
2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 1/17

02｜强一致性：那么多数据一致性模型，究竟有啥不一样？
2020-08-12 王磊

分布式数据库30讲 进入课程

讲述：王磊
时长 21:52 大小 20.04M



你好，我是王磊，你也可以叫我 Ivan。

我们经常会听到说，分布式数据库的一个优势在于，它能够支持 NoSQL 做不到的强一致

性。你怎么看待这件事儿呢？

显然，要来分析这个问题，我们首先得明白“强一致性”意味着什么。

我也问过很多身边的朋友，他们的答案都不太一样。有人说，只要使用了 Paxos 或者 Raft 

算法，就可以实现强一致性；也有人说，根据 CAP 原理只能三选二，分区容忍性和高可用

性又是必不可少的，所以分布式数据库是做不到强一致性的。可是，这些观点或多或少都

是有问题的。





 下载APP 



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 2/17

那么，今天我们就来讲讲什么是“强一致性”。

一直以来，在“分布式系统”和“数据库”这两个学科中，一致性（Consistency）都是重

要概念，但它表达的内容却并不相同。

对于分布式系统而言，一致性是在探讨当系统内的一份逻辑数据存在多个物理的数据副本

时，对其执行读写操作会产生什么样的结果，这也符合 CAP 理论对一致性的表述。

而在数据库领域，“一致性”与事务密切相关，又进一步细化到 ACID 四个方面。其中，I 

所代表的隔离性（Isolation），是“一致性”的核心内容，研究的就是如何协调事务之间

的冲突。

因此，当我们谈论分布式数据库的一致性时，实质上是在谈论数据一致性和事务一致性两

个方面。这一点，从 Google Spanner 对其外部一致性（External Consistency）的论

述中也可以得到佐证。

数据一致性

今天，我会先介绍数据一致性，下一讲中，我再为你讲解事务一致性以及它们之间的关

系。

包括分布式数据库在内的分布式存储系统，为了避免设备与网络的不可靠带来的影响，通

常会存储多个数据副本。逻辑上的一份数据同时存储在多个物理副本上，自然带来了数据

一致性问题。

讨论数据一致性还有一个前提，就是同时存在读操作和写操作，否则也是没有意义的。把

两个因素加在一起，就是多副本数据上的一组读写策略，被称为“一致性模

型”（Consistency Model）。一致性模型数量很多，让人难以分辨。为了便于你理解，

我先建立一个简单的分析框架。

这里，我要借用论文“The many faces of consistency”中的两个概念，状态一致性

（State Consistency）和操作一致性（Operation Consistency）。不要慌，这不是新的

一致性模型，它们只是观察数据一致性的两个视角。

状态一致性是指，数据所处的客观、实际状态所体现的一致性；



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 3/17

状态视角

从状态的视角来看，任何变更操作后，数据只有两种状态，所有副本一致或者不一致。在

某些条件下，不一致的状态是暂时，还会转换到一致的状态，而那些永远不一致的情况几

乎不会去讨论，所以习惯上大家会把不一致称为“弱一致”。相对的，一致就叫做“强一

致”了。

下面，我以 MySQL 为例来说明状态视角的“强一致”。

强一致性：MySQL 全同步复制

现在有一个 MySQL 集群，由一主两备三个节点构成，那么在全同步复制（Fully 

Synchronous Replication）模式下，用户与 MySQL 交互的过程是这样的。

在该模式下，主库与备库同步 binlog 时，主库只有在收到两个备库的成功响应后，才能够

向客户端反馈提交成功。

显然，用户获得响应时，主库和备库的数据副本已经达成一致，所以后续的读操作肯定是

没有问题的，但这种模式的副作用非常大，体现在以下两点。

第一，性能差。主库必须等到两个备库均返回成功后，才能向用户反馈提交成功。图中由

于网络阻塞，“备库 2”稍晚于“备库 1”返回响应，增加了数据库整体的延时。而下一

操作一致性是指，外部用户通过协议约定的操作，能够读取到的数据一致性。



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 4/17

次，拖后腿的可能变成“备库 1”。总之，主库的响应时间取决于两个备库中延时最长的

那个。

第二，可用性问题。我们在第 1 讲提到过可用性概念，任何设备都有可能出现故障，尤其

是 x86 这样的通用商业设备，故障率会更高。但在全同步复制模式下，集群中的三个节点

被串联起来，如果单机可用性是 95%，那么集群整体的可用性就是 

85.7%（95%*95%*95%=85.7%），跟单机相比反而降低了。

集群规模越大，这些问题就越严重，所以全同步复制模式在生产系统中也很少使用。更进

