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Preface

Recent years have seen the rise of machine learning, the study of software that
learns from experience. While machine learning is a new discipline, it has found
many applications. We rely on some of these applications daily; in some cases,
their successes have already rendered them mundane. Many other applications
have only recently been conceived, and hint at machine learning's potential.

In this book, we will examine several machine learning models and learning
algorithms. We will discuss tasks that machine learning is commonly applied to,
and learn to measure the performance of machine learning systems. We will work
with a popular library for the Python programming language called scikit-learn,
which has assembled excellent implementations of many machine learning models
and algorithms under a simple yet versatile APL

This book is motivated by two goals:

* Its content should be accessible. The book only assumes familiarity with
basic programming and math.

* Its content should be practical. This book offers hands-on examples that
readers can adapt to problems in the real world.



Preface

What this book covers

Chapter 1, The Fundamentals of Machine Learning, defines machine learning as the
study and design of programs that improve their performance of a task by learning
from experience. This definition guides the other chapters; in each chapter, we will
examine a machine learning model, apply it to a task, and measure its performance.

Chapter 2, Linear Regression, discusses linear regression, a model that relates
explanatory variables and model parameters to a continuous response variable.
You will learn about cost functions, and use the normal equation to find the
parameter values that produce the optimal model.

Chapter 3, Feature Extraction and Preprocessing, describes methods to represent
text, images, and categorical variables as features that can be used in machine
learning models.

Chapter 4, From Linear Regression to Logistic Regression, discusses generalizing
linear regression to support classification tasks. We combine a model called

logistic regression with some of the feature engineering techniques from the
previous chapter to create a spam filter.

Chapter 5, Nonlinear Classification and Regression with Decision Trees, departs from linear
models to discuss classification and regression with models called decision trees. We
use an ensemble of decision trees to construct a banner advertisement blocker.

Chapter 6, Clustering with K-Means, introduces unsupervised learning. We examine the
k-means algorithm, and combine it with logistic regression to create a semi-supervised
photo classifier.

Chapter 7, Dimensionality Reduction with PCA, discusses another unsupervised
learning task called dimensionality reduction. We use principal component analysis
to visualize high-dimensional data and build a face recognizer.

Chapter 8, The Perceptron, describes an online, binary classifier called the perceptron.
The limitations of the perceptron motivate the models described in the final chapters.

Chapter 9, From the Perceptron to Support Vector Machines, discusses efficient nonlinear
classification and regression with support vector machines. We use support vector
machines to recognize the characters in photographs of street signs.

Chapter 10, From the Perceptron to Artificial Neural Networks, introduces powerful
nonlinear models for classification and regression called artificial neural networks.
We build a network that can recognize handwritten digits.

[2]



Preface

What you need for this book

The examples in this book assume that you have an installation of Python 2.7. The
first chapter will describe methods to install scikit-learn 0.15.2, its dependencies,
and other libraries on Linux, OS X, and Windows.

Who this book is for

This book is intended for software developers who have some experience with
machine learning. scikit-learn's API is well-documented, but assumes that the reader
understands how machine learning algorithms work and when it is appropriate

to use them. This book does not attempt to reproduce the API's documentation.
Instead, it describes how machine learning models work, how their parameters are
learned, and how they can be evaluated. When practical, we will work through toy
examples of the algorithms in detail to build the understanding required to apply
them effectively.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

In-line code is formatted as follows: "The TfidfVectorizer combines the
CountVectorizer and the TfidfTransformer."

A block of code is indicated as follows:

>>> import pandas as pd

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> from sklearn.linear model.logistic import LogisticRegression
>>> from sklearn.cross validation import train test split

>>> df = pd.read csv('sms/sms.csv')

>>> X_train _raw, X test_raw, y_train, y test = train_test_
split (df ['message'], df['label'])

>>> vectorizer = TfidfVectorizer()

>>> X train = vectorizer.fit transform(X train raw)

>>> X test = vectorizer.transform(X test raw)

>>> classifier = LogisticRegression()

>>> classifier.fit (X_train, y train)

[31]
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Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata has been verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list of
existing errata, under the errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.
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Piracy

Piracy of copyright material on the internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you experience any problems
with any aspect of this book, and we will do our best to address it.

[51]






The Fundamentals of
Machine Learning

In this chapter we will review the fundamental concepts in machine learning. We will
discuss applications of machine learning algorithms, the supervised-unsupervised
learning spectrum, uses of training and testing data, and model evaluation. Finally, we
will introduce scikit-learn, and install the tools required in subsequent chapters.

Our imagination has long been captivated by visions of machines that can learn and
imitate human intelligence. While visions of general artificial intelligence such as
Arthur C. Clarke's HAL and Isaac Asimov's Sonny have yet to be realized, software
programs that can acquire new knowledge and skills through experience are becoming
increasingly common. We use such machine learning programs to discover new music
that we enjoy, and to quickly find the exact shoes we want to purchase online. Machine
learning programs allow us to dictate commands to our smartphones and allow our
thermostats to set their own temperatures. Machine learning programs can decipher
sloppily-written mailing addresses better than humans, and guard credit cards from
fraud more vigilantly. From investigating new medicines to estimating the page views
for versions of a headline, machine learning software is becoming central to many
industries. Machine learning has even encroached on activities that have long been
considered uniquely human, such as writing the sports column recapping the Duke
basketball team's loss to UNC.

[vww allitebooks.cond
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The Fundamentals of Machine Learning

Machine learning is the design and study of software artifacts that use past experience
to make future decisions; it is the study of programs that learn from data. The
fundamental goal of machine learning is to generalize, or to induce an unknown rule
from examples of the rule's application. The canonical example of machine learning is
spam filtering. By observing thousands of emails that have been previously labeled as
either spam or ham, spam filters learn to classify new messages.

Arthur Samuel, a computer scientist who pioneered the study of artificial intelligence,
said that machine learning is "the study that gives computers the ability to learn
without being explicitly programmed." Throughout the 1950s and 1960s, Samuel
developed programs that played checkers. While the rules of checkers are simple,
complex strategies are required to defeat skilled opponents. Samuel never explicitly
programmed these strategies, but through the experience of playing thousands of
games, the program learned complex behaviors that allowed it to beat many

human opponents.

A popular quote from computer scientist Tom Mitchell defines machine learning more
formally: "A program can be said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E." For example, assume that you have a collection of
pictures. Each picture depicts either a dog or cat. A task could be sorting the pictures
into separate collections of dog and cat photos. A program could learn to perform

this task by observing pictures that have already been sorted, and it could evaluate its
performance by calculating the percentage of correctly classified pictures.

We will use Mitchell's definition of machine learning to organize this chapter.
First, we will discuss types of experience, including supervised learning and
unsupervised learning. Next, we will discuss common tasks that can be performed
by machine learning systems. Finally, we will discuss performance measures that
can be used to assess machine learning systems.

Learning from experience

Machine learning systems are often described as learning from experience either with
or without supervision from humans. In supervised learning problems, a program
predicts an output for an input by learning from pairs of labeled inputs and outputs;
that is, the program learns from examples of the right answers. In unsupervised
learning, a program does not learn from labeled data. Instead, it attempts to discover
patterns in the data. For example, assume that you have collected data describing

the heights and weights of people. An example of an unsupervised learning problem
is dividing the data points into groups. A program might produce groups that
correspond to men and women, or children and adults.

[8]




Chapter 1

Now assume that the data is also labeled with the person's sex. An example of a
supervised learning problem is inducing a rule to predict whether a person is male
or female based on his or her height and weight. We will discuss algorithms and
examples of supervised and unsupervised learning in the following chapters.

Supervised learning and unsupervised learning can be thought of as occupying
opposite ends of a spectrum. Some types of problems, called semi-supervised
learning problems, make use of both supervised and unsupervised data; these
problems are located on the spectrum between supervised and unsupervised
learning. An example of semi-supervised machine learning is reinforcement learning,
in which a program receives feedback for its decisions, but the feedback may not be
associated with a single decision. For example, a reinforcement learning program
that learns to play a side-scrolling video game such as Super Mario Bros. may receive
a reward when it completes a level or exceeds a certain score, and a punishment
when it loses a life. However, this supervised feedback is not associated with specific
decisions to run, avoid Goombeas, or pick up fire flowers. While this book will discuss
semi-supervised learning, we will focus primarily on supervised and unsupervised
learning, as these categories include most the common machine learning problems.
In the next sections, we will review supervised and unsupervised learning in

more detail.

A supervised learning program learns from labeled examples of the outputs that
should be produced for an input. There are many names for the output of a

machine learning program. Several disciplines converge in machine learning, and
many of those disciplines use their own terminology. In this book, we will refer to
the output as the response variable. Other names for response variables include
dependent variables, regressands, criterion variables, measured variables, responding
variables, explained variables, outcome variables, experimental variables, labels,
and output variables. Similarly, the input variables have several names. In this book,
we will refer to the input variables as features, and the phenomena they measure

as explanatory variables. Other names for explanatory variables include predictors,
regressors, controlled variables, manipulated variables, and exposure variables.
Response variables and explanatory variables may take real or discrete values.

The collection of examples that comprise supervised experience is called a training
set. A collection of examples that is used to assess the performance of a program

is called a test set. The response variable can be thought of as the answer to the
question posed by the explanatory variables. Supervised learning problems learn
from a collection of answers to different questions; that is, supervised learning
programs are provided with the correct answers and must learn to respond
correctly to unseen, but similar, questions.

[o]




The Fundamentals of Machine Learning

Machine learning tasks

Two of the most common supervised machine learning tasks are classification

and regression. In classification tasks the program must learn to predict discrete
values for the response variables from one or more explanatory variables. That

is, the program must predict the most probable category, class, or label for new
observations. Applications of classification include predicting whether a stock's

price will rise or fall, or deciding if a news article belongs to the politics or leisure
section. In regression problems the program must predict the value of a continuous
response variable. Examples of regression problems include predicting the sales for a
new product, or the salary for a job based on its description. Similar to classification,
regression problems require supervised learning.

A common unsupervised learning task is to discover groups of related observations,
called clusters, within the training data. This task, called clustering or cluster analysis,
assigns observations to groups such that observations within groups are more similar
to each other based on some similarity measure than they are to observations in other
groups. Clustering is often used to explore a dataset. For example, given a collection
of movie reviews, a clustering algorithm might discover sets of positive and negative
reviews. The system will not be able to label the clusters as "positive" or "negative";
without supervision, it will only have knowledge that the grouped observations

are similar to each other by some measure. A common application of clustering is
discovering segments of customers within a market for a product. By understanding
what attributes are common to particular groups of customers, marketers can decide
what aspects of their campaigns need to be emphasized. Clustering is also used by
Internet radio services; for example, given a collection of songs, a clustering algorithm
might be able to group the songs according to their genres. Using different similarity
measures, the same clustering algorithm might group the songs by their keys, or by the
instruments they contain.

Dimensionality reduction is another common unsupervised learning task. Some
problems may contain thousands or even millions of explanatory variables, which
can be computationally costly to work with. Additionally, the program's ability to
generalize may be reduced if some of the explanatory variables capture noise or are
irrelevant to the underlying relationship. Dimensionality reduction is the process
of discovering the explanatory variables that account for the greatest changes in the
response variable. Dimensionality reduction can also be used to visualize data. It is
easy to visualize a regression problem such as predicting the price of a home from
its size; the size of the home can be plotted on the graph's x axis, and the price of the
home can be plotted on the y axis. Similarly, it is easy to visualize the housing price
regression problem when a second explanatory variable is added. The number of
bathrooms in the house could be plotted on the z axis, for instance. A problem with
thousands of explanatory variables, however, becomes impossible to visualize.

[10]



Chapter 1

Training data and test data

The observations in the training set comprise the experience that the algorithm uses
to learn. In supervised learning problems, each observation consists of an observed
response variable and one or more observed explanatory variables.

The test set is a similar collection of observations that is used to evaluate the
performance of the model using some performance metric. It is important that no
observations from the training set are included in the test set. If the test set does contain
examples from the training set, it will be difficult to assess whether the algorithm has
learned to generalize from the training set or has simply memorized it. A program that
generalizes well will be able to effectively perform a task with new data. In contrast, a
program that memorizes the training data by learning an overly complex model could
predict the values of the response variable for the training set accurately, but will fail

to predict the value of the response variable for new examples.

Memorizing the training set is called over-fitting. A program that memorizes its
observations may not perform its task well, as it could memorize relations and
structures that are noise or coincidence. Balancing memorization and generalization,
or over-fitting and under-fitting, is a problem common to many machine learning
algorithms. In later chapters we will discuss regularization, which can be applied to
many models to reduce over-fitting.

In addition to the training and test data, a third set of observations, called a validation
or hold-out set, is sometimes required. The validation set is used to tune variables
called hyperparameters, which control how the model is learned. The program is still
evaluated on the test set to provide an estimate of its performance in the real world;
its performance on the validation set should not be used as an estimate of the model's
real-world performance since the program has been tuned specifically to the validation
data. It is common to partition a single set of supervised observations into training,
validation, and test sets. There are no requirements for the sizes of the partitions, and
they may vary according to the amount of data available. It is common to allocate

50 percent or more of the data to the training set, 25 percent to the test set, and the
remainder to the validation set.

[11]



The Fundamentals of Machine Learning

Some training sets may contain only a few hundred observations; others may
include millions. Inexpensive storage, increased network connectivity, the ubiquity
of sensor-packed smartphones, and shifting attitudes towards privacy have
contributed to the contemporary state of big data, or training sets with millions

or billions of examples. While this book will not work with datasets that require
parallel processing on tens or hundreds of machines, the predictive power of many
machine learning algorithms improves as the amount of training data increases.
However, machine learning algorithms also follow the maxim "garbage in, garbage
out." A student who studies for a test by reading a large, confusing textbook that
contains many errors will likely not score better than a student who reads a short but
well-written textbook. Similarly, an algorithm trained on a large collection of noisy,
irrelevant, or incorrectly labeled data will not perform better than an algorithm
trained on a smaller set of data that is more representative of problems in the

real world.

Many supervised training sets are prepared manually, or by semi-automated
processes. Creating a large collection of supervised data can be costly in some
domains. Fortunately, several datasets are bundled with scikit-learn, allowing
developers to focus on experimenting with models instead. During development,
and particularly when training data is scarce, a practice called cross-validation can
be used to train and validate an algorithm on the same data. In cross-validation,
the training data is partitioned. The algorithm is trained using all but one of the
partitions, and tested on the remaining partition. The partitions are then rotated
several times so that the algorithm is trained and evaluated on all of the data. The
following diagram depicts cross-validation with five partitions or folds:

Cross Validation Iteration 1 Test Train Train Train Train

Cross Validation Iteration 2 Train Test Train Train Train

Cross Validation Iteration 3 Train Train Test Train Train

Cross Validation lteration 4 | Train Train Train Test Train

Cross Validation Iteration 5 Train Train Train Train Test

[12]




Chapter 1

The original dataset is partitioned into five subsets of equal size, labeled A through E.
Initially, the model is trained on partitions B through E, and tested on partition A.

In the next iteration, the model is trained on partitions A, C, D, and E, and tested on
partition B. The partitions are rotated until models have been trained and tested on
all of the partitions. Cross-validation provides a more accurate estimate of the model's
performance than testing a single partition of the data.

Performance measures, bias, and
variance

Many metrics can be used to measure whether or not a program is learning to perform
its task more effectively. For supervised learning problems, many performance
metrics measure the number of prediction errors. There are two fundamental causes
of prediction error: a model's bias and its variance. Assume that you have many
training sets that are all unique, but equally representative of the population. A model
with a high bias will produce similar errors for an input regardless of the training set
it was trained with; the model biases its own assumptions about the real relationship
over the relationship demonstrated in the training data. A model with high variance,
conversely, will produce different errors for an input depending on the training set
that it was trained with. A model with high bias is inflexible, but a model with high
variance may be so flexible that it models the noise in the training set. That is, a model
with high variance over-fits the training data, while a model with high bias under-fits
the training data. It can be helpful to visualize bias and variance as darts thrown at a
dartboard. Each dart is analogous to a prediction from a different dataset. A model
with high bias but low variance will throw darts that are far from the bull's eye, but
tightly clustered. A model with high bias and high variance will throw darts all over
the board; the darts are far from the bull's eye and each other.

[13]




The Fundamentals of Machine Learning

A model with low bias and high variance will throw darts that are closer to the
bull's eye, but poorly clustered. Finally, a model with low bias and low variance
will throw darts that are tightly clustered around the bull's eye, as shown in the

following diagram:

High bias, low variance Low bias, high variance

High bias, high variance  Low bias, low variance

Ideally, a model will have both low bias and variance, but efforts to decrease one will
frequently increase the other. This is known as the bias-variance trade-off. We will
discuss the biases and variances of many of the models introduced in this book.

Unsupervised learning problems do not have an error signal to measure; instead,
performance metrics for unsupervised learning problems measure some attributes
of the structure discovered in the data.

Most performance measures can only be calculated for a specific type of task.
Machine learning systems should be evaluated using performance measures that
represent the costs associated with making errors in the real world. While this may
seem obvious, the following example describes the use of a performance measure
that is appropriate for the task in general but not for its specific application.

Consider a classification task in which a machine learning system observes tumors
and must predict whether these tumors are malignant or benign. Accuracy, or the
fraction of instances that were classified correctly, is an intuitive measure of the
program's performance. While accuracy does measure the program's performance, it
does not differentiate between malignant tumors that were classified as being benign,
and benign tumors that were classified as being malignant. In some applications, the
costs associated with all types of errors may be the same. In this problem, however,
failing to identify malignant tumors is likely to be a more severe error than mistakenly
classifying benign tumors as being malignant.

[14]
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We can measure each of the possible prediction outcomes to create different views
of the classifier's performance. When the system correctly classifies a tumor as being
malignant, the prediction is called a true positive. When the system incorrectly
classifies a benign tumor as being malignant, the prediction is a false positive.
Similarly, a false negative is an incorrect prediction that the tumor is benign, and

a true negative is a correct prediction that a tumor is benign. These four outcomes
can be used to calculate several common measures of classification performance,
including accuracy, precision, and recall.

Accuracy is calculated with the following formula, where TP is the number of true
positives, TN is the number of true negatives, FP is the number of false positives,
and FN is the number of false negatives:

TP+TN

ACC =
TP+TN + FP+FN

Precision is the fraction of the tumors that were predicted to be malignant that are
actually malignant. Precision is calculated with the following formula:

p__ TP
TP+ FP

Recall is the fraction of malignant tumors that the system identified. Recall is
calculated with the following formula:

R=_1P
TP+FN

In this example, precision measures the fraction of tumors that were predicted
to be malignant that are actually malignant. Recall measures the fraction of truly
malignant tumors that were detected.

The precision and recall measures could reveal that a classifier with impressive
accuracy actually fails to detect most of the malignant tumors. If most tumors are
benign, even a classifier that never predicts malignancy could have high accuracy.
A different classifier with lower accuracy and higher recall might be better suited
to the task, since it will detect more of the malignant tumors.

Many other performance measures for classification can be used; we will discuss
some, including metrics for multilabel classification problems, in later chapters.
In the next chapter, we will discuss some common performance measures for
regression tasks.

[15]
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An introduction to scikit-learn

Since its release in 2007, scikit-learn has become one of the most popular open

source machine learning libraries for Python. scikit-learn provides algorithms for
machine learning tasks including classification, regression, dimensionality reduction,
and clustering. It also provides modules for extracting features, processing data,

and evaluating models.

Conceived as an extension to the SciPy library, scikit-learn is built on the popular
Python libraries NumPy and matplotlib. NumPy extends Python to support efficient
operations on large arrays and multidimensional matrices. matplotlib provides
visualization tools, and SciPy provides modules for scientific computing.

scikit-learn is popular for academic research because it has a well-documented,
easy-to-use, and versatile API. Developers can use scikit-learn to experiment with
different algorithms by changing only a few lines of the code. scikit-learn wraps
some popular implementations of machine learning algorithms, such as LIBSVM
and LIBLINEAR. Other Python libraries, including NLTK, include wrappers for
scikit-learn. scikit-learn also includes a variety of datasets, allowing developers to
focus on algorithms rather than obtaining and cleaning data.

Licensed under the permissive BSD license, scikit-learn can be used in commercial
applications without restrictions. Many of scikit-learn's algorithms are fast and
scalable to all but massive datasets. Finally, scikit-learn is noted for its reliability;
much of the library is covered by automated tests.

Installing scikit-learn

This book is written for version 0.15.1 of scikit-learn; use this version to ensure that
the examples run correctly. If you have previously installed scikit-learn, you can
retrieve the version number with the following code:

>>> import sklearn
>>> sklearn._ version
'0.15.1"

If you have not previously installed scikit-learn, you can install it from a package
manager or build it from the source. We will review the installation processes for
Linux, OS X, and Windows in the following sections, but refer to http://scikit-
learn.org/stable/install.html for the latest instructions. The following
instructions only assume that you have installed Python 2.6, Python 2.7, or Python
3.2 or newer. Go to http://www.python.org/download/ for instructions on how
to install Python.

[16]
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Installing scikit-learn on Windows

scikit-learn requires Setuptools, a third-party package that supports packaging
and installing software for Python. Setuptools can be installed on Windows by
running the bootstrap script at https://bitbucket.org/pypa/setuptools/raw/
bootstrap/ez_setup . pyY.

Windows binaries for the 32- and 64-bit versions of scikit-learn are also available.
If you cannot determine which version you need, install the 32-bit version. Both
versions depend on NumPy 1.3 or newer. The 32-bit version of NumPy can be
downloaded from http://sourceforge.net/projects/numpy/files/NumPy/.
The 64-bit version can be downloaded from http://www.1£fd.uci.edu/~gohlke/
pythonlibs/#scikit-learn.

A Windows installer for the 32-bit version of scikit-learn can be downloaded from
http://sourceforge.net/projects/scikit-learn/files/. An installer for
the 64-bit version of scikit-learn can be downloaded from http://www.1fd.uci.
edu/~gohlke/pythonlibs/#scikit-learn.

scikit-learn can also be built from the source code on Windows. Building requires
a C/C++ compiler such as MinGW (http://www.mingw.org/), NumPy, SciPy,
and Setuptools.

To build, clone the Git repository from https://github.com/scikit-learn/
scikit-learn and execute the following command:

python setup.py install

Installing scikit-learn on Linux

There are several options to install scikit-learn on Linux, depending on your
distribution. The preferred option to install scikit-learn on Linux is to use pip.
You may also install it using a package manager, or build scikit-learn from

its source.

To install scikit-learn using pip, execute the following command:
sudo pip install scikit-learn

To build scikit-learn, clone the Git repository from https://github.com/scikit-
learn/scikit-1learn. Then install the following dependencies:

sudo apt-get install python-dev python-numpy python-numpy-dev python-
setuptools python-numpy-dev python-scipy libatlas-dev g++

Navigate to the repository's directory and execute the following command:

python setup.py install

[17]
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Installing scikit-learn on OS X

scikit-learn can be installed on OS X using Macports:

sudo port install py26-sklearn

If Python 2.7 is installed, run the following command:

sudo port install py27-sklearn

scikit-learn can also be installed using pip with the following command:

pip install scikit-learn

Verifying the installation

To verify that scikit-learn has been installed correctly, open a Python console and
execute the following:

>>> import sklearn
>>> sklearn._version
'0.15.1"

To run scikit-learn's unit tests, first install the nose library. Then execute
the following:

nosetest sklearn -exe

Congratulations! You've successfully installed scikit-learn.

Installing pandas and matplotlib

pandas is an open source library that provides data structures and analysis tools for
Python. pandas is a powerful library, and several books describe how to use pandas
for data analysis. We will use a few of panda's convenient tools for importing data
and calculating summary statistics.

pandas can be installed on Windows, OS X, and Linux using pip with the
following command:

pip install pandas

pandas can also be installed on Debian- and Ubuntu-based Linux distributions using
the following command:

apt-get install python-pandas

[18]
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matplotlib is a library used to easily create plots, histograms, and other charts with
Python. We will use it to visualize training data and models. matplotlib has several
dependencies. Like pandas, matplotlib depends on NumPy, which should already

be installed. On Debian- and Ubuntu-based Linux distributions, matplotlib and its

dependencies can be installed using the following command:

apt-get install python-matplotlib

Binaries for OS X and Windows can be downloaded from http://matplotlib.org/
downloads.html.

Summary

In this chapter we defined machine-learning as the design and study of programs
that can improve their performance of a task by learning from experience. We
discussed the spectrum of supervision in experience. At one end of the spectrum is
supervised learning, in which a program learns from inputs that are labeled with
their corresponding outputs. At the opposite end of the spectrum is unsupervised
learning, in which the program must discover hidden structure in unlabeled data.
Semi-supervised approaches make use of both labeled and unlabeled training data.

We discussed common types of machine learning tasks and reviewed example
applications. In classification tasks the program must predict the value of a discrete
response variable from the explanatory variables. In regression tasks the program must
predict the value of a continuous response variable from the explanatory variables. In
regression tasks, the program must predict the value of a continuous response variable
from the explanatory variables. Unsupervised learning tasks include clustering, in
which observations are organized into groups according to some similarity measure
and dimensionality reduction, which reduces a set of explanatory variables to a smaller
set of synthetic features that retain as much information as possible. We also reviewed
the bias-variance trade-off and discussed common performance measures for different
machine learning tasks.

We also discussed the history, goals, and advantages of scikit-learn. Finally, we
prepared our development environment by installing scikit-learn and other libraries
that are commonly used in conjunction with it. In the next chapter, we will discuss
the regression task in more detail, and build our first machine learning model

with scikit-learn.

[19]
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In this chapter you will learn how to use linear models in regression problems. First,
we will examine simple linear regression, which models the relationship between

a response variable and single explanatory variable. Next, we will discuss multiple
linear regression, a generalization of simple linear regression that can support more
than one explanatory variable. Then, we will discuss polynomial regression, a special
case of multiple linear regression that can effectively model nonlinear relationships.
Finally, we will discuss how to train our models by finding the values of their
parameters that minimize a cost function. We will work through a toy problem

to learn how the models and learning algorithms work before discussing an
application with a larger dataset.

Simple linear regression

In the previous chapter you learned that training data is used to estimate the
parameters of a model in supervised learning problems. Past observations of
explanatory variables and their corresponding response variables comprise the
training data. The model can be used to predict the value of the response variable
for values of the explanatory variable that have not been previously observed.

Recall that the goal in regression problems is to predict the value of a continuous
response variable. In this chapter, we will examine several example linear regression
models. We will discuss the training data, model, learning algorithm, and evaluation
metrics for each approach. To start, let's consider simple linear regression. Simple
linear regression can be used to model a linear relationship between one response
variable and one explanatory variable. Linear regression has been applied to many
important scientific and social problems; the example that we will consider is
probably not one of them.
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Suppose you wish to know the price of a pizza. You might simply look at a menu.
This, however, is a machine learning book, so we will use simple linear regression
instead to predict the price of a pizza based on an attribute of the pizza that we can
observe. Let's model the relationship between the size of a pizza and its price. First,
we will write a program with scikit-learn that can predict the price of a pizza given
its size. Then, we will discuss how simple linear regression works and how it can
be generalized to work with other types of problems. Let's assume that you have
recorded the diameters and prices of pizzas that you have previously eaten in your
pizza journal. These observations comprise our training data:

Training instance | Diameter (in inches) Price (in dollars)
1 6 7

2 8 9

3 10 13

4 14 17.5

5 18 18

We can visualize our training data by plotting it on a graph using matplotlib:

>>> import matplotlib.pyplot as plt
>>> X = [[6], [8], [10], [14], [18]]
(cz1, rol1, 131, [17.5], [18]]
>>> plt.figure()

>>> Yy

>>> plt.title('Pizza price plotted against diameter')
>>> plt.xlabel ('Diameter in inches')

>>> plt.ylabel ('Price in dollars')

>>> plt.plot(X, vy, 'k.'")

>>> plt.axis ([0, 25, 0, 25])

>>> plt.grid(True)

>>> plt.show()

The preceding script produces the following graph. The diameters of the pizzas are
plotted on the x axis and the prices are plotted on the y axis.
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We can see from the graph of the training data that there is a positive relationship
between the diameter of a pizza and its price, which should be corroborated by our
own pizza-eating experience. As the diameter of a pizza increases, its price generally
increases too. The following pizza-price predictor program models this relationship
using linear regression. Let's review the following program and discuss how linear
regression works:

>>> from sklearn.linear model import LinearRegression
>>> # Training data

>>> X = [[6], [8], [10], [14], [181]
>>> vy = [[7], [9]1, [13]1, [17.5]1, [18]]
>>> # Create and fit the model
>>> model = LinearRegression()

>>> model.fit (X, y)
>>> print 'A 12" pizza should cost: $%.2f' % model.predict ([12]) [0]
A 12" pizza should cost: $13.68

Simple linear regression assumes that a linear relationship exists between the
response variable and explanatory variable; it models this relationship with a linear
surface called a hyperplane. A hyperplane is a subspace that has one dimension
less than the ambient space that contains it. In simple linear regression, there is one
dimension for the response variable and another dimension for the explanatory
variable, making a total of two dimensions. The regression hyperplane therefore,
has one dimension; a hyperplane with one dimension is a line.

[23]
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The sklearn.linear model.LinearRegression class is an estimator. Estimators
predict a value based on the observed data. In scikit-learn, all estimators implement
the fit () and predict () methods. The former method is used to learn the parameters
of a model, and the latter method is used to predict the value of a response variable

for an explanatory variable using the learned parameters. It is easy to experiment

with different models using scikit-learn because all estimators implement the £it and
predict methods.

The £it method of LinearRegression learns the parameters of the following model
for simple linear regression:

y=a+fx

y is the predicted value of the response variable; in this example, it is the predicted
price of the pizza. X is the explanatory variable. The intercept term & and coefficient
[ are parameters of the model that are learned by the learning algorithm. The line
plotted in the following figure models the relationship between the size of a pizza
and its price. Using this model, we would expect the price of an 8-inch pizza to be
about $7.33, and the price of a 20-inch pizza to be $18.75.

Pizza price regressed on diameter
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Using training data to learn the values of the parameters for simple linear regression
that produce the best fitting model is called ordinary least squares or linear least
squares. "In this chapter we will discuss methods for approximating the values of the
model's parameters and for solving them analytically. First, however, we must define
what it means for a model to fit the training data.

Evaluating the fithess of a model with a cost
function

Regression lines produced by several sets of parameter values are plotted in the
following figure. How can we assess which parameters produced the best-fitting
regression line?
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A cost function, also called a loss function, is used to define and measure the
error of a model. The differences between the prices predicted by the model and
the observed prices of the pizzas in the training set are called residuals or training
errors. Later, we will evaluate a model on a separate set of test data; the differences
between the predicted and observed values in the test data are called prediction
errors or test errors.
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The residuals for our model are indicated by the vertical lines between the points for
the training instances and regression hyperplane in the following plot:
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We can produce the best pizza-price predictor by minimizing the sum of the residuals.
That is, our model fits if the values it predicts for the response variable are close to the
observed values for all of the training examples. This measure of the model's fitness is
called the residual sum of squares cost function. Formally, this function assesses the
fitness of a model by summing the squared residuals for all of our training examples.
The residual sum of squares is calculated with the formula in the following equation,
where , is the observed value and f(x,) is the predicted value:

n 2

S8, = Z(yi _f(xi))

i=1

Let's compute the residual sum of squares for our model by adding the following
two lines to the previous script:

>>> import numpy as np
>>> print 'Residual sum of squares: %.2f' % np.mean((model.predict (X)
- y) ** 2)

Residual sum of squares: 1.75

[26]
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Now that we have a cost function, we can find the values of our model's parameters
that minimize it.

Solving ordinary least squares for simple
linear regression

In this section, we will work through solving ordinary least squares for simple linear
regression. Recall that simple linear regression is given by the following equation:

y=a+ fx

Also, recall that our goal is to solve the values of f and & that minimize the cost
function. We will solve f first. To do so, we will calculate the variance of x and
covariance of x and y.

