
Pythonᮏぁᮏぁᮏぁᮏぁ

䘉ᱟሿⲭⲴ Pythonᯠ᡻ᮉ〻Ǆ
Python ᱟа⿽䇑㇇ᵪ〻ᒿ䇮䇑䈝䀰Ǆ֐ਟ㜭ᐢ㓿ੜ䈤䗷ᖸཊ⿽⍱㹼Ⲵ㕆〻䈝䀰ˈ∄ྲ䶎ᑨ
䳮ᆖⲴ C䈝䀰 䶎̍ᑨ⍱㹼Ⲵ Java䈝䀰 䘲̍ਸࡍᆖ㘵Ⲵ Basic䈝䀰 䘲̍ਸ㖁亥㕆〻Ⲵ JavaScript
䈝䀰ˈㅹㅹǄ
䛓 Pythonᱟа⿽ӰѸ䈝䀰˛
俆䘹ˈᡁԜᲞ৺ал㕆〻䈝䀰Ⲵส⹰⸕䇶Ǆ⭘ԫօ㕆〻䈝䀰ᶕᔰਁ〻ᒿˈ䜭ᱟѪҶ䇙䇑㇇ᵪ

ᒢ⍫ˈ∄ྲл䖭ањMP3ˈ㕆߉ањ᮷ẓㅹㅹˈ㘼䇑㇇ᵪᒢ⍫Ⲵ CPUਚ䇔䇶ᵪಘᤷԔˈᡰ
ԕˈቭ㇑н਼Ⲵ㕆〻䈝䀰ᐞᔲᶱབྷˈᴰਾ䜭ᗇ“㘫䈁”ᡀ CPU ਟԕᢗ㹼ⲴᵪಘᤷԔǄ㘼н਼
Ⲵ㕆〻䈝䀰ˈᒢ਼ањ⍫ˈ㕆߉Ⲵԓ⸱䟿ˈᐞ䐍ҏᖸབྷǄ
∄ྲˈᆼᡀ਼ањԫ࣑ˈC䈝䀰㾱߉ 1000㹼ԓ⸱ J̍avaਚ䴰㾱߉ 100㹼ˈ㘼 Pythonਟ㜭ਚ
㾱 20㹼Ǆ
ᡰԕ Pythonᱟа⿽⴨ᖃ儈㓗Ⲵ䈝䀰Ǆ
ҏ䇨Պ䰞ˈԓ⸱ቁ䘈нྭ˛ԓ⸱ቁⲴԓԧᱟ䘀㹼䙏ᓖធ֐ C̍〻ᒿ䘀㹼 1。䫏 J̍ava〻ᒿਟ
㜭䴰㾱 2。ˈ㘼 Python〻ᒿਟ㜭ቡ䴰㾱 10。Ǆ
䛓ᱟнᱟ䎺վ㓗Ⲵ〻ᒿ䎺䳮ᆖˈ䎺儈㓗Ⲵ〻ᒿ䎺ㆰঅ˛㺘䶒кᶕ䈤ˈᱟⲴˈնᱟˈ൘䶎ᑨ儈

Ⲵᣭ䊑䇑㇇ѝˈ儈㓗Ⲵ Python〻ᒿ䇮䇑ҏᱟ䶎ᑨ䳮ᆖⲴˈᡰԕˈ儈㓗〻ᒿ䈝䀰нㅹҾㆰঅǄ
նᱟˈሩҾࡍᆖ㘵઼ᆼᡀᲞ䙊ԫ࣑ˈPython䈝䀰ᱟ䶎ᑨㆰঅ᱃⭘ⲴǄ䘎 Google䜭൘བྷ㿴⁑
֯⭘ Pythonˈ֐ቡн⭘ᣵᗳᆖҶՊ⋑⭘Ǆ
⭘ PythonਟԕڊӰѸ˛ਟԕڊᰕᑨԫ࣑ˈ∄ྲ㠚༷ࣘԭ֐ⲴMP3˗ਟԕڊ㖁ㄉਾਠˈ֐⧠
൘ⴻࡠⲴ㖁ㄉቡᱟ Python߉Ⲵ˗ਟԕڊ㖁㔌⑨ᠿⲴਾਠˈᖸཊ൘㓯⑨ᠿⲴਾਠ䜭ᱟ Python
ᔰਁⲴǄᙫѻቡᱟ㜭ᒢᖸཊᖸཊһ஖Ǆ
Python ᖃ❦ҏᴹн㜭ᒢⲴһᛵˈ∄ྲ߉᫽֌㌫㔏ˈ䘉њਚ㜭⭘ C 䈝䀰߉˗߉᡻ᵪᓄ⭘ˈਚ
㜭⭘ Objective-C˄䪸ሩ iPhone˅઼ Java˄䪸ሩ Android˅̠ ߉ 3D⑨ᠿˈᴰྭ⭘ Cᡆ C++Ǆ
 ˖ᱟሿⲭ⭘ᡧˈ┑䏣ԕлᶑԦ֐᷌ྲ
Պ֯⭘⭥㝁ˈնӾᶕ⋑߉䗷〻ᒿ˗
䘈䇠ᗇࡍѝᮠᆖᆖⲴᯩ〻ᔿ઼а⛩⛩ԓᮠ⸕䇶˗
ᜣӾ㕆〻ሿⲭਈᡀуъⲴ䖟Ԧᷦᶴᐸ˗
⇿ཙ㜭ᣭࠪॺњሿᰦᆖҐǄ
н㾱޽⣩䊛Ҷˈ䘉њᮉ〻ቡᱟѪ֐߶༷Ⲵʽ
߶༷ྭҶੇ˛

 Ҿ֌㘵ޣ
ᔆ䴚ጠˈॱᒤ䖟Ԧᔰਁ㓿傼ˈъ։ӗ૱㓿⨶ˈ㋮䙊 Java/Python/Ruby/Visual Basic/Objective C
ㅹˈሩᔰⓀṶᷦᴹ␡ޕ⹄ウˈ㪇ᴹǉSpring 2.0Ṩᗳᢰᵟоᴰ֣ᇎ䐥ǊаҖˈཊњъ։ᔰⓀ
亩ⴞᢈ㇑൘ GitHubˈ⅒䗾ᗞঊӔ⍱˖

Pythonㆶԁㆶԁㆶԁㆶԁ

Pythonᱟ㪇਽Ⲵ“嗏਄”Guido van Rossum൘ 1989ᒤ൓䈎㢲ᵏ䰤ˈѪҶᢃਁᰐ㙺Ⲵ൓䈎㢲㘼
㕆߉Ⲵањ㕆〻䈝䀰Ǆ
⧠൘ˈޘц⭼ᐞнཊᴹ 600ཊ⿽㕆〻䈝䀰ˈն⍱㹼Ⲵ㕆〻䈝䀰ҏቡ䛓Ѹ 20ᶕ⿽Ǆྲ᷌֐ੜ
䈤䗷 TIOBEᧂ㹼ῌˈ֐ቡ㜭⸕䚃㕆〻䈝䀰Ⲵབྷ㠤⍱㹼〻ᓖǄ䘉ᱟᴰ䘁 10ᒤᴰᑨ⭘Ⲵ 10⿽
㕆〻䈝䀰Ⲵਈॆമ˖

ᙫⲴᶕ䈤ˈ䘉ࠐ⿽㕆〻䈝䀰਴ᴹॳ⿻ǄC䈝䀰ᱟਟԕ⭘ᶕ㕆߉᫽֌㌫㔏Ⲵ䍤䘁⺜ԦⲴ䈝䀰ˈ
ᡰԕˈC 䈝䀰䘲ਸᔰਁ䛓Ӌ䘭≲䘀㹼䙏ᓖǃਁ࠶ݵᥕ⺜Ԧᙗ㜭Ⲵ〻ᒿǄ㘼 Python ᱟ⭘ᶕ㕆
 ᓄ⭘〻ᒿⲴ儈㓗㕆〻䈝䀰Ǆ߉
ᖃ֐⭘а⿽䈝䀰ᔰ࿻֌ⵏ↓Ⲵ䖟Ԧᔰਁᰦ ԓ⸱ཆ߉䲔Ҷ㕆̍֐ 䘈̍䴰㾱ᖸཊสᵜⲴᐢ㓿ྭ߉

Ⲵ⧠ᡀⲴь㾯ˈᶕᑞ࣐ࣙ֐ᘛᔰਁ䘋ᓖǄ∄ྲ䈤ˈ㾱㕆߉ањ⭥ᆀ䛞Ԧᇒᡧㄟˈྲ᷌ݸӾᴰ

ᓅቲᔰ࿻㕆߉㖁㔌ॿ䇞⴨ޣⲴԓ⸱ 䛓̍ՠ䇑аᒤॺ䖭ҏᔰਁнࠪᶕǄ儈㓗㕆〻䈝䀰䙊ᑨ䜭Պ

ᨀ׋ањ∄䖳ᆼழⲴส⹰ԓ⸱ᓃˈ䇙֐㜭ⴤ᧕䈳⭘ˈ∄ྲˈ䪸ሩ⭥ᆀ䛞Ԧॿ䇞Ⲵ SMTPᓃˈ
䪸ሩṼ䶒⧟ຳⲴ GUI ᓃˈ൘䘉ӋᐢᴹⲴԓ⸱ᓃⲴส⹰кᔰਁˈањ⭥ᆀ䛞Ԧᇒᡧㄟࠐཙቡ
㜭ᔰਁࠪᶕǄ
PythonቡѪᡁԜᨀ׋Ҷ䶎ᑨᆼழⲴส⹰ԓ⸱ᓃˈ㾶ⴆҶ㖁㔌ǃ᮷ԦǃGUIǃᮠᦞᓃǃ᮷ᵜㅹ
བྷ䟿޵ᇩˈ㻛ᖒ䊑ൠ〠֌“޵㖞⭥⊐˄batteries included˅”Ǆ⭘ Pythonᔰਁˈ䇨ཊ࣏㜭нᗵ
Ӿ䴦㕆߉ˈⴤ᧕֯⭘⧠ᡀⲴণਟǄ
䲔Ҷ޵㖞ⲴᓃཆˈPython䘈ᴹབྷ䟿Ⲵㅜйᯩᓃˈҏቡᱟ࡛ӪᔰਁⲴˈ֐׋ⴤ᧕֯⭘Ⲵь㾯Ǆ
ᖃ❦ˈྲ᷌֐ᔰਁⲴԓ⸱䙊䗷ᖸྭⲴሱ㻵ˈҏਟԕ֌Ѫㅜйᯩᓃ㔉࡛Ӫ֯⭘Ǆ
䇨ཊབྷර㖁ㄉቡᱟ⭘ Python ᔰਁⲴˈֻྲ YouTubeǃInstagramˈ䘈ᴹഭ޵Ⲵ䉶⬓Ǆᖸཊབྷ
ਨˈवᤜޜ GoogleǃYahooㅹˈ⭊㠣 NASA˄㖾ഭ㡚オ㡚ཙተ˅䜭བྷ䟿ൠ֯⭘ PythonǄ
嗏਄㔉 Python Ⲵᇊսᱟ“Ո䳵”ǃ“᰾⺞”ǃ“ㆰঅ”ˈᡰԕ Python 〻ᒿⴻк৫ᙫᱟㆰঅ᱃៲ˈ
ᆖ㘵ᆖࡍ Pythonˈнնޕ䰘ᇩ᱃ˈ㘼фሶᶕ␡ޕл৫ˈਟԕ㕆߉䛓Ӌ䶎ᑨ䶎ᑨ༽ᵲⲴ〻ᒿǄ
ᙫⲴᶕ䈤ˈPython ⲴଢᆖቡᱟㆰঅՈ䳵ˈቭ䟿߉ᇩ᱃ⴻ᰾ⲭⲴԓ⸱ˈቭ䟿߉ቁⲴԓ⸱Ǆྲ
᷌ањ䍴␡〻ᒿઈੁ֐⛛㘰Ԇ߉ⲴᲖ⏙䳮៲ǃࣘ нࣘቡࠐз㹼Ⲵԓ⸱ ਟԕቭᛵൠౢㅁԆǄ̍֐

䛓 Python䘲ਸᔰਁଚӋ㊫රⲴᓄ⭘઒˛
俆䘹ᱟ㖁㔌ᓄ⭘ˈवᤜ㖁ㄉǃਾਠᴽ࣑ㅹㅹ˗
ަ⅑ᱟ䇨ཊᰕᑨ䴰㾱Ⲵሿᐕާˈवᤜ㌫㔏㇑⨶ઈ䴰㾱Ⲵ㝊ᵜԫ࣑ㅹㅹ˗
ਖཆቡᱟᢺަԆ䈝䀰ᔰਁⲴ〻ᒿ޽व㻵䎧ᶕˈᯩ֯ׯ⭘Ǆ
ᴰਾ䈤䈤 PythonⲴ㕪⛩Ǆ
ԫօ㕆〻䈝䀰䜭ᴹ㕪⛩ˈPythonҏнֻཆǄՈ⛩䈤䗷Ҷˈ䛓 PythonᴹଚӋ㕪⛩઒˛
ㅜањ㕪⛩ቡᱟ䘀㹼䙏ᓖធˈ઼ C〻ᒿ⴨∄䶎ᑨធˈഐѪ Pythonᱟ䀓䟺ර䈝䀰ˈ֐Ⲵԓ⸱
൘ᢗ㹼ᰦՊа㹼а㹼ൠ㘫䈁ᡀ CPU 㜭⨶䀓Ⲵᵪಘ⸱ˈ䘉њ㘫䈁䗷〻䶎ᑨ㙇ᰦˈᡰԕᖸធǄ
㘼 C〻ᒿᱟ䘀㹼ࡽⴤ᧕㕆䈁ᡀ CPU㜭ᢗ㹼Ⲵᵪಘ⸱ˈᡰԕ䶎ᑨᘛǄ
նᱟབྷ䟿Ⲵᓄ⭘〻ᒿн䴰㾱䘉ѸᘛⲴ䘀㹼䙏ᓖ ഐ̍Ѫ⭘ᡧṩᵜᝏ㿹нࠪᶕǄֻ ྲᔰਁањл

䖭MP3Ⲵ㖁㔌ᓄ⭘〻ᒿˈC〻ᒿⲴ䘀㹼ᰦ䰤䴰㾱 0.001。ˈ㘼 Python〻ᒿⲴ䘀㹼ᰦ䰤䴰㾱
0.1。ˈធҶ ն⭡Ҿ㖁㔌ᴤធˈ䴰㾱ㅹᖵˈؽ100 ࡠᜣˈ⭘ᡧ㜭ᝏ㿹֐ˈ。1 1.001。઼ 1.1
。Ⲵ४࡛ੇ˛䘉ቡྭ∄ F1 䎋䖖઼Პ䙊Ⲵࠪ』䖖൘ेӜй⧟䐟к㹼傦Ⲵ䚃⨶аṧˈ㲭❦ F1
䎋䖖⨶䇪ᰦ䙏儈䗮 䟼ˈն⭡Ҿй⧟䐟๥䖖Ⲵᰦ䙏ਚᴹޜ400 ֐ˈ䟼ˈഐ↔ˈ֌Ѫ҈ᇒޜ20
ᝏ㿹Ⲵᰦ䙏≨䘌ᱟ 䟼Ǆޜ20

ㅜҼњ㕪⛩ቡᱟԓ⸱н㜭࣐ᇶǄྲ᷌㾱ਁᐳ֐Ⲵ Python 〻ᒿˈᇎ䱵кቡᱟਁᐳⓀԓ⸱ˈ䘉
а⛩䐏 C䈝䀰н਼ C̍䈝䀰н⭘ਁᐳⓀԓ⸱ ਚ̍䴰㾱ᢺ㕆䈁ਾⲴᵪಘ⸱˄ ҏቡᱟ֐൘Windows
кᑨ㿱Ⲵ xxx.exe᮷Ԧ˅ਁᐳࠪ৫Ǆ㾱Ӿᵪಘ⸱৽᧘ࠪ Cԓ⸱ᱟнਟ㜭Ⲵˈᡰԕˈࠑᱟ㕆䈁
රⲴ䈝䀰ˈ䜭⋑ᴹ䘉њ䰞仈ˈ㘼䀓䟺රⲴ䈝䀰ˈࡉᗵ享ᢺⓀ⸱ਁᐳࠪ৫Ǆ
䘉њ㕪⛩ӵ䲀Ҿ֐㾱㕆߉Ⲵ䖟Ԧ䴰㾱আ㔉࡛Ӫᥓ䫡ⲴᰦىǄྭ ⎸᚟ᱟⴞࡽⲴӂ㚄㖁ᰦԓ 䶐̍

আ䖟ԦᦸᵳⲴ୶ъ⁑ᔿ䎺ᶕ䎺ቁҶ 䶐̍㖁ㄉ઼〫ࣘᓄ⭘আᴽ࣑Ⲵ⁑ᔿ䎺ᶕ䎺ཊҶ ਾ̍а⿽⁑

ᔿн䴰㾱ᢺⓀ⸱㔉࡛ӪǄ
䈤Ҷ޽ ⧠̍൘ྲ⚛ྲ㦬ⲴᔰⓀ䘀઼ࣘӂ㚄㖁㠚⭡ᔰ᭮Ⲵ㋮⾎ᱟа㠤Ⲵ ӂ̍㚄㖁кᴹᰐᮠ䶎ᑨ

Ո⿰Ⲵۿ Linux аṧⲴᔰⓀԓ⸱ˈᡁԜॳзн㾱儈ՠ㠚ᐡ߉Ⲵԓ⸱ⵏⲴᴹ䶎ᑨབྷⲴ“୶ъԧ
٬”Ǆ䛓ӋབྷޜਨⲴԓ⸱нᝯ᜿ᔰ᭮Ⲵᴤ䟽㾱Ⲵ৏ഐᱟԓ⸱߉ᗇཚ⛲ҶˈаᰖᔰⓀˈቡ⋑Ӫ
ᮒ⭘ԆԜⲴӗ૱ҶǄ

ᖃ❦ˈPython䘈ᴹަԆ㤕ᒢሿ㕪⛩ˈ䈧㠚㹼ᘭ⮕ˈቡнааࡇѮҶǄ

ᆿ㻻ᆿ㻻ᆿ㻻ᆿ㻻 Python

ഐѪPythonᱟ䐘ᒣਠⲴ ᆳ̍ਟԕ䘀㹼൘WindowsǃMac઼਴⿽Linux/Unix㌫㔏кǄ൘Windows
к߉ Python〻ᒿˈ᭮ࡠ Linuxкҏᱟ㜭ཏ䘀㹼ⲴǄ
㾱ᔰ࿻ᆖҐ Python㕆〻ˈ俆ݸቡᗇᢺ Pythonᆹ㻵֐ࡠⲴ⭥㝁䟼Ǆᆹ㻵ਾˈ֐Պᗇࡠ Python
䀓䟺ಘ˄ቡᱟ䍏䍓䘀㹼 Python〻ᒿⲴ˅̍ ањભԔ㹼Ӕӂ⧟ຳˈ䘈ᴹањㆰঅⲴ䳶ᡀᔰਁ⧟
ຳǄ
2.x䘈ᱟ 3.x
ⴞࡽˈPythonᴹєњ⡸ᵜˈањᱟ 2.x⡸ˈањᱟ 3.x⡸ˈ䘉єњ⡸ᵜᱟнެᇩⲴˈഐѪ⧠
൘ Python↓൘ᵍ⵰ 3.x⡸ᵜ䘋ॆˈ൘䘋ॆ䗷〻ѝˈབྷ䟿Ⲵ䪸ሩ 2.x⡸ᵜⲴԓ⸱㾱؞᭩ਾ᡽㜭
䘀㹼ˈᡰԕˈⴞࡽᴹ䇨ཊㅜйᯩᓃ䘈Ჲᰦᰐ⌅൘ 3.xк֯⭘Ǆ
ѪҶ؍䇱֐Ⲵ〻ᒿ㜭⭘ࡠབྷ䟿ⲴㅜйᯩᓃˈᡁԜⲴᮉ〻ӽԕ 2.x⡸ᵜѪส⹰ˈ⺞࠷ൠ䈤ˈᱟ
2.7⡸ᵜǄ䈧⺞֐؍Ⲵ⭥㝁кᆹ㻵Ⲵ Python⡸ᵜᱟ 2.7.xˈ䘉ṧˈ֐᡽㜭ᰐⰋᆖҐ䘉њᮉ〻Ǆ
൘Macкᆹ㻵 Python
൘֯⭘Macˈ㌫㔏ᱟ↓֐᷌ྲ OS X 10.8ᡆ㘵ᴰᯠⲴ 10.9 Mavericksˈ᚝ௌ֐ˈ㌫㔏㠚ᑖҶ
Python 2.7Ǆྲ᷌֐Ⲵ㌫㔏⡸ᵜվҾ 10.8ˈ䈧㠚㹼༷ԭ㌫㔏ᒦݽ䍩ॷ㓗ࡠᴰᯠⲴ 10.9ˈቡਟ
ԕ㧧ᗇ Python 2.7Ǆ
ḕⴻ㌫㔏⡸ᵜⲴ࣎⌅ᱟ⛩ࠫᐖк䀂Ⲵ㤩᷌മḷˈ䘹ᤙ“ޣҾᵜᵪ”˖

൘ Linuxкᆹ㻵 Python
⭘൘֯↓֐᷌ྲ Linuxˈ䛓ᡁਟԕٷᇊ֐ᴹ Linux㌫㔏㇑⨶㓿傼ˈ㠚㹼ᆹ㻵 Python 2.7ᓄ䈕
⋑ᴹ䰞仈ˈ੖ࡉˈ䈧ᦒഎWindows㌫㔏Ǆ
ሩҾབྷ䟿Ⲵⴞࡽӽ൘֯⭘ Windows Ⲵ਼ᆖˈྲ᷌⸝ᵏ޵⋑ᴹᢃ㇇ᦒ Macˈቡਟԕ㔗㔝䰵䈫

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ԕл޵ᇩǄ
൘Windowsкᆹ㻵 Python
俆ݸˈӾ PythonⲴᇈᯩ㖁ㄉ www.python.orgл䖭ᴰᯠⲴ 2.7.6⡸ᵜˈൠ൰ᱟ䘉њ˖
http://www.python.org/ftp/python/2.7.6/python-2.7.6.msi
❦ਾˈ䘀㹼л䖭Ⲵ MSI ᆹ㻵वˈн䴰㾱ᴤ᭩ԫօ唈䇔䇮㖞ˈⴤ᧕а䐟⛩“Next”ণਟᆼᡀᆹ
㻵˖

唈䇔Պᆹ㻵ࡠ C:\Python27ⴞᖅлˈնᱟᖃޤ֐㠤ࣳࣳൠᢃᔰભԔᨀ⽪ㅖデਓˈᮢޕ python
ਾˈՊᗇࡠ˖
‘python’нᱟ޵䜘ᡆཆ䜘ભԔˈҏнᱟਟ䘀㹼Ⲵ〻ᒿᡆᢩ༴⨶᮷ԦǄ

䘉ᱟഐѪWindowsՊṩᦞањ PathⲴ⧟ຳਈ䟿䇮ᇊⲴ䐟ᖴ৫ḕ᢮ python.exeˈྲ ᷌⋑᢮ࡠˈ

ቡՊᣕ䭉Ǆ䀓࣎ߣ⌅ᱟᢺ python.exeᡰ൘Ⲵ䐟ᖴ C:\Python27␫࣐ࡠ PathѝǄ
൘᧗ࡦ䶒ᶯѝᢃᔰ“㌫㔏኎ᙗ”ˈ⛩ࠫ“儈㓗”ˈ“⧟ຳਈ䟿”ˈᢃᔰ“⧟ຳਈ䟿”デਓˈ൘㌫㔏ਈ
䟿ѝˈ᢮ࡠ“Path”ਈ䟿ˈ❦ਾ⛩ࠫ“㕆䗁”˖

൘“㕆䗁㌫㔏ਈ䟿”Ⲵデਓѝˈਟԕⴻࡠˈਈ䟿਽ᱟ Pathˈ൘ਈ䟿٬Ⲵᴰਾ䶒ˈݸ␫࣐ањ࠶
ਧ“;”˄ ⌘᜿⭘㤡᮷䗃ޕ⌅ˈॳзн㾱䗃ޕѝ᮷࠶ਧ˅̍ к߉޽ C:\Python27˄ ྲ᷌ᆹ㻵Ⲵᰦى

⋑ᴹᴤ᭩䗷ᆹ㻵ⴞᖅ˅̍ ❦ਾ䘎㔝⛩“⺞ᇊ”ˈ“⺞ᇊ”ˈ“⺞ᇊ”ᢺᡰᴹデਓ䜭ޣᦹǄ

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

⧠൘ˈ޽ᢃᔰањᯠⲴભԔ㹼デਓ˄аᇊ㾱ޣᦹ৏ᶕⲴભԔ㹼デਓˈ޽ᯠᔰањ˅̍ 䗃ޕ

python˖

ⴻࡠк䶒Ⲵ⭫䶒ˈቡ䈤᰾ Pythonᆹ㻵ᡀ࣏ʽ
ᨀ⽪ㅖ>>>ቡ㺘⽪ᡁԜᐢ㓿൘ࡠⴻ֐ PythonӔӂᔿ⧟ຳѝҶˈਟԕ䗃ޕԫօ Pythonԓ⸱ˈ
എ䖖ਾՊ・࡫ᗇࡠᢗ㹼㔃᷌Ǆ⧠൘ˈ䗃ޕ exit()ᒦഎ䖖ˈቡਟԕ䘰ࠪ PythonӔӂᔿ⧟ຳ˄ⴤ
᧕ޣᦹભԔ㹼デਓҏਟԕʽ˅Ǆ

ሿ㔃
ᆖՊྲօᢺ Pythonᆹ㻵ࡠ䇑㇇ᵪѝˈᒦф⟏㓳ᢃᔰ઼䘰ࠪ PythonӔӂᔿ⧟ຳǄ

ㅢжѠㅢжѠㅢжѠㅢжѠ Pythonぁᓅぁᓅぁᓅぁᓅ

⧠൘ˈҶ䀓Ҷྲօ੟઼ࣘ䘰ࠪ PythonⲴӔӂᔿ⧟ຳˈᡁԜቡਟԕ↓ᔿᔰ࿻㕆߉ Pythonԓ⸱
ҶǄ
൘߉ԓ⸱ѻࡽˈ䈧ॳзн㾱⭘“༽ࡦ”-“㋈䍤”ᢺԓ⸱Ӿ亥䶒㋈䍤֐ࡠ㠚ᐡⲴ⭥㝁кǄ߉〻ᒿ
ҏ䇢ウањᝏ㿹ˈ֐䴰㾱ањᆇ⇽ањᆇ⇽ൠᢺԓ⸱㠚ᐡᮢ䘋৫ˈ൘ᮢԓ⸱Ⲵ䗷〻ѝˈࡍᆖ

㘵㓿ᑨՊᮢ䭉ԓ⸱ˈᡰԕˈ֐䴰㾱Ԅ㓶ൠỰḕǃሩ➗ˈ᡽㜭ԕᴰᘛⲴ䙏ᓖᦼᨑྲօ߉〻ᒿǄ
൘Ӕӂᔿ⧟ຳⲴᨀ⽪ㅖ>>>лˈⴤ᧕䗃ޕԓ⸱ˈ᤹എ䖖ˈቡਟԕ・࡫ᗇࡠԓ⸱ᢗ㹼㔃᷌Ǆ⧠
൘ˈ䈅䈅䗃ޕ 100+200ˈⴻⴻ䇑㇇㔃᷌ᱟнᱟ 300˖
>>> 100+200
300

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ᖸㆰঅ੗ˈԫօᴹ᭸Ⲵᮠᆖ䇑㇇䜭ਟԕ㇇ࠪᶕǄ
ྲ᷌㾱䇙 PythonᢃঠࠪᤷᇊⲴ᮷ᆇˈਟԕ⭘ print䈝ਕˈ❦ਾᢺᐼᵋᢃঠⲴ᮷ᆇ⭘অᕅਧᡆ
㘵ৼᕅਧᤜ䎧ᶕˈնн㜭␧⭘অᕅਧ઼ৼᕅਧ˖
>>> print 'hello, world'
hello, world

䘉⿽⭘অᕅਧᡆ㘵ৼᕅਧᤜ䎧ᶕⲴ᮷ᵜ൘〻ᒿѝਛᆇㅖѢˈӺਾᡁԜ䘈Պ㓿ᑨ䙷ࡠǄ
ᴰਾˈ⭘ exit()䘰ࠪ PythonˈᡁԜⲴㅜањ Python〻ᒿᆼᡀʽୟаⲴ㕪៮ᱟ⋑ᴹ؍ᆈлᶕˈ
л⅑䘀㹼ᰦ䘈㾱޽䗃ޕа䙽ԓ⸱Ǆ

ሿ㔃
൘ PythonӔӂᔿભԔ㹼лˈਟԕⴤ᧕䗃ޕԓ⸱ˈ❦ਾᢗ㹼ˈᒦ・࡫ᗇࡠ㔃᷌Ǆ

֯⭘᮷ᵜ㕆䗁ಘ֯⭘᮷ᵜ㕆䗁ಘ֯⭘᮷ᵜ㕆䗁ಘ֯⭘᮷ᵜ㕆䗁ಘ

൘ Python ⲴӔӂᔿભԔ㹼߉〻ᒿˈྭ༴ᱟалቡ㜭ᗇࡠ㔃᷌ˈൿ༴ᱟ⋑⌅؍ᆈˈл⅑䘈ᜣ
䘀㹼Ⲵᰦىˈ䘈ᗇᮢ޽а䙽Ǆ
ᡰԕ ᇎ̍䱵ᔰਁⲴᰦى ᡁ̍Ԝᙫᱟ֯⭘ањ᮷ᵜ㕆䗁ಘᶕ߉ԓ⸱ ᆼҶ߉̍ ˈᆈѪањ᮷Ԧ؍̍

䘉ṧˈ〻ᒿቡਟԕ৽༽䘀㹼ҶǄ
⧠൘ˈᡁԜቡᢺк⅑Ⲵ'hello, world'〻ᒿ⭘᮷ᵜ㕆䗁ಘࠪ߉ᶕˈ؍ᆈлᶕǄ
ᡰԕ䰞仈৸ਈᡀҶ˖⭘ӰѸ᮷ᵜ㕆䗁ಘ˛
᧘㦀єⅮ᮷ᵜ㕆䗁ಘ˖
ањᱟ Sublime Textˈݽ䍩֯⭘ˈնᱟнԈ䍩Պᕩࠪᨀ⽪Ṷ˖

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ањᱟ Notepad++ˈݽ䍩֯⭘ˈᴹѝ᮷⭼䶒˖

䈧⌘᜿ˈ⭘ଚњ䜭㹼ˈնᱟ㔍ሩн㜭⭘Word઼Windows㠚ᑖⲴ䇠һᵜǄWord؍ᆈⲴнᱟ
㓟᮷ᵜ᮷Ԧˈ㘼䇠һᵜՊ㠚֌㚚᰾ൠ൘᮷Ԧᔰ࿻Ⲵൠᯩ࣐кࠐњ⢩↺ᆇㅖ˄UTF-8 BOM˅̍
㔃᷌Պሬ㠤〻ᒿ䘀㹼ࠪ⧠㧛਽ަ࿉Ⲵ䭉䈟Ǆ
ᆹ㻵ྭ᮷ᵜ㕆䗁ಘਾˈ䗃ޕԕлԓ⸱˖
print 'hello, world'

⌘᜿ print ྲֻˈ䶒н㾱ᴹԫօオṬǄ❦ਾˈ䘹ᤙањⴞᖅࡽ C:\Workspaceˈᢺ᮷Ԧ؍ᆈѪ
hello.pyˈቡਟԕᢃᔰભԔ㹼デਓˈᢺᖃࡽⴞᖅ࠷ᦒࡠ hello.pyᡰ൘ⴞᖅˈቡਟԕ䘀㹼䘉њ〻
ᒿҶ˖
C:\Workspace>python hello.py
hello, world

ҏਟԕ؍ᆈѪ࡛Ⲵ਽ᆇˈ∄ྲ abc.pyˈնᱟᗵ享㾱ԕ.py 㔃ቮˈަԆⲴ䜭н㹼Ǆ↔ཆˈ᮷Ԧ
਽ਚ㜭ᱟ㤡᮷ᆇ⇽ǃᮠᆇ઼лࡂ㓯Ⲵ㓴ਸǄ

ྲ᷌ᖃࡽⴞᖅл⋑ᴹ hello.py䘉њ᮷Ԧˈ䘀㹼 python hello.pyቡՊᣕ䭉˖

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

python hello.py
python: can't open file 'hello.py': [Errno 2] No such file or directory

ᣕ䭉Ⲵ᜿ᙍቡᱟˈᰐ⌅ᢃᔰ hello.py䘉њ᮷ԦˈഐѪ᮷Ԧнᆈ൘Ǆ䘉њᰦىˈቡ㾱Ựḕал
ᖃࡽⴞᖅлᱟ੖ᴹ䘉њ᮷ԦҶǄ
䘈ᴹ਼ᆖ䰞ˈ㜭н㜭ۿ.exe᮷Ԧ䛓ṧⴤ᧕䘀㹼.py᮷Ԧ઒˛൘Windowsкᱟн㹼Ⲵˈնᱟˈ
൘Mac઼ LinuxкᱟਟԕⲴˈᯩ⌅ᱟ൘.py᮷ԦⲴㅜа㹼࣐к˖
#!/usr/bin/env python

❦ਾˈ䙊䗷ભԔ˖
$ chmod a+x hello.py

ቡਟԕⴤ᧕䘀㹼 hello.pyҶˈ∄ྲ൘Macл䘀㹼˖

ሿ㔃
⭘᮷ᵜ㕆䗁ಘ߉ Python 〻ᒿˈ❦ਾ؍ᆈѪਾ㔰Ѫ.py Ⲵ᮷Ԧˈቡਟԕ⭘ Python ⴤ᧕䘀㹼䘉
њ〻ᒿҶǄ
⭘ Python ᔰਁ〻ᒿˈᆼޘਟԕа䗩൘᮷ᵜ㕆䗁ಘ䟼߉ԓ⸱ˈа䗩ᔰањӔӂᔿભԔデਓˈ
൘߉ԓ⸱Ⲵ䗷〻ѝˈᢺ䜘࠶ԓ⸱㋈ࡠભԔ㹼৫傼䇱ˈһॺ࣏ؽʽࡽᨀᱟᗇᴹњ 27'Ⲵ䎵བྷᱮ
⽪ಘʽ

䗃઼ޕ䗃ࠪ䗃઼ޕ䗃ࠪ䗃઼ޕ䗃ࠪ䗃઼ޕ䗃ࠪ

䗃ࠪ
⭘ print࣐кᆇㅖѢˈቡਟԕੁቿᒅк䗃ࠪᤷᇊⲴ᮷ᆇǄ∄ྲ䗃ࠪ'hello, world'ˈ⭘ԓ⸱ᇎ⧠

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ྲл˖
>>> print 'hello, world'

print䈝ਕҏਟԕ䐏кཊњᆇㅖѢˈ⭘䙇ਧ“,”䳄ᔰˈቡਟԕ䘎ᡀаѢ䗃ࠪ˖
>>> print 'The quick brown fox', 'jumps over', 'the lazy dog'
The quick brown fox jumps over the lazy dog

print Պ׍⅑ᢃঠ⇿њᆇㅖѢˈ䙷ࡠ䙇ਧ“,”Պ䗃ࠪањオṬˈഐ↔ˈ䗃ࠪⲴᆇㅖѢᱟ䘉ṧ᤬
䎧ᶕⲴ˖

printҏਟԕᢃঠᮤᮠˈᡆ㘵䇑㇇㔃᷌˖
>>> print 300
300
>>> print 100 + 200
300

ഐ↔ˈᡁԜਟԕᢺ䇑㇇ 100 + 200Ⲵ㔃᷌ᢃঠᗇᴤ┲Ӟа⛩˖
>>> print '100 + 200 =', 100 + 200
100 + 200 = 300

⌘᜿ˈሩҾ 100 + 200ˈPython䀓䟺ಘ㠚ࣘ䇑㇇ࠪ㔃᷌ 300ˈնᱟˈ'100 + 200 ='ᱟᆇㅖѢ㘼
䶎ᮠᆖޜᔿˈPythonᢺᆳ㿶ѪᆇㅖѢˈ䈧㠚㹼䀓䟺к䘠ᢃঠ㔃᷌Ǆ
䗃ޕ
⧠൘ˈ֐ᐢ㓿ਟԕ⭘ print 䗃ࠪ֐ᜣ㾱Ⲵ㔃᷌ҶǄնᱟˈྲ᷌㾱䇙⭘ᡧӾ⭥㝁䗃ޕаӋᆇㅖ
ᘾѸ࣎˛Python ᨀ׋Ҷањ raw_inputˈਟԕ䇙⭘ᡧ䗃ޕᆇㅖѢˈᒦᆈ᭮ࡠањਈ䟿䟼Ǆ∄
ྲ䗃ޕ⭘ᡧⲴ਽ᆇ˖
>>> name = raw_input()
Michael

ᖃ֐䗃ޕ name = raw_input()ᒦ᤹лഎ䖖ਾˈPythonӔӂᔿભԔ㹼ቡ൘ㅹᖵ֐Ⲵ䗃ޕҶǄ䘉
ᰦˈ֐ਟԕ䗃ޕԫ᜿ᆇㅖˈ❦ਾ᤹എ䖖ਾᆼᡀ䗃ޕǄ
䗃ޕᆼᡀਾˈнՊᴹԫօᨀ⽪ P̍ythonӔӂᔿભԔ㹼৸എࡠ>>>⣦ᘱҶǄ䛓ᡁԜࡊ᡽䗃ޕⲴ
ࡠଚ৫Ҷ˛ㆄṸᱟᆈ᭮ࡠᇩ޵ nameਈ䟿䟼ҶǄਟԕⴤ᧕䗃ޕ nameḕⴻਈ䟿޵ᇩ˖
>>> name
'Michael'

ӰѸᱟਈ䟿˛䈧എᗶࡍѝᮠᆖᡰᆖⲴԓᮠส⹰⸕䇶˖
䇮↓ᯩᖒⲴ䗩䮯Ѫ aˈࡉ↓ᯩᖒⲴ䶒〟Ѫ a x aǄᢺ䗩䮯 aⴻڊањਈ䟿ˈᡁԜቡਟԕṩᦞ a
Ⲵ٬䇑㇇↓ᯩᖒⲴ䶒〟ˈ∄ྲ˖
㤕 a=2ˈࡉ䶒〟Ѫ a x a = 2 x 2 = 4˗

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

㤕 a=3.5ˈࡉ䶒〟Ѫ a x a = 3.5 x 3.5 = 12.25Ǆ
൘䇑㇇ᵪ〻ᒿѝˈਈ䟿нӵਟԕѪᮤᮠᡆ⎞⛩ᮠˈ䘈ਟԕᱟᆇㅖѢˈഐ↔ˈname ֌Ѫањ
ਈ䟿ቡᱟањᆇㅖѢǄ
㾱ᢃঠࠪ nameਈ䟿Ⲵ޵ᇩˈ䲔Ҷⴤ᧕߉ name❦ਾ᤹എ䖖ཆˈ䘈ਟԕ⭘ print䈝ਕ˖
>>> print name
Michael

ᴹҶ䗃઼ޕ䗃ࠪˈᡁԜቡਟԕᢺк⅑ᢃঠ'hello, world'Ⲵ〻ᒿ᭩ᡀᴹ⛩᜿ѹⲴ〻ᒿҶ˖
name = raw_input()
print 'hello,', name

䘀㹼к䶒Ⲵ〻ᒿˈㅜа㹼ԓ⸱Պ䇙⭘ᡧ䗃ޕԫ᜿ᆇㅖ֌Ѫ㠚ᐡⲴ਽ᆇˈ❦ਾᆈޕ nameਈ䟿
ѝ˗ㅜҼ㹼ԓ⸱Պṩᦞ⭘ᡧⲴ਽ᆇੁ⭘ᡧ䈤 helloˈ∄ྲ䗃ޕMichael˖
C:\Workspace> python hello.py
Michael
hello, Michael

նᱟ〻ᒿ䘀㹼Ⲵᰦىˈ⋑ᴹԫօᨀ⽪ؑ᚟੺䇹⭘ᡧ “̟౯ˈ䎦㍗䗃֐ޕⲴ਽ᆇ”ˈ䘉ṧᱮᗇᖸ
н৻ྭǄᒨྭˈraw_inputਟԕ䇙֐ᱮ⽪ањᆇㅖѢᶕᨀ⽪⭘ᡧˈҾᱟᡁԜᢺԓ⸱᭩ᡀ˖
name = raw_input('please enter your name: ')
print 'hello,', name

ᢃঠࠪݸՊਁ⧠ˈ〻ᒿа䘀㹼ˈՊ俆֐ˈ䘀㹼䘉њ〻ᒿ⅑޽ please enter your name:ˈ䘉ṧˈ
⭘ᡧቡਟԕṩᦞᨀ⽪ˈ䗃ޕ਽ᆇਾˈᗇࡠ hello, xxxⲴ䗃ࠪ˖
C:\Workspace> python hello.py
please enter your name: Michael
hello, Michael

⇿⅑䘀㹼䈕〻ᒿˈṩᦞ⭘ᡧ䗃ޕⲴн਼ˈ䗃ࠪ㔃᷌ҏՊн਼Ǆ
൘ભԔ㹼лˈ䗃઼ޕ䗃ࠪቡᱟ䘉ѸㆰঅǄ
ሿ㔃
ԫօ䇑㇇ᵪ〻ᒿ䜭ᱟѪҶᢗ㹼ањ⢩ᇊⲴԫ࣑ˈM Ҷ䗃ޕ ⭘̍ᡧ᡽㜭੺䇹䇑㇇ᵪ〻ᒿᡰ䴰Ⲵ

ؑ᚟ˈᴹҶ䗃ࠪˈ〻ᒿ䘀㹼ਾ᡽㜭੺䇹⭘ᡧԫ࣑Ⲵ㔃᷌Ǆ
䗃ޕᱟ Inputˈ䗃ࠪᱟ Outputˈഐ↔ˈᡁԜᢺ䗃ޕ䗃ࠪ㔏〠Ѫ Input/Outputˈᡆ㘵ㆰ߉Ѫ IOǄ
raw_input઼ printᱟ൘ભԔ㹼л䶒ᴰสᵜⲴ䗃઼ޕ䗃ࠪˈնᱟˈ⭘ᡧҏਟԕ䙊䗷ަԆᴤ儈㓗
Ⲵമᖒ⭼䶒ᆼᡀ䗃઼ޕ䗃ࠪˈ∄ྲˈ൘㖁亥кⲴањ᮷ᵜṶ䗃ޕ㠚ᐡⲴ਽ᆇˈ⛩ࠫ“⺞ᇊ”
ਾ൘㖁亥кⴻࡠ䗃ࠪؑ᚟Ǆ

Pythonะ⹶ะ⹶ะ⹶ะ⹶

Python ᱟа⿽䇑㇇ᵪ㕆〻䈝䀰Ǆ䇑㇇ᵪ㕆〻䈝䀰઼ᡁԜᰕᑨ֯⭘Ⲵ㠚❦䈝䀰ᴹᡰн਼ˈᴰ
བྷⲴ४࡛ቡᱟ 㠚̍❦䈝䀰൘н਼Ⲵ䈝ຳлᴹн਼Ⲵ⨶䀓 㘼̍䇑㇇ᵪ㾱ṩᦞ㕆〻䈝䀰ᢗ㹼ԫ࣑ˈ

ቡᗵ享؍䇱㕆〻䈝䀰ࠪ߉Ⲵ〻ᒿߣн㜭ᴹ↗ѹ ᡰ̍ԕ ԫ̍օа⿽㕆〻䈝䀰䜭ᴹ㠚ᐡⲴа྇䈝

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

⌅ˈ㕆䈁ಘᡆ㘵䀓䟺ಘቡᱟ䍏䍓ᢺㅖਸ䈝⌅Ⲵ〻ᒿԓ⸱䖜ᦒᡀ CPU 㜭ཏᢗ㹼Ⲵᵪಘ⸱ˈ❦
ਾᢗ㹼ǄPythonҏнֻཆǄ
PythonⲴ䈝⌅∄䖳ㆰঅˈ䟷⭘㕙䘋ᯩᔿˈࠪ߉ᶕⲴԓ⸱ቡۿл䶒Ⲵṧᆀ˖
print absolute value of an integer:
a = 100
if a >= 0:
 print a
else:
 print -a

ԕ#ᔰཤⲴ䈝ਕᱟ⌘䟺ˈ⌘䟺ᱟ㔉ӪⴻⲴˈਟԕᱟԫ᜿޵ᇩˈ䀓䟺ಘՊᘭ⮕ᦹ⌘䟺ǄަԆ⇿
а㹼䜭ᱟањ䈝ਕˈᖃ䈝ਕԕ߂ਧ“:”㔃ቮᰦˈ㕙䘋Ⲵ䈝ਕ㿶Ѫԓ⸱ඇǄ
㕙䘋ᴹ࡙ᴹᔺǄྭ༴ᱟᕪ䘛ࠪ߉֐ṬᔿॆⲴԓ⸱ˈն⋑ᴹ㿴ᇊ㕙䘋ᱟࠐњオṬ䘈ᱟ TabǄ᤹
➗㓖ᇊ؇ᡀⲴ㇑⨶ˈᓄ䈕࿻㓸ඊᤱ֯⭘ 4њオṬⲴ㕙䘋Ǆ
㕙䘋Ⲵਖањྭ༴ᱟᕪ䘛ࠪ߉֐㕙䘋䖳ቁⲴԓ⸱ ᡀ㤕ᒢ࠶Ҿᢺа⇥ᖸ䮯Ⲵԓ⸱᣶ੁٮՊ̍֐

࠭ᮠˈӾ㘼ᗇࡠ㕙䘋䖳ቁⲴԓ⸱Ǆ
㕙䘋Ⲵൿ༴ቡᱟ“༽ࡦˉ㋈䍤”࣏㜭ཡ᭸Ҷˈ䘉ᱟᴰඁ⡩ⲴൠᯩǄᖃ֐䟽ᶴԓ⸱ᰦˈ㋈䍤䗷৫
Ⲵԓ⸱ᗵ享䟽ᯠỰḕ㕙䘋ᱟ੖↓⺞Ǆ↔ཆˈIDE ᖸ䳮ۿṬᔿॆ Java ԓ⸱䛓ṧṬᔿॆ Python
ԓ⸱Ǆ
ᴰਾˈ䈧࣑ᗵ⌘᜿ˈPython〻ᒿᱟབྷሿ߉᭿ᝏⲴˈྲ᷌߉䭉Ҷབྷሿ߉ˈ〻ᒿՊᣕ䭉Ǆ

ᮠᦞ㊫ර઼ਈ䟿ᮠᦞ㊫ර઼ਈ䟿ᮠᦞ㊫ර઼ਈ䟿ᮠᦞ㊫ර઼ਈ䟿

ᮠᦞ㊫ර
䇑㇇ᵪ亮਽ᙍѹቡᱟਟԕڊᮠᆖ䇑㇇Ⲵᵪಘ ഐ̍↔ 䇑̍㇇ᵪ〻ᒿ⨶ᡰᖃ❦ൠਟԕ༴⨶਴⿽ᮠ

٬Ǆնᱟˈ䇑㇇ᵪ㜭༴⨶Ⲵ䘌н→ᮠ٬ˈ䘈ਟԕ༴⨶᮷ᵜǃമᖒǃ丣仁ǃ㿶仁ǃ㖁亥ㅹ਴⿽

਴ṧⲴᮠᦞˈн਼Ⲵᮠᦞˈ䴰㾱ᇊѹн਼Ⲵᮠᦞ㊫රǄ൘ Python ѝˈ㜭ཏⴤ᧕༴⨶Ⲵᮠᦞ
㊫රᴹԕлࠐ⿽˖
ᮤᮠ
Python ਟԕ༴⨶ԫ᜿བྷሿⲴᮤᮠˈᖃ❦वᤜ䍏ᮤᮠˈ൘〻ᒿѝⲴ㺘⽪ᯩ⌅઼ᮠᆖкⲴ߉⌅
а⁑аṧˈֻྲ˖1ˈ100ˈ-8080ˈ0ˈㅹㅹǄ
䇑㇇ᵪ⭡Ҿ֯⭘Ҽ䘋ࡦˈᡰԕˈᴹᰦى⭘ॱޝ䘋ࡦ㺘⽪ᮤᮠ∄䖳ᯩׯˈॱޝ䘋ࡦ⭘ 0xࡽ㔰
઼ 0-9ˈa-f㺘⽪ˈֻྲ˖0xff00ˈ0xa5b4c3d2ˈㅹㅹǄ
⎞⛩ᮠ
⎞⛩ᮠҏቡᱟሿᮠ ѻ̍ᡰԕ〠Ѫ⎞⛩ᮠˈᱟഐѪ᤹➗、ᆖ䇠ᮠ⌅㺘⽪ᰦˈањ⎞⛩ᮠⲴሿᮠ

⛩ս㖞ᱟਟਈⲴˈ∄ྲˈ1.23x109઼ 12.3x108ᱟ⴨ㅹⲴǄ⎞⛩ᮠਟԕ⭘ᮠᆖ߉⌅ˈྲ 1.23ˈ
3.14ˈ-9.01ˈㅹㅹǄնᱟሩҾᖸབྷᡆᖸሿⲴ⎞⛩ᮠˈቡᗵ享⭘、ᆖ䇑ᮠ⌅㺘⽪ˈᢺ 10 ⭘ e
ᴯԓˈ1.23x109ቡᱟ 1.23e9ˈᡆ㘵 12.3e8ˈ0.000012ਟԕ߉ᡀ 1.2e-5ˈㅹㅹǄ
ᮤᮠ઼⎞⛩ᮠ൘䇑㇇ᵪ޵䜘ᆈۘⲴᯩᔿᱟн਼Ⲵˈᮤ ᮠ䘀㇇≨䘌ᱟ㋮⺞Ⲵ˄ 䲔⌅䳮䚃ҏᱟ㋮

⺞Ⲵ˛ᱟⲴʽ˅ˈ㘼⎞⛩ᮠ䘀㇇ࡉਟ㜭Պᴹഋ㠽ӄޕⲴ䈟ᐞǄ
ᆇㅖѢ
ᆇㅖѢᱟԕ''ᡆ""ᤜ䎧ᶕⲴԫ᜿᮷ᵜˈ∄ྲ'abc'ˈ"xyz"ㅹㅹǄ䈧⌘᜿ˈ''ᡆ""ᵜ䓛ਚᱟа⿽㺘
⽪ᯩᔿˈнᱟᆇㅖѢⲴа䜘࠶ˈഐ↔ˈᆇㅖѢ'abc'ਚᴹ aˈbˈc䘉 3њᆇㅖǄྲ᷌'ᵜ䓛ҏᱟ

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ањᆇㅖˈ䛓ቡਟԕ⭘""ᤜ䎧ᶕˈ∄ྲ"I'm OK"वਜ਼Ⲵᆇㅖᱟ I '̍ˈmˈオṬˈOˈK䘉 6њ
ᆇㅖǄ
ྲ᷌ᆇㅖѢ޵䜘ᰒवਜ਼'৸वਜ਼"ᘾѸ࣎˛ਟԕ⭘䖜ѹᆇㅖ\ᶕḷ䇶ˈ∄ྲ˖
'I\'m \"OK\"!'

㺘⽪ⲴᆇㅖѢ޵ᇩᱟ˖
I'm "OK"!

