
Java虚拟机基础
温绍锦

11年8月25日星期四

提纲

• HotSpot

• ClassFile

• ClassLoader

• 内存模型、锁、同步
• JVM内存管理和垃圾收集

11年8月25日星期四

HotSpot介绍

• Java发展历程

• JVM列表

• OpenJDK

• 编译执行过程
• 解析执行和JIT编译

11年8月25日星期四

Java发展历程

1995 2000 2005 2010

JDK 1.0 JDK 1.1 J2SE1.2 J2SE1.3 J2SE1.4 J2SE 5.0 Java SE 6 Java SE 7

2004-­‐10-­‐30
泛型
For-­‐Each
Autoboxing
变长参数
u6l.concurrent
JMX

2002-­‐2-­‐6
正则表达式
NIO
Excep6on	
 Chain
JAXP	
 (XML)
Java	
 Web	
 Start

2011-­‐7-­‐28
NIO	
 2.0
Invoke	
 Dynmaic
String-­‐Switch
Try-­‐With-­‐
Resource

2006-­‐10-­‐11
Annota6on
Swing增强
JPDA增强
JM	
 Tool	

Interface

1998-­‐10-­‐8
SE、ME、EE
反射
集合框架
Java	
 IDL
Swing
Plugin-­‐in
JIT	
 Compiler

1997-­‐2-­‐19
AWT
Inner	
 Class
JavaBeans
JDBC

2000-­‐5-­‐8
HotSpot
Java	
 Sound
JNDI
JPDA	

(Debug)

阿里巴巴B2B主流版本

1995年，Sun发布Java 1.0，承诺：

Write Once，Run Anywhere

11年8月25日星期四

Java平台

11年8月25日星期四

Java是最通用的业务编程语言

11年8月25日星期四

Java虚拟机列表
虚拟机 描述

Oracle HotSpot 原来属于SUN，SUN被Oracle收购之后属于Oracle，是目前最流行的JVM

Oracle JRockit 原来属于BEA，BEA被Oracle收购之后属于Oracle，拥有⼀一些优秀特性，将会和HotSpot合并

IBM J9 IBM的JDK

Apple Mac OS Runtime for Java Apple公司开发的虚拟机，运行在Mac OS X系统上

Apache Harmony Apache组织开发的虚拟机，基于Apache License 2.0

Dalvik Google实现的JVM，Android的虚拟机。

Maxine Oracle的⼀一个用Java编写的Java虚拟机，用于研究目的

其它 有很多虚拟机的实现 http://en.wikipedia.org/wiki/List_of_Java_virtual_machines

合并

11年8月25日星期四

http://en.wikipedia.org/wiki/List_of_Java_virtual_machines
http://en.wikipedia.org/wiki/List_of_Java_virtual_machines

HotSpot

• Oracle(SUN)的JVM实现

• 主要用C++实现

• 解析器和编译器混合执行模式
• 默认解析执行，对执行频率高（热点）
的代码做动态编译

• 2006年开源

11年8月25日星期四

OpenJDK
• Sun在2006年11月13日把HotSpot及编译器通过GPL协
议开源，称为OpenJDK

• 这是自由软件社区的重要里程碑
• 加入OpenJDK的厂商包括：Oracle、IBM、Apple、SAP

• 支持的操作系统包括：Windows、Linux、Solaris、
BSD、MacOS、Haiku。

• 支持的硬件体系架构包括：x86、adm64、sparc、
PowerPC、mips、IA64、ARM

11年8月25日星期四

•⼀一个ByteCode	
 Interpreter
•两个	
 JIT	
 Compiler：
• C1	
 (client编译器)
•轻量级
•编译时间更短	
 ，占用内存少，适合GUI
• C2	
 (server编译器)
•重量级
•执行效率更高，大量编译优化，适合服务器

HotSpot包括：

11年8月25日星期四

$ java -version
java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03-383-11A511)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02-383, mixed mode)

解析和编译混合模式

java -Xint -version
java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03-383-11A511)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02-383, interpreted mode)

java -Xcomp -version
java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03-383-11A511)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02-383, compiled mode)

纯解析模式

纯编译模式

HotSpot三种执行模式

从Java 5开始，Sun HotSpot VM可以根据环境自动选择启动参数，在“服务器级”机器上会自动选用-server模式
（但在32位Windows上总是默认使用-client模式）。