Variance is a measure of how far a set of values is spread out. If all of the numbers
in the set are equal, the variance of the set is zero. A small variance indicates that the
numbers are near the mean of the set, while a set containing numbers that are far
from the mean and each other will have a large variance. Variance can be calculated
using the following equation:

var (x) = —z"zl (x; =%)

In the preceding equation, X is the mean of X, X; is the value of X for the ith training
instance, and # is the number of training instances. Let's calculate the variance of the
pizza diameters in our training set:

>>> from  future  import division
>>> xbar = (6 + 8 + 10 + 14 + 18) / 5
>>> variance = ((6 - xbar)**2 + (8 - xbar)**2 + (10 - xbar)**2 + (14 -

xbar)**2 + (18 - xbar)**2) / 4
>>> print variance
23.2

NumPy also provides the var method to calculate variance. The ddof keyword
parameter can be used to set Bessel's correction to calculate the sample variance:

>>> import numpy as np
>>> print np.var([6, 8, 10, 14, 18], ddof=1)
23.2

[27]
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Covariance is a measure of how much two variables change together. If the value of
the variables increase together, their covariance is positive. If one variable tends to
increase while the other decreases, their covariance is negative. If there is no linear
relationship between the two variables, their covariance will be equal to zero; the
variables are linearly uncorrelated but not necessarily independent. Covariance can
be calculated using the following formula:

2 (5 -¥)(r - 7)

cov(x,y)=

As with variance, X; is the diameter of the ith training instance, X is the mean of the
diameters, y is the mean of the prices, J; is the price of the ith training instance, and
n is the number of training instances. Let's calculate the covariance of the diameters
and prices of the pizzas in the training set:

>>> xbar = (6 + 8 + 10 + 14 + 18) / 5

>>> ybar = (7 + 9 + 13 + 17.5 + 18) / 5

>>> cov = ((6 - xbar) * (7 - ybar) + (8 - xbar) * (9 - ybar) + (10 -
xbar) * (13 - ybar) +

>>> (14 - xbar) * (17.5 - ybar) + (18 - xbar) * (18 - ybar)) /
4

>>> print cov

>>> import numpy as np

>>> print np.cov([6, 8, 10, 14, 181, [7, 9, 13, 17.5, 18])[0][1]
22.65

22.65

Now that we have calculated the variance of our explanatory variable and the
covariance of the response and explanatory variables, we can solve f using the
following formula:

_ cov(x,y)
var (x)

p= % =0.9762931034482758

Having solved f3, we can solve & using the following formula:

a=y—-px

[28]



Chapter 2

In the preceding formula, y is the mean of y and X is the mean of x. ()?,)7) are the
coordinates of the centroid, a point that the model must pass through. We can use
the centroid and the value of £ to solve for & as follows:

a=12.9-0.9762931034482758x11.2=1.9655172413793114

Now that we have solved the values of the model's parameters that minimize the
cost function, we can plug in the diameters of the pizzas and predict their prices. For
instance, an 11-inch pizza is expected to cost around $12.70, and an 18-inch pizza is
expected to cost around $19.54. Congratulations! You used simple linear regression
to predict the price of a pizza.

Evaluating the model

We have used a learning algorithm to estimate a model's parameters from the training
data. How can we assess whether our model is a good representation of the real
relationship? Let's assume that you have found another page in your pizza journal. We
will use the entries on this page as a test set to measure the performance of our model:

Test Instance Diameter Observed price | Predicted price
(in inches) (in dollars) (in dollars)

1 8 11 9.7759

2 9 8.5 10.7522

3 11 15 12.7048

4 16 18 17.5863

5 12 11 13.6811

Several measures can be used to assess our model's predictive capabilities. We will
evaluate our pizza-price predictor using r-squared. R-squared measures how well
the observed values of the response variables are predicted by the model. More
concretely, r-squared is the proportion of the variance in the response variable that
is explained by the model. An r-squared score of one indicates that the response
variable can be predicted without any error using the model. An r-squared score of
one half indicates that half of the variance in the response variable can be predicted
using the model. There are several methods to calculate r-squared. In the case of
simple linear regression, r-squared is equal to the square of the Pearson product
moment correlation coefficient, or Pearson's .
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Using this method, r-squared must be a positive number between zero and one.
This method is intuitive; if r-squared describes the proportion of variance in the
response variable explained by the model, it cannot be greater than one or less than
zero. Other methods, including the method used by scikit-learn, do not calculate
r-squared as the square of Pearson's r, and can return a negative r-squared if the
model performs extremely poorly. We will follow the method used by scikit-learn to
calculate r-squared for our pizza-price predictor.

First, we must measure the total sum of the squares. ), is the observed value of the
response variable for the ith test instance, and y is the mean of the observed values
of the response variable:

S8, =Z(yi _)_’)2

i=1

S8, =(11-12.7) +(8.5-12.7)" +--+(11-12.7)" =56.8

fot

Next, we must find the residual sum of the squares. Recall that this is also our
cost function.

S8, = Z(yi _f(xi)>

S8, =(11-9.7759)" +(8.5-10.7522)" +---+(11-13.6811)" =19.19821359

Finally, we can find r-squared using the following formula:

R =1 _19.19821359 0.6620032818661972

56.8
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An r-squared score of 0.6620 indicates that a large proportion of the variance in the
test instances' prices is explained by the model. Now, let's confirm our calculation
using scikit-learn. The score method of LinearRegression returns the model's
r-squared value, as seen in the following example:

>>> from sklearn.linear model import LinearRegression

>>> X = [[6], [8], [10], [14], [18]]

>>> vy = [[7], [91, [13], [17.5], [18]]

>>> X test = [[8], [9], [111, [161, [12]1
>>> y test = [[11], [8.5], [15], [18], [11]]
>>> model = LinearRegression/()

>>> model.fit (X, y)

>>> print 'R-squared: %.4f' % model.score (X test, y test)
R-squared: 0.6620

Multiple linear regression

We have trained and evaluated a model to predict the price of a pizza. While you are
eager to demonstrate the pizza-price predictor to your friends and co-workers, you
are concerned by the model's imperfect r-squared score and the embarrassment its
predictions could cause you. How can we improve the model?

Recalling your personal pizza-eating experience, you might have some intuitions
about the other attributes of a pizza that are related to its price. For instance, the
price often depends on the number of toppings on the pizza. Fortunately, your

pizza journal describes toppings in detail; let's add the number of toppings to our
training data as a second explanatory variable. We cannot proceed with simple linear
regression, but we can use a generalization of simple linear regression that can use
multiple explanatory variables called multiple linear regression. Formally, multiple
linear regression is the following model:

y=a+px +px,+ -+ B,x,

this edit makes no sense. change to "Where simple linear regression uses a single
explanatory variable with a single coefficient, multiple linear regression uses a
coefficient for each of an arbitrary number of explanatory variables.

Y=Xp
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For simple linear regression, this is equivalent to the following:

Y| [a + BX,] [1 X,

,| |a + BX,| |1 X, [a}
.= . =. . X

Y| |la + BX,| |1 X

n n

Y is a column vector of the values of the response variables for the training examples.
B is a column vector of the values of the model's parameters. X, called the design
matrix, is an 72X n dimensional matrix of the values of the explanatory variables for
the training examples. 7 is the number of training examples and 7 is the number of
explanatory variables. Let's update our pizza training data to include the number of
toppings with the following values:

Training Example | Diameter (in inches) | Number of toppings | Price (in dollars)
1 6 2 7

2 8 1 9

3 10 0 13

4 14 2 17.5

5 18 0 18

We must also update our test data to include the second explanatory variable,
as follows:

Test Instance Diameter (in inches) | Number of toppings | Price (in dollars)
1 8 2 11
2 9 0 8.5
3 11 2 15
4 16 2 18
5 12 0 11
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Our learning algorithm must estimate the values of three parameters: the coefficients
for the two features and the intercept term. While one might be tempted to solve f by
dividing each side of the equation by X, division by a matrix is impossible. Just as
dividing a number by an integer is equivalent to multiplying by the inverse of the
same integer, we can multiply £ by the inverse of X to avoid matrix division. Matrix
inversion is denoted with a superscript -1. Only square matrices can be inverted. X

is not likely to be a square; the number of training instances will have to be equal to
the number of features for it to be so. We will multiply X by its transpose to yield a
square matrix that can be inverted. Denoted with a superscript 7', the transpose of a
matrix is formed by turning the rows of the matrix into columns and vice versa,

as follows:
1
1 2 37
=|2
4 5 6
3

To recap, our model is given by the following formula:

AN L K~

Y=Xp

We know the values of ¥ and X from our training data. We must find the values
of £, which minimize the cost function. We can solve f as follows:

p=(x"x) XY

We can solve f using NumPy, as follows:

>>> from numpy.linalg import inwv
>>> from numpy import dot, transpose

>>> X = [[1, 6, 2], [1, 8, 1], [1, 10, O], [1, 14, 21, [1, 18, 0]]
>>> vy = [[7], [9], [13], [17.5], [18]]

>>> print dot (inv (dot (transpose(X), X)), dot (transpose(X), vy))

[[ 1.1875 ]

[ 1.01041667]
[ 0.39583333]]
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NumPy also provides a least squares function that can solve the values of the
parameters more compactly:

>>>

>>>

>>>

>>>

from numpy.linalg import lstsg
Xx= 1[I+, 2], [1, 8, 11, [1, 10, O], [1, 14, 2], [1, 18, O]]
y = [[71, (91, (131, (17.51, [18]]

print lstsqg(X, y) [0]

[[ 1.1875 ]
[ 1.01041667]
[ 0.39583333]]

Let's update our pizza-price predictor program to use the second explanatory
variable, and compare its performance on the test set to that of the simple linear
regression model:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

from sklearn.linear model import LinearRegression

X = [[6, 21, [8, 1], [10, O], T[24, 21, [18, 011
y = [[7], = (137, (17.5], [18]]
model = LinearRegression ()

model.fit (X, vy)

X test = [[8, 2], [9, o], [11, 21, I[1e, 21, [12, O]1]
y _test = [[11], [8.5], [15]1, [181, [111]
predictions = model.predict (X test)

for i, prediction in enumerate (predictions) :

)

print 'Predicted: %s, Target: %s' % (prediction, y test[il])

)

print 'R-squared: %.2f' % model.score(X test, y test)

Predicted: [ 10.0625], Target: [11]

Predicted: [ 10.28125], Target: [8.5]
Predicted: [ 13.09375], Target: [15]
Predicted: [ 18.14583333], Target: [18]
Predicted: [ 13.3125], Target: [11]
R-squared: 0.77

It appears that adding the number of toppings as an explanatory variable has
improved the performance of our model. In later sections, we will discuss why
evaluating a model on a single test set can provide inaccurate estimates of the
model's performance, and how we can estimate its performance more accurately
by training and testing on many partitions of the data. For now, however, we can
accept that the multiple linear regression model performs significantly better than
the simple linear regression model. There may be other attributes of pizzas that can
be used to explain their prices. What if the relationship between these explanatory
variables and the response variable is not linear in the real world? In the next
section, we will examine a special case of multiple linear regression that can be
used to model nonlinear relationships.
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Polynomial regression

In the previous examples, we assumed that the real relationship between the
explanatory variables and the response variable is linear. This assumption is not
always true. In this section, we will use polynomial regression, a special case of
multiple linear regression that adds terms with degrees greater than one to the
model. The real-world curvilinear relationship is captured when you transform the
training data by adding polynomial terms, which are then fit in the same manner as
in multiple linear regression. For ease of visualization, we will again use only one
explanatory variable, the pizza's diameter. Let's compare linear regression with
polynomial regression using the following datasets:

Training Instance | Diameter (in inches) Price (in dollars)
1 6 7

2 8 9

3 10 13

4 14 17.5

5 18 18

Testing Instance

Diameter (in inches)

Price (in dollars)

1

6

7

2 8 9
3 10 13
4 14 17.5

Quadratic regression, or regression with a second order polynomial, is given by the
following formula:

y:a+@x+@f

We are using only one explanatory variable, but the model now has three terms
instead of two. The explanatory variable has been transformed and added as a third
term to the model to capture the curvilinear relationship. Also, note that the equation
for polynomial regression is the same as the equation for multiple linear regression
in vector notation. The PolynomialFeatures transformer can be used to easily add
polynomial features to a feature representation. Let's fit a model to these features,
and compare it to the simple linear regression model:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
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>>> from sklearn.linear model import LinearRegression
>>> from sklearn.preprocessing import PolynomialFeatures

>>> X train = [[e6], [8], [10], [14], [18]11]
>>> y train = [[7], [9], [13], [17.5], [18]]
>>> X test = [[6], (81, [11], [1e6]1]

[

[
>>> y test [re1, 121, [15]1, [18]1]

>>> regressor = LinearRegression/()

>>> regressor.fit (X train, y train)

>>> Xxx = np.linspace(0, 26, 100)

>>> yy = regressor.predict (xx.reshape (xx.shape[0], 1))
>>> plt.plot(xx, vy)

>>> quadratic_ featurizer = PolynomialFeatures (degree=2)
>>> X train quadratic = quadratic featurizer.fit transform(X train)
>>> X test quadratic = quadratic featurizer.transform(X test)

>>> regressor quadratic = LinearRegression/()
>>> regressor quadratic.fit (X train quadratic, y train)

>>> xxX quadratic = quadratic featurizer.transform(xx.reshape (xx.
shape [0], 1))

>>> plt.plot (xx, regressor quadratic.predict (xx quadratic), c='r',
linestyle='--")

>>> plt.title('Pizza price regressed on diameter')

>>> plt.xlabel ('Diameter in inches')

>>> plt.ylabel ('Price in dollars')

>>> plt.axis ([0, 25, 0, 25])

>>> plt.grid(True)

>>> plt.scatter (X train, y train)

>>> plt.show()

>>> print X train

>>> print X train gquadratic

>>> print X test

>>> print X test quadratic

>>> print 'Simple linear regression r-squared', regressor.score (X
test, y test)

>>> print 'Quadratic regression r-squared', regressor quadratic.
score (X _test quadratic, y test)

[36]




Chapter 2

The following is the output of the preceding script:

[lel, [8], [10], [14], [18]]
[[ 1 6 36]
[ 1 8 64]
[ 1 10 100]
[ 1 14 196]
[ 1 18 324]]
[lel, [8], [11], [1e]]
[[ 1 6 36]
[ 1 8 64]
[ 1 11 121]

[ 1 16 256]]

Simple linear regression r-squared 0.809726797708

Quadratic regression r-squared 0.867544365635

The simple linear regression model is plotted with the solid line in the following
figure. Plotted with a dashed line, the quadratic regression model visibly fits the

training data better.
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Linear Regression

The r-squared score of the simple linear regression model is 0.81; the quadratic
regression model's r-squared score is an improvement at 0.87. While quadratic
and cubic regression models are the most common, we can add polynomials of
any degree. The following figure plots the quadratic and cubic models:

5 Pizza price regressed on diameter
T T T

Price in dollars

i | I
0 5 10 15 20 25
Diameter in inches

Now, let's try an even higher-order polynomial. The plot in the following figure
shows a regression curve created by a ninth-degree polynomial:
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- Pizza price regressed on diameter
T T

20

=
8]

Price in dollars
=
o

1 1
0 5 10 15 20 25
Diameter in inches

The ninth-degree polynomial regression model fits the training data almost exactly!
The model's r-squared score, however, is -0.09. We created an extremely complex
model that fits the training data exactly, but fails to approximate the real relationship.
This problem is called over-fitting. The model should induce a general rule to map
inputs to outputs; instead, it has memorized the inputs and outputs from the training
data. As a result, the model performs poorly on test data. It predicts that a 16 inch
pizza should cost less than $10, and an 18 inch pizza should cost more than $30. This
model exactly fits the training data, but fails to learn the real relationship between size
and price.
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Regularization

Regularization is a collection of techniques that can be used to prevent over-fitting.
Regularization adds information to a problem, often in the form of a penalty against
complexity, to a problem. Occam's razor states that a hypothesis with the fewest
assumptions is the best. Accordingly, regularization attempts to find the simplest
model that explains the data.

scikit-learn provides several regularized linear regression models. Ridge regression,
also known as Tikhonov regularization, penalizes model parameters that become
too large. Ridge regression modifies the residual sum of the squares cost function by
adding the L2 norm of the coefficients, as follows:

n P

2
RSSu =2 (v, =/ B) + A B}

i=1 Jj=1

A is a hyperparameter that controls the strength of the penalty. Hyperparameters
are parameters of the model that are not learned automatically and must be set
manually. As 4 increases, the penalty increases, and the value of the cost function
increases. When 4 is equal to zero, ridge regression is equal to linear regression.

scikit-learn also provides an implementation of the Least Absolute Shrinkage and
Selection Operator (LASSO). LASSO penalizes the coefficients by adding their L1
norm to the cost function, as follows:

n P

RSS, =2 (v,-x'B) +1Y. B,

i=1 Jj=1

The LASSO produces sparse parameters; most of the coefficients will become zero,
and the model will depend on a small subset of the features. In contrast, ridge
regression produces models in which most parameters are small but nonzero. When
explanatory variables are correlated, the LASSO will shrink the coefficients of one
variable toward zero. Ridge regression will shrink them more uniformly. Finally,
scikit-learn provides an implementation of elastic net regularization, which linearly
combines the L1 and L2 penalties used by the LASSO and ridge regression. That is,
the LASSO and ridge regression are both special cases of the elastic net method in
which the hyperparameter for either the L1 or L2 penalty is equal to zero.
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Applying linear regression

We have worked through a toy problem to learn how linear regression models
relationships between explanatory and response variables. Now we'll use a real
data set and apply linear regression to an important task. Assume that you are at
a party, and that you wish to drink the best wine that is available. You could ask
your friends for recommendations, but you suspect that they will drink any wine,
regardless of its provenance. Fortunately, you have brought pH test strips and
other tools to measure various physicochemical properties of wine —it is, after all,
a party. We will use machine learning to predict the quality of the wine based on
its physicochemical attributes.

The UCI Machine Learning Repository's Wine data set measures eleven
physicochemical attributes, including the pH and alcohol content, of 1,599 different
red wines. Each wine's quality has been scored by human judges. The scores range
from zero to ten; zero is the worst quality and ten is the best quality. The data set can
be downloaded from https://archive.ics.uci.edu/ml/datasets/Wine. We will
approach this problem as a regression task and regress the wine's quality onto one

or more physicochemical attributes. The response variable in this problem takes only
integer values between 0 and 10; we could view these as discrete values and approach
the problem as a multiclass classification task. In this chapter, however, we will view
the response variable as a continuous value.

Exploring the data

Free Total
Chlorides | sulfur | sulfur | Density | pH | Sulphates | Alcohol | Quality
dioxide | dioxide

Fixed | Volatile | Citric | Residual
acidity | acidity | acidity | sugar

74 0.7 0 19 0.076 11 34 0.9978 3.51 | 0.56 9.4 5
7.8 0.88 0 2.6 0.098 25 67 0.9968 32 |0.68 9.8 5
7.8 0.76 0.04 2.3 0.092 15 54 0.997 3.26 | 0.65 9.8 5
112 0.28 0.56 1.9 0.075 17 60 0.998 3.16 | 0.58 9.8 6

scikit-learn is intended to be a tool to build machine learning systemes; its capabilities
to explore data are impoverished compared to those of packages such as SPSS
Statistics or the R language. We will use pandas, an open source data analysis library
for Python, to generate descriptive statistics from the data; we will use these statistics
to inform some of the design decisions of our model. pandas introduces Python

to some concepts from R such as the dataframe, a two-dimensional, tabular, and
heterogeneous data structure. Using pandas for data analysis is the topic of several
books; we will use only a few basic methods in the following examples.
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First, we will load the data set and review some basic summary statistics for the
variables. The data is provided as a . csv file. Note that the fields are separated by
semicolons rather than commas):

>>> import pandas as pd
>>> df = pd.read csv('winequality-red.csv', sep=';"')
>>> df.describe ()

PH sulphates alcohol quality
count 1599.000000 1599.000000 1599.000000 1599.000000
mean 3.311113 0.658149 10.422983 5.636023
std 0.154386 0.169507 1.065668 0.807569
min 2.740000 0.330000 8.400000 3.000000
25% 3.210000 0.550000 9.500000 5.000000
50% 3.310000 0.620000 10.200000 6.000000
75% 3.400000 0.730000 11.100000 6.000000
max 4.010000 2.000000 14.900000 8.000000

The pd.read_csv () function is a convenience utility that loads the . csv file into

a dataframe. The Dataframe.describe () method calculates summary statistics
for each column of the dataframe. The preceding code sample shows the summary
statistics for only the last four columns of the dataframe. Note the summary for the
quality variable; most of the wines scored five or six. Visualizing the data can help
indicate if relationships exist between the response variable and the explanatory
variables. Let's use matplotlib to create some scatter plots. Consider the following
code snippet:

>>> import matplotlib.pylab as plt

>>> plt.scatter(df['alcohol'], df['quality'l])
>>> plt.xlabel ('Alcohol!')

>>> plt.ylabel ('Quality"')

>>> plt.title('Alcohol Against Quality')

>>> plt.show()

The output of the preceding code snippet is shown in the following figure:
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5 Alcohol Against Quality
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A weak positive relationship between the alcohol content and quality is visible in the
scatter plot in the preceding figure; wines that have high alcohol content are often
high in quality. The following figure reveals a negative relationship between volatile

acidity and quality:

Volatile Acidity Against Quality
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These plots suggest that the response variable depends on multiple explanatory
variables; let's model the relationship with multiple linear regression. How can we
decide which explanatory variables to include in the model? Dataframe.corr ()
calculates a pairwise correlation matrix. The correlation matrix confirms that the
strongest positive correlation is between the alcohol and quality, and that quality

is negatively correlated with volatile acidity, an attribute that can cause wine to

taste like vinegar. To summarize, we have hypothesized that good wines have high
alcohol content and do not taste like vinegar. This hypothesis seems sensible, though
it suggests that wine aficionados may have less sophisticated palates than they claim.

Fitting and evaluating the model

Now we will split the data into training and testing sets, train the regressor,
and evaluate its predictions:

>>> from sklearn.linear model import LinearRegression

>>> import pandas as pd

>>> import matplotlib.pylab as plt

>>> from sklearn.cross validation import train test split

>>> df = pd.read csv('wine/winequality-red.csv', sep=';"')

>>> X = df [list (df.columns) [:-1]1]

>>> vy = df ['quality']

>>> X train, X test, y train, y test = train test split (X, y)

>>> regressor = LinearRegression()

>>> regressor.fit (X train, y train)

>>> y predictions = regressor.predict (X test)

>>> print 'R-squared:', regressor.score (X test, y test)
0.345622479617

First, we loaded the data using pandas and separated the response variable from the
explanatory variables. Next, we used the train test_split function to randomly
partition the data into training and test sets. The proportions of the data for both
partitions can be specified using keyword arguments. By default, 25 percent of the
data is assigned to the test set. Finally, we trained the model and evaluated it on the
test set.
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The r-squared score of 0.35 indicates that 35 percent of the variance in the test set

is explained by the model. The performance might change if a different 75 percent
of the data is partitioned to the training set. We can use cross-validation to produce
a better estimate of the estimator's performance. Recall from chapter one that

each cross-validation round trains and tests different partitions of the data to
reduce variability:

>>> import pandas as pd

>>> from sklearn. cross_validation import cross_val score
>>> from sklearn.linear model import LinearRegression

>>> df = pd.read csv('data/winequality-red.csv', sep=';"')
>>> X = df [list (df.columns) [:-1]]

>>> y = df ['quality']

>>> regressor = LinearRegression()

>>> scores = cross_val score(regressor, X, y, cv=5)

>>> print scores.mean(), scores

0.290041628842 [ 0.13200871 0.31858135 0.34955348 0.369145
0.2809196 ]

The cross_val_score helper function allows us to easily perform cross-validation
using the provided data and estimator. We specified a five-fold cross validation
using the cv keyword argument, that is, each instance will be randomly assigned

to one of the five partitions. Each partition will be used to train and test the model.
cross_val score returns the value of the estimator's score method for each
round. The r-squared scores range from 0.13 to 0.36! The mean of the scores, 0.29, is a
better estimate of the estimator's predictive power than the r-squared score produced
from a single train / test split.

Let's inspect some of the model's predictions and plot the true quality scores against
the predicted scores:

Predicted: 4.89907499467 True: 4
Predicted: 5.60701048317 True: 6
Predicted: 5.92154439575 True: 6
Predicted: 5.54405696963 True: 5
Predicted: 6.07869910663 True: 7
Predicted: 6.036656327 True: 6

Predicted: 6.43923020473 True: 7
Predicted: 5.80270760407 True: 6
Predicted: 5.92425033278 True: 5
Predicted: 5.31809822449 True: 6
Predicted: 6.34837585295 True: 6
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The following figure shows the output of the preceding code:

Predicted Quality Against True Quality
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As expected, few predictions exactly match the true values of the response variable.
The model is also better at predicting the qualities of average wines, since most of the
training data is for average wines.

Fitting models with gradient descent

In the examples in this chapter, we analytically solved the values of the model's
parameters that minimize the cost function with the following equation:

p=(x"x) XY
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Recall that X is the matrix of the values of the explanatory variables for each training
example. The dot product of X" X results in a square matrix with dimensions 7 x 7,
where 7 is equal to the number of explanatory variables. The computational
complexity of inverting this square matrix is nearly cubic in the number of explanatory
variables. While the number of explanatory variables has been small in this chapter's
examples, this inversion can be prohibitively costly for problems with tens of
thousands of explanatory variables, which we will encounter in the following chapters.
Furthermore, X' X cannot be inverted if its determinant is equal to zero. In this
section, we will discuss another method to efficiently estimate the optimal values of
the model's parameters called gradient descent. Note that our definition of a good fit
has not changed; we will still use gradient descent to estimate the values of the model's
parameters that minimize the value of the cost function.

Gradient descent is sometimes described by the analogy of a blindfolded man who

is trying to find his way from somewhere on a mountainside to the lowest point of
the valley. He cannot see the topography, so he takes a step in the direction with the
steepest decline. He then takes another step, again in the direction with the steepest
decline. The sizes of his steps are proportional to the steepness of the terrain at his
current position. He takes big steps when the terrain is steep, as he is confident that he
is still near the peak and that he will not overshoot the valley's lowest point. The man
takes smaller steps as the terrain becomes less steep. If he were to continue taking large
steps, he may accidentally step over the valley's lowest point. He would then need

to change direction and step toward the lowest point of the valley again. By taking
decreasingly large steps, he can avoid stepping back and forth over the valley's lowest
point. The blindfolded man continues to walk until he cannot take a step that will
decrease his altitude; at this point, he has found the bottom of the valley.

Formally, gradient descent is an optimization algorithm that can be used to estimate
the local minimum of a function. Recall that we are using the residual sum of squares
cost function, which is given by the following equation:

2

n

8, =2(n-f(x))

i=1

We can use gradient descent to find the values of the model's parameters that
minimize the value of the cost function. Gradient descent iteratively updates the
values of the model's parameters by calculating the partial derivative of the cost
function at each step. The calculus required to compute the partial derivative of
the cost function is beyond the scope of this book, and is also not required to work
with scikit-learn. However, having an intuition for how gradient descent works
can help you use it effectively.
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It is important to note that gradient descent estimates the local minimum of a
function. A three-dimensional plot of the values of a convex cost function for all
possible values of the parameters looks like a bowl. The bottom of the bowl is the
sole local minimum. Non-convex cost functions can have many local minima, that
is, the plots of the values of their cost functions can have many peaks and valleys.
Gradient descent is only guaranteed to find the local minimum; it will find a valley,
but will not necessarily find the lowest valley. Fortunately, the residual sum of the
squares cost function is convex.

An important hyperparameter of gradient descent is the learning rate, which controls
the size of the blindfolded man's steps. If the learning rate is small enough, the cost
function will decrease with each iteration until gradient descent has converged on
the optimal parameters. As the learning rate decreases, however, the time required
for gradient descent to converge increases; the blindfolded man will take longer to
reach the valley if he takes small steps than if he takes large steps. If the learning

rate is too large, the man may repeatedly overstep the bottom of the valley, that is,
gradient descent could oscillate around the optimal values of the parameters.

There are two varieties of gradient descent that are distinguished by the number

of training instances that are used to update the model parameters in each training
iteration. Batch gradient descent, which is sometimes called only gradient descent,
uses all of the training instances to update the model parameters in each iteration.
Stochastic Gradient Descent (SGD), in contrast, updates the parameters using
only a single training instance in each iteration. The training instance is usually
selected randomly. Stochastic gradient descent is often preferred to optimize cost
functions when there are hundreds of thousands of training instances or more, as
it will converge more quickly than batch gradient descent. Batch gradient descent
is a deterministic algorithm, and will produce the same parameter values given the
same training set. As a stochastic algorithm, SGD can produce different parameter
estimates each time it is run. SGD may not minimize the cost function as well as
gradient descent because it uses only single training instances to update the weights.
Its approximation is often close enough, particularly for convex cost functions such
as residual sum of squares.
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Let's use stochastic gradient descent to estimate the parameters of a model with
scikit-learn. SGDRegressor is an implementation of SGD that can be used even for
regression problems with hundreds of thousands or more features. It can be used
to optimize different cost functions to fit different linear models; by default, it will
optimize the residual sum of squares. In this example, we will predict the prices of
houses in the Boston Housing data set from 13 explanatory variables:

>>> import numpy as np

>>> from sklearn.datasets import load boston

>>> from sklearn.linear model import SGDRegressor

>>> from sklearn.cross validation import cross_val score

>>> from sklearn.preprocessing import StandardScaler

>>> from sklearn.cross validation import train test split

>>> data = load boston()

>>> X _train, X test, y_train, y test = train_test_split(data.data,
data.target)

scikit-learn provides a convenience function for loading the data set. First, we split
the data into training and testing sets using train_test_split:

>>> X scaler = StandardScaler ()

>>> y scaler = StandardScaler ()

>>> X train = X scaler.fit transform(X train)
>>> y train = y scaler.fit transform(y_ train)
>>> X _test = X scaler.transform(X_test)

>>> y test = y scaler.transform(y test)

Next, we scaled the features using standardScaler, which we will describe in detail
in the next chapter:

>>> regressor = SGDRegressor (loss='squared loss')

>>> scores = cross_val score(regressor, X train, y train, cv=5)
>>> print 'Cross validation r-squared scores:', scores
>>> print 'Average cross validation r-squared score:', np.mean(scores)

>>> regressor.fit transform(X train, y train)

>>> print 'Test set r-squared score', regressor.score (X test, y test)

Finally, we trained the estimator, and evaluated it using cross validation and the test
set. The following is the output of the script:

Cross validation r-squared scores: [ 0.73428974 0.80517755
0.58608421 0.83274059 0.69279604]

Average cross validation r-squared score: 0.730217627242
Test set r-squared score 0.653188093125
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Summary

In this chapter we discussed three cases of linear regression. We worked through

an example of simple linear regression, which models the relationship between a
single explanatory variable and a response variable using a line. We then discussed
multiple linear regression, which generalizes simple linear regression to model the
relationship between multiple explanatory variables and a response variable. Finally,
we described polynomial regression, a special case of multiple linear regression

that models non-linear relationships between explanatory variables and a response
variable. These three models can be viewed as special cases of the generalized linear
model, a framework for model linear relationships, which we will discuss in more
detail in Chapter 4, From Linear Regression to Logistic Regression.

We assessed the fitness of models using the residual sum of squares cost function and
discussed two methods to learn the values of a model's parameters that minimize the
cost function. First, we solved the values of the model's parameters analytically. We
then discussed gradient descent, a method that can efficiently estimate the optimal
values of the model's parameters even when the model has a large number of features.
The features in this chapter's examples were simple measurements of their explanatory
variables; it was easy to use them in our models. In the next chapter, you will learn

to create features for different types of explanatory variables, including categorical
variables, text, and images.
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Preprocessing

The examples discussed in the previous chapter used simple numeric explanatory
variables, such as the diameter of a pizza. Many machine learning problems require
learning from observations of categorical variables, text, or images. In this chapter, you
will learn basic techniques for preprocessing data and creating feature representations
of these observations. These techniques can be used with the regression models
discussed in Chapter 2, Linear Regression, as well as the models we will discuss in
subsequent chapters.