䖜ѹᆇㅖ\ਟԕ䖜ѹᖸཊᆇㅖˈ∄ྲ\n 㺘⽪ᦒ㹼ˈ\t 㺘⽪ࡦ㺘ㅖˈᆇㅖ\ᵜ䓛ҏ㾱䖜ѹˈᡰԕ
\\㺘⽪Ⲵᆇㅖቡᱟ\ˈਟԕ൘ PythonⲴӔӂᔿભԔ㹼⭘ printᢃঠᆇㅖѢⴻⴻ˖
>>> print 'I\'m ok.'
I'm ok.
>>> print 'I\'m learning\nPython.'
I'm learning
Python.
>>> print '\\\n\\'
\
\

ྲ᷌ᆇㅖѢ䟼䶒ᴹᖸཊᆇㅖ䜭䴰㾱䖜ѹˈቡ䴰㾱࣐ᖸཊ\ˈѪҶㆰॆˈPython 䘈ݱ䇨⭘ r''㺘
 ˖䜘ⲴᆇㅖѢ唈䇔н䖜ѹˈਟԕ㠚ᐡ䈅䈅޵''⽪
>>> print '\\\t\\'
\ \
>>> print r'\\\t\\'
\\\t\\

ྲ᷌ᆇㅖѢ޵䜘ᴹᖸཊᦒ㹼ˈ⭘\n߉൘а㹼䟼нྭ䰵䈫ˈѪҶㆰॆ P̍ythonݱ䇨⭘'''...'''ⲴṬ
ᔿ㺘⽪ཊ㹼޵ᇩˈਟԕ㠚ᐡ䈅䈅˖
>>> print '''line1
... line2
... line3'''
line1
line2
line3

к䶒ᱟ൘ӔӂᔿભԔ㹼޵䗃߉᷌ྲˈޕᡀ〻ᒿˈቡᱟ˖
print '''line1
line2
line3'''

ཊ㹼ᆇㅖѢ'''...'''䘈ਟԕ൘ࡽ䶒࣐к r֯⭘ˈ䈧㠚㹼⍻䈅Ǆ
ᐳቄ٬
ᐳቄ٬઼ᐳቄԓᮠⲴ㺘⽪ᆼޘа㠤ˈањᐳቄ٬ਚᴹ TrueǃFalseє⿽٬ˈ㾱Ѹᱟ Trueˈ㾱
Ѹᱟ Falseˈ൘ Pythonѝˈਟԕⴤ᧕⭘ TrueǃFalse㺘⽪ᐳቄ٬˄䈧⌘᜿བྷሿ߉˅̍ ҏਟԕ䙊

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

䗷ᐳቄ䘀㇇䇑㇇ࠪᶕ˖
>>> True
True
>>> False
False
>>> 3 > 2
True
>>> 3 > 5
False

ᐳቄ٬ਟԕ⭘ andǃor઼ not䘀㇇Ǆ
and䘀㇇ᱟо䘀㇇ˈਚᴹᡰᴹ䜭Ѫ Trueˈand䘀㇇㔃᷌᡽ᱟ True˖
>>> True and True
True
>>> True and False
False
>>> False and False
False

or䘀㇇ᱟᡆ䘀㇇ˈਚ㾱ަѝᴹањѪ Trueˈor䘀㇇㔃᷌ቡᱟ True˖
>>> True or True
True
>>> True or False
True
>>> False or False
False

not䘀㇇ᱟ䶎䘀㇇ˈᆳᱟањঅⴞ䘀㇇ㅖˈᢺ Trueਈᡀ FalseˈFalseਈᡀ True˖
>>> not True
False
>>> not False
True

ᐳቄ٬㓿ᑨ⭘൘ᶑԦࡔᯝѝˈ∄ྲ˖
if age >= 18:
 print 'adult'
else:
 print 'teenager'

オ٬
オ٬ᱟ Python䟼ањ⢩↺Ⲵ٬ˈ⭘ None㺘⽪ǄNoneн㜭⨶䀓Ѫ 0ˈഐѪ 0ᱟᴹ᜿ѹⲴˈ
㘼 Noneᱟањ⢩↺Ⲵオ٬Ǆ
↔ཆˈPython 䘈ᨀ׋Ҷࡇ㺘ǃᆇިㅹཊ⿽ᮠᦞ㊫රˈ䘈ݱ䇨ࡋᔪ㠚ᇊѹᮠᦞ㊫රˈᡁԜਾ
䶒Պ㔗㔝䇢ࡠǄ

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ਈ䟿
ਈ䟿Ⲵᾲᘥสᵜк઼ࡍѝԓᮠⲴᯩ〻ਈ䟿ᱟа㠤Ⲵ ਚ̍ᱟ൘䇑㇇ᵪ〻ᒿѝ ਈ̍䟿нӵਟԕᱟ

ᮠᆇˈ䘈ਟԕᱟԫ᜿ᮠᦞ㊫රǄ
ਈ䟿൘〻ᒿѝቡᱟ⭘ањਈ䟿਽㺘⽪Ҷˈਈ䟿਽ᗵ享ᱟབྷሿ߉㤡᮷ǃᮠᆇ઼_Ⲵ㓴ਸˈфн
㜭⭘ᮠᆇᔰཤˈ∄ྲ˖
a = 1

ਈ䟿 aᱟањᮤᮠǄ
t_007 = 'T007'

ਈ䟿 t_007ᱟањᆇㅖѢǄ
Answer = True

ਈ䟿 Answerᱟањᐳቄ٬ TrueǄ
൘ Pythonѝˈㅹਧ=ᱟ䍻٬䈝ਕˈਟԕᢺԫ᜿ᮠᦞ㊫ර䍻٬㔉ਈ䟿ˈ਼ањਈ䟿ਟԕ৽༽䍻
٬ˈ㘼фਟԕᱟн਼㊫රⲴਈ䟿ˈֻྲ˖
a = 123 # aᱟᮤᮠ
print a
a = 'ABC' # aਈѪᆇㅖѢ
print a

䘉⿽ਈ䟿ᵜ䓛㊫රнപᇊⲴ䈝䀰〠ѻѪࣘᘱ䈝䀰 о̍ѻሩᓄⲴᱟ䶉ᘱ䈝䀰Ǆ䶉ᘱ䈝䀰൘ᇊѹ

ਈ䟿ᰦᗵ享ᤷᇊਈ䟿㊫රˈྲ᷌䍻٬Ⲵᰦى㊫රн३䝽ˈቡՊᣕ䭉Ǆֻྲ Javaᱟ䶉ᘱ䈝䀰ˈ
䍻٬䈝ਕྲл˄// 㺘⽪⌘䟺˅̟
int a = 123; // aᱟᮤᮠ㊫රਈ䟿
a = "ABC"; // 䭉䈟˖н㜭ᢺᆇㅖѢ䍻㔉ᮤරਈ䟿

઼䶉ᘱ䈝䀰⴨∄ˈࣘᘱ䈝䀰ᴤ⚥⍫ˈቡᱟ䘉њ৏ഐǄ
䈧н㾱ᢺ䍻٬䈝ਕⲴㅹਧㅹ਼ҾᮠᆖⲴㅹਧǄ∄ྲл䶒Ⲵԓ⸱˖
x = 10
x = x + 2

ྲ᷌Ӿᮠᆖк⨶䀓 x = x + 2䛓ᰐ䇪ྲօᱟнᡀ・Ⲵˈ൘〻ᒿѝˈ䍻٬䈝ਕݸ䇑㇇ਣחⲴ㺘
䗮ᔿ x + 2ˈᗇࡠ㔃᷌ 䍻㔉ਈ䟿޽ˈ12 xǄ⭡Ҿ xѻࡽⲴ٬ᱟ 10ˈ䟽ᯠ䍻٬ਾˈxⲴ٬ਈᡀ
12Ǆ
ᴰਾˈ⨶䀓ਈ䟿൘䇑㇇ᵪ޵ᆈѝⲴ㺘⽪ҏ䶎ᑨ䟽㾱ǄᖃᡁԜ߉˖
a = 'ABC'

ᰦˈPython䀓䟺ಘᒢҶєԦһᛵ˖
൘޵ᆈѝࡋᔪҶањ'ABC'ⲴᆇㅖѢ˗
൘޵ᆈѝࡋᔪҶањ਽Ѫ aⲴਈ䟿ˈᒦᢺᆳᤷੁ'ABC'Ǆ
ҏਟԕᢺањਈ䟿 a䍻٬㔉ਖањਈ䟿 bˈ䘉њ᫽֌ᇎ䱵кᱟᢺਈ䟿 bᤷੁਈ䟿 aᡰᤷੁⲴ
ᮠᦞˈֻྲл䶒Ⲵԓ⸱˖
a = 'ABC'

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

b = a
a = 'XYZ'
print b

ᴰਾа㹼ᢃঠࠪਈ䟿 bⲴ޵ᇩࡠᓅᱟ'ABC'઒䘈ᱟ'XYZ'˛ྲ᷌Ӿᮠᆖ᜿ѹк⨶䀓 ቡ̍Պ䭉䈟

ൠᗇࠪ b઼ a⴨਼ ҏ̍ᓄ䈕ᱟ'XYZ' ն̍ᇎ䱵к bⲴ٬ᱟ'ABC' 䇙̍ᡁԜа㹼а㹼ൠᢗ㹼ԓ⸱ˈ
ቡਟԕⴻࡠࡠᓅਁ⭏ҶӰѸһ˖
ᢗ㹼 a = 'ABC'ˈ䀓䟺ಘࡋᔪҶᆇㅖѢ'ABC'઼ਈ䟿 aˈᒦᢺ aᤷੁ'ABC'˖

ᢗ㹼 b = aˈ䀓䟺ಘࡋᔪҶਈ䟿 bˈᒦᢺ bᤷੁ aᤷੁⲴᆇㅖѢ'ABC'˖

ᢗ㹼 a = 'XYZ'ˈ䀓䟺ಘࡋᔪҶᆇㅖѢ'XYZ'ˈᒦᢺ aⲴᤷੁ᭩Ѫ'XYZ'ˈն bᒦ⋑ᴹᴤ᭩˖

ᡰԕˈᴰਾᢃঠਈ䟿 bⲴ㔃᷌㠚❦ᱟ'ABC'ҶǄ
ᑨ䟿
ᡰ䉃ᑨ䟿ቡᱟн㜭ਈⲴਈ䟿ˈ∄ྲᑨ⭘Ⲵᮠᆖᑨᮠ π ቡᱟањᑨ䟿Ǆ൘ Python ѝˈ䙊ᑨ⭘
 ˖Ⲵਈ䟿਽㺘⽪ᑨ䟿߉䜘བྷޘ
PI = 3.14159265359

նһᇎк PIӽ❦ᱟањਈ䟿 P̍ythonṩᵜ⋑ᴹԫօᵪ؍ࡦ䇱 PIнՊ㻛᭩ਈˈᡰԕˈ⭘ޘ䜘
བྷ߉Ⲵਈ䟿਽㺘⽪ᑨ䟿ਚᱟањҐᜟкⲴ⭘⌅ˈྲ᷌֐аᇊ㾱᭩ਈਈ䟿 PI Ⲵ٬ˈҏ⋑Ӫ㜭
ᤖտ֐Ǆ
ᴰਾ䀓䟺алᮤᮠⲴ䲔⌅ѪӰѸҏᱟ㋮⺞Ⲵˈਟԕ䈅䈅˖
>>> 10 / 3
3

㋮⺞Ⲵ䲔⌅ˈਚ䴰ᢺަѝањᮤᮠᦒڊᴹⴻ䭉ˈᮤᮠ䲔⌅≨䘌ᱟᮤᮠˈণ֯䲔нቭǄ㾱⋐֐

ᡀ⎞⛩ᮠڊ䲔⌅ቡਟԕ˖
>>> 10.0 / 3
3.3333333333333335

ഐѪᮤᮠ䲔⌅ਚਆ㔃᷌Ⲵᮤᮠ䜘࠶ˈᡰԕ Python 䘈ᨀ׋ањ։ᮠ䘀㇇ˈਟԕᗇࡠєњᮤᮠ
⴨䲔Ⲵ։ᮠ˖
>>> 10 % 3

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

1

ᰐ䇪ᮤᮠڊ䲔⌅䘈ᱟਆ։ᮠˈ㔃᷌≨䘌ᱟᮤᮠˈᡰԕˈᮤᮠ䘀㇇㔃᷌≨䘌ᱟ㋮⺞ⲴǄ
ሿ㔃
Python᭟ᤱཊ⿽ᮠᦞ㊫රˈ൘䇑㇇ᵪ޵䜘ˈਟԕᢺԫօᮠᦞ䜭ⴻᡀањ“ሩ䊑”ˈ㘼ਈ䟿ቡᱟ
൘〻ᒿѝ⭘ᶕᤷੁ䘉Ӌᮠᦞሩ䊑Ⲵˈሩਈ䟿䍻٬ቡᱟᢺᮠᦞ઼ਈ䟿㔉ޣ㚄䎧ᶕǄ

ᆇㅖѢ઼㕆⸱ᆇㅖѢ઼㕆⸱ᆇㅖѢ઼㕆⸱ᆇㅖѢ઼㕆⸱

ᆇㅖ㕆⸱
ᡁԜᐢ㓿䇢䗷Ҷ ᆇ̍ㅖѢҏᱟа⿽ᮠᦞ㊫ර ն̍ᱟ ᆇ̍ㅖѢ∄䖳⢩↺Ⲵᱟ䘈ᴹањ㕆⸱䰞仈Ǆ
ഐѪ䇑㇇ᵪਚ㜭༴⨶ᮠᆇˈྲ᷌㾱༴⨶᮷ᵜˈቡᗵ享ݸᢺ᮷ᵜ䖜ᦒѪᮠᆇ᡽㜭༴⨶ǄD ᰙⲴ

䇑㇇ᵪ൘䇮䇑ᰦ䟷⭘ 8 њ∄⢩˄bit˅֌Ѫањᆇ㢲˄byte˅̍ ᡰԕˈањᆇ㢲㜭㺘⽪Ⲵᴰབྷ

Ⲵᮤᮠቡᱟ 255˄Ҽ䘋ࡦ 11111111=ॱ䘋ࡦ 255˅̍ ྲ᷌㾱㺘⽪ᴤབྷⲴᮤᮠˈቡᗵ享⭘ᴤཊⲴ
ᆇ㢲Ǆ∄ྲєњᆇ㢲ਟԕ㺘⽪Ⲵᴰབྷᮤᮠᱟ 65535ˈ4 њᆇ㢲ਟԕ㺘⽪Ⲵᴰབྷᮤᮠᱟ
4294967295Ǆ
⭡Ҿ䇑㇇ᵪᱟ㖾ഭӪਁ᰾Ⲵ ഐ̍↔ˈᴰᰙਚᴹ 127њᆇ⇽㻛㕆⸱ࡠ䇑㇇ᵪ䟼ˈҏቡᱟབྷሿ߉
㤡᮷ᆇ⇽ǃᮠᆇ઼аӋㅖਧ 䘉̍њ㕆⸱㺘㻛〠Ѫ ASCII㕆⸱ ∄̍ྲབྷ߉ᆇ⇽ AⲴ㕆⸱ᱟ 65ˈ
ሿ߉ᆇ⇽ zⲴ㕆⸱ᱟ 122Ǆ
նᱟ㾱༴⨶ѝ᮷ᱮ❦ањᆇ㢲ᱟнཏⲴˈ㠣ቁ䴰㾱єњᆇ㢲ˈ㘼ф䘈н㜭઼ ASCII 㕆⸱ߢ
ケˈᡰԕˈѝഭࡦᇊҶ GB2312㕆⸱ˈ⭘ᶕᢺѝ᮷㕆䘋৫Ǆ
ࡠц⭼ᴹкⲮ⿽䈝䀰ˈᰕᵜᢺᰕ᮷㕆ޘˈⲴᱟࡠਟԕᜣᗇ֐ Shift_JIS 䟼ˈ丙ഭᢺ丙᮷㕆ࡠ
Euc-kr䟼ˈ਴ഭᴹ਴ഭⲴḷ߶ˈቡՊнਟ䚯ݽൠࠪ⧠ߢケˈ㔃᷌ቡᱟˈ൘ཊ䈝䀰␧ਸⲴ᮷ᵜ
ѝˈᱮ⽪ࠪᶕՊᴹҡ⸱Ǆ

ഐ↔ˈUnicode ᓄ䘀㘼⭏ǄUnicode ᢺᡰᴹ䈝䀰䜭㔏аࡠа྇㕆⸱䟼ˈ䘉ṧቡнՊ޽ᴹҡ⸱
䰞仈ҶǄ
Unicodeḷ߶ҏ൘нᯝਁኅˈնᴰᑨ⭘Ⲵᱟ⭘єњᆇ㢲㺘⽪ањᆇㅖ˄ྲ᷌㾱⭘ࡠ䶎ᑨܫٿ
Ⲵᆇㅖˈቡ䴰㾱 4њᆇ㢲 Ǆ˅⧠ԓ᫽֌㌫㔏઼བྷཊᮠ㕆〻䈝䀰䜭ⴤ᧕᭟ᤱ UnicodeǄ
⧠൘ˈ᥻а᥻ ASCII㕆⸱઼ Unicode㕆⸱Ⲵ४࡛˖ASCII㕆⸱ᱟ 1њᆇ㢲ˈ㘼 Unicode㕆⸱
䙊ᑨᱟ 2њᆇ㢲Ǆ
ᆇ⇽ A⭘ ASCII㕆⸱ᱟॱ䘋ࡦⲴ 65ˈҼ䘋ࡦⲴ 01000001˗

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ᆇㅖ 0⭘ ASCII㕆⸱ᱟॱ䘋ࡦⲴ 48ˈҼ䘋ࡦⲴ 00110000ˈ⌘᜿ᆇㅖ'0'઼ᮤᮠ 0ᱟн਼Ⲵ˗
≹ᆇѝᐢ㓿䎵ࠪҶASCII㕆⸱Ⲵ㤳ത ⭘̍Unicode㕆⸱ᱟॱ䘋ࡦⲴ 20013 Ҽ̍䘋ࡦⲴ 01001110
00101101Ǆ
ਟԕ⥌⍻ˈྲ᷌ᢺ֐ ASCII㕆⸱Ⲵ A⭘ Unicode㕆⸱ˈਚ䴰㾱൘ࡽ䶒㺕 0ቡਟԕˈഐ↔ˈA
Ⲵ Unicode㕆⸱ᱟ 00000000 01000001Ǆ
ᯠⲴ䰞仈৸ࠪ⧠Ҷ˖ྲ᷌㔏аᡀ Unicode㕆⸱ˈҡ⸱䰞仈Ӿ↔⎸ཡҶǄնᱟˈྲ᷌߉֐Ⲵ᮷
ᵜสᵜкޘ䜘ᱟ㤡᮷Ⲵ䈍 ⭘̍ Unicode㕆⸱∄ ASCII㕆⸱䴰㾱ཊаؽⲴᆈۘオ䰤 ൘̍ᆈ઼ۘ

Ր䗃кቡॱ࠶нࡂ㇇Ǆ
ᡰԕˈᴥ ⵰㢲㓖Ⲵ㋮⾎ ৸̍ࠪ⧠Ҷᢺ Unicode㕆⸱䖜ॆѪ“ਟਈ䮯㕆⸱”Ⲵ UTF-8㕆⸱ǄUTF-8
㕆⸱ᢺањ Unicodeᆇㅖṩᦞн਼Ⲵᮠᆇབྷሿ㕆⸱ᡀ 1-6њᆇ㢲 ᑨ̍⭘Ⲵ㤡᮷ᆇ⇽㻛㕆⸱ᡀ

1њᆇ㢲ˈ≹ᆇ䙊ᑨᱟ 3њᆇ㢲ˈਚᴹᖸ⭏ܫⲴᆇㅖ᡽Պ㻛㕆⸱ᡀ 4-6њᆇ㢲Ǆྲ᷌֐㾱Ր
䗃Ⲵ᮷ᵜवਜ਼བྷ䟿㤡᮷ᆇㅖˈ⭘ UTF-8㕆⸱ቡ㜭㢲ⴱオ䰤˖

ᆇㅖ ASCII Unicode UTF-8

A 01000001 00000000 01000001 01000001

ѝ x 01001110 00101101 11100100 10111000
10101101

Ӿк䶒Ⲵ㺘Ṭ䘈ਟԕਁ⧠ˈUTF-8 㕆⸱ᴹањ仍ཆⲴྭ༴ˈቡᱟ ASCII 㕆⸱ᇎ䱵кਟԕ㻛
ⴻᡀᱟ UTF-8㕆⸱Ⲵа䜘࠶ˈᡰԕˈབྷ䟿ਚ᭟ᤱ ASCII㕆⸱Ⲵশਢ䚇⮉䖟Ԧਟԕ൘ UTF-8
㕆⸱л㔗㔝ᐕ֌Ǆ
ᩎ␵ᾊҶ ASCIIǃUnicode઼ UTF-8Ⲵޣ㌫ˈᡁԜቡਟԕᙫ㔃ал⧠൘䇑㇇ᵪ㌫㔏䙊⭘Ⲵᆇ
ㅖ㕆⸱ᐕ֌ᯩᔿ˖
൘䇑㇇ᵪ޵ᆈѝˈ㔏а֯⭘ Unicode㕆⸱ˈᖃ䴰㾱؍ᆈࡠ⺜ⴈᡆ㘵䴰㾱Ր䗃Ⲵᰦىˈቡ䖜ᦒ
Ѫ UTF-8㕆⸱Ǆ
⭘䇠һᵜ㕆䗁ⲴᰦىˈӾ᮷Ԧ䈫ਆⲴ UTF-8 ᆇㅖ㻛䖜ᦒѪ Unicode ᆇㅖ޵ࡠᆈ䟼ˈ㕆䗁ᆼ
ᡀਾˈ؍ᆈⲴᰦ޽ىᢺ Unicode䖜ᦒѪ UTF-8؍ᆈࡠ᮷Ԧ˖

⍿㿸㖁亥Ⲵᰦىˈᴽ࣑ಘՊᢺࣘᘱ⭏ᡀⲴ Unicode޵ᇩ䖜ᦒѪ UTF-8޽Ր䗃ࡠ⍿㿸ಘ˖

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ᡰԕ֐ⴻࡠᖸཊ㖁亥ⲴⓀ⸱кՊᴹ㊫լ<meta charset="UTF-8" />Ⲵؑ᚟ 㺘̍⽪䈕㖁亥↓ᱟ⭘

Ⲵ UTF-8㕆⸱Ǆ
PythonⲴᆇㅖѢ
ᩎ␵ᾊҶԔӪཤ⯬Ⲵᆇㅖ㕆⸱䰞仈ਾˈᡁԜ޽ᶕ⹄ウ Pythonሩ UnicodeⲴ᭟ᤱǄ
ഐѪ PythonⲴ䈎⭏∄ Unicodeḷ߶ਁᐳⲴᰦ䰤䘈㾱ᰙˈᡰԕᴰᰙⲴ Pythonਚ᭟ᤱ ASCII㕆
⸱ Პ̍䙊ⲴᆇㅖѢ'ABC'൘ Python޵䜘䜭ᱟ ASCII㕆⸱ⲴǄPythonᨀ׋Ҷ ord()઼ chr()࠭ᮠˈ
ਟԕᢺᆇ⇽઼ሩᓄⲴᮠᆇ⴨ӂ䖜ᦒ˖
>>> ord('A')
65
>>> chr(65)
'A'

Python൘ਾᶕ␫࣐Ҷሩ UnicodeⲴ᭟ᤱˈԕ Unicode㺘⽪ⲴᆇㅖѢ⭘ u'...'㺘⽪ˈ∄ྲ˖
>>> print u'ѝ᮷'
ѝ᮷
>>> u'ѝ'
u'\u4e2d'

߉ u'ѝ'઼ u'\u4e2d'ᱟаṧⲴˈ\uਾ䶒ᱟॱޝ䘋ࡦⲴ Unicode⸱Ǆഐ↔ˈu'A'઼ u'\u0041'ҏᱟ
аṧⲴǄ
є⿽ᆇㅖѢྲօ⴨ӂ䖜ᦒ˛ᆇㅖѢ'xxx'㲭❦ᱟ ASCII 㕆⸱ˈնҏਟԕⴻᡀᱟ UTF-8 㕆⸱ˈ
㘼 u'xxx'ࡉਚ㜭ᱟ Unicode㕆⸱Ǆ
ᢺ u'xxx'䖜ᦒѪ UTF-8㕆⸱Ⲵ'xxx'⭘ encode('utf-8')ᯩ⌅˖
>>> u'ABC'.encode('utf-8')
'ABC'
>>> u'ѝ᮷'.encode('utf-8')
'\xe4\xb8\xad\xe6\x96\x87'

㤡᮷ᆇㅖ䖜ᦒਾ㺘⽪Ⲵ UTF-8Ⲵ٬઼ Unicode٬⴨ㅹ˄նঐ⭘Ⲵᆈۘオ䰤н਼˅̍ 㘼ѝ᮷ᆇ
ㅖ䖜ᦒਾ 1њ UnicodeᆇㅖሶਈѪ 3њ UTF-8ᆇㅖˈ֐ⴻࡠⲴ\xe4ቡᱟަѝањᆇ㢲ˈഐ
ѪᆳⲴ٬ᱟ 228ˈ⋑ᴹሩᓄⲴᆇ⇽ਟԕᱮ⽪ˈᡰԕԕॱޝ䘋ࡦᱮ⽪ᆇ㢲Ⲵᮠ٬Ǆlen()࠭ᮠਟ

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

ԕ䘄എᆇㅖѢⲴ䮯ᓖ˖
>>> len(u'ABC')
3
>>> len('ABC')
3
>>> len(u'ѝ᮷')
2
>>> len('\xe4\xb8\xad\xe6\x96\x87')
6

৽䗷ᶕ ᢺ̍ UTF-8㕆⸱㺘⽪ⲴᆇㅖѢ'xxx'䖜ᦒѪ UnicodeᆇㅖѢ u'xxx'⭘ decode('utf-8')ᯩ⌅ ̟
>>> 'abc'.decode('utf-8')
u'abc'
>>> '\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')
u'\u4e2d\u6587'
>>> print '\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')
ѝ᮷

⭡Ҿ Python Ⓚԓ⸱ҏᱟањ᮷ᵜ᮷Ԧˈᡰԕˈᖃ֐ⲴⓀԓ⸱ѝवਜ਼ѝ᮷Ⲵᰦىˈ൘؍ᆈⓀ
ԓ⸱ᰦˈቡ䴰㾱࣑ᗵᤷᇊ؍ᆈѪ UTF-8㕆⸱Ǆᖃ Python䀓䟺ಘ䈫ਆⓀԓ⸱ᰦˈѪҶ䇙ᆳ᤹
UTF-8㕆⸱䈫ਆˈᡁԜ䙊ᑨ൘᮷Ԧᔰཤ߉к䘉є㹼˖
#!/usr/bin/env python
-*- coding: utf-8 -*-

ㅜа㹼⌘䟺ᱟѪҶ੺䇹 Linux/OS X㌫㔏ˈ䘉ᱟањ Pythonਟᢗ㹼〻ᒿˈWindows㌫㔏Պᘭ
⮕䘉њ⌘䟺˗
ㅜҼ㹼⌘䟺ᱟѪҶ੺䇹 Python䀓䟺ಘˈ᤹➗ UTF-8㕆⸱䈫ਆⓀԓ⸱ˈ੖֐ˈࡉ൘Ⓚԓ⸱ѝ
 Ⲵѝ᮷䗃ࠪਟ㜭Պᴹҡ⸱Ǆ߉
Ṭᔿॆ
ᴰਾањᑨ㿱Ⲵ䰞仈ᱟྲօ䗃ࠪṬᔿॆⲴᆇㅖѢǄᡁԜ㓿ᑨՊ䗃ࠪ㊫լ'Ӣ⡡Ⲵ xxx ʽྭ֐
֐ xxᴸⲴ䈍䍩ᱟ xxˈ։仍ᱟ xx'ѻ㊫ⲴᆇㅖѢˈ㘼 xxxⲴ޵ᇩ䜭ᱟṩᦞਈ䟿ਈॆⲴˈᡰԕˈ
䴰㾱а⿽ㆰׯⲴṬᔿॆᆇㅖѢⲴᯩᔿǄ

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

൘ Pythonѝˈ䟷⭘ⲴṬᔿॆᯩᔿ઼ C䈝䀰ᱟа㠤Ⲵˈ⭘%ᇎ⧠ˈѮֻྲл˖
>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'

Ҷࡠ⥌ਟ㜭֐ %̍䘀㇇ㅖቡᱟ⭘ᶕṬᔿॆᆇㅖѢⲴǄ൘ᆇㅖѢ޵䜘 %̍s㺘⽪⭘ᆇㅖѢᴯᦒ %̍d
㺘⽪⭘ᮤᮠᴯᦒˈᴹࠐњ%?ঐսㅖˈਾ䶒ቡ䐏ࠐњਈ䟿ᡆ㘵٬ˈ亪ᒿ㾱ሩᓄྭǄྲ᷌ਚᴹ
ањ%?ˈᤜਧਟԕⴱ⮕Ǆ
ᑨ㿱Ⲵঐսㅖᴹ˖

%d ᮤᮠ

%f ⎞⛩ᮠ

%s ᆇㅖѢ

%x ॱޝ䘋ᮤࡦᮠ

ަѝˈṬᔿॆᮤᮠ઼⎞⛩ᮠ䘈ਟԕᤷᇊᱟ੖㺕 0઼ᮤᮠоሿᮠⲴսᮠ˖
>>> '%2d-%02d' % (3, 1)
' 3-01'
>>> '%.2f' % 3.1415926
'3.14'

 ˖нཚ⺞ᇊᓄ䈕⭘ӰѸˈ%s≨䘌䎧֌⭘ˈᆳՊᢺԫօᮠᦞ㊫ර䖜ᦒѪᆇㅖѢ֐᷌ྲ
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'

ሩҾ UnicodeᆇㅖѢˈ⭘⌅ᆼޘаṧˈնᴰྭ⺞؍ᴯᦒⲴᆇㅖѢҏᱟ UnicodeᆇㅖѢ˖
>>> u'Hi, %s' % u'Michael'
u'Hi, Michael'

ᴹӋᰦىˈᆇㅖѢ䟼䶒Ⲵ%ᱟањᲞ䙊ᆇㅖᘾѸ࣎˛䘉њᰦىቡ䴰㾱䖜ѹˈ⭘%%ᶕ㺘⽪а
њ%˖
>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'

ሿ㔃
⭡Ҿশਢ䚇⮉䰞仈ˈPython 2.x⡸ᵜ㲭❦᭟ᤱ Unicodeˈն൘䈝⌅к䴰㾱'xxx'઼ u'xxx'є⿽ᆇ
ㅖѢ㺘⽪ᯩᔿǄ
Pythonᖃ❦ҏ᭟ᤱަԆ㕆⸱ᯩᔿˈ∄ྲᢺ Unicode㕆⸱ᡀ GB2312˖
>>> u'ѝ᮷'.encode('gb2312')
'\xd6\xd0\xce\xc4'

ն䘉⿽ᯩᔿ㓟኎㠚᢮哫✖ˈྲ᷌⋑ᴹ⢩↺ъ࣑㾱≲ˈ䈧⢒䇠ӵ֯⭘ Unicode ઼ UTF-8 䘉є

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

⿽㕆⸱ᯩᔿǄ
൘ Python 3.x⡸ᵜѝˈᢺ'xxx'઼ u'xxx'㔏аᡀ Unicode㕆⸱ˈণ߉нࡽ߉㔰 u䜭ᱟаṧⲴˈ
㘼ԕᆇ㢲ᖒᔿ㺘⽪ⲴᆇㅖѢࡉᗵ享࣐к bࡽ㔰˖b'xxx'Ǆ
ṬᔿॆᆇㅖѢⲴᰦىˈਟԕ⭘ PythonⲴӔӂᔿભԔ㹼⍻䈅ˈᯩׯᘛᦧǄ

֯⭘֯⭘֯⭘֯⭘ list ઼઼઼઼ tuple

list
Python޵㖞Ⲵа⿽ᮠᦞ㊫රᱟࡇ㺘 l̟istǄlistᱟа⿽ᴹᒿⲴ䳶ਸˈਟԕ䲿ᰦ␫઼࣐ࡐ䲔ަѝ
Ⲵݳ㍐Ǆ
䟼ᡰᴹ਼ᆖⲴ਽ᆇˈቡਟԕ⭘ањ⨝ࠪࡇˈྲ∄ list㺘⽪˖
>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates
['Michael', 'Bob', 'Tracy']

ਈ䟿 classmatesቡᱟањ listǄ⭘ len()࠭ᮠਟԕ㧧ᗇ listݳ㍐Ⲵњᮠ˖
>>> len(classmates)
3

⭘㍒ᕅᶕ䇯䰞 listѝ⇿ањս㖞Ⲵݳ㍐ˈ䇠ᗇ㍒ᕅᱟӾ 0ᔰ࿻Ⲵ˖
>>> classmates[0]
'Michael'
>>> classmates[1]
'Bob'
>>> classmates[2]
'Tracy'
>>> classmates[3]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

ᖃ㍒ᕅ䎵ࠪҶ㤳തᰦ P̍ythonՊᣕањ IndexError䭉䈟ˈᡰԕˈ㾱⺞؍㍒ᕅн㾱䎺⭼ˈ䇠ᗇ
ᴰਾањݳ㍐Ⲵ㍒ᕅᱟ len(classmates) - 1Ǆ
ྲ᷌㾱ਆᴰਾањݳ㍐ˈ䲔Ҷ䇑㇇㍒ᕅս㖞ཆˈ䘈ਟԕ⭘-1 ݳ㍒ᕅˈⴤ᧕㧧ਆᴰਾањڊ
㍐˖
>>> classmates[-1]
'Tracy'

ԕ↔㊫᧘ˈਟԕ㧧ਆقᮠㅜ 2њǃقᮠㅜ 3њ˖
>>> classmates[-2]
'Bob'
>>> classmates[-3]
'Michael'

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

>>> classmates[-4]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

ᖃ❦ˈقᮠㅜ 4њቡ䎺⭼ҶǄ
listᱟањਟਈⲴᴹᒿ㺘ˈᡰԕˈਟԕᖰ listѝ䘭࣐ݳ㍐ࡠᵛቮ˖
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']

ҏਟԕᢺݳ㍐ᨂࡠޕᤷᇊⲴս㖞ˈ∄ྲ㍒ᕅਧѪ 1Ⲵս㖞˖
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']

㾱ࡐ䲔 listᵛቮⲴݳ㍐ˈ⭘ pop()ᯩ⌅˖
>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']

㾱ࡐ䲔ᤷᇊս㖞Ⲵݳ㍐ˈ⭘ pop(i)ᯩ⌅ˈަѝ iᱟ㍒ᕅս㖞˖
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']

㾱ᢺḀњݳ㍐ᴯᦒᡀ࡛Ⲵݳ㍐ˈਟԕⴤ᧕䍻٬㔉ሩᓄⲴ㍒ᕅս㖞˖
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']

list䟼䶒Ⲵݳ㍐Ⲵᮠᦞ㊫රҏਟԕн਼ˈ∄ྲ˖
>>> L = ['Apple', 123, True]

listݳ㍐ҏਟԕᱟਖањ listˈ∄ྲ˖
>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
4

㾱⌘᜿ sਚᴹ 4њݳ㍐ˈަѝ s[2]৸ᱟањ listˈྲ᷌᣶ᔰ߉ቡᴤᇩ᱃⨶䀓Ҷ˖
>>> p = ['asp', 'php']
>>> s = ['python', 'java', p, 'scheme']

欢迎加入非盈利Python学习交流编程QQ群783462347，群里免费提供500+本Python书籍！

㾱᤯ࡠ'php'ਟԕ߉ p[1]ᡆ㘵 s[2][1]ˈഐ↔ sਟԕⴻᡀᱟањҼ㔤ᮠ㓴ˈ㊫լⲴ䘈ᴹй㔤ǃഋ
㔤……ᮠ㓴ˈн䗷ᖸቁ⭘ࡠǄ
ྲ᷌ањ listѝањݳ㍐ҏ⋑ᴹˈቡᱟањオⲴ listˈᆳⲴ䮯ᓖѪ 0˖
>>> L = []
>>> len(L)
0

tuple
ਖа⿽ᴹᒿࡇ㺘ਛݳ㓴˖tupleǄtuple઼ list䶎ᑨ㊫լˈնᱟ tupleаᰖࡍ࿻ॆቡн㜭؞᭩ˈ
∄ྲ਼ṧᱟ਼ࠪࡇᆖⲴ਽ᆇ˖
>>> classmates = ('Michael', 'Bob', 'Tracy')

⧠൘ˈclassmates䘉њ tupleн㜭ਈҶˈᆳҏ⋑ᴹ append() i̍nsert()䘉ṧⲴᯩ⌅ǄަԆ㧧ਆݳ
㍐Ⲵᯩ⌅઼ list ᱟаṧⲴˈ֐ਟԕ↓ᑨൠ֯⭘ classmates[0]ˈclassmates[-1]ˈնн㜭䍻٬ᡀ
ਖཆⲴݳ㍐Ǆ
нਟਈⲴ tupleᴹӰѸ᜿ѹ˛ഐѪ tupleнਟਈˈᡰԕԓ⸱ᴤᆹޘǄྲ᷌ਟ㜭ˈ㜭⭘ tupleԓ
ᴯ listቡቭ䟿⭘ tupleǄ
tupleⲴ䲧䱡 ᖃ̟֐ᇊѹањ tupleᰦ ൘̍ᇊѹⲴᰦى t̍upleⲴݳ㍐ቡᗵ享㻛⺞ᇊлᶕ ∄̍ྲ ̟
>>> t = (1, 2)
>>> t
(1, 2)

ྲ᷌㾱ᇊѹањオⲴ tupleˈਟԕ߉ᡀ()˖
>>> t = ()
>>> t
()

նᱟˈ㾱ᇊѹањਚᴹ 1њݳ㍐Ⲵ tupleˈྲ᷌֐䘉Ѹᇊѹ˖
>>> t = (1)
>>> t
1

ᇊѹⲴнᱟ tupleˈᱟ 1 䘉њᮠʽ䘉ᱟഐѪᤜਧ()ᰒਟԕ㺘⽪ tupleˈ৸ਟԕ㺘⽪ᮠᆖޜᔿѝ
Ⲵሿᤜਧˈ䘉ቡӗ⭏Ҷ↗ѹˈഐ↔ˈPython 㿴ᇊˈ䘉⿽ᛵߥлˈ᤹ሿᤜਧ䘋㹼䇑㇇ˈ䇑㇇
㔃᷌㠚❦ᱟ 1Ǆ
ᡰԕˈਚᴹ 1њݳ㍐Ⲵ tupleᇊѹᰦᗵ享࣐ањ䙇ਧ,ˈᶕ⎸䲔↗ѹ˖
>>> t = (1,)
>>> t
(1,)

Python൘ᱮ⽪ਚᴹ 1њݳ㍐Ⲵ tupleᰦˈҏՊ࣐ањ䙇ਧ,ˈԕ֐ݽ䈟䀓ᡀᮠᆖ䇑㇇᜿ѹкⲴ
ᤜਧǄ
ᴰਾᶕⴻањ“ਟਈⲴ”tuple˖

>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])

䘉њ tuple ᇊѹⲴᰦىᴹ 3 њݳ㍐ˈ࡛࠶ᱟ'a'ˈ'b'઼ањ listǄнᱟ䈤 tuple аᰖᇊѹਾቡн
ਟਈҶੇ˛ᘾѸਾᶕ৸ਈҶ˛
࡛ᙕˈᡁԜݸⴻⴻᇊѹⲴᰦى tupleवਜ਼Ⲵ 3њݳ㍐˖

ᖃᡁԜᢺ listⲴݳ㍐'A'઼'B'؞᭩Ѫ'X'઼'Y'ਾˈtupleਈѪ˖

㺘䶒кⴻ t̍upleⲴݳ㍐⺞ᇎਈҶˈնަᇎਈⲴнᱟ tupleⲴݳ㍐ˈ㘼ᱟ listⲴݳ㍐Ǆtupleа
ᔰ࿻ᤷੁⲴ listᒦ⋑ᴹ᭩ᡀ࡛Ⲵ listˈᡰԕˈtupleᡰ䉃Ⲵ“нਈ”ᱟ䈤ˈtupleⲴ⇿њݳ㍐ˈᤷ
ੁ≨䘌нਈǄণᤷੁ'a'ˈቡн㜭᭩ᡀᤷੁ'b'ˈᤷੁањ listˈቡн㜭᭩ᡀᤷੁަԆሩ䊑ˈն
ᤷੁⲴ䘉њ listᵜ䓛ᱟਟਈⲴʽ
⨶䀓Ҷ“ᤷੁнਈ”ਾ 㾱̍ࡋᔪањ޵ᇩҏнਈⲴ tupleᘾѸڊ˛䛓ቡᗵ享؍䇱 tupleⲴ⇿ањ
 ㍐ᵜ䓛ҏн㜭ਈǄݳ
ሿ㔃
list઼ tupleᱟ Python޵㖞Ⲵᴹᒿ䳶ਸˈањਟਈˈањнਟਈǄṩᦞ䴰㾱ᶕ䘹ᤙ֯⭘ᆳԜǄ

ᶑԦࡔᯝ઼ᗚ⧟ᶑԦࡔᯝ઼ᗚ⧟ᶑԦࡔᯝ઼ᗚ⧟ᶑԦࡔᯝ઼ᗚ⧟

ᶑԦࡔᯝ
䇑㇇ᵪѻᡰԕ㜭ڊᖸཊ㠚ࣘॆⲴԫ࣑ˈഐѪᆳਟԕ㠚ᐡڊᶑԦࡔᯝǄ
∄ྲˈ䗃ޕ⭘ᡧᒤ喴ˈṩᦞᒤ喴ᢃঠн਼Ⲵ޵ᇩˈ൘ Python〻ᒿѝˈ⭘ if䈝ਕᇎ⧠˖
age = 20
if age >= 18:
 print 'your age is', age
 print 'adult'

ṩᦞ PythonⲴ㕙䘋㿴ࡉˈྲ ᷌ if䈝ਕࡔᯝᱟ True ቡ̍ᢺ㕙䘋Ⲵє㹼 print䈝ਕᢗ㹼Ҷ ੖̍ࡉˈ

ӰѸҏнڊǄ
ҏਟԕ㔉 if␫࣐ањ else䈝ਕ ᜿̍ᙍᱟˈྲ ᷌ ifࡔᯝᱟ False н̍㾱ᢗ㹼 ifⲴ޵ᇩ ৫̍ᢺ else
ᢗ㹼Ҷ˖
age = 3
if age >= 18:
 print 'your age is', age
 print 'adult'
else:
 print 'your age is', age
 print 'teenager'

⌘᜿н㾱ቁ߉Ҷ߂ਧ:Ǆ
ᖃ❦к䶒Ⲵࡔᯝᱟᖸ㋇⮕Ⲵˈᆼޘਟԕ⭘ elifڊᴤ㓶㠤Ⲵࡔᯝ˖
age = 3
if age >= 18:
 print 'adult'
elif age >= 6:
 print 'teenager'
else:
 print 'kid'

elifᱟ else ifⲴ㕙߉ˈᆼޘਟԕᴹཊњ elifˈᡰԕ if䈝ਕⲴᆼᮤᖒᔿቡᱟ˖
if <ᶑԦࡔᯝ 1>:
 <ᢗ㹼 1>
elif <ᶑԦࡔᯝ 2>:
 <ᢗ㹼 2>
elif <ᶑԦࡔᯝ 3>:
 <ᢗ㹼 3>
else:
 <ᢗ㹼 4>

if䈝ਕᢗ㹼ᴹњ⢩⛩ˈᆳᱟӾкᖰлࡔᯝˈྲ᷌൘Ḁњࡔᯝкᱟ Trueˈᢺ䈕ࡔᯝሩᓄⲴ䈝ਕ
ᢗ㹼ਾˈቡᘭ⮕ᦹ࢙лⲴ elif ઼ elseˈᡰԕˈ䈧⍻䈅ᒦ䀓䟺ѪӰѸл䶒Ⲵ〻ᒿᢃঠⲴᱟ
teenager˖
age = 20
if age >= 6:
 print 'teenager'
elif age >= 18:
 print 'adult'
else:
 print 'kid'

ifࡔᯝᶑԦ䘈ਟԕㆰ߉ྲ∄ˈ߉˖
if x:
 print 'True'

ਚ㾱 xᱟ䶎䴦ᮠ٬ǃ䶎オᆇㅖѢǃ䶎オ listㅹˈቡࡔᯝѪ Trueˈ੖ࡉѪ FalseǄ
ᗚ⧟
PythonⲴᗚ⧟ᴹє⿽ˈа⿽ᱟ for...inᗚ⧟ˈ׍⅑ᢺ listᡆ tupleѝⲴ⇿њݳ㍐䘝ԓࠪᶕˈⴻ
ֻᆀ˖
names = ['Michael', 'Bob', 'Tracy']
for name in names:
 print name

ᢗ㹼䘉⇥ԓ⸱ˈՊ׍⅑ᢃঠ namesⲴ⇿ањݳ㍐˖
Michael
Bob
Tracy

ᡰԕ for x in ...ᗚ⧟ቡᱟᢺ⇿њݳ㍐ԓޕਈ䟿 xˈ❦ਾᢗ㹼㕙䘋ඇⲴ䈝ਕǄ
㇇ᡁԜᜣ䇑ྲ∄޽ 1-10Ⲵᮤᮠѻ઼ˈਟԕ⭘ањ sumਈ䟿ڊ㍟࣐˖
sum = 0
for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
 sum = sum + x
print sum

ྲ᷌㾱䇑㇇ 1-100Ⲵᮤᮠѻ઼ˈӾ ࡠ߉1 100ᴹ⛩ഠ䳮ˈᒨྭ Pythonᨀ׋ањ range()࠭ᮠˈ
ਟԕ⭏ᡀањᮤᮠᒿࡇˈ∄ྲ range(5)⭏ᡀⲴᒿࡇᱟӾ 0ᔰ࿻нབྷҾ 5Ⲵᮤᮠ˖
>>> range(5)
[0, 1, 2, 3, 4]

range(101)ቡਟԕ⭏ᡀ 0-100Ⲵᮤᮠᒿࡇˈ䇑㇇ྲл˖
sum = 0
for x in range(101):
 sum = sum + x

print sum

䈧㠚㹼䘀㹼к䘠ԓ⸱ˈⴻⴻ㔃᷌ᱟнᱟᖃᒤ儈ᯟ਼ᆖᗳ㇇ࠪⲴ 5050Ǆ
ㅜҼ⿽ᗚ⧟ᱟ whileᗚ⧟ˈਚ㾱ᶑԦ┑䏣ˈቡнᯝᗚ⧟ˈᶑԦн┑䏣ᰦ䘰ࠪᗚ⧟Ǆ∄ྲᡁԜ
㾱䇑㇇ 100ԕ޵ᡰᴹཷᮠѻ઼ˈਟԕ⭘ whileᗚ⧟ᇎ⧠˖
sum = 0
n = 99
while n > 0:
 sum = sum + n
 n = n - 2
print sum

൘ᗚ⧟޵䜘ਈ䟿 nнᯝ㠚߿ˈⴤࡠਈѪ-1ᰦˈн޽┑䏣 whileᶑԦˈᗚ⧟䘰ࠪǄ
ሿ㔃
ᶑԦࡔᯝਟԕ䇙䇑㇇ᵪ㠚ᐡڊ䘹ᤙˈPythonⲴ if...elif...elseᖸ⚥⍫Ǆ

ᗚ⧟ᱟ䇙䇑㇇ᵪڊ䟽༽ԫ࣑Ⲵᴹ᭸Ⲵᯩ⌅ˈᴹӋᰦىˈྲ ᷌ԓ⸱߉ᗇᴹ䰞仈ˈՊ䇙〻ᒿ䲧ޕ

“↫ᗚ⧟”ˈҏቡᱟ≨䘌ᗚ⧟л৫Ǆ䘉ᰦਟԕ⭘ Ctrl+C䘰ࠪ〻ᒿˈᡆ㘵ᕪࡦ㔃ᶏ Python䘋〻Ǆ
䈧䈅߉ањ↫ᗚ⧟〻ᒿǄ

֯⭘֯⭘֯⭘֯⭘ dict ઼઼઼઼ set

dict
Python 㖞Ҷᆇި˖dict޵ Ⲵ᭟ᤱˈdict 〠ޘ dictionaryˈ൘ަԆ䈝䀰ѝҏ〠Ѫ mapˈ֯⭘䭞-
٬˄key-value˅ᆈۘˈާᴹᶱᘛⲴḕ᢮䙏ᓖǄ
Ѯњֻᆀˈٷ䇮㾱ṩᦞ਼ᆖⲴ਽ᆇḕ᢮ሩᓄⲴᡀ㔙ˈྲ᷌⭘ listᇎ⧠ˈ䴰㾱єњ list˖
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

㔉ᇊањ਽ᆇˈ㾱ḕ᢮ሩᓄⲴᡀ㔙ˈቡݸ㾱൘ names ѝ᢮ࡠሩᓄⲴս㖞ˈ޽Ӿ scores ਆࠪ
ሩᓄⲴᡀ㔙ˈlist䎺䮯ˈ㙇ᰦ䎺䮯Ǆ
ྲ᷌⭘ dict ᇎ⧠ˈਚ䴰㾱ањ“਽ᆇ”-“ᡀ㔙”Ⲵሩ➗㺘ˈⴤ᧕ṩᦞ਽ᆇḕ᢮ᡀ㔙ˈᰐ䇪䘉њ
㺘ᴹཊབྷˈḕ᢮䙏ᓖ䜭нՊਈធǄ⭘ Python߉ањ dictྲл˖
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

ѪӰѸ dict ḕ᢮䙏ᓖ䘉Ѹᘛ˛ഐѪ dict Ⲵᇎ⧠৏⨶઼ḕᆇިᱟаṧⲴǄٷ䇮ᆇިवਜ਼Ҷ 1
зњ≹ᆇˈᡁԜ㾱ḕḀањᆇˈањ࣎⌅ᱟᢺᆇިӾㅜа亥ᖰਾ㘫ˈⴤࡠ᢮ࡠᡁԜᜣ㾱Ⲵᆇ

Ѫ→ˈ䘉⿽ᯩ⌅ቡᱟ൘ listѝḕ᢮ݳ㍐Ⲵᯩ⌅ˈlist䎺བྷˈḕ᢮䎺ធǄ
ㅜҼ⿽ᯩ⌅ᱟݸ൘ᆇިⲴ㍒ᕅ㺘䟼˄ ∄ྲ䜘俆㺘 ḕ˅䘉њᆇሩᓄⲴ亥⸱ ❦̍ਾⴤ᧕㘫ࡠ䈕亥ˈ

᢮ࡠ䘉њᆇˈᰐ䇪᢮ଚњᆇˈ䘉⿽ḕ᢮䙏ᓖ䜭䶎ᑨᘛˈнՊ䲿⵰ᆇިབྷሿⲴ໎࣐㘼ਈធǄ
dict ቡᱟㅜҼ⿽ᇎ⧠ᯩᔿˈ㔉ᇊањ਽ᆇˈ∄ྲ'Michael'ˈdict ൘޵䜘ቡਟԕⴤ᧕䇑㇇ࠪ
MichaelሩᓄⲴᆈ᭮ᡀ㔙Ⲵ“亥⸱”ˈҏቡᱟ 95䘉њᮠᆇᆈ᭮Ⲵ޵ᆈൠ൰ˈⴤ᧕ਆࠪᶕˈᡰԕ
䙏ᓖ䶎ᑨᘛǄ
ࡠ⥌ਟԕ֐ 䘉̍⿽ key-valueᆈۘᯩᔿ ൘̍᭮䘋৫Ⲵᰦى ᗵ̍享ṩᦞ key㇇ࠪ valueⲴᆈ᭮ս
㖞ˈ䘉ṧˈਆⲴᰦى᡽㜭ṩᦞ keyⴤ᧕᤯ࡠ valueǄ
ᢺᮠᦞ᭮ޕ dictⲴᯩ⌅ˈ䲔Ҷࡍ࿻ॆᰦᤷᇊཆˈ䘈ਟԕ䙊䗷 key᭮ޕ˖
>>> d['Adam'] = 67
>>> d['Adam']
67

⭡Ҿањ keyਚ㜭ሩᓄањ valueˈᡰԕˈཊ⅑ሩањ key᭮ޕ valueˈਾ䶒Ⲵ٬Պᢺࡽ䶒Ⲵ
 ˖ᦹߢ٬
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

ྲ᷌ keyнᆈ൘ˈdictቡՊᣕ䭉˖
>>> d['Thomas']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

