
2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 1/9

08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图
2020-08-26 王磊

分布式数据库30讲 进入课程

讲述：王磊
时长 15:58 大小 14.64M



你好，我是王磊，你也可以叫我 Ivan。

这一讲是我们课程的答疑篇，我会集中讨论前 7 讲布置的思考题，以及留言区中大家关注

的一些内容。

第 1 讲：分布式数据库的定义

在第 1 讲中，我们通过层层递进式的分析，给这门课程要讨论的“分布式数据库”下了

一个定义：分布式数据库是服务于写多读少、低延时、海量并发 OLTP 场景的，具有海量

数据存储能力和高可靠性的关系型数据库。在“内部构成”这一节，我们还着重讨论了几

种不属于分布式数据库的解决方案。





 下载APP 



2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 2/9

在这一讲的思考题部分，我们聊到了 Aurora，我说“Aurora 和这里说的分布式数据库还

是有明显差别的”，想看看大家的理解。在留言中，我看到有些同学是持不同观点的，理

由是 Aurora 也基于分布式存储的。

那么，为什么我说它不是分布式数据库呢？主要原因就是 Aurora 依然是不支持写入能力

的水平扩展。

Aurora 是亚马逊推出的云原生数据库，它采用计算与存储分离的思想，计算能力垂直扩

展，存储能力水平扩展。究其原因，它的存储系统是直接架设在自家的分布式存储系统

（S3）之上的；而计算节点仍然是单节点，所以是垂直扩展。当然 Aurora 也像 MySQL 

一样是支持一写多读的，根据亚马逊的官方说明，可以配置 15 个备节点来分流读操作的压

力。由于 Aurora 的元数据会缓存在主节点上的，在发生变更时，主备同步数据有一个小

的延迟（小于 100 毫秒），这就造成备节点不能承接写入功能，读也不能保证严格的数据

一致性。

我们在定义中强调了海量并发和写多读少，这其实就是要求分布式数据库的写入能力必须

是可水平扩展的。

“开心哥”的留言中，提到了 Aurora 是不能支持多写的，准确地抓住了它与 NewSQL 的

重要差别。而“南国”同学的留言中还提到了 Aurora 的论文。这篇论文是 2017 年，亚马

逊在 SIGMOD 上发表的，论文题目叫做”Amazon Aurora: Design Considerations 

for High Throughput Cloud-Native Relational Databases”，其中披露了系统架构的

设计细节，推荐有兴趣的同学阅读。其实阅读顶会论文是非常不错的学习方法，给“南

国”同学点赞，希望大家也尝试一下。

最后，“xy”同学的留言还提到了另外两款同架构的产品，阿里 polarDB，腾讯 

CynosDB，说明“xy”同学很关注对系统的横向比较，这也是非常好的学习习惯。我这里

再补充一点，华为的 Taurus 也采用了类似 Aurora 的架构。

第 2 讲：数据一致性

第 2 讲中，我们首先明确了强一致性包含数据一致性和事务一致性两个方面，而后展开

介绍了数据一致性。我们的讲解方式是先给出一个分析框架，也就是状态和操作双视角，

并从状态视角引出了最终一致性这个概念。而后，我们在最终一致性的基础上介绍了 5 种

不同强度的一致性模型，其中线性一致性和因果一致性是分布式数据库中普遍应用的。



2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 3/9

思考题部分则是“你觉得 Paxos 这个一致性协议和数据一致性又是什么关系呢？”

