
25 | 微服务为什么要容器化？
2018-10-18 胡忠想

从0开始学微服务 进入课程

讲述：胡忠想
时长 09:12 大小 3.70M

专栏前面的文章，我主要给你讲解了微服务架构的基础组成以及在具体落地实践过程中的会

遇到的问题和解决方案，这些是掌握微服务架构最基础的知识。从今天开始，我们将进一步

深入微服务架构进阶的内容，也就是微服务与容器、DevOps 之间的关系。它们三个虽然

分属于不同领域，但却有着千丝万缕的关系，可以说没有容器的普及，就没有微服务架构的

蓬勃发展，也就没有 DevOps 今天的盛行其道。

之后我还会具体分析它们三者之间是如何紧密联系的，今天我们先来看微服务为什么要容器

化。

微服务带来的问题





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程 
发数字“2”获取众筹列表



单体应用拆分成多个微服务后，能够实现快速开发迭代，但随之带来的问题是测试和运维部

署的成本的提升。相信拆分微服务的利弊你早已耳熟能详，我讲个具体的例子。微博业务早

期就是一个大的单体 Web 应用，在测试和运维的时候，只需要把 Web 应用打成一个大的

WAR 包，部署到 Tomcat 中去就行了。后来拆分成多个微服务之后，有的业务需求需要同

时修改多个微服务的代码，这时候就有多个微服务都需要打包、测试和上线发布，一个业务

需求就需要同时测试多个微服务接口的功能，上线发布多个系统，给测试和运维的工作量增

加了很多。这个时候就需要有办法能够减轻测试和运维的负担，我在上一讲给出的解决方案

是 DevOps。

DevOps 可以简单理解为开发和运维的结合，服务的开发者不再只负责服务的代码开发，

还要负责服务的测试、上线发布甚至故障处理等全生命周期过程，这样的话就把测试和运维

从微服务拆分后所带来的复杂工作中解放出来。DevOps 要求开发、测试和发布的流程必

须自动化，这就需要保证开发人员将自己本地部署测试通过的代码和运行环境，能够复制到

测试环境中去，测试通过后再复制到线上环境进行发布。虽然这个过程看上去好像复制代码

一样简单，但在现实时，本地环境、测试环境以及线上环境往往是隔离的，软件配置环境的

差异也很大，这也导致了开发、测试和发布流程的割裂。

而且还有一个问题是，拆分后的微服务相比原来大的单体应用更加灵活，经常要根据实际的

访问量情况做在线扩缩容，而且通常会采用在公有云上创建的 ECS 来扩缩容。这又给微服

务的运维带来另外一个挑战，因为公有云上创建的 ECS 通常只包含了基本的操作系统环

境，微服务运行依赖的软件配置等需要运维再单独进行初始化工作，因为不同的微服务的软

件配置依赖不同，比如 Java 服务依赖了 JDK，就需要在 ECS 上安装 JDK，而且可能不同

的微服务依赖的 JDK 版本也不相同，一般情况下新的业务可能依赖的版本比较新比如 JDK

8，而有些旧的业务可能依赖的版本还是 JDK 6，为此服务部署的初始化工作十分繁琐。

而容器技术的诞生恰恰解决了上面这两个问题，为什么容器技术可以解决本地、测试、线上

环境的隔离，解决部署服务初始化繁琐的问题呢？下面我就以业界公认的容器标准 Docker

为例，来看看 Docker 是如何解决这两个问题的。

什么是 Docker

Docker 是容器技术的一种，事实上已经成为业界公认的容器标准，要理解 Docker 的工作

原理首先得知道什么是容器。

容器翻译自英文的 Container 一词，而 Container 又可以翻译成集装箱。我们都知道，集

装箱的作用就是，在港口把货物用集装箱封装起来，然后经过货轮从海上运输到另一个港



口，再在港口卸载后通过大货车运送到目的地。这样的话，货物在世界的任何地方流转时，

都是在集装箱里封装好的，不需要根据是在货轮上还是大货车上而对货物进行重新装配。同

样，在软件的世界里，容器也起到了相同的作用，只不过它封装的是软件的运行环境。容器

的本质就是 Linux 操作系统里的进程，但与操作系统中运行的一般进程不同的是，容器通

过Namespace和Cgroups这两种机制，可以拥有自己的 root 文件系统、自己的网络配

置、自己的进程空间，甚至是自己的用户 ID 空间，这样的话容器里的进程就像是运行在宿

主机上的另外一个单独的操作系统内，从而实现与宿主机操作系统里运行的其他进程隔离。