㾱䚯ݽ keyнᆈ൘Ⲵ䭉䈟ˈᴹє⿽࣎⌅ˈаᱟ䙊䗷 inࡔᯝ keyᱟ੖ᆈ൘˖
>>> 'Thomas' in d
False

Ҽᱟ䙊䗷 dictᨀ׋Ⲵ getᯩ⌅ˈྲ᷌ keyнᆈ൘ˈਟԕ䘄എ Noneˈᡆ㘵㠚ᐡᤷᇊⲴ value˖
>>> d.get('Thomas')

>>> d.get('Thomas', -1)
-1

⌘᜿˖䘄എ NoneⲴᰦى PythonⲴӔӂᔿભԔ㹼нᱮ⽪㔃᷌Ǆ
㾱ࡐ䲔ањ keyˈ⭘ pop(key)ᯩ⌅ˈሩᓄⲴ valueҏՊӾ dictѝࡐ䲔˖
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

䈧࣑ᗵ⌘᜿ˈdict޵䜘ᆈ᭮Ⲵ亪ᒿ઼ key᭮ޕⲴ亪ᒿᱟ⋑ᴹޣ㌫ⲴǄ
઼ list∄䖳ˈdictᴹԕлࠐњ⢩⛩˖
ḕ᢮઼ᨂޕⲴ䙏ᓖᶱᘛˈнՊ䲿⵰ keyⲴ໎࣐㘼໎࣐˗
䴰㾱ঐ⭘བྷ䟿Ⲵ޵ᆈˈ޵ᆈ⎚䍩ཊǄ
㘼 list⴨৽˖
ḕ᢮઼ᨂޕⲴᰦ䰤䲿⵰ݳ㍐Ⲵ໎࣐㘼໎࣐˗
ঐ⭘オ䰤ሿˈ⎚䍩޵ᆈᖸቁǄ
ᡰԕˈdictᱟ⭘オ䰤ᶕᦒਆᰦ䰤Ⲵа⿽ᯩ⌅Ǆ
dict ਟԕ⭘൘䴰㾱儈䙏ḕ᢮Ⲵᖸཊൠᯩˈ൘ Python ԓ⸱ѝࠐѾᰐ༴н൘ˈ↓⺞֯⭘ dict 䶎
ᑨ䟽㾱ˈ䴰㾱⢒䇠Ⲵㅜаᶑቡᱟ dictⲴ keyᗵ享ᱟнਟਈሩ䊑Ǆ
䘉ᱟഐѪ dictṩᦞ keyᶕ䇑㇇ valueⲴᆈۘս㖞ˈྲ ᷌⇿⅑䇑㇇⴨਼Ⲵ keyᗇࠪⲴ㔃᷌н਼ˈ
䛓 dict޵䜘ቡᆼޘ␧ҡҶǄ䘉њ䙊䗷 key䇑㇇ս㖞Ⲵ㇇⌅〠Ѫ૸ᐼ㇇⌅˄Hash Ǆ˅
㾱؍䇱 hashⲴ↓⺞ᙗˈ֌Ѫ keyⲴሩ䊑ቡн㜭ਈǄ൘ PythonѝˈᆇㅖѢǃᮤᮠㅹ䜭ᱟнਟ
ਈⲴˈഐ↔ˈਟԕ᭮ᗳൠ֌Ѫ keyǄ㘼 listᱟਟਈⲴˈቡн㜭֌Ѫ key˖
>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

set
set ઼ dict ㊫լˈҏᱟа㓴 keyⲴ䳶ਸˈնнᆈۘ valueǄ⭡Ҿ keyн㜭䟽༽ˈᡰԕˈ൘ set
ѝˈ⋑ᴹ䟽༽Ⲵ keyǄ
㾱ࡋᔪањ setˈ䴰㾱ᨀ׋ањ list֌Ѫ䗃ޕ䳶ਸ˖
>>> s = set([1, 2, 3])
>>> s
set([1, 2, 3])

⌘᜿ Ր̍ޕⲴ৲ᮠ[1, 2, 3]ᱟањ list 㘼̍ᱮ⽪Ⲵ set([1, 2, 3])ਚᱟ੺䇹֐䘉њ set޵䜘ᴹ 1 2̍ˈ
3䘉 3њݳ㍐ˈᱮ⽪Ⲵ[]н㺘⽪䘉ᱟањ listǄ
䟽༽ݳ㍐൘ setѝ㠚ࣘ㻛䗷└˖
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
set([1, 2, 3])

䙊䗷 add(key)ᯩ⌅ਟԕ␫࣐ݳ㍐ࡠ setѝˈਟԕ䟽༽␫࣐ˈնнՊᴹ᭸᷌˖
>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])

䙊䗷 remove(key)ᯩ⌅ਟԕࡐ䲔ݳ㍐˖
>>> s.remove(4)
>>> s
set([1, 2, 3])

setਟԕⴻᡀᮠᆖ᜿ѹкⲴᰐᒿ઼ᰐ䟽༽ݳ㍐Ⲵ䳶ਸ ഐ̍↔ є̍њ setਟԕڊᮠᆖ᜿ѹкⲴӔ
䳶ǃᒦ䳶ㅹ᫽֌˖
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])

set ઼ dict Ⲵୟа४࡛ӵ൘Ҿ⋑ᴹᆈۘሩᓄⲴ valueˈնᱟˈset Ⲵ৏⨶઼ dict аṧˈᡰԕˈ
਼ṧнਟԕ᭮ޕਟਈሩ䊑 ഐ̍Ѫᰐ⌅ࡔᯝєњਟਈሩ䊑ᱟ੖⴨ㅹ ҏ̍ቡᰐ⌅؍䇱 set޵䜘“н
Պᴹ䟽༽ݳ㍐”Ǆ䈅䈅ᢺ list᭮ޕ setˈⴻⴻᱟ੖Պᣕ䭉Ǆ
 䇞нਟਈሩ䊑޽
к䶒ᡁԜ䇢Ҷˈstrᱟнਈሩ䊑ˈ㘼 listᱟਟਈሩ䊑Ǆ
ሩҾਟਈሩ䊑ˈ∄ྲ listˈሩ list䘋㹼᫽֌ˈlist޵䜘Ⲵ޵ᇩᱟՊਈॆⲴˈ∄ྲ˖
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']

㘼ሩҾнਟਈሩ䊑ˈ∄ྲ strˈሩ str䘋㹼᫽֌઒˖
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'

㲭❦ᆇㅖѢᴹњ replace()ᯩ⌅ˈҏ⺞ᇎਈࠪҶ'Abc'ˈնਈ䟿 aᴰਾӽᱟ'abc'ˈᓄ䈕ᘾѸ⨶䀓
઒˛
ᡁԜݸᢺԓ⸱᭩ᡀл䶒䘉ṧ˖

>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

㾱࿻㓸⢒䇠Ⲵᱟˈaᱟਈ䟿ˈ㘼'abc'᡽ᱟᆇㅖѢሩ䊑ʽᴹӋᰦىˈᡁԜ㓿ᑨ䈤ˈሩ䊑 a Ⲵ޵
ᇩᱟ'abc'ˈնަᇎᱟᤷˈaᵜ䓛ᱟањਈ䟿ˈᆳᤷੁⲴሩ䊑Ⲵ޵ᇩ᡽ᱟ'abc'˖

ᖃᡁԜ䈳⭘ a.replace('a', 'A')ᰦ ᇎ̍䱵к䈳⭘ᯩ⌅ replaceᱟ֌⭘൘ᆇㅖѢሩ䊑'abc'кⲴ 㘼̍䘉

њᯩ⌅㲭❦਽ᆇਛ replace ն̍ত⋑ᴹ᭩ਈᆇㅖѢ'abc'Ⲵ޵ᇩǄ⴨৽ r̍eplaceᯩ⌅ࡋᔪҶањ
ᯠᆇㅖѢ'Abc'ᒦ䘄എˈྲ᷌ᡁԜ⭘ਈ䟿 bᤷੁ䈕ᯠᆇㅖѢˈቡᇩ᱃⨶䀓Ҷˈਈ䟿 aӽᤷੁ৏
ᴹⲴᆇㅖѢ'abc'ˈնਈ䟿 bতᤷੁᯠᆇㅖѢ'Abc'Ҷ˖

ᡰԕ ሩ̍Ҿнਈሩ䊑ᶕ䈤 䈳̍⭘ሩ䊑㠚䓛Ⲵԫ᜿ᯩ⌅ ҏ̍нՊ᭩ਈ䈕ሩ䊑㠚䓛Ⲵ޵ᇩǄ⴨৽ˈ

䘉Ӌᯩ⌅ՊࡋᔪᯠⲴሩ䊑ᒦ䘄എˈ䘉ṧˈቡ؍䇱Ҷнਟਈሩ䊑ᵜ䓛≨䘌ᱟнਟਈⲴǄ
ሿ㔃
֯⭘ key-valueᆈۘ㔃ᶴⲴ dict൘ Pythonѝ䶎ᑨᴹ⭘ˈ䘹ᤙнਟਈሩ䊑֌Ѫ keyᖸ䟽㾱ˈᴰ
ᑨ⭘Ⲵ keyᱟᆇㅖѢǄ
tuple㲭❦ᱟнਈሩ䊑ˈն䈅䈅ᢺ(1, 2, 3)઼(1, [2, 3])᭮ޕ dictᡆ setѝˈᒦ䀓䟺㔃᷌Ǆ

 ᮦ࠳ᮦ࠳ᮦ࠳ᮦ࠳

ᡁԜ⸕䚃ശⲴ䶒〟䇑㇇ޜᔿѪ˖
S = πr2
ᖃᡁԜ⸕䚃ॺᖴ rⲴ٬ᰦˈቡਟԕṩᦞޜᔿ䇑㇇ࠪ䶒〟Ǆٷ䇮ᡁԜ䴰㾱䇑㇇ 3њн਼བྷሿⲴ
ശⲴ䶒〟˖
r1 = 12.34
r2 = 9.08
r3 = 73.1
s1 = 3.14 * r1 * r1
s2 = 3.14 * r2 * r2
s3 = 3.14 * r3 * r3

ᖃԓ⸱ࠪ⧠ᴹ㿴ᖻⲴ䟽༽Ⲵᰦ֐ˈىቡ䴰㾱ᖃᗳҶˈ⇿⅑߉ 3.14 * x * xнӵᖸ哫✖ˈ㘼фˈ
ྲ᷌㾱ᢺ 3.14᭩ᡀ 3.14159265359Ⲵᰦىˈᗇޘ䜘ᴯᦒǄ

ᴹҶ࠭ᮠˈᡁԜቡн߉⅑⇿޽ s = 3.14 * x * xˈ㘼ᱟ߉ᡀᴤᴹ᜿ѹⲴ࠭ᮠ䈳⭘ s =
area_of_circle(x)ˈ㘼࠭ᮠ area_of_circleᵜ䓛ਚ䴰㾱߉а⅑ˈቡਟԕཊ⅑䈳⭘Ǆ
สᵜкᡰᴹⲴ儈㓗䈝䀰䜭᭟ᤱ࠭ᮠˈPythonҏнֻཆǄPythonнն㜭䶎ᑨ⚥⍫ൠᇊѹ࠭ᮠˈ
㘼фᵜ䓛޵㖞Ҷᖸཊᴹ⭘Ⲵ࠭ᮠˈਟԕⴤ᧕䈳⭘Ǆ
ᣭ䊑
ᣭ䊑ᱟᮠᆖѝ䶎ᑨᑨ㿱ⲴᾲᘥǄѮњֻᆀ˖
䇑㇇ᮠࡇⲴ઼ˈ∄ྲ Ҿᱟᮠᆖᇦਁ᰾Ҷ≲઼ㅖਧˈׯнᯩ࠶䎧ᶕॱ߉ˈ100 + ... + 3 + 2 + 1̟
∑ˈਟԕᢺ 1 + 2 + 3 + ... + 100䇠֌˖
100
∑n
n=1
䘉⿽ᣭ䊑䇠⌅䶎ᑨᕪབྷ ഐ̍ѪᡁԜⴻࡠ∑ቡਟԕ⨶䀓ᡀ≲઼ 㘼̍нᱟ䘈৏ᡀվ㓗Ⲵ࣐⌅䘀㇇Ǆ
㘼фˈ䘉⿽ᣭ䊑䇠⌅ᱟਟᢙኅⲴˈ∄ྲ˖
100
∑(n2+1)
n=1
䘈৏ᡀ࣐⌅䘀㇇ቡਈᡀҶ˖
(1 x 1 + 1) + (2 x 2 + 1) + (3 x 3 + 1) + ... + (100 x 100 + 1)
ਟ㿱ˈُࣙᣭ䊑ˈᡁԜ᡽㜭нޣᗳᓅቲⲴާփ䇑㇇䗷〻ˈ㘼ⴤ᧕൘ᴤ儈Ⲵቲ⅑кᙍ㘳䰞仈Ǆ
 䇑㇇ᵪ〻ᒿҏᱟаṧˈ࠭ᮠቡᱟᴰสᵜⲴа⿽ԓ⸱ᣭ䊑ⲴᯩᔿǄ߉

䈳⭘࠭ᮠ䈳⭘࠭ᮠ䈳⭘࠭ᮠ䈳⭘࠭ᮠ

Python޵㖞Ҷᖸཊᴹ⭘Ⲵ࠭ᮠˈᡁԜਟԕⴤ᧕䈳⭘Ǆ
㾱䈳⭘ањ࠭ᮠˈ䴰㾱⸕䚃࠭ᮠⲴ਽〠઼৲ᮠˈ∄ྲ≲㔍ሩ٬Ⲵ࠭ᮠ absˈਚᴹањ৲ᮠǄ
ਟԕⴤ᧕Ӿ PythonⲴᇈᯩ㖁ㄉḕⴻ᮷ẓ˖
http://docs.python.org/2/library/functions.html#abs
ҏਟԕ൘ӔӂᔿભԔ㹼䙊䗷 help(abs)ḕⴻ abs࠭ᮠⲴᑞࣙؑ᚟Ǆ
䈳⭘ abs࠭ᮠ˖
>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34

䈳⭘࠭ᮠⲴᰦىˈྲ᷌ՐޕⲴ৲ᮠᮠ䟿нሩˈՊᣕ TypeErrorⲴ䭉䈟ˈᒦф PythonՊ᰾⺞ൠ
੺䇹֐˖abs()ᴹфӵᴹ 1њ৲ᮠˈն㔉ࠪҶєњ˖
>>> abs(1, 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)

ྲ᷌ՐޕⲴ৲ᮠᮠ䟿ᱟሩⲴˈն৲ᮠ㊫රн㜭㻛࠭ᮠᡰ᧕ਇˈҏՊᣕ TypeErrorⲴ䭉䈟ˈᒦ
ф㔉ࠪ䭉䈟ؑ᚟˖strᱟ䭉䈟Ⲵ৲ᮠ㊫ර˖
>>> abs('a')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

㘼∄䖳࠭ᮠ cmp(x, y)ቡ䴰㾱єњ৲ᮠˈྲ᷌ x<yˈ䘄എ-1ˈྲ᷌ x==yˈ䘄എ 0ˈྲ᷌ x>yˈ
䘄എ 1˖
>>> cmp(1, 2)
-1
>>> cmp(2, 1)
1
>>> cmp(3, 3)
0

ᮠᦞ㊫ර䖜ᦒ
Python ྲ∄ˈ㖞Ⲵᑨ⭘࠭ᮠ䘈वᤜᮠᦞ㊫ර䖜ᦒ࠭ᮠ޵ int()࠭ᮠਟԕᢺަԆᮠᦞ㊫ර䖜ᦒ
Ѫᮤᮠ˖
>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> unicode(100)
u'100'
>>> bool(1)
True
>>> bool('')
False

࠭ᮠ਽ަᇎቡᱟᤷੁањ࠭ᮠሩ䊑Ⲵᕅ⭘ ᆼ̍ޘਟԕᢺ࠭ᮠ਽䍻㔉ањਈ䟿 ⴨̍ᖃҾ㔉䘉њ

࠭ᮠ䎧Ҷањ“࡛਽”˖
>>> a = abs # ਈ䟿 aᤷੁ abs࠭ᮠ
>>> a(-1) # ᡰԕҏਟԕ䙊䗷 a䈳⭘ abs࠭ᮠ
1

ሿ㔃
䈳⭘ Python Ⲵ࠭ᮠˈ䴰㾱ṩᦞ࠭ᮠᇊѹˈՐޕ↓⺞Ⲵ৲ᮠǄྲ᷌࠭ᮠ䈳⭘ࠪ䭉ˈаᇊ㾱ᆖ
Պⴻ䭉䈟ؑ᚟ˈᡰԕ㤡᮷ᖸ䟽㾱ʽ

ᇊѹ࠭ᮠᇊѹ࠭ᮠᇊѹ࠭ᮠᇊѹ࠭ᮠ

൘ Python ѝˈᇊѹањ࠭ᮠ㾱֯⭘ def 䈝ਕˈ࠭ࠪ߉⅑׍ᮠ਽ǃᤜਧǃᤜਧѝⲴ৲ᮠ઼߂
ਧ:ˈ❦ਾˈ൘㕙䘋ඇѝ㕆࠭߉ᮠփˈ࠭ᮠⲴ䘄എ٬⭘ return䈝ਕ䘄എǄ
ᡁԜԕ㠚ᇊѹањ≲㔍ሩ٬Ⲵ my_abs࠭ᮠѪֻ˖
def my_abs(x):
 if x >= 0:
 return x
 else:
 return -x

䈧㠚㹼⍻䈅ᒦ䈳⭘ my_absⴻⴻ䘄എ㔃᷌ᱟ੖↓⺞Ǆ
䈧⌘᜿ˈ࠭ᮠփ޵䜘Ⲵ䈝ਕ൘ᢗ㹼ᰦˈаᰖᢗ㹼ࡠ returnᰦˈ࠭ᮠቡᢗ㹼ᆼ∅ˈᒦሶ㔃᷌䘄
എǄഐ↔ˈ࠭ᮠ޵䜘䙊䗷ᶑԦࡔᯝ઼ᗚ⧟ਟԕᇎ⧠䶎ᑨ༽ᵲⲴ䙫䗁Ǆ
ྲ᷌⋑ᴹ return䈝ਕˈ࠭ᮠᢗ㹼ᆼ∅ਾҏՊ䘄എ㔃᷌ˈਚᱟ㔃᷌Ѫ NoneǄ
return Noneਟԕㆰ߉Ѫ returnǄ
オ࠭ᮠ
ྲ᷌ᜣᇊѹањӰѸһҏнڊⲴオ࠭ᮠˈਟԕ⭘ pass䈝ਕ˖
def nop():
 pass

pass 䈝ਕӰѸ䜭нڊˈ䛓ᴹӰѸ⭘˛ᇎ䱵к pass ਟԕ⭘ᶕ֌Ѫঐսㅖˈ∄ྲ⧠൘䘈⋑ᜣྭ
ᘾѸ࠭߉ᮠⲴԓ⸱ˈቡਟԕ᭮ݸањ passˈ䇙ԓ⸱㜭䘀㹼䎧ᶕǄ
pass䘈ਟԕ⭘൘ަԆ䈝ਕ䟼ˈ∄ྲ˖
if age >= 18:
 pass

㕪ቁҶ passˈԓ⸱䘀㹼ቡՊᴹ䈝⌅䭉䈟Ǆ
৲ᮠỰḕ
䈳⭘࠭ᮠᰦˈྲ᷌৲ᮠњᮠнሩˈPython䀓䟺ಘՊ㠚ࣘỰḕࠪᶕˈᒦᣋࠪ TypeError˖
>>> my_abs(1, 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: my_abs() takes exactly 1 argument (2 given)

նᱟྲ᷌৲ᮠ㊫රнሩˈPython䀓䟺ಘቡᰐ⌅ᑞᡁԜỰḕǄ䈅䈅 my_abs઼޵㖞࠭ᮠ absⲴ
ᐞ࡛˖
>>> my_abs('A')
'A'
>>> abs('A')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

ᖃՐޕҶнᚠᖃⲴ৲ᮠᰦˈ޵㖞࠭ᮠ absՊỰḕࠪ৲ᮠ䭉䈟ˈ㘼ᡁԜᇊѹⲴ my_abs⋑ᴹ৲
ᮠỰḕˈᡰԕˈ䘉њ࠭ᮠᇊѹнཏᆼழǄ
䇙ᡁԜ؞᭩ал my_absⲴᇊѹˈሩ৲ᮠ㊫රڊỰḕˈਚݱ䇨ᮤᮠ઼⎞⛩ᮠ㊫රⲴ৲ᮠǄᮠ
ᦞ㊫රỰḕਟԕ⭘޵㖞࠭ᮠ isinstanceᇎ⧠˖
def my_abs(x):
 if not isinstance(x, (int, float)):
 raise TypeError('bad operand type')
 if x >= 0:
 return x
 else:
 return -x

␫࣐Ҷ৲ᮠỰḕਾˈྲ᷌Րޕ䭉䈟Ⲵ৲ᮠ㊫රˈ࠭ᮠቡਟԕᣋࠪањ䭉䈟˖
>>> my_abs('A')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in my_abs
TypeError: bad operand type

䭉䈟઼ᔲᑨ༴⨶ሶ൘ਾ㔝䇢ࡠǄ
䘄എཊњ٬
࠭ᮠਟԕ䘄എཊњ٬ੇ˛ㆄṸᱟ㛟ᇊⲴǄ
∄ྲ൘⑨ᠿѝ㓿ᑨ䴰㾱Ӿањ⛩〫ࣘࡠਖањ⛩ 㔉̍ࠪ඀ḷǃս઼〫䀂ᓖ ቡ̍ਟԕ䇑㇇ࠪᯠ

ⲴᯠⲴ඀ḷ˖
import math

def move(x, y, step, angle=0):
 nx = x + step * math.cos(angle)
 ny = y - step * math.sin(angle)
 return nx, ny

䘉ṧᡁԜቡਟԕ਼ᰦ㧧ᗇ䘄എ٬˖
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0

նަᇎ䘉ਚᱟа⿽ٷ䊑ˈPython࠭ᮠ䘄എⲴӽ❦ᱟঅа٬˖
>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)

৏ᶕ䘄എ٬ᱟањ tupleʽնᱟˈ൘䈝⌅кˈ䘄എањ tupleਟԕⴱ⮕ᤜਧˈ㘼ཊњਈ䟿ਟԕ
਼ᰦ᧕᭦ањ tupleˈ᤹ս㖞䍻㔉ሩᓄⲴ٬ˈᡰԕˈPython Ⲵ࠭ᮠ䘄എཊ٬ަᇎቡᱟ䘄എа
њ tupleˈն߉䎧ᶕᴤᯩׯǄ

ሿ㔃
ᇊѹ࠭ᮠᰦˈ䴰㾱⺞ᇊ࠭ᮠ਽઼৲ᮠњᮠ˗
ྲ᷌ᴹᗵ㾱ˈਟԕݸሩ৲ᮠⲴᮠᦞ㊫රڊỰḕ˗
࠭ᮠփ޵䜘ਟԕ⭘ return䲿ᰦ䘄എ࠭ᮠ㔃᷌˗
࠭ᮠᢗ㹼ᆼ∅ҏ⋑ᴹ return䈝ਕᰦˈ㠚ࣘ return NoneǄ
࠭ᮠਟԕ਼ᰦ䘄എཊњ٬ˈնަᇎቡᱟањ tupleǄ

࠭ᮠⲴ৲ᮠ࠭ᮠⲴ৲ᮠ࠭ᮠⲴ৲ᮠ࠭ᮠⲴ৲ᮠ

ᇊѹ࠭ᮠⲴᰦىˈᡁԜᢺ৲ᮠⲴ਽ᆇ઼ս㖞⺞ᇊлᶕˈ࠭ ᮠⲴ᧕ਓᇊѹቡᆼᡀҶǄሩҾ࠭ᮠ

Ⲵ䈳⭘㘵ᶕ䈤ˈਚ䴰㾱⸕䚃ྲօՐ䙂↓⺞Ⲵ৲ᮠ ԕ̍৺࠭ᮠሶ䘄എӰѸṧⲴ٬ቡཏҶˈ࠭ᮠ

 䜘Ⲵ༽ᵲ䙫䗁㻛ሱ㻵䎧ᶕˈ䈳⭘㘵ᰐ䴰Ҷ䀓Ǆ޵
Python Ⲵ࠭ᮠᇊѹ䶎ᑨㆰঅˈն⚥⍫ᓖত䶎ᑨབྷǄ䲔Ҷ↓ᑨᇊѹⲴᗵ䘹৲ᮠཆˈ䘈ਟԕ֯
⭘唈䇔৲ᮠǃਟਈ৲ᮠ઼ޣ䭞ᆇ৲ᮠˈ֯ᗇ࠭ᮠᇊѹࠪᶕⲴ᧕ਓˈнն㜭༴⨶༽ᵲⲴ৲ᮠˈ

䘈ਟԕㆰॆ䈳⭘㘵Ⲵԓ⸱Ǆ
唈䇔৲ᮠ
ᡁԜӽԕާփⲴֻᆀᶕ䈤᰾ྲօᇊѹ࠭ᮠⲴ唈䇔৲ᮠǄ߉ݸањ䇑㇇ x2Ⲵ࠭ᮠ˖
def power(x):
 return x * x

ᖃᡁԜ䈳⭘ power࠭ᮠᰦˈᗵ享ՐޕᴹфӵᴹⲴањ৲ᮠ x˖
>>> power(5)
25
>>> power(15)
225

⧠൘ˈྲ ᷌ᡁԜ㾱䇑㇇ x3ᘾѸ࣎˛ਟԕ޽ᇊѹањ power3࠭ᮠ ն̍ᱟྲ᷌㾱䇑㇇ x4ǃx5……
ᘾѸ࣎˛ᡁԜнਟ㜭ᇊѹᰐ䲀ཊњ࠭ᮠǄ
Ҷˈਟԕᢺࡠҏ䇨ᜣ֐ power(x)؞᭩Ѫ power(x, n)ˈ⭘ᶕ䇑㇇ xnˈ䈤ᒢቡᒢ˖
def power(x, n):
 s = 1
 while n > 0:
 n = n - 1
 s = s * x
 return s

ሩҾ䘉њ؞᭩ਾⲴ power࠭ᮠˈਟԕ䇑㇇ԫ᜿ n⅑ᯩ˖
>>> power(5, 2)
25
>>> power(5, 3)
125

նᱟˈᰗⲴ䈳⭘ԓ⸱ཡ䍕Ҷˈ৏ഐᱟᡁԜ໎࣐Ҷањ৲ᮠˈሬ㠤ᰗⲴԓ⸱ᰐ⌅↓ᑨ䈳⭘˖

>>> power(5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: power() takes exactly 2 arguments (1 given)

䘉њᰦىˈ唈䇔৲ᮠቡᧂк⭘൪ҶǄ⭡ҾᡁԜ㓿ᑨ䇑㇇ x2ˈᡰԕˈᆼޘਟԕᢺㅜҼњ৲ᮠ n
Ⲵ唈䇔٬䇮ᇊѪ 2˖
def power(x, n=2):
 s = 1
 while n > 0:
 n = n - 1
 s = s * x
 return s

䘉ṧˈᖃᡁԜ䈳⭘ power(5)ᰦˈ⴨ᖃҾ䈳⭘ power(5, 2)˖
>>> power(5)
25
>>> power(5, 2)
25

㘼ሩҾ n > 2ⲴަԆᛵߥˈቡᗵ享᰾⺞ൠՐޕ nˈ∄ྲ power(5, 3)Ǆ
Ӿк䶒Ⲵֻᆀਟԕⴻࠪˈ唈䇔৲ᮠਟԕㆰॆ࠭ᮠⲴ䈳⭘Ǆ䇮㖞唈䇔৲ᮠᰦˈᴹࠐ⛩㾱⌘᜿ ̟
аᱟᗵ䘹৲ᮠ൘ࡽˈ唈䇔৲ᮠ൘ਾˈ੖ࡉ Python Ⲵ䀓䟺ಘՊᣕ䭉˄ᙍ㘳алѪӰѸ唈䇔৲
ᮠн㜭᭮൘ᗵ䘹৲ᮠࡽ䶒˅̠
Ҽᱟྲօ䇮㖞唈䇔৲ᮠǄ
ᖃ࠭ᮠᴹཊњ৲ᮠᰦˈᢺਈॆབྷⲴ৲ᮠ᭮ࡽ䶒ˈਈॆሿⲴ৲ᮠ᭮ਾ䶒ǄਈॆሿⲴ৲ᮠቡਟԕ

֌Ѫ唈䇔৲ᮠǄ
֯⭘唈䇔৲ᮠᴹӰѸྭ༴˛ᴰབྷⲴྭ༴ᱟ㜭䱽վ䈳⭘࠭ᮠⲴ䳮ᓖǄ
Ѯњֻᆀ 䇮㾱൘ቿᒅк⭫ањശٷ̍ ⭡̍Ҿ⭫ശਚ䴰㾱⺞ᇊശᗳ඀ḷ(x, y)઼ॺᖴ rቡਟԕҶˈ
ᡰԕˈᡁԜٷ䇮ਟԕ䘉ṧ䈳⭘䈕࠭ᮠ˖
>>> x, y = 0, 0
>>> r = 20
>>> draw_circle(x, y, r)

⭫ࠪᶕⲴമᖒᱟ䘉ṧ˖

նᱟˈྲ᷌ᜣ⭫ањ㓒㢢ⲴശᘾѸ࣎˛ᒨྭˈ㕆߉ draw_circle࠭ᮠⲴᱟаս䍴␡ Pythonᔰ
ਁ㘵ˈ䲔Ҷ xˈyˈr 䘉 3 њᗵ䘹৲ᮠཆˈ䈕࠭ᮠ䘈ᨀ׋唈䇔৲ᮠ linecolor=0x000000ˈ
fillcolor=0xffffffˈpenwidth=1ˈྲ᷌᭩ਈ唈䇔৲ᮠˈᡁԜнն㜭⭫ࠪ㓒㢢Ⲵശˈ䘈ਟԕ᧗ࡦ

ശⲴ㓯ᶑ㋇㓶઼ປݵ仌㢢˖
>>> draw_circle(0, 0, 20, linecolor=0xff0000)
>>> draw_circle(0, 0, 20, linecolor=0xff0000, penwidth=5)
>>> draw_circle(0, 0, 20, linecolor=0xff0000, fillcolor=0xffff00, penwidth=5)

㔃᷌ྲл˖

ਟ㿱ˈ唈䇔৲ᮠ䱽վҶ࠭ᮠ䈳⭘Ⲵ䳮ᓖˈ㘼аᰖ䴰㾱ᴤ༽ᵲⲴ䈳⭘ᰦ ৸̍ਟԕՐ䙂ᴤཊⲴ৲

ᮠᶕᇎ⧠Ǆᰐ䇪ᱟㆰঅ䈳⭘䘈ᱟ༽ᵲ䈳⭘ˈ࠭ᮠਚ䴰㾱ᇊѹањǄ
ᴹཊњ唈䇔৲ᮠᰦ 䈳̍⭘Ⲵᰦى ᰒ̍ਟԕ᤹亪ᒿᨀ׋唈䇔৲ᮠ ∄̍ྲ䈳⭘ draw_circle(0, 0, 20,
0xff0000, 0xffff00) ᜿̍ᙍᱟ 䲔̍Ҷ 0 0̍ 2̍0䘉 3њᗵ䘹৲ᮠཆ ਾ̍єњ৲ᮠᓄ⭘൘৲ᮠ linecolor
઼ fillcolorкˈpenwidth৲ᮠ⭡Ҿ⋑ᴹᨀ׋ˈӽ❦֯⭘唈䇔٬Ǆ
ҏਟԕн᤹亪ᒿᨀ׋䜘࠶唈䇔৲ᮠǄᖃн᤹亪ᒿᨀ׋䜘࠶唈䇔৲ᮠᰦˈ䴰㾱ᢺ৲ᮠ਽߉кǄ

∄ྲ䈳⭘ draw_circle(0, 0, 20, fillcolor=0x00ff00)ˈ᜿ᙍᱟˈfillcolor ৲ᮠ⭘Ր䘋৫Ⲵ٬
0x00ff00ˈަԆ唈䇔৲ᮠ㔗㔝֯⭘唈䇔٬Ǆ
唈䇔৲ᮠᖸᴹ⭘ˈն֯⭘нᖃˈҏՊᦹඁ䟼Ǆ唈䇔৲ᮠᴹњᴰབྷⲴඁˈ╄⽪ྲл˖
ањޕᇊѹањ࠭ᮠˈՐݸ listˈ␫࣐ањ END޽䘄എ˖
def add_end(L=[]):
 L.append('END')
 return L

ᖃ֐↓ᑨ䈳⭘ᰦˈ㔃᷌լѾн䭉˖
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']

ᖃ֯֐⭘唈䇔৲ᮠ䈳⭘ᰦˈаᔰ࿻㔃᷌ҏᱟሩⲴ˖
>>> add_end()
['END']

նᱟˈ޽⅑䈳⭘ add_end()ᰦˈ㔃᷌ቡнሩҶ˖
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']

ᖸཊࡍᆖ㘵ᖸ⯁ᜁ 唈̍䇔৲ᮠᱟ[] ն̍ᱟ࠭ᮠլѾ⇿⅑䜭“䇠տҶ”к⅑␫࣐Ҷ'END'ਾⲴ listǄ
৏ഐ䀓䟺ྲл˖

Python࠭ᮠ൘ᇊѹⲴᰦىˈ唈䇔৲ᮠ LⲴ٬ቡ㻛䇑㇇ࠪᶕҶˈণ[]ˈഐѪ唈䇔৲ᮠ Lҏᱟа
њਈ䟿ˈᆳᤷੁሩ䊑[]ˈ⇿⅑䈳⭘䈕࠭ᮠˈྲ᷌᭩ਈҶ LⲴ޵ᇩˈࡉл⅑䈳⭘ᰦˈ唈䇔৲ᮠ
Ⲵ޵ᇩቡਈҶˈн޽ᱟ࠭ᮠᇊѹᰦⲴ[]ҶǄ
ᡰԕˈᇊѹ唈䇔৲ᮠ㾱⢒䇠а⛩˖唈䇔৲ᮠᗵ享ᤷੁнਈሩ䊑ʽ
㾱؞᭩к䶒ⲴֻᆀˈᡁԜਟԕ⭘ None䘉њнਈሩ䊑ᶕᇎ⧠˖
def add_end(L=None):
 if L is None:
 L = []
 L.append('END')
 return L

⧠൘ˈᰐ䇪䈳⭘ཊቁ⅑ˈ䜭нՊᴹ䰞仈˖
>>> add_end()
['END']
>>> add_end()
['END']

ѪӰѸ㾱䇮䇑 strǃNone䘉ṧⲴнਈሩ䊑઒˛ഐѪнਈሩ䊑аᰖࡋᔪˈሩ䊑޵䜘Ⲵᮠᦞቡн
㜭؞᭩ˈ䘉ṧቡ߿ቁҶ⭡Ҿ؞᭩ᮠᦞሬ㠤Ⲵ䭉䈟Ǆ↔ཆˈ⭡Ҿሩ䊑нਈˈཊԫ࣑⧟ຳл਼ᰦ

䈫ਆሩ䊑н䴰㾱࣐䬱ˈ਼ᰦ䈫а⛩䰞仈䜭⋑ᴹǄᡁԜ൘㕆߉〻ᒿᰦˈྲ᷌ਟԕ䇮䇑ањнਈ

ሩ䊑ˈ䛓ቡቭ䟿䇮䇑ᡀнਈሩ䊑Ǆ
ਟਈ৲ᮠ
൘ Python ࠭ᮠѝˈ䘈ਟԕᇊѹਟਈ৲ᮠǄ亮਽ᙍѹˈਟਈ৲ᮠቡᱟՐޕⲴ৲ᮠњᮠᱟਟਈ
Ⲵˈਟԕᱟ 1њǃ2њࡠԫ᜿њˈ䘈ਟԕᱟ 0њǄ
ᡁԜԕᮠᆖ仈Ѫֻᆀˈ㔉ᇊа㓴ᮠᆇ aˈbˈc……ˈ䈧䇑㇇ a2 + b2 + c2 + ……Ǆ
㾱ᇊѹࠪ䘉њ࠭ᮠ ᡁ̍Ԝᗵ享⺞ᇊ䗃ޕⲴ৲ᮠǄ⭡Ҿ৲ᮠњᮠн⺞ᇊ ᡁ̍Ԝ俆ݸᜣࡠਟԕᢺ

aˈbˈc……֌Ѫањ listᡆ tupleՐ䘋ᶕˈ䘉ṧˈ࠭ᮠਟԕᇊѹྲл˖
def calc(numbers):
 sum = 0
 for n in numbers:
 sum = sum + n * n
 return sum

նᱟ䈳⭘Ⲵᰦىˈ䴰㾱ݸ㓴㻵ࠪањ listᡆ tuple˖
>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84

ྲ࡙᷌⭘ਟਈ৲ᮠˈ䈳⭘࠭ᮠⲴᯩᔿਟԕㆰॆᡀ䘉ṧ˖
>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84

ᡰԕˈᡁԜᢺ࠭ᮠⲴ৲ᮠ᭩Ѫਟਈ৲ᮠ˖
def calc(*numbers):
 sum = 0
 for n in numbers:
 sum = sum + n * n
 return sum

ᇊѹਟਈ৲ᮠ઼ᇊѹ listᡆ tuple৲ᮠ⴨∄ˈӵӵ൘৲ᮠࡽ䶒࣐Ҷањ*ਧǄ൘࠭ᮠ޵䜘ˈ৲
ᮠ numbers ᧕᭦ࡠⲴᱟањ tupleˈഐ↔ˈ࠭ᮠԓ⸱ᆼޘнਈǄնᱟˈ䈳⭘䈕࠭ᮠᰦˈਟԕ
Րޕԫ᜿њ৲ᮠˈवᤜ 0њ৲ᮠ˖
>>> calc(1, 2)
5
>>> calc()
0

ྲ᷌ᐢ㓿ᴹањ listᡆ㘵 tupleˈ㾱䈳⭘ањਟਈ৲ᮠᘾѸ࣎˛ਟԕ䘉ṧڊ˖
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14

䘉⿽߉⌅ᖃ❦ᱟਟ㹼Ⲵˈ䰞仈ᱟཚ㑱⩀ˈᡰԕ Pythonݱ䇨֐൘ listᡆ tupleࡽ䶒࣐ањ*ਧˈ
ᢺ listᡆ tupleⲴݳ㍐ਈᡀਟਈ৲ᮠՐ䘋৫˖
>>> nums = [1, 2, 3]
>>> calc(*nums)
14

䘉⿽߉⌅⴨ᖃᴹ⭘ˈ㘼фᖸᑨ㿱Ǆ
 䭞ᆇ৲ᮠޣ
ਟਈ৲ᮠݱ䇨֐Րޕ 0њᡆԫ᜿њ৲ᮠ 䘉̍Ӌਟਈ৲ᮠ൘࠭ᮠ䈳⭘ᰦ㠚ࣘ㓴㻵Ѫањ tupleǄ
㘼ޣ䭞ᆇ৲ᮠݱ䇨֐Րޕ 0њᡆԫ᜿њਜ਼৲ᮠ਽Ⲵ৲ᮠ 䘉̍Ӌޣ䭞ᆇ৲ᮠ൘࠭ᮠ޵䜘㠚ࣘ㓴

㻵Ѫањ dictǄ䈧ⴻ⽪ֻ˖
def person(name, age, **kw):
 print 'name:', name, 'age:', age, 'other:', kw

࠭ᮠ person䲔Ҷᗵ䘹৲ᮠ name઼ ageཆˈ䘈᧕ਇޣ䭞ᆇ৲ᮠ kwǄ൘䈳⭘䈕࠭ᮠᰦˈਟԕ
ਚՐޕᗵ䘹৲ᮠ˖
>>> person('Michael', 30)
name: Michael age: 30 other: {}

ҏਟԕՐޕԫ᜿њᮠⲴޣ䭞ᆇ৲ᮠ˖
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')

name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

䭞ᆇ৲ᮠᴹӰѸ⭘˛ᆳਟԕᢙኅ࠭ᮠⲴ࣏㜭Ǆ∄ྲˈ൘ޣ person ࠭ᮠ䟼ˈᡁԜ؍䇱㜭᧕᭦
ࡠ name઼ age䘉єњ৲ᮠˈնᱟˈྲ᷌䈳⭘㘵ᝯ᜿ᨀ׋ᴤཊⲴ৲ᮠˈᡁԜҏ㜭᭦ࡠǄ䈅ᜣ
ަˈⲴ࣏㜭ˈ䲔Ҷ⭘ᡧ਽઼ᒤ喴ᱟᗵປ亩ཆ޼⌘ањ⭘ᡧڊ൘↓֐ Ԇ䜭ᱟਟ䘹亩ˈ࡙⭘ޣ䭞

ᆇ৲ᮠᶕᇊѹ䘉њ࠭ᮠቡ㜭┑䏣⌘޼Ⲵ䴰≲Ǆ
઼ਟਈ৲ᮠ㊫լˈҏਟԕݸ㓴㻵ࠪањ dictˈ❦ਾˈᢺ䈕 dict䖜ᦒѪޣ䭞ᆇ৲ᮠՐ䘋৫˖
>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=kw['city'], job=kw['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

ᖃ❦ˈк䶒༽ᵲⲴ䈳⭘ਟԕ⭘ㆰॆⲴ߉⌅˖
>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **kw)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

৲ᮠ㓴ਸ
൘ Python ѝᇊѹ࠭ᮠˈਟԕ⭘ᗵ䘹৲ᮠǃ唈䇔৲ᮠǃਟਈ৲ᮠ઼ޣ䭞ᆇ৲ᮠˈ䘉 4 ⿽৲ᮠ
䜭ਟԕа䎧֯⭘ˈᡆ㘵ਚ⭘ަѝḀӋˈնᱟ䈧⌘᜿ˈ৲ᮠᇊѹⲴ亪ᒿᗵ享ᱟ˖ᗵ䘹৲ᮠǃ唈

䇔৲ᮠǃਟਈ৲ᮠ઼ޣ䭞ᆇ৲ᮠǄ
∄ྲᇊѹањ࠭ᮠˈवਜ਼к䘠 4⿽৲ᮠ˖
def func(a, b, c=0, *args, **kw):
 print 'a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw

൘࠭ᮠ䈳⭘ⲴᰦىˈPython䀓䟺ಘ㠚᤹ࣘ➗৲ᮠս㖞઼৲ᮠ਽ᢺሩᓄⲴ৲ᮠՐ䘋৫Ǆ
>>> func(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> func(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> func(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> func(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}

ᴰ⾎ཷⲴᱟ䙊䗷ањ tuple઼ dictˈ֐ҏਟԕ䈳⭘䈕࠭ᮠ˖
>>> args = (1, 2, 3, 4)
>>> kw = {'x': 99}
>>> func(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'x': 99}

ᡰԕˈሩҾԫ᜿࠭ᮠˈ䜭ਟԕ䙊䗷㊫լ func(*args, **kw)Ⲵᖒᔿ䈳⭘ᆳˈᰐ䇪ᆳⲴ৲ᮠᱟྲ
օᇊѹⲴǄ
ሿ㔃
Python Ⲵ࠭ᮠާᴹ䶎ᑨ⚥⍫Ⲵ৲ᮠᖒᘱˈᰒਟԕᇎ⧠ㆰঅⲴ䈳⭘ˈ৸ਟԕՐޕ䶎ᑨ༽ᵲⲴ

৲ᮠǄ
唈䇔৲ᮠаᇊ㾱⭘нਟਈሩ䊑ˈྲ᷌ᱟਟਈሩ䊑ˈ䘀㹼Պᴹ䙫䗁䭉䈟ʽ
㾱⌘᜿ᇊѹਟਈ৲ᮠ઼ޣ䭞ᆇ৲ᮠⲴ䈝⌅˖
*argsᱟਟਈ৲ᮠˈargs᧕᭦Ⲵᱟањ tuple˗
**kwᱟޣ䭞ᆇ৲ᮠˈkw᧕᭦Ⲵᱟањ dictǄ
ԕ৺䈳⭘࠭ᮠᰦྲօՐޕਟਈ৲ᮠ઼ޣ䭞ᆇ৲ᮠⲴ䈝⌅˖
ਟਈ৲ᮠᰒਟԕⴤ᧕Րޕ f̟unc(1, 2, 3) ৸̍ਟԕݸ㓴㻵 listᡆ tuple ޕ䙊䗷*argsՐ̍޽ f̟unc(*(1,
2, 3))˗
ޕ䭞ᆇ৲ᮠᰒਟԕⴤ᧕Րޣ f̟unc(a=1, b=2) ৸̍ਟԕݸ㓴㻵 dict ޕ䙊䗷**kwՐ̍޽ f̟unc(**{'a':
1, 'b': 2})Ǆ
֯⭘*args઼**kwᱟ PythonⲴҐᜟ߉⌅ˈᖃ❦ҏਟԕ⭘ަԆ৲ᮠ਽ˈնᴰྭ֯⭘Ґᜟ⭘⌅Ǆ

䙂ᖂ࠭ᮠ䙂ᖂ࠭ᮠ䙂ᖂ࠭ᮠ䙂ᖂ࠭ᮠ

൘࠭ᮠ޵䜘 ਟ̍ԕ䈳⭘ަԆ࠭ᮠǄྲ ᷌ањ࠭ᮠ൘޵䜘䈳⭘㠚䓛ᵜ䓛 䘉̍њ࠭ᮠቡᱟ䙂ᖂ࠭

ᮠǄ
ѮњֻᆀˈᡁԜᶕ䇑㇇䱦҈ n! = 1 x 2 x 3 x ... x nˈ⭘࠭ᮠ fact(n)㺘⽪ˈਟԕⴻࠪ˖
fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n
ᡰԕˈfact(n)ਟԕ㺘⽪Ѫ n x fact(n-1)ˈਚᴹ n=1ᰦ䴰㾱⢩↺༴⨶Ǆ
Ҿᱟˈfact(n)⭘䙂ᖂⲴᯩᔿࠪ߉ᶕቡᱟ˖
def fact(n):
 if n==1:
 return 1
 return n * fact(n - 1)

к䶒ቡᱟањ䙂ᖂ࠭ᮠǄਟԕ䈅䈅˖
>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
9332621544394415268169923885626670049071596826438162146859296389521759999322991
5608941463976156518286253697920827223758251185210916864000000000000000000000000
L

ྲ᷌ᡁԜ䇑㇇ fact(5)ˈਟԕṩᦞ࠭ᮠᇊѹⴻࡠ䇑㇇䗷〻ྲл˖
===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))

===> 5 * (4 * 6)
===> 5 * 24
===> 120

䙂ᖂ࠭ᮠⲴՈ⛩ᱟᇊѹㆰঅˈ䙫䗁␵ᲠǄ⨶䇪кˈᡰᴹⲴ䙂ᖂ࠭ᮠ䜭ਟԕ߉ᡀᗚ⧟Ⲵᯩᔿˈ

նᗚ⧟Ⲵ䙫䗁нྲ䙂ᖂ␵ᲠǄ
֯⭘䙂ᖂ࠭ᮠ䴰㾱⌘᜿䱢→ḸⓒࠪǄ൘䇑㇇ᵪѝˈ࠭ᮠ䈳⭘ᱟ䙊䗷Ḹ˄stack˅䘉⿽ᮠᦞ㔃
ᶴᇎ⧠Ⲵ ⇿̍ᖃ䘋ޕањ࠭ᮠ䈳⭘ Ḹ̍ቡՊ࣐аቲḸᑗ ⇿̍ᖃ࠭ᮠ䘄എ Ḹ̍ቡՊ߿аቲḸᑗǄ

⭡ҾḸⲴབྷሿнᱟᰐ䲀Ⲵ ᡰ̍ԕ 䙂̍ᖂ䈳⭘Ⲵ⅑ᮠ䗷ཊ Պ̍ሬ㠤ḸⓒࠪǄਟԕ䈅䈅 fact(1000) ̟
>>> fact(1000)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in fact
 ...
 File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded

䀓ߣ䙂ᖂ䈳⭘ḸⓒࠪⲴᯩ⌅ᱟ䙊䗷ቮ䙂ᖂՈॆ һ̍ᇎкቮ䙂ᖂ઼ᗚ⧟Ⲵ᭸᷌ᱟаṧⲴ ᡰ̍ԕˈ

ᢺᗚ⧟ⴻᡀᱟа⿽⢩↺Ⲵቮ䙂ᖂ࠭ᮠҏᱟਟԕⲴǄ
ቮ䙂ᖂᱟᤷˈ൘࠭ᮠ䘄എⲴᰦىˈ䈳⭘㠚䓛ᵜ䓛ˈᒦф r̍eturn䈝ਕн㜭वਜ਼㺘䗮ᔿǄ䘉ṧˈ
㕆䈁ಘᡆ㘵䀓䟺ಘቡਟԕᢺቮ䙂ᖂڊՈॆˈ֯ 䙂ᖂᵜ䓛ᰐ䇪䈳⭘ཊቁ⅑ 䜭̍ਚঐ⭘ањḸᑗˈ

нՊࠪ⧠ḸⓒࠪⲴᛵߥǄ
к䶒Ⲵ fact(n)࠭ᮠ⭡Ҿ return n * fact(n - 1)ᕅޕҶ҈⌅㺘䗮ᔿˈᡰԕቡнᱟቮ䙂ᖂҶǄ㾱᭩
ᡀቮ䙂ᖂᯩᔿˈ䴰㾱ཊа⛩ԓ⸱ˈѫ㾱ᱟ㾱ᢺ⇿а↕Ⲵ҈〟Րࡠޕ䙂ᖂ࠭ᮠѝ˖
def fact(n):
 return fact_iter(1, 1, n)

def fact_iter(product, count, max):
 if count > max:
 return product
 return fact_iter(product * count, count + 1, max)

ਟԕⴻࡠˈreturn fact_iter(product * count, count + 1, max)ӵ䘄എ䙂ᖂ࠭ᮠᵜ䓛ˈproduct *
count઼ count + 1൘࠭ᮠ䈳⭘ࡽቡՊ㻛䇑㇇ˈнᖡ૽࠭ᮠ䈳⭘Ǆ
fact(5)ሩᓄⲴ fact_iter(1, 1, 5)Ⲵ䈳⭘ྲл˖
===> fact_iter(1, 1, 5)
===> fact_iter(1, 2, 5)
===> fact_iter(2, 3, 5)
===> fact_iter(6, 4, 5)
===> fact_iter(24, 5, 5)
===> fact_iter(120, 6, 5)
===> 120

ቮ䙂ᖂ䈳⭘ᰦˈྲ᷌ڊҶՈॆˈḸнՊ໎䮯ˈഐ↔ˈᰐ䇪ཊቁ⅑䈳⭘ҏнՊሬ㠤ḸⓒࠪǄ

䚇៮Ⲵᱟˈབྷཊᮠ㕆〻䈝䀰⋑ᴹ䪸ሩቮ䙂ᖂڊՈॆˈPython 䀓䟺ಘҏ⋑ᴹڊՈॆˈᡰԕˈ
ণ֯ᢺк䶒Ⲵ fact(n)࠭ᮠ᭩ᡀቮ䙂ᖂᯩᔿˈҏՊሬ㠤ḸⓒࠪǄ
ᴹањ䪸ሩቮ䙂ᖂՈॆⲴ decoratorˈਟԕ৲㘳Ⓚ⸱˖
http://code.activestate.com/recipes/474088-tail-call-optimization-decorator/
ᡁԜਾ䶒Պ䇢ྲࡠօ㕆߉ decoratorǄ⧠൘ˈਚ䴰㾱֯⭘䘉њ@tail_call_optimizedˈቡਟԕ亪
࡙䇑㇇ࠪ fact(1000)˖
>>> fact(1000)
4023872600770937735437024339230039857193748642107146325437999104299385123986290
2059204420848696940480047998861019719605863166687299480855890132382966994459099
7424504087073759918823627727188732519779505950995276120874975462497043601418278
0946464962910563938874378864873371191810458257836478499770124766328898359557354
3251318532395846307555740911426241747434934755342864657661166779739666882029120
7379143853719588249808126867838374559731746136085379534524221586593201928090878
2973084313928444032812315586110369768013573042161687476096758713483120254785893
2076716913244842623613141250878020800026168315102734182797770478463586817016436
5024153691398281264810213092761244896359928705114964975419909342221566832572080
8213331861168115536158365469840467089756029009505376164758477284218896796462449
4516076535340819890138544248798495995331910172335555660213945039973628075013783
7615307127761926849034352625200015888535147331611702103968175921510907788019393
1781141945452572238655414610628921879602238389714760885062768629671466746975629
1123408243920816015378088989396451826324367161676217916890977991190375403127462
2289988005195444414282012187361745992642956581746628302955570299024324153181617
2104658320367869061172601587835207515162842255402651704833042261439742869330616
9089796848259012545832716822645806652676995865268227280707578139185817888965220
8164348344825993266043367660176999612831860788386150279465955131156552036093988
1806121385586003014356945272242063446317974605946825731037900840244324384656572
4501440282188525247093519062092902313649327349756551395872055965422874977401141
3346962715422845862377387538230483865688976461927383814900140767310446640259899
4902222217659043399018860185665264850617997023561938970178600408118897299183110
2117122984590164192106888438712185564612496079872290851929681937238864261483965
7382291123125024186649353143970137428531926649875337218940694281434118520158014
1233448280150513996942901534830776445690990731524332782882698646027898643211390
8350621709500259738986355427719674282224875758676575234422020757363056949882508
7968928162753848863396909959826280956121450994871701244516461260379029309120889
0869420285106401821543994571568059418727489980942547421735824010636774045957417
8516082923013535808184009699637252423056085590370062427124341690900415369010593
3983835777939410970027753472000
000
000
00