一步说，在工程实践中，实现状态视角的强一致性需要付出的代价太大，尤其是与可用性

有无法回避的冲突，所以很多产品选择了状态视角的弱一致性。

弱一致性：NoSQL 最终一致性

NoSQL 产品是应用弱一致性的典型代表，但对弱一致性的接受仍然是有限度的，这就是 

BASE 理论中的 E 所代表的最终一致性（Eventually Consistency），弱于最终一致性的产

品就几乎没有了。

对于最终一致性，你可以这样理解：在主副本执行写操作并反馈成功时，不要求其他副本

与主副本保持一致，但在经过一段时间后这些副本最终会追上主副本的进度，重新达到数

据状态的一致。

你再仔细推敲一下，是不是觉得这个定义还有点含糊？“经过一段时间”到底是多久呢？

几秒还是几分钟？如果是一个不确定的数值，怎么在工程中使用呢？

这就需要我们从操作视角来分析了。

操作视角

最终一致性，在语义上包含了很大的不确定性，所以很多时候并不是直接使用，而是加入

一些限定条件，也就衍生出了若干种一致性模型。因为它们是在副本不一致的情况下，进

行操作层面的封装来对外表现数据的状态，所以都可以纳入操作视角。

接下来，我会挑选 5 个常见的一致性模型逐一讲解。



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 5/17

写后读一致性

首先来说“写后读一致性”（Read after Write Consistency），它也称为“读写一致

性”，或“读自己写一致性”（Read My Writes Consistency）。你可能觉得最后一个名

字听上去有些奇怪，但它却最准确地描述了这种一致性模型的使用效果。

我还是用一个例子来说明。

小明很喜欢在朋友圈分享自己的生活。这天是小明和女友小红的相识纪念日，小明特意在

朋友圈分享了一张两人的情侣照。小明知道小红会很在意，特意又刷新了一下朋友圈，确

认照片分享成功。

你是否意识到这个过程中系统已经实现了“写后读一致性”？我画了张流程图来表示这个

过程。

小明发布照片的延时极短，用户体验很好。这是因为数据仅被保存在主副本 R1 上，就立

即反馈保存成功。而其他副本在后台异步更新，由于网络的关系每个副本更新速度不同，

在 T2 时刻上海的两个副本达成一致。从过程来看，这与前面所说的“最终一致性”完全相

符。

要特别注意的是，小明有一个再次刷新朋友圈的动作，这时如果访问副本 R2，由于其尚未

完成同步，情侣照将会消失，小明就会觉得自己的照片被弄丢了。此处，我们假定系统可

以通过某种策略由写入节点的主副本 R1 负责后续的读取操作，这样就实现了写后读一致

性，可以保证小明再次读取到照片。

自己写入成功的任何数据，下一刻一定能读取到，其内容保证与自己最后一次写入完全一

致，这就是“读自己写一致性”名字的由来。当然，从旁观者角度看，可以称为“读你写



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 6/17

一致性”（Read Your Writes Consistency），有些论文确实采用了这个名称。

单调读一致性

但是，小明发完朋友圈之后，小红一定能看到照片吗？会不会发生异常呢？

这次确实出问题了。

此时，小红也在刷朋友圈，看到了小明刚刚分享的照片，非常开心。然后，小红收到一条

信息，简单回复了一下，又回到朋友圈再次刷新，发现照片竟然不见了！小红很生气，打

电话质问小明，为什么这么快就把照片删掉？小明听了一脸蒙，心想我没有删除呀。

你猜这中间发生了什么呢？我用另一张流程图来演示这种异常。

在小明发布照片后的瞬间，小红也刷新了朋友圈，此时读取到副本 R1，所以小红看到了照

片；片刻之后，小红再次刷新，此时读取到的副本是 R2，于是照片消失了。小红以为小明

删除了照片，但实际上这完全是程序错误造成的，数据向后回滚，出现了“时光倒流”。

想要排除这种异常，系统必须实现单调读一致性（Monotonic Read Consistency）。关

于单调读一致性的定义，常见的解释是这样的：一个用户一旦读到某个值，不会读到比这

个值更旧的值。

是不是感觉有点蒙？让我来解释一下。



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 7/17

假如，变量 X 被赋值三次，依次是 10、20、30；之后读取变量 X，如果第一次读到了 

20，那下一次只有读到 20 或 30 才是合理的。因为在第一次读到 20 的一刻，意味着 10 

已经是过期数据，没有意义了。

实现单调读一致性的方式，可以是将用户与副本建立固定的映射关系，比如使用哈希算法

将用户 ID 映射到固定副本上，这样避免了在多个副本中切换，也就不会出现上面的异常

了。

前缀一致性

但是，在一些更复杂的场景下还是会出现时间的扭曲。我再用一个例子来说明。

这天小明去看 CBA 总决赛，刚开球小明就拍了一张现场照片发到朋友圈，想要炫耀一下。

小红也很喜欢篮球，但临时有事没有去现场，就在评论区问小明：“现在比分是多

少？”小明回复：“4:2。”