Extracting features from categorical
variables

Many machine learning problems have categorical, or nominal, rather than
continuous features. For example, an application that predicts a job's salary based on
its description might use categorical features such as the job's location. Categorical
variables are commonly encoded using one-of-K or one-hot encoding, in which the
explanatory variable is encoded using one binary feature for each of the variable's
possible values.

For example, let's assume that our model has a city explanatory variable that

can take one of three values: New York, San Francisco, or Chapel Hill.One-hot
encoding represents this explanatory variable using one binary feature for each

of the three possible cities.
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In scikit-learn, the Dictvectorizer class can be used to one-hot encode
categorical features:

>>> from sklearn.feature_extraction import DictVectorizer
>>> onehot encoder = DictVectorizer()
>>> instances = [

>>> {rcity': 'New York'},
>>> {'city': 'San Francisco'},
>>> {rcity': 'Chapel Hill'}s>>> ]

>>> print onehot_encoder.fit_ transform(instances) .toarray ()
(fo. 1. 0.1 [ 0. ©O0. 1.1[ 1. 0. 0.]1]

Note that resulting features will not necessarily be ordered in the feature vector as
they were encountered. In the first training example, the city feature's value is New
York. The second element in the feature vectors corresponds to the New York value
and is set to 1 for the first instance. It may seem intuitive to represent the values

of a categorical explanatory variable with a single integer feature, but this would
encode artificial information. For example, the feature vectors for the previous
example would have only one dimension. New York could be represented by 0, san
Francisco by 1, and Chapel Hill by 2. This representation would encode an order
for the values of the variable that does not exist in the real world; there is no natural
order of cities.

Extracting features from text

Many machine learning problems use text as an explanatory variable. Text must
be transformed to a different representation that encodes as much of its meaning
as possible in a feature vector. In the following sections we will review variations
of the most common representation of text that is used in machine learning: the
bag-of-words model.

The bag-of-words representation

The most common representation of text is the bag-of-words model. This
representation uses a multiset, or bag, that encodes the words that appear in a text; the
bag-of-words does not encode any of the text's syntax, ignores the order of words, and
disregards all grammar. Bag-of-words can be thought of as an extension to one-hot
encoding. It creates one feature for each word of interest in the text. The bag-of-words
model is motivated by the intuition that documents containing similar words often
have similar meanings. The bag-of-words model can be used effectively for document
classification and retrieval despite the limited information that it encodes.
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A collection of documents is called a corpus. Let's use a corpus with the following
two documents to examine the bag-of-words model:

corpus = [
'UNC played Duke in basketball',
'Duke lost the basketball game'
1

This corpus contains eight unique words: UNC, played, Duke, in, basketball, lost,
the, and game. The corpus's unique words comprise its vocabulary. The bag-of-words
model uses a feature vector with an element for each of the words in the corpus's
vocabulary to represent each document. Our corpus has eight unique words, so each
document will be represented by a vector with eight elements. The number of elements
that comprise a feature vector is called the vector's dimension. A dictionary maps the
vocabulary to indices in the feature vector.

In the most basic bag-of-words representation, each element in the feature vector is a
binary value that represents whether or not the corresponding word appeared in the
document. For example, the first word in the first document is unc. The first word in
the dictionary is UNC, so the first element in the vector is equal to one. The last word
in the dictionary is game. The first document does not contain the word game, so

the eighth element in its vector is set to 0. The CountVectorizer class can produce

a bag-of-words representation from a string or file. By default, Countvectorizer
converts the characters in the documents to lowercase, and tokenizes the documents.
Tokenization is the process of splitting a string into tokens, or meaningful sequences
of characters. Tokens frequently are words, but they may also be shorter sequences
including punctuation characters and affixes. The Countvectorizer class tokenizes
using a regular expression that splits strings on whitespace and extracts sequences of
characters that are two or more characters in length.

The documents in our corpus are represented by the following feature vectors:

>>> from sklearn.feature extraction.text import CountVectorizer
>>> corpus = [
>>> 'UNC played Duke in basketball',
>>> 'Duke lost the basketball game'
>>> ]
>>> vectorizer = CountVectorizer ()
>>> print vectorizer.fit transform(corpus) .todense ()
>>> print vectorizer.vocabulary
[[11 01010 1]
(111010 10]]
{u'duke': 1, u'basketball': 0, u'lost': 4, u'played': 5, u'game': 2,
u'unc': 7, u'in': 3, u'the': 6}
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Now let's add a third document to our corpus:

corpus = [
'UNC played Duke in basketball',
'Duke lost the basketball game',
'I ate a sandwich'

]

Our corpus's dictionary now contains the following ten unique words. Note that 1
and a were not extracted as they do not match the default regular expression that
CountVectorizer uses to tokenize strings:

{u'duke': 2, u'basketball': 1, u'lost': 5, u'played': 6, u'in': 4,
u'game': 3, u'sandwich': 7, u'unc': 9, u'ate': 0, u'the': 8}

Now, our feature vectors are as follows:

UNC played Duke in basketball = [[0 1 1 01 01 0 0 1]]
Duke lost the basketball game = [[0 1 1 1 0 1 0 0 1 0]]
I ate a sandwich = [[1 0 0 0 0 0 0 1 0 0]1]

The meanings of the first two documents are more similar to each other than they are
to the third document, and their corresponding feature vectors are more similar to
each other than they are to the third document's feature vector when using a metric
such as Euclidean distance. The Euclidean distance between two vectors is equal to
the Euclidean norm, or L2 norm, of the difference between the two vectors:

d=W%—%H

Recall that the Euclidean norm of a vector is equal to the vector's magnitude, which is
given by the following equation:

o = 2 + 22+ 4 2

scikit-learn's euclidean distances function can be used to calculate the distance
between two or more vectors, and it confirms that the most semantically similar
documents are also the closest to each other in space. In the following example,
we will use the euclidean_distances function to compare the feature vectors for
our documents:

>>> from sklearn.metrics.pairwise import euclidean distances
>>> counts = [

>>> (o, 1, 1, o, 0, 1, o, 11,

>>> (o, 1, 1, 1, 1, o, o, ol,
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>>> [L, o, 0, O, O, O, 1, O]

>>> ]

>>> print 'Distance between 1lst and 2nd documents:', euclidean
distances (counts[0], counts[1])

>>> print 'Distance between 1lst and 3rd documents:', euclidean
distances (counts[0], counts[2])

>>> print 'Distance between 2nd and 3rd documents:', euclidean
distances (counts[1], counts[2])

Distance between 1lst and 2nd documents: [[ 2.]]

Distance between 1st and 3rd documents: [[ 2.44948974]]
Distance between 2nd and 3rd documents: [[ 2.44948974]]

Now let's assume that we are using a corpus of news articles instead of our toy corpus.
Our dictionary may now have hundreds of thousands of unique words instead of
only twelve. The feature vectors representing the articles will each have hundreds of
thousands of elements, and many of the elements will be zero. Most sports articles
will not have any of the words particular to finance articles and most culture articles
will not have any of the words particular to articles about finance. High-dimensional
feature vectors that have many zero-valued elements are called sparse vectors.

Using high-dimensional data creates several problems for all machine learning tasks,
including those that do not involve text. The first problem is that high-dimensional
vectors require more memory than smaller vectors. NumPy provides some data types
that mitigate this problem by efficiently representing only the nonzero elements of
sparse vectors.

The second problem is known as the curse of dimensionality, or the Hughes effect.
As the feature space's dimensionality increases, more training data is required

to ensure that there are enough training instances with each combination of the
feature's values. If there are insufficient training instances for a feature, the algorithm
may overfit noise in the training data and fail to generalize. In the following sections,
we will review several strategies to reduce the dimensionality of text features.

In Chapter 7, Dimensionality Reduction with PCA, we will review techniques for
numerical dimensionality reduction.

Stop-word filtering

A basic strategy to reduce the dimensions of the feature space is to convert all

of the text to lowercase. This is motivated by the insight that the letter case does
not contribute to the meanings of most words; sandwich and Sandwich have the
same meaning in most contexts. Capitalization may indicate that a word is at the
beginning of a sentence, but the bag-of-words model has already discarded all
information from word order and grammar.
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A second strategy is to remove words that are common to most of the documents in
the corpus. These words, called stop words, include determiners such as the, a, and
an; auxiliary verbs such as do, be, and will; and prepositions such as on, around, and
beneath. Stop words are often functional words that contribute to the document's
meaning through grammar rather than their denotations. The Countvectorizer
class can filter stop words provided as the stop_words keyword argument and also
includes a basic English stop list. Let's recreate the feature vectors for our documents
using stop filtering:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> corpus = [

>>> 'UNC played Duke in basketball',
>>> 'Duke lost the basketball game',
>>> 'TI ate a sandwich'

>>> ]
>>> vectorizer = CountVectorizer (stop words='english')
>>> print vectorizer.fit transform(corpus) .todense ()
>>> print vectorizer.vocabulary
[[01 10010 1]
[01 11100 0]
[10000010]]
{u'duke': 2, u'basketball': 1, u'lost': 4, u'played': 5, u'game': 3,
u'sandwich': 6, u'unc': 7, u'ate': O}

The feature vectors have now fewer dimensions, and the first two document vectors
are still more similar to each other than they are to the third document.

Stemming and lemmatization

While stop filtering is an easy strategy for dimensionality reduction, most stop

lists contain only a few hundred words. A large corpus may still have hundreds of
thousands of unique words after filtering. Two similar strategies for further reducing
dimensionality are called stemming and lemmatization.

A high-dimensional document vector may separately encode several derived or
inflected forms of the same word. For example, jumping and jumps are both forms
of the word jump; a document vector in a corpus of long-jumping articles may
encode each inflected form with a separate element in the feature vector. Stemming
and lemmatization are two strategies to condense inflected and derived forms of a
word into a single feature.
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Let's consider another toy corpus with two documents:

>>> from sklearn.feature extraction.text import CountVectorizer
>>> corpus = [
>>> 'He ate the sandwiches',
>>> 'Every sandwich was eaten by him'
>>> ]
>>> vectorizer = CountVectorizer (binary=True, stop words='english')
>>> print vectorizer.fit transform(corpus) .todense ()
>>> print vectorizer.vocabulary
[[1 0 0 1]
[0 1 1 0]]
{u'sandwich': 2, u'ate': 0, u'sandwiches': 3, u'eaten': 1}

The documents have similar meanings, but their feature vectors have no elements

in common. Both documents contain a conjugation of ate and an inflected form

of sandwich. Ideally, these similarities should be reflected in the feature vectors.
Lemmatization is the process of determining the lemma, or the morphological

root, of an inflected word based on its context. Lemmas are the base forms of

words that are used to key the word in a dictionary. Stemming has a similar goal

to lemmatization, but it does not attempt to produce the morphological roots of
words. Instead, stemming removes all patterns of characters that appear to be affixes,
resulting in a token that is not necessarily a valid word. Lemmatization frequently
requires a lexical resource, like WordNet, and the word's part of speech. Stemming
algorithms frequently use rules instead of lexical resources to produce stems and can
operate on any token, even without its context.

Let's consider lemmatization of the word gathering in two documents:

corpus = [
'I am gathering ingredients for the sandwich.',
'There were many wizards at the gathering.'

]

In the first sentence gathering is a verb, and its lemma is gather. In the second
sentence gathering is a noun, and its lemma is gathering. We will use the Natural
Language Tool Kit (NTLK) to stem and lemmatize the corpus. NLTK can be
installed using the instructions at http://www.nltk.org/install.html. After
installation, execute the following code:

>>> import nltk
>>> nltk.download()
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Then follow the instructions to download the corpora for NLTK.

Using the parts of speech of gathering, NLTK's WordNetLemmatizer correctly
lemmatizes the words in both documents as shown in the following example:

>>> from nltk.stem.wordnet import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer ()

>>> print lemmatizer.lemmatize ('gathering', 'v')
>>> print lemmatizer.lemmatize ('gathering', 'n')
gather

gathering

Let's compare lemmatization with stemming. The Porter stemmer cannot consider
the inflected form's part of speech and returns gather for both documents:

>>> from nltk.stem import PorterStemmer
>>> stemmer = PorterStemmer ()

>>> print stemmer.stem('gathering')
gather

Now let's lemmatize our toy corpus:

>>> from nltk import word tokenize

>>> from nltk.stem import PorterStemmer

>>> from nltk.stem.wordnet import WordNetLemmatizer
>>> from nltk import pos tag

>>> wordnet tags = ['n', 'v']

>>> corpus = [

>>> 'He ate the sandwiches',

>>> 'Every sandwich was eaten by him'

>>> ]

>>> stemmer = PorterStemmer ()

>>> print 'Stemmed:', [[stemmer.stem(token) for token in word
tokenize (document)] for document in corpus]

>>> def lemmatize (token, tag):

>>> if tag[0] .lower () in ['n', 'v']:

>>> return lemmatizer.lemmatize (token, tagl[0].lower())

>>> return token

>>> lemmatizer = WordNetLemmatizer ()

>>> tagged corpus = [pos_tag(word tokenize (document)) for document in
corpus]

>>> print 'Lemmatized:', [[lemmatize (token, tag) for token, tag in
document] for document in tagged corpus]

Stemmed: [['He', 'ate', 'the', 'sandwich'], ['Everi',6 'sandwich',
'wa', 'eaten', 'by', 'him']]

Lemmatized: [['He', 'eat', 'the', 'sandwich'], ['Every',6 'sandwich',
'be', 'eat', 'by', 'him']]
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Through stemming and lemmatization, we reduced the dimensionality of our
feature space. We produced feature representations that more effectively encode the
meanings of the documents despite the fact that the words in the corpus's dictionary
are inflected differently in the sentences.

Extending bag-of-words with TF-IDF weights

In the previous section we used the bag-of-words representation to create feature
vectors that encode whether or not a word from the corpus's dictionary appears

in a document. These feature vectors do not encode grammar, word order, or the
frequencies of words. It is intuitive that the frequency with which a word appears

in a document could indicate the extent to which a document pertains to that word.
A long document that contains one occurrence of a word may discuss an entirely
different topic than a document that contains many occurrences of the same word. In
this section, we will create feature vectors that encode the frequencies of words, and
discuss strategies to mitigate two problems caused by encoding term frequencies.

Instead of using a binary value for each element in the feature vector, we will
now use an integer that represents the number of times that the words appeared
in the document.

We will use the following corpus. With stop word filtering, the corpus is represented
by the following feature vector:

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> corpus = ['The dog ate a sandwich, the wizard transfigured a
sandwich, and I ate a sandwich']

>>> vectorizer = CountVectorizer (stop words='english')

>>> print vectorizer.fit transform(corpus) .todense ()

[[2 1 31 1]]

{u'sandwich': 2, u'wizard': 4, u'dog': 1, u'transfigured': 3, u'ate':

0}

The element for dog is now set to 1 and the element for sandwich is set to 2 to indicate
that the corresponding words occurred once and twice, respectively. Note that the
binary keyword argument of CountVectorizer is omitted; its default value is

False, which causes it to return raw term frequencies rather than binary frequencies.
Encoding the terms' raw frequencies in the feature vector provides additional
information about the meanings of the documents, but assumes that all of the
documents are of similar lengths.
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Many words might appear with the same frequency in two documents, but the
documents could still be dissimilar if one document is many times larger than
the other. scikit-learn's TEdfTransformer object can mitigate this problem by
transforming a matrix of term frequency vectors into a matrix of normalized term
frequency weights. By default, TfEdf Transformer smoothes the raw counts and
applies L2 normalization. The smoothed, normalized term frequencies are given
by the following equation:

f(t.d)+1

g

tf(t.d)=

/(2,d) is the frequency of term f in document d and ||x| is the L2 norm of the
count vector. In addition to normalizing raw term counts, we can improve our
feature vectors by calculating logarithmically scaled term frequencies, which scale
the counts to a more limited range, or augmented term frequencies, which further
mitigates the bias for longer documents. Logarithmically scaled term frequencies
are given by the following equation:

tf(t,d)=log(f(t,d)+1)

The TfdfTransformer object calculates logarithmically scaled term frequencies
when its sublinear tf keyword argument is set to True. Augmented frequencies
are given by the following equation:

0.5% f(,d)
max f(w,d):wed

11 (t,d)=0.5+

max {f (W, d ) wed } is the greatest frequency of all of the words in document d.
scikit-learn 0.15.2 does not implement augmented term frequencies, but the output
of CountVectorizer can be easily transformed.
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Normalization, logarithmically scaled term frequencies, and augmented term
frequencies can represent the frequencies of terms in a document while mitigating
the effects of different document sizes. However, another problem remains with
these representations. The feature vectors contain large weights for terms that occur
frequently in a document, even if those terms occur frequently in most documents

in the corpus. These terms do not help to represent the meaning of a particular
document relative to the rest of the corpus. For example, most of the documents in a
corpus of articles about Duke's basketball team could include the words basketball,
Coach K, and flop. These words can be thought of as corpus-specific stop words and
may not be useful to calculate the similarity of documents. The inverse document
frequency (IDF) is a measure of how rare or common a word is in a corpus. The
inverse document frequency is given by the following equation:

N
I+|deD:ted|

idf(t,D)=log

Here, N is the total number of documents in the corpus and d € D : f € d is the
number of documents in the corpus that contain the term 7. A term's TF-IDF

value is the product of its term frequency and inverse document frequency.
TfidfTransformer returns TF-IDF's weight when its use_idf keyword argument is
set to its default value, True. Since TF-IDF weighted feature vectors are commonly
used to represent text, scikit-learn provides a TfidfVectorizer class that wraps
CountVectorizer and TfidfTransformer. Let's use TfidfVectorizer to create
TF-IDF weighted feature vectors for our corpus:

>>> from sklearn.feature extraction.text import TfidfVectorizer
>>> corpus = [
>>> 'The dog ate a sandwich and I ate a sandwich',
>>> 'The wizard transfigured a sandwich'
>>> ]
>>> vectorizer = TfidfVectorizer (stop words='english')
>>> print vectorizer.fit transform(corpus) .todense ()
[[ 0.75458397 0.37729199 0.53689271 O. 0. ]
[ 0. 0. 0.44943642 0.6316672 0.6316672 11

By comparing the TF-IDF weights to the raw term frequencies, we can see that words
that are common to many of the documents in the corpus, such as sandwich, have
been penalized.
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Space-efficient feature vectorizing with the
hashing trick

In this chapter's previous examples, a dictionary containing all of the corpus's unique
tokens is used to map a document's tokens to the elements of a feature vector.
Creating this dictionary has two drawbacks. First, two passes are required over the
corpus: the first pass is used to create the dictionary and the second pass is used to
create feature vectors for the documents. Second, the dictionary must be stored in
memory, which could be prohibitive for large corpora. It is possible to avoid creating
this dictionary through applying a hash function to the token to determine its index
in the feature vector directly. This shortcut is called the hashing trick. The following
example uses HashingVectorizer to demonstrate the hashing trick:

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> corpus = ['the', 'ate', 'bacon', 'cat']
>>> vectorizer = HashingVectorizer (n_features=6)
>>> print vectorizer.transform(corpus) .todense ()
[[-1. 0. 0. 0. 0. 0.]
[o0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. -1. 0.]
[0. 1. 0. 0. 0. 0.1]
The hashing trick is stateless. It can be used to create feature vectors in both parallel
and online, or streaming, applications because it does not require an initial pass over
the corpus.. Note that n_features is an optional keyword argument. Its default value,
2%, is adequate for most problems; it is set to 6 here so that the matrix will be small
enough to print and still display all of the nonzero features. Also, note that some of the
term frequencies are negative. Since hash collisions are possible, HashingVectorizer
uses a signed hash function. The value of a feature takes the same sign as its token's
hash; if the term cats appears twice in a document and is hashed to -3, the fourth
element of the document's feature vector will be decremented by two. If the term
dogs also appears twice and is hashed to 3, the fourth element of the feature vector
will be incremented by two. Using a signed hash function creates the possibility that
errors from hash collisions will cancel each other out rather than accumulate; a loss
of information is preferable to a loss of information and the addition of spurious
information. Another disadvantage of the hashing trick is that the resulting model
is more difficult to inspect, as the hashing function cannot recall what input token is
mapped to each element of the feature vector.
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Extracting features from images

Computer vision is the study and design of computational artifacts that process and
understand images. These artifacts sometimes employ machine learning. An overview
of computer vision is far beyond the scope of this book, but in this section we will
review some basic techniques used in computer vision to represent images in machine
learning problems.

Extracting features from pixel intensities

A digital image is usually a raster, or pixmap, that maps colors to coordinates on

a grid. An image can be viewed as a matrix in which each element represents a
color. A basic feature representation for an image can be constructed by reshaping
the matrix into a vector by concatenating its rows together. Optical character
recognition (OCR) is a canonical machine learning problem. Let's use this technique
to create basic feature representations that could be used in an OCR application for
recognizing hand-written digits in character-delimited forms.

The digits dataset included with scikit-learn contains grayscale images of more
than 1,700 hand-written digits between zero and nine. Each image has eight pixels
on a side. Each pixel is represented by an intensity value between zero and 16; white
is the most intense and is indicated by zero, and black is the least intense and is
indicated by 16. The following figure is an image of a hand-written digit taken from
the dataset:
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Let's create a feature vector for the image by reshaping its 8 x 8 matrix into a
64-dimensional vector:

>>> from sklearn import datasets

>>> digits = datasets.load digits()

>>> print 'Digit:', digits.target [0]

>>> print digits.images[0]

>>> print 'Feature vector:\n', digits.images[0].reshape (-1, 64)

Digit: 0
([ o. 0. 5. 13. 9. 1. 0. 0.1
[ o. 0. 13. 15. 10. 15. 5. 0.1
[ o. 3. 15. 2. 0 11 8. 0.1
[ o. 4. 12. 0. 0 8. 0.1
[ oO. 5. 8. 0. . 8. 0.1
[ 0. 4. 11. 0. .12, 7. 0.1
[ o. 2. 14. 5. 10. 12. 0. 0.1
[ o. 0. 6. 13. 10. 0. 0. 0.11
Feature vector:
[[ oO. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10.
15.
5 0 0 3 15 2 0. 11 8 0 0 4 12
0.
0 8 8 0 0 5 8. 0 0 9 8 0 0
4.
11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12. 0.
0.
0. 0. 6. 13. 10. 0. 0. 0.11

This representation can be effective for some basic tasks, like recognizing printed
characters. However, recording the intensity of every pixel in the image produces
prohibitively large feature vectors. A tiny 100 x 100 grayscale image would require
a 10,000-dimensional vector, and a 1920 x 1080 grayscale image would require a
2,073,600-dimensional vector. Unlike the TF-IDF feature vectors we created, in most
problems these vectors are not sparse. Space-complexity is not the only disadvantage
of this representation; learning from the intensities of pixels at particular locations
results in models that are sensitive to changes in the scale, rotation, and translation
of images. A model trained on our basic feature representations might not be able
to recognize the same zero if it were shifted a few pixels in any direction, enlarged,
or rotated a few degrees. Furthermore, learning from pixel intensities is itself
problematic, as the model can become sensitive to changes in illumination. For
these reasons, this representation is ineffective for tasks that involve photographs
or other natural images. Modern computer vision applications frequently use either
hand-engineered feature extraction methods that are applicable to many different
problems, or automatically learn features without supervision problem using
techniques such as deep learning. We will focus on the former in the next section.
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Extracting points of interest as features

The feature vector we created previously represents every pixel in the image; all of the
informative attributes of the image are represented and all of the noisy attributes are
represented too. After inspecting the training data, we can see that all of the images
have a perimeter of white pixels; these pixels are not useful features. Humans can
quickly recognize many objects without observing every attribute of the object. We
can recognize a car from the contours of the hood without observing the rear-view
mirrors, and we can recognize an image of a human face from a nose or mouth. This
intuition is motivation to create representations of only the most informative attributes
of an image. These informative attributes, or points of interest, are points that are
surrounded by rich textures and can be reproduced despite perturbing the image.
Edges and corners are two common types of points of interest. An edge is a boundary
at which pixel intensity rapidly changes, and a corner is an intersection of two edges.
Let's use scikit-image to extract points of interest from the following figure:

The code to extract the points of interest is as follows:

>>> import numpy as nps

>>> from skimage.feature import corner harris, corner peaks
>>> from skimage.color import rgb2gray

>>> import matplotlib.pyplot as plt

>>> import skimage.io as io

>>> from skimage.exposure import equalize hist

>>> def show_corners (corners, image) :

>>> fig = plt.figure()
>>> plt.gray()
>>> plt.imshow (image)
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>>> y_corner, X corner = zip(*corners)

>>> plt.plot (x corner, y corner, 'or')

>>> plt.x1im (0, image.shape[1l])

>>> plt.ylim(image.shape[0], 0)

>>> fig.set size inches(np.array(fig.get size inches()) * 1.5)
>>> plt.show()

>>> mandrill = io.imread('/home/gavin/PycharmProjects/mastering-
machine-learning/ch4/img/mandrill.png"')

>>> mandrill = equalize hist (rgb2gray(mandrill))

>>> corners = corner peaks(corner harris(mandrill), min distance=2)

>>> show corners (corners, mandrill)

The following figure plots the extracted points of interest. Of the image's 230400
pixels, 466 were extracted as points of interest. This representation is much more
compact; ideally, there is enough variation proximal to the points of interest to
reproduce them despite changes in the image's illumination.
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SIFT and SURF

Scale-Invariant Feature Transform (SIFT) is a method for extracting features from an
image that is less sensitive to the scale, rotation, and illumination of the image than the
extraction methods we have previously discussed. Each SIFT feature, or descriptor, is

a vector that describes edges and corners in a region of an image. Unlike the points of
interest in our previous example, SIFT also captures information about the composition
of each point of interest and its surroundings. Speeded-Up Robust Features (SURF) is
another method of extracting interesting points of an image and creating descriptions
that are invariant of the image's scale, orientation, and illumination. SURF can be
computed more quickly than SIFT, and it is more effective at recognizing features
across images that have been transformed in certain ways.

Explaining how SIFT and SURF extraction are implemented is beyond the scope of
this book. However, with an intuition for how they work, we can still effectively use
libraries that implement them.

In this example, we will extract SURF from the following image using the
mahotas library.
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Like the extracted points of interest, the extracted SURF are only the first step in
creating a feature representation that could be used in a machine learning task.
Different SURF will be extracted for each instance in the training set. In Chapter 6,
Clustering with K-Means, we will cluster extracted SUREF to learn features that can be
used by an image classifier. In the following example we will use mahotas to extract
SUREF descriptors:

>>>

>>>

>>>
>>>
>>>

The
[

6.

import mahotas as mh

from mahotas.features import surf

image =
print
print
first
73839947e+02

1.00000000e+00

.44845817e-04

1.65414959e-03

[y
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7

.16078772e-03

3.06559785e-04

.17893036e-03
.27973631e-01
.59719480e-01
.86712113e-03
.87531652e-03
.32414943e-01
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.35704122e-03
.20064616e-04
.93382280e-03
.92437341e-03
.02700555e-04
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.24033945e+03
.61191475e+00
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3.43443699%9e-04
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.91510135e-01
.98613061e-01
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.19041521e-03
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.41623138e-01
.26279888e-03
.76564805e-04
.10877776e-03
.56880279e-03
5.

45156362e-04]

Extracted 994 SURF descriptors

'The first SURF descriptor:\n',
'Extracted %s SURF descriptors' %

3.
.44035121e-05
.16723672e-03
.45077384e-04
.81736394e-04

2.66200498e-04
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.82458546e-04
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mh.imread('zipper.jpg', as_grey=True)
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.53469215e-03
.95228401e-04

2
3.
-8.
7
-3.

surf.surf (image) [0]
len (surf.surf (image))

.76324459e+03

28041690e-04
81290243e-04

.77655540e-04

13096961e-04

-5.79522387e-04

-1
1
1

-6.

-2
3.

-4
1
8.

-3.
3.

.85563853e-01
.95451021e-01
.40287015e-03

93986983e-04

.70528820e-01

28050743e-01

.67968721e-04
.22501486e-04

36243899e-05
15254535e-04
73674995e-05
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Data standardization

Many estimators perform better when they are trained on standardized data sets.
Standardized data has zero mean and unit variance. An explanatory variable with
zero mean is centered about the origin; its average value is zero. A feature vector
has unit variance when the variances of its features are all of the same order of
magnitude. For example, assume that a feature vector encodes two explanatory
variables. The first values of the first variable range from zero to one. The values of
the second explanatory variable range from zero to 100,000. The second feature must
be scaled to a range closer to {0,1} for the data to have unit variance. If a feature's
variance is orders of magnitude greater than the variances of the other features, that
feature may dominate the learning algorithm and prevent it from learning from the
other variables. Some learning algorithms also converge to the optimal parameter
values more slowly when data is not standardized. The value of an explanatory
variable can be standardized by subtracting the variable's mean and dividing the
difference by the variable's standard deviation. Data can be easily standardized
using scikit-learn's scale function:

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array ([

>>> [0., 0., 5., 13., 9., 1.1,
>>> (0., 0., 13., 15., 10., 15.7,
>>> [0., 3., 15., 2., 0., 11.]
>>> 1)

>>> print preprocessing.scale (X)

[[ O. -0.70710678 -1.38873015 0.52489066 0.59299945
-1.35873244]

[ O. -0.70710678 0.46291005 0.87481777 0.81537425
1.01904933]

[ O. 1.41421356 0.9258201 -1.39970842 -1.4083737

0.33968311]]
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Summary

In this chapter, we discussed feature extraction and developed an understanding about
the basic techniques for transforming arbitrary data into feature representations that
can be used by machine learning algorithms. First, we created features from categorical
explanatory variables using one-hot encoding and scikit-learn's Dictvectorizer.
Then, we discussed the creation of feature vectors for one of the most common types of
data used in machine learning problems: text. We worked through several variations
of the bag-of-words model, which discards all syntax and encodes only the frequencies
of the tokens in a document. We began by creating basic binary term frequencies

with CountVectorizer. You learned to preprocess text by filtering stop words

and stemming tokens, and you also replaced the term counts in our feature vectors
with TF-IDF weights that penalize common words and normalize for documents

of different lengths. Next, we created feature vectors for images. We began with an
optical character recognition problem in which we represented images of hand-written
digits with flattened matrices of pixel intensities. This is a computationally costly
approach. We improved our representations of images by extracting only their most
interesting points as SURF descriptors.

Finally, you learned to standardize data to ensure that our estimators can learn from
all of the explanatory variables and can converge as quickly as possible. We will use
these feature extraction techniques in the subsequent chapters' examples. In the next
chapter, we will combine the bag-of-words representation with a generalization of
multiple linear regressions to classify documents.
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From Linear Regression
to Logistic Regression

In Chapter 2, Linear Regression, we discussed simple linear regression, multiple
linear regression, and polynomial regression. These models are special cases of the
generalized linear model, a flexible framework that requires fewer assumptions
than ordinary linear regression. In this chapter, we will discuss some of these
assumptions as they relate to another special case of the generalized linear model
called logistic regression.

Unlike the models we discussed previously, logistic regression is used for classification
tasks. Recall that the goal in classification tasks is to find a function that maps an
observation to its associated class or label. A learning algorithm must use pairs of
feature vectors and their corresponding labels to induce the values of the mapping
function's parameters that produce the best classifier, as measured by a particular
performance metric. In binary classification, the classifier must assign instances to one
of the two classes. Examples of binary classification include predicting whether or not
a patient has a particular disease, whether or not an audio sample contains human
speech, or whether or not the Duke men's basketball team will lose in the first round
of the NCAA tournament. In multiclass classification, the classifier must assign one

of several labels to each instance. In multilabel classification, the classifier must assign
a subset of the labels to each instance. In this chapter, we will work through several
classification problems using logistic regression, discuss performance measures for the
classification task, and apply some of the feature extraction techniques you learned in
the previous chapter.