ሿ㔃
֯⭘䙂ᖂ࠭ᮠⲴՈ⛩ᱟ䙫䗁ㆰঅ␵Რˈ㕪⛩ᱟ䗷␡Ⲵ䈳⭘Պሬ㠤ḸⓒࠪǄ
䪸ሩቮ䙂ᖂՈॆⲴ䈝䀰ਟԕ䙊䗷ቮ䙂ᖂ䱢→ḸⓒࠪǄቮ䙂ᖂһᇎк઼ᗚ⧟ᱟㅹԧⲴ ⋑̍ᴹᗚ

⧟䈝ਕⲴ㕆〻䈝䀰ਚ㜭䙊䗷ቮ䙂ᖂᇎ⧠ᗚ⧟Ǆ
Pythonḷ߶Ⲵ䀓䟺ಘ⋑ᴹ䪸ሩቮ䙂ᖂڊՈॆˈԫօ䙂ᖂ࠭ᮠ䜭ᆈ൘ḸⓒࠪⲴ䰞仈Ǆ

儎㓝⢯ᙝ儎㓝⢯ᙝ儎㓝⢯ᙝ儎㓝⢯ᙝ

ᦼᨑҶ PythonⲴᮠᦞ㊫රǃ䈝ਕ઼࠭ᮠˈสᵜкቡਟԕ㕆ࠪ߉ᖸཊᴹ⭘Ⲵ〻ᒿҶǄ
∄ྲᶴ䙐ањ 1, 3, 5, 7, ..., 99Ⲵࡇ㺘ˈਟԕ䙊䗷ᗚ⧟ᇎ⧠˖
L = []
n = 1
while n <= 99:
 L.append(n)
 n = n + 2

ਆ listⲴࡽаॺⲴݳ㍐ˈҏਟԕ䙊䗷ᗚ⧟ᇎ⧠Ǆ
նᱟ൘ Python ѝˈԓ⸱нᱟ䎺ཊ䎺ྭˈ㘼ᱟ䎺ቁ䎺ྭǄԓ⸱нᱟ䎺༽ᵲ䎺ྭˈ㘼ᱟ䎺ㆰঅ
䎺ྭǄ
สҾ䘉аᙍᜣˈᡁԜᶕӻ㓽 Python ѝ䶎ᑨᴹ⭘Ⲵ儈㓗⢩ᙗˈа㹼ԓ⸱㜭ᇎ⧠Ⲵ࣏㜭ˈߣн
߉ 5㹼ԓ⸱Ǆ

 ⡷࠷⡷࠷⡷࠷⡷࠷

ਆањ listᡆ tupleⲴ䜘ݳ࠶㍐ᱟ䶎ᑨᑨ㿱Ⲵ᫽֌Ǆ∄ྲˈањ listྲл˖
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

ਆࡽ 3њݳ㍐ˈᓄ䈕ᘾѸڊ˛
ㅘ࣎⌅˖
>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']

ѻᡰԕᱟㅘ࣎⌅ᱟഐѪᢙኅалˈਆࡽ Nњݳ㍐ቡ⋑䗉ҶǄ
ਆࡽ Nњݳ㍐ˈҏቡᱟ㍒ᕅѪ 0-(N-1)Ⲵݳ㍐ˈਟԕ⭘ᗚ⧟˖
>>> r = []
>>> n = 3
>>> for i in range(n):
... r.append(L[i])
...
>>> r
['Michael', 'Sarah', 'Tracy']

ሩ䘉⿽㓿ᑨਆᤷᇊ㍒ᕅ㤳തⲴ᫽֌ˈ⭘ᗚ⧟ॱ࠶㑱⩀ˈഐ↔ˈPython ᨀ׋Ҷ࠷⡷˄Slice˅
᫽֌ㅖˈ㜭བྷབྷㆰॆ䘉⿽᫽֌Ǆ

ሩᓄк䶒Ⲵ䰞仈ˈਆࡽ 3њݳ㍐ˈ⭘а㹼ԓ⸱ቡਟԕᆼᡀ࠷⡷˖
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

L[0:3]㺘⽪ˈӾ㍒ᕅ 0 ᔰ࿻ਆˈⴤࡠ㍒ᕅ 3 Ѫ→ˈնнवᤜ㍒ᕅ 3Ǆণ㍒ᕅ 0ˈ1ˈ2ˈ↓ྭ
ᱟ 3њݳ㍐Ǆ
ྲ᷌ㅜањ㍒ᕅᱟ 0ˈ䘈ਟԕⴱ⮕˖
>>> L[:3]
['Michael', 'Sarah', 'Tracy']

ҏਟԕӾ㍒ᕅ 1ᔰ࿻ˈਆࠪ 2њݳ㍐ࠪᶕ˖
>>> L[1:3]
['Sarah', 'Tracy']

㊫լⲴˈᰒ❦ Python᭟ᤱ L[-1]ਆقᮠㅜањݳ㍐ˈ䛓Ѹᆳ਼ṧ᭟ᤱقᮠ࠷⡷ˈ䈅䈅˖
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

䇠տقᮠᴰਾањݳ㍐Ⲵ㍒ᕅᱟ-1Ǆ
ᔪањࡋݸᴹ⭘ǄᡁԜ࠶⡷᫽֌ॱ࠷ 0-99Ⲵᮠࡇ˖
>>> L = range(100)
>>> L
[0, 1, 2, 3, ..., 99]

ਟԕ䙊䗷࠷⡷䖫ᶮਆࠪḀа⇥ᮠࡇǄ∄ྲࡽ 10њᮠ˖
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

ਾ 10њᮠ˖
>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

ࡽ 11-20њᮠ˖
>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

ࡽ 10њᮠˈ⇿єњਆањ˖
>>> L[:10:2]
[0, 2, 4, 6, 8]

ᡰᴹᮠˈ⇿ 5њਆањ˖
>>> L[::5]

[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

⭊㠣ӰѸ䜭н߉ˈਚ߉[:]ቡਟԕ৏ṧ༽ࡦањ list˖
>>> L[:]
[0, 1, 2, 3, ..., 99]

tupleҏᱟа⿽ listˈୟа४࡛ᱟ tupleнਟਈǄഐ↔ˈtupleҏਟԕ⭘࠷⡷᫽֌ˈਚᱟ᫽֌Ⲵ
㔃᷌ӽᱟ tuple˖
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

ᆇㅖѢ'xxx'ᡆ UnicodeᆇㅖѢ u'xxx'ҏਟԕⴻᡀᱟа⿽ listˈ⇿њݳ㍐ቡᱟањᆇㅖǄഐ↔ˈ
ᆇㅖѢҏਟԕ⭘࠷⡷᫽֌ˈਚᱟ᫽֌㔃᷌ӽᱟᆇㅖѢ˖
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

൘ᖸཊ㕆〻䈝䀰ѝˈ䪸ሩᆇㅖѢᨀ׋Ҷᖸཊ਴⿽ᡚਆ࠭ᮠˈަᇎⴞⲴቡᱟሩᆇㅖѢ࠷⡷Ǆ

Python⋑ᴹ䪸ሩᆇㅖѢⲴᡚਆ࠭ᮠˈਚ䴰㾱࠷⡷ањ᫽֌ቡਟԕᆼᡀˈ䶎ᑨㆰঅǄ
ሿ㔃
ᴹҶ࠷⡷᫽֌ˈᖸཊൠᯩᗚ⧟ቡн޽䴰㾱ҶǄPython Ⲵ࠷⡷䶎ᑨ⚥⍫ˈа㹼ԓ⸱ቡਟԕᇎ
⧠ᖸཊ㹼ᗚ⧟᡽㜭ᆼᡀⲴ᫽֌Ǆ

䘝ԓ䘝ԓ䘝ԓ䘝ԓ

䟽⛩䟽⛩䟽⛩䟽⛩˖̟̟̟
1. ഐѪ dictⲴᆈۘнᱟ᤹➗ listⲴᯩᔿ亪ᒿᧂࡇˈᡰԕˈ䘝ԓࠪⲴ㔃᷌亪ᒿᖸਟ㜭наṧǄ
2. 唈䇔ᛵߥлˈdict䘝ԓⲴᱟ keyǄྲ᷌㾱䘝ԓ valueˈਟԕ⭘ for value in d.itervalues()ˈྲ
᷌㾱਼ᰦ䘝ԓ key઼ valueˈਟԕ⭘ for k, v in d.iteritems()Ǆ
3. Python޵㖞Ⲵ enumerate࠭ᮠਟԕᢺањ listਈᡀ㍒ᕅ-ݳ㍐ሩˈ䘉ṧቡਟԕ൘ forᗚ⧟ѝ
਼ᰦ䘝ԓ㍒ᕅ઼ݳ㍐ᵜ䓛

ྲ᷌㔉ᇊањ listᡆ tupleˈᡁԜਟԕ䙊䗷 forᗚ⧟ᶕ䙽শ䘉њ listᡆ tupleˈ䘉⿽䙽শᡁԜᡀ
Ѫ䘝ԓ˄Iteration Ǆ˅
൘ Pythonѝˈ䘝ԓᱟ䙊䗷 for ... inᶕᆼᡀⲴˈ㘼ᖸཊ䈝䀰∄ྲ Cᡆ㘵 Javaˈ䘝ԓ listᱟ䙊䗷
лḷᆼᡀⲴˈ∄ྲ Javaԓ⸱˖
for (i=0; i<list.length; i++) {
 n = list[i];
}

ਟԕⴻࠪˈPythonⲴ forᗚ⧟ᣭ䊑〻ᓖ㾱儈Ҿ JavaⲴ forᗚ⧟ˈഐѪ PythonⲴ forᗚ⧟нӵ
ਟԕ⭘൘ listᡆ tupleкˈ䘈ਟԕ֌⭘൘ަԆਟ䘝ԓሩ䊑кǄ

list 䘉⿽ᮠᦞ㊫ර㲭❦ᴹлḷˈնᖸཊަԆᮠᦞ㊫රᱟ⋑ᴹлḷⲴˈնᱟˈਚ㾱ᱟਟ䘝ԓሩ
䊑ˈᰐ䇪ᴹᰐлḷˈ䜭ਟԕ䘝ԓˈ∄ྲ dictቡਟԕ䘝ԓ˖
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print key
...
a
c
b

ഐѪ dictⲴᆈۘнᱟ᤹➗ listⲴᯩᔿ亪ᒿᧂࡇˈᡰԕˈ䘝ԓࠪⲴ㔃᷌亪ᒿᖸਟ㜭наṧǄ
唈䇔ᛵߥлˈdict䘝ԓⲴᱟ keyǄྲ᷌㾱䘝ԓ valueˈਟԕ⭘ for value in d.itervalues()ˈྲ᷌
㾱਼ᰦ䘝ԓ key઼ valueˈਟԕ⭘ for k, v in d.iteritems()Ǆ
⭡ҾᆇㅖѢҏᱟਟ䘝ԓሩ䊑ˈഐ↔ˈҏਟԕ֌⭘Ҿ forᗚ⧟˖
>>> for ch in 'ABC':
... print ch
...
A
B
C

ᡰԕˈᖃᡁԜ֯⭘ for ᗚ⧟ᰦˈਚ㾱֌⭘Ҿањਟ䘝ԓሩ䊑ˈfor ᗚ⧟ቡਟԕ↓ᑨ䘀㹼ˈ㘼
ᡁԜнཚޣᗳ䈕ሩ䊑ウㄏᱟ list䘈ᱟަԆᮠᦞ㊫රǄ
䛓Ѹˈྲ օࡔᯝањሩ䊑ᱟਟ䘝ԓሩ䊑઒˛ᯩ⌅ᱟ䙊䗷 collections⁑ඇⲴ Iterable㊫රࡔᯝ ̟
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # strᱟ੖ਟ䘝ԓ
True
>>> isinstance([1,2,3], Iterable) # listᱟ੖ਟ䘝ԓ
True
>>> isinstance(123, Iterable) # ᮤᮠᱟ੖ਟ䘝ԓ
False

ᴰਾањሿ䰞仈ˈྲ᷌㾱ሩ list ᇎ⧠㊫լ Java 䛓ṧⲴлḷᗚ⧟ᘾѸ࣎˛Python 㖞Ⲵ޵
enumerate ࠭ᮠਟԕᢺањ list ਈᡀ㍒ᕅ-ݳ㍐ሩˈ䘉ṧቡਟԕ൘ for ᗚ⧟ѝ਼ᰦ䘝ԓ㍒ᕅ઼
 ˖㍐ᵜ䓛ݳ
>>> for i, value in enumerate(['A', 'B', 'C']):
... print i, value
...
0 A
1 B
2 C

к䶒Ⲵ forᗚ⧟䟼ˈ਼ᰦᕅ⭘Ҷєњਈ䟿ˈ൘ Python䟼ᱟᖸᑨ㿱Ⲵˈ∄ྲл䶒Ⲵԓ⸱˖
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:

... print x, y

...
1 1
2 4
3 9

ሿ㔃
ԫօਟ䘝ԓሩ䊑䜭ਟԕ֌⭘Ҿ forᗚ⧟ˈवᤜᡁԜ㠚ᇊѹⲴᮠᦞ㊫රˈਚ㾱ㅖਸ䘝ԓᶑԦˈ
ቡਟԕ֯⭘ forᗚ⧟Ǆ

 㺘⭏ᡀᔿࡇ㺘⭏ᡀᔿࡇ㺘⭏ᡀᔿࡇ㺘⭏ᡀᔿࡇ

 䜭ᱟ䟽⛩ʽޘ

㺘⭏ᡀᔿণࡇ List Comprehensionsˈᱟ Python ᔪࡋ㖞Ⲵ䶎ᑨㆰঅতᕪབྷⲴਟԕ⭘ᶕ޵ list
Ⲵ⭏ᡀᔿǄ
Ѯњֻᆀˈ㾱⭏ᡀ list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]ਟԕ⭘ range(1, 11)˖
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

նྲ᷌㾱⭏ᡀ[1x1, 2x2, 3x3, ..., 10x10]ᘾѸڊ˛ᯩ⌅аᱟᗚ⧟˖
>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

նᱟᗚ⧟ཚ㑱⩀ˈ㘼ࡇ㺘⭏ᡀᔿࡉਟԕ⭘а㹼䈝ਕԓᴯᗚ⧟⭏ᡀк䶒Ⲵ list˖
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

㺘⭏ᡀᔿᰦࡇ߉ ᢺ̍㾱⭏ᡀⲴݳ㍐ x * x᭮ࡽࡠ䶒 ਾ̍䶒䐏 forᗚ⧟ ቡ̍ਟԕᢺ listࡋᔪࠪᶕˈ
ॱ࠶ᴹ⭘ˈཊࠐ߉⅑ˈᖸᘛቡਟԕ⟏ᚹ䘉⿽䈝⌅Ǆ
forᗚ⧟ਾ䶒䘈ਟԕ࣐к ifࡔᯝˈ䘉ṧᡁԜቡਟԕㆋ䘹ࠪӵڦᮠⲴᒣᯩ˖
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

䘈ਟԕ֯⭘єቲᗚ⧟ˈਟԕ⭏ᡀޘᧂࡇ˖
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

йቲ઼йቲԕкⲴᗚ⧟ቡᖸቁ⭘ࡠҶǄ

䘀⭘ࡇ㺘⭏ᡀᔿˈਟԕࠪ߉䶎ᑨㆰ⌱Ⲵԓ⸱ǄֻྲˈࠪࡇᖃࡽⴞᖅлⲴᡰᴹ᮷Ԧ઼ⴞᖅ਽ˈ

ਟԕ䙊䗷а㹼ԓ⸱ᇎ⧠˖
>>> import os # ሬޕ os⁑ඇˈ⁑ඇⲴᾲᘥਾ䶒䇢ࡠ
>>> [d for d in os.listdir('.')] # os.listdirਟԕࠪࡇ᮷Ԧ઼ⴞᖅ
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library',
'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

for ᗚ⧟ަᇎਟԕ਼ᰦ֯⭘єњ⭊㠣ཊњਈ䟿ˈ∄ྲ dict Ⲵ iteritems()ਟԕ਼ᰦ䘝ԓ key ઼
value˖
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.iteritems():
... print k, '=', v
...
y = B
x = A
z = C

ഐ↔ˈࡇ㺘⭏ᡀᔿҏਟԕ֯⭘єњਈ䟿ᶕ⭏ᡀ list˖
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.iteritems()]
['y=B', 'x=A', 'z=C']

ᴰਾᢺањ listѝᡰᴹⲴᆇㅖѢਈᡀሿ߉˖
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

ሿ㔃
䘀⭘ࡇ㺘⭏ᡀᔿˈਟԕᘛ䙏⭏ᡀ listˈਟԕ䙊䗷ањ list᧘ሬࠪਖањ listˈ㘼ԓ⸱তॱ࠶ㆰ
⌱Ǆ
ᙍ㘳˖ྲ᷌ listѝᰒवਜ਼ᆇㅖѢˈ৸वਜ਼ᮤᮠˈ⭡Ҿ䶎ᆇㅖѢ㊫ර⋑ᴹ lower()ᯩ⌅ˈᡰԕࡇ
㺘⭏ᡀᔿՊᣕ䭉˖
>>> L = ['Hello', 'World', 18, 'Apple', None]
>>> [s.lower() for s in L]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'int' object has no attribute 'lower'

ᔪⲴ޵⭘֯ isinstance࠭ᮠਟԕࡔᯝањਈ䟿ᱟнᱟᆇㅖѢ˖
>>> x = 'abc'
>>> y = 123
>>> isinstance(x, str)
True
>>> isinstance(y, str)

False

䈧؞᭩ࡇ㺘⭏ᡀᔿˈ䙊䗷␫࣐ if䈝ਕ؍䇱ࡇ㺘⭏ᡀᔿ㜭↓⺞ൠᢗ㹼Ǆ

⭏ᡀಘ⭏ᡀಘ⭏ᡀಘ⭏ᡀಘ

䘉њ࣏㜭ᖸ儈ㄟʽ䜭䴰㾱ⴻʽ
䙊䗷ࡇ㺘⭏ᡀᔿˈᡁԜਟԕⴤ᧕ࡋᔪањࡇ㺘Ǆնᱟˈਇ޵ࡠᆈ䲀ࡇˈࡦ㺘ᇩ䟿㛟ᇊᱟᴹ䲀

ⲴǄ㘼фˈࡋᔪањवਜ਼ 100зњݳ㍐Ⲵࡇ㺘ˈнӵঐ⭘ᖸབྷⲴᆈۘオ䰤ˈྲ᷌ᡁԜӵӵ䴰
㾱䇯䰞ࡽ䶒ࠐњݳ㍐ˈ䛓ਾ䶒㔍བྷཊᮠݳ㍐ঐ⭘Ⲵオ䰤䜭ⲭⲭ⎚䍩ҶǄ
ᡰԕˈྲ ㍐ਟԕ᤹➗Ḁ⿽㇇⌅᧘㇇ࠪᶕݳ㺘ࡇ᷌ 䛓̍ᡁԜᱟ੖ਟԕ൘ᗚ⧟Ⲵ䗷〻ѝнᯝ᧘㇇

ࠪਾ㔝Ⲵݳ㍐઒˛䘉ṧቡнᗵࡋᔪᆼᮤⲴ listˈӾ㘼㢲ⴱབྷ䟿Ⲵオ䰤Ǆ൘ Pythonѝˈ䘉⿽а
䗩ᗚ⧟а䗩䇑㇇Ⲵᵪࡦˈ〠Ѫ⭏ᡀಘ˄Generator Ǆ˅
㾱ࡋᔪањ generatorˈᴹᖸཊ⿽ᯩ⌅Ǆㅜа⿽ᯩ⌅ᖸㆰঅˈਚ㾱ᢺањࡇ㺘⭏ᡀᔿⲴ[]᭩ᡀ
()ˈቡࡋᔪҶањ generator˖
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x104feab40>

ᔪࡋ L઼ gⲴ४࡛ӵ൘ҾᴰཆቲⲴ[]઼()ˈLᱟањ listˈ㘼 gᱟањ generatorǄ
ᡁԜਟԕⴤ᧕ᢃঠࠪ listⲴ⇿ањݳ㍐ˈնᡁԜᘾѸᢃঠࠪ generatorⲴ⇿ањݳ㍐઒˛
ྲ᷌㾱ањањᢃঠࠪᶕˈਟԕ䙊䗷 generatorⲴ next()ᯩ⌅˖
>>> g.next()
0
>>> g.next()
1
>>> g.next()
4
>>> g.next()
9
>>> g.next()
16
>>> g.next()
25
>>> g.next()
36
>>> g.next()
49
>>> g.next()
64

>>> g.next()
81
>>> g.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

ᡁԜ䇢䗷ˈgenerator؍ᆈⲴᱟ㇇⌅ˈ⇿⅑䈳⭘ next()ˈቡ䇑㇇ࠪлањݳ㍐Ⲵ٬ˈⴤࡠ䇑㇇
㍐ᰦˈᣋࠪݳ㍐ˈ⋑ᴹᴤཊⲴݳᴰਾањࡠ StopIterationⲴ䭉䈟Ǆ
ᖃ❦ˈк䶒䘉⿽нᯝ䈳⭘ next()ᯩ⌅ᇎ൘ᱟཚਈᘱҶˈ↓⺞Ⲵᯩ⌅ᱟ֯⭘ for ᗚ⧟ˈഐѪ
generatorҏᱟਟ䘝ԓሩ䊑˖
>>> g = (x * x for x in range(10))
>>> for n in g:
... print n
...
0
1
4
9
16
25
36
49
64
81

ᡰԕˈᡁԜࡋᔪҶањ generatorਾˈสᵜк≨䘌нՊ䈳⭘ next()ᯩ⌅ˈ㘼ᱟ䙊䗷 forᗚ⧟ᶕ
䘝ԓᆳǄ
generator䶎ᑨᕪབྷǄྲ᷌᧘㇇Ⲵ㇇⌅∄䖳༽ᵲˈ⭘㊫լࡇ㺘⭏ᡀᔿⲴ forᗚ⧟ᰐ⌅ᇎ⧠Ⲵᰦ
 䘈ਟԕ⭘࠭ᮠᶕᇎ⧠Ǆˈى
∄ྲˈ㪇਽Ⲵᯀ⌒᣹ཱྀᮠࡇ˄Fibonacci˅̍ 䲔ㅜањ઼ㅜҼњᮠཆˈԫ᜿ањᮠ䜭ਟ⭡ࡽє

њᮠ⴨࣐ᗇࡠ˖
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
ᯀ⌒᣹ཱྀᮠࡇ⭘ࡇ㺘⭏ᡀᔿ߉нࠪᶕˈնᱟˈ⭘࠭ᮠᢺᆳᢃঠࠪᶕতᖸᇩ᱃˖
def fab(max):
 n, a, b = 0, 0, 1
 while n < max:
 print b
 a, b = b, a + b
 n = n + 1

к䶒Ⲵ࠭ᮠਟԕ䗃ࠪᯀ⌒䛓ཱྀᮠࡇⲴࡽ Nњᮠ˖
>>> fab(6)
1

1
2
3
5
8

Ԅ㓶㿲ሏˈਟԕⴻࠪˈfab࠭ᮠᇎ䱵кᱟᇊѹҶᯀ⌒᣹ཱྀᮠࡇⲴ᧘㇇㿴ࡉˈਟԕӾㅜањݳ
㍐ᔰ࿻ˈ᧘㇇ࠪਾ㔝ԫ᜿Ⲵݳ㍐ˈ䘉⿽䙫䗁ަᇎ䶎ᑨ㊫լ generatorǄ
ҏቡᱟ䈤 к̍䶒Ⲵ࠭ᮠ઼ generatorӵа↕ѻ䚕Ǆ㾱ᢺ fab࠭ᮠਈᡀ generator ਚ̍䴰㾱ᢺ print
b᭩Ѫ yield bቡਟԕҶ˖
def fab(max):
 n, a, b = 0, 0, 1
 while n < max:
 yield b
 a, b = b, a + b
 n = n + 1

䘉ቡᱟᇊѹ generatorⲴਖа⿽ᯩ⌅Ǆྲ᷌ањ࠭ᮠᇊѹѝवਜ਼ yieldޣ䭞ᆇˈ䛓Ѹ䘉њ࠭ᮠ
ቡн޽ᱟањᲞ䙊࠭ᮠˈ㘼ᱟањ generator˖
>>> fab(6)
<generator object fab at 0x104feaaa0>

䘉䟼ˈᴰ䳮⨶䀓Ⲵቡᱟ generator ઼࠭ᮠⲴᢗ㹼⍱〻наṧǄ࠭ᮠᱟ亪ᒿᢗ㹼ˈ䙷ࡠ return
䈝ਕᡆ㘵ᴰਾа㹼࠭ᮠ䈝ਕቡ䘄എǄ㘼ਈᡀ generatorⲴ࠭ᮠ ൘̍⇿⅑䈳⭘ next()Ⲵᰦىᢗ㹼ˈ
䙷ࡠ yield䈝ਕ䘄എˈ޽⅑ᢗ㹼ᰦӾк⅑䘄എⲴ yield䈝ਕ༴㔗㔝ᢗ㹼Ǆ
ѮњㆰঅⲴֻᆀˈᇊѹањ generatorˈ׍⅑䘄എᮠᆇ 1ˈ3ˈ5˖
>>> def odd():
... print 'step 1'
... yield 1
... print 'step 2'
... yield 3
... print 'step 3'
... yield 5
...
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5

>>> o.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

ਟԕⴻࡠˈodd нᱟᲞ䙊࠭ᮠˈ㘼ᱟ generatorˈ൘ᢗ㹼䗷〻ѝˈ䙷ࡠ yield ቡѝᯝˈл⅑৸
㔗㔝ᢗ㹼Ǆᢗ㹼 3⅑ yieldਾˈᐢ㓿⋑ᴹ yieldਟԕᢗ㹼Ҷ ᡰ̍ԕˈㅜ 4⅑䈳⭘ next()ቡᣕ䭉Ǆ
എࡠ fabⲴֻᆀ ᡁ̍Ԝ൘ᗚ⧟䗷〻ѝнᯝ䈳⭘ yieldˈቡՊнᯝѝᯝǄᖃ❦㾱㔉ᗚ⧟䇮㖞ањ
ᶑԦᶕ䘰ࠪᗚ⧟ˈн❦ቡՊӗ⭏ањᰐ䲀ᮠࠪࡇᶕǄ
਼ṧⲴ ᢺ̍࠭ᮠ᭩ᡀ generatorਾ ᡁ̍ԜสᵜкӾᶕнՊ⭘ next()ᶕ䈳⭘ᆳ 㘼̍ᱟⴤ᧕֯⭘ for
ᗚ⧟ᶕ䘝ԓ˖
>>> for n in fab(6):
... print n
...
1
1
2
3
5
8

ሿ㔃
generatorᱟ䶎ᑨᕪབྷⲴᐕާˈ൘ Pythonѝˈਟԕㆰঅൠᢺࡇ㺘⭏ᡀᔿ᭩ᡀ generatorˈҏਟ
ԕ䙊䗷࠭ᮠᇎ⧠༽ᵲ䙫䗁Ⲵ generatorǄ
㾱⨶䀓 generatorⲴᐕ֌৏⨶ ᆳ̍ᱟ൘ forᗚ⧟Ⲵ䗷〻ѝнᯝ䇑㇇ࠪлањݳ㍐ ᒦ̍൘䘲ᖃⲴ

ᶑԦ㔃ᶏ forᗚ⧟ǄሩҾ࠭ᮠ᭩ᡀⲴ generatorᶕ䈤ˈ䙷ࡠ return䈝ਕᡆ㘵ᢗ㹼࠭ࡠᮠփᴰਾ
а㹼䈝ਕˈቡᱟ㔃ᶏ generatorⲴᤷԔˈforᗚ⧟䲿ѻ㔃ᶏǄ

 ᮦᕅ㕌ぁ࠳ᮦᕅ㕌ぁ࠳ᮦᕅ㕌ぁ࠳ᮦᕅ㕌ぁ࠳

࠭ᮠᱟ Python ᔪ᭟ᤱⲴа⿽ሱ㻵ˈᡁԜ䙊䗷ᢺབྷ⇥ԓ⸱᣶ᡀ࠭ᮠˈ䙊䗷аቲаቲⲴ࠭ᮠ޵
䈳⭘ˈቡਟԕᢺ༽ᵲԫ࣑࠶䀓ᡀㆰঅⲴԫ࣑ 䘉̍⿽࠶䀓ਟԕ〠ѻѪ䶒ੁ䗷〻Ⲵ〻ᒿ䇮䇑Ǆ࠭

ᮠቡᱟ䶒ੁ䗷〻Ⲵ〻ᒿ䇮䇑ⲴสᵜঅݳǄ
㘼࠭ᮠᔿ㕆〻˄䈧⌘᜿ཊҶањ“ᔿ”ᆇ˅——Functional Programmingˈ㲭❦ҏਟԕᖂ㔃ࡠ䶒
ੁ䗷〻Ⲵ〻ᒿ䇮䇑ˈնަᙍᜣᴤ᧕䘁ᮠᆖ䇑㇇Ǆ
ᡁԜ俆ݸ㾱ᩎ᰾ⲭ䇑㇇ᵪ˄Computer˅઼䇑㇇˄Compute˅ⲴᾲᘥǄ
൘䇑㇇ᵪⲴቲ⅑кˈCPU ᢗ㹼Ⲵᱟ࣐҈߿䲔ⲴᤷԔԓ⸱ˈԕ৺਴⿽ᶑԦࡔᯝ઼䐣䖜ᤷԔˈ
ᡰԕˈ≷㕆䈝䀰ᱟᴰ䍤䘁䇑㇇ᵪⲴ䈝䀰Ǆ
㘼䇑㇇ࡉᤷᮠᆖ᜿ѹкⲴ䇑㇇ˈ䎺ᱟᣭ䊑Ⲵ䇑㇇ˈ⿫䇑㇇ᵪ⺜Ԧ䎺䘌Ǆ
ሩᓄࡠ㕆〻䈝䀰ˈቡᱟ䎺վ㓗Ⲵ䈝䀰ˈ䎺䍤䘁䇑㇇ᵪˈᣭ䊑〻ᓖվˈᢗ㹼᭸⦷儈ˈ∄ྲ C
䈝䀰˗䎺儈㓗Ⲵ䈝䀰ˈ䎺䍤䘁䇑㇇ˈᣭ䊑〻ᓖ儈ˈᢗ㹼᭸⦷վˈ∄ྲ Lisp䈝䀰Ǆ
࠭ᮠᔿ㕆〻ቡᱟа⿽ᣭ䊑〻ᓖᖸ儈Ⲵ㕆〻㤳ᔿˈ㓟㋩Ⲵ࠭ᮠᔿ㕆〻䈝䀰㕆߉Ⲵ࠭ᮠ⋑ᴹਈ

䟿ˈഐ↔ˈԫ᜿ањ࠭ᮠˈਚ㾱䗃ޕᱟ⺞ᇊⲴˈ䗃ࠪቡᱟ⺞ᇊⲴˈ䘉⿽㓟࠭ᮠᡁԜ〠ѻѪ⋑

ᴹ࢟֌⭘Ǆ㘼ݱ䇨֯⭘ਈ䟿Ⲵ〻ᒿ䇮䇑䈝䀰 ⭡̍Ҿ࠭ᮠ޵䜘Ⲵਈ䟿⣦ᘱн⺞ᇊˈ਼ ṧⲴ䗃ޕˈ

ਟ㜭ᗇࡠн਼Ⲵ䗃ࠪˈഐ↔ˈ䘉⿽࠭ᮠᱟᴹ࢟֌⭘ⲴǄ
࠭ᮠᔿ㕆〻Ⲵањ⢩⛩ቡᱟ ਖањ࠭ᮠޕ䇨ᢺ࠭ᮠᵜ䓛֌Ѫ৲ᮠՐݱ̍ 䘈̍ݱ䇨䘄എањ࠭

ᮠʽ
Pythonሩ࠭ᮠᔿ㕆〻ᨀ׋䜘࠶᭟ᤱǄ⭡Ҿ Pythonݱ䇨֯⭘ਈ䟿ˈഐ↔ˈPythonнᱟ㓟࠭ᮠ
ᔿ㕆〻䈝䀰Ǆ

儈䱦࠭ᮠ儈䱦࠭ᮠ儈䱦࠭ᮠ儈䱦࠭ᮠ

䟽⛩˖
1 map reduce࠭ᮠˈ儈ㄟᓄ⭘
2 ᢺ map reduceᮤਸࡠа䎧Ⲵ str2int ࠭ᮠҏᱟ儈བྷкˈᕅࠪ lambda࠭ᮠˈ⢋ B
3 ࡙⭘ sort˄˅儈䱦࠭ᮠᶕ㠚ᇊѹᧂᒿˈṨᗳԓ⸱䶎ᑨㆰ⌱
4 儈䱦࠭ᮠ䲔Ҷਟԕ᧕ਇ࠭ᮠ֌Ѫ৲ᮠཆ 䘈̍ਟԕᢺ࠭ᮠ֌Ѫ㔃᷌٬䘄എǄ䘉њԓ⸱ྭۿн

ᘾѸྭ៲Ǆ

Ր࠭ޕᮠ
㾱⨶䀓“࠭ᮠᵜ䓛ҏਟԕ֌Ѫ৲ᮠՐޕ”ˈਟԕӾ Python޵ᔪⲴ map/reduce࠭ᮠޕ᡻Ǆ
䈫䗷֐᷌ྲ GoogleⲴ䛓ㇷབྷ਽唾唾Ⲵ䇪᮷“MapReduce: Simplified Data Processing on Large
Clusters”ˈ֐ቡ㜭བྷᾲ᰾ⲭ map/reduceⲴᾲᘥǄ
ᡁԜݸⴻ mapǄmap()࠭ᮠ᧕᭦єњ৲ᮠˈањᱟ࠭ᮠˈањᱟᒿࡇˈmap ሶՐޕⲴ࠭ᮠ׍
⅑֌⭘ࡠᒿࡇⲴ⇿њݳ㍐ˈᒦᢺ㔃᷌֌ѪᯠⲴ list䘄എǄ
Ѯֻ䈤᰾ ∄̍ྲᡁԜᴹањ࠭ᮠ f(x)=x2 㾱̍ᢺ䘉њ࠭ᮠ֌⭘൘ањ list [1, 2, 3, 4, 5, 6, 7, 8, 9]
кˈቡਟԕ⭘ map()ᇎ⧠ྲл˖

⧠൘ˈᡁԜ⭘ Pythonԓ⸱ᇎ⧠˖
>>> def f(x):
... return x * x
...
>>> map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]

䈧⌘᜿ᡁԜᇊѹⲴ࠭ᮠ fǄᖃᡁԜ߉ f ᰦˈᤷⲴᱟ࠭ᮠሩ䊑ᵜ䓛ˈᖃᡁԜ߉ f(1)ᰦˈᤷⲴᱟ
䈳⭘ f࠭ᮠˈᒦՐޕ৲ᮠ 1ˈᵏᖵ䘄എ㔃᷌ 1Ǆ
ഐ↔ˈmap()ՐޕⲴㅜањ৲ᮠᱟ fˈণ࠭ᮠሩ䊑ᵜ䓛Ǆ
ۿ map()࠭ᮠ䘉⿽㜭ཏ᧕᭦࠭ᮠ֌Ѫ৲ᮠⲴ࠭ᮠˈ〠ѻѪ儈䱦࠭ᮠ˄Higher-order function Ǆ˅
ਟ㜭Պᜣˈн䴰㾱֐ map()࠭ᮠˈ߉ањᗚ⧟ˈҏਟԕ䇑㇇ࠪ㔃᷌˖
L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
 L.append(f(n))
print L

Ⲵ⺞ਟԕˈնᱟˈӾк䶒Ⲵᗚ⧟ԓ⸱ˈ㜭а⵬ⴻ᰾ⲭ“ᢺ f(x)֌⭘൘ listⲴ⇿ањݳ㍐ᒦᢺ㔃
᷌⭏ᡀањᯠⲴ list”ੇ˛
ᡰԕˈmap()֌Ѫ儈䱦࠭ᮠˈһᇎкᆳᢺ䘀㇇㿴ࡉᣭ䊑Ҷˈഐ↔ˈᡁԜнնਟԕ䇑㇇ㆰঅⲴ
f(x)=x2ˈ䘈ਟԕ䇑㇇ԫ᜿༽ᵲⲴ࠭ᮠǄ
ⴻ޽ reduceⲴ⭘⌅Ǆreduceᢺањ࠭ᮠ֌⭘൘ањᒿࡇ[x1, x2, x3...]кˈ䘉њ࠭ᮠᗵ享᧕᭦
єњ৲ᮠˈreduceᢺ㔃᷌㔗㔝઼ᒿࡇⲴлањݳ㍐ڊ㍟〟䇑㇇ˈަ᭸᷌ቡᱟ˖
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

∄ᯩ䈤ሩањᒿࡇ≲઼ˈቡਟԕ⭘ reduceᇎ⧠˖
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

ᖃ❦≲઼䘀㇇ਟԕⴤ᧕⭘ Python޵ᔪ࠭ᮠ sum()ˈ⋑ᗵ㾱ࣘ⭘ reduceǄ
նᱟྲ᷌㾱ᢺᒿ[9 ,7 ,5 ,3 ,1]ࡇਈᦒᡀᮤᮠ 13579ˈreduceቡਟԕ⍮к⭘൪˖
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

䘉њֻᆀᵜ䓛⋑ཊབྷ⭘༴ˈնᱟˈྲ᷌㘳㲁ࡠᆇㅖѢ strҏᱟањᒿࡇˈሩк䶒Ⲵֻᆀ〽࣐
᭩ࣘˈ䝽ਸ map()ˈᡁԜቡਟԕࠪ߉ᢺ str䖜ᦒѪ intⲴ࠭ᮠ˖
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, map(int, '13579'))
13579

ᮤ⨶ᡀањ str2intⲴ࠭ᮠቡᱟ˖
def str2int(s):
 def fn(x, y):

 return x * 10 + y
 return reduce(fn, map(int, s))

䘈ਟԕ⭘ lambda࠭ᮠ䘋а↕ㆰॆᡀ˖
def str2int(s):
 return reduce(lambda x,y: x*10+y, map(int, s))

ҏቡᱟ䈤ˈ֐ਟԕ㠚ᐡ߉ањᢺᆇㅖѢ䖜ॆѪᮤᮠⲴ࠭ᮠˈ㘼фਚ䴰㾱а㹼ԓ⸱ʽ
lambda࠭ᮠⲴ⭘⌅൘ла㢲ӻ㓽Ǆ

ᧂᒿ㇇⌅ᧂᒿ㇇⌅ᧂᒿ㇇⌅ᧂᒿ㇇⌅
ᧂᒿҏᱟ൘〻ᒿѝ㓿ᑨ⭘ࡠⲴ㇇⌅Ǆᰐ䇪֯⭘߂⌑ᧂᒿ䘈ᱟᘛ䙏ᧂᒿ ᧂ̍ᒿⲴṨᗳᱟ∄䖳є

њݳ㍐ⲴབྷሿǄྲ ᷌ᱟᮠᆇ ᡁ̍Ԝਟԕⴤ᧕∄䖳 ն̍ྲ᷌ᱟᆇㅖѢᡆ㘵єњ dict઒˛ⴤ᧕∄
䖳ᮠᆖкⲴབྷሿᱟ⋑ᴹ᜿ѹⲴˈഐ↔ˈ∄䖳Ⲵ䗷〻ᗵ享䙊䗷࠭ᮠᣭ䊑ࠪᶕǄ䙊ᑨ㿴ᇊˈሩҾ

єњݳ㍐ x઼ yˈྲ᷌䇔Ѫ x < yˈࡉ䘄എ-1ˈྲ᷌䇔Ѫ x == yˈࡉ䘄എ 0ˈྲ᷌䇔Ѫ x > yˈ
䘄എࡉ 1ˈ䘉ṧˈᧂᒿ㇇⌅ቡн⭘ޣᗳާփⲴ∄䖳䗷〻ˈ㘼ᱟṩᦞ∄䖳㔃᷌ⴤ᧕ᧂᒿǄ
Python޵㖞Ⲵ sorted()࠭ᮠቡਟԕሩ list䘋㹼ᧂᒿ˖
>>> sorted([36, 5, 12, 9, 21])
[5, 9, 12, 21, 36]

↔ཆˈsorted()࠭ᮠҏᱟањ儈䱦࠭ᮠˈᆳ䘈ਟԕ᧕᭦ањ∄䖳࠭ᮠᶕᇎ⧠㠚ᇊѹⲴᧂᒿǄ
∄ྲˈྲ᷌㾱قᒿᧂᒿˈᡁԜቡਟԕ㠚ᇊѹањ reversed_cmp࠭ᮠ˖
def reversed_cmp(x, y):
 if x > y:
 return -1
 if x < y:
 return 1
 return 0

Րޕ㠚ᇊѹⲴ∄䖳࠭ᮠ reversed_cmpˈቡਟԕᇎ⧠قᒿᧂᒿ˖
>>> sorted([36, 5, 12, 9, 21], reversed_cmp)
[36, 21, 12, 9, 5]

ᡁԜ޽ⴻањᆇㅖѢᧂᒿⲴֻᆀ˖
>>> sorted(['about', 'bob', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']

唈䇔ᛵߥлˈሩᆇㅖѢᧂᒿˈᱟ᤹➗ ASCIIⲴབྷሿ∄䖳Ⲵˈ⭡Ҿ'Z' < 'a'ˈ㔃᷌ˈབྷ߉ᆇ⇽ Z
Պᧂ൘ሿ߉ᆇ⇽ aⲴࡽ䶒Ǆ
⧠൘ˈᡁԜᨀࠪᧂᒿᓄ䈕ᘭ⮕བྷሿ߉ˈ᤹➗ᆇ⇽ᒿᧂᒿǄ㾱ᇎ⧠䘉њ㇇⌅ˈнᗵሩ⧠ᴹԓ⸱

བྷ࣐᭩ࣘˈਚ㾱ᡁԜ㜭ᇊѹࠪᘭ⮕བྷሿ߉Ⲵ∄䖳㇇⌅ቡਟԕ˖
def cmp_ignore_case(s1, s2):
 u1 = s1.upper()
 u2 = s2.upper()

 if u1 < u2:
 return -1
 if u1 > u2:
 return 1
 return 0

ᘭ⮕བྷሿ߉ᶕ∄䖳єњᆇㅖѢˈᇎ䱵кቡᱟݸᢺᆇㅖѢ䜭ਈᡀབྷ߉˄ᡆ㘵䜭ਈᡀሿ߉˅̍ ޽

∄䖳Ǆ
䘉ṧˈᡁԜ㔉 sortedՐޕк䘠∄䖳࠭ᮠˈণਟᇎ⧠ᘭ⮕བྷሿ߉Ⲵᧂᒿ˖
>>> sorted(['about', 'bob', 'Zoo', 'Credit'], cmp_ignore_case)
['about', 'bob', 'Credit', 'Zoo']

Ӿк䘠ֻᆀਟԕⴻࠪӾк䘠ֻᆀਟԕⴻࠪӾк䘠ֻᆀਟԕⴻࠪӾк䘠ֻᆀਟԕⴻࠪˈ̍̍̍儈䱦࠭ᮠⲴᣭ䊑㜭࣋ᱟ䶎ᑨᕪབྷⲴ儈䱦࠭ᮠⲴᣭ䊑㜭࣋ᱟ䶎ᑨᕪབྷⲴ儈䱦࠭ᮠⲴᣭ䊑㜭࣋ᱟ䶎ᑨᕪབྷⲴ儈䱦࠭ᮠⲴᣭ䊑㜭࣋ᱟ䶎ᑨᕪབྷⲴˈ̍̍̍㘼ф㘼ф㘼ф㘼фˈ̍̍̍Ṩᗳԓ⸱ਟԕ؍ᤱᗇ䶎Ṩᗳԓ⸱ਟԕ؍ᤱᗇ䶎Ṩᗳԓ⸱ਟԕ؍ᤱᗇ䶎Ṩᗳԓ⸱ਟԕ؍ᤱᗇ䶎

ᑨㆰ⌱ᑨㆰ⌱ᑨㆰ⌱ᑨㆰ⌱ǄǄǄǄ

࠭ᮠ֌Ѫ䘄എ٬࠭ᮠ֌Ѫ䘄എ٬࠭ᮠ֌Ѫ䘄എ٬࠭ᮠ֌Ѫ䘄എ٬

儈䱦࠭ᮠ䲔Ҷਟԕ᧕ਇ࠭ᮠ֌Ѫ৲ᮠཆˈ䘈ਟԕᢺ࠭ᮠ֌Ѫ㔃᷌٬䘄എǄ
ᡁԜᶕᇎ⧠ањਟਈ৲ᮠⲴ≲઼Ǆ䙊ᑨᛵߥлˈ≲઼Ⲵ࠭ᮠᱟ䘉ṧᇊѹⲴ˖
def calc_sum(*args):
 ax = 0
 for n in args:
 ax = ax + n
 return ax

նᱟˈྲ᷌н䴰㾱・࡫≲઼ 㘼̍ᱟ൘ਾ䶒Ⲵԓ⸱ѝˈṩᦞ䴰㾱޽䇑㇇ᘾѸ࣎˛ਟԕн䘄എ≲

઼Ⲵ㔃᷌ˈ㘼ᱟ䘄എ≲઼Ⲵ࠭ᮠʽ
def lazy_sum(*args):
 def sum():
 ax = 0
 for n in args:
 ax = ax + n
 return ax
 return sum

ᖃᡁԜ䈳⭘ lazy_sum()ᰦˈ䘄എⲴᒦнᱟ≲઼㔃᷌ˈ㘼ᱟ≲઼࠭ᮠ˖
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function sum at 0x10452f668>

䈳⭘࠭ᮠ fᰦˈ᡽ⵏ↓䇑㇇≲઼Ⲵ㔃᷌˖
>>> f()
25

൘䘉њֻᆀѝˈᡁԜ൘࠭ᮠ lazy_sumѝ৸ᇊѹҶ࠭ᮠ sumˈᒦфˈ޵䜘࠭ᮠ sumਟԕᕅ⭘
ཆ䜘࠭ᮠ lazy_sumⲴ৲ᮠ઼ተ䜘ਈ䟿ˈᖃ lazy_sum䘄എ࠭ᮠ sumᰦˈ⴨ޣ৲ᮠ઼ਈ䟿䜭؍
ᆈ൘䘄എⲴ࠭ᮠѝˈ䘉⿽〠Ѫ“䰝व˄Closure˅”Ⲵ〻ᒿ㔃ᶴᤕᴹᶱབྷⲴေ࣋Ǆ
䈧޽⌘᜿а⛩ˈᖃᡁԜ䈳⭘ lazy_sum()ᰦˈ⇿⅑䈳⭘䜭Պ䘄എањᯠⲴ࠭ᮠˈণ֯Րޕ⴨਼
Ⲵ৲ᮠ˖
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False

f1()઼ f2()Ⲵ䈳⭘㔃᷌ӂнᖡ૽Ǆ
ሿ㔃
ᢺ࠭ᮠ֌Ѫ৲ᮠՐޕˈᡆ㘵ᢺ࠭ᮠ֌Ѫ䘄എ٬䘄എˈ䘉ṧⲴ࠭ᮠ〠Ѫ儈䱦࠭ᮠˈ࠭ ᮠᔿ㕆〻

ቡᱟᤷ䘉⿽儈ᓖᣭ䊑Ⲵ㕆〻㤳ᔿǄ
䇮ٷ Python⋑ᴹᨀ׋ map()࠭ᮠˈ䈧㠚㹼㕆߉ањ my_map()࠭ᮠᇎ⧠о map()⴨਼Ⲵ࣏㜭Ǆ

९਽࠭ᮠ९਽࠭ᮠ९਽࠭ᮠ९਽࠭ᮠ

䟽⛩˖
1 ९਽࠭ᮠ lambda ᴹњ䲀ࡦˈቡᱟਚ㜭ᴹањ㺘䗮ᔿˈн⭘߉ returnˈ䘄എ٬ቡᱟ䈕㺘䗮
ᔿⲴ㔃᷌Ǆ

ᖃᡁԜ൘Ր࠭ޕᮠᰦˈᴹӋᰦىˈн䴰㾱ᱮᔿൠᇊѹ࠭ᮠˈⴤ᧕Րޕ९਽࠭ᮠᴤᯩׯǄ
൘ Pythonѝˈሩ९਽࠭ᮠᨀ׋Ҷᴹ䲀᭟ᤱǄ䘈ᱟԕ map()࠭ᮠѪֻˈ䇑㇇ f(x)=x2ᰦˈ䲔Ҷ
ᇊѹањ f(x)Ⲵ࠭ᮠཆˈ䘈ਟԕⴤ᧕Րޕ९਽࠭ᮠ˖
>>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]

䙊䗷ሩ∄ਟԕⴻࠪˈ९਽࠭ᮠ lambda x: x * xᇎ䱵кቡᱟ˖
def f(x):
 return x * x

䭞ᆇޣ lambda㺘⽪९਽࠭ᮠˈ߂ਧࡽ䶒Ⲵ x㺘⽪࠭ᮠ৲ᮠǄ
९਽࠭ᮠᴹњ䲀ࡦˈቡᱟਚ㜭ᴹањ㺘䗮ᔿˈн⭘߉ returnˈ䘄എ٬ቡᱟ䈕㺘䗮ᔿⲴ㔃᷌Ǆ
⭘९਽࠭ᮠᴹњྭ༴ˈഐѪ࠭ᮠ⋑ᴹ਽ᆇˈнᗵᣵᗳ࠭ᮠ਽ߢケǄ↔ཆˈ९਽࠭ᮠҏᱟањ

࠭ᮠሩ䊑ˈҏਟԕᢺ९਽࠭ᮠ䍻٬㔉ањਈ䟿ˈ࡙޽⭘ਈ䟿ᶕ䈳⭘䈕࠭ᮠ˖
>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x10453d7d0>
>>> f(5)
25

਼ṧˈҏਟԕᢺ९਽࠭ᮠ֌Ѫ䘄എ٬䘄എˈ∄ྲ˖

def build(x, y):
 return lambda: x * x + y * y

ሿ㔃
Pythonሩ९਽࠭ᮠⲴ᭟ᤱᴹ䲀ˈਚᴹаӋㆰঅⲴᛵߥлਟԕ֯⭘९਽࠭ᮠǄ

㻵侠ಘ㻵侠ಘ㻵侠ಘ㻵侠ಘ

䘉њᴹ⛩儈ㄟʽ䴰㾱ྭྭⴻалǄ
նⴞ⍻䘉њਟԕ⭘㊫ᶕᇎ⧠䘉⿽㻵侠ಘ⁑ᔿǄ
⭡Ҿ࠭ᮠҏᱟањሩ䊑 㘼̍ф࠭ᮠሩ䊑ਟԕ㻛䍻٬㔉ਈ䟿 ᡰ̍ԕ 䙊̍䗷ਈ䟿ҏ㜭䈳⭘䈕࠭ᮠǄ
>>> def now():
... print '2013-12-25'
...
>>> f = now
>>> f()
2013-12-25