小明的同学，远在加拿大的小刚，却看到了一个奇怪的现象，评论区先出现了小明的回

复“4:2。”，而后才刷到小红的评论“现在比分是多少？”。难道小明能够预知未来吗？

这是什么原因呢？我们还是看图说话。



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 8/17

小明和小红的评论分别写入了节点 N1 和 N2，但是它们与 N3 同步数据时，由于网络传输

的问题，N3 节点接收数据的顺序与数据写入的顺序并不一致，所以小刚是先看到答案后看

到问题。

显然，问题与答案之间是有因果关系的，但这种关系在复制的过程中被忽略了，于是出现

了异常。

保持这种因果关系的一致性，被称为前缀读或前缀一致性（Consistent Prefix）。要实现

这种一致性，可以考虑在原有的评论数据上增加一种显式的因果关系，这样系统可以据此

控制在其他进程的读取顺序。

线性一致性

在“前缀一致性”的案例中，问题与答案之间存在一种显式声明，但在现实中，多数场景

的因果关系更加复杂，也不可能要求全部做显式声明。

比如对于分布式数据库来说，它无法要求应用系统在每次变更操作时附带声明一下，这次

变更是因为读取了哪些数据而导致的。



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 9/17

那么，在显式声明无法奏效的情况下，如何寻找因果关系呢？

不知道你有没有听过这句话，“你所经历的一切，造就了现在的你。”是不是有一点哲学

的味道？一切对原因的推测都是主观的，之前发生的一切都可能是原因。

所以，更可靠的方式是将自然语意的因果关系转变为事件发生的先后顺序。

线性一致性（Linearizability）就是建立在事件的先后顺序之上的。在线性一致性下，整个

系统表现得好像只有一个副本，所有操作被记录在一条时间线上，并且被原子化，这样任

意两个事件都可以比较先后顺序。

这些事件一起构成的集合，在数学上称为具有“全序关系”的集合，而“全序”也称

为“线性序”。我想，线性一致性大概就是因此得名。

但是，集群中的各个节点不能做到真正的时钟同步，这样节点有各自的时间线。那么，如

何将操作记录在一条时间线上呢？这就需要一个绝对时间，也就是全局时钟。

从产品层面看，主流分布式数据库大多以实现线性一致性为目标，在设计之初或演进过程

中纷纷引入了全局时钟，比如 Spanner、TiDB、OceanBase、GoldenDB 和巨杉等等。

工程实现上，多数产品采用单点授时（TSO），也就是从一台时间服务器获取时间，同时

配有高可靠设计； 而 Spanner 以全球化部署为目标，因为 TSO 有部署范围上的限制，所

以 Spanner 的实现方式是通过 GPS 和原子钟实现的全局时钟，也就是 True Time，它可

以保证在全球范围内任意节点能同时获得的一个绝对时间，误差在 7 毫秒以内。

但是，对于线性一致性，学术界其实是有争议的。反对者的论据来自爱因斯坦的相对论的

一个重要结论，“时间是相对的”。没有绝对时间，也就不存在全序的事件顺序，不同的

观察者可能对于哪个事件先发生是无法达成一致的。因此，线性一致性是有局限性的。

当然，从工程角度看，因为我们的应用场景都在经典物理学适用范围内，所以线性一致性

也是适用的。

因果一致性

既然线性一致性不够完美，那么有没有不依赖绝对时间的方法呢？



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 10/17

