000 # number of files the head seeks
>>> tot dist = 0

229

230

CHAPTER 7 MATH GAMES

>>> for i in range(N):
tot_dist += random()*2

>>> tot dist/N
1.0253061728681021

The larger the value of N, (and assuming a good random() implementation), the more accu-
rate the result.

Not returning to zero: Now consider the scenario where the head does not go back to
location 0, but stays where it was before. Finding the average distance the head moves is a bit
harder analytically, but numerically, with a simple script, the solution emerges quickly.

>>> from random import random
>>> N = 1000 # number of files the head seeks
>>> tot_dist, cur_loc = 0, O
>>> for i in range(N):
new_loc = random()
tot dist += abs(cur loc-new loc)
cur_loc = new_loc

>>> tot dist/N
0.33576448266202374

This number turns out to be 1/3.

Example: Friends Meeting

We turn to another example, one that makes use of a visual output as well.

Two friends decide to meet between 8 p.m. and 9 p.m. Once one of the friends arrives at
the designated meeting spot, he waits for 10 minutes for his friend to show up. So if for exam-
ple Friend 1 arrives at 8:40, he’ll wait until 8:50 for Friend 2 to show up. Friend 1 doesn’t know
if Friend 2 already showed up earlier (the same is true for Friend 2, he doesn’t know if Friend 1
showed up). But both friends are smart enough to know that if they arrive at 8:55, for example,
they only need wait until 9:00 and not 9:05. The question: what’s the probability that these two
friends meet?

We again turn to the random module to help us solve this problem (see Listing 7-2). Only
this time, we also visualize the result, hopefully gaining some insight as to how to solve the
question analytically.

Listing 7-2. Friends Meeting

from random import random
from pylab import *

N = 40000 # number of events

generate N events of friends times
friend1, friend2 = [], []

CHAPTER 7 MATH GAMES

for i in range(N):
friend1.append(random())
friend2.append(random())

find all occurrences of friends meeting

met = array([(x, y) for (x, y) in zip(friend1, friend2) \
if abs(y-x) < 1.0/6])

not met = array([(x, y) for (x, y) in zip(friend1, friend2) \
if abs(y-x) »>= 1.0/6])

plot the result, this might shed some light on the problem!
plot(met[:, 0], met[:, 1],"+m")

plot(not met[:, 0], not met[:, 1],'0g")

title("Probability of meeting: %1.3f" % (float(len(met))/N))
xlabel('Time of arrival of Friend 1')

ylabel('Time of arrival of Friend 2')

axis('scaled")

The first step is to generate a considerable number of events, in this case 40,000. An event
is composed of two numbers: one associated with Friend 1’s time of arrival and one associated
with Friend 2’s time of arrival. We store both their times in lists. The process of generating the
events is performed in the first for loop. The function random() returns a value between 0 and
1, which maps out to the time of arrival: 0 is 8 p.m., 1is 9 p.m.

Now that we have a considerable number of events, we ask at what times the friends meet.
The friends meet if the difference between their times of arrival is less than 10 minutes, or 10
minutes / 60 minutes * 1.0 = 1/6 (1.0 is the range of random values). But it’s also possible that
Friend 1 arrives after Friend 2 and not the other way around. So we should be asking whether
friendi-friend2 is less than 1/6, as well as whether friend2-friend1 is less than 1/6. This can
be elegantly coded as abs(friend1-friend2) < 1.0/6.

The actual implementation makes use of a list comprehension, returning a tuple of (x, y)
values that match the condition abs(x-y) < 1.0/6., which means the friends have met. We
then construct an array of these values (a NumPy array, more on this shortly) so we can easily
access the x and y vectors, without any for loops. We also build a list of times the friends did
not meet because we want to plot both, in different colors and markers.

Next we plot the results and calculate the probability of the friends meeting, numerically,
as shown in Figure 7-3.

This visualization really helps. The corridor in the middle describes the events cor-
responding to the two friends meeting. The probability is the area of this corridor and can
be calculated by the area of the entire square minus the area of the top-left triangle and the
bottom-right triangle. Each triangle has an area of 0.5 x (5/6)?, and the total probability of
meeting is 1 — (5/6)2=11/36 = 0.3055 . . . which is pretty close to the estimated numerical value
(displayed in the figure title).

231

232

CHAPTER 7 MATH GAMES

Probability of meeting: 0.307

1.0

o o o
= 2] @

Time of arrival of Friend 2

o
)

0.
%,D 0.2 0.4 0.6 0.8 1.0
Time of arrival of Friend 1

Figure 7-3. Visualizing friends meeting

Random Sequences

Another set of functions available under the random module operates on sequences. These
include the functions listed in Table 7-4.

Table 7-4. Functions from the random Module for Operating on Sequences

Function Description
choice(s) Returns a random element from the sequence s
shuffle(s) Shuffles the sequence s

sample(s, n) Returns a subsequence of size n from s

For the examples in this section, we create a deck-of-cards sequence using the zip() built-
in function. Each card is represented as a tuple holding a number 1-13 and a character, 'S’,
'H', 'D', 'C', corresponding to spades, hearts, diamonds, and clubs.

>>> from random import *

>>> cards = zip(range(1, 14)*4, 'S'*13+'H'*13+'D'*13+'C'*13)
>>> cards[0:5]

[(1, 's"), (2, 'S"), (3, 'S"), (4, 'S"), (5, 'S")]

>>> choice(cards)

(7, 'C")

>>> shuffle(cards)

>>> cards[:5]

CHAPTER 7 MATH GAMES

[(4, 'C"), (10, 'D"), (1, 'C"), (7, 'C"), (12, 'D")]
>>> sample(cards, 5)
[(1ZJ IS')) (12J 'HI)) (8) IC')J (SJ 'DI)) (5) IS')]

A DECK OF CARDS

There are lots of ways to implement a deck of cards, and the method described here is a bit tricky. The
reason | chose it is that it shows another way of creating a deck of cards other than a double for loop (see
Beginning Python: From Novice to Professional for an implementation using a double fox loop in a list com-
prehension). There are benefits to using for loops: they’re straightforward to implement and read, and in this
specific case, we can use full names for the sign of the card (e.g., ' Spade" instead of 'S").

If I were to use NumPy’s ndarray object (discussed in the next section), I'd opt to use the line
zip(arange(52)/4+1, 'SHDC'*13), but this is tricky too because the division by 4 might yield noninte-
ger values in future versions. Maybe a more prudent approach would be to add a f1oor () function call.

In any case, what should concern you more is the readability of your code. Don’t forget that there’s a
good chance you’ll be the person maintaining it as well. If you’re more comfortable with a double foxr loop,
use the for loop approach. If you’re more comfortable zipping flat arrays, the options shown here are viable
approaches. It’s a matter of personal preference, as performance is hardly an issue. This brings up another
point: performance. Opt for readability over performance if possible. After all, Python is a high-level program-
ming language: if you really need code performance, other programming languages might prove a better
choice. Even better, you can extend Python with other programming languages.

Module NumPy

NumPy’s ndarray object has been the basic building block for a lot of the data processing and
visualization scripts presented throughout the book. We now turn to exploring this package
and discussing its usage.

Note Aithough used in previous chapters, we have not explicitly seen calls to import NumPy. Neverthe-
less, we did use NumPy’s ndarray object extensively. The reason we have not seen NumPy imports is that
we have been using the from pylab import * command instead, which imports, among other packages,
the NumPy package as well.

The ndarray object provides substantial added functionality to Python’s array object and
has a lot in common with Matlab’s matrix data structure. Such functionality includes matrix
operations, linear algebra, and more. It also provides the basic building blocks for more com-
plex numerical methods as will be explored in future chapters. The name “ndarray” stands for
N-dimensional array, and as it implies, this object supports N-dimensional arrays.

233

234

CHAPTER 7 MATH GAMES

NumPy is a full and rich package. I will only cover topics that are important for the ideas
discussed in the book, and as such, this chapter should be considered a quick introduction. If
you’d like to learn more about NumPy, consult with the references at the end of the chapter.

Note I'll use the terms “array” and “ndarray” interchangeably. In both cases | am referring to NumPy’s
ndarray object—there’s little use for Python’s array object once NumPy is imported.

Array Creation

Chapter 3 covered Python’s built-in data structures including tuples, lists, and dictionaries.
If you recall, there were several methods to create most of these data structures: we’ve used
brackets for lists as well as the 1ist() function, we've used curly braces for dictionaries as
well as the dict() function, and so on. Unfortunately, there’s no specific symbol set aside for
NumPy arrays, so the options are to use either the array() function or functions that return an
array, the array creation functions.

The most straightforward method to create and initialize an array is from a list:

>>> from numpy import *
>>> v = array([1, 2])
>>> v
array([1, 2])
>>> m = array([[1, o], [0, 4]])
>>>m
array([[1, o],
[0, 4]1)

Other methods to create arrays are available, ones that are more useful when dealing with
larger amounts of data points, as described in Table 7-5.

Table 7-5. Array Creation Functions

Function Description Example

N-Dimensional Arrays

array(s) Creates an array based on the array(((1, 2), (3, 4)))
sequence s. returns array([[1, 2],
(3, 41]).
ones(t) Creates an N-dimensional array ones(2) returns array([1.,
initialized with 1s based on the 1.1).
tuple t.
zeros(t) Similar to ones(t), only initialized ~ zeros((2, 2)) returns
with zeros. array([[0., o0.], [0.,

0.1]).

CHAPTER 7 MATH GAMES

Function

Description

Example

Two-Dimensional Arrays (Matrices)

eye(n[, m])

Creates a 2-D array of size n x m,
the major diagonal filled with
ones and the remaining matrix
zeros. If mis not provided, it is
assumed equal to n.

One-Dimensional Arrays (Vectors)

arange([start,]stop[,
step])

linspace(start, stop,
num=50)

logspace(start, stop,
num=50)

Creates an array of values starting

at start, ending at (but excluding)
stop with an increment step. This

is similar to array(range(start,
stop, step)), only thatarange()

can return noninteger values as well.

Creates a linearly spaced vector
of size num from start to stop;
refer to the interactive help for
additional options.

Similar to 1inspace, only values
are spaced evenly from 105" to
10%°P on a logarithmic scale; refer
to the online help for additional
options.

eye(2, 3)returnsarray([[
i., 0., o0.], [0., 1.,

0.1D).

arange(1, 2, .5)returns
array([1. , 1.5]).

linspace(1, 10, 3) returns
array([1., 5.5, 10.

D.

logspace(0, 1, 3) returns
array([1., 3.16227766,
10.1]).

Some additional array creation functions (fromfile(), empty()) exist, but in most cases,
you'll find the ones in Table 7-5 sufficient. There’s some redundancy in those as well: ones (10)
results in the same array as zeros (10)+1.

Slicing, Indexing, and Reshaping

Arrays can be resized using the reshape() and resize() functions and indexed and sliced using
Python’s slicing and indexing operators, [] and [:]. The difference between the two functions
is that resize() resizes an existing array, whereas reshape() returns a new array based upon

the data in the original array.

>>> a = arange(12).reshape(4, 3)

>>> a

array([[o, 1, 2],
[3, 4, 5],
[6) 7) 8])
[9, 10, 11]])

>>> af1]

array([3, 4, 5])

>>> a[-1]

array([9, 10, 11])
>>> a1, 1]

235

236

CHAPTER 7 MATH GAMES

4
>>> al:, 1]

array([1, 4, 7, 10])
>>> a[1, :2]

array([3, 4])

N-Dimensional Arrays

NumPy arrays are N-dimensional arrays and can be created in the same manner as 1-D and
2-D arrays:

>>> ones((2, 3, 4))

array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]1,
[[r1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])
A useful operator for N-dimensional arrays is . . ., which means, “all the remaining
dimensions.”
>>> a = ones((2, 3, 4))
>>> a
array([[[1., 1., (] 1-])
[> 1., L] 1'])
[> 1., L] 1‘]])
(., 1., 1., 1.1,
[) 1')) 1‘])
[1., 1., 1., 1.]]])

>>> alo, ...]

array([[1., 1., 1., 1
[1., 1., 1., 1.]
[1., 1., 1., 1

>>> alo, 1, ...]

array([1., 1., 1., 1.])

One of the common questions is how useful N-dimensional arrays are. Some people feel
that they do pretty well with one or two dimensions and have little use for N-dimensions. My
experience with N-dimensional arrays is that they provide an excellent data storage when
dealing with a combination of several parameters. Consider a simulation with four param-
eters, each parameter having a range of values. Suppose you want to map out the simulation,
that is, calculate the results for every given combination of parameters and also store the
results, because the running time is long. How would you store the results? One method is to
write them to a list, flattening the data. An alternative method is using an N-dimensional array.

CHAPTER 7 MATH GAMES

Example: Comparing Mortgages

The following example discusses how to store data as a function of several parameters (typi-
cally more than two) using both N-dimensional arrays and flat data structures.

Since at the time of writing this book the subprime mortgage crisis has hit the world mar-
kets, I thought it appropriate to give an example comparing mortgages. By all means I’'m not
financially savvy, so please don’t use this as advice in selecting a mortgage! Now to define the
problem.

Fixed mortgage payments are a function of three parameters: the loan amount (which is
also called the present value), the interest rate, and the number of payments. Banks typically
have different interest rates as a function of the number of payments, a person’s record, and
possibly also the loan value.

So based on these three parameters (present value, interest rate, and number of pay-
ments), we’d like to map out monthly payments—that is, what the expected monthly payment
is for every value in the range of parameters.

For this example, we’ll assume that we’re considering loans in the amounts of $100,000 to
$140,000 in increments of $20,000, mortgage interest rates range from 3 percent to 5 percent
in increments of 0.5 percent, and number of payments is 60 to 300 in increments of 60 (repre-
senting 5 to 25 years in increments of 5 years). We'll use the function pmt (), which is part of the
NumPy package. The function returns a fixed monthly payment for a fixed-rate mortgage (see
http://en.wikipedia.org/wiki/Fixed rate mortgage).

We construct lists representing the range of values we’d like to map out. We implement
these lists using the arange() function described previously in this chapter.

THE CONVENIENCE OF USING ARANGE() AND LINSPACE()

Here’s another example of why NumPy provides convenience over non-math-oriented data structures. To
implement a list of values with noninteger increments, we can use a list comprehension. For example:

>>> interests = [x/2.0+3 for x in range(5)]
While this is perfectly OK, it’s less readable than something like this:
>>> interests = arange(3.0, 5.5, 0.5)

In the former method (using a list comprehension), you’d have to do some math to realize exactly what
values are being used. In the second method, they’re clearly spelled out: from 3 to 5.5 (excluding 5.5) in
increments of 0.5.

I’'m assuming the decision not to include the edge value (.., 5.5) in the function arange() is to have it
behave in a similar manner to range () and xrange (). My personal preference would've been to include the
edge value.

Alternatively, you could use the 1inspace() function:

>>> interests = linspace(3.0, 5.0, 5)

which in this specific example is awkward: the number 5 (the last argument) has to be precalculated to reach
an increment of 0.5.

237

238

CHAPTER 7 MATH GAMES

A final note: Those values are annual values, and to use them properly you’d have to divide them by 12
(months) and by 100 (percentage values). Regardless, this is required in both a list comprehension implemen-
tation and an arange () implementation. I've left it out so that the example would be clearer to follow. The
ability to multiply (or divide) an array by a value will be shown in the next section.

Next we iterate over the range of loans, the number of payments, and the interest rates
and construct a data structure to hold the results: monthly payments. We examine two data
structures:

» Aflattened list of rows, with each row being a list containing loan size, number of pay-
ments, interest rate, and monthly payment. This is a native Python list.

¢ An N-dimensional array where each dimension corresponds to a different parameter:
interest rate, number of payments, and loan size. This is a 3-D NumPy array.

Listing 7-3 compares these two structures.

Listing 7-3. Flattening Data vs. N-Dimensional Data

from numpy import *

loans = arange (100000, 160000, 20000)
num_payments = arange(5, 30, 5)*12
interests = arange(3, 5.5, 0.5)/100.0/12.0

method 1, storing results in a list
resl = []

method 2, storing results in an array
res2 = zeros([len(loans), len(num payments), len(interests)])

for i, loan in enumerate(loans):
for j, num_pay in enumerate(num_payments):
for k, interest in enumerate(interests):
resi.append([loan, num pay, interest, \
-pmt(interest, num_pay, loan)])
res2[i][j][k] = -pmt(interest, num_pay, loan)

The benefit of using an N-dimensional array is that indexing is a lot easier and faster. For
example, assuming param1 is fixed and set at 0, the results can be accessed with res2[0, ...].
Achieving the same in a list will probably require iterating over the entire list res1 and compar-
ing the value of the first parameter. There’s overhead both in code in actual performance:

>>> for row in resi:
if(row[0] == 120000 and row[1] == 120):
print row

[120000, 120, 0.0025000000000000001, 1158.7289363806954]
[120000, 120, 0.0029166666666666668, 1186.6304095428363]

CHAPTER 7 MATH GAMES

[120000, 120, 0.0033333333333333335, 1214.941657978555]

[120000, 120, 0.0037499999999999999, 1243.6609050842044]

[120000, 120, 0.0041666666666666666, 1272.7861828689065]

>>> res2[1, 1, ...]

array([1158.72893638, 1186.63040954, 1214.94165798, 1243.66090508,
1272.78618287])

However, the results of the list are much more readable: they list all combinations of
parameters in human readable form. You could do the same with res2 but that requires a for
loop:

>>> values = res2[1, 1, :]

>>> for i, v in enumerate(values):
row = [loans[1], num_payments[1], interests[i], v]
print row

[120000, 120, 0.0025000000000000001, 1158.7289363806954]
[120000, 120, 0.0029166666666666668, 1186.6304095428363]
[120000, 120, 0.0033333333333333335, 1214.941657978555]
[120000, 120, 0.0037499999999999999, 1243.6609050842044]
[120000, 120, 0.0041666666666666666, 1272.7861828689065]

In the for loops, I've used enumerate() on the list of values we're iterating over. The rea-
son for this is that NumPy arrays require indices, and those are integers, whereas Python lists
do not. So in a sense, lists here could be more elegant code-wise (no need to use enumerate()).

Lastly, the list implementation can lend itself very nicely to storage in a CSV file, which in
itself is also a flattened data structure. That being said, you could also flatten the array and do
the same.

Although N-dimensional arrays are interesting data structures, most examples in this
book are based on 1-D arrays (vectors) and 2-D arrays (matrices), as they cover most anything
we do. Even 3-D plots are really represented by 2-D matrices: the indices represent x and y,
and the cell value represents z.

Choosing either N-dimensional arrays or flattened data structures is dependent on the
exact problem you’re trying to solve.

Math Functions

Simple arithmetic operations are possible on arrays: addition, subtraction, division, multi-
plication, and exponentiation as well as most math functions available in math and cmath
modules (albeit now they’re implemented as part of NumPy).

Example: Visualizing Fourier Expansion of a Rectangular Wave

The following is an example showing a Fourier expansion of a rectangular wave using a sum
of sine waves. Fourier expansion is used in numerous applications ranging from solving dif-
ferential equations to signal processing. This example will show how we could treat a NumPy
array as a vector of values and operate on that vector as if it were a function. We use a Fourier
expansion of sine waves (NumPy arrays) to generate a rectangular wave (another NumPy
array). We implement the equation f(t) = 4/ (w*n)*sin 2*t*n*t*num_cycles), which is a Fourier

239

240

CHAPTER 7 MATH GAMES

series expansion of a rectangular wave (see Listing 7-4). The parameter num_cycles determines
the number of cycles we’re expanding. In this example we’ll set the number to 2 to view two
cycles.

Listing 7-4. Visualizing a Fourier Expansion

plots a Fourier expansion of a rectangular wave
from pylab import *

prepare the plot
figure()
hold(True)

number of points to display the wave
= %48

linspace(0, 1, N)

= zeros(N)

< + = =
1]

for n in range(1, 8, 2):
the sine waves, added
y += 4/(pi*n)*sin(2*pi*n*t*2)

plot the graph
plot(t, y)

annotate the graph

axis([0, 1, -1.4, 1.4])

grid()

xlabel('Time [seconds]")

ylabel('Value []")

title('Fourier expansion of a rectangular wave')
legend()

We import the entire PyLab module, which also includes NumPy and the plotting
commands: both are required in this example. We then prepare an empty plot: each new cal-
culation of the expansion will be plotted on top of the previous one, so we issue the command
hold(True) to ensure subsequent plots do not erase existing ones.

The first array object is created with the command t = linspace(0, 1, N) (we could’ve
also used an arange() function call instead). Array object t is a 1-D array, a vector. All our sub-
sequent operations and math functions will operate on this vector. We then initialize the series
expansion variable, y, using the zeros() function. The heart of the computation lies in the for
loop. Each sine wave is added to the previous one, and the result is stored in y. The simple line
y += 4/(pi*n)*sin(2*pi*n*t*2) is in reality operating on entire arrays, showing the strength
of the array object.

We then plot y as it is being calculated and annotate the graph once the expansion is com-
plete, as shown in Figure 7-4.

CHAPTER 7 MATH GAMES

Fourier expansion of a rectangular wave

1.0

0.5

Value [V]
=1
o

-0.5

0.0 0.2 0.4 0.6 0.8 1.0
Time [seconds]

Figure 7-4. Fourier expansion of a rectangular wave

Array Methods and Properties

Arrays are objects and as such have functions called methods and variables called properties.
Using IPython (see Chapter 2), you can list an object’s methods and properties by using char-
acter completion, accessible via the Tab key. Alternatively, you can issue the following:

>>> import numpy

>>> [m for m in dir(numpy.ndarray) if not(m.startswith(' '))]

['T, 'all', ‘'any', 'argmax', 'argmin', 'argsort', 'astype', 'base', 'byteswap',
'choose', 'clip', 'compress', 'conj', 'conjugate', 'copy', 'ctypes', 'cumprod',
"cumsum', 'data', 'diagonal', ‘'dtype', ‘dump', 'dumps', 'fill', 'flags', 'flat’

, 'flatten', 'getfield', 'imag', 'item', 'itemset', 'itemsize', 'max', 'mean’, '

min', ‘nbytes', 'ndim', 'newbyteorder', 'nonzero', 'prod', 'ptp', 'put', 'ravel'

, 'real', 'repeat', 'reshape', 'resize', 'round', 'searchsorted', 'setfield', 's

etflags', 'shape', 'size', 'sort', 'squeeze', 'std', 'strides', 'sum', 'swapaxes

', 'take', 'tofile', 'tolist', 'tostring', 'trace', 'transpose', 'var', 'view']

I've used the preceding list to create Table 7-6; it’s only a subset of the methods and
attributes, and I chose to describe those I feel are the most useful for data processing and visu-
alization. I've also split the methods into categories for easier viewing. Methods are denoted
with (), while properties do not have a trailing parenthesis. In this table, a refers to an array
variable.

241

242

CHAPTER 7

MATH GAMES

Table 7-6. Array Methods and Attributes (Partial)

Function Description Examples
Logical
all() True if all elements of a are true arange(10).all() returns False
(nonzero). (the first element is zero).
arange(-5, -2).all() returns
True.
any() True if at least one element ofais ~ arange(10).any() returns True.
true (nonzero).
nonzero() A tuple of indices to nonzero ele- arange(3).nonzero() returns
ments of a. (array([1, 21),).
Indexing
sort() Sorts elements in a. a = arange(3, 0, -1)setsato
array([3, 2, 1]).
a.sort() changesatoarray([1,
2, 3]).
searchsorted(x) Returns indices to insert x such arange(4).searchsorted(1.5)
that the array’s order is preserved. returns 2.
Assumes a is already sorted.
Modifying

clip(min, max)

compress(cond)

£i11(x)

Math

If an element of a is less than min,
returns min; if an element of a

is greater than max, returns max;
otherwise, returns the element.

Returns an array whose elements
match the condition specified in
cond; equivalent to a[cond].

Sets all values of an array to x;
equivalenttoal:] = x.

arange(5).clip(1, 3)returns
array([1, 1, 2, 3, 3]).

a = arange(10)

a.compress(a > 5) returns
array([6, 7, 8, 9]).

a[a > 5] returnsarray([6, 7, 8,
9]).

a = zeros([2, 2])

af[:] = -1setsatoarray([[-1.,
-1.], [-1., -1.1D).

a.fill(-2) setsatoarray([[-2.,

'2-]: ['2-1 '2-]])'

For math examples, assume a = array([1, 1j, -1]), which can also be expressed asa =
exp(1j*pi*arange(3)/2).

cumprod()

cumsum()

Cumulative product. Each element
is the product of the previous ele-
ments in the array.

Cumulative sum. Each element is
the sum of the previous elements
in the array.

a.cumprod() returns array ([
1.40.j, 0.+1.j, 0.-1.3]).

a.cumsum() returns array ([
1.40., 1.+1.j, 0.+1.3]).

CHAPTER 7 MATH GAMES

Function

Description

Examples

real and imag

conj()

max (), min()
mean()

prod()

ptp()
round()
std()

sum()

trace([n])

var()

Shape Related
flatten()

ndim

repeat(n)

reshape(d1, d2, ...

resize(d1, d2,...)

shape
transpose()

Real and imaginary values of
elements in a.

Complex conjugate of a (negation
of the imaginary part; rows and
columns transposed).

Maximum and minimum values of
a (performed on real part only).

Mean value of a.

Product of all the values in a.

Peak-to-peak value of a; equi-
valent to a.max()-a.min().

Rounded values of a.

Standard deviation of elements
ina.

Sum of all the values in a.

Sum of the diagonal of a 2-D array.
If n is provided, sums the offset
diagonal.

Variance of elements in a.

The values in a as a 1-D array.

Number of dimensions of a.

Copies a over n times, flattened.

Generates a new array of size (d1, d2,

).

Resizes the current array to size (d1,
dz,...).

A tuple representing shape of a.

Transposes a matrix. This is equiva-
lent to conjugate but without negat-
ing the imaginary parts.

a.imagreturnsarray([0., 1.,

0.]).

a.realreturnsarray([1., O.,
-1.]).

a[1].conj() returns -1j.

a.max() returns (1+03).
a.min() returns (-1+07).

a.mean() returns
0.33333333333333331j (1j/3).

a.prod() returns -1j.
Note that a.prod() is equal to
a.cumprod()[-1].

a.ptp() returns (2+07).

exp(a).round() returns array([
3.40., 1.+1.j, 0.40.3]).

arange(2).std() returns 0.5.

a.sum() returns 1.
Note that a.sum() is equal to
a.cumsum()[-1].

eye(N).trace() returnsN.

arange(2).var() returns 0. 25.

eye(2).flatten() returns array([
1., 0., 0., 1.]).

eye(4, 5).ndimreturns 2.
eye(2).repeat(2) returns array([
1., 1., 0., 0., 0., O.,
1., 1.]).
arange(4).reshape(2, 2) returns
array([[o, 1], [2, 3]]).

a = arange(4)

a.resize(2, 2)setsato
array([[o, 1], [2, 3]]).
eye(3, 4).shapereturns (3, 4).
eye(2, 3).transpose() returns
array([[1., o0.], [0., 1.],
[0., 0.]]).

Continued

243

244

CHAPTER 7 MATH GAMES

Table 7-6. Continued

Function Description Examples

Conversion

tofile(fname) Writes an array to file (binary). eye(2).tofile('eye2.bin")
fromfile(fid) Reads an array from file (binary). a = fromfile(open('eye2.bin"))
tolist() Converts an array to a list eye(2).tolist() returns [[1.0,

0.0], [0.0, 1.0]].

Example: A Magic Square

A magic square is a square with the sum of each row and column equal and the same. Typi-
cally, magic squares do not allow numbers to repeat twice. In this example, we’ll generate
magic squares, populating the values from 1 to N?in a square of size N by N.

A modern variation on the magic square idea is the Sudoku puzzle game. The ideas pre-
sented in this example can be modified to provide solutions to Sudoku puzzles (see http://
en.wikipedia.org/wiki/Sudoku for possible strategies for implementing a computer solution).

Back to our example. We'll create a magic square implementing the De la Loubére method
(also known as the Siamese method), which works for squares of odd values of N only. Con-
structing a magic square is performed by placing the first value, 1, in the middle column at
the top. Incremented values are placed diagonally up and to the right. If the spot up and to
the right is outside the square, it is wrapped around to the bottom row (if exceeded at the top)
or to the first column (if exceeded to the right) or both. If a cell is already occupied, the value
moves a row below (again, wrapping if needed). Figure 7-5 illustrates the algorithm with exam-
ple magic squares of sizes 3 and 5.

N=3 N=5

/ e
rd |
23 /7/14 g

13 2|0
'/1 /‘ 12 | 19 2‘1

4 9 2
i 18" | 25 | 27| o
Vud Ve

Figure 7-5. De la Loubere method

8 1

~N — O\

O s 1

= =
[o =

An implementation of the algorithm using an array is presented in Listing 7-5.

CHAPTER 7 MATH GAMES

Listing 7-5. Creating a Magic Square

from numpy import *
def magicsq(n=3):
"""Returns a magic square of size n; n must be odd"""

ifn%2!1=1:
raise ValueError, "Magic(n) requires n to be odd"
m, row, col = zeros([n, n]), 0, n/2
for num in xrange(1, n**2+1):
m[row, col] = num # fill the cell
col = (col+1) % n
row = (row-1) % n
if m[row, col]:
col = (col-1) % n
Tow = (row+2) % n
return m

def testmagicsq(m):
"""Returns True if m is a magic square.
msum = sum(m[0, :])
return all(m.sum(0) == msum) and all(m.sum(1) == msum)

nnn

The main for loop is quite straightforward and follows the algorithm strictly. However,
calculation of the column and row values using the modulo (%) operator is tricky and requires
some explanation. Consider the way the algorithm is specified: increment the column value
and check whether the new value is within the size of the matrix. If it is not, wrap it around
to the beginning. A similar approach is taken with the row: decrement and wrap if required.
Instead of implementing these two steps, an increment/decrement followed by an if state-
ment, we could use the modulo operation, which captures the idea quite elegantly: col =
(col+1) % n.