这个答案嘛，很显然它们是不同的概念。可为什么不同的概念，都叫做一致性呢？就

像“峰”同学说的，这个问题其实是翻译造成的。数据一致性对应是 Consistency，而一

致性协议对应的则是 Consensus，这个单词更多时候被翻译成共识，就是我们常说的共识

算法。

我认为，Paxos 本质上是一种复制协议，约定了副本之间的同步策略，就像我们谈到的最

终一致性，同样也只是描述了副本之间同步情况。再看看我们具体介绍的 5 个数据一致性

模型，它们都在多副本的基础上又约定了读写策略，所以这两点都是一致性模型

（Consistency Model）必不可少的内容。

我在留言中发现有的同学对 Paxos 这样的共识算法认识很深刻，谈了多副本的一致性，讲

得很好，但是会忽略了读写策略的作用。“chenchukun”和“tt”同学的留言则抓住了这

两个点，点赞。

第 3 讲：事务一致性

第 3 讲谈的事务一致性也是强一致性的组成部分，它具体又细化为 ACID 四个特性，其

中的一致性比较宽泛，持久性的实现机制比较稳定，而原子性在分布式架构下面临挑战，

最后的隔离性则非常复杂。即使在单体数据库下，工业界也没找到公认的处理隔离性问题

的完美方法，很难实现最高级别的可串行化。所以，在分布式架构下，多数产品依然需要

在性能与正确性之间进行权衡。

关于原子性和隔离性，我们还有比较多的篇幅展开讨论，所以课程的最后我留了一道关于

持久性的思考题，就是预写日志（WAL）写成功，但是数据表写失败，要怎么处理？

在留言中，我发现很多同学都对 WAL 有深刻的认识，也都了解基于日志恢复数据的运作

原理。其实，我这个问题是想让大家思考，联机写入的那一刻，除了记录 WAL，数据库还

干了什么。这也是一个与 WAL 有关的设计，也很有意思。

事实上，对大多数的数据库来说，实时写入数据时，并不是真的将数据写入数据表在磁盘

中的对应文件里，因为数据表的组织形式复杂，不像 WAL 那样只是在文件尾部追加，所

以 I/O 操作的延迟太长。因此，写入过程往往是这样的，记录 WAL 日志，同时将数据写

入内存，两者都成功就返回客户端了。这些内存中的数据，在 Oracle 和 MySQL 中都被称



2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 4/9

为脏页，达到一定比例时会批量写入磁盘。而 NewSQL 所采用的 LSM-Tree 存储模型也

是大致的思路，只不过在磁盘的数据组织上不同。

写入内存和 WAL 这两个操作构成了一个事务，必须一起成功或失败。

第 4 讲：两种架构风格

第 4 讲我们谈了分布式数据库的两种架构风格 NewSQL 和 PGXC。PGXC 是从代理中

间件演化而来，以单体数据库作为数据节点，它的优势是工程实现更稳定。NewSQL 则是

以分布式键值系统为基础，引入了很多新技术，这些技术都会在我们的课程中逐步介绍。

NewSQL 的代表系统是 Google 的 Spanner，而它的优势就是架构的先进性。

其实关于架构风格的讨论，往往是百家争鸣，各持观点，所以我们的思考题也是一个开放

性话题，请大家聊聊自己熟悉的分布式数据库，或者其他分布式系统的架构。

在留言区，“xy”和“赵见跃”同学都提到了 TDSQL，它是不是也属于 PGXC 风格呢？

我认为目前腾讯输出的 TDSQL 还不是典型的 PGXC，因为它没有全局时钟，也没有等效的

设计去解决全局一致性问题。当然，说它不是，我也是有点纠结的，在 2019 年 TDSQL 的

技术演讲中，腾讯的研发人员深入地分析了缺失全局时钟带来的一致性问题，同时也提及

了正在进行的技术尝试。所以，我相信 TDSQL 很快会在新版本中增加类似的特性。

“南国”同学还提出了一个新问题：NewSQL 与 PGXC 的界限似乎很模糊，是不是差别就

在存储层面，NewSQL 只能存储，而 PGXC 是完整的数据库呢？我认为这只是一个表象，

最关键的差异其实是分片设计，或者说是两种架构对数据组织形式上的根本差别。PGXC 

的数据是相对固定的，而 NewSQL 的数据是能够更加灵活移动的，移动意味着解锁了数据

与节点的关系，有点像灵魂和躯体的关系。如果灵魂不被限制在一个躯体里，那是不是就

可以实现永生。解锁了数据与节点的依赖关系，系统也更加鲁棒。总的来说，我认为能够

适应变化，在各种意外情况下，都能生存下来，这是设计分布式系统的核心思想。

