
19 | 组件设计原则：组件的边界在哪里？
2020-01-03 李智慧

后端技术面试38讲 进入课程

讲述：李智慧
时长 10:29 大小 24.01M



软件的复杂度和它的规模成指数关系，一个复杂度为 100 的软件系统，如果能拆分成两个

互不相关、同等规模的子系统，那么每个子系统的复杂度应该是 25，而不是 50。软件开发

这个行业很久之前就形成了一个共识，应该将复杂的软件系统进行拆分，拆成多个更低复杂

度的子系统，子系统还可以继续拆分成更小粒度的组件。也就是说，软件需要进行模块化、

组件化设计。

事实上，早在打孔纸带编程时代，程序员们就开始尝试进行软件的组件化设计。那些相对独

立，可以被复用的程序被打在纸带卡片上，放在一个盒子里。当某个程序需要复用这个程序

组件的时候，就把这一摞纸带卡片从盒子里拿出来，放在要运行的其他纸带的前面或者后

面，被光电读卡器一起扫描，一起执行。



 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程 
发数字“2”获取众筹列表



其实我们现在的组件开发与复用跟这个也差不多。比如我们用 Java 开发，会把独立的组件

编译成一个一个的 jar 包，相当于这些组件被封装在一个一个的盒子里。需要复用的时候，

程序只需要依赖这些 jar 包，运行的时候，只需要把这些依赖的 jar 包放在classpath路径

下，最后被 JVM 统一装载，一起执行。

现在，稍有规模的软件系统一定被拆分成很多组件。正是因为组件化设计，我们才能开发出

复杂的系统。

那么如何进行组件的设计呢？组件的粒度应该多大？如何对组件的功能进行划分？组件的边

界又在哪里？

我们之前说过，软件设计的核心目标就是高内聚、低耦合。那么今天我们从这两个维度，看

组件的设计原则。

组件内聚原则

组件内聚原则主要讨论哪些类应该聚合在同一个组件中，以便组件既能提供相对完整的功

能，又不至于太过庞大。在具体设计中，可以遵循以下三个原则。

复用发布等同原则

复用发布等同原则是说，软件复用的最小粒度应该等同于其发布的最小粒度。也就是说，如

果你希望别人以怎样的粒度复用你的软件，你就应该以怎样的粒度发布你的软件。这其实就

是组件的定义了，组件是软件复用和发布的最小粒度软件单元。这个粒度既是复用的粒度，

也是发布的粒度。

同时，如果你发布的组件会不断变更，那么你就应该用版本号做好组件的版本管理，以使组

件的使用者能够知道自己是否需要升级组件版本，以及是否会出现组件不兼容的情况。因

此，组件的版本号应该遵循一些大家都接受的约定。

这里有一个版本号约定建议供你参考，版本号格式：主版本号. 次版本号. 修订号。比如 

1.3.12，在这个版本号中，主版本号是 1，次版本号是 3，修订号是 12。主版本号升级，

表示组件发生了不向前兼容的重大修订；次版本号升级，表示组件进行了重要的功能修订或

者 bug 修复，但是组件是向前兼容的；修订号升级，表示组件进行了不重要的功能修订或

者 bug 修复。



共同封闭原则

共同封闭原则是说，我们应该将那些会同时修改，并且为了相同目的而修改的类放到同一个

组件中。而将不会同时修改，并且不会为了相同目的而修改的类放到不同的组件中。

组件的目的虽然是为了复用，然而开发中常常引发问题的，恰恰在于组件本身的可维护性。

如果组件在自己的生命周期中必须经历各种变更，那么最好不要涉及其他组件，相关的变更

都在同一个组件中。这样，当变更发生的时候，只需要重新发布这个组件就可以了，而不是

一大堆组件都受到牵连。

也许将某些类放入这个组件中对于复用是便利的、合理的，但如果组件的复用与维护发生冲

突，比如这些类将来的变更和整个组件将来的变更是不同步的，不会由于相同的原因发生变

更，那么为了可维护性，应该谨慎考虑，是不是应该将这些类和组件放在一起。

共同复用原则

共同复用原则是说，不要强迫一个组件的用户依赖他们不需要的东西。

这个原则一方面是说，我们应该将互相依赖，共同复用的类放在一个组件中。比如说，一个

数据结构容器组件，提供数组、Hash 表等各种数据结构容器，那么对数据结构遍历的类、

排序的类也应该放在这个组件中，以使这个组件中的类共同对外提供服务。

另一方面，这个原则也说明，如果不是被共同依赖的类，就不应该放在同一个组件中。如果

不被依赖的类发生变更，就会引起组件变更，进而引起使用组件的程序发生变更。这样就会

导致组件的使用者产生不必要的困扰，甚至讨厌使用这样的组件，也造成了组件复用的困

难。

其实，以上三个组件内聚原则相互之间也存在一些冲突，比如共同复用原则和共同闭包原

则，一个强调易复用，一个强调易维护，而这两者是有冲突的。因此这些原则可以用来指导

组件设计时的考量，但要想真正做出正确的设计决策，还需要架构师自己的经验和对场景的

理解，对这些原则进行权衡。

组件耦合原则

组件内聚原则讨论的是组件应该包含哪些功能和类，而组件耦合原则讨论组件之间的耦合关

系应该如何设计。组件耦合关系设计也应该遵循三个原则。



无循环依赖原则

无循环依赖原则说，组件依赖关系中不应该出现环。如果组件 A 依赖组件 B，组件 B 依赖

组件 C，组件 C 又依赖组件 A，就形成了循环依赖。

很多时候，循环依赖是在组件的变更过程中逐渐形成的，组件 A 版本 1.0 依赖组件 B 版本 

1.0，后来组件 B 升级到 1.1，升级的某个功能依赖组件 A 的 1.0 版本，于是形成了循环依

赖。如果组件设计的边界不清晰，组件开发设计缺乏评审，开发者只关注自己开发的组件，