I've chosen to initialize the variables m, row, and col with a multiple assignment. Multiple
assignments can also be used inside the for loop: col, row = (col+1) % n, (row-1) % n;
however, in my mind it’s less clear, and there’s no impact performance-wise. My personal
preference is to use multiple assignments in initializations and not calculations.

I've defined another function here, testmagicsq(), which checks whether a square is
indeed a magic square. The function also works on even values (which is a plus) and makes
use of the sum() member function of the array object.

Tip Python supports testing via several built-in packages, including doctest and unittest. However,
for the purpose of this example, I've chosen to write a dedicated test function, which will further show the
properties of NumPy arrays.

245

246

CHAPTER 7 MATH GAMES

The function sum(0) returns an array of the sums of columns (i.e., along axis 0); sum(1)
returns an array summing rows (along axis 1). Here’s a listing demonstrating summing along
the 0 axis and the 1 axis:

>>> a = eye(2, 3)

>>> a

array([[1., o.,
[0., 1.,

>>> a.sum(0)

array([1., 1., 0.])

>>> a.sum(1)

array([1., 1.])

>>> m = magicsq(5)

>>> m.sum(0)

array([65., 65., 65., 65., 65.])

>>> m.sum(1)

array([65., 65., 65., 65., 65.])

As can be seen, the matrix eye(2, 3) has two rows and three columns. Summing along
axis 0 via sum(0) returns a 1-D array (a vector) holding the sums of all three columns. Conse-
quently, sum(1) returns a vector holding the sum of the rows. The next lines show how this can
be used to check for “magic-ness” of a square—both vectors, sum(0) and sum(1), should be
equal element-wise to the sum along an arbitrary axis.

In the testmagicsq() function I've chosen to compare both sums of columns and of rows
with the sum of the first column: sum(m[0, :]).If you compare a vector (1-D array) with a
scalar (a single value), the result is a vector with each element compared with the scalar. To
ensure all are indeed equal to the required sum, you could use the all() member function.
I've opted to use the notation all(m.sum(0) == msum) over (m.sum(0) == msum).all() because
I think it’s more readable, but that again is personal preference; both do the job.

Note In the function testmagicsq(), it’s not enough to check that m. sum(0) is equal tom.sum(1)
because this only checks that the sums of rows is equal to the sums of columns. However, that’s not a suffi-
cient condition. Consider the array m = array([[1, 0], [0, 2]]): it satisfies the condition m.sum(0) ==
m.sum(1), but it's not a magic square. You might raise the question whether the array eye(N) is a magic
square—the function testmagicsq() will return True, but maybe this is a trivial case of a magic square.

One other interesting aspect of the Siamese method is that the sum along the diagonal
is also identical to the sum of each row and each column; that’s true for both diagonals. The
function trace() calculates the sum along the diagonal (top left to bottom right). To calculate
the sum of the second diagonal (bottom left to top right), you could use the fliplr() function.

>>> m = magicsq(5)
>>> m.trace()

65.0

>>> fliplr(m).trace()
65.0

CHAPTER 7 MATH GAMES

Other Useful Array Functions

Other than ndarray properties and methods, the NumPy package also provides functions
that operate on arrays but are not part of the ndarray object class. For a full account, issue the
following:

>>> import numpy
>>> dir(numpy)

As you can see, many functions are available from various fields of interest:

e Vector operations: convolve(), cross(), correlate(), and vdot()
¢ Matrix operations: diag() and trace()

e Statistical functions: cov(), var (), std(), mean(), and histogram()
e Financial functions: fv(), pv(), and pmt()

¢ Polynomial operations: polyadd(), polymul(), polydiv(), polyfit(), polyder(),
polyint(), and roots()

e Operations that change vector and matrix sizes and orientations: flipud(), fliplr(),
and rot90()

e Functions that generate windows for filtering: hamming (), hanning(), bartlett(),
blackman(), and kaiser()

We’ll explore some of these functions in Chapter 8. If you'd like to know more about these
functions, issue help (numpy.function). For example, here’s a function I particularly like using:

>>> help(numpy.diff)
Help on function diff in module numpy.lib.function base:
diff(a, n=1, axis=-1)
Calculate the nth order discrete difference along given axis.

Tuse diff() to calculate the difference between two consecutive elements in an array. ['ve
used it several times already in the book, including in the section “Example: Adding Arrows to
a Graph” in Chapter 6. You could also modify the friends meeting example in this chapter to
use diff() instead of a list comprehension.

Final Notes and References

The range of applications for which NumPy is of value is large. And as evidence, you'll find that
a considerable number of packages rely on NumPy, and for a good reason: NumPy provides a
solid base for mathematical arrays.

An interesting module that comes with the Python Standard Library is the decimal mod-
ule. This module provides support for decimal floating-point values and allows, for example,
arbitrary percision. The decimal module is a bit less intuitive than regular numbers in Python,
but should you require higher percision, and provided you're willing to accept some perfor-
mance loss, this module is a good option. Another module, introduced with Python version
2.6, is the fractions module, which supports rational number arithmetic.

247

248

CHAPTER 7 MATH GAMES

Should you require additional information on NumPy or the other topics discussed in this
chapter, I hope you find the following references of value:

NumPy home page, http://numpy.scipy.org/

Guide to NumPy by Travis E. Oliphant, the lead developer of NumPy, http://www.
tramy.us/numpybook.pdf

“De la Loubere Method,” Wikipedia, http://en.wikipedia.org/wiki/Siamese method
“Fourier Series,” Wikipedia, http://en.wikipedia.org/wiki/Fourier series
“Newton Fractals,” Wikipedia, http://en.wikipedia.org/wiki/Newton%27s_method
The Python Standard Library, http://docs.python.org/library/index.html
Decimal module, http://docs.python.org/library/decimal.html

Fractions module, http://docs.python.org/library/fractions.html

CHAPTER 8

Science and Visualization

Numerical Analysis and
Signal Processing

I 've covered a great deal of the topics associated with data analysis and visualization: reading
and writing files, text processing and converting text to numerical data, plotting and graph-
ing, writing scripts, and implementing algorithms. It’s time to take a deeper dive and analyze
numerical data.

This chapter deals with two important topics: numerical analysis and signal processing.
These two topics appear in many sciences: mathematics, computing, engineering, and more.
From a simplistic point of view, numerical analysis is concerned with algorithms that yield
numerical values: a solution to a nonlinear equation, the decimal representation of x, and
more. Signal processing deals with processing signals, that is, values that change over time.
Signal processing includes such topics as detection and filtering.

Most universities and colleges offer undergraduate courses that teach these topics. But
you don’t have to be an engineer or a computer scientist to use the methods and ideas dis-
cussed in the chapter. Most of the topics are easy to follow, as I've tried to keep the math to a
minimum.

If you have a strong numerical analysis and signal processing background, this chapter
should prove a good starting point for these topics in Python. If you're new to the ideas of
numerical analysis and signal processing, I hope to shed some light so that you can pick it up
from here with relevant scientific literature. In particular, I'd like to point out one of the books
that made a great deal of impact on me (and many others), Numerical Recipes: The Art of Sci-
entific Computing, Third Edition by William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery (Cambridge University Press, 2007; for more information, see http://
www . nx.com). Although the book implements algorithms using C/C++ (my original copy was
in the Pascal programming language), it provides a wealth of information on numerical algo-
rithms and should prove easy enough to port to Python.

In my view, the field of numerical analysis is a cookbook of algorithms to numerically
solve mathematical problems. And so in a sense, that’s how the chapter is organized as well: as
a list of problems and solutions. Each topic will be explored with examples in hopes that you'll
modify the examples to fit your needs. And that’s also how I suggest you refer to the chapter:

249

250

CHAPTER 8 SCIENCE AND VISUALIZATION

as a cookbook of algorithms. While it’s quite possible to read through and learn the algorithms
one at a time, it’s probably easier to read specific sections as you engage problems associated
with them in real life. So my suggestion is this: skim through the table of contents to acquaint
yourself with what'’s available, and then try to solve a specific problem by reading the relevant
section.

In this chapter, I've used SciPy, matplotlib, and NumPy extensively. These three packages
are rich and complex, and as a result, I was only able to cover some of the functionality, not
all of it. I therefore chose to cover topics and show examples of problems I personally encoun-
tered. I hope you'll find the examples of value.

Finding Your Way: Variables and Functions

The NumPy package provides us with two useful helper functions. I call them helper functions
because they don’t fall into any specific numerical analysis or signal processing category.

When one works in an interactive environment, one constantly defines variables. It’s hard
to remember what variables are defined and what they mean. The function who() prints a list
of all ndarray variables (NumPy arrays):

>>> who()

Upper bound on total bytes = 0

>>> up, down = arange(10), arange(10, 0, -1)

>>> who()

Name Shape Bytes Type
down 10 40 int32
up 10 40 int32
Upper bound on total bytes = 80

The function lookfor() is great for searching inside docstrings. So to look for functions
that perform numerical integration, issue

>>> lookfor('integrate")
Search results for 'integrate'
numpy . trapz
Integrate y(x) using samples along the given axis and the composite

SciPy
SciPy (http://www.scipy.org/) is an open source scientific library for Python. The idea of SciPy
is similar to that of Octave-Forge (http://octave.sourceforge.net/), which provides extra
packages for GNU-Octave (http://www.octave.org) and toolboxes that enhance MATLAB
(http://www.mathworks.com). SciPy is built on top of NumPy and so requires NumPy to work
properly.

SciPy is organized into several modules, some of which are detailed in Table 8-1.

CHAPTER 8 SCIENCE AND VISUALIZATION

Table 8-1. SciPy Packages

Package Description

Fftpack Fast Fourier Transform

Integrate Integration functions, including ordinary differential equations
Interpolate Interpolation of functions

Linalg Linear algebra

Optimize Optimization functions, including root-solving algorithms
Signal Signal processing

Special Special functions (Airy, Bessel, etc.)

We'll be exploring most of SciPy modules that deal with numerical analysis and signal
processing. Additional SciPy modules include sparse matrices (module sparse), statistics
(module stats), and more; they will not be covered in this book.

To import a SciPy module, issue import scipy.modulename:

>>> import scipy.linalg
or
>>> from scipy import linalg

Personally, I prefer the latter option: 1inalg.eig() is shorter to code than
scipy.linalg.eig() (plusIthinkit’s easier to read).

Linear Algebra

Linear algebra is a branch in mathematics that deals with matrices, vectors, and solving
systems of linear equations. SciPy and NumPy provide us with many functions to deal with
these topics: solving systems of linear equations, matrix and vector operations, and matrix
decompositions.

Solving a System of Linear Equations

To solve a system of linear equations, we first write the problem in matrix notation.

2*¥x+3*y=10
3% x - y = -1.5

We start by defining a matrix, M, and a vector, V. The matrix is composed of the coefficients
of x and y, which are 2 and 3 on the first row, hence [2, 3], and 3 and -1 on the second row,
hence [3, -1]:

>>> from pylab import *
>>> M = array([[2, 3], [3, -1]])

251

252

CHAPTER 8 SCIENCE AND VISUALIZATION

Next we define the vector of the results, [10, -1.5]:
>>> V = array([10, -1.5])
Now all that’s required is to use the function solve():

>>> solve(M, V)
array([0.5, 3.])

meaning that x is equal to 0.5 and y is equal to 3.
It’s also possible to reach the solution by calculating the inverse of the matrix M and multi-
plying it by vector V:

>>> dot(inv(M), V)
array([0.5, 3.])

I've introduced two functions here: inv() and dot (). The function inv() calculates the
inverse of a matrix, and the function dot() performs a dot product. Had I multiplied inv(M)
with V, I would've received an element-by-element multiplication, and not the result we're
interested in:

>>> inv(M)*V
array([[0.90909091, -0.40909091],
[2.72727273, 0.27272727]])

Generally speaking, you should use solve() instead of inv(). The function solve() can
handle what mathematicians call “less-behaved” matrices.

Vector and Matrix Operations

Much like dot (), the function vdot () returns the dot product of two vectors. So if you're only
interested in the value of x in the previous example, you can write

>>> dot(inv(M)[0], V)
0.50000000000000022

The function inner(v1, v2) will perform an inner product, that is, multiply every element
in v1 with the corresponding element in v2 and then sum them together:

>>> V1 = array([10, -1.5])

>>> V2 = array([1, 2])

>>> sum = 0

>>> for i in range(len(V1)):
sum + = V1[i]*V2[i]

>>> sum

7.0

>>> inner(Vi, V2)
7.0

I've implemented an inner product operation with a for loop and compared the results
with the results of the function inner (). As can be expected, the results are the same. Note

CHAPTER 8 SCIENCE AND VISUALIZATION

that the function inner() does not multiply an element with its conjugate (negative imaginary
part).
The function inner() works on matrices as well:

>>> M = array([[2, 3], [3, -11])

>>> M

array([[2, 3],
[3 -1]])

>>> inner(M, inv(M))

array([[1.00000000e+00, 1.11022302e-16],
[5.55111512e-17, 1.00000000e+00]])

Similarly, outer () performs an outer product of two vectors or matrices:

>>> V1 = array([10, -1.5])
>>> V2 = array([1, 2])
>>> outer(Vi, V2)
array([[10. , 20.],

[-1.5, -3.1])

The function transpose() will permute axes, and conjugate() will permute axes and
negate the imaginary part of a matrix or vector:

>>> V1 = array([10, -1.5])
>>> V2 = array([1, 2])
>>> outer(Vi, V2)
array([[10. , 20.],

[-1.5, -3.11)
>>> outer(V2, Vi)

array([[10. , -1.5],

[20.) '3-]])
>>> all(outer(Vi, V2) == transpose(outer(v2, V1)))
True

>>> conjugate(V1+1j*V2)
array([10.0-1.j, -1.5-2.3])

The function det (m) will return the determinant of matrix m:

>>> det(array([[2, 3], [3, -11]))
-11.0

Matrix Decomposition

Matrix decomposition is the rewriting of a matrix to a specific form. There are many decompo-
sitions including LU decomposition, singular value decomposition, and QR decomposition.
NumPy’s linear algebra module supports some matrix decompositions via the functions in
Table 8-2.

253

254

CHAPTER 8 SCIENCE AND VISUALIZATION

Table 8-2. Some Matrix Decomposition Functions

Function Description

cholesky(m) Cholesky decomposition
eig(m) Eigenvalue decomposition
qr(m) QR decomposition

svd(m) Singular value decomposition

The following code performs eigenvalue decomposition with verification of the results:

>>> A = array([[1, 2], [0, 1]])

>>> L, v = eig(A) # calculate eigenvalues and eigenvectors

>>> det(A - eye(2)*L) # verify eigenvalues (should be zero)

0.0

>>> dot(A, v[:, 0]) - L[0]*v[:, 0] # verify eigenvector (should be 0)
array([0., 0.])

>>> dot(A, v[:, 1]) - L[1]*v[:, 1] # verify eigenvector (should be 0)
array([2.22044605e-16, 0.00000000e+00])

I've created a matrix A and calculated its eigenvalues A , (stored in vector L) and eigen-
vectors v, , (stored in matrix v). Once the eigenvalues are evaluated they can be verified by
calculatlng det(A — A * 1), which should be zero; this is done in the second line. Also, for every
eigenvector Av = A* v, this is verified in the last two lines.

We will not be covering other matrix decompositions here; if you require additional infor-
mation, help() is quite informative.

Additional Linear Algebra Functionality

Additional linear algebra functionality is available with the scipy.linalg module. To access
SciPy’s linear algebra functions, issue import scipy.linalgor from scipy import linalg.
SciPy’s added functionality includes

¢ Matrix decomposition functions: 1u() for LU decomposition and qr() for QR matrix
decomposition, as well as functions for other decompositions.

¢ Matrix and vector operators such as norm() to calculate a matrix or vector norm.

¢ Matrix functions, for example, expm() and tanm(). Matrix function names are similar to
regular function names but with an added character m.

Numerical Integration

Numerical integration is the process of numerically computing a definite integral. There are
many occasions where numerical integration is important. Examples include calculating the
area of a shape or the area under a graph, and solving differential equations.

CHAPTER 8 SCIENCE AND VISUALIZATION

For the purpose of this discussion we’ll calculate the area of half a circle of radius 1. We
already know this area to be w/2. So in a sense, calculating the area of half a circle is equivalent
to calculating the numerical value of x.

First, we create two vectors: x and y. These two vectors satisfy the circle equation x? + y?= 1:

>»> N =7

>>> x = linspace(-1, 1, N)

>>> y = sqrt(1-x**2)

>>> x¥*2 4+ y**2

array([1., 1., 1., 1., 1., 1., 1.])

I chose the variable N arbitrarily; N is the number of points in the vectors x and y.
To visualize the numerical integration, I plot rectangles that approximate the area of the
circle:

>>> figure()

>>> dx = x[1]-x[0]

>>> for i in range(len(x)-1):
rect = Rectangle((x[i], 0), dx, 0.5%(y[i]+y[i+1]))
gca().add_patch(rect)

>>> title('Approximating the area of half a circle')
>>> axis('equal')

The area under the curve, that is, the integral, is approximately the sum of these squares.
Each square’s area is 0.5*(y[i]+y[i+1])*dx, so the total sum can be written as follows:

>>> dx*(sum(y[0:-1]+y[1:]))
2.9175533787759904

I've multiplied the result by 2 so we can compare with x instead of & /2. Obviously, the
bigger N is, the closer this number will be to x:

>>> for N in [5, 10, 20, 100]:
x = linspace(-1, 1, N)
dx = x[1]-x[0]
y = sqrt(1-x**2)
est pi = dx*sum(y[0:-1]+y[1:])
print "N=%d, estimated pi is %f" % (N, est pi)

N=5, estimated pi is 2.732051

N=10, estimated pi is 3.019232
N=20, estimated pi is 3.101560
N=100, estimated pi is 3.138218

As you can see, for N = 100, the accuracy is about 1 percent. Figure 8-1 captures this
visually.

255

256

CHAPTER 8 SCIENCE AND VISUALIZATION

N=5 N=10
1.2} ' ' 1 1.2} ' ' E
1.0 {1 10}
T
0.8 0.8
0.6} 1 os}
0.4F 4 0.4}
0.2 0.2
0.0 0.0
-0.2} , , {1 -0.2} , , -
-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
N=20 N=100
1.2 : 4 1 1.2} : :
1.0} e - {1 1.0 LR
0.8F I Tty | o8}
- & '
0.6} / . 0.6} ‘
0.4 0.4 |
0.2 % \ 0.2 | |
0.0 0.0 .
-0.2 ; -0.2 ,

-1.0 —6.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 8-1. Calculating the area of a circle

In calculating the area of the circle, I chose values that are evenly spaced. In case you'd
like to use non-evenly spaced values, the implementation is more complex. Also, the method
uses rectangles to approximate the area under the curve, but in this particular example
(and many others), trapezoidals are probably better suited, which brings us to the function
trapz(y, x).The function accepts vectors y and x and returns the numerical integral. The
following performs numerical integration of non-evenly spaced x values using the function
trapz():

>»> x = array([-1, -0.9, -0.4, 0.0, 0.4, 0.9, 1])
>>> y = sqrt(1-x**2)

>>> trapz(y, x)*2

2.9727951234089831

Figure 8-2 shows a visual representation of the trapezoidal integration.

CHAPTER 8 SCIENCE AND VISUALIZATION 257

Trapezoidal integration

1.2
1.0} g .
0.8
0.6
0.4

0.2

0.0

-0.2F

-1.6-0.9 -0.4 0.0 0.4 091.0

Figure 8-2. Calculating the area of a circle using the trapezoidal method and non-evenly spaced
values

More Integration Methods

Additional integration algorithms are available with the module scipy.integrate. To use this
module, issue from scipy import integrate.

We'll limit our discussion to the algorithm quad(), which uses a Gaussian quadrature to
numerically integrate a mathematical function. Unlike previous methods such as trapz(),
using quad() requires supplying a mathematical function and not the x and y vectors.

Note I've used the term “mathematical function” to differentiate this type of function from a general-
purpose Python function. A mathmatical function is one that returns a numerical value given an input
numerical value, for example, y = f(x). In reality, we implement a mathematical function as a Python function.

>>> from scipy.integrate import quad
>>> def half circle(x):
return sqrt(1-x**2)

>>> pi half, err = quad(half circle, -1, 1)
>>> (pi_half*2, err)
(3.1415926535897967, 1.0002354500215915€-009)

258

CHAPTER 8 SCIENCE AND VISUALIZATION

I defined a mathematical function half circle() that returns the y coordinate value of
the upper half circle of radius 1, given an x coordinate value. I then called quad() with the argu-
ments half circle, the function to integrate, and -1 and 1, the range of values to integrate.
The function quad() returns a value and an error.

The module scipy.integrate also supports solving of ordinary differential equations using
functions ode () and odeint (). We will not be discussing these functions. If you're interested in
solving differential equations, refer to the SciPy home page: http://www.scipy.org/SciPy.

Interpolation and Curve Fitting

Interpolation and curve fitting deal with fitting functions to discrete known values. There are
several reasons you would want to fit functions to points of data, among which are

* Fitting a known function to gathered experimental data. This can be helpful in deter-
mining other parameters of the experiment.

¢ Evaluating the numerical values of functions at additional points (other than the given
ones).

Interpolation allows efficient implementations that are tailor-made to a specific prob-
lem. Instead of writing a lookup table for all the possible values, you could come up with an
interpolation polynomial that is more efficient, albeit with possible loss of performance and
accuracy. At other times, you might choose to implement a known function such as sqrt()
instead of using a library-supplied algorithm to increase performance (again, at the possible
cost of accuracy).

INVERSE SQUARE ROOT AND QUAKE Il

If you're interested in efficient algorithms to calculate numerical functions, you may find the article “Fast
Inverse Square Root” by Chris Lomont, http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf,
interesting. The article describes a very efficient algorithm to implement the inverse square root of a number
that appeared in the source code of the computer game Quake IIl. The implementation makes use of the
Newton-Raphson method (and not interpolation). The article assumes knowledge of C.

Piecewise Linear Interpolation

Let’s turn back to our half-a-circle example. This time, we’ll limit ourselves to a quarter of a
circle, that is, positive values of x and y. We start by calculating the y values for x equal to 0,
0.2,...,1. We'll store the results in vectors xp and yp:

>>> xp = linspace(0, 1, 6)

>>> Xp

array([o. , 0.2, 0.4, 0.6, 0.8, 1. 1])
>>> yp = sqrt(1-xp**2)

CHAPTER 8 SCIENCE AND VISUALIZATION

We'd like to calculate the values of y for x values equal to 0.1, 0.3, . . ., 0.9 given xp and

yp. We'll use the function interp(x, xp, yp) for this. The function returns the value of the
piecewise linear function defined by xp, yp at a requested point x. What this means is interp()
returns the value of a point on a line connecting two adjacent (xp, yp) points:

>>>
>>>

0.2

o9,

xi = arange(0.1, 1.0, 0.2)
yi = interp(xi, xp, yp)

The vector yi holds the interpolated values at points 0.1, 0.3, . . ., 0.9.
The following visualizes a piecewise linear interpolation for the quarter of a circle:

figure()

hold(True)

x = linspace(0, 1, 500)

y = sqrt(1-x**2)

plot(x, y, 'b', label="ideal")

plot(xp, yp, 'or', label="interpolation points')
plot(xp, yp, '--r', label='piecewise linear function')
plot(xi, yi, 'sg', label="interpolated values')
legend(loc="best")

grid()

axis('scaled")

axis([o0, 1.1, 0, 1.1])

title('Piecewise linear interpolation')

Figure 8-3 shows the results of this visualization.

Piecewise linear interpolation

— ideal v
| e einterpolation points R ¥
- - piecewise linear function v
= minterpolated values

0 0.2 0.4 0.6 0.8 1.0

Figure 8-3. Piecewise linear interpolation

259

260

CHAPTER 8 SCIENCE AND VISUALIZATION

For the purpose of the example, the values xp and yp are computed, but in reality, these
values can originate from sampled data. As you can see from the graph, the interpolated value
at 0.9 is considerably less accurate than other interpolated values. Typically, the more points
you add, the more accurate the result.

Polynomials

Polynomials are mathematical expressions that involve a sum of integer powers of a variable
multiplied by a coefficient. Examples include 2x? + x — 1 as well as x. However, sin(x) is not a
polynomial. The reason polynomials are so important is that they involve only basic opera-
tions: addition, subtraction, and multiplication (integer powers can be implemented with
several multiplications), and this property makes them very easy to implement in computing.
Taylor series expansion (http://en.wikipedia.org/wiki/Taylor series)is a prime example of
transforming a function to a polynomial, easily computed.

To be able to operate on polynomials with NumPy and SciPy, we represent a polynomial
as a vector. The first element in the vector is the coefficient to the highest power, and the last
element in the array is the coefficient to the lowest power, 0. So to express the polynomial
x%+ 3x + 2, issue the following:

>>> p = array([1, 3, 2])
To solve the equation x?+ 3x + 2 = 0, use the function roots(p):

>>> roots(p)
array([-2.40.3, -1.40.3])

Notice that the imaginary parts are zero, and so the roots are -2 and -1.
If you’d like to construct a polynomial from its roots instead of its coefficients, use the
function poly():

>>> p = poly([-2, -1])
> p
array([1, 3, 2])

Adding and subtracting polynomials is done using polyadd() and polysub():

>>> pl = poly([-2, -1])

>>> p2 = array([1, 0, 0, 0])
>>> polyadd(p1, p2)
array([1, 1, 3, 2])

I've added x?+ 3x + 2 to x® and got x>+ x?+ 3x + 2 as a result.
Multiplying and dividing polynomials is done using polymul() and polydiv(). The return
value from polydiv() is a quotient and a remainder:

>>> p = polymul(array([1, 2]), array([1, 3]))
>>> p

array([1, 5, 6])

>>> polydiv(p, array([1, 3]))

(array([1., 2.]), array([o]))

CHAPTER 8 SCIENCE AND VISUALIZATION

Performing integration and differentiation on polynomials is done using the functions
polyint() and polyder(), respectively:

>>> p = poly([-17, 17])

>>> p

array([1., 0., 1.])

>>> polyder(p)

array([2., 0.])

>>> polyint(p)

array([0.33333333, 0., 1. , 0.])

In the first line I created a polynomial from complex numbers; the polynomial created
is stored in p and is x? + 1. Using polyder () I calculated the derivative of p and got 2x. Using
polyint() I calculate the integral of p and got /3 x* + x.

Uses of Polynomials

So why is all this polystuff important? The main reason is that you can use polynomials to
approximate functions both from gathered data and from analytical functions. And since
polynomials only require multiplications and additions, implementing polynomials in an
embedded system, for example, is straightforward.

Fitting polynomials to data is done using the function polyfit(x, y, n).Given a vector of
x points and a vector of y points, polyfit(x, y, n) will return a polynomial of degree n (high-
est power of x) that best fits the set of data points. Another function that is of use is polyval(p,
x); this function returns the value of the polynomial at x (x can be a vector).

Example: Linear Regression

A known curve-fitting algorithm is linear regression. The idea is to draw a straight line in such
a way that the total distance of all the points from the line is minimal.

For the purpose of this example, we’ll create a straight line and then add “measurement
noise” to the values. Confronted with the new “noisy” data, we’ll try to evaluate the first order
polynomial that fits the data. We’ll compare the results with the known true values (see List-
ing 8-1).

Listing 8-1. Linear Regression with polyfit()

from pylab import *

number of data points
N = 100

start = 0

end =1

=
U}

rand()
rand()

o]
U}

our linear line will be y = A*x + B

261

262

CHAPTER 8 SCIENCE AND VISUALIZATION

x = linspace(start, end, N)
y = A*x + B
y += randn(N)/10

linear regression
p = polyfit(x, y, 1)

figure()
title('Linear regression with polyfit()")
plOt(X) Y> ‘o',

label="Measured data; A=%.2f, B=%.2f' % (A, B))
plot(x, polyval(p, x), '-',

label="'Linear regression; A=%.2f, B=%.2f' % tuple(p))
legend(loc="best")

I've randomly selected two values for A and B, and constructed a linear line with noise
using randn(). Then, Tused polyfit() to fit the data to a first degree polynomial, a straight line.
Lastly, I plot the data along with the newly constructed linear line. Figure 8-4 shows the results
of this linear regression.

Linear regression with polyfit()
1.2

e e Measured data; A=0.59, B=0.42 'J
—— Linear regression; A=0.57, B=0.45

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8-4. Linear regression with polyfit()

CHAPTER 8 SCIENCE AND VISUALIZATION 263

Example: Linear Regression of Nonlinear Functions

In cases where the function you're trying to fit isn’t linear, at times it’s still possible to perform
linear regression.
The following is an example of fitting exponential data:

from pylab import *

number of data points

N = 100

start = 0

end =2

A = rand()

B = rand()

x = linspace(start, end, N)
y = exp(A*x+B)

y += randn(N)/5

linear regression
p = polyfit(x, log(y), 1)

figure()
title(r'Linear regression with polyfit(), $y=Be”{Ax}$")
plOt(X) Y> ‘o',
label="Measured data; A=%.2f, B=%.2f' % (A, exp(B)))
plot(x, exp(polyval(p, x)), '-',
label='Linear regression; A=%.2f, B=%.2f"' % (p[0], exp(p[1])))
legend(loc="best")

The regression is performed in the call to the function polyfit(). This time, I've passed x
and log(y) as values allowing a linear regression on log(y) or an exponential regression on y.
You can see the results of this regression in Figure 8-5.

