
2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 1/13

27 | 产品测试：除了性能跑分，还能测个啥？
2020-10-12 王磊

分布式数据库30讲 进入课程

讲述：王磊
时长 17:43 大小 16.23M



你好，我是王磊，你也可以叫我 Ivan。

这一讲我们的关键词是“测试”。无论是作为程序员还是架构师，我们都不会忽视测试的

重要性，它贯穿于软件工程的整个生命周期，是软件质量的重要保障手段。

不过，提到分布式数据库的测试，你也许会有些疑问，我又不是数据库研发人员，还要关

心测试吗？

当然是需要了。比如，拿我来说，一名银行的科技人员。银行和很多传统企业一样，多数

应用系统都是构建在商业软件之上，对于基础软件研发的投入比较有限，所以多数银行是

不具备自研分布式数据库能力的。但是，分布式数据库的高并发、高可用性特点，意味着





 下载APP 



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 2/13

使用它的一定是非常重要和关键的业务系统。那么，为了保证系统的安全运行，即使不是

开发者，我们也仍然需要做大量的验证和测试工作。

说到这，我猜你会想到一个词。对，就是 POC（Proof of Concept）。POC 的意思是概

念验证，通常是指对客户具体应用的验证性测试。那验证性测试又具体要测些什么呢？对

于数据密集型系统，很多企业的 POC 都会使用 TPC 基准测试。

TPC-C

TPC（Transaction Processing Performance Council），也就是国际事务性能委员会，

是数十家会员公司参与的非盈利组织。它针对数据库不同的使用场景组织发布了多项测试

标准，其中被业界广泛接受有 TPC-C 、TPC-H 和 TPC-DS。

这三个测试标准针对不同的细分场景。简单来说，TPC-C 针对 OLTP 场景；TPC-H 针对 

OLAP 场景；而更晚些时候推出的 TPC-DS，在 TPC-H 的基础上又针对数据仓库的建模特

点做了更新，并且在 2.0 版本中又增加对大数据技术的针对性测试。

这里，因为我们讲的分布式数据库主要服务于 OLTP 场景，所以我们重点关注 TPC-C。

TPC-C 发布的标准规范中，模拟了一家大型电子商务网站的日常业务。根据规范中的背

景设定，这家公司的业务覆盖了很大的地理范围，所以设立了很多的仓库来支持邻近的销

售区域，每个仓库都要维护 100,000 种商品的库存记录并支持 10 个销售区域，每个销售

区域服务 3,000 个客户。

引自 TPC-C 标准规范（Revision 5.11）



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 3/13

这个场景对应的数据库模型一共包含 9 张表，覆盖了订单创建、支付、订单状态查询、发

货和检查库存等五种事务操作。客户会查询已经存在订单的状态或者下一个新的订单。平

均每个订单有 10 个订单行（Order-Line），有 1% 订单行的商品在其对应的仓库中没有

存货，必须由其他区域的仓库来供货。

引自 TPC-C 标准规范（Revision 5.11）

可以看出，TPC-C 模拟的整个业务场景和我们日常使用的电子商务网站是非常相似的。所

以说，TPC-C 测试场景是很有代表性的 OLTP 业务。

TPC-C 为数据库测试提供了一个开放的测试标准，很多 POC 甚至会直接套用这些数据模

型和事务操作。可 POC 做起来真有这么容易吗？

如果你实际组织过 POC，就肯定听到过类似这样的一些说法：

“A 公司的数据库是针对 TPC-C 做了优化的，只是测试分数高，实际用起来不行。”

“B 公司的数据库为某个查询语句设置了缓存，这样的测试对我们不公平。”