From Linear Regression to Logistic Regression

Binary classification with logistic
regression

Ordinary linear regression assumes that the response variable is normally distributed.
The normal distribution, also known as the Gaussian distribution or bell curve, is a
function that describes the probability that an observation will have a value between
any two real numbers. Normally distributed data is symmetrical. That is, half of the
values are greater than the mean and the other half of the values are less than the
mean. The mean, median, and mode of normally distributed data are also equal.
Many natural phenomena approximately follow normal distributions. For instance,
the height of people is normally distributed; most people are of average height, a few
are tall, and a few are short.

In some problems the response variable is not normally distributed. For instance,

a coin toss can result in two outcomes: heads or tails. The Bernoulli distribution
describes the probability distribution of a random variable that can take the positive
case with probability P or the negative case with probability 1-P. If the response
variable represents a probability, it must be constrained to the range {0,1}. Linear
regression assumes that a constant change in the value of an explanatory variable
results in a constant change in the value of the response variable, an assumption
that does not hold if the value of the response variable represents a probability.
Generalized linear models remove this assumption by relating a linear combination
of the explanatory variables to the response variable using a link function. In fact,
we already used a link function in Chapter 2, Linear Regression; ordinary linear
regression is a special case of the generalized linear model that relates a linear
combination of the explanatory variables to a normally distributed response variable
using the identity link function. We can use a different link function to relate a
linear combination of the explanatory variables to the response variable that is not
normally distributed.

In logistic regression, the response variable describes the probability that the outcome
is the positive case. If the response variable is equal to or exceeds a discrimination
threshold, the positive class is predicted; otherwise, the negative class is predicted. The
response variable is modeled as a function of a linear combination of the explanatory
variables using the logistic function. Given by the following equation, the logistic
function always returns a value between zero and one:

B 1
l+e™”’

F(1)
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The following is a plot of the value of the logistic function for the range {-6,6}:

1-

o
w

For logistic regression,  is equal to a linear combination of explanatory variables,
as follows:

1 + e‘(ﬂo +ﬁx)

The logit function is the inverse of the logistic function. It links F' (x) back to a linear
combination of the explanatory variables:

g(x)zzn%zﬂwﬂx

Now that we have defined the model for logistic regression, let's apply it to a binary
classification task.

Spam filtering

Our first problem is a modern version of the canonical binary classification problem:
spam classification. In our version, however, we will classify spam and ham SMS
messages rather than e-mail. We will extract TF-IDF features from the messages using
techniques you learned in Chapter 3, Feature Extraction and Preprocessing, and classify
the messages using logistic regression.
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We will use the SMS Spam Classification Data Set from the UCI Machine Learning
Repository. The dataset can be downloaded from http://archive.ics.uci.edu/
ml/datasets/SMS+Spam+Collection. First, let's explore the data set and calculate
some basic summary statistics using pandas:

>>> import pandas as pd

>>> df = pd.read csv('data/SMSSpamCollection', delimiter='\t',
header=None) B

>>> print df.head()

0 1
ham Go until jurong point, crazy.. Available only
ham Ok lar... Joking wif u oni...

0
1
2 spam Free entry in 2 a wkly comp to win FA Cup fina...
3 ham U dun say so early hor... U ¢ already then say...
4 ham Nah I don't think he goes to usf, he lives aro...
[

5 rows x 2 columns]

>>> print 'Number of spam messages:', df[df[0] == 'spam'] [0].count ()
>>> print 'Number of ham messages:', df[df[0] == 'ham'] [0] .count ()

Number of spam messages: 747
Number of ham messages: 4825

A binary label and a text message comprise each row. The data set contains 5,574
instances; 4,827 messages are ham and the remaining 747 messages are spam. The
ham messages are labeled with zero, and the spam messages are labeled with one.
While the noteworthy, or case, outcome is often assigned the label one and the
non-case outcome is often assigned zero, these assignments are arbitrary. Inspecting
the data may reveal other attributes that should be captured in the model. The
following selection of messages characterizes both of the classes:

Spam: Free entry in 2 a wkly comp to win FA Cup final tkts 21st May
2005. Text FA to 87121 to receive entry question(std txt rate)T&C's
apply 084528100750verl8's

Spam: WINNER!! As a valued network customer you have been selected
to receivea £900 prize reward! To claim call 09061701461. Claim code
KL341. Valid 12 hours only.

Ham: Sorry my roommates took forever, it ok if I come by now?

Ham: Finished class where are you.
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Let's make some predictions using scikit-learn's LogisticRegression class:

>>> import numpy as np

>>> import pandas as pd

>>> from sklearn.feature extraction.text import TfidfVectorizer
>>> from sklearn.linear model.logistic import LogisticRegression

>>> from sklearn.cross validation import train test split, cross val
score

First, we load the . csv file using pandas and split the data set into training and
test sets. By default, train_test_split () assigns 75 percent of the samples to the
training set and allocates the remaining 25 percent of the samples to the test set:

>>> df = pd.read csv('data/SMSSpamCollection', delimiter='\t',
header=None)

>>> X train raw, X test raw, y train, y test = train test split(df[1l],
df [0])

Next, we create a TEidfVectorizer. Recall from Chapter 3, Feature Extraction
and Preprocessing, that TEidfVectorizer combines CountVectorizer and
TfidfTransformer. We fit it with the training messages, and transform both the
training and test messages:

>>> vectorizer = TfidfVectorizer ()
>>> X train = vectorizer.fit transform(X train raw)
>>> X test = vectorizer.transform(X test raw)

Finally, we create an instance of LogisticRegression and train our model. Like
LinearRegression, LogisticRegression implements the £it () and predict ()
methods. As a sanity check, we printed a few predictions for manual inspection:

>>> classifier = LogisticRegression ()
>>> classifier.fit (X _train, y train)

>>> predictions = classifier.predict (X test)

>>> for i, prediction in enumerate (predictions[:5]):

>>> print 'Prediction: %s. Message: %s' % (prediction, X test
raw([i])

The following is the output of the script:

Prediction: ham. Message: If you don't respond imma assume you're
still asleep and imma start calling n shit

Prediction: spam. Message: HOT LIVE FANTASIES call now 08707500020
Just 20p per min NTT Ltd, PO Box 1327 Croydon CR9 5WB 0870 is a
national rate call
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Prediction: ham. Message: Yup... I havent been there before... You
want to go for the yoga? I can call up to book

Prediction: ham. Message: Hi, can i please get a &lt;#&gt; dollar
loan from you. I.1ll pay you back by mid february. Pls.

Prediction: ham. Message: Where do you need to go to get it?

How well does our classifier perform? The performance metrics we used for linear
regression are inappropriate for this task. We are only interested in whether the
predicted class was correct, not how far it was from the decision boundary. In the
next section, we will discuss some performance metrics that can be used to evaluate
binary classifiers.

Binary classification performance metrics

A variety of metrics exist to evaluate the performance of binary classifiers against
trusted labels. The most common metrics are accuracy, precision, recall, F1 measure,
and ROC AUC score. All of these measures depend on the concepts of true positives,
true negatives, false positives, and false negatives. Positive and negative refer to the
classes. True and false denote whether the predicted class is the same as the true class.

For our SMS spam classifier, a true positive prediction is when the classifier correctly
predicts that a message is spam. A true negative prediction is when the classifier
correctly predicts that a message is ham. A prediction that a ham message is spam

is a false positive prediction, and a spam message incorrectly classified as ham is a
false negative prediction. A confusion matrix, or contingency table, can be used to
visualize true and false positives and negatives. The rows of the matrix are the true
classes of the instances, and the columns are the predicted classes of the instances:

>>> from sklearn.metrics import confusion matrix
>>> import matplotlib.pyplot as plt

>>> y test [, o, o, o, o, 1, 1, 1, 1, 1]
>>> y pred = [0, 1, O, O, O, O, O, 1, 1, 1]
>>> confusion matrix = confusion matrix(y test, y pred)

>>> print (confusion matrix)

>>> plt.matshow(confusion matrix)
>>> plt.title('Confusion matrix')
>>> plt.colorbar ()

>>> plt.ylabel ('True label!')

>>> plt.xlabel ('Predicted label!')
>>> plt.show()

[[4 11
[2 311
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The confusion matrix indicates that there were four true negative predictions, three
true positive predictions, two false negative predictions, and one false positive
prediction. Confusion matrices become more useful in multi-class problems, in
which it can be difficult to determine the most frequent types of errors.

4.0

0Confusion matrixl

3.6

3.2

2.8

True label

Predicted label 11.2

Accuracy

Accuracy measures a fraction of the classifier's predictions that are correct.

scikit-learn provides a function to calculate the accuracy of a set of predictions
given the correct labels:

>>> from sklearn.metrics import accuracy_score
>>> y pred, y true = [0, 1, 1, 0], [1, 1, 1, 1]
>>> print 'Accuracy:',6 accuracy_score(y true, y_pred)

Accuracy: 0.5

[77]
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LogisticRegression.score () predicts and scores labels for a test set using
accuracy. Let's evaluate our classifier's accuracy:

>>> import numpy as np

>>> import pandas as pd

>>> from sklearn.feature_extraction.text import TfidfVectorizer

>>> from sklearn.linear model.logistic import LogisticRegression

>>> from sklearn.cross validation import train test split, cross val
score

>>> df = pd.read csv('data/sms.csv')

>>> X train raw, X test raw, y train, y test = train test
split (df ['message'], df['label']) B I
>>> vectorizer = TfidfVectorizer()

>>> X train = vectorizer.fit transform(X train raw)

>>> X test = vectorizer.transform(X test raw)

>>> classifier = LogisticRegression()

>>> classifier.fit (X train, y train)

>>> scores = cross_val score(classifier, X train, y train, cv=5)
>>> print np.mean(scores), scores

Accuracy 0.956217208018 [ 0.96057348 0.95334928 0.96411483
0.95454545 0.94850299]

Note that your accuracy may differ as the training and test sets are assigned
randomly. While accuracy measures the overall correctness of the classifier, it
does not distinguish between false positive errors and false negative errors. Some
applications may be more sensitive to false negatives than false positives, or vice
versa. Furthermore, accuracy is not an informative metric if the proportions of

the classes are skewed in the population. For example, a classifier that predicts
whether or not credit card transactions are fraudulent may be more sensitive to
false negatives than to false positives. To promote customer satisfaction, the credit
card company may prefer to risk verifying legitimate transactions than risk ignoring
a fraudulent transaction. Because most transactions are legitimate, accuracy is

not an appropriate metric for this problem. A classifier that always predicts that
transactions are legitimate could have a high accuracy score, but would not be
useful. For these reasons, classifiers are often evaluated using two additional
measures called precision and recall.
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Precision and recall

Recall from Chapter 1, The Fundamentals of Machine Learning, that precision is the
fraction of positive predictions that are correct. For instance, in our SMS spam
classifier, precision is the fraction of messages classified as spam that are actually
spam. Precision is given by the following ratio:

p-_1P
TP+ FP

Sometimes called sensitivity in medical domains, recall is the fraction of the truly
positive instances that the classifier recognizes. A recall score of one indicates

that the classifier did not make any false negative predictions. For our SMS spam
classifier, recall is the fraction of spam messages that were truly classified as spam.
Recall is calculated with the following ratio:

P
TP+ FN

Individually, precision and recall are seldom informative; they are both incomplete
views of a classifier's performance. Both precision and recall can fail to distinguish
classifiers that perform well from certain types of classifiers that perform poorly. A
trivial classifier could easily achieve a perfect recall score by predicting positive for
every instance. For example, assume that a test set contains ten positive examples
and ten negative examples. A classifier that predicts positive for every example will
achieve a recall of one, as follows:

R=—9
10+0

A classifier that predicts negative for every example, or that makes only false positive
and true negative predictions, will achieve a recall score of zero. Similarly, a classifier
that predicts that only a single instance is positive and happens to be correct will
achieve perfect precision.
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scikit-learn provides a function to calculate the precision and recall for a classifier
from a set of predictions and the corresponding set of trusted labels. Let's calculate
our SMS classifier's precision and recall:

>>> import numpy as np

>>> import pandas as pd

>>> from sklearn.feature extraction.text import TfidfVectorizer
>>> from sklearn.linear model.logistic import LogisticRegression

>>> from sklearn.cross validation import train test split, cross val
score

>>> df = pd.read csv('data/sms.csv')

>>> X train raw, X test raw, y train, y test = train test

split (df ['message'], df['label'])

>>> vectorizer = TfidfVectorizer()

>>> X train = vectorizer.fit transform(X train raw)

>>> X test = vectorizer.transform(X test_ raw)

>>> classifier = LogisticRegression ()

>>> classifier.fit (X _train, y train)

>>> precisions = cross_val score(classifier, X train, y train, cv=5,
scoring='precision')

>>> print 'Precision', np.mean(precisions), precisions

>>> recalls = cross_val score(classifier, X train, y train, cv=5,
scoring='recall')

>>> print 'Recalls', np.mean(recalls), recalls

Precision 0.992137651822 [ 0.98717949 0.98666667 1.
0.98684211 1. ]

Recall 0.677114261885 [ 0.7 0.67272727 0.6 0.68807339
0.72477064]

Our classifier's precision is 0.992; almost all of the messages that it predicted as
spam were actually spam. Its recall is lower, indicating that it incorrectly classified
approximately 22 percent of the spam messages as ham. Your precision and recall
may vary since the training and test data are randomly partitioned.

Calculating the F1 measure

The F1 measure is the harmonic mean, or weighted average, of the precision and
recall scores. Also called the f-measure or the f-score, the F1 score is calculated using
the following formula:

PR

F1=2———
P+R
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The F1 measure penalizes classifiers with imbalanced precision and recall scores,
like the trivial classifier that always predicts the positive class. A model with perfect
precision and recall scores will achieve an F1 score of one. A model with a perfect
precision score and a recall score of zero will achieve an F1 score of zero. As for
precision and recall, scikit-learn provides a function to calculate the F1 score for

a set of predictions. Let's compute our classifier's F1 score. The following snippet
continues the previous code sample:

>>> fls = cross val score(classifier, X train, y train, cv=5,
scoring="'£f1")

>>> print 'F1l', np.mean(fls), fls

F1 0.80261302628 [ 0.82539683 0.8 0.77348066 0.83157895

0.7826087 ]

The arithmetic mean of our classifier's precision and recall scores is 0.803. As the
difference between the classifier's precision and recall is small, the F1 measure's
penalty is small. Models are sometimes evaluated using the F0.5 and F2 scores,
which favor precision over recall and recall over precision, respectively.

ROC AUC

A Receiver Operating Characteristic, or ROC curve, visualizes a classifier's
performance. Unlike accuracy, the ROC curve is insensitive to data sets with
unbalanced class proportions; unlike precision and recall, the ROC curve illustrates
the classifier's performance for all values of the discrimination threshold. ROC
curves plot the classifier's recall against its fall-out. Fall-out, or the false positive
rate, is the number of false positives divided by the total number of negatives. It is
calculated using the following formula:

p=_tP
TN + FP
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AUC is the area under the ROC curve; it reduces the ROC curve to a single value,
which represents the expected performance of the classifier. The dashed line in the
following figure is for a classifier that predicts classes randomly; it has an AUC of

0.5. The solid curve is for a classifier that outperforms random guessing;:

10 Receiver Operating Characteristic
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Let's plot the ROC curve for our SMS spam classifier:

>>> import numpy as np

>>> import pandas as pd

>>>

import matplotlib.pyplot as plt

>>>

>>>

from
from

from
score

>>>

>>> from
>>> df =

>>> X train raw, X test raw, y train, y test =
split (df ['message'],

>>> vecto

sklearn
sklearn
sklearn

sklearn
pd.read

rizer =

.feature extraction.text import TfidfVectorizer
.linear model.logistic import LogisticRegression

.cross_validation import train test split,

.metrics import roc curve, auc
_csv('data/sms.csv')

train test
df ['label'])

TfidfVectorizer ()

cross_val
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>>> X train = vectorizer.fit transform(X train raw)

>>> X test = vectorizer.transform(X test raw)

>>> classifier = LogisticRegression ()

>>> classifier.fit (X train, y train)

>>> predictions = classifier.predict proba (X test)

>>> false positive rate, recall, thresholds = roc curve(y_ test,
predictions[:, 1])

>>> roc_auc = auc(false positive rate, recall)

>>> plt.title('Receiver Operating Characteristic')

>>> plt.plot (false positive rate, recall, 'b', label='AUC = %0.2f' %
roc_auc)

>>> plt.legend(loc="'lower right')

>>> plt.plot ([0, 11, [0, 1], 'r--'")

>>> plt.x1im([0.0, 1.01)

>>> plt.ylim([0.0, 1.0])

>>> plt.ylabel ('Recall')

>>> plt.xlabel ('Fall-out')

>>> plt.show()

From the ROC AUC plot, it is apparent that our classifier outperforms random
guessing; most of the plot area lies under its curve:
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Tuning models with grid search

Hyperparameters are parameters of the model that are not learned. For example,
hyperparameters of our logistic regression SMS classifier include the value of

the regularization term and thresholds used to remove words that appear too
frequently or infrequently. In scikit-learn, hyperparameters are set through the
model's constructor. In the previous examples, we did not set any arguments for
LogisticRegression (); we used the default values for all of the hyperparameters.
These default values are often a good start, but they may not produce the optimal
model. Grid search is a common method to select the hyperparameter values
that produce the best model. Grid search takes a set of possible values for each
hyperparameter that should be tuned, and evaluates a model trained on each
element of the Cartesian product of the sets. That is, grid search is an exhaustive
search that trains and evaluates a model for each possible combination of the
hyperparameter values supplied by the developer. A disadvantage of grid search
is that it is computationally costly for even small sets of hyperparameter values.
Fortunately, it is an embarrassingly parallel problem; many models can easily be
trained and evaluated concurrently since no synchronization is required between
the processes. Let's use scikit-learn's Gridsearchcv () function to find better
hyperparameter values:

import pandas as pd

from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.linear model.logistic import LogisticRegression

from sklearn.grid search import GridSearchCVv

from sklearn.pipeline import Pipeline

from sklearn.cross validation import train test split

from sklearn.metrics import precision score, recall score, accuracy

score
pipeline = Pipeline ([
('vect', TfidfVectorizer (stop words='english')),
('clf', LogisticRegression())
1)
parameters = {
'vect max df': (0.25, 0.5, 0.75),
'vect stop words': ('english', None),
'vect  max features': (2500, 5000, 10000, None),
'vect  ngram range': ((1, 1), (1, 2)),
'vect  use idf': (True, False),
'vect  norm': ('l1', '12'),
'clf penalty': ('l1', 'l2'),
'clf C': (0.01, 0.1, 1, 10),
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GridSearchCV () takes an estimator, a parameter space, and performance measure.
The argument n_jobs specifies the maximum number of concurrent jobs; set n_jobs
to -1 to use all CPU cores. Note that £it () must be called in a Python main block in
order to fork additional processes; this example must be executed as a script, and not
in an interactive interpreter:

if name == " main ":
grid search = GridSearchCV (pipeline, parameters, n jobs=-1,
verbose=1, scoring='accuracy',6 cv=3)
df = pd.read csv('data/sms.csv')
X, y, = df ['message'], df['label']
X train, X test, y train, y test = train test split(X, y)
grid search.fit (X train, y train)
print 'Best score: %0.3f' % grid search.best score
print 'Best parameters set:'
best parameters = grid search.best estimator .get params()
for param name in sorted(parameters.keys()):
print '\t%s: %r' % (param name, best parameters[param name])
predictions = grid search.predict (X test)

print 'Accuracy:', accuracy score(y_ test, predictions)
print 'Precision:', precision score(y_ test, predictions)
print 'Recall:', recall score(y test, predictions)

The following is the output of the script:

Fitting 3 folds for each of 1536 candidates, totalling 4608 fits
Parallel (n_jobs=-1)]: Done 1 jobs elapsed: 0.2s
Done 50 jobs

|

| elapsed: 4.0s
Done 200 jobs | elapsed: 16.9s

|

|

Parallel (n_jobs=-1
Parallel (n_jobs=-1
Parallel (n_jobs=-1 Done 450 jobs

Done 800 jobs

elapsed: 36.7s

Parallel (n_jobs=-1 elapsed: 1.1min

[
[
[
[
[
[
[
[
[
[

Done 1250 jobs | elapsed: 1.7min
Parallel (n_jobs=-1 Done 1800 jobs | elapsed: 2.5min
Parallel (n_jobs=-1 Done 2450 jobs | elapsed: 3.4min
Parallel (n_jobs=-1 Done 3200 jobs | elapsed: 4.4min
Parallel (n_jobs=-1 Done 4050 jobs | elapsed: 7.7min

)
)1
)1
)1
)1
Parallel (n_jobs=-1)1]:
)1
)1
)1
)1
)1

[Parallel (n_jobs=-1 Done 4608 out of 4608 | elapsed: 8.5min
finished
Best score: 0.983
Best parameters set:
clf C: 10
clf penalty: 'l12'
vect_ _max_df: 0.5

vect_ max_features: None
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vect ngram range: (1, 2)

vect norm: '12'

vect stop words: None

vect use idf: True
Accuracy: 0.989956958393
Precision: 0.988095238095
Recall: 0.932584269663

Optimizing the values of the hyperparameters has improved our model's recall score
on the test set.

Multi-class classification

In the previous sections you learned to use logistic regression for binary classification.
In many classification problems, however, there are more than two classes that are
of interest. We might wish to predict the genres of songs from samples of audio,
or classify images of galaxies by their types. The goal of multi-class classification
is to assign an instance to one of the set of classes. scikit-learn uses a strategy
called one-vs.-all, or one-vs.-the-rest, to support multi-class classification. One-
vs.-all classification uses one binary classifier for each of the possible classes. The
class that is predicted with the greatest confidence is assigned to the instance.
LogisticRegression supports multi-class classification using the one-versus-all
strategy out of the box. Let's use LogisticRegression for a multi-class
classification problem.

Assume that you would like to watch a movie, but you have a strong aversion

to watching bad movies. To inform your decision, you could read reviews of the
movies you are considering, but unfortunately you also have a strong aversion to
reading movie reviews. Let's use scikit-learn to find the movies with good reviews.

In this example, we will classify the sentiments of phrases taken from movie reviews
in the Rotten Tomatoes data set. Each phrase can be classified as one of the following
sentiments: negative, somewhat negative, neutral, somewhat positive, or positive.
While the classes appear to be ordered, the explanatory variables that we will use

do not always corroborate this order due to sarcasm, negation, and other linguistic
phenomena. Instead, we will approach this problem as a multi-class classification task.
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The data can be downloaded from http://www.kaggle.com/c/sentiment -
analysis-on-movie-reviews/data. First, let's explore the data set using pandas.
Note that the import and data-loading statements in the following snippet are
required for the subsequent snippets:

>>> import pandas as pd

>>> df = pd.read csv('movie-reviews/train.tsv', header=0,
delimiter='\t"')

>>> print df.count ()

PhraseId 156060
SentencelId 156060
Phrase 156060
Sentiment 156060

dtype: inté4
The columns of the data set are tab delimited. The data set contains 1,56,060 instances.

>>> print df.head()

PhraseId Sentenceld

Phrase \
0 1 1 A series of escapades demonstrating the adage
1 2 1 A series of escapades demonstrating the adage
2 3 1 A
series
3 4 1
A
4 5 1
series
Sentiment
0 1
1 2
2 2
3 2
4 2

[5 rows x 4 columns]
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The sentiment column contains the response variables. The 0 label corresponds

to the sentiment negative, 1 corresponds to somewhat negative, and so on. The
Phrase column contains the raw text. Each sentence from the movie reviews has

ed into smaller phrases. We will not require the PhraseId and SentenceId
columns in this example. Let's print some of the phrases and examine them:

been pars

>>> print df ['Phrase'] .head(10)

0 A series of escapades demonstrating the adage
1 A series of escapades demonstrating the adage
2 A series
3 A
4 series
5 of escapades demonstrating the adage that what...
6 of
7 escapades demonstrating the adage that what is...
8 escapades
9 demonstrating the adage that what is good for
Name: Phrase, dtype: object

Now let's examine the target classes:
>>> print df['Sentiment'] .describe ()
count 156060.000000
mean 2.063578
std 0.893832
min 0.000000
25% 2.000000
50% 2.000000
75% 3.000000
max 4.000000
Name: Sentiment, dtype: floaté64

>>> print df ['Sentiment'].value counts ()

o b R W N

79582
32927
27273
9206
7072
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dtype: inté4

>>> print df['Sentiment'].value counts()/df['Sentiment'] .count ()

o b R W N

dtyp

.509945
.210989
.174760
.058990
.045316
e: floate4

o O O O o

The most common class, Neutral, includes more than 50 percent of the instances.
Accuracy will not be an informative performance measure for this problem, as a
degenerate classifier that predicts only Neutral can obtain an accuracy near 0.5.
Approximately one quarter of the reviews are positive or somewhat positive, and
approximately one fifth of the reviews are negative or somewhat negative. Let's train
a classifier with scikit-learn:

import pandas as pd
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.linear model.logistic import LogisticRegression
from sklearn.cross validation import train test split
from sklearn.metrics.metrics import classification report, accuracy
score, confusion matrix
from sklearn.pipeline import Pipeline
from sklearn.grid search import GridSearchCVv
def main() :
pipeline = Pipeline ([
('vect', TfidfVectorizer (stop words='english')),
('clf', LogisticRegression())
1)
parameters = {
'vect  _max df': (0.25, 0.5),
'vect_ _ngram range': ((1, 1), (1, 2)),
'vect  use idf': (True, False),
'clf_c': (0.1, 1, 10),
}
df = pd.read _csv('data/train.tsv', header=0, delimiter='\t"')
X, y = df ['Phrase'], df['Sentiment'].as matrix()
X train, X test, y train, y test = train test split(X, y, train
size=0.5)
grid search = GridSearchCV(pipeline, parameters, n_ jobs=3,
verbose=1, scoring='accuracy')
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grid search.fit (X train, y train)

print 'Best score: %0.3f' % grid search.best score

print 'Best parameters set:'

best parameters = grid search.best estimator .get params()
for param name in sorted(parameters.keys()) :

)

print '\t%s: %r' % (param name, best parameters [param name])

if name == ' main ':
main ()

The following is the output of the script:

Fitting 3 folds for each of 24 candidates, totalling 72 fits

[Parallel (n_jobs=3)]: Done 1 jobs | elapsed: 3.3s
[Parallel (n jobs=3)]: Done 50 jobs | elapsed: 1.1lmin
[Parallel (n _jobs=3)]: Done 68 out of 72 | elapsed: 1.9min
remaining: 6.8s

[Parallel (n jobs=3)]: Done 72 out of 72 | elapsed: 2.1lmin finished
Best score: 0.620
Best parameters set:

clf C: 10
vect  max df: 0.25
vect_ ngram range: (1, 2)

vect_ use_idf: False

Multi-class classification performance metrics

As with binary classification, confusion matrices are useful for visualizing the types
of errors made by the classifier. Precision, recall, and F1 score can be computed for
each of the classes, and accuracy for all of the predictions can also be calculated.
Let's evaluate our classifier's predictions. The following snippet continues the
previous example:

predictions = grid search.predict (X test)

print 'Accuracy:', accuracy score(y_ test, predictiomns)

print 'Confusion Matrix:', confusion matrix(y test, predictions)

print 'Classification Report:', classification report(y test,
predictions)

[90]



Chapter 4

The following will be appended to the output:

Accuracy: 0.636370626682

Confusion Matrix: [[ 1129 1679 634 64 9]
[ 917 6121 6084 505 35]
[ 229 3091 32688 3614 166]
[ 34 408 6734 8068 1299]

[ 5 35 494 2338 1650]]
Classification Report: precision recall fl-score
support
0 0.49 0.32 0.39 3515
1 0.54 0.45 0.49 13662
2 0.70 0.82 0.76 39788
3 0.55 0.49 0.52 16543
4 0.52 0.36 0.43 4522
avg / total 0.62 0.64 0.62 78030

First, we make predictions using the best parameter set found by using grid searching.
While our classifier is an improvement over the baseline classifier, it frequently
mistakes Somewhat Positive and Somewhat Negative for Neutral.

Multi-label classification and problem
transformation

In the previous sections, we discussed binary classification, in which each instance
must be assigned to one of the two classes, and multi-class classification, in which each
instance must be assigned to one of the set of classes. The final type of classification
problem that we will discuss is multi-label classification, in which each instance can

be assigned a subset of the set of classes. Examples of multi-label classification include
assigning tags to messages posted on a forum, and classifying the objects present in an
image. There are two groups of approaches for multi-label classification.
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Problem transformation methods are techniques that cast the original multi-label
problem as a set of single-label classification problems. The first problem
transformation method that we will review converts each set of labels encountered
in the training data to a single label. For example, consider a multi-label classification
problem in which news articles must be assigned to one or more categories from

a set. The following training data contains seven articles that can pertain to one or
more of the five categories.

Categories
Instance | Local | US | Business | Science and Technology | Sports
1 v v
2 v v
3 v v
4 v
5 v
6 v
7 v v

Transforming the problem into a single-label classification task using the power set of
labels seen in the training data results in the following training data. Previously, the
first instance was classified as Local and Us. Now it has a single label, Local A Us.

Category
US A Business A
Local . Local A . .
Instance | Local Business . Science and | Science and | Sports
AUS Business
Technology | Technology
1 4
2 v
3 v
4 4
5 4
6 v
7 v
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The multi-label classification problem that had five classes is now a multi-class
classification problem with seven classes. While the power set problem
transformation is intuitive, increasing the number of classes is frequently impractical;
this transformation can produce many new labels that correspond to only a few
training instances. Furthermore, the classifier can only predict combinations of labels
that were seen in the training data.

Category Category
Instance Local —Local Instance | Business | "Business
1 v 1 4
2 v 2 v
3 4 3 4
4 4 4 v
5 v 5 v
6 v 6 v
7 v 7 4
Category Category
Instance Us -US Instance | US -US
1 4 1 4
2 4 2 4
3 v 3 v
4 v 4 v
5 v 5 4
6 v 6 v
7 v 7 v
Category Category
Instance Sci. and Tech. | =Sci. and Tech. | Instance | Sports —Sports
1 v 1 v
2 v 2 v
3 v 3 4
4 v 4 v
5 4 5 4
6 v 6 v
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A second problem transformation is to train one binary classifier for each of the
labels in the training set. Each classifier predicts whether or not the instance belongs
to one label. Our example would require five binary classifiers; the first classifier
would predict whether or not an instance should be classified as Local, the second
classifier would predict whether or not an instance should be classified as us, and
so on. The final prediction is the union of the predictions from all of the binary
classifiers. The transformed training data is shown in the previous figure. This
problem transformation ensures that the single-label problems will have the same
number of training examples as the multilabel problem, but ignores relationships
between the labels.

Multi-label classification performance metrics

Multi-label classification problems must be assessed using different performance
measures than single-label classification problems. Two of the most common
performance metrics are Hamming loss and Jaccard similarity. Hamming loss is
the average fraction of incorrect labels. Note that Hamming loss is a loss function,
and that the perfect score is zero. Jaccard similarity, or the Jaccard index, is the size
of the intersection of the predicted labels and the true labels divided by the size of
the union of the predicted and true labels. It ranges from zero to one, and one is the
perfect score. Jaccard similarity is calculated by the following equation:

~ |Predicted N True|

J (Predicted,Tl‘ue) B |Predicted ) True|

>>> import numpy as np
>>> from sklearn.metrics import hamming loss

>>> print hamming loss(np.array([[0.0, 1.0], [1.0, 1.0]1),
np.array([[0.0, 1.0], [1.0, 1.011))
0.0

>>> print hamming loss(np.array([[0.0, 1.0], [1.0, 1.0]1),
np.array([[1.0, 1.0], [1.0, 1.0]1))

0.25

>>> print hamming loss(np.array([[0.0, 1.0], [1.0, 1.0]1),
np.array([[1.0, 1.0], [0.0, 1.011))

0.5

[94]



Chapter 4

>>> print jaccard similarity score(np.array([[0.0, 1.0], [1.0, 1.0]1),
np.array([[0.0, 1.0], [1.0, 1.011))
1.0

>>> print jaccard similarity score(np.array([[0.0, 1.0], [1.0, 1.0]1),
np.array([[1.0, 1.0], [1.0, 1.011))
0.75

>>> print jaccard similarity score(np.array([[0.0, 1.0], [1.0, 1.0]1),
np.array([[1.0, 1.0], [0.0, 1.011))
0.5

Summary

In this chapter we discussed generalized linear models, which extend ordinary linear
regression to support response variables with non-normal distributions. Generalized
linear models use a link function to relate a linear combination of the explanatory
variables to the response variable; unlike ordinary linear regression, the relationship
does not need to be linear. In particular, we examined the logistic link function, a
sigmoid function that returns a value between zero and one for any real number.