࠭ᮠሩ䊑ᴹањ__name__኎ᙗˈਟԕ᤯࠭ࡠᮠⲴ਽ᆇ˖
>>> now.__name__
'now'
>>> f.__name__
'now'

⧠൘ˈٷ䇮ᡁԜ㾱໎ᕪ now()࠭ᮠⲴ࣏㜭ˈ∄ྲˈ൘࠭ᮠ䈳⭘ࡽਾ㠚ࣘᢃঠᰕᘇˈն৸нᐼ
ᵋ؞᭩ now()࠭ᮠⲴᇊѹˈ䘉⿽൘ԓ⸱䘀㹼ᵏ䰤ࣘᘱ໎࣐࣏㜭Ⲵᯩᔿˈ〠ѻѪ“㻵侠ಘ”
˄Decorator Ǆ˅
ᵜ䍘кˈdecorator ቡᱟањ䘄എ࠭ᮠⲴ儈䱦࠭ᮠǄᡰԕˈᡁԜ㾱ᇊѹањ㜭ᢃঠᰕᘇⲴ
decoratorˈਟԕᇊѹྲл˖
def log(func):
 def wrapper(*args, **kw):
 print 'call %s():' % func.__name__
 return func(*args, **kw)
 return wrapper

㿲ሏк䶒Ⲵ logˈഐѪᆳᱟањ decoratorˈᡰԕ᧕ਇањ࠭ᮠ֌Ѫ৲ᮠˈᒦ䘄എањ࠭ᮠǄ
ᡁԜ㾱ُࣙ PythonⲴ@䈝⌅ˈᢺ decorator㖞Ҿ࠭ᮠⲴᇊѹ༴˖
@log
def now():
 print '2013-12-25'

䈳⭘ now()࠭ᮠˈнӵՊ䘀㹼 now()࠭ᮠᵜ䓛ˈ䘈Պ൘䘀㹼 now()࠭ᮠࡽᢃঠа㹼ᰕᘇ˖
>>> now()

call now():
2013-12-25

ᢺ@log᭮ࡠ now()࠭ᮠⲴᇊѹ༴ˈ⴨ᖃҾᢗ㹼Ҷ䈝ਕ˖
now = log(now)

⭡Ҿ log()ᱟањ decoratorˈ䘄എањ࠭ᮠˈᡰԕˈ৏ᶕⲴ now()࠭ᮠӽ❦ᆈ൘ˈਚᱟ⧠൘਼
਽Ⲵ now ਈ䟿ᤷੁҶᯠⲴ࠭ᮠˈҾᱟ䈳⭘ now()ሶᢗ㹼ᯠ࠭ᮠˈণ൘ log()࠭ᮠѝ䘄എⲴ
wrapper()࠭ᮠǄ
wrapper()࠭ᮠⲴ৲ᮠᇊѹᱟ(*args, **kw)ˈഐ↔ˈwrapper()࠭ᮠਟԕ᧕ਇԫ᜿৲ᮠⲴ䈳⭘Ǆ
൘ wrapper()࠭ᮠ޵ˈ俆ݸᢃঠᰕᘇˈ޽㍗᧕⵰䈳⭘৏࿻࠭ᮠǄ
ྲ᷌ decoratorᵜ䓛䴰㾱Րޕ৲ᮠˈ䛓ቡ䴰㾱㕆߉ањ䘄എ decoratorⲴ儈䱦࠭ᮠˈࠪ߉ᶕՊ
ᴤ༽ᵲǄ∄ྲˈ㾱㠚ᇊѹ logⲴ᮷ᵜ˖
def log(text):
 def decorator(func):
 def wrapper(*args, **kw):
 print '%s %s():' % (text, func.__name__)
 return func(*args, **kw)
 return wrapper
 return decorator

䘉њ 3ቲ፼྇Ⲵ decorator⭘⌅ྲл˖
@log('execute')
def now():
 print '2013-12-25'

ᢗ㹼㔃᷌ྲл˖
>>> now()
execute now():
2013-12-25

઼єቲ፼྇Ⲵ decorator⴨∄ˈ3ቲ፼྇Ⲵ᭸᷌ᱟ䘉ṧⲴ˖
>>> now = log('execute')(now)

ᡁԜᶕ᷀ࢆк䶒Ⲵ䈝ਕˈ俆ݸᢗ㹼 log('execute')ˈ䘄എⲴᱟ decorator࠭ᮠˈ޽䈳⭘䘄എⲴ࠭
ᮠˈ৲ᮠᱟ now࠭ᮠˈ䘄എ٬ᴰ㓸ᱟ wrapper࠭ᮠǄ
ԕкє⿽ decorator Ⲵᇊѹ䜭⋑ᴹ䰞仈ˈն䘈ᐞᴰਾа↕ǄഐѪᡁԜ䇢Ҷ࠭ᮠҏᱟሩ䊑ˈᆳ
ᴹ__name__ㅹ኎ᙗˈն֐৫ⴻ㓿䗷 decorator㻵侠ѻਾⲴ࠭ᮠˈᆳԜⲴ__name__ᐢ㓿Ӿ৏ᶕ
Ⲵ'now'ਈᡀҶ'wrapper'˖
>>> now.__name__
'wrapper'

ഐѪ䘄എⲴ䛓њ wrapper()࠭ᮠ਽ᆇቡᱟ'wrapper' ᡰ̍ԕ 䴰̍㾱ᢺ৏࿻࠭ᮠⲴ__name__ㅹ኎ᙗ
ࡠࡦ༼ wrapper()࠭ᮠѝˈ੖ࡉˈᴹӋ׍䎆࠭ᮠㆮ਽Ⲵԓ⸱ᢗ㹼ቡՊࠪ䭉Ǆ

н䴰㾱㕆߉ wrapper.__name__ = func.__name__䘉ṧⲴԓ⸱ˈPython 㖞Ⲵ޵ functools.wraps
ቡᱟᒢ䘉њһⲴˈᡰԕˈањᆼᮤⲴ decoratorⲴ߉⌅ྲл˖
import functools

def log(func):
 @functools.wraps(func)
 def wrapper(*args, **kw):
 print 'call %s():' % func.__name__
 return func(*args, **kw)
 return wrapper

ᡆ㘵䪸ሩᑖ৲ᮠⲴ decorator˖
import functools

def log(text):
 def decorator(func):
 @functools.wraps(func)
 def wrapper(*args, **kw):
 print '%s %s():' % (text, func.__name__)
 return func(*args, **kw)
 return wrapper
 return decorator

import functoolsᱟሬޕ functools⁑ඇǄ⁑ඇⲴᾲᘥ〽ى䇢䀓Ǆ⧠൘ ਚ̍䴰䇠տ൘ᇊѹwrapper()
Ⲵࡽ䶒࣐к@functools.wraps(func)ণਟǄ
ሿ㔃
൘䶒ੁሩ䊑˄OOP˅Ⲵ䇮䇑⁑ᔿѝˈdecorator 㻛〠Ѫ㻵侠⁑ᔿǄOOP Ⲵ㻵侠⁑ᔿ䴰㾱䙊䗷
㔗᢯઼㓴ਸᶕᇎ⧠ˈ㘼 Python 䲔Ҷ㜭᭟ᤱ OOP Ⲵ decorator ཆˈⴤ᧕Ӿ䈝⌅ቲ⅑᭟ᤱ
decoratorǄPythonⲴ decoratorਟԕ⭘࠭ᮠᇎ⧠ˈҏਟԕ⭘㊫ᇎ⧠Ǆ
decoratorਟԕ໎ᕪ࠭ᮠⲴ࣏㜭ˈᇊѹ䎧ᶕ㲭❦ᴹ⛩༽ᵲˈն֯⭘䎧ᶕ䶎ᑨ⚥⍫઼ᯩׯǄ
䈧㕆߉ањ decoratorˈ㜭൘࠭ᮠ䈳⭘Ⲵࡽਾᢃঠࠪ'begin call'઼'end call'ⲴᰕᘇǄ
ањ@logⲴࠪ߉ᙍ㘳ал㜭੖޽ decoratorˈ֯ᆳᰒ᭟ᤱ˖
@log
def f():
 pass

৸᭟ᤱ˖
@log('execute')
def f():
 pass

 ᮠ࠭ٿᮠ࠭ٿᮠ࠭ٿᮠ࠭ٿ

䟽⛩˖
1 ᖃ࠭ᮠⲴ৲ᮠњᮠཚཊ 䴰̍㾱ㆰॆᰦˈ֯ ⭘ functools.partialਟԕࡋᔪањᯠⲴ࠭ᮠ 䘉̍њ

ᯠ࠭ᮠਟԕപᇊտ৏࠭ᮠⲴ䜘࠶৲ᮠˈӾ㘼൘䈳⭘ᰦᴤㆰঅǄ
 䘉њ⭘༴ཊѸˈᙫ㿹Ⲵᱟᴹ⛩㠚ራ哫✖౎ʽ

PythonⲴ functools⁑ඇᨀ׋Ҷᖸཊᴹ⭘Ⲵ࣏㜭ˈަѝањቡᱟ࠭ٿᮠ˄Partial function Ǆ˅㾱
⌘᜿ˈ䘉䟼Ⲵ࠭ٿᮠ઼ᮠᆖ᜿ѹкⲴ࠭ٿᮠнаṧǄ
൘ӻ㓽࠭ᮠ৲ᮠⲴᰦىˈᡁԜ䇢ࡠˈ䙊䗷䇮ᇊ৲ᮠⲴ唈䇔٬ˈਟԕ䱽վ࠭ᮠ䈳⭘Ⲵ䳮ᓖǄ㘼

 ˖䘉а⛩ǄѮֻྲлࡠڊᮠҏਟԕ࠭ٿ
int()࠭ᮠਟԕᢺᆇㅖѢ䖜ᦒѪᮤᮠˈᖃӵՐޕᆇㅖѢᰦˈint()࠭ᮠ唈䇔᤹ॱ䘋ࡦ䖜ᦒ˖
>>> int('12345')
12345

ն int()࠭ᮠ䘈ᨀ׋仍ཆⲴ base৲ᮠ 唈̍䇔٬Ѫ 10Ǆྲ ᷌Րޕ base৲ᮠ ቡ̍ਟԕڊ N䘋ࡦⲴ
䖜ᦒ˖
>>> int('12345', base=8)
5349
>>> int('12345', 16)
74565

ޕᆇㅖѢˈ⇿⅑䜭Րࡦ䇮㾱䖜ᦒབྷ䟿ⲴҼ䘋ٷ int(x, base=2)䶎ᑨ哫✖ˈҾᱟˈᡁԜᜣࡠˈਟ
ԕᇊѹањ int2()Ⲵ࠭ᮠˈ唈䇔ᢺ base=2Ր䘋৫˖
def int2(x, base=2):
 return int(x, base)

䘉ṧˈᡁԜ䖜ᦒҼ䘋ࡦቡ䶎ᑨᯩׯҶ˖
>>> int2('1000000')
64
>>> int2('1010101')
85

functools.partial ቡᱟᑞࣙᡁԜࡋᔪањ࠭ٿᮠⲴˈн䴰㾱ᡁԜ㠚ᐡᇊѹ int2()ˈਟԕⴤ᧕֯
⭘л䶒Ⲵԓ⸱ࡋᔪањᯠⲴ࠭ᮠ int2˖
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85

ᡰԕˈㆰঅᙫ㔃 functools.partialⲴ֌⭘ቡᱟˈᢺањ࠭ᮠⲴḀӋ৲ᮠ˄н㇑ᴹ⋑ᴹ唈䇔٬˅
㔉പᇊտ˄ҏቡᱟ䇮㖞唈䇔٬˅̍ 䘄എањᯠⲴ࠭ᮠˈ䈳⭘䘉њᯠ࠭ᮠՊᴤㆰঅǄ

⌘᜿ࡠк䶒ⲴᯠⲴ int2 ࠭ᮠˈӵӵᱟᢺ base ৲ᮠ䟽ᯠ䇮ᇊ唈䇔٬Ѫ 2ˈնҏਟԕ൘࠭ᮠ䈳
⭘ᰦՐަޕԆ٬˖
>>> int2('1000000', base=10)
1000000

ᴰਾˈࡋᔪ࠭ٿᮠᰦˈ㾱Ӿਣࡠᐖപᇊ৲ᮠˈቡᱟ䈤ˈሩҾ࠭ᮠ f(a1, a2, a3)ˈਟԕപᇊ a3ˈ
ҏਟԕപᇊ a3઼ a2ˈҏਟԕപᇊ a3ˈa2઼ a1ˈնн㾱䐣⵰പᇊˈ∄ྲਚപᇊ a1઼ a3ˈᢺ
a2┿лҶǄྲ᷌䘉ṧڊˈ䈳⭘ᯠⲴ࠭ᮠՊᴤ༽ᵲˈਟԕ㠚ᐡ䈅䈅Ǆ
ሿ㔃
ᖃ࠭ᮠⲴ৲ᮠњᮠཚཊ 䴰̍㾱ㆰॆᰦˈ֯ ⭘ functools.partialਟԕࡋᔪањᯠⲴ࠭ᮠ 䘉̍њᯠ

࠭ᮠਟԕപᇊտ৏࠭ᮠⲴ䜘࠶৲ᮠˈӾ㘼൘䈳⭘ᰦᴤㆰঅǄ

⁗ඍ⁗ඍ⁗ඍ⁗ඍ

䟽⛩˖
⭘亦ቲ᮷Ԧ਽+__init__.py᮷Ԧᶕᇊѹव

൘䇑㇇ᵪ〻ᒿⲴᔰਁ䗷〻ѝ 䲿̍⵰〻ᒿԓ⸱䎺߉䎺ཊ ൘̍ањ᮷Ԧ䟼ԓ⸱ቡՊ䎺ᶕ䎺䮯 䎺̍

ᶕ䎺нᇩ᱃㔤ᣔǄ
ѪҶ㕆߉ਟ㔤ᣔⲴԓ⸱ˈᡁԜᢺᖸཊ࠭ᮠ࠶㓴ˈࡠ࡛᭮࠶н਼Ⲵ᮷Ԧ䟼ˈ䘉ṧˈ⇿њ᮷Ԧव

ਜ਼Ⲵԓ⸱ቡ⴨ሩ䖳ቁˈᖸཊ㕆〻䈝䀰䜭䟷⭘䘉⿽㓴㓷ԓ⸱ⲴᯩᔿǄ൘ Pythonѝˈањ.py᮷
Ԧቡ〠ѻѪањ⁑ඇ˄Module Ǆ˅
֯⭘⁑ඇᴹӰѸྭ༴˛
ᴰབྷⲴྭ༴ᱟབྷབྷᨀ儈Ҷԓ⸱Ⲵਟ㔤ᣔᙗǄަ⅑ 㕆̍߉ԓ⸱нᗵӾ䴦ᔰ࿻Ǆᖃањ⁑ඇ㕆߉

ᆼ∅ˈቡਟԕ㻛ަԆൠᯩᕅ⭘ǄᡁԜ൘㕆߉〻ᒿⲴᰦىˈҏ㓿ᑨᕅ⭘ަԆ⁑ඇˈवᤜ Python
 㖞Ⲵ⁑ඇ઼ᶕ㠚ㅜйᯩⲴ⁑ඇǄ޵
֯⭘⁑ඇ䘈ਟԕ䚯࠭ݽᮠ਽઼ਈ䟿਽ߢケǄ⴨਼਽ᆇⲴ࠭ᮠ઼ਈ䟿ᆼޘਟԕ࡛࠶ᆈ൘н਼Ⲵ

⁑ඇѝˈഐ↔ˈᡁԜ㠚ᐡ൘㕆߉⁑ඇᰦˈнᗵ㘳㲁਽ᆇՊоަԆ⁑ඇߢケǄնᱟҏ㾱⌘᜿ˈ

ቭ䟿н㾱о޵㖞࠭ᮠ਽ᆇߢケǄ⛩䘉䟼ḕⴻ PythonⲴᡰᴹ޵㖞࠭ᮠǄ
ケˈPythonߢඇ਽⁑ݽⲴ⁑ඇ਽⴨਼ᘾѸ࣎˛ѪҶ䚯߉н਼ⲴӪ㕆᷌ྲˈࡠҏ䇨䘈ᜣ֐ ৸
ᕅޕҶ᤹ⴞᖅᶕ㓴㓷⁑ඇⲴᯩ⌅ˈ〠Ѫव˄Package Ǆ˅
Ѯњֻᆀˈањ abc.pyⲴ᮷Ԧቡᱟањ਽ᆇਛ abcⲴ⁑ඇˈањ xyz.pyⲴ᮷Ԧቡᱟањ਽
ᆇਛ xyzⲴ⁑ඇǄ
⧠൘ˈٷ䇮ᡁԜⲴ abc઼ xyz䘉єњ⁑ඇ਽ᆇоަԆ⁑ඇߢケҶˈҾᱟᡁԜਟԕ䙊䗷वᶕ㓴
㓷⁑ඇˈ䚯ߢݽケǄᯩ⌅ᱟ䘹ᤙањ亦ቲव਽ˈ∄ྲ mycompanyˈ᤹➗ྲлⴞᖅᆈ᭮˖

ᕅޕҶवԕਾ ਚ̍㾱亦ቲⲴव਽но࡛Ӫߢケ 䛓̍ᡰᴹ⁑ඇ䜭нՊо࡛ӪߢケǄ⧠൘ a̍bc.py
⁑ඇⲴ਽ᆇቡਈᡀҶ mycompany.abcˈ㊫լⲴˈxyz.pyⲴ⁑ඇ਽ਈᡀҶ mycompany.xyzǄ
䈧⌘᜿ˈ⇿ањवⴞᖅл䶒䜭Պᴹањ__init__.pyⲴ᮷Ԧˈ䘉њ᮷Ԧᱟᗵ享ᆈ൘Ⲵˈ੖ࡉˈ
Python ቡᢺ䘉њⴞᖅᖃᡀᲞ䙊ⴞᖅˈ㘼нᱟањवǄ__init__.py ਟԕᱟオ᮷Ԧˈҏਟԕᴹ
Pythonԓ⸱ˈഐѪ__init__.pyᵜ䓛ቡᱟањ⁑ඇˈ㘼ᆳⲴ⁑ඇ਽ቡᱟ mycompanyǄ
㊫լⲴˈਟԕᴹཊ㓗ⴞᖅˈ㓴ᡀཊ㓗ቲ⅑Ⲵव㔃ᶴǄ∄ྲྲлⲴⴞᖅ㔃ᶴ˖

᮷Ԧ www.py Ⲵ⁑ඇ਽ቡᱟ mycompany.web.wwwˈєњ᮷Ԧ utils.py Ⲵ⁑ඇ਽࡛࠶ᱟ
mycompany.utils઼ mycompany.web.utilsǄ

mycompany.webҏᱟањ⁑ඇˈ䈧ᤷࠪ䈕⁑ඇሩᓄⲴ.py᮷ԦǄ

֯⭘⁑ඇ֯⭘⁑ඇ֯⭘⁑ඇ֯⭘⁑ඇ

䟽⛩˖
1 ሬޕḀӋवᰦѪ䱢ࠪ䭉ˈਟ֯⭘ try...except ImportError:ᶕᦅ㧧 # ሬޕཡ䍕Պᦅ㧧ࡠ
ImportError
2 ֯⭘㊫լ_xxx઼__xxxᶕᇊѹ⿱ᴹ(private˅࠭ᮠᡆਈ䟿

Pythonᵜ䓛ቡ޵㖞Ҷᖸཊ䶎ᑨᴹ⭘Ⲵ⁑ඇˈਚ㾱ᆹ㻵ᆼ∅ˈ䘉Ӌ⁑ඇቡਟԕ・֯࡫⭘Ǆ
ᡁԜԕ޵ᔪⲴ sys⁑ඇѪֻˈ㕆߉ањ helloⲴ⁑ඇ˖
#!/usr/bin/env python
-*- coding: utf-8 -*-

' a test module '

__author__ = 'Michael Liao'

import sys

def test():
 args = sys.argv
 if len(args)==1:
 print 'Hello, world!'
 elif len(args)==2:
 print 'Hello, %s!' % args[1]
 else:
 print 'Too many arguments!'

if __name__=='__main__':
 test()

ㅜ 1 㹼઼ㅜ 2 㹼ᱟḷ߶⌘䟺ˈㅜ 1 㹼⌘䟺ਟԕ䇙䘉њ hello.py ᮷Ԧⴤ᧕൘ Unix/Linux/Mac
к䘀㹼ˈㅜ 2㹼⌘䟺㺘⽪.py᮷Ԧᵜ䓛֯⭘ḷ߶ UTF-8㕆⸱˗
ㅜ 4㹼ᱟањᆇㅖѢ 㺘̍⽪⁑ඇⲴ᮷ẓ⌘䟺 ԫ̍օ⁑ඇԓ⸱ⲴㅜањᆇㅖѢ䜭㻛㿶Ѫ⁑ඇⲴ

᮷ẓ⌘䟺˗
ㅜ 6㹼֯⭘__author__ਈ䟿ᢺ֌㘵߉䘋৫ 䘉̍ṧᖃޜ֐ᔰⓀԓ⸱ਾ࡛ӪቡਟԕⷫԠ֐Ⲵབྷ਽ ̠
ԕкቡᱟ Python ⁑ඇⲴḷ߶᮷Ԧ⁑ᶯˈᖃ❦ҏਟԕޘ䜘ࡐᦹн߉ˈնᱟˈ᤹ḷ߶࣎һ㛟ᇊ
⋑䭉Ǆ
ਾ䶒ᔰ࿻ቡᱟⵏ↓Ⲵԓ⸱䜘࠶Ǆ
⭘֯ˈҶࡠਟ㜭⌘᜿֐ sys⁑ඇⲴㅜа↕ˈቡᱟሬޕ䈕⁑ඇ˖
import sys

ሬޕ sys ⁑ඇਾˈᡁԜቡᴹҶਈ䟿 sys ᤷੁ䈕⁑ඇˈ࡙⭘ sys 䘉њਈ䟿ˈቡਟԕ䇯䰞 sys ⁑
ඇⲴᡰᴹ࣏㜭Ǆ
sys⁑ඇᴹањ argvਈ䟿ˈ⭘ listᆈۘҶભԔ㹼Ⲵᡰᴹ৲ᮠǄargv㠣ቁᴹањݳ㍐ˈഐѪㅜ
ањ৲ᮠ≨䘌ᱟ䈕.py᮷ԦⲴ਽〠ˈֻྲ˖
䘀㹼 python hello.py㧧ᗇⲴ sys.argvቡᱟ['hello.py']˗
䘀㹼 python hello.py Michael㧧ᗇⲴ sys.argvቡᱟ['hello.py', 'Michael]Ǆ
ᴰਾˈ⌘᜿ࡠ䘉є㹼ԓ⸱˖
if __name__=='__main__':
 test()

ᖃᡁԜ൘ભԔ㹼䘀㹼 hello ⁑ඇ᮷ԦᰦˈPython 䀓䟺ಘᢺањ⢩↺ਈ䟿__name__㖞Ѫ
__main__ˈ㘼ྲ᷌൘ަԆൠᯩሬޕ䈕 hello⁑ඇᰦˈifࡔᯝሶཡ䍕ˈഐ↔ˈ䘉⿽ if⍻䈅ਟԕ
䇙ањ⁑ඇ䙊䗷ભԔ㹼䘀㹼ᰦᢗ㹼аӋ仍ཆⲴԓ⸱ˈᴰᑨ㿱Ⲵቡᱟ䘀㹼⍻䈅Ǆ
ᡁԜਟԕ⭘ભԔ㹼䘀㹼 hello.pyⴻⴻ᭸᷌˖
$ python hello.py
Hello, world!
$ python hello.py Michael
Hello, Michael!

ྲ᷌੟ࣘ PythonӔӂ⧟ຳˈ޽ሬޕ hello⁑ඇ˖
$ python
Python 2.7.5 (default, Aug 25 2013, 00:04:04)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import hello
>>>

ሬޕᰦˈ⋑ᴹᢃঠ Hello, word!ˈഐѪ⋑ᴹᢗ㹼 test()࠭ᮠǄ
䈳⭘ hello.test()ᰦˈ᡽㜭ᢃঠࠪ Hello, word!˖
>>> hello.test()
Hello, world!

࡛਽
ሬޕ⁑ඇᰦˈ䘈ਟԕ֯⭘࡛਽ˈ䘉ṧˈਟԕ൘䘀㹼ᰦṩᦞᖃࡽ⧟ຳ䘹ᤙᴰਸ䘲Ⲵ⁑ඇǄ∄ྲ

Pythonḷ߶ᓃа㡜Պᨀ׋ StringIO઼ cStringIOєњᓃˈ䘉єњᓃⲴ᧕ਓ઼࣏㜭ᱟаṧⲴˈ
նᱟ cStringIOᱟ C߉Ⲵˈ䙏ᓖᴤᘛˈᡰԕˈ֐Պ㓿ᑨⴻࡠ䘉ṧⲴ߉⌅˖
try:
 import cStringIO as StringIO
except ImportError: # ሬޕཡ䍕Պᦅ㧧ࡠ ImportError
 import StringIO

䘉ṧቡਟԕՈݸሬޕ cStringIOǄྲ᷌ᴹӋᒣਠнᨀ׋ cStringIOˈ䘈ਟԕ䱽㓗֯⭘ StringIOǄ
ሬޕ cStringIOᰦˈ⭘ import ... as ...ᤷᇊҶ࡛਽ StringIOˈഐ↔ˈਾ㔝ԓ⸱ᕅ⭘ StringIOণ
ਟ↓ᑨᐕ֌Ǆ

䘈ᴹ㊫լ simplejson䘉ṧⲴᓃˈ൘ Python 2.6ѻࡽᱟ⤜・ⲴㅜйᯩᓃˈӾ 2.6ᔰ࿻޵㖞ˈᡰ
ԕˈՊᴹ䘉ṧⲴ߉⌅˖
try: import json # python >= 2.6 except ImportError: import simplejson as json # python <= 2.5
⭡Ҿ Python ᱟࣘᘱ䈝䀰ˈ࠭ᮠㆮ਽а㠤᧕ਓቡаṧˈഐ↔ˈᰐ䇪ሬޕଚњ⁑ඇਾ㔝ԓ⸱䜭
㜭↓ᑨᐕ֌Ǆ
֌⭘ฏ
൘ањ⁑ඇѝˈᡁԜਟ㜭Պᇊѹᖸཊ࠭ᮠ઼ਈ䟿ˈնᴹⲴ࠭ᮠ઼ਈ䟿ᡁԜᐼᵋ㔉࡛Ӫ֯⭘ˈ

ᴹⲴ࠭ᮠ઼ਈ䟿ᡁԜᐼᵋӵӵ൘⁑ඇ޵䜘֯⭘Ǆ൘ Pythonѝˈᱟ䙊䗷_ࡽ㔰ᶕᇎ⧠ⲴǄ
↓ᑨⲴ࠭ᮠ઼ਈ䟿਽ᱟޜᔰⲴ˄public˅̍ ਟԕ㻛ⴤ᧕ᕅ⭘ˈ∄ྲ˖abcˈx123ˈPIㅹ˗
㊫լ__xxx__䘉ṧⲴਈ䟿ᱟ⢩↺ਈ䟿ˈਟԕ㻛ⴤ᧕ᕅ⭘ˈնᱟᴹ⢩↺⭘䙄ˈ∄ྲк䶒Ⲵ
__author__ˈ__name__ቡᱟ⢩↺ਈ䟿ˈhello ⁑ඇᇊѹⲴ᮷ẓ⌘䟺ҏਟԕ⭘⢩↺ਈ䟿__doc__
䇯䰞ˈᡁԜ㠚ᐡⲴਈ䟿а㡜н㾱⭘䘉⿽ਈ䟿਽˗
㊫լ_xxx઼__xxx䘉ṧⲴ࠭ᮠᡆਈ䟿ቡᱟ䶎ޜᔰⲴ˄ private˅̍нᓄ䈕㻛ⴤ᧕ᕅ⭘ ∄̍ྲ_abcˈ
__abcㅹ˗
ѻᡰԕᡁԜ䈤 p̍rivate࠭ᮠ઼ਈ䟿“нᓄ䈕”㻛ⴤ᧕ᕅ⭘ˈ㘼нᱟ“н㜭”㻛ⴤ᧕ᕅ⭘ˈᱟഐѪ
Python ᒦ⋑ᴹа⿽ᯩ⌅ਟԕᆼޘ䲀ࡦ䇯䰞 private ࠭ᮠᡆਈ䟿ˈնᱟˈӾ㕆〻Ґᜟкнᓄ䈕
ᕅ⭘ private࠭ᮠᡆਈ䟿Ǆ
private࠭ᮠᡆਈ䟿нᓄ䈕㻛࡛Ӫᕅ⭘ˈ䛓ᆳԜᴹӰѸ⭘઒˛䈧ⴻֻᆀ˖
def _private_1(name):
 return 'Hello, %s' % name

def _private_2(name):
 return 'Hi, %s' % name

def greeting(name):
 if len(name) > 3:
 return _private_1(name)
 else:
 return _private_2(name)

ᡁԜ൘⁑ඇ䟼ޜᔰ greeting()࠭ᮠˈ㘼ᢺ޵䜘䙫䗁⭘ private ࠭ᮠ䳀㯿䎧ᶕҶˈ䘉ṧˈ䈳⭘
greeting()࠭ᮠн⭘ޣᗳ޵䜘Ⲵ private ࠭ᮠ㓶㢲ˈ䘉ҏᱟа⿽䶎ᑨᴹ⭘Ⲵԓ⸱ሱ㻵઼ᣭ䊑Ⲵ
ᯩ⌅ˈণ˖
ཆ䜘н䴰㾱ᕅ⭘Ⲵ࠭ᮠޘ䜘ᇊѹᡀ privateˈਚᴹཆ䜘䴰㾱ᕅ⭘Ⲵ࠭ᮠ᡽ᇊѹѪ publicǄ

ᆹ㻵ㅜйᯩ⁑ඇᆹ㻵ㅜйᯩ⁑ඇᆹ㻵ㅜйᯩ⁑ඇᆹ㻵ㅜйᯩ⁑ඇ

䟽⛩䟽⛩䟽⛩䟽⛩˖̟̟̟
1 Mac Linux֯⭘ setuptoolsˈ windows֯⭘ ez_setup.py
2 ␫࣐ㅜйᯩ⁑ඇᰦˈ␫࣐ᩌ㍒ⴞᖅ

൘ Pythonѝˈᆹ㻵ㅜйᯩ⁑ඇˈᱟ䙊䗷 setuptools䘉њᐕާᆼᡀⲴǄ
൘֯⭘Macᡆ↓֐᷌ྲ Linuxˈᆹ㻵 setuptoolsᵜ䓛䘉њ↕僔ቡਟԕ䐣䗷ҶǄ

Ӿ䘉њൠ൰л䖭ݸ൘֯⭘Windowsˈ䈧俆↓֐᷌ྲ ez_setup.py˖
https://pypi.python.org/pypi/setuptools#windows

л䖭ਾˈ䲿ࡠ᭮ׯањⴞᖅлˈ❦ਾ䘀㹼ԕлભԔᶕᆹ㻵 setuptools˖
python ez_setup.py

൘ભԔᨀ⽪ㅖデਓлቍ䈅䘀㹼 easy_installˈWindows Պᨀ⽪ᵚ᢮ࡠભԔˈ৏ഐᱟ
easy_install.exeᡰ൘䐟ᖴ䘈⋑ᴹ㻛␫࣐ࡠ⧟ຳਈ䟿 PathѝǄ䈧␫࣐ C:\Python27\Scriptsࡠ⧟
ຳਈ䟿 Path˖

䟽ᯠᢃᔰભԔᨀ⽪ㅖデਓˈቡਟԕ䘀㹼 easy_installҶ˖
⧠൘ 䇙̍ᡁԜᶕᆹ㻵ањㅜйᯩᓃ——Python Imaging Library 䘉̍ᱟ Pythonл䶎ᑨᕪབྷⲴ༴
⨶മۿⲴᐕާᓃǄа㡜ᶕ䈤ˈㅜйᯩᓃ䜭Պ൘ Python ᇈᯩⲴ pypi.python.org 㖁ㄉ⌘޼ˈ㾱
ᆹ㻵ањㅜйᯩᓃˈᗵ享ݸ⸕䚃䈕ᓃⲴ਽〠ˈਟԕ൘ᇈ㖁ᡆ㘵 pypi кᩌ㍒ˈ∄ྲ Python
Imaging LibraryⲴ਽〠ਛ PILˈഐ↔ˈᆹ㻵 Python Imaging LibraryⲴભԔቡᱟ˖
easy_install PIL

㙀ᗳㅹᖵл䖭ᒦᆹ㻵ਾˈቡਟԕ֯⭘ PILҶǄ

ᴹҶ PILˈ༴⨶മ⡷᱃ྲ৽ᦼǄ䲿ׯ᢮њമ⡷⭏ᡀ㕙⮕മ˖
>>> import Image
>>> im = Image.open('test.png')
>>> print im.format, im.size, im.mode
PNG (400, 300) RGB
>>> im.thumbnail((200, 100))
>>> im.save('thumb.jpg', 'JPEG')

ަԆᑨ⭘Ⲵㅜйᯩᓃ䘈ᴹ MySQL Ⲵ傡ࣘ˖MySQL-pythonˈ⭘Ҿ、ᆖ䇑㇇Ⲵ NumPy ᓃ˖
numpyˈ⭘Ҿ⭏ᡀ᮷ᵜⲴ⁑ᶯᐕާ Jinja2ˈㅹㅹǄ

⁑ඇᩌ㍒䐟ᖴ⁑ඇᩌ㍒䐟ᖴ⁑ඇᩌ㍒䐟ᖴ⁑ඇᩌ㍒䐟ᖴ
ᖃᡁԜ䈅മ࣐䖭ањ⁑ඇᰦˈPythonՊ൘ᤷᇊⲴ䐟ᖴлᩌ㍒ሩᓄⲴ.py᮷Ԧˈྲ᷌᢮нࡠˈ
ቡՊᣕ䭉˖
>>> import mymodule
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named mymodule

唈䇔ᛵߥлˈPython 䀓䟺ಘՊᩌ㍒ᖃࡽⴞᖅǃᡰᴹᐢᆹ㻵Ⲵ޵㖞⁑ඇ઼ㅜйᯩ⁑ඇˈᩌ㍒
䐟ᖴᆈ᭮൘ sys⁑ඇⲴ pathਈ䟿ѝ˖
>>> import sys
>>> sys.path
['', '/Library/Python/2.7/site-packages/pycrypto-2.6.1-py2.7-macosx-10.9-intel.egg',
'/Library/Python/2.7/site-packages/PIL-1.1.7-py2.7-macosx-10.9-intel.egg', ...]

ྲ᷌ᡁԜ㾱␫࣐㠚ᐡⲴᩌ㍒ⴞᖅˈᴹє⿽ᯩ⌅˖
аᱟⴤ᧕؞᭩ sys.pathˈ␫࣐㾱ᩌ㍒Ⲵⴞᖅ˖
>>> import sys
>>> sys.path.append('/Users/michael/my_py_scripts')

䘉⿽ᯩ⌅ᱟ൘䘀㹼ᰦ؞᭩ˈ䘀㹼㔃ᶏਾཡ᭸Ǆ
ㅜҼ⿽ᯩ⌅ᱟ䇮㖞⧟ຳਈ䟿 PYTHONPATH 䈕̍⧟ຳਈ䟿Ⲵ޵ᇩՊ㻛㠚ࣘ␫࣐ࡠ⁑ඇᩌ㍒䐟

ᖴѝǄ䇮㖞ᯩᔿо䇮㖞 Path ⧟ຳਈ䟿㊫լǄ⌘᜿ਚ䴰㾱␫࣐֐㠚ᐡⲴᩌ㍒䐟ᖴˈPython 㠚
ᐡᵜ䓛Ⲵᩌ㍒䐟ᖴнਇᖡ૽Ǆ

֯⭘֯⭘֯⭘֯⭘__future__

䟽⛩˖
1 Pythonᯠᰗ⡸ᵜнެᇩˈ֯⭘__future__⁑ඇˈᢺлањᯠ⡸ᵜⲴ⢩ᙗሬࡠޕᖃࡽ⡸ᵜ

Python Ⲵ⇿њᯠ⡸ᵜ䜭Պ໎࣐аӋᯠⲴ࣏㜭ˈᡆ㘵ሩ৏ᶕⲴ࣏㜭֌аӋ᭩ࣘǄᴹӋ᭩ࣘᱟ
нެᇩᰗ⡸ᵜⲴˈҏቡᱟ൘ᖃࡽ⡸ᵜ䘀㹼↓ᑨⲴԓ⸱ˈࡠлањ⡸ᵜ䘀㹼ቡਟ㜭н↓ᑨҶǄ

Ӿ Python 2.7 ࡠ Python 3.x ቡᴹнެᇩⲴаӋ᭩ࣘˈ∄ྲ 2.x 䟼ⲴᆇㅖѢ⭘'xxx'㺘⽪ strˈ
UnicodeᆇㅖѢ⭘ u'xxx'㺘⽪ unicodeˈ㘼൘ 3.xѝˈᡰᴹᆇㅖѢ䜭㻛㿶Ѫ unicodeˈഐ↔ˈ߉
u'xxx'઼'xxx'ᱟᆼޘа㠤Ⲵˈ㘼൘ 2.xѝԕ'xxx'㺘⽪Ⲵ strቡᗵ享߉ᡀ b'xxx'ˈԕ↔㺘⽪“Ҽ䘋
 ᆇㅖѢ”Ǆࡦ
㾱ⴤ᧕ᢺԓ⸱ॷ㓗ࡠ 3.xᱟ∄䖳߂䘋ⲴˈഐѪᴹབྷ䟿Ⲵ᭩ࣘ䴰㾱⍻䈅Ǆ⴨৽ˈਟԕ൘ 2.7⡸
ᵜѝݸ൘а䜘࠶ԓ⸱ѝ⍻䈅аӋ 3.xⲴ⢩ᙗˈྲ᷌⋑ᴹ䰞仈ˈ〫޽Ἵࡠ 3.xн䘏Ǆ
Python ᨀ׋Ҷ__future__⁑ඇˈᢺлањᯠ⡸ᵜⲴ⢩ᙗሬࡠޕᖃࡽ⡸ᵜˈҾᱟᡁԜቡਟԕ൘
ᖃࡽ⡸ᵜѝ⍻䈅аӋᯠ⡸ᵜⲴ⢩ᙗǄѮֻ䈤᰾ྲл˖
ѪҶ䘲ᓄ Python 3.x ⲴᯠⲴᆇㅖѢⲴ㺘⽪ᯩ⌅ˈ൘ 2.7 ⡸ᵜⲴԓ⸱ѝˈਟԕ䙊䗷
unicode_literalsᶕ֯⭘ Python 3.xⲴᯠⲴ䈝⌅˖
still running on Python 2.7

from __future__ import unicode_literals

print '\'xxx\' is unicode?', isinstance('xxx', unicode)
print 'u\'xxx\' is unicode?', isinstance(u'xxx', unicode)
print '\'xxx\' is str?', isinstance('xxx', str)
print 'b\'xxx\' is str?', isinstance(b'xxx', str)

⌘᜿ࡠк䶒Ⲵԓ⸱ӽ❦൘ Python 2.7 л䘀㹼ˈն㔃᷌ᱮ⽪৫ᦹࡽ㔰 u Ⲵ'a string'ӽᱟањ
unicodeˈ㘼࣐кࡽ㔰 bⲴ b'a string'᡽ਈᡀҶ str˖
$ python task.py
'xxx' is unicode? True
u'xxx' is unicode? True
'xxx' is str? False
b'xxx' is str? True

㊫լⲴᛵߥ䘈ᴹ䲔⌅䘀㇇Ǆ൘ Python 2.xѝˈሩҾ䲔⌅ᴹє⿽ᛵߥˈྲ᷌ᱟᮤᮠ⴨䲔ˈ㔃᷌
ӽᱟᮤᮠˈ։ᮠՊ㻛ᢄᦹˈ䘉⿽䲔⌅ਛ“ൠᶯ䲔”˖
>>> 10 / 3
3

㾱ڊ㋮⺞䲔⌅ˈᗵ享ᢺަѝањᮠਈᡀ⎞⛩ᮠ˖
>>> 10.0 / 3
3.3333333333333335

㘼൘ Python 3.xѝˈᡰᴹⲴ䲔⌅䜭ᱟ㋮⺞䲔⌅ˈൠᶯ䲔⭘//㺘⽪˖
$ python3
Python 3.3.2 (default, Jan 22 2014, 09:54:40)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 10 / 3
3.3333333333333335
>>> 10 // 3

3

ᜣ൘֐᷌ྲ Python 2.7 Ⲵԓ⸱ѝⴤ᧕֯⭘ Python 3.x Ⲵ䲔⌅ˈਟԕ䙊䗷__future__⁑ඇⲴ
divisionᇎ⧠˖
from __future__ import division

print '10 / 3 =', 10 / 3
print '10.0 / 3 =', 10.0 / 3
print '10 // 3 =', 10 // 3

㔃᷌ྲл˖
10 / 3 = 3.33333333333
10.0 / 3 = 3.33333333333
10 // 3 = 3

ሿ㔃
⭡Ҿ Python ᱟ⭡⽮४᧘ࣘⲴᔰⓀᒦфݽ䍩Ⲵᔰਁ䈝䀰ˈнਇ୶ъޜਨ᧗ࡦˈഐ↔ˈPython
Ⲵ᭩䘋ᖰᖰ∄䖳◰䘋ˈнެᇩⲴᛵߥᰦᴹਁ⭏ǄPython ѪҶ⺞֐؍㜭亪࡙䗷⑑ࡠᯠ⡸ᵜˈ
⢩࡛ᨀ׋Ҷ__future__⁑ඇˈ䇙֐൘ᰗⲴ⡸ᵜѝ䈅傼ᯠ⡸ᵜⲴаӋ⢩ᙗǄ

䶘ੇሯ䊗㕌ぁ䶘ੇሯ䊗㕌ぁ䶘ੇሯ䊗㕌ぁ䶘ੇሯ䊗㕌ぁ

䶒ੁሩ䊑㕆〻——Object Oriented Programmingˈㆰ〠 OOPˈᱟа⿽〻ᒿ䇮䇑ᙍᜣǄOOPᢺ
ሩ䊑֌Ѫ〻ᒿⲴสᵜঅݳˈањሩ䊑वਜ਼Ҷᮠᦞ઼᫽֌ᮠᦞⲴ࠭ᮠǄ
䶒ੁ䗷〻Ⲵ〻ᒿ䇮䇑ᢺ䇑㇇ᵪ〻ᒿ㿶Ѫа㌫ࡇⲴભԔ䳶ਸ ণ̍а㓴࠭ᮠⲴ亪ᒿᢗ㹼ǄѪҶㆰ

ॆ〻ᒿ䇮䇑 䶒̍ੁ䗷〻ᢺ࠭ᮠ㔗㔝࠶࠷Ѫᆀ࠭ᮠ ণ̍ᢺབྷඇ࠭ᮠ䙊䗷ࢢ࠷ᡀሿඇ࠭ᮠᶕ䱽վ

㌫㔏Ⲵ༽ᵲᓖǄ
㘼䶒ੁሩ䊑Ⲵ〻ᒿ䇮䇑ᢺ䇑㇇ᵪ〻ᒿ㿶Ѫа㓴ሩ䊑Ⲵ䳶ਸ 㘼̍⇿њሩ䊑䜭ਟԕ᧕᭦ަԆሩ䊑

ਁ䗷ᶕⲴ⎸᚟ˈᒦ༴⨶䘉Ӌ⎸᚟ˈ䇑㇇ᵪ〻ᒿⲴᢗ㹼ቡᱟа㌫ࡇ⎸᚟൘਴њሩ䊑ѻ䰤Ր䙂Ǆ
൘ Python ѝˈᡰᴹᮠᦞ㊫ර䜭ਟԕ㿶Ѫሩ䊑ˈᖃ❦ҏਟԕ㠚ᇊѹሩ䊑Ǆ㠚ᇊѹⲴሩ䊑ᮠᦞ
㊫රቡᱟ䶒ੁሩ䊑ѝⲴ㊫˄Class˅ⲴᾲᘥǄ
ᡁԜԕањֻᆀᶕ䈤᰾䶒ੁ䗷〻઼䶒ੁሩ䊑൘〻ᒿ⍱〻кⲴн਼ѻ༴Ǆ
䇮ᡁԜ㾱༴⨶ᆖ⭏Ⲵᡀ㔙㺘ˈѪҶ㺘⽪ањᆖ⭏Ⲵᡀ㔙ˈ䶒ੁ䗷〻Ⲵ〻ᒿਟԕ⭘ањٷ dict
㺘⽪˖
std1 = { 'name': 'Michael', 'score': 98 }
std2 = { 'name': 'Bob', 'score': 81 }

㘼༴⨶ᆖ⭏ᡀ㔙ਟԕ䙊䗷࠭ᮠᇎ⧠ˈ∄ྲᢃঠᆖ⭏Ⲵᡀ㔙˖
def print_score(std):
 print '%s: %s' % (std['name'], std['score'])

ྲ᷌䟷⭘䶒ੁሩ䊑Ⲵ〻ᒿ䇮䇑ᙍᜣˈᡁԜ俆䘹ᙍ㘳Ⲵнᱟ〻ᒿⲴᢗ㹼⍱〻ˈ㘼ᱟ Student䘉
⿽ᮠᦞ㊫රᓄ䈕㻛㿶Ѫањሩ䊑ˈ䘉њሩ䊑ᤕᴹ name ઼ score 䘉єњ኎ᙗ˄Property Ǆ˅ྲ

᷌㾱ᢃঠањᆖ⭏Ⲵᡀ㔙ˈ俆ݸᗵ享ࡋᔪࠪ䘉њᆖ⭏ሩᓄⲴሩ䊑ˈ❦ਾˈ㔉ሩ䊑ਁањ

print_score⎸᚟ˈ䇙ሩ䊑㠚ᐡᢺ㠚ᐡⲴᮠᦞᢃঠࠪᶕǄ
class Student(object):

 def __init__(self, name, score):
 self.name = name
 self.score = score

 def print_score(self):
 print '%s: %s' % (self.name, self.score)

㔉ሩ䊑ਁ⎸᚟ᇎ䱵кቡᱟ䈳⭘ሩ䊑ሩᓄⲴޣ㚄࠭ᮠˈᡁԜ〠ѻѪሩ䊑Ⲵᯩ⌅˄Method Ǆ˅䶒
ੁሩ䊑Ⲵ〻ᒿࠪ߉ᶕቡۿ䘉ṧ˖
bart = Student('Bart Simpson', 98)
lisa = Student('Lisa Simpson', 77)
bart.print_score()
lisa.print_score()

䶒ੁሩ䊑Ⲵ䇮䇑ᙍᜣᱟӾ㠚❦⭼ѝᶕⲴˈഐѪ൘㠚❦⭼ѝˈ㊫˄Class˅઼ᇎֻ˄Instance˅
Ⲵᾲᘥᱟᖸ㠚❦ⲴǄClassᱟа⿽ᣭ䊑ᾲᘥˈ∄ྲᡁԜᇊѹⲴ Class——Studentˈᱟᤷᆖ⭏䘉
њᾲᘥˈ㘼ᇎֻ˄Instance˅ࡉᱟањњާփⲴ Studentˈ∄ྲ B̍art Simpson઼ Lisa Simpson
ᱟєњާփⲴ Student˖
ᡰԕˈ䶒ੁሩ䊑Ⲵ䇮䇑ᙍᜣᱟᣭ䊑ࠪ Classˈṩᦞ Classࡋᔪ InstanceǄ
䶒ੁሩ䊑Ⲵᣭ䊑〻ᓖ৸∄࠭ᮠ㾱儈ˈഐѪањ Classᰒवਜ਼ᮠᦞˈ৸वਜ਼᫽֌ᮠᦞⲴᯩ⌅Ǆ
ሿ㔃
ᮠᦞሱ㻵ǃ㔗᢯઼ཊᘱᱟ䶒ੁሩ䊑Ⲵйབྷ⢩⛩ˈᡁԜਾ䶒Պ䈖㓶䇢䀓Ǆ

㊫઼ᇎֻ㊫઼ᇎֻ㊫઼ᇎֻ㊫઼ᇎֻ

䶒ੁሩ䊑ᴰ䟽㾱Ⲵᾲᘥቡᱟ㊫˄Class˅઼ᇎֻ˄Instance˅̍ ᗵ享⢒䇠㊫ᱟᣭ䊑Ⲵ⁑ᶯˈ∄ྲ
Student㊫ˈ㘼ᇎֻᱟṩᦞ㊫ࡋᔪࠪᶕⲴањњާփⲴ“ሩ䊑”ˈ⇿њሩ䊑䜭ᤕᴹ⴨਼Ⲵᯩ⌅ˈ
ն਴㠚Ⲵᮠᦞਟ㜭н਼Ǆ
ӽԕ Student㊫Ѫֻˈ൘ Pythonѝˈᇊѹ㊫ᱟ䙊䗷 classޣ䭞ᆇ˖
class Student(object):
 pass

classਾ䶒㍗᧕⵰ᱟ㊫਽ˈণ Studentˈ㊫਽䙊ᑨᱟབྷ߉ᔰཤⲴঅ䇽ˈ㍗᧕⵰ᱟ(object)ˈ㺘⽪
䈕㊫ᱟӾଚњ㊫㔗᢯лᶕⲴˈ㔗᢯ⲴᾲᘥᡁԜਾ䶒޽䇢ˈ䙊ᑨˈྲ᷌⋑ᴹਸ䘲Ⲵ㔗᢯㊫ˈቡ

֯⭘ object㊫ˈ䘉ᱟᡰᴹ㊫ᴰ㓸䜭Պ㔗᢯Ⲵ㊫Ǆ
ᇊѹྭҶ Student㊫ ቡ̍ਟԕṩᦞ Student㊫ࡋᔪࠪ StudentⲴᇎֻ ()+ᔪᇎֻᱟ䙊䗷㊫਽ࡋ̍
ᇎ⧠Ⲵ˖
>>> bart = Student()
>>> bart

<__main__.Student object at 0x10a67a590>
>>> Student
<class '__main__.Student'>

ਟԕⴻࡠˈਈ䟿 bartᤷੁⲴቡᱟањ StudentⲴ objectˈਾ䶒Ⲵ 0x10a67a590ᱟ޵ᆈൠ൰ˈ
⇿њ objectⲴൠ൰䜭наṧˈ㘼 Studentᵜ䓛ࡉᱟањ㊫Ǆ
ਟԕ㠚⭡ൠ㔉ањᇎֻਈ䟿㔁ᇊ኎ᙗˈ∄ྲˈ㔉ᇎֻ bart㔁ᇊањ name኎ᙗ˖
>>> bart.name = 'Bart Simpson'
>>> bart.name
'Bart Simpson'

⭡Ҿ㊫ਟԕ䎧ࡠ⁑ᶯⲴ֌⭘ ഐ̍↔ˈਟԕ൘ࡋᔪᇎֻⲴᰦىˈᢺаӋᡁԜ䇔Ѫᗵ享㔁ᇊⲴ኎

ᙗᕪࡦປ߉䘋৫Ǆ䙊䗷ᇊѹањ⢩↺Ⲵ__init__ᯩ⌅ˈ൘ࡋᔪᇎֻⲴᰦىˈቡᢺ name s̍core
ㅹ኎ᙗ㔁к৫˖
class Student(object):

 def __init__(self, name, score):
 self.name = name
 self.score = score

⌘᜿ࡠ__init__ᯩ⌅Ⲵㅜањ৲ᮠ≨䘌ᱟ selfˈ㺘⽪ࡋᔪⲴᇎֻᵜ䓛ˈഐ↔ˈ൘__init__ᯩ⌅
ࡠ䜘ˈቡਟԕᢺ਴⿽኎ᙗ㔁ᇊ޵ selfˈഐѪ selfቡᤷੁࡋᔪⲴᇎֻᵜ䓛Ǆ
ᴹҶ__init__ᯩ⌅ˈ൘ࡋᔪᇎֻⲴᰦىˈቡн㜭ՐޕオⲴ৲ᮠҶˈᗵ享Րޕо__init__ᯩ⌅३
䝽Ⲵ৲ᮠˈն selfн䴰㾱ՐˈPython䀓䟺ಘ㠚ᐡՊᢺᇎֻਈ䟿Ր䘋৫˖
>>> bart = Student('Bart Simpson', 98)
>>> bart.name
'Bart Simpson'
>>> bart.score
98