Docker 也是基于 Linux 内核的 Cgroups、Namespace 机制来实现进程的封装和隔离

的，那么 Docker 为何能把容器技术推向一个新的高度呢？这就要从 Docker 在容器技术上

的一项创新 Docker 镜像说起。虽然容器解决了应用程序运行时隔离的问题，但是要想实现

应用能够从一台机器迁移到另外一台机器上还能正常运行，就必须保证另外一台机器上的操

作系统是一致的，而且应用程序依赖的各种环境也必须是一致的。Docker 镜像恰恰就解决

了这个痛点，具体来讲，就是Docker 镜像不光可以打包应用程序本身，而且还可以打包应

用程序的所有依赖，甚至可以包含整个操作系统。这样的话，你在你自己本机上运行通过的

应用程序，就可以使用 Docker 镜像把应用程序文件、所有依赖的软件以及操作系统本身都

打包成一个镜像，可以在任何一个安装了 Docker 软件的地方运行。

Docker 镜像解决了 DevOps 中微服务运行的环境难以在本地环境、测试环境以及线上环

境保持一致的难题。如此一来，开发就可以把在本地环境中运行测试通过的代码，以及依赖

的软件和操作系统本身打包成一个镜像，然后自动部署在测试环境中进行测试，测试通过后

再自动发布到线上环境上去，整个开发、测试和发布的流程就打通了。

同时，无论是使用内部物理机还是公有云的机器部署服务，都可以利用 Docker 镜像把微服

务运行环境封装起来，从而屏蔽机器内部物理机和公有云机器运行环境的差异，实现同等对

待，降低了运维的复杂度。

微服务容器化实践

Docker 能帮助解决服务运行环境可迁移问题的关键，就在于 Docker 镜像的使用上，实际

在使用 Docker 镜像的时候往往并不是把业务代码、依赖的软件环境以及操作系统本身直接

都打包成一个镜像，而是利用 Docker 镜像的分层机制，在每一层通过编写 Dockerfile 文

件来逐层打包镜像。这是因为虽然不同的微服务依赖的软件环境不同，但是还是存在大大小

小的相同之处，因此在打包 Docker 镜像的时候，可以分层设计、逐层复用，这样的话可以

减少每一层镜像文件的大小。

防止断
更 请务

必加 

首发微
信：1

71614
3665

https://en.wikipedia.org/wiki/Linux_namespaces
https://zh.wikipedia.org/wiki/Cgroups


下面我就以微博的业务 Docker 镜像为例，来实际讲解下生产环境中如何使用 Docker 镜

像。正如下面这张图所描述的那样，微博的 Docker 镜像大致分为四层。

这样的话，每一层的镜像都是在上一层镜像的基础上添加新的内容组成的，以微博 V4 镜像

为例，V4 业务的 Dockerfile 文件内容如下：

基础环境层。这一层定义操作系统运行的版本、时区、语言、yum 源、TERM 等。

运行时环境层。这一层定义了业务代码的运行时环境，比如 Java 代码的运行时环境 JDK

的版本。

Web 容器层。这一层定义了业务代码运行的容器的配置，比如 Tomcat 容器的 JVM 参

数。

业务代码层。这一层定义了实际的业务代码的版本，比如是 V4 业务还是 blossom 业

务。

1

2

3

4

5

6

7

8

9

10

11

12

FROM registry.intra.weibo.com/weibo_rd_content/tomcat_feed:jdk8.0.40_tomcat7.0.81_g1_dns
ADD confs /data1/confs/
ADD node_pool /data1/node_pool/
ADD authconfs /data1/authconfs/
ADD authkey.properties /data1/
ADD watchman.properties /data1/
ADD 200.sh /data1/weibo/bin/200.sh
ADD 503.sh /data1/weibo/bin/503.sh
ADD catalina.sh /data1/weibo/bin/catalina.sh
ADD server.xml /data1/weibo/conf/server.xml
ADD logging.properties /data1/weibo/conf/logging.properties
ADD ROOT /data1/weibo/webapps/ROOT/