264

CHAPTER 8 SCIENCE AND VISUALIZATION

Linear regression with polyfit(), y = Be?*

10

e e Measured data; A=0.93, B=1.49
ol — Linear regression; A=0.91, B=1.51

Figure 8-5. Fitting exponential data

Example: Approximating Functions with Polynomials

Another set of problems solvable with polyfit() is approximation of functions using inter-
polation. The motivation behind this is a simple implementation of known functions. For the
purpose of this example, we’ll approximate the function sin(x).

The idea is to create a polynomial that passes through known interpolation points—that
is, calculate the value of sin(x) for known n values of x, and then create a polynomial of degree
n — 1 that passes through all these points.

We start by selecting a set of points from 0 to 7t/2; these will be our interpolation points.
Values outside this range can be computed using trigonometry identities and the interpolation
function. We select five points for interpolation, thus deciding the degree of the interpolation
polynomial to be 4. Once the points are selected, we calculate the sine of these points.

For the purpose of this example, I've chosen sine values that can be easily computed using
the sqrt() function. You might argue that I'm cheating here, because I'm using a nonlinear
function (square root) to calculate sin(x) and not purely polynomials. But you've already seen
how to calculate the square root of a number using Newton’s method in Chapter 7.

Tip The selection of interpolation points is an interesting topic, and work by the mathematician Pafnuty
Chebyshev has contributed much to the topic. See http://en.wikipedia.org/wiki/Pafnuty_Chebyshev
and http://en.wikipedia.org/wiki/Chebyshev_nodes.

CHAPTER 8 SCIENCE AND VISUALIZATION

The values I'll select for interpolation are 0, 30, 45, 60, and 90 degrees. The reason I chose
these values is that I know their exact sine values: 0, ¥2, V2/2,V3/2, and 1, respectively. Or, in
vector form:

>>> values = [0, pi/6, pi/4, pi/3, pi/2]

>>> sines = sqrt(arange(5))/2

>>> sines

array([0. , 0.5, 0.70710678, 0.8660254, 1.])

Given these, interpolation is straightforward:

>>> p = polyfit(values, sines, len(values)-1)

>>> p

array([2.87971125e-02, -2.04340696e-01, 2.13730075e-02,
9.95626184e-01, 2.22044605e-16])

So if you were to implement sin(x), all you need is to store the values of p given previously
and then write a simple routine to calculate the value of sin(x) using the polynomial. If you're
using NumPy, simply call polyfit().

Let’s plot the difference between our implementation of sin(x) and Python’s built-in sin(x)
function:

>>> figure()

>>> x = linspace(0, pi/2, 100)

>>> plot(x, polyval(p, x)-sin(x), label='error', 1lw=3)
>>> grid()

>>> ylabel('polyval(p, x)-sin(x)")

>>> xlabel('x")

>>> title('Error approximating sin(x) using polyfit()")
>>> x1im(0, pi/2)

Figure 8-6 illustrates this difference.

265

266

CHAPTER 8 SCIENCE AND VISUALIZATION

Error approximating sin(x) using polyfit()
0.0003 : ! ; ; ;

0.0002

T e ST I SR

polyval(p, x)-sin{x)

—0.0001

5 i i i i i
000088 0.2 0.4 0.6 0.8 1.0 12 14

Figure 8-6. Interpolation accuracy

The results are quite accurate, less than 0.003 at worst.

Spline Interpolation

The scipy.interpolate module adds additional interpolation functions. One of these is the
spline(xp, yp, x) interpolation function. Notice that the arguments to the function spline()
are ordered differently from those of the function interp(). Spline interpolation is a piecewise
polynomial interpolation that adheres to specific rules to yield smooth results.

Let’s turn to the previous circle example:

from scipy.interpolate import spline

from pylab import *

xp = linspace(0, 1, 6)

yp = sqrt(1-xp**2)

xi = linspace(0, 1, 100)

yi = interp(xi, xp, yp)

ys = spline(xp, yp, xi)

figure()

hold(True)

plot(xi, yi, '--', label='piecewise linear', lw=2)
plot(xi, ys, '-', label="spline', lw=2)
legend(loc="best")

grid()

title(r'Spline interpolation of $y=\sqrt{1-x"2}$")
xlabel('x")

CHAPTER 8 SCIENCE AND VISUALIZATION 267

ylabel('y")
axis('scaled")
axis([o0, 1.2, 0, 1.2])

In Figure 8-7, I've compared a piecewise linear interpolation with a spline interpolation.
The spline interpolation appears “smoother.”

Spline interpolation of y—=v 1—2”

1 1
- - piecewise linear
— spline

1.0

0.8

> 0.6

0.4

0.2

e

Figure 8-7. Spline interpolation

Solving Nonlinear Equations

In Chapter 7 we’ve talked about Newton’s method and used it to draw fractals. Newton’s
method was used to solve a nonlinear equation.

The module scipy.optimize provides us with additional tools to solve nonlinear equations,
as well as other optimization routines that will not be discussed here. Of those routines, I'd like
to highlight three: fsolve(f, x0), bisect(f, a, b), and newton(f, x0). All these functions try
to solve the equation f = 0, where f is a mathematical function implemented in Python.

Suppose we'd like to calculate V3 for the previous example. The idea is to construct a func-
tion such that the solution will be V3. This is easily done by setting f = x> -3 = 0:

>>> def f(x):
"Returns xFF2-3"""
return x**2-3

>>> f(10)

97

268

CHAPTER 8 SCIENCE AND VISUALIZATION

Let’s use the functions fsolve(), bisect(), and newton() to calculate the roots. For
fsolve() and newton(), we'll use x0 = 1, which is called the initial guess. The initial guess is
a value that is close to the desired result. For bisect(), we need to provide a region for the
search. We'll set the region to (1, 2) because we know the square root of 3 is less than 2 but
greater than 1:

>>> from scipy import optimize
>>> optimize.fsolve(f, 1)
1.7320508075688772

>>> optimize.newton(f, 1)
1.7320508075688772

>>> optimize.bisect(f, 1, 2)
1.7320508075690668

>>> _**2

3.0000000000006564

Although in the simple case of square root of 3, all these functions provide accurate
results, the algorithms are computationally intensive. In most these functions you can control
how accurate you’d like your result to be by passing proper arguments to the functions. Of
course, for a simple question as the one presented here, it’s best to use sqrt(3).

Special Functions

The scipy.special module provides a host of special functions that surface usually in higher
mathematics and physics. These include

¢ Bessel functions, integrals, derivatives, and zeros of Bessel functions
* Airy functions
¢ Gamma functions and error functions

¢ Special polynomials: Legendre, Chebyshev
and many more. To use the functions, issue the following:

>>> from scipy import special
>>> special.chebyt(2)
poly1d([2.00000000e+00, -4.44089210e-16, -1.00000000e+00])

For a full account, issue help(special).

Signal Processing

Up to this point in the chapter, we’ve dealt with numerical analysis. Going forward, the topics
are related to signal processing. Signal processing is a vast field that deals with signals: values
that change over time. Popular signal processing algorithms include the processing of sound,
such as an equalizer; others include algorithms for radars, CAT scanning, and many more.
This part of the chapter will cover some of the functionality available with the module
scipy.signal and complement the discussion with examples. You'll learn about some basic
algorithms to detect signals in the presence of noise and functions to design filters. However,

CHAPTER 8 SCIENCE AND VISUALIZATION

this section is but only a taste of the topic, and I encourage you to consult with the references
at the end of the chapter and professional literature for efficient signal processing algorithms.

Functions where, select, and find

The first set of functions we’'ll cover is where(), select(), and find().
The function find(cond) finds the indices to an array for which a condition is met:

>>> from pylab import *

>>> squares = arange(10)**2

>>> squares

array([o, 1, 4, 9, 16, 25, 36, 49, 64, 81])
>>> I = find(squares < 50)

>> 1

array([o, 1, 2, 3, 4, 5, 6, 7])

>>> squares[I]

array([0, 1, 4, 9, 16, 25, 36, 49])

We created a vector holding the squares of the numbers 0-9 and found all the indices to
the vector that satisfy the condition that the squares are less than 50. Notice that the return
value is a vector of indices, and if you require the values and not the indices, you have to
access the original array, which is squares[I] in the preceding example.

The function where(cond, x, y) accepts three arrays of the same size: cond, x, and y, and
then evaluates every element in cond. If the element evaluates to True, the return value is the
corresponding element from x; if the return element evaluates to False, the return value is the
corresponding element from y:

>>> up = arange(10)

>>> up

array([OJ 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> down = arange(10, 0, -1)

>>> down

array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
>>> highest = where(up > down, up, down)

>>> highest

array([lo, 9, 8 7, 6, 5 6, 7, 8, 9])

The function select(cond, vals, default=0) adds functionality to the function where()
by allowing for several conditions. The function accepts a list of conditions specified in cond
and returns the corresponding element associated with vals if a condition is met; if none of
the conditions are met, the default value is selected.

>>> up = arange(10)

>>> ramp = select([up < 4, up > 7], [4, 7], up)
>>> ramp

array([4, 4, 4, 4, 4,5, 6, 7, 7, 7])

The first three elements of up are less than 4, so the condition up < 4 is met, causing the
selection of value 4. The last three elements are greater than 7, causing the selection of the
value 7, and values greater than or equal to 4 yet less than 7 are retained as is because the

269

270

CHAPTER 8 SCIENCE AND VISUALIZATION

default is set to be equal to up. As a matter of fact, this functionality is called clipping and
is available as both a method of the NumPy ndarray object and as a stand-alone function,
clip().

So now that you know of the functions find(), where(), and select(), what can you do
with them? The answer is simple: they're great for picking up values, what we call detection in
signal processing.

Example: Simple Detection of Signal in Noise, Part 1

The detection of signals in the presence of noise plays an integral role in a great number of
applications. For example, it is used in communication systems in the detection of signals
such as radio or television broadcasts and differentiating them from noise, in medicine with
the detection of an ECG signal, and more.

For the purpose of this example, we’ll first construct a clean signal. By a signal, I mean a
one-dimensional array (vector), where values are stored as a function of time. Our purpose will
be to detect “events,” which will be represented by narrow triangles placed randomly in time.
There can be several events in a signal.

To generated a triangular pulse, I'll use the signal.triang() function (which is really a
window function, more on that later in the chapter in the section “Window Functions”). The
function generates a triangular window of a specified size. We randomly place triangular
pulses in the signal vector, as shown in Listing 8-2.

Listing 8-2. Randomly Placing Triangular Spikes

from pylab import *
from scipy import signal

parameters controlling the signal
n = 100

t = arange(n)

y = zeros(n)

num_pulses = 3

pw = 11

amp = 20

for i in range(num pulses):
loc = floor(rand()*(n-pw+1))
y[loc:loc+pw] = signal.triang(pw)*amp

add some noise
y += randn(n)

figure()

title('Signal and noise')
xlabel('t")

ylabel('y")

plot(t, y)

CHAPTER 8 SCIENCE AND VISUALIZATION

First I defined some parameters I'll be using. The number of points in the signal is n and is
equal to 100. The number of triangular pulses I'll place is 3, denoted by num_pulses. Each trian-
gular pulse will be generated using pw=11 points. The maximum value for the triangular spike
will be amp, denoting amplitude.

Once I have all the parameters defined, I create two vectors: the time vector, t, and the
values vector, y. The vector t is some arbitrary timestamp, in this example incrementing values
starting at zero and ending at n — 1. The vector y is initially set at zero.

Next I randomly place triangular spikes. The location, loc, where the triangular spike will
be placed is randomly generated with the call to the function rand() that generates a value
between 0 and 1, and so I randomly pick a value between 0 and n - pw + 1 to ensure spikes
aren’t placed outside the vector y. Once I have all the spikes placed, I add noise by use of the
function randn() that generates a normally distributed noise, also known as Gaussian distribu-
tion, or “white noise.” I've chosen to use a normal distribution with variance 1 and mean 0.
Notice that randn() is different from rand().

Figure 8-8 shows a randomly generated signal.

Signal and noise
25 : :

0 20 40 60 80 100
t

Figure 8-8. Three triangular spikes with noise

I did not check to see that spikes do not overlap, so as you run the script at times you'll
view one or two spikes instead of three. This is fine, since we want to add some randomness to
the example.

So far we’ve just created the signal. Now let’s detect it. For detection, we’ll use a simple
algorithm: whenever a value is above a set threshold, we’ll declare this as an event, or detec-
tion. We'll set the threshold at amp/2 and make use of the function find(), as shown in
Listing 8-3.

27

272

CHAPTER 8 SCIENCE AND VISUALIZATION

Listing 8-3. Detecting Signals

detect signals
thr = amp/2
I = find(y > thr)

plot signal with noise plus detection
figure()

hold(True)

plot(t, y, 'b", label='signal with noise")
plot(t[I], y[I], 'ro', label="detections")
plot([0, n], [thr, thr], 'g--")

annotate the threshold
text(2, thr+.2, 'Threshold', va='bottom")

title('Simple signal detection in noise')
legend(loc="best")

Figure 8-9 shows the result.

Simple signal detection in noise

25 :
— signal with noise
® e detections

201

15}

1o} Threshold _

_5 L L

0 20 40 60

80 100

Figure 8-9. Simple signal detection in the presence of noise

CHAPTER 8 SCIENCE AND VISUALIZATION

Functions diff and split

Another set of functions that’s of use in signal detection is diff() and split(). The function
diff(v), which was introduced in previous chapters, returns a vector composed of differences
of elements in v. The function split(v, indices) splitsa vector on indices.

>>> v = arange(10)
>>> split(v, [4, 8])
[array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([8, 9])]

Example: Simple Detection of Signal in Noise, Part 2

In the previous example, you saw how to perform simple detection using find(). We’'ve dis-
played all points that were above a specific threshold. In many occasions, we're less interested
with points above a threshold because the threshold is arbitrarily chosen; we’re more inter-
ested with the highest points above a threshold.

Here we pick up from the previous example. This time, we’d like to spot the peak in each
detection. Listing 8-4 presents the code to do that.

Listing 8-4. Peak Detections

peak detections

J = find(diff(I) > 1)

for K in split(I, J+1):
ytag = y[K]
peak = find(ytag == max(ytag))
plot(peak+K[0], ytag[peak], 'sg', ms=7)

The implementation is a bit tricky, so let’s walk through it. The idea is this: we split the
detections into separate groups, and in each group, we find the peak and plot it.

The first problem of splitting detections makes use of the indices of detected values. A
group is considered one detection if the indices are consecutive. Whenever there’s a jump in
indices, it means a new group:

>>> I = find(y > thr)
>»> 1
array([9, 10, 11, 12, 13, 14, 42, 43, 44, 45, 46, 47, 66, 67, 68, 69, 70, 71])

So the group [9, 10, 11, 12, 13, 14]is one group, the group [42, 43, 44, 45, 46, 47]
is the second group, and the group [66, 67, 68, 69, 70, 71] is the last group.

The function diff(I) will return values other than 1 whenever there’s a new group. When-
ever the difference is greater than 1, it means the start of a new group:

>>> diff(I)

array([1, 21, 1, 1, 41, 28, 1, 1, 1, 1, 1,19, 1, 1, 1, 1, 1])
>>> 1 = find(diff(I) > 1)

>>>]

array([5, 11])

273

274

CHAPTER 8 SCIENCE AND VISUALIZATION

So we’d like to split on the sixth element (denoted by 5) and the twelfth element (denoted
by 11). This is done with the split() function:

>>> split(I, J+1)
[array([9, 10, 11, 12, 13, 14]), array([42, 43, 44, 45, 46, 47]), array([66, 67, 68,
69, 70, 71])]

All that's needed now is finding the peak, which is coded as find(ytag == max(ytag)).In
Figure 8-10, peak detections are marked by squares.

Simple signal detection in noise

25
—— signal with noise
® o detections
20} m m peak detections
15}
10| Threshold _
51
0 =
_5 L L
0 20 40 60 80 100

Figure 8-10. Peak detections

Waveforms

Additional SciPy functionality includes several waveforms that can be used when you're
designing a signal processing algorithm or testing it. These include sawtooth(), square(),
gausspulse(), and chirp():

from pylab import *
from scipy import signal

cycles = 10
t = arange(0, 2*pi*cycles, pi/10)

waveforms = ['sawtooth', 'square']

CHAPTER 8 SCIENCE AND VISUALIZATION

for i, waveform in enumerate(waveforms):
subplot(2, 2, i+1)
exec 'y = signal.' + waveform + '(t)'
plot(t, y)
title(waveform)
axis([0, 2*pi*cycles, -1.1, 1.1])

Figure 8-11 shows the resulting waveforms.

sawtooth square
1.0f ' ' ' ' 1 Lol A M —‘ ’__| _I —]
0.5F H o5}]
0.0 0.0
-0.5 {1 -05} .
-1.0p ' , , ,-—1.0-——-—,—J,—,— L—,—
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Figure 8-11. Some waveforms

The difference between waveforms and the triangular window used earlier is that they’re
repetitive, whereas triang() generates a single window.

The functions gausspulse() and chirp() are a bit more specialized; refer to the interactive
help for information on using them.

Fourier Transform

Fourier transform is a linear operation that transforms a function from the time domain to the
frequency domain. Much like the sound you hear can be viewed as an amplitude as a function
of time, it can also be viewed by its frequency components: basses are the low frequencies of
audio, for example.

The topic of Fourier transforms is quite large and requires some mathematical rigor. I will
not be trying to address the topic in depth here; instead, I will show how you can use PyLab to
perform Fourier transforms on sampled data.

To convert a signal from time domain to frequency domain, use fft(x). FFT, which stands
for Fast Fourier Transform, is an efficient implementation of the transformation. Generally
speaking, if the number of elements in x is a power of 2, the results are quite fast:

>>> from time import time as t

>>> t1 = t(); sum(fft(arange(2**20))); print t()-t1
(-0.013107186881825328-0.005554199218757)
0.233999967575

>>> t1 = t(); sum(fft(arange(2**20-1))); print t()-t1
(-0.0054081712733022869+0.0489807128906257)
0.547000169754

275

276

CHAPTER 8 SCIENCE AND VISUALIZATION

The first fft () was performed on a vector the size of 22°, which is a power of 2; the second
one was performed on a shorter vector but the took longer to compute, more than twice as
long, because its size is not a power of 2.

To transform data from the frequency domain to the time domain, use ifft(x).

Example: FFT of a Sampled Cosine Wave

A cosine wave is made of one frequency (actually, two frequencies if you include the negative
frequency). Let’s generate a cosine wave and calculate its frequency using fft(), as shown in
Listing 8-5.

Listing 8-5. Fourier Transform of a Cosine Wave

N = 2%*¥9 # we prefer powers of 2
F =25 # a wave at 25 Hz
t
X

arange(N)/float(N) # sampled over 1 second
= cos(2*pi*t*F) # the signal

subplot(2, 1, 1)

plot(t, x)

ylabel('x []")

xlabel('t [seconds]")

title('A cosine wave')

grid()

subplot(2, 1, 2)

f = t*N

xf = fft(x)

plot(f, abs(xf))

title('Fourier transform of a cosine wave')
xlabel('f [Hz]")

ylabel('xf []")

x1im([0, NJ)

grid()

I first defined a few parameters: N is the number of points in the signal, and f is the fre-
quency of the cosine wave. I then created a time vector, t, which is made of evenly spaced
samples between 0 and 1, representing 1 second. I then calculated the sampled cosine wave
and plotted it along with its Fourier transform. I've chosen to plot the absolute of the trans-
formed signal, seeing as Fourier transforms return complex values (albeit in this case those
complex values are zero). Figure 8-12 shows the results.

CHAPTER 8

A cosine wave

SCIENCE AND VISUALIZATION

1.0

0.5

—-0.5

~19%

300

0.2 0.4 0.6 0.8
t [seconds]

Fourier transform of a cosine wave
T

1.0

>

SOk

L L L L
100 200 300 400
f[Hz]

Figure 8-12. FFT of a signal

Note There’s a frequency content at 25 Hz (the left spike), but there’s also another one at 487 Hz. That's
really the value corresponding to —25 Hz, that is, 512 — 25. If you’d like to view the frequency domain cen-
tered around 0 Hz, use the function fftshift().

Window Functions

In the FFT example I carefully chose a cosine wave that will have a full number of cycles in

1 second, which is basically any integer number for the frequency value. The reason for this
was had I chosen a noninteger value, I would’ve ended up with a signal that does not have full
wave cycles. The problem with this signal is when you perform the FFT of the signal, you’ll
start seeing other frequencies and not just the frequency of your original signal. The reason for
this is, in essence, FFT assumes the signal is repetitive; that is, it’s not just from 0 to 1 second,
it’s from minus infinity to infinity. And so it treats the signal as if it’s copied left and right an
infinite number of times. If the signal has an integer number of cycles, it will nicely fit when
copied left and right. But in reality, you can’t guarantee an integer number of waves in your
sampled signal, so you'll start seeing these sampling effects. To minimize the effect, we can
use a window function.

277

278 CHAPTER 8 SCIENCE AND VISUALIZATION

Several window functions such as hamming(), hanning(), bartlett(), and kaiser() help
minimize this effect but with a cost: the signal itself is also distorted. To use a window, multi-
ply it by the time-domain vector, as shown in Listing 8-6.

Listing 8-6. Hamming Window

= 2**9 # we prefer powers of 2

25.5 # wave frequency

arange(N)/float(N) # sampled over 1 second

= TN # frequency domain

cos(2*pi*t*F) # the signal

xh = x*hamming(512) # multiply with a hamming window
plot(f, abs(fft(x)), 's-', label="original')
plot(f, abs(fft(xh)), 'o-', label="with Hamming")
x1im([0, 50])

xticks(arange(0, 55, 5))

legend()

grid()

title('Signal with Hamming window")
xlabel('Frequency [Hz]")

ylabel('Amplitude []")

X —+H + M =
1} 1}

I've plot the FFT of two vectors: the original and the one with a Hamming window. In Fig-
ure 8-13, you can see I've zoomed on the 25.5 Hz frequency to show the effects of the window

function.
Signal with Hamming window
180 . : : . .
: : =—= original
16D asandivmmndiesmalipmesdinrecy e—e with Hamming ||

140

Amplitude []

[T)| EE—— |
60| sellsssisamalinmsaiinnniiunndg

gofsnedmnalumuserilint oo M busnainmens i A

0 5 10 15 25 30 35 40 45 50
Frequency [Hz]

Figure 8-13. Signal with Hamming window

CHAPTER 8 SCIENCE AND VISUALIZATION

The scipy.signal module provides additional window functions. To access these, issue

>>> from scipy import signal
>>> help(signal)

and scroll down to the window functions section.

Filtering

One of the reasons to transform a time-domain signal to a frequency-domain signal is for
the purpose of filtering. A filter is an operation that changes a signal. Much like filters in
your kitchen sink, filters let some frequencies pass (water), while stopping other frequencies
(large food remains). Filters are used in a variety of applications, ranging from audio to radar
systems.

Filters are categorized by their behavior. A filter that lets through low frequencies and
stops high frequencies is called a low-pass filter (LPF). Similarly, a high-pass filter (HPF) will
allow only high frequencies to pass. There are also other categorizations such as band-pass
filters (allows only a specific band of frequencies), band-stop filters (allows anything but a spe-
cific band of frequencies), and notch filters (suppresses very few frequencies).

Filters are further categorized by their behavior to an impulse input—that is, the output of
the filter as a function of time assuming you were to input a short spike to the filter. Filters that
eventually will forget the impulse are known as finite-impulse-response (FIR) filters, and filters
that never forget are known as infinite-impulse-response (IIR) filters. From a very simplistic
approach, if a filter does not rely on previous outputs (no feedback), it is considered an FIR;
otherwise, it’s an IIR.

Filter Design

Assuming you know what filter you wish to design, this section will help you do so. Filter
design is an advanced topic, and as such this section is meant for those who require a few
pointers on designing filters in Python with SciPy.

The scipy.signal module includes several functions to help design a filter. The function
iirdesign() is used for designing an IIR filter. It is quite complete, and it’s best to read the
online help and follow it through. Other useful IIR design filters include butter(), cheby1(),
cheby2(), and ellip(). FIR filter design functionality is provided with functions remez() and
firwin().Iwon’t be covering those, but should you need to use them, the online help is quite
informative. Finally, if you’d like to view the frequency response of a filter, use the functions
freqz() and freqs().

The code in Listing 8-7 will design a low-pass Butterworth filter (an IIR filter) and plot its
frequency response.

279

280

CHAPTER 8 SCIENCE AND VISUALIZATION

Listing 8-7. Frequency Response of a Filter

N = 256 # number of points for freqz
Wc = 0.2 # 3dB point
Order = 3 # filter order

design a Butterworth filter
[b, a] = signal.butter(Order, Wc)

calculate the frequency response
[w, h] = signal.freqz(b, a, N)

plot the results
figure()

subplot(2, 1, 1)

plot(arange(N)/float(N), 20*logi0(abs(h)), lw=2)
title('Frequency response')

xlabel('Frequency (normalized)")

ylabel('dB")

ylin(ylin()[0], ylin()[1]+5)

grid()

subplot(2, 1, 2)

plot(arange(N)/float(N), 20*logi0(abs(h)), lw=2)
title('Frequency response (3dB point)')
xlabel('Frequency (normalized)")

ylabel('dB")

text(Wc+.02, -3, '3dB point', va='bottom")
ylin([-3, 0.1])

grid()

I've made use of two functions: butter() and freqz(). The function butter() designs an
IIR filter with specified parameters (order and cutoff frequency), and the function freqz()
returns a frequency response. Note that the frequency response is a complex number, and so
I've plot the amplitude in dB of the absolute value: 20¥1og10(abs (h)), as shown in Figure 8-14.

CHAPTER 8 SCIENCE AND VISUALIZATION

Frequency response

S e S S I

B

= _100 R SRS A e R:.. =5

—-150

I
0.0 0.2 0.4 0.6 0.8 1.0
Frequency (normalized)

Frequency response (3dB point)
00 l I ...

-0.5

-1.0

- R I S— RSN S -— |
—2.0

R TS
_3 3dB point |
'%,G 0.2 0.4 0.6 0.8 1.0
Frequency (normalized)

Figure 8-14. Frequency response of a low-pass filter

To filter data given a specific filter, use the function scipy.1filter(b, a, x).Let’s turnto
an example.

Example: Heart-Rate Monitor

For the purpose of this example, I'll generate a signal that simulates the data generated from a
heart-rate monitor connected to a patient. Please do not use this in any sort of production sys-
tem; it’s merely for educational purposes (and not meant to truly represent heart signals!).

The patient walks around, and as a result, two signals are picked up: 1) the heart signal
and 2) a signal associated with the patient’s movement, or what is typically referred to as a
movement artifact. Listing 8-8 shows these signals in my simulation.

Listing 8-8. Heart Rate Simulation

heart signal simulation

N = 256 # number of samples per second
T=2 # number of seconds

hr = 1.67 # 100 beats per minutes

F1 = 0.5 # movement frequency

t = arange(T*N)/float(N)
yl = 5*sin(2*pi*t*F1) # movement artifact

281

282

CHAPTER 8 SCIENCE AND VISUALIZATION

add heart signals

y2 = zeros(size(y1))

for i in range(int(T*hr)):
y2[i*N/hr:i*N/hr+10] = signal.triang(10)

combine movement with beats
y = yl+y2

create a high-pass filter
[b, a] = signal.butter(3, 0.05, "high")

filter the signal
yn = signal.lfilter(b, a, y)

plot the graphs
figure()

subplot(2, 1, 1)

title('Heart signal with movement artifact (simulation)')
plot(t, y, lw=2)

xlabel('t [seconds]")

ylabel('Amplitude []")

subplot(2, 1, 2)
title('Filtered signal')
plot(t, yn, lw=2)
xlabel('t [seconds]")
ylabel('Amplitude []")

I've defined several parameters that control the script. The value N is equal to the number
of samples per second (some are used to name this value Fs, which stands for frequency of
sampling). The value T is the total number of seconds, in this case 2 whole seconds. The value
hr is the patient’s heart rate, 100 beats per minute: 100 / 60 = 1.67 Hz. Lastly, I defined the
movement artifact frequency at 0.5 Hz. I then construct a time vector, t, and a movement arti-
fact vector, v1, and add “beats” with triangular waveforms using the signal.triang() function.

Now that I have a heart signal with a movement artifact, I turn to filter out the movement
artifact. I design a second-order Butterworth HPF to do so via the call to signal.butter() and
use the filter parameters to filter the signal using signal.lfilter(). Figure 8-15 shows the
resulting plot.

CHAPTER 8 SCIENCE AND VISUALIZATION

Heart signal with movement artifact (simulation)

Amplitude []

%0 0.5 1.0 1.5 2.0
t [seconds]
Filtered signal
0.6 : :
0.4
o B
=)
2 00} (\\,-
=
£ -0.2}
_04 N
995 0.5 1.0 G 2.0

t [seconds]

Figure 8-15. Filtering a signal

Example: Moving Average

On many occasions, filtering is used to “smooth” a signal. A simple algorithm is that of a mov-
ing average. For every two consecutive points, we calculate the average and use that value
instead. The points are overlapping, so a result of using the algorithm on the vector [1, 2, 0,
2] would be [1.5, 1, 1]. But why stop at two samples? Moving average can be performed on
several points, returning the average of those points. In Python, you could write

>>> from pylab import *
>>> N = 512
>>> t = linspace(0, 10, N)
>>> x = 1-exp(-t) +randn(N)/10
>>> W = 32 # num points in moving average
>>> xf = zeros(len(x)-W+1)
>>> for i in range(len(x)-W+1):
xf[i] = mean(x[1:i+W])

>>> plot(t, x)

>>> hold(True)

>>> plot(t[W-1:], xf, 1w=3)

>>> title('Moving average')

>>> legend(['signal with noise', 'filtered signal'])
>>> xlabel('t [seconds]")

>>> ylabel('x []")

283

284

CHAPTER 8 SCIENCE AND VISUALIZATION

This is a straightforward implementation using a for loop. The input to the filter is arbitrarily
chosen as 1 — exp(-t) plus noise.