第 5 讲：全局时钟

第 5 讲，我们介绍了全局时钟的不同实现方式，包括物理时钟和逻辑时钟两种方式，物

理时钟的难点首先是要做到足够高的精度，其次是在使用时如何处理时钟误差，学术一点

的说法叫做时钟的置信区间。逻辑时钟实际上是混合逻辑时钟，还是会引入物理时钟作为

参考，但主要通过逻辑控制来保证时钟的单调递增。有同学问是不是可以不用物理时钟，



2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 5/9

我要说的是，对于多时间源是不行的，因为这样会造成不相关事件的时钟偏差太大，也就

是偏序拼接的全序失真太大。如果是单时间源的混合逻辑时钟，它的好处是不用处理误

差，简化了其他模块的设计。而 HLC 这样多时间源的混合逻辑时钟，则依然有时钟误差的

问题。

这一讲的思考题是让大家思考一下“时间对于分布式数据库的影响是什么？”我发现大家

的留言对这个问题的讨论并不多。其实，时间在很多分布式系统都是存在的，比如 HBase 

对于各节点的时钟偏移也是有限制，只不过它的容忍度更高，可以达到几十秒。而在分布

式数据库中与时间有关的功能主要体现在事务并发控制，比如 MVCC、读写冲突。既然留

言讨论不多，我这里就先不做点评，卖个关子，在第 11 讲、第 12 讲中我们再来详细聊

聊。

第 6 讲：数据分片

第 6 讲，我们介绍了分布式数据库中一个非常重要的概念“分片”。分片机制的两个关

键点是分片策略和分片调度机制。分片策略包括 Hash 和 Range，调度机制则包括静态和

动态两种。分片机制的实现和架构有很大的关系，PGXC 架构基本上都是静态分片，是以 

Hash 分片为主，有的产品也同时支持 Range 分片。关于 NewSQL 架构，我们主要介绍

了最有代表性的动态 Range 分片。

这一讲的思考题，就是在问分片元数据的存储方案。

分析这个问题，首先要看元数据会不会变更，比如静态分片就不会变更，那么就可以把它

复制多份部署在所有工作节点上，如果会变更，那就要考虑变更带来的多副本一致性问

题，这里其实是和后面的 07 讲相呼应的。现在读完 07 讲，你自然应该知道，如果是少数

节点集中存储元数据，那么可以采用 Paxos 协议保证一致性。如果是 P2P 架构，因为节点

规模太大，那就适合采用 Gossip 协议。设计的权衡点主要是在于节点规模大小对传播效率

的影响。

“开心哥”和“真名不叫黄金”两位同学都回答其中的一种情况，就是基于 etcd 或 

PD（基于 etcd）来存储元数据，而 etcd 是 Raft 协议的开源实现。

第 7 讲：数据复制



2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 6/9

第 7 讲，我们讨论的话题是数据复制，这和分片一样是非常基础和重要的内容。这一讲

我们介绍了两个知识点，其中第一个就是分片元数据的存储方案，刚刚我们已经说过了，

第二个知识点是数据复制的效率问题。Raft 由于顺序投票的限制，在复制效率上比 Paxos 

稍差。但是因为 Raft 有高质量的开源实现项目 etcd，而 Paxos 因为算法复杂没有稳定的

开源能实现，所有 TiDB 和 CockroachDB 还是选择了 Raft 协议。同时，TiDB 和 

CockroachDB 采用了 Multi Raft 的方式，让多分片并行处理提升性能。两者在 Raft 协议

实现上也进行了若干改进。这些改进思路很有普适性，一些独立的 Raft 项目也同样实现

了，比如 SOFA-JRaft。

这一讲的思考题，我们讨论的是分布式数据库的存储上限。你一定有点疑惑，既然分布式

数据库是一个水平扩展的系统，可以不断地增加节点。那么为什么还有存储上限呢？事实

上，不仅分布式数据库，绝大多数分布式存储系统都是有上限的。因为有了这个限制，可

以简化系统架构设计，而这个上限当然也是一个很大的数值，能够满足绝大多数业务场景

的需求。

以 CockroachDB 为例，它的存储容量大致是 4EB，而这个限制是由元数据的存储方式决

定的。

在 CockroachDB 中存储分片元数据的数据结构叫做 Meta ranges，它是一个两层索引结

构，第一层 Meta1 存储了第二层 Meta2 的地址，第二层 Meta2 则指向了具体分片。每

个节点会保存 Meta1 的定位，而且 Meta1 是不会分拆的，这样就更好的稳定性。Meta1 