We discussed logistic regression, a generalized linear model that uses the logistic
link function to relate explanatory variables to a Bernoulli-distributed response
variable. Logistic regression can be used for binary classification, a task in which an
instance must be assigned to one of the two classes; we used logistic regression to
classify spam and ham SMS messages. We then discussed multi-class classification,
a task in which each instance must be assigned one label from a set of labels. We
used the one-vs.-all strategy to classify the sentiments of movie reviews. Finally, we
discussed multi-label classification, in which instances must be assigned a subset of
a set of labels. Having completed our discussion of regression and classification with
generalized linear models, we will introduce a non-linear model for regression and
classification called the decision tree in the next chapter.
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Nonlinear Classification
and Regression with
Decision Trees

In the previous chapters we discussed generalized linear models, which relate a
linear combination of explanatory variables to one or more response variables using
a link function. You learned to use multiple linear regression to solve regression
problems, and we used logistic regression for classification tasks. In this chapter we
will discuss a simple, nonlinear model for classification and regression tasks: the
decision tree. We'll use decision trees to build an ad blocker that can learn to classify
images on a web page as banner advertisements or page content. Finally, we will
introduce ensemble learning methods, which combine a set of models to produce an
estimator with better predictive performance than any of its component estimators.

Decision trees

Decision trees are tree-like graphs that model a decision. They are analogous to the
parlor game Twenty Questions. In Twenty Questions, one player, called the answerer,
chooses an object but does not reveal the object to the other players, who are called
questioners. The object should be a common noun, such as "guitar" or "sandwich", but
not 1969 Gibson Les Paul Custom" or "North Carolina". The questioners must guess
the object by asking as many as twenty questions that can be answered with yes, no, or
maybe. An intuitive strategy for questioners is to ask questions of increasing specificity;
asking "is it a musical instrument?" as the first question will not efficiently reduce the
number of possibilities. The branches of a decision tree specify the shortest sequences
of explanatory variables that can be examined in order to estimate the value of a
response variable. To continue the analogy, in Twenty Questions the questioner and
the answerers all have knowledge of the training data, but only the answerer knows
the values of the features for the test instance.
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Decision trees are commonly learned by recursively splitting the set of training
instances into subsets based on the instances' values for the explanatory variables.
The following diagram depicts a decision tree that we will look at in more detail
later in the chapter.

favorite food=Cat food <= 0.5000
centropy = 0.985228136034

samples = 14
is grumpy <= 0.5000 entropy = 0.0000
centropy = 0.811278124459 samples = 6
samples = § value = [ 6. 0.]
entropy = 0.0000 plays fetch <= 0.5000
samples = 4 entropy = 1.0
value = [ 0. 4.] samples = 4

LN

favorite food=Dog food <= 0.5000 entropy = 0.0000
entropy = 0.918295834054 samples = 1
samples = 3 value = [ 0. 1.]

entropy = 0.0000 entropy = 0.0000

samples = 2 samples = 1
value = [ 2. 0.] value = [ 0. 1.]

Represented by boxes, the interior nodes of the decision tree test explanatory
variables. These nodes are connected by edges that specify the possible outcomes of
the tests. The training instances are divided into subsets based on the outcomes of
the tests. For example, a node might test whether or not the value of an explanatory
variable exceeds a threshold. The instances that pass the test will follow an edge

to the node's right child, and the instances that fail the test will follow an edge to
the node's left child. The children nodes similarly test their subsets of the training
instances until a stopping criterion is satisfied. In classification tasks, the leaf nodes
of the decision tree represent classes. In regression tasks, the values of the response
variable for the instances contained in a leaf node may be averaged to produce the
estimate for the response variable. After the decision tree has been constructed,
making a prediction for a test instance requires only following the edges until a
leaf node is reached.
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Training decision trees

Let's create a decision tree using an algorithm called Iterative Dichotomiser 3 (ID3).
Invented by Ross Quinlan, ID3 was one of the first algorithms used to train decision
trees. Assume that you have to classify animals as cats or dogs. Unfortunately, you
cannot observe the animals directly and must use only a few attributes of the animals
to make your decision. For each animal, you are told whether or not it likes to play
fetch, whether or not it is frequently grumpy, and its favorite of three types of food.

To classify new animals, the decision tree will examine an explanatory variable at
each node. The edge it follows to the next node will depend on the outcome of the test.
For example, the first node might ask whether or not the animal likes to play fetch. If
the animal does, we will follow the edge to the left child node; if not, we will follow
the edge to the right child node. Eventually an edge will connect to a leaf node that
indicates whether the animal is a cat or a dog.

The following fourteen instances comprise our training data:

Training instance | Plays fetch | Is grumpy Favorite food Species
1 Yes No Bacon Dog
2 No Yes Dog Food Dog
3 No Yes Cat food Cat
4 No Yes Bacon Cat
5 No No Cat food Cat
6 No Yes Bacon Cat
7 No Yes Cat Food Cat
8 No No Dog Food Dog
9 No Yes Cat food Cat
10 Yes No Dog Food Dog
11 Yes No Bacon Dog
12 No No Cat food Cat
13 Yes Yes Cat food Cat
14 Yes Yes Bacon Dog
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From this data we can see that cats are generally grumpier than the dogs. Most dogs
play fetch and most cats refuse. Dogs prefer dog food and bacon, whereas cats only
like cat food and bacon. The is grumpy and plays fetch explanatory variables

can be easily converted to binary-valued features. The favorite food explanatory
variable is a categorical variable that has three possible values; we will one-hot encode
it. Recall from Chapter 3, Feature Extraction and Preprocessing, that one-hot encoding
represents a categorical variable with as many binary-valued features as there are
values for variable. Representing the categorical variable with a single integer-valued
feature will encode an artificial order to its values. Since favorite food has three
possible states, we will represent it with three binary-valued features. From this table,
we can manually construct classification rules. For example, an animal that is grumpy
and likes cat food must be a cat, while an animal that plays fetch and likes bacon must
be a dog. Constructing these classification rules by hand for even a small data set is
cumbersome. Instead, we will learn these rules by creating a decision tree.

Selecting the questions

Like Twenty Questions, the decision tree will estimate the value of the response
variable by testing the values of a sequence of explanatory variables. Which
explanatory variable should be tested first? Intuitively, a test that produces subsets that
contain all cats or all dogs is better than a test that produces subsets that still contain
both cats and dogs. If the members of a subset are of different classes, we are still
uncertain about how to classify the instance. We should also avoid creating tests that
separate only a single cat or dog from the others; such tests are analogous to asking
specific questions in the first few rounds of Twenty Questions. More formally, these
tests can infrequently classify an instance and might not reduce our uncertainty. The
tests that reduce our uncertainty about the classification the most are the best. We can
quantify the amount of uncertainty using a measure called entropy.

Measured in bits, entropy quantifies the amount of uncertainty in a variable. Entropy
is given by the following equation, where 7 is the number of outcomes and P (xi) is
the probability of the outcome i. Common values for b are 2, €, and 10. Because the
log of a number less than one will be negative, the entire sum is negated to return a
positive value.

n

H(X)z_zp(x,‘)logbp(xi)

i=l1
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For example, a single toss of a fair coin has only two outcomes: heads and tails. The
probability that the coin will land on heads is 0.5, and the probability that it will land
on tails is 0.5. The entropy of the coin toss is equal to the following;:

H(X)=-(0.5log,0.5+0.5log, 0.5)=1.0

That is, only one bit is required to represent the two equally probable outcomes,
heads and tails. Two tosses of a fair coin can result in four possible outcomes: heads
and heads, heads and tails, tails and heads, and tails and tails. The probability of
each outcome is 0.5 x 0.5 = 0.25. The entropy of two tosses is equal to the following;:

H(X)=-(0.25log, 0.25+0.2510g, 0.25+0.25log, 0.25+0.25log, 0.25) = 2.0

If the coin has the same face on both sides, the variable representing its outcome has
0 bits of entropy; that is, we are always certain of the outcome and the variable will
never represent new information. Entropy can also be represented as a fraction of

a bit. For example, an unfair coin has two different faces, but is weighted such that
the faces are not equally likely to land in a toss. Assume that the probability that an
unfair coin will land on heads is 0.8, and the probability that it will land on tails is
0.2. The entropy of a single toss of this coin is equal to the following;:

H(X)=-(091og, 0.9+0.2log, 0.2) = 0.7219280948873623

The outcome of a single toss of an unfair coin can have a fraction of one bit of
entropy. There are two possible outcomes of the toss, but we are not totally uncertain
since one outcome is more frequent.

Let's calculate the entropy of classifying an unknown animal. If an equal number of
dogs and cats comprise our animal classification training data and we do not know
anything else about the animal, the entropy of the decision is equal to one. All we
know is that the animal could be either a cat or a dog; like the fair coin toss, both
outcomes are equally likely. Our training data, however, contains six dogs and eight
cats. If we do not know anything else about the unknown animal, the entropy of the
decision is given by the following:

6 6 8 8
H(X)=-| —log, —log,+—log, — | =0.985228136.342516
(X) (14 8274 %8y g214j
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Since cats are more common, we are less uncertain about the outcome. Now let's find
the explanatory variable that will be most helpful in classifying the animal; that is,
let's find the explanatory variable that reduces the entropy the most. We can test the
plays fetch explanatory variable and divide the training instances into animals
that play fetch and animals that don't. This produces the two following subsets:

plays fetch <= 0.5000
entropy = 0. 985228136034
samples = 14
cntropy = 0.7642 entropy = 0.7219
samples = 9 samples = 5
value = [ 7. 2.] value = [ 1. 4.]

Decision trees are often visualized as diagrams that are similar to flowcharts. The
top box of the previous diagram is the root node; it contains all of our training
instances and specifies the explanatory variable that will be tested. At the root node
we have not eliminated any instances from the training set and the entropy is equal
to approximately 0.985. The root node tests the plays fetch explanatory variable.
Recall that we converted this Boolean explanatory variable to a binary-valued
feature. Training instances for which plays fetch is equal to zero follow the edge
to the root's left child, and training instances for animals that do play fetch follow
the edge to the root's right child node. The left child node contains a subset of the
training data with seven cats and two dogs that do not like to play fetch. The entropy
at this node is given by the following;:

2 2 7 7
H(X) =—| —log, —log,+—log, — | = 0.7642045065086203
9 9 9 9
The right child contains a subset with one cat and four dogs that do like to play fetch.
The entropy at this node is given by the following;:

H(X)= —(%log2 %+§log2 %) =0.7219280948873623
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Instead of testing the plays fetch explanatory variable, we could test the is
grumpy explanatory variable. This test produces the following tree. As with the
previous tree, instances that fail the test follow the left edge, and instances that
pass the test follow the right edge.

is grumpy <= 0.5000
entropy = 0.985228136034
samples = 14
entropy = 0.9183 entropy = 0.8113
samples = 6 samples = 8
value = [ 2. 4.] value = [ 6. 2.]

We could also divide the instances into animals that prefer cat food and animals that
don't to produce the following tree:

favorite food=cat food <= 0.5000
cntropy = 0.985228136034
samples = 14
entropy = 0.8113 entropy = 0.0000
samples = 8 samples = 6
value = [ 2. 6.] value = [ 6. 0.]

Information gain

Testing for the animals that prefer cat food resulted in one subset with six cats, zero
dogs, and 0 bits of entropy and another subset with two cats, six dogs, and 0.811

bits of entropy. How can we measure which of these tests reduced our uncertainty
about the classification the most? Averaging the entropies of the subsets may seem to
be an appropriate measure of the reduction in entropy. In this example, the subsets
produced by the cat food test have the lowest average entropy. Intuitively, this test
seems to be effective, as we can use it to classify almost half of the training instances.
However, selecting the test that produces the subsets with the lowest average
entropy can produce a suboptimal tree. For example, imagine a test that produced
one subset with two dogs and no cats and another subset with four dogs and eight
cats. The entropy of the first subset is equal to the following (note that the second
term is omitted because log, 0 is undefined):

<H(X):—(§kg2%j=00
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The entropy of the second subset is equal to the following;:

H(X) = —(i log, ijtilog2 ﬁj =0.9182958340544896
12 12 12 12

The average of these subsets' entropies is only 0.459, but the subset containing
most of the instances has almost one bit of entropy. This is analogous to asking
specific questions early in Twenty Questions; we could get lucky and win within
the first few attempts, but it is more likely that we will squander our questions
without eliminating many possibilities. Instead, we will measure the reduction
in entropy using a metric called information gain. Calculated with the following
equation, information gain is the difference between the entropy of the parent
node, H (T), and the weighted average of the children nodes' entropies. 7' is

the set of instances, and @ is the explanatory variable under test. x, € vals (a)

is the value of attribute @ for instance X. {x eT|x, = v} is the number

of instances for which attribute a is equal to the value v. H ({xeT | x, = v})

is the entropy of the subset of instances for which the value of the explanatory
variable @ is V.

{xeT|x, =v}

IG(T,a)=H(T)- >,

H({xeT|x,=v
vevals(a) |T| ({ })

The following table contains the information gains for all of the tests. In this case, the
cat food test is still the best, as it increases the information gain the most.

Parent's | Child's | Child's .
Test entropy | entropy | entropy Weighted average IG
plays fetch? 0.9852 0.7642 0.7219 2’%4792919/ 14+0.7219 % 5/14 0.2361
* *

is grumpy? 0.9852 0.9183 0.8113 33155371(6)/8151;24- 0811378/14 0.1280
favorite food = 0.8113*8 /14+0.0*6/14 =
cat food 0.9852 0.8113 0 0.4636 0.5216
favorite food = 0.8454*11/14+0.0*3/14 =
dog food 0.9852 0.8454 0 0.6642 0.3210

. = * *
favorite food 0.9852 0.9183 0.971 (2.9183 9/14 +0.9710*5/14 0.0481
bacon =0.9371
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Now let's add another node to the tree. One of the child nodes produced by the test
is a leaf node that contains only cats. The other node still contains two cats and six
dogs. We will add a test to this node. Which of the remaining explanatory variables
reduces our uncertainty the most? The following table contains the information gains
for all of the possible tests:

Test Parent's Child's | Child's Weighted average IG
entropy entropy | entropy

plays fetch? 0.8113 1 0 1.0*4/8+0*4/8=0.5 | 0.3113
is grumpy? 0.8113 0 1 00*4/8+1*4/8=0.5 | 0.3113
favorite 0.9710*5/8+0.0*3/8
food=dog food 0.8113 0.9710 0 = 0.6069 0.2044
favorite 0.0*3/8+0.9710*5/8
food=bacon 0.8113 0 0.9710 = 0.6069 0.2044

All of the tests produce subsets with 0 bits of entropy, but the is grumpy and plays
fetch tests produce the greatest information gain. ID3 breaks ties by selecting one of
the best tests arbitrarily. We will select the is grumpy test, which splits its parent's
eight instances into a leaf node containing four dogs and a node containing two cats
and two dogs. The following is a diagram of the current tree:

favorite food=Cat food <= 0.3000
cntropy = 0. 93ﬁ3281 36034
samples =

AN

is grumpy <= 0.5000 entropy = 0.0000
entropy = 0. 311"?31"4459 samples = 6
samples = value = [ 6. 0.]

AN

entropy = 0.0000 plays fetch <= 0.5000
samples = 4 entropy = 1.0
value = [ 0. 4.] samples = 4
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We will now select another explanatory variable to test the child node's four
instances. The remaining tests, favorite food=bacon, favorite food=dog food,
and plays fetch, all produce a leaf node containing one dog or cat and a node
containing the remaining animals. The remaining tests produce equal information
gains, as shown in the following table:

Test Parent's Child Child Weighted Information
Entropy Entropy | Entropy Average Gain

plays fetch? | 1 0.9183 0 0.688725 0.311275

favorite

food=dog 1 0.9183 0 0.688725 0.311275

food

favorite 1 0 0.9183 0.688725 0.311275

food=bacon

We will arbitrarily select the plays fetch test to produce a leaf node containing one
dog and a node containing two cats and a dog. Two explanatory variables remain;
we can test for animals that like bacon, or we can test for animals that like dog food.
Both of the tests will produce the same subsets and create a leaf node containing one
dog and a leaf node containing two cats. We will arbitrarily choose to test for animals
that like dog food. The following is a diagram of the completed decision tree:

[106]



Chapter 5

favorite food=Cat food <= 0.5000
entropy = 0.985228136034
samples =

4

.

~

is grumpy <= 0.5000
cntropy = 0.811278124459
samples = §

cntropy = 0.0000
samples = 6

value = [ 6. 0.]

/

entropy = 0.0000
samples = 4
value = [ 0. 4.]

samples =

plays fetch <= 0.5000
entropy = 1.0

4

i

N,

favorite food=Dog food <= 0.5000
cntropy = 0.918295834054
samples

=3

cntropy = 0.0000
samples = 1
value = [ 0. 1.]

/

entropy = 0.0000
samples = 2
value = [ 2. 0.]

cntropy = 0.0000
samples = 1
value = [ 0. 1.]

Let's classify some animals from the following test data:

Testing instance | Plays fetch | Is grumpy Favorite food Species
1 Yes No Bacon Dog

2 Yes Yes Dog Food Dog

3 No Yes Dog Food Cat

4 No Yes Bacon Cat

5 No No Cat food Cat
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Let's classify the first animal, which likes to plays fetch, is infrequently grumpy, and
loves bacon. We will follow the edge to the root node's left child since the animal's
favorite food is not cat food. The animal is not grumpy, so we will follow the edge to
the second-level node's left child. This is a leaf node containing only dogs; we have
correctly classified this instance. To classify the third test instance as a cat, we follow
the edge to the root node's left child, follow the edge to the second-level node's right
child, follow the edge to the third-level node's left child, and finally follow the edge
to the fourth-level node's right child.

Congratulations! You've constructed a decision tree using the ID3 algorithm. Other
algorithms can be used to train decision trees. C4.5 is a modified version of ID3
that can be used with continuous explanatory variables and can accommodate
missing values for features. C4.5 also can prune trees. Pruning reduces the size of

a tree by replacing branches that classify few instances with leaf nodes. Used by
scikit-learn's implementation of decision trees, CART is another learning algorithm
that supports pruning.

Gini impurity

In the previous section, we built a decision tree by creating nodes that produced
the greatest information gain. Another common heuristic for learning decision trees
is Gini impurity, which measures the proportions of classes in a set. Gini impurity
is given by the following equation, where J is the number of classes, 7 is the subset
of instances for the node, and P (i | l) is the probability of selecting an element of
class I from the node's subset:

J

Gini(t)=1-> P(i|t)’

i=1

Intuitively, Gini impurity is zero when all of the elements of the set are the same
class, as the probability of selecting an element of that class is equal to one. Like
entropy, Gini impurity is greatest when each class has an equal probability of being
selected. The maximum value of Gini impurity depends on the number of possible
classes, and it is given by the following equation:

1
Gini_, =1——
n
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Our problem has two classes, so the maximum value of the Gini impurity measure
will be equal to one half. scikit-learn supports learning decision trees using both
information gain and Gini impurity. There are no firm rules to help you decide when
to use one criterion or the other; in practice, they often produce similar results. As
with many decisions in machine learning, it is best to compare the performances of
models trained using both options.

Decision trees with scikit-learn

Let's use decision trees to create software that can block banner ads on web pages.

This program will predict whether each of the images on a web page is an
advertisement or article content. Images that are classified as being advertisements
could then be hidden using Cascading Style Sheets. We will train a decision tree
classifier using the Internet Advertisements Data Set from http://archive.ics.uci.
edu/ml/datasets/Internet+Advertisements, which contains data for 3,279 images.
The proportions of the classes are skewed; 459 of the images are advertisements and
2,820 are content. Decision tree learning algorithms can produce biased trees from data
with unbalanced class proportions; we will evaluate a model on the unaltered data set
before deciding if it is worth balancing the training data by over- or under-sampling
instances. The explanatory variables are the dimensions of the image, words from the
containing page's URL, words from the image's URL, the image's alt text, the image's
anchor text, and a window of words surrounding the image tag. The response variable
is the image's class. The explanatory variables have already been transformed into
feature representations. The first three features are real numbers that encode the width,
height, and aspect ratio of the images. The remaining features encode binary term
frequencies for the text variables. In the following sample, we will grid search for the
hyperparameter values that produce the decision tree with the greatest accuracy,

and then evaluate the tree's performance on a test set:

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.cross validation import train test split
from sklearn.metrics import classification report
from sklearn.pipeline import Pipeline

from sklearn.grid search import GridSearchCVv
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First we read the . csv file using pandas. The . csv does not have a header row,
so we split the last column containing the response variable's values from the
features using its index:

if name == ' main ':
df = pd.read csv('data/ad.data', header=None)
explanatory variable columns = set (df.columns.values)
response variable column = df[len(df.columns.values)-1]
# The last column describes the targets
explanatory variable columns.remove (len(df.columns.values)-1)

vy [1 if e == 'ad.' else 0 for e in response variable column]

X

df [1ist (explanatory variable columns) ]

We encoded the advertisements as the positive class and the content as the negative
class. More than one quarter of the instances are missing at least one of the values

for the image's dimensions. These missing values are marked by whitespace and a
question mark. We replaced the missing values with negative one, but we could have
imputed the missing values; for instance, we could have replaced the missing height
values with the average height value:

X.replace (to_replace=' *\?', value=-1, regex=True, inplace=True)
We then split the data into training and test sets:
X train, X test, y train, y test = train test split(X, y)

We created a pipeline and an instance of DecisionTreeClassifier. Then, we set
the criterion keyword argument to entropy to build the tree using the information
gain heuristic:

pipeline = Pipeline ([
('clf', DecisionTreeClassifier(criterion='entropy'))

1)

Next, we specified the hyperparameter space for the grid search:

parameters = {
'clf max depth': (150, 155, 160),
'clf min samples split': (1, 2, 3),
'clf min samples leaf': (1, 2, 3)
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We set GridSearchCV () to maximize the model's F1 score:

grid search = GridSearchCV (pipeline, parameters, n_ jobs
verbose=1, scoring='f1l"')

grid search.fit (X train, y train)

print 'Best score: %0.3f' % grid search.best score

print 'Best parameters set:'

best parameters = grid search.best estimator .get param

for param name in sorted(parameters.keys()) :

°

print '\t%s: %r' % (param name, best parameters [par

predictions = grid search.predict (X test)
print classification report (y test, predictions)

Fitting 3 folds for each of 27 candidates, totalling 81 fit
[Parallel (n_jobs=-1)]: Done 1 jobs | elapsed: 1.
[Parallel (n jobs=-1)]: Done 50 jobs | elapsed: 15.
[Parallel (n _jobs=-1)]: Done 71 out of 81 | elapsed: 20.
remaining: 2.9s

[Parallel (n _jobs=-1)]: Done 81 out of 81 | elapsed: 23.

Best score: 0.878

Best parameters set:
clf max depth: 155
clf min samples leaf: 2
clf min samples split: 1

precision recall fl-score support

0 0.97 0.99 0.98 710

1 0.92 0.81 0.86 110

avg / total 0.96 0.96 0.96 820

The classifier detected more than 80 percent of the ads in the test set, and

=-1,

s ()

am_name] )

s
7s
0s
7s

3s finished

approximately 92 percent of the images that it predicted were ads were truly ads.
Overall, the performance is promising; in following sections, we will try to modify

our model to improve its performance.
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Tree ensembles

Ensemble learning methods combine a set of models to produce an estimator that
has better predictive performance than its individual components. A random forest
is a collection of decision trees that have been trained on randomly selected subsets
of the training instances and explanatory variables. Random forests usually make
predictions by returning the mode or mean of the predictions of their constituent
trees; scikit-learn's implementations return the mean of the trees' predictions.
Random forests are less prone to overfitting than decision trees because no single
tree can learn from all of the instances and explanatory variables; no single tree can
memorize all of the noise in the representation.

Let's update our ad blocker's classifier to use a random forest. It is simple to replace
the DecisionTreeClassifier using scikit-learn's API; we simply replace the object
with an instance of RandomForestClassifier. Like the previous example, we will
grid search to find the values of the hyperparameters that produce the random forest
with the best predictive performance.

First, import the RandomForestClassifier class from the ensemble module:

from sklearn.ensemble import RandomForestClassifier

Next, replace the DecisionTreeClassifier in the pipeline with an instance of
RandomForestClassifier and update the hyperparameter space:

pipeline = Pipeline (/[
('clf', RandomForestClassifier(criterion='entropy'))

1)

parameters = {
'clf n estimators': (5, 10, 20, 50),
'clf max depth': (50, 150, 250),
'clf min samples_split': (1, 2, 3),
'clf  min_samples_leaf': (1, 2, 3)

}
The output is as follows:

Fitting 3 folds for each of 108 candidates, totalling 324 fits
[Parallel (n_jobs=-1)]: Done 1 jobs

) elapsed: 1.1s
[Parallel (n_jobs=-1)

)

)

]: Done 50 jobs | elapsed: 17.4s
]: Done 200 jobs |
]: Done 324 out of 324 |

[Parallel (n_jobs=-1
[Parallel (n_jobs=-1
Best score: 0.936

elapsed: 1.0min
elapsed: 1l.6min finished
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Best parameters set:
clf max depth: 250
clf min samples leaf: 1
clf min samples split: 3
clf n estimators: 20

precision recall fl-score support

0 0.97 1.00 0.98 705

1 0.97 0.83 0.90 115

avg / total 0.97 0.97 0.97 820

Replacing the single decision tree with a random forest resulted in a significant
reduction of the error rate; the random forest improves the precision and recall for
ads to 0.97 and 0.83.

The advantages and disadvantages of
decision trees

The compromises associated with using decision trees are different than those of
the other models we discussed. Decision trees are easy to use. Unlike many learning
algorithms, decision trees do not require the data to have zero mean and unit
variance. While decision trees can tolerate missing values for explanatory variables,
scikit-learn's current implementation cannot. Decision trees can even learn to ignore
explanatory variables that are not relevant to the task.

Small decision trees can be easy to interpret and visualize with the export_graphviz
function from scikit-learn's tree module. The branches of a decision tree are
conjunctions of logical predicates, and they are easily visualized as flowcharts.
Decision trees support multioutput tasks, and a single decision tree can be used for
multiclass classification without employing a strategy like one-versus-all.

Like the other models we discussed, decision trees are eager learners. Eager learners
must build an input-independent model from the training data before they can be
used to estimate the values of test instances, but can predict relatively quickly once
the model has been built. In contrast, lazy learners such as the k-nearest neighbors
algorithm defer all generalization until they must make a prediction. Lazy learners
do not spend time training, but often predict slowly compared to eager learners.
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Decision trees are more prone to overfitting than many of the models we discussed,
as their learning algorithms can produce large, complicated decision trees that
perfectly model every training instance but fail to generalize the real relationship.
Several techniques can mitigate over-fitting in decision trees. Pruning is a common
strategy that removes some of the tallest nodes and leaves of a decision tree, but

it is not currently implemented in scikit-learn. However, similar effects can be
achieved by setting a maximum depth for the tree or by creating child nodes only
when the number of training instances they will contain exceeds a threshold. The
DecisionTreeClassifier and DecisionTreeRegressor classes provide keyword
arguments to set these constraints. Creating a random forest can also reduce
over-fitting.

Efficient decision tree learning algorithms like ID3 are greedy. They learn efficiently
by making locally optimal decisions, but are not guaranteed to produce the globally
optimal tree. ID3 constructs a tree by selecting a sequence of explanatory variables
to test. Each explanatory variable is selected because it reduces the uncertainty in the
node more than the other variables. It is possible, however, that locally suboptimal
tests are required in order to find the globally optimal tree.

In our toy examples, the size of the tree did not matter since we retained all of nodes.
In a real application, however, the tree's growth could be limited by pruning or similar
mechanisms. Pruning trees with different shapes can produce trees with different
performances. In practice, locally optimal decisions that are guided by the information
gain or Gini impurity heuristics often result in an acceptable decision trees.

Summary

In this chapter we learned about simple nonlinear models for classification and
regression called decision trees. Like the parlor game Twenty Questions, decision trees
are composed of sequences of questions that examine a test instance. The branches

of a decision tree terminate in leaves that specify the predicted value of the response
variable. We discussed how to train decision trees using the ID3 algorithm, which
recursively splits the training instances into subsets that reduce our uncertainty about
the value of the response variable. We also discussed ensemble learning methods,
which combine the predictions from a set of models to produce an estimator with
better predictive performance. Finally, we used random forests to predict whether or
not an image on a web page is a banner advertisement. In the next chapter, we will
introduce our first unsupervised learning task: clustering.
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In the previous chapters we discussed supervised learning tasks; we examined
algorithms for regression and classification that learned from labeled training data. In
this chapter we will discuss an unsupervised learning task called clustering. Clustering
is used to find groups of similar observations within a set of unlabeled data. We will
discuss the K-Means clustering algorithm, apply it to an image compression problem,
and learn to measure its performance. Finally, we will work through a semi-supervised
learning problem that combines clustering with classification.

Recall from Chapter 1, The Fundamentals of Machine Learning, that the goal of
unsupervised learning is to discover hidden structure or patterns in unlabeled training
data. Clustering, or cluster analysis, is the task of grouping observations such that
members of the same group, or cluster, are more similar to each other by a given
metric than they are to the members of the other clusters. As with supervised learning,
we will represent an observation as an n-dimensional vector. For example, assume that
your training data consists of the samples plotted in the following figure:
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Clustering with K-Means

Clustering might reveal the following two groups, indicated by squares and circles:
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Clustering could also reveal the following four groups:
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Clustering is commonly used to explore a dataset. Social networks can be clustered
to identify communities and to suggest missing connections between people. In
biology, clustering is used to find groups of genes with similar expression patterns.
Recommendation systems sometimes employ clustering to identify products or
media that might appeal to a user. In marketing, clustering is used to find segments
of similar consumers. In the following sections, we will work through an example of
using the K-Means algorithm to cluster a dataset.

Clustering with the K-Means algorithm

The K-Means algorithm is a clustering method that is popular because of its speed and
scalability. K-Means is an iterative process of moving the centers of the clusters, or the
centroids, to the mean position of their constituent points, and re-assigning instances
to their closest clusters. The titular K is a hyperparameter that specifies the number of
clusters that should be created; K-Means automatically assigns observations to clusters
but cannot determine the appropriate number of clusters. K must be a positive integer
that is less than the number of instances in the training set. Sometimes, the number of
clusters is specified by the clustering problem's context. For example, a company that
manufactures shoes might know that it is able to support manufacturing three new
models. To understand what groups of customers to target with each model, it surveys
customers and creates three clusters from the results. That is, the value of K was
specified by the problem's context. Other problems may not require a specific number
of clusters, and the optimal number of clusters may be ambiguous. We will discuss a
heuristic to estimate the optimal number of clusters called the elbow method later in
this chapter.