઼Პ䙊Ⲵ࠭ᮠ⴨∄ ൘̍㊫ѝᇊѹⲴ࠭ᮠਚᴹа⛩н਼ ቡ̍ᱟㅜањ৲ᮠ≨䘌ᱟᇎֻਈ䟿 selfˈ
ᒦфˈ䈳⭘ᰦˈн⭘Ր䙂䈕৲ᮠǄ䲔↔ѻཆˈ㊫Ⲵᯩ⌅઼Პ䙊࠭ᮠ⋑ᴹӰѸ४࡛ˈᡰԕˈ֐

ӽ❦ਟԕ⭘唈䇔৲ᮠǃਟਈ৲ᮠ઼ޣ䭞ᆇ৲ᮠǄ
ᮠᦞሱ㻵
䶒ੁሩ䊑㕆〻Ⲵањ䟽㾱⢩⛩ቡᱟᮠᦞሱ㻵Ǆ൘к䶒Ⲵ Student㊫ѝˈ⇿њᇎֻቡᤕᴹ਴㠚
Ⲵ name઼ score䘉ӋᮠᦞǄᡁԜਟԕ䙊䗷࠭ᮠᶕ䇯䰞䘉Ӌᮠᦞˈ∄ྲᢃঠањᆖ⭏Ⲵᡀ㔙 ̟
>>> def print_score(std):
... print '%s: %s' % (std.name, std.score)
...
>>> print_score(bart)
Bart Simpson: 98

նᱟˈᰒ❦ Studentᇎֻᵜ䓛ቡᤕᴹ䘉Ӌᮠᦞˈ㾱䇯䰞䘉Ӌᮠᦞˈቡ⋑ᴹᗵ㾱Ӿཆ䶒Ⲵ࠭ᮠ
৫䇯䰞ˈਟԕⴤ᧕൘ Student ㊫Ⲵ޵䜘ᇊѹ䇯䰞ᮠᦞⲴ࠭ᮠˈ䘉ṧˈቡᢺ“ᮠᦞ”㔉ሱ㻵䎧ᶕ

ҶǄ䘉Ӌሱ㻵ᮠᦞⲴ࠭ᮠᱟ઼ Student㊫ᵜ䓛ᱟޣ㚄䎧ᶕⲴˈᡁԜ〠ѻѪ㊫Ⲵᯩ⌅˖
class Student(object):

 def __init__(self, name, score):
 self.name = name
 self.score = score

 def print_score(self):
 print '%s: %s' % (self.name, self.score)

㾱ᇊѹањᯩ⌅ˈ䲔Ҷㅜањ৲ᮠᱟ selfཆˈަԆ઼Პ䙊࠭ᮠаṧǄ㾱䈳⭘ањᯩ⌅ˈਚ䴰
㾱൘ᇎֻਈ䟿кⴤ᧕䈳⭘ˈ䲔Ҷ selfн⭘Ր䙂ˈަԆ৲ᮠ↓ᑨՐޕ˖
>>> bart.print_score()
Bart Simpson: 98

䘉ṧаᶕˈᡁԜӾཆ䜘ⴻ Student㊫ˈቡਚ䴰㾱⸕䚃ˈࡋᔪᇎֻ䴰㾱㔉ࠪ name઼ scoreˈ㘼
ྲօᢃঠˈ䜭ᱟ൘ Student㊫Ⲵ޵䜘ᇊѹⲴˈ䘉Ӌᮠᦞ઼䙫䗁㻛“ሱ㻵”䎧ᶕҶˈ䈳⭘ᖸᇩ᱃ˈ
նতн⭘⸕䚃޵䜘ᇎ⧠Ⲵ㓶㢲Ǆ
ሱ㻵Ⲵਖањྭ༴ᱟਟԕ㔉 Student㊫໎࣐ᯠⲴᯩ⌅ˈ∄ྲ get_grade˖
class Student(object):
 ...

 def get_grade(self):
 if self.score >= 90:
 return 'A'
 elif self.score >= 60:
 return 'B'
 else:
 return 'C'

਼ṧⲴˈget_gradeᯩ⌅ਟԕⴤ᧕൘ᇎֻਈ䟿к䈳⭘ˈн䴰㾱⸕䚃޵䜘ᇎ⧠㓶㢲˖
>>> bart.get_grade()
'A'

ሿ㔃
㊫ᱟࡋᔪᇎֻⲴ⁑ᶯˈ㘼ᇎֻࡉᱟањањާփⲴሩ䊑ˈ਴њᇎֻᤕᴹⲴᮠᦞ䜭н⴨਼˗
䙊䗷൘ᇎֻਈ䟿к䈳⭘ᯩ⌅ ᡁ̍Ԝቡⴤ᧕᫽֌Ҷሩ䊑޵䜘Ⲵᮠᦞ ն̍ᰐ䴰⸕䚃ᯩ⌅޵䜘Ⲵᇎ

⧠㓶㢲Ǆ
઼䶉ᘱ䈝䀰н਼ˈPython ˈ䇨ሩᇎֻਈ䟿㔁ᇊԫօᮠᦞˈҏቡᱟ䈤ˈሩҾєњᇎֻਈ䟿ݱ
㲭❦ᆳԜ䜭ᱟ਼ањ㊫Ⲵн਼ᇎֻˈնᤕᴹⲴਈ䟿਽〠䜭ਟ㜭н਼˖
>>> bart = Student('Bart Simpson', 98)
>>> lisa=Student('Lisa Simpson', 77)
>>> bart.age = 8
>>> bart.age

8
>>> lisa.age
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'age'

䇯䰞䲀ࡦ䇯䰞䲀ࡦ䇯䰞䲀ࡦ䇯䰞䲀ࡦ

䟽⛩䟽⛩䟽⛩䟽⛩˖̟̟̟
1 ྲ᷌㾱䇙޵䜘኎ᙗн㻛ཆ䜘䇯䰞ˈਟԕᢺ኎ᙗⲴ਽〠࣐ࡽкєњлࡂ㓯__
2 ֯⭘ get set ᯩ⌅㘼нᱟⴤ᧕⭘ ⴤ᧕⭘ publicⲴ৏ഐ˖ bart.score = 59ҏਟԕ؞᭩୺ˈѪ
ӰѸ㾱ᇊѹањᯩ⌅བྷ䍩ઘᣈ˛ഐѪ൘ᯩ⌅ѝˈਟԕሩ৲ᮠڊỰḕˈ䚯ݽՐޕᰐ᭸Ⲵ৲ᮠ ̟
3 ਈ䟿਽㊫լ__xxx__Ⲵᱟ⢩↺ਈ䟿 ⢩̍↺ਈ䟿ᱟਟԕⴤ᧕䇯䰞Ⲵ н̍ᱟ privateਈ䟿 ᡰ̍ԕˈ

н㜭⭘__name__ǃ__score__䘉ṧⲴਈ䟿਽Ǆ
4 ֯⭘_nameⲴਈ䟿ਜ਼ѹᱟ˖㲭❦ᡁਟԕ㻛䇯䰞ˈնᱟˈ䈧ᢺᡁ㿶Ѫ⿱ᴹਈ䟿ˈн㾱䲿᜿䇯
䰞˄㓖ᇊ؇ᡀ˅
5 __name__ਈ䟿ҏਟԕ䇯䰞ˈ䙊䗷_Student__nameˈն䈧н㾱䘉Ѹᒢʽ̔ʽ

൘ Class޵䜘ˈਟԕᴹ኎ᙗ઼ᯩ⌅ˈ㘼ཆ䜘ԓ⸱ਟԕ䙊䗷ⴤ᧕䈳⭘ᇎֻਈ䟿Ⲵᯩ⌅ᶕ᫽֌ᮠ
ᦞˈ䘉ṧˈቡ䳀㯿Ҷ޵䜘Ⲵ༽ᵲ䙫䗁Ǆ
նᱟ Ӿ̍ࡽ䶒 Student㊫Ⲵᇊѹᶕⴻ ཆ̍䜘ԓ⸱䘈ᱟਟԕ㠚⭡ൠ؞᭩ањᇎֻⲴ nameǃscore
኎ᙗ˖
>>> bart = Student('Bart Simpson', 98)
>>> bart.score
98
>>> bart.score = 59
>>> bart.score
59

ྲ᷌㾱䇙޵䜘኎ᙗн㻛ཆ䜘䇯䰞ˈਟԕᢺ኎ᙗⲴ਽〠࣐ࡽкєњлࡂ㓯__ˈ൘ Python ѝˈ
ᇎֻⲴਈ䟿਽ྲ᷌ԕ__ᔰཤˈቡਈᡀҶањ⿱ᴹਈ䟿˄private˅̍ ਚᴹ޵䜘ਟԕ䇯䰞ˈཆ䜘

н㜭䇯䰞ˈᡰԕˈᡁԜᢺ Student㊫᭩а᭩˖
class Student(object):

 def __init__(self, name, score):
 self.__name = name
 self.__score = score

 def print_score(self):
 print '%s: %s' % (self.__name, self.__score)

᭩ᆼਾˈሩҾཆ䜘ԓ⸱ᶕ䈤ˈ⋑ӰѸਈࣘˈնᱟᐢ㓿ᰐ⌅Ӿཆ䜘䇯䰞ᇎֻਈ䟿.__name઼ᇎ

ֻਈ䟿.__scoreҶ˖
>>> bart = Student('Bart Simpson', 98)
>>> bart.__name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'

䘉ṧቡ⺞؍Ҷཆ䜘ԓ⸱н㜭䲿᜿؞᭩ሩ䊑޵䜘Ⲵ⣦ᘱ 䘉̍ṧ䙊䗷䇯䰞䲀ࡦⲴ؍ᣔ ԓ̍⸱ᴤ࣐

 ༞Ǆڕ
նᱟྲ᷌ཆ䜘ԓ⸱㾱㧧ਆ name઼ scoreᘾѸ࣎˛ਟԕ㔉 Student㊫໎࣐ get_name઼ get_score
䘉ṧⲴᯩ⌅˖
class Student(object):
 ...

 def get_name(self):
 return self.__name

 def get_score(self):
 return self.__score

ྲ᷌৸㾱ݱ䇨ཆ䜘ԓ⸱؞᭩ scoreᘾѸ࣎˛ਟԕ㔉 Student㊫໎࣐ set_scoreᯩ⌅˖
class Student(object):
 ...

 def set_score(self, score):
 self.__score = score

䛓⿽ⴤ᧕䙊䗷ݸҏ䇨Պ䰞ˈ৏֐ bart.score = 59ҏਟԕ؞᭩୺ˈѪӰѸ㾱ᇊѹањᯩ⌅བྷ䍩
ઘᣈ˛ഐѪ൘ᯩ⌅ѝˈਟԕሩ৲ᮠڊỰḕˈ䚯ݽՐޕᰐ᭸Ⲵ৲ᮠ˖
class Student(object):
 ...

 def set_score(self, score):
 if 0 <= score <= 100:
 self.__score = score
 else:
 raise ValueError('bad score')

䴰㾱⌘᜿Ⲵᱟˈ൘ Pythonѝˈਈ䟿਽㊫լ__xxx__Ⲵˈҏቡᱟԕৼлࡂ㓯ᔰཤˈᒦфԕৼл
㓯㔃ቮⲴˈᱟ⢩↺ਈ䟿ˈ⢩↺ਈ䟿ᱟਟԕⴤ᧕䇯䰞Ⲵˈнᱟࡂ private ਈ䟿ˈᡰԕˈн㜭⭘
__name__ǃ__score__䘉ṧⲴਈ䟿਽Ǆ
ᴹӋᰦ֐ˈىՊⴻࡠԕањлࡂ㓯ᔰཤⲴᇎֻਈ䟿਽ˈ∄ྲ_nameˈ䘉ṧⲴᇎֻਈ䟿ཆ䜘ᱟ
ਟԕ䇯䰞Ⲵˈնᱟˈ᤹➗㓖ᇊ؇ᡀⲴ㿴ᇊˈᖃ֐ⴻࡠ䘉ṧⲴਈ䟿ᰦˈ᜿ᙍቡᱟˈ“㲭❦ᡁਟ
ԕ㻛䇯䰞ˈնᱟˈ䈧ᢺᡁ㿶Ѫ⿱ᴹਈ䟿ˈн㾱䲿᜿䇯䰞”Ǆ

ৼлࡂ㓯ᔰཤⲴᇎֻਈ䟿ᱟнᱟаᇊн㜭Ӿཆ䜘䇯䰞઒˛ަᇎҏнᱟǄн㜭ⴤ᧕䇯䰞

__nameᱟഐѪ Python䀓䟺ಘሩཆᢺ__nameਈ䟿᭩ᡀҶ_Student__name ᡰ̍ԕ ӽ̍❦ਟԕ䙊

䗷_Student__nameᶕ䇯䰞__nameਈ䟿˖
>>> bart._Student__name
'Bart Simpson'

նᱟᕪ⛸ᔪ䇞֐н㾱䘉Ѹᒢ ഐ̍Ѫн਼⡸ᵜⲴ Python䀓䟺ಘਟ㜭Պᢺ__name᭩ᡀн਼Ⲵਈ
䟿਽Ǆ
ᙫⲴᶕ䈤ቡᱟˈPythonᵜ䓛⋑ᴹԫօᵪࡦ䱫→֐ᒢൿһˈаޘ࠷䶐㠚㿹Ǆ

㔗᢯઼ཊᘱ㔗᢯઼ཊᘱ㔗᢯઼ཊᘱ㔗᢯઼ཊᘱ

䟽⛩䟽⛩䟽⛩䟽⛩˖̟̟̟
1 䶒ੁሩ䊑Ⲵᔰ䰝৏ࡉˈ
ሩᢙኅᔰ᭮˖ݱ䇨ᯠ໎ Animalᆀ㊫˗
ሩ؞᭩ሱ䰝˖н䴰㾱؞᭩׍䎆 Animal㊫රⲴ run_twice()ㅹ࠭ᮠǄ

൘ OOP〻ᒿ䇮䇑ѝ ᖃ̍ᡁԜᇊѹањ classⲴᰦى ਟ̍ԕӾḀњ⧠ᴹⲴ class㔗᢯ ᯠ̍Ⲵ class
〠Ѫᆀ㊫˄Subclass˅̍ 㘼㻛㔗᢯Ⲵ class〠Ѫส㊫ǃ⡦㊫ᡆ䎵㊫˄Base classǃSuper class Ǆ˅
∄ྲˈᡁԜᐢ㓿㕆߉Ҷањ਽Ѫ AnimalⲴ classˈᴹањ run()ᯩ⌅ਟԕⴤ᧕ᢃঠ˖
class Animal(object):
 def run(self):
 print 'Animal is running...'

ᖃᡁԜ䴰㾱㕆߉ Dog઼ Cat㊫ᰦˈቡਟԕⴤ᧕Ӿ Animal㊫㔗᢯˖
class Dog(Animal):
 pass

class Cat(Animal):
 pass

ሩҾ Dogᶕ䈤ˈAnimalቡᱟᆳⲴ⡦㊫ˈሩҾ Animalᶕ䈤ˈDogቡᱟᆳⲴᆀ㊫ǄCat઼ Dog
㊫լǄ
㔗᢯ᴹӰѸྭ༴˛ᴰབྷⲴྭ༴ᱟᆀ㊫㧧ᗇҶ⡦㊫Ⲵޘ䜘࣏㜭Ǆ⭡Ҿ Animial ᇎ⧠Ҷ run()ᯩ
⌅ˈഐ↔ˈDog઼ Cat֌ѪᆳⲴᆀ㊫ˈӰѸһҏ⋑ᒢˈቡ㠚ࣘᤕᴹҶ run()ᯩ⌅˖
dog = Dog()
dog.run()

cat = Cat()
cat.run()

䘀㹼㔃᷌ྲл˖
Animal is running...

Animal is running...

ᖃ❦ˈҏਟԕሩᆀ㊫໎࣐аӋᯩ⌅ˈ∄ྲ Dog㊫˖
class Dog(Animal):
 def run(self):
 print 'Dog is running...'
 def eat(self):
 print 'Eating meat...'

㔗᢯ⲴㅜҼњྭ༴䴰㾱ᡁԜሩԓ⸱ڊа⛩᭩䘋Ǆ֐ⴻࡠҶ ᰐ̍䇪ᱟ Dog䘈ᱟ Cat ᆳ̍Ԝ run()
Ⲵᰦى ᱮ̍⽪Ⲵ䜭ᱟ Animal is running... ㅖ̍ਸ䙫䗁Ⲵڊ⌅ᱟ࡛࠶ᱮ⽪ Dog is running...઼ Cat
is running...ˈഐ↔ˈሩ Dog઼ Cat㊫᭩䘋ྲл˖
class Dog(Animal):
 def run(self):
 print 'Dog is running...'

class Cat(Animal):
 def run(self):
 print 'Cat is running...'

 ˖䘀㹼ˈ㔃᷌ྲл⅑޽
Dog is running...
Cat is running...

ᖃᆀ㊫઼⡦㊫䜭ᆈ൘⴨਼Ⲵ run()ᯩ⌅ᰦˈᡁԜ䈤ˈᆀ㊫Ⲵ run()㾶ⴆҶ⡦㊫Ⲵ run()ˈ൘ԓ⸱
䘀㹼ⲴᰦىˈᙫᱟՊ䈳⭘ᆀ㊫Ⲵ run()Ǆ䘉ṧˈᡁԜቡ㧧ᗇҶ㔗᢯Ⲵਖањྭ༴˖ཊᘱǄ
㾱⨶䀓ӰѸᱟཊᘱˈᡁԜ俆ݸ㾱ሩᮠᦞ㊫ර޽֌а⛩䈤᰾ǄᖃᡁԜᇊѹањ class Ⲵᰦىˈ
ᡁԜᇎ䱵кቡᇊѹҶа⿽ᮠᦞ㊫රǄᡁԜᇊѹⲴᮠᦞ㊫ර઼ Python 㠚ᑖⲴᮠᦞ㊫රˈ∄ྲ
strǃlistǃdict⋑ӰѸєṧ˖
a = list() # aᱟ list㊫ර
b = Animal() # bᱟ Animal㊫ර
c = Dog() # cᱟ Dog㊫ර

⭘ᯝањਈ䟿ᱟ੖ᱟḀњ㊫රਟԕࡔ isinstance()ࡔᯝ˖
>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True

ⴻᶕ aǃbǃc⺞ᇎሩᓄ⵰ listǃAnimalǃDog䘉 3⿽㊫රǄ
նᱟㅹㅹˈ䈅䈅˖
>>> isinstance(c, Animal)

True

ⴻᶕ cнӵӵᱟ Dogˈc䘈ᱟ Animalʽ
н䗷Ԅ㓶ᜣᜣˈ䘉ᱟᴹ䚃⨶ⲴˈഐѪ DogᱟӾ Animal㔗᢯лᶕⲴˈᖃᡁԜࡋᔪҶањ Dog
Ⲵᇎֻ cᰦˈᡁԜ䇔Ѫ cⲴᮠᦞ㊫රᱟ Dog⋑䭉ˈն c਼ᰦҏᱟ Animalҏ⋑䭉ˈDogᵜᶕ
ቡᱟ AnimalⲴа⿽ʽ
ᡰԕˈ൘㔗᢯ޣ㌫ѝˈྲ ᷌ањᇎֻⲴᮠᦞ㊫රᱟḀњᆀ㊫ˈ䛓ᆳⲴᮠᦞ㊫රҏਟԕ㻛ⴻڊ

ᱟ⡦㊫Ǆնᱟˈ৽䗷ᶕቡн㹼˖
>>> b = Animal()
>>> isinstance(b, Dog)
False

Dogਟԕⴻᡀ Animalˈն Animalнਟԕⴻᡀ DogǄ
㾱⨶䀓ཊᘱⲴྭ༴ˈᡁԜ䘈䴰㾱޽㕆߉ањ࠭ᮠˈ䘉њ࠭ᮠ᧕ਇањ Animal㊫රⲴਈ䟿˖
def run_twice(animal):
 animal.run()
 animal.run()

ᖃᡁԜՐޕ AnimalⲴᇎֻᰦˈrun_twice()ቡᢃঠࠪ˖
>>> run_twice(Animal())
Animal is running...
Animal is running...

ᖃᡁԜՐޕ DogⲴᇎֻᰦˈrun_twice()ቡᢃঠࠪ˖
>>> run_twice(Dog())
Dog is running...
Dog is running...

ᖃᡁԜՐޕ CatⲴᇎֻᰦˈrun_twice()ቡᢃঠࠪ˖
>>> run_twice(Cat())
Cat is running...
Cat is running...

ⴻк৫⋑க᜿ᙍˈնᱟԄ㓶ᜣᜣˈ⧠൘ˈྲ᷌ᡁԜ޽ᇊѹањ Tortoise ㊫රˈҏӾ Animal
⍮⭏˖
class Tortoise(Animal):
 def run(self):
 print 'Tortoise is running slowly...'

ᖃᡁԜ䈳⭘ run_twice()ᰦˈՐޕ TortoiseⲴᇎֻ˖
>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...

⧠Պਁ֐ ᯠ̍໎ањAnimalⲴᆀ㊫ н̍ᗵሩ run_twice()ڊԫօ؞᭩ ᇎ̍䱵к ԫ̍օ׍䎆Animal
֌Ѫ৲ᮠⲴ࠭ᮠᡆ㘵ᯩ⌅䜭ਟԕн࣐؞᭩ൠ↓ᑨ䘀㹼ˈ৏ഐቡ൘ҾཊᘱǄ
ཊᘱⲴྭ༴ቡᱟˈᖃᡁԜ䴰㾱Րޕ DogǃCatǃTortoise……ᰦˈᡁԜਚ䴰㾱᧕᭦ Animal ㊫
රቡਟԕҶˈഐѪ DogǃCatǃTortoise……䜭ᱟ Animal㊫රˈ❦ਾˈ᤹➗ Animal㊫ර䘋㹼
᫽֌ণਟǄ⭡Ҿ Animal ㊫රᴹ run()ᯩ⌅ˈഐ↔ˈՐޕⲴԫ᜿㊫රˈਚ㾱ᱟ Animal ㊫ᡆ㘵
ᆀ㊫ˈቡՊ㠚ࣘ䈳⭘ᇎ䱵㊫රⲴ run()ᯩ⌅ˈ䘉ቡᱟཊᘱⲴ᜿ᙍ˖
ሩҾањਈ䟿ˈᡁԜਚ䴰㾱⸕䚃ᆳᱟ Animal㊫රˈᰐ䴰⺞࠷ൠ⸕䚃ᆳⲴᆀ㊫රˈቡਟԕ᭮
ᗳൠ䈳⭘ run()ᯩ⌅ˈ㘼ާփ䈳⭘Ⲵ run()ᯩ⌅ᱟ֌⭘൘ AnimalǃDogǃCat䘈ᱟ Tortoiseሩ䊑
к ⭡̍䘀㹼ᰦ䈕ሩ䊑Ⲵ⺞࠷㊫රߣᇊ 䘉̍ቡᱟཊᘱⵏ↓Ⲵေ࣋ 䈳̟⭘ᯩਚ㇑䈳⭘ н̍㇑㓶㢲ˈ

㘼ᖃᡁԜᯠ໎а⿽ AnimalⲴᆀ㊫ᰦˈਚ㾱⺞؍ run()ᯩ⌅㕆߉↓⺞ˈн⭘㇑৏ᶕⲴԓ⸱ᱟྲ
օ䈳⭘ⲴǄ䘉ቡᱟ㪇਽Ⲵ“ᔰ䰝”৏ࡉ˖
ሩᢙኅᔰ᭮˖ݱ䇨ᯠ໎ Animalᆀ㊫˗
ሩ؞᭩ሱ䰝˖н䴰㾱؞᭩׍䎆 Animal㊫රⲴ run_twice()ㅹ࠭ᮠǄ
㔗᢯䘈ਟԕа㓗а㓗ൠ㔗᢯лᶕˈቡྭ∄Ӿ⾆⡦ࡠ⡧⡧ǃࡠ޽⡨⡨䘉ṧⲴޣ㌫Ǆ㘼ԫօ㊫ˈ

ᴰ㓸䜭ਟԕ䘭ⓟࡠṩ㊫ object 䘉̍Ӌ㔗᢯ޣ㌫ⴻк৫ቡۿа仇ق⵰ⲴṁǄ∄ྲྲлⲴ㔗᢯ṁ ̟

ሿ㔃
㔗᢯ਟԕᢺ⡦㊫Ⲵᡰᴹ࣏㜭䜭ⴤ᧕᤯䗷ᶕ 䘉̍ṧቡнᗵ䟽䴦ڊ䎧 ᆀ̍㊫ਚ䴰㾱ᯠ໎㠚ᐡ⢩ᴹ

Ⲵᯩ⌅ˈҏਟԕᢺ⡦㊫н䘲ਸⲴᯩ⌅㾶ⴆ䟽߉˗
ᴹҶ㔗᢯ˈ᡽㜭ᴹཊᘱǄ൘䈳⭘㊫ᇎֻᯩ⌅Ⲵᰦىˈቭ䟿ᢺਈ䟿㿶֌⡦㊫㊫රˈ䘉ṧˈᡰᴹ

ᆀ㊫㊫ර䜭ਟԕ↓ᑨ㻛᧕᭦˗
ᰗⲴᯩᔿᇊѹ Python ㊫ݱ䇨нӾ object ㊫㔗᢯ˈն䘉⿽㕆〻ᯩᔿᐢ㓿ѕ䟽н᧘㦀֯⭘Ǆԫ
օᰦىˈྲ᷌⋑ᴹਸ䘲Ⲵ㊫ਟԕ㔗᢯ˈቡ㔗᢯㠚 object㊫Ǆ

㧧ਆሩ䊑ؑ᚟㧧ਆሩ䊑ؑ᚟㧧ਆሩ䊑ؑ᚟㧧ਆሩ䊑ؑ᚟

䟽⛩˖
1 俆ݸˈᡁԜᶕࡔᯝሩ䊑㊫රˈ֯⭘ type()࠭ᮠ˖
2 ሩҾ classⲴ㔗᢯ޣ㌫ᶕ䈤ˈ֯⭘ type()ቡᖸнᯩׯǄᡁԜ㾱ࡔᯝ classⲴ㊫රˈਟԕ֯⭘
isinstance()࠭ᮠ
3 ྲ᷌㾱㧧ᗇањሩ䊑Ⲵᡰᴹ኎ᙗ઼ᯩ⌅ˈਟԕ֯⭘ dir()࠭ᮠˈᆳ䘄എањवਜ਼ᆇㅖѢⲴ
listˈ∄ྲˈ㧧ᗇањ strሩ䊑Ⲵᡰᴹ኎ᙗ઼ᯩ⌅˖
4 䘈ᴹަԆⲴ޵㖞࠭ᮠ

ᖃᡁԜ᤯ࡠањሩ䊑Ⲵᕅ⭘ᰦˈྲօ⸕䚃䘉њሩ䊑ᱟӰѸ㊫රǃᴹଚӋᯩ⌅઒˛
֯⭘ type()
俆ݸˈᡁԜᶕࡔᯝሩ䊑㊫රˈ֯⭘ type()࠭ᮠ˖
สᵜ㊫ර䜭ਟԕ⭘ type()ࡔᯝ˖
>>> type(123)
<type 'int'>
>>> type('str')
<type 'str'>
>>> type(None)
<type 'NoneType'>

ྲ᷌ањਈ䟿ᤷੁ࠭ᮠᡆ㘵㊫ˈҏਟԕ⭘ type()ࡔᯝ˖
>>> type(abs)
<type 'builtin_function_or_method'>
>>> type(a)
<class '__main__.Animal'>

նᱟ type()࠭ᮠ䘄എⲴᱟӰѸ㊫ර઒˛ᆳ䘄എ type㊫රǄྲ ᷌ᡁԜ㾱൘ if䈝ਕѝࡔᯝ ቡ̍䴰

㾱∄䖳єњਈ䟿Ⲵ type㊫රᱟ੖⴨਼˖
>>> type(123)==type(456)
True
>>> type('abc')==type('123')
True
>>> type('abc')==type(123)
False

նᱟ䘉⿽߉⌅ཚ哫✖ P̍ythonᢺ⇿⿽ type㊫ර䜭ᇊѹྭҶᑨ䟿ˈ᭮൘ types⁑ඇ䟼ˈ֯⭘ѻ
 ˖ޕሬݸ䴰㾱ˈࡽ
>>> import types
>>> type('abc')==types.StringType
True
>>> type(u'abc')==types.UnicodeType
True

>>> type([])==types.ListType
True
>>> type(str)==types.TypeType
True

ᴰਾ⌘᜿ࡠᴹа⿽㊫රቡਛ TypeTypeˈᡰᴹ㊫රᵜ䓛Ⲵ㊫රቡᱟ TypeTypeˈ∄ྲ˖
>>> type(int)==type(str)==types.TypeType
True

֯⭘ isinstance()
ሩҾ class Ⲵ㔗᢯ޣ㌫ᶕ䈤ˈ֯⭘ type()ቡᖸнᯩׯǄᡁԜ㾱ࡔᯝ class Ⲵ㊫රˈਟԕ֯⭘
isinstance()࠭ᮠǄ
ᡁԜഎ亮к⅑Ⲵֻᆀˈྲ᷌㔗᢯ޣ㌫ᱟ˖
object -> Animal -> Dog -> Husky

䛓Ѹˈisinstance()ቡਟԕ੺䇹ᡁԜˈањሩ䊑ᱟ੖ᱟḀ⿽㊫රǄࡋݸᔪ 3⿽㊫රⲴሩ䊑˖
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()

❦ਾˈࡔᯝ˖
>>> isinstance(h, Husky)
True

⋑ᴹ䰞仈ˈഐѪ hਈ䟿ᤷੁⲴቡᱟ Huskyሩ䊑Ǆ
 ˖ᯝࡔ޽
>>> isinstance(h, Dog)
True

h㲭❦㠚䓛ᱟ Husky㊫රˈն⭡Ҿ HuskyᱟӾ Dog㔗᢯лᶕⲴˈᡰԕˈhҏ䘈ᱟ Dog㊫රǄ
ᦒਕ䈍䈤 i̍sinstance()ࡔᯝⲴᱟањሩ䊑ᱟ੖ᱟ䈕㊫රᵜ䓛 ᡆ̍㘵սҾ䈕㊫රⲴ⡦㔗᢯䬮кǄ
ഐ↔ˈᡁԜਟԕ⺞ؑˈh䘈ᱟ Animal㊫ර˖
>>> isinstance(h, Animal)
True

਼⨶ˈᇎ䱵㊫රᱟ DogⲴ dҏᱟ Animal㊫ර˖
>>> isinstance(d, Dog) and isinstance(d, Animal)
True

նᱟˈdнᱟ Husky㊫ර˖
>>> isinstance(d, Husky)
False

㜭⭘ type()ࡔᯝⲴสᵜ㊫රҏਟԕ⭘ isinstance()ࡔᯝ˖

>>> isinstance('a', str)
True
>>> isinstance(u'a', unicode)
True
>>> isinstance('a', unicode)
False

ᒦф䘈ਟԕࡔᯝањਈ䟿ᱟ੖ᱟḀӋ㊫රѝⲴа⿽ˈ∄ྲл䶒Ⲵԓ⸱ቡਟԕࡔᯝᱟ੖ᱟ str
ᡆ㘵 unicode˖
>>> isinstance('a', (str, unicode))
True
>>> isinstance(u'a', (str, unicode))
True

⭡Ҿ str઼ unicode䜭ᱟӾ basestring㔗᢯лᶕⲴˈᡰԕˈ䘈ਟԕᢺк䶒Ⲵԓ⸱ㆰॆѪ˖
>>> isinstance(u'a', basestring)
True

֯⭘ dir()
ྲ᷌㾱㧧ᗇањሩ䊑Ⲵᡰᴹ኎ᙗ઼ᯩ⌅ ਟ̍ԕ֯⭘ dir()࠭ᮠ ᆳ̍䘄എањवਜ਼ᆇㅖѢⲴ listˈ
∄ྲˈ㧧ᗇањ strሩ䊑Ⲵᡰᴹ኎ᙗ઼ᯩ⌅˖
>>> dir('ABC')
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__',
'__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '_formatter_field_name_split', '_formatter_parser', 'capitalize', 'center', 'count',
'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit',
'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex',
'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate',
'upper', 'zfill']

㊫լ__xxx__Ⲵ኎ᙗ઼ᯩ⌅൘ Python ѝ䜭ᱟᴹ⢩↺⭘䙄Ⲵˈ∄ྲ__len__ᯩ⌅䘄എ䮯ᓖǄ൘
Python ѝˈྲ᷌֐䈳⭘ len()࠭ᮠ䈅മ㧧ਆањሩ䊑Ⲵ䮯ᓖˈᇎ䱵кˈ൘ len()࠭ᮠ޵䜘ˈᆳ
㠚ࣘ৫䈳⭘䈕ሩ䊑Ⲵ__len__()ᯩ⌅ˈᡰԕˈл䶒Ⲵԓ⸱ᱟㅹԧⲴ˖
>>> len('ABC')
3
>>> 'ABC'.__len__()
3

ᡁԜ㠚ᐡ߉Ⲵ㊫ˈྲ᷌ҏᜣ⭘ len(myObj)Ⲵ䈍ˈቡ㠚ᐡ߉ањ__len__()ᯩ⌅˖
>>> class MyObject(object):
... def __len__(self):
... return 100

...
>>> obj = MyObject()
>>> len(obj)
100

࢙лⲴ䜭ᱟᲞ䙊኎ᙗᡆᯩ⌅ˈ∄ྲ lower()䘄എሿ߉ⲴᆇㅖѢ˖
>>> 'ABC'.lower()
'abc'

ӵӵᢺ኎ᙗ઼ᯩ⌅ࠪࡇᶕᱟнཏⲴˈ䝽ਸ getattr()ǃsetattr()ԕ৺ hasattr()ˈᡁԜਟԕⴤ᧕᫽
֌ањሩ䊑Ⲵ⣦ᘱ˖
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()

㍗᧕⵰ˈਟԕ⍻䈅䈕ሩ䊑Ⲵ኎ᙗ˖
>>> hasattr(obj, 'x') # ᴹ኎ᙗ'x'ੇ˛
True
>>> obj.x
9
>>> hasattr(obj, 'y') # ᴹ኎ᙗ'y'ੇ˛
False
>>> setattr(obj, 'y', 19) # 䇮㖞ањ኎ᙗ'y'
>>> hasattr(obj, 'y') # ᴹ኎ᙗ'y'ੇ˛
True
>>> getattr(obj, 'y') # 㧧ਆ኎ᙗ'y'
19
>>> obj.y # 㧧ਆ኎ᙗ'y'
19

ྲ᷌䈅മ㧧ਆнᆈ൘Ⲵ኎ᙗˈՊᣋࠪ AttributeErrorⲴ䭉䈟˖
>>> getattr(obj, 'z') # 㧧ਆ኎ᙗ'z'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyObject' object has no attribute 'z'

ਟԕՐޕањ default৲ᮠˈྲ᷌኎ᙗнᆈ൘ˈቡ䘄എ唈䇔٬˖
>>> getattr(obj, 'z', 404) # 㧧ਆ኎ᙗ'z'ˈྲ᷌нᆈ൘ˈ䘄എ唈䇔٬ 404
404

ҏਟԕ㧧ᗇሩ䊑Ⲵᯩ⌅˖
>>> hasattr(obj, 'power') # ᴹ኎ᙗ'power'ੇ˛
True
>>> getattr(obj, 'power') # 㧧ਆ኎ᙗ'power'
<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>
>>> fn = getattr(obj, 'power') # 㧧ਆ኎ᙗ'power'ᒦ䍻ࡠ٬ਈ䟿 fn
>>> fn # fnᤷੁ obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>
>>> fn() # 䈳⭘ fn()о䈳⭘ obj.power()ᱟаṧⲴ
81

ሿ㔃
䙊䗷޵㖞Ⲵа㌫࠭ࡇᮠˈᡁԜਟԕሩԫ᜿ањ Python ሩ䊑䘋㹼᷀ࢆˈ᤯޵ަࡠ䜘ⲴᮠᦞǄ
㾱⌘᜿Ⲵᱟˈਚᴹ൘н⸕䚃ሩ䊑ؑ᚟ⲴᰦىˈᡁԜ᡽Պ৫㧧ਆሩ䊑ؑ᚟Ǆྲ᷌ਟԕⴤ᧕߉ ̟
sum = obj.x + obj.y

ቡн㾱߉˖
sum = getattr(obj, 'x') + getattr(obj, 'y')

ањ↓⺞Ⲵ⭘⌅Ⲵֻᆀྲл˖
def readImage(fp):
 if hasattr(fp, 'read'):
 return readData(fp)
 return None

䇮ᡁԜᐼᵋӾ᮷Ԧ⍱ٷ fpѝ䈫ਆമۿ ᡁ̍Ԝ俆ݸ㾱ࡔᯝ䈕 fpሩ䊑ᱟ੖ᆈ൘ readᯩ⌅ˈྲ ᷌

ᆈ൘ˈࡉ䈕ሩ䊑ᱟањ⍱ˈྲ᷌нᆈ൘ˈࡉᰐ⌅䈫ਆǄhasattr()ቡ⍮кҶ⭘൪Ǆ
䈧⌘᜿ˈ൘ Python䘉㊫ࣘᘱ䈝䀰ѝˈᴹ read()ᯩ⌅ˈнԓ㺘䈕 fpሩ䊑ቡᱟањ᮷Ԧ⍱ˈᆳ
ҏਟ㜭ᱟ㖁㔌⍱ˈҏਟ㜭ᱟ޵ᆈѝⲴањᆇ㢲⍱ˈնਚ㾱 read()ᯩ⌅䘄എⲴᱟᴹ᭸Ⲵമۿᮠ
ᦞˈቡнᖡ૽䈫ਆമۿⲴ࣏㜭Ǆ

䶘ੇሯ䊗儎㓝㕌ぁ䶘ੇሯ䊗儎㓝㕌ぁ䶘ੇሯ䊗儎㓝㕌ぁ䶘ੇሯ䊗儎㓝㕌ぁ

ᮠᦞሱ㻵ǃ㔗᢯઼ཊᘱਚᱟ䶒ੁሩ䊑〻ᒿ䇮䇑ѝᴰส⹰Ⲵ 3њᾲᘥǄ൘ Python ѝˈ䶒ੁሩ
䊑䘈ᴹᖸཊ儈㓗⢩ᙗˈݱ䇨ᡁԜࠪ߉䶎ᑨᕪབྷⲴ࣏㜭Ǆ
ᡁԜՊ䇘䇪ཊ䟽㔗᢯ǃᇊࡦ㊫ǃݳ㊫ㅹᾲᘥǄ

֯⭘֯⭘֯⭘֯⭘__slots__

䟽⛩䟽⛩䟽⛩䟽⛩˖̟̟̟
1 ࣘᘱൠѪ㊫㔁ᇊ኎ᙗ઼ᯩ⌅

2 ֯⭘__slots__䲀ࡦ㔁ᇊⲴ኎ᙗ઼ᯩ⌅

↓ᑨᛵߥлˈᖃᡁԜᇊѹҶањ classˈࡋᔪҶањ classⲴᇎֻਾˈᡁԜਟԕ㔉䈕ᇎֻ㔁ᇊ
ԫօ኎ᙗ઼ᯩ⌅ˈ䘉ቡᱟࣘᘱ䈝䀰Ⲵ⚥⍫ᙗǄݸᇊѹ class˖
>>> class Student(object):
... pass
...

❦ਾˈቍ䈅㔉ᇎֻ㔁ᇊањ኎ᙗ˖
>>> s = Student()
>>> s.name = 'Michael' # ࣘᘱ㔉ᇎֻ㔁ᇊањ኎ᙗ
>>> print s.name
Michael

䘈ਟԕቍ䈅㔉ᇎֻ㔁ᇊањᯩ⌅˖
>>> def set_age(self, age): # ᇊѹањ࠭ᮠ֌Ѫᇎֻᯩ⌅
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s, Student) # 㔉ᇎֻ㔁ᇊањᯩ⌅
>>> s.set_age(25) # 䈳⭘ᇎֻᯩ⌅
>>> s.age # ⍻䈅㔃᷌
25

նᱟˈ㔉ањᇎֻ㔁ᇊⲴᯩ⌅ˈሩਖањᇎֻᱟн䎧֌⭘Ⲵ˖
>>> s2 = Student() # ࡋᔪᯠⲴᇎֻ
>>> s2.set_age(25) # ቍ䈅䈳⭘ᯩ⌅
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'

ѪҶ㔉ᡰᴹᇎֻ䜭㔁ᇊᯩ⌅ˈਟԕ㔉 class㔁ᇊᯩ⌅˖
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = MethodType(set_score, None, Student)

㔉 class㔁ᇊᯩ⌅ਾˈᡰᴹᇎֻ൷ਟ䈳⭘˖
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99

䙊ᑨᛵߥлˈк䶒Ⲵ set_scoreᯩ⌅ਟԕⴤ᧕ᇊѹ൘ classѝˈնࣘᘱ㔁ᇊݱ䇨ᡁԜ൘〻ᒿ䘀
㹼Ⲵ䗷〻ѝࣘᘱ㔉 class࣐к࣏㜭ˈ䘉൘䶉ᘱ䈝䀰ѝᖸ䳮ᇎ⧠Ǆ

֯⭘֯⭘֯⭘֯⭘__slots__
նᱟˈྲ ᷌ᡁԜᜣ㾱䲀ࡦ classⲴ኎ᙗᘾѸ࣎˛∄ྲ ਚ̍ݱ䇨ሩ Studentᇎֻ␫࣐ name઼ age
኎ᙗǄ
ѪҶ䗮ࡠ䲀ࡦⲴⴞⲴˈPython 䇨൘ᇊѹݱ class Ⲵᰦىˈᇊѹањ⢩↺Ⲵ__slots__ਈ䟿ˈᶕ
䲀ࡦ䈕 class㜭␫࣐Ⲵ኎ᙗ˖
>>> class Student(object):
... __slots__ = ('name', 'age') # ⭘ tupleᇊѹݱ䇨㔁ᇊⲴ኎ᙗ਽〠
...

❦ਾˈᡁԜ䈅䈅˖
>>> s = Student() # ࡋᔪᯠⲴᇎֻ
>>> s.name = 'Michael' # 㔁ᇊ኎ᙗ'name'
>>> s.age = 25 # 㔁ᇊ኎ᙗ'age'
>>> s.score = 99 # 㔁ᇊ኎ᙗ'score'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

⭡Ҿ 'score'⋑ᴹ㻛᭮ࡠ__slots__ѝˈᡰԕн㜭㔁ᇊ score ኎ᙗˈ䈅മ㔁ᇊ score ሶᗇࡠ
AttributeErrorⲴ䭉䈟Ǆ
֯⭘__slots__㾱⌘᜿ _̍_slots__ᇊѹⲴ኎ᙗӵሩᖃࡽ㊫䎧֌⭘ ሩ̍㔗᢯Ⲵᆀ㊫ᱟн䎧֌⭘Ⲵ ̟
>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

䲔䶎൘ᆀ㊫ѝҏᇊѹ__slots__ˈ䘉ṧˈᆀ㊫ݱ䇨ᇊѹⲴ኎ᙗቡᱟ㠚䓛Ⲵ__slots__࣐к⡦㊫Ⲵ
__slots__Ǆ

֯⭘֯⭘֯⭘֯⭘@property

䟽⛩䟽⛩䟽⛩䟽⛩˖̟̟̟
1 @propertyᒯ⌋ᓄ⭘൘㊫Ⲵᇊѹѝˈਟԕ䇙䈳⭘㘵ࠪ߉ㆰ⸝Ⲵԓ⸱ˈ਼ᰦ؍䇱ሩ৲ᮠ䘋㹼
ᗵ㾱ⲴỰḕˈ䘉ṧˈ〻ᒿ䘀㹼ᰦቡ߿ቁҶࠪ䭉Ⲵਟ㜭ᙗǄ 䘉њྭۿᖸ儈ㄟˈնн⸕䚃ᱟн
ᱟ㓿ᑨ֯⭘ˈᖵỰ傼

൘㔁ᇊ኎ᙗᰦˈྲ ᷌ᡁԜⴤ᧕ᢺ኎ᙗ᳤䵢ࠪ৫ 㲭̍❦߉䎧ᶕᖸㆰঅ ն̍ᱟ ⋑̍࣎⌅Ựḕ৲ᮠˈ

ሬ㠤ਟԕᢺᡀ㔙䲿ׯ᭩˖

s = Student()
s.score = 9999

䘉ᱮ❦нਸ䙫䗁ǄѪҶ䲀ࡦ score Ⲵ㤳തˈਟԕ䙊䗷ањ set_score()ᯩ⌅ᶕ䇮㖞ᡀ㔙ˈ޽䙊
䗷ањ get_score()ᶕ㧧ਆᡀ㔙ˈ䘉ṧˈ൘ set_score()ᯩ⌅䟼ˈቡਟԕỰḕ৲ᮠ˖
class Student(object):

 def get_score(self):
 return self._score

 def set_score(self, value):
 if not isinstance(value, int):
 raise ValueError('score must be an integer!')
 if value < 0 or value > 100:
 raise ValueError('score must between 0 ~ 100!')
 self._score = value

⧠൘ˈሩԫ᜿Ⲵ Studentᇎֻ䘋㹼᫽֌ˈቡн㜭䲿ᗳᡰⅢൠ䇮㖞 scoreҶ˖
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
 ...
ValueError: score must between 0 ~ 100!

նᱟˈк䶒Ⲵ䈳⭘ᯩ⌅৸⮕ᱮ༽ᵲˈ⋑ᴹⴤ᧕⭘኎ᙗ䘉Ѹⴤ᧕ㆰঅǄ
ᴹ⋑ᴹᰒ㜭Ựḕ৲ᮠ ৸̍ਟԕ⭘㊫լ኎ᙗ䘉ṧㆰঅⲴᯩᔿᶕ䇯䰞㊫Ⲵਈ䟿઒˛ሩҾ䘭≲ᆼ㖾

Ⲵ Python〻ᒿઈᶕ䈤ˈ䘉ᱟᗵ享㾱ࡠڊⲴʽ
䘈䇠ᗇ㻵侠ಘ˄ decorator ਟ˅ԕ㔉࠭ᮠࣘᘱ࣐к࣏㜭ੇ˛ሩҾ㊫Ⲵᯩ⌅ 㻵̍侠ಘаṧ䎧֌⭘Ǆ

Python޵㖞Ⲵ@property㻵侠ಘቡᱟ䍏䍓ᢺањᯩ⌅ਈᡀ኎ᙗ䈳⭘Ⲵ˖
class Student(object):

 @property
 def score(self):
 return self._score

 @score.setter
 def score(self, value):
 if not isinstance(value, int):
 raise ValueError('score must be an integer!')
 if value < 0 or value > 100:
 raise ValueError('score must between 0 ~ 100!')

 self._score = value

@propertyⲴᇎ⧠∄䖳༽ᵲˈᡁԜݸ㘳ሏྲօ֯⭘Ǆᢺањ getter ᯩ⌅ਈᡀ኎ᙗˈਚ䴰㾱࣐
к@propertyቡਟԕҶˈ↔ᰦˈ@propertyᵜ䓛৸ࡋᔪҶਖањ㻵侠ಘ@score.setterˈ䍏䍓ᢺ
ањ setterᯩ⌅ਈᡀ኎ᙗ䍻٬ˈҾᱟˈᡁԜቡᤕᴹањਟ᧗Ⲵ኎ᙗ᫽֌˖
>>> s = Student()
>>> s.score = 60 # OKˈᇎ䱵䖜ॆѪ s.set_score(60)
>>> s.score # OKˈᇎ䱵䖜ॆѪ s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
 ...
ValueError: score must between 0 ~ 100!

⌘᜿ࡠ䘉њ⾎ཷⲴ@propertyˈᡁԜ൘ሩᇎֻ኎ᙗ᫽֌Ⲵᰦىˈቡ⸕䚃䈕኎ᙗᖸਟ㜭нᱟⴤ
᧕᳤䵢Ⲵˈ㘼ᱟ䙊䗷 getter઼ setterᯩ⌅ᶕᇎ⧠ⲴǄ
䘈ਟԕᇊѹਚ䈫኎ᙗˈਚᇊѹ getterᯩ⌅ˈнᇊѹ setterᯩ⌅ቡᱟањਚ䈫኎ᙗ˖
class Student(object):

 @property
 def birth(self):
 return self._birth

 @birth.setter
 def birth(self, value):
 self._birth = value

 @property
 def age(self):
 return 2014 - self._birth

к䶒Ⲵ birthᱟਟ䈫߉኎ᙗˈ㘼 ageቡᱟањਚ䈫኎ᙗˈഐѪ ageਟԕṩᦞ birth઼ᖃࡽᰦ䰤
䇑㇇ࠪᶕǄ
ሿ㔃
@propertyᒯ⌋ᓄ⭘൘㊫Ⲵᇊѹѝˈਟԕ䇙䈳⭘㘵ࠪ߉ㆰ⸝Ⲵԓ⸱ˈ਼ᰦ؍䇱ሩ৲ᮠ䘋㹼ᗵ
㾱ⲴỰḕˈ䘉ṧˈ〻ᒿ䘀㹼ᰦቡ߿ቁҶࠪ䭉Ⲵਟ㜭ᙗǄ

ཊ䟽㔗᢯ཊ䟽㔗᢯ཊ䟽㔗᢯ཊ䟽㔗᢯

䟽⛩˖
1 а㡜Ⲵ䶒ੁሩ䊑㔗᢯

㔗᢯ᱟ䶒ੁሩ䊑㕆〻Ⲵањ䟽㾱ⲴᯩᔿˈഐѪ䙊䗷㔗᢯ˈᆀ㊫ቡਟԕᢙኅ⡦㊫Ⲵ࣏㜭Ǆ

എᗶал Animal㊫ቲ⅑Ⲵ䇮䇑ˈٷ䇮ᡁԜ㾱ᇎ⧠ԕл 4⿽ࣘ⢙˖
Dog - ⤇⤇˗
Bat - 㶉㶐˗
Parrot - 咖呹˗
Ostrich - 呥呏Ǆ
ྲ᤹᷌➗ପңࣘ⢙઼呏㊫ᖂ㊫ˈᡁԜਟԕ䇮䇑ࠪ䘉ṧⲴ㊫Ⲵቲ⅑˖

նᱟྲ᤹᷌➗“㜭䐁”઼“㜭伎”ᶕᖂ㊫ˈᡁԜቡᓄ䈕䇮䇑ࠪ䘉ṧⲴ㊫Ⲵቲ⅑˖

ྲ᷌㾱ᢺк䶒Ⲵє⿽࠶㊫䜭वਜ਼䘋ᶕˈᡁԜቡᗇ䇮䇑ᴤཊⲴቲ⅑˖
ପң㊫˖㜭䐁Ⲵପң㊫ˈ㜭伎Ⲵପң㊫˗
呏㊫˖㜭䐁Ⲵ呏㊫ˈ㜭伎Ⲵ呏㊫Ǆ
䘉Ѹаᶕˈ㊫Ⲵቲ⅑ቡ༽ᵲҶ˖

ྲ᷌㾱࣐໎޽“ᇐ⢙㊫”઼“䶎ᇐ⢙㊫”ˈ䘉Ѹᩎл৫ˈ㊫Ⲵᮠ䟿Պ੸ᤷᮠ໎䮯ˈᖸ᰾ᱮ䘉ṧ䇮
䇑ᱟн㹼ⲴǄ
↓⺞Ⲵڊ⌅ᱟ䟷⭘ཊ䟽㔗᢯Ǆ俆ݸˈѫ㾱Ⲵ㊫ቲ⅑ӽ᤹➗ପң㊫઼呏㊫䇮䇑˖
class Animal(object):
 pass

བྷ㊫:
class Mammal(Animal):
 pass

class Bird(Animal):
 pass

਴⿽ࣘ⢙:
class Dog(Mammal):
 pass

class Bat(Mammal):
 pass

class Parrot(Bird):
 pass

class Ostrich(Bird):
 pass

⧠൘ ᡁ̍Ԝ㾱㔉ࣘ⢙࣐޽к Runnable઼ FlyableⲴ࣏㜭 ਚ̍䴰㾱ݸᇊѹྭ Runnable઼ Flyable
Ⲵ㊫˖
class Runnable(object):
 def run(self):
 print('Running...')

class Flyable(object):
 def fly(self):
 print('Flying...')