There is an easier approach. A moving average is an FIR filter with all its elements equal
to 1/W, where W is the length of the moving average window. In this case, a quick-and-simple
way to implement a moving average filter instead of the for loop is by calling the signal.
1filter() function and passing ones(W)/W as the filter values:

>>> from scipy import signal
>>> xf = signal.lfilter(ones(W)/W, 1, x)

Figure 8-16 shows the results of plotting a moving average.

Moving average

1.4

— signal with noise
- filtered signal

1.2F

|

| ||I|I,llj.i.|-" I (A
| l]'lll' | I |q|||.||,

L A
I b
0.8 I"'

“j‘

0.4

x[]

0.2

0 2 4 6 8 10
t [seconds]

I
o
hJ

Figure 8-16. Moving average

Final Notes and References

The purpose of this chapter is to serve as a cookbook of algorithms in numerical analysis and
signal processing. I took great care to limit the amount of math used in the examples and yet
still be informative.

The topics covered in the chapter are far too great to be explored in one book, let
alone one chapter. If you find these topics of interest, the following may provide additional
information:

e Numerical Recipes: The Art of Scientific Computing, Third Edition by William H. Press,
Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery (Cambridge University
Press, 2007; for more information, see http://www.nx.com)

* SciPy, http://www.scipy.org/

CHAPTER 9

Image Processing
Two-Dimensional Data

Up to this point we’ve mostly dealt with one-dimensional data, that is, graphs and data made
of essentially a series of values. We've plotted the data, analyzed it, and created an image that
was later saved to file or displayed to screen.

However, image data files, or the image on your screen, is two dimensional. It is made of
pixels (which is short for picture elements), each pixel having a location in two dimensions, x
and y, and a value corresponding to the color. In this chapter we turn to manipulating images
on the pixel level, that is, operating on the two-dimensional matrix of pixels.

Operations on images are similar to operations performed on one-dimensional data.
Slicing a 1-D array of values and adding those values to another array is equivalent to copy-
ing and pasting images. Saving an array to file is equivalent to writing images in TIFF or JPEG
format. So in a sense, image processing is equivalent to signal processing, only that the signals
now have two dimensions.

Copying and pasting, resizing, and cropping are all simple operations supported by most
GUI-based graphics applications. But with a GUI application, it’s harder to perform these
operations in a systematic and automated manner, for example, resizing several images and
then combining them together to form a collage of images. It’s doable in GUI applications, but
it’s typically not as easy and requires some user skills. Other simple image operations include
converting file formats, rotating images, and cropping them. I'll cover these image operations,
as well as how to automate them, so results are consistent.

We'll also deal with data on a numerical level, that is, reading the image, transforming it
into a NumPy matrix, and then operating on the matrix itself. I'll show how you can imple-
ment some interesting algorithms that involve image processing. Lastly, I'll touch on some
more complex topics such as filtering, which is the act of modifying a picture to enhance the
visual output.

The basic package we’ll use for all these operations is the Python Imaging Library, or PIL
for short. Be sure to install PIL per the guidelines in Chapter 2. We’ll also be relying on NumPy
and matplotlib.

It is assumed you have read Chapter 6 and Chapter 7; the text here will rely on the mate-
rial covered in those chapters to discuss topics related to image processing.

285

286

CHAPTER 9 IMAGE PROCESSING

Reading, Writing, and Displaying Images
The Python Imaging Library provides us with several classes that enable image processing.

The basic class, Image, supports image operations such as reading an image from file, writing
an image to file, copying and pasting, resizing, and rotating.

Reading Images from File

Let’s get started. To use the Image class, import it as follows:

>>> from PIL import Image

Note Going forward, I'll assume you've issued from PIL import Image and will refrain from mention-
ing the import statement. It's also possible to simply to write import Image instead of from PIL import
Image.

Our first operation is reading an image file. Since we currently don’t have any images,
let’s generate an image and read it from file. We’ll use matplotlib patches for this, as shown in
Listing 9-1. (If you're not familiar with matplotlib patches, refer to Chapter 6.)

Listing 9-1. Creating an Image

>>> from pylab import *

>>> figure()

>>> gca().add _patch(Circle((o, 0), 1))
>>> axis('off")

>>> axis('scaled")

>>> savefig('../images/circle.png")

The code in Listing 9-1 draws a filled circle and saves it to file . . /images/circle.png.

Tip I've used matplotlib to create an image file to work with, but you just as well could use any image file,
for example, a JPEG picture you took with your digital camera.

Our first operation is to read the file and attach it to an Image object:

>>> im = Image.open('../images/circle.png")

Note In accordance with the directory structure presented in Chapter 2, | assume that you’re currently
running from directory Ch9/sxc and that directory Ch9/images holds image files. If that is not the case, be
sure to change the path to the images in the examples provided in this chapter.

CHAPTER 9 IMAGE PROCESSING

Image Attributes

Now that we have an Image object associated with an image file, we can query the object’s
attributes:

>>> im.size

(815, 615)

>>> im.info

{'dpi': (200, 100)}
>>> im.mode

"RGBA'

>>> im.format

'PNG'

>>> im.filename
'../images/circle.png’

This is quite a bit of information. We know that the image size is 815X615 pixels wide,
the resolution is 100 dpi, the mode is RGBA (we’ll get to modes a little later in the chapter in
the section “Creating New Images”), the image format is PNG, and the file associated with the
object we've created is . ./images/circle.png.

Example: Image Catalog

My experience with analyzing image data is that images are not always taken in a consistent
manner. This means that you, the programmer, have to manually crop, resize, enhance,

or even delete images. This also translates into maintaining a catalog file of some sorts. An
approach I found helpful is creating an automated catalog file and then annotating informa-
tion as I work with data (see Chapter 4 for discussion of catalog files).

The purpose of this example is to create a basic image catalog file. The script makes use
of the Image attributes presented in the previous section and creates a CSV catalog file in the
parent directory of the searched directory. The catalog file has an extension .cat.csv. That s,
if you're searching /home/user, a catalog file will be created named /home/user.cat.csv. The
catalog file includes the name, size, format, and resolution of each image (see Listing 9-2).

Listing 9-2. Creating an Image Catalog

from PIL import Image
import os, csv

def image catalog(srchpath):
"""Creates a catalog file named srchpath.cat.csv."""
the CSV header
catalog = [['Filename', 'Pathname', 'Format', 'Size', 'Resolution']]

walk directory tree
for root, dirs, files in os.walk(srchpath):

for file in files:
pathname = os.path.join(root, file)

287

288

CHAPTER 9 IMAGE PROCESSING

try:
img = Image.open(pathname)
filesize = os.path.getsize(pathname)
catalog.append([file, pathname, img.format,
img.size, img.info])
except IOError: # not an image
pass

create the clean catalog

f = open(srchpath+'.cat.csv','wb")
csv.writer(f).writerows(catalog)
f.close()

The script defines a function named image catalog(), which accepts the directory to
search and produces an image catalog file in CSV format. The variable catalog is a list of rows
containing image information. We iterate through the directory and look for images with the
Easier to Ask Forgiveness than Permission (EAFP) approach: try to open a file as if it were
an image file. In case of success, the catalog is updated. If the file is not an image, exception
IOError is raised, and we pass this file.

Note If your directory is supposed to contain strictly images, you might want to add a print statement
before the pass notifying the user that a nonimage file was encountered.

Here are the results I got from running the script in directory images (contents of file
images.cat.csv):

Filename,Pathname,Format,Size,Resolution
nightsky1.png,../images/nightsky1.png,PNG," (815, 615)","{"'dpi"': (100, 100)}"
nightsky2.png,../images/nightsky2.png,PNG," (815, 615)","{"'dpi"': (100, 100)}"
circle.png,../images/circle.png,PNG," (815, 615)","{'dpi': (100, 100)}"
nightsky.png,../images/nightsky.png,PNG," (815, 615)","{'dpi': (100, 100)}"
collage.png,../images/collage.png,PNG," (600, 600)",{}

Displaying Images

You can view an image by calling the Image method show(). The method in turn calls the oper-
ating system’s default image viewer, which is usually provided by the OS. To use a different
viewer from the one supplied by the OS, associate the image with an image viewer you desire.
The following will display the image . ./images/circle.png created previously:

>>> Image.open('../images/circle.png").show()

CHAPTER 9 IMAGE PROCESSING

Converting File Formats

One of the common operations we perform on images is converting the image file format. It’s
important for a couple of reasons: because we want to store images in a more efficient format
using compression, or because the application that accepts the image requires a different
format.

The Image method save() enables saving an image to file in a specified image format.
There are two methods to specify a format: with a file name extension and by explicitly speci-
fying the format argument.

Assuming you've created an image file . ./images/circle.png per the previous listing, you
can read the image and convert the file format to a JPEG file format, as shown in Listing 9-3.

Listing 9-3. Converting PNG to JPEG

>>> im = Image.open('../images/circle.png")

>>> im.save('../images/circle.jpg")

>>> import os

>>> [fn for fn in os.listdir('../images') if fn.startswith('circle')]
['circle.jpg', 'circle.png']

In this particular example, you're not really converting the file, rather creating another file
with a different image format (converting would mean that you also delete the original file).
Or, you could create a function to convert an image to JPEG format, as shown in Listing 9-4.

Listing 9-4. A Function to Convert an Image to JPEG Format

from PIL import Image
from os.path import splitext

def ConvertTolpeg(filename):

"""Convert an image file to a Jpeg file."""
jpegname = splitext(filename)[0]+'.jpg'
Image.open(filename).save(jpegname)

I've made use of the splitext() function, which is part of the os module to replace the
original extension with a . jpg extension. The . jpg extension instructs the save() function to
create a JPEG file.

As mentioned, you can also explicitly specify a format:

>>> im = Image.open('../images/circle.png")

>>> im.save('../images/circle’, format='Jpeg')

>>> [fn for fn in os.listdir('../images') if fn.startswith('circle')]
['circle.png', 'circle']

In this case, save() does not add an extension to the file name (that is, the file created is
circle, notcircle.jpg).

289

290

CHAPTER 9 IMAGE PROCESSING

PIL supports a large number of file formats. Most popular image formats can be read by
the Image class. Furthermore, most images can be saved using known file formats including
JPEG, TIFF, and PNG. However, some image formats can only be read. Other formats such
as MPEG (video files) are supported in identify mode only. For a full account, refer to the PIL
handbook: http://www.pythonware.com/1library/pil/handbook/index.htm.

Example: A Function to Convert All Images in a Directory to JPEG Format

A direct continuation of the idea presented previously is to write a function that iterates
through a directory and converts all images to JPEG format, as shown in Listing 9-5. We'll keep
the original image as well because JPEG uses a lossy compression algorithm, which might
lower the original image quality. However, you can easily modify the example to remove the
original images.

Listing 9-5. Converting All Images in a Directory to JPEG

import os, csv
from PIL import Image

def ConvertDirTolpeg(srchdir):
"""Converts all images in a directory to a jpeg file."""
walk directory tree
for root, dirs, files in os.walk(srchdir):
for file in files:
pathname holds the image file name
pathname = os.path.join(root, file)
try:
convert the file to a JPEG file
img = Image.open(pathname)
jpegname = os.path.splitext(pathname)[0]+".]pg"
if os.path.exists(jpegname):
print "Did not create %s; file already exists." % jpegname
else:
img.save(jpegname)
print "Created file "+jpegname
except IOError: # oops, not an image
pass

The script again makes use of the EAFP approach: try to open a file as an image and if all
goes well, convert it to a JPEG image. To run the function, enter ConvertDirToJpeg(dirname).

Note In case the function ConvertDirToJpeg() is called with a nonexisting directory, no output is
generated, not even a warning message. If you require such functionality, be sure to modify the function and
include it.

CHAPTER 9 IMAGE PROCESSING

Image Manipulation

So now we can read images, display them, and convert file formats. But in converting file for-
mats, we haven’t really changed the image, we merely saved it in a different format.

In this section we turn to perform basic image manipulations, that is, modifying the con-
tents of an image: cutting and pasting, cropping, and rotating.

Creating New Images

PIL provides us with the ability to create images, not just read them from file. This is especially
useful when you want to copy and paste images from other sources to a new image. The syntax
for creating a new image is Image.new(mode, size, color=0).The mode argument can take one
of the values listed in Table 9-1.

Table 9-1. Image Modes

Mode Description
"1 1 bit per pixel; useful for black-and-white images
"L 1 byte per pixel (values from 0 to 255), black and white; useful for working with one color

band (see the discussion about color later in the chapter).

'RGB' Red, green, and blue, 1 byte per color, also known as true color. RGB is common when
the image background is black such as on a screen monitor.

"RGBA' Red, green, blue, and a transparency mask, 1 byte per color; common in several file
formats including PNG.

"CMYK" Cyan, magenta, yellow, and black, 1 byte per color. CMYK is common in print.

There are additional image modes, but I won'’t be covering them in this chapter. To view
the list of available modes, issue

>>> from PIL import Image
>>> Image.MODES
['1', 'CMYK', 'F', 'I', 'L', 'P', 'RGB', 'RGBA', 'RGBX', 'YCbCr']

Refer to the PIL web site for additional information: http://www.pythonware.com/
products/pil/index.htm.

The size argument in the Image.new() function is a two-element tuple detailing the width
and height of the image. The color argument is a function of the mode. For example, in the
case of an RGB image, the color is a tuple in the form (red, green, blue); in case of CMYK, the
color takes the form (cyan, magenta, yellow, black).

>>> im1 = Image.new('L', (800, 600)) # black, one-band image
>>> im2 = Image.new('CMYK', (800, 600), (0, 255, 0, 0)) # magenta image
>>> im3 = Image.new('RGB', (800, 600), (255, 0, 0)) # red image

291

292

CHAPTER 9 IMAGE PROCESSING

Copy and Paste

The methods copy() and paste() allow copying images and pasting images into other images,
respectively. The method copy() requires no parameters and creates a copy of the current
image. The method paste(im, xy) pastes the image iminto the current image; the xy argument
is a tuple indicating the (x, y) location to paste (top left). Let’s turn to an example that uses the
paste() method.

Example: Fractal Collage

In this example we make use of the functions new(), open(), paste(), and save() to create a
collage of images. To follow along, you'll need to modify the fractal script presented in Chap-
ter 7 in Listing 7-1 so that it’s a function instead of a script. The function should be named
fractal(delta, res, iter) and return an Image object representing the fractal. Refer to the
Appendix for a listing of the function. Once you create the function, save it under Ch9/src/
fractal func.py.

Armed with the function fractal(delta, res, iter), we create a fractal collage, as shown
in Listing 9-6.

Listing 9-6. A Collage of Fractals

from PIL import Image

define the function fractal; assuming it's in file 'fractal func.py'
execfile('fractal func.py')

fsize = 200 # small fractal image width and height
X # number of images, width

nx =3
ny =3 # number of images, height
collage = Image.new("RGB", (fsize*nx, fsize*ny))
for i in range(ny):
for j in range(nx):
im = fractal(0.000001, fsize, i*nx+j+1)
print "Processing image %d of %d" % (i*nx+j+1, nx*ny)
collage.paste(im, (fsize*j, fsize*i))
collage.save('../images/collage.png")

The script generates fractals with increasing numbers of iterations and pastes them into
an image that serves as the image collage. The arguments to the paste() method are chosen so
that the images are pasted from top left to bottom right. I've saved the image to file . . /images/
collage.png.

The result from running this script is shown in Figure 7-1 in Chapter 7.

Crop and Resize

Cropping and resizing modify an existing image. The function crop() selects part of the origi-
nal image, and the function resize() resizes an existing image, that is, scales it so it fits the
new size.

CHAPTER 9 IMAGE PROCESSING

Assuming you have run the previous collage example, you should now have a file named
collage.png. The function crop() accepts a tuple of four values, detailing the box to crop: (x0,
y0, x1, y1). Let’s read the collage.png file and crop it to show only 2 by 2 images from the frac-
tal collage:

>>> img = Image.open('../images/collage.png')
>>> img.size

(600, 600)

>>> cropped img = img.crop((0, 0, 400, 400))
>>> cropped_img.show()

Suppose you want to show the entire image, but scaled to size (400, 400); in this case
you'd use the resize(xy) function, where xy is a two-element tuple detailing the width and
height of the resized image:

>>> img = Image.open('../images/collage.png"')
>>> img.size

(600, 600)

>>> resized img = img.resize((400, 400))

>>> resized img.show()

>>> resized img.size

(400, 400)

You can also use the method thumbnail(), which is similar to resize(). The difference is
that resize() returns a modified image copy, whereas thumbnail() modifies the image itself.

>>> img.thumbnail((400, 400))
>>> img.size
(400, 400)

In both resize() and thumbnail() methods you can provide a filter argument that
determines the method of resampling. The acceptable values are Image.NEAREST (default),
Image.BILINEAR, Image.BICUBIC, and Image.ANTIALIAS (best quality). Antialiasing has the best
results but might take longer to compute:

>>> img.thumbnail((400, 400), Image.ANTIALIAS)

Rotate

Lastly on our list of basic operations is the rotate() function. The function rotate(theta)
rotates an image theta degrees.

From a user’s perspective, rotating is a basic operation, for example, rotating a scanned
document by a few degrees so it’s properly displayed. But in reality, rotation isn’t such a basic
operation; it requires changing the width and height of the image. In the case of rotating by
90 degrees (or multiples), the rotate() function knows to swap the x-axis and the y-axis, but in
case of other rotation values, both axes change, so the total area of the image changes. You can
control whether you want rotate() to expand the image so it includes the entire rotated image
or not by passing expand=True or expand=False, respectively.

293

294

CHAPTER 9 IMAGE PROCESSING

>>> img = Image.new('RGB', (200, 300), (0, 0, 255))
>>> img30 = img.rotate(30)

>>> img30.show()

>>> img30.size

(200, 300)

>>> img30e = img.rotate(30, expand=True)

>>> img30e. show()

>>> img30e.size

(324, 360)

In the first line I've created a simple blue image that is 200 pixels wide and 300 pixels high.
I've then rotated the image 30 degrees with and without expanding. The results are shown in
Figure 9-1.

Figure 9-1. Rotated images: the left is not expanded, the right is expanded.

Image Annotation

Annotating images is just as important as annotating graphs. However, in some cases, anno-
tating an image with text disrupts the pleasing visual result. That’s probably why it’s less
common in pictures. There’s also the issue of what color to choose. In cases where the picture
is mostly white, you probably want to choose nonwhite annotation.

In this section we’ll cover text annotation as well as geometrical shapes to highlight spe-
cific image features.

Annotating with Geometrical Shapes

PIL provides us with the ImageDraw object, which allows annotations of an existing image. To
import the ImageDraw object, issue from PIL import ImageDraw.To use the ImageDraw object,
attach it to an existing image:

CHAPTER 9

>>> from PIL import Image, ImageDraw
>>> img = Image.new('RGB', (200, 300), (0, 0, 255))
>>> draw = ImageDraw.Draw(img)

IMAGE PROCESSING

I've created an ImageDraw object named draw and attached it to the image img. Going for-
ward, operations performed with the ImageDraw object will be performed on the Image object:

>>> draw.line((100, 100, 200, 200))

>>> img.show()

This will draw a line from (100, 100) to (200, 200).
You can use the functions in Table 9-2 to annotate an image. In the table, assume draw =

ImageDraw.Draw(Image).

Table 9-2. Some ImageDraw Functions

Function

Description

Example

arc(xybox, start, end)

chord(xybox, start, end)

ellipse(xybox)

line(xyseq)

point(xy)
polygon(xyseq)

rectangle(xybox)

Draws an arc, a part of the circle
bound by the rectangle xybox
(tuple of four elements), starting
at angle start and ending at angle
end.

Similar to arc(), also draws a line
connecting the arc edges.

Draws an ellipse bound by the

four-element tuple xybox. If you'd
like a circle, use a square for the
xybox values.

Draws lines connecting elements
in the sequence xyseq.

Draws a point at location xy.

Draws a polygon connecting ele-
ments in the sequence xyseq.
The difference from the line()
function is that the polygon is
always a closed shape, allowing
the use of the fill argument.

Draws a rectangle specified by the
four-element tuple xybox.

draw.arc((100, 100, 200,
200), 90, 180) will draw a
quarter of a circle.

draw.chord((0, 0, 100,
100), 90, 180)

draw.ellipse((50, 50, 150,
100))

draw.line([0, 0, 10, 10,
20, 10, 20, 20])

draw.point((40, 40))

draw.polygon([10, 20, 40,
40, 50, 30, 70, 80])

draw.rectangle((20, 60,
80, 140), fill=128)

The ImageDraw annotation functions accept the following optional arguments: fill, which
determines the color of the annotation or the fill object (similar to the facecolor argument in
matplotlib); outline, which determines the line to draw the object (similar to the matplotlib
edgecolor argument); and font, in case of text annotations.

Text Annotations

Other than geometrical shapes, ImageDraw also provides text annotation with the function

text(xy, string):

295

296

CHAPTER 9 IMAGE PROCESSING

>>>
>>>
>>>
>>>
>>>
>>>

from PIL import Image, ImageDraw

img = Image.new('L', (160, 160), 255)
draw = ImageDraw.Draw(img)
draw.ellipse((0, 0, 160, 160), fill=128)
draw.text((80, 80), 'A long string')
img. show()

Originally, I had intended on having the text centered horizontally. However, the text

string has width, so I require a method to calculate the width and height of the text in pixels.
Once I have the width and height, I can draw the text at location (80 — width/2, 80 — height/2).
This is done using the function textsize():

>>>
>>>
>>>
>>>
>>>
>>>
>>>

(78,

>>>
>>>

from PIL import Image, ImageDraw

img = Image.new('L', (160, 160), 255)
draw = ImageDraw.Draw(img)
draw.ellipse((0, 0, 160, 160), fill=128)
s = 'A long string'
width, height = draw.textsize(s)
width, height

11)

draw.text((80-width/2, 80-height/2), s)
img. show()

Figure 9-2 shows the results with and without taking into consideration the string width

and height.

Figure 9-2. Text annotation using text() and textsize()

Fonts

It’s also possible to use other fonts with the text() function. To do so, first create an ImageFont
object. The ImageFont object is part of PIL, and to import it, issue from PIL import ImageFont.
Once ImageFont is imported, you can use a font with a call to ImageFont. truetype(fontname,

CHAPTER 9 IMAGE PROCESSING

size). The returned ImageFont object can be passed as an argument to the text() function by
means of the font argument.

Of course, to be able to use fonts, they must first be installed in your system. Windows
typically comes with built-in fonts; and on Linux fonts are usually installed with X (as well as
other applications). You can also use fonts from the GNU FreeFont project (http://www.gnu.
org/software/freefont/).

However, font and font names are different on varying systems, and not just different
operating systems: my Windows system might have different fonts than your Windows sys-
tem. This means calling ImageFont.truetype(fontname, size) might work on one system and
not on another. To overcome this problem, I use the function findfont(), which is part of the
matplotlib.font_manager module. The function findfont() returns a string with the location
of a font that best matches the requested font.

The following script annotates text with the Vera font using the findfont() function:

>>> from matplotlib import font_manager

>>> from PIL import Image, ImageDraw, ImageFont

>>> img = Image.new('L', (250, 100), 192)

>>> draw = ImageDraw.Draw(img)

>>> font_str = font manager.findfont('Vera')

>>> font str
'/usr/1lib/python2.5/site-packages/matplotlib/mpl-data/fonts/ttf/Vera.ttf'
>>> ttf = ImageFont.truetype(font_str, 54)

>>> s = 'ABCabc'

>>> (W, h) = draw.textsize(s, font = ttf)

>>> draw.text(((250-w)/2, (100-h)/2), 'ABCabc', font = ttf)
>>> img.show()

The first two statements import the proper objects from PIL as well as matplotlib’s font
manager. I then create a one-band image of size (250, 100) followed by the instantiation of an
ImageDraw object attached to the image.

Next I use matplotlib’s findfont () function to find a font that’s closest to the font Vera.
The path to the font is stored in the string font_str. Following that I create an ImageFont object
named ttf and use that font object to render the text. I then calculate the size of the text and
render it in the middle of a gray background, as shown in Figure 9-3.

ABCabc

Figure 9-3. Font rendering

Note To use a font, you must supply the font argument in calls to both functions text () and
textsize().

297

298 CHAPTER 9 IMAGE PROCESSING

Example: Thumbnail Index Image

In a previous example we’ve created a catalog of images. While that catalog is quite useful, it
doesn’t show the contents of those images. A more useful catalog perhaps would be a collage
of the images annotated with text showing each image’s file name (see Listing 9-7).

Listing 9-7. Thumbnail Index Image

thumbnail index
import os
from PIL import Image, ImageDraw

def thumbnail index(dirpath):
"""Create a thumbnail index from images in dirpath."""

num_images = 5
thumb_size = (128, 96)
cat_size = (num_images*thumb size[0], num images*thumb size[1])

fn_index = 0 # file name index
img_index = 0 # image index

go through all the pictures in a directory
for file in os.listdir(dirpath):

get the pathname for the file

pathname = os.path.join(dirpath, file)

try: # is this an image file?

open the image file
img = Image.open(pathname)

except IOError:
print file, "is not an image file"
continue

create a thumbnail
img.thumbnail((thumb_size), Image.ANTIALIAS)
draw = ImageDraw.Draw(img)

draw.text((2, 2), file)

do we need to create a new catalog image?
if img index ==
thumbs_img = Image.new('RGB', cat size)

calculate the location for this image
x = img index % num_images
y = img index // num_images

CHAPTER 9 IMAGE PROCESSING 299

paste the thumbnail
thumbs_img.paste(img, (x*thumb size[0], y*thumb size[1]))

increment the image index
img_index += 1

have we reached the end of the catalog image?

if img_index == num_images**2:
img_index = 0
thumbs_img.save('%s-%03d.cat.jpg" % (dirpath, fn_index))
fn_index += 1

save the last catalog file
if img_index:
thumbs_img.save('%s-%03d.cat.jpg" % (dirpath, fn_index))

The function thumnail index() accepts a directory and produces a thumbnail index
image. Figure 9-4 shows the result from running the function on a collection of images my
daughter particularly likes.

g, |

. CING0448 JPE

CIMG0451.IP6 ciMe0203.0P6 -
¥

cInedZ07 arent nqmsnzns..rps

P Y
TR

Figure 9-4. Thumbnail index image

For the purpose of this example, I decided not to use os.walk() and iterate through the
directory listing, instead using os.1listdir (). I've defined two parameters: num_images, which
holds the number of images on either x- or y-axis, and thumb_size, which holds the thumbnail
width and height. Next I composed a list of all the files in the requested directory. For every
file, the script tries to open the file as if it were an image file. If indeed a file is an image file, a
thumbnail of the image is created and pasted to the index image. Additionally, the thumbnail

300

CHAPTER 9 IMAGE PROCESSING

is annotated with the file name in the top-left corner. There’s some indexing used to deter-
mine the exact location of an image in the thumbnail index image as well as creating a new
thumbnail index image once the current one has filled up.

Tip An alternative approach to displaying the text directly on the thumbnail image is to display it below
the image. This can be done by adding a black (or white) stripe between rows of images.

Image Processing

So far we’ve performed tasks that can also be performed by most GUI-based image editing
applications such as GIMP, the GNU Image Manipulation Program (http://www.gimp.org/).
However, GUI-based applications have a GUI user in mind and are not easily automated. We
now turn to explore possibilities of writing scripts to automatically perform operations on
images.

Furthermore, as you start thinking about higher-level image processing algorithms, you
may realize you require access to the actual data, the numbers that represent the image. In this
section, we’ll also show how this can be achieved.

A word of caution: image processing is a vast field. I won’t be covering even the basics
here, rather showing that if you do have an image processing algorithm, it’s quite likely you
can implement it in Python.

Matrix Representation and Colors

An image can be represented by a matrix, each (x, y) point corresponding to a column and row
in the matrix, and the value corresponding to the color.

The color value is a function of the mode (see Table 9-1 earlier for details). For example, in
the case of an RGB image, each value of the matrix is a tuple of 3 bytes, each byte representing
a different color. So in a sense, you can think of the entire image as three matrices, each matrix
corresponding to the colors red, green, and blue, also known as color bands or channels.

Furthermore, each image can be split into these colors (depending on the mode, of
course—there’s no splitting of a 1-bit image into individual colors). This is done with the Image
method split():

>>> im = Image.open('../images/circle.png")
>>> im.mode

"RGBA'

>>> R, G, B, A = im.split()

>>> R.mode, G.mode, B.mode, A.mode

L, e,

Note I've assumed you have followed along with the chapter and created a file named ../ images/
circle.png; if not, follow Listing 9-1 to create a circle.png image.

CHAPTER 9 IMAGE PROCESSING

Each split image is an image by itself, but it now contains only one-color information,
hence its modeis 'L', not "RGBA".

