
2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 1/11

12 | 隔离性：看不见的读写冲突，要怎么处理？
2020-09-04 王磊

分布式数据库30讲 进入课程

讲述：王磊
时长 13:33 大小 12.43M



你好，我是王磊，你也可以叫我 Ivan。

我们今天继续聊读写冲突。上一讲我们谈的都是显式的读写冲突，也就是写操作和读操作

都在同一时间发生。但其实，还有一种看不见的读写冲突，它是由于时间的不确定性造成

的，更加隐蔽，处理起来也更复杂。

关于时间，我们在第 5 讲中已经做了深入讨论，最后我们接受了一个事实，那就是无法

在工程层面得到绝对准确的时间。其实，任何度量标准都没有绝对意义上的准确，这是因

为量具本身就是有误差的，时间、长度、重量都是这样的。

不确定时间窗口





 下载APP 



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 2/11

那么，时间误差会带来什么问题呢？我们用下面这张图来说明。

我们这里还是沿用上一讲的例子，图中共有 7 个数据库事务，T1 到 T7，其中 T6 是读事

务，其他都是写事务。事务 T2 结束的时间点（记为 T2-C）早于事务 T6 启动的时间点

（记为 T6-S），这是基于数据记录上的时间戳得出的判断，但实际上这个判断很可能是错

的。

为什么这么说呢？这是因为时间误差的存在，T2-C 时间点附近会形成一个不确定时间窗

口，也称为置信区间或可信区间。严格来说，我们只能确定 T2-C 在这个时间窗口内，但

无法更准确地判断具体时间点。同样，T6-S 也只是一个时间窗口。时间误差不能消除，但

可以通过工程方式控制在一定范围内，例如在 Spanner 中这个不确定时间窗口（记为ɛ）

最大不超过 7 毫秒，平均是 4 毫秒。

在这个案例中，当我们还原两个时间窗口后，发现两者存在重叠，所以无法判断 T2-C 与 

T6-S 的先后关系。这真是个棘手的问题，怎么解决呢？

只有避免时间窗口出现重叠。 那么如何避免重叠呢？



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 3/11

答案是等待。“waiting out the uncertainty”，用等待来消除不确定性。

具体怎么做呢？在实践中，我们看到有两种方式可供选择，分别是写等待和读等待。

写等待：Spanner

Spanner 选择了写等待方式，更准确地说是用提交等待（commit-wait）来消除不确定

性。

Spanner 是直接将时间误差暴露出来的，所以调用当前时间函数 TT.now() 时，会获得的

是一个区间对象 TTinterval。它的两个边界值 earliest 和 latest 分别代表了最早可能时间

和最晚可能时间，而绝对时间就在这两者之间。另外，Spanner 还提供了 TT.before() 和 

TT.after() 作为辅助函数，其中 TT.after() 用于判断当前时间是否晚于指定时间。

理论等待时间

那么，对于一个绝对时间点 S，什么时候 TT.after(S) 为真呢？至少需要等到 S + ɛ时刻才

可以，这个ɛ就是我们前面说的不确定时间窗口的宽度。我画了张图来帮你理解这个概念。

从直觉上说，标识数据版本的“提交时间戳”和事务的真实提交时间应该是一个时间，那

么我们推演一下这个过程。有当前事务 Ta，已经获得了一个绝对时间 S 作为“提交时间

戳”。Ta 在 S 时刻写盘，保存的时间戳也是 S。事务 Tb 在 Ta 结束后的 S+X 时刻启动，

获得时间区间的最小值是 TT1.earliest。如果 X 小于时间区间ɛ，则 TT1.earliest 就会小于 

S，那么 Tb 就无法读取到 Ta 写入的数据。



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 4/11

你看，Tb 在 Ta 提交后启动却读取不到 Ta 写入的数据，这显然不符合线性一致性的要

求。

写等待的处理方式是这样的。事务 Ta 在获得“提交时间戳”S 后，再等待ɛ时间后才写盘

并提交事务。真正的提交时间是晚于“提交时间戳”的，中间这段时间就是等待。这样 Tb 

事务启动后，能够得到的最早时间 TT2.earliet 肯定不会早于 S 时刻，所以 Tb 就一定能够

读取到 Ta。这样就符合线性一致性的要求了。

综上，事务获得“提交时间戳”后必须等待ɛ时间才能写入磁盘，即 commit-wait。

到这里，写等待算是说清楚了。但是，你仔细想想，有什么不对劲的地方吗？

对，就是那个绝对时间 S。都说了半天时间有误差，那又怎么可能拿到一个绝对时间呢？

这不是自相矛盾吗？

Spanner 确实拿不到绝对时间，为了说清楚这个事情，我们稍微延伸一下话题。

实际等待时间

Spanner 将含有写操作的事务定义为读写事务。读写事务的写操作会以两阶段提交

（2PC）的方式执行。有关 2PC 的内容在第 9 讲中已经介绍过，如果你已经记不清了，