当然是有的，这就是因果一致性（Causal Consistency）。

因果一致性的基础是偏序关系，也就是说，部分事件顺序是可以比较的。至少一个节点内

部的事件是可以排序的，依靠节点的本地时钟就行了；节点间如果发生通讯，则参与通讯

的两个事件也是可以排序的，接收方的事件一定晚于调用方的事件。

基于这种偏序关系，Leslie Lamport 在论文“Time, Clocks, and the Ordering of Events 

in a Distributed System”中提出了逻辑时钟的概念。

借助逻辑时钟仍然可以建立全序关系，当然这个全序关系是不够精确的。因为如果两个事

件并不相关，那么逻辑时钟给出的大小关系是没有意义的。

多数观点认为，因果一致性弱于线性一致性，但在并发性能上具有优势，也足以处理多数

的异常现象，所以因果一致性也在工业界得到了应用。

具体到分布式数据库领域，CockroachDB 和 YugabyteDB 都在设计中采用了逻辑混合时

钟（Hybrid Logical Clocks），这个方案源自 Lamport 的逻辑时钟，也取得了不错的效

果。因此，这两个产品都没有实现线性一致性，而是接近于因果一致性，其中 

CockroachDB 将自己的一致性模型称为“No Stale Reads”。

时间对于任何一种分布式系统来说都是非常重要的，在分布式数据库中还会牵扯到数据一

致性以外的很多话题，所以有关时间、全局时钟和逻辑时钟的内容，我还会在后续课程中

提到并作详细讨论。

小结

好了，今天的内容就到这里。我们一起学习了数据一致性，希望你能够记住以下几点：

一致性模型林林总总，数量繁多，但我们总可以从状态和操作这两个视角来观察，进而

梳理出其读写操作的不同策略。

1.

从状态视角看，数据一致性只有两种状态，强一致或弱一致，而在实际系统中强一致是

非常少见的，最终一致性是弱一致性的特殊形式；

2.

从操作视角看，最终一致性可以被封装成多种一致性模型，甚至是最强的线性一致性。3.



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 11/17

今天介绍的几种一致性模型，用一致性强度来衡量的话：线性一致性强于因果一致性；而

写后读一致性、单调读一致性、前缀一致性弱于前两者，但这三者之间无法比较强弱。还

有一种常被提及的顺序一致性（Sequentially Consistent），其强度介于线性一致性与因

果一致性之间，由于较少在分布式数据库中使用，所以并没有介绍。

综上所述，我们提到的一致性模型强度排序如下：

线性一致性 > 顺序一致性 > 因果一致性 > { 写后读一致性，单调一致性，前缀一致性 }

此外，还有一些常见的弱一致性模型今天并没有提到，包括有限旧一致性（Bounded 

Staleness）、会话一致性（Session Consistency）、单调写一致性（Monotonic Write 

Consistency）和读后写一致性（Write Follows Read Consistency）等。如果你感兴

趣，可以在 Azure Cosmos DB 的官方文档找到非常详细的说明。

分布式数据库主要应用了线性一致性或因果一致性。线性一致性必须要有全局时钟，全

局时钟可能来自授时服务器或者特殊物理设备（如原子钟），全局时钟的实现方式会影

响到集群的部署范围；因果一致性可以通过逻辑时钟实现，不依赖于硬件，不会限制集

群的部署范围。

4.