总之，就是友商为刷高分做了优化，有作弊的嫌疑。

这时，作为组织者该怎么处理呢？可以用一些管理上的办法去协调，但真正解决问题的只

有一个，就是要对产品架构有深入的了解，这样才能判断特定的优化措施在自己的真实业

务场景下是否普遍有效。如果是普适的，那自然就没问题。



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 4/13

你看，要做好甲方工程师，也是有要求的。

TPC-C 的测试用例除了性能测试，也包含了事务一致性的测试，但实际测试中这部分往往

会被忽略。这一方面是为了简化测试过程，另一方面是因为大家会觉得没有必要。既然这

些产品都有不少实际案例了，那事务一致性应该就没问题了吧。

可是，对于分布式数据库来说，这真不是个简单的事情，甚至要更加严谨的技术手段来证

明。那么，事务一致性方面有没有比 TPC-C 更权威的测试标准呢？

当然有了，这就是 Jepsen。

Jepsen

这个名字是不是有点耳熟？其实我们在第 3 讲介绍事务一致性时就提到过它。Jepsen 是

一个开源的分布式一致性验证框架，专门用来测试分布式存储系统，比如分布式数据库、

分布式键值系统和分布式消息队列等等。

Jepsen 曾经对很多知名的分布式存储系统进行了测试，而且往往都会发现一些问题，其中

分布式数据库就包括 CockroachDB、YugabyteDB、TiDB、VoltDB 和 FaunaDB 等。以

下是摘自Jepsen 官网的所有测试系统列表。



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 5/13

引自Jepsen官网

要知道这些测试并不是 Jepsen 单方面开展的，而都是和产品团队共同协作完成的，并且

这些产品厂商还要向 Jepsen 支付费用。由此可见，Jepsen 在分布式系统测试方面，已经

具有一定的权威性。

作为开源软件，你可以从 Github 上下载到Jepsen 的源码，所以有些厂商就在它的基础

上定制自己的测试系统。但是比较遗憾的是，Jepsen 的作者选择了一种小众的开发语言 

Clojure。我猜，这给多数程序员带来了障碍，因为我能想到的 Clojure 项目似乎只有 

Storm。



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 6/13

这里，我们简单介绍下 Jepsen 的架构。

按照 Jepsen 的推荐方案，被测试的分布式系统通常部署在 5 个节点上，而 Jepsen 的程

序主要部署在另外的控制节点上。这个控制节点会初始化若干个进程作为分布式系统的访

问客户端，当然这里也包括了分布式系统提供的客户端代码。

测试过程中，控制节点要完成三项工作，第一是通过 Generator 生成每个客户端的操作，

第二是通过 Nemesis 实现故障注入，最后使用 Checker 分析每个客户端的操作记录来验

证一致性。

在整个测试框架中，Nemesis 是特别重要的部分，这是因为 Jepsen 的核心逻辑就是要在

各种错误情况下，检测分布式系统还能否正常运行。

“故障注入”在普通测试中并不常见，这里的故障是特指网络分区、时钟不同步这样的底

层基础设施层面的问题。因为分布式系统的架构复杂，节点间有千丝万缕的联系，任何软

硬件基础设施的错误都可能造成不可收拾的后果，但业务逻辑层面的测试用例又无法覆盖

这类场景，所以要靠 Jepsen 来填补这块空白。

说到这，你或许会问，既然故障注入这么重要，那么 Jepsen 注入的这些故障就够了吗？

我们是不是要按照自己的业务场景增加一些故障呢？



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 7/13

嗯，不少人也有类似的想法。这就要说一下混沌工程的概念了。

混沌工程

混沌工程（Chaos Engineering）最早是由 Netflix 工程师提出来的。他们给出了这样的定

义：混沌工程是在分布式系统上进行实验的学科, 旨在提升系统的容错性，建立对系统抵御

生产环境中发生不可预知问题的信心。

我们可以从三个层面来理解这个定义。

首先，分布式系统的复杂性是混沌工程产生的基础。相比传统的单体系统，分布式系统中

包含更多硬件设备，多样化的服务和复杂交互机制。这些因素单独来看似乎是可控的，也

有完备的异常处置手段，但当它们组合在一起就会相互影响从而引发不可预知的结果，导

致故障发生。而人力是不可能完全阻止这些故障。

混沌工程就是在这些故障发生前，尽可能多的识别出导致这些异常的因素，主动找出系统

脆弱环节的方法学。

第二关键点是实验。混沌工程与单纯的故障注入是有区别的，混沌工程的输入是尝试性，

目的是探索更多可能发生的奇怪场景，促使正常情况下不可预测的事情发生，从而确认系

统的稳定性。我想，正是因为结果具有很大的不确定性，这个过程才会称为“实验”。

最早的混沌测试工具是 Netflix 的 Chaos Monkey，它只会注入一种混乱，那就是随机杀

死节点。后来逐步发展，混沌测试框架引入的故障越来越多，包括模拟网络通讯延迟、磁

盘故障、CPU 负载过高等等。而混沌测试的观察对象也不仅是一致性（像 Jepsen 那

样），而是从系统的各个维度上定义一系列稳态指标，观察混乱注入后系统是否能够快速

恢复。

复杂性1.