The parameters of K-Means are the positions of the clusters' centroids and the
observations that are assigned to each cluster. Like generalized linear models and
decision trees, the optimal values of K-Means' parameters are found by minimizing
a cost function. The cost function for K-Means is given by the following equation:

K
J=2 2 -l

k=1 ieC;
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In the preceding equation, 4, is the centroid for the cluster k. The cost function sums
the distortions of the clusters. Each cluster's distortion is equal to the sum of the
squared distances between its centroid and its constituent instances. The distortion is
small for compact clusters and large for clusters that contain scattered instances. The
parameters that minimize the cost function are learned through an iterative process
of assigning observations to clusters and then moving the clusters. First, the clusters'
centroids are initialized to random positions. In practice, setting the centroids'
positions equal to the positions of randomly selected observations yields the best
results. During each iteration, K-Means assigns observations to the cluster that they
are closest to, and then moves the centroids to their assigned observations' mean
location. Let's work through an example by hand using the training data shown in
the following table:
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There are two explanatory variables and each instance has two features. The instances
are plotted in the following figure:
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Assume that K-Means initializes the centroid for the first cluster to the fifth instance
and the centroid for the second cluster to the eleventh instance. For each instance,
we will calculate its distance to both centroids, and assign it to the cluster with the
closest centroid. The initial assignments are shown in the Cluster column of the
following table:

Instance X0 | X1 | C1distance | C2 distance | Last cluster | Cluster | Changed?
1 7 5 3.16228 2 None C2 Yes
2 5 7 1.41421 2 None C1 Yes
3 7 7 3.16228 2.82843 None C2 Yes
4 3 3 3.16228 2.82843 None C2 Yes
5 4 6 0 1.41421 None c1 Yes
6 1 4 3.60555 412311 None C1 Yes
7 0 0 7.21110 7.07107 None C2 Yes
8 2 2 4.47214 4.24264 None C2 Yes
9 8 7 412311 3.60555 None C2 Yes
10 6 8 2.82843 3.16228 None C1 Yes
11 5 5 1.41421 0 None 2 Yes
12 3 7 1.41421 2.82843 None c1 Yes
C1 centroid | 4 6

C2 centroid | 5 5
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The plotted centroids and the initial cluster assignments are shown in the following
graph. Instances assigned to the first cluster are marked with Xs, and instances
assigned to the second cluster are marked with dots. The markers for the centroids
are larger than the markers for the instances.

Clusters Assignments after Iter
T T

ation 1

Now we will move both centroids to the means of their constituent instances,
recalculate the distances of the training instances to the centroids, and reassign the
instances to the closest centroids:

Instance | X0 X1 gilstance El:izstance ]éallfliter glelrs,ter Changed?
1 7 5 3.492850 | 2.575394 | C2 2 No
2 5 7 1.341641 | 2.889107 | C1 c1 No
3 7 7 3.255764 | 3.749830 | C2 c1 Yes
4 3 3 3.492850 | 1.943067 | C2 2 No
5 4 6 0.447214 | 1.943067 | C1 c1 No
6 1 4 3.687818 | 3.574285 | C1 2 Yes
7 0 0 7443118 | 6.169378 | C2 C2 No
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C1 C2 Last New
?

Instance | X0 X1 distance | distance Cluster | Cluster Changed

2 2 4.753946 | 3.347250 C2 C2 No
9 8 7 4.242641 | 4.463000 C2 C1 Yes
10 6 8 2.720294 | 4.113194 C1 C1 No
11 5 5 1.843909 | 0.958315 Cc2 C2 No
12 3 7 1 3.260775 C1 C1 No
C1
centroid 38 6.4
2 . 4571429 | 4.142857
centroid

The new clusters are plotted in the following graph. Note that the centroids are
diverging and several instances have changed their assignments:
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Now, we will move the centroids to the means of their constituents' locations again
and reassign the instances to their nearest centroids. The centroids continue to
diverge, as shown in the following figure:
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None of the instances' centroid assignments will change in the next iteration;
K-Means will continue iterating until some stopping criteria is satisfied. Usually,
this criterion is either a threshold for the difference between the values of the cost
function for subsequent iterations, or a threshold for the change in the positions

of the centroids between subsequent iterations. If these stopping criteria are small
enough, K-Means will converge on an optimum. This optimum will not necessarily
be the global optimum.
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Local optima

Recall that K-Means initially sets the positions of the clusters' centroids to the

positions of randomly selected observations. Sometimes, the random initialization
is unlucky and the centroids are set to positions that cause K-Means to converge to a
local optimum. For example, assume that K-Means randomly initializes two cluster
centroids to the following positions:

12

10
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K-Means will eventually converge on a local optimum like that shown in the
following figure. These clusters may be informative, but it is more likely that the
top and bottom groups of observations are more informative clusters. To avoid
local optima, K-Means is often repeated dozens or even hundreds of times. In
each iteration, it is randomly initialized to different starting cluster positions. The
initialization that minimizes the cost function best is selected.
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The elbow method

If K is not specified by the problem's context, the optimal number of clusters can
be estimated using a technique called the elbow method. The elbow method plots
the value of the cost function produced by different values of K. As K increases,
the average distortion will decrease; each cluster will have fewer constituent
instances, and the instances will be closer to their respective centroids. However,
the improvements to the average distortion will decline as K increases. The value
of K at which the improvement to the distortion declines the most is called the
elbow. Let's use the elbow method to choose the number of clusters for a dataset.
The following scatter plot visualizes a dataset with two obvious clusters:

[124]



Chapter 6

Instances
5 T T T

We will calculate and plot the mean distortion of the clusters for each value of K
from 1 to 10 with the following code:

>>> import numpy as np

>>> from sklearn.cluster import KMeans

>>> from scipy.spatial.distance import cdist
>>> import matplotlib.pyplot as plt

>>> clusterl = np.random.uniform(0.5, 1.5, (2, 10))
>>> cluster2 = np.random.uniform(3.5, 4.5, (2, 10))
>>> X = np.hstack((clusterl, cluster2)).T

>>> X = np.vstack((x, y)).T

>>> K = range(l, 10)

>>> meandistortions = []

>>> for k in K:

>>> kmeans = KMeans (n clusters=k)

[125]



Clustering with K-Means

>>> kmeans.fit (X)
>>> meandistortions.append (sum(np.min(cdist (X, kmeans.cluster
centers , 'euclidean'), axis=1)) / X.shape[0])

>>> plt.plot (K, meandistortions, 'bx-')

>>> plt.xlabel ('k"')

>>> plt.ylabel ('Average distortion')

>>> plt.title('Selecting k with the Elbow Method!')
>>> plt.show()

Selecting k with the Elbow Method

25

Average Dispersion

The average distortion improves rapidly as we increase K from 1 to 2. There is little
improvement for values of K greater than 2. Now let's use the elbow method on the
following dataset with three clusters:
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The following figure shows the elbow plot for the dataset. From this, we can see that
the rate of improvement to the average distortion declines the most when adding a
fourth cluster, that is, the elbow method confirms that K should be set to three for

this dataset.
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Selecting k with the Elbow Method
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Evaluating clusters

We defined machine learning as the design and study of systems that learn from
experience to improve their performance of a task as measured by a given metric.
K-Means is an unsupervised learning algorithm; there are no labels or ground truth

to compare with the clusters. However, we can still evaluate the performance of

the algorithm using intrinsic measures. We have already discussed measuring the
distortions of the clusters. In this section, we will discuss another performance measure
for clustering called the silhouette coefficient. The silhouette coefficient is a measure of
the compactness and separation of the clusters. It increases as the quality of the clusters
increase; it is large for compact clusters that are far from each other and small for large,
overlapping clusters. The silhouette coefficient is calculated per instance; for a set of
instances, it is calculated as the mean of the individual samples' scores. The silhouette
coefficient for an instance is calculated with the following equation:

o ba
max(a,b)

a is the mean distance between the instances in the cluster. b is the mean distance
between the instance and the instances in the next closest cluster. The following
example runs K-Means four times to create two, three, four, and eight clusters
from a toy dataset and calculates the silhouette coefficient for each run:

>>> import numpy as np

>>> from sklearn.cluster import KMeans

>>> from sklearn import metrics

>>> import matplotlib.pyplot as plt

>>> plt.subplot (3, 2, 1)

>>> x1 = np.array([1, 2, 3, 1, 5, 6, 5, 5, 6, 7, 8, 9, 7,
>>> x2 = np.array([1, 3, 2, 2, 8, 6, 7, 6, 7, 1, 2, 1, 1,
>>> X = np.array(zip(xl, x2)) .reshape(len(xl), 2)

>>> plt.x1lim ([0, 10])

>>> plt.ylim ([0, 10])

>>> plt.title('Instances')

>>> plt.scatter(xl, x2)

>>> colors = ['b', 'g', 'r', 'c¢', 'm', 'y', 'k', 'b'l]

>>> markers = ['o', 's', 'D', 'v', '™ 'p', kv, 4]
>>> tests = [2, 3, 4, 5, 8]

>>> subplot counter =1

>>> for t in tests:

>>> subplot counter += 1

>>> plt.subplot (3, 2, subplot counter)

>>> kmeans model = KMeans(n clusters=t).fit (X)
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>>> for
>>>
ls="'None')
>>> plt
>>> plt
>>> plt
>>>

metric='euclidean')))

i, 1 in enumerate (kmeans model.labels ):
plt.plot (x1[i],

>>> plt.show()

.x1lim([O,
.ylim( [0,
.title('K =

10])
10])

o
$s,

x2[1], color=colors|[l],

silhouette coefficient =

This script produces the following figure:
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The dataset contains three obvious clusters. Accordingly, the silhouette coefficient
is greatest when K is equal to three. Setting K equal to eight produces clusters of
instances that are as close to each other as they are to the instances in some of the
other clusters, and the silhouette coefficient of these clusters is smallest.

Image quantization

In the previous sections, we used clustering to explore the structure of a dataset.
Now let's apply it to a different problem. Image quantization is a lossy compression
method that replaces a range of similar colors in an image with a single color.
Quantization reduces the size of the image file since fewer bits are required to
represent the colors. In the following example, we will use clustering to discover a
compressed palette for an image that contains its most important colors. We will then
rebuild the image using the compressed palette. This example requires the mahotas
image processing library, which can be installed using pip install mahotas:

>>> import numpy as np

>>> import matplotlib.pyplot as plt
>>> from sklearn.cluster import KMeans
>>> from sklearn.utils import shuffle
>>> import mahotas as mh

First we read and flatten the image:

>>> original img = np.array(mh.imread('img/tree.jpg'), dtype=np.
float64) / 255

>>> original dimensions = tuple(original img.shape)

>>> width, height, depth = tuple(original img.shape)

>>> image flattened = np.reshape(original img, (width * height, depth))

We then use K-Means to create 64 clusters from a sample of 1,000 randomly selected
colors. Each of the clusters will be a color in the compressed palette. The code is
as follows:

>>> image array sample = shuffle(image flattened, random state=0)
[:1000]

>>> estimator = KMeans (n_clusters=64, random state=0)

>>> estimator.fit (image array sample)

Next, we predict the cluster assignment for each of the pixels in the original image:

>>> cluster assignments = estimator.predict (image flattened)
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Finally, we create the compressed image from the compressed palette and
cluster assignments:

>>> compressed_palette = estimator.cluster_ centers_

>>> compressed img = np.zeros((width, height, compressed palette.
shape [1]))
label_idx = 0

>>>

>>>

>>>

>>>

for

i in range(width) :
for j in range (height) :
compressed _img[i] [j] = compressed palette[cluster

assignments[label_idx]]

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

label idx += 1
subplot (122)
title('Original Image')
imshow (original img)
axis('off!')
subplot (121)
title ('Compressed Image')
imshow (compressed img)
axis('off')
show ()

The original and compressed versions of the image are show in the following figure:

Compr_es.sved Image
VR
T,
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Clustering to learn features

In this example, we will combine clustering with classification in a semi-supervised
learning problem. You will learn features by clustering unlabeled data and use the
learned features to build a supervised classifier.

Suppose you own a cat and a dog. Suppose that you have purchased a smartphone,
ostensibly to use to communicate with humans, but in practice just to use to
photograph your cat and dog. Your photographs are awesome and you are certain
that your friends and co-workers would love to review all of them in detail. You'd
like to be courteous and respect that some people will only want to see your cat
photos, while others will only want to see your dog photos, but separating the
photos is laborious. Let's build a semi-supervised learning system that can classify
images of cats and dogs.

Recall from Chapter 3, Feature Extraction and Preprocessing, that a naive approach

to classifying images is to use the intensities, or brightnesses, of all of the pixels as
explanatory variables. This approach produces high-dimensional feature vectors for
even small images. Unlike the high-dimensional feature vectors we used to represent
documents, these vectors are not sparse. Furthermore, it is obvious that this approach
is sensitive to the image's illumination, scale, and orientation. In Chapter 3, Feature
Extraction and Preprocessing, we also discussed SIFT and SURF descriptors, which
describe interesting regions of an image in ways that are invariant to scale, rotation,
and illumination. In this example, we will cluster the descriptors extracted from all of
the images to learn features. We will then represent an image with a vector with one
element for each cluster. Each element will encode the number of descriptors extracted
from the image that were assigned to the cluster. This approach is sometimes called
the bag-of-features representation, as the collection of clusters is analogous to the
bag-of-words representation's vocabulary. We will use 1,000 images of cats and 1,000
images of dogs from the training set for Kaggle's Dogs vs. Cats competition. The dataset
can be downloaded from https://www.kaggle.com/c/dogs-vs-cats/data. We
will label cats as the positive class and dogs as the negative class. Note that the images
have different dimensions; since our feature vectors do not represent pixels, we do not
need to resize the images to have the same dimensions. We will train using the first 60
percent of the images, and test on the remaining 40 percent:

>>> import numpy as np

>>> import mahotas as mh

>>> from mahotas.features import surf

>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.metrics import *

>>> from sklearn.cluster import MiniBatchKMeans

>>> import glob
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First, we load the images, convert them to grayscale, and extract the SURF
descriptors. SURF descriptors can be extracted more quickly than many similar
features, but extracting descriptors from 2,000 images is still computationally
expensive. Unlike the previous examples, this script requires several minutes
to execute on most computers:

>>> all instance filenames = []

>>> all instance targets = []

>>> for £ in glob.glob('cats-and-dogs-img/*.jpg') :
>>> target = 1 if 'cat' in f else 0

>>> all instance filenames.append (f)

>>> all instance targets.append(target)

>>> surf features = []

>>> counter = 0

>>> for £ in all instance filenames:

>>> print 'Reading image:', f
>>> image = mh.imread(f, as_grey=True)
>>> surf features.append (surf.surf (image) [:, 5:])

>>> train len = int(len(all instance filenames) * .60)

>>> X train surf features = np.concatenate(surf features[:train len])
>>> X test surf feautres = np.concatenate (surf features[train len:])
>>> y train = all instance targets[:train len]

>>> y test = all instance targets[train len:]

We then group the extracted descriptors into 300 clusters in the following code
sample. We use MiniBatchKMeans, a variation of K-Means that uses a random
sample of the instances in each iteration. As it computes the distances to the
centroids for only a sample of the instances in each iteration, MiniBatchKMeans
converges more quickly but its clusters' distortions may be greater. In practice,
the results are similar, and this compromise is acceptable.:

>>> n_clusters = 300

>>> print 'Clustering', len(X train surf features), 'features'
>>> estimator = MiniBatchKMeans (n clusters=n clusters)

>>> estimator.fit transform(X train surf features)
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Next, we construct feature vectors for the training and testing data. We find the
cluster associated with each of the extracted SURF descriptors, and count them using
NumPy's binCount () function. The following code produces a 300-dimensional
feature vector for each instance:

>>> X train = []

>>> for instance in surf features[:train len]:

>>> clusters = estimator.predict (instance)

>>> features = np.bincount (clusters)

>>> if len(features) < n clusters:

>>> features = np.append(features, np.zeros((1l, n_clusters-

len (features))))
>>> X train.append (features)

>>> X test = []

>>> for instance in surf features([train len:]:

>>> clusters = estimator.predict (instance)

>>> features = np.bincount (clusters)

>>> if len(features) < n clusters:

>>> features = np.append(features, np.zeros((1l, n_clusters-

len(features))))
>>> X test.append(features)

Finally, we train a logistic regression classifier on the feature vectors and targets,
and assess its precision, recall, and accuracy:

>>> clf = LogisticRegression(C=0.001, penalty='12")
>>> clf.fit transform(X train, y train)

>>> predictions = clf.predict (X test)

>>> print classification report (y test, predictiomns)

>>> print 'Precision: ', precision score(y test, predictions)
>>> print 'Recall: ', recall score(y test, predictions)
>>> print 'Accuracy: ', accuracy score(y test, predictions)

Reading image: dog.9344.7jpg

Reading image: dog.8892.7jpg
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Clustering 756914 features

precision recall fl-score support

0 0.71 0.76 0.73 392

1 0.75 0.70 0.72 408

avg / total 0.73 0.73 0.73 800

Precision: 0.751322751323
Recall: 0.696078431373
Accuracy: 0.7275

This semi-supervised system has better precision and recall than a logistic regression
classifier that uses only the pixel intensities as features. Furthermore, our feature
representations have only 300 dimensions; even small 100 x 100 pixel images would
have 10,000 dimensions.

Summary

In this chapter, we discussed our first unsupervised learning task: clustering.
Clustering is used to discover structure in unlabeled data. You learned about the
K-Means clustering algorithm, which iteratively assigns instances to clusters and
refines the positions of the cluster centroids. While K-Means learns from experience
without supervision, its performance is still measurable; you learned to use distortion
and the silhouette coefficient to evaluate clusters. We applied K-Means to two
different problems. First, we used K-Means for image quantization, a compression
technique that represents a range of colors with a single color. We also used K-Means
to learn features in a semi-supervised image classification problem.

In the next chapter, we will discuss another unsupervised learning task called
dimensionality reduction. Like the semi-supervised feature representations we
created to classify images of cats and dogs, dimensionality reduction can be used
to reduce the dimensions of a set of explanatory variables while retaining as much
information as possible.
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Dimensionality Reduction
with PCA

In this chapter, we will discuss a technique for reducing the dimensions of data called
Principal Component Analysis (PCA). Dimensionality reduction is motivated by
several problems. First, it can be used to mitigate problems caused by the curse of
dimensionality. Second, dimensionality reduction can be used to compress data while
minimizing the amount of information that is lost. Third, understanding the structure
of data with hundreds of dimensions can be difficult; data with only two or three
dimensions can be visualized easily. We will use PCA to visualize a high-dimensional
dataset in two dimensions, and build a face recognition system.

An overview of PCA

Recall from Chapter 3, Feature Extraction and Preprocessing, that problems involving
high-dimensional data can be affected by the curse of dimensionality. As the
dimensions of a data set increases, the number of samples required for an estimator to
generalize increases exponentially. Acquiring such large data may be infeasible in some
applications, and learning from large data sets requires more memory and processing
power. Furthermore, the sparseness of data often increases with its dimensions. It can
become more difficult to detect similar instances in high-dimensional space as all of the
instances are similarly sparse.

Principal Component Analysis, also known as the Karhunen-Loeve Transform, is a
technique used to search for patterns in high-dimensional data. PCA is commonly
used to explore and visualize high-dimensional data sets. It can also be used to
compress data, and process data before it is used by another estimator. PCA reduces
a set of possibly-correlated, high-dimensional variables to a lower-dimensional

set of linearly uncorrelated synthetic variables called principal components. The
lower-dimensional data will preserve as much of the variance of the original data

as possible.
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Dimensionality Reduction with PCA

PCA reduces the dimensions of a data set by projecting the data onto a
lower-dimensional subspace. For example, a two dimensional data set could be
reduced by projecting the points onto a line; each instance in the data set would then
be represented by a single value rather than a pair of values. A three-dimensional
dataset could be reduced to two dimensions by projecting the variables onto a plane.
In general, an n-dimensional dataset can be reduced by projecting the dataset onto a
k-dimensional subspace, where k is less than n. More formally, PCA can be used to
find a set of vectors that span a subspace, which minimizes the sum of the squared
errors of the projected data. This projection will retain the greatest proportion of the
original data set's variance.

Imagine that you are a photographer for a gardening supply catalog, and that you are
tasked with photographing a watering can. The watering can is three-dimensional, but
the photograph is two-dimensional; you must create a two-dimensional representation
that describes as much of the watering can as possible. The following are four possible
pictures that you could use:

e R v

In the first photograph, the back of the watering can is visible, but the front cannot
be seen. The second picture is angled to look directly down the spout of the watering
can; this picture provides information about the front of the can that was not visible
in the first photograph, but now the handle cannot be seen. The height of the
watering can cannot be discerned from the bird's eye view of the third picture. The
fourth picture is the obvious choice for the catalog; the watering can's height, top,
spout, and handle are all discernible in this image.

The motivation of PCA is similar; it can project data in a high-dimensional space

to a lower-dimensional space that retains as much of the variance as possible. PCA
rotates the data set to align with its principal components to maximize the variance
contained within the first several principal components. Assume that we have the
data set that is plotted in the following figure:
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The instances approximately form a long, thin ellipse stretching from the origin to
the top right of the plot. To reduce the dimensions of this data set, we must project
the points onto a line. The following are two lines that the data could be projected
onto. Along which line do the instances vary the most?
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The instances vary more along the dashed line than the dotted line. In fact, the dashed
line is the first principal component. The second principal component must be
orthogonal to the first principal component; that is, the second principal component
must be statistically independent, and will appear to be perpendicular to the first
principal component when it is plotted, as shown in the following figure:

1.0} .
.
.
0.8} .
.
o .
.
0.6F
. . .
0.4} 0
.
0.2} .
0.2 0.4 0.6 0.8 1.0

Each subsequent principal component preserves the maximum amount of the
remaining variance; the only constraint is that each must be orthogonal to the other
principal components.

Now assume that the data set is three dimensional. The scatter plot of the points
looks like a flat disc that has been rotated slightly about one of the axes.
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The points can be rotated and translated such that the tilted disk lies almost exactly
in two dimensions. The points now form an ellipse; the third dimension contains
almost no variance and can be discarded.

PCA is most useful when the variance in a data set is distributed unevenly across the
dimensions. Consider a three-dimensional data set with a spherical convex hull. PCA
cannot be used effectively with this data set because there is equal variance in each
dimension; none of the dimensions can be discarded without losing a significant
amount of information.

It is easy to visually identify the principal components of data sets with only two or
three dimensions. In the next section, we will discuss how to calculate the principal
components of high-dimensional data.
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Performing Principal Component Analysis

There are several terms that we must define before discussing how principal
component analysis works.

Variance, Covariance, and Covariance
Matrices

Recall that variance is a measure of how a set of values are spread out. Variance is
calculated as the average of the squared differences of the values and mean of the
values, as per the following equation:

2 Z;’:I (Xf — A_/)z

S =

n—1

Covariance is a measure of how much two variables change together; it is a measure

of the strength of the correlation between two sets of variables. If the covariance of two
variables is zero, the variables are uncorrelated. Note that uncorrelated variables are
not necessarily independent, as correlation is only a measure of linear dependence. The
covariance of two variables is calculated using the following equation:

2o (X -X)(¥-7)

n—1

cov(X,Y)=

If the covariance is nonzero, the sign indicates whether the variables are positively or
negatively correlated. When two variables are positively correlated, one increases as
the other increases. When variables are negatively correlated, one variable decreases
relative to its mean as the other variable increases relative to its mean. A covariance
matrix describes the covariance values between each pair of dimensions in a data

set. The element (i, J ) indicates the covariance of the ith and jth dimensions of the
data. For example, a covariance matrix for a three-dimensional data is given by the
following matrix:

cov(x,x) cov(x,x,) cov(x,x)
C=|cov(x,,x;) cov(x,,x,) cov(x,,x,)

cov(x;,x) cov(xy,x,) cov(xy,x;)
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Let's calculate the covariance matrix for the following data set:

2 0 -14
22 102 | -15
24 101 | -1

19 |0 -1.2

The means of the variables are 2.125, 0.075, and -1.275. We can then calculate the
covariances of each pair of variables to produce the following covariance matrix:

0.0491666667 0.0141666667 0.0191666667
C=]0.0141666667 0.00916667  —0.00583333
0.0191666667 —0.00583333  0.04916667

We can verify our calculations using NumPy:

>>> import numpy as np

>>> X = [[2, 0, -1.4],
>>> [2.2, 0.2, -1.57,
>>> [2.4, 0.1, -17,
>>> [1.9, 0, -1.2]]

>>> print np.cov(np.array(X) .T)

[[ 0.04916667 0.01416667 0.01916667]
[ 0.01416667 0.00916667 -0.00583333]
[ 0.01916667 -0.00583333 0.04916667]]

Eigenvectors and eigenvalues

A vector is described by a direction and magnitude, or length. An eigenvector of a
matrix is a non-zero vector that satisfies the following equation:

Av = Ay

In the preceding equation, V is an eigenvector, A is a square matrix, and 4 is a
scalar called an eigenvalue. The direction of an eigenvector remains the same after
it has been transformed by A; only its magnitude has changed, as indicated by the
eigenvalue; that is, multiplying a matrix by one of its eigenvectors is equal to scaling
the eigenvector. The prefix eigen is the German word for belonging to or peculiar to;
the eigenvectors of a matrix are the vectors that belong to and characterize the
structure of the data.
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Eigenvectors and eigenvalues can only be derived from square matrices, and not all
square matrices have eigenvectors or eigenvalues. If a matrix does have eigenvectors
and eigenvalues, it will have a pair for each of its dimensions. The principal
components of a matrix are the eigenvectors of its covariance matrix, ordered by
their corresponding eigenvalues. The eigenvector with the greatest eigenvalue is the
first principal component; the second principal component is the eigenvector with
the second greatest eigenvalue, and so on.

Let's calculate the eigenvectors and eigenvalues of the following matrix:

s 2

Recall that the product of A and any eigenvector of A must be equal to the
eigenvector multiplied by its eigenvalue. We will begin by finding the eigenvalues,
which we can find using the following characteristic equations:

(A—2A1)¥ =0

1 -2 A0
2 -3 0 A
The characteristic equation states that the determinant of the matrix, that is, the

difference between the data matrix and the product of the identity matrix and an
eigenvalue is zero:

|A-2%]|=

5 2 L

Both of the eigenvalues for this matrix are equal to -1. We can now use the
eigenvalues to solve the eigenvectors:

First, we set the equation equal to zero:

(A—2A1)¥ =0
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Substituting our values for A produces the following:

[ 3He D5 25 Sl

We can then substitute the first eigenvalue in our first eigenvalue to solve

the eigenvectors.
1—(—1) -2 V| |2 2| v | 0
2 _3_(_1) Via |2 2 Vio -

The preceding equation can be rewritten as a system of equations:
2v,, +—(2v,)=0
2v, +—(2v,)=0

Any non-zero vector that satisfies the preceding equations, such as the following,
can be used as an eigenvector:

1 =21 ] 1 -1
2 =31 |1 |-
PCA requires unit eigenvectors, or eigenvectors that have a length equal to 1.

We can normalize an eigenvector by dividing it by its norm, which is given by
the following equation:

|MFJﬁ+ﬁ+m+ﬁ

The norm of our vector is equal to the following:

-
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This produces the following unit eigenvector:

1 0.7071067811865475

1 0.7071067811865475

We can verify that our solutions for the eigenvectors are correct using NumPy. The
eig function returns a tuple of the eigenvalues and eigenvectors:

>>> import numpy as np

>>> w, Vv = np.linalg.eig(np.array([[1, -2], [2, -311]))
>>> W; V

array([-0.99999998, -1.00000002])

array([[ 0.70710678, 0.707106781],

Dimensionality reduction with Principal
Component Analysis

Let's use principal component analysis to reduce the following two-dimensional data
set to one dimension:

x1 x2
0.9 1

24 2.6
1.2 1.7
0.5 0.7
0.3 0.7
1.8 1.4
0.5 0.6
0.3 0.6
2.5 2.6
1.3 1.1
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The first step of PCA is to subtract the mean of each explanatory variable from
each observation:

x1 x2
09-117=-0.27 1-1.3=-0.3
24-117=1.23 26-13=13
1.2-1.17 =0.03 1.7-13=04
0.5-1.17 =-0.67 -0.7-13=0.6
0.3-1.17=-0.87 -0.7-13=0.6
1.8-1.17 =0.63 14-13=0.1
0.5-1.17 =-0.67 06-13=-0.7
03-1.17=-0.87 06-13=-0.7
25-1.17=1.33 26-13=13
1.3-1.17=0.13 11-13=-02

Next, we must calculate the principal components of the data. Recall that the
principal components are the eigenvectors of the data's covariance matrix ordered
by their eigenvalues. The principal components can be found using two different
techniques. The first technique requires calculating the covariance matrix of the
data. Since the covariance matrix will be square, we can calculate the eigenvectors
and eigenvalues using the approach described in the previous section. The

second technique uses singular value decomposition of the data matrix to find the
eigenvectors and square roots of the eigenvalues of the covariance matrix. We will
work through an example using the first technique, and then describe the second
technique that is used by scikit-learn's implementation of PCA.

The following matrix is the covariance matrix for the data:

1 0.6867777778  0.6066666667
1 0.6066666667 0.5977777778

Using the technique described in the previous section, the eigenvalues are 1.250 and
0.034. The following are the unit eigenvectors:

0.73251454 -0.68075138
0.68075138  0.73251454
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Next, we will project the data onto the principal components. The first eigenvector
has the greatest eigenvalue and is the first principal component. We will build a
transformation matrix in which each column of the matrix is the eigenvector for

a principal component. If we were reducing a five-dimensional data set to three
dimensions, we would build a matrix with three columns. In this example, we will
project our two-dimensional data set onto one dimension, so we will use only the
eigenvector for the first principal component. Finally, we will find the dot product of
the data matrix and transformation matrix. The following is the result of projecting
our data onto the first principal component:

[-0.27 —0.3] [~0.40200434]
123 13 1.78596968
0.03 0.4 0.29427599
~0.67 0.6 ~0.89923557
~0.87 —0.6([0.732514547 | ~1.04573848
0.63 0.1 {0.68075138}_ 0.5295593
-0.67 0.7 ~0.96731071
-0.87 0.7 ~1.11381362
133 1.3 1.85922113
013 -0.2] | ~0.04092339 |

Many implementations of PCA, including the one of scikit-learn, use singular value
decomposition to calculate the eigenvectors and eigenvalues. SVD is given by the
following equation:

X=U0xr"

The columns of U are called left singular vectors of the data matrix, the columns of
V' are its right singular vectors, and the diagonal entries of . are its singular values.
While the singular vectors and values of a matrix are useful in some applications of
signal processing and statistics, we are only interested in them as they relate to the
eigenvectors and eigenvalues of the data matrix. Specifically, the left singular vectors
are the eigenvectors of the covariance matrix and the diagonal elements of 2. are the
square roots of the eigenvalues of the covariance matrix. Calculating SVD is beyond
the scope of this chapter; however, eigenvectors found using SVD should be similar
to those derived from a covariance matrix.
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Using PCA to visualize high-dimensional
data

It is easy to discover patterns by visualizing data with two or three dimensions. A
high-dimensional dataset cannot be represented graphically, but we can still gain
some insights into its structure by reducing it to two or three principal components.

Collected in 1936, Fisher's Iris data set is a collection of fifty samples from each of

the three species of Iris: Iris setosa, Iris virginica, and Iris versicolor. The explanatory
variables are measurements of the length and width of the petals and sepals of the
flowers. The Iris dataset is commonly used to test classification models, and is included
with scikit-learn. Let's reduce the iris dataset's four dimensions so that we can
visualize it in two dimensions:

>>> import matplotlib.pyplot as plt
>>> from sklearn.decomposition import PCA
>>> from sklearn.datasets import load iris

First, we load the built-in iris data set and instantiate a Pca estimator. The pca class
takes a number of principal components to retain as a hyperparameter. Like the
other estimators, PCA exposes a £it_transform() method that returns the reduced
data matrix:

>>> data = load iris()

>>> y = data.target

>>> X = data.data

>>> pca = PCA(n_components=2)

>>> reduced X = pca.fit transform(X)

Finally, we assemble and plot the reduced data:

>>> red x, red y = [1, []

>>> blue x, blue y = [], []

>>> green _x, green y = [], []

>>> for i in range (len(reduced X)) :

>>> if y[i] ==

>>> red_x.append (reduced X[i] [0])
>>> red_y.append (reduced X[i] [1])
>>> elif y[i] ==

>>> blue x.append(reduced X[i] [0])
>>> blue y.append(reduced X[i] [1])
>>> else:

>>> green x.append (reduced X[i] [0])
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>>> green_y.append (reduced X[i] [1])

>>> plt.scatter(red x, red y, c='r', marker='x")
>>> plt.scatter(blue x, blue y, c='b', marker='D'")
>>> plt.scatter(green_x, green_ y, c='g', marker='."')
>>> plt.show()

The reduced instances are plotted in the following figure. Each of the dataset's three
classes is indicated by its own marker style. From this two-dimensional view of the
data, it is clear that one of the classes can be easily separated from the other two
overlapping classes. It would be difficult to notice this structure without a graphical
representation. This insight can inform our choice of classification model.
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Face recognition with PCA

Now let's apply PCA to a face-recognition problem. Face recognition is the
supervised classification task of identifying a person from an image of his or her
face. In this example, we will use a data set called Our Database of Faces from AT&T
Laboratories, Cambridge. The data set contains ten images each of forty people.