“服务器级”指CPU为2核或以上（或者2 CPU或以上），并且内存有2GB或更多的机器。

11年8月25日星期四

⼀一些关于JIT的参数
Option Feature

-Xint jvm选择纯解析模式，缺省是混合模式

-Xcomp jvm选择纯编译模式，缺省是混合模式

-XX:+AggressiveOpts 采用激进的优化办法

-XX:+CompileThreshold=1000 判断是否热点进行编译的调用次数

-XX:+CITime 输出JIT编译所耗费的时间

-XX:+PrintCompilation 当⼀一个方法被编译时，打印信息。这个参数对于调优基础组件有用。

-XX:InlineSmallCode
-XX:MaxInlineSize=35
-XX:FreqInlineSize=

代码内联的判断依据，调整编译后代码的字节大小是判断条件

-XX:LoopUnrollLimit= 编译优化时将循环展开的上限值

11年8月25日星期四

Class文件格式
• Java编译执行流程

• ClassFile的格式介绍

• ClassFile中FieldInfo和MethodInfo介绍

• 类型描述Descriptor介绍

• ClassFile中的Attribute介绍

• JVM指令介绍

11年8月25日星期四

PC Operating System

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

...
iconst_0
iload
istore_1
...

内存管理

ByteCode Verifier

Interpreter /
JIT Compiler

Java API

Intel X86 JVM

PC Operating System

内存管理

ByteCode Verifier

Interpreter /
JIT Compiler

Java API

AMD64 JVM

JRE JRE

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

def f(x) :
 print x
...

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

class Foo {
 /* .. */
}

...
iconst_0
iload
istore_1
...

javac jython

java bytecode file
(.class/.jar)

java bytecode file
(.class/.jar)

java source file
(.java)

Python source file
(.py)

源码

字节码

执行

字节码是实现跨平台的基础

编译执行流程

11年8月25日星期四

ClassFileFormat
Magic Number

Version

Constant Pool

Access Flags

This Class Name

Super Class Name

Interfaces

Fields

Methods

Attributes

魔数，值为0xCAFEBABE，Java创始人James Gosling制定

包括minor_version和major_version，minor_version：1.1(45), 1.2(46), 1.3(47),
1.4(48), 1.5(49), 1.6 (50), 1.7(51)。指令集多年不变，但是版本号每次发布都变化。

包括字符串常量、数值常量等

4个字节

2＋2个字节

2＋n个字节

2个字节

2个字节

2个字节

2+n个字节

2+n个字节

2+n个字节

2+n个字节

11年8月25日星期四

Access Flags Name Index Descriptor Index Attributes

Access Flags Name Index Descriptor Index Attributes

字段

方法

private
pubic
protected
static
...

真正的名称存在常
量池中，这里保存
⼀一个Index
...

真正的描述信息存
在常量池中，这里
保存⼀一个Index
...

访问标识 名称 类型信息

属性信息包括：
泛型信息
异常信息
调试信息

字段和方法

11年8月25日星期四

Descriptor
Type

B byte 带符号的byte

C char Unicode字符
D double 双精度浮点数
F float 单精度浮点数
I int 32位整数
J long 64位整数
S short 16位整数
Z boolean true or false

LClassname； reference 引用类型，
Ljava/lang/String;表示String
Ljava/lang/Integer;表示Integer

[reference 数组类型，例如：
[I表示int[]，
[Ljava/lang/Object;表示Object[],
[[[D表示double[][][]

11年8月25日星期四

Attribute类型 使用范围
ConstantValue FieldInfo 定义字段的初始值
Code MethodInfo 方法的代码
StackMapTable CodeAttribute 调试信息
Exception MethodInfo 异常信息
InnerClass ClassFile 内嵌类
EnclosingMethod ClassFile 匿名类
Synthetic ClassFile/MethodInfo/FieldInfo 缺省构造函数等
Signature ClassFile/MethodInfo/FieldInfo 泛型信息
SourceFile ClassFile 源码信息
SourceDebugExtension ClassFile 调试信息
LineNumberTable CodeAttribute 调试信息
LocalVariableTable CodeAttribute 调试信息
LocalVariableTypeTable CodeAttribute 调试信息
Deprecated ClassFile/MethodInfo/FieldInfo