To retrieve the data associated with the color, that is, the actual values, call the function
getdata(). We can then transform the values to a NumPy array for some interesting numerical
processing. Continuing our previous listing:

>>> from pylab import *

>>> data = array(R.getdata())
>>> type(data)

<type 'numpy.ndarray'>

>>> data.size

501225

>>> data.shape

(501225,)

The image data is stored as a list of all the values in the image, not a matrix representation
of the image. To change it to a matrix, we use the NumPy method reshape():

>>> im.size

(815, 615)

>>> data = data.reshape(815, 615)

>>> data.size # size should be the same
501225

>>> data.shape # reshaped as a matrix
(815, 615)

Now that we have the data as a matrix, we can operate on the matrix instead of the image.
This gives us great flexibility. Say we want to arbitrarily draw a magenta stripe in the middle of
the circle; all that we need to do is modify the matrix associated with the red channel and then
merge it to form a new, modified image.

Note Why does changing the red channel generate a magenta output? The way I'm going to modify the
matrix is by setting the red channel to 255. This means that my previously blue circle will now be a combina-
tion of blue and red, which is magenta, while the rest of the background, which is white, will remain white.

Let’s do this a step at a time, from the top:

>>> from pylab import *

>>> from PIL import Image

>>> im = Image.open('../images/circle.png")
>>> im.mode

"RGBA'

>>> im.size

(815, 615)

>>> R, G, B, A = im.split()

>>> data = array(R.getdata()).reshape(im.size)

301

302

CHAPTER 9 IMAGE PROCESSING

>>> (w, h) = data.shape

>>> data[w/2-100:w/2+100, :] = 255*ones((200, h))
>>> R.putdata(data.reshape(h*w))

>>> new_img = Image.merge('RGB', (R, G, B))

>>> new_img.show()

The first line reads the image from file and displays some image information. I then split
the image into four channels: red, green, blue, and the transparency mask. From here on, I'll
restrict myself to dealing with the red channel only. First, I retrieve the actual numerical values
associated with the red channel. This is done with a call to getdata(). In the same line, I also
transform the data into a NumPy array and reshape the list to a matrix form.

Next I change the data values associated with 200 rows in the middle and set their value to
255. This in effect creates the magenta stripe. I then update the red channel with the modified
data by calling the function putdata(). The function putdata() complements getdata() and
expects a list, not a matrix, so I reshape the data back to a 1-D array.

Lastly, I create a new image, this time in RGB mode (I don’t require transparency) by com-
bining the original green and blue channels with the modified red channel. This is done by
calling the merge () function, which is the opposite of the split() function. Figure 9-5 shows
the results.

Note It's also possible to perform this task using the ImageDraw object.

Figure 9-5. Circle with a stripe

CHAPTER 9 IMAGE PROCESSING

So far we’ve covered an interesting number of functions that enable working on images
with numerical values: split(), merge(), getdata(), and putdata(). We’ll use some of them in
a more complex example.

Example: Counting Objects (Five Parts)

The following example is rather long and deals with an interesting aspect of image processing:
counting objects in an image. The idea is to write a script that counts the number of elements
in a picture. Counting elements is a complex task, even for the human mind: What objects
should I count? What constitutes an object? And so on.

The task of counting objects is very useful in a wide variety of applications, as indicated by
just a few examples:

¢ Biology: Estimating the number of bacteria in an image from a microscope
* Medicine: Counting the number of axons in a tissue cross-section

e Electronics board manufacturing: Counting the number of imperfections in a printed
circuit board or counting the number of resistors

* Astronomy: Counting the number of stars

For the purpose of this example, we’ll create an image of the sky at night, with stars placed
randomly. We'll then write a script to count the number of stars. We’ll have a very sterile
image, one that has a very clean background (black, night sky) and most information in one
channel. However, we’ll add a bit of complexity by varying shapes and sizes of stars.

Once we have an image of the sky at night, I'll talk a bit about recursion, a topic I have
been avoiding thus far. Recursion will be used to implement an algorithm to fill an image.
Lastly, I'll discuss some ideas and methods you could use to expand upon this example and
add more capabilities to the algorithm.

Part 1: Twinkle, Twinkle, Little Star

First, we create the stars for our image of the sky at night. The night sky will be composed of
white stars and a black background. Since we want the stars to be of varying sizes and shapes,
we'll define a function named star () that creates a matplotlib patch object (see Listing 9-8).

Listing 9-8. A Star Patch, Source of star_patch.py

create a star patch object
from pylab import *

def star(R, x0, yo, color='w', N=5, thin=0.5):
"""Returns an N-pointed star of size R at (x0, yo0) (matplotlib patch)."""

polystar = zeros((2*N, 2))
for i in range(2*N):

angle = i*pi/N

r = R¥(1-thin*(i%2))

polystar[i] = [r*cos(angle)+x0, r*sin(angle)+y0]
return Polygon(polystar, fc=color, ec=color)

303

304

CHAPTER 9 IMAGE PROCESSING

The values that control the star patch are R, which determines the star’s radius; x0 and
y0, which control the star’s location; color, which determines both the fill and edge color; N,
which controls the number of pointy edges a star has; and thin, which controls how thin or
thick a star is (on the range of 0 to 1, 1 being very thin).

Tip The default star patch is white because we’ll be using it for the night sky. Be sure to change it to a
different color if you’re using a white background.

I've used the Polygon object to create the star patch, with some mathematical trickery.
The idea is this: I place N pointy edges on a circle of radius R with the center at (x0, y0) at fixed
angle increments. I then place another set of points at a smaller radius to serve as the inner
edges of the star, again at fixed angle increments but shifted so that each inner point resides
exactly in the middle of the outer edge’s points. The thin parameter determines the radius of
the inner circle: the larger the value, the smaller the radius, and the “thinner” the star is. Lastly,
I draw a line connecting all these points using the Polygon patch object.

Note Be sure to save the star patch listing as file star_patch.py; we’ll use it in future scripts.

USING A LIST COMPREHENSION

It's also possible to implement the star patch with list comprehensions. The idea is to zip together the ele-
ments in the polygon list:

def another star(R, x0, yo, color='w', N=5, thin=0.5):
"""Returns an N-pointed star of size R at (x0, yo) (matplotlib patch)."""
a = arange(0, 2*pi, 2*pi/N)
r = thin*R
polystar = array(zip(R*cos(a)+x0, R*sin(a)+yo, \
r*cos(a+pi/N)+x0, r*sin(a+pi/N)+y0))
return Polygon(polystar.reshape(N*2, 2), fc=color, ec=color)

Some would prefer this implementation over the previous implementation. Personally, | think both are
fine; choose whichever is easier for you to follow.

It's also possible to code the entire function as a single return statement, but | strongly recommend
against it, as the code would be hard to understand.

The script in Listing 9-9 generates some interesting stars.

CHAPTER 9 IMAGE PROCESSING 305

Listing 9-9. Generating Some Interesting Stars

show some star examples
from pylab import *

ensure the star patch is defined properly
execfile('star_patch.py')

examples = [
"star(10, 0, 0, 'k')",
"star(10, 0, 0, 'k', 10)",
"star(10, 0, 0, 'k', 5, 0.2)",
"star(10, 0, 0, 'k', 3, 0.9)"]

for i, example in enumerate(examples):
subplot(2, 2, i+1)
exec "new_star="+example
gca().add patch(new star)
title(example)
axis('scaled")
axis([-10, 10, -10, 10])

In this script I've decided to iterate over a list of strings and use the exec statement. The
same string used for the exec statement is also used to create the title for the subplots (see
Figure 9-6).

star(10, 0, 0, 'k") Lo star(10, 0, 0, 'k', 10)
s} 5
of 0
5 _5 |
B T — 5 10 B T — 5 10
star(10, 0, 0, 'k', 5, 0.2) star(10, 0, 0, 'k', 3, 0.9)
10 . : 10 . : :
st st 1
0 0
5 _5 L .
50 35 10 W 5 © 5 10

Figure 9-6. Some star patches

306

CHAPTER 9 IMAGE PROCESSING

Tip To ensure a patch is displayed, issue a call to axis("normal") (or similar) to force a refresh of the
figure.

There’s room for additional work on the star() patch object; for example, you could
add a rotation parameter, rotating the entire star by rotation degrees. This can be done by
changing the argument to the functions sin() and cos() in the star() function. Another modi-
fication could include a hollow star, implemented by splitting the edgecolor and facecolor
functionality.

Armed with the star patch, we turn to part 2 of this example: creating an image of the sky
at night.

Part 2: The Sky at Night

To create a simulated image of the night sky, we use the script in Listing 9-10.

Listing 9-10. Creating an Image of the Sky at Night, nightsky.py

create a fictitious night sky
from random import randrange as rr

execfile('star patch.py')

parameters for the simulated night sky image
img_size = 800
num_stars = 25

star parameters: number of pointy edges and radius
min_num_points = 5

max_num_points = 11

min_star_radius = 2

max_star_radius = 10

star parameter 'thinness' is on a scale of 1 to 10
min_thin = 5
max_thin = 9

draw the night sky
figure(facecolor="k")
cur_axes = gca()

patch stars
for i in range(num_stars):
new_star = star(rr(min_star radius, max_star radius),
rr(0, img size) , rr(o, img size), 'w', \

CHAPTER 9 IMAGE PROCESSING 307

rr(min_num_points, max_num points), \
rr(min_thin, max_thin)/10.0)
cur_axes.add patch(new star)

modify axis behavior

axis([0, img size, 0, img size])
axis('scaled")

axis('off")

savefig('../images/nightsky', facecolor='k', edgecolor="k")

I've imported the function randrange() from the module random and decided to rename
it to rr (), which I think is clearer to read. I then define a set of values you can tweak and
observe the results. The values are self-explanatory and include such values as the image size
and number of stars in the image.

The patching of stars is done in the for loop, which creates a new star with random values
and adds it to the current figure. I then follow up by updating the image size and removing
the axes. Finally, I save the image to file. Figure 9-7 shows random output from the simulated
night sky.

Figure 9-7. Simulated (random) night sky

308

CHAPTER 9 IMAGE PROCESSING

Part 3: Flood Fill and Recursion

We now turn to something completely different: recursion. Recursion describes a scenario
where a function calls itself. Some known recursion algorithms implement the factorial opera-
tion and Fibonacci sequences. We’ll use recursion for image processing, specifically to fill an
image using a flood-fill algorithm.

Flood fill, sometimes also referred to as bucket fill, is an algorithm to fill a closed area of a
specific color with a different color. This is a quite common operation in most image process-
ing applications. Kids love to use it to paint digital coloring images.

To implement flood fill, we’ll use recursion. In the implementation, we’ll assume that the
image to fill is given to us as a NumPy array, more specifically as a 2-D array (i.e., a matrix). It’s
also possible to manipulate a PIL Image object, but I prefer using a matrix for two reasons:

¢ It’s more generic. I can port the flood-fill algorithm to other objects as long as I can
convert the objects to a NumPy array (matrix).

« It’s easier to view the code by indexing over matrix elements than to use the getpixel()
and setpixel() methods provided by the Image object.

So how does flood fill work? Flood fill starts by receiving a point to start filling from. If
the point is the color to be converted, flood fill will change the color to the desired color. It
then moves to a point adjacent to it, say to the right, and calls itself. As the process continues,
points to the right will start filling up with the new color. If the point to the right is not in the
desired color (that is, shouldn’t be painted), the point to the top is checked, and the process
resumes. This process is repeated for left and bottom points surrounding each point. The end
process is a filled, closed object.

FLOOD FILL AND MINESWEEPER

The flood-fill algorithm can also be used in the coding of the game Minesweeper (shipped with Windows).
You can use the algorithm to expand an area and reveal points adjacent to mines. The algorithm will follow

a similar path, and one option would be to create a matrix of values corresponding to whether a square is
empty (value 0) or adjacent to a mine (value equal to the number of mines it is adjacent to), with a different
value indicating a mine (say, value —1). When the user clicks on a square, the flood-fill algorithm kicks in and
decides how many squares to reveal. If you’re not familiar with Minesweeper, | suggest you refrain from try-
ing it; the game is addictive.

Listing 9-11 presents a simple flood-fill implementation.

CHAPTER 9 IMAGE PROCESSING

Listing 9-11. Flood-Fill Implementation Using Recursion, flood fill.py

from numpy import *
from sys import getrecursionlimit

def flood fill(x, y, m, total):

"""A function to flood fill an image (matrix)."""
if total > getrecursionlimit():

return total

nothing to fill
if m[x, y] != 255:
return total

m{x, y] = 128
if(x-1 >= 0):

total = flood_fill(x-1, y, m, total+1)
if(x+1 <= m.shape[0]-1):

total = flood_fill(x+1, y, m, total+1)
if(y-1 >= 0):
total = flood_fill(x, y-1, m, total+1)

if(y+1 <= m.shape[1]-1):
total = flood_fill(x, y+1, m, total+1)
return total+1

The function flood fill() is an implementation of the flood-fill algorithm described pre-
viously. I've bolded the code where recursion actually happens (the function calling itself).

The function accepts the values x and y, denoting the point to fill; m, which is the NumPy
matrix; and total, which is a variable used to keep track of the recursion depth (i.e., how many
times a function calls itself repeatedly).

I've chosen to fill all values corresponding to 255 with 128. In essence this means that if
the object is fully red (or green or blue, depending on the band selected), it will be changed
to “half” red. You can modify the function flood fill() to accept an original color and a new
color as parameters; I chose not to do so, as I think the code looks clearer that way.

Every time a function is called in a recursion, additional memory is consumed. Python
limits the recursion depth with the value sys.getrecursionlimit(). If the running code
exceeds this limit, a recursion exception is raised. It’s possible to increase this number by call-
ing sys.setrecursionlimit(), but that’s only a small fix; inevitably, you'll reach a memory
limit, which might cause a system crash.

Therefore, it’s best if your code can detect these events beforehand and alert the user if
such an event transpired. I have chosen to do so by returning the value total. In case total is
greater than the maximum recursion depth, I can notify the user of the event.

It’s also important to note that if your night sky image gets larger or the size of stars get
larger (e.g., alarger radius), or if you save the image at a higher resolution (more points per
star), inevitably you will hit a recursion limit because the areas to fill get larger and larger. So
while this is a viable option to fill objects, maybe a different algorithm should be employed for
production-level code, such as using ImageDraw’s floodfill() method.

309

310

CHAPTER 9 IMAGE PROCESSING

USING IMAGEDRAW FOR FLOOD FILL

The ImageDraw object also provides a floodfill() function, which may be used for the algorithm
presented here. There are several reasons | chose to implement flood fill() instead of using the
ImageDraw function:

e | wanted to talk about recursion.

e ImageDraw's floodfill() doesn’t return information such as the size of the filled region, which can
be used to enhance the algorithm. That being said, it’s quite possible to use other methods to comple-
ment this such as comparing the image before and after flood filling it.

e | wanted to show you how to tweak flood fill, for example, to include diagonals cells as adjacent cells
(and not just up, down, left, and right).

So now that we have the flood fill() function, how does that help us count the number
of stars at night?

Part 4: Counting Objects

Counting objects is really easy, once you have an implementation of flood fill (see Listing
9-12). The idea is simple: go through every point in your image and fill it. The return value
from flood fill is the actual number of points filled. In case there was nothing to fill, the value
will be zero, but in case flood fill fills an object, the return value will be nonzero, which indi-
cates that flood fill found and filled an object. Future calls to flood fill() for that pixel will
not fill the object, as it is already filled. Now all that’s required is to count the number of times
flood fill returns a nonzero value, and you have the number of objects!

Listing 9-12. Counting Objects in a Picture

from pylab import *
from PIL import Image
from sys import getrecursionlimit

execfile('flood fill.py')

read the image
im = Image.open('../images/nightsky.png")

split the image into individual bands
cols, rows = im.size
R, G, B, A = im.split()

retrieve the data from the red band as a matrix array
data = array(R.getdata())

CHAPTER 9 IMAGE PROCESSING

set all values that are nonzero to 255
(could be due to antialiasing)
data[find(data != 0)] = 255

data = data.reshape(rows, cols)

count the stars
count, recursion limit reached = 0, 0
for 1 in range(rows):
for j in range(cols):
tot = flood fill(i, j, data, 0)
if tot > getrecursionlimit():
recursion_limit reached += 1
elif tot > oO:
count += 1

if recursion limit reached:
print "Recursion limit reached %d times" % recursion limit reached
print "I counted %d stars!" % count

R.putdata(data.reshape(cols*rows))
Image.merge('RGB', (R, G, B)).show()

The script is an implementation of the preceding algorithm. We start by importing the
proper modules and calling the script flood fill.py, which contains the flood fill() func-
tion implementation. Next we open the image of the sky at night and split it into individual
color bands. I decided to work strictly on the red band, but in reality, because we are dealing
with black-and-white pictures, I could just as well have chosen any other channel (other than
the transparency). I then access the data and convert it to a NumPy matrix. This is done in the
call data = array(R.getdata()).

Next I implement a simple threshold. What I do is change all nonblack values to white by
setting all nonzero values to 255. Other algorithms use a different approach such as setting all
values above and including 128 to 255 and all values below 128 to 0. In this particular case, the
results would be very similar. Notice that I run the threshold before I reshape the matrix, the
reason being that I can use the find() function quite easily that way. I then reshape the image
into a matrix.

Up to this point I've been dealing with reading the image, splitting it, and applying a
threshold to the image. Now, I turn to using the flood fill() function. I go through every
pixel in the matrix and call the function flood fill().If the return value is greater than the
recursion limit, I increment the number of times a recursion limit has been reached. If the
return has not reached the recursion limit and is nonzero, I increment the count of objects.

Lastly, I report my results: the number of recursions that exceeded the maximum allowed
value (for debugging purposes more than anything) and the number of stars counted. Here’s a
result from running the script on the night sky image presented earlier:

I counted 23 stars!

(We'll get to why that number is not 25 in the next section.)

311

312

CHAPTER 9 IMAGE PROCESSING

To be sure I've counted all the stars in the night sky picture, and furthermore, that I did
not accidentally count objects that are not stars, I decided on some sort of visual feedback of
the result. I do this in the last two lines of the script: I convert the matrix data back to the red
channel and construct a new image with the newly modified red channel.

If you look closely at the newly constructed image (zoom in if you’d like), you'll see that
at times the edges around stars are not filled properly. I believe that the reason for this is the
quantization effect we’ve used (threshold) that modifies all half-values to black.

Part 5: Optimizing the Algorithm

So why did the algorithm return 23 stars and not 25? (See num_stars value in Listing 9-10.) A
plausible reason is that several stars overlapped. This would cause the algorithm to combine
several objects into one. In real pictures (nonsterile, unlike those presented in the example),
there could be other reasons, and this is where you can start tweaking your image processing
algorithm.

But as you start working with “real” data, you'll find that sometimes the opposite hap-
pens, that is, the algorithm counts more objects than there really are. The reason for this could
be because the images are not ideal, and even small specks, or noise, could throw off the
number count. In that case, a possible solution would be to count only elements whose size is
greater than a fixed value, that is, reading the value returned by flood fill() and discarding
objects whose size is too small. Another option would be to preprocess the image using a filter
(see the section “Image Filtering” later in this chapter).

Another improvement to the algorithm could be giving it the capability to find the
largest object. Again, this is quite possible by reading the value returned from the function
flood fill() and then sorting the results or finding the maximum.

And you can also try to evaluate the luminosity of the night sky, by counting the areas of
all the stars. This might be used to estimate how clear the skies are or, in the case of a micro-
scopic image, help determine whether the size of a bacteria colony has changed.

Some real images might have objects so small that you'll need to think about flood filling
diagonals as well. That is, consider the character “x” drawn on a 3X3 pixel grid: there’s no pixel
that’s adjacent to another unless you count diagonals. Modifying flood fill to include diagonals
will combine the pixels that make up this “x” into one object.

The point of the matter, now that data is accessible as a NumPy matrix, is that you can
implement whatever algorithm or image processing idea you might have. But in many occa-
sions, you don’t have to resort to the matrix level; PIL provides a good number of support
functions.

Image Arithmetic

PIL provides a set of arithmetic operations via the module ImageChops (Chops is short for
channel operations). In the night sky example, some people would prefer working on a white
background (which could save quite a bit of ink if you're printing the images). Per the previ-
ous section, you could transfer the image to a NumPy array and then convert it, but in such a
simple case, it makes more sense to use the ImageChops invert() function:

display an image and its inverse
from PIL import Image, ImageChops
im = Image.open('../images/nightsky.png")

CHAPTER 9 IMAGE PROCESSING

new_img = Image.new('RGB', (im.size[0]*2, im.size[1]))

new_img.paste(im, (0, 0))

new_img.paste(ImageChops.invert(im), (im.size[0], 0))

new_img. show()

In Figure 9-8, I've used the image generated by the script nightsky.py (Listing 9-6) with
num_stars=10, min_star radius=10, and max_star radius=30 to show a more pronounced effect
of the image inversion.

Figure 9-8. Inverting an image: the original is on the left, and the inverted image is on the right.

Table 9-3 lists some additional ImageChops operations. Notice that ImageChops opera-
tions operate only one channel (L) or RGB images.

Table 9-3. Some ImageChops Operations

Function

Description

add(imgl, img2, scale=1.0, offset=0)

constant(imgl, value)

darker(img1, img2)

difference(img1, img2)

lighter(img1, img2)

subtract(img1, img2, scale=1.0, offset=0)

Adds two images as follows: (img1+img2)/
scalet+offset. The default values of scale and
offset mean a simple addition.

Returns an image of size img1 filled with color
value.

Returns an image with the darker pixel from
both images. This a minimum of the two im-
ages, on a pixel-by-pixel level.

Returns the absolute difference of two images.
This is abs (img1-img2), on a pixel-by-pixel
level.

Returns an image with the lighter pixel from
both images. This a maximum of the two im-
ages, on a pixel-by-pixel level.

Subtracts two images as follows: (img1-img2)/
scale+offset. The default values of scale and
offset mean a simple subtraction.

313

314 CHAPTER 9 IMAGE PROCESSING

There are additional functions available in ImageChops; check out either
help(ImageChops) or the PIL web site (http://www.pythonware.com/library/pil/handbook/
imagechops.htm).

You can create some interesting effects using these simple operations. And these
effects can in turn be used for some fast image processing algorithms. Listing 9-13 presents
a script that makes use of the lighter() method on two night sky images. To follow along,
run the nightsky.py script and rename the generated file images/nightsky.png to images/
nightsky1.png; do it again, this time renaming the generated image to images/nightsky2.png.

Listing 9-13. Using lighter() on Two Images

from PIL import Image, ImageDraw, ImageFont, ImageChops
from matplotlib import font manager

read the images
imgl = Image.open('../images/nightsky1.png")
img2 = Image.open('../images/nightsky2.png")

create a new image, made of the lighter of the two
img3 = ImageChops.lighter(img1, img2)

create a collage of three images

width, height = imgil.size

delta = 10

img = Image.new('RGB', (width*2+delta, height*2+delta), (255, 255, 255))
img.paste(img1, (0, 0))

img.paste(img2, (width+delta, 0))

img.paste(img3, ((width+delta)/2, height+delta))

annotate the images with text
font_str = font manager.findfont('Vera')
ttf = ImageFont.truetype(font str, 54)

draw = ImageDraw.Draw(img)
draw.text((delta, delta), 'Night Sky (1)', fill="white', font=ttf)
draw.text((delta*2+width, delta), 'Night Sky (2)', fill='white', font=ttf)
draw.text(((width+delta)/2+delta, height+delta*2), \

"Combined', fill='white', font=ttf)

display the final image
img. show()

I've made a collage and separated the images with a white band. Figure 9-9 shows the
result.

CHAPTER 9 IMAGE PROCESSING

Night Sky (1) Night Sky (2)
*

*

*

¥

Figure 9-9. Using lighter()

It’s interesting to note that in this specific case, using the function add() would have
resulted in a similar image.

Image Filtering

Most GUI-based image processing applications come with a bundle of image filters. There’s a
wide variety of filters available, and different applications group them into different categories.
Some of the common filtering categories are blur, enhancement, edge detection, and more.

From an image processing standpoint, image filters are known operations that help us
achieve a specific effect. For example, I once used the counting objects algorithm presented
as an example in this book to try to count the number of bubbles in a printed circuit board
soaked in water. As you probably realize, pictures obtained from a real-life image are not as
sterile as those presented in the sky at night example. And so prior to using the algorithm, I
had to clean up the images. By “clean up” I mean filtering the image using known filters. I
ended up using a threshold combined with a median filter, and then converting the image to a
1-bit (black-and-white) version prior to running the algorithm.

The following text assumes you have some background in image filtering. If not, my sug-
gestion is that you experiment with a GUI application such as GIMP to get a feel for what filters
to use and how they can help you with basic image processing. Once you have the preprocess-
ing figured out, that is, you know what filters you want to run on your image prior to the final
algorithm, you can implement the filters with a Python script that makes use of PIL filters.

(You might not even require a final algorithm if you select the proper filters.)

315

316

CHAPTER 9 IMAGE PROCESSING

PIL provides us with the class ImageFilter, which supports a good number of filters.
To use ImageFilter, import it as follows: from PIL import ImageFilter (or simply import
ImageFilter). Once you've imported ImageFilter, call the filter() method that’s part of the
Image object (not ImageFilter object) to filter an image:

>>> from PIL import Image, ImageChops, ImageFilter

>>> img = Image.open('../images/nightsky.png")

>>> inv_img = ImageChops.invert(img)

>>> fil img = inv_img.filter(ImageFilter.MinFilter(15))

In the preceding example, I've used the night sky images you've seen before and inverted
the output so as to work on black stars over white background. I then filtered the image using
aMinFilter filter (see Figure 9-10). The MinFilter works on a pixel-by-pixel level. For every
pixel, it returns the minimum pixel from the square of size n (in the example, 15) centered on
the given pixel. As you can see, even from this small example, there’s quite a bit to be gained
by working with image filters.

* * * » % e
* E

* *

Figure 9-10. Filtering an image: left is the original, and right shows the image filtered with a
MinFilter setto 15.

ImageFilter provides fixed image enhancement filters easily distinguishable due to their
capitalized names:

>>> [filt for filt in dir(ImageFilter) if filt.isupper()]
['BLUR', 'CONTOUR', 'DETAIL', 'EDGE_ENHANCE', 'EDGE_ENHANCE MORE', 'EMBOSS',
'"FIND EDGES', 'SHARPEN', 'SMOOTH', 'SMOOTH MORE']

By the term “fixed” I mean that they accept no parameters. To use these filters, call the
filter() method with the fixed filter, as follows:

>>> new_img = img.filter(ImageFilter.CONTOUR)

The names of these filters should provide direction as to what they perform.
ImageFilter also provides nonfixed filters (i.e., filters that accept parameters). Table 9-4
lists some additional filters supported by the ImageFilter object.

CHAPTER 9 IMAGE PROCESSING

Table 9-4. Some Image Filters

Function Description

MaxFilter(size=3) For every pixel in the original image, returns the pixel with the maxi-
mum value from a square of width size placed around the original
pixel. size must be odd (3,5, 7, ...).

MedianFilter(size=3) For every pixel in the original image, returns the median pixel from a
square of width size placed around the original pixel. size must be odd
(3,5 7,...).

MinFilter(size=3) For every pixel in the original image, returns the pixel with the mini-

mum value from a square of width size placed around the original
pixel. size mustbe odd (3,5, 7, .. .).

ModeFilter(size=3) For every pixel in the original image, returns the most common pixel

from a square of width size placed around the original pixel. size must
beodd (3,5,7,...).

Final Notes and References

Image processing is a large field and is gaining more and more popularity as computers
increase in performance. And image processing is only two dimensional; nowadays we see
more and more 3-D data processing as well, including video.

Armed with Python, the Python Imaging Library, and NumPy, even complex image pro-
cessing tasks can be prototyped. However, image processing requires a great deal of memory
and processing power; as you work with images you'll realize you may require faster tools, and
you may even need to port parts of your code to a lower-level programming language such
as C to gain performance. Nevertheless, Python is an excellent prototyping environment; it
provides fast responses in an interactive environment and can help you define your image
processing algorithm.

Additional information can be found at the following sites:

¢ The Python Imaging Library, http://www.pythonware.com/library/pil/handbook/
e GIMP, http://www.gimp.org/docs/

317

CHAPTER 10

Advanced File Processing
More on Files

A common task of programmers is working with files—not merely reading and writing files,
but also organizing them, moving them around, deleting, compressing, archiving, and more.

I often find myself borrowing code from my previous projects, especially code that deals
with reading and parsing files, typically via copy and paste. But that seems such a waste—why
not come up with a library of functions that addresses most people’s needs?

Other programmers must have felt the same way, and so they turned to writing modules,
libraries of functions to perform these tasks. And many of these are now included with the
Python Standard Library; more are added on a regular basis.

This chapter expands on ideas discussed in Chapters 4 and 5 and examines additional
file-related topics. I also build on some examples from previous chapters as a way to introduce
new topics and create more reusable code.

Binary Files and Random Access

The term binary file describes a nontext file: executable files, image files, or simply data files.
In this section we’ll show some methods of dealing with binary data files.

Working with text files, we’ve used readline() or read(n) to read chunks of data from a
file. The function readline(), in a sense, splits the file into smaller chunks of data (i.e., lines of
text).

With binary files, it’s more common to see random access, that is, arbitrary reading of
chunks of data from anywhere in the file. With text files, this is a bit harder because you don’t
know in advance how many characters and words are in a line, so randomly picking the nth
line is not a trivial task. With binary files composed of fixed-length records, random access
allows access to an arbitrary field.

The methods seek(offset[, whence]) and tell() are random-access file functions. To
better understand what these functions do, you need to understand the concept of file point-
ers. A file pointer points to a location in the file: subsequent read or write operations will
happen at that specific location (assuming the file was opened in a mode that allows random
access read and/or write). Whenever we read or write data from the file, the file pointer is
incremented accordingly.