ሩҾ䴰㾱 Runnable࣏㜭Ⲵࣘ⢙ˈቡཊ㔗᢯ањ Runnableˈֻྲ Dog˖
class Dog(Mammal, Runnable):
 pass

ሩҾ䴰㾱 Flyable࣏㜭Ⲵࣘ⢙ˈቡཊ㔗᢯ањ Flyableˈֻྲ Bat˖
class Bat(Mammal, Flyable):
 pass

䙊䗷ཊ䟽㔗᢯ˈањᆀ㊫ቡਟԕ਼ᰦ㧧ᗇཊњ⡦㊫Ⲵᡰᴹ࣏㜭Ǆ

Mixin
൘䇮䇑㊫Ⲵ㔗᢯ޣ㌫ᰦˈ䙊ᑨˈѫ㓯䜭ᱟঅа㔗᢯лᶕⲴˈֻྲˈOstrich 㔗᢯㠚 BirdǄն
ᱟˈྲ᷌䴰㾱“␧ޕ”仍ཆⲴ࣏㜭ˈ䙊䗷ཊ䟽㔗᢯ቡਟԕᇎ⧠ˈ∄ྲˈ䇙 Ostrich 䲔Ҷ㔗᢯㠚
Birdཆˈ਼޽ᰦ㔗᢯ RunnableǄ䘉⿽䇮䇑䙊ᑨ〠ѻѪMixinǄ
ѪҶᴤྭൠⴻࠪ㔗᢯ޣ㌫ ᡁ̍Ԝᢺ Runnable઼ Flyable᭩Ѫ RunnableMixin઼ FlyableMixinǄ
㊫լⲴ 䘈ਟԕᇊѹࠪ㚹伏ࣘ⢙̍֐ CarnivorousMixin઼Ἵ伏ࣘ⢙ HerbivoresMixin 䇙̍Ḁњࣘ
⢙਼ᰦᤕᴹྭࠐњMixin˖
class Dog(Mammal, RunnableMixin, CarnivorousMixin):
 pass

MixinⲴⴞⲴቡᱟ㔉ањ㊫໎࣐ཊњ࣏㜭ˈ䘉ṧˈ൘䇮䇑㊫ⲴᰦىˈᡁԜՈݸ㘳㲁䙊䗷ཊ䟽
㔗᢯ᶕ㓴ਸཊњMixinⲴ࣏㜭ˈ㘼нᱟ䇮䇑ཊቲ⅑Ⲵ༽ᵲⲴ㔗᢯ޣ㌫Ǆ
Python 㠚ᑖⲴᖸཊᓃҏ֯⭘Ҷ MixinǄѮњֻᆀˈPython 㠚ᑖҶ TCPServer ઼ UDPServer
䘉є㊫㖁㔌ᴽ࣑ˈ㘼㾱਼ᰦᴽ࣑ཊњ⭘ᡧቡᗵ享֯⭘ཊ䘋〻ᡆཊ㓯〻⁑රˈ䘉є⿽⁑ර⭡

ForkingMixin઼ ThreadingMixinᨀ׋Ǆ䙊䗷㓴ਸˈᡁԜቡਟԕࡋ䙐ࠪਸ䘲Ⲵᴽ࣑ᶕǄ
∄ྲˈ㕆߉ањཊ䘋〻⁑ᔿⲴ TCPᴽ࣑ˈᇊѹྲл˖
class MyTCPServer(TCPServer, ForkingMixin):
 pass

㕆߉ањཊ㓯〻⁑ᔿⲴ UDPᴽ࣑ˈᇊѹྲл˖
class MyUDPServer(UDPServer, ThreadingMixin):
 pass

ањ߉䘋Ⲵॿ〻⁑රˈਟԕ㕆ݸᢃ㇇ᩎањᴤ֐᷌ྲ CoroutineMixin˖
class MyTCPServer(TCPServer, CoroutineMixin):
 pass

䘉ṧаᶕˈᡁԜн䴰㾱༽ᵲ㘼ᓎབྷⲴ㔗᢯䬮 ਚ̍㾱䘹ᤙ㓴ਸн਼Ⲵ㊫Ⲵ࣏㜭ˈቡਟԕᘛ䙏ᶴ

䙐ࠪᡰ䴰Ⲵᆀ㊫Ǆ
ሿ㔃
⭡Ҿ Pythonݱ䇨֯⭘ཊ䟽㔗᢯ˈഐ↔ˈMixinቡᱟа⿽ᑨ㿱Ⲵ䇮䇑Ǆ
ਚݱ䇨অа㔗᢯Ⲵ䈝䀰˄ྲ Java˅н㜭֯⭘MixinⲴ䇮䇑Ǆ

ᇊࡦ㊫ᇊࡦ㊫ᇊࡦ㊫ᇊࡦ㊫

ⴻࡠ㊫լ__slots__䘉⿽ᖒྲ__xxx__Ⲵਈ䟿ᡆ㘵࠭ᮠ਽ቡ㾱⌘᜿ˈ䘉Ӌ൘ Pythonѝᱟᴹ⢩↺
⭘䙄ⲴǄ
__slots__ᡁԜᐢ㓿⸕䚃ᘾѸ⭘Ҷˈ__len__()ᯩ⌅ᡁԜҏ⸕䚃ᱟѪҶ㜭䇙 class ֌⭘Ҿ len()࠭
ᮠǄ
䲔↔ѻཆˈPythonⲴ classѝ䘈ᴹ䇨ཊ䘉ṧᴹ⢩↺⭘䙄Ⲵ࠭ᮠˈਟԕᑞࣙᡁԜᇊࡦ㊫Ǆ
__str__
ᡁԜݸᇊѹањ Student㊫ˈᢃঠањᇎֻ˖
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print Student('Michael')
<__main__.Student object at 0x109afb190>

ᢃঠࠪаึ<__main__.Student object at 0x109afb190>ˈнྭⴻǄ
ᘾѸ᡽㜭ᢃঠᗇྭⴻ઒˛ਚ䴰㾱ᇊѹྭ__str__()ᯩ⌅ˈ䘄എањྭⴻⲴᆇㅖѢቡਟԕҶ˖
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print Student('Michael')
Student object (name: Michael)

䘉ṧᢃঠࠪᶕⲴᇎֻˈнնྭⴻˈ㘼фᇩ᱃ⴻࠪᇎֻ޵䜘䟽㾱ⲴᮠᦞǄ
նᱟ㓶ᗳⲴᴻ৻Պਁ⧠ⴤ᧕ᮢਈ䟿н⭘ printˈᢃঠࠪᶕⲴᇎֻ䘈ᱟнྭⴻ˖
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>

䘉ᱟഐѪⴤ᧕ᱮ⽪ਈ䟿䈳⭘Ⲵнᱟ__str__()ˈ㘼ᱟ__repr__()ˈє㘵Ⲵ४࡛ᱟ__str__()䘄എ⭘
ᡧⴻࡠⲴᆇㅖѢˈ㘼__repr__()䘄എ〻ᒿᔰਁ㘵ⴻࡠⲴᆇㅖѢˈҏቡᱟ䈤ˈ__repr__()ᱟѪ䈳
䈅ᴽ࣑ⲴǄ
䀓࣎ߣ⌅ᱟ޽ᇊѹањ__repr__()Ǆնᱟ䙊ᑨ__str__()઼__repr__()ԓ⸱䜭ᱟаṧⲴˈᡰԕˈ
ᴹњڧ᠂Ⲵ߉⌅˖
class Student(object):
 def __init__(self, name):
 self.name = name
 def __str__(self):
 return 'Student object (name=%s)' % self.name
 __repr__ = __str__

__iter__
ྲ᷌ањ㊫ᜣ㻛⭘Ҿ for ... inᗚ⧟ˈ㊫լ listᡆ tuple䛓ṧˈቡᗵ享ᇎ⧠ањ__iter__()ᯩ⌅ˈ
䈕ᯩ⌅䘄എањ䘝ԓሩ䊑ˈ❦ਾˈPythonⲴ forᗚ⧟ቡՊнᯝ䈳⭘䈕䘝ԓሩ䊑Ⲵ next()ᯩ⌅
᤯ࡠᗚ⧟Ⲵлањ٬ˈⴤࡠ䙷ࡠ StopIteration䭉䈟ᰦ䘰ࠪᗚ⧟Ǆ
ᡁԜԕᯀ⌒䛓ཱྀᮠࡇѪֻˈ߉ањ Fib㊫ˈਟԕ֌⭘Ҿ forᗚ⧟˖
class Fib(object):
 def __init__(self):
 self.a, self.b = 0, 1 # ࡍ࿻ॆєњ䇑ᮠಘ aˈb

 def __iter__(self):
 return self # ᇎֻᵜ䓛ቡᱟ䘝ԓሩ䊑ˈ᭵䘄എ㠚ᐡ

 def next(self):
 self.a, self.b = self.b, self.a + self.b # 䇑㇇лањ٬
 if self.a > 100000: # 䘰ࠪᗚ⧟ⲴᶑԦ
 raise StopIteration();
 return self.a # 䘄എлањ٬

⧠൘ˈ䈅䈅ᢺ Fibᇎֻ֌⭘Ҿ forᗚ⧟˖
>>> for n in Fib():
... print n
...
1
1
2
3
5
...
46368
75025

__getitem__

Fibᇎֻ㲭❦㜭֌⭘Ҿ forᗚ⧟ ⴻ̍䎧ᶕ઼ listᴹ⛩ۿ ն̍ᱟ ᢺ̍ᆳᖃᡀ listᶕ֯⭘䘈ᱟн㹼ˈ
∄ྲˈਆㅜ 5њݳ㍐˖
>>> Fib()[5]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing

㾱㺘⧠ᗇۿ list䛓ṧ᤹➗лḷਆࠪݳ㍐ˈ䴰㾱ᇎ⧠__getitem__()ᯩ⌅˖
class Fib(object):
 def __getitem__(self, n):
 a, b = 1, 1
 for x in range(n):
 a, b = b, a + b
 return a

⧠൘ˈቡਟԕ᤹лḷ䇯䰞ᮠࡇⲴԫ᜿а亩Ҷ˖
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101

նᱟ listᴹњ⾎ཷⲴ࠷⡷ᯩ⌅˖
>>> range(100)[5:10]
[5, 6, 7, 8, 9]

ሩҾ Fib তᣕ䭉Ǆ৏ഐᱟ__getitem__()ՐޕⲴ৲ᮠਟ㜭ᱟањ intˈҏਟ㜭ᱟањ࠷⡷ሩ䊑
sliceˈᡰԕ㾱ࡔڊᯝ˖
class Fib(object):
 def __getitem__(self, n):
 if isinstance(n, int):
 a, b = 1, 1
 for x in range(n):
 a, b = b, a + b
 return a
 if isinstance(n, slice):

 start = n.start
 stop = n.stop
 a, b = 1, 1
 L = []
 for x in range(stop + 1):
 if x >= start:
 L.append(a)
 a, b = b, a + b
 return L

⧠൘䈅䈅 FibⲴ࠷⡷˖
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5, 8]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

նᱟ⋑ᴹሩ step৲ᮠ֌༴⨶˖
>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

ҏ⋑ᴹሩ䍏ᮠ֌༴⨶ˈᡰԕˈ㾱↓⺞ᇎ⧠ањ__getitem__()䘈ᱟᴹᖸཊᐕ֌㾱ڊⲴǄ
↔ཆˈྲ᷌ᢺሩ䊑ⴻᡀ dictˈ__getitem__()Ⲵ৲ᮠҏਟ㜭ᱟањਟԕ֌ key Ⲵ objectˈֻྲ
strǄ
оѻሩᓄⲴᱟ__setitem__()ᯩ⌅ˈᢺሩ䊑㿶֌ list ᡆ dict ᶕሩ䳶ਸ䍻٬Ǆᴰਾˈ䘈ᴹањ
__delitem__()ᯩ⌅ˈ⭘Ҿࡐ䲔Ḁњݳ㍐Ǆ
ᙫѻˈ䙊䗷к䶒Ⲵᯩ⌅ˈᡁԜ㠚ᐡᇊѹⲴ㊫㺘⧠ᗇ઼ Python㠚ᑖⲴ listǃtupleǃdict⋑ӰѸ
४࡛ˈ䘉ᆼޘᖂ࣏Ҿࣘᘱ䈝䀰Ⲵ“呝ᆀ㊫ර”ˈн䴰㾱ᕪࡦ㔗᢯Ḁњ᧕ਓǄ
__getattr__
↓ᑨᛵߥлˈᖃᡁԜ䈳⭘㊫Ⲵᯩ⌅ᡆ኎ᙗᰦˈྲ᷌нᆈ൘ˈቡՊᣕ䭉Ǆ∄ྲᇊѹ Student㊫ ̟
class Student(object):

 def __init__(self):
 self.name = 'Michael'

䈳⭘ name኎ᙗˈ⋑䰞仈ˈնᱟˈ䈳⭘нᆈ൘Ⲵ score኎ᙗˈቡᴹ䰞仈Ҷ˖
>>> s = Student()
>>> print s.name
Michael
>>> print s.score
Traceback (most recent call last):
 ...
AttributeError: 'Student' object has no attribute 'score'

䭉䈟ؑ᚟ᖸ␵ᾊൠ੺䇹ᡁԜˈ⋑ᴹ᢮ࡠ score䘉њ attributeǄ
㾱䚯ݽ䘉њ䭉䈟ˈ䲔Ҷਟԕ࣐кањ score኎ᙗཆˈPython䘈ᴹਖањᵪࡦˈ䛓ቡᱟ߉ањ
__getattr__()ᯩ⌅ˈࣘᘱ䘄എањ኎ᙗǄ؞᭩ྲл˖
class Student(object):

 def __init__(self):
 self.name = 'Michael'

 def __getattr__(self, attr):
 if attr=='score':
 return 99

ᖃ䈳⭘нᆈ൘Ⲵ኎ᙗᰦˈ∄ྲ scoreˈPython 䀓䟺ಘՊ䈅മ䈳⭘__getattr__(self, 'score')ᶕቍ
䈅㧧ᗇ኎ᙗˈ䘉ṧˈᡁԜቡᴹᵪՊ䘄എ scoreⲴ٬˖
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99

䘄എ࠭ᮠҏᱟᆼޘਟԕⲴ˖
class Student(object):

 def __getattr__(self, attr):
 if attr=='age':
 return lambda: 25

ਚᱟ䈳⭘ᯩᔿ㾱ਈѪ˖
>>> s.age()
25

⌘᜿ˈਚᴹ൘⋑ᴹ᢮ࡠ኎ᙗⲴᛵߥлˈ᡽䈳⭘__getattr__ˈᐢᴹⲴ኎ᙗˈ∄ྲ nameˈнՊ൘
__getattr__ѝḕ᢮Ǆ
↔ཆˈ⌘᜿ࡠԫ᜿䈳⭘ྲ s.abc䜭Պ䘄എ Noneˈ䘉ᱟഐѪᡁԜᇊѹⲴ__getattr__唈䇔䘄എቡ
ᱟ NoneǄ㾱䇙 class ਚ૽ᓄ⢩ᇊⲴࠐњ኎ᙗˈᡁԜቡ㾱᤹➗㓖ᇊˈᣋࠪ AttributeError Ⲵ䭉
䈟˖
class Student(object):

 def __getattr__(self, attr):
 if attr=='age':
 return lambda: 25
 raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)

䘉ᇎ䱵кਟԕᢺањ㊫Ⲵᡰᴹ኎ᙗ઼ᯩ⌅䈳⭘ޘ䜘ࣘᘱॆ༴⨶Ҷˈн䴰㾱ԫօ⢩↺᡻⇥Ǆ

䘉⿽ᆼࣘޘᘱ䈳⭘Ⲵ⢩ᙗᴹӰѸᇎ䱵֌⭘઒˛֌⭘ቡᱟˈਟԕ䪸ሩᆼࣘޘᘱⲴᛵߥ֌䈳⭘Ǆ
Ѯњֻᆀ˖
⧠൘ᖸཊ㖁ㄉ䜭ᩎ REST APIˈ∄ྲᯠ⎚ᗞঊǃ䉶⬓கⲴˈ䈳⭘ APIⲴ URL㊫լ˖
http://api.server/user/friends
http://api.server/user/timeline/list

ྲ᷌㾱߉ SDKˈ㔉⇿њ URLሩᓄⲴ API䜭߉ањᯩ⌅ˈ䛓ᗇ㍟↫ˈ㘼фˈAPIаᰖ᭩ࣘˈ
SDKҏ㾱᭩Ǆ
࡙⭘ᆼࣘޘᘱⲴ__getattr__ˈᡁԜਟԕࠪ߉ањ䬮ᔿ䈳⭘˖
class Chain(object):

 def __init__(self, path=''):
 self._path = path

 def __getattr__(self, path):
 return Chain('%s/%s' % (self._path, path))

 def __str__(self):
 return self._path

䈅䈅˖
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'

䘉ṧˈᰐ䇪 APIᘾѸਈ S̍DK䜭ਟԕṩᦞ URLᇎ⧠ᆼࣘޘᘱⲴ䈳⭘ˈ㘼фˈн䲿 APIⲴ໎
࣐㘼᭩ਈʽ
䘈ᴹӋ REST APIՊᢺ৲ᮠ᭮ࡠ URLѝˈ∄ྲ GitHubⲴ API˖
GET /users/:user/repos

䈳⭘ᰦˈ䴰㾱ᢺ:userᴯᦒѪᇎ䱵⭘ᡧ਽Ǆྲ᷌ᡁԜ㜭ࠪ߉䘉ṧⲴ䬮ᔿ䈳⭘˖
Chain().users('michael').repos

ቡਟԕ䶎ᑨᯩׯൠ䈳⭘ APIҶǄᴹޤ䏓Ⲵㄕ䶻ਟԕ䈅䈅ࠪ߉ᶕǄ
__call__
ањሩ䊑ᇎֻਟԕᴹ㠚ᐡⲴ኎ᙗ઼ᯩ⌅ˈᖃᡁԜ䈳⭘ᇎֻᯩ⌅ᰦˈᡁԜ⭘ instance.method()
ᶕ䈳⭘Ǆ㜭н㜭ⴤ᧕൘ᇎֻᵜ䓛к䈳⭘઒˛㊫լ instance()˛൘ PythonѝˈㆄṸᱟ㛟ᇊⲴǄ
ԫօ㊫ˈਚ䴰㾱ᇊѹањ__call__()ᯩ⌅ˈቡਟԕⴤ᧕ሩᇎֻ䘋㹼䈳⭘Ǆ䈧ⴻ⽪ֻ˖
class Student(object):
 def __init__(self, name):
 self.name = name

 def __call__(self):
 print('My name is %s.' % self.name)

䈳⭘ᯩᔿྲл˖
>>> s = Student('Michael')
>>> s()
My name is Michael.

__call__()䘈ਟԕᇊѹ৲ᮠǄሩᇎֻ䘋㹼ⴤ᧕䈳⭘ቡྭ∄ሩањ࠭ᮠ䘋㹼䈳⭘аṧˈᡰԕ֐
ᆼޘਟԕᢺሩ䊑ⴻᡀ࠭ᮠˈᢺ࠭ᮠⴻᡀሩ䊑ˈഐѪ䘉є㘵ѻ䰤ᵜᶕቡ⋑கṩᵜⲴ४࡛Ǆ
ᢺሩ䊑ⴻᡀ࠭ᮠ֐᷌ྲ 䛓̍Ѹ࠭ᮠᵜ䓛ަᇎҏਟԕ൘䘀㹼ᵏࣘᘱࡋᔪࠪᶕ ഐ̍Ѫ㊫Ⲵᇎֻ䜭

ᱟ䘀㹼ᵏࡋᔪࠪᶕⲴˈ䘉ѸаᶕˈᡁԜቡ⁑㋺Ҷሩ䊑઼࠭ᮠⲴ⭼䲀Ǆ
䛓ѸˈᘾѸࡔᯝањਈ䟿ᱟሩ䊑䘈ᱟ࠭ᮠ઒˛ަᇎˈᴤཊⲴᰦىˈᡁԜ䴰㾱ࡔᯝањሩ䊑ᱟ

੖㜭㻛䈳⭘ˈ㜭㻛䈳⭘Ⲵሩ䊑ቡᱟањ Callable ሩ䊑ˈ∄ྲ࠭ᮠ઼ᡁԜк䶒ᇊѹⲴᑖᴹ
__call()__Ⲵ㊫ᇎֻ˖
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('string')
False

䙊䗷 callable()࠭ᮠˈᡁԜቡਟԕࡔᯝањሩ䊑ᱟ੖ᱟ“ਟ䈳⭘”ሩ䊑Ǆ
ሿ㔃
PythonⲴ classݱ䇨ᇊѹ䇨ཊᇊᯩࡦ⌅ˈਟԕ䇙ᡁԜ䶎ᑨᯩׯൠ⭏ᡀ⢩ᇊⲴ㊫Ǆ
ᵜ㢲ӻ㓽Ⲵᱟᴰᑨ⭘Ⲵࠐњᇊᯩࡦ⌅ˈ䘈ᴹᖸཊਟᇊࡦⲴᯩ⌅ˈ䈧৲㘳 PythonⲴᇈᯩ᮷ẓǄ

 ㊫ݳ⭘㊫֯ݳ⭘㊫֯ݳ⭘㊫֯ݳ⭘֯

type()
ࣘᘱ䈝䀰઼䶉ᘱ䈝䀰ᴰབྷⲴн਼ ቡ̍ᱟ࠭ᮠ઼㊫Ⲵᇊѹˈнᱟ㕆䈁ᰦᇊѹⲴˈ㘼ᱟ䘀㹼ᰦࣘ

ᘱࡋᔪⲴǄ
∄ᯩ䈤ᡁԜ㾱ᇊѹањ HelloⲴ classˈቡ߉ањ hello.py⁑ඇ˖
class Hello(object):
 def hello(self, name='world'):
 print('Hello, %s.' % name)

ᖃ Python䀓䟺ಘ䖭ޕ hello⁑ඇᰦˈቡՊ׍⅑ᢗ㹼䈕⁑ඇⲴᡰᴹ䈝ਕˈᢗ㹼㔃᷌ቡᱟࣘᘱࡋ
ᔪࠪањ HelloⲴ classሩ䊑ˈ⍻䈅ྲл˖
>>> from hello import Hello
>>> h = Hello()
>>> h.hello()

Hello, world.
>>> print(type(Hello))
<type 'type'>
>>> print(type(h))
<class 'hello.Hello'>

type()࠭ᮠਟԕḕⴻањ㊫රᡆਈ䟿Ⲵ㊫රˈHello ᱟањ classˈᆳⲴ㊫රቡᱟ typeˈ㘼 h
ᱟањᇎֻˈᆳⲴ㊫රቡᱟ class HelloǄ
ᡁԜ䈤 classⲴᇊѹᱟ䘀㹼ᰦࣘᘱࡋᔪⲴˈ㘼ࡋᔪ classⲴᯩ⌅ቡᱟ֯⭘ type()࠭ᮠǄ
type()࠭ᮠᰒਟԕ䘄എањሩ䊑Ⲵ㊫ර ৸̍ਟԕࡋᔪࠪᯠⲴ㊫ර ∄̍ྲ ᡁ̍Ԝਟԕ䙊䗷 type()
࠭ᮠࡋᔪࠪ Hello㊫ˈ㘼ᰐ䴰䙊䗷 class Hello(object)...Ⲵᇊѹ˖
>>> def fn(self, name='world'): # ݸᇊѹ࠭ᮠ
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # ࡋᔪ Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<type 'type'>
>>> print(type(h))
<class '__main__.Hello'>

㾱ࡋᔪањ classሩ䊑ˈtype()࠭ᮠ׍⅑Րޕ 3њ৲ᮠ˖
classⲴ਽〠˗
㔗᢯Ⲵ⡦㊫䳶ਸˈ⌘᜿ Python᭟ᤱཊ䟽㔗᢯ˈྲ᷌ਚᴹањ⡦㊫ˈ࡛ᘈҶ tupleⲴঅݳ㍐߉
⌅˗
classⲴᯩ⌅਽〠о࠭ᮠ㔁ᇊˈ䘉䟼ᡁԜᢺ࠭ᮠ fn㔁ᇊᯩࡠ⌅਽ helloкǄ
䙊䗷 type()࠭ᮠࡋᔪⲴ㊫઼ⴤ᧕߉ classᱟᆼޘаṧⲴ ഐ̍Ѫ Python䀓䟺ಘ䙷ࡠ classᇊѹᰦˈ
ӵӵᱟᢛ᧿ал classᇊѹⲴ䈝⌅ˈ❦ਾ䈳⭘ type()࠭ᮠࡋᔪࠪ classǄ
↓ᑨᛵߥлˈᡁԜ䜭⭘ class Xxx...ᶕᇊѹ㊫ˈնᱟ t̍ype()࠭ᮠҏݱ䇨ᡁԜࣘᘱࡋᔪࠪ㊫ᶕˈ
ҏቡᱟ䈤ˈࣘᘱ䈝䀰ᵜ䓛᭟ᤱ䘀㹼ᵏࣘᘱࡋᔪ㊫ 䘉઼̍䶉ᘱ䈝䀰ᴹ䶎ᑨབྷⲴн਼ˈ㾱൘䶉ᘱ

䈝䀰䘀㹼ᵏࡋᔪ㊫ ᗵ̍享ᶴ䙐Ⓚԓ⸱ᆇㅖѢ޽䈳⭘㕆䈁ಘ ᡆ̍㘵ُࣙаӋᐕާ⭏ᡀᆇ㢲⸱ᇎ

⧠ˈᵜ䍘к䜭ᱟࣘᘱ㕆䈁ˈՊ䶎ᑨ༽ᵲǄ
metaclass
䲔Ҷ֯⭘ type()ࣘᘱࡋᔪ㊫ԕཆˈ㾱᧗ࡦ㊫Ⲵࡋᔪ㹼Ѫˈ䘈ਟԕ֯⭘ metaclassǄ
metaclassˈⴤ䈁Ѫݳ㊫ˈㆰঅⲴ䀓䟺ቡᱟ˖
ᖃᡁԜᇊѹҶ㊫ԕਾˈቡਟԕṩᦞ䘉њ㊫ࡋᔪࠪᇎֻˈᡰԕ˖ݸᇊѹ㊫ˈ❦ਾࡋᔪᇎֻǄ
նᱟྲ᷌ᡁԜᜣࡋᔪࠪ㊫઒˛䛓ቡᗵ享ṩᦞ metaclassࡋᔪࠪ㊫ˈᡰԕ˖ݸᇊѹ metaclassˈ
❦ਾࡋᔪ㊫Ǆ
䘎᧕䎧ᶕቡᱟ˖ݸᇊѹ metaclassˈቡਟԕࡋᔪ㊫ˈᴰਾࡋᔪᇎֻǄ
ᡰԕˈmetaclassݱ䇨ࡋ֐ᔪ㊫ᡆ㘵؞᭩㊫Ǆᦒਕ䈍䈤ˈ֐ਟԕᢺ㊫ⴻᡀᱟ metaclassࡋᔪࠪ
ᶕⲴ“ᇎֻ”Ǆ
metaclassᱟ Python䶒ੁሩ䊑䟼ᴰ䳮⨶䀓ˈҏᱟᴰ䳮֯⭘Ⲵ冄ᵟԓ⸱Ǆ↓ᑨᛵߥлˈ֐нՊ

⭘䴰㾱֯ࡠ⻠ metaclassⲴᛵߥˈᡰԕˈԕл޵ᇩⴻн៲ҏ⋑ޣ㌫ˈഐѪสᵜк֐нՊ⭘ࡠǄ
ᡁԜݸⴻањㆰঅⲴֻᆀˈ䘉њ metaclassਟԕ㔉ᡁԜ㠚ᇊѹⲴMyList໎࣐ањ addᯩ⌅ ̟
ᇊѹ ListMetaclassˈ᤹➗唈䇔ҐᜟˈmetaclassⲴ㊫਽ᙫᱟԕ Metaclass㔃ቮˈԕׯ␵ᾊൠ㺘
⽪䘉ᱟањ metaclass˖
metaclassᱟࡋᔪ㊫ˈᡰԕᗵ享Ӿ`type`㊫ර⍮⭏˖
class ListMetaclass(type):
 def __new__(cls, name, bases, attrs):
 attrs['add'] = lambda self, value: self.append(value)
 return type.__new__(cls, name, bases, attrs)

class MyList(list):
 __metaclass__ = ListMetaclass # ᤷ⽪֯⭘ ListMetaclassᶕᇊࡦ㊫

ᖃᡁԜ߉л__metaclass__ = ListMetaclass䈝ਕᰦˈ冄ᵟቡ⭏᭸Ҷˈᆳᤷ⽪ Python䀓䟺ಘ൘
ᔪMyListᰦˈ㾱䙊䗷ࡋ ListMetaclass.__new__()ᶕࡋᔪˈ൘↔ˈᡁԜਟԕ؞᭩㊫Ⲵᇊѹˈ∄
ྲˈ࣐кᯠⲴᯩ⌅ˈ❦ਾˈ䘄എ؞᭩ਾⲴᇊѹǄ
__new__()ᯩ⌅᧕᭦ࡠⲴ৲ᮠ׍⅑ᱟ˖
ᖃࡋ༷߶ࡽᔪⲴ㊫Ⲵሩ䊑˗
㊫Ⲵ਽ᆇ˗
㊫㔗᢯Ⲵ⡦㊫䳶ਸ˗
㊫Ⲵᯩ⌅䳶ਸǄ
⍻䈅алMyListᱟ੖ਟԕ䈳⭘ add()ᯩ⌅˖
>>> L = MyList()
>>> L.add(1)
>>> L
[1]

㘼Პ䙊Ⲵ list⋑ᴹ add()ᯩ⌅˖
>>> l = list()
>>> l.add(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'

ࣘᘱ؞᭩ᴹӰѸ᜿ѹ˛ⴤ᧕൘MyListᇊѹѝ߉к add()ᯩ⌅нᱟᴤㆰঅੇ˛↓ᑨᛵߥл ⺞̍

ᇎᓄ䈕ⴤ᧕߉ˈ䙊䗷 metaclass؞᭩㓟኎ਈᘱǄ
նᱟˈᙫՊ䙷ࡠ䴰㾱䙊䗷 metaclass؞᭩㊫ᇊѹⲴǄORMቡᱟањިරⲴֻᆀǄ
ORMޘ〠“Object Relational Mapping”ˈণሩ䊑-ޣ㌫᱐ሴˈቡᱟᢺޣ㌫ᮠᦞᓃⲴа㹼᱐ሴѪ
ањሩ䊑ˈҏቡᱟањ㊫ሩᓄањ㺘ˈ䘉ṧˈ߉ԓ⸱ᴤㆰঅˈн⭘ⴤ᧕᫽֌ SQL䈝ਕǄ
㾱㕆߉ањ ORMṶᷦˈᡰᴹⲴ㊫䜭ਚ㜭ࣘᘱᇊѹˈഐѪਚᴹ֯⭘㘵᡽㜭ṩᦞ㺘Ⲵ㔃ᶴᇊѹ
ࠪሩᓄⲴ㊫ᶕǄ
䇙ᡁԜᶕቍ䈅㕆߉ањ ORMṶᷦǄ
㕆߉ᓅቲ⁑ඇⲴㅜа↕ ቡ̍ᱟݸᢺ䈳⭘᧕ਓࠪ߉ᶕǄ∄ྲˈ֯ ⭘㘵ྲ᷌֯⭘䘉њ ORMṶᷦˈ
ᜣᇊѹањ User㊫ᶕ᫽֌ሩᓄⲴᮠᦞᓃ㺘 UserˈᡁԜᵏᖵԆࠪ߉䘉ṧⲴԓ⸱˖

class User(Model):
 # ᇊѹ㊫Ⲵ኎ᙗࡇࡠⲴ᱐ሴ˖
 id = IntegerField('id')
 name = StringField('username')
 email = StringField('email')
 password = StringField('password')

 ˖ᔪањᇎֻࡋ #
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
 ˖ᮠᦞᓃࡠᆈ؍ #
u.save()

ަѝˈ⡦㊫Model઼኎ᙗ㊫ර StringFieldǃIntegerFieldᱟ⭡ ORMṶᷦᨀ׋Ⲵˈ࢙лⲴ冄ᵟ
ᯩ⌅∄ྲ save()ޘ䜘⭡ metaclass㠚ࣘᆼᡀǄ㲭❦ metaclassⲴ㕆߉Պ∄䖳༽ᵲˈն ORMⲴ
֯⭘㘵⭘䎧ᶕতᔲᑨㆰঅǄ
⧠൘ˈᡁԜቡ᤹к䶒Ⲵ᧕ਓᶕᇎ⧠䈕 ORMǄ
俆ݸᶕᇊѹ Field㊫ˈᆳ䍏䍓؍ᆈᮠᦞᓃ㺘Ⲵᆇ⇥਽઼ᆇ⇥㊫ර˖
class Field(object):
 def __init__(self, name, column_type):
 self.name = name
 self.column_type = column_type
 def __str__(self):
 return '<%s:%s>' % (self.__class__.__name__, self.name)

൘ FieldⲴส⹰кˈ䘋а↕ᇊѹ਴⿽㊫රⲴ Fieldˈ∄ྲ StringFieldˈIntegerFieldㅹㅹ˖
class StringField(Field):
 def __init__(self, name):
 super(StringField, self).__init__(name, 'varchar(100)')

class IntegerField(Field):
 def __init__(self, name):
 super(IntegerField, self).__init__(name, 'bigint')

ла↕ˈቡᱟ㕆߉ᴰ༽ᵲⲴModelMetaclassҶ˖
class ModelMetaclass(type):
 def __new__(cls, name, bases, attrs):
 if name=='Model':
 return type.__new__(cls, name, bases, attrs)
 mappings = dict()
 for k, v in attrs.iteritems():
 if isinstance(v, Field):
 print('Found mapping: %s==>%s' % (k, v))
 mappings[k] = v
 for k in mappings.iterkeys():

 attrs.pop(k)
 attrs['__table__'] = name # ٷ䇮㺘਽઼㊫਽а㠤
 attrs['__mappings__'] = mappings # ؍ᆈ኎ᙗ઼ࡇⲴ᱐ሴޣ㌫
 return type.__new__(cls, name, bases, attrs)

ԕ৺ส㊫Model˖
class Model(dict):
 __metaclass__ = ModelMetaclass

 def __init__(self, **kw):
 super(Model, self).__init__(**kw)

 def __getattr__(self, key):
 try:
 return self[key]
 except KeyError:
 raise AttributeError(r"'Model' object has no attribute '%s'" % key)

 def __setattr__(self, key, value):
 self[key] = value

 def save(self):
 fields = []
 params = []
 args = []
 for k, v in self.__mappings__.iteritems():
 fields.append(v.name)
 params.append('?')
 args.append(getattr(self, k, None))
 sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
 print('SQL: %s' % sql)
 print('ARGS: %s' % str(args))

ᖃ⭘ᡧᇊѹањ class User(Model)ᰦˈPython 䀓䟺ಘ俆ݸ൘ᖃࡽ㊫ User Ⲵᇊѹѝḕ᢮
__metaclass__ˈྲ᷌⋑ᴹ᢮ࡠˈቡ㔗㔝൘⡦㊫Modelѝḕ᢮__metaclass__ˈ᢮ࡠҶˈቡ֯⭘
ModelѝᇊѹⲴ__metaclass__Ⲵ ModelMetaclassᶕࡋᔪ User㊫ˈҏቡᱟ䈤ˈmetaclassਟԕ
䳀ᔿൠ㔗᢯ࡠᆀ㊫ˈնᆀ㊫㠚ᐡতᝏ㿹нࡠǄ
൘ModelMetaclassѝˈаڊޡҶࠐԦһᛵ˖
ᧂ䲔ᦹሩModel㊫Ⲵ؞᭩˗
൘ᖃࡽ㊫˄∄ྲ User˅ѝḕ᢮ᇊѹⲴ㊫Ⲵᡰᴹ኎ᙗˈྲ᷌᢮ࡠањ Field኎ᙗˈቡᢺᆳ؍ᆈ
ањ__mappings__Ⲵࡠ dictѝˈ਼ᰦӾ㊫኎ᙗѝࡐ䲔䈕 Field኎ᙗˈ੖ࡉˈᇩ᱃䙐ᡀ䘀㹼ᰦ
䭉䈟˗
ᢺ㺘਽؍ᆈࡠ__table__ѝˈ䘉䟼ㆰॆѪ㺘਽唈䇔Ѫ㊫਽Ǆ
൘ Model ㊫ѝˈቡਟԕᇊѹ਴⿽᫽֌ᮠᦞᓃⲴᯩ⌅ˈ∄ྲ save()ˈdelete()ˈfind()ˈupdate

ㅹㅹǄ
ᡁԜᇎ⧠Ҷ save()ᯩ⌅ˈᢺањᇎֻ؍ᆈࡠᮠᦞᓃѝǄഐѪᴹ㺘਽ˈ኎ᙗࡠᆇ⇥Ⲵ᱐ሴ઼኎
ᙗ٬Ⲵ䳶ਸˈቡਟԕᶴ䙐ࠪ INSERT䈝ਕǄ
㕆߉ԓ⸱䈅䈅˖
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
u.save()

䗃ࠪྲл˖
Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,uid) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]

ਟԕⴻࡠ s̍ave()ᯩ⌅ᐢ㓿ᢃঠࠪҶਟᢗ㹼Ⲵ SQL䈝ਕˈԕ৺৲ᮠࡇ㺘ˈਚ䴰㾱ⵏ↓䘎᧕ࡠ
ᮠᦞᓃˈᢗ㹼䈕 SQL䈝ਕˈቡਟԕᆼᡀⵏ↓Ⲵ࣏㜭Ǆ
нࡠ 100 㹼ԓ⸱ˈᡁԜቡ䙊䗷 metaclass ᇎ⧠Ҷањ㋮ㆰⲴ ORM ṶᷦˈᆼᮤⲴԓ⸱Ӿ䘉䟼
л䖭˖
https://github.com/michaelliao/learn-python/blob/master/metaclass/simple_orm.py
ᴰਾ䀓䟺ал㊫኎ᙗ઼ᇎֻ኎ᙗǄⴤ᧕൘ classѝᇊѹⲴᱟ㊫኎ᙗ˖
class Student(object):
 name = 'Student'

ᇎֻ኎ᙗᗵ享䙊䗷ᇎֻᶕ㔁ᇊˈ∄ྲ self.name = 'xxx'Ǆᶕ⍻䈅ал˖
ᔪᇎֻࡋ # <<< s˖
>>> s = Student()
>>> # ᢃঠ name኎ᙗˈഐѪᇎֻᒦ⋑ᴹ name኎ᙗˈᡰԕՊ㔗㔝ḕ᢮ classⲴ name኎ᙗ˖
>>> print(s.name)
Student
>>> # 䘉઼䈳⭘ Student.nameᱟаṧⲴ˖
>>> print(Student.name)
Student
>>> # 㔉ᇎֻ㔁ᇊ name኎ᙗ˖
>>> s.name = 'Michael'
>>> # ⭡Ҿᇎֻ኎ᙗՈݸ㓗∄㊫኎ᙗ儈ˈഐ↔ˈᆳՊቿ㭭ᦹ㊫Ⲵ name኎ᙗ˖
>>> print(s.name)
Michael
>>> # նᱟ㊫኎ᙗᒦᵚ⎸ཡˈ⭘ Student.nameӽ❦ਟԕ䇯䰞˖
>>> print(Student.name)
Student
䲔ᇎֻⲴࡐ᷌ྲ # <<< name኎ᙗ˖
>>> del s.name

⭘䈳⅑޽ # <<< s.nameˈ⭡ҾᇎֻⲴ name኎ᙗ⋑ᴹ᢮ࡠˈ㊫Ⲵ name኎ᙗቡᱮ⽪ࠪᶕҶ˖
>>> print(s.name)
Student

ഐ↔ˈ൘㕆߉〻ᒿⲴᰦىˈॳзн㾱ᢺᇎֻ኎ᙗ઼㊫኎ᙗ֯⭘⴨਼Ⲵ਽ᆇǄ
൘ᡁԜ㕆߉Ⲵ ORMѝ M̍odelMetaclassՊࡐ䲔ᦹ User㊫Ⲵᡰᴹ㊫኎ᙗ ⴞ̍Ⲵቡᱟ䚯ݽ䙐ᡀ

␧⏶Ǆ

䭏䈥ૂ䈹䈋䭏䈥ૂ䈹䈋䭏䈥ૂ䈹䈋䭏䈥ૂ䈹䈋

൘〻ᒿ䘀㹼䗷〻ѝˈᙫՊ䙷ࡠ਴⿽਴ṧⲴ䭉䈟Ǆ
ᴹⲴ䭉䈟ᱟ〻ᒿ㕆߉ᴹ䰞仈䙐ᡀⲴ ∄̍ྲᵜᶕᓄ䈕䗃ࠪᮤᮠ㔃᷌䗃ࠪҶᆇㅖѢ 䘉̍⿽䭉䈟ᡁ

Ԝ䙊ᑨ〠ѻѪ bugˈbugᱟᗵ享؞༽ⲴǄ
ᴹⲴ䭉䈟ᱟ⭘ᡧ䗃ޕ䙐ᡀⲴˈ∄ྲ䇙⭘ᡧ䗃ޕ emailൠ൰ˈ㔃᷌ᗇࡠањオᆇㅖѢˈ䘉⿽䭉
䈟ਟԕ䙊䗷Ựḕ⭘ᡧ䗃ޕᶕڊ⴨ᓄⲴ༴⨶Ǆ
䘈ᴹа㊫䭉䈟ᱟᆼޘᰐ⌅൘〻ᒿ䘀㹼䗷〻ѝ亴⍻Ⲵˈ∄ྲޕ߉᮷ԦⲴᰦى ⻱̍ⴈ┑Ҷˈ߉н

䘋৫Ҷˈᡆ㘵Ӿ㖁㔌ᣃਆᮠᦞˈ㖁㔌ケ❦ᯝᦹҶǄ䘉㊫䭉䈟ҏ〠Ѫᔲᑨˈ൘〻ᒿѝ䙊ᑨᱟᗵ

享༴⨶Ⲵˈ੖ࡉˈ〻ᒿՊഐѪ਴⿽䰞仈㓸→ᒦ䘰ࠪǄ
Python޵㖞Ҷа྇ᔲᑨ༴⨶ᵪࡦˈᶕᑞࣙᡁԜ䘋㹼䭉䈟༴⨶Ǆ

䭉䈟༴⨶䭉䈟༴⨶䭉䈟༴⨶䭉䈟༴⨶

൘〻ᒿ䘀㹼Ⲵ䗷〻ѝˈྲ᷌ਁ⭏Ҷ䭉䈟ˈਟԕһݸ㓖ᇊ䘄എањ䭉䈟ԓ⸱ˈ䘉ṧˈቡਟԕ⸕

䚃ᱟ੖ᴹ䭉ˈԕ৺ࠪ䭉Ⲵ৏ഐǄ൘᫽֌㌫㔏ᨀ׋Ⲵ䈳⭘ѝˈ䘄എ䭉䈟⸱䶎ᑨᑨ㿱Ǆ∄ྲᢃᔰ

᮷ԦⲴ࠭ᮠ open()ˈᡀ࣏ᰦ䘄എ᮷Ԧ᧿䘠ㅖ˄ቡᱟањᮤᮠ˅̍ ࠪ䭉ᰦ䘄എ-1Ǆ
⭘䭉䈟⸱ᶕ㺘⽪ᱟ੖ࠪ䭉ॱ࠶нׯˈഐѪ࠭ᮠᵜ䓛ᓄ䈕䘄എⲴ↓ᑨ㔃઼᷌䭉䈟⸱␧൘а䎧ˈ

䙐ᡀ䈳⭘㘵ᗵ享⭘བྷ䟿Ⲵԓ⸱ᶕࡔᯝᱟ੖ࠪ䭉˖
def foo():
 r = some_function()
 if r==(-1):
 return (-1)
 # do something
 return r

def bar():
 r = foo()
 if r==(-1):
 print 'Error'
 else:
 pass

аᰖࠪ䭉ˈ䘈㾱а㓗а㓗кᣕˈⴤࡠḀњ࠭ᮠਟԕ༴⨶䈕䭉䈟˄∄ྲˈ㔉⭘ᡧ䗃ࠪањ䭉䈟

ؑ᚟ Ǆ˅
ᡰԕ儈㓗䈝䀰䙊ᑨ䜭޵㖞Ҷа྇ try...except...finally...Ⲵ䭉䈟༴⨶ᵪࡦˈPythonҏнֻཆǄ
try
䇙ᡁԜ⭘ањֻᆀᶕⴻⴻ tryⲴᵪࡦ˖
try:
 print 'try...'
 r = 10 / 0
 print 'result:', r
except ZeroDivisionError, e:
 print 'except:', e
finally:
 print 'finally...'
print 'END'

ᖃᡁԜ䇔ѪḀӋԓ⸱ਟ㜭Պࠪ䭉ᰦˈቡਟԕ⭘ tryᶕ䘀㹼䘉⇥ԓ⸱ˈྲ᷌ᢗ㹼ࠪ䭉ˈࡉਾ㔝
ԓ⸱нՊ㔗㔝ᢗ㹼ˈ㘼ᱟⴤ᧕䐣䖜㠣䭉䈟༴⨶ԓ⸱ˈণ except 䈝ਕඇˈᢗ㹼ᆼ except ਾˈ
ྲ᷌ᴹ finally䈝ਕඇˈࡉᢗ㹼 finally䈝ਕඇˈ㠣↔ˈᢗ㹼ᆼ∅Ǆ
к䶒Ⲵԓ⸱൘䇑㇇ 10 / 0ᰦՊӗ⭏ањ䲔⌅䘀㇇䭉䈟˖
try...
except: integer division or modulo by zero
finally...
END

Ӿ䗃ࠪਟԕⴻࡠˈᖃ䭉䈟ਁ⭏ᰦˈਾ㔝䈝ਕ print 'result:', rнՊ㻛ᢗ㹼ˈexcept⭡Ҿᦅ㧧ࡠ
ZeroDivisionErrorˈഐ↔㻛ᢗ㹼Ǆᴰਾˈfinally 䈝ਕ㻛ᢗ㹼Ǆ❦ਾˈ〻ᒿ㔗㔝᤹➗⍱〻ᖰл
䎠Ǆ
ྲ᷌ᢺ䲔ᮠ 0᭩ᡀ ˖ᢗ㹼㔃᷌ྲлࡉˈ2
try...
result: 5
finally...
END

⭡Ҿ⋑ᴹ䭉䈟ਁ⭏ˈᡰԕ except 䈝ਕඇнՊ㻛ᢗ㹼ˈնᱟ finally ྲ᷌ᴹˈࡉаᇊՊ㻛ᢗ㹼
˄ਟԕ⋑ᴹ finally䈝ਕ Ǆ˅
䘈ਟԕ⥌⍻ˈ䭉䈟ᓄ䈕ᴹᖸཊ⿽㊫ˈྲ᷌ਁ⭏Ҷн਼㊫රⲴ䭉䈟ˈᓄ䈕⭡н਼Ⲵ֐ except
䈝ਕඇ༴⨶Ǆ⋑䭉ˈਟԕᴹཊњ exceptᶕᦅ㧧н਼㊫රⲴ䭉䈟˖
try:
 print 'try...'
 r = 10 / int('a')
 print 'result:', r
except ValueError, e:
 print 'ValueError:', e
except ZeroDivisionError, e:

 print 'ZeroDivisionError:', e
finally:
 print 'finally...'
print 'END'

int()࠭ᮠਟ㜭Պᣋࠪ ValueErrorˈᡰԕᡁԜ⭘ањ except ᦅ㧧 ValueErrorˈ⭘ਖањ except
ᦅ㧧 ZeroDivisionErrorǄ
↔ཆˈྲ᷌⋑ᴹ䭉䈟ਁ⭏ˈਟԕ൘ except䈝ਕඇਾ䶒࣐ањ elseˈᖃ⋑ᴹ䭉䈟ਁ⭏ᰦˈՊ㠚
ࣘᢗ㹼 else䈝ਕ˖
try:
 print 'try...'
 r = 10 / int('a')
 print 'result:', r
except ValueError, e:
 print 'ValueError:', e
except ZeroDivisionError, e:
 print 'ZeroDivisionError:', e
else:
 print 'no error!'
finally:
 print 'finally...'
print 'END'

PythonⲴ䭉䈟ަᇎҏᱟ classˈᡰᴹⲴ䭉䈟㊫ර䜭㔗᢯㠚 BaseExceptionˈᡰԕ൘֯⭘ except
ᰦ䴰㾱⌘᜿Ⲵᱟˈᆳнնᦅ㧧䈕㊫රⲴ䭉䈟ˈ䘈ᢺަᆀ㊫ҏ“а㖁ᢃቭ”Ǆ∄ྲ˖
try:
 foo()
except StandardError, e:
 print 'StandardError'
except ValueError, e:
 print 'ValueError'

ㅜҼњ except≨䘌ҏᦅ㧧нࡠ ValueError ഐ̍Ѫ ValueErrorᱟ StandardErrorⲴᆀ㊫ˈྲ ᷌ᴹˈ

ҏ㻛ㅜањ except㔉ᦅ㧧ҶǄ
PythonᡰᴹⲴ䭉䈟䜭ᱟӾ BaseException㊫⍮⭏Ⲵˈᑨ㿱Ⲵ䭉䈟㊫ර઼㔗᢯ޣ㌫ⴻ䘉䟼˖
https://docs.python.org/2/library/exceptions.html#exception-hierarchy
֯⭘ try...except ᦅ㧧䭉䈟䘈ᴹањᐘབྷⲴྭ༴ˈቡᱟਟԕ䐘䎺ཊቲ䈳⭘ˈ∄ྲ࠭ᮠ main()
䈳⭘ foo()ˈfoo()䈳⭘ bar()ˈ㔃᷌ bar()ࠪ䭉Ҷˈ䘉ᰦˈਚ㾱 main()ᦅ㧧ࡠҶˈቡਟԕ༴⨶˖
def foo(s):
 return 10 / int(s)

def bar(s):
 return foo(s) * 2

def main():
 try:
 bar('0')
 except StandardError, e:
 print 'Error!'
 finally:
 print 'finally...'