RuntimeVisibleAnnotations ClassFile/MethodInfo/FieldInfo Annotation信息
RuntimeInvisibleAnnotations ClassFile/MethodInfo/FieldInfo Annotation信息
RuntimeVisibleParameterAnnotations MethodInfo Annotation信息
RuntimeInvisibleParameterAnnotations MethodInfo Annotation信息
AnnotationDefault MethodInfo Annotation信息

11年8月25日星期四

public static f()I
 ICONST_1
 ISTORE 0
 ICONST_2
 ISTORE 1
 ILOAD 0
 ILOAD 1
 IADD
 BIPUSH 10
 IMUL
 ISTORE 2
 ILOAD 2
 IRETURN
MAXSTACK = 2
MAXLOCALS = 3
}

public static int f() {
 int a = 1;
 int b = 2;
 int c = (a + b) * 10;
 return c;
}

操作栈大小
局部变量区大小

操作栈局部变量

注意：double和long类型会占据两个栈位

1

1

1 2

21

21 1

21 21

21 3

21 103

21 30

3021

装载常量

保存变量

装载常量

保存变量

装载变量

装载变量

加法运算

装载常量

乘法运算

保存变量

11年8月25日星期四

装载和存储指令 从局部变量装载到操作栈 iload/lload/fload/dload/aload

将操作栈保存到局部变量 istroe/lstore/fstore/dstore/astore

装载常量到操作栈 bipush/sipush/ldc/ldc_w/aconst_null

算术运算指令 加 iadd/ladd/fadd/dadd

减 isub/lsub/fsub/dsub

乘 imul/lmul/fmul/dmul

除 idiv/ldiv/fdiv/ddiv

求余 irem/lrem/frem/drem

负数 ineg/lneg/fneg/dneg

位移 ishl/ishr/iushr/lshl/lshr/lushr

位操作 ior/lor/iand/land/ixor/lxor

自增 iinc

比较 dcmpg/dcmpl/fcmpg/fcmpl/lcmp

类型转换 数值类型转换 i2b/i2c/i2s/l2i/f2i/f2l/d2i/d2l/d2f

对象创建和处理 创建对象 new

创建数组 newarray/anewarray/mulanewarray

访问字段 getfield/putfield/getstatic/putstatic

操作栈指令 pop/pop2/dup/dup2/dup_x1/dup_x2/dup2_x1/dup2_x2/swap

跳转指令 条件跳转 ifeg/iflt/ifle/ifne/ifgt/ifge/ifnull/ifnonnull
if_icmpeg/if_icmpne/if_icmplt/if_icmpgt/if_icmple/if_acmpeq/if_acmpne

组合跳转 tableswitch/lookupswitch

无条件跳转 goto/goto_w/jsr/jsr_w/ret

方法调用 invokevirtual/invokeinterface/invokespecial/invokestatic 方法调用
return/ireturn/lreturn/freturn/dreturn/areturn 返回

同步 monitorenter/monitorexit
11年8月25日星期四

ClassLoader

• 各种ClassLoader介绍

• ClassLoader工作机制

• Thread.getContextClassLoader()

• Jar Hell问题以及解决办法

11年8月25日星期四

Bootrap
classloader

Extensions
classloader

System
 classloader

Core APIs (e.g., rt.jar)

java.lang java.io

Default extensions (e.g., jre/lib/ext/)

etc.

(default to none)

Classpath classes

org.apache.tomcat etc.

各种ClassLoader介绍

Application
classloader

application classes

etc. com.alibaba org.spring

11年8月25日星期四

获得ClassLoader的途径

clazz.getClassLoader();

ClassLoader.getSystemClassLoader()

Thread.currentThread().getContextClassLoader()

DriverManager.getCallerClassLoader()

获得当前类的ClassLoader

获得当前线程上下文的ClassLoader

获得系统的ClassLoader

获得调用者的ClassLoader

11年8月25日星期四

Jar hell问题以及解决办法

ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
String reosurceName = "com/alibaba/simpleEL/dialect/tiny/TinyELEvalService.class";
Enumeration<URL> urls = classLoader.getResources(reosurceName);
while (urls.hasMoreElements()) {
 URL url = urls.nextElement();
 System.out.println(url);
}

当⼀一个类或者⼀一个资源文件存在多个jar中，就会存在jar hell问题。

可以通过以下代码来诊断问题：

jar:file:/Users/admin/.m2/repository/com/alibaba/platform/shared/simpleel/0.1.2/simpleel-0.1.2.jar!/com/alibaba/simpleEL/dialect/tiny/TinyELEvalService.class