319

320

CHAPTER 10 ADVANCED FILE PROCESSING

The function seek () sets the file pointer to a value of our choosing; subsequent calls to
read() will pick up from the newly “seeked” location. The function tell() returns the current
file pointer value in bytes. Here’s a short interactive Python session describing the works of
seek() and tell():

>>> f = open('../data/example.bin', 'wb")
>>> f.tell()

oL

>>> f.write('0123456789")

>>> f.tell()

1oL

Note As in previous chapters, | assume you’re running an interactive Python session in directory Ch10/
src and that directory Ch10/data exists.

I've created a binary file. Once created, the file pointer associated with the file is set to 0,
as shown by the result from f.tell(). After writing ten values, the file pointer is at 10.

>>> f.seek(5)

>>> f.write('0123456789")
>>> f.tell()

15L

>>> f.close()

I've changed the file pointer to point to location 5 and wrote again the same ten values.
As aresult, the file pointer has changed to 15. Let’s print the contents of the file:

>>> open('../data/example.bin', 'rb').read()
'012340123456789'

As expected, the result is the string '0123456789 " overlapped by another copy of the same
string at location 5.

The argument whence in the function seek (offset[, whence]) instructs how the offset
should be calculated. If whence is 0 (the default), seek() moves offset bytes relative to the start
of the file. If whence is 1, seek () moves the file pointer offset bytes relative to the end of the
file. Notice that in order to change the file pointer to n bytes before the end of the file, pass
anegative value as an offset. On many systems, it’s possible to seek past the end of the file
(which is a feature, not a bug, as you'll soon see). If whence is equal to 2, seek() moves relative
to the current location. Again, both negative and positive values are allowed. Negative values
for seek() are not allowed if whence is 0. Continuing our previous example:

>>> f = open("'../data/example.bin', 'rb")
>>> f.seek(-2, 2)

>>> print f.read()

89

>>> f.close()

CHAPTER 10 ADVANCED FILE PROCESSING

I've set the file pointer to 2 bytes before the end of the file and printed the contents of the file
from that point forward.

Example: Reading the Nth Field

The functions seek() and tell() are especially useful for accessing large binary files that con-
tain fixed-length records. Unlike text files, with binary files of fixed-length records, you can
calculate in advance the location of a field in the file. Combined with seek(), it’s possible to
read a single field. This is especially important in large files where reading the entire file or
even reading the file a value at a time (without seeking directly to the required field) can take a
considerable amount of time.

In this example, shown in Listing 10-1, we combine seek() and tell() with the struct
module (see Chapter 4).

Listing 10-1. Reading the Nth Field

import struct
from math import sqrt
from random import randrange

binary filename

bin_fn = '../data/large file.bin'

Nfields = 1000 # number of fields

N = 766 # field to retrieve

fmt = 'cdl' # format: char, float, long

fmt_size = struct.calcsize(fmt)

create a random binary file

fout = open(bin fn, 'wb")

for i in xrange(Nfields):
data = struct.pack(fmt, chr(randrange(32, 128)), sqrt(float(i)), i)
fout.write(data)

fout.close()

read the nth value

fin = open(bin fn, 'rb")

fin.seek((N-1)*fmt_size)

data = fin.read(fmt_size)

(c, d, 1) = struct.unpack(fmt, data)

print "At location %d, I read:" % (fin.tell()/fmt size), (c, d, 1)

The first part of the script creates a binary file with some made-up data. The second part
reads a single field at location 766 without reading the entire file. This is done by changing the
file pointer to point to location (N-1)*fmt_size and reading only one field.

321

322

CHAPTER 10 ADVANCED FILE PROCESSING

Here’s the result from running the script:

At location 766, I read: ('"', 27.658633371878661, 765)

Example: Efficient Tail Implementation

In Chapter 5 you saw a possible implementation of head and tail functionality. The tail func-
tionality was harder to implement for a very large file. The reason for this was explained in
Chapter 5. In this example, we turn to implement tail functionality for large files with use of
seek() and tell(), as demonstrated in Listing 10-2.

Listing 10-2. tail() Function for Large Files

from os.path import getsize

def tail large(filename, n=10):
"""Returns the last n lines of a very large file.

N, data = 1024, "'

open the file and retrieve its size
f = open(filename, 'rb")
fsize = getsize(filename)

seek to the end of file
f.seek(0, 2)

for i in xrange(fsize-N, -N, -N):
read the next chunk of data
last loc = f.tell()
f.seek(max(i, 0))

store read data, reversed order
data += f.read(last loc-f.tell())

do we have enough lines?
if data.count('\n') > n:
break

print the last n lines

lines = data.splitlines()

for line in lines[-n:]:
print line

The idea is this: read N bytes from the end and store the result in data. The parameter N is
an arbitrary number and describes the number of bytes to read in one chunk. I've set it to 1024.
If data contains more than n lines (by counting the number of times '\n' is encountered),

CHAPTER 10 ADVANCED FILE PROCESSING

break out of the for loop and print the last n lines of data. If data does not contain n lines, read
the next chunk of N bytes (that is, backward) and add the read bytes to data. So in a sense,
we’re going backward from the end of the file, reading chunks of N=1024 bytes and counting
whether we encountered enough line breaks. If we have, we print those lines; if we haven’t, we
keep reading more data until we either have read the required number of lines or have reached
the beginning of the file.

This implementation is not as straightforward as the one presented in Chapter 5. How-
ever, there is a substantial performance gain for large files.

Example: Creating a Fixed-Size File

Dealing with binary files, at times there’s a requirement to create a large file (of noninitialized
values).

A trick T use to create a file is to seek past the end of the file to a location equivalent to the
required length minus one, and then write 0 and close the file. This (in many systems) creates
afile of the required size.

The following creates an uninitialized file of size 1GB (23° bytes):

>>> f = open('../data/1gb file.bin', 'wb")
>>> f.seek(2**30-1)

>>> f.write(chr(0))

>>> f.close()

Now to ensure that the file was indeed created:

>>> from os.path import getsize
>>> getsize('../data/1gb_file.bin")
1073741824L

Note The ability to seek past the end of a file is system dependent and not supported by all systems.

Example: Recording Time-Based Binary Data

When recording time-based binary data, a method I particularly like is using the epoch nota-
tion (see Chapter 5). For this example, I'll be using functions from the time module and from
Python’s array module (not to be confused with NumPy’s array object).

In case you're simply recording a variable as a function of time, it’s easier if the recorded
variable is in floating-point notation, because now both the time and the value use the same
data type. This allows for a simple use of the array module, as shown in Listing 10-3.

Listing 10-3. Writing Epoch-Based Data in Binary Form
import random, time, array
N = 10

fname = '../data/binary data.f64'
data = array.array('d")

323

324

CHAPTER 10 ADVANCED FILE PROCESSING

create data

for value in range(N):
time.sleep(random.random())
data.append(time.time())
data.append(value)

store data to file
f = open(fname, 'wb')
data.tofile(f)
f.close()

The script runs on average 5 seconds and generates timestamps and values. I've made use
of the array method tofile() to store binary values to file.
Retrieving data from the binary file is simple as well, as you can see in Listing 10-4.

Listing 10-4. Reading Binary Data Stored with Epoch Notation

import random, time, array

N = 10
fname = '../data/binary data.f64'
data = array.array('d")

read data

f = open(fname, 'rb")
data.fromfile(f, N*2)
f.close()

display data

L = data.tolist()

for t, val in zip(L[::2], L[1::2]):
print time.ctime(t), val

Most of the work is performed in the line data.fromfile(f, N*2), which reads values and
stores them in a Python array. I then rearrange the data and display the results:

Thu Dec 04 11:15:51 2008
Thu Dec 04 11:15:52 2008
Thu Dec 04 11:15:53 2008
Thu Dec 04 11:15:53 2008
Thu Dec 04 11:15:54 2008
Thu Dec 04 11:15:54 2008
Thu Dec 04 11:15:54 2008
Thu Dec 04 11:15:55 2008
Thu Dec 04 11:15:56 2008
Thu Dec 04 11:15:56 2008

O oo~ oYUl B W N B O
O O O O O O o o o o

CHAPTER 10 ADVANCED FILE PROCESSING

I've used a trick to rearrange the data. When I convert the data from an array to a list, L,
the values are interlaced: time, value, time, value, and so on. To print values, I can just iterate
through L, converting to a time format every odd value. Instead I've opted to zip slices of even
and odd values. The following code illustrates this:

>>> L = [1, '"Value', 2, 'Another value', 3, 'last value']
>>> L[::2] # these are the odd values
[1, 2, 3]
>>> L[1::2] # these are the even values
['Value', 'Another value', 'Last value']
>>> zip(L[::2], L[1::2])
[(1, 'Value'), (2, 'Another value'), (3, 'Last value')]
>>> for i, s in zip(L[::2], L[1::2]):
print i, s

1 Value
2 Another value
3 Last value

Object Serialization

At times, working with an interactive session in Python, it’s useful to be able to save variables
to file. Prior to writing them to file, variables should be serialized, that is, converted into a
stream of bytes. The stream of bytes can then be written to file and later retrieved.

Instead of creating dedicated file formats to deal with all sorts of variable types (lists,
strings, NumPy arrays, and the like), Python provides us with a built-in object serialization
module that is ideal for this purpose: Pickle.

The Pickle Module

Pickle comes in two flavors: the Pickle module and the faster C implementation named
cPickle. With the better performance of cPickle comes a price: you can’t subclass the module.
Personally, I have not found this limitation an issue, so for me, cPickle is a better choice. To
use Pickle, issue import pickle;to use cPickle, issue import cPickle.

The function cPickle.dump(obj, file[, protocol]) serializes an object and writes it to
file. The protocol argument can take the values 0 for ASCII (the default), 1 for binary, and 2
to indicate support for new Python objects. Both protocols 1 and 2 create binary files. If you
provide a negative value for dump(), the highest version protocol will be used. This is to accom-
modate for future protocol versions of Pickle and cPickle. The function cPickle.load(file)
will read an object from file.

The function cPickle.dumps(obj[, protocol]) serializes the object and returns its string
representation without writing it to file. Similarly, cPickle.loads(str) creates an object from a
string.

325

326 CHAPTER 10 ADVANCED FILE PROCESSING

Example: Saving and Retrieving Python Session Variables

The example in Listing 10-5 makes use of the cPickle module to write variables of varying data
types to file.
Listing 10-5. Pickling Several Objects to File

import cPickle
from numpy import *

fname = '../data/mysession.pickle’
a=3

b = "A string"

c = {"'dict': 10}

d = eye(3)

fout = open(fname, 'wb")
for var in [a, b, ¢, d]:

cPickle.dump(var, fout)
fout.close()

To pickle objects (i.e., serialize them) and write them to file, I've used the function
cPickle.dump(var, file).You can issue subsequent calls to cPickle.dump() to store addi-
tional values to file as shown in Listing 10-5.

Now to read the objects from file (see Listing 10-6).

Listing 10-6. Reading Objects from File

import cPickle

fname = '../data/mysession.pickle’
fin = open(fname, 'rb")
var_index = 0

while True:
try:
var_index += 1
exec "v_%d = cPickle.load(fin)" % var_index
exec "var_type = type(v %d)" % var_index
print "Read v _%d, type is: %s" % (var_index, var_type)
except EOFError:
break

Whenever you issue a call to cPickle.load(), the return value is a Python object (unless
the end of file is reached). However, the name of the object is not stored. Therefore, I've made
use of the exec statement to create variables named v_1, v_2, and so forth to store the objects.

Here are the results from running the script:

CHAPTER 10 ADVANCED FILE PROCESSING

Read v_1, type is: <type 'int'>
Read v_2, type is: <type 'str'>
Read v_3, type is: <type 'dict'>
Read v_4, type is: <type 'numpy.ndarray'>

>>> VvV 4

array([[1., 0., o0.],
[0., 1., o0.],
[0., 0., 1.]1])

If you're using NumPy arrays, you can make use of the functions save() and load() pro-
vided by matplotlib. These functions accept a file name and read and write a NumPy array
object to and from file:

>>> from pylab import *

>>> fname = '../data/session.npy’

>>> save(fname, eye(3))

>>> load(fname)

array([[1., 0., ©
[0.,, 1., ©
[0., 0., 1

-1
11

If the file name used in save() and load() ends with .gz, gzip compression is automati-
cally used (see the section “File Compression” later in this chapter).

)

Command-Line Parameters

This section, which covers command-line parameters, is a bit of an off-topic discussion. (The
reason I've decided to give an overview of command-line parameters before getting into the
details of the FileInput module is that the FileInput module makes sense in the context of
command-line parameters, as you'll soon see.)

A possible progression from an interactive Python session is creating a stand-alone util-
ity or application—that is, a Python script callable from the shell, be it the command prompt
in Windows or a bash shell in Linux. One of the options of interacting with such a script
is by passing command-line arguments. For example, in the tail command-line utility, a
command-line parameter could be the number of lines tail will display. So to list the last 20
lines of a file, you would write

$ python tail.py -n 20 filename

argv
The sys module enables command-line processing with the sys.argv variable, demonstrated

in Listing 10-7. sys.argv is a list of strings containing the split shell command entered. The
value in sys.argv[0] is the name of the Python script.

327

328

CHAPTER 10 ADVANCED FILE PROCESSING

Listing 10-7. Command-Line Arguments

import sys
for i, cmd in enumerate(sys.argv):
print "argv[%d] = '%s'" % (i, cmd)

Save the file as parse_args.py and run python parse_args.py 20 myfile in a shell. The
results should look like this:

argv[0] = 'parse args.py'
argv[1] = '20'
argv[2] = 'myfile'

Example: Creating a Fixed-Size File (Stand-Alone Script)

We turn to modify the code in this chapter from the section “Example: Creating a Fixed-Size
File” to a stand-alone script callable from a CLI (shell or command window). The script, shown
in Listing 10-8 (empty file.py), accepts the number of bytes and a file name and creates a file
of specified name and size.

Listing 10-8. Creating a Fixed-Size File (Stand-Alone Script), empty file.py

from sys import argv, exit
usage = "Usage: python empty file.py nbytes filename"

we expect three arguments: script name, size, and file name
if len(argv) != 3:

print "Improper number of arguments."

print usage

exit()

is size an integer?
try:
nbytes = long(argv[1])
except ValueError:
print "First argument is not an integer number.'
print usage
exit()

retrieve the requested file name
filename = argv[2]

can we create the file?
here a failure could be due to a nonexisting path
try:

f = open(filename, 'wb")

CHAPTER 10 ADVANCED FILE PROCESSING

except IOError:
print "Unable to create file", filename
print usage
exit()

finally! create the file

f.seek(nbytes-1)

f.write(chr(0))

f.close()

print "Successfully created file %s of size %d." % (filename, nbytes)

I've carefully checked the parameters passed by the user to determine whether there are
an adequate number of parameters and if those values are valid. I took special care to ensure
the file can indeed be created. Finally, the code that generates the empty file is simple.

I've also introduced the function exit (), provided with the sys module. The function is
especially useful when you're writing a stand-alone script, as it exits the script immediately.

OptParse Module

Enforcing a strict syntax for command-line parameters renders a script less user friendly. For
instance, in the previous example, you might want the script to automatically create a file

of default size, say 1KB, in case no length is provided. Or you might want to add additional
parameters with default values, further controlling the behavior of the script so that it creates a
path to the file name if it does not exist, for example.

Accommodating additional options as well as default options will cause the code in the
previous listing to grow larger and less maintainable. When the number of options increases,
consider using the OptParse module; the OptParse module is designed to address command-
line parameters in an easy set of library functions.

Tip The module getopt (http://docs.python.org/library/getopt.html) is an older module that
also provides functions to parse command-line options.

To use the OptParse module, we follow these steps:

1. Create an OptionParser object.
2. Add options to the parser using the add_option() method.

3. Parse the command-line arguments using the parse_args() method.

The first step is simple: instantiate an OptionParser object by setting parser =
OptionParser(). Adding options is a bit more complex as there are many possibilities to
choose from (as you'll soon see). The last step is calling the function parse_args(), which
returns a list of command-line options.

The return value of parse_args() is a tuple of options and arguments. The difference
between an option and an argument is that options are, of course, optional, and arguments
(positional arguments per OptParse documentation) are required.

329

330 CHAPTER 10 ADVANCED FILE PROCESSING

Example: Processing Command-Line Parameters

We’ll modify our previous example so that now the number of bytes per file is an option fol-
lowed by the requested number of bytes (i.e., -n 1000), as in Listing 10-9 (empty opt.py).
Furthermore, we’ll add an option switch, also known as an option flag, indicating whether a
.bin extension should be added to the file name. The existence of the option flag -x instructs
the script whether to create the extension: there’s no additional value following it.

Listing 10-9. Processing Command-Line Parameters Using OptParse, empty opt.py

from optparse import OptionParser
from sys import exit

usage = "Usage: python empty opt.py [options] filename"

create an OptionParser instance
parser = OptionParser(usage)

these are the options

parser.add option("-n", "--numbytes", dest="nbytes",
type="int", default=1000, help="number of bytes in file")
parser.add option("-x", "--ext", dest="ext",

action="store true", default=False, help="adds 'bin' extension to filename")
(opt, args) = parser.parse args()

must have a file name

if len(args) != 1:
print "Improper number of arguments."
exit()

append extension if switch is on
filename = args[0]+'.bin' if opt.ext else args[0]

create the file

try:
f = open(filename, 'wb")

except IOError:
print "Unable to create file", filename
exit()

f.seek(opt.nbytes-1)
f.write(chr(0))
f.close()

print "Successfully created file %s of size %d." % (filename, opt.nbytes)

First, I've imported the OptParse module. I then instantiate an OptionParser object and
provide it with the default usage string. The usage string will be displayed as the first line when-
ever the user issues the command-line switch -h or -help, so: python empty opt.py -h.

CHAPTER 10 ADVANCED FILE PROCESSING

I then add options using the add_option() method. The add option() method has many
parameters to control how options should be parsed. In my first add_option() call, I've set how
the user invokes this option: by entering either -n NBYTES or --numbytes NBYTES.Iset the des-
tination for this option to be named nbytes. This means that after the option is parsed, I can
access the option value through variable opt.nbytes. The type of variable is int, as detailed
by the type argument, and the default value is 1000 in case nbytes isn’t provided by the user.
Lastly, the help string associated with this option is detailed: help="number of bytes in file".

Similarly, I set another option named ext; this option is a switch, meaning the user will
invoke the switch simply by entering -x or - -ext; there are no additional values following the
switch (in contrast, the -n option was accompanied by an NBYTES value). The action argu-
ment instructs OptParse to treat this as a positively acting switch: if -x is provided, set the flag
to True. Lastly, I've set the default value to False and added a help string: help="adds 'bin'
extension to filename".

Parsing the command-line options is performed with the call to parse_args(). Both
options and arguments are then retrieved. The options are accessed via a class parameter, and
the arguments are provided in a list. Following that is the actual creation of the file.

The following are the results from running the script with various options in a bash shell:

$ python empty opt.py

Improper number of arguments.

$ python empty opt.py -h

Usage: python empty opt.py [options] filename

Options:
-h, --help show this help message and exit
-n NBYTES, --numbytes=NBYTES
number of bytes in file
-x, --ext adds 'bin' extension to filename
$ python empty opt.py filel
Successfully created file filel of size 1000.
$ python empty opt.py -x filel
Successfully created file filel.bin of size 1000.
$ python empty opt.py -n 2000 --ext filel
Successfully created file filel.bin of size 2000.
$ python empty opt.py -n 2000 --ext filel file2
Improper number of arguments.
$ python empty opt.py -n 2a --ext filel
Usage: python empty opt.py [options] filename

empty opt.py: error: option -n: invalid integer value: '2a’

The script expects an input as follows: [options] filename. Calling the script with
command-line parameter -h or --help prints out the usage help message. This is implemented
automatically when you use the OptParse module. Next, I've issued some valid command-line
parameters and some invalid ones. OptParse handles the parsing of the values, while my code
handles the number of arguments (only one: filename). I've also called the script with full
option names (--ext) and abbreviated option names (-x).

331

332

CHAPTER 10 ADVANCED FILE PROCESSING

Module OptParse is a rich module with many features. Refer to the online help at http://
docs.python.org/library/optparse.html for a detailed description of the module.

Tip As the number of options increases, consider using the ConfigParser module instead. See
Chapter 4 for an introduction to ConfigParser and the online help (http://docs.python.org/library/
configparser.html).

The FileInput Module

Closing our command-line parameters discussion is the FileInput module. The module pro-
vides an easy method for accessing several files (or streams) passed by the command line (i.e.,
python somescript.py file1l file2 file3).To use the module, issue import fileinput.

Using the module is straightforward: iterate over fileinput.input(). The result from the
iteration is the next line in the current file. Once the end of the file is reached, the next file is
opened automatically, and the process resumes until all lines from all files have been iterated
over.

Table 10-1 lists some useful FileInput methods that can be used to further enhance scripts
that make use of the module.

Table 10-1. Useful FileInput Methods

Method Description

fileinput.close() Ends the processing, closing all opened files
fileinput.filelineno() Returns the line number in the current file
fileinput.filename() Returns the name of the file currently being read
fileinput.fileno() Returns the index of the current file

fileinput.isfirstline() Returns True if this is the first line in a file
fileinput.lineno() Returns the cumulative line number of all lines read from all the files

fileinput.nextfile() Stops processing the current file and jumps to the next file

Let’s turn to an example.

Example: Combining Data from Several Sources Based on the Epoch

Here we pick up on an example previously presented in Chapter 5 in a section with the same
title as this one. This time we allow for more than two files to be combined, based on the
epoch (see Listing 10-10).

CHAPTER 10 ADVANCED FILE PROCESSING

Listing 10-10. Combining Several Files Based on the Epoch, combine_epoch.py

import fileinput

from time import mktime, strptime

data = []

fmt = '%b %d EH:%M:%S %Y’

for line in fileinput.input():
data.append([mktime(strptime(line[4:24], fmt)), line])

for line in sorted(data):
print line[1],

The contents of the files are detailed in Chapter 5. Use the script as follows: python
combine_epoch.py file1l file2The source code should prove easy to follow.

Example: Searching for Text in Multiple Files

Again, building from an example previously shown in Chapter 5 in the section “Example:
Searching Inside a Text File,” we now search for text in multiple files. To use the script,
srchfile.py, shown in Listing 10-11, issue the command python srchfile.py search string
filel file2

Listing 10-11. Searching for Text in Multiple Files, srchfile.py

import fileinput, sys

string to search is the first argument
for line in fileinput.input(sys.argv[2:]):
if line.find(sys.argv[1]) != -1:
print "File %s, #%d: %s" % (fileinput.filename(),
fileinput.filelineno(), line.rstrip())

The main difference from the previous example is that now the first parameter is the
string to search instead of a file. So I access the command-line parameters and pass the values
from the third parameter onward (sys.argv[2:]) to fileinput.input(). Doing so will skip the
script name (argv[0]) and the search string (argv([1]).

The fileinput module also provides support for modifying files as you process the lines
via the inplace argument. Refer to the online help for more on this: http://docs.python.org/
library/fileinput.html.

File and Directory Manipulation

Other than reading and writing files and processing command-line parameters, manipulat-
ing files is also a task commonly required of a developer. You've seen the os.walk module and
some directory operations in previous chapters; here I expand on those, as well as file opera-
tions: deleting files, moving files, and more.

333

334

CHAPTER 10 ADVANCED FILE PROCESSING

Module glob

The glob module enables searching for files given a file name pattern. The function
glob(pattern) will return a list of all the files matching pattern; the function iglob(pattern)
returns an iterator (as opposed to a list in glob()) of all the files matching pattern. I usually
just use the list version, glob(pattern):

>>> from glob import glob
>>> glob("*.py")
['extract3.py', 'tail large.py', 'cmp _dirs.py', 'cmp files.py']

glob() accepts shell-like wildcards such as * (matches a string of characters), ? (matches
one character), [chars] (matches any character from a list of characters), and [! chars]
(matches anything but those characters listed). The following will match a file name that ends
with py and contains a number:

>>> glob('*[0-9]*py")
['extract3.py']

This will match a file name that ends with py and does not start with c:

>>> glob('[!c]*py")
['extract3.py', 'tail large.py']

Please note that glob expressions contain shell wildcards, and so are not regular
expressions.

Tip See also module famatch (http://docs.python.org/library/fnmatch.html).

Additional os Module Functionality

You've already seen a considerable number of functions from the os and os.path modules (see
the section “Moving Around” in Chapter 3). Table 10-2 lists a few more, not mentioned earlier,
that are especially useful for manipulating files and directories. In the table, assume the cur-
rent working directory is /home/user and the file in the directory is file.ext.

Table 10-2. os Module Functions for Manipulating Files and Directories

Function Description Example

os.chmod(path, mode) Changes file permissions (in os.chmod('file.ext', 0777)
Windows, only read and write changes the file permissions to
permissions are changed, all else read, write, and execute for all.
is ignored).

os.chown(path, uid, gid) Changes the group and user own- os.chown('file.ext", 0, 0)
ership of a file (not available in will set the group and user own-
Windows). If you wish to change ership of file file.ext to root
only uid, set gid to -1; if you wish (assuming root has a uid of 0).

to change only gid, set uid to -1.

CHAPTER 10 ADVANCED FILE PROCESSING

Function Description Example

os.remove (pathname) Deletes the file specified in path- os.unlink('file.ext") will

os.unlink(pathname) name. delete the file file.ext.

os.rmdir() Removes a directory if it’s empty. os.rmdir("'/home/user") will
remove directory /home/user if
it’s empty.

os.mkdir(path) Creates a directory. os.mkdir('another"') will create
directory /home/user/another.

os.makedirs(path) Creates a directory as well as any os.makedirs('dir1/dir2")

intermediate subdirectories. will create directories /home/

user/dir1 and /home/user/
diri/dir2.

os.rename(old, new) Renames a path or file. os.rename('file.ext', 'file2.

0s

.renames(old, new)

Renames a path or file including
the creation of intermediate direc-
tories and removal of empty ones.

ext') renames file file.ext to
file2.ext.

os.renames (' /home/user’,
'/home/user2/dir1/dir2") will
rename the directory /home/
user to /home/user2/dir1/dir2
as well as create subdirectories
that do not exist and remove di-
rectory /home/user if it’s empty.

Additional os.path Module Functionality

The module os.path provides functions that help manage file names and file paths. Table 10-3
lists some useful os.path functions. In the table, assume the current working directory is
/home/user and the file in the directory is file.ext.

Table 10-3. Useful os.path Functions

Function

Description

Example

0s

.path.abspath(s)
.path.basename(s)
.path.dirname(s)
.path.exists(s)

.path.getatime(s)

.path.getctime(s)

Returns the absolute path of a file

Returns the file name, excluding
path

Returns the directory name of a
path

Returns True if the path or file
specified by s exists

Returns the last access time of a
file

Returns creation time of a file

os.path.abspath('file.ext")
returns ' /home/user/file.ext".

os.path.basename(' /home/user/
file.ext') returns 'file.ext'.

os.path.dirname('/home/user/
file.ext') returns '/home/user’.

os.path.exists("'/home/user")
returns True.

time.ctime(os.path.getatime('/

home/user/file.ext')) will print

the access time (ctime() is part of
the time module).

Similar to os.path.getatime()
example.

Continued

335

336

CHAPTER 10

Table 10-3. Continued

ADVANCED FILE PROCESSING

Function

Description

Example

os.path.getmtime(s)

os.path.getsize(s)

os.path.isabs(s)

os.path.isdir(s)

os.path.isfile(s)

os.path.join(base, seq)

os.path.split(s)

os.path.splitext(s)

Returns the last modification
time of a file

Returns the file size in bytes

Returns True if the path specified
by s is an absolute path

Returns True if s is a directory
Returns True if s is a file

Joins two or more paths, adding
slashes as needed

Splits a pathname, returning the
path and the file name

Splits a pathname returning the
extension, including the dot

Similar to os.path.getatime()
example.

os.path.getsize('file.ext")
returns the size of file file.txt in
bytes.

os.path.isabs('file.ext")
returns False.
os.path.isabs("'/home/user/file.
ext') returns True.

os.path.isdir("'/home") returns
True.

os.path.isfile('file.ext")
returns True.

os.path.join("'/home/user",
'file.ext") returns '/home/user/
file.ext'.
os.path.join('/home", 'user',
'file.ext"') returns '/home/user/
file.ext'.

os.path.split('/home/user/file.
ext') returns (' /home/user",
'file.ext').

os.path.splitext('/home/user/
file.ext') returns ('/home/user/
file', '.ext').

Module shutil

The shutil module provides higher-level functions for copying, moving, and renaming files. Of
those, we'll explore the following: copy(src, dest), copytree(src, dest), rmtree(path), and
move(src, dst).For a full account of the module, refer to http://docs.python.org/library/

shutil.html.

I assume a file named filel.txt exists in the current directory. If yours doesn’t have this
file, create one if you wish to follow along.
First, let’s create a directory with subdirectories and copy filel.txt to the newly created

directory:

>>> import shutil

>>> from os import makedirs

>>> from glob import glob

>>> makedirs('dir1/dir2/dir3/dir4")

>>> shutil.copy('file1.txt', 'diri/dir2/dir3/dir4")
>>> shutil.copy('file1.txt', 'diri/dir2/dir3/dir4/file2.txt")
>>> glob('dir1/dir2/dir3/dir4/*")
['dir1/dir2/dir3/dir4/file1.txt', 'diri/dir2/dir3/dir4/file2.txt']

CHAPTER 10 ADVANCED FILE PROCESSING

First, I imported several modules and functions: shutil, os, and glob. I then created a
directory (as well as its parent directories): dir1/dir2/dir3/dir4. I made use of the function
copy () in two ways: first, to copy the file filel.txt to the newly created directory, and second,
to copy the file filel.txt to the same directory under a different name, file2.txt.