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 12/17

提建议

思考题

课程的最后，我要给你留一道思考题。我们今天集中讨论了数据一致性，但是并没有特别

强调 Paxos 的作用。这等于是说，Paxos 不是实现强一致性的必要条件。可是，有些时候

大家又会将 Paxos 称为一致性协议。你觉得这个“一致性协议”和数据一致性又是什么关

系呢？

欢迎你在评论区留言和我一起讨论，我会在答疑篇回复这个问题。最后，谢谢你的收听，

如果你身边的朋友也对强一致性或者数据一致性这个话题感兴趣，欢迎你把今天这一讲分

享给他，我们一起讨论。

javascript:void(0);
javascript:void(0);


2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 13/17

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 01｜什么是分布式数据库？

下一篇 03｜强一致性：别再用BASE做借口，来看看什么是真正的事务一致性

峰
2020-08-12

感觉很长一段时间都被翻译给耽误了，ACID的C是一致性，强调的是数据的状态变迁的特
性，CAP里的C共识，强调的是多副本条件下，多个节点怎么就数据的变动，达成共识，
统一修改。 
而paxos，raft是在牺牲一定A的条件下（多数节点存活才ok），实现C的一种多节点的通
信协议，Paxos貌似不需要主节点这个角色去统一时序，Raft，zab需要主节点，它们都…
展开

作者回复: 你好，其实CAP的C也是Consistency，是多副本、单操作的数据一致性；而ACID里的

C是指单副本、多操作的事务一致性。Paxos这类共识算法，可以看作是复制协议的一种，虽然有

时也叫做一致性协议，但这个一致性是指Consensus。Consensus是实现数据一致性目标下的具

体技术，但并不是唯一的选择。采用主从复制也可以达到同样效果，比如04讲会提到的PGXC风

格的分布式数据库就是采用主从复制的方式。

 3  7

tt
2020-08-13

我觉得数据一致性是从数据的用户视角出发对数据属性的描述，而paxos协议是达成共识
的过程的一种实现方式，是从数据的生产者或者维护者角度出发的

展开

作者回复: 说的很好

  2

扩散性百万咸面包
2020-08-12

Paxos本质上是共识算法，主要是用来维护数据库副本的一致性/权威性。而今天讲的一致

精选留言 (12)  写留言



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 14/17

性是从用户角度来谈，而不局限于是数据副本。 
同时，今天讲的一致性也需要共识算法Paxos，Raft来保证。比如选举，如何才能选出正
确的Leader等等。

展开

作者回复: 高级别的一致性模型，可以基于Raft算法复制，但使用主从复制也是可以的😊

  2

叫我皮卡丘
2020-08-12

我认为是数据的一致性依靠paxos,raft等一致性算法来保证

作者回复: 你好，即使是Raft协议，如果开放follower读，也会出现不一致的情况，所以读写策略

还是很重要的。

  2

南国
2020-08-13

先回答问题，“一致性协议”和数据一致性的关系是什么？很多留言的朋友都提到了一个
重要的问题，即Paxos是一个共识算法，共识算法就是全局节点就某一事实达成一致，而
数据一致中的数据我觉得可以理解为共识算法的日志，从此看来数据一致就是一致性协议
的一个子集；而共识算法还包括很多其他部分，比如容错，日志压缩，集群变更等。 
还有就是这些共识算法基本都遵从quorum的，所以都可以看成操作一致性，这也是用…
展开