可以去复习一下。

2PC 的第一阶段是预备阶段，每个参与者都会获取一个“预备时间戳”，与数据一起写入

日志。第二阶段，协调节点写入日志时需要一个“提交时间戳”，而它必须要大于任何参

与者的“预备时间戳”。所以，协调节点调用 TT.now() 函数后，要取该时间区间的 



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 5/11

lastest 值（记为 s），而且 s 必须大于所有参与者的“预备时间戳”，作为“提交时间

戳”。

这样，事务从拿到提交时间戳到 TT.after(s) 为 true，实际等待了两个单位的时间误差。我

们还是画图来解释一下。

针对同一个数据项，事务 T8 和 T9 分别对进行写入和读取操作。T8 在绝对时间 100ms 的

时候，调用 TT.now() 函数，得到一个时间区间[99,103]，选择最大值 103 作为提交时间

戳，而后等待 8 毫秒（即 2ɛ）后提交。

这样，无论如何 T9 事务启动时间都晚于 T8 的“提交时间戳”，也就能读取到 T8 的更

新。

回顾一下这个过程，第一个时间差是 2PC 带来的，如果换成其他事务模型也许可以避免，

而第二个时间差是真正的 commit-wait，来自时间的不确定性，是不能避免的。

TrueTime 的平均误差是 4 毫秒，commit-wait 需要等待两个周期，那 Spanner 读写事

务的平均延迟必然大于等于 8 毫秒。为啥有人会说 Spanner 的 TPS 是 125 呢？原因就是

这个了。其实，这只是事务操作数据出现重叠时的吞吐量，而无关的读写事务是可以并行

处理的。

对数据库来说，8 毫秒的延迟虽然不能说短，但对多数场景来说还是能接受的。可是，

TrueTime 是 Google 的独门招式，其他分布式数据库怎么办呢？它们的时间误差远大于 8 

毫秒，难道也用 commit-wait，那一定是灾难啊！

这就要说到第二种方式，读等待。



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 6/11

读等待：CockroachDB

读等待的代表产品是 CockroachDB。

因为 CockroachDB 采用混合逻辑时钟（HLC），所以对于没有直接关联的事务，只能用

物理时钟比较先后关系。CockroachDB 各节点的物理时钟使用 NTP 机制同步，误差在几

十至几百毫秒之间，用户可以基于网络情况通过参数”maximum clock offset”设置这个

误差，默认配置是 250 毫秒。

写等待模式下，所有包含写操作的事务都受到影响，要延后提交；而读等待只在特殊条件

下才被触发，影响的范围要小得多。

那到底是什么特殊条件呢？我们还是使用开篇的那个例子来说明。

事务 T6 启动获得了一个时间戳 T6-S1，此时虽然事务 T2 已经在 T2-C 提交，但 T2-C 与 

T6-S1 的间隔小于集群的时间偏移量，所以无法判断 T6 的提交是否真的早于 T2。



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 7/11

这时，CockroachDB 的办法是重启（Restart）读操作的事务，就是让 T6 获得一个更晚

的时间戳 T6-S2，使得 T6-S2 与 T2-C 的间隔大于 offset，那么就能读取 T2 的写入了。

不过，接下来又出现更复杂的情况， T6-S2 与 T3 的提交时间戳 T3-C 间隔太近，又落入

了 T3 的不确定时间窗口，所以 T6 事务还需要再次重启。而 T3 之后，T6 还要重启越过 

T4 的不确定时间窗口。

最后，当 T6 拿到时间戳 T6-S4 后，终于跳过了所有不确定时间窗口，读等待过程到此结

束，T6 可以正式开始它的工作了。

在这个过程中，可以看到读等待的两个特点：一是偶发，只有当读操作与已提交事务间隔

小于设置的时间误差时才会发生；二是等待时间的更长，因为事务在重启后可能落入下一

个不确定时间窗口，所以也许需要经过多次重启。

小结



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 8/11

到这里，今天的内容就告一段落了，时间误差的问题比较抽象，你可能会学得比较辛苦，

让我帮你整理一下今天内容。

总之，处理时间误差的方式就是等待，“waiting out the uncertainty”，等待不确定性

过去。你可能觉得写等待和读等待都不完美，但这就是全球化部署的代价。我想你肯定会

追问，那为什么要实现全球化部署呢？简单地说，全球化部署最突出的优势就是可以让所

有节点都处于工作状态，就近服务客户；而缺失这种能力就只能把所有主副本限制在同机

房或者同城机房的范围内，异地机房不具备真正的服务能力，这会带来资源浪费、用户体

验下降、切换演练等一系列问题。我会在第 24 讲专门讨论全球化部署的问题。

时间误差是客观存在的，任何系统都不能获得准确的绝对时间，只能得到一个时间区

间，差别仅在于有些系统承认这点，而有些系统不承认。

1.