整个项目对组件依赖管理没有统一的规则，很有可能出现循环依赖。

而一旦系统内出现组件循环依赖，系统就会变得非常不稳定。一个微小的 bug 都可能导致

连锁反应，在其他地方出现莫名其妙的问题，有时候甚至什么都没做，头一天还好好的系

统，第二天就启动不了了。

在有严重循环依赖的系统内开发代码，整个技术团队就好像在焦油坑里编程，什么也不敢

动，也动不了，只有焦躁和沮丧。

稳定依赖原则

稳定依赖原则说，组件依赖关系必须指向更稳定的方向。很少有变更的组件是稳定的，也就

是说，经常变更的组件是不稳定的。根据稳定依赖原则，不稳定的组件应该依赖稳定的组

件，而不是反过来。

反过来说，如果一个组件被更多组件依赖，那么它需要相对是稳定的，因为想要变更一个被

很多组件依赖的组件，本身就是一件困难的事。相对应的，如果一个组件依赖了很多的组

件，那么它相对也是不稳定的，因为它依赖的任何组件变更，都可能导致自己的变更。

稳定依赖原则通俗地说就是，组件不应该依赖一个比自己还不稳定的组件。

稳定抽象原则

稳定抽象原则说，一个组件的抽象化程度应该与其稳定性程度一致。也就是说，一个稳定的

组件应该是抽象的，而不稳定的组件应该是具体的。

这个原则对具体开发的指导意义就是：如果你设计的组件是具体的、不稳定的，那么可以为

这个组件对外提供服务的类设计一组接口，并把这组接口封装在一个专门的组件中，那么这



个组件相对就比较抽象、稳定。

在具体实践中，这个抽象接口的组件设计，也应该遵循前面专栏讲到的依赖倒置原则。

也就是说，抽象的接口组件不应该由低层具体实现组件定义，而应该由高层使用组件定义。

高层使用组件依赖接口组件进行编程，而低层实现组件实现接口组件。

Java 中的 JDBC 就是这样一个例子，在 JDK 中定义 JDBC 接口组件，这个接口组件位于

java.sql包，我们开发应用程序的时候只需要使用 JDBC 的接口编程就可以了。而发布应

用的时候，我们指定具体的实现组件，可以是 MySQL 实现的 JDBC 组件，也可以是 

Oracle 实现的 JDBC 组件。

小结

组件的边界与依赖关系划分，不仅需要考虑技术问题，也要考虑业务场景问题。易变与稳

定，依赖与被依赖，都需要放在业务场景中去考察。有的时候，甚至不只是技术和业务的问

题，还需要考虑人的问题，在一个复杂的组织中，组件的依赖与设计需要考虑人的因素，如

果组件的功能划分涉及到部门的职责边界，甚至会和公司内的政治关联起来。

因此，公司的技术沉淀与实力，公司的业务情况，部门与团队的人情世故，甚至公司的过往

历史，都可能会对组件的设计产生影响。而能够深刻了解这些情况的，通常都是公司的一

些“老人”。所以，年龄大的程序员并不一定要和年轻程序员拼技术甚至拼体力，应该发挥

自己的所长，去做一些对自己、对公司更有价值的事。

思考题

在稳定抽象原则里，类似 JDBC 的例子还有很多，你能举几个吗？

欢迎你在评论区写下你的思考，也欢迎把这篇文章分享给你的朋友或者同事，一起交流一

下。

拼课微
信：1

71614
3665



© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 18 | 反应式编程框架设计：如何使程序调用不阻塞等待，立即响应？

下一篇 20 | 领域驱动设计：35岁的程序员应该写什么样的代码？

刘浪
2020-01-03

李老师好，一直纠结的一个问题，classpath具体在哪里？我怎么知道jar有没有被放到clas
spath下面？

作者回复: 自己用java命令行亲手启动一个Java程序就知道了~

  1

七七的首席铲屎官
2020-01-03

spring beanfactory 和 applicationcontext也算是吧...

展开



精选留言 (8)  写留言






1

丁丁历险记
2020-01-13

其关键在于针对业务做正交分解。 

展开

 

Zend
2020-01-08

JSR-303 是Java EE 6 中的一项子规范，叫做BeanValidation， 
javax.validation包设计相应的Bean Validation API， 
官方参考实现是hibernate-validator。

作者回复: 👍

 

你的美
2020-01-05

李老师好！我是一家新创科技公司的，认为像老师这么厉害的技术师们，除了培训还有一
件更值得做的事，那就是助力新创的科技公司，赋能他们技术方面的支持与合作（从而获
得更大的回报，做价值最大化）。意思是说： 
我有一个特别的项目，资质都已备好，准备做项目的一系列申报，还准备和阿里巴巴的蚂
蚁资本、洪泰资本等做投资对接，在这些事之前需要邀请几个像老师这么厉害的技术师…
展开

 

草原上的奔跑
2020-01-04

slf4j也是稳定抽象原则的一个例子，具体实现有log4j、logback

作者回复: 👍 我期待的答案

 

奔奔奔跑
2020-01-04

李老师您好，在微服务架构下，业务开发应该不需要依赖导致原则来实现业务了吧，因为



依赖关系大大减少了，这样理解对吗？

展开

作者回复: 我的理解是恰恰相反，微服务架构下会放大依赖关系导致的问题，而依赖关系是业务复

杂度和微服务模块设计方法决定的，并不是用了微服务，依赖关系就减少了。

 

Geek_8c5f9c
2020-01-04

JMS API 
RabbitMQ，tibco, ActiveMQ 作为jms client 都实现了jms api.

展开

作者回复: 👍

 