作者回复: 你好，CAP中的C就是Consistency，是数据一致性，也是我们所说的操作视角的一致

性，这里包含的多副本和读写策略两层含义。共识算法是复制协议层面的内容，并不一定对操作

做严格定义。比如，就算我们使用Raft算法，但是如果开放了Follower读，也有可能达不到线性

一致性或因果一致性的。事实上，CockroachDB的Follower读就是这样的。

  1

chenchukun
2020-08-13

从状态和操作两个视角看待副本的一致性这点讲的很透彻，之前都没有考虑过这点。 
从状态视角看，是不是只有全同步这种方式实现了强一致性，即使像paxos、raft这些实现
了操作上线性一致性的算法，从状态视角看也不是强一致的。 



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 15/17

然而全同步降低了系统的可用性，paxos、raft不保证所有节点状态的一致，而是通过额外
的算法来保证操作视角的一致性，同时提高了系统的可用性。

展开

作者回复: 你好，你的理解非常准确，点赞

  1

扩散性百万咸面包
2020-08-12

强一致性和弱一致性的定义感觉还是不够准确。 
1. MySQL这个例子是全同步复制，实际上Raft也是强一致性算法，但它在应答客户端的请
求成功后并不保证多副本之间暂时的数据一致性，有可能数据存在不同。只不过在收到读
请求的时候会转发给Master，保证强一致性。 
 …
展开

作者回复: 你好，关于第一点，我再补充一下。 

Raft是多数派协议，从写入成功那一刻的数据状态来说，肯定不是一致的。不过，通过操作方面

的封装，约定由主副本对外提供服务，所以不会体现出副本间的差异。一致性模型，除了副本的

状态，还要看读写操作。最终一致性的定义，其实只是描述了副本的状态而已。我认为，一致性

模型，主要还是从读写操作的效果来分析，也数据副本的一致性有关但不是强依赖。比如，如果

不使用Raft，用半同步，也可以做到线性一致性。 

第二点，我没有完全理解，咱们可以继续探讨

 1  1

孟磊
2020-08-17

和那些偏理论的课程不同，能感觉到作者对于分布式数据库的理解非常深刻，且结合了实
际的金融业务，有点追剧的感觉了。 能不能拿出OceanBase goldendb这类领头羊产品给
大家讲讲选型要注意的？

作者回复: 你好，孟磊，谢谢你的鼓励。我在构思这个专栏的时候，就订下一个目标，就是把学术

的东西和目前工业界的实践联系起来，再落到具体的工作中，比如技术选型。所以，能得到你的

肯定，我很高兴。当然，对产品的关注是必不可少的，从04开始的每一讲我都会对领头羊产品做

局部设计上的拆解，并且比对不同方案的优劣，不过这个领头羊并不固定，因为我想向你介绍最

有特点的设计。希望你能喜欢这种组织方式，后面的课程中，期待还能收到你的反馈，我们结合

问题一起讨论。



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 16/17

 

南国
2020-08-15

老师，其实我还是没太懂前缀一致性和因果一致性的区别，前缀一致性是某些关系可比，
并发的不可比，不也是一个偏序关系嘛？我还一直觉得这两个是一回事呢。

展开

作者回复: 你好，简单的说，因果一致性是靠逻辑时钟确定偏序关系，不需要应用介入；而前缀一

致性靠事件之间显式声明的依赖关系，可以在应用层处理

 

南国
2020-08-14

老师，想问问会话一致性中会话怎么理解呢？

展开

作者回复: 你好，会话一种致性的会话就是通常所指的用户Session，它是多种一致性模型的组

合，可以参考课程中Cosmos DB的官方文档学习。

 

南国
2020-08-14

前缀一致性和因果一致性有什么区别呢？看起来都是在描述一个因果的关系啊

作者回复: 你好，要实现前缀一致性，只要显示声明依赖关系就可以，这个有很多灵活的做法。而

因果一致性，建立在偏序关系的基础上，很难在应用层面实现，要有底层的支持。

 

hql
2020-08-12

paxos协议定义的是一种决策过程。课程里的一致性是客观定义。

作者回复: 是的，一致性模型里有两个要点，读写策略和多副本状态。



2020/8/18 02｜强一致性：那么多数据一致性模型，究竟有啥不一样？

https://time.geekbang.org/column/article/272104 17/17

 