ҏቡᱟ䈤 н̍䴰㾱൘⇿њਟ㜭ࠪ䭉Ⲵൠᯩ৫ᦅ㧧䭉䈟 ਚ̍㾱൘ਸ䘲Ⲵቲ⅑৫ᦅ㧧䭉䈟ቡਟԕ

ҶǄ䘉ṧаᶕˈቡབྷབྷ߿ቁҶ߉ try...except...finallyⲴ哫✖Ǆ
䈳⭘ึḸ
ྲ᷌䭉䈟⋑ᴹ㻛ᦅ㧧ˈᆳቡՊаⴤᖰкᣋˈᴰਾ㻛 Python䀓䟺ಘᦅ㧧ˈᢃঠањ䭉䈟ؑ᚟ˈ
❦ਾ〻ᒿ䘰ࠪǄᶕⴻⴻ err.py˖
err.py:
def foo(s):
 return 10 / int(s)

def bar(s):
 return foo(s) * 2

def main():
 bar('0')

main()

ᢗ㹼ˈ㔃᷌ྲл˖
$ python err.py
Traceback (most recent call last):
 File "err.py", line 11, in <module>
 main()
 File "err.py", line 9, in main
 bar('0')
 File "err.py", line 6, in bar
 return foo(s) * 2
 File "err.py", line 3, in foo
 return 10 / int(s)
ZeroDivisionError: integer division or modulo by zero

ࠪ䭉ᒦнਟᙅˈਟᙅⲴᱟн⸕䚃ଚ䟼ࠪ䭉ҶǄ䀓䈫䭉䈟ؑ᚟ᱟᇊս䭉䈟Ⲵޣ䭞ǄᡁԜӾкᖰ

лਟԕⴻᮤࡠњ䭉䈟Ⲵ䈳⭘࠭ᮠ䬮˖
䭉䈟ؑ᚟ㅜ 1㹼˖
Traceback (most recent call last):

੺䇹ᡁԜ䘉ᱟ䭉䈟Ⲵ䐏䑚ؑ᚟Ǆ

ㅜ 2㹼˖
 File "err.py", line 11, in <module>
 main()

䈳⭘ main()ࠪ䭉Ҷˈ൘ԓ⸱᮷Ԧ err.pyⲴㅜ 11㹼ԓ⸱ˈն৏ഐᱟㅜ 4㹼˖
 File "err.py", line 9, in main
 bar('0')

䈳⭘ bar('0')ࠪ䭉Ҷˈ൘ԓ⸱᮷Ԧ err.pyⲴㅜ 9㹼ԓ⸱ˈն৏ഐᱟㅜ 6㹼˖
 File "err.py", line 6, in bar
 return foo(s) * 2

৏ഐᱟ return foo(s) * 2䘉њ䈝ਕࠪ䭉Ҷˈն䘉䘈нᱟᴰ㓸৏ഐˈ㔗㔝ᖰлⴻ˖
 File "err.py", line 3, in foo
 return 10 / int(s)

৏ഐᱟ return 10 / int(s)䘉њ䈝ਕࠪ䭉Ҷˈ䘉ᱟ䭉䈟ӗ⭏ⲴⓀཤˈഐѪл䶒ᢃঠҶ˖
ZeroDivisionError: integer division or modulo by zero

ṩᦞ䭉䈟㊫ර ZeroDivisionErrorˈᡁԜࡔᯝ i̍nt(s)ᵜ䓛ᒦ⋑ᴹࠪ䭉ˈնᱟ int(s)䘄എ 0ˈ൘䇑
㇇ 10 / 0ᰦࠪ䭉ˈ㠣↔ˈ᢮ࡠ䭉䈟ⓀཤǄ
䇠ᖅ䭉䈟
ྲ᷌нᦅ㧧䭉䈟ˈ㠚❦ਟԕ䇙 Python 䀓䟺ಘᶕᢃঠࠪ䭉䈟ึḸˈն〻ᒿҏ㻛㔃ᶏҶǄᰒ❦
ᡁԜ㜭ᦅ㧧䭉䈟ˈቡਟԕᢺ䭉䈟ึḸᢃঠࠪᶕˈ❦ਾ᷀࠶䭉䈟৏ഐˈ਼ᰦˈ䇙〻ᒿ㔗㔝ᢗ㹼

л৫Ǆ
Python޵㖞Ⲵ logging⁑ඇਟԕ䶎ᑨᇩ᱃ൠ䇠ᖅ䭉䈟ؑ᚟˖
err.py
import logging

def foo(s):
 return 10 / int(s)

def bar(s):
 return foo(s) * 2

def main():
 try:
 bar('0')
 except StandardError, e:
 logging.exception(e)

main()
print 'END'

਼ṧᱟࠪ䭉ˈն〻ᒿᢃঠᆼ䭉䈟ؑ᚟ਾՊ㔗㔝ᢗ㹼ˈᒦ↓ᑨ䘰ࠪ˖
$ python err.py
ERROR:root:integer division or modulo by zero
Traceback (most recent call last):
 File "err.py", line 12, in main
 bar('0')
 File "err.py", line 8, in bar
 return foo(s) * 2
 File "err.py", line 5, in foo
 return 10 / int(s)
ZeroDivisionError: integer division or modulo by zero
END

䙊䗷䝽㖞ˈlogging䘈ਟԕᢺ䭉䈟䇠ᖅࡠᰕᘇ᮷Ԧ䟼ˈᯩׯһਾᧂḕǄ
ᣋࠪ䭉䈟
ഐѪ䭉䈟ᱟ classˈᦅ㧧ањ䭉䈟ቡᱟᦅ㧧ࡠ䈕 classⲴањᇎֻǄഐ↔ˈ䭉䈟ᒦнᱟࠝオӗ
⭏Ⲵˈ㘼ᱟᴹ᜿ࡋᔪᒦᣋࠪⲴǄPython Ⲵ޵㖞࠭ᮠՊᣋࠪᖸཊ㊫රⲴ䭉䈟ˈᡁԜ㠚ᐡ㕆߉
Ⲵ࠭ᮠҏਟԕᣋࠪ䭉䈟Ǆ
ྲ᷌㾱ᣋࠪ䭉䈟ˈ俆ݸṩᦞ䴰㾱ˈਟԕᇊѹањ䭉䈟Ⲵ classˈ䘹ᤙྭ㔗᢯ޣ㌫ˈ❦ਾˈ⭘
raise䈝ਕᣋࠪањ䭉䈟Ⲵᇎֻ˖
err.py
class FooError(StandardError):
 pass

def foo(s):
 n = int(s)
 if n==0:
 raise FooError('invalid value: %s' % s)
 return 10 / n

ᢗ㹼ˈਟԕᴰਾ䐏䑚ࡠᡁԜ㠚ᐡᇊѹⲴ䭉䈟˖
$ python err.py
Traceback (most recent call last):
 ...
__main__.FooError: invalid value: 0

ਚᴹ൘ᗵ㾱Ⲵᰦى᡽ᇊѹᡁԜ㠚ᐡⲴ䭉䈟㊫රǄྲ᷌ਟԕ䘹ᤙ Python ᐢᴹⲴ޵㖞Ⲵ䭉䈟㊫
ර˄∄ྲ ValueErrorˈTypeError˅̍ ቭ䟿֯⭘ Python޵㖞Ⲵ䭉䈟㊫රǄ
ᴰਾˈᡁԜᶕⴻਖа⿽䭉䈟༴⨶Ⲵᯩᔿ˖
err.py
def foo(s):
 n = int(s)
 return 10 / n

def bar(s):
 try:
 return foo(s) * 2
 except StandardError, e:
 print 'Error!'
 raise

def main():
 bar('0')

main()

൘ bar()࠭ᮠѝˈᡁԜ᰾᰾ᐢ㓿ᦅ㧧Ҷ䭉䈟ˈնᱟˈᢃঠањ Error!ਾˈ৸ᢺ䭉䈟䙊䗷 raise
䈝ਕᣋࠪ৫Ҷˈ䘉нᴹ⯵Ѹ˛
ަᇎ䘉⿽䭉䈟༴⨶ᯩᔿнն⋑⯵ 㘼̍ф⴨ᖃᑨ㿱Ǆᦅ㧧䭉䈟ⴞⲴਚᱟ䇠ᖅал Ҿਾ㔝䘭ׯ̍

䑚Ǆնᱟˈ⭡Ҿᖃ࠭ࡽᮠн⸕䚃ᓄ䈕ᘾѸ༴⨶䈕䭉䈟ˈᡰԕˈᴰᚠᖃⲴᯩᔿᱟ㔗㔝ᖰкᣋˈ

䇙亦ቲ䈳⭘㘵৫༴⨶Ǆ
raise䈝ਕྲ᷌нᑖ৲ᮠˈቡՊᢺᖃࡽ䭉䈟৏ṧᣋࠪǄ↔ཆˈ൘ exceptѝ raiseањ Errorˈ䘈
ਟԕᢺа⿽㊫රⲴ䭉䈟䖜ॆᡀਖа⿽㊫ර˖
try:
 10 / 0
except ZeroDivisionError:
 raise ValueError('input error!')

ਚ㾱ᱟਸ⨶Ⲵ䖜ᦒ䙫䗁ቡਟԕ ն̍ᱟ нᓄ䈕ᢺањߣ̍ IOError䖜ᦒᡀ∛н⴨ᒢⲴValueErrorǄ
ሿ㔃
Python 㖞Ⲵ޵ try...except...finally⭘ᶕ༴⨶䭉䈟ॱׯᯩ࠶Ǆࠪ䭉ᰦˈՊ᷀࠶䭉䈟ؑ᚟ᒦᇊս
䭉䈟ਁ⭏Ⲵԓ⸱ս㖞᡽ᱟᴰޣ䭞ⲴǄ
〻ᒿҏਟԕѫࣘᣋࠪ䭉䈟ˈ䇙䈳⭘㘵ᶕ༴⨶⴨ᓄⲴ䭉䈟Ǆնᱟ ᓄ̍䈕൘᮷ẓѝ߉␵ᾊਟ㜭Պ

ᣋࠪଚӋ䭉䈟ˈԕ৺䭉䈟ӗ⭏Ⲵ৏ഐǄ

䈳䈅䈳䈅䈳䈅䈳䈅

〻ᒿ㜭а⅑߉ᆼᒦ↓ᑨ䘀㹼Ⲵᾲ⦷ᖸሿ ส̍ᵜн䎵䗷 1%ǄᙫՊᴹ਴⿽਴ṧⲴ bug䴰㾱؞↓Ǆ
ᴹⲴ bugᖸㆰঅˈⴻⴻ䭉䈟ؑ᚟ቡ⸕䚃ˈᴹⲴ bugᖸ༽ᵲˈᡁԜ䴰㾱⸕䚃ࠪ䭉ᰦˈଚӋਈ䟿
Ⲵ٬ᱟ↓⺞ⲴˈଚӋਈ䟿Ⲵ٬ᱟ䭉䈟Ⲵˈഐ↔ˈ䴰㾱аᮤ྇䈳䈅〻ᒿⲴ᡻⇥ᶕ؞༽ bugǄ
ㅜа⿽ᯩ⌅ㆰঅⴤ᧕㋇᳤ᴹ᭸ˈቡᱟ⭘ printᢺਟ㜭ᴹ䰞仈Ⲵਈ䟿ᢃঠࠪᶕⴻⴻ˖
err.py
def foo(s):
 n = int(s)
 print '>>> n = %d' % n
 return 10 / n

def main():
 foo('0')

main()

ᢗ㹼ਾ൘䗃ࠪѝḕ᢮ᢃঠⲴਈ䟿٬˖
$ python err.py
>>> n = 0
Traceback (most recent call last):
 ...
ZeroDivisionError: integer division or modulo by zero

⭘ printᴰབྷⲴൿ༴ᱟሶᶕ䘈ᗇࡐᦹᆳˈᜣᜣ〻ᒿ䟼ࡠ༴䜭ᱟ printˈ䘀㹼㔃᷌ҏՊवਜ਼ᖸཊ
ඳ൮ؑ᚟ǄᡰԕˈᡁԜ৸ᴹㅜҼ⿽ᯩ⌅Ǆ
ᯝ䀰
⭘ᱟࠑ printᶕ䖵ࣙḕⴻⲴൠᯩˈ䜭ਟԕ⭘ᯝ䀰˄assert˅ᶕᴯԓ˖
err.py
def foo(s):
 n = int(s)
 assert n != 0, 'n is zero!'
 return 10 / n

def main():
 foo('0')

assertⲴ᜿ᙍᱟˈ㺘䗮ᔿ n != 0ᓄ䈕ᱟ Trueˈ੖ࡉˈਾ䶒Ⲵԓ⸱ቡՊࠪ䭉Ǆ
ྲ᷌ᯝ䀰ཡ䍕ˈassert䈝ਕᵜ䓛ቡՊᣋࠪ AssertionError˖
$ python err.py
Traceback (most recent call last):
 ...
AssertionError: n is zero!

〻ᒿѝྲ᷌ࡠ༴ݵᯕ⵰ assertˈ઼ print ⴨∄ҏྭнࡠଚ৫Ǆн䗷ˈ੟ࣘ Python 䀓䟺ಘᰦਟ
ԕ⭘-O৲ᮠᶕޣ䰝 assert˖
$ python -O err.py
Traceback (most recent call last):
 ...
ZeroDivisionError: integer division or modulo by zero

ਟԕᢺᡰᴹⲴ֐ˈ䰝ਾޣ assert䈝ਕᖃᡀ passᶕⴻǄ
logging
ᢺ printᴯᦒѪ loggingᱟㅜ 3⿽ᯩᔿˈ઼ assert∄ l̍oggingнՊᣋࠪ䭉䈟 㘼̍фਟԕ䗃ࠪࡠ

᮷Ԧ˖
err.py

import logging

s = '0'
n = int(s)
logging.info('n = %d' % n)
print 10 / n

logging.info()ቡਟԕ䗃ࠪа⇥᮷ᵜǄ䘀㹼ˈਁ⧠䲔Ҷ ZeroDivisionErrorˈ⋑ᴹԫօؑ᚟Ǆᘾ
Ѹഎһ˛
࡛ᙕˈ൘ import loggingѻਾ␫࣐а㹼䝽㖞޽䈅䈅˖
import logging
logging.basicConfig(level=logging.INFO)

ⴻࡠ䗃ࠪҶ˖
$ python err.py
INFO:root:n = 0
Traceback (most recent call last):
 File "err.py", line 8, in <module>
 print 10 / n
ZeroDivisionError: integer division or modulo by zero

䘉ቡᱟ logging Ⲵྭ༴ˈᆳݱ䇨֐ᤷᇊ䇠ᖅؑ᚟Ⲵ㓗࡛ˈᴹ debugˈinfoˈwarningˈerrorㅹ
њ㓗࡛ˈᖃᡁԜᤷᇊࠐ level=INFO ᰦˈ logging.debug ቡн䎧֌⭘ҶǄ਼⨶ˈᤷᇊ
level=WARNING ਾˈdebug ઼ info ቡн䎧֌⭘ҶǄ䘉ṧаᶕˈ֐ਟԕ᭮ᗳൠ䗃ࠪн਼㓗࡛
Ⲵؑ᚟ˈҏн⭘ࡐ䲔ˈᴰਾ㔏а᧗ࡦ䗃ࠪଚњ㓗࡛Ⲵؑ᚟Ǆ
loggingⲴਖањྭ༴ᱟ䙊䗷ㆰঅⲴ䝽㖞 а̍ᶑ䈝ਕਟԕ਼ᰦ䗃ࠪࡠн਼Ⲵൠᯩ ∄̍ྲ console
઼᮷ԦǄ
pdb
ㅜ 4⿽ᯩᔿᱟ੟ࣘ PythonⲴ䈳䈅ಘ pdbˈ䇙〻ᒿԕঅ↕ᯩᔿ䘀㹼ˈਟԕ䲿ᰦḕⴻ䘀㹼⣦ᘱǄ
ᡁԜݸ߶༷ྭ〻ᒿ˖
err.py
s = '0'
n = int(s)
print 10 / n

❦ਾ੟ࣘ˖
$ python -m pdb err.py
> /Users/michael/Github/sicp/err.py(2)<module>()
-> s = '0'

ԕ৲ᮠ-m pdb੟ࣘਾˈpdbᇊսࡠла↕㾱ᢗ㹼Ⲵԓ⸱-> s = '0'Ǆ䗃ޕભԔ lᶕḕⴻԓ⸱˖
(Pdb) l
 1 # err.py
 2 -> s = '0'

 3 n = int(s)
 4 print 10 / n
[EOF]

䗃ޕભԔ nਟԕঅ↕ᢗ㹼ԓ⸱˖
(Pdb) n
> /Users/michael/Github/sicp/err.py(3)<module>()
-> n = int(s)
(Pdb) n
> /Users/michael/Github/sicp/err.py(4)<module>()
-> print 10 / n

ԫօᰦى䜭ਟԕ䗃ޕભԔ p ਈ䟿਽ᶕḕⴻਈ䟿˖
(Pdb) p s
'0'
(Pdb) p n
0

䗃ޕભԔ q㔃ᶏ䈳䈅ˈ䘰ࠪ〻ᒿ˖
(Pdb) n
ZeroDivisionError: 'integer division or modulo by zero'
> /Users/michael/Github/sicp/err.py(4)<module>()
-> print 10 / n
(Pdb) q

䘉⿽䙊䗷 pdb൘ભԔ㹼䈳䈅Ⲵᯩ⌅⨶䇪кᱟз㜭Ⲵ ն̍ᇎ൘ᱟཚ哫✖Ҷˈྲ ᷌ᴹаॳ㹼ԓ⸱ˈ

㾱䘀㹼ࡠㅜ 999㹼ᗇᮢཊቁભԔ୺Ǆ䘈ྭˈᡁԜ䘈ᴹਖа⿽䈳䈅ᯩ⌅Ǆ
pdb.set_trace()
䘉њᯩ⌅ҏᱟ⭘ pdbˈնᱟн䴰㾱অ↕ᢗ㹼ˈᡁԜਚ䴰㾱 import pdbˈ❦ਾˈ൘ਟ㜭ࠪ䭉Ⲵ
ൠᯩ᭮ањ pdb.set_trace()ˈቡਟԕ䇮㖞ањᯝ⛩˖
err.py
import pdb

s = '0'
n = int(s)
pdb.set_trace() # 䘀㹼ࡠ䘉䟼Պ㠚ࣘᲲڌ
print 10 / n

䘀㹼ԓ⸱ˈ〻ᒿՊ㠚ࣘ൘ pdb.set_trace()Ჲڌᒦ䘋ޕ pdb䈳䈅⧟ຳˈਟԕ⭘ભԔ pḕⴻਈ䟿ˈ
ᡆ㘵⭘ભԔ c㔗㔝䘀㹼˖
$ python err.py
> /Users/michael/Github/sicp/err.py(7)<module>()
-> print 10 / n
(Pdb) p n

0
(Pdb) c
Traceback (most recent call last):
 File "err.py", line 7, in <module>
 print 10 / n
ZeroDivisionError: integer division or modulo by zero

䘉њᯩᔿ∄ⴤ᧕੟ࣘ pdbঅ↕䈳䈅᭸⦷㾱儈ᖸཊˈնҏ儈нࡠଚ৫Ǆ
IDE
ྲ᷌㾱∄䖳⡭ൠ䇮㖞ᯝ⛩ǃঅ↕ᢗ㹼 ቡ̍䴰㾱ањ᭟ᤱ䈳䈅࣏㜭Ⲵ IDEǄⴞࡽ∄䖳ྭⲴ Python
IDEᴹ PyCharm˖
http://www.jetbrains.com/pycharm/
ਖཆˈEclipse࣐к pydevᨂԦҏਟԕ䈳䈅 Python〻ᒿǄ
ሿ㔃
〻ᒿᴰⰋ㤖Ⲵһᛵ㧛䗷Ҿ䈳䈅ˈ〻߉ ᒿᖰᖰՊԕ֐᜿ᜣнࡠⲴ⍱〻ᶕ䘀㹼 ᵏᖵᢗ㹼Ⲵ䈝̍֐

ਕަᇎṩᵜ⋑ᴹᢗ㹼ˈ䘉ᰦىˈቡ䴰㾱䈳䈅ҶǄ
㲭❦⭘ IDE䈳䈅䎧ᶕ∄䖳ᯩׯˈնᱟᴰਾ֐Պਁ⧠ˈlogging᡽ᱟ㓸ᶱ↖ಘǄ

IO㕌ぁ㕌ぁ㕌ぁ㕌ぁ

IO൘䇑㇇ᵪѝᤷ Input/Output ҏ̍ቡᱟ䗃઼ޕ䗃ࠪǄ⭡Ҿ〻ᒿ઼䘀㹼ᰦᮠᦞᱟ൘޵ᆈѝ傫⮉ˈ
⭡ CPU 䘉њ䎵ᘛⲴ䇑㇇Ṩᗳᶕᢗ㹼ˈ⎹৺ࡠᮠᦞӔᦒⲴൠᯩˈ䙊ᑨᱟ⻱ⴈǃ㖁㔌ㅹˈቡ䴰
㾱 IO᧕ਓǄ
ᢃᔰ⍿㿸ಘˈ䇯䰞ᯠ⎚俆亥ˈ⍿㿸ಘ䘉њ〻ᒿቡ䴰㾱䙊䗷㖁㔌֐ྲ∄ IO㧧ਆᯠ⎚Ⲵ㖁亥Ǆ
⍿㿸ಘ俆ݸՊਁ䘱ᮠᦞ㔉ᯠ⎚ᴽ࣑ಘˈ੺䇹ᆳᡁᜣ㾱俆亥Ⲵ HTMLˈ䘉њࣘ֌ᱟᖰཆਁᮠ
ᦞˈਛ Outputˈ䲿ਾᯠ⎚ᴽ࣑ಘᢺ㖁亥ਁ䗷ᶕˈ䘉њࣘ֌ᱟӾཆ䶒᧕᭦ᮠᦞˈਛ InputǄᡰ
ԕˈ䙊ᑨˈ〻ᒿᆼᡀ IO᫽֌Պᴹ Input઼ Outputєњᮠᦞ⍱Ǆᖃ❦ҏᴹਚ⭘ањⲴᛵߥˈ
∄ྲˈӾ⻱ⴈ䈫ਆ᮷Ԧ޵ࡠᆈˈቡਚᴹ Input᫽֌ˈ৽䗷ᶕˈᢺᮠᦞࡠ߉⻱ⴈ᮷Ԧ䟼ˈቡਚ
ᱟањ Output᫽֌Ǆ
IO 㕆〻ѝˈStream˄⍱˅ᱟањᖸ䟽㾱Ⲵᾲᘥˈਟԕᢺ⍱ᜣ䊑ᡀањ≤㇑ˈᮠᦞቡᱟ≤㇑
䟼Ⲵ≤ ն̍ᱟਚ㜭অੁ⍱ࣘǄInput StreamቡᱟᮠᦞӾ޵ᆈ⍱ࡠཆ䶒˄ ⻱ⴈǃ㖁㔌 ৫˅ O̍utput
Stream ቡᱟᮠᦞӾཆ䶒⍱䘋ᶕǄሩҾ⍿㿸㖁亥ᶕ䈤ˈ⍿㿸ಘ઼ᯠ⎚ᴽ࣑ಘѻ䰤㠣ቁ䴰㾱ᔪ
・єṩ≤㇑ˈ᡽ਟԕᰒ㜭ਁᮠᦞˈ৸㜭᭦ᮠᦞǄ
⭡Ҿ CPU઼޵ᆈⲴ䙏ᓖ䘌䘌儈Ҿཆ䇮Ⲵ䙏ᓖˈᡰԕˈ൘ IO㕆〻ѝ ቡ̍ᆈ൘䙏ᓖѕ䟽н३䝽

Ⲵ䰞仈ǄѮњֻᆀᶕ䈤ˈ∄ྲ㾱ᢺ 100M Ⲵᮠᦞޕ߉⻱ⴈˈCPU 䗃ࠪ 100M Ⲵᮠᦞਚ䴰㾱
0.01。ˈਟᱟ⻱ⴈ㾱᧕᭦䘉 100Mᮠᦞਟ㜭䴰㾱 10。ˈᘾѸ࣎઒˛ᴹє⿽࣎⌅˖
ㅜа⿽ᱟ CPUㅹ⵰ˈҏቡᱟ〻ᒿᲲڌᢗ㹼ਾ㔝ԓ⸱ˈㅹ 100MⲴᮠᦞ൘ 10。ਾޕ߉⻱ⴈˈ
↕᧕⵰ᖰлᢗ㹼ˈ䘉⿽⁑ᔿ〠Ѫ਼޽ IO˗
ਖа⿽ᯩ⌅ᱟ CPUнㅹᖵˈਚᱟ੺䇹⻱ⴈˈ“ᛘ㘱ធធ߉ˈн⵰ᙕˈᡁ᧕⵰ᒢ࡛Ⲵһ৫Ҷ”ˈ
Ҿᱟˈਾ㔝ԓ⸱ਟԕ・࡫᧕⵰ᢗ㹼ˈ䘉⿽⁑ᔿ〠Ѫᔲ↕ IOǄ
਼↕઼ᔲ↕Ⲵ४࡛ቡ൘Ҿᱟ੖ㅹᖵ IOᢗ㹼Ⲵ㔃᷌Ǆྭ ৫哖ᖃࣣ⛩佀֐∄ ˈ”䈤“ᶕњ≹๑̍֐
ᴽ࣑ઈ੺䇹֐ˈሩн䎧ˈ≹๑㾱⧠ڊˈ䴰㾱ㅹ 䶒ㅹҶࡽㄉ൘᭦䬦ਠ֐䫏ˈҾᱟ࠶5 ˈ䫏࠶5
᤯ࡠ≹๑޽৫䙋୶൪ˈ䘉ᱟ਼↕ IOǄ

๑䴰㾱ㅹ≸ˈ֐䈤“ᶕњ≹๑”ˈᴽ࣑ઈ੺䇹֐ ҶˈᡁԜྭڊ৫䙋୶൪ˈㅹݸਟԕ֐ˈ䫏࠶5
̍˅৫ᒢ࡛Ⲵһᛵ˄䙋୶൪࡫・ਟԕ֐䘉ṧˈ֐⸕䙊޽ 䘉ᱟᔲ↕ IOǄ
ᖸ᰾ᱮˈ֯⭘ᔲ↕ IOᶕ㕆߉〻ᒿᙗ㜭Պ䘌䘌儈Ҿ਼↕ IOˈնᱟᔲ↕ IOⲴ㕪⛩ᱟ㕆〻⁑ර
༽ᵲǄᜣᜣⴻˈ֐ᗇ⸕䚃ӰѸᰦى䙊⸕֐“≹๑ྭڊҶ”ˈ㘼䙊⸕֐Ⲵᯩ⌅ҏ਴н⴨਼Ǆྲ᷌
ᱟᴽ࣑ઈ䐁䗷ᶕ᢮֐ࡠ 䘉̍ᱟഎ䈳⁑ᔿˈྲ ᷌ᴽ࣑ઈਁ⸝ؑ䙊⸕֐ ˈൠỰḕ᡻ᵪڌቡᗇн̍֐

䘉ᱟ䖞䈒⁑ᔿǄᙫѻˈᔲ↕ IOⲴ༽ᵲᓖ䘌䘌儈Ҿ਼↕ IOǄ
᫽֌ IOⲴ㜭࣋䜭ᱟ⭡᫽֌㌫㔏ᨀ׋Ⲵ ⇿̍а⿽㕆〻䈝䀰䜭Պᢺ᫽֌㌫㔏ᨀ׋Ⲵվ㓗 C᧕ਓ
ሱ㻵䎧ᶕᯩ֯ׯ⭘ˈPythonҏнֻཆǄᡁԜਾ䶒Պ䈖㓶䇘䇪 PythonⲴ IO㕆〻᧕ਓǄ
⌘᜿ˈᵜㄐⲴ IO 㕆〻䜭ᱟ਼↕⁑ᔿˈᔲ↕ IO ⭡Ҿ༽ᵲᓖཚ儈ˈਾ㔝⎹৺ࡠᴽ࣑ಘㄟ〻ᒿ
ᔰਁᰦᡁԜ޽䇘䇪Ǆ

᮷Ԧ䈫߉᮷Ԧ䈫߉᮷Ԧ䈫߉᮷Ԧ䈫߉

䈫߉᮷Ԧᱟᴰᑨ㿱Ⲵ IO᫽֌ǄPython޵㖞Ҷ䈫߉᮷ԦⲴ࠭ᮠˈ⭘⌅઼ CᱟެᇩⲴǄ
䈫߉᮷Ԧࡽ ᡁ̍Ԝݸᗵ享Ҷ䀓алˈ൘⻱ⴈк䈫߉᮷ԦⲴ࣏㜭䜭ᱟ⭡᫽֌㌫㔏ᨀ׋Ⲵˈ⧠ԓ

᫽֌㌫㔏нݱ䇨Პ䙊Ⲵ〻ᒿⴤ᧕᫽֌⻱ⴈ ᡰ̍ԕ 䈫̍߉᮷Ԧቡᱟ䈧≲᫽֌㌫㔏ᢃᔰањ᮷Ԧ

ሩ䊑˄䙊ᑨ〠Ѫ᮷Ԧ᧿䘠ㅖ˅̍ ❦ਾˈ䙊䗷᫽֌㌫㔏ᨀ׋Ⲵ᧕ਓӾ䘉њ᮷Ԧሩ䊑ѝ䈫ਆᮠᦞ

˄䈫᮷Ԧ˅̍ ᡆ㘵ᢺᮠᦞޕ߉䘉њ᮷Ԧሩ䊑˄߉᮷Ԧ Ǆ˅
䈫᮷Ԧ
㾱ԕ䈫᮷ԦⲴ⁑ᔿᢃᔰањ᮷Ԧሩ䊑ˈ֯⭘ Python 㖞Ⲵ޵ open()࠭ᮠˈՐޕ᮷Ԧ਽઼ḷ⽪
ㅖ˖
>>> f = open('/Users/michael/test.txt', 'r')

ḷ⽪ㅖ'r'㺘⽪䈫ˈ䘉ṧˈᡁԜቡᡀ࣏ൠᢃᔰҶањ᮷ԦǄ
ྲ᷌᮷Ԧнᆈ൘ˈopen()࠭ᮠቡՊᣋࠪањ IOError Ⲵ䭉䈟ˈᒦф㔉ࠪ䭉䈟⸱઼䈖㓶Ⲵؑ᚟
੺䇹֐᮷Ԧнᆈ൘˖
>>> f=open('/Users/michael/notfound.txt', 'r')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: '/Users/michael/notfound.txt'

ྲ᷌᮷Ԧᢃᔰᡀ࣏ˈ᧕лᶕˈ䈳⭘ read()ᯩ⌅ਟԕа⅑䈫ਆ᮷ԦⲴޘ䜘޵ᇩˈPythonᢺ޵ᇩ
䈫޵ࡠᆈˈ⭘ањ strሩ䊑㺘⽪˖
>>> f.read()
'Hello, world!'

ᴰਾа↕ᱟ䈳⭘ close()ᯩ⌅ޣ䰝᮷ԦǄ᮷Ԧ֯⭘ᆼ∅ਾᗵ享ޣ䰝 ഐ̍Ѫ᮷Ԧሩ䊑Պঐ⭘᫽֌

㌫㔏Ⲵ䍴Ⓚˈᒦф᫽֌㌫㔏਼аᰦ䰤㜭ᢃᔰⲴ᮷Ԧᮠ䟿ҏᱟᴹ䲀Ⲵ˖
>>> f.close()

⭡Ҿ᮷Ԧ䈫߉ᰦ䜭ᴹਟ㜭ӗ⭏ IOErrorˈаᰖࠪ䭉ˈਾ䶒Ⲵ f.close()ቡнՊ䈳⭘ǄᡰԕˈѪҶ
⭘䰝᮷ԦˈᡁԜਟԕ֯ޣ䇱ᰐ䇪ᱟ੖ࠪ䭉䜭㜭↓⺞ൠ؍ try ... finallyᶕᇎ⧠˖
try:

 f = open('/path/to/file', 'r')
 print f.read()
finally:
 if f:
 f.close()

նᱟ⇿⅑䜭䘉Ѹ߉ᇎ൘ཚ㑱⩀ˈᡰԕˈPython ᕅޕҶ with 䈝ਕᶕ㠚ࣘᑞᡁԜ䈳⭘ close()ᯩ
⌅˖
with open('/path/to/file', 'r') as f:
 print f.read()

䘉઼ࡽ䶒Ⲵ try ... finallyᱟаṧⲴˈնᱟԓ⸱ᴤ֣ㆰ⌱ˈᒦфнᗵ䈳⭘ f.close()ᯩ⌅Ǆ
䈳⭘ read()Պа⅑ᙗ䈫ਆ᮷ԦⲴޘ䜘޵ᇩˈྲ᷌᮷Ԧᴹ 10Gˈ޵ᆈቡ⠶Ҷˈᡰԕˈ㾱؍䲙䎧
㿱ˈਟԕ৽༽䈳⭘ read(size)ᯩ⌅ˈ⇿⅑ᴰཊ䈫ਆ sizeњᆇ㢲Ⲵ޵ᇩǄਖཆˈ䈳⭘ readline()
ਟԕ⇿⅑䈫ਆа㹼޵ᇩ 䈳̍⭘ readlines()а⅑䈫ਆᡰᴹ޵ᇩᒦ᤹㹼䘄എ listǄഐ↔ˈ㾱ṩᦞ䴰
㾱ߣᇊᘾѸ䈳⭘Ǆ
ྲ᷌᮷Ԧᖸሿˈread()а⅑ᙗ䈫ਆᴰᯩׯ˗ྲ᷌н㜭⺞ᇊ᮷Ԧབྷሿˈ৽༽䈳⭘ read(size)∄䖳
⭘䲙˗ྲ᷌ᱟ䝽㖞᮷Ԧˈ䈳؍ readlines()ᴰᯩׯ˖
for line in f.readlines():
 print(line.strip()) # ᢺᵛቮⲴ'\n'ࡐᦹ

file-like Object
ۿ open()࠭ᮠ䘄എⲴ䘉⿽ᴹњ read()ᯩ⌅Ⲵሩ䊑ˈ൘ Pythonѝ㔏〠Ѫ file-like ObjectǄ䲔Ҷ
fileཆˈ䘈ਟԕᱟ޵ᆈⲴᆇ㢲⍱ˈ㖁㔌⍱ˈ㠚ᇊѹ⍱ㅹㅹǄfile-like Objectн㾱≲Ӿ⢩ᇊ㊫㔗
᢯ˈਚ㾱߉њ read()ᯩ⌅ቡ㹼Ǆ
StringIOቡᱟ൘޵ᆈѝࡋᔪⲴ file-like Objectˈᑨ⭘֌Ѥᰦ㕃ߢǄ
Ҽ䘋ࡦ᮷Ԧ
䶒䇢Ⲵ唈䇔䜭ᱟ䈫ਆ᮷ᵜ᮷Ԧˈᒦфᱟࡽ ASCII 㕆⸱Ⲵ᮷ᵜ᮷ԦǄ㾱䈫ਆҼ䘋ࡦ᮷Ԧˈ∄
ྲമ⡷ǃ㿶仁ㅹㅹˈ⭘'rb'⁑ᔿᢃᔰ᮷Ԧণਟ˖
>>> f = open('/Users/michael/test.jpg', 'rb')
>>> f.read()
'\xff\xd8\xff\xe1\x00\x18Exif\x00\x00...' # ॱޝ䘋ࡦ㺘⽪Ⲵᆇ㢲

ᆇㅖ㕆⸱
㾱䈫ਆ䶎 ASCII㕆⸱Ⲵ᮷ᵜ᮷Ԧˈቡᗵ享ԕҼ䘋ࡦ⁑ᔿᢃᔰˈ޽䀓⸱Ǆ∄ྲ GBK㕆⸱Ⲵ᮷
Ԧ˖
>>> f = open('/Users/michael/gbk.txt', 'rb')
>>> u = f.read().decode('gbk')
>>> u
u'\u6d4b\u8bd5'
>>> print u
⍻䈅

ྲ᷌⇿⅑䜭䘉Ѹ᡻ࣘ䖜ᦒ㕆⸱ჼ哫✖˄ 〻ᒿᙅ哫✖ᱟྭһ߉ н̍ᙅ哫✖ቡՊࠪ߉৸䮯৸䳮៲

৸⋑⌅㔤ᣔⲴԓ⸱˅̍ Python䘈ᨀ׋Ҷањ codecs⁑ඇᑞᡁԜ൘䈫᮷Ԧᰦ㠚ࣘ䖜ᦒ㕆⸱ˈⴤ
᧕䈫ࠪ unicode˖
import codecs
with codecs.open('/Users/michael/gbk.txt', 'r', 'gbk') as f:
 f.read() # u'\u6d4b\u8bd5'

 ᮷Ԧ߉
⭘᮷Ԧ઼䈫᮷ԦᱟаṧⲴˈୟа४࡛ᱟ䈳߉ open()࠭ᮠᰦˈՐޕḷ䇶ㅖ'w'ᡆ㘵'wb'㺘⽪߉᮷
ᵜ᮷Ԧᡆ߉Ҽ䘋ࡦ᮷Ԧ˖
>>> f = open('/Users/michael/test.txt', 'w')
>>> f.write('Hello, world!')
>>> f.close()

⭘ਟԕ৽༽䈳֐ write()ᶕޕ߉᮷Ԧ ն̍ᱟ࣑ᗵ㾱䈳⭘ f.close()ᶕޣ䰝᮷ԦǄᖃᡁԜ߉᮷Ԧᰦˈ
᫽֌㌫㔏ᖰᖰнՊ・࡫ᢺᮠᦞޕ߉⻱ⴈˈ㘼ᱟ᭮޵ࡠᆈ㕃ᆈ䎧ᶕˈオ䰢Ⲵᰦ޽ىធធޕ߉Ǆ

ਚᴹ䈳⭘ close()ᯩ⌅ᰦ ᫽̍֌㌫㔏᡽؍䇱ᢺ⋑ᴹޕ߉Ⲵᮠᦞޘ䜘ޕ߉⻱ⴈǄᘈ䇠䈳⭘ close()
Ⲵਾ᷌ᱟᮠᦞਟ㜭ਚ߉Ҷа䜘ࡠ࠶⻱ⴈˈ࢙лⲴђཡҶǄᡰԕˈ䘈ᱟ⭘ with䈝ਕᶕᗇ؍䲙 ̟
with open('/Users/michael/test.txt', 'w') as f:
 f.write('Hello, world!')

㾱ޕ߉⢩ᇊ㕆⸱Ⲵ᮷ᵜ᮷Ԧˈ䈧᭸ԯ codecsⲴ⽪ֻˈޕ߉ unicodeˈ⭡ codecs㠚ࣘ䖜ᦒᡀᤷ
ᇊ㕆⸱Ǆ
ሿ㔃
൘ Pythonѝˈ᮷Ԧ䈫߉ᱟ䙊䗷 open()࠭ᮠᢃᔰⲴ᮷Ԧሩ䊑ᆼᡀⲴǄ֯⭘ with䈝ਕ᫽֌᮷Ԧ
IOᱟњྭҐᜟǄ

᫽֌㌫㔏᫽֌㌫㔏᫽֌㌫㔏᫽֌㌫㔏

↓൘㕆߉ѝǄǄǄ

ᒿॆࡇᒿॆࡇᒿॆࡇᒿॆࡇ

൘〻ᒿ䘀㹼Ⲵ䗷〻ѝˈᡰᴹⲴਈ䟿䜭ᱟ൘޵ᆈѝˈ∄ྲˈᇊѹањ dict˖
d = dict(name='Bob', age=20, score=88)

ਟԕ䲿ᰦ؞᭩ਈ䟿ˈ∄ྲᢺ name᭩ᡀ'Bill'ˈնᱟаᰖ〻ᒿ㔃ᶏˈਈ䟿ᡰঐ⭘Ⲵ޵ᆈቡ㻛᫽
֌㌫㔏ޘ䜘എ᭦Ǆྲ᷌⋑ᴹᢺ؞᭩ਾⲴ'Bill'ᆈۘࡠ⻱ⴈкˈл⅑䟽ᯠ䘀㹼〻ᒿˈਈ䟿৸㻛ࡍ
࿻ॆѪ'Bob'Ǆ
ᡁԜᢺਈ䟿ᆈۘࡠ⻱ⴈⲴ䗷〻〠ѻѪᒿॆࡇ ൘̍ Pythonѝਛ pickling ൘̍ަԆ䈝䀰ѝҏ㻛〠

ѻѪ serializationˈmarshallingˈflatteningㅹㅹˈ䜭ᱟањ᜿ᙍǄ
৽䗷ᶕˈӾ⻱ⴈᢺਈ䟿޵ᇩ䟽ᯠ䈫޵ࡠᆈ䟼〠ѻѪ৽ᒿॆࡇˈণ unpicklingǄ
Pythonᨀ׋єњ⁑ඇᶕᇎ⧠ᒿॆࡇ c̟Pickle઼ pickleǄ䘉єњ⁑ඇ࣏㜭ᱟаṧⲴˈ४࡛൘Ҿ

cPickleᱟ C䈝䀰߉Ⲵˈ䙏ᓖᘛˈpickleᱟ㓟 Python߉Ⲵˈ䙏ᓖធˈ䐏 cStringIO઼ StringIO
ањ䚃⨶Ǆ⭘Ⲵᰦݸˈىቍ䈅ሬޕ cPickleˈྲ᷌ཡ䍕ˈ޽ሬޕ pickle˖
try:
 import cPickle as pickle
except ImportError:
 import pickle

俆ݸˈᡁԜቍ䈅ᢺањሩ䊑ᒿॆࡇᒦޕ߉᮷Ԧ˖
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
"(dp0\nS'age'\np1\nI20\nsS'score'\np2\nI88\nsS'name'\np3\nS'Bob'\np4\ns."

pickle.dumps()ᯩ⌅ᢺԫ᜿ሩ䊑ᒿॆࡇᡀањ strˈ❦ਾˈቡਟԕᢺ䘉њ strޕ߉᮷ԦǄᡆ㘵⭘
ਖањᯩ⌅ pickle.dump()ⴤ᧕ᢺሩ䊑ᒿॆࡇਾޕ߉ањ file-like Object˖
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()

ⴻⴻޕ߉Ⲵ dump.txt᮷Ԧˈаึҡгޛ㌏Ⲵ޵ᇩˈ䘉Ӌ䜭ᱟ Python؍ᆈⲴሩ䊑޵䜘ؑ᚟Ǆ
ᖃᡁԜ㾱ᢺሩ䊑Ӿ⻱ⴈ䈫޵ࡠᆈᰦ ਟ̍ԕݸᢺ޵ᇩ䈫ࡠањ str ❦̍ਾ⭘ pickle.loads()ᯩ⌅৽
ᒿࠪॆࡇሩ䊑 ҏ̍ਟԕⴤ᧕⭘pickle.load()ᯩ⌅Ӿањ file-like Objectѝⴤ᧕৽ᒿࠪॆࡇሩ䊑Ǆ
ᡁԜᢃᔰਖањ PythonભԔ㹼ᶕ৽ᒿࡊॆࡇ᡽؍ᆈⲴሩ䊑˖
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}

ਈ䟿Ⲵ޵ᇩ৸എᶕҶʽ
ᖃ❦ˈ䘉њਈ䟿઼৏ᶕⲴਈ䟿ᱟᆼޘн⴨ᒢⲴሩ䊑ˈᆳԜਚᱟ޵ᇩ⴨਼㘼ᐢǄ
PickleⲴ䰞仈઼ᡰᴹަԆ㕆〻䈝䀰⢩ᴹⲴᒿॆࡇ䰞仈аṧˈቡᱟᆳਚ㜭⭘Ҿ Pythonˈᒦфਟ
㜭н਼⡸ᵜⲴ Python ᖬ↔䜭нެᇩˈഐ↔ˈਚ㜭⭘ Pickle ᆈ䛓Ӌн䟽㾱Ⲵᮠᦞˈн㜭ᡀ؍
࣏ൠ৽ᒿॆࡇҏ⋑ޣ㌫Ǆ
JSON
ྲ᷌ᡁԜ㾱൘н਼Ⲵ㕆〻䈝䀰ѻ䰤Ր䙂ሩ䊑 ቡ̍ᗵ享ᢺሩ䊑ᒿॆࡇѪḷ߶Ṭᔿ ∄̍ྲ XMLˈ
նᴤྭⲴᯩ⌅ᱟᒿॆࡇѪ JSONˈഐѪ JSON㺘⽪ࠪᶕቡᱟањᆇㅖѢˈਟԕ㻛ᡰᴹ䈝䀰䈫
ਆˈҏਟԕᯩׯൠᆈۘࡠ⻱ⴈᡆ㘵䙊䗷㖁㔌Ր䗃ǄJSON нӵᱟḷ߶Ṭᔿˈᒦф∄ XMLᴤ
ᘛˈ㘼фਟԕⴤ᧕൘Web亥䶒ѝ䈫ਆˈ䶎ᑨᯩׯǄ
JSON㺘⽪Ⲵሩ䊑ቡᱟḷ߶Ⲵ JavaScript䈝䀰Ⲵሩ䊑ˈJSON ઼ Python޵㖞Ⲵᮠᦞ㊫රሩᓄ
ྲл˖

JSON㊫ර Python㊫ර

{} dict

[] list

"string" 'str'ᡆ u'unicode'

1234.56 intᡆ float

true/false True/False

null None

Python޵㖞Ⲵ json⁑ඇᨀ׋Ҷ䶎ᑨᆼழⲴ Pythonሩ䊑ࡠ JSONṬᔿⲴ䖜ᦒǄᡁԜݸⴻⴻྲ
օᢺ Pythonሩ䊑ਈᡀањ JSON˖
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'

dumps()ᯩ⌅䘄എањ strˈ޵ᇩቡᱟḷ߶Ⲵ JSONǄ㊫լⲴˈdump()ᯩ⌅ਟԕⴤ᧕ᢺ JSON
ањޕ߉ file-like ObjectǄ
㾱ᢺ JSON৽ᒿॆࡇѪ Pythonሩ䊑ˈ⭘ loads()ᡆ㘵ሩᓄⲴ load()ᯩ⌅ˈࡽ㘵ᢺ JSONⲴᆇㅖ
Ѣ৽ᒿॆࡇˈਾ㘵Ӿ file-like Objectѝ䈫ਆᆇㅖѢᒦ৽ᒿॆࡇ˖
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{u'age': 20, u'score': 88, u'name': u'Bob'}

ᴹа⛩䴰㾱⌘᜿ˈቡᱟ৽ᒿॆࡇᗇࡠⲴᡰᴹᆇㅖѢሩ䊑唈䇔䜭ᱟ unicode 㘼нᱟ strǄ⭡Ҿ
JSON ḷ߶㿴ᇊ JSON 㕆⸱ᱟ UTF-8ˈᡰԕᡁԜᙫᱟ㜭↓⺞ൠ൘ Python Ⲵ strᡆ unicodeо
JSONⲴᆇㅖѢѻ䰤䖜ᦒǄ
JSON䘋䱦
PythonⲴ dictሩ䊑ਟԕⴤ᧕ᒿॆࡇѪ JSONⲴ{}ˈн䗷ˈᖸཊᰦىˈᡁԜᴤௌ⅒⭘ class㺘
⽪ሩ䊑ˈ∄ྲᇊѹ Student㊫ˈ❦ਾᒿॆࡇ˖
import json

class Student(object):
 def __init__(self, name, age, score):
 self.name = name
 self.age = age
 self.score = score

s = Student('Bob', 20, 88)
print(json.dumps(s))

䘀㹼ԓ⸱ˈ∛н⮉ᛵൠᗇࡠањ TypeError˖
Traceback (most recent call last):
 ...

TypeError: <__main__.Student object at 0x10aabef50> is not JSON serializable

䭉䈟Ⲵ৏ഐᱟ Studentሩ䊑нᱟањਟᒿॆࡇѪ JSONⲴሩ䊑Ǆ
ྲ᷌䘎 classⲴᇎֻሩ䊑䜭ᰐ⌅ᒿॆࡇѪ JSONˈ䘉㛟ᇊнਸ⨶ʽ
࡛ᙕˈᡁԜԄ㓶ⴻⴻ dumps()ᯩ⌅Ⲵ৲ᮠࡇ㺘ˈਟԕਁ⧠ˈ䲔Ҷㅜањᗵ享Ⲵ obj ৲ᮠཆˈ
dumps()ᯩ⌅䘈ᨀ׋ҶаབྷึⲴਟ䘹৲ᮠ˖
https://docs.python.org/2/library/json.html#json.dumps
䘉Ӌਟ䘹৲ᮠቡᱟ䇙ᡁԜᶕᇊࡦ JSONᒿॆࡇǄࡽ䶒Ⲵԓ⸱ѻᡰԕᰐ⌅ᢺ Student㊫ᇎֻᒿ
Ѫॆࡇ JSONˈᱟഐѪ唈䇔ᛵߥлˈdumps()ᯩ⌅н⸕䚃ྲօሶ Student ᇎֻਈѪањ JSON
Ⲵ{}ሩ䊑Ǆ
ਟ䘹৲ᮠ defaultቡᱟᢺԫ᜿ањሩ䊑ਈᡀањਟᒿࡇѪ JSONⲴሩ䊑 ᡁ̍Ԝਚ䴰㾱Ѫ Student
у䰘߉ањ䖜ᦒ࠭ᮠˈ޽ᢺ࠭ᮠՐ䘋৫ণਟ˖
def student2dict(std):
 return {
 'name': std.name,
 'age': std.age,
 'score': std.score
 }

print(json.dumps(s, default=student2dict))

䘉ṧˈStudentᇎֻ俆ݸ㻛 student2dict()࠭ᮠ䖜ᦒᡀ dictˈ❦ਾ޽㻛亪࡙ᒿॆࡇѪ JSONǄ
н䗷ˈл⅑ྲ᷌䙷ࡠањ Teacher ㊫Ⲵᇎֻˈ➗ṧᰐ⌅ᒿॆࡇѪ JSONǄᡁԜਟԕڧњ᠂ˈ
ᢺԫ᜿ classⲴᇎֻਈѪ dict˖
print(json.dumps(s, default=lambda obj: obj.__dict__))

ഐѪ䙊ᑨ classⲴᇎֻ䜭ᴹањ__dict__኎ᙗˈᆳቡᱟањ dictˈ⭘ᶕᆈۘᇎֻਈ䟿Ǆҏᴹቁ
ᮠֻཆˈ∄ྲᇊѹҶ__slots__Ⲵ classǄ
਼ṧⲴ䚃⨶ˈྲ᷌ᡁԜ㾱ᢺ JSON ৽ᒿॆࡇѪањ Student ሩ䊑ᇎֻˈloads()ᯩ⌅俆ݸ䖜ᦒ
ࠪањ dictሩ䊑ˈ❦ਾˈᡁԜՐޕⲴ object_hook࠭ᮠ䍏䍓ᢺ dict䖜ᦒѪ Studentᇎֻ˖
def dict2student(d):
 return Student(d['name'], d['age'], d['score'])

json_str = '{"age": 20, "score": 88, "name": "Bob"}'
print(json.loads(json_str, object_hook=dict2student))

䘀㹼㔃᷌ྲл˖
<__main__.Student object at 0x10cd3c190>

ᢃঠࠪⲴᱟ৽ᒿॆࡇⲴ Studentᇎֻሩ䊑Ǆ
ሿ㔃
Python䈝䀰⢩ᇊⲴᒿॆࡇ⁑ඇᱟ pickleˈնྲ᷌㾱ᢺᒿॆࡇᩎᗇᴤ䙊⭘ǃᴤㅖਸWebḷ߶ˈ
ቡਟԕ֯⭘ json⁑ඇǄ
json⁑ඇⲴ dumps()઼ loads()࠭ᮠᱟᇊѹᗇ䶎ᑨྭⲴ᧕ਓⲴި㤳ǄᖃᡁԜ֯⭘ᰦˈਚ䴰㾱Ր

н┑䏣ᡁԜⲴ㾱≲ᰦࡦᵪࡇᡆ৽ᒿॆࡇањᗵ享Ⲵ৲ᮠǄնᱟˈᖃ唈䇔Ⲵᒿޕ ᡁ̍Ԝ৸ਟԕ

ՐޕᴤཊⲴ৲ᮠᶕᇊࡦᒿॆࡇᡆ৽ᒿॆࡇⲴ㿴ࡉ ᰒ̍ࡠڊҶ᧕ਓㆰঅ᱃⭘ ৸̍ࡠڊҶ࠶ݵⲴ

ᢙኅᙗ઼⚥⍫ᙗǄ

䘉䜘࠶䘈൘㕆߉ѝǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄǄ

䘋〻઼㓯〻
䘋〻
㓯〻
 㺘䗮ᔿࡉ↓
ᑨ⭘޵ᔪ⁑ඇ
ᑨ⭘ㅜйᯩ⁑ඇ
മᖒ⭼䶒
㖁㔌㕆〻
TCP/IPㆰӻ
Socket㕆〻
UDP㕆〻
⭥ᆀ䛞Ԧ
䇯䰞ᮠᦞᓃ
֯⭘ sqlite
֯⭘MySQL
Webᔰਁ
HTMLо HTTPॿ䇞ㆰӻ
ਁ䎧 HTTP䈧≲
WSGI᧕ਓ
༴⨶ HTTP䈧≲
ࣘᘱ૽ᓄ
֯⭘⁑ᶯ
ᑨ⭘WebṶᷦ

䜘㖢о䘀㔤
 ᐳᔿ䘋〻࠶
ॿ〻