和 Meta2 的长度都是 18 位，所以 CockroachDB 中最多只能有 2^36 个分片。

CockroachDB 默认分片初始大小是 64M，那么可以算出一个总存储量是 4EB，

2^36*64M。从这个意义上说，CockroachDB 的最大存储容量是 4EB。当然，如果分片

增大整体容量还会增加，但第 6 讲我们介绍过分片过大是有副作用的，所以不能无限制增

加，系统的容量还是有上限的。

小结

最后，要特别感谢“Monday”同学，他建议我们增加一张分布式数据库的全景图，让知

识的组织更加系统。我觉得这是个好主意，和编辑商量了一下，最后决定在每个答疑篇都

会增量补充这个全景图，在最后的第 30 讲大家就能看到完整的全景图了。这样安排还有一

个好处，就是帮助大家阶段性地复习前面课程。

分布式数据全景图 1/4



2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 7/9

提建议

如果你对今天的内容有任何疑问，欢迎在评论区留言和我一起讨论。要是你身边的朋友也

对分布式数据库这个话题感兴趣，你也可以把今天这一讲分享给他，我们一起讨论。

学习资料

Alexandre Verbitski et al.: Amazon Aurora: Design Considerations for High 

Throughput Cloud-Native Relational Databases

javascript:void(0);
javascript:void(0);


2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 8/9

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 07 | 数据复制：为什么有时候Paxos不是最佳选择？

下一篇 09｜原子性：2PC还是原子性协议的王者吗？

托尼斯威特
2020-08-27

谢谢老师的总结。 
上手分布式数据库之前，我想请问几个基本的问题， 
 
需要ORM框架吗？MyBatis Hilbernite 还是别的什么？ 
 …
展开

作者回复: 你好，首先要说你提的问题很好，我猜这也是很多同学的疑问。事实上，分布式数据库

在功能上没有太多神秘的地方，我们在开篇词中提到过，分布式数据库就是分布式架构实现的关

系型数据库。所以说这些数据库的典型特性，专栏中介绍的分布式数据库几乎都可以支持。

精选留言 (4)  写留言



2020/9/13 08 | 基础篇大串讲：重难点回顾+思考题答疑+知识全景图

https://time.geekbang.org/column/article/277741?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 9/9

 2  1

哈德韦
2020-08-29

老师好，看AWS的最新文档，似乎Aurora也支持多写了：https://docs.aws.amazon.co
m/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html。是不是说现在的
Aurora更加是一个分布式数据库了呢？

 

扩散性百万咸面包
2020-08-26

问一下，文章中说数据库普遍写入数据都是WAL+内存写。那这种情况下，B-Tree和LSM
tree还会有那么大的性能差异吗？B-Tree普遍要经过几次搜索，可能还有回表。而LSM Tr
ee只要往有序的文件中写入数据，保证有序即可？这是两者差异的主要原因吗？

展开

 1 

扩散性百万咸面包
2020-08-26

PGXC 的数据是相对固定的，而 NewSQL 的数据是能够更加灵活移动的，移动意味着解
锁了数据与节点的关系，有点像灵魂和躯体的关系。如果灵魂不被限制在一个躯体里，那
是不是就可以实现永生。解锁了数据与节点的依赖关系，系统也更加鲁棒。 
对文章中说的这一点，PGXC和NewSQL的区别表示疑问。PGXC如果加入动态调度的组
件，是否也可以实现Range 动态调度呢？据我的理解普遍PGXC和NewSQL的最大区别…
展开

作者回复: PGXC当然也有演进的机会，增加动态调度，不过那就已经不是我们现在所说的PGXC

架构了。 

SQL无法水平扩展？这个怎么理解呢？

 