The images were created under different lighting conditions, and the subjects varied
their facial expressions. The images are gray scale and 92 x 112 pixels in dimension.
The following is an example image:
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While these images are small, a feature vector that encodes the intensity of every
pixel will have 10,304 dimensions. Training from such high-dimensional data could
require many samples to avoid over-fitting. Instead, we will use PCA to compactly
represent the images in terms of a small number of principal components.

We can reshape the matrix of pixel intensities for an image into a vector, and
create a matrix of these vectors for all of the training images. Each image is a
linear combination of this data set's principal components. In the context of face
recognition, these principal components are called eigenfaces. The eigenfaces can
be thought of as standardized components of faces. Each face in the data set can
be expressed as some combination of the eigenfaces, and can be approximated as a
combination of the most important eigenfaces:

>>> from os import walk, path

>>> import numpy as np

>>> import mahotas as mh

>>> from sklearn.cross validation import train test split
>>> from sklearn.cross validation import cross_val_ score
>>> from sklearn.preprocessing import scale

>>> from sklearn.decomposition import PCA

>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.metrics import classification report
>>> X = []

>>> y = []
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We begin by loading the images into Numpy arrays, and reshaping their matrices
into vectors:

>>> for dir path, dir names, file names in walk('data/att-faces/orl

faces'):

>>> for fn in file_names:

>>> if fn[-3:] == 'pgm':

>>> image filename = path.join(dir path, £fn)

>>> X.append (scale (mh.imread(image filename, as_

grey=True) .reshape (10304) .astype('float32"')))
>>> y.append (dir_path)
>>> X = np.array (X)

We then randomly split the images into training and test sets, and fit the PCa object
on the training set:

>>> X train, X test, y train, y test = train test split (X, y)
>>> pca = PCA(n_components=150)

We reduce all of the instances to 150 dimensions and train a logistic regression
classifier. The data set contains forty classes; scikit-learn automatically creates
binary classifiers using the one versus all strategy behind the scenes:

>>> X train reduced = pca.fit transform(X train)
>>> X test reduced = pca.transform(X test)

>>> print 'The original dimensions of the training data were',K X
train.shape

>>> print 'The reduced dimensions of the training data are', X train_
reduced. shape

>>> classifier = LogisticRegression ()
>>> accuracies = cross val score(classifier, X train reduced, y train)

Finally, we evaluate the performance of the classifier using cross-validation and a
test set. The average per-class F1 score of the classifier trained on the full data was
0.94, but required significantly more time to train and could be prohibitively slow in
an application with more training instances:

>>> print 'Cross validation accuracy:', np.mean(accuracies),
accuracies

>>> classifier.fit (X train reduced, y train)
>>> predictions = classifier.predict (X test reduced)
>>> print classification report (y test, predictions)

[152]



Chapter 7

The following is the output of the script:

The original dimensions of the training data were (300, 10304)

The reduced dimensions of the training data are (300, 150)

Cross validation accuracy: 0.833841819347 [ 0.82882883 0.83

0.84269663]

precision recall fl-score support
data/att-faces/orl faces/sl 1.00 1.00 1.00
data/att-faces/orl faces/sl0 1.00 1.00 1.00
data/att-faces/orl faces/sll 1.00 0.60 0.75
data/att-faces/orl faces/s9 1.00 1.00 1.00
avg / total 0.92 0.89 0.89 100

Summary

In this chapter, we examined the problem of dimensionality reduction.

High-dimensional data cannot be visualized easily. High-dimensional data sets
may also suffer from the curse of dimensionality; estimators require many samples
to learn to generalize from high-dimensional data. We mitigated these problems

using a technique called principal component analysis, which reduces a

high-dimensional, possibly-correlated data set to a lower-dimensional set of

uncorrelated principal components by projecting the data onto a lower-dimensional
subspace. We used principal component analysis to visualize the four-dimensional
Iris data set in two dimensions, and build a face-recognition system. In the next
chapter, we will return to supervised learning. We will discuss an early classification
algorithm called the perceptron, which will prepare us to discuss more advanced

models in the last few chapters.
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The Perceptron

In previous chapters we discussed generalized linear models that relate a linear
combination of explanatory variables and model parameters to a response variable
using a link function. In this chapter, we will discuss another linear model called
the perceptron. The perceptron is a binary classifier that can learn from individual
training instances, which can be useful for training from large datasets. More
importantly, the perceptron and its limitations inspire the models that we will
discuss in the final chapters.

Invented by Frank Rosenblatt at the Cornell Aeronautical Laboratory in the late
1950's, the development of the perceptron was originally motivated by efforts to
simulate the human brain. A brain is composed of cells called neurons that process
information and connections between neurons called synapses through which
information is transmitted. It is estimated that human brain is composed of as many
as 100 billion neurons and 100 trillion synapses. As shown in the following image,
the main components of a neuron are dendrites, a body, and an axon. The dendrites
receive electrical signals from other neurons. The signals are processed in the
neuron's body, which then sends a signal through the axon to another neuron.

Dendrites

Cell Body AT




The Perceptron

An individual neuron can be thought of as a computational unit that processes

one or more inputs to produce an output. A perceptron functions analogously to

a neuron; it accepts one or more inputs, processes them, and returns an output.

It may seem that a model of just one of the hundreds of billions of neurons in the
human brain will be of limited use. To an extent that is true; the perceptron cannot
approximate some basic functions. However, we will still discuss perceptrons

for two reasons. First, perceptrons are capable of online, error-driven learning;

the learning algorithm can update the model's parameters using a single training
instance rather than the entire batch of training instances. Online learning is useful
for learning from training sets that are too large to be represented in memory.
Second, understanding how the perceptron works is necessary to understand some
of the more powerful models that we will discuss in subsequent chapters, including
support vector machines and artificial neural networks. Perceptrons are commonly
visualized using a diagram like the following one:

@ “output”
(%) Loy (x)
@ “input wires”

The circles labeled x,, x,, and x, are inputs units. Each input unit represents one
feature. Perceptrons frequently use an additional input unit that represents a constant
bias term, but this input unit is usually omitted from diagrams. The circle in the
center is a computational unit or the neuron's body. The edges connecting the input
units to the computational unit are analogous to dendrites. Each edge is weighted, or
associated with a parameter. The parameters can be interpreted easily; an explanatory
variable that is correlated with the positive class will have a positive weight, and an
explanatory variable that is correlated with the negative class will have a negative
weight. The edge directed away from the computational unit returns the output and
can be thought of as the axon.
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Activation functions

The perceptron classifies instances by processing a linear combination of the
explanatory variables and the model parameters using an activation function as
shown in the following equation. The linear combination of the parameters and
inputs is sometimes called the perceptron's preactivation.

Y= ¢(iwixi +b]

Here, W, are the model's parameters, b is a constant bias term, and ¢ is the activation
function. Several different activation functions are commonly used. Rosenblatt's
original perceptron used the Heaviside step function. Also called the unit step
function, the Heaviside step function is shown in the following equation, where X

is the weighted combination of the features:

g(x):{l, if x>0 }

0, elsewhere

If the weighted sum of the explanatory variables and the bias term is greater than
zero, the activation function returns one and the perceptron predicts that the instance
is the positive class. Otherwise, the function returns zero and the perceptron predicts
that the instance is the negative class. The Heaviside step activation function is
plotted in the following figure:
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Another common activation function is the logistic sigmoid activation function.

The gradients for this activation function can be calculated efficiently, which will be
important in later chapters when we construct artificial neural networks. The logistic
sigmoid activation function is given by the following equation, where X is the sum
of the weighted inputs:

1
1+e™”

g(x)

This model should seem familiar; it is a linear combination of the values of the
explanatory variables and the model parameters processed through the logistic
function. That is, this is identical to the model for logistic regression. While a
perceptron with a logistic sigmoid activation function has the same model as
logistic regression, it learns its parameters differently.

The perceptron learning algorithm

The perceptron learning algorithm begins by setting the weights to zero or to small
random values. It then predicts the class for a training instance. The perceptron is an
error-driven learning algorithm; if the prediction is correct, the algorithm continues
to the next instance. If the prediction is incorrect, the algorithm updates the weights.
More formally, the update rule is given by the following:

w,(t+1)=w, (t)+a(dj -y, (t))xj’i,forallfeatureOSiSn

For each training instance, the value of the parameter for each explanatory variable

is incremented by & (d i Y (f ))X‘,,i, where d, is the true class for instance J/,

Y, (t) is the predicted class for instance 7, X, is the value of the ith explanatory
variable for instance /, and ¢ is a hyperparameter that controls the learning rate.
If the prediction is correct, dj -V, (t) equals zero, and the & (d Y (f ))x T
term equals zero. So, if the prediction is correct, the weight is not updated. If the
prediction is incorrect, the weight is incremented by the product of the learning

rate, dj - (t) , and the value of the feature.
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This update rule is similar to the update rule for gradient descent in that the weights
are adjusted towards classifying the instance correctly and the size of the update is
controlled by a learning rate. Each pass through the training instances is called an
epoch. The learning algorithm has converged when it completes an epoch without
misclassifying any of the instances. The learning algorithm is not guaranteed to
converge; later in this chapter, we will discuss linearly inseparable datasets for which
convergence is impossible. For this reason, the learning algorithm also requires a
hyperparameter that specifies the maximum number of epochs that can be completed
before the algorithm terminates.

Binary classification with the perceptron

Let's work through a toy classification problem. Suppose that you wish to separate
adult cats from kittens. Only two explanatory variables are available in your dataset:
the proportion of the day that the animal was asleep and the proportion of the day that
the animal was grumpy. Our training data consists of the following four instances:

Instance Proportion of the Proportion of the day | Kitten or
day spent sleeping spent being grumpy Adult?

1 0.2 0.1 Kitten

2 0.4 0.6 Kitten

3 0.5 0.2 Kitten

4 0.7 0.9 Adult

The following scatter plot of the instances confirms that they are linearly separable:
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Our goal is to train a perceptron that can classify animals using the two real-valued
explanatory variables. We will represent kittens with the positive class and adult cats
with the negative class. The preceding network diagram describes the perceptron
that we will train.

Our perceptron has three input units. X, is the input unit for the bias term. x, and

X, are input units for the two features. Our perceptron's computational unit uses a
Heaviside activation function. In this example, we will set the maximum number of
training epochs to ten; if the algorithm does not converge within 10 epochs, it will
stop and return the current values of the weights. For simplicity, we will set the
learning rate to one. Initially, we will set all of the weights to zero. Let's examine the
first training epoch, which is shown in the following table:

Epoch1

Initial Weights

Instance | x Prediction, Correct | Updated weights
Target

Activation

0,0,0;
0 1.0,0.2,0.1; 0,1 False 1.0,0.2,0.1
1.0%0 + 0.2*0 + 0.1*0 = 0.0;
1.0,0.2,0.1;

1 1.0, 0.4, 0.6; 1,1 True 1.0,0.2,0.1
1.0¢1.0 + 0.4*0.2 + 0.6*0.1 = 1.14;
1.0,0.2,0.1;

2 1.0,0.5,0.2; 1,1 True 1.0,0.2,0.1
1.0¢1.0 + 0.5*0.2 + 0.2*0.1 = 1.12;
1.0,0.2,0.1;

3 1.0,0.7,0.9; 1,0 False 0,-0.5,-0.8
1.0¥1.0 + 0.7*0.2 + 0.9*0.1 = 1.23;
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Initially, all of the weights are equal to zero. The weighted sum of the explanatory
variables for the first instance is zero, the activation function outputs zero, and the
perceptron incorrectly predicts that the kitten is an adult cat. As the prediction was
incorrect, we update the weights according to the update rule. We increment each of
the weights by the product of the learning rate, the difference between the true and
predicted labels and the value of the corresponding feature.

We then continue to the second training instance and calculate the weighted sum
of its features using the updated weights. This sum equals 1.14, so the activation
function outputs one. This prediction is correct, so we continue to the third training
instance without updating the weights. The prediction for the third instance is

also correct, so we continue to the fourth training instance. The weighted sum of
the features for the fourth instance is 1.23. The activation function outputs one,
incorrectly predicting that this adult cat is a kitten. Since this prediction is incorrect,
we increment each weight by the product of the learning rate, the difference between
the true and predicted labels, and its corresponding feature. We completed the first
epoch by classifying all of the instances in the training set. The perceptron did not
converge; it classified half of the training instances incorrectly. The following figure
depicts the decision boundary after the first epoch:
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Note that the decision boundary moved throughout the epoch; the decision
boundary formed by the weights at the end of the epoch would not necessarily have
produced the same predictions seen earlier in the epoch. Since we have not exceeded
the maximum number of training epochs, we will iterate through the instances again.
The second training epoch is shown in the following table:

Epoch 2

Initial Weights

Prediction,
Instance | x

Target Correct | Updated weights

Activation
0,-0.5,-0.8
0 1.0,0.2,0.1 0,1 False 1,-0.3,-0.7
1.0%0 + 0.2*-0.5 + 0.1*-0.8 = -0.18
1,-0.3,-0.7

1 1.0,04, 0.6 1,1 True 1,-0.3,-0.7
1.0*1.0 + 0.4*-0.3 + 0.6*-0.7 = 0.46
1,-0.3,-0.7

2 1.0,05,0.2 1,1 True 1,-0.3,-0.7
1.0*1.0 + 0.5*-0.3 + 0.2*-0.7 = 0.71
1,-0.3,-0.7

3 1.0,0.7,0.9 1,0 False 0,-1,-1.6
1.0¥1.0 + 0.7%-0.3 + 0.9*-0.7 = 0.16

The second epoch begins using the values of the weights from the first epoch. Two
training instances are classified incorrectly during this epoch. The weights are
updated twice, but the decision boundary at the end of the second epoch is similar
the decision boundary at the end of the first epoch.
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Epoch 2

20F T T

151

1.0

0.5

0.0

-1.0L

-0.5 0.0

0.5 1.0

15

The algorithm failed to converge during this epoch, so we will continue training. The
following table describes the third training epoch:

Epoch 3

Instance

Initial Weights
b

Activation

Prediction,
Target

Correct

Updated Weights

0,-1,-1.6
1.0,0.2,0.1
1.0%0 + 0.2*-1.0 + 0.1*-1.6 = -0.36

0,1

False

1,-0.8,-1.5

1,-0.8,-1.5
1.0,0.4, 0.6
1.01.0 + 0.4*-0.8 + 0.6*-1.5 =-0.22

0,1

False

2,-04,-09

2,-04,-09
1.0,0.5,0.2
1.02.0 + 0.5*-0.4 + 0.2*-0.9 =1.62

1,1

True

2,-04,-09

2,-04,-09
1.0,0.7,0.9
1.0%2.0 + 0.7%-0.4 + 0.9*-0.9 = 0.91

1,0

False

1,-1.1,-1.8
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The perceptron classified more instances incorrectly during this epoch than during
previous epochs. The following figure depicts the decision boundary at the end of
the third epoch:

Epoch 3

The perceptron continues to update its weights throughout the fourth and fifth
training epochs, and it continues to classify training instances incorrectly. During the
sixth epoch the perceptron classified all of the instances correctly; it converged on a
set of weights that separates the two classes. The following table describes the sixth
training epoch:
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Epoch 6

Instance

Initial Weights
X
Activation

Prediction,
Target

Correct

Updated weights

2,-1,-15
1.0,0.2,0.1
1.0%2 + 0.2*%-1 + 0.1*-1.5=1.65

1,1

True

2,-1,-1.5

2,-1,-15
1.0,04, 0.6
1.0%2 + 0.4*-1 + 0.6*-1.5=0.70

1,1

True

2,-1,-1.5

2,-1,-15
1.0,0.5,0.2
1.02 + 0.5%-1 + 0.2*-1.5=1.2

1,1

True

2,-1,-1.5

2,-1,-1.5
1.0,0.7,0.9

1.0°2+0.7%-1+0.9%1.5 =
-0.05

0,0

True

2,-1,-1.5

The decision boundary at the end of the sixth training epoch is shown in the
following figure:

Epoch 6
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The following figure shows the decision boundary throughout all the training epochs.
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Document classification with the perceptron

scikit-learn provides an implementation of the perceptron. As with the other
implementations that we used, the constructor for the Perceptron class accepts
keyword arguments that set the algorithm's hyperparameters. Perceptron similarly
exposes the fit_transform() and predict () methods. Perceptron also provides a
partial_ fit () method, which allows the classifier to train and make predictions
for streaming data.

In this example, we train a perceptron to classify documents from the 20 newsgroups
dataset. The dataset consists of approximately 20,000 documents sampled from 20
Usenet newsgroups. The dataset is commonly used in document classification and
clustering experiments; scikit-learn provides a convenience function to download
and read the dataset. We will train a perceptron to classify documents from three
newmgroups:rec.sports.hockey,rec.sports.baseball,and;rec.auto.
scikit-learn's Perceptron natively supports multiclass classification; it will use the one
versus all strategy to train a classifier for each of the classes in the training data. We
will represent the documents as TF-IDF-weighted bags of words. The partial_ fit ()
method could be used in conjunction with HashingVectorizer to train from large or
streaming data in a memory-constrained setting:

>>> from sklearn.datasets import fetch 20newsgroups

>>> from sklearn.metrics.metrics import f1 score, classification
report

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> from sklearn.linear model import Perceptron

>>> categories = ['rec.sport.hockey', 'rec.sport.baseball', 'rec.
autos']

>>> newsgroups_train = fetch 20newsgroups (subset='train',
categories=categories, remove=('headers',6 'footers', 'quotes'))
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>>> newsgroups_ test = fetch 20newsgroups (subset='test',
categories=categories, remove=('headers', 'footers', 'quotes'))

>>> vectorizer = TfidfVectorizer()
>>> X train = vectorizer.fit transform(newsgroups train.data)
>>> X test = vectorizer.transform(newsgroups test.data)

>>> classifier = Perceptron(n iter=100, eta0=0.1)

>>> classifier.fit transform(X train, newsgroups train.target )

>>> predictions = classifier.predict (X test)

>>> print classification report (newsgroups test.target, predictiomns)

The following is the output of the script:

precision recall fl-score support

0.89 0.87 0.88 396

0.87 0.78 0.82 397

0.79 0.88 0.83 399

avg / total 0.85 0.85 0.85 1192

First, we download and read the dataset using the fetch_20newsgroups () function.
Consistent with other built-in datasets, the function returns an object with data,
target, and target_names fields. We also specify that the documents' headers,
footers, and quotes should be removed. Each of the newsgroups used different
conventions in the headers and footers; retaining these explanatory variables

makes classifying the documents artificially easy. We produce TF-IDF vectors using
TfifdVectorizer, train the perceptron, and evaluate it on the test set. Without
hyperparameter optimization, the perceptron's average precision, recall, and F1
score are 0.85.

Limitations of the perceptron

While the perceptron classified the instances in our example well, the model has
limitations. Linear models like the perceptron with a Heaviside activation function
are not universal function approximators; they cannot represent some functions.
Specifically, linear models can only learn to approximate the functions for linearly
separable datasets. The linear classifiers that we have examined find a hyperplane
that separates the positive classes from the negative classes; if no hyperplane exists
that can separate the classes, the problem is not linearly separable.
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A simple example of a function that is linearly inseparable is the logical operation
XOR, or exclusive disjunction. The output of XOR is one when one of its inputs

is equal to one and the other is equal to zero. The inputs and outputs of XOR are
plotted in two dimensions in the following graph. When XOR outputs 1, the instance
is marked with a circle; when XOR outputs 0, the instance is marked with a diamond,
as shown in the following figure:

1 ) ¢
0 ¢ @

It is impossible to separate the circles from the diamonds using a single straight line.
Suppose that the instances are pegs on a board. If you were to stretch a rubber band
around both of the positive instances, and stretch a second rubber band around both
of the negative instances, the bands would intersect in the middle of the board. The
rubber bands represent convex hulls, or the envelope that contains all of the points
within the set and all of the points along any line connecting a pair points within
the set. Feature representations are more likely to be linearly separable in higher
dimensional spaces than lower dimensional spaces. For instance, text classification
problems tend to be linearly separable when high-dimensional representations like
the bag-of-words are used.
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In the next two chapters, we will discuss techniques that can be used to model linearly
inseparable data. The first technique, called kernelization, projects linearly inseparable
data to a higher dimensional space in which it is linearly separable. Kernelization can
be used in many models, including perceptrons, but it is particularly associated with
support vector machines, which we will discuss in the next chapter. Support vector
machines also support techniques that can find the hyperplane that separates linearly
inseparable classes with the fewest errors. The second technique creates a directed
graph of perceptrons. The resulting model, called an artificial neural network,

is a universal function approximator; we will discuss artificial neural networks in
Chapter 10, From the Perceptron to Artificial Neural Networks.

Summary

In this chapter, we discussed the perceptron. Inspired by neurons, the perceptron

is a linear model for binary classification. The perceptron classifies instances by
processing a linear combination of the explanatory variables and weights with an
activation function. While a perceptron with a logistic sigmoid activation function
is the same model as logistic regression, the perceptron learns its weights using

an online, error-driven algorithm. The perceptron can be used effectively in some
problems. Like the other linear classifiers that we have discussed, the perceptron is
not a universal function approximator; it can only separate the instances of one class
from the instances of the other using a hyperplane. Some datasets are not linearly
separable; that is, no possible hyperplane can classify all of the instances correctly.
In the following chapters, we will discuss two models that can be used with linearly
inseparable data: the artificial neural network, which creates a universal function
approximator from a graph of perceptrons and the support vector machine, which
projects the data onto a higher dimensional space in which it is linearly separable.
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From the Perceptron to
Support Vector Machines

In the previous chapter we discussed the perceptron. As a binary classifier, the
perceptron cannot be used to effectively classify linearly inseparable feature
representations. We encountered a similar problem to this in our discussion of
multiple linear regression in Chapter 2, Linear Regression; we examined a dataset in
which the response variable was not linearly related to the explanatory variables.

To improve the accuracy of the model, we introduced a special case of multiple
linear regression called polynomial regression. We created synthetic combinations of
features, and were able to model a linear relationship between the response variable
and the features in the higher-dimensional feature space.

While this method of increasing the dimensions of the feature space may seem like
a promising technique to use when approximating nonlinear functions with linear
models, it suffers from two related problems. The first is a computational problem;
computing the mapped features and working with larger vectors requires more
computing power. The second problem pertains to generalization; increasing the
dimensions of the feature representation introduces the curse of dimensionality.
Learning from high-dimensional feature representations requires exponentially
more training data to avoid overfitting.

In this chapter, we will discuss a powerful model for classification and regression
called the support vector machine (SVM). First, we will revisit mapping features

to higher-dimensional spaces. Then, we will discuss how support vector machines
mitigate the computation and generalization problems encountered when learning
from the data mapped to higher-dimensional spaces. Entire books are devoted to
describing support vector machines, and describing the optimization algorithms used
to train SVMs requires more advanced math than we have used in previous chapters.
Instead of working through toy examples in detail as we have done in previous
chapters, we will try to develop an intuition for how support vector machines work
in order to apply them effectively with scikit-learn.
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Kernels and the kernel trick

Recall that the perceptron separates the instances of the positive class from the
instances of the negative class using a hyperplane as a decision boundary. The
decision boundary is given by the following equation:

f(x)= <w,x>+b
Predictions are made using the following function:

h(x)= sign(f(x))

Note that previously we expressed the inner product <W, x> as W' x. To be consistent
with the notational conventions used for support vector machines, we will adopt the
former notation in this chapter.

While the proof is beyond the scope of this chapter, we can write the model
differently. The following expression of the model is called the dual form. The
expression we used previously is the primal form:

f(x)=<w,x>+b:Zaiyl. <xl.,x>+b

The most important difference between the primal and dual forms is that the primal
form computes the inner product of the model parameters and the test instance's
feature vector, while the dual form computes the inner product of the training
instances and the test instance's feature vector. Shortly, we will exploit this property
of the dual form to work with linearly inseparable classes. First, we must formalize
our definition of mapping features to higher-dimensional spaces.

In the section on polynomial regression in Chapter 2, Linear Regression, we mapped
features to a higher-dimensional space in which they were linearly related to the
response variable. The mapping increased the number of features by creating
quadratic terms from combinations of the original features. These synthetic features
allowed us to express a nonlinear function with a linear model. In general, a
mapping is given by the following expression:

x—>¢(x)
¢:R* > R"
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The plot on the left in the following figure shows the original feature space of a
linearly inseparable data set. The plot on the right shows that the data is linearly
separable after mapping to a higher-dimensional space:
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Let's return to the dual form of our decision boundary, and the observation that
the feature vectors appear only inside of a dot product. We could map the data to a
higher-dimensional space by applying the mapping to the feature vectors as follows:

F(x)=>ay (x,x)+b
f(x)= .y ($(x)e(x))+b

As noted, this mapping allows us to express more complex models, but it
introduces computation and generalization problems. Mapping the feature
vectors and computing their dot products can require a prohibitively large
amount of processing power.

Observe in the second equation that while we have mapped the feature vectors to a
higher-dimensional space, the feature vectors still only appear as a dot product. The
dot product is scalar; we do not require the mapped feature vectors once this scalar
has been computed. If we can use a different method to produce the same scalar as
the dot product of the mapped vectors, we can avoid the costly work of explicitly
computing the dot product and mapping the feature vectors.
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Fortunately, there is such a method called the kernel trick. A kernel is a function
that, given the original feature vectors, returns the same value as the dot product of
its corresponding mapped feature vectors. Kernels do not explicitly map the feature
vectors to a higher-dimensional space, or calculate the dot product of the mapped
vectors. Kernels produce the same value through a different series of operations that
can often be computed more efficiently. Kernels are defined more formally in the
following equation:

K (x,2)={g(x).4(2))

Let's demonstrate how kernels work. Suppose that we have two feature vectors,
x and z:

x:(xl,xz)
z:(zl,zz)

In our model, we wish to map the feature vectors to a higher-dimensional space
using the following transformation:

#(x)=x"
The dot product of the mapped, normalized feature vectors is equivalent to:

(#(2).0(2))=((7 8 V20, ), (2 22.922,2, ))

The kernel given by the following equation produces the same value as the dot
product of the mapped feature vectors:

_ 2 2 2.2 2 2
K(x,z)—(x,z> —(xlzl+x222) =Xz, +2x,2,X,2, + X, Z,

K(x,2)={g(x).4(2))
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Let's plug in values for the feature vectors to make this example more concrete:

x:(4,9)

(3.3)

K(x,z)=4**3>42%4%3%9*3=1521

z

<¢(X)’¢(Z)>=<(42,92,\5*4*9),(32,32,ﬁ*3*3)>=1521

The kernel K (x, Z) produced the same value as the dot product <¢(x) , ¢(Z)> of the
mapped feature vectors, but never explicitly mapped the feature vectors to the
higher-dimensional space and required fewer arithmetic operations. This example
used only two dimensional feature vectors. Data sets with even a modest number of
features can result in mapped feature spaces with massive dimensions. scikit-learn
provides several commonly used kernels, including the polynomial, sigmoid,
Gaussian, and linear kernels. Polynomial kernels are given by the following equation:

K(x,x') = (1+x><x')k

Quadratic kernels, or polynomial kernels where k is equal to 2, are commonly used in
natural language processing.

The sigmoid kernel is given by the following equation. 7 and 7 are hyperparameters
that can be tuned through cross-validation:

K(x,x")= tanh<;/(x,x') + r>

The Gaussian kernel is a good first choice for problems requiring nonlinear models.
The Gaussian kernel is a radial basis function. A decision boundary that is a
hyperplane in the mapped feature space is similar to a decision boundary that is

a hypersphere in the original space. The feature space produced by the Gaussian
kernel can have an infinite number of dimensions, a feat that would be impossible
otherwise. The Gaussian kernel is given by the following equation:

K(x,x') = e(—”x - x'”2 /0'2)
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7 is a hyperparameter. It is always important to scale the features when using
support vector machines, but feature scaling is especially important when using
the Gaussian kernel.

Choosing a kernel can be challenging. Ideally, a kernel will measure the similarity
between instances in a way that is useful to the task. While kernels are commonly
used with support vector machines, they can also be used with any model that can
be expressed in terms of the dot product of two feature vectors, including logistic
regression, perceptrons, and principal component analysis. In the next section, we
will address the second problem caused by mapping to high-dimensional feature
spaces: generalization.

Maximum margin classification and
support vectors

The following figure depicts instances from two linearly separable classes and three
possible decision boundaries. All of the decision boundaries separate the training
instances of the positive class from the training instances of the negative class, and
a perceptron could learn any of them. Which of these decision boundaries is most
likely to perform best on test data?

Decision Boundaries

Ty
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From this visualization, it is intuitive that the dotted decision boundary is the best.
The solid decision boundary is near many of the positive instances. The test set could
contain a positive instance that has a slightly smaller value for the first explanatory
variable, X;; this instance would be classified incorrectly. The dashed decision
boundary is farther away from most of the training instances; however, it is near

one of the positive instances and one of the negative instances. The following figure
provides a different perspective on evaluating decision boundaries:

Assume that the line plotted is the decision boundary for a logistic regression
classifier. The instance labeled A is far from the decision boundary; it would be
predicted to belong to the positive class with a high probability. The instance labeled
B would still be predicted to belong to the positive class, but the probability would
be lower as the instance is closer to the decision boundary. Finally, the instance
labeled C would be predicted to belong to the positive class with a low probability;
even a small change to the training data could change the class that is predicted. The
most confident predictions are for the instances that are farthest from the decision
boundary. We can estimate the confidence of the prediction using its functional
margin. The functional margin of the training set is given by the following equations:

Sfunct =min y, f (x,)

f(x)=<w,x>+b

[177]
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In the preceding formulae ), is the true class of the instance. The functional margin
is large for instance A and small for instance C. If C were misclassified, the functional
margin would be negative. The instances for which the functional margin is equal

to one are called support vectors. These instances alone are sufficient to define the
decision boundary; the other instances are not required to predict the class of a test
instance. Related to the functional margin is the geometric margin, or the maximum
width of the band that separates the support vectors. The geometric margin is equal
to the normalized functional margin. It is necessary to normalize the functional
margins as they can be scaled by using w, which is problematic for training. When

w is a unit vector, the geometric margin is equal to the functional vector. We can
now formalize our definition of the best decision boundary as having the greatest
geometric margin. The model parameters that maximize the geometric margin can be
solved through the following constrained optimization problem:

min —(w, w>
n

subjectto: y, (<w, xi> + b) >1

A useful property of support vector machines is that this optimization problem is
convex; it has a single local minimum that is also the global minimum. While the
proof is beyond the scope of this chapter, the previous optimization problem can be
written using the dual form of the model to accommodate kernels as follows:

1
W(a)=2.a, —EZ%%%%K(%%)
i

1

subject to: Z ve, =0

i=l
subjectto:a;, >0

Finding the parameters that maximize the geometric margin subject to the
constraints that all of the positive instances have functional margins of at least 1
and all of the negative instances have functional margins of at most -1 is a quadratic
programming problem. This problem is commonly solved using an algorithm
called Sequential Minimal Optimization (SMO). The SMO algorithm breaks the
optimization problem down into a series of the smallest possible subproblems,
which are then solved analytically.
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Classifying characters in scikit-learn

Let's apply support vector machines to a classification problem. In recent years,
support vector machines have been used successfully in the task of character
recognition. Given an image, the classifier must predict the character that is depicted.
Character recognition is a component of many optical character-recognition
systems. Even small images require high-dimensional representations when raw
pixel intensities are used as features. If the classes are linearly inseparable and must
be mapped to a higher-dimensional feature space, the dimensions of the feature
space can become even larger. Fortunately, SVMs are suited to working with such
data efficiently. First, we will use scikit-learn to train a support vector machine to
recognize handwritten digits. Then, we will work on a more challenging problem:
recognizing alphanumeric characters in photographs.