实验2.

生产环境3.



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 8/13

第三点，也是混沌工程非常核心的理念，混沌实验在生产环境进行才会获得更大的价值，

因为这样才能真正建立起信心，相信系统能抵御各种故障。不过，这个理念也有一定的争

议。比如，你今天坐飞机出差，这时混沌工程师要在飞机的控制系统上注入一些故障，想

看看系统会不会崩溃，你能接受吗？我想，正常人都会拒绝吧。

显然，对真实业务造成什么后果是做出判断的依据。虽然混沌工程还有一个爆炸半径理

念，要限定对生产环境的影响。但是，在生产环境注入混乱来验证系统稳定性的这个理

念，对哪些行业适用，进一步又对哪些业务适用，我觉得还是有待探讨的话题。

目前，一些分布式数据库也应用混沌工程进行系统测试，例如 GoldenDB、CockroachDB 

和 TiDB。

到这里，对于测试这个话题，我们已经谈了很多，但其实还漏掉了很重要的一点。你能猜

到是什么吗？别着急，让我先给你讲一个小故事。

TLA

在前面的课程中，我曾提到过我设计的一款软件 Pharos。它有一个试验特性是在写入数据

时，始终保持索引与数据的事务一致性，要知道它的底层是 HBase，本身是不支持跨行事

务的，所以说实现这个特性还是有点难度的。

有一次在介绍 Pharos 时，一位同学问我，怎么证明 Pharos 实现了事务一致性呢？我列举

了做过的很多破坏性测试，比如杀掉进程、直接重启服务器等等，这些都没影响到事务一

致性。但是，讲完之后，我们两个人似乎都对这个答案不太满意。

后来，我就想，我的测试方法还能改进吗？再增加一些异常场景？可似乎都没有本质上的

变化。你看，无论 TPC-C、Jepsen 还是混沌工程，虽然方法、理念各不相同，但是都有一

个共同点，就是它们只能发现错误，却无法证明正确性。

换句话说，测试是在用证伪的方式来检查软件质量，但是对一个复杂系统来说，测试用例

是无法穷尽的，那也就永远不能排除存在 Bug 的可能性。这个结论很让人沮丧，那么，有

没有“证明”的方法呢？

方法也是有的，叫做形式化验证（Formal Verification），就是用数学方法去证明我们的

系统是无 Bug 的，具体就是用数学工具进行定义、开发和验证（Specification, 



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 9/13

Development and Verification）。从一个更高阶的视角来看，不论硬件还是软件，归根

结底是在解决数学问题。形式化验证的逻辑就是，如果能够按照严格的数学方法描述设

计，那么结果的正确性就也是可以被证明。

但是，要把关键设计按照数学的方式表述一遍，这个实现成本就比较高。所以，形式化验

证在软件领域并不常见，而是从硬件领域开始普及，比如 Intel 就在芯片设计中就广泛采用

形式化方法。而后随着分布式系统的流行，形式化验证被应用的越来越多。

那么，形式化方法如何在软件工程落地呢？方法就是 Leslie Lamport 提出的 

TLA（Temporal Logical of Actions，行为时态逻辑），对又是这位大神。TLA 就是使用

数理逻辑来描述系统的时序状态，并验证程序的正确性。

1994 年 Lamport 发表了同名论文。1999 年 Lamport 又发表“Specifying 

Concurrent Systems with TLA+”论文，提出了 TLA+。TLA+ 是一种软件建模语言，再

加上配套的模型校验工具 TLC，这样我们就可以像写程序一样编写 TLA，可以运行来验证

最终结果的。2002 年 Lamport 又发布了一本完整的 TLA+ 教科书Specifying 

Systems: The TLA+ Language and Tools for Software Engineers。因为 TLA+ 使用的

是数学化的表达方式，对程序员并不友好，所以后来又出现了 PlusCal。它比 TLA+ 更接

近于编程语言，写好的代码可以很方便的转换成 TLA+ 并使用 TLA+ 的模型验证。

小结

好了，今天的课程就到这里了，让我们梳理一下这一讲的要点。

TPC-C 是国际事务性能委员会针对 OLTP 数据库建立的一套测试规范，也是目前广泛接