复制代码



FROM 代表了上一层镜像文件是“tomcat_feed:jdk8.0.40_tomcat7.0.81_g1_dns”，从

名字可以看出上一层镜像里包含了 Java 运行时环境 JDK 和 Web 容器 Tomcat，以及

Tomcat 的版本和 JVM 参数等；ADD 就是要在这层镜像里添加的文件， 这里主要包含了

业务的代码和配置等；RUN 代表这一层镜像启动时需要执行的命令；WORKDIR 代表了这

一层镜像启动后的工作目录。这样的话就可以通过 Dockerfile 文件在上一层镜像的基础上

完成这一层镜像的制作。

总结

今天我给你讲解了微服务拆分后相比于传统的单体应用所带来的两个问题，一个是测试和发

布工作量的提升，另一个是在弹性扩缩容时不同微服务所要求的软件运行环境差异带来的机

器初始化复杂度的提升，而 Docker 利用 Docker 镜像对软件运行环境的完美封装正好解决

了这两个问题。

正是因为 Docker 可以做到一处通过、到处运行，所以对业务的价值极大，解决了以前应用

程序在开发环境、测试环境以及生产环境之间的移植难的问题，极大提高了运维自动化的水

平，也为 DevOps 理念的流行和业务上云提供了基础。

可见容器化改造对微服务是十分必要的，但 Docker 也不是“银弹”，同样会产生新的复杂

度问题，比如引入 Docker 后旧的针对物理机的运维模式就无法适应了，需要一种新的针对

容器的运维模式。所以接下来，我将分三期，给你详细讲解微服务容器化后该如何运维。

思考题

Docker 的概念乍一看与虚拟机有些类似，你认为它们有什么不同之处吗？分别适合什么应

用场景？

欢迎你在留言区写下自己的思考，与我一起讨论。

13

14

RUN chmod +x /data1/weibo/bin/200.sh /data1/weibo/bin/503.sh /data1/weibo/bin/catalina.s
WORKDIR /data1/weibo/bin



© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 24 | 微服务架构该如何落地？

下一篇 26 | 微服务容器化运维：镜像仓库和资源调度

风行天下
2018-10-18

 12

老师，分布式事务还没讲

展开

作者回复: 这部分内容考虑了一下专栏篇幅和内容的重要性，挑选了最核心的讲，更深度的内容后

面可以考虑再写一些，看大家反馈

郁
2018-10-19

 2

精选留言 (15)  写留言

拼课微
信：1

71614
3665



目前遇到最头疼的问题就是docker宿主机的防火墙如何优雅处理！

作者回复: 你用的是docker什么网络模式？

波波安
2018-11-16

 1

生产和测试的配置文件不一样。镜像怎么解决应用配置的问题。

拉欧
2018-10-18

 1

虚机是一个操作系统，docker是操作系统内的进程，虚机占有资源多，启动慢，但隔离效
果更好，一台物理机启动的虚机数量最多只能有几十个，但是docker可以有成千上万。

章洁
2019-05-09



感觉两个问题的本质还是一个，解决环境封装的差异性，带来测试部署便利！解决环境的
随时部署。

Tony
2019-02-25



虚机是一栋高层楼房里的一套房 
docker是一套房里的一房间（厨房，卫生间，卧室）

ylw66
2018-12-22



您好，我们公司在运行环境层按前端和后端分了两个微服务，前端from ngnix，后端from
openjdk，我理解也是一种可行的实践吧

展开

步＊亮
2018-11-15





老师你好，我想请教一个问题。在服务器国产化驱动下，docker是否能较容易地解决不同
平台(x86,arm,mips)下的web应用的移植问题呢？

展开

波波安
2018-11-15



服务器虚拟化解决的核心问题是资源调配，而容器解决的核心问题是应用开发、测试和部
署

Liam
2018-10-25



docker本质上还是依赖于Linux的内核，所以迁移的时候还是要求系统内核一致

Saily
2018-10-21



docker的自动化运维和之前说的微服务治理是要相互结合的吧？

郁
2018-10-20



bridge模式，在开了防火墙时，同一台宿主机上的容器间网络不通，遇到最大的麻烦就是
防火墙和docker共存了！

展开

王必成
2018-10-19



老师，什么时候讲API网关呀

展开

作者回复: 这个部分内容专栏没有涉及，可以研究下kong，zuul

极客达人
2018-10-19





问个问题，为啥要用rpc框架？

展开

batman
2018-10-18



你们公司接口文档用的什么

展开

作者回复: 我们老的http接口用wiki维护，跨语言rpc用的就是pb