>>> shutil.move('dir1/dir2/dir3/dir4/file2.txt', 'diri/dir2")
>>> glob('dir1/dir2/*")

['dir1/dir2/dir3', 'diri/dir2/file2.txt']

>>> glob('dir1/dir2/dir3/dir4/*")
['dir1/dir2/dir3/dir4/filel.txt"]

I've moved the file file2.txt to directory diri/dir2. The results from glob() confirm the
move.
Now I copy the entire directory leaf under dir1 to a new directory named Dir 1:

>>> shutil.copytree('dir1', 'Dir 1")
>>> glob('Dir 1/dir2/dir3/dir4/*")
['Dir_1/dir2/dir3/dir4/file1.txt’]

And lastly, it’s time for cleanup—I remove both directories as well as their subdirectories:

>>> shutil.rmtree('dir1")
>>> shutil.rmtree('Dir 1")
>>> glob('dir1")

[]

File Compression

File compression is the process of representing a file in fewer bytes. Compression is typically
divided into two categories: lossy compression and nonlossy compression. In lossy compres-
sion, the compressed data is not identical to the original data; data is lost in the process of
reducing the file size (hopefully nonimportant information is lost). Nonlossy compression
uses clever schemes to represent data in a way that is more efficient. For example, instead of
writing a hundred identical values to file, a nonlossy compression scheme might be to write
the value 100, representing the count, and then the repeating value.

Python provides us with several compression and archiving modules. Archiving modules
are used to create compressed files; compression modules deal with the compression itself
and can be used on strings, not only on files. The distinction is somewhat blurred as some
modules perform both compression and archiving. The modules bz2 (http://docs.python.
org/library/bz2.html), gzip (http://docs.python.org/library/gzip.html), and zlib (http://
docs.python.org/library/z1ib.html as well as http://www.z1lib.net/) provide nonlossy com-
pression functionality; the modules tarfile (http://docs.python.org/library/tarfile.html)
and zipfile (http://docs.python.org/library/zipfile.html) provide archiving capabilities.
The names of the packages are also the import names, so to use gzip, issue import gzip.

There are some differences between the different modules in terms of compression ratio,
performance, and popularity. They're all easy to use and provide excellent results. In this sec-
tion we’ll explore the tarfile module.

337

338

CHAPTER 10 ADVANCED FILE PROCESSING

Example: A Compressed tar File

In the open source community, it’s common to see files distributed with extensions .tar.gz
or .tar.bz2. These are compressed tar files; tar stands for tape archive, but in reality there’s
no need for tapes. The example in Listing 10-12 creates several files, archives them, and then
retrieves them from the archive.

Listing 10-12. Creating an Archive

import tarfile, glob

create some files
for i in range(5):
f = open('filekd.txt' % i, 'w')
write some data
for j in range(100):
f.write('Some data: %d\n' % j)
f.close()

archive the files using bz2 compression

tf = tarfile.open('files.tar.bz2', 'w:bz2")

for filename in glob.glob('file*'):
tf.add(filename)

tf.close()

The first section of the script generates five files with some made-up data. Once files are
created, I create a tar file for archiving. The file mode is specified as 'w:bz2", which stands for
writing (creating) a tar file compressed with compression algorithm bz2. Other modes include
'w:gz' for gzip compression and 'w' for no compression. Similarly, opening an archive can be
done by specifying 'r', 'r:gz',and 'r:bz2".

Once the tarfile object is created, we add files to the archive using the add(path)
method. If you provide a directory to add(), the entire directory is added to the archive. I've
decided to add the files one at a time in case other files exist in the directory that I don’t wish
to include. Finally, I close the tar file, effectively creating the file files.tar.bz2.

Retrieving files from an archive is simple as well, as demonstrated in Listing 10-13. The
method extractall() will extract all files from an archive. The method extract(member, path)
will extract a file that is a member of the archive to a location specified by path. The method
getmembers () lists the members (files) in an archive.

Listing 10-13. Extracting All Files from an Archive

import tarfile, os

if not os.path.exists('new'):
os.mkdir('new")

tf = tarfile.open('files.tar.bz2', 'r:bz2")
tf.extractall('new")
tf.close()

CHAPTER 10 ADVANCED FILE PROCESSING

Listing 10-14 shows how to extract just the first three files in the archive.

Listing 10-14. Extracting Three Files from an Archive

import tarfile, os

if not os.path.exists('new'):
os.mkdir('new")

tf = tarfile.open('files.tar.bz2', 'r:bz2")

for member in tf.getmembers()[:3]:
tf.extract(member, 'new')

tf.close()

I've made use of the method getmembers () to retrieve the list of files in the archive and
then indexed only the first three files.

Comparing Files
Ensuring two files are identical is a common task. In case of input data files, it means we can
remove the copy, and our script will both run faster and provide better statistics because now
the data isn’t used twice. The reasons for duplicate files can be numerous as discussed in
Chapter 4.

A simple mechanism for comparing two files can be to open both files, read the entire files
to memory, and then compare the values:

>>> datal = open('../data/filel.txt', 'rb").read()
>>> data2 = open('../data/file2.txt', 'rb').read()
>>> datal == data2

True

The main benefit of this method is that it’s simple. However, there are several shortcomings:

e Inefficiency: Suppose one file is of size 10GB and other file is 1 byte long. By looking at
the file sizes, it’s possible to tell the files are not identical. On the other hand, reading a
10GB file to memory can bring the system to a crawl.

* Lack of information: If two files are not identical, what exactly are the differences?

Modules filecmp and difflib from the Python Standard Library provide us with functional-
ity to compare files and find the differences.

Module filecmp

The module filecmp provides functions for file and directory comparisons. The method
cmp(file1, file2[, shallow]) will compare file1 with file2. If shallow is not provided (or
is True), files that have the same stat signature are considered equal. By this I mean files that
have the same system information such as size, creation date, and more (see http://docs.
python.org/library/os.html for an explanation of stat). If shallow is False, files are also com-
pared for content.

339

340

CHAPTER 10 ADVANCED FILE PROCESSING

>>> filenames = ['../data/filel.bin', '../data/file2.bin']
>>> for fn in filenames:

f = open(fn, 'wb")

f.write('some data')

f.close()

>>> import filecmp
>>> filecmp.cmp(filenames[0], filenames[1])
True

The class dircmp(dirl, dir2) enables the comparison of directories dirl and dir2. The
comparison includes all subdirectories as well. The method report () will print the result from
comparing both directories.

For the following example, I assume you’ve created the file files.tar.bz2 in the previous
compression example. Here, we’ll create two directories, newl and new2. Directory new1 will
contain the extracted files from the archive; directory new2 will contain the extracted files from
the archive as well as another subdirectory, new3, which will also contain the contents of the
archive. We'll compare the directory contents (see Listing 10-15).

Listing 10-15. Comparing Directories

import tarfile, os, filecmp

if not os.path.exists('new1'):
os.mkdir('new1")

if not os.path.exists('new2/new3"):
os.makedirs('new2/new3")

tf = tarfile.open('files.tar.bz2', 'r:bz2")
tf.extractall('new1")

tf.extractall('new2")
tf.extractall('new2/new3")

tf.close()

cmp = filecmp.dircmp('newl', 'new2')
cmp.report()

The results are as follows:

diff newl new2
Only in new2 : ['new3']
Identical files : ['fileo.txt', 'file1.txt', 'file2.txt', 'file3.txt', 'file4.txt']

As you can see, comparing directory contents using the filecmp module is easy and simple.

CHAPTER 10 ADVANCED FILE PROCESSING

Module difflib

The module difflib provides several objects and functions to help compare lists of strings
(e.g., text files). Several functions provide a diff result in different formats. These include
context_diff(), ndiff(), and unified diff().In this section we’ll examine the context
diff(f1, f2[, fromfile][, tofile]) function; other functions have similar behavior.

First we create two files, ../data/filel.txt and ../data/file2.txt, with similar but not
identical content, as shown in Listing 10-16.

Listing 10-16. Creating Files for Comparison

content = """A string

123, 456

789

some text\n"""

fnamel = '../data/filel.txt’
fname2 = '../data/file2.txt’

f1 = open(fnamel, 'wb")
f1.write('before\n")
f1.write(content)
f1.close()

f2 = open(fname2, 'wb")
f2.write(content)
f2.write('after\n')
f2.close()

The two files differ in that the first file contains an extra line in the beginning, and the sec-
ond file contains an extra line in the end. We call context_diff() to display those differences
(see Listing 10-17).

Listing 10-17. Comparing File Contents
import difflib

'../data/file1.txt’
'../data/file2.txt’

fname1l
fname2

lines1 = open(fnamel).readlines()

lines2 = open(fname2).readlines()

for line in difflib.context diff(lines1, lines2, fnamel, fname2):
print line,

I've included the name of the files as parameters to context_diff(); this will generate a
report that displays the file names in the header information. Here are the results:

34

342

CHAPTER 10 ADVANCED FILE PROCESSING

*kx o /data/filel.txt

--- ../data/file2.txt
skosk skokosk sk skokook sk skoskokskok

kkk 1)5 kekokk

- before
A string
123, 456
789
some text
- 1)5 _————
A string
123, 456
789
some text
+ after

A section starting with *** means the report addresses the file . . /data/filel.txt; a
section starting with - -- means the report addresses the file . ./data/file2.txt. Aline start-
ing with a - sign implies that the line is missing from the first file; a + sign means the line is
included in the first file but not in the second file. The output is similar to output generated by
UNIX diff command-line utilities.

Additional difflib functionality can be found online at http://docs.python.org/library/
difflib.html.

Final Notes and References

Python provides a wealth of libraries that deal with common programming tasks: file process-
ing, command-line parameters, file and directory manipulation, compressing and archiving
files, and many more. There are a great number of additional modules available with the
Python Standard Library:

¢ The Python Standard Library, http://docs.python.org/library/index.html

APPENDIX

Additional Source Listing

This appendix is a collection of source listings that didn’t quite belong in the chapters them-
selves, but nevertheless might be of interest to you.

Nudge Subplots

In generating subplots of size 2 by 2 for this book, I've noticed that the text for the x-axis of
the top subplots clashes with the titles of the lower subplots. To overcome this, I've defined
nudge_subplot(), a function designed to modify the location of subplots within a figure (see
Listing A-1).

Listing A-1. Source Listing of nudge_subplot()

def nudge subplot(subp, dy):
"""A helper function to move subplots."""
sp_ax = subp.get position()
sp.set _position([sp_ax.x0, sp_ax.yO+dy,
sp_ax.x1l-sp_ax.x0, sp_ax.yl-sp ax.yo0])

To use the function, store the return value from subplot() and then “nudge” it by calling
nudge_subplot(sp, dy), as shown in Listing A-2, where sp is the subplot and dy is the amount
to nudge (a value of 0.02 for dy usually works well).

Listing A-2. Using nudge_subplot()

from pylab import *

values to plot
t = arange(5)

y = aHaY([lx 2, -1, 1, '2])
plot_cmds = [

"plot(y)",

"plot(—y)",

"plot(y**2)",

343

344

APPENDIX ADDITIONAL SOURCE LISTING

"plot(sin(y))"
]

figure()

for i, plot cmd in enumerate(plot cmds):
sp = subplot(2, 2, i+1)
if i == 1: nudge_subplot(sp, 0.02)
if i == 3: nudge_subplot(sp, -0.02)
exec plot cmd
title(plot_cmd, fontsize='large")
xlabel('x values"')

In this code, I've nudged the right subplots and left the left ones as is, as you can see in
Figure A-1.

plot(y) 2.0
2.0 . —
15
1.5 1.0
1.0 0.5
0.5} 0'0
0.0} | 0'5
-0.5} : _1'0
Overlapping -1.0} 1"

-1.5

Overlap

0.0 10 15 30 25 3095 4. Fixed
X values
plot(sin(y))

Text

106705 1.0 1.5 2.0 25 3.0 3.5 2.0-19

x values .0 05 1.0 1.5 2.0 25 3.0 3.5 4.0

% values

Figure A-1. The left subplots are unmoved (the default), and the right subplots are nudged.

The function nudge _subplot() is not backward compatible with older versions of matplot-
lib. For example, with matplotlib version 0.91.4, the function set_position() accepts different
arguments, and so the code needs revising. Nevertheless, the ideas are similar. Listing A-3 is an
implementation that runs on matplotlib version 0.91.4.

APPENDIX ADDITIONAL SOURCE LISTING

Listing A-3. Source Listing of nudge_subplot _old(), for Older Versions of Matplotlib

def nudge subplot old(subp, dy):
"""A helper function to move subplots.

non

Works on matplotlib version 0.91.4.

sp_ax = subp.get position()
sp_ax[1] += dy
sp.set_position(sp ax)

Magic Square Arrows

In Chapter 7 I presented a figure describing the magic square algorithm. I used matplotlib
patch arrows embedded in the algorithm to plot that figure. Listing A-4 is the source code used
to generate the diagram.

Listing A-4. Magic Square Diagram Creation

from pylab import *

def magic arrow(x, y, top right, n, c=0):
"""Draws an arrow from point x, y.

[IRIRT]

d, my_colors = 0.15, 'rbymg'

if top right: # top-right arrow

mc = my _colors[c % len(my colors)]

ar = Arrow(x+0.5+d, n-y-0.5+d, 1-2*d, 1-2*d, width=0.2, fc=mc, ec=mc)
else: # down arrow

ar = Arrow(x+0.5, n-y-0.5-d, 0, 2*d-1, width=0.2, fc="k', ec='k")

patch the arrow
gca().add patch(ar)

def show alg(n=3):
"""Draws a magic square, n must be odd."""

ifn%2!=1:
raise ValueError, "Magic(n) requires n to be odd."

prepare the figure, draw grid lines, hide ticks
axis('scaled")
axis([0, n, 0, n])
for i in range(n):
plot([o, nl, [i, i], 'b")

345

346 APPENDIX ADDITIONAL SOURCE LISTING

plot([i, il, [0, n], 'b")
xticks([])
yticks([1)

alternating color index
altc = 0

initialize variables
m, row, col = zeros([n, n]), 0, n/2

go through all the numbers from 1 to n**2
for num in xrange(1, n**2+1):

assign the current number and display it on the figure
m[row, col] = num
text(col+0.5, n-row-0.5, str(num), va='center', ha='center')

store current row and col
pcol, prow = col, row

increment row and col
col = (col+1) % n
row = (row-1) % n

if location (col, row) is nonzero, it means the cell
is occupied, move down
if m{row, col]:

col = pcol % n

row = (prowt+l) % n

if current location minus previous location is (1, 1)
draw a top-right arrow
if col-pcol == 1 and prow-row ==

magic_arrow(pcol, prow, True, n, altc)

if previous col location is identical to current
col location, draw a down arrow (unless it's the last cell)
elif pcol == col and num != n**2:

magic_arrow(pcol, prow, False, n)

altc += 1

the following two elif sentences take care of drawing two
arrows in case of wrapping: one originating from the current
location, the other to the next location
elif col-pcol == 1 and prow-row != 1:
magic_arrow(pcol, prow, True, n, altc)
magic_arrow(pcol, n, True, n, altc)

APPENDIX ADDITIONAL SOURCE LISTING

elif col-pcol != 1 and prow-row == 1:
magic_arrow(pcol, prow, True, n, altc)
magic_arrow(-1, prow, True, n, altc)

last cell
elif num == n**2:
pass

if we've reached this point, there's a bug
else:
raise ValueError, "We should never be here."

def show_some():
figure()
for i in range(4):
subplot(2, 2, i+1)
show_alg(2*i+3)
title('N="+str(2*i+3))

show_some()

I've defined the function magic_arrow() that draws an arrow at a given position using a
matplotlib arrow patch. The arrow’s direction is determined by comparing the current loca-
tion with the previous location. Other than that, the code is similar to the one discussed in
Chapter 7.

Fractal Function Source Code

In Chapter 9 I made use of a variation of the fractal script in Chapter 7 to create a collage by
wrapping it within a function. Listing A-5 shows the function used in creating the fractal col-
lage in Chapter 9.

Listing A-5. Fractal Collage Function

from PIL import Image
from cmath import *

def fractal(delta=0.000001, res=800, iters=30):
"""Creates a z**4+1=0 fractal using the Newton-Raphson method."""

create an image to draw on, paint it black
img = Image.new("RGB", (res, res), (0, 0, 0))

these are the solutions to the equation z**4+1=0 (Euler's formula)
solutions = [cos((2*n+1)*pi/4)+1j*sin((2*n+1)*pi/4) for n in range(4)]
colors = [(11 0, 0), (O) 1, O)) (O) 0, 1)) (11 1, O)]

347

348 APPENDIX ADDITIONAL SOURCE LISTING

for re in range(0, res):
for im in range(0, res):
z = (re+lj*im)/res
for i in range(iters):
try:
z -= (z%*4+1)/(4*z**3)
except ZeroDivisionError:
possibly divide by zero exception
continue
if(abs(z**4+1) < delta):
break

color depth is a function of the number of iterations
color depth = int((iters-i)*255.0/iters)

find to which solution this guess converged to
err = [abs(z-root) for root in solutions]
distances = zip(err, range(len(colors)))

select the color associated with the solution
color = [i*color depth for i in colors[min(distances)[1]]]

img.putpixel((re, im), tuple(color))

return img

Index

Symbols

>>> prompt, 3, 55

+= operation, 13-14, 63

- (range) character in regular expressions, 175

* asterisk character in regular expressions,
174

\ (backslash character), 59

% (bitwise AND), 63

A (bitwise exclusive OR), 63

A (start of a string) character in regular ex-
pressions, 174

~ (bitwise not), 63

| (bitwise OR), 63

| (alternative) character in regular expres-
sions, 175

[] (brackets), 15, 67, 69, 73, 74, 76

(comment symbol), 5, 85, 157

{} curly braces, 74

$ (dollar sign) character in regular expres-
sions, 174

. (dot) symbol, 12

. (dot) symbol in regular expressions, 173

== (double equal sign), 63

... (ellipsis symbol), 3, 12, 236

> (greater than), 63

>= (greater-than-or-equal), 63

I= (inequality), 63

< (less than), 63

<= (less-than-or-equal), 63

% (modulo) operator, 96

% (string formatting), 82-84

) (parenthesis), 71-72, 93, 97

+ (plus) character in regular expressions, 174

? (question mark) in regular expressions, 174

<< (shift left) operator, 63

>> (shift right) operator, 63

A

AbiWord, 48
abspath() function, 335
acos() function, 223

add() function
in sets, 79
ImageChops operation, 313, 315
add_option() function, 329, 331
algebra. See linear algebra
all() function, 92, 242
Alphabet, Hebrew (example), 179
any() function, 92, 242
append() function, 70-71
arc() function, 295
archive files
creating, 338
extracting, 338-339
archiving modules, 337
arctan2(dy, dx) function, 21
argv variable, 327
arithmetic operations, on arrays, 239-240
arange() function, 235-237
array() function, 234
array of values, 118-119
arrays
creating, 234-235
data types, 118-119
functions, 234-235, 247
indexing, 235
math functions, 239-240
methods and properties, 241-246
N-dimensional arrays, 234-239
numerical, 14
one-dimensional, 235
reshaping, 235
slicing, 235
storing directory contents in, 127-128
of structs, 119-122
tuples of, 17
two-dimensional, 235
Arrow() function, 219
arrows, adding to graph, 218-219
ASCII (American Standard Code for Informa-
tion Interchange), 135
asctime() function, 166-167, 169
asin() function, 223

349

350 INDEX

assert statement, 140-143 c
atan2() function, 223~ capitalize() function, 145

attrlbutesé, 4916 246 Cartesian coordinates, 17-18
artay, =&~ cascading, functions, 12

1mage, i87_2.88 s 63 catalogs, 131-133
augmente assignments, cell() function, 229

autocompletion feature, 46 .
ter. 216 center() function, 145
axes parameter, character completion, with GNU Readline,
axhline() function, 196 40-41
axis galrlam‘eters, Sfmllll.g’ 21159:1217 character count, 151-152
‘”‘?S ?uavigr, ng rl% GmIgS; 4216 chdir() function, 58
axis() function, 20, ’ ’ children parameter, 216

amslllabel?, 19?._ 1991 9% chirp() function, 274
axvline() function, chmod() function, 334
choice() function, 232

B cholesky() function, 253
backslash character (1), 59 chord() function, 295
bar charts, 201-204 chown() function, 334
Bash, 35 chr() function, 92, 179
bartlett() function, 278 circles
base conversions, 138-143 calculating area of, 255-256
base conversions (example), 138-143 plotting, 194
basename() function, 335 cla() function, 197
bases, 61-62 classes, 96-97
baud rate, 3, 5 clear() method, 76-78
binary conversion, in Python 2.5, 139-140 clf() function, 197
binary editor, 48 clip() function, 242
binary files, 117-123, 135 clock() function, 131
array of structs, 119-122 close() function, 148, 197
array of values, 118-119 cmath module, 221-227
file formats, 104-105 functions, 223
header files with, 122-123 Newton fractal (example), 224-227
pros and cons, 109 cmp() function, 92
random access and, 319-325 coLinux, 34
binding, variables, 80 color depth (fractal example), 226
bin() function, 143 color maps, 211-212
bisect() function, 267-268 colors
bitwise AND (%), 63 image, 300-303
bitwise exclusive OR (1), 63 for plots, 193
bitwise not (~) operator, 63 COM ports, 24
bitwise operations, 63 combining files (example), 153-155
bitwise OR ()), 63 combining data based on the epoch, 172-173
Booleans, 67-68 command-line interface (CLI), 35, 54-55
bool() function, 68 command-line parameters, 327-333
break statement, 91-92 commands, entering, 55-56
bucket fill, 308-312 Comma Separated Values (CSV) files. See CSV
built-in functions, 92-93 (Comma Separated Values) files
butter() function, 280 comments, 5, 85, 157
bz2 module, 337 comment symbol (#), 157

comparison operators, 63

comparing mortgages (example), 237-238
compiled programming languages, 2-3
compile() function, 173
complex data type, 64-65
complex numbers, 222
compress() function, 242
compression (file compression), 337-339
concatenation, of lists, 69
ConfigParser module, 124, 332
configuration files, 123-125
conj() function, 243
conjugate() function, 253
constant() function, 313
constructors, 97
context_diff() function, 341
continue statement, 91-92
contour() function, 210
contour plots, 210
Cooperative Linux, 34
copy() method, 76, 78, 80, 292
cos() function, 223
cosh() function, 223
cosine wave, Fourier transform of, 276-277
count() function, 144
counting objects (image processing exam-
ple), 303-312
cPickle module, 325-327
crop() function, 292-293
cropping images, 292-293
C++ style comments, 157
CSV (Comma Separated Values) files, 6-7,
109-117, 159-163
creating, 115-116
limitations of, 116
processing, 9
reading, 9-12
spreadsheets and, 48
when to use, 117
.CSV extension, 7
csvmodule, 9-12, 116, 159-163
csv.reader object, 160
csv.writer object, 160-161
ctime() function, 171
cumprod() function, 242
cumsum() function, 242
curly braces {}, 74
curve fitting, 258-267
Cygwin, 33-34
Cygwin Net Release Setup Program, 33

INDEX

D

darker() function, 313
data
combining, based on epoch, 172-173,
332-333
exponential, fitting, 263-264
gathering, 2-6
GPS, 2-6, 12-25
two-dimensional, 285
data analysis, 8-17
GPS data, 12-17
reading CSV files, 9-12
databases, vs. files, 133-134
data files
catalogs, 131-133
compiling list of, 8-9
indexing, 128-131
locating, 126-134
searching for, 127-128
storage location, 7
data organization, 6-7
catalogs, 131-133
directories, 126
file formats, 108-126
file name conventions, 102-108
files vs. databases, 133-134
indexing, 128-131
introduction to, 101-102
searches, 127-128
data storage
decisions on what to store, 116-117
using binary files, 117-123
data structures, 68-80
dictionaries, 68, 74-78
flattened, 238-239
lists, 68-72
ndarrays (NumPy arrays), 233-236
sets, 78-80
tuples, 68, 72-73
data types
array, 118-119
Booleans, 67-68
complex, 64—-65
file, 147
float, 63-64
int, 60-61
long, 60-61
strings, 65-67
data visualization, 17-25
annotating the graph, 20-22
plotting GPS data, 18-20

351

352

INDEX

preprocessing prior to, 221
subplots, 23
using text, 23-25
velocity plot, 22-23
date
extracting from file contents, 168
in file name, 102-103
parsing and formatting, 165-168
writing in current locale (example),
180-181
Debian Linux, 32
decimal module, 247
deck of cards, 233
decode() function, 179
deep copy, 81
def keyword, 93
De la Loubere method, 244-246
delimiter, 161
del statement, 71
determinant of matrix, 253
detection, signal in noise (example), 270-274
det() function, 253
development environment
image viewers, 49
operating systems, 32-37
Python environment, 37-44
software components for, 31-52
spreadsheets, 48
text editors, 45-48
version control systems (VCSs), 49-51
word processors, 48
dict() function, 74
dictionaries, 13, 68, 74-78
dictionary methods, 75
DictReader object, 162-163
DictWriter object, 162-163
diff() function, 24, 218, 247, 273-274
difference() function, 78, 313
difference_update() method, 78
difflib module, 341-342
directories, 126
changing, 8, 57
comparing, 340
compiling list of files in, 8-9
listing contents of, 8
storing in arrays, 127-128
directory manipulation, 333-337
dirname() function, 335
dir statement, 99, 216
discard() method, 78
docstrings, 10, 13-14, 94, 250
doctest module, 140, 245

dot() function, 252

dot products, 252

dot (.) symbol, 12, 173

double equal sign (==), 63

double quotes, 65

dual-boot systems, 37

duplicate files, searching for, 128-131

E

EAFP (It’s Easier to Ask Forgiveness than
Permission) motto, 4, 138, 155, 158,
288, 290

editors, 45-48

eig() function, 253

element-by-element multiplication, 252

elif statement, 17, 85-86

ellipse() ImageDraw function), 295

Ellipse (matplotlib patch object), 217

ellipsis symbol (...), 3, 12, 236

else statement, 85-86

encode() function, 179

end-of-day report, 170-171

endswith() function, 9, 146

Enthought Python Distribution (EPD), 38

enumerate() function, 25, 90, 96, 155

epoch, 165, 168-173, 332-333

exceptions, 56, 86-89

execfile() function, 3, 59

exec statement, 140-143

exists() function, 107-108, 335

exit() function, 329

exp() function, 223

expm() function, 254

exponential data, fitting, 263

extend() function, 70-71

eye() function, 235

F

fabs() function, 222

Fast Fourier Transform, 275-277

fft() function, 275-277

Fedora project (Linux), 32

field names (in CSV files), 162

figure() function, 22-23, 186, 190

filecmp module, 339-340

file compression, 337-339

file formats, 6-7, 104-105, 108-126
binary, 104-105, 109, 117-123
converting image, 289-290
CSV, 6-7,109-117
header files, 122-123

image, 104
INI files, 123-125
Readme files, 123
selecting, 108
text, 109
XML, 125

FileInput module, 332-333

file manipulation, 333-337

file names, 7, 102-108
automating creation of, 106
date and time in file name, 102-103
extensions, 104-105
pattern matching, 334
running index implementation, 107-108
titles, 104

file pointers, 319

files
archive, 338-339
binary, 117-123, 135, 319-325
catalog, 131-133
closing, 148
comparing, 339-342
configuration, 123-125
CSVfiles, 6-12,109-117, 159-163
data. See data files
vs. databases, 133-134
decisions on what to store, 116-117
directories for, 126
documenting contents of, 101
duplicate, 128-131
fixed-size, 323, 328-329
header, 122-123
indexing, 128-131
log files, 163-168, 172-173
multiple, 45, 333
opening, 147-148
reading, 149-150
reading images from, 286
Readme, 7, 123
saving graphs to, 187-189
searching for, 127-128
tar, 338-339
text. See text files
writing to, 148-149

fill() function, 242

filter design, 279-281

filtering, 279-284

filter() method, 316

filters
finite-impulse-response (FIR) filters, 279
high-pass filters (HPFs), 279
image, 315-317

INDEX

infinite-impulse-response (IIR) filters, 279
low-pass filters (LPFs), 279
finally statement, 87
find() function, 20, 143-144, 269, 271
findall() function, 173
findfont() function, 297
finite-impulse-response (FIR) filters, 279
firwin() function, 279
fixed-length records, 321-322
fixed-size files, 323, 328-329
flattened data structures, 238-239
flatten() function, 243
float data type, 63-64
float() function, 16, 64, 137-138, 159
floating-point numbers, 16, 6364
flood fill, 308-312
floor() function, 222
flow control statements, 85-92
fmod() function, 222
fonts, 296-297
formatting
date and time, 165-168
with print statement, 82-84
strings, 145-146
for statement, 89-90
Fourier expansion, 239-240
Fourier transform, 275-279
of cosine wave, 276-277
window functions, 277-279
fractals, 224-227, 347
fractions module, 248
freqs() function, 279
frequency domain, 275
freqz() function, 279-280
frexp() function, 222
fromfile() function, 119, 244
fromkeys() function, 76
fsolve() function, 267-268
functions, 68
approximating, with polynomials, 264-266
built-in, 92-93
cascading, 12
defining, 93-96
fitting to discrete known values, 258-267
Fourier transform, 275-279
generators, 94-95
searching for, 250
special functions, 268
See also specific functions