有两种方式消除时间误差的影响，分别是写等待和读等待。写等待影响范围大，所有包

含写操作的事务都要至少等待一个误差周期。读等待的影响范围小，只有当读操作时间

戳与访问数据项的提交时间戳落入不确定时间窗口后才会触发，但读等待的周期可能更

长，可能是数个误差周期。

2.

写等待适用于误差很小的系统，Spanner 能够将时间误差控制在 7 毫秒以内，所以有条

件使用该方式。读等待适用于误差更大的系统，CockroachDB 对误差的预期达到 250 

毫秒。

3.



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 9/11

提建议

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

思考题

最后，我要留给你一道思考题。

今天，我们继续探讨了读写冲突的话题，在引入了时间误差后，整个处理过程变得更复杂

了，而无论是“读等待”还是“写等待”都会让系统的性能明显下降。说到底是由多个独

立时间源造成的，而多个时间源是为了支持全球化部署。那么，今天的问题就是，你觉得

在什么情况下，不用“等待”也能达到线性一致性或因果一致性呢？

欢迎你在评论区留言和我一起讨论，我会在答疑篇和你继续讨论这个问题。如果你身边的

朋友也对时间误差下的读写冲突这个话题感兴趣，你也可以把今天这一讲分享给他，我们

一起讨论。

javascript:void(0);
javascript:void(0);


2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 10/11

上一篇 11｜隔离性：读写冲突时，快照是最好的办法吗？

下一篇 13 | 隔离性：为什么使用乐观协议的分布式数据库越来越少?

_______Harvey凝枫�...
2020-09-07

有个点看了几遍还是没能理解清楚：这个写等待与读等待 与 具体的事务类型（读写）有关
系么： 
Spanner的写等待只是针对写事务么，那读事务时怎么办？ 
CockroachDB的读等待只是在遇到读事务的时候才进行，那写事务的时候不管吗？

展开

作者回复: 这个问题本质上是读写操作落入了一个时间置信区间，无法判断是否该读取已写入的数

据。写等待是在写入时处理掉这个误差，读取时不再处理；而读等待则相反。

  1

piboye
2020-09-07

commit wait是保障rc，因为只需要判断时间戳，可以不用管当前活跃事务，应该是更简
洁稳定的实现。读等待是因为没有高精度的时钟，所以不能接受每个写2个时钟误差的延
迟，只在有数据冲突的情况下重启后续事务。

展开

  1

myrfy
2020-09-08

spanner的e为什么是4ms呢？如果误差区间在±7ms，可靠的时间窗口就应该是14ms了
所以怎么理解这个误差呢？

展开

作者回复: 4ms是Google官方给出的TrueTime的误差均值。后面的计算也都是基于均值的。

 

精选留言 (5)  写留言



2020/9/13 12 | 隔离性：看不见的读写冲突，要怎么处理？

https://time.geekbang.org/column/article/281671?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 11/11

武功不高
2020-09-08

跟谈恋爱一样，距离不一定产生美，但肯定容易引起误会……所以确定关系的两人尽量住
的近点，同居最好，最大限度消除误会的可能😄

展开

 1 

OliviaHu
2020-09-06

关于思考题，我想老师的问题已经透露出了答案。时间误差是由多个独立时间源造成的。
那么，在“单时间源”的情况下，就能够保证线性或因果一致性。但是，受限于单点，可
用性和集群部署范围大大受限。关于可用性，TiDB是通过落盘全局时钟+多个PD构成Raft
组来解决。集群部署范围，对于绝大多数公司的应用场景来说，都用不到全球化部署。 
PS: 老师，TrueTime拼错了。

展开

作者回复: 回答的很好，说明那个知识掌握的很扎实，点赞。关于这道思考题，我在15讲还留了一

个彩蛋，可以关注下^Q^。 

 

拼写确实错了，谢谢指出，已经请编辑同学帮忙调整了。

 