11年8月25日星期四

内存模型、锁和同步

• 多核处理器模型
• volatile

• cas

• synchronized、lock

11年8月25日星期四

多核处理器

多核处理器内存模型
Core 0

Cache

Core 1

Cache

Core 2

Cache

Core 3

Cache

Interconnection network

Memory

状态 描述

M(Modified) 这行数据有效，数据被修改了，和内存中不⼀一致，数据只存在于本Cache中
E(Exclusive) 这行数据有效，数据和内存中的⼀一致，数据只存在本Cache中
S(Shared) 这行数据有效，数据和内存中的⼀一致，数据存在多分Cache中
I(Invalid) 这行数据无效

多核处理器缓存⼀一致性协议MESI

11年8月25日星期四

volatile

• 如果不声明volatile，变量装载到本地变量
中，或者cpu cache中，多线程下很容易导
致状态不⼀一致。

• 声明了volatile，每次访问的都是主存中的数
据，⼀一致性能提升，但是还是不可靠的。

• volatile字段的访问效率很低，每次访问都需
要十几个nano。大约为lock的1/3时间

11年8月25日星期四

CAS（Compare And Swap）

• CAS指令由硬件提供

• 并发程序设计实现的基础
• 486之后并不需要锁总线

• 基于MESI缓存⼀一致性协议

http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot

11年8月25日星期四

http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot

lock和synchronized

• 保证代码块的不可重入
• 底层都是基于CAS实现的

• 通过jstack -l <pid>获得jvm的线程信息和
锁信息

•

11年8月25日星期四

JVM内存管理和垃圾收集
• 内存管理
• 垃圾收集
• 新生代的垃圾收集
• 老生代的垃圾收集
• 不同垃圾收集的行为
• 垃圾收集器选择

11年8月25日星期四

内存管理

Eden
S
0

TenuredVirtual Virtual Perm Virtual
S
1

Total JVM Heap

Young Generation Old Generation

Out of Memory

Young GC Full GC

-Xmn -Xmx -XX:PermSize

-XX:MaxPermSize-XX:SurvivorRatio = Eden / Survivor
-XX:NewRatio = Old Generation / Young Generation

11年8月25日星期四

X X X X X X

X Empty

Young Generation

From To

Old Generation

Empty

Empty

Young Generation

From To

Old Generation

回收前

回收后

垃
圾
回
收

Eden

Survivor Spaces

Eden

Survivor Spaces

11年8月25日星期四

X X X X
Start	
 of	
 Sweeping

X
End	
 of	
 Sweeping

X X X X
Start	
 of	
 Compac5on

X
End	
 of	
 Compac5on

CMS	
 sweeping	
 (but	
 not	
 compac6ng)	
 of	
 old	
 genera6on

Compac6on	
 of	
 the	
 old	
 genera6on

Old	
 Genera6on	
 Gargage	
 Collector

Concurrent	
 Mark	
 Sweep	
 Collector

Serial	
 Collector

11年8月25日星期四

Ini5al	
 Mark

Remark

Concurrent	
 Sweep

Concurrent	
 Mark

Stop-­‐the-­‐world	
 pause

Stop-­‐the-­‐world	
 pause

Parallel	

Collector

Serial
Collector

Concurrent
Mark-­‐Sweep
Collector

更大吞吐量

更短的停顿

各种GC行为比较

11年8月25日星期四

Old Generation Collector

Young Generation Collector

Garbage Collectior Selection

Option Garbage Collector Selected Introducted Feature

-XX:+UseSerialGC Serial + Serial Old

-XX:+UseParNewGC ParNew + Serial Old

-XX:+UseParallelGC Parallel Scavenge + Serial Old JDK 1.5 多线程

-XX:+UseParallelOldGC Parallel Scavenge + Parallel Old JDK 1.6 多线程，更大吞吐量

-XX:+UseConcMarkSweepGC ParNew + CMS + Serial Old JDK 1.6 更短停顿

-XX:+UnLockExperimentalVMOption
-XX:+UseG1GC Garbage First JDK 1.7 大内存， 更短停顿，软实时

Serial ParNew Parallel Scanvenge

CMS Serial Old Parallel Old CMS

11年8月25日星期四