353

354

INDEX

G

gauss() function, 229
gausspulse() function, 274
gca() function, 215

gcf() function, 215

generator expressions (genexps), 95-96

generators, 94-95
Gentoo Linux, 32, 38
get() function, 76-77
getatime() function, 335
getctime() function, 335
getcwd() function, 58
getdata() function, 301-302
getmtime() function, 335
getopt module, 329
getp() function, 214-217
getsize() function, 336
glob module, 334
gmtime() function, 112, 169
GNU Emacs, 47
GNU/Linux, 32-33
Gnumeric, 48
GNU Nano, 47
GNU Octave, 41, 189
gnuplot, 42-43
GNU Public License (GPL), 29
GNU Readline, 40-41
GPS data
analyzing, 12-14
case study, 2-3, 8
extracting, 14-17
plotting, 18-20
recording, 2-6
visualization, 17-25
GPS graphs, annotating, 20-22
GPS values, 2
graphical user interface (GUI), 35
graphs, 183
adding arrows to, 218-219
additional, 210-213
annotating with text, 197-200
axis, 194
axis labels, 198-199
bar charts, 201-204
colors, 193
controlling, 194-197
erasing, 197
getting and setting values, 213-217
grids and ticks, 195-196
histograms, 204-205

vs. image files, 184-187
interactive, 185-187
legends, 198-199
line widths, 192
logarithmic plots, 207-208
marker sizes, 192
matplotlib package. See matplotlib
package
patches, 217-220
pie charts, 206-207
plotting, 189-193
polar plots, 208-209
saving to files, 187-189
stem plots, 209-210
subplots, 196-197
summary example, 200-201
target audience and, 183
titles, 198
types, 201-213
See also plots
greater than (>), 63
greater-than-or-equal (>=), 63
grep, 155
grid() function, 19, 195-196
grids, 195-196
GUI (graphical user interface), 35
gzip module, 337

H

hamming() function, 210, 278
hanning() function, 278
hashing algorithm, 75
has_key() method, 76-77
header files, 122-123

header stamps, 13

head() function, 152-153
head utility, 152-153
heart-rate monitor (example), 281-282
Hebrew alphabet (example), 179-180
help() function, 10-11, 185, 99
help system, 56-57

hex() function, 62, 138-140
hexadecimal base, 62

hexedit, 48

high-pass filters (HPFs), 279
hist() function, 204-205
histograms, 204-205

history command, 58
hyperbolic function, 223
hypot() function, 223

i18n (internationalization), 177
IDEs (integrated development environ-
ments), 39-41
IDLE, 39
ifft() function, 276
if statement, 17, 85-86
iirdesign() function, 279
imag (imaginary) attribute, 243
image annotation, 294-300
fonts, 296297
with geometrical shapes, 294-295
text annotations, 295-300
image arithmetic, 312-315
image attributes, 287-288
image catalog, 287-288, 298
ImageChops module, 312-315
Image class, 286
ImageDraw object, 294-300, 310
ImageFilter class, 316-317
image filtering, 315-317
image formats, 104
image modes, 291
image processing, 300-315
counting objects, 303-312
matrix representation and colors, 300-303
packages for, 43
two-dimensional data, 285
images
colors, 300-303
converting file formats, 289-290
copying and pasting, 292
creating, 286, 291
cropping and resizing, 292-293
displaying, 288
manipulation of, 291-294
reading from file, 286
rotating, 293-294
split, 300-301
thumbnail, 298-300
image viewers, 49
import statement, 3, 98-99
indentation (tabs), 5
index() function, 71
indexing, 128-131
arrays, 235
lists, 70
tuples, 73
inequality (!=), 63
infinite-impulse-response (IIR) filters, 279

INDEX

INI files, 123-125

__init__ function, 97

inner() function, 252-253

inner products, 252

in operator, 67, 70, 74

insert() function, 71

int() function, 60, 62, 103, 137-140, 159

int data type, 60-61

integer division, 64

integrated development environments

(IDEs), 39-41

integration algorithms, 254-258

interactive graphs, 185-187

interactive help system, 56-57

interactive Python, 54-58

interactive sessions, vs. Python scripts, 3

internationalization, 176-181

interp() function, 259, 266

interpolation, 258-267
approximation of functions using, 264-266
piecewise linear interpolation, 258-260
spline interpolation, 266-267

interpreted programming languages, 2-3

intersection() function, 78

intersection_update() method, 78

inverse square root, 258

inv() function, 252

IPython, 39-40

IronPython, 38

isabs() function, 336

isalnum() function, 146

isdigit() function, 158

isdir() function, 336

isfile() function, 336

islower() function, 146

ISO date and time format, 15, 167

isspace() function, 146

issubset() method, 78

issuperset() method, 78

istitle() function, 146

isupper() function, 146

-i switch, 59

items() method, 76

iterators, 89, 90, 94-95

iteritems() method, 76, 90

iterkeys() method, 76

itervalues() method, 76

355

356 INDEX

J ljust() function, 145
join() function, 137, 144, 336 locale.getpreferredencoding() function, 181

178
JPEG (Joint Photographic Expert Group), 184 \ocale module, 177-1

T localization, 176-181
justification, text, 145 localtime() function, 106, 165, 166

Jython, 38 loc parameter, 199
log10() function, 223
K logarithmic function, 223
kaiser() function, 278 logarithmic plots, 207-208
keys, 74 log files, 163-168, 172-173
keys() method, 76 log() function, 223
logical operations, 68
L loglog() function, 207-208
110n (localization), 177 logspace() function, 207, 235
Latin alphabet, 180 long.data type, 60-61
latitude, 15, 17 longitude, 15_%7
lazy copy, 81 lookfor() funqlon, 250
ldexp() function, 222 lower() function, 145
legend() function, 19, 198-199, 210 low-pass filters (LPFs), 279
legends, 198-199 Istrip() function, 144
len() function, 67, 70, 137, 151
less than (<), 63 M
less-than-or-equal (<=), 63 Mac OS, 32, 36
licensing, 51-52 macros
lighter() function, 313 recording, 46-47
linear algebra support for, 46
additional functionality, 254 magic square arrows, 345-347
matrix decomposition, 253-254 magic squares, 244-246
solving systems of linear equations, makedir() function, 335
251-252 manually installing packages (example), 44
vector and matrix operations, 252-253 markers, 189-190
linear algebra, 251-254 marker sizes, 192
linear equations, solving systems of, 251-252 match() function, 173
linear interpolation, piecewise, 258-260 math
linearization process, 15, 112 math module, 221-227
linear regression cmath module, 221-227
of nonlinear functions, 263 data visualization and, 221
with polyfit(), 261-262 Newton fractal (example), 224-227
line breaks, suppressing, 82 NumPy module, 233-247
line count, 151-152 random module, 228-233
line() function, 295 mathematical expressions, 200
line numbering, 46 mathematical symbols, 200
lines, 137, 189-190 math functions, 239-240
line widths, 192 math module, 221-224
linspace() function, 235, 237 MATLAB, 1, 41, 189
Linux, 32-36 matplotlib.finance module, 113
list comprehensions, 91, 237-238, 304 matplotlib objects, 214-216
listdir() function, 58 matplotlib package, 17-19, 41-42, 183-184,
list() function, 69 286
list methods, 71 file formats supported by, 187-188

lists, 68-72 getting and setting values, 213-217

interactive graphs, 185-187
plotting graphs, 189-193
ways to use, 184
matrix
calculating inverse of, 252
decomposition, 253-254
operations, 252-253
representation, 300-303
MaxFilter, 317
max() function, 243
mean() function, 243
MedianFilter, 317
Mercurial, 50
merge() function, 302
meshgrid() function, 213
methods, 96
array, 241-246
See also functions
Minesweeper, 308
MinFilter, 317
min() function, 226, 243
mkdir() function, 335
mktime() function, 112, 169
ModeFilter, 317
modf() function, 222
modules, 97-99
modulo (%) operator, 96
mortgage comparison (example), 237-239
movement artifact (example), 281
moving average (example), 283-284
multiple files
editing, 45
searching for text in, 333

naming conventions. See file names
National Marine Electronics Association
(NMEA), 13
ndarray (NumPy) object, 233-234
ndim attribute, 243
N-dimensional (NumPy) arrays, 234-239
functions for creating, 234
mortgage comparison (example), 237-239
usefulness of, 236
newton() function, 267-268
Newton’s method (also Newton-Raphson
method), 224-227, 258, 267
NMEA 0183 format, 13-14
noise, detection of signal in presence of,
270-274
nonlinear equations, solving, 267-268

INDEX

nonlinear functions, linear regression of, 263
nonzero() function, 242
Notepad++, 47
nudgeing subplots, 343-344
numbers
base conversions, 138-143
bases, 61-62
bitwise operations, 63
comparisons, 63
complex, 64-65, 222
converting strings to, 15, 137-143
extracting from text file, 157-159
floating-point, 63-64
int data type, 60-61
long data type, 60-61
random, 228-233
numerical analysis, 249-268
curve fitting, 258-267
integration, 254-258
interpolation, 258-267
linear algebra, 251-254
numerical integration, 254-258
polynomials, 260-266
solving nonlinear equations, 267-268
splines, 266-267
special functions, 268
root finding (polynomials), 260
numerical arrays, 14
numerical integration, 254-258
NumPy module, 14, 41-42, 222
array creation, 234-235
array methods and properties, 241-247
lookfor() function, 250
math functions, 239-240
ndarray object, 233-234
N-dimensional arrays, 236-239
slicing, indexing, and reshaping arrays,
235
who() function, 250

0

object-oriented programming, 96-97
objects
counting, in image processing, 303-312
lists, 69-72
tuples, 72-73
object serialization, 325-327
octal base, 62
Octave-Forge, 250
oct() function, 62, 138-140
one-dimensional arrays (vectors), 235

357

358

INDEX

ones() function, 234
open() function, 147-148
operating systems, 32-37

choosing, 35-36

GNU/Linux, 32-33

Mac OS, 32

using several, 36-37

Windows, 33-35
OptParse module, 329-332
ord() function, 92
os.chdir(path) function, 58
os.chmod() function, 334
os.chown() function, 334
os.getcwd() function, 58
os.listdir(path) function, 58
OS locale support, 177
os.makedirs() function, 335
os.mkdir() function, 335
os module, 57-58, 334-335
os.path.abspath() function, 335
os.path.basename() function, 335
os.path.dirname() function, 335
os.path.exists() function, 107-108, 335
os.path.getatime() function, 335
os.path.getctime() function, 335
os.path.getmtime() function, 335
os.path.getsize() function, 336
os.path.isabs() function, 336
os.path.isdir() function, 336
os.path.isfile() function, 336
os.path.join() function, 137, 144, 336
os.path module, 335-336
os.path.splitext() function, 336
os.path.split() function, 336
os.remove() function, 71, 78, 335
os.rename() function, 335
os.renames() function, 335
os.rmdir() function, 335
os.walk() function, 8-9
outer() function, 253
outer products, 253
output files, naming, 227

P
packages, 41-44, 97-99

packages, manually installing (example), 44

Parallels, 34

parameters, command-line, 327-333
parse_args() method, 329, 331
parsing, date and time, 165-168

pass statement, 4, 86

paste() function, 292
patches, 217-220
path names, 127
PATH variable, 59
patterns, regular expression, 173-174
PDF, 184
Pickle module, 325-327
piecewise linear interpolation, 258-260
pie charts, 206-207
plain text files, 135
plot() function, 19-20, 189-193, 214
plot lines, 189-190
plot markers, 189-190
plots, 183
changing color of, 20
contour, 210
displaying several graphs in one, 191
GPS location, 18-20
logarithmic, 207-208
matplotlib package, 183-184
plot summary example, 200-201
polar, 208-209
stem, 209-210
subplots, 196-197, 23
velocity, 22-23
See also graphs
plotting, 189-193
colors, 193
lines and markers, 189-190
line widths, 192
marker sizes, 192
multiple graphs on one figure, 191
packages for, 42-43
PNG (Portable Network Graphics), 184
point() function, 295
polar plots, 208-209
poly() function, 260
polyadd() function, 260
polyder() function, 261
polydiv() function, 260
polyfit() function, 261
approximation of functions, 264-266
linear regression with, 261-262
polygon() function, 295
polyint() function, 261
polymul() function, 260
polynomials, 260-266

approximating functions with, 264-266

linear regression, 261-263
representing as vectors, 260
uses of, 261-266

polysub() function, 260

polyval() function, 261
pop(function, 71, 76, 78
popitem() method, 76
port numbers, 3-4
PostScript, 184
pow() function, 223
power functions, 223
pprint() function, 81
printf() function, 82, 82
print statement, 81-84
probability questions, solving using random
module, 229-231
prod() function, 243
programming languages
compiled, 2-3
interpreted, 2-3
projections, plotting, 18
properties, array, 241-246
ptp(function, 243
putdata() function, 302
putpixel() function, 226
.py extension, 3
PyGTK, 184
PyLab module, 14, 41, 184-185
PyReadline, 40
pySerial module, 34, 43
Python
about, 53-54
as interpreted programming language, 2-3
comments in, 5
data structures, 68-80
data types, 60-68
downloading, 38
entering commands, 55-56
functions, 92-96
help system, 56-57
image processing packages, 43
installation, 37-44
integrated development environments
(IDEs), 39-41
interactive mode, 54-58
invoking, 54-55
language features, 54
math capabilities, 221-248
modules and packages, 97-99
operating systems and, 32-37
packages (additional), 43
plotting packages, 42-43
running interactively, 2-3
running scripts in, 3, 58-59
scientific computing packages, 38, 41-42
stand-alone (natively) environment, 33

INDEX
statements, 81-92
variables, 80-81
versions, 37-38
Python 2.5, 38, 139-140
Python 2.6, 38
Python 3.0, 38
Python Imaging Library (PIL), 43, 226, 285,
290
Python scripts

vs. interactive sessions, 3

running, 3, 58-59
Python Software Foundation (PSF), 29
Python Standard Library, 8
Python Win32 Extensions, 44
Python(x,y), 38

Q

qr() function, 253
quad() function, 257-258
Quake III, 258
quiver() function, 211-213
quotechar parameter, 161
quotes
double, 65
single, 65
triple-double-quotes, 65-66

R

randint() function, 229
randn() function, 193, 271
random access, 319-321
random() function, 229, 231
random module, 228-233
functions, 229, 232
random sequences, 232
solving probability questions using,
229-231
random numbers, 228-233
random sequences, 232
randrange() function, 229, 307
range() function, 90, 92
ranges, 175
raw_input() function, 84-85
raw strings, 65-66
read() function, 121, 149-150
readline() function, 319
readlines() function, 149-150, 152
Readme files, 7, 123
read(n) function, 319
real attribute, 243
recording gps data, 5-6

359

360

INDEX

rectangle() function, 295
recursion, 308-310
regular expressions, 173-176
patterns, 173-174
ranges, 175
removing extra spaces with, 174
special sequences, 175
when to use, 175-176
remez() function, 279
remove() function, 71, 78, 335
rename() function, 335
renames() function, 335
replace() function, 143-145, 158
report() function, 340
research and development (R&D), 1, 29
reshape() function, 235, 243
reshaping, arrays, 235
resize() function, 235, 243, 292-293
resizing images, 292-293
re.split() function, 173
result variable, 56
return statement, 93
reverse() function, 71
reversed() function, 25, 90
rgrids() function, 208
rjust() function, 145
rmdir() function, 335
Rossum, Guido van, 54
rotate() function, 293-294
round() function, 243
rstrip() function, 144
running index, 107-108
run (IPython) command, 3

S

sample() function, 232

savefig() function, 187-189

save() function, 289

sawtooth() function, 274

scanning serial ports, 3—4

scientific computing packages, 41-42

SciPy module, 41-42, 250-251
importing modules, 251
scipy.interpolate module, 266-267
scipy.integrate module, 257
scipy.optimize module, 267
scipy.signal module, 279
scipy.special module, 268

SciTE (Scintilla Text Editor), 47

scope, 97

scripts, 4
Python, 3, 58-59
running, 3, 58-59
stand-alone, 328-329
storage location, 7
use of, 8
search() function, 173
searching, text files, 155-156
searchsorted() function, 242
seek() function, 319-323
select() function, 269
self argument, 97
semilogx() function, 207
semilogy() function, 207-208
sequences, random, 232
sequence unpacking, 17
Serial() function, 4
serial port parameters, 3
serial ports, 2
accessing, 3
closing, 4, 6
scanning, 3—4
set() function, 78
set operations, 78
setdefault() method, 76
setp() function, 183-217
sets, 78-80
setuptools package, 44
shallow copy, 81
shape attribute, 243
shift left (<<) operator, 63
shift right (>>) operator, 63
show() function, 20, 185-187, 189, 288
shuffle() function, 232
shutil module, 336-337
Siamese method, 244-246
signal processing, 249-250, 268-284
detection of signal in noise, 270-274
diff() function, 273-274
filtering, 279-284
filter design, 279-284
find() function, 269
Fourier transforms, 275-277
select() function, 269
split() function, 273-274
waveforms, 274-275
where() function, 251
window functions, 277-279
signal.triang() function, 270

simulations, random numbers and, 228-229

sin() function, 223, 264-266

single quotes, 65
sinh() function, 223
sleep() function, 167
slicing
arrays, 235
lists, 70
tuples, 73
software components, 31-52
image viewers, 49
licensing, 51-52
operating systems, 32-37
Python, 37-45
spreadsheets, 48
text editors, 45-48
version control systems, 49-51
word processors, 48-49
software licensing, 51-52
solve() function, 252
sort() function, 71, 242
sorted() function, 92
source listing (additional), 343-347
spaces, removing extra, 144-145, 174
specgram() function, 211-212
special characters, 173-174
special functions, 268
special sequences, 175
spherical coordinates, converting to Carte-
sian coordinates, 17-18
spline() function, 266-267
spline interpolation, 266-267
split() function, 336
cvs module vs., 116
image processing and, 300, 336
regular expressions and, 173
removing extra spaces, 144
signal detection and, 273-274
splitting text, 136-137
splitfile() function, 153-155
splitext() function, 336
split images, 300-301
split() function, 103
splitlines() function, 136, 144, 151
spreadsheets, 48
sqrt() function, 223, 258, 264
square() function, 274
stand-alone (natively) environment, 33
stand-alone scripts, creating, 328-329
star patch (example), 303-306
startswith() function, 146
state machines, 164

INDEX

statements, 81-92
break, 91-92
comments, 85
continue, 91-92
dir, 99
elif, 85-86
else, 85-86
exceptions, 86-89
flow control, 85-92
for, 89-90
if, 85-86
import, 98-99
pass, 86
print, 81-84
return, 93
try, 86-89
user input, 84-85
while, 91
yield, 94
statistics (GPS example)
calculating, 24
printing, 24-25
std() function, 243
stem plots, 209-210
storage location, of data, 7
str() function, 158
strftime() function, 165-168
string conditionals, 146
string operations, 66-67
strings, 56, 65-68, 136-149
comparing, 341-342
converting to numbers, 15, 137-143
counting number of words and lines in
(example), 137
expressing, 65-66
find and replace, 143-144
formatting, 145-146
joining, 137
raw, 65, 66
splitting, 136-137
stripping, 144-145
Unicode, 65, 178-181
writing to files, 148-149
string slicing, 15
strip() function, 144
strptime() function, 103, 165-166, 168
struct.calcsize() function, 120
structs, array of, 119-122
struct_time tuple, 165-166
struct.unpack() function, 121

361

362 INDEX

subdirectories, 126

sub() function, 173-174

subplot() function, 23, 196-197

subplot parameters, modifying, 215-217
subplots, 23, 196-197, 343-344
subtract() function, 313

Subversion, 50

Sudoku puzzles, 244

sum() function, 92, 243, 245-246

svd() function, 253

swapcase() function, 145
symmetric_difference() method, 78
symmetric_difference_update() method, 78
syntax highlighting, 46

sys.argy variable, 327

plain, 135

reading, 149-150

regular expressions, 173-176

searching inside, 155-156

splitting and combining, 153-155

working with, 150-159

writing to, 148-149

See also CSV files
text() function, 21, 199, 295-300
text rendering, 199
textsize() function, 296
thetagrids() function, 208
thumbnail) function, 293
thumbnail index image, 298-300
ticks, 195-196
time

T epoch representation, 168-173
tabs, 5 .extlTacting from file contents, 168
tail () function, 152-153, 322-323 in file name, 102-103
tail functionality, 322-323 hnea}rlzlng the time pase, 168-170
tail utility, 152-153 parsing and formatting, 165-168
time-based binary data, 323-325

tan() function, 223

tanh() function, 223

tanm() function, 254

tarfile module, 337

tar files, 338-339

target audience, 183

Taylor series expansion, 260

tell() function, 319-323

TeX syntax, 200

text, 23-25
adding to graphs, 197-200
find and replace, 143-144
removing extra spaces from, 144-145, 174
searching for, in multiple files, 333
splitting, 136-137
strings, 136-147

text annotations, 295-300

text editors, 45-48

text file formats, 104, 109-117

text files, 135-136
character, word, and line count, 151-152
closing, 148
comments, working with (example), 157
date and time, 163-173
extracting numbers from, 157-159
head and tail utilities, 152-153
internationalization and localization,

176-181

log files, 163-168
opening, 147-148

time domain, 275
time module, 5, 164-165
timestamps, 107, 163
timestamp string, 15
title() function, 145, 198
titles

adding to graph, 198

file name, 104
tofile() function, 244, 324
tolist() function, 244
trace() function, 243
transpose() function, 243, 253
trapz() function, 256
triang() function, 275
trigonometric function, 223
triple-double-quotes, 65-66
try statement, 86—-89
tuple() function, 72
tuples, 17, 68, 72-73
two-dimensional arrays, 235
two-dimensional data, 285
type() function, 92

u

Ubuntu Linux, 32

unichr() function, 179
Unicode strings, 65, 178-181
uniform() function, 229
union() function, 78

unittest module, 140, 245

UNIX-like operating systems, 32-33
unpacking, tuples, 73

update() method, 76, 78

upper() function, 145

USB GPS receivers, 2

UTF (Unicode Transformation Format), 178
user input, 84-85

'}

ValueError exceptions, 138
values() method, 74-76
var() function, 243
variables, 80-81
binding, 80
printing list of, 250
saving and retrieving, 326-327
scope, 97
serialization of, 325-327
vdot() function, 252
vector operations, 252-253
vectors, 235, 260
velocity plot, 22-23
version control systems (VCSs), 49-51
Vim, 47
virtual machines (VMs), 34-37

w

walk() function, 8-9
walking directories, 8-9
waveforms, 274-275
where() function, 251
while statement, 91
who() function, 250
window functions, 277-279
Windows, 33-36
Cygwin, 33-34
stand-alone (natively), 33
virtual machines (VMs), 34-35
word count (example), 151-152
word processors, 48
words, counting in strings, 137
words, used only once (example), 176
World factbook, CIA, 201
Write, 48
writelines() method, 148
write() method, 148-149, 179
wxPython, 184

INDEX

X

x-axis, 194

xlabel() function, 19, 198

xlim() function, 205

XML (Extensible Markup Language), 125
xrange() function, 90, 95-96

xticks() function, 195-196

X windows, 47

Y

Yahoo! financial data, reading and plotting,
113-114

y-axis, 194

yield statement, 94

ylabel() function, 19, 198, 216

yticks() function, 195-196

z

zeros() function, 234
zipfile module, 337

zip() function, 92, 226, 232
zlib module, 337

363

	1430218436
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

	CHAPTER 1: Navigating the World of Data Visualization
	Gathering Data
	Case Study: GPS Data
	Scanning Serial Ports
	Recording GPS Data

	Data Organization
	File Format
	File Naming Conventions
	Data Location

	Data Analysis
	Walking Directories
	Reading CSV Files
	Analyzing GPS Data
	Extracting GPS Data

	Data Visualization
	GPS Location Plot
	Annotating the Graph
	Velocity Plot
	Subplots
	Text

	Tying It All Together
	Final Notes and References

	CHAPTER 2: The Environment
	Operating Systems
	GNU/Linux
	Windows
	Choosing an Operating System
	Then Again, Why Choose? Using Several Operating Systems

	The Python Environment
	Versions
	Python
	Python Integrated Development Environments
	Scientific Computing
	Plotting
	Image Processing
	Additional Python Packages
	Installation Summary

	Additional Applications
	Editors
	A Short List of Text Editors
	Spreadsheets
	Word Processors
	Image Viewers
	Version Control Systems

	Licensing
	Final Notes and References

	CHAPTER 3: Python for Programmers
	What Is Python?
	Interactive Python
	Invoking Python
	Entering Commands
	The Interactive Help System
	Moving Around

	Running Scripts
	Data Types
	Numbers
	Strings
	Booleans

	Data Structures
	Lists
	Tuples
	Dictionaries
	Sets

	Variables
	Statements
	Printing
	User Input
	Comments
	Flow Control

	Some Built-in Functions
	Defining Functions
	Generators
	Generator Expressions

	Object-Oriented Programming
	Modules and Packages
	The import Statement
	Modules Installed in a System
	The dir Statement

	Final Notes and References

	CHAPTER 4: Data Organization

	File Name Conventions
	Date and Time in a File Name
	Useful File Name Titles
	File Name Extensions
	In Conclusion
	Other Schemes

	File Formats
	CSV File Format
	Binary Files
	Readme Files
	INI Files
	XML
	Other File Formats

	Locating Data Files
	Organization into Directories
	Searching for Files
	Indexing
	Catalogs
	Files vs. a Database

	Final Notes and References

	CHAPTER 5: Processing Text Files
	Text and Strings
	Splitting Text
	Joining Strings
	Converting Strings to Numbers
	Find and Replace
	Stripping Strings
	String Formatting
	String Conditionals
	More on Strings

	Files
	Opening a File
	Closing a File
	Writing Text
	Reading Text

	Working with Text Files
	Example: Character, Word, and Line Count
	Example: head and tail
	Example: Splitting and Combining Files
	Example: Searching Inside a Text File
	Example: Working with Comments
	Example: Extracting Numbers from a Text File

	CSV Files
	The csv Module
	The csv.reader Object
	The csv.writer Object
	More csv Functionality
	DictReader and DictWriter Objects

	Date and Time
	Time Module
	The struct_time Tuple
	Parsing and Formatting Date and Time
	The Epoch: "Linearizing" the Time Base
	Additional Time and Date Functions

	Regular Expressions
	Regular Expression Patterns
	Special Sequences
	Alternatives
	Ranges
	When to Use Regular Expressions

	Internationalization and Localization
	Locale
	Unicode Strings

	Final Notes and References

	CHAPTER 6: Graphs and Plots
	The Matplotlib Package
	Interactive Graphs vs. Image Files
	Interactive Graphs
	Saving Graphs to Files

	Plotting Graphs
	Lines and Markers
	Plotting Several Graphs on One Figure
	Line Widths and Marker Sizes
	Colors

	Controlling the Graph
	Axis
	Grid and Ticks
	Subplots
	Erasing the Graph

	Adding Text
	Title
	Axis Labels and Legend
	Text Rendering
	Mathematical Symbols and Expressions

	More Graph Types
	Bar Charts

	Histograms
	Pie Charts
	Logarithmic Plots
	Polar Plots
	Stem Plots
	Additional Graphs

	Getting and Setting Values
	Setting Figure and Axis Parameters

	Patches
	Example: Adding Arrows to a Graph
	Example: Some Other Patches

	Final Notes and References

	CHAPTER 7: Math Games
	Modules math and cmath
	Example: A Newton Fractal

	Module random
	Using random to Solve Probability Questions
	Random Sequences

	Module NumPy
	Array Creation
	Slicing, Indexing, and Reshaping
	N-Dimensional Arrays
	Math Functions
	Array Methods and Properties
	Other Useful Array Functions

	Final Notes and References

	CHAPTER 8: Science and Visualization

	Finding Your Way: Variables and Functions
	SciPy

	Linear Algebra
	Solving a System of Linear Equations
	Vector and Matrix Operations
	Matrix Decomposition
	Additional Linear Algebra Functionality

	Numerical Integration
	More Integration Methods

	Interpolation and Curve Fitting
	Piecewise Linear Interpolation
	Polynomials
	Uses of Polynomials
	Spline Interpolation

	Solving Nonlinear Equations
	Special Functions
	Signal Processing
	Functions where, select, and find
	Functions diff and split
	Waveforms

	Fourier Transform
	Example: FFT of a Sampled Cosine Wave
	Window Functions

	Filtering
	Filter Design
	Example: Heart-Rate Monitor
	Example: Moving Average

	Final Notes and References

	CHAPTER 9: Image Processing
	Reading, Writing, and Displaying Images
	Reading Images from File
	Image Attributes
	Displaying Images
	Converting File Formats

	Image Manipulation
	Creating New Images
	Copy and Paste
	Crop and Resize
	Rotate

	Image Annotation
	Annotating with Geometrical Shapes
	Text Annotations

	Image Processing
	Matrix Representation and Colors
	Example: Counting Objects (Five Parts)
	Image Arithmetic

	Image Filtering
	Final Notes and References

	CHAPTER 10: Advanced File Processing
	Binary Files and Random Access
	Example: Reading the Nth Field
	Example: Efficient Tail Implementation
	Example: Creating a Fixed-Size File
	Example: Recording Time-Based Binary Data

	Object Serialization
	The Pickle Module

	Command-Line Parameters
	argv
	Example: Creating a Fixed-Size File (Stand-Alone Script)
	OptParse Module
	The FileInput Module

	File and Directory Manipulation
	Module glob
	Additional os Module Functionality
	Additional os.path Module Functionality
	Module shutil

	File Compression
	Example: A Compressed tar File

	Comparing Files
	Module filecmp
	Module difflib

	Final Notes and References

	APPENDIX Additional Source Listing
	Nudge Subplots
	Magic Square Arrows
	Fractal Function Source Code

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