Classifying handwritten digits

The Mixed National Institute of Standards and Technology database is a collection
of 70,000 images of handwritten digits. The digits were sampled from documents
written by employees of the US Census Bureau and American high school students.
The images are grayscale and 28 x 28 pixels in dimension. Let's inspect some of the
images using the following script:

>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import fetch mldata
>>> import matplotlib.cm as cm

>>> digits = fetch mldata('MNIST original', data_ home='data/mnist').
data

>>> counter = 1
>>> for i in range(1l, 4):

>>> for j in range(1l, 6):

>>> plt.subplot (3, 5, counter)

>>> plt.imshow(digits([(i - 1) * 8000 + j].reshape((28, 28)),
cmap=cm.Greys_r)

>>> plt.axis('off")

>>> counter += 1

>>> plt.show()
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First, we load the data. scikit-learn provides the fetch_mldata convenience function
to download the data set if it is not found on disk, and read it into an object. Then,
we create a subplot for five instances for the digits zero, one, and two. The script
produces the following figure:

alo]ololo
nnnpn

The MNIST data set is partitioned into a training set of 60,000 images and test set
of 10,000 images. The dataset is commonly used to evaluate a variety of machine
learning models; it is popular because little preprocessing is required. Let's use
scikit-learn to build a classifier that can predict the digit depicted in an image.

First, we import the necessary classes:

from sklearn.datasets import fetch mldata

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import scale

from sklearn.cross validation import train test split
from sklearn.svm import SVC

from sklearn.grid_search import GridSearchCVv

from sklearn.metrics import classification report

The script will fork additional processes during grid search, which requires
execution froma  main _ block.

if mname == ' main ':
data = fetch mldata('MNIST original', data_home='data/mnist')
X, y = data.data, data.target
X = X/255.0%2 - 1
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Next, we load the data using the fetch_mldata convenience function. We scale the
features and center each feature around the origin. We then split the preprocessed
data into training and test sets using the following line of code:

X train, X test, y train, y test = train test split(X, y)

Next, we instantiate an svc, or support vector classifier, object. This object exposes
an API like that of scikit-learn's other estimators; the classifier is trained using

the £it method, and predictions are made using the predict method. If you
consult the documentation for svc, you will find that the estimator requires more
hyperparameters than most of the other estimators we discussed. It is common
for more powerful estimators to require more hyperparameters. The most
interesting hyperparameters for svc are set by the kernel, gamma, and ¢ keyword
arguments. The kernel keyword argument specifies the kernel to be used. scikit-
learn provides implementations of the linear, polynomial, sigmoid, and radial
basis function kernels. The degree keyword argument should also be set when
the polynomial kernel is used. ¢ controls regularization; it is similar to the lambda
hyperparameter we used for logistic regression. The keyword argument gamma is
the kernel coefficient for the sigmoid, polynomial, and RBF kernels. Setting these
hyperparameters can be challenging, so we tune them by grid searching with the
following code.

pipeline = Pipeline([
('clf', SVC(kernel='rbf', gamma=0.01, C=100))
1)

print X_train.shape

parameters = {
'clf gamma': (0.01, 0.03, 0.1, 0.3, 1),
'clf_C': (0.1, 0.3, 1, 3, 10, 30),

}

grid search = GridSearchCV(pipeline, parameters, n_ jobs=2,
verbose=1, scoring='accuracy')

grid search.fit (X train[:10000], y train[:10000])

print 'Best score: %0.3f' % grid search.best score

print 'Best parameters set:'

best parameters = grid search.best estimator .get params()

for param name in sorted(parameters.keys()) :

print '\t%s: %r' % (param name, best parameters [param name])
predictions = grid search.predict (X test)
print classification report (y test, predictions)
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The following is the output of the preceding script:

Fitting 3 folds for each of 30 candidates,

[Parallel (n jobs=2)]:

[Parallel (n jobs=2)]:

[Parallel (n _jobs=2)]:

remaining: 6.9min

[Parallel (n jobs=2)]:

Best score: 0.966

Best parameters set:

clf C: 3
clf gamma: 0.01
precision

0.0 0.98
1.0 0.98
2.0 0.95
3.0 0.97
4.0 0.97
5.0 0.96
6.0 0.98
7.0 0.97
8.0 0.95
9.0 0.96

avg / total 0.97

Done
Done
Done

Done

1
50
88

90

reca

O O O O O O O o o o

0.

jobs
jobs
out of

out of

90 |

90 |

11 fl-score

.99
.99
.97
.95
.98
.96
.98
.96
.96
.95

97

O O O O O O O o o o

0.

.99
.98
.96
.96
.97
.96
.98
.97
.96
.96

97

totalling 90 fits
elapsed: 7.7min
elapsed: 201.2min
elapsed: 304.8min

elapsed: 309.2min finished

support

1758
1968
1727
1803
1714
1535
1758
1840
1668
1729

17500

The best model has an average F1 score of 0.97; this score can be increased further by
training on more than the first ten thousand instances.

Classifying characters in natural images

Now let's try a more challenging problem. We will classify alphanumeric characters
in natural images. The Chars74K dataset, collected by T. E. de Campos, B. R. Babu,
and M. Varma for Character Recognition in Natural Images, contains more than 74,000
images of the digits zero through to nine and the characters for both cases of the
English alphabet. The following are three examples of images of the lowercase

letter z. Chars74K can be downloaded from http://www.ee.surrey.ac.uk/CVSSP/

demos/chars74k/.
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Several types of images comprise the collection. We will use 7,705 images of
characters that were extracted from photographs of street scenes taken in Bangalore,
India. In contrast to MNIST, the images in this portion of Chars74K depict the
characters in a variety of fonts, colors, and perturbations. After expanding the
archive, we will use the files in the English/Img/GoodImg/Bmp/ directory. First we
will import the necessary classes.

import os

import numpy as np

from sklearn.svm import SVC

from sklearn.cross validation import train test split
from sklearn.metrics import classification report

import Image
Next we will define a function that resizes images using the Python Image Library:

def resize and crop(image, size):
img _ratio = image.size[0] / float (image.size[1])
ratio = size[0] / float(size[l])
if ratio > img ratio:
image = image.resize((size[0], size[0] * image.size[l] /
image.size[0]), Image.ANTIALIAS)
image = image.crop((0, 0, 30, 30))
elif ratio < img ratio:
image = image.resize((size[l] * image.size[0] / image.sizel[l],
size[1l]), Image.ANTIALIAS)
image = image.crop((0, 0, 30, 30))
else:
image = image.resize((size[0], size[l]), Image.ANTIALIAS)
return image
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Then we load will the images for each of the 62 classes and convert them to grayscale.
Unlike MNIST, the images of Chars74K do not have consistent dimensions, so we
will resize them to 30 pixels on a side using the resize_and_crop function we defined.
Finally, we will convert the processed images to a NumPy array:

X = []
y = [I

for path, subdirs, files in os.walk('data/English/Img/GoodImg/Bmp/') :
for filename in files:
f = os.path.join(path, filename)

img = Image.open(f).convert('L') # convert to grayscale

img resized = resize and crop(img, (30, 30))

img resized = np.asarray(img resized.getdata(), dtype=np.
float64) \

.reshape ((img resized.size[l] * img resized.size[0], 1))
target = filename[3:filename.index('-"')]
X.append (img resized)
y.append (target)

X = np.array (X)
X = X.reshape (X.shape[:2])

We will then train a support vector classifier with a polynomial
kernel.classifier = SVC(verbose=0, kernel='poly',6 degree=3)

X train, X test, y train, y test = train test split (X, y, random
state=1) B B B B a
classifier.fit (X train, y train)

predictions = classifier.predict (X test)

print classification report (y test, predictions)

The preceding script produces the following output:

precision recall fl-score support
001 0.24 0.22 0.23 23
002 0.24 0.45 0.32 20
061l 0.33 0.15 0.21 13
062 0.08 0.25 0.12
avg / total 0.41 0.34 0.36 1927
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It is apparent that this is a more challenging task than classifying digits in MNIST.
The appearances of the characters vary more widely, the characters are perturbed
more since the images were sampled from photographs rather than scanned
documents. Furthermore, there are far fewer training instances for each class in
Chars74K than there are in MNIST. The performance of the classifier could be
improved by adding training data, preprocessing the images differently, or using
more sophisticated feature representations.

Summary

In this chapter, we discussed the support vector machine —a powerful model that

can mitigate some of the limitations of perceptrons. The perceptron can be used
effectively for linearly separable classification problems, but it cannot express

more complex decision boundaries without expanding the feature space to higher
dimensions. Unfortunately, this expansion is prone to computation and generalization
problems. Support vector machines redress the first problem using kernels, which
avoid explicitly computing the feature mapping. They redress the second problem by
maximizing the margin between the decision boundary and the nearest instances. In
the next chapter, we will discuss models called artificial neural networks, which, like
support vector machines, extend the perceptron to overcome its limitations.
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From the Perceptron to
Artificial Neural Networks

In Chapter 8, The Perceptron, we introduced the perceptron, which is a linear model
for binary classification. You learned that the perceptron is not a universal function
approximator; its decision boundary must be a hyperplane. In the previous chapter
we introduced the support vector machine, which redresses some of the perceptron's
limitations by using kernels to efficiently map the feature representations to a

higher dimensional space in which the instances are linearly separable. In this
chapter, we will discuss artificial neural networks, which are powerful nonlinear
models for classification and regression that use a different strategy to overcome the
perceptron's limitations.

If the perceptron is analogous to a neuron, an artificial neural network, or neural net,
is analogous to a brain. As billions of neurons with trillions of synapses comprise a
human brain, an artificial neural network is a directed graph of perceptrons or other
artificial neurons. The graph's edges are weighted; these weights are the parameters
of the model that must be learned.

Entire books describe individual aspects of artificial neural networks; this chapter
will provide an overview of their structure and training. At the time of writing,
some artificial neural networks have been developed for scikit-learn, but they are
not available in Version 0.15.2. Readers can follow the examples in this chapter by
checking out a fork of scikit-learn 0.15.1 that includes the neural network module.
The implementations in this fork are likely to be merged into future versions of
scikit-learn without any changes to the API described in this chapter.
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Nonlinear decision boundaries

Recall from Chapter 8, The Perceptron, that while some Boolean functions such
as AND, OR, and NAND can be approximated by the perceptron, the linearly
inseparable function XOR cannot, as shown in the following plots:

. AND NAND ‘ OR XOR .
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Let's review XOR in more detail to develop an intuition for the power of artificial
neural networks. In contrast to AND, which outputs 1 when both of its inputs are
equal to 1, and OR, which outputs 1 when at least one of the inputs are equal to 1,
the output of XOR is 1 when exactly one of its inputs are equal to 1. We could view
XOR as outputting 1 when two conditions are true. The first condition is that at
least one of the inputs must be equal to 1; this is the same condition that OR tests.
The second condition is that not both of the inputs are equal to 1; NAND tests this
condition. We can produce the same output as XOR by processing the input with
both OR and NAND and then verifying that the outputs of both functions are equal
to 1 using AND. That is, the functions OR, NAND, and AND can be composed to
produce the same output as XOR.

The following tables provide the truth tables for XOR, OR, AND, and NAND for the
inputs A and B. From these tables we can verify that inputting the output of OR and
NAND to AND produces the same output as inputting A and B to XOR:

A B AANDB ANANDB | AORB AXORB
0 0 0 1 0 0

0 1 0 1 1 1

1 0 0 1 1 1

1 1 1 0 1 0

A B AORB ANANDB | (A OR B) AND (A NAND B)
0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0
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Instead of trying to represent XOR with a single perceptron, we will build an artificial
neural network from multiple artificial neurons that each approximate a linear
function. Each instance's feature representation will be input to two neurons; one
neuron will represent NAND and the other will represent OR. The output of these
neurons will be received by a third neuron that represents AND to test whether both
of XOR's conditions are true.

Feedforward and feedback artificial
neural networks

Artificial neural networks are described by three components. The first is the model's
architecture, or topology, which describes the layers of neurons and structure of the
connections between them. The second component is the activation function used by
the artificial neurons. The third component is the learning algorithm that finds the
optimal values of the weights.

There are two main types of artificial neural networks. Feedforward neural
networks are the most common type of neural net, and are defined by their directed
acyclic graphs. Signals only travel in one direction —towards the output layer —in
feedforward neural networks. Conversely, feedback neural networks, or recurrent
neural networks, do contain cycles. The feedback cycles can represent an internal
state for the network that can cause the network's behavior to change over time
based on its input. Feedforward neural networks are commonly used to learn a
function to map an input to an output. The temporal behavior of feedback neural
networks makes them suitable for processing sequences of inputs. Because feedback
neural networks are not implemented in scikit-learn, we will limit our discussion to
only feedforward neural networks.

Multilayer perceptrons

The multilayer perceptron (MLP) is the one of the most commonly used artificial
neural networks. The name is a slight misnomer; a multilayer perceptron is not a
single perceptron with multiple layers, but rather multiple layers of artificial neurons
that can be perceptrons. The layers of the MLP form a directed, acyclic graph.
Generally, each layer is fully connected to the subsequent layer; the output of each
artificial neuron in a layer is an input to every artificial neuron in the next layer
towards the output. MLPs have three or more layers of artificial neurons.
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The input layer consists of simple input neurons. The input neurons are connected
to at least one hidden layer of artificial neurons. The hidden layer represents latent
variables; the input and output of this layer cannot be observed in the training data.
Finally, the last hidden layer is connected to an output layer. The following diagram
depicts the architecture of a multilayer perceptron with three layers. The neurons
labeled +1 are bias neurons and are not depicted in most architecture diagrams.

Cutput layer

Input layer

Hidden layer
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The artificial neurons, or units, in the hidden layer commonly use nonlinear
activation functions such as the hyperbolic tangent function and the logistic
function, which are given by the following equations:

f(x)=tanh(x)

1
1+e™

/(%)

As with other supervised models, our goal is to find the values of the weights that
minimize the value of a cost function. The mean squared error cost function is
commonly used with multilayer perceptrons. It is given by the following equation,
where m is the number of training instances:

MSE:%Z’”(% —f(xi))2

Minimizing the cost function

The backpropagation algorithm is commonly used in conjunction with an
optimization algorithm such as gradient descent to minimize the value of the cost
function. The algorithm takes its name from a portmanteau of backward propagation,
and refers to the direction in which errors flow through the layers of the network.
Backpropagation can theoretically be used to train a feedforward network with any
number of hidden units arranged in any number of layers, though computational
power constrains this capability.

Backpropagation is similar to gradient descent in that it uses the gradient of the
cost function to update the values of the model parameters. Unlike the linear
models we have previously seen, neural nets contain hidden units that represent
latent variables; we can't tell what the hidden units should do from the training
data. If we do not know what the hidden units should do, we cannot calculate their
errors and we cannot calculate the gradient of cost function with respect to their
weights. A naive solution to overcome this is to randomly perturb the weights for
the hidden units. If a random change to one of the weights decreases the value of
the cost function, we save the change and randomly change the value of another
weight. An obvious problem with this solution is its prohibitive computational cost.
Backpropagation provides a more efficient solution.
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We will step through training a feedforward neural network using backpropagation.
This network has two input units, two hidden layers that both have three hidden
units, and two output units. The input units are both fully connected to the first
hidden layer's units, called Hidden1, Hidden2, and Hidden3. The edges connecting
the units are initialized to small random weights.

Forward propagation

During the forward propagation stage, the features are input to the network and fed
through the subsequent layers to produce the output activations. First, we compute
the activation for the unit Hidden1. We find the weighted sum of input to Hidden1,
and then process the sum with the activation function. Note that Hidden1 receives a
constant input from a bias unit that is not depicted in the diagram in addition to the
inputs from the input units. In the following diagram, g (x) is the activation function:

Hidden Layer 1 Hidden Layer 2

~
Hidden4 s

BiasWeight1

Input Layer Output Layer

Weight1

Weightz

Hiddeng |

Activation = g(BiasWeight1 + Weight1 * Input1 + Weight2 * Input2)
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Next, we compute the activation for the second hidden unit. Like the first hidden
unit, it receives weighted inputs from both of the input units and a constant input
from a bias unit. We then process the weighted sum of the inputs, or preactivation,
with the activation function as shown in the following figure:

Hidden Layer 1 Hidden Layer 2

) Hiddens |

Output Layer

Input Layer

N

: S’
Hidden6

Activation = g(BiasWeight2 + Weight3 * Input1 + Weight4 * Input2)
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We then compute the activation for Hidden3 in the same manner:

Hidden Layer 1 Hidden Layer 2

e Hidden4 ..

Input Layer

Weight5

Qutput Layer

\

BiasWeight3

Hiddeng |

Activation = g(BiasWeight3 + Weight5 * Input1 + Weight6 * Input2)
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Having computed the activations of all of the hidden units in the first layer, we
proceed to the second hidden layer. In this network, the first hidden layer is fully
connected to the second hidden layer. Similar to the units in the first hidden layer,
the units in the second hidden layer receive a constant input from bias units that are
not depicted in the diagram. We proceed to compute the activation of Hidden4:

Hidden Layer 1 Hidden Layer 2

-~
BiasWeight4

Hidden4 .

Input Layer Qutput Layer

Weight5

Hiddeng |

Activation = g(BiasWeight4 + Weight7 * Hidden1 + Weight8 * Hidden2 + Weight9 * Hidden3)
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We next compute the activations of Hidden5 and Hiddens. Having computed the
activations of all of the hidden units in the second hidden layer, we proceed to the
output layer in the following figure. The activation of output1 is the weighted sum
of the second hidden layer's activations processed through an activation function.
Similar to the hidden units, the output units both receive a constant input from a
bias unit:

Hidden Layer 1 Hidden Layer 2

N Hiddend

Input Layer

* Weight16 OUtPUt Layer

BiasWeight?

Weight17
Weight18

Hidden6

Activation = g(BiasWeight7 + Weight16 * Hidden4 + Weight17 * Hidden5 + Weight18 * Hidden6)
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We calculate the activation of output2 in the same manner:

Hidden Layer 1 Hidden Layer 2

Hidden4

Weight1s ™,

Input Layer Qutput Layer

~
; BiasWeight8
Weightzo

£ weight21

Hiddené

Activation = g(BiasWeight8 + Weight19 * Hidden4 + Weight20 * Hidden5 + Weight21 * Hidden6)

We computed the activations of all of the units in the network, and we have now

completed forward propagation. The network is not likely to approximate the true
function well using the initial random values of the weights. We must now update
the values of the weights so that the network can better approximate our function.
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Backpropagation

We can calculate the error of the network only at the output units. The hidden units
represent latent variables; we cannot observe their true values in the training data
and thus, we have nothing to compute their error against. In order to update their
weights, we must propagate the network's errors backwards through its layers. We
will begin with output1. Its error is equal to the difference between the true and
predicted outputs, multiplied by the partial derivative of the unit's activation:

Hidden Layer 1 Hidden Layer 2

Hiddend ),

Input Layer Output Layer

Hiddens |

Error(Qutput1) = g'(Output1) * (True1 - Output1)
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We then calculate the error of the second output unit:

Hidden Layer 1 Hidden Layer 2

Hidden4 ..

Input Layer Qutput Layer

Hiddeng |

Error(Output2) = g'(Output2) * (True2 - Output2)
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We computed the errors of the output layer. We can now propagate these errors
backwards to the second hidden layer. First, we will compute the error of hidden unit
Hidden4. We multiply the error of output1 by the value of the weight connecting
Hidden4 and Outputl. We similarly weigh the error of output2. We then add these
errors and calculate the product of their sum and the partial derivative of Hidden4:

Hidden Layer 1 Hidden Layer 2

Hidden4

Input Layer Qutput Layer

Weight16

Weight19

Hiddeng |

Error(Hidden4) = g'(Hidden4) * (Weight16 * Error(Output1) + Weight19 * Error(Output2))
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We similarly compute the errors of Hidden5:

Hidden Layer 1 Hidden Layer 2

Hidden4

Input Layer Qutput Layer

Weighti7 &

Weight2g

Hiddeng |

Error(Hiddenb) = g'(Hiddenb) * (Weight17 * Error(Output1) + Weight20 * Error(Output2))
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We then compute the Hiddens error in the following figure:

Hidden Layer 1 Hidden Layer 2

Hidden4

Input Layer Qutput Layer

Weight18

Weight21

Hiddené

Error(Hidden6) = g'(Hidden6) * (Weight18 * Error(Output1) + Weight21 * Error(Output2))
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We calculated the error of the second hidden layer with respect to the output layer.
Next, we will continue to propagate the errors backwards towards the input layer.
The error of the hidden unit Hidden1 is the product of its partial derivative and the
weighted sums of the errors in the second hidden layer:

Hidden Layer 1 Hidden Layer 2

A Hiddena

Input Layer Output Layer

Hidden6

Error(Hidden1) = g'(Hidden1) * (Weight7 * Error(Hidden4) + Weight10 * Error(Hidden5) +
Weight13 * Error(Hidden6))
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We similarly compute the error for hidden unit Hidden2:

Hidden Layer 1 Hidden Layer 2

Hidden4

Input Layer

Qutput Layer

Weights %

Weight1

Weight14  /

Hiddené

Error(Hidden2) = g'(Hidden2) * (Weight8 * Error(Hidden4) + Weight11 * Error(Hidden5) +
Weight14 * Error(HiddenG))
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We similarly compute the error for Hidden3:

Hidden Layer 1 Hidden Layer 2

Hidden4

Input Layer

Qutput Layer

4 Hiddens

Error(Hidden3) = g'(Hidden3) * (Weight9 * Error(Hidden4) + Weight12 * Error(Hidden5) +
Weight15 * Error(HiddenG))

We computed the errors of the first hidden layer. We can now use these errors to
update the values of the weights. We will first update the weights for the edges
connecting the input units to Hidden1 as well as the weight for the edge connecting
the bias unit to Hidden1. We will increment the value of the weight connecting

Inputl and Hiddenl by the product of the learning rate, error of Hidden1, and the
value of Input1l.
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We will similarly increment the value of weight2 by the product of the learning rate,
error of Hidden1, and the value of Input2. Finally, we will increment the value of the
weight connecting the bias unit to Hidden1 by the product of the learning rate, error
of Hidden1l, and one.

Hidden Layer 1 Hidden Layer 2

~ BiasWeight!
Hiddend

Input Layer Output Layer

Weight

Weight2

:.
1

BiasWeight1 = BiasWeight1 + a * Error(Hidden1) *
Weight1 = Weight1 + a * Error(Hidden1) * Input1
Weight2 = Weight2 + a * Error(Hidden1) * Input2
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We will then update the values of the weights connecting hidden unit Hidden2 to the
input units and the bias unit using the same method:

Hidden Layer 1 Hidden Layer 2

Hidden4

Input Layer Output Layer

~N

BiasWeight2

:.
1

BiasWeight2 = BiasWeight2 + a * Error(Hidden2) *
Weight3 = Weight3 + a * Error(Hidden2) * Input1
Weight4 = Weight4 + a * Error(Hidden2) * Input2
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Next, we will update the values of the weights connecting the input layer to Hidden3:

Hidden Layer 1 Hidden Layer 2

P Hidden4

Input Layer

Qutput Layer

Weight5

BiasWeight3

1

BiasWeight3 = BiasWeight3 + a * Error(Hidden3) *
Weight5 = Weight5 + a * Error(Hidden3) * Input1
Weight6 = Weight6 + a * Error(Hidden3) * Input2
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Since the values of the weights connecting the input layer to the first hidden layer

is updated, we can continue to the weights connecting the first hidden layer to the
second hidden layer. We will increment the value of weight7 by the product of the
learning rate, error of Hidden4, and the output of Hidden1. We continue to similarly
update the values of weights Weight8 to Weight1s:

Hidden Layer 1 Hidden Layer 2

~BiasWeightd

Hidden4

Input Layer Qutput Layer

q  Hiddens

BiasWeight4 = BiasWeight4 + a * Error(Hidden4) * 1
Weight7 = Weight7 + a * Error(Hidden4) * Hidden1
Weight8 = Weight8 + a * Error(Hidden4) * Hidden2
Weight9 = Weight9 + a * Error(Hidden4) * Hidden3
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The weights for Hidden5 and Hiddené are updated in the same way. We updated
the values of the weights connecting the two hidden layers. We can now update the
values of the weights connecting the second hidden layer and the output layer. We
increment the values of weights w16 through w21 using the same method that we
used for the weights in the previous layers:

Hidden Layer 1 Hidden Layer 2

Hidden4

Input Layer

Qutput Layer

s, Welght1s gioqwveighiz

Weight17

Weight18

Hiddené

BiasWeight7 = BiasWeight7 + a * Error(Output1) * 1

Weight16 = Weight16 + a * Error(Output1) * Hidden3
Weight17 = Weight17 + a * Error(Output1) * Hidden4
Weight18 = Weight18 + a * Error(Output1) * Hidden6
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Hidden Layer 1 Hidden Layer 2

Hidden4

Weight19 ™,

Input Layer Output Layer

¢ ~
\  BiasWeights

Weightzo ¢

Hidden6

BiasWeight8 = BiasWeight8 + a * Error(OQutput2) * 1

Weight19 = Weight19 + a * Error(Output2) * Hidden3
Weight20 = Weight20 + a * Error(Output2) * Hidden4
Weight21 = Weight21 + a * Error(Output2) * Hidden6

£ weight21

After incrementing the value of weight21 by the product of the learning rate,
error of output2, and the activation of Hiddené, we have finished updating the
values of the weights for the network. We can now perform another forward

pass using the new values of the weights; the value of the cost function produced
using the updated weights should be smaller. We will repeat this process until
the model converges or another stopping criterion is satisfied. Unlike the linear
models we have discussed, backpropagation does not optimize a convex function.
It is possible that backpropagation will converge on parameter values that specify
a local, rather than global, minimum. In practice, local optima are frequently
adequate for many applications.
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Approximating XOR with Multilayer
perceptrons

Let's train a multilayer perceptron to approximate the XOR function. At the time of
writing, multilayer perceptrons have been implemented as part of a 2014 Google
Summer of Code project, but have not been merged or released. Subsequent versions
of scikit-learn are likely to include this implementation of multilayer perceptrons
without any changes to the API described in this section. In the interim, a fork of
scikit-learn 0.15.1 that includes the multilayer perceptron implementation can be
cloned from https://github.com/IssamLaradji/scikit-learn.git

First, we will create a toy binary classification dataset that represents XOR and split it
into training and testing sets:

>>> from sklearn.cross validation import train test split

>>> from sklearn.neural network import MultilayerPerceptronClassifier
>>>y = [0, 1, 1, 0] * 1000

>>> X = [[o0, O], [O, 11, T[22, o], [1, 111 * 1000

>>> X train, X test, y train, y test = train test split (X, y, random_

state=3)

Next we instantiate MultilayerPerceptronClassifier. We specify the architecture
of the network through the n_hidden keyword argument, which takes a list of the
number of hidden units in each hidden layer. We create a hidden layer with two units
that use the logistic activation function. The MultilayerPerceptronClassifier class
automatically creates two input units and one output unit. In multi-class problems the
classifier will create one output unit for each of the possible classes.

Selecting an architecture is challenging. There are some rules of thumb to choose
the numbers of hidden units and layers, but these tend to be supported only by
anecdotal evidence. The optimal number of hidden units depends on the number of
training instances, the noise in the training data, the complexity of the function that
is being approximated, the hidden units' activation function, the learning algorithm,
and the regularization employed. In practice, architectures can only be evaluated by
comparing their performances through cross validation.

We train the network by calling the fit() method:

>>> clf = MultilayerPerceptronClassifier (n_hidden=[2],

>>> activation='logistic"',
>>> algorithm="'sgd',
>>> random_ state=3)

>>> clf.fit (X train, y train)
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Finally, we print some predictions for manual inspection and evaluate the model's
accuracy on the test set. The network perfectly approximates the XOR function on
the test set:

)

>>> print 'Number of layers: %s. Number of outputs: %s' % (clf.n_

layers , clf.n outputs )
>>> predictions = clf.predict (X test)
>>> print 'Accuracy:',6 clf.score(X test, y test)

>>> for i, p in enumerate(predictions([:10]):
>>> print 'True: %s, Predicted: %s' % (y_test[i]l, p)
Number of layers: 3. Number of outputs: 1

Accuracy: 1.0

True: 1, Predicted: 1
True: 1, Predicted: 1
True: 1, Predicted: 1
True: 0, Predicted: 0
True: 1, Predicted: 1
True: 0, Predicted: 0
True: 0, Predicted: 0
True: 1, Predicted: 1
True: 0, Predicted: 0
True: 1, Predicted: 1

Classifying handwritten digits

In the previous chapter we used a support vector machine to classify the handwritten
digits in the MNIST dataset. In this section we will classify the images using an
artificial neural network:

from sklearn.datasets import load digits

from sklearn.cross validation import train test split, cross val score
from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

from sklearn.neural network.multilayer perceptron import

MultilayerPerceptronClassifier

First we use the load digits convenience function to load the MNIST dataset. We
will fork additional processes during cross validation, which requires execution from
a main-protected block:

>>> 1f name == ' main ':
>>> digits = load digits()
>>> X = digits.data

>>> y = digits.target
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Scaling the features is particularly important for artificial neural networks and will
help some learning algorithms to converge more quickly. Next, we create a Pipeline
class that scales the data before fitting a MultilayerPerceptronClassifier. This
network contains an input layer, a hidden layer with 150 units, a hidden layer with
100 units, and an output layer. We also increased the value of the regularization
hyperparameter alpha argument. Finally, we print the accuracies of the three cross
validation folds. The code is as follows:

>>> pipeline = Pipeline ([
>>> ('ss', StandardScaler()),
>>> ('mlp', MultilayerPerceptronClassifier(n hidden=[150,

100], alpha=0.1))

>>> 1)

>>> print cross_val score(pipeline, X, y, n jobs=-1)
Accuracies [ 0.95681063 0.96494157 0.93791946]

The mean accuracy is comparable to the accuracy of the support vector classifier.
Adding more hidden units or hidden layers and grid searching to tune the
hyperparameters could further improve the accuracy.

Summary

In this chapter, we introduced artificial neural networks, powerful models for
classification and regression that can represent complex functions by composing
several artificial neurons. In particular, we discussed directed acyclic graphs of
artificial neurons called feedforward neural networks. Multilayer perceptrons are a
type of feedforward network in which each layer is fully connected to the subsequent
layer. An MLP with one hidden layer and a finite number of hidden units is a
universal function approximator. It can represent any continuous function, though it
will not necessarily be able to learn appropriate weights automatically. We described
how the hidden layers of a network represent latent variables and how their weights
can be learned using the backpropagation algorithm. Finally, we used scikit-learn's
multilayer perceptron implementation to approximate the function XOR and to
classify handwritten digits.
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This chapter concludes the book. We discussed a variety of models, learning
algorithms, and performance measures, as well as their implementations in
scikit-learn. In the first chapter, we described machine learning programs as those
that learn from experience to improve their performance at a task. Then, we worked
through examples that demonstrated some of the most common experiences, tasks,
and performance measures in machine learning. We regressed the prices of pizzas
onto their diameters and classified spam and ham text messages. We clustered colors
to compress images and clustered the SURF descriptors to recognize photographs
of cats and dogs. We used principal component analysis for facial recognition, built
a random forest to block banner advertisements, and used support vector machines
and artificial neural networks for optical character recognition. Thank you for
reading; I hope that you will be able to use scikit-learn and this book's examples to
apply machine learning to your own experiences.
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