受的测试基准。在很多企业的 POC 测试中会引入 TPC-C，但是由于 TPC-C 的开放性，

有的产品会进行针对性优化，使得最终的评测指标失真。要能够分辨优化手段是否对你

的业务有普适性，还需要对产品架构的深入掌握。

1.

Jepsen 是针对分布式存储系统，进行数据一致性和事务一致性测试的工具。目前已经测

试了很多知名系统，具有一定的权威性。Jepsen 通过故障注入的方式进行测试，会覆盖

很多在普通测试不能发现的场景。

2.

混沌工程是针对分布式系统提出的方法学。它和测试一样都是为了提高系统的可用性和

稳定性，以故障注入为主要手段。混沌工程并不仅是针对某个具体分布式系统提出的。

3.



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 10/13

今天的课程内容可以归结为测试和形式化验证两部分，我们也做了一些比对说明，但并不

是说要用验证（Verification）来代替测试（Testing）。通过 TLA 可以验证程序逻辑是否

正确，这是个了不起的成就，但是要用数学语言再翻写一遍，付出的成本太高。而且，实

际工程中也不可能将所有的代码都转换为 PlusCal 或 TLA+ 来做全面的验证。更多情况

下，只是 TLA 来验证关键设计逻辑，剩余的多数代码还是要靠测试来发现问题。总之，测

试是不能被验证替代的。

它强调在生产环境注入故障，在受控的范围内观测系统，体现了反脆弱的思想。总之，

混沌工程试图从企业整体运维的视角，用截然不同的理念来提升系统的可用性。

所有的测试方法都只能发现问题，但无法证明正确性。形式化验证可以完美解决这问

题，并在很多硬件设计领域有落地实践。Lamport 提出的 TLA 将形式化验证引入软件

工程，使用数学工具定义程序逻辑，从而可以达到证明软件无 Bug 的目标。经过不断完

善，TLA 从模型到语言、工具建立了一套完备的机制，很多企业也开始使用 TLA 证明关

键设计逻辑的正确性。

4.



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 11/13

思考题

课程的最后，我们来看下思考题。今天我们的关键词是“测试”，也谈了很多测试方法和

理念。不难发现，这些规范和工具都伴随着分布式系统的普及演进。而分布式系统并不限

于分布式数据库，其他类型的分布式存储系统也越来越多，所以单一面向数据库的测试工

具已经不能满足要求。那么，我今天的问题就是，对于其他类型的分布式存储系统，你知

道有哪些主流的测试工具吗？

欢迎你在评论区留言和我一起讨论，我会在答疑篇和你继续讨论这个问题。如果你身边的

朋友也对数据库测试这个话题感兴趣，你也可以把今天这一讲分享给他，我们一起讨论。

学习资料



2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 12/13

提建议

GitHub:  jepsen

Jepsen: Analyses

Leslie Lamport: A Temporal Logic of Actions

Leslie Lamport: Specifying Concurrent Systems with TLA+

Leslie Lamport: Specifying Systems: The TLA+ Language and Tools for Software 

Engineers

Transaction Processing Performance Council: TPC BENCHMARK™ C：Standard 

Specification (Revision 5.11)

javascript:void(0);
javascript:void(0);


2020/10/12 27 | 产品测试：除了性能跑分，还能测个啥？

https://time.geekbang.org/column/article/295039?utm_source=time_web&utm_medium=menu&utm_term=timewebmenu 13/13

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 26 | 容器化：分布式数据库要不要上云，你想好了吗？

下一篇 用户故事 | 李兆龙：博观而约取，厚积而薄发

由作者筛选后的优质留言将会公开显示，欢迎踊跃留言。

精选留言  写留言